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' ABSTRACT

STRUCTURAL PROPERTIES

OF

MISMATCHED ALLOYS

By

Normand Mousseau

The problem of understanding the local structure of disordered alloys has

been around for a long time. In this thesis, I look more specifically at the ef-

fect of size—mismatch disorder in binary alloys under many forms: metallic and

semiconductor alloys, bulk and surfaces, two and three dimensional systems. I

have studied the limitations of a central-force model (CFM) and an embedded—

atom potential (EAM) in describing the local structure of binary metallic alloys

composed of Ag, Au, Cu, Ni, Pd, or Pt. Although an analytical model developed

using the CFM explains qualitatively well the experimental and numerical results,

in many cases, it is important to add electronic density effects through a more

sophisticated potential like EAM in order to agree quantitatively with experi-

ment. I have also looked at amorphous and crystalline silicon—germanium alloys.

It turns out that the effect of size-mismatch is the same on a crystalline and an

amorphous lattice. In the latter case, it can be seen as a perturbation of the much

larger disorder due to the amorphisation process. However, the analytical predic-

tions differ, for both the crystalline and amorphous alloys, from the experimental

 



results. If one is to believe the data, there is only one possible explanation for

this inconsistency: large amounts of hydrogen are present in the samples used

for the measurements. Since the data analysis of EXAFS results is not always

straightforward, I have proposed some experiments that could shed light on this

problem. One of these experiments would be to look at the (111) surface of a Si-

-Ge alloy with a scanning tunneling microscope. I also present in this thesis the

theoretical predictions for the height distribution at the surface as well as some

more general structural information about the relaxation in the network as one

goes away from the surface. Finally, I have studied the effect of size-mismatch in

a purely two dimensional lattice, looking for mismatch—driven phase transitions.

Although it is possible to map size—mismatch on an effective temperature at low

disorder, I have not been able to find any indication that a hexatic phase exists

in these 2d systems. Since systems were studied with different potentials in very

large unit cells, the conclusion is that the hexatic phase is not universal for two

dimensional networks.
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Chapter 1

Introduction

Until the early sixties, the world as seen by most condensed—matter physicists con-

sisted mainly of perfect crystals. Everything else, doped semiconductors, random

alloys and glasses, was considered dirty and unworthy of research. As mathe-

matical and computational tools developed in the sixties and the seventies, the

importance and interest of these materials began to be appreciated in the physics

community. By their nature, disordered systems are difficult to work with: their

properties can vary widely from sample to sample, they often show more mem-

ory of the preparation method than pure crystals, etc. Moreover, the conceptual

framework used in the study of crystals cannot always be extended directly to dis-

ordered systems. How can we define a defect in amorphous silicon, for example?

In this chapter, I will present some concepts that are useful when working

with disordered systems, with a special emphasis on random alloys and amorphous

materials. I will then examine some of the preceding approaches to understand

random alloy structure and discuss their limitations. Finally, since much of this

new work has been motivated by the development of the extended X—ray absorp-

tion fine structure scattering technique (EXAFS), I will briefly describe the theory
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behind this experiment as well as its current possibilities and restrictions.

1.1 Order and Disorder

There are many levels of disorder in nature. Doped semiconductors, for example,

are only weakly disordered with typically one impurity per thousand or more

atoms. However, even such small quantities can have a decisive role in determining

the electronic properties of materials. This disorder is very different from that

found in glasses and amorphous solids. It is therefore important to try to classify

these various structures. We can distinguish between two major classes of disorder:

chemical and structural disorder (see Figure 1.1). Each of these two classes can

also be divided according to the length scale characterizing the absence of order.

For chemical disorder, different species of atoms are placed at random

on a crystalline lattice which retains more or less its original symmetries. In

this class are solid solutions (or random alloys), substitutional impurities and

vacancies, the main difference between the first two being the concentration of

the different constituents. Substitutional impurities are typically very dilute and

do not interact with each other; solid solutions are a mixture of two or more atomic

species with comparable concentration. For a long time, physicists believed that

most structural quantities in random alloys could be modeled correctly with a

simple average over properties of the constituent species. However, as it has been

discovered in the last decade, the situation is not so simple.

Glasses and amorphous solids are characterized by structural disorder. In

most cases, the coordination is maintained, but there is no remnant of crystalline

structure beyond the first—neighbor shell; these states are more akin to a liquid

than a crystalline phase. Glasses and amorphous solids can exist in the pure
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(b)

Figure 1.1: (a) Representation of chemical disorder with two different species

distributed randomly on a crystalline network and (b) structurally disordered

lattice.
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form or alloyed. The question of the glass transition remains one of the most

important unsolved questions in contemporary condensed—matter physics. In spite

of large amounts of work dedicated to this problem over the last two decades, many

fundamental structural and electronic properties are not yet properly understood.

