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ABSTRACT

ANALYTICAL AND NUMERICAL STUDY

OF PHASE TRANSFORMATION WITHIN A BAR

COMPOSED OF A STRAIN-SOFTENING NONLINEAR ELASTIC MATERIAL

By

Jiehliang Lin

This study is concerned with a model describing phase transformations within a

strain-softening bar induced by stress. In an analytical study we consider two materials

with particular strain-softening constitutive laws. These materials have a non-convex

strain energy density function and their equilibrium equations may be non-elliptic. The

parts of the bar with strains corresponding to the strain-softening part of the constitutive

law are regarded as being in a different phase from the rest of the bar. Two loading de-

vices are the main concern: one is the hard device in which the bar is firmly fixed at one

end while the other end is subjected to a given displacement; the other is the soft device

in which the bar is also firmly fixed at one end while the other end is subjected to a given

dead load. A detailed characterization is given for the associated nonunique solutions to

this problem. Here these nonunique solutions represent different ways to distribute phase

transformations within the system. Energy functions for the solutions are also given.

For both device loadings the problem is also studied within a quasi-static setting

(which neglects inertial effects). Two separate criteria to resolve the nonuniqueness of

the solutions to the problem are considered: a kinetic relation criterion and a minimum

energy criterion.

In the numerical study we consider the finite element method. It is shown that the

nonuniqueness of solutions to the problem in the continuous system is translated into

nonuniqueness of solutions in the numerical system. The FEM is then successfully im-

plemented for each of the two separate criteria mentioned above.
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1. Introduction

1.1 Statement of problem

Elasto-(quasi)-static fields associated with discontinuous strain in the fully nonlinear equi-

librium theory of elasticity have been explored recently [1987A] in order to model phase

transitions. Stress-induced phase transitions in solids can be modeled in a continuum elas-

ticity setting by using non-convex strain energy density functions. For an elastic solid, if its

strain energy density function is non-convex, then its displacement equation of equilibrium

loses ellipticity and many new features of the theory emerge. For example, discontinuous

strains can occur, solutions are less smooth than usual, and massive failure of uniqueness

can occur in even the simplest boundary value problem. In addition, a breakdown of the

familiar balance between the rate of work and the rate of increase of stored energy can oc-

cur [1979K]. In particular, the departure from the conventional elastic behavior arises in

quasi-static motions of an elastic body in which, at each instant, the associated equilibrium

field involves discontinuous strain.

The purpose of this study is to investigate the connection between analytical re-

sults and numerical results of phase transition behavior within a strain-softening bar sub-

jected to either a given displacement or to a given load at ends. In particular, the bar may

have a nonunique strain which is due to the strain-softening of the material. Moreover,

we study loading behavior under two separate criteria for resolving the nonunique issue

mentioned above, one is the minimum energy solution criterion, in which the bar always

assumes configurations that have the minimum energy, the other is the kinetic criterion,

in which the velocity of phase boundaries in the bar are determined by a kinetic relation.

Finally we compare the analytical results and the numerical results that are obtained by

using the finite element method.



l.2 Literature review

A material is said to be in a strain-softening state when the product of its strain rate and its

stress rate is less than zero. Therefore the strain-softening takes place when the stiffness

matrix is not positive definite. Strain-softening can be found in certain materials such as

concrete, rocks, dense soils and some composites [1984R], [19850]. Shan et a1 studied the

fracture behavior of a “quasi-brittle” cement-based material by experimental methods

[19938]. The “quasi-brittle” material, which is different from a brittle material, responds

nonlinearly prior to the peak stress and gradually decreases its stress after reaching the

peak. One finds strain-softening in the constitutive equations for phenomena of damage

models where the strain-softening is due to plastic fracturing [1979B]. Here the final col-

lapse of compression test of concrete often happens after the maximum stress is reached.

Both the size effect and the shape effect play important roles in the strain-softening of con—

crete. Belytschko et al studied transient solution for one-dimensional problems with two

types of stress-strain relations: one where the stress remains constant after the strain-soft-

ening and the other where the stress increases again [1987B]. Bazant studied wave propa-

gation within a strain-softening bar which is loaded by forcing both ends to move simulta-

neously outward, with constant opposite velocities. The analytical solutions and numerical

solutions which are obtained by using the finite element method are given [19853].

A simple model is useful since strain-softening involves issues related to material

instability, nonuniqueness and existence. A one-dimensional bar is the simplest model

studied for an elastic solid. Ericksen [1975E] considered a bar whose stress-strain rela-

tion is non-monotonic and explored it for material instability by using the equilibrium

theory. This can be viewed as a simple model for phase transition in an elastic solid. Non-

monotonicity of the stress response behavior in [1975B] may lead to three allowed values

of strain which correspond to a single value of stress. These strains are in three different

strain phases: low strain phase, intermediate strain phase and high strain phase. A prop-



agating strain discontinuity in these material may be either a shock wave or a phase

boundary, according to whether the locations separated by the discontinuity are of the

same phase or different phases. In [1975E] the intermediate strain phase is a phase in a

behavior of strain-softening.

To formulate the problem, the formal presentation of basic laws is useful. Gurtin

[19916] proposed formal presentation of fundamental laws in a fully dynamical setting:

balance laws for mass, forces and energy and a law of the entropy growth for a two-phase

continuum with sharp phase-interface. In addition, he explained the ideas involved in the

formulation of these basic laws and clarified the differences between various formula-

tions.

The problem can be studied in either an equilibrium setting, a quasi-static setting

or a dynamical setting. The quasi-static setting gives motion by advancing through a stat-

ic case at each instant so that the difference between a quasi-static setting and a dynam-

ical setting is the absence or presence of inertia. The dynamical setting usually involves

wave propagation but there are no waves in the quasi-static setting. One might expect that

the quasi-static setting would give the large time solution after waves have damped out.

If body forces are absent and the field is in equilibrium, then the equilibrium

equation can be expressed in terms of stress a as V0 0 = 0, where V0 is divergence op-

erator, and o is the Piola stress which is the force per undeformed area [1977K]. Hence

for an one-dimensional system the equilibrium equation can be expressed in terms of

stress 0 as o’(X) = 0, here ’ denotes differentiation. The equilibrium equation may be

locally elliptic, parabolic or hyperbolic depending on the material and the deformation.

Knowles and Stemberg (see [1978K]) showed that the equation type was established

from the local slope of the stress-strain relation as follows



6’ (y) > O 4:» elliptic,

6’ (y) = O aparabolic,

6’ (y) < O c: hyperbolic,

where 6 (y) is stress and ‘y is strain. If the equilibrium field contains a curve along which

the partial derivative of displacement fails to be continuous, the curve is known as an equi-

librium shock or a stationary phase boundary. Equilibrium shocks affect the balance of the

energy in the elastostatic field [1977K], [1978K] and [1979K]. Abeyaratne [1983A] has

derived “equilibrium shocks” on which the deformation gradient and stress are discontinu-

ous across certain internal material surfaces. Equilibrium equations, natural boundary con-

ditions, traction continuity condition and a supplementary jump condition are also derived.

Finally he concluded that this supplementary jump condition implied that a stable equilib-

rium shock must necessarily be dissipation-free. Kikuchi and Triantafyllidis [1982K] also

explored the admissible equilibrium solutions to the Euler-Lagrange equation for a mini-

mization problem of the energy.

Abeyaratne and Knowles [1987AA] have investigated a twist problem in the the-

ory of finite deformations of elastic materials whose associated equation of equilibrium

does not remain elliptic at all strains. Abeyaratne and Knowles [1989A] have concluded

some elastic materials are capable of sustaining finite equilibrium deformations with dis-

continuous strains. Boundary value problems for such “unstable” elastic materials often

pose an infinite number of solutions. Abeyaratne and Knowles [1987A] have considered

maximally dissipative quasi-static motions and found the possibility of modeling dissi-

pative mechanical response in solids, on the basis of the equilibrium theory of finite elas-

ticity for materials that may lose ellipticity at large strains. The result permits the occur-

rence of discontinuous displacements gradients. For quasi-static motions, one can obtain

an unique solution by requiring that all equilibrium states are minimizers of the potential

energy functional. The present value of twist is then uniquely determined by the‘present

value of torque and vice-versa, as in conventional elasticity. But in contrast, for maxi-



mally dissipative motions, twist depends on the past history of torque during the motion,

as in plasticity.

Abeyaratne and Knowles [1987AA] have concluded that quasi-static motions, for

which the equation of equilibrium does not remain elliptic at all strains, may be dissipa-

tive. In particular, they show that the macroscopic response in the problem treated may

correspond to elastic-perfectly plastic behavior. It was shown that the quasi-static re-

sponse of a bar to a prescribed force history is then fully determined if one considers ad-

ditional information in the form of a kinetic relation [1989A]. In particular, they show

how unstable elastic materials can be used to model macroscopic behavior as in visco-

plasticity.

Neither the equilibrium setting nor the quasi-static setting treats truly dynamical

problems involving wave propagation. Due to nonuniqueness of dynamical solutions, a

number of authors have studied many criteria to single out an unique solution. All entropy

is defined to be a ratio between the heat transfer to the system and. the absolute tempera-

ture in a reversible process. Moreover a dissipation, or degradation, is defined to be the

difference between the maximum possible work and the actual output. In an adiabatic

system the dissipation is proportional to the increase of entropy. In this setting the prin-

ciple of increase of the entropy is simply another statement of dissipation of energy. Both

of which are also equivalent to the second law of thermodynamics. Dafermos [1973D]

extended the entropy admissibility criterion of Lax [1973L] to entropy rate admissibility

criterion for solutions of a hyperbolic system of conservation laws. The selected solu-

tions are those in which the total entropy decreases with the highest possible rate.

Dynamical phase transitions are also a highly studied topic in gas dynamics

[19831-1], [19861-1], [1991AAA]. The van der Waals fluid problem could be viewed as a

counterpart of the phase transformation problem in finite elasticity. Moving phase

boundaries are kinematically similar to other types of shock fronts in that velocity and



strain are discontinuous across them. Hagan and Slemrod [1983H] have investigated ad-

missibility criteria for nonlinear conservation laws based on capillarity and viscosity, and

found results consistent with experiment for materials which exhibit phase transitions by

means of specific examples. Here an important concept is the Maxwell stress

6 = o’maxwell’
which is uniquely defined by the requirement that the two loops enclosed

by the stress-strain curve a = 6 (y) and the horizontal line 0 = 0'we" are equal in

area. Hattori [19861-1] has treated special Riemann problems and shown that the well

known Maxwell construction is admissible, according to the entropy rate criterion. Af-

fouf and Caflisch [1991AAA] have presented a numerical study of isothermal fluid equa-

tions with a nonmonotone equation of state. It can serve as a model for describing dy-

namic phase transitions, and the model can explore an analytic argument for stability of

phase transitions.

The analysis of the fully dynamical motion of a phase boundary for a specific

class of elastic materials whose stress-strain relation in simple shear is nonmonotone can

be found in Pence [1991P], [1991PP]. It was shown that the ringing of a shear pulse be-

tween the external boundaries and an internal phase boundary gives rise to periodic phase

boundary motion for both the case of a completely reflecting phase boundary and the case

of a completely transmitting phase boundary [1991P]. The possibly infinite solutions that

are not completely reflecting or completely transmitting are examined from the perspec-

tive of energy and dissipation. It is shown that there also exist at most two solutions

which involve no dissipation, and one solution that maximizes the mechanical energy

dissipation rate [1991PP].

Similar topics in one-dimensional elasticity can be found in [1980]], [1986P],

[1987?]. Pence investigated emergence and propagation of a phase boundary in an elastic

bar, whose stress-strain relation is nonmonotonic [1986P]. An asymptotic description of

the emergence of the phase boundary was provided for short times. The energetic behav-



ior of a phase boundary that is subjected to concurrent dynamic pulses under a maximally

dissipative criterion and under a kinetic criterion is studied by Lin and Pence ([1992L],

[1993L]).The results show that the total energy loss is different from that which would

occur if the two pulses were not concurrent. The dissipation which is due to wave ringing

in non-elliptic elastic materials for large time is explored by Lin and Pence ([1993LL].

They set up a framework for treating the resulting wave reverberations and computing

the energy dissipation for large time. Their numerical results shew that the large time en-

ergy dissipation matches that which is necessary to settle into a new energy minimal

equilibrium state. They obtain the same results analytically for the special case of a small

dynamical perturbation.

A very elegant mathematical investigation of a related problem can be found in

Ball et al [1991B]. They explore mathematical models for the dynamical behavior of me-

chanical systems that dissipate energy as time increases, and establish global existence

and uniqueness results for the long time behavior of the systems. This provides insight

into the dynamical development of finer and finer microstructure by certain material

phase transformations.

The lack of uniqueness of solutions to these problems can also be resolved by im-

posing two constitutive requirements, a nucleation criterion and a kinetic relation

[1988AA], [1990A], [1991A], [1991AA]. A kinetic relation can be in a form f = (p(s'),

where f is the driving traction acting at the phase boundary and s’ is the phase boundary

velocity. The relation between the driving traction on the phase boundary and the phase

boundary velocity is similar to the relation between maximum dissipation to the maximum

plastic work [1992A]. If one adds the viscosity and second strain gradient to the elastic

part of the stress, it is equivalent to the imposition of a particular kinetic relation at the

phase boundaries that propagate subsonically [1988AA], [1991A]. In a general thermo-

mechanical process, the kinetic relation could be function of the driving traction and tem-
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ior of a phase boundary that is subjected to concurrent dynamic pulses under a maximally

dissipative criterion and under a kinetic criterion is studied by Lin and Pence ([1992L],

[1993L]).The results show that the total energy loss is different from that which would

occur if the two pulses were not concurrent. The dissipation which is due to wave ringing

in non-elliptic elastic materials for large time is explored by Lin and Pence ([1993LL].

They set up a framework for treating the resulting wave reverberations and computing

the energy dissipation for large time. Their numerical results shew that the large time en-

ergy dissipation matches that which is necessary to settle into a new energy minimal

equilibrium state. They obtain the same results analytically for the special case of a small

dynamical perturbation.

A very elegant mathematical investigation of a related problem can be found in

Ball et al [1991B]. They explore mathematical models for the dynamical behavior of me-

chanical systems that dissipate energy as time increases, and establish global existence

and uniqueness results for the long time behavior of the systems. This provides insight

into the dynamical development of finer and finer microstructure by certain material

phase transformations.

The lack of uniqueness of solutions to these problems can also be resolved by im-

posing two constitutive requirements, a nucleation criterion and a kinetic relation

[1988AA], [1990A], [1991A], [1991AA]. A kinetic relation can be in a form f = tp(s'),

where f is the driving traction acting at the phase boundary and s is the phase boundary

velocity. The relation between the driving traction on the phase boundary and the phase

boundary velocity is similar to the relation between maximum dissipation to the maximum

plastic work [1992A]. If one adds the viscosity and second strain gradient to the elastic

part of the stress, it is equivalent to the imposition of a particular kinetic relation at the

phase boundaries that propagate subsonically [1988AA], [1991A]. In a general thermo-

mechanical process, the kinetic relation could be function of the driving traction and tem-



perature [1990A]. It is also possible that a modified version of the entropy rate admissi-

bility criterion can act as a particular kind of kinetic relation.

For complicated boundary value problems, it is very difficult to find analytical so-

lutions. Therefore we need numerical analysis to obtain approximate solutions. Numeri-

cal analysis using these types of phase transition models can be found in [198888]. Sill-

ing applied numerical analysis to plane strain equilibrium problems in finite elasticity us-

ing a finite-difference dynamic relaxation method. He has claimed this method is useful

for the study of localization and phase changes in elastic solids.

Silling [19888] has also applied numerical analysis to the equilibrium anti-plane

shear deformations for materials in which the governing equation varies in type locally

from elliptic to hyperbolic. This extends Ericksen’s analysis for bars to the two-dimen-

sional case by numerical analysis. He has shown the emergence of surfaces of disconti-

nuity in the displacement field in a weakening material and in a trilinear material, and has

also found the solution to equilibrium problems by using the dynamic relaxation method.

1.3 Section overview

It is obvious from the literature review that nonuniqueness of the strain-softening material

is an important issue which is not yet fully resolved. In order to better understand the non-

uniqueness of the strain-softening material, we choose a simple system, a bar, to model the

behavior. We study the phase transition behavior of the bar both analytically and numeri-

cally. Unfortunately, there are few numerical analysis results obtained by using finite ele-

ment method (FEM) for this kind of problem. One of the purposes of this thesis is to study

the connections between the analytical results and numerical results which are obtained by

using FEM.

We are concerned with the phase transformation induced by stress within a strain-

softening bar. The main goal is comparing the solutions of the analytical study with those



of the numerical study. That is why we devote nine sections, from Section 1 to Section

9, to the analytical study.

This dissertation is divided into sixteen sections. The first section is an introduc-

tion. The next fourteen sections, from Section 2 to Section 15, are grouped into two parts.

In Part I, from Section 2 to Section 9, there is an analytical study of a continuous system.

In Part II, from Section 10 to Section 15, there is a numerical study (FEM) of the associ-

ated discrete system. Two example materials: material A and material B, meaning two

specific nonlinear elastic response functions, are considered in detail. The material prop-

erties which give strain-softening behavior are described in Section 2 (see Figure l).

Phase-I is defined to be the phase of strain between 0 and 1, while phase-II is defined to

be the phase with strains greater than 1. Section 2 derives the elastic stress response den-

sity function, the corresponding strain energy function, and an elastic secant modulus

function.

In Section 3, two loading devices, the soft device and the hard device, are intro-

duced. For the soft device the bar is firmly fixed at one end while the other end is sub-

jected to a given dead load. Correspondingly, for the hard device the bar is also firmly

fixed at one end while the other end is subjected to a given displacement.

If we consider the material described in Section 2, then at each point in the bar

there are two possible phases, either the lower strain phase (phase-I) or the high strain

phase (phase-H), to choose from. For a bar having, at most, two regions in different phas-

es, there exist four possible ways to arrange these phases: (1,1), (1,2), (2,1) and (2,2). For

example the (l,2)-case is a state with the lower strain phase on the left and the high strain

phase on the right. Section 4 is devoted to the study of two phase equilibrium configura-

tions with a single phase boundary. The energy functions for the soft device and hard de-

vice are also derived.
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In Section 5 we introduce and discuss the solution region for problems with a sin-

gle phase boundary. This is done for both devices. By solution region we mean, in brief,

a parameter plane region of stress 6 vs. average strain 70 for possible solutions. We study

the solution region in the (1,2)-case. In particular we first explore the lines of constant

stress 0 where o is defined in (3). Secondly we explore the lines of constant strain 70

where 70 is defined in (18). Finally we explore the lines of constant s where s is a non-

dimensional location parameter for the phase boundary and is defined in (22).

The corresponding hard device energy functions on the boundary, lines of constant

0, lines of constant 7, and lines of constant 5 within the solution region in the (1,2)-case

are discussed in Section 6. The minimum energy criterion is introduced at the end of the

section. Similarly, Section 7 is devoted to the soft device.

Quasi-static motion is defined and introduced in Section 8. The dissipation and

the driving traction at the phase boundary of a bar are discussed. We study the admissible

direction of movement of the phase boundary by the second law of thermodynamics un-

der isothermal conditions. Finally we study the admissible paths which have a non-neg-

ative product of the phase boundary velocity and the driving traction at the phase bound-

ary.

Recall from literature review that if the local slope of stress-strain relation is neg-

ative then the equilibrium equation is non-elliptic. For a non-elliptic equilibrium equa-

tion the solutions are not always unique. Since the massive failure of uniqueness is relat-

ed to the stress-strain relation which is the constitutive relation of material, this kind of

non-uniqueness has been viewed by some as a constitutive deficiency. To resolve a con-

stitutive deficiency, one may supplement the theory with a kinetic criterion which applies

to phase boundaries only [1989A]. The kinematics of the phase boundary and the. admis-

sible paths with such a kinetic criterion are discussed in Section 9.
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To analyze this boundary value problem (sketched in Figure 3) numerically we

choose the finite element method. At first the basic finite element formulation of a bar

element is derived in Section 10. Second, we select two-node elements to compute the

interpolation functions (160) and the element equation (163). Third we assemble the el-

ement equations of each element into a resulting system equation (175). After this we

consider boundary conditions for both the hard and soft devices to find a reduced system

equation ((184) or (188)) for a general N~element model. Finally we discuss an iterative

scheme to find the solution from an initial guess.

In Section 11 we first find the solutions of the system equation for a two-element

model. We study the relations between the solutions and the possible nodal displace-

ments to explore the nonuniqueness. This simplest of all possible cases allows us to ob-

serve how the nonuniqueness in analytical solutions translates into nonuniqueness in nu-

merical FEM solutions. Then we investigate the corresponding energy as a function of

the possible nodal displacements and relate this to the convergence and divergence of the

iteration scheme.

Similarly in Section 12 the available solutions for a three-element model are dis-

cussed as in Section 11. In Section 13 the available solutions for N>3 are discussed.

For resolving the nonuniqueness issues mentioned above we explore the numeri-

cal results using the finite element method under either a minimum energy solution cri-

terion or else a kinetic criterion. Several algorithms are chosen to implement the kinetic

criterion. Then the results obtained by using these algorithms are compared. This is done

for material A in Section 14 and for material B in Section 15. In particular, for the kinetic

criterion we compare the exact solutions and the solutions which are obtained by using

the finite element method. Finally we determine the FEM solutions obtained using the

kinetic criterion for three ramp loadings with different loading rates.
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In Section 16 we have the conclusions from this study and recommendations for

future work.



2. The material model

In this thesis we consider a compressible homogeneous isotropic hyperelastic bar with unit

cross section area. The bar in the reference configuration is described by the region

R = {0 s X S L} . In the deformed configuration the particle at X in the undeformed state

is moved to X + u(X), where u(X) is the displacement of the particle originally at X. The

strain ‘7 = du(X)/dX of the particle at X is restricted to the range ‘7 2 —1 in order to assure

that the mapping X —> X + u(X) is invertible; in fact, we shall limit attention to 72 O. The

elastic stress response function of the bar is taken to be in the following:

‘ = E“, s ,DC?) = 1(7)“ 7 A? 7M (1)

611(7), Y>7Mt

where 6,,(?) will be given in what follows. Note that 6, (y) is a linear function of ii and

E is a positive constant, but 611(7) may not be. In particular, the behavior of a strain-soft-

ening 6” (’y) , a behavior in which the stress declinesfor increasing strain, is investigated.

Note fiom Figure 1 that "oII (’j') is strictly decreasing (and hence invertible) and has the fol-

 

 

e5M

‘0 (i) a] (it) 3,, (7)

9c ..................................................................................................

¢ > 
  

Figure l. The stress response function of the bar with positive strain.

13



14

lowing properties:

be < 6” (’9) 5 6M,

’6”’ (y) < 0,

6”” (y) > 0,

6” (y) —>6c20, when ’y—Mo.

(2)

Here ' denotes differentiation. The stress response function of the bar is described by two

strain phases: the phase of strain from O to if)" is called the lower strain phase (phase-I) and

the phase of strain greater than ’iM is called the high strain phase (phase-II).

If two non-dimensional parameters are introduced

_ fr

. 0:. . (3

M

 

.
g ll

i
"

I<
>

Q
then the non-dimensionalized stress response function (see Figure 2) of the bar may be re—

 

 

writtenas

o = _

7 011(7), y> 1.

A

l

6 _ 5()(Y) 01”) ll 7

o ...................................................................................................

C

< J  
 

Figure 2. The non-dimensionalized stress response function of the bar which is used in

this thesis.
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Note that 61(7) is also a linear function of y and 611(7) has the following properties:

oc< 611(7) 51,

61]’(Y) < 0!

6””(7) > 0,

611(7) —->oc20 when y—->oo,

(5)

where CC = Ere/33M. Now phase-I is the phase of strain from O to 1 and phase-II is the

phase of strain greater than 1.

Since both 61(7) and 611(7) are invertible, the associated inverse functions can

be rewritten in terms of o. This gives the corresponding inverse functions

7 = rim), i = I or II. (6)

Note from (4)1 that F,(o) = o. The corresponding normalized strain energy density func-

tion W(y) is given by

W(Y) = 1 (7)

"2’+I‘1!6[](‘Y)dyr 7)],

so that the stress is equal to the first derivative of the strain energy density function,

5(7) = W'(Y)- (8)

Note since 6,,(7) —> at 2 0 as y—> co that

lim WW) > 0. (9)

t -) °°

however the limit

lim (W (7) — 706) a We > O (10)

r -* ~

may or may not be finite depending on the rate at which 611(7) —> cc. Here We is the area

under the stress-strain curve which is also above the horizontal line a = O'c.

Two particular functions for 611(7) are given in Appendix-A and Appendix-B.
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These functions are used from time to time in examples in this thesis. Thus we say that these

functions define two example materials: material A and material B. Both of these materials

have CC = 1/2, however material A has WC = oo while material B has a finite value of

WC.

Let 000 be the stress field in the bar, then the equilibrium equation, with no body

force, is given by

—d—o(X) = 0. (11)
dX

Therefore, the stresses along the bar are spatially constant,

6(X) = constant, 0 SK SL. (12)

In what follows it will be convenient to define an elastic secant modulus function by

5(7) = 5(7)”. (13)

giving

E,(y) = 1, ygl,

5(7) = 5 (Y) (14)

E,,(y) = —”—, y>1.



3. Two loading devices

In this study two standard types of loading procedures, the soft device and the hard device

as depicted pictorially in Figure 3, are considered.

3.1 Soft device (Figure 3)

Here the bar is firmly fixed at one end while the other end is subjected to a given dead con-

stant load F = Fo = A00 2 0’0. Since the cross sectional area A = l, the boundary con-

ditions are u(O) = 0 and (Six = L = 00. This is the so-calledforceproblem that consists of

finding an unknown displacement field u satisfying the boundary conditions. The solution

is not unique in this problem. For example:

00 < 0c =9 1 solution,

cc < 00 < 1 => co solutions, (15)

00 > 1 = no solution.

 

 

 

 

 

 

 

 

/ X

; u(O) = 0 F = 0,u(L) = 0

undeformed 7 ]-->

7

a

Z “(0) = 0 F = F0,u(L) = ?

deformed: 7 1.,

soft device 7

a

= F = ?,u(L) = 80

deformed: g “(0) 0

hard device a

/7

 

Figure 3. Undeforrned and deformed configurations of soft device and hard device.
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From (4), (5) and Figure 2 the only admissible value of strain whenever 0’0 < do is y = 0'0,

so that the bar has one solution which is phase-I everywhere. Hence 0C has the interpreta-

tion of being the low limit on the stress that can support phase-II. It is impossible to have

solutions for o> 1 because the bar cannot resist the stress greater than 1. The case

ac < o < 1 is more complicated and interesting. The bar could be in a mixed state of phase-

1 and phase-II, since then two values of strain are compatible with the one value of stress.