For example, nobody has been able to obtain a satisfying model of the amorphous

silicon structure by computer quenching, raising questions about the time scale

involved in creating amorphous materials and in the validity of the interaction

potentials used for these simulations.

1.2 Alloys and Amorphous Systems

Another important component of classification of these structure is related with

the length scales for which the system is, or is not, ordered. The classification

used here is described in more detail in a review article by S. R. Elliot (1989). It

is usually divided in three length scales: short—, medium— and long-range order,

each associated with different experimental probes.

1.2.1 Short—range order

There seems to be a consensus in the literature about the definition of short—range

order (SRO). The SRO characterizes the purely local structure in a disordered ma-

terial, i.e. the central atom and the first-neighbor shell. It is usually defined by

the first- neighbor distance 1'5,- and by the bond angle 0,5,, as shown in Figure

1.2(a). In a constrained environment, the strain can be minimized by. an equilib-

rium between these two quantities, depending upon the ratio of the angular to

the stretching the force constant. In an amorphous materials (a—Si, for example),
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(a) (b)

Figure 1.2: Characteristics of short- and medium— range order in a diamond

lattice. (a) nearest-neighbor distance r and bonding angle 0; (b) Dihedral angle

between to adjacent tetrahedra.

the average values of r;,- and 9,11; and first-neighbor shell are very similar to the

crystalline one; however, the fluctuations can be relatively large. In an random

semiconductor alloy, although the average values of the bond angle and the first—

neighbor distances are the same as for a pure semiconductor, the n,- distribution

possesses multiple peaks corresponding to preferred values for all the lengths in

the problem.

In alloys, the short—range order is also defined by the correlation between

first neighbors. Usually these correlations can be picked up by EXAFS or other

diffraction experiments if they are strong; however, when the correlation is weak,

varying only by a few percent from the random case, it is very difficult to obtain

reliable experimental data and one must rely on analytical or computational work.
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1.2.2 Medium—range order

It is possible to subdivide the medium-range order (MRO) in three parts (Elliot,

1989): near, medium and far medium-range order. I will consider here only the

first (NMRO) part, placing the two others with the long—range order.

The near medium—range order is characterized mainly, in semiconductors,

by the relative position of two neighboring tetrahedra, measured by the dihedral

angle. (Figure 1.2(b)). This quantity is very important for amorphous materials

because it is at this level that the differentiation really appears between disordered

structures and crystals. In the case of alloys, the medium-range order is defined

by a correlation between second or third neighbors. This local clustering is almost

impossible to measure experimentally and the effects of such correlation have not

been really studied yet. Generally speaking, because it is too large for scattering

experiments and too small for direct observation, the MRO remains obscure. In

spite of its importance for amorphous and for glasses, very little effort has been put

into studying theoretically or experimentally the impact of varying the correlation

in angle or concentration at this level. With the development of more powerful

computers and more efficient semi- empirical potentials and ab initio methods,

one expects to see major developments this direction over the next few years.

1.2.3 Long—range order (LRO)

The long-range order should be renamed long—range structure since it is difficult

to imagine correlation at this scale; however, we, can here include defects like micro

voids, cracks and structural defects like disclinations. In multilayers, they often

appear in order to release the strain energy due to lattice size mismatch. They

are an indicator of the strain energy as well as the distance over which the lattice
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perturbation relaxes when submitted to a very local strain, like the introduction

of a larger atom in the lattice.

Although the disordered structures have been divided into many length

scales, it is important to note that there is not always a clear cut distinction be-

tween these different length scales and that they often overlap. However, following

the methods developed for the study of the crystal, most of the theoretical work

in disordered systems has concentrated on the local order, while experiments can

more easily be performed on large samples. In the world of crystals, the fluc-

tuations are small, and average quantities obtained from x-ray diffraction and

other global experiments are representative of their local values; the Bloch the-

orem guarantees a one to one correspondence between the local and the global

properties. But the knowledge of the local situation in disordered materials is

not enough to obtain a global understanding of the structure of the solid and vice

versa. More effort has to be made in trying to link the properties of the disordered

materials with medium and long range order. But for this, one must go beyond

the usual theories of alloys and other disordered systems.

1.3 Understanding alloys ,

Until very recently, the understanding of the electronic properties of alloys was

based on the virtual crystal approximation (VCA). In this theory, all the atoms

are positioned on a crystalline lattice with a lattice parameter following, for most

semiconductor alloys, the Végard’s law (Végard, 1921),

d=(1 —z)dA+1:d3, (1.1)
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where d is the lattice constant of the alloys A1_,B,. This empirical relation was

proposed in the 19203 to support x—ray diffraction results. Local variations of the

potential are averaged out and this quantity forms the basis for the calculation

of the electronic properties. Since the fluctuations are washed away, the system

recovers its symmetry, and periodicity and crystal states can be assigned. The

VCA constitutes therefore an interpolation between the properties of the indepen-

dent constituents. In spite of these limitations, the predictions of this theory have

had a relative success, with agreement with experiment varying from excellent to

poor. One of the difficulties in judging the quality of this approximation is that

the experimental precision on spectroscopic and other electronic measurements

is not precise enough to constitute an excellent test. Nevertheless, in view of

certain discrepancies, some refinements of the VCA have been developed so as

to include the random fluctuation potential. Since the discrepancies can be due

to many phenomena —random fluctuations, ordering, clustering and impurities,

for example— it becomes important to characterize the effects of each of these

features separately.

The major refinement comes by going one step further, with the coher-

ent potential approximation (CPA). Proposed independently by Soven (1967) and

Taylor (1967) at the end of the sixties, this self—consistent method uses the average

Green’s function instead of the virtual crystal as the zeroth approximation. This

approximation can be seen also as a mean—field approach to the multiscattering

theory. Although there is no formal demonstration of the limits of this approxi-

mation, it usually works very well in the case of small fluctuations but fails when

the fluctuations become very large —in one dimension, for example (Elliott et all,

1974).

ll‘fi
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At the beginning of the 19805 however, a major blow was given to all the

schemes based on the virtual crystal approximation, shaking most of the concepts

forming the basis of understanding the structure of alloys. In 1983, Mikkelsen and

Boyce published their x-ray absorption fine structure (EXAFS) measurements

indicating that, in the GaInAs random alloys, the Ga—As and In—As nearest—

neighbor distances remained almost constant at all compositions.(see Figure 1.3).

The distribution of nearest—neighbors was therefore not a small deviation from

the Végard’s law, but rather indicated that the lattice itself was very distorted

in order to accommodate the different bond lengths disposed at random through

the lattice. The justification for VCA and CPA were lost in great parts. The first

theoretical explanation came from Zunger and Jaffe (1983) who proposed some

local distortion of the underlying crystal lattice. For large enough mismatch, the

atoms would gain by going locally from the zinc—blende structure to a chalcopyrite

arrangement. They presented a zeroth order theory where the mismatch param-

eter determines how far the chalcopyrite departs from the zinc—blende structure.

Although this model did not include the influence of the concentration on the

position of the center and width of the partial length distributions, it provided a

new view of the alloy problem with two distinct bond lengths averaging out the

Végard’s law.

Along with this important structural discovery was the realization that

the strain, imposed on a binary alloy by fitting on the same lattice atoms of differ-

ent sizes, cannot be neglected when trying to understand the electronic properties

of an alloy. In 1982, Osbourn proposed that strained—layered structures could

display electronic and optical properties not found in unstrained-constituent ma-

terials. Before him, the strain was considered as a necessary evil in the creation
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of interesting semiconductor heterostructures. But because the strain produced

internally by mixing size—mismatch elements can be much greater than that which

can be obtained externally, effects on the band structure due to this phenomenon

are not negligible. With a mismatch as small as 2%, the band structure will be

modified by more than 100 meV (Pearsall, 1990). Today, a lot of effort is targeted

to study the strain in multilayered compounds, specifically the reaction of the

interface and the maximum thicknesses one can obtain without creating defects

in the layers. In only a few years, this field has become a technological enterprise

where the discoveries are almost directly applied to the development of optical

devices.

More recently at MSU we worked on developing a structural model of al-

loys that would explain the EXAFS results in a consistent theory. This theory will

be presented in more detail in chapter 1 and forms the basis of my thesis. Using

harmonic interaction potentials, an exact expression for all the partial lengths in

the binary, pseudo—binary, ternary'and quaternary compounds as well as for mul-

tilayered materials has been obtained. The limits of the random model discussed

here are obvious. Almost no disordered system presents perfectly random order,

particularly when it comes to the choice of first and second neighbors. Even in

the case of SiGe, which surely can be dubbed as one of the most perfect random

binary structures, electronically speaking, recent measurements have shown that

there is some correlation in molecular-beam—epitaxy grown films (Jesson et al.,

1992) although these correlations do not appear in the usual methods of preparing

bulk alloys. The structural model is nevertheless extremely useful and must be

considered as a valuable step for the understanding of alloys. First, it represents a

huge step forward, compared with the VCA and CPA theories; second, although
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it is not simple, it is possible to include corrections in this theory to take into

account the effect of correlation particularly if these are weak like they seem to

be in most semiconductor alloys. Furthermore, if the accuracy of the experiment

could be increased enough to present noticeable deviation from this theory, it

would allow for some quantitative measure of the correlation.