The final elongation will then depend on the fraction of the bar which is in phase-I versus

the fraction of the bar which is in phase-II. In particular, if the bar is partitioned into n sec-

tions, then each section could be in either phase-l or phase-II. In fact, there would be 2"

choices. Therefore, if the number of sections is increased, then the number of choices is in-

creased too. In this way an infinite number of solutions could be constructed. For the force

problem, classical absolutely stable equilibrium configurations must minimize the follow-

ing soft device energy function

can (L)

L

 a = wow-’5‘) - (16>

O
T
—
‘
h
‘

3.2 Hard device (Figure 3)

On the other hand, if the bar is firmly fixed at one end while the other end is subjected to a

given constant displacement 80 > O , then the boundary conditions are u(O) = 0 and

u(L) = 50. Let 70 E So/L be the average strain in the bar. This is the so-called elongation

problem that consists of finding of an unknown constant force F = 60 and a displacement

field u(X) satisfying the boundary conditions. Again the solution is not unique in this prob-

lem and it will be described in more detail in Section 5. For this problem, classical abso-

lutely stable equilibrium configurations must minimize the following hard device energy

function
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1

A = ([Wemif). (17)

In what follows the applied load 60 will be replaced by 0' for simplicity. In this

study, the hard device problem is our main focus, and unless it is to remark otherwise, the

reader should assume that the hard device case is under consideration.



4. Two phase equilibrium configurations with a single phase boundary

The nonmonotone stress response function permits two values of strain to give the same

value of stress. Thus solutions (12) to (1 1) may involve alternating regions along the bar of

these two strain values. lrnagine that there are two different strain regions in the bar, each

with constant strain 7L and 7R separated at X = h with 0 < h <L. If 7L and 7R are the

strains of the left hand side and the right hand side respectively, then

yL, OSXSh,
=

1

Y {712’ hSXSL. ( 8)

Note from (12) that the stresses are equal on the both sides of the phase boundary location,

0 = 5,-(71) = 6j(yR), i,j = [or II. (19)

Therefore the inverse functions in (6) can be written as

yL = 1“,.(0). i = [or 11,

20

7,, = 13(0), i = [or II. ( )

Accordingly, there are four cases which will be denoted by

(l,1)—case when OSyLSl and OSYRSI=¢i = I, j =1,

(l,2)-case when 0 57L S1 and 7R 21=>i = I, j = II,

21

(2,1)-case when 7L2] and OSYRS 1 =>i = II, j = I, ( )

(2,2)-case when 7L 2 1 and 7R 2 1 =>i = 11, j = II.

For the (l,l)-case and the (22)-case, the strains 7L and 7,, are Qua] and so the location h

is not of significance. However it will be important to consider these two “trivial” cases in

what follows as naturally limiting states when either h -> 0 or h —> L. The location X = h

in the (1,2)-case and the (2,1)-case have the interpretation of being a phase boundary.

It is useful to introduce a non-dimensional phase boundary location parameter

s = E (22)

then by virtue of the boundary conditions u(O) = 0 and u(L) = 80, it can be obtained that

20
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8

rLs+rR(1-s) = 1357,. (23)

Now, by using (17), the hard device energy function of the bar is given by

s 1

X X

A, = jW,(YL)d(Z) + jwmmzl y: ray orzan,

0 s
24

i=1(1)or2(11). ( )

= Wms + Wm) (1 - s) = 3,,(0. 7,)

In this thesis, a superposed A will indicate that the quantity is regarded as a function of o

and 70. For AU“), 70) this requires the use of (6) for 7L and 7R; also the elimination of 5

uses (23) to define the function 3,1(6, 70), where

_ YR - 70 13(0) " Yo

  

s " 'YR - Yr = 13(0) - Fla) E 3"” 70) ' (25)

Similarly, from (16), the soft device energy function of the bar is provided by

.t 1

5,, = {la-(mag) + [ijpdt’l—f) — or, ,-= 1(1) 0, 2(11), (26)

S

A j = 1(1) or 201).

= wings + W,(YR) (1 - s) - or, = ~=r,(°t 7.)

Note that E. {1(6, 70) is also a function of o and ya.



5. The solution region with a single phase boundary

The two-phase hard device problem involves finding a satisfying (23), (6) and the condi-

tion 6(7L) = 6(7),). Here the freedom to let s take on any value in 0 < s < 1 gives rise to

similar nonuniqueness phenomena as discussed for the soft device problem in Section 3.1.

In particular, given 70, there is often a range of a that satisfy the above conditions. This

range shall be denoted by [1(70). As yo increases from 0, it can be imagined that this set

l'l(yo) sweeps out a solution region Q = [ (yo, 11(7)) l 70 > 0} in a (70, 0') -plane. This

“solution region” representation will be extremely useful in this thesis and so will be de-

scribed now in some detail for each of the four cases given in (21). The solution regions

will be denoted by Oil. for each separate case.

Solutions only exist for the (l,1)-case if 0 < yo < 1. Then the range 11(70) collapses

to a point and the associated solution region is the straight line (see Figure 4)

£211: {(yo,o)|o=6,(yo),0<yo<l}. (27)

Solution only exist for the (22)-case if yo > 1. Then again the range 11(70) collapses

to a point and the associated solution region is the curve (see Figure 5)

022 = {(70, 0)] o = 6,,(70), yo >1}. (28)

On the other hand for the (l ,2)—case, solutions exist if 70 > 0c and are given by (see

Figure 6):

 
 

 

Figure 4. The solution region Q”.

22
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Figure 5. The solution region 922.

£212 = {(70, 0)] oc< 0< 6,(yo),if 0c<yo<1;0c<0<6”(yo),if 1021}. (29)

Here 11(70) is the stress interval 06 < 0 < 6,670) if ac < ya < 1, while 11(70) is the stress in-

terval 0c < 0 < 0",,(70) ifyo > 1. Foragiven (yo, 0) e (212, the associated phase boundary

location s is given by (25), and values of s on the boundary of 912 are shown in Figure 6.

Similarly, it is found that

(2:921 (30)
12‘

However these solutions involve 521 —) l - s12 so that the values of s on the boundary of

(221 are shown in Flgure 7. Finally the solution regions for the all four cases are shown in

 

  
Figme 6. The solution region 912.
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e A

1 ore/é
KW")

a, WIH;.///////%.%//S/<////////WW

‘ Figure 7. The solution region 9:],
7° ’

=611('Yo)

 

lT('yo) forya > 1

. ’g 1: 70 >

Figure 8. The solution regions (2", 9,2, (In and (In.

 
 

Figure 8.

The above discussions of Q Q 021 and 922 are based on the hard device
11’ 12’

problem, however, they also can apply to the soft device problem. That is, given 0, there

is also a range of 70 that satisfy (23). And according to 0 < s < 1 the value of 70 is always

between I‘,(0) and I‘”(0). As 0 increases fromO to 0c there is an unique solution 0 = 10.

While as 0 increases from 0c, it is easy to imagine the range of 70 which satisfies (23)

sweeping out the same solution region.

In what follows, the (12)-case is studied. The following discussion will further
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make clear why (212 has the form given in Figure 6.

5.1 The boundary of £212

From (29) and Figure 6 the boundary of £212 consists of three curves: 0 = 01(70),

0 = 6,,(70) and 0 = 0C. These three separate curves can be considered as limiting cases

and are described in the following:

The curve 0 = 0,010) coincides with Q“ . Therefore, it corresponds to a case in which the

phase-II region has vanished. Since this phase-H region is to the right of the phase boundary

for the (l,2)-case, the phase boundary has squeezed the phase-II region all the way to the

end X = L, thus s = l. The solutions along the curve = 6,0) are therefore pure

phase-1. Let’s define $1 to be this set of ordered pairs (70, 0) which are pure phase-I so-

lutions on the interval 06 < 0 S 1:

Q1: {(70.0)| (10:0,0C<051)}. (31)

Similarly, the curve 0 = 61,00) coincides with (222. So it corresponds to a case in

which the phase-I region has disappeared. Since this phase-I region is to the left of the

phase boundary for the (12)-case, the phase boundary has squeezed phase-I region all the

way to the end X = 0, thus s = 0. The solutions along the curve 0 = 0,,(70) are pure

phase-II solutions.

On the other hand, the curve 0 = 0c has the interpretation of being an unattainable

limit corresponding to an infinitely strained phase-II region of vanishing length. Like (211

it also corresponds to a case in which the phase-II region has vanished, but it doesn’t coin-

cide with the pure phase-I solutions of (In. To understand this, recall that the total elonga-

tion is given by (23). Since phase-II is to the right of the phase boundary, the phase. bound-

ary squeezes the phase-II region all the way to the end X = L when s —-> 1. But the main
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difference from Q“ is that the phase-I region on the left (0 SX _<. h) has the elongation

5:) = F,(09311th = 0CL while the phase-II region on the right (h s X S L) has the elon-

. r _ . . - . = 00 o _ =

gauon 50 - olgnocf‘lfl0)hll_l)nL(L h). Here chinocl‘um) and Itth (L h) 0 so

that the product which defines 5; corresponds to 00 ~ 0 where the rate of the one limit with

respect to the other is chosen so that the product 5; remains fixed. Moreover the total elon-

. . I r . .

gation at L 15 matched to 50 + 80 = 50 = 70L. For different pornts (yo, 0) along the

curve 0 = 06 the elongations 5: are always fixed at 5:) = 06L while the elongations 8;

take on different values to match their corresponding 70, that is 6; = VOL—5; =

(70 - 06) L which is greater than zero since these solutions only exist for 70 > 06.

5.2 Lines of constant 70 in (2,2

The lines of constant 70 in 912 imply that the elongation is prescribed while there is a range

of nonunique 0 which satisfy (25). Prescribing 70 is the definition of the hard device.

Therefore, the lines of constant ya in $212 represent solutions to the hard device problem

for given average strain 70 = 50/L associated with elongation 50. If the bar is elongated

with 50 < ‘7ch then the only possible solution corresponds to on . This means the elonga-

tion is not enough to reach phase-II. As a result, the bar is in pure phase-I and there is no

phase transition at this stage. If the bar is elongated with 0CL < 80 < L, then the bar could

still be in pure phase-I. However it could also be in a mixed state of phase-I and phase-II,

but it cannot be in pure phase-H. On the other hand, if the bar is elongated with 80 > L, then

the bar could be in a pure phase-11 solution; it could also be in a mixed state of phase-I and

phase-II but it cannot be in pure phase-I.
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5.3 Lines of constant 0 in (2,2

The lines of constant stress 0 with 0 > 0c in $212 represent possible solutions to the soft

device problem for given F = 0 > 06. If the force F = 0 is prescribed with 0 < 06, then

the only possible solution corresponds to 911. This also means that the prescribed force is

not strong enough to reach the phase-II. As a result, the bar is in pure phase-I and there is

also no phase transition at this stage. But if the bar is prescribed by the force F = 0 with

06 < 0 < 1, then there are an infinite number of possibilities corresponding to points in the

lines of constant 0 in (212. The bar could then be in pure phase-I, pure phase-II or a mixed

state of phase-I and phase-II.

5.4 Curves of constant s in (2,2

It is to be noted from (25) that

_ .. _ r11(°)‘70
S — 312(69 YO) " rll(o)_rl(o.)

 

(32)

is a function of ya and 0 in the (yo, 0) -plane and it is easy to imagine the level curves of

fixed s in $212. In this section the form of these curves in (212 is investigated. An example

of the level curves is given in Figure 9 for a particular material (this particular choice of the

function 6,,(7) is given by (a. l) of Appendix-A). It will be convenient for our subsequent

discussion to reorient to solution region (212 so that stress 0 is the horizontal axis and av-

erage strain 70 is the vertical axis. The reorientation that this gives for the constant s curves

of Figure 9 are shown in Figure 10. For each fixed value of s e (0, 1) , let ya = 70(0) give

the solutions to (32) so that the function ?0(0) defines a smooth curve on the (0, yo) -plane.

There is a family of such curves on the (0, 70) -plane. Each curve corresponds to a differ-

ent value of s e (0, 1) and it can be shown to be a single semi-infinite curve. The endpoint
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O = 611(70)

s=0

0.75 " f7
._

s=l

0 = 61(7)

r

s: 19/20

0.5:0’ _........................................
 

   
 

Figure 9. The curves of constant s=(0.05, 0.1, 0.15,..., 0.95)in the solution region (212

with the choice of the function 0,,(‘y_) given by (a. 1) of Appendix-A. The lim-

iting case of s=0 corresponds to 0:0,,(70) and the limiting case of s=1 corre—

sponds to both 0='y, with “>0: and 0:0,.
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   l r l
 

0 0.25 0.5: O": 0.75 O 1

Figure 10. It is convenient to reorient the solution region of Figure 4—Figure 9 so that the

constant s curves display a minima. We shall use this orientation for the solu-

tion region (212 in the rest of this thesis.
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of each curve is the point at (0, yo) = (1, 1) , this curve is unbounded for large 7 and in

the limit as y —> oo it tends to the asymptote 0 = 0C. Equation (23) gives that

370
.5; O = yL—yR, on se (0,1). (33)

Since 7L 5 1 _<. 7,, it follows that the different members of this family of curves do not in-

tersect each other except possibly if 7L = 7R => 7L = 7R = 1. Furthermore, a curve corre-

sponding to a larger value of s lies under that of the smaller value of s. Although the ex-

ample in Figure 9 is for a particular 011(7) with 0c = l/2, similar properties of these con-

stant s curves are found for other functions 6,,(7) of the type obeying (5).

It is to be noted from Figure 10 that if s is sufficiently small, then the constant s

curves are monotonically decreasing from (0, yo) = (0c,oo) to (0,70) = (1,1).

However if s is sufficiently large, then these curves first decrease and then increase. There

is a transition value of s, say s separating these two groups of s curves (for the exam-
ITOM’

ple material in Figure 10 it is found that s = 2/3 ). For s > s the constant s curves
trans trans ’

have an internal minimum point while for s S s they don’t. It will be useful to know
trans

the location of these minimum points to the curves of constant 5. Taking partial derivative

with respect to 0 with fixed s in (23) gives

37

330 -.- ?o'm) = I‘,’(0)s+l‘”’(0)(1 —s), (34)

and setting this equal to zero gives

l‘,’(0)s+1‘”’(0)(1 -s) = o, (35)

Of

1“111")
= FUTO) _ r],(0) E s (0), ~ (36)S 
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BY

as a condition for 5?; = 0. It is to be noted that the transition value of s is given by

3

SW. = s"(1). (37)

To verify that it is minimum at (0, yo) satisfying (35) we take partial derivative with re-

spect to 0 in (34) again. As a result, it is found that

2

5:770 .—. ?0"(0) = 1‘,"(0)s+l‘”"(0) (l —s). (38)

Since 01(1) is a linear function and F,(0) is the inverse function of 0,0), I",(0) is a linear

function too and

6117) = 1’ r]’(o) = 19 6]”(7) = 1",”(0) = O (39)

Thus the combination of (39) and (38) gives

= 1"””(0)(1 —s). (40)

S

 

2

30.2 Yo

2

Since 1 — s > 0 it follows that aa—zyo and 1“,,”(0) have the same sign provided that 3 ¢ 1.

0  

Note that I‘"(0) is the inverse function of 0,,(7) so that

o = 6,,(7) = 6,,(1‘,,(o)). (41)

Taking first derivative with respect to 0 from (41) gives

1 = 0,,’(y)1‘”’(0). (42)

The combination of (5)2 and (42) now gives

611’”) < O, I‘ll’(0) < O. (43)

Taking second derivative with respect to 0 from (41) gives

0 = 6,,”(7) (I‘,,’(o)) 2 + 6,,’(r)1‘,,”(o). (44)

Since, by (5), 0,,’(y) < 0 and 6,{(7) > 0, it is found that
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FI,”(0) > 0 (45)

and so (40) yields

535—:70 > O. (46)

3

Thus (40) shows that the curvature restriction 6””(7) > 0 given in (5) ensure that there are

no maximum points to the constant s curves. These curves monotonically decay to the min-

imum point from (0, yo) = ( 0c, co) after which they monotonically increase to the point

(0, yo) = (1, l) . Note that if the curvature restriction 6””(7) > O in (5) is dropped then

other interesting possibilities of solutions for the constant s curves will occur, but these will

not be discussed here.

The minimum points along the curves of constant s could be obtained by (23) and

(36), namely

_ l‘,(0)l‘”’(0) — 1‘”(0)l‘,’(0)

70': - I‘ll’(0) - 17(0)

 

(47)

Let’s define $2 to be set of ordered pairs (0, 70) which are minimum points for the vari-

ous curves of constant s (see Figure 1 1). Then $2 is also a curve on the interval 0c < 0 S 1.

From (47) it is found that

I‘ 0)I‘ ’(0)—F 0)l" ’(0)

g2 = “(5’70)”; K 1"’1’1'(0)-I‘III'((0) I ’OC<OSI}° (48)

 

Since the Q2 curve is very interesting and important in this study, we briefly look into its

form. Note that the first derivative of ya in (47) is given by

 

dyo = (Fl/(0.) "' 1‘1“”) I‘I’(0)I'””(0)

— (49)
(10 Q2 (r][’(o) _ r]:(o_)) 2

Since, by (45), F,,”(0) >0 and if 0c< 0< 1 then F,,(0) -I‘,(0)>0 and I‘,’(0) = 1 ,

this gives
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70 = l‘,(0) = 0

    
0 0.25 0.5: O": 0.75 O 1

Figure 11. The $2 curve in the solution region 9.; (again the choice of the function 3,,(7)

is given by (al) of Appendix-A).
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dY

—0 >0. (50)
do a

2

This shows that 70 is increasing along $2 with increasing stress. It is to be noted that the

point (0, 70) = (1, 1) is the right end point of G2 and thus gives the largest stress 0 on

92. Therefore, it is found that 70 S 1 along the curve $2. Since $2 is monotonically in-

creasing we can invert (50) and so can parametrize this curve by 70, that is 0 = 092(70).

In addition (36) is invertible and the inverse function shall be denoted 0 = 0¢2(s).



6. The hard device energy function on (2,2

The distribution of the hard device energy function in $212 can be described by (24),

A12 = 1112(0. yo) = w,(r,(o))i,2(o, 70) + W”(1‘”(0)) (1 - sum, 70)) . Level curves of

fixed A12 in the region 012 are functions of ya and 0. An example of these level curves is

given in Figure 12 for a particular material, that is a particular choice of the function 0,,(7)

(in fact it is the same material used for the constant s curves in Figure 9). For this material

and each fixed value of A12 6 (0.125, co) , the equation A12(0, 70) = A12 defines a

smooth curve on the (0, yo) -plane again. There is a family of such curves on the (0, yo) -

plane. Each curve corresponds to a different value of A12 6 (0.125, co) . In what follows

the hard device energy functions A12(0, ya) on the boundary of £212, on the lines of con-

stant 0, on the lines of constant 70 and on the lines of constant s are examined. Note that

the general discussion applies to materials for which the function 0,,(7) has the properties

as given by (5).

6.1 The hard device energy function on the boundary of 912

First of all, the boundary yo = F,(0) of the solution region (212 is in phase-I. As a result,

the hard device energy function will be A12 = W,(F,(0)). Secondly, the boundary

yo = 1"”(0) of the solution region (212 is in phase-II. As a consequence, the hard device

energy function will be A12 = W,,(I‘”(0)). Finally, recall that the boundary 0 == 0c of the

solution region {212 is the non-attainable limit corresponding to an infinitely strained

phase-II region of vanishing length. It is to be noted that 71 = 0C and 72 —> oo on the

TR - 70

7R '71.

=1. boundary 0 = 0C in the (1,2)-case, and also from (25) it is verified that s =

35



36
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A12 = 0.5
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o l l l

o 0.25' 0.5: a 0.75 0’ 1
C

Figure 12. The level curves of constant hard device egergy function A12 in the solution

region (212 with the choice of the function 0,,( 7) given by (a. 1) of Appendix-

A.
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We now show that the hard device energy function A12 on 0 = 0c is given by

A12 = 06 (yo — 0C/2) : from (24), (25) and (7) the hard device energy function is given by

 A12=‘5(Wl(rl(»,i—Y°,:+Wu<r”<0,.»112)

 

      

‘YL = 0’t:

In —’ °°

02
(51)

_ _C In- _
”2+[I0 7: -:'Y , on0-0c.

=0

:: _’ °°

Now by the L’Hospital’s rule, the hard device energy function can be rewritten as

2 1 — 2

0 P 0 ,(y)dy 0

- _C _ 0 ’ = _“ - - -
A12 - 2 + (70 (mill—no 72-0c 2 + (Y0 0‘) 72113201472) (52)

Q 2 C
_ C _ C

- ‘2—4'O'c(70-0'c) -Oc(Yo—7)o

It is to be noted that if yo = 0C, then A12 = 0:/2 which indeed matches the hard device

energy for pure phase-I solutions at (0, yo) = (0c, 0c). It is also to be noted that

A = 03/2 gives the smallest energy in the solution region 912 and that is why we had
12

0.125 for the example material. It is easy to show, at a given constant ya, that the hard de-

vice energy on 0 = 0c is less than the hard device energy on yo = I‘,(0). For example for

a given constant 70 obeying 06 < yo S 1 the difference between the hard device energy on

0 = 0c and the hard device energy on yo = I‘l(0) is given by

2

O’ -O'

73 = ____(70C) <0. (53)
C

A 12'0" 702%) - 06070-7) -—2- 2
12Ion 0 = 0‘

In summary the hard device energy functions on the boundary of (212 are given by
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. 02
mm» = -2—

A12 = . W,,(I‘”(0)), on yo = I‘”(0), (54)

Y -06 0.C

LIV/Woe)“ Warriors—7,723; = «my 7), on a = 6.-

N
l
e
‘
i
o

, on yo = I‘,(0),

 

6.2 The hard device energy function for £212 on the lines of constant 0

Now that the hard device energy function A12 on the boundary of the solution region (212

has been studied we would like to study A12 on the lines of constant 0. Consider two dif-

ferent states with the same stress but different strains: state A corresponds to

(0, yo) = (0A, 7A); state B corresponds to (0, yo) = (03, YR) = (0A, 78) with

78 > 7A . Which state has more energy? It is reasonable to guess that state B needs more en-

ergy. To prove this and study the distribution of the hard device energy function along the

lines of constant 0, we take partial derivative with respect to ya in (24) for constant0. If 0

is a constant, then 7L = 1(0) and 7,, = F,,(0) are constants too. Therefore,

A12 = A;2(y0) and s s’(y0) are also functions of ya only, and it is found that

8A12

9?. = 412m = (www—Wrrrmwns‘tv.) (55>
O

 

From (25), a similar process gives

 

 

 

as t 1
__ = s ' = . (56)
870 a (70) F,(0) - 1‘”(0)

Finally, substitution from (56) into (55) yields

BA12 . , WHO"11(0)) - W,(l"1(0))

37; a = A12 (yo) = I‘”(0) — F,(0) (57) 

This means that the hard device energy function A12 monotonically increases along each
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line of constant 0 as yo increases. This also implies that (0, yo) = (0, I‘l(0)) gives the

minimum value of A12 for a given constant 0 whenever 06 < 0 < 1. In conclusion, state B

indeed has more energy than state A.

It will be useful in what follows to define the ratio appearing in (57) as a pseudo

stressfunction

_ WIKFIA‘S» " WAF1(0))

Ops ‘ r,,(o)-r,(o)
 a 0108(0), 0c < 0 S 1. (58)

Equation (58) means that 0ps is the average height of the stress-strain curve in the interval

8A

y1 = 1‘,(o)<yo<y2 = 1“,,(0). Note that W12 = 0ps(0). The expression (58) is inde-

0 0

terminate at both 0 —> 0C and 0 = 1, however the limiting values of 0ps(0) can be ob-

tained by the following:

Taking the limit 0 —) 1 from (58) gives

. _ . W170"”(OD-WAY1(0))

J‘fl‘f’ps‘“) ’ ell—Tr r,,(o)—r,(o) ’ (59)
 

It is to be noted that

W,’(1‘,(o)) = 017(0). W,,’(1“,,(6)) = ol“,,’(o). (60)

Using the L’Hospital’s rule (since now (58) is of the form %) and substitution from (60)

into (59) gives

 1' 0 ( )— 1' or”’(6)_cr”(0) — 11m0 — 1 (61)
Ol—rinl P50 — 01-311 l‘,,’(0)-l‘,’(0) - 0—)l _ °

Similarly taking the limit 0 -—> 0C from (58) and using the L’Hospital’s rule (since now

(58) is of the form 2) gives



4o

 

. _ . W,,<r,,(o» - W,(r,(o»

0119m0‘OP5(0) _ 0111310: FII(O') - rl(6)

_ 01‘”’(0) -01‘,’(0) _ l’ _

— 0 40‘ I“,,’(o) - 17(6) - 0 gilded _ CC.

(62)

 

Since the stress in this interval yL<yo<yR is greater than the stress

0 = 61(7).) = 611(7R) at the interval endpoints, it can be concluded that

0ps(0)>0, floc<0<1,

( (63)
0ps(0)=0, if0=lorif0=0c.

An example of the function 0ps(0) is shown in Figure 13.

Moreover the first derivative of 0p3(0) is given by

0' ’(O') _ (Wll(rll(o)) — WKFKO’» " O (Fl/(O) " FAG» ) (IE/(0') - rII’(G))

’” (rubs—13(0))2

= ( 6mm) - 0) (17(6) - I‘,,’(o))

r,,(o) — r[(0)

 

(64)

 

Note from (63)], (39)2, and (43)2 that 0P3(0) > 0, 17(0) = 1 and I‘ll’(0) < 0 in the inter-

 

  L

0.5: cc 0.6 0.7 0.8 0.9 O‘ 1

 

0.5

Figure 13. The function 0P,( 0) with the choice of the function 0,,(7) given by (a.1) of

Appendix-A. Note that (63), ensures that this curve is above the dotted line.
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val 0c<0< 1. It is also to be noted that 1“”(0)>1‘I(0) in this interval. Therefore

0ps’(0) > 0 in the interval 06 < 0 < 1. To complete this subsection we now look at the two

limiting cases: 0ps’(0c) and 0ps’(l). Taking the limit 0 -> 1 from (64) and using the .