1.4 EXAFS

Since extended x—ray absorption fine structure spectroscopy (EXAFS) represents

the major source of experimental results about the local structure of disordered

systems, it is important to understand the underlying theory and limitations of

the technique. Most of the material of this section has been taken from two review

articles: Hayes and Boyce (1982) and Stern (1985). Although the fine structure

at the absorption edge has been known for a long time, it is only about 25 years

ago with the opening of two facilities producing an intense source of x-rays that

the efforts to really understand the phenomenon were made. In this section, I will

present a very condensed theory of EXAFS, followed by a discussion 'of different

approximations and how they limit the information one can get from this method.

In Figure 1.4, one can see the variation of the x-ray absorption coefficient

of copper metal with the energy of the incident photon. The coefficient decreases

more or less monotonically except at some specific energies when a step occurs.

These steps or absorption edges correspond to the binding energies of shells of

electrons in the atom. In the Figure 1.4, two edges are indicated as the L-edge

(n = 2 shell electrons) and K—edge (n = l shell electrons); just after the edge, the

absorption coefficient shows a very rich behavior with peaks and valleys extending

on about 1000 eV past the edge (Figure 1.5). The oscillations happening in the
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Figure 1.4: X—ray absorption coefficient as a function of photon energy (Stern,

1985)

first 20 eV after the edge are classified as near—edge (NEXAFS) region while

the rest of the structure is called the extended x-ray absorption fine structure

(EXAFS) region.

EXAFS is typically understood in terms of single—scattering phenomena.

A photon excites an electron in the core shell of an atom. The photoexcited

electron wave propagates and interferes with scattered waves from the surrounding

atoms (Figure 1.6). The oscillations measured are a signature of these interferences

and hence, of the local atomic structure. We can express this signature as a
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Figure 1.5: Absorptance of Cu metal at the onset of Cu K—shell absorption (Stern,

1985 )

perturbation x(w) over a smooth photoexcitation rate 0°(w) that would be seen

if the atom was isolated

0(w) = 0001) [1 + X(w)l, (1-2)

where x contains the EXAFS information. Since x is due to interference between

backscattering waves and ongoing waves around an atom, the main contribution

comes from the product of the photoelectron momentum k and twice the distance

between the central atom and a neighbor, 27'. If we also take into account the

attenuation of the wave and the reflection coefficient of the neighboring atom, we

can express x as

cha(w) = 2: joo drr2p05(r)2Re [ezik'Aag(k, r)] , (1.3)

a o

where

22'1r2m

R2

 Aas(k,r) 2 -- t§(-—k, k) exp [-A—(Zl?) + 2ina(k)] . (1.4)
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Figure 1.6: Origin of EXAFS. (a) A photon is absorbed by an atom, exciting

an electron from the core state j to a continuum state. (b) The electronic wave

propagates outward and interferes with neighboring atoms (c). (Hayes and Boyce,

1982).

The first equation gives the total contribution of all the atomic species ,6 of the

neighbors to a central atom of species a as a function of the energy hw on the

incoming x-ray photon. The integral is the product of the radial distribution

function pap(r) and a complicated energy term A. This last term includes the

scattering matrix t}, the electron mean-free path length A and the phase shift

due to the potential of the excited atom 170,. However, it does not include many—

body correlations (angular dependence, etc.), which makes it simple to use in the

analysis of the experimental results.

From the absorptance of Cu (Figure 1.5), it is possible to extract the
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quantity ch (Figure 1.7). If only one distance entered in the radial distribution

function (RDF), we would expect to see only one frequency in the EXAFS os-

cillations; however, there are many frequencies on this Figure. Since it is easier

to understand the RDF in real space, we can Fourier transform (FT) the signal

(Equation 1.3):

a 2 2; f0” dr'r"2Paa(r')€aa(T — r'), (1.5)

where

{03(1', 1'") = FT[W(k)Aa,g(k, r”)], (1.6)

and W(k) is a square window function. So o is essentially a linear combination of

{’s, one for each peak in the RDF. However, looking at the Fourier transform of

the Cu K-shell absorption (Figure 1.8), we see that because of the interference,

the resulting curve is not so simple to analyze. There are many complications

that enter in the analysis of the EXAFS oscillations. I will not examine all of

them but only the major ones in order to evaluate the advantages and limitations

of this method.

0 The general treatment of photoabsorption is a one—electron approximation.

It neglects, among other phenomena, the effect on the core of the excitation

of the photoelectron. While the electron is excited, one can expect that the

core will react differently, altering the cross-section and thus the EXAFS.

Although this effect is somewhat taken care of by using the eigenfunctions

of the 2+1 atom (reflecting the presence of one core hole), all the details

have not yet been worked out.

0 A substantial simplification of the equations for EXAFS results from the

neglect of multiple—atom scattering, with the consideration of only short—
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Figure 1.8: The real part and the magnitude of the Fourier transform of the

EXAFS signal for Cu (solid and dotted line, respectively). The near—neighbor

distances in Cu are indicated by vertical arrows (Hayes and Boyce, 1982).



CHAPTER 1. INTRODUCTION 18

range order. It is surely one of the main advantage of EXAFS over LEED

where one must solve the full Schrédinger equation. However, comparisons

of the theory with experimental results in Zn chalcogenides has shown that

the inclusion of the multiple—atom scattering is sometimes necessary.

0 In order to compare the theory and the data, it is necessary to establish

two independent variables: the phase—shift k of the outgoing electron wave

due to the excited atom from the calculations and the x—ray photon energy

hw from the experiment. These two variables are related by the final state

electron energy

E = Eaml‘j'hw (1.7)

5ch2

2m

 

= Eo-f-

The correspondence depends on an accurate evaluation of Ea,“ — E0; a task

which is almost impossible in practice due to the simple models used for

the interaction V0. When comparing systems that are very similar, it is

only required that the difference between the assumed E0 and its real value

be the same for all the cases. E0 is then considered as a fitting parameter

for one known system and checked for consistency in the other materials.

However, this approximation creates a problem when one wants to compare

very different materials.

The general method used to interpret EXAFS results is to compare a

model with the experimental data and to extract the structural information from

the fitted parameters. Since the measurement itself is relatively straightforward,

the obvious limitations of EXAFS lie in the model used for fitting the data. Al-

though the present models can work very well for disordered samples that are
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electronically close to a known structure, its precision is not so good when there is

no known structure close to the one observed. In order to clarify many important

details of the local structure of disordered systems, EXAFS remains an excellent

tool. However, there is still a need for more complete models that would increase

the accuracy of EXAFS to a fraction of a hundredth of A so that it can serve as

an accurate test for the theories solving problems with this precision.

1 .5 Conclusion

In the next chapters, I will present some results that will help in understanding

the specific role of size mismatch in disordered systems: solid solutions on a crys-

talline and amorphous lattice. It is rather surprising that even for simple alloys,

the local structure has not been understood much earlier since all the theoretical

tools were available. After explaining in some details the general theory developed

by Thorpe, Jin and Mahanti (1989), Thorpe and Garboczi (1990) and Cai and

Thorpe (1992a, 1992b), I look at the deviations from this theory in the case of

metallic alloys, where the concept of natural size, introduced by Pauling, does not

apply very well. Then the theory is checked for SiGe crystalline and amorphous

alloys. Although the crystalline alloys are not really a challenge, the study of the

effect of amorphisation versus size—mismatch on the structure gave us a better

understanding of the strength of this simple topological model. However straight-

forward the theoretical results for the SiGe alloys are, they do not agree very well

with a series of EXAFS experiments on both amorphous and crystalline structure.

The following chapter examines the disagreement and looks at whether the theory

or the experiment fails. One method to determine whether the experiment or the

theory is incomplete or wrong in the case of these alloys is to use a different probe



CHAPTER 1. INTRODUCTION
20

to look at the structure. Chapter 6 extends the Cai and Thorpe theory to the

surface of SiGe alloys, making predictions that can be checked against scanning

tunneling microscope measurements that are more direct that EXAFS. A confir-

mation of the theoretical results on atomic positions at the surface would indicate

strongly that the theory is also valid in the bulk. Finally, I examine the effect of

size—mismatch on a two—dimensional lattice. Many claims have been made in the

last decade and a half about the solid—liquid transition in these systems. In the

hope of improving the understanding of this transition, I have performed some

simulations, increasing the disorder with size—mismatch instead of temperature.

Although not a perfect mapping, the size—mismatch technique has the advantage

of being a static study, allowing us to get much closer to the phase transition

without having to care about the divergence in the fluctuations.