L’Hospital’s rule (since now (64) is of the form %) gives

 

l (0,40) - 0) (17(0) - F,,’(o))

011-11161"(0'): 0111-111 I‘,,(0) - 11(0)

(Op,(0) - 6)

11"”(0) —- 1‘,(0)'

Note that there is a finite value in the first term of (65), while the second term of (65) is of

(65)

 

= 0111111 (F, (G) - r” (0.))011-1‘;l

the form 9 . Therefore, using the L’Hospital’s rule gives

 

 

0

lim0(0) lim (1‘’(0)— (0)) lim (0”‘1o)- I)
= r” 11"”(0')- F,(0') (66)

= 1- lim0p'.(0)

Therefore

1im10ps’(0) = - (67)

Similarly from (64) the other limiting case of 0 —> 0c can be shown to be given by

h , (0,40) - 0) (17(0) - 1‘,,’(0))

0300’"(O)=0—>0 FII(O)-FI(O)

, (68)

. I“,(0) " I‘11 (0) lim
= hm 111110(O'p(0)- 0). 

0 40c 1.1/(O)— [(0’) 0—>

Note that F,,(0) — 1“,(0) is divergent as 0 —> 06. Hence let’s assume 1‘”(0) - 17(0) has an

n-th order pole as 0 —) 0c. This implies that

lim (I‘ll(0) — F,(0)) (0 — 06)" = constant (69)

O -) 0‘
.

and FH’(0) - 17(0) has an (n+l)-th order pole:
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lim (r,,'(o)—r,’(o)) (o-oC‘)”1 = (-n) constant.
0—>0‘

Therefore

1‘,’(0)- Fifi“) _ . n

0—90c Fl,(0) - I‘,(o) _ 0—>0CO'- O’c.

 

Substitution from (71) into (68) gives

(0ps(0) - 0) n

G- 0c

 lim 0 '(0) = lim

0-—>0c P5 o—io

Note that (72) has the form 3 and using the L’Hospital’s rule gives that

1' ’ = ' ’ - .013100” (0) Olgnocmps (0) 1)n

From (73) and 0ps’(0) > 0 whenever 06 < 0 < 1 it is found that

 

n-l

00 if n51,

lim 0 ’(0) =

0-90‘ P5

{ n if n>l,

where n implies the rate of 0"”(7) —> 0c as 0 -> 06 by virtue of (69).

(70)

(71)

(72)

(73)

(74)

If the function 0,,(7) given by (al) of Appendix-A is considered, then it is found

that n = l and lim 0ps’(0) = oo. Similarly, if the function 011(7) given by (b.1) of Sec-

o—ioc

tion Appendix-B is considered, then it is found that n = 1/2 and lim 0pS’(0) = 00. In

04¢

summary

( 0ps’(0)>0, if 06<0< 1,

0p5’(0) = 0.5, if 0 = 1,

n

Ops’ky) =
{n _ 1

oo ifO=OcandO<nSL

 ifO= Ocandn>1,

 
k

(75)

The first derivative of the function 0ps(0) with the choice of the function 011(7) given by

(al) of Appendix-A is shown in Figure 14.



43

6.3 The hard device energy function for 912 on the lines of constant 7,,

From Section 6.2 we found that the hard device energy function A12 monotonically in-

creases along each line of constant 0 as 70 increases. Now we study whether the hard de-

vice energy function A12 along the lines of constant 70 is increasing or decreasing with 0.

Consider two different states with the same strain but different stresses on any line of con-

stant 70: state A corresponds to (0, 70) = (0A, 7A); state B corresponds to (0, 70) =

(03, 73) = (08, 7,) where 03 > “71' Is it true that state B has a larger energy value? To

answer this question and study the distribution of the hard device energy function along the

lines of constant 70 again, we take partial derivative with respect to 0 in (24) with fixed

7a. If 7o is a constant, then A12 = A'l';(0) and s = s" (0) are functions of 0 only. From

(24) and (60) it is found that

3A12

93 7. = A370) = (w,(1",(o)) - WrAr11(°)))sm(°) + (76)

0l‘l’(0)s + 01‘,,’(0) (1 - s) .

Similarly, by the same mathematical process in (25), it is found that

 

I

   O L r 1 r

0.5 = CC 0.6 0.7 0.3 0.9 0' 1

 

Figure 14. The first derivative of function 0p,(0) with the choice of the function 0,,(7)

given by (a. 1) of Appendix-A.



 

 

 

  

as n , I‘,’(0)s + I‘,,’(0) (1 — s)

so (°’ = (r (o) - r (0)) (77)
7., II I

Substitution of (58) and (77) into (76) shows that

aAIZ 9‘ I I I

50 Y = A12 (0) = (1‘,(0)s+ 1‘” (0) (1 -s)) (0- 0ps(0)). (78)

According to (34), equation (78) is equivalent to

3A” - " (o — o (0)) (79)

56 'Yo - 56 5 PS .

3A12

Since (63)] gives that 0 - 0 (0) < 0 whenever 0 at 0 or 0 at 1 it follows that and
pr c 53 1

——0 have opposite signs for 06 < 0 < 1 . This also implies that any extremum solutions of

8

80

the hard device energy Alzalong the lines of constant 70 occurs where 70 is stationary

(stops increasing or decreasing) on the curves of constant s as a function of 0. Recall from

Section 5 that (0, 70) on $2 is a minimum point in the (0, 70) -planefor the correspond-

ing curve of constant s. Therefore it can be concluded that points on Q2 are also the ex-

tremum points ofthe hard device energyfunction A12 along the lines ofconstant 70.

The hard device energy function A12 at (0, 7a) on E2 could be a maximum or a

minimum along the lines of constant 70. This implies that

  

, , o aAl2

rl(0)s+r”(0) (l-S)=O¢9§Es=0¢=956 7:0. (80)

Equations (77) and (78) show the following relation

3A a

3;” = 5% (o-o,,(o)) (rum) —r,(o)). , (81)
Y, Y.

  

Similarly since 1‘”(0)— 1‘,(0) > 0 and (63)1 gives that 0 - 0p3(0) < 0 whenever 0 at 0c or
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3A

0 at 1 it follows that —

80

12

 

and 3%, have opposite signs for 0c < 0 < 1. Although equa-

‘Y, 7

tion (79) and equation (81) are similar, they have different meanings. Equation (81) implies

that any extremum values of the hard device energy function A12 along the lines of constant

70 takes place where s is stationary on the curves of constant 70 as a function of 0. To de-

termine whether these extrema of energy are a maximum or a minimum we calculate the

second partial derivative of A12 with respect to 0 from (78) and then using (80) gives

2
3 A12

302

 

9‘ II 2

= A12 (0) = 133770 (cs-omen. (82>
 
7.

Again since (63)] gives that 0-0ps(0) <0 whenever 0¢0c or 0¢l it follows that

32111

802

2
 

82

311d 5370

7. 5

 

have opposite signs for 0c < 0 < 1. Since, from Section 6.2, 70 has

 

a minimum on the lines of constant s at points on Q2, it follows that A12 has maximum on

the lines of constant 70 at $2. Thus $2 is not only the set of ordered pairs (0, 70) which

are minimum points to the family of constant 3 curves, but 32 also gives the set of ordered

pairs (0, 70) which are maximum points to the energy A12 along the family of constant 70

lines.

Returning to the question of which state A or B on the line of constant 70 has more

energy we see that if 70 2 1 then state B has more energy than state A since the hard device

energy function A12 increases monotonically with 0 whenever 70 2 1. But if 70 < 1 then

since the hard device energy function A12 will increase monotonically to a maximum point

on $2 and then will decrease monotonically. It follows that state B is not necessarily car-

rying more energy than state A.

Let’s define Q3 to be the set of ordered pairs (0, 70) with 0c < 0 s 1 that are not
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pure phase-I solutions but which have the same energy A12 as the pure phase-1 solution at

the same constant 70. Then it is found that

$3 = {(0, 70)[70= (2°ps(°)'°)’°e<°5 1}, (83)

where 0p3(0) is defined in (58). Therefore, at a given constant 70 obeying 0c < 70 < 1, the

hard device energy function A12 at points on El and G3 are equal, and this energy is less

than the hard device energy function A12 at points on $2 (see Figure 15). With the help of

(53) it can be concluded, at a given constant 70 obeying 0c < 70 < 1, that

< A12] - A12] < A- . 84

on $1 on $3 12Ion $2 ( )12'0“ O = O"

6.4 The hard device energy function on the curves of constants

We now look at he behavior of the hard device energy function A12 on the curves of con-

stant s. Recall from Section 5 that there are two types of behavior to the constant s curves

in the (0, 7a) -plane: monotonically decreasing (s S s ) and decreasing then increasing
trans

(s > s ). For the first type it is found that A12 also decreases on the constant s curves as
trans

0: 0c —> 1. In the second type with the help of (a.14) or (b.14) it is found that A12 also de-

creases on the constant s curves as 0: 0c —9 00 (s) but then A12 increases on the constant

2

s curves as 0: 0¢2(s) —> 1 . To show this we take the partial derivative with respect to 0 in

(24) with fixed s. It is found that A12 = A;;(o) and from (24) and (60)

8A

80

12

 
= A370) = (I‘I’(0)s + r,,'(o) (1 -s) )0. (85)

S

From (85), (34), (79) and (81) we find the following relations.

—&YO

s—fis

3A

0=E

8A

3'6

1212 0’ _ as
W_ 33700(F”(0)-FI(0)). ‘ (86)

   
Ya
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Figure 15. The hard device energy function A12 in the solution region 912.
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Since 0> 0, 0 - 0ps(0) < 0 and 1‘”(0) — 1‘,(0) > O in the interval 06 < 0 < 1 it follows

BA

81‘” and as have the same 51 ns while

. {To 7 g a;
that 56

0

’3—0
3

   

12 has the opposite sign. This

7
0

implies fi'om (85) and (86) that

  

, . 8A12 310’ 8A12 as

 

Meanwhile, from (85) we can obtain the second partial derivative of A12 with respect to 0

  

 

and then using (87) gives

82A 2
12 _ tee” _ a

“—802 - A12 (0) -— —aoz70 0. (38)

S

From (88), (82), and (77) it is found that

3271 2 32A 32
12 a 12 O s

=— O'=-— —=—0I‘0—I‘0. 89

802 3 ad 70: 802 o_o-ps(o) a 2 ( ”( ) [( )) ( )

    

It is important to note that 0 > O, 0 — 0p5(0) < O and 1‘”(0) - 1’,(0) > 0. Recall from Sec-

tion 6.3 and with the help of (89) that A12 and 70 on the lines of constant s are minimum

at $2, and that s on the lines of constant 70 is minimum at $2, and that A12 on the lines

of constant 70 is maximum at $2. Therefore $2 is an interesting curve. It not only gives

the location ofthe minimum energy and the minimum 70 value on the curves ofconstant 3,

but it also gives the location ofthe maximum energy and the minimum s value on the lines

ofconstant 70.

6.5 The minimum energy criterion for the hard device

Recall from Section 6.3 and Figure 15 that if 70 2 1 then the hard device energy function

A12 monotonically increases as 0 goes from 0c to 011(70). However if 70 < 1, then the
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hard device energy function A12 will increase monotonically to a maximum point as 0

goes from 0c to 002(70), but then it will decrease monotonically as 0 goes from 0% (70)
2

to 70. The minimum energy solution for the hard device will be the 7a = 1‘[(0) = 0 line

for 0 < 70 S 06. However according to the profile’s shown in Figure 15, the minimum en-

ergy solution would be the 0 = 0C line for 70 > 0c if this line was attainable (see Figure

16).

In fact for a given 70 there are 3 situations: 0 < 70 S 0c, 0c < 70 S l and 70 > 1. In

the first situation, 0 < 70 S 06, the solution is unique. In the second situation, 0c < 70 S 1,

every point on the line segment 06 < 0 < 61(70) of the constant 70 line correspond to a

two-phase solution, while 0 = 70 is a pure phase-I solution. In the third situation, 7a > 1,

every point on the line segment 06 < 0 < 011(70) of the constant 70 lines also corresponds

to a two-phase solution while 0 = 0" (70) is a pure phase-11 solution.

For the second and third types there are an infinite number of possible solutions

even for the (1,2)—case, however the values of A12 varies among these candidate solutions.

Under a minimum energy solution criterion if the bar is elongated at its end with a quasi-

e

\“
.e

.

 .\

h
e

e
.n

e

«
/

rim)
'

V 0' 1 O’

  
Figure 16. The minimum energy solution for the hard device.
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static monotonically increasing displacement 50 = 50(t), 50(t) 2 0 (a more detailed dis-

cussion of quasi-static loading is given in Section 8), then the loading diagram will be as

shown in Figure 17. This figure shows that under a minimum energy solution criterion the

material first behaves as if it were linearly elastic and then behaves as if it were perfectly

plastic for the hard device loading. However, unlike conventional plasticity, unloading af-

ter 70 > 0C (corresponding to yielding in plasticity) simply retraces the path in Figure 17.
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1 7,

Figure 17. The loading-deformation diagram for the hard device under a minimum

energy solution criterion.



7. The soft device energy function on (212

Section 6 was concerned with the analysis of the hard device energy function Anon the

solution region. In this section we conduct a similar analysis for the soft device energy

function 312. According to (26), the soft device energy function 512 is given by

-— A
u- ——

e—I —-—a

12 1210’ Yo) = W,(F,(0))312(0, 70) + W”(1‘”(0)) (1 - 312(0, 70)) — 070. The corre-

sponding level curves of fixed 312 in the region (212 are also functions of 70 and 0. An

example of these level curves is given in Figure 18 for the same particular material used for

the constant 5 curves in Figure 10 and for the level curves of fixed A12 in Figure 12. For

this material and each fixed value of 512 e (—0.5, oo) , the equation sum, 7a) = 512 de-

fines a smooth curve on the (0, 70) -plane. There is a family of such curves in the (0, 7o) -

plane which correspond to the different values of 312 e (-O.5, oo) . This section is orga-

nized similar to that of Section 6, we examine the soft device energy function 312(0, 70)

on the boundary of 912, on the lines of constant 0, on the lines of constant 70 and on the

lines of constant s.

7.1 The soft device energy function on the boundary of On

The soft device energy function 312 on the boundary of (212 is given by

02 = -7; on 70 = 1‘,(0),

'2" 2’

- i W”(r11(0)) " 01"”(0), on 70 = I31(6)’ (90) -

-O' 0'2
70 c ’

LWKFKOCD + W,,(1‘”(0c)) “1(0) :0 - 0670 = -?, on 0 = 06.

C

i W,(r,(o)) —02 = —

[
1
1 l

12

  

The boundary 70 = 171(0) of the solution region 912 gives the pure phase-I solutions. As

a result, the soft device energy function is 312 = -02/2 . The boundary 70 = 1"”(0) of the
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312 = —0.18

512 = —0.22

512 = —0.26

on = -0.3
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= _/ -0.46 /‘
-12 _ —0.125

‘\ an = —0.5

512 = —0.125

0 J I

0 0.25 0.5 = 0' 0.75 0' 1

C

Figure 18. The level curves of constant soft device engrgy function En in the solution

region 912 with the choice of the function 0,,(7) by (a.1) of Appendix-A.
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solution region 912 gives pure phase-II solutions. Consequently, the soft device energy

function is 312 = W,,(l‘”(0')) — OI‘”(0') and it will depend on the choice of the function

6,,(7). We now show that the soft device energy function E. on 0‘ = O'c, which is the
12

non-attainable limit, is given by 312 = -c:/2. From (26), (25) and (6) the soft. device en-

ergy function 512 is given by

                

_. 7__L
:12 = __TL- -070 on o = 0c. (91)

Y =°c

711"”

With the help of (51), (52) and (91) it is found that

._ 0. 63
:12 = CC (YO-7) _OYO = -_2—° (92)

It is to be noted that if y = 0' , then E. = -O’2/2 which indeed matches the energy for
o c 12 c

the pure phase-I solution.

7.2 The soft device energy function for Q12 on the lines of constant 0

Having investigated the soft device energy function 512 on the boundary of solution region

Q naturally we now study the soft device energy function 512 inside the solution region
12’

(212. We first explore the lines of constant 6. Consider two different states with the same

stress but different strains: state A corresponds to (o, 70) = (0A, 7A) ; state B corresponds

to (0', yo) = (GB, 73) = (0A, YB) with 73 > 7". To determine which state has a larger en-

ergy value we take partial derivative of 512 with respect to ya in (26) with constant 0'.

Since 0 is a constant, 7L = F,(o) and 7R = I‘”(o) are constants too. Therefore,

12 -'-‘-12(YYo) and s = s(70) are also functions of 70 only, and it is found that -
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8:1

570

2

 
= sigma) = (W,(r,(o» — W,,(r,,(o») s‘m) - o. (93)

0

Finally, substitution from (56) into (93) yields

 

 

8312 WHO"11(0)) ‘ W,(I‘1(0))

370 o _ mo) - mo) " ° = 0113(6)- 0 > 0' (94)

Equation (94) shows that the soft device energy function 512 monotonically increases with

70 along the lines of constant 0' for cc < o < 1 so that the value 70 = I‘,(0') always gives

the minimum energy solution for a given constant a. In conclusion, state B has more ener-

gy than state A. It is to be noted from (94) and (57) that the energy functions A12 and {-312

of both devices monotonically increase with ya along the lines of constant a for

ac < o < l.

7.3 The soft device energy function for 912 on the lines of constant 70

We now explore the lines of constant 70 and investigate whether the soft device energy

function 312 on the lines of constant 70 is increasing or decreasing with 0. Recall from

Section 6.3 that we considered two different states with the same strain but different stress-

es: state A corresponding to (6, yo) = (0A, 7A) and state B corresponding to (0', yo) =

(08, YB) = (03, 7A) where OB > (3". Do we find a conclusion similar to (84)? To answer

this question we take partial derivative with respect to o in (26) with fixed 70. For a given

constant 70, 512 = 33(0) and s = s" (0') are functions of a only. From (26) and (60) it

is found that

._ =.=..“'(o)= (w (cm—W (o»)s“'(o)+ac 1° 12 ’(r' ”W” . (95)

or,'(o)s" (o) + or,,'(o) (1 - s“ (0)) — yo.
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Equations (58), (95) and (77) show that

30

2

 
= (I‘,'(o)s”(o) + r,,’(o) (1 — s" (on ) (o — 0,10» - 1,. (96)

0

According to (34) and (86) equation (96) is equivalent to

3:512

86   
= - 7,, + E0 (o - 0,40»

a" ‘ (97)

‘ (r,,(o) — 13(0)) (0 — opp» .

Y.
 

= —yo+—a—6

3A

Recall from (79) that in the hard device 5512 day”
3“ a?

Y. 3

3:2
. 12

< . 3—00’ 6mm) However now for the soft dev1ce

have opposite signs provided that

  

  

and 0 might have opposite signs

70 36 3

or might have same sign. For example, since 0 < Ups and 70 > 0 if we have 330 > 0 then

we find 6312 < 0 But we find 3312

36 7 ° 33
< 0. Also recall from Section 5

 

3y
>0 onlyifa—é’

3
 
7.

that since the distributions of the lines of constant 3 are dependent on the material only as

shown in Figure 10, the distributions are typical for both devices. Therefore the points on

E2 give the minimum values of s in the solution region 012 on the lines of constant 70

which are the same for both the hard device and the soft device. Also recall from Section 5

and Section 6 that the points on $2 give the maximum values of hard device energy func-

tion 312 in the solution region (212 on the lines of constant 70. But now the points on 32

do not give the extremum points of the soft device energy function 312 on the lines of con-

stant 70. From (97) it is found that

< 0. i (98)
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This implies that the possible extrema of the soft device energy function 312 along constant

70 lines can only occur where the curves of constant 5 have negative slope in the (0', yo) -

plane. Hence it is to the left of the curve 92. Similar developments can be found in the re-

BE.

lation between —— as

86

and ——

7. Be

12

  
7.

To determine whether any such extremum of the soft device energy function 512 is

a maximum or a minimum we calculate the second partial derivative of the soft device en-

ergy function 312 with respect to 0. Thus (97), (98) and (64) give

 

 

 

32312 ....

802 = :1 (o) =
7.

(99)

323 r as F 1'$3 (I‘ll(o)- ,(o)) (o-ops(o)) +337 ( ,,(o)- 1(0)).

7.
°

 

Substitution from (89) and (86) into (99) gives

2:
a -12

802

a 2 0

- ~12 (0') = 56—270 (CS-0,140» +3—O'

r, s s

— _

 
<0, (100)

  

 

a2 87,,
where from (46), (63)1 and (98) we find a 270 > 0, O’ < ops(o) and 33

0'  

< 0. Therefore

S

83

if the point (0, yo) satisfies 37312

 

= 0 then the point (0, 70) gives a maximum soft de-

7.

vice energy function value 512.

It is easy to show from (90), at a given constant 70 obeying ac < 70 s 1, that the en-

ergy on o = 0c is greater than the energy on a = 6,00. For example the difference be-

tween the energy on o = 0c and the energy on 0' = 51(70) is given by

2
2

cc)_[_Y:) = “59.350, (101)
12lono=5,(70) — ( 2 2

— —

u- _—

h—t h—o

12'0“ O = 0c
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Comparing this result to (53) it is seen that the soft device behaves in a completely different

manner. As for a comparison of the energy :12 on O’ = 0c and on o = 011(70) for 70 > 1,

examination of Figure 19 shows that neither a = cc nor 6 = 61,00) is ensured to have

less energy on the lines of constant 70 > 1. Further investigation of this interesting issue

(which is a possible topic for future study) might yield rules for constructing profile curves

similar to those in Figure 15 but for the soft device.

7.4 The soft device energy function for (212 on the curves of constant s

Recall from Section 5 that there are two types of behavior to the constant 5 curves: one has

70 monotonically decreasing as a function of O (s S s ) and the other has 70 decreasing
trans

as a function of 0 then increasing as a function of 0' (s > strans ). It is found for both types

that the soft device energy function 312 decreases as a: 0'6 —) 1. To show this we take the

_tt

partial derivative with respect to o in (26) with fixed s, and it is found that 312 = :12(0')

and

6312 _tt, i

35 = :12 (o) = —yo<0. (102)

3

Yo I‘”(o)

 
   

V CC 16

Figure 19. The minimum soft device energy solution on the constant 7,, lines for ya > 1.
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7.5 The minimum energy criterion for the soft device

Recall from Section 7.2 that the soft device energy function 312 monotonically increases

with 70 on the lines of constant 0. Therefore the minimum energy solution for the soft de-

vice will be the line 70 = l“,(o) which corresponds to a pure phase-I solution (see Figure

20).

Therefore under a minimum energy solution criterion if the bar is elongated at the

end with a quasi-static monotonically increasing displacement o = 6(t) , C(t) 2 0, then the

loading diagram will be as shown in Figure 21. This figure shows that the material behaves

as if it were linearly elastic up to the maximum load value a = l.

 
 

 
  

Figure 21. The loading diagram for the soft device under the minimum energy criterion.



8. Quasi-static motions with a single phase boundary

8.1 Definition

We now turn our attention to quasi-static motions of the bar. Following Knowles [1979K]

and Pence [1991PP] a quasi-static solution to either the soft device problem or the hard de-

vice problem is a sequence of equilibrium states which at each instant t obeys the boundary

conditions. Note that no inertia effects are considered here. Now the time t is being intro-

duced and it plays only the role of a history parameter. Thus in the hard device 700) is pre-

scribed and is assumed to be a continuous function. At each instant t if 0 < 70(t) S 0c then

there is an unique equilibrium solution a = 70(1). Moreover at each instant t if 70(t) > Cc

then for both the (12)-case and also for the (2,1)-case there is a family of equilibrium so-

lutions parametrized by the instantaneous value of spatially constant stress 0’ (see Section

5). The parameter 0 will thus vary with time so that a = 0(t) and 6(‘y(X, t)) = 0(t), where

1(X, t) is the associated strain field. If we only consider either the (l,2)-case or the (2,1)-

case then once the (unprescribed) 0(1) is found, it will determine a particular quasi-static

solution at each instant I. According to (23) it is necessary that 0(t) be continuous for the

location of the phase boundary s(t) = 311(00), 70(1)) to vary continuously with respect to

time I.

If we imagine a bar is in pure phase-I in the beginning and that later a phase

boundary is created at X = L which then moves from the right end to the left end, then

we have the following different cases during the motion. At first the bar is in the (1,1)-

case; and then the phase boundary is created at the right end and moves to the left mean-

ing that the bar has changed from the (1 ,l)-case to the (12)-case; then if the phase bound—

ary hits the left end then the bar changes from the (l,2)—case to the (2,2)-case. From the

above observation we can find (1,1), (1,2), (22)-cases during the motion. This set of cas-
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es which gives the motion of a single phase boundary is the combination of the (1,1),

(1,2), (2,2)-cases. The other set of cases which also gives the motion of a single phase

boundary is the combination of the (1,1), (2,1), (2,2)-cases. Here the phase boundary is

created at the right end and, at least initially, moves to the left. Note that there can be no

direct switching between the (l,2)-case and the (2,1)-case. The switching between those

two combinations is only through an intermediate pure phase state, either the (l,l)-case

or the (2,2)-case.

Similarly, in the soft device, 0(t) is prescribed and is assumed to be a continuous

function. At each instant t whenever O < 0(t) 5 ac then there is an unique equilibrium so-

lution yo = 0(t). Moreover at each instant I whenever cc < O’(t) < 1 then there is a family

of equilibrium solutions parametrized by the instantaneous value of elongation

60(t) = 70(t)L at the end X = L. The parameter 70 will thus vary with time so that

yo = 70(t). Once the (unprescribed) 70(t) is found it will then determine a particular quasi-

static solution at each instant t. It is also required that 70(t) be continuous for the location

of the phase boundary to vary continuously with respect to time I.

Consider that the bar is elongated with a quasi-static load 70(t) starting from

(0, yo) =(0,0). For the combinations of the (1,1), (1,2), (22)-cases of solutions, since the

solution at each instant is represented by a point in the solution region (212, a continuous

quasi-static motion is represented by a continuous curve in this region. For a prescribed

monotonically increasing 70(1), any continuous curve with increasing 70(t) in this region

represents a possible quasi-static motion. Therefore we can find many possible curves for

the motion. Typical curves for such motion which are given as path (a)-(f) in Figure 22. In

what follows we explain the meanings of these paths: I

(a) The solution path will be restricted to 70 = F,(o) = o of the pure phase-I solutions

so long as yo(t) < cc.
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(b) The solution path could stay on yo = I‘,(o) = o of the pure phase-I solutions after

70(t) > Cc until 70 = l.

(c) Alternatively, after 70(t) > cc but before 70(t) = 1, the solution paths could move

into the interior of the solution region by creating a phase boundary at the right end.