Chapter 2

Theory

The development of the general theory of mismatch alloys was performed over

many years by M. F. Thorpe, S. D. Mahanti and their collaborators. They began

to study this problem in the context of intercalation compounds, trying to predict

what kind of deformation the intercalant would suffer under the pressure of the

intercalated layers and its neighbors (Thorpe, Jin and Mahanti, 1989). From one—

dimension, the problem was extended to two and three dimensions for both bond

and site mismatch.

This chapter presents the general theory for the bond-mismatch problem

with only nearest-neighbor interactions since the formalism is simpler. I will then

only state the corresponding results for site—mismatch disorder without proof and

describe briefly the derivation in the case of a two—- and three—body potential, that

I will present in more details in chapter 4 and following.

21
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Figure 2.1: A triangular network (Thorpe and Garboczi, 1990)

2.1 Bond mismatch

For simplicity, I will consider a two dimensional triangular network, which is

equivalent to a face—centered cubic network in three dimensions (Figure 2.1). The

following derivation is taken from Thorpe and Garboczi (1990). A

On this network, one distributes at random bonds of natural length L9,

and Lg (Figure 2.2) with probability 1 -:1: and :1: respectively. Each of these bonds

is a Hooke’s spring so the total energy is given by

v =% 2 m,- (L,,- — L9,.)2, (2.1)

<u>

where < ij > signifies that the contribution of each bond is counted only once,

and the average length, by

<L>=(1-:c)<LA>+:c<LB>. (2.2)
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The only requirement for equilibrium is that the force on each bond vanishes. So,

minimizing the energy with respect to 2', we obtain

0 = 2 K..- [(R, — R.) - Liza-,1 . (2.3)
1

with R4,- the unit vector from R.- to R,- . Since this equation is linear, we can

rewrite it as a weighted sum of the average lengths. If we suppose that displace-

ments from the perfect triangular network are small, then all displacements are

along the bond and the previous equation becomes

0 = (1 — r)KA(< LA > -L‘},) +:1:KB(< L3 > —L%). (2.4)

It is equivalent to say that if we draw any line cutting a plane of bonds, the sum

of all tensions must be zero. If we put KA = KB = K,

<L>=(1-;1:)<LA>+<L3>=(1—T)L%+TL%, (2.5)

which is simply the Végard’s law (Végard, 1921), proposed for alloys more than

70 years ago. Note that this relation is exact for any disorder as long as all elastic

constants are the same for all interactions. I will return to the problem where

there is more than one elastic constant in the next section but until then, I keep

this requirement.

The next problem is to find the average partial lengths < LA > and

< L3 > in the alloys. We start by expressing a particular bond length as

L=R,~-R,- =L+ [(u,—u,-)-R,~,—]R,-,~, (2-6)

where u,- is a small diSplacement and R.)- is a unit vector along an undistorted

bond. Replacing this definition in Equation (2.3), it becomes

0 = [(2 [(u, — 11,) . R, — (< L > -L?,.)] as. (2.7)
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This equation can be expressed in terms of the dynamical matrix 0;,-

Dafiug = v9, (2.8)
ij J t

where I follow the Einstein’s summation index convention and

v? = K2 (L?,— < L >) - R°. (2.9)

J

Inverting Equation (2.8),

119' —G?J-fivf (2.10)

with G, the Green’s function for the perfect triangular lattice. Inserting 2.10 and

2.9 in 2.6,

141' < L > +KZ [RJ‘ ° (Gim - Gjm) - le] (L?m- < L >) (2.11)

lm

< L > +2K Z(R,~,- - Gm, - Rim)L?m,

lm

where I used the identity

2: IL, = 0. (2.12)

1

Equation (2.12) gives the actual length of one particular bond as a function of

all the natural lengths. By averaging over all the bonds we obtain an identity.

One can find the average partial lengths using a bond variable 0,-1- equal to plus

(minus) 1 when the bond is of type A (B). The average value of this quantity is

< 013' >= 1 - 21:. (2.13)

Using a projection operator on the bond type A

l + 051'

—— 2.14

4N(1 — x) ( )

and re—expressing the natural length as an operator

0 1 o 0 01m 0 o

le = 5am + LB) 'I‘ ‘2—(LA “ LB), (2-15)
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it becomes

< LA >=< L > +m’1i372,,,m < (1 + a,,-)(1+ 0,...) > (2.16)

X(R,‘j ' Ggm ' fiijLg - 14%).

Defining

(11$): 4N3“ _ I)—————)i§;n < 01J01m> (R1, Ggm le), (2.17)

Equation (2.17) becomes simply

< L, >=< L > +xa‘(1:)(Lf’, — L%) (2.18)

and, similarly,

< L3 >=< L >-(1- 2:)a(:1: )(L0 - L0). (2.19)

Now, let’s take a closer look at a‘(:1:). If the bonds are distributed randomly on

the lattice, the pair—correlation function becomes

< 03501", > — < 0.5 >< 01m >= 4.7:(1 — I)6,‘j'1m. (2.20)

So Equation (2.17) is no longer 1: dependent

a’ = 2K [E,--(G,~,-—G,~,)-R,-,~] (2.21)

= 211/2

2

3,

where ij is a nearest—neighbor bond, d, the dimensionality of the network and

z, the coordination number. This result was first found by Feng, Thorpe and

Garboczi (1985) in the context of rigidity percolation.

It is also possible to obtain the fluctuations of the bond lengths. One can

calculate directly by squaring Equation (2.17). In the random distribution limit,
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we find that all the distributions are identical, and have widths

<L‘,’,2>-<L‘,’,>2 = <L‘1’32>-<L‘},>2 (2.22)

= 2(1— :1:)a"(1— a')(Lg — L2,)?

This result is not as surprising as it may appear. It simply represents the local

nature of the relaxation. Since no bond knows the total concentration for A and

B bonds on the lattice, on a local scale, bonds from different species see identical

configurations and hence have similar distributions. Finally, one can obtain the

total strain energy of the bond—mismatched lattice by the back door, using the

Feynman—Hellman theorem (Feynman (1939))

%< €(p) >= ($2). _ (223)

where e is the energy density. From Equation (2.17), we see that only the natural

lengths enter in the average bond energy which we can express as

< 6 >= ADE,“ + 8L5},2 + CLng. (2.24)

The derivative with respect to L9, gives

 

6

if; = 2AL‘3, + CLg. (2.25)

Comparing this result with

66 o

m = K(< LA > —LA)1 (2.26)

and using similar equations for [1%, one finds easily that the average bond energy

is

e = $30 — x)a'(L‘3, — L2,)”. (2.27)

All these results are shown in Figure 2.3 with a comparison between theory and

computer simulations. In all cases, the agreement turns out to be excellent.
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distribution and the partial lengt s as a function of concentration :1: in bond a1 oy

141-38,. The d’s are renormalized lengths such that the topological rigidity a" is

given by the difference < d3 > - < dA > (Thorpe and Garboczi, 1990).
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2.2 Force constant disorder

The first condition put on the pair potential was to demand that all the force

constants be the same. This limitation comes from the form of Equation (2.8).

We know how to solve this equation exactly only when the disorder is limited to

the vector v, on the right hand side, not in the dynamical matrix itself. It is,

however, possible to develop an effective—medium theory that will allow a certain

understanding of the role of the force—constant disorder in changing the exact

solutions presented before. Since I will discuss this problem with more details in

chapter 3, I will only add that the main effect of this disorder is to slightly curve

the straight lines of the Z-plot as can be seen in Figure 2.4. In the case of bond

disorder, the effective medium theory does a very outstanding job in predicting

the correct curvature. Also, the curvature is noticeable only when the difference

between the force constants is large (KA = 2K3 in Figure 2.4). When the two

force constants vary only by 10 or 20 percent, the lines are straight enough that

we do not need to bother with this effect given current experimental accuracy.

2.3 Site—mismatch

For the site—mismatch problem, the solution is almost the same although the

analytical part is a little more difficult. Instead of two partial lengths, there are

three. Defining the average length as

< L >=(1— :1:)2L3M + 2:1:(1— 101233 + 3214(1)”, (2.28)

Chen and Thorpe (1992) have shown that

< L1,. > = < L > +a'22A — m" [L993 - L?“ + (2:1: —1)A] , (2.29)
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< L33 > = < L > +a'(l — T)2A + (1 — 2:)a" [ng — L?” + (22: —1)A],

< LAB > = < L > +a‘a:(1 — 13)A - (:1: —1/2)a”[L%B — L?” + (2.1: -1)A] ,

where

A = L333 + L3,, - 2L3,B (2.30)

and

_ K

— 16Nz(1— :1:)

 Z < (1+ a,)(1+ 0,)(0, + am) > 11,-,- - Gim - Rm. (2.31)

ijm

The energy density is

E: -§I(.1:(1—.1){(1—a1")[1+6(1+2..~.—1)]2 (2.32)

+2(1- a')522=(1- 17)} (Lisa - LEV.

with

A

6 = . 2.33

(L9... — L9...) ( ’

However, the computation of the partial length fluctuations become extremely

 

difficult unless one sets A = 0, which corresponds to defining L23 as the arithmetic

average of the two other lengths. In this case,

< LEM > - < L111 >2 < L233 > - < L33 >2 (2.34)

= <LiB>—<LA5>2

l

= 5:1:(1 — 1:)a"(1 — 11").