((1) There is another possible path which will first move along the line 70 = l‘,(o) = 0'

of the pure phase-l solutions up to 70 = 0 = 1 and then could move into the interior

of the solution region. Note that this point, (0', yo) = (1,1) is the only point in the

solution region 012 which can be regarded both as a pure phase-I solution and as a

pure phase-II solution. Upon leaving this point the strain field could have smooth

transfer from this pure phase solution to a mixed state of phase-I and phase-H by cre—

ating an internal phase boundary. To see this start with the pure phase solution point

70 A 1“,,(O)

(f)

(e)

(b)

I‘,(o) 
(a)

 > 4

y 9c l c.

Figure 22. Some possible quasi-static motions in the solution region (212. as 7,, increases

from 70:0.
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(0, yo) = (1, l) and imagine some fixed s = so between 0 and 1. According to

Section 5 each curve of constant s in the solution region ends at (0', yo) = (l, 1) .

It is to be noted that the strains on both sides of the internal phase boundary so are

equal to l at the point (6, yo) = (l, 1) so that at first both sides of the internal phase

boundary so have the common strain value of 1. Suppose that the strain 1R in x > so

increases and at the same time that the strain 7L in x < so decreases in such a way that

511%) = 61(yL). This causes the solution path to move into the solution region 912

along the s = so curve. It was assumed in the above description that the internal

phase boundary remains fixed at s = so, but it is also possible that the phase bound-

ary could move. This occurs if the solution path (d) enters the solution region {212 by

a path which does not coincide with the curves of constant s.

(e) Another possible path stays on the curve 70 = I‘”(o). The solution will give pure

phase-II solutions as long as the path follows the curve yo = I‘”(O).

(f) The final possible path splits off from the solution path (e) at some yo > 1 and moves

into the interior of the solution region 5212 by creating a phase boundary at the left

end.

8.2 Dissipation and driving traction

Following Knowles [1979K] the rate of dissipation D(t) in a quasi-static motion is the dif-

ference between the rate of the external work Eo(t) and the rate of increase of strain energy

Eo(t) , therefore:

D(t) = 15.0) - 8.0). (103)

As shown by Knowles [1979K], quasi-static problems with non-monotone stress response

do not require that D(t) = 0 as it is in conventional linear elasticity. The external work is
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Eon) = fio“’6(v)dv (104)

and the rate of external work is

13.0) = 0700). (105)

The stored strain energy is

x
8,0) = jgwmdz = W010)» + W010» <1 - s) . (106)

Note from (6) that 7L = [1(0) and 7R = 1‘1(0),wherei = I or II and j = I or [I . Hence

the stored strain energy for all four cases could be obtained by equation (106). The rate of

increase of the strain energy is then given by

5.0) = (W(vL(r))—W(v,.(t)))s+ (govt/01(0))” (-C%W(y,,(t))) (1 -s). (107)

where s = gs; is the quasi-static phase boundary velocity. It is to be noted that

o‘itwmm) = 611.

-‘—’-W0 (0) = or . (108)
dt R R

From (107) and (108) it is found that

5.0) = (W(71(t)) — Wont)» s' + ohms + 01.0) (1 — s) . (109)

Substitutions from (105) and (109) into (103) yield the rate of dissipation

00) = 07,0) - (W(71(t))- Wont») s' — (0110).) + 071.100 - s) ). (110)

Taking the derivative with respect to time t in (23) gives

7'00) = (mos + You) (1 - s) ) + (710) - 11(0) s‘. (111)

Therefore from (110) and (111) it is found that the rate of dissipation is given by

00) = s“ (W(7R(t)) - W010» - a (71.0) — 710)) ) . _ (112)

It is to be emphasized that the rate of dissipation for all four cases as given in (21) could be

obtained by (112), however D(t) = 0 for both the (1,1) and the (2,2) trivial cases since then
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1,0) = 110).

Letf = fij bedefined by

f =f.-,- = W(I‘,(o)) - W0“1(0)) - 6 (13(0) - 13(0))

11
= ( (WU-‘50)) - 013(0)) - (W(I‘i(o’)) _ 011(0)) ) . ( 3)

Note that equation (113) can be rewritten as

f=fij = [lpll = 171-1); (114)

where [[0]] indicates the jump across the phase boundary at x = s(t) and p = W(7) - 01

which is the one dimensional case of the more general energy-momentum tensor discussed

by Eshelby [1975135]. Substitution from (113) into (112) and with the help of (6) obtains

the rate of dissipation

D(t) = if. (115)

Hence (103) can be rewritten as

13.0) + (-f) s' = 5.0) (116)

which may be viewed as a work-energy identity. It means that the sum of rates at which

work is being done on the bar by the external forces and done internally at the phase bound-

ary x = s(t) , is balanced by the rate at which energy is being stored in the bar. Consequent-

ly, -f may be treated as the traction applied by the phase boundary “on” the surrounding

material, or similarly, +f can be viewed as a driving traction exerted on the phase boundary

by the surrounding material (Abeyaratne and Jiang [1989A]). The driving traction is similar

to the notion of the “force on a defect” first derived by Eshelby [1956B]. It is also similar

to the force on the interface between two phases derived by Eshelby [197013] and discussed

by Rice [197SR]. It is easily shown that if there are numerous phase boundaries then (116)

generalizes to

Ea(t)+ 2 HM = Eta). (117)

disooniiiruities

From (58) it is found that (113) can be written as
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f,-,- = (01,3(6) - 0) (5(6) - 11(0)). (118)

Note for the (12)—case and the (2,1)-case that this gives

f12 = (com) - 0) (r,,(o) - 17(0)) sine). (119)

f2, = (0,40) - 6) (13(0) - 1“,,(o)) Ef21(0) = -ftz(o).

In the (12)-case, (63)1 gives ops > o and I‘”(o) > F,(G) whenever cc < 0 < 1. Therefore

it follows from (119)1 that the driving traction obeys f1:z > 0. However, in the (2,1)-case, it

is found from (119)2 that f = f21 < 0. In summary

f12 = -f21>0, if oo<o<1. (120)

From (113) we also can find that the driving traction for the (1,2)-case is given by

f12(0) = I; (r]](v) _ F,(V)) dV

1 _ 02 (121)

2 . = ol‘”(v)dv —

In what follows we examine the function f12(o). From (121) the driving traction is always

equal to zero whenever a = 1 while at o = do it is equal to the following

_ 1 1-03

from.) = Jocr,,(v)dv — 2 (122) 

so that its value depends on the function FI[(0). For example with the choice of the function

6,, (y) given by (a.1) of Appendix-A it is found for material A that the function [112(0)

monotonically decreases from (0,1f12(o)) = (05.1») at a = co to (0,f12(0)) = (1,0) .

However for Material B with the choice of the function 6" (7) given by (b. l) of Appendix-

B it is found that the function f12(6) monotonically decreases from (0',f12(0)) =

(0.5, 0.625) at o = so to (o,f12(o)) = (1,0) (see Figure 23). More generally from

(121), the first derivative of f12(o) for any choice of 611(7) is given by

115(6) = 1‘,(c)— 1“,,(0) s 0. (123)
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f12(0)

1.6

1.2 " —1

0.8 r- _.

0.625

0.4 1- -

 

material B   o A ‘

0.5: 0.6 0.7 0.8 0.9 10c a

Figure 23. The functions 712(6) with the choice of the function 3,,(7) given by (a.1) of

Appendix-A for material A and by (b.l) of Appendix-B for material B.

For the example function 611(7) given either by (a. l) of Appendix-A or by (b. 1) of Ap-

pendix-B this derivative monotonically increases from (0.1115(0)) = (0.5, -w) to

(o,f12’(o)) = (l, 0) (see Figure 24). The second derivative of f12(o) is given by

f12"(o) = 17(0) — r,,'(o) > 0. (124)

Recall form (39)2 and (43)2 that 170;) = 1 and r,,'(o) < 0. Therefore [32"(0) > 0 so that

 

 

 

  1

0.5 = C 0.6 0.7 0.8 0.9

 

O. 1

Figure 24. The first derivative of the functions off12(o) for the example function 511(7)

given by (a.1) of Appendix-A for material A and by (b. l) of Appendix-B for

material B.
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[12(0) is a concave function. Since f21(o) = —f12(o) it follows that f21(o) is a convex func-

tion.

For the (1,1)-case and the (2,2)-case, both the strain 7L and the strain 7R are equal

which gives f = f11 = f22 = O and hence the rate of increase of external work is balanced

by the rate of increase of strain energy. This is to be expected, since for these cases an i11-

temal phase boundary has no real physical significance.

8.3 Admissible direction of movement of the phase boundary

According to the second law of thermodynamics under isothermal conditions, the rate of

increase of strain energy Eo(t) cannot exceed the rate of the external work Eo(t) (Knowles

[1979K]). Thus it follows from (115) and (119) that the dissipation rate

D(t) = s‘fz O (125)

which restricts the direction of the movement of the phase boundary. A quasi-static motion

is admissible if the dissipation inequality (125) is obeyed during the motion. Hence it can

be concluded that the directions in which the phase boundary can move are not unrestricted,

but must obey

unrestricted if f = 0, (126)

20 if f>0,

5) 50 if f<0.

Consider the (l,2)-case, then from (120) and (126) it is required that s 20 if

cc < o < l . However if the stress 0 = 1 then the driving traction f12 = 0 so that inequal-

ity (126) does not restrict the sign of s at O' = 1 (see Figure 25). This restricts the possible

paths as previously shown in Figure 22. In particular if the bar is elongated with monoton-

ically increasing yo(t) then the path must follow the line s = l of pure phase-I solutions

when 0 < 70(1) < 1. Thus path (c) in Figure 22 cannot occur. Thus the stress eventually

reaches its maximum value c = 1. After this further elongation allow both pure phase-II
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Figure 25. The admissible directions for the quasi-static _r_notions in the solution region

{212. The constant s curves are for the function 011(7) given by (a.1) of Appen-

dix-A, but the diagram is representative for any function obeying (5).
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solutions (5 = O) and true (1,2)-type solutions. This is because the admissible directions

on the curve 5 = O of pure phase-I] solutions allows the paths to split off and enter the in-

terior of the solution region 012 (see Figure 25).

The (2,1)-case is similar to the (l,2)-case, but now the phase boundary starts on the

other side and moves in the other direction. Hence the admissible path diagram is essential-

ly the same (Figure 26). From the above discussion it is to be noted that the solution paths

will start from (0', yo) = (O, O) , follow the 70 = 0' line, and reach the peak (0', yo) =

( 1, 1) for both hard device and soft device loadings in the (0', yo) -plane. Moreover since

there is no phase boundary before this peak is reached it follows from (116) that the rate of

increase of external work is balanced by the rate of increase of strain energy. Thus, the path

70 = o of pure phase-I solutions is dissipation free. Note that for the same reason the path

70 = THUS) of pure phase-II solutions is also dissipation free.

Finally we note for both the (12)-case and the (2,1)-case that the phase boundary

moves so as to decrease the amount of phase-II and increase the amount of phase-l. This is

related to the instability of descending portions of a stress-strain response function as found

by other authors for different problems (see Abeyaratne and Knowles [1989A], Kikuchi

and Triantafyllidis [1982K]).

8.4 Comments on the admissible paths

In what follows, equation (126) will be required to hold at all times t. We first consider soft

device paths in which 0(t) is not only specified but is specified to be constant for all future

time t. We consider arbitrary initial values of 70 in the solution region (212 on the associ-

ated line of constant 6. An interesting question is whether paths starting at this initial point

are allowed to move to the boundary of the solution region 5212. For each constant value of

0’ there are two possible boundary points given by 70 = l",(o) or 70 = rum). Every point
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o 0.25 0.5: cc 0.75 O’ 1

Figure 26. The admissible directions for the quasi-static motions in the solution'region

9.2,. The constants curves are for the function 0,,(7) given by (a.1) of Appen-

dix-A, but the diagram is representative for any function obeying (5).
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 V o 1 o
C

Figure 27. Admissible constant 0 paths that reach the boundary 70:1",(0') for the soft

device. All points on the constant 0 lines can reach points on this boundary.

in the solution region could move to the boundary point 70 = 1",(o) (see Figure 27) since

a downward path is always admissible (see Figure 25). The points inside the solution region

could not move to the boundary point 70 = F"(0') since the upward direction is not admis-

sible (see Figure 25). Therefore the only point that can “move" to 70 = I‘"(o) on an ad-

missible constant 0’ path is the boundary point 70 = I‘”(0') itself which is already there

(see Figure 28).

Similarly let’s consider hard device paths in which 50(t) is not only specified but is

specified to be constant at all instants t so that 70 is fixed. The same interesting question is

whether similar paths could move to the boundary of the solution region. For each constant

value of ya, there are two possible boundary points given either by 0' = O", and

ya = F,(o), or by 0' = 6c and ya = F"(o') depending on the constant value of 70. Those

points inside the solution region with 6(70) > 691(7) and 70 s 1 could move to the bound-
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cc 1 a

Figure 28. Admissible constant 0 paths that reach the boundary 70=F,,(0) for both the

hard and soft device. No points, other than the boundary points themselves,

can reach the points on this boundary.

 

 

......‘.....
I‘,(o)

  <— : E >

V 0c 1 0

Figure 29. Admissible constant 7,, paths that reach the boundary 70:1“,(0) for the hard

device. Those points which are on the constant 70 line with 5(7)>392(7)

can reach this boundary.
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ary point 70 = I‘l(c) (see Figure 29) since the rightward path is also admissible in this area

(see Figure 25). Those points inside the solution region with 6(70) < 66570) and 70 S l, as

well as those points inside the solution region with 70 > 1 could move toward the boundary

point 6 = 0C (see Figure 30) since the leftward direction is admissible in these areas (see

Figure 25). It is to be recalled that the boundary point 0 = cc is an unattainable limit as-

sociated with minimum energy. Recall from Section 6 that the point (632(7), 70) on the

curve Q2 represents an energy maximum on lines of constant 70. Thus admissible motions

in Figure 29 and Figure 30 must move down the energy hills of A (see Figure 15). From

the above discussions it is again seen in all cases that the final states on the boundary of

(212 always like to reduce phase-H and extend the amount of phase-I.

Because of the restriction in the direction of solution path we shall now briefly re-

consider the six possible solution paths (a)-(f) previously depicted in Figure 22 and dis-

cussed in Section 8.1. We again consider motions in which the bar is elongated with mono-

tonically increasing applied displacement 70(t) > 0 starting from (a, 70) = (0, 0) (see

Figure 31).

(a) As before, the solution path is restricted to yo = F,(O) = U of the pure phase-I solu-

tions until 70(t) > 0C. The bar behaves as if it were linearly elastic for both devices.

(b) The solution path must now stay on yo = 13(6) = 0’ of the pure phase-I solutions

after 70(t) > cc until 70 = 1.

(c) After 70(t) > cc but before you) = l the possible solution path(c) of Section 8.1 can-

not occur since this violates (125).

(d) Other admissible paths enter the interior of solution region after the initial departure

from (0’, 70) = (l, 1) . However the solution path cannot move arbitrarily, that is

there is less variation since it cannot violate the directional restrictions in Figure 25



 

 
  . E : J.

v 0' l 0'
C

Figure 30. Admissible constant 7,, paths that reach the boundary 0: dc for the hard

device. Those points which can reach this boundary are on the constant 70

line with oc< 5(yo)< Egg1,) whenever oc<70<1, or with oc< 5(7)< 5,,(70)

whenever yo 2 1.

 
  ‘ I I

' o 1 o
C

 

D

Figure 31. Some admissible possible quasi-static motions in the solution region 912 as 70

increases from 70:0.
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after it enters the interior of solution region.

(e) The path stays on the curve 70 = I“,[(0) of the pure phase-II solutions.

(1) The solution path enters the interior of the solution region (212. However the path

must obey the directional restrictions in Figure 25 as do the paths (d).

From the above discussions we find that the paths (a), (b) and (e) in Figure 31 are exactly

the same as their corresponding paths in Figure 22 since there is no other choice. However

the paths (c), (d) and (f) in Figure 31 are not necessarily equal to their corresponding paths

in Figure 22 since those paths in Figure 22 do not need to satisfy (125) while these paths in

Figure 31 must obey (125).

Now that we have looked at the admissible paths, we return to the minimum energy

solution diagrams in Sections 6 and 7. We find from (120) and (126) that, for a soft device

case, the loading curve in Figure 2] is admissible. However, for a hard device case, the

loading curve in Figure 17 is not admissible whenever O’c < 70 < l . This is because there is

an energy hump on the curve Q2 (see Figure 15), so that attaining the absolute minimum

on the line 0 = 0‘6 requires a climb over an energy barrier to leave the local minimum on

the line 91.



9. The kinetic criterion

Due to the non-uniqueness of the quasi-static motions solutions some additional criterion

is needed which determines the unprescribed 0(t) for the hard device and which gives the

unprescribed 70(t) for the soft device. Requirements of minimum energy provide one such

criterion, but as mentioned at the end of the previous section, this can lead to violations of

the admissibility condition (125). An example of a different type of criterion involves the

use of a “kinetic criterion”. Abeyaratne and Knowles [1989A] have shown for problems

with similar nonuniqueness that the quasi-static response of a prescribed force problem is

then fully determined if one introduces the idea of an additional kinetic criterion.

Here the kinetic criterion will be described by a relation

f = (D(t). (127)

where (p(s°) is a materially determined function that relates the driving traction f and phase

boundary velocity S. Similar kinetic criteria were considered in [1988A], [1988AA],

[1989A], [1990A], [1991A], [1991AA] and [1992A]. A necessary and sufficient condition

to ensure that the dissipation rate D(t) obeys (125) is that q)(s) satisfies

s'<p(s') 2 O, (128)

for all values of its argument x. If (128) holds, then the admissible directions in Figure 25

are ensured through the motion. Suppose that the materially determined function is given

by the linear relation tp(s) = s/k, then the kinetic relation is

m) = kf(t). (129)

Condition (128) is then ensured provided that k is a positive constant. Equation (129) pro-

vides a linearly “viscous” kinetic relation between “force” f and velocity s'(t) , and is similar

to the kinetic relation considered by Abeyaratne and Knowles [1988AA].

76
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9.1 The governing differential equation for phase boundary motion

Equation (129) leads to a differential equation whose solution give the quasi-static motion.

We shall derive this for (12)-case. Let T(o) be the difference between 1“,,(6) and I‘I(O'),

7(0) 5 I‘”(o) — F,(o), and

l‘,,(o(t)) - r,(o(z)) a T(o(t)). (130)

Thus from (129) and (119) the phase boundary velocity is given by

S'(t) = kf.1210(0) = k (Op,(6(t)) - 0(0) T(6(t)) (131)

for the (1,2)—case. Now equation (25) can be rewritten as

- 700) + mom) _ 1 _ 7,0) - cm

s") = 1" mm» ' T(0(t))
(132) 

for (l,2)-case. Using (131) and taking the derivative with respect to I from (132) with the

help of (119) gives

k (opium) - om) 13m» =

mom) + [yam - 0(2)] T’(o(t))} do) - manna).

(133)

Equation (133) also holds for the (2,1)-case. To see this note that (120) gives f21 = -f12

while (25) gives

_ ram—om

3") ' Two»
(134)

so that $210) = 4120). Thus the minus signs compensate for each other, and (133) again

results.

For each loading device, either o(t) is given or 70(t) is given, equation (133) is a

first order differential equation relating the specified quantity to the unknown quantity. For

example if 0(t) is given, then (133) can be rearranged to
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. 00)

70‘” ’ T(00))

00)T'(00))

T(00))

T’(0(t))7,(t)

(135)

= (1 - )00)—k(0,,(00)) -00))7“(00))

which is a first order linear ordinary differential equation for 70(t). Hence its solution is giv—

en by

70(1) =

JHUM: . {11mm (136)

j (00) — h0)00) - k (0,,(00)) - 00)) 12(00») e dt+ c).

T’(o(t))
WthC ”(1) = m (5(t) and c is a constant of integration. It is to be noted that

H(r)dr

J = T(o(t)), so that (136) is further simplified to

00) - h(t)o(t)

T(0(1))

= 00) -— T(00)) (Jk (0,,(00)) — 00)) T(00))dt + c)

 7,0) = T(00)) (j [ - k (0,,(00)) - 00)) T(00))]dt + c)
(137)

and considering the initial condition at t=0 gives

T(o(t)) (7,(0) - 0(0))

T(0(0))

 7,0) =-- 00) + — T(00))]:,k (0,,(00)) — 00)) T(00))dt. (138)

But if 70(t) is given, then (135) can be rearranged to

(7,0) - 0(0) T'(0(t))

T(00)) )5“) -k(°p.(00)) - 00))12(00)) = 7,0) (139) 

which is a first order nonlinear differential equation and is difficult to solve explicitly.

The above summary also can be seen from the following derivation which applies

to the (12)-case. Note that the location of the phase boundary obeys

s0) = s(0) + kIaflz(00))dz. (140)

which determines s(t) for the soft device from any given initial condition. However for the

hard device (140) is just a complicated integral equation. Note from (23) that the relation
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between 70(t) and the stress 0(t) is given by

7,0) = F,(0(t))S(t) + F,,(0(t))(1-S(t)) (141)

which, using (130), is the same as

Y,(t) = 0(t) + T(0(t)) (1 - 5(1)). (142)

Substitution from (140) into (142) gives

7,0) = 00) + T(00)) (1 — 0(0) + 130120000 ) . (143)

Since from (142) it is found that 70(0) = 0(0) + T(0(0)) (1 - 3(0)) at t=0, (143) is the

same as (138) once we set flo(t))=f12(o(t)) using (119) and (130).

For the soft device case, since 0(t) is given, equation (138) is an explicit equation

for 700), so that 70(t) is easy to obtain. For example, if 0(t) = constant, then 70(t) will be

a linear function of time t. In fact 70(t) will linearly decrease with respect to time t down

to 70(t) = 0(t) = constant as shown in Figure 27.

But for the hard device, since 70(t) is given, equation (143) is an implicit equation

for the stress C(t) which is probably difficult to solve. Even when the given 70(t) is con-

stant, it is not easy to solve for 0(t). Moreover, there is no obvious guarantee that solutions

either exist; or if they exist, that they are unique.

9.2 Phase boundary kinematics

In this subsection we further study phase boundary motion governed by the kinetic relation

(129). If we consider a bar which has a single initial internal phase boundary with phase-I

on the left and phase-II on the right, then it represents an internal point (0A, 7A) in the in-

terior of the solution region {212. We now discuss the kinetic solution, that is the solution

obeying (129), for the following soft device and hard device problems:

(a) soft device: 0(t) = 0A, with ac < 0A < l.
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(b) hard device: 70(t) = 7A, with VA > Cc.

Our interest will be whether the paths eventually intersect the boundary of solution region

(212 (recall Section 8) and if so, we also wish to know how long it takes and how fast the

phase boundary is moving at this final time.

For the soft device since the stress is given by o , S = kf12(oA) is constant

throughout the motion and is greater than zero. Thus the phase boundary will eventually

move all the way to X = L resulting in a pure phase-I solution (see Figure 27). To find how

long it will take, the initial location of the phase boundary at point (0A, 7A) is needed. For

the ( 1,2)-case, it is found that

1 3(0) = FII(OA)—YA _ rlI(UA)_‘YA.
 

 

 

Won-170.)“ no.) “44’

(In contrast, if this was the (2,1)-case, then

— -— 0‘3(0)_ 7A ,(0A)) __ 7 ,( A), (145)

r,,,,(0)- r,(0A T(0A)

note that the sum of the two initial values of 3(0) from (144) and (145) is equal to 1). There-

fore in the (1,2)-case from (144) the time t is given by

 

  

: I -S.(0)_ I‘O.Al(O’-) 7A > (146)

S kf12(0A)T(0A)

(In contrast, if this was the (2,1)-case, then from (145) the time t is given by

= '5 (,0) = W0)7" (147)

S -kf21(oA)T(OA)

Note that the formula for t is the same for both cases).

Turning to the hard device there are two possibilities. Recall from Section 8.4 for

each constant value of 7A , that there are two possible boundary points to the solution region

012. These are given byo = o ando = 7A wheneverac<<yA 1, and given by0' = O'c
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and 0 = 6,,(7A) whenever VA > 1. For the case in which either 6A < 602(7) with VA S l,

or the case with VA > 1 (see the shaded region in Figure 30) it is not easy to solve this prob-

lem as the velocity of the phase boundary increases through the motion. As an example for

material A the velocity of the phase boundary is i = kf12(oc) = 00 when the solution path

finally hits the line 0(t) = O'C while for material B the velocity of the phase boundary is

equal to 5k/ 8 when the solution path finally hits the line 6(t) = Cc. If the stress is ob-

tained from (143) then from (140) the time I when the phase boundary hits the end X = L

is given by the following integral equation

1 5(0) + kjgf12(o(r))dt, for the (l,2)-case,

_ (148)

0 = 5(0) +kjgf21(0(t))dt, for the (2,1)-case.

Similarly for the case in which GA > 66 (VA) with 7A S 1 (see Figure 29), the velocity of

2

the phase boundary decreases through the motion and is given by i = kf12('yA) when the

solution path eventually hits the line of phase-I solution at o = 6,01) = 7,1' The time

needed is again given by (148).

9.3 Rate dependence of the admissible paths governed by the kinetic criterion

In the previous section we briefly looked at the time needed for a (1,2)-case solution path

to “drift” to the boundary of (212 when the prescribed loading condition (either 70 or o) is

fixed. Now we turn to investigate the effect of different loading rates. We consider the sys-

tem starting from the fixed point (0, 70) = (0, 0) in the solution region 012, and we try to

find the kinetic solution for both the hard device and the soft device.

For the soft device if 0 < 0(t) < 1, then the solution path will remain in pure phase-

I (which is also the minimum energy solution, recall Section 7). While, for the hard device,

if 0 < 70(t) < 1, then the solution path will also remain in pure phase-I (which does not give
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the minimum energy solution for ac < o < I, recall Section 6).

From the above observations the solution path cannot enter the interior of solution

region (212 so long as either 0 < 0(t) < 1 or 0 < 70(t) < 1. Therefore let’s consider the sys-

tem starting from the fixed point (a, 70) = (1, 1) at t=0 which represents a pure phase so-

lution. Under further loading the solution path may now enter the interior of the solution

region 912. We consider the hard device loading condition

‘th

l+——=l+at for O<t<to,

700) = to (149)

1+7], for r>t,
o

where 7, and to are positive constants, and the loading rate a = 717/to (this is shown as

(c) in Figure 32). Thus (149) represents a family of loading cases parametrized by to and

7F. We are concerned with the effect of rate, that is the effect of changing to with 7,. fixed.

If to increases, then the loading (c) is changed to some other loading, say (d); if t5 decreas-

es, then the loading (c) is changed to some other loading, say (b). In particular, if to -) 0,

then the loading (0) switches to the step loading (a). I claim that the solution paths will look

like the six corresponding paths as shown in Figure 33. We now show this in the following.

 

 

 

1 + 7, ‘ A, . ”,..

/‘ 2
70(1) (20 ~““:(b) 37(0) ifs/(g),

,/ MAM"; ”I”, (c)

f “,..-"v d,

f «7” s

.f s

1 ‘ .» (f)

4 5 >

to (c) t 
Figure 32. The hard device loading condition (149) for difierent values to. Here 0 = to(a)

< 10(b)<--- < to“) < to“) = 00 so that on = (10(3) > 0100)) >... > co“) > (100-) = O.
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From (149) and for a loading with the loading rate a = 0 , the solution path follows the line

of constant 70 = l as discussed in Figure 30. But for a loading with the loading rate a > O

we have from (142), for 0 < t< to, that

7,0) = a = ('30) (1 + T'(G(t)) (1 - S(t))) - T(O(t))$(t) > 0. (150)

From Section 5 if 70(t) 2 l and 6c < 0(t) < l we have that the slope of a curve of constant

3 in the solution region is negative (see Figure 9):

1+T’(o(t))(1—s(t)) = 8% <0 1170(021 and cc<a(t)< 1. ' (151)

Since or > 0 and s’(t) > 0 whenever O", < 60‘) < 1, equation (150) now shows that c'r(t) < 0.

Hence the slope of the solution path in the solution region (212 is negative whenever a > O

and 70(t) 2 1. This means that the stress decreases while the strain increases for a hard de-

vice loading with a constant loading rates a > 0.

A I‘,,(o)

l+yF ...................... 
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Figure 33. The relation between the solution paths corresponding to the loadings

given in Figure 32 for the hard device.
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Each loading (.. each (1) defines a different solution path 7(0) and to show this or

dependence we shall put a in the argument 7(0, or). To show that a higher or path is above

a lower a path (at each 0) it is enough to show that a“ > ab = 7(0, or“) > 1(0, orb) with 0

fixed. A formal argument establishing this ordering is given in Appendix-C, while here we

give a shorter (but less formal) explanation. To argue that this is the case, note that we can-

not have 7(6, (1"): 7(0, ab) at any fixed 0 <1 since this would imply that two different 7

curves pass through the same point. Thus either 1(0, (1") >‘7(O', (1”) or 7(6, a°)< )(O, ab)

for all fixed 0 which a“ > (1". To find the correct direction to the inequality it is enough to

consider a specific example, and so we take ab = 0 . However in this case 1(0, 0) =1 which

is the lowest most possible path, so we conclude that 7(0, a“) >7(0, ab) when a“ > ab so

that higher (1 curves are above lower (1 curves.

We have argued that the rate of loading gives different solution paths. Thus differ-

ent solutions are generated by different loading rates. Those curves would separate like in

Figure 33. Note that some curves like (e) and (f) could hit 0' = 0c before t = to.

Physically these results can be concluded by noting that there is a natural tendency

for the solution path to drift down to the line a = ac, so that larger values of to allow more

downward drift before 70 = l + 7],. For the loading (a), to = 0 and there is no time re-

sponse for this drift Hence the solution path will then follow the path with the smallest pos-

sible s which is the curve 70 = I‘”(o), 3:0, with l < 70 < 1 + 7F and will then follow the

line 70 = 1+7], toward the line a = cc. For the loading (f), to = 00 so that there is

enough time for complete drift response. Hence the solution path in this case will be the

lowest most path which is the line 700) = 1.

Finally the departure of the solution paths in Figure 33 from (0', 70) = (1,1) can

be analyzed. This is done for Material A in Appendix-D.

 



10. Finite element analysis

The theoretical analysis in Sections 2- 9 shows that the problem under study has nonunique

solutions and that this nonuniqueness can be resolved by implementing an extra criterion,

either one of minimum energy or else a kinetic relation. Now we study whether numerical

analysis based on the finite element method can give the same results. Our problem is find-

ing a state that satisfies the equilibrium equation (11)

d = 152_de(X) 0, 0<X<L, ( )

and the boundary conditions either

u(0) = 0, u(L) == 5, (153)

for the hard loading device or

u(O) = 0. 0(X) = 0. (154)

for the soft loading device. In what follows the finite element method (FEM) analysis of

the problem is performed in detail.

10.] Variational formulation of the equation over a typical element

The FEM is a piecewise application of a variational method. Hence the variational formu-

lation of the equation (152) over a typical element is studied first. Suppose that the domain

R E [0, L] is divided into a set of N line elements then we have

X0=0<X1<X2<...<XN_1<XN=L. (155)

The i-th element R5 '=' [X -_ l,)(,-] is a typical element of the finite element mesh. Since
1

equation (152) is valid over the domain R a [0, L] , it is also valid, in particular, over the

i-th element. The term “variational formulation” means that the formulation in which the

governing differential equation is recast in an equivalent form by trading the differentiation

between a test function and the dependent variable. Thus multiplying both sides of (152)

with a test function v(X) and integrating over the i-th element gives the variational formu-

85
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lation

X.

X] lv(X)fio(X)dX = 0. (156)

Integrating (156) by parts gives

X

v(X)0(X)|Xl-] 0(X)—v(X)dX= 0 (157)

Xr-I

Recalling (14), since the stress-strain relation can be rewritten by 0(X) = EJLXMX), equa-

tion (157) can be rewritten as

X

v(X)o(X)|x'1' x] Ed—Xu(X)d—X—=v(X)dX 0. (158)

xi - l

Now for the i-th element the finite element method involves seeking approximate solutions

of the form

u(X) = u‘” (X) = 2 u,“’~,“"(X) (159)

i=1

where the superscript (1) denotes the i-th element and the subscriptj denotes the j-th node.

Note also that “1(1) are the (to be determined) values of displacement u at the node Xj, m

is the number of nodes per element, and N11 i) (X) are the finite element interpolation fune-

tions with the property

(1')], J-= k
N]. X = 160( A) {0 j a: k. ( )

The corresponding strains are

7“’(X)= 2::at“):d}"’(X) (161)

and the corresponding stresses are
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0‘” (X) = 0(7‘“(X)). (162)

Note that v(X) is an arbitrary test function. By the Galerkin method, substitution of equa-

tion (159) for u(X) and v(X) = Ni“) (X) into (158) leads to

2195");F" = Ff), (163)

j =-l

where the coefficient matrix Kk] , called the stiffness matrixfor the element, and the col-

umn vector F,5 i) , called theforce vectorfor the element, are given by

if

Ki? = IE,1 £"(X)7N“’(X)cv( (164)

Jru-r

. . . x,

Ff” = Nfi')(X)o(')(X)IX'_I. (165)

Note that the fact that the cross section has unit area simplifies the above derivation.

10.2 Interpolation functions and element equation

If we consider the simplest element, the two-node element, then the interpolation functions

are

N1"(X) = 1-—.—“—. N"’(X) = T’
[(1) (166)

where the element length 1 (i) = X,- — X,- _ 1 and the first derivatives of the interpolation func-

tions are

(1) (i) 1

,1 (X)= (X)= —l(,——,- . (167)

From (159) the displacement u of the i-th element is expressed as

. 2 e . . .

u“’(X) = 2 u}"NJ.‘"(X) = ulmNm(X) +u(”N“) (X), (168)

i=1

1
I
‘
.
-
'
-
:
r
_
)

 ...,“
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which is a linear function. From (167) and (168) the corresponding strain of the i-th ele-

ment is given by

d (0 _ (i)_ (i) _1_._= (i)
d—Xu (X)— (02 111 [(0—7 (X). (169)

Since the interpolation functions are linear, the strain in the i-th element is constant. Simi-

larly by (162) the stress a“) (X) is constant in the i-th element. The i—th element is said to

be in phase-I if 0 < 7(1) S. l but is in phase-II if 7(a) > 1 . Solutions in which all the elements

are in phase-I are pure phase-I solutions. Solutions in which all the elements are in phase-

II are pure phase-II solutions. All other solutions involve a combination of phase-I and

phase-II elements. Nodes separating elements in different phase are phases boundaries.

According to (14), the elastic secant modulus E function in the i-th element is given

by

0(1‘) [(1')
(i) __

E (i) .— (i) (170)

“2 ’“1

Therefore the elastic secant modulus E (i) function in the i-th element is a constant. Equa-

tion (170) can be rewritten as

(i) (i)
u -u( 2 1 )<

 

  

51:1) [(1') - ’

(i) (i) (i) (i)
E =E (u1 ,u2 )= i . . . (171)

— 611((uéi) _u1( ))/l(‘)) (uél) _ul(l))

H — i ‘ - r . _ .

(as) _ul“))/l(1) [(1)

From (164) the element stiffness matrix K:10 becomes

. (i) .
(z) E l -1 (1) 1 -1

K . = _ = k 172

"’ 101-1 1] i—1 1] ( )

where the element stiffness km = —(7)— — . The force vector F,f 0 is given by

l
“2(i)_u1(i)
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- _ (i)

Ff” = [0 ]. (173)
0(1)

Finally (163) can be rewritten as

(i) (i) _

E—(r[l ‘1‘“. = 0‘” [‘1]. (174)
1 ‘ -1 l u (1) l

2

Although the above equation (174), as well as many of the equations to follow, are written

in a standard matrix form of a linear system, it is really important to remember that E‘0 in

(174) is a function of up and uén so that (174) is a nonlinear equation. Therefore, the

standard uniqueness and existence results for the linear theory might not hold for this equa-

tion. In fact, since this equation of a discrete form comes from a continuous theory which

has severe loss of uniqueness (before an additional criterion is considered), we would ex-

pect that the discrete approximation provided by FEM would also have this property.

10.3 Assembly of element equations

Since equation (174) is derived for an arbitrary element, it holds for each element from the

finite element mesh. For an N«element case, we have the resulting system matrix equation

[KJW+1)X(N+1)[U](N+1)XI = [Pi](N+1)x1° (175)

Note that [K] is the global stiffness matrix and is given by

  

k, -k, 0 0 0 0

-k1k1+k2 -k2 0 0 0

0 -k2 k2+k3... 0 0 0

[K] = (176)

o 0 0 .../c,,,,2+k,,,_1 -k,,,_, 0

0 0 0 -k~_, kN_,+kN-k,,,

o 0 0 0 -kN kN‘
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where the element stiffinesses k,- are given by k, = E (i) /l (i) . The nodal displacement vec-

tor [U] is defined as

T

[U] = [“1 “2 “3 “Iv—1 “N uN+1] (177)

while the nodalforce vector is defined as

T

[F] = [6102 03017-1017 “rt/+1] 1 (178)

where o, = a“) - (r(‘- + 1) is the force difference across the i-th node. Equation (178) is an

assembly result of (165). In fact the forces on the internal nodes are equal to zero because

there is no body force and the external forces are applied to the ends only. Therefore it fol-

lows that am takes on the same value, say 0, in all elements and (178) is reduced to

[F] = [—000 00 of. (179)

From (169) and (177) the strain on the i-th element is constant and given by

u. -u.

y, = LF (130)

l

where the i-th element length 1,- = l“) . Since in this study all of the strains 7,. are positive,

it is necessary that

uj<uk if j<k. (181)

10.4 Imposition of boundary conditions

For the hard-device problem, the displacements on the end nodes are given by

u1 = 0, uN+1 = 5, (182)

while the displacements on the (N - 1) internal nodes are unknown. In this case a new sys-

tem equation may be obtained by inserting the prescribed boundary conditions (182) into
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(175). The first row equation is then given by

-k1u2 = -o. (183)

This allows us to neglect the first row equation and the (N+1)-th row equation. We then

move the two known terms, the first and (N+1)-th columns, to the right hand side of the

equal sign. The first term is the ul term which is 0 while the second term is the it” +1 term

which is equal to 5. Finally the new system equation is given by

     

7c,+k2 —k2 0 O - r u2 . '0'

-k2 k2+k3... 0 o 113 o

. . = - (134)

o 0 ...kN_,+kN_, -kN_1 u,,,_1 0

_ 0 o -kN_, kN_,+k,, u, .5’98 

Note again that the element stiffinesses k, = E (i) /l (a) are each a function of u,- and u,H

so that from (171) the element stiffinesses are given by

 

71, (“Hi—'ui) $1,

1:1. ., . = _ ‘ ‘ 1

l ‘(u‘ UNI) 011((ui+l-ui)/[i) (“Ml—“1) 1 ( 85)

. ———> .

(“HI-“1) 11'

where l,- = l (i). Hence the stiffness matrix [K] and the nodal force vector [F] are each a

function of the nodal displacements: 14,-. Thus equation (184) is a nonlinear system of equa-

tions for the N-1 unknown values 112, ..., 11” which is simply written in the usual linear

equation form. Note that the unknown value of stress can be obtained from (183) after solv-

ing (184).

For the rest of this thesis we shall limit attention to an FEM model in which all el-

ements have equal lengths. Thus for an N-e1ement model the common length is l =L/N.

We now consider the possibility of solutions to (184) in which all the stiffnesses k,-

are equal. Then by using Gaussian elimination one finds that the nodal displacement vector

‘
.
.
.
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must be given by

    

“2 F 1 _

“3 2 5

= N' (186)

uN_1 N-2

_uN, _~_1_

We then verify from (185) that (186) indeed allows for equality of all the k,- so that (186)

is a solution to (184). Using (180) the strain 7, in each element is thus given by y, =

5/ (N1) = 5/L = 70. Here the strain in each element is the same constant so that all ele-

ments are in the same phase. Thus (186) represents a pure phase solution to (184). Hence

FEM always allows the possibility of a pure phase solution (we shall soon see that other

solutions are also possible). This pure phase solution is a pure phase-I solution whenever

0 5 yo < l or equivalently 0 S 50 < L and is a pure phase-II solution whenever 70 > 1 or

equivalently 50 > L.

For the soft-device problem, the displacement at the first node and the stress in the

bar are given by

u 1 = 0, = a prescribed constant, (187)

while the N nodal displacements: 112, ..., uNH are unknown. Similarly to obtain a new

system equation we first insert the prescribed boundary conditions (187) into (175). After

that we neglect the first row equation and move the ul term which is 0 to the right hand

side of the equal sign. Finally the new system equation is given by

      

"kl”, -k2 0 0 0‘ ' u2 ' 00-

... ... ... ... ... = ... . 188

O O ... kN-2+kN-1 —kN-1 O u~_l O ( )

O 0 ... 0 —kN kN uN+1 -O-

 .
.
n
.

I
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Just as (184) was a nonlinear equation, so is (188). Now there are N unknowns

142, ..., 14,, + 1. Once again, a pure phase solution is available for (188), it is given by

    

112 P 1 '

“3 2

o
= —. (189)

“Iv-1 ‘ kl

“N N-l

_“~+1. _ N1

According to (180), the strain on each element is constant so that each element is

wholly in one of two possible strain phases: either the lower strain phase (phase-I) or the

high strain phase (phase-II). For a solution that is not pure, these phases however could be

ordered in many different ways. For example, for N=4, these phases might be ordered as

the following specific case

[I 11 I I]. (190)

on which the first element, the third element and the fourth element are in phase-I, and the

second element is in phase-II. The number of phase permutations to (190) is 4 and the total

number of phase arrangements is 24 = 16. As another example, for N=20, these phases

might be ordered as the following specific case

[Inrrrnnrrnrrrrrrurrunln]. (191)

Here there are nine elements being in phase-I while there are eleven elements being in

phase-II. The number of phase permutations to (191) is 21 and the total number of phase

arrangements is 220 for a twenty-element model. In general the number of phase arrange-

ments is 2” for an N-element model. This also can be clarified by Pascal’s triangle, which

has the terms of polynomials of various degrees in the two variables I and II as shown in

Figure 34. For a binary expression (1 + II)", we have
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Number of Number of Number of

Pascal’s triangle elements (N) cases (2”) terms (N+l)

1

1 11 1 2 2

I2 2111 112 2 4 3

13 31211 31112 113 3 8 4

I4 41311 612112 41113 114 4 16 5

(s=l) (s=.75) (s=.5) (s=.25) (s=0)

  
 

Figure 34. The coefficients in Pascal’s triangle gives the number of phase permutations

at fixed phase volume fraction for two-phase problems with different num-

ber of elements. Here 2” gives the number of possible phase arrangements,

and N+l gives the number of distinct volume fractions of phase-I to phase-

II.

N

(1 +11)”: 2 C(N,m)1’"11”"", (192)

01—0

where N is the number of elements, m is the number of elements being in phase-I, N-m is

l

mix—7&7). is the number Ofthe number of elements being in phase-II and C(N, m) =

possible permutations for which m elements are in phase-I and N-m elements are in phase-

II. For equal element lengths and fixed m, all the C(N, m) permutations represent the same

volume fraction of phase-I to phase-II.

Note that pure phase solutions imply m = 0 or m = N in (192). Since C(N, 0)=

C(N, N) =1 there is only one member in a pure phase permutation. For 0 < m < N the phase

permutation corresponds to a multi-phase solution. Exactly one member of the permutation

group has phase-I on left and phase-II on right and so corresponds to the (1,2)-case solution

of Section 4. Moreover exactly one member of the permutation group has phase-I on right
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and phase-II on left and so corresponds to the (2,1)-case solution of Section 4. The above

two members are the only multiple-phase solutions with a single phase boundary. This

phase boundary location is limited to nodal values and so must be at

l 2
S = 0, l—v, l-V’ ..., l. (193)

For the (12)-case solution the phase boundary location in (193) also gives the fraction of

phase-I.

Note also that all the remaining C(N, m)-2 permutations involve more than one

phase boundary. It will be convenient to identify all members of the permutation group by

its (12)-representative. Thus the specific case of (190) would be represented by the follow-

ing general case

(IIIHX (90

where

<11111>=[11111],[11111].[11111].[111H]. (195)

There are a total of N+1 possible permutation groups, denoted by < >. Each of these N+1

groups corresponds to a different phase boundary location (or equivalently volume fraction

of phase-I) as given in the list (193).

10.5 Iterative solutions to the system equation

To solve the nonlinear system equations (184) and (188) an iterative method may be cho-

sen. Both equations can be rewritten as an iterative form in the following way

[g(uj'_)ujm = 15(1),). ‘ (196)

Note that the subscriptj is the nodal number and the subscript i is the iteration number. The

iteration procedure represented by (196) is the following:

(a) Choose an initial guess (i =1) for the nodal displacements uj,

(b) Compute the element stiffness fluj) using (185). Compute the nodal force vector
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[(14)-i) from the nodal displacements uj‘ using (184) and (185) for the hard device

problem or using (185) and (188) for the soft device problem.

(c) Solve (196) for new nodal displacements uJ.
1+1

((1) Check the norm between 14,- 1 and u, by

“ulna - “L“... = max (lulnt — “It" luznr — “21" H” lull/+1.41- uN+ Ill) ' (197)

If the norm [1 u. < e, where e is sufficiently small then the problem is con-
1 ‘ 1.“...

sidered solved and the process is stopped. Otherwise replace aim by "1'." go back to

the step (b) and repeat again.

In step (d) there are many possible methods to compute the norm. The best known of these

is the Euclidean norm, such as used in the least-square method. But this is not our main con-

cern, and we choose (197) to compute the norm.

The method outlined above is the well known method of direct iteration or succes-

sive approximation [19800]. Other more sophisticated iteration procedures are also possi-

ble (such as Newton-Rhapson [19800]) which may have advantages from the point of view

of convergence or convergence rate. This direct iteration procedure, however, will be suf-

ficient for our purposes.

From the above steps we expect to be able to find one solution from each initial

guess (provided that the iteration procedure converges). But since the system equation, ei-

ther (184) or (188), is nonlinear, it is possible that there may be multiple solutions. How

can we find all of these solutions? This will be explored next.

To find all of the solutions, the initial guess displacements uj are chosen from

throughout the possible range. There are several restrictions to this range and thus to the

initial guess displacements 14,-. For example all of the uj obey (181). Moreover for the hard

device the displacement at N+1 node is equal to 5: uNH = 5.

For the hard device, since 5 is given the possible range of the uj, could be from 0
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to 5. But for the soft device, the stress 0 is given while 5 is unknown. However for a given

a the strain 70 varies from F,(o) to 1“,,(0). Therefore the possible range of the uj, could

be from F,(o)L to I‘”(G)L, where L is the total length of the bar.

 



11. Solutions of the system equation with N=2

11.1 Formulation

System equations (184) and (188) for an N-element model were set up in Section 10. To

better understand the relation between the solutions to those equations (possibly nonu-

nique) and the initial guess displacements we will explore them for the simple case of 2 el-

ements (N=2). For this simple case we also study how the energy functions depends on the

nodal displacements. Under a hard device loading with 2 elements there are two prescribed

conditions: it 1 = 0, 143 = 5, so that there are one unknown displacement uz and one un-

known stress 0. Hence equation (184) is reduced to

E E E

_1, _3 [1),] = .35. (198)
l l l

where l is the length of each element and l = L/2. But under a soft device loading, the

given conditions are u1 = 0, o = a prescribed constant, so that there are two unknown dis-

placement uz, u3. Hence equation (188) becomes

[El E2 E27
__+ _. __ u

1 1 1 2 = [0]. (199)

T T]  

Both equations (198) and (199) are nonlinear since E1 and E2 are also functions of the un-

known nodal displacements in the problem. For the hard device loading of equation (198),

E1 and E2 are given by

98
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E1 = E1042) = { 6,,(142/1)

= __ >E” 142/l , 112/1- 1,

E,=1, (5—u2)/l.<_1,

E2 = E2012) = { 611((5-142) /l)

E”: (5_u2)/l , (5-u2)/121.

(200)

 

For the soft device loading in equation (199), equation (200) continues to hold, provided

that the prescribed value 5 is regarded as unknown. Thus one can replace 5 by u3 in (200)

so that E2 = E2(u2, 143). For both loading devices it is easy to see that o = [2114/I =

E2 (u3 - u2) /l . In what follows our main concern is the hard device loading, so that (198)

holds. For each E,- equation (200) gives two choices which are determined by the strains:

yl=u2/l and 72: (5 - 142) /l. Therefore there are 22 = 4 possible forms to (198) corre-

sponding to the phase arrangements [I I], [I II], [II I] and [II II]. The pure phase solutions

(186) give 112 = 5/2 for the phase arrangements [1 I] and [II II]. In what follows the fol-

lowing notations are the same:

(1.1)= [1.1]. (1.2)= [1.11]. (2. 1)= [11.1]. (2,2)= [11.11]. (201)

11.2 Direct search for FEM solutions

In this section we directly analyze each of four cases (201) individually. Such a direct

search is feasible in this case (N=2) since these are only 4 possible phase arrangements to

examine. In order to understand more about (198) it is convenient to define @042) to be the

following “system function”

so that solutions of (198) are given by roots of @012) = 0. If the following non-dimension-

al parameters are introduced:
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_ “2 5

u2 = r: 7, = Z. (203)

then

_ .. E270

9(112) — 142-m. (204)

Applying the inequality conditions on the right hand side of (200) with 141 = O and 113 = 5

gives the following conditions on 112 and 5 for the four cases (201):

(1,1)-case aquland 5—u2Sl=~5SL wyoS 1,

_0
2’

5 _ 70
(2,1)-casemu2>land5-u2Sl=>u2>-2- @u2>-i-,

(2,2)-case¢=u2>land5-u2>l=>5>L «=70>1.

(12)-case mquland 5-u2>l=>u2S§ ©172S

(205)

Note that 172 is restricted to 0 = 171 S 172 S 173 = 70 (see Figure 35). There are four differ-

ent regions: region A for the (1,1).case, region B for the (1,2)-case, region C for the (2,1)-

case and region D for the (2,2)-case. Figure 35 also verifies that both the (1,1)-case and the

(2,2)-case cannot exist for the same 70.

    

 

 

  

A D
70 B

l A=(1,1)

B=( 1,2)

C=(2, 1)

1/2 =(272)

Figure 35. The regions of four cases of possible 172 considering a given 7, for material A.
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The roots of 9(172) = 0 in (204) are the solutions of (198). Thus the operator 901,)

in (204) for the four cases (201) are now given by the following:

 

 

 

 

_ _ _ 7,
9(u2)l(l,l)-case E 911012) = “2—39 (206)

_ _ _ (1722/2 + (7 " a2) 1722) 7

9(u2)| E 622042) = 112- _ _ 20 _ 2 0 _ _ 2

_ _ _ (207)

_ u; (142-7,) (u2-7,/2)

- (1/2+a,) (70—17,)2+E,2/2+ (yo—172) 1722’

90 )I e (‘) ‘ 217.42)“ (208)u 5 ll = u - ,

2 (12)-case 12 2 2 8(Yo-a2)2+2(Yo-EZ) +170

0 ‘ - 0 ‘ ‘ 2,722 209
("ZNWHW = 21%) " “2—21722+172/2+1/4Y"° ( )

In (206)-(209) the expression for 911072) is independent of 611(7) and so holds for all

strain-softening materials of the type under consideration here. However the expressions

for 912072), 921072) and 922072) depend on 611(7) and we have used material A given in

Appendix-A for the expressions presented in (207)-(209).

For 70 = 0.8 the functions 9(172): 911072), 912072) and 92,072) are shown in

Figure 36. Since 70 = 0.8 < 1, from (205)4 the pure phase-II solution is not allowed and

this is why 922072) is not shown. The strain 71 on first element is less than 1 whenever

I

0 S 172 S N = 0.5, while the strain 72 on the second element is less than 1 whenever

70 - 1% = 0.3 S 172 S '70 = 0.8. Since the value of 172 determines the phase for each element

according to Figure 35, the function 9(172) that applies is dependent on 172. For 70 = 0.8

these are:
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(12)-case: O S 172 S 0.3, (region-B),

(1,1)-case: 0.3 S 172 S 0.5, (region-A), (210)

(2,1)-case: 0.5 S 172 S 0.8, (region-C).

Therefore for different ranges of 172 we should follow different curves of 9(ii7). From

(210) the final trace of those different functions 9072) is shown in Figure 37. Although Fig-

ure 36 and Figure 37 show functions 8(1'22) for 70 = 0.8 these figures are representative

for all 70 < l.

The functions 9(172): 922072), 912072) and 921072) for 70 = 2 are shown in Fig-

ure 38. Similarly since 70 = 2 > 1 from (205)1 the pure phase-I solution is not allowed and

this is why it is not shown. The strain 71 on the first element is less than 1 whenever

0 S 172 $57 = 0.5 while the strain 72 on the second element is less than 1 whenever

I

 

 

 

 

   

70 — N = 1.5 S 172 S70 = 2. For 70 = 2 the phase arrangements change with 172 as fol-

0.4 , .Z 7 3 I

- (l,2)—case (1,1)-case (2,1)-case

992’
72>1<+>72<171<19 71>]

0.2 — é _

9 (t7 )
21 2 \

0

912(§2)\‘

-0.2 )-
_

611(H2)1 L E r

“0:4 0 0.2 0.4 0.6 $2 0.8

Figure 36. The functions 9(a)) with two equal element lengths and 7,=0.8 for material A.
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(1,2)-cas'e (1,1):case (2,1)-case

72>1‘—:>‘YZ<1 Yl<IH 71>]

 

 

   _0.4 l l l

0 0.2 0.4 0.6 (72 0.8

Figure 37. The final trace of the different functions 8(3),) for 70:08 shown in Figure 36.

There is one solution to the composite trace 9(E)=0.

 

 

   

9L7 1 1 1 _ 1 1 1 1 1 1 m

( 2) (l,2)-casej (2,2)-case (2,1)-case

0.8 r-
_

yl<1<—§>yl>l yz>l<+>yz<l

0.6 )- -

0.4 )- -

912(“2)§\‘

0.2 >-

o

-o.2 - _ -

. 9213“” 922(1) _

-0.6 )- -

-0.8 -
_

_1 1 1 § 1 1 1 1 1 E 1 1

0 0.2 0.4 0.6 0.8 l 1.2 1.4 1.6 1.8 it. 2

2

Figure 38. The different functions 95,) with two equal element lengths and 7,=2 for

material A.
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lows:

(1,2)-case: 0..< ’2S 0.5, (region-B),

(2,2)-case: O.5 S 172 S 1.5, (region-D), (211)

(2,1)-case: 1.5 S u2 S 2, (region-C).

Therefore from (21 l) for different ranges of 172 we should follow different curves of 6(172).

Figure 39 shows the final composite trace of these different functions 9(172). Although Fig-

ure 38 and Figure 39 show functions 8(172) for ya = 2 both figures are representative for

all ya > 1.

Note for a given 70 in the interval 0 S70 < 1 that there is exactly one solution,

u2 = y0/2, which is the pure phase solution; alternatively this pure phase-I solution can

be thought of as a (12)-solution with the phase boundary at the end node s=1 or as a (2,1)-

solution with the phase boundary at s=0. However for a given 70 > 1 there are three roots:

one pure phase-II solution, 172 = 70/2, and two non-uniform solutions (see Figure 40 and-

 

1

007,) ' (12)-Ease; ' ' (2,2)-case ' T (2,1)-case '
o. 1- _

yl<l<—§—>yl>l yz>l‘-;->yz<1

°"‘ ” i 7, 9 " "

O N

l

 

. ,(u,)\‘/\:2/'— 1 21(“2)\‘/

   

1 l

-0 4 1. S = i 22(u2) S = 2- ..

-0.6 e -

-0.8 >-
—(

_1 1 1 1 1 1 1 1 1 1

0 0.2 0.4 0.6 0.8 l 1.2 1.4 1.6 1.8_ - 2

Figure 39. The final trace of the functions 9G,) for y,=2 shown in Figure 38.

There are three solutions to the composite trace 9(u2)=0.
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A (1.2)

7, ‘J

1 B A=(1.1)

B=(1,2)

C=(2,1)

1/2 (1.1) D=(2.2)

A

W 1/2
‘72 

Figure 40. A schematic diagram of the possible solutions 32 for a given 7,

3 l l l

7., f 7?: 0

1 7.. = rum)

2
, <\ ,

(2,2)-case

 

s=1/2 is

both (l,2)-case

and (2,1)-case

.8 ‘ ‘\

5 = 1 (1,1)—case

Yo = F103) = O

0 l l l

0 0.25 0.5: cc 0.75 0' 1

   
Figure 41. The possible N=2 FEM solutions as represented in (212 for 'y,=2 and for 'y,=.8

for material A.
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Figure 41). The non-uniform solutions have the graphical interpretation of being the inter-

section of the s=1/2 line in Figure 10 with the associated line of constant 70

11.3 The hard device energy function A as a function of the possible nodal displace-

ments

In Section 11.2 we gave a careful analysis to find the nodal displacements ii, that solve

(198) for different displacements 5 and hence different 70. In this section the hard device

energy function A is explored. We show directly that values of 172 that solve (198) are ex-

tremum points of A, while values of that do not solve (198) are not extremum points.

From (23) and the non-dimensional parameters (203), the hard device energy func-

tion is given by

" - _. 1 ‘72 Yo - ‘72

A042) 5 A012) = 2 (“Kl—73) + W(—1—/—2—)) - (212)

Graphs of (212) for material A are given in Figure 42 and Figure 43 for the values 70 = 0.8

and ya = 2 considered in Section 11.2. Recall from (210) for ya = 0.8 that there are three

possible ranges as shown in Figure 36 and these are also indicated on Figure 42. Figure 42

shows that the pure phase solution at 172 = 70/2 = 0.4 (Figure 37) gives the global min-

imum to the hard device energy function 71. For 7, = 2, Figure 43 shows that the pure

phase-II solution at 172 = 70/2 = 1 gives the local maximum to the hard device energy

function while there are two global minima to the hard device energy functions located at

the other two roots of the composite trace in Figure 39. The value 70 = l is a turning point

to have either one extremum or three extrema. From Figure 37, Figure 39, Figure 42 and

Figure 43 it is seen that the solutions of Section 11.2 are associated with either energy min-

imum or energy maximum. The standard interpretation is that the former are stable and the

latter are unstable. Thus here the pure phase-I solutions are stable (no other FEM solutions
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Figure 42. The hard device energy functions KG?) with two equal element lengths and

7,=0.8 for material A.
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Figure 43. The hard device energy functions KG?) with two equal element lengths and

y,=2 for material A.

are available), while the pure phase-II solutions are unstable. Figure 44 shows how the hard

device energy functions varies with both 172 and 70.

11.4 Iteration solutions and the initial guess displacements

From Section 11.3 the distributions of the hard device energy function were explored for

the two special cases: 70 < l and 70 > 1. We now show how this relates to the iteration

scheme given in Section 10.5. To find all of the solutions, the initial guess displacements
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Figure 44. The hard device energy functions K62) with two equal element lengths and

different 7, for material A.

are chosen from the possible range 0 < 172 < yo. Consider first a displacement such that

yo < 1. We then find that if the iteration scheme given in Section 10.5 is implemented, then

the associated iterates “2) will follow the direction of the arrows on the energy curve in Fig-

ure 42 and approach the final solution 172 = 70/N = 70/2. To any initial guess displace-

ment, the final solution is always the same, and is the pure phase-I solution (see Figure 42).

Now consider a displacement with 70 > 1 . In this case there are three solutions (Fig-

ure 39). Thus different initial guesses could converge to a different final 172. We find that

the associated iterates “2)- will follow the direction of arrows on the energy curve in Figure

43. Hence there are the following conclusions for 70 > 1:

(a) If the initial guess is chosen exactly at 172 = yo/N = ‘yo/2, .which is the pure phase-

11 solution, then it is the final solution. Otherwise for other initial guess displacements

the pure phase solution cannot be found.

(b) Ifthe initial guess is chosen at 172 < 70/N = ‘y0/2 , then the final solution of the (1,2)-
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case will be found by several iteration steps.

(c) Similarly if the initial guess is chosen at 172 > yo/N = 70/2, then the final solution

of the (2,1)-case will be found by several iteration steps.

In summary the domains of attraction for the initial guess to the FEM solutions are given

by the well structure of the energy A. The minimum can be converged to, but the maximum

requires an exact initial guess. However numerical irregularities and the finite size of e in

(197) might permit an actual FEM code to stay near the maximum long enough to be found

as a solution.

In this section there were at most 3 FEM solutions for any 70. Thus 3 initial guesses

are necessary to locate all solutions, that is all solutions of type [I I], [I II], [II I] and [II II].

However if we only need to find the possible solutions with different volume fraction, then

we only have 3 general cases <I I>, <l 11> and <II 11>. It is found that only 2 of these can

exist at the same time since (I I> and <II II> cannot both occur. Thus only 2 initial guesses

would be needed to find the different volume fraction solutions.

 



 12. Solutions of the system equation with N=3

In Section 1 1 we have explored the relations between the solutions to (198) and the possible

nodal displacements for N=2. Can similar relations happen for the N=3 case? This will be

explored next. Only the hard device loading is considered. Once again the energy as a func-

tion of the possible nodal displacement are studied.

12.1 Formulation
'5."

Under a hard device loading with three elements (N=3) there are two prescribed conditions:

111 = 0, u4 = 5, and three unknown quantities to be determined: u2, u3, a, where

 O<u2<u3<5. (213) 5,

Equation (184) becomes

E E E '

+7: -—,—z . o
’- = E35 (214)

E2 E2 E3 U3 _l—

._ _+._

_ 1 1 1]  

where l is the length of each element so that l = L/3. Equation (214) is also nonlinear

since E1, E2 and E3 are functions of the unknown nodal displacements in the problem. E1,

E2 and E3 are given by

l'31"= 51(71): {E _ 611(71)
 

 

[1“ 71 9 71>],

E,— 1, '7le,

E = E (7 ) = 671(72) (215)2 2 2 {Ell = ’Y , 72> 1,

2

E,— 1, 13S],

E3 - E303) " 011(73) >1
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111

where

“2 143—“2 5"“3

71 = T) 72 = l 1 Y3 = 1 ° (216)
  

For each E,- there are two choices which are determined by the strain in the i-th element.

Therefore there are 2N = 23 = 8 possible phase arrangements: [1, I, I], [I], I, l], [1, II, I],

[1, I, II], [I], II, I], [I], I, II], [1, H, H] and [I], II, II]. From the above observation the com-

plexity of the problem is increasing very quickly as the number of elements increases.

Equation (214) can be inverted and the result is given by

E 8

“2 = 3 El . (217)

For the pure phase case, either [1, I, I] or [I], II, II], the solution to (217) is simplified to the

 

pure phase solution: “2 = 70|:l] = §|:1] given previously in (186).

u3 2! 3 2

12.2 The hard device energy function A as a function of the possible nodal displace-

ments

In Section 12.1 we found that the formulation for N=3 is similar in structure to the formu-

lation in Section 11.1 for N=2. However the analysis complicated by the additional degree

of freedom. The possible nodal displacements that satisfy (217) will again be given by ex-

trema of the energy function. Therefore we neglect a direct search for FEM solutions (as in

Section 11.2 for N=2) and instead study the energy function directly. Let’s define non-di-

mensional parameters in the same way as done in (203)

E,- = ui/L, i = 0,1, 2, 3, (218)

so that from (213) that those displacements satisfy the following relation

0<Q<Q<n. -(um

Hence from (24), and the non-dimensional parameters (218) the energy function is given by

=
1
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Figure 45. The hard device energy functions A52, 33) with three equal element lengths

and 7,=0.8 for material A. A similar picture results for material B at y,=0.8.

ii2 ‘73 ‘ 172 Yo ’ ‘73

m) + W(——) + W(—173—)) -
1/3 (220)

71(1),, 113) a .8072. E3) = % (W(

Note that (219) is the domain of the energy function in (220). We will again look at

70 = 0.8 and 70 = 2,aswedidinSection11.

Figure 45 and Figure 46 give the energy surface A for material A as a function of

the possible nodal displacements for ya = 0.8 and 70 = 2 respectively. From the dia-

grams we can observe the critical points: minimum, maximum and saddle points which are

the solutions to (217).

Figure 47 shows the contour diagram of the energy function for 70 = 0.8 . There is

only one critical point, which is the minimum to the energy function at (32, 173) =

(yo/N, Zya/N) = (0.8/3, 1.6/3) . This corresponds to a solution of (217) with phase ar-

rangement [1, I, I] (see Figure 45). This solution can also be thought of as a (1,2) type so-

lution with its phase boundary at s=l.

For 70 = 2, Figure 46 shows the energy surface while Figure 49 shows its contour
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Figure 46. The hard device energy function A61}, 33) with three equal element lengths

and y,=2 for material A. Material B gives a similar picture. This picture is

representative for all y,>l, both for material A and for material B.
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Figure 47. The contour diagram of the hard device energy functions ME, 33) on the

domain (219) with three equal element lengths and y,=0.8 for material A. A

similar picture results for material B at ‘y,=0.8.



114

diagram. There is a pure phase-II solution to (217) at (172, 173) = (Yo/N, 27,/N) =

(2/3, 4/3) which is a hill point to the energy function. Moreover there are three valley

points and three saddle points to the energy function. The maximum corresponds to phase

arrangement [11, II, II]. This solution can also be thought of as a (1,2) type solution whose

phase boundary is at s=0. The minirna correspond to phase arrangements [1, I, II], [1, II, I]

and [II, I, I]. The first of these is a (1, 2)-type solution whose phase boundary is at s=2/3.

The saddle points correspond to phase arrangements [1, II, II], [II,I, II] and [II, II, I]. The

first of these is a (l, 2)-type solution whose phase boundary is at s=1/3. For any 10 > 1 the

energy function and the contour diagram are similar in form to that for 70 = 2. It can be

shown for material A that yo = 1 is also the turning point to have either one such critical

point (minimum, maximum, saddle) or multiple critical points.

In summary, for ya = 0.8 there is one solution and it is of type [I, I, I]. For 70 = 2

there are 7 solutions, and they are of type [1,1, 11], [1, II, 1], [11,1, I], [1, II, II], [II, I, II], [I],

II, 1] and [I], II, H] (see Figure 49). These solutions correspond to the intersection of the

horizontal lines 70 = 0.8 and 70 = 2 with the curves s=0, s=l/3, s=2/3 and s=1 of Figure

10. This is shown here in Figure 48. There is one exception to this, namely only the pure

phase solution for s=l is found, the nonattainable limit for s=l at o = 6c is not represent-

ed by the FEM.

In all cases discussed so far (for both N=2 and N=3 cases) there was at most one

solution for each phase arrangement. That is if one phase arrangement is chosen (say [1, I],

1]), then one could get the individual E,’s in (217) by taking the appropriate formula. The

resulting system equation, although still nonlinear, had at most one solution. We now show

that this does not always happen. Specifically, as we now show, material B gives two solu-

tions each for phase arrangements [11, I, I], [1, II, 1], [1,1, 11] when 0.97 < yo < 1 (see Figure

50).
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Figure 48. The possible N=3 FEM solutions as represented in (2,2 for 'y,=2 and for y,=.8

for material A. Comparing this diagram to Figure 41, it is noted that now two

internal constant s curves (s=1/3, s=2/3) are available for non-pure FEM solu-

tions.

 

  

l
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Figure 49. The contour diagram of the hard device energy functions A632, 113) with three

equal element lengths and ‘y,=2 for material A. This picture is representative

for all y,>l, both for material A and for material B.
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Figure 50. The contour diagram of the hard device energy functions A672, 33) with three

equal element lengths and y,=0.97 for material B. This is different from the

contour diagram for material A with y,=0.97 (which is similar to the diagram

in Figure 47).

Recall from Section 5.4 for a given constant s > s that there is a minimum point
trans

on the curve of constant s at the point (0,,2, 7,2) . For material A we have s,,,m=2/3,

while for material B we have s = 1/2. Therefore for material B the curve s=2/3 (which
trans

obeys s>s ) is not monotonic in 912. There exists a minimum at 7,, (s=2/3)=

2

trans

s 3 (”r/3,1 -s)2/3

— + 50.9633. If 1,, <7 < 1, then there are solutions to (217)

2 2) 9:LG 2 0

 

with two different stresses which are not pure phase-I solutions. For example, for

ya = 0.97 , there are seven solutions to (217) for material B. This is similar to what happens

when ya = 2. But the main difierence is that all six multi-phase solutions to (217) corre-

spond to s=2/3 in (212 and no solutions to (217) correspond to s=l/3 in (212.

To show this consider yo = 0.97 for material B. The contour diagram of the energy
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Figure 51. The possible N=3 FEM solutions to (217) as represented in (212 for 'y,=0.97

 

for material B. In addition to the pure phase solutions, FEM solutions are

associated with the curves s=1/3 and s=2/3. There is no intersection of

y,=0.97 with s=l/3 (dotted). There are 2 intersections of y,=0.97 with s=2/3,

each of which corresponds to 3 phase permutations.
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Figure 52. The solutions to (217) and the distributions of initial guesses in the (32, 33)-

plane with three equal element lengths and y,=2 for material B.
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Figure 53. The solution to (217) and the distributions of initial guesses in the (32, 33)-

plane with three equal element lengths and 750.8 for material B.

functions MHZ, 173) is shown in Figure 50. There are also seven solutions to (217) in the

diagram. The energy function at the pure phase-I solution to (217) is a valley point of en-

ergy surface. There are also three other solutions to (217) that are also valley points of the

energy surface. These correspond to solutions of the type <1, I, 11>. There are also three dif-

ferent solutions to (217) that are hill points of energy surface. These also correspond to so-

lutions of the type <1, I, 11>. Figure 51 shows these solutions as intersection points of

70 = 0.97 with the curve s=2/3 in (212.

12.3 Iterative solutions and the initial guess displacements

In Section 11.4 we found that if the iteration scheme given in Section 10.5 is implemented,

then the associated iterates “2. will follow the direction of arrows on the energy curves in

I

Figure 42 and Figure 43. In this section we implement the iteration scheme given in Section

10.5 for finding the solutions to (217) for N = 3. We find that the iteration scheme flows
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Figure 54. The solution to (217) and the distributions of initial guesses in the (32, 53)-

plane with three equal element lengths and 70:0.8 for material A. All initial

guesses flow downhill to the <1, I, I> solution under the iteration scheme of

Section 10.5.

down the energy contours of Figure 47, Figure 49 and Figure 50.

12.3.1 Material A

To find all of the solutions to (217), the initial guess displacements £2, {£3 are chosen

around the possible ranges from (219). Under a hard device loading with 70 < 1 there is one

solution to (217) only (see Figure 54). To any initial guess, the final solution to (217) is al-

ways the same, it is the pure phase solution (172, 173) = (yo/N, 270/N) . We note that the

iteration scheme flows down hill to the minimum, similar to the N=2 case of Figure 42.

Under a hard device loading with ya 2 1 there are seven phase arrangements. Con-

sider yo = 2, the (172, E3) -plane of initial guesses is shown in Figure 55. We find that we

need at least 28 initial guesses (for material A) in a (172, 173) -plane to find all of the solu-

tions to (217). This will be explained later.
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Figure 55. The solutions to (217) and the possible initial guesses in the (13;, 33)-plane

with three equal element lengths and 70:2 for material A.

The whole region is symmetric with respect to the line c—g, which is the line of

172 + 173 = 70- There is no solution to (217) in the region Aagh, r72 > 173 region, since this

violates (219). There are three different regions which have their own solutions to (217).

The three regions are E] aedb, D bdfc and El dehf. These regions are separated by the three

lines 571, E: and if.

In the whole region there are three lines which pass through these regions that have

special meanings. They are 07', E: and 53. Since 70 = 2 > 1 the pure phase-1 solution to

(217) is not allowed. For example, on the line 3f, the strains on the first and second ele-

ments are equal, 71 = 72. Hence there are three phase arrangements to (217): [1, I, II], [11,

11, 11] and [11, 11, I] on the line 07. The distributions of the solutions to (217) on the. line H}

are also similar to the two4element case. Narnely there is one initial guess which is the pure
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phase solution, while initial guesses which are on the different sides of the pure phase so-

lution will be attracted to the other solutions. Thus 3 initial guesses are needed to find all

of the solutions to (217) on the line 07.

On the line 571, the strains on the second and third elements are equal, 72 = 73.

Hence there are three phase arrangements to (217): [1, 11, II], [11, 11, 11] and [11, I, I] on the

line. It is also similar to two-element case, and three initial guesses are needed to find all of

the solutions to (217) on the line b—h.

On the line c_e, the strains on the first and third elements are equal, 71 = Y3- Hence

there are three phase arrangements to (217): [1, II, I], [11, 11, 11] and [11,1, 11] on the line Fé

which is the line of symmetry. It is also similar to two-element case which needs three ini-

tial guesses to find all of the solutions on the line. In conclusion seven initial guesses are

needed to find all seven solutions to (217) for a given 70 if only these three lines are con-

sidered. From the above observation a three-element model which gives a two-dimensional

case of initial guesses can be reduced to three two-element models which give a one—dimen-

sional case of initial guesses.

Point (I is a hill point and is only found from the iteration scheme if it starts from

d. With the exception of this point, iterations starting on the lines 313, E: and If stay on

these lines and converge to the saddle points associated with phase arrangements <1, 11, 11>

while iteration starting within the open regions Cl aedb, [:1 bdfc and [:1 dehf stay on the re-

gions and converge to the valley points associated with phase arrangements <1, I, 11>. But

no iteration scheme will converge to a hill point and so the hill point is only found if it is

the initial guess itself.

There are two line segments, Zr and a}, on the line Fe. The line segment a be-

longs to the region [3 bdfc while the line segment a; separates D aedb from [:1 dehf. The

phase arrangement [1, II, I] is on the region [3 bdfc, while phase arrangement [11, I, 11] is on
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the line 22’. Therefore it is easy to find the phase arrangement [1, 11, 1] to (217) since it be-

longs to the region D bdfc. If the initial guess is chosen anywhere in this region then the

phase arrangement [1, II, I] to (217) will be found. But it is difficult to find the phase ar-

rangement [11, I, 11] to (217) since it belongs to a line. The phase arrangement [11, I, 11] to

(217) cannot be found unless the initial guess falls on the line Ea. There are similar condi-

tions for the other two lines, 3} and 571. Hence to find all solutions to (217) the initial guess-

es are required to fall on the lines E3, 35 and a}. If we chose initial guesses in the region

Aahc by forcing these initial guesses to fall on the lines (72, a) and Hf, then we found that

28 initial guesses were required to find all of the solutions to (217).

It is easier to find a set of solutions which represents all the possible volume frac-

tions of phase-I. This is done by neglecting the ordering the strain phases. Thus if we only

consider (1,2)-type solutions, then all such solutions either involve an internal phase

boundary either at S: 1/3 or 2/3, or else are pure phase solutions with phase boundaries at

the ends s=0 and 3:1 (but the (1,2)-type solutions with s=0 and s=1 cannot exist for the

same 70). Hence if the initial guesses are chosen on the lines a7, 1712 or E: then, at least,

three different initial guesses are needed to find all of the solutions to (217) with different

s. For example on the line 5}“, 71 = 72 so that the first initial guess could be (r72, r73) =

(yo/N, Zyo/N) , the second one could be (yo/N —e, Zyo/N — 28) and the third one

could be (yo/N + e, 270/N + 28) where e is a small number. Note that these three initial

guesses are always with E3 = 2&2 so that the strains of first and second elements are ini-

tially equal. There are similar developments either for the first and third element or for the

second and third element. Therefore seven initial guesses which lie on the lines a}, 372 or

22 are needed to find all solutions to (217).
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12.3.2 Material B

For a given 5 > 5mm if 70 < y¢I(s) then the analysis is similar to material A with 70 < 1,

while if yo > 1 then analysis similar to material A with 70 > 1. For 7¢I(s) < 70 < 1 the

whole region of (E2, E3) -initial guesses is divided into four subregions: E] aejib, C] ehflcj,

[jfcbr'k and Aijk. Since these regions: [:1 aejib, C] ehfkj, [jfcbik and Aijk give the ener-

gy wells, the initial guesses which fall into one of these four regions converge to difl'erent

final solutions to (217). The pure phase-I solution to (217) belongs to the triangle region

Aijk. The three regions [:1 aejib, [j ehfkj and chbik are the energy wells for solutions to

(217) of the type <1, I, 11>. The initial guess which lie on one of the internal boundaries (the

1 solution at point d, unless the initial guess on these internal boundaries is located exactly

at one of the three hill points. These hill points are also solutions to (217) of the type <1, I,

11> (see Figure 56).
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Figure 56. The solutions to (217) and the distributions of initial guesses in the ('17,, 3,)-

plane with three equal element lengths and 150.97 for material B. The con-

tour diagram for this case is given in Figure 50.

 



13. FEM solutions for N>3

In this section we consider the number of different phase permutation groups described in

Section 10.4. Recall from Section 11 and Section 12 that the number of phase permutation

groups is dependent on yo and the number of elements N. Section 11 was devoted to the

N=2 case while Section 12 was devoted to the N=3 case. In all cases, there is always ex-

actly one pure phase solution. In the completely trivial one-element case, all solutions are

pure phase solutions. For the two-element case, all solutions belong to one permutation

group, the pure phase solution <I,1> for 70 s 1, while all solutions belong to one of two

phase permutation groups for 70 > 1 either <1,II> or <11,11>. For material A with a three-

element case, all solutions belong to the pure phase permutation group <1,I,I> for 70 S 1

while all solutions belong to one of three phase permutation groups for 70> 1, either

<1,I,11>, <I,11,11> or <11,11,11>. We also recall that the solution for N=3 with material B was

more complicated. In this section we will explore the N>3 cases to see whether there are

similar results.

The number of elements determines the number of nodes and hence the possible

phase boundary locations. Thus the number of elements gives the available constant s

curves in 912 according to (193). There are N + 1 phase permutation groups (see Figure

34). Each of which has C(N, m) members. The intersections of constant 70 lines with con-

stant 3 curves in $212 determine the FEM solutions. Each such intersection with a constant

5 curve corresponds to exactly one solution of type (1, 2). However it also corresponds to

the other C(N, m)-1 members of the permutation group which are not type (1,2) solutions

(where s = m/N c: m = 3N).

If N is large enough, then some of the curves of constant 5 curves will obey

s > s and certain lines of constant 70 will intersect the same curve of constant s twice.
Iran:
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For example this will occur for 3: 1-1/N if 1-1/N>s > 1-2/N. Thus the condition for
trans

such a double intersection to occur is that N obeys

N> —l—. (221)

l — strans

For N=3, this occurred for material B (s = 1/2), but did not occur for material A
trans

= 2/3). This also shows that the inequality in (221) is strict.
(Strans

For material A (s =2/3), condition (221) is first obeyed when N=4. Then the
trans

curve of constant 3: 3/4 satisfies the condition 3 > s and some range of 70 will inter-
trans"

sect this curve twice. Note that each such intersection represents C (4, 3) =6 solutions, and

both intersections give solutions from the same permutation group: <11111>. We shall say

that these two intersections give two solutions that are distinct to within a permutation (per-

mutationally distinct). From Appendix-A we have Y¢I(3/4) < 1. Hence we conclude that

the number of solutions that are distinct to within a permutation is: exactly one for

10 < 7¢I(3 /4); two for ya = 7¢I(3 /4); three for 7¢I(3/4) < 70 < 1; two for 70:1; four for

ya > 1 . It is easy to show the similar development for a higher number ofelements. The per-

mutationally distinct solutions for N from N=1 to N=8 with either material A and with ma-

terial B under a hard device loading are shown in Figure 57. The number inside the L] in-

dicates the number of the permutationally distinct solutions. Note that the positions of 7o

2

are not in scale.

The number of permutationally distinct solutions in Figure 57 is found by counting

the number of intersections that a constant 70 line in (212 has with the internal constant 5-

curves: 1/N, 2/N,..., (N-1)/N that are interior to (212. This number is then increased by one

to account for the single pure phase solution. Consider, for example, the eight-element case

with material A. There are two values of s, 7/8 and 6/8 , which are greater than the value

of s = 2/3. Hence these two constant s-curves have one intersection point, which is
trans
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Figure 57. The permutationally distinct solutions for N from N=1 to N=8 with material A

and material B under the hard device loading. The number inside the L] indi-

cates the number of permutationally distinct solutions. Note that the positions

of You are not in scale. The T give values of 70 at which the number of permu-

tationally distinct solutions suddenly changes. Often the number of permuta-

tionally distinct solutions exactly at the T values is different from the number

of permutationally distinct solutions that is available on either side of the T

values.
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not the end point, with the horizontal line 70 = 1. The number of the permutationally dis-

tinct solutions increases from 1 to 8 as 70 increases from 0 to values greater than 1. For

70 < y¢2(7/8) there is no intersection point with internal constants curves and there is only

the pure phase-I solution. When 70 = y¢I(7/8) , the curve of constant s= 7/8 is just tangent

to the horizontal line of constant 70 and there are two permutationally distinct solutions, the

intersection point and the pure phase-I solution. Since 7¢I(7/8) < 7¢I(6/8), if 70 is in the

range of 7¢I(7/8) < 70 < y¢I(6/8), then the curve of constant s= 7/8 intersects the hori-

zontal line of constant 70 twice and there are three permutationally distinct solutions, two

intersection points with s=7/8 and one pure phase-I solution. When the value of 70 reaches

to 70 = 74,2(6/8), the curve of constant 3: 6/8 is just tangent to the horizontal line of con-

stant yo and there are four permutationally distinct solutions which are given by the two

previous intersection points (s=7/8), one tangent point (s=6/8) and one pure phase-1 solu-

tion. Similarly when yd, (6/8) < 70 < 1 there are five permutationally distinct solutions

2

which are given by the four internal intersection points (two for s=7/8 and two for s=6/8)

and the one pure phase-1 solution. The load value 70 = l is more interesting, since then

half of the internal intersection points now coincide with the pure phase solution. Thus it is

difficult to distinguish whether the solution to (217) is a pure phase-I solution, a pure phase-

11 solution or a mixed state solution. Hence there are three permutationally distinct solu-

tions which are given by the two remaining internal intersection points (s=7/8 and s=6/8)

and the one “pure phase-I” solution. When 70 > 1 it is similar to a general number of ele-

ments case and there are eight permutationally distinct solutions. These eight permutation-

ally distinct solutions are given by the seven internal intersection points of the seven differ-

ent curves of constant 5 with the horizontal line of constant 70, along with the one pure
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phase-11 solution. The discussion above shows the maximum possible number of permuta-

tionally distinct solutions. From the FEM point of view, the possible permutation groups

that are presented for each N depend crucially on yo (see Figure 57).

 

 

 



14. Numerical results using the finite element method for material A

In this section several numerical examples using the finite element method are studied. The

goal is to use the two separate criteria, the minimum energy solution criterion and the ki-

netic relation, to pick out an unique solution as done in Sections 6, 7, 8 and 9 for the con-

tinuous problem. For both criteria and for a given loading all of the permutationally distinct

solutions which are explained in Section 13 are considered as found and so are available as

candidates for satisfying the criteria under consideration. The selected solution is chosen

from all of these permutationally distinct solutions so as to best satisfy the two separate cri-

teria under consideration. The main issue in this section is how to implement these two cri-

teria numerically.

Recall from Section 13 that we only consider the permutationally distinct solution

as given in Section 10.4 and so neglect the ordering of the phases. Thus we only consider

pure solutions and (1,2) type solutions so that at most only a single phase boundary is

present. In this section a quasi-static motion is considered and so we introduce discrete time

steps: t1, t2, . .. For such quasi-static motions the phase boundary is allowed to change its

location.

Let a discrete time step begins at t = ’1' and ends at t” 1. At both t,- and ti“ the

values of s are restricted to the set of nodal values

1 3 N}, (222)

for a N-element model with equal element lengths. From the given conditions, either initial

conditions or a calculation from the previous time step, the FEM solution at time t,- is re-

garded as known. Thus s(ti) e m is also known. It is desired to determine the FEM solution

at t = ‘1' + 1. By using FEM we seek to find s(ti +1) 6 m which satisfies the criterion under

consideration in the best possible way.

129
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14.] Minimum energy criterion

For the minimum energy criterion the solution path is independent of the past history of the

system. The associated values of the energy A are computed for all of the possible phase

arrangements

__ 1 N un-t-l—un

Ma], 14,, uN+1) _ N Err—ET). (223)

n:

The minimum energy criterion gives the solution which has the least energy from among

all of the available solutions at each instant time t. For example let’s consider a hard device

loading with a monotonically increasing end elongation. For the two-element case the min-

imum energy path first follows the pure phase-I solution, the line of s=1 in (212, from the

origin 0, (o, 70) = (O, O), to the point P, (0, yo) =(1,l), secondly it traces the curve S: 1/2

in the (6, ya) -plane (Figure 58). In particular there is no jump in the solution path. This is
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Figure 58. The solution paths in 9,2 obeying the minimum energy solution criterion for

the two-element, the four-element, the eight-element and the twenty-element

cases under a monotonically increasing hard device loading with material A.
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because the available FEM solutions are only the pure phase solution and multi-phase so-

lution on the curve s=1/2.

For the four-element case the available FEM solutions are the pure phase solution

as well as the curves s=1/4, s=l/2, s=3/4. Recall from Section 6 that for 70 > 1 the energy

A decreases as 0 decreases on the lines of constant 70. Thus for ya > 1 the lowest energy

path will be on the leftmost available s-curve (the path closest to o = cc). However for

cc < yo < l the energy is minimum as o -> cc (the unattainable limit), with the energy de-

creasing toward this limit only for CC <o< 6Q (70) as shown in Figure 15. Thus for

2

0c < yo < l the minimum energy path will either be on the rightmost available path (the

pure phase solution) or else will be on the leftmost available path (that closest to 0’ = 0c).

Unlike the situation when 70 > 1, it is not always the latter (namely s = l — l/N). Instead

a transition will take place at ya = 7¢I( l - l/N). Before this transition the minimum en-

ergy is given by the pure phase solution, while after this transition the minimum energy

path will be the leftmost available path (the path s=1-1/N). For N=4 the path first follows

the curve 3:] from the origin as in the two-element case. However at the point A the value

of A is the same as the value of A at the point D (which is the intersection point of the curve

Q3 and the curve s=1 — l/N = 3/4). Thus the path will jump from the point A to the

point D and from then on will follow the curve s=3/4 as 70 continues to increase.

For the eight-element case the minimum energy path first follows the curve s=1

from the origin as in the two-element case and the four-element case. At the point B the

value of A is the same as the value of A at the point E (which is the intersection point of

the curve $3 and the curve given by S: 7/8). At this value of 70 the path will jump from

point B to point B and finally follow the curve s=7/8 as 70 continues to increase. '

Accordingly if the number of elements is increased, then the path will approach the
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unattainable limit 6c: 1 /2 which matches the conclusion of section 6.5 as we expect. For

example for a twenty-element case, the minimum energy path will be even further to the

left. The path first follows the curve s=1 from the origin as in the previous cases. At the

point C the value of A is the same the value of A at the point F (which is the intersection

point of curve E3 and the curve given by s=19/20). At this value 70 the path willjump from

the point C to the point F and finally will follow the curve given by s=19/20 as 70 continues

to increase.

14.2 Kinetic criterion

For the kinetic criterion the solution path is dependent on the rate of loading and so the FEM

implementation requires more work. Recall from Section 12 that the kinetic criterion gives

(129). Thus if the kinetic criterion is used as the extra condition to find the unique solution

from the available FEM solutions, then this solution should be chosen so as to best satisfy

(129) from the available FEM solutions.

Recall from Figure 25 for the (1,1)-case, (1,2)-case and (2,2)-case combination that

the value of 3 always increases and this increase is continuous, except for possible sudden

changes at o = 1.For example if the initial value 3 = s(t,-) = 1 and 0' at 1 from t,- to t” 1,

then the only possible solution at the next time step is the solution with the final

3 = s(ti+1) = l.Butifthe initialvalues = s(t‘-) < 1 and 0:1 from ti to ti+1,thenfrom

(140) the solution at the next time step should have the phase boundary 3 = s(ti+1) at the

location

SUI-+1) = s(t,.) + kjj: *1f12(0(t))dt. (224)

Since the FEM is a discrete representation of a continuous physical system, the FEM pro-

vides the several discrete values of s which are given by (222). Equation (224) can be ap-

proximated by many possible ways in a discrete fashion. Given an FEM solution at t = ti,
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so that 700,-) , o(ti) and s(ti) are known, and given 70(‘1' + 1), the problem is to determine the

FEM solution at t = t,- +1 whose values GUI-+1) and s(t‘- + 1) best satisfy (224).

14.2.1 Several algorithm to find s (rm)

One way to implement (224) is by the following algorithm:

Algorithm 1a:

(a) Compute s by
est

s... = so.) + lemma.» (1,, 1 — n) .

(b) For each available FEM solution at t=ti + 1 extract s(t‘- + 1).

(c) For each result in (b) compute

“1 = 1501+ 1) " sestl'

(d) After cycling through (b) and (c), select the FEM solution that minimizes

‘1’.

Physically, this algorithm estimates the integral (224) by assuming that the stress is con-

stant from t,- to t Hence the phase boundary moves with constant velocity which is the
H 1'

initial velocity at t= ‘1" Note that Algorithm 1a is equivalent to the following: choose the

FEM solution at t= t,- + 1 that minimizes ‘1’”, where ‘1’” is

when... 1), so), on). r, . 1 - n) = |s(r,. 1) - s0.) - k 012m,» (t,, 1 - t.) >|. (225)

In Algorithm 1a the stress is assumed to be the constant which is the stress at t= ti. How-

ever the stresses of the available FEM candidates at time t=ti +1 may be different. There-

fore Algorithm ]a can be modified by assuming that the stress is equal to GUI-+1) in the

integral (224). This gives the following algorithm.

Algorithm 1b:

(a) For each availableFEMsolution at t: ti + 1 extract s(t,- + 1) and 0(ti + 1).
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(b) For each choice in (a) compute s by
est

Sest = S<tr)+ktftz(o(t,-.1))(t,,1-t,-)).

(c) For each result in (b) compute

‘1’ = l5(‘i+r)'5estl-

((1) After cycling through (a), (b) and (c), select the FEM solution that min-

 

imizes ‘1’. r

Here the phase boundary moves with a constant velocity which is the velocity at t=ti +1

Note that Algorithm 1b is equivalent to the following: choose the FEM solution at t= t,- +1

that minimizes ‘1’”, where ‘i‘lb is

‘i',,,(s(r,-. 1). so). (rt-.1). t, ., - r.) = (so... 1) — s(t,-) - kf12(0(t.-+1)) (t,-.,l — t.) l. (226) "

In both Algorithm Ia and Algorithm 1b the phase boundary is assumed to move

with constant velocity. However the velocity of phase boundary is probably not the same

from t,- to ti+1~ Other algorithms involve more sophisticated functions for approximating

the integral in (224).

Algorithm 2:

(a) For each available FEM solution at t: ’1' + 1 extract s(ti + l) and 0(‘1' + 1) .

(b) For each choice in (a) compute s by
CS!

(HI—ti)

s“, = 30,-) + k (1312(00,» +1.32(0(f,-+ 1») t 2

(c) For each result in (b) compute

‘P = [Wu 1) " 5.:er-

(d) After cycling through (a), (b) and (c), select the FEM solution that min-

imizes ‘1’.

Note that Algorithm 2 is equivalent to the following: choose the FEM solution at t=ti +1

that minimizes ‘i’z, where ‘1'2 is
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W2(S(ti+ 1h 501'), 0(ti)’ 00141), ‘i+ 1 ‘ ‘1')

- - ( t,+ 1 - ti) (227)

= 5(ti+1)- 5(1)) T k 012(O’(li))+f12(0(li+1))) ——‘2— -

Note thatAlgorithm 2 is a numerical method using a trapezoid rule to compute the integral.

Thus the velocity of phase boundary is assumed to be the average of the velocities at the

two time endpoints: ‘1' and ’1‘ + 1.

There are many other possible ways to estimate the integral in (224). Simpson’s rule

is more accurate than the trapezoid rule but it needs at least three function values to com-

pute the integral. However in the FEM process examined here the problem is solved step

by step. Therefore if the FEM solutions at ‘1' and t‘._l are known then the following algo-

 

rithm is possible:

Algorithm 3:

(a) For each available FEM solution at t= t,- + 1 extract s(t,- + 1) and “(’1' + 1) .

(b) For each choice in (a) compute s by
est

 

- - - (ti+1 “ti-r)

sest = 3(ti-l)+k(le(G(ti- 1))+4f12(°(’i))+f12(°(’i+1))) 6 -

(c) For each result in (b) compute

W = NH». 1) ” Sesrl'  
((1) After cycling through (a), (b) and (c), select the FEM solution that min-

imizes ‘1’.

Note that Algorithm 3 is equivalent to the following: choose the FEM solution at t=ti +1

that minimizes ‘1’3, where ‘93 is

W3(S(ti+ 1), 5(ti- 1)’ 0(ti— 1), “(‘19, “((141), ti+ 1 ‘ ‘i- 1) =

- - - (‘i+1 " ’i- 1) (228)
= 5U” 1) - 5(t;_1)’ k 012(O(t;_1))+ 4f12(6(t5)) +f12(6(t;+1))) 6 -

 

It is to be emphasized that there could be different s = s(t,- + 1) for different solutions which

have different stresses. 1n the above algorithms the solution is chosen to best satisfy (224).
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Hence the selected solution is always the solution which is closest to one of the possible

candidates s 6 ti).

14.2.2 Computation of an “exact” solution path (o(t), yo(t)) which satisfies the kinetic

criterion

Recall from Section 12 that solution paths which satisfy the kinetic criterion (129) are given

by pairs (o(t),yo(t)) that satisfy the O.D.E. (135). This section is devoted to a quick con-

struction of such an “exact” solution path which will then be used in the next section to

compare FEM solutions given by Algorithms 1a, 1b, 2, 3 of Section 14.2.1. We desire a

path in 912 which begins from

0(0) = 1 70(0) = 1 (229)

and moves with increasing ya and decreasing o as in Figure 33. For a given material (such

as material A or material B) it is not easy to construct such path. I find that the choice of

material A, k = 4.05 (230)

in (143) and

0(t) - 1 14.—1— (231)
- 2 0.9t

1 + ——

1.1 - t

gives an integral (143) whose solution “(D(t) is monotonically increasing, and is given by

(232) 

2 — .—

70“) = o(t) + 1mm) (1 _ 4.051(1)(w_ ln(2(r(2t) 1))dt).

Therefore we use (231) in the following. The time history for 0(t) and you) are given in

Figure 59. Note that 0(t) is close to being linearly decreasing. Although the 70(t) can be

found explicitly by (232). I compute it by Simpson’s rule using either 10, 20 or 30 time

steps as t increases from 0 to 1. Those three results, which are very close, are shown in Fig-

ure 59(b). I find that slightly changing k or the form of o(t) can cause yo(t) to change its
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(b)

Figure 59. (a) The loading o(t) given by (231). (b) The corresponding response function

7°(t) which is given by (232) using (231) for material A with k=4.05. Three

different total number of time steps, 10, 20 and 30, are considered in the

numerical computation of this “exact” solution.

monotone behavior. This accounts for the somewhat specialized value of k and special

function of 0(t) used here.

Recall from (a.1), (a.4) and (a.24) for material A that the driving traction force is

given by

(on)2 - 1) _1n(2o(t)- 1)
2 2 (233)flow) =
 

From (140) and (233) the location of phase boundary is given by

s(t) = s(0) + kjmany: = 4.05I(1)f(o(t))dt

2_ _ . (234)

= 4.05I(1) (——(o(t)21) — ln(20’(2t) 1))dt. , 
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14.2.3 Solutions obeying the kinetic relation obtained by using the finite element

method

In Section 14.2.2, a pair (0(t), 70(0) that satisfies the kinetic criterion was found to be giv-

en by (232). Thus for a hard device problem if the 70(t) of this pair is given, then the solu-

tion which satisfies the kinetic criteria will be the 0(t) from this pair. Alternatively for the

soft device if the 0(t) of the pair is given by (231) then the kinetic criterion will predict the

70(t) of the pair as given by (232) in Figure 59(b). In this section we consider the hard de-

vice loading. Thus we take 70(t) as given in (232) and irnplement'the FEM solutions using

the different algorithms of Section 14.2.1. Our object is to compare the FEM solutions gen-

erated by these algorithms to the “exact” solution.

To obtain the solutions using FEM any algorithm in the Section 14.2.1 is possible.

But since the use of Algorithm 3 requires the solutions from the previous two time steps,

the first step of Algorithm 3 will use Algorithm 2.

Figure 60 shows the comparison of those algorithms for the same load, same N=8,

and same time steps. Recall that FEM solutions must lie on the available s-curves. The “ex-

act” solution is computed numerically from (231) and (234) using Simpson’s rule, it is not

restricted to lie on the available s-curves. Note that all the different algorithms give fairly

close agreement to the “exact” solution and give jumps between the available s-curves at

different time steps. The solution paths considered by Algorithm 1a is slow while the so-

lution paths considered by Algorithm Ibis fast For N=8, the Algorithm 2 and the Algo-

rithm 3 give the same results which are better than the results of either Algorithm 1a or

Algorithm 1b.

Recall from Figure 23 and equation (129) that s‘ = 0 when a = 1 for both mate-

rials, while : -> no for material A and s' —) 5k/8 for material B when 0’ -) 1/2. Therefore

the phase boundary will start to move slowly but will finally move very fast.
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Figure 60. The solution paths obeying the kinetic criterion for difierent algorithms under

a hard device loading with 10 loading time steps. Here the conditions are

given by (229) and (231) with material A and k=4.05.

To see the effect of the number of elements on the FEM process, three different

number of elements: N= 2, 4 and 8 are considered. Then for each different N, the influence

of changing the number of time steps is examined by considering 10, 20 and 30 time steps

(see Figure 61).

In Figure 61 we have used a Combination Algorithm which is a combination ofAl-

gorithm 2 and Algorithm 3. In the Combination Algorithm at the odd numbered time steps

the integral in (224) is computed using Algorithm 2 while at the even numbered time steps

the integral in (224) is computed using Algoriflrm 3.

For N=2, the phase boundary location only has three choices, 0, 1/2 and 1. Figure

61(a) shows that s increases monotonically. At the beginning the solution path will follow

the curve s=0, jump to the curve s=1/2, and then follow the curve s=1/‘2. Due to the avail-

ability of only one internal s curve for a two-element discretization there are big errors be-

tween the FEM solution paths and the exact solution path. Therefore increasing the number
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of time steps gives little improvement for N=2.

But for N=4, there are five choices for the phase boundary location s: O, 1/4, 2/4,

3/4, and 1. Moreover s also increases monotonically. The solution path will first follow the

curve s=0, jump to the curve s=l/4, and then follow the curve s=1/4. After that the solution

path will jump to the curve s=2/4 and so on. The errors between the FEM solution paths

and the exact solution path have been reduced. Obviously increasing the number of time

steps gives more improvement for N=4 than it does for N=2 (Figure 61(b)).

For N=8, there are nine choices for s: O, 1/8, 2/8,..., 7/8, and 1. Again s increases

monotonically. The solution path will first follow the curve s=0, jump to the curve s=1/8,

and then follow the curve s=1/8. After that the solution path will follow the curve s=2/8

and so on. The solution paths for N=8 are similar to those for N=4 (Figure 61(c)).

Figure 61 shows that improvements take place with an increasing number of time

steps when the number of elements is held fixed. Three time step discretizations for N=2

are shown in (a); those for N=4 are shown in (b); those for N=8 are shown in (c). Corre-

spondingly if the nine FEM solution paths in Figure 61 are rearranged, then the improve-

ments obtained by increasing the number of elements N when the number of time steps is

held fixed are shown in Figure 62.

14.2.4 Three ramp loadings with different loading rates

In the previous subsection, the finite element program is checked against an example which

has an “exact” solution. The results are very close. The influences of the loading rates on

the solution paths as computed by FEM are explored in this section. Let’s consider three

different ramp loadings with different loading rates a which are similar to those loading as

given in Section 9.3 and shown in Figure 63. Our goal is to show that FEM gives the rate

dependence predicted in Section 9.3.

Again the Combination Algorithm which alternates between Algorithm 2 and Al-
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Figure 61. The efiect of refining the spatial discretization. The solution paths obeying the

kinetic criterion for the two-element (a), the four-element (b) and the eight-ele-

ment cases(c). This is done by a hard device loading with three difl’erent load-

ing time steps. Here the conditions are given by (229) and (231) with material

A and k=4.05. The curves indicated by are available for the value ofN being

considered. The combination algorithm was used for implementing the kinetic

criterion.
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Figure 62. The effect of refining the time discretization. The solution paths obeying

kinetic criterion for the two-element, the four-element and the eight-element

cases. This is done by a hard device loading with three different loading time

steps, 10 time steps (a), 20 time steps (b) and 30 time steps (c) for initial con-

ditions given by (229) with material A and k=4.05. The combination algo-

rithm was used for implementing the kinetic criterion.
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Figure 63. Three loadings with different loading rates.

gorithm 3 is used in the finite element program. The following conditions are assumed:

70(0) = 0, 0(0) = 0, 5:0 when 0:1. (235)

We consider material A and k=lO. The values of a are given by 2,1 and 2/3 in loading 1, 2

and 3 respectively. Figure 64 shows the FEM solution paths obeying the kinetic criterion

(129) for a two-element discretization (a), a four-element discretization (b) and an eight-

element discretization (c) under these loadings. This figure shows that the solution path of

the fast loading rate, loading 1, will follow the curve of pure phase solution s=0 longer than

those of the lower rates and always remains to the right of the solution paths associated with

lower loading rates. Similarly the solution path of the slowest loading rate, loading 3, will

follow the curve of pure phase solution s=0 shorter than those of the high rates and always

remains to the left of the solution paths associated with high loading rates. Note also that

the loading 2 (which is located between loading 1 and loading 3 in Figure 63) has a solution

path in Figure 64 that is also located between those of loading 1 and loading 3.

Figure 65 shows the effect of the number of elements under the same loading. The

solution path associated with a larger number of elements always leaves the pure phase so-

lution curve s=0 earlier and has more variation. This is because these solution paths have
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Figure 64. The efiect of refining the spatial discretization. The solution paths obeying the

kinetic criterion for the two-element (a), the four-element (b) and the eight-

element cases (c) under the three hard device ramp loadings. Each loading has

a different loading rate for conditions given by (235) with material A and

k=10. The curves indicated by J. are available for the different element discret-

izations. The combination algorithm was used for implementing the kinetic

criterion.
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Figure 65. The solution paths previously displayed in Figure 64 are here displayed (for

“(>1 and material A). Here we group the FEM paths associated with the same

loading rate on the same frame. Within each frame we see the effect of

increasing the number of elements.
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more choices to adjust themselves to match the requirement of approximating (224). As a

consequence it will give a better result. The exact solution would be expected to leave the

curve s=0 immediately.

The solution path for the lowest rate will be closer to the curve s=1, which is the

unattainable limit. This means that the solution paths will also approach the minimum en-

ergy solution while the loading rate is very low. But there is a difference, namely the solu-

tion path obeying the kinetic criterion cannot jump away from a pure phase solution until

it passes the yield point (6, yo) = ( 1, 1) while the solution path obeying the minimum en-

ergy could jump earlier.

 

 

 

 



15. Numerical resuns using the finite element method for material B

In the previous section several numerical examples for material A were studied. Several

similar numerical examples for material B are presented next. We find that the results are

similar.

15.] Minimum energy criterion

Let’s consider the loading as given in Section 14.1 under the minimum energy criterion.

We find that the solution paths for material B, although similar to those of material A, will

involve an earlier jump (see Figure 66)).

15.2 Kinetic criterion

For the kinetic criterion, the main difference between material A and material B is that

functions for the driving tractions are different. For material B we have s = 0 when 0 = 1
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Figure 66. The solution paths in 0,2 obeying the minimum energy solution criterion for

the two-element, the four-element, the eight-element and the twenty-element

cases under a monotonically increasing hard device loading with material B.

147

 



148

and we have s' —-) 5k/8 when 0 -) l/2. Note that, therefore, the velocity of phase bound-

ary for material B is always finite while the velocity of phase boundary for material A could

approach infinity. Hence FEM solution paths for material B will typically stay longer on

the curve s=0 of pure phase-11 solutions.

15.2.1 Computation of an “exact” solution path (o(t), 70(0) which satisfies the kinetic

criterion

Since material B is different from material A, the same applied stress 0(t) will give a dif-

ferent kinetic response 70(t). Thus if o(t) is again given by (231) and Figure 59(a), the

function 70(t) will no longer be given by Figure 59(b). Recall from (143) that we find that

70(t) is given by

700) =

(0(1)2 + 1) (236)
r,,(o(t)) + (1‘,(o(t)) - 1‘”(o(t))) (4.05I(1, {—2—— - ./(20(t) - 1) )dt).

 

Recall from (b. 1), (b4) and (b.24) for material B that the driving traction Rd) is given by

 

2

from) = 5102—111 - mom - 1). (237)

Therefore from (140) and (237) the location of phase boundary is given by

1(1) = 5(0) + kjgiroondt = 4.05j3i1o(r))dt

2

= 4.05]; (Ex—l) — ((20(t)-1))dt.

(238)
 

To find the integral in (236) Simpson’s rule is again chosen with three different number of

time steps,10, 20 and 30, as t increases from 0 to 1. As in Section 14.2.2, 0(t) is given by

(231) and k=4.05. Figure 67 shows these three results for 70(t) , they are all very close. But

the corresponding response 70(t) of material B is smaller than that for material A (Figure

59(b)).
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Figure 67. (a) The loading o(t) given by (231) which is also considered for material A. (b)

The corresponding response function 70(t) which is given by (236) using (231)

for material B with k=4.05. Three different total number of time steps, 10, 20

and 30, are considered in the numerical computation of this “exact” solution.

15.2.2 Solutions obeying the kinetic relation obtained by using the finite element

method

Let’s consider three different number of elements, N=2, 4, 8, and three different number of

time steps, 10, 20 and 30, as given in Section 14 for material A. In what follows the Com-

bination Algorithm is also considered. The FEM solution paths of these cases for material

B are similar to the corresponding FEM solution paths for material A as shown in Figure

68. Figure 68 shows the effect of refining the spatial discretization. The phase boundary lo-

cation of the exact path for material B is distributed form s=0 to s=3/8 (while those for ma-

terial A ranged from s=0 to s=7/8 (Figure 60)). Correspondingly Figure 69 shows the ef-

fect of refining the time discretization.
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Figure 68. The effect of refining the spatial discretization. The solution paths obeying the

kinetic criterion for the two-element (a), the four-element (b) and the eight-

element cases(c). This is done by a hard device loading with three difierent

loading time steps. Here the conditions are given by (229) and (231) with

material B and k=4.05. The curves indicated by '1' are available for the value of

N being considered. The combination algorithm was used for implementing

the kinetic criterion.
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Figure 69. The effect of refining the time discretization. The solution paths obeying the

kinetic criterion for the two-element, the four-element and the eight-element

cases. This is done by a hard device loading with three different loading time

steps, 10 time steps (a), 20 time steps (b) and 30 time steps (c) for initial con-

ditions given by (229) with material B and k=4.05. The combination algo-

rithm was used for implementing the kinetic criterion.
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15.2.3 Three ramp loadings with different loading rates

We saw in Section 14.2.4 that the loading rates do have different effects on the solution

paths of material A. Naturally it is desired to see whether the loading rates have a similar

effect on material B. Let’s again consider the three different loadings with different loading

rates as given in Figure 63.

Figure 70 shows the effect of refining the spatial discretization. Figure 70 shows the

solution paths obeying the kinetic criterion for the two-element (a), the four-element (b)

and the eight-element cases (c) under the three hard device ramp loadings. Each loading has

a different loading rate for conditions given by (235) with material B and k=10. Figure 71

groups the FEM paths associated with the same loading rate on the same figure. Within each

frame we see the effect of increasing the number of elements. The solution paths for mate-

rial B are also similar to those for material A.
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Figure 70. The effect of refining the spatial discretization. The solution paths obeying the

kinetic criterion for the two-element (a), the four-element (b) and the eight-

element cases (c) under the three hard device ramp loadings. Each loading has

a different loading rate for conditions given by (235) with material _B and

k=10. The curves indicated by 1' are available for the different element discret-

ization. The combination algorithm was used for implementing the kinetic cri-

terion.
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Figure 71. The solution paths previously displayed in Figure 70 are here displayed (for

y>l and material B). Here we group the FEM paths associated with the same

loading rate on the same frame. “Within each frame we see the effect of

increasing the number of elements.

 



16. Conclusions and recommendations for future work

16.1 Conclusions

From this study we may draw several conclusions:

1. The nonuniqueness of the analytical solutions to the boundary value problem trans-

lates into nonuniqueness of the numerical FEM solutions to the boundary value prob-

lem in the simplest model (a bar).

2. It is possible to successfully implement two separate selection criteria, either the ki-

netic relation criterion or the minimum energy solution criterion, to the phase transi-

tion problem by using FEM.

3. If the number of elements is increased, then the number of internal s curves in (212

also increased. Therefore the FEM solution paths are more smooth. Finally the solu-

tion path will approach to the exact path as N gets larger. But at the same time the

number of initial guess solutions needed to obtain the available FEM solutions in-

creases dramatically as N gets larger.

4. Even though in this study two separate criteria are implemented on the FEM process

to a one-dimensional problem, it is reasonable to apply these two separate criteria to

other phase transformation problems using FEM.

5. In this study we only considered quasi-static motions which neglect the effect of in-

ertia. As shown in Lin and Pence [1993LL] these should give the large time solution

of the dynamical problem. Thus quasi-static FEM might give good predictions for the

ultimate fate of fully dynamical solutions.

16.2 Recommendations for future work

A lot of issues can be explored after this study. For example these could include the follow-

ing: .

1. In this study the hard device problem is the main concern. However it would be inter-
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esting to explore further the soft device problem.

2. In this study a bar which has unit cross-section area is explored. Therefore the stresses

on each element of the bar are equal in the FEM analysis. But if a tapered bar is con-

sidered by the similar process described in this study then one should have N different

stresses in the N-element case. Therefore there could be N different solution paths

which are obtained from each elements.

3. In this study a linear relation between the phase boundary velocity and the driving

traction is considered. There are other kinetic relations to explore the strain-softening

behavior of the bar. Moreover one can try other criteria.

4. The boundary value problem given in Figure 3 are solved by quasi-static motions.

However it might be possible to solve this kind of problem by considering fully dy-

namical motions.

5. It might also be possible to find a spring-dashpot model to represent the strain-soft-

ening behavior for both the hard device and the soft device.

6. In this study two example materials which can resist an infinite strain are concerned.

But it is possible to consider hypothetical example materials with the specific material

behavior which model different processes. For example choosing a material which

only can resist a finite strain could model damage accumulation within a material.
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Appendix-A: Material A

In this Appendix and the next appendix, two example materials which have the behavior of

strain-softening are introduced. This simply means that particular functions for the function

611(7) of (5) are considered. Material A is taken to be the following:

5,0!) = Yr 751,

5(7) = _ 1 1 (a.1)
611(7) = 2+7? y>l.

Note that the constant CC = 1/2 so that the behavior of strain-softening 611(7) —> 1/2

when 7 —) 0°. The first derivative of 5” (y) is given by

6,,’ (r) = i < o, (42)
212

which shows the strain-softening. The second derivative of 611(1) is given by

6””(7) = $>0, (a.3)

which shows the curvature restriction. From (a. 1)2 the inverse function of 611(7) is given

by

F o) - ——1— (a 4)

”( — 20 - l ' °

From (7) and (a. l)2 the energy density function W (7) for y) 1 is given by

1M0
W(y) = 2+T’ ify>l. (a.5)

Thus from (a.4) and (a.5) the energy density function W (1‘1,(0)) can be rewritten as

l l l .
5(m+1"(-2?:—1)), While r"(0') > 1. (3.6)W (l‘,,(o)) =

Note from (10), (a.4) and (a.5) that the limit We is

wee lim (Wm —yo() = Iim é—lnm = 4». (a.7)
re“ ra~
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This means that the area under the strain-stress curve that is also above the horizontal line

0 = 0c is infinite. According to (a.4), the equation (23) which involves the boundary con-

ditions u(O) = 0 and u(L) = 50 can be rewritten as

 
 

05+0(1-s) = 0 = yo, (1,1)-case,

l

0s+ 201—1 (1 —s) — yo, (1,2)-case,

—-——1s+0(1 -s) - (21)-case (a.8) '7'?
20-1 - 70’ r 9

——1s+—l—(l-s) --1—- (22)-case

20-1 20-1 - 20-1— 70’ ’ ° t

From (a.8) it is found that

(20- 1)n-l ..
= iv

312‘0’70’ (20+1)(o-1)’
( 9)

. (20-1)0-—yo(20-l) 3‘
s21(0, 7.) = 

(20+ 1) (0 — l) ’

while 311(0, 70) and 322(0, 70) do not have meaning. Alternatively (a.9) can be found di-

rectly from (25) and (a.4) using F,(0) = 0.

From (24), (a.4) and (a.6) the hard device energy function A for material A is given

 

 

 

by

o2 .

All = —2' : A11(09 YO)’ (1,1)’CaSC,

l 1

2 -———+ln(———)

0 20-1 20-1 ..

A12 = 75+ [ 2 ](1—s) = A12(0,'yo), (1,2)-case,

1 +1 ( 1 ) (a.10)
_ n _—

20-1 20-1 02 ..

A21 = [ 2 ]s+-2—(1—s) = A21(0,'yo), (2,1)-case,

l 1

————+ln(—)

22 = 2 = A22(0r70)r (2,2)-case,

where s is given by (a.9). The soft device energy function E for material A can be obtained
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from (26) and (a. 10)

511 = A11(0,yo)-0yo, (1,1)-case,

312 = A12(0,yo) - 070, (1,2)-case,

.. (all)

321 = A21(Gr Yo) - 0709 (2’1)'Cascr

322 = A22(0, yo) - 070, (2,2)-case.

Note that the difference between the hard device energy function A and the soft device en-

ergy function E is 070.

A.l The solution region (212 for material A

After material properties and the energy functions being introduced, from (29) and (a.1) the

solution region 012 is given by

1 . 1 1 1 .
£212: {(0,yo)|§<0<yo,rf 0c<yo<1; §<0<§+fy—,rf 7021}. (a.12)

0

From (36), (37) and (a.4) it is found that s = 2/3. Moreover from (36) for s > s
trans trans

the location of the minimum point on the curve of constant s can be found by

2(1—s)
S—

 

__2 = 0, (a.13)

(20— l)

where the root of (a.13) is given by

_ _ 1 2 (1 -s)
0 — 0¢I(s) — 2 (1+ s ). (a.14)

Hence from (47), (a.4) and (a.14) the minimum 10 on the constant s curve is given by

Vol, = §+J2s(1-s) E114,20). - (a.15)

Therefore from (a. 14) and (a. 15) the minimum point on the curve of constant s > sum, rs

given by
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1 1 2 1-s

(0.1,) = (0,50,11,50) = (2421—13—3) 3++../2s(1—s)) (a.16)

Note from (a.14) that 0 = 0102 = 1 when s = 3mm = 2/3. Note also that the stress in

(212 must obey 1/2 < 0d,2 S 1. This gives the following conditions:

1

2 <0¢I4=s< 1,

(a.17)

2

O¢251<=>32§'

For example it is found that s = 2/3 and 70 = 1 whenever 0 = 04, = 1; therefore

2

(0, yo) = (l, l) is the minimum point. It is found that 2/3 < s < l and 70 < 1 whenever

1/2 < 04,2 < l ; therefore (a. 16) gives a minimum point which is not the end point (0, yo)

= (1,1) (see Figure 10). Thus, if 0 5s 3 2/3, then there doesn’t exist an internal mini-

mum point in the (0, yo) -plane on the curves of constant s; if, however, 2/3 < s < 1, then

there exists an internal minimum point.

A.2 The hard device energy function A12 for material A

From (25) and (a. 10)2 the hard device energy function A12 is given by

l 1

02 1‘,-,(0) 70+(20-l+1n(20-1)) 'Yo-IXO)
  

A12 = A1203, 7)— 2 I‘,,(0)- l‘,(0)+ 2 1‘”(0) - F,(0)° (“8)

Taking derivatives with respect to 70 along the curves of constant 0 gives

8A12

— > 0. (a.19)

870 0

This indicates that the hard device energy function A12 monotonically increases along the

curves of constant 0 as 70 increasing from 0 to 1/ (20 - 1) .

It is also found that
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8A

— > 0 when 70 2 l. (a.20)

This implies that hard device energy function A12 monotonically increases on the line of

constant 70, yo 2 l, as stress increases from 1/2 to 1/2 + 1/ (270) . Moreover the hard

device energy function A12 increases from 1/2 to 60 (yo) and decreases from 6% (ya) to

2 2

o on the line of constant 70, with 70 < 1.

Note from (48) and (a.4) that the curve $2 is given by

40-1 1

,_<os1. mzl

(20-1)2+2 2 } )

 

02 = {(0,70)|70=

Recall from Section 5 and Section 6 that the points on G2 not only give the minimum of

the hard device energy function and the minimum 70 value on the curves of constant s, but

also give the maximum of the hard device energy function and the minimum s value on the

line of constant 70. From (58), (a.4) and (a.6) the pseudo-stress function Ops(o) is

(1 _02(20_1))_(20_ 1)1n(26- 1)

2(1-o(20—1)) (”2)

 0,,(0) =

Therefore from (83) and (a.22) it also can be found at a given constant 70, with

1/2 < 70 S 1, that the points on the curve Q3 are

(l -o)—(20-1)ln(2o-1) 1

Q3: {(O’Yonyf l-o(20-1) ’2
 <O'Sl}. (a.23)

For a given constant 70, with 1/2 < 70 S 1, the hard device energy function A12 at points

on Q1 and Q3 are equal.

According to (119), (a.22) and (a.4) the driving traction f12(o) is a function of a

and is given by

- — 1—02 1 2 -1

mm) = (o,,(o)—o) (r,,(o)-r,(o)) = —(—2——)--“(—‘3——). (a.24)
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Note that f12(o) > 0 whenever 1/2 < o < 1. From (123) and (a.24) the first derivative of

ink!) is given by

l

20—1<0’ 1fl/2<o<1 (a.25) 

f12’(o) = o -

which means that the driving traction f12(o) decreases as a function of 0 whenever

l/2<o<l.

 

 



Appendix-B: Material B

The previous Appendix was devoted to the material A. In this Appendix the material B is

explored. Both materials have the strain-softening behavior but they have different limits

WC defined in (10). Material A has WC = co while material B has a finite value of We.

The stress response for material B is taken to be the following

61(7) = Y2 ‘YSI’

6(7) = _ _ 1 1 (b.1)
011(7) - 5+W’ y>1.

Note also that the constant CC = 1/2 and the behavior of strain-softening 611(7) —9 1/2

when 7 -) oo which are similar to that of material A. The first derivative of 6” (y) is given

by

6,,'(y) = L1>0, (b.2)
73

which shows the different strainosoftening from that of material A. The second derivative

of 611(7) is given by

- n 3

O” (Y) = _>O» (b3)

7‘

which shows the different curvature restriction. From (b. 1)2 the inverse function of 611(7)

is given by

I‘ ,(o) = ———1-—— (b4)

’ (20 - 1) V2

From (7) and (b.l)2 the energy density function W (7) for 7> 1 is given by

_ 1 ‘Y _ i .
W(y) — 2+ 2 27’ 1fy> l. (b.5)

Thus from (b4) and (b.5) the energy density function W (1""(o)) can be rewrittenas
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 W”(I‘”(0)) = 3(1+j2;__1-./2o—1), if I‘”(0)>1. (b.6)

One of the main differences between this material and material A involves the limit defined

in (10). Note from (10), (b4) and (b.5) that the limit of WC for material B is given by

_ . _ . 1_1 _1
Wc-YlgnJWW) vac) - .19.: '27 - 5 (bi)

while recall from (a.7) that the limit for material A is given by We = 00. Hence the area

under the strain-stress curve that is also above the horizontal line 0 = 0c is finite. Accord-

ing to (b4), the equation (23) which involves the boundary conditions u(O) = 0 and

u(L) = 80 can be rewritten as

 

 

   

 

 

 

 

 

0s+0(l --s) = 0 = 70, (1,1)-case,

1

03+ (1 —s) = , (1,2)—case,

J20 - 1 Y”

1 (b.8)

s + 0 (1 — s) = , (2,1)-case,

J20 — 1 Yo

I l 1

s + (1 - s) = = , (2,2)-case.

J20- 1 J20- 1 J20— 1 70

From (b.8) it is found that

. Yo ‘ 0

312(0’ 70) = 1 9

- 0

20—1

7 _ 1 (b.9)

. 0 J20 — l

s21(0.70) = 1 .

— J20 - 1

while 311(0, 70) and 322(0, 70) do not have meaning too. Alternatively (b.9) can be found

directly from (25) and (b.4) using F,(0) = 0.

From (24), (b.4) and (b6) the hard device energy function A for material B is given

by
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A11 = :2 = A (0, 70) (1,1)-case,
2 11

02 1+ ,__2(:_l-J20-1 ..

A12 = —2-s+ 2 (1 —s) = A12(0,70) (1,2)-case,

1+ 2C:_1-./2o--1 . (b'lo)

A21 = 2 5+ —2- (1 -s) = A21(0,yo) (2,1)-case,

1+ 1 — 20-1

A22 = 20- i = A22(0,'yo) (2,2)-case,

where s is given by (b.9). The soft device energy function E for material B can be obtained

from (26), and (b. 10)

E.“ = A“(0,'yo)-0yo, (1,1)-case,

a = A (0,7 ’07.» (1,2)-case,
12 A 12 a) (b.11)

5.21 = A21(0,70)-0yo, (2,1)-case,

:52, = 822(0, 701—070. (2,2)-case.

B.l The solution region {212 for material B

The material properties and the energy functions are different between material A and ma—

terial B. How about the solution regions? From (29) and (b.l) the solution region for mate-

rial B is given by

1 . 1 1 1 .

£212: {(0,yo)|§<0<yo,1f 0c<yo< 1; §<O<§+2—?’lf 7021. (b.12)

0

From (36), (37) and (b4) it is found that smm = 1/2 while from (36) for s > smm the

location of the minimum point on the curve of constant s can be found by

(l-S)
-————————— = 0. (b.13)

S (20-1)” 4

Thus the root of (b.13) is given by
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- _ 1 (1 _ s) 2/3)

0 — 0¢2(s) _ §(1+ ( s ) . (b.14)

Hence from (47), (b.4) and (b. 14) the minimum 70 on the constant s curve is found to be

s 3(s)1/3(1_S)2/3

Yols = 5 2 57¢st (b.15) 

Therefore, from (b. 14) and (b. 15) for a curve of constant s > 3mm, the minimum point is

given by

(0.7,) = (04,2(3). 1,261) =

 

(1+1 “-s))” s+3(S)1/3(l—s)2/3)
(b.16)

2 2 ’§ 2 .

Note that the stress in 912 must obey % < 003 s 1. This gives correspondingly

l<0 ¢=s<l

2 4’, ’

(b.17)

0’ Sl<=>s__l_.
oz 2

As an example it is found that s = 1/2 and 70 = 1 whenever 0 = 0(1)2 = 1; therefore

(0, 70) = (l, 1) is the minimum point. It is found that 1/2 < s < 1 and 70 <1 whenever

I/2 < 002 < 1 ; therefore equation (b. 16) gives a minimum point which is not the end point

(0, yo) = ( 1, 1) (see Figure 10). Thus, if 0 .<. s 3,1/2, then there doesn’t exist an internal

minimum point in the (0, 70) -plane on the curves of constant s; if, however, 1/2 < s < 1,

then there exists an internal minimum point. The above behavior is similar to the behavior

of material A.
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B.2 The hard device energy function A12 for material B

From (25) and (b. 10)2, the hard device energy function A12 is obtained by

 
 

1

(1+———J20-1 -I‘ 0

A _ A (0 0) _ 02(I‘”(0)-'Yo) + J20-l )(YO ’( )) (b18)

12 1?- ” 20,,(01- r,(o)) 2 (rum) - 13(0)) '

Taking derivatives with respect to 70 along the curves of constant 0 obtains

8A

’2 > 0. (b.19)

0 0

This means that the hard device energy function A12 monotonically increases along the curves

of constant 0 as 70 increases from 0 to 1/J20 - 1.

It is also found that

8A12

E Y > 0 when “ya 2 1. 03-20)

This implies that the hard device energy function A12 monotonically increases form 0c to

1/2 + 1/ (27:) on the line of constant 70 2 1. However the hard device energy function A12

increases from 1/2 to 69 (70) and decreases from 6Q (70) to 0 on the line of constant 70 < 1.

2 2

Note that from (48) and (b.4) it is found that

<0<l}. (b.21) 

g = O, = y'-
2 {( YO)|Y0 (26_l)l.5+1 2

Recall from Section 5 and Section 6 that the points on the curve Z2 not only give the minimum

of the hard device energy and the minimum 70 value on the curve of constant s but also give the

maximum for the hard device energy and the minimum s value on the lines of constant 70. From

(58), (b.4) and (b6) the pseudo stress function 0ps(0) is
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2-20+ (1-02)J20—1

0 (0) = . (b.22)

P‘ 2(1—0J20-l)

Therefore from (83) and (b.22) it also can be found for a given constant 70 that the point

on the curve Q3 are

2—30+J20-1 1<

1 0J20 l ,2 0<1}. (b.23)
E3 = {(6, YO)IYO=

For a given constant 70 < l the hard device energy function A12 at the points on both El

and Q3 are equal.

According to (119), (b.4) and (b.22) the driving traction fuw) is a function of 0

and is given by

[12(0) = ——7—-— 4120—1). (b.24)

Note that f12(0) > 0 whenever I/2 < 0 < 1. From (123) and (b.24) the first derivative of

f12(0) is given by

1

f12'(0) = O- ‘55—:

which means that the driving traction [32(0) decreases as a function of 0 whenever

<0, l/2<0<1, (b.25) 

1/2 < 0 < 1. Note that the rate of change of the driving traction [32(0) for material B is

lower than that for material A.

 

 

 



Appendix-C: Ordering of the solution paths in Figure 33

In this Appendix we show that a“ > ab = 7(0, or“) > 7(0, (1") at each fixed 0 in oc < 0 < 1

under the loading given in (149):

yo = 1+ at. (c.1)

From (142) the loading 70(t) is related to 0(t) and s(t) by

70(1) = 0(t) + T(U(t)) (1 - 5(0). (62)

Taking the partial derivative of 1(0, (1) with respect to the loading rate a from (c.2) with

fixed 0 gives

0

35 (C3)

3

= «0(0):;
0

  
0

Similarly taking partial derivative with respect to the loading rate a from (c.1) with fixed

  

  

 

 

 
 

0 gives

8—10- = H a-ai . (c.4)

a 0 Ba 0

Recall from (148) that s is given by s = 3(0) + kjgf12(c(t))dt, thus

8s - at

33 o = kf12(0(t))5a a. (a.5)

Now (c.4) can be rewritten, with the help of (C5), as

a as

En, 35 .,
T = + -—.——— . (C.6)

0‘ 0 kf12(0(t))

From (C3) and (C6) it is found that

37 ('41) Ta 0

33 = + - . (c.7)

0‘ 0 kf12(o(t))T(o(t)) 
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. 9Y0
Solvrng (c.7) for —

 

 

 
 

 

  

gives

Ba 0

3Y0 I
SE a = a . (0.8)

+ -

kf12(o(t))T(o(t))

If we consider t> 0 then

--—°— > O. (c.9)
act a

We note also that (C3) and (C5) now also give that

a at

31 <0, _ <0, (for t>0). (c.10)
a 0 Ba 0

From (c.9) we can conclude that

yo >70 if a">a”. (c.11)
a“ or"

O O
 

 

Hence the solution path with loading rate a“ is always above the solution path with loading

rate ab if a“ > on”, except at the starting point (0, Yo) =(1,1) where t = 0.

 

 

 



-' "“W

 



Appendix-D: Local analysis of the solution paths in Figure 33 near 1:0 for material A.

In this Appendix we show the local analysis of the solution paths of Appendix-C near t=0

for Material A. From (139) we can obtain

(T(0(t)) + (700) - 0(0) T'(6(t))) (30) -k (0p,(0(t)) - 0(1)) 7310(0) = Y0(t)T(O(t))-(d.1)

Consider the loading given in (149):

70 = 1 + at. (d.2)

From (a.4) we have that T(0(t)), for Material A, is given by

T(0(t)) = Fume» - om = 3373—3 - om. (d3)

Since 0(t) = 1 when t is near zero, we let

p=sm-1 we

so that

p = 0(t). (d.5)

Then T(0(t)) in (d.3) can be expanded to give

mm» = To» = - 3p + 0022). (do

and

flow) = 73(1)) = 9p2 + 0(p3). (d7)

The first derivative of T(0(r)) is given by

T’(c(t)) = T'(p) = — 3 + 0(p). (d.8)

From (119), (121) and (130) we have

fume» = (o,,(o(r)) - am) How) = ;(,,T(v)dv. (a.9)

Therefore with the help of (d.4) and (d.6) we have

(o,,(o(t)) - om) mm» = 137(va = - 319 + 0 (p3). - «1.10)

Now (d.1), with the help of (d.2), (d.4), (d.5), (d.6), (d.7), (d.8) and (d.10), can be rewritten

171

 

 



172

as

1—3p+0(p’)+ (at-p) (—3+0(p))1p

3
(d.11)

= Ice-3125009)) [9p2+0(p3)1+a(—3p+0(p2».

Since lpl « 1, if a it 0 then (d.11) is dominated by

-3atp’ = -3ap. (d.12)

Differential equation (d.12) for p(t) is to be solved subject to p(0)= 0(0)-1=l-1=0. There-

fore the leading order solution for p(t) is '

P0) = C ° t. (d.13)

where c is an undetermined constant. Hence from (d.5) we obtain

0(t) = c + 0(1), 0(t) = 1 + ct+ o(t). (d.14)

Therefore the initial slope of the solution path at t = O is

dy_or

E.35 — (d.15)

The value of which is not provided by the present analysis.

This slope is, however, related to the constant s curves in 912 which the solution

path follows as it leaves (00, yo) =(1,l), since (25) now gives

1 (l

s(t)=§(2+F)+0(l). (d.16)

Thus c is given in terms of the loading rate a and the initial nucleation site so, by

(I

 (d.17)

andwenotewith a>OthatC>Oif2/3<SOS1 whilec<0if0_<_s0<2/3 withc—>oo

and 50—)
- Strans’

W
I
N

If we consider an extended expansion

p(t) = ct+dt2 +ez3 + gt4+ 0 (t4), (d.18)
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then (d.1) can also be expanded to yield

(- 48 + 4otc2 — 3da) :2 + (16c4— 16c3ot — 16c2d+ 16cda - oea) :3 +

(— 48:? + 48oto4 + 13.51tc4 + 80dc3 — 72dotc2 - 20cc2 + 24eotc - 20ch (d.19)

- 9af+ 12(12(1)t4 + o(t“) = 0.

According to the coefficient of t2 in (d.19) we have

43 a _4a2<s.-1>

3 0‘ (3s0-2)3

 (d.20)

Thus the coefficient d is dependent on the value a and so, but is independent of k. Accord-

ing to the coefficient of t3 in (d. 19) it is found that

  

c3 (4c2-soc+o2) _ 80960-1) (so-2)

2

8
e:—

9 a (3s0-2)5

(d.21)

Hence the coefficient e is also dependent on the value a and so, but is independent of k.

According to the coefficient of t4 in (d.19) we have

 

-1 c‘ (640c3 - 96Oac2 + 288a2c - iiiltot2 + 32013)

g = 371' 3 =
(l

3 (d.22)

7(32(1(s0-1)(.33‘24-230-4)-+-3k(-27S:+5453-3630-1- 8)).

2(3s0-2)

 

Therefore the coefficient g is dependent on the value a, so and k. Hence from (d.5) we

obtain

0(t) = c + 2dr + 3c:2 + 4gt3 + o(t3), 0(t) = 1 + ct+ d:2 + et3 + gt4 + o(t“), (d.23)

where d, e, and g are given in (d.20), (d.21), and (d.22), respectively. Hence from (25),

(d.2), (d.23), (d.6) we can find

_1 or 1 2 _ 1 [“12 3 3
s(t) _ 5(2+?) -§kc t3+o(P) _ SO-EWt +0(t ). (d.24)

Note with the help of (d.9) and (d. 10) that (d.24) also can be found by integrating s = kf.
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