Again, and for the reason given before, all the distributions are identical.

2.4 a* and a**

In the two previous section, we have encountered two parameters: a“ and a".

The first one appears in the bond—mismatch problem and the second one in the
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site—mismatch problem —alone if LA3 = (LAA + L33)/2. The knowledge of their

value gives a complete understanding of all quantities presented before and some

more that I will discuss in the next section. In order to understand the meaning

of these parameters, let’s take a look at Equations (2.17) and (2.31). We first see

that there is no disorder included in their definition. Both parameters depend

only on the Green’s function of the perfect crystal. Since their value reflects the

topology of the system, they are called topological constants. Note also that the

summation is only on the nearest—neighbors and so its value reflects the local

connectivity of the lattice.

Even if Equations (2.17) and (2.31) define completely the two topological

parameters, it is useful to describe them in a more physical fashion. As mentioned

previously, a" was previously introduced by Feng et al. (1985) when solving a

topological rigidity problem. In that paper, the authors obtained the topological

parameter by calculating the force needed to pull on a bond with force constant

K but inserted in a lattice. Obviously, this force will be greater than if there was

no lattice. It can be described as

K i

F = —u (2.35)

where u is the displacement from the equilibrium value of the bond. When a‘ =

1, it is as if the network was non—existent or floppy. The other limit, extreme

rigidity, is achieved for a‘ = 0, where only an infinite force can produce a finite

displacement.

Similarly, one can obtain a physical meaning for a". In this case, it

represents the response of the lattice to trying to open up a cage in order to intro-

duce a larger atom. Figure 2.5 gives a physical representation of the topological

parameters. This simple picture works well for bulk alloys. However, it needs
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Figure 2.5: Physical representation of the topological rigidity parameters. (a) a‘;

(b) a”.

some refinements when one looks at the surface as we will see in chapter 6. From

the definition 2.17 for a‘, for a two—body potential, the more neighbors an atom

has, the more rigid is the lattice locally. This relation also applies for a". For

an unstable lattice, the previous equation is invalid and the topological rigidity

parameters are simply 1.

Finally, in many instances, especially those involving angular terms, it is

simpler to measure directly the topological rigidity parameter from the Z—plot, i.e.

from the average partial lengths as a function of concentration. From Equation

(2.17), one easily sees that by taking the mismatch Lg - L2, as the unit length,

then the distance between the two partial lengths is a', for bond mismatch and

a" for site—mismatch with A = 0.
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2.5 Semiconductors

In the case of a semiconductor, it is imperative to include an angular term in the

potential in order to stabilize the lattice. The Kirkwood potential is preferred

over the more usual Keating potential since Kirkwood separates completely the

angular term from the stretching term,

a 2 [3 l

V = 5 2 (L1,- — L9,.) + gL3 Z (coso,,-. + 5). (2.36)

<U> <th>

Here, the two force constants C: and 0 have the same dimension while LC is the

average length in the system. Using again the first order approximation in the

displacement from equilibrium as given by eq. 2.6, it is possible to express the

potential energy in a quadratic form

1

V = §u+Mu + u+<I> + E, (2.37)

where u is the vector displacement from the equilibrium position, M is the connec-

tivity matrix and 1’ contains the internal strain due to disorder. The derivative of

this equation with respect to 11 gives us an equation with the same form as Equa-

tion (2.8) and hence, can be solved exactly. Cai and Thorpe (1992a) obtained a

complete solution for quaternary semiconductors.

In chapter 4, I will present the binary case that is a special case of the

general solution. However, a few details should be pointed out here. First, the

topological parameters are function of the ratio of the angular force constant

to the stretching force constant, fl/a. For a zero angular force, the diamond

lattice is completely floppy and therefore unstable. The typical range of this

ratio, for semiconductors, is between 0.1 and 0.2 with the notable exception of

diamond where the ratio is more like 0.6. Second, the solution found by Cai
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and Thorpe includes the complete first— and second—neighbor distances for all the

partial lengths. For the second-neighbor bond length a new topological parameter

is introduced

.. 8
b (fl/a) = al/EZ, 0131.13", (2.38)

J

where j’ is a first neighbor of i while 1" is one of its next—nearest neighbors. The

physical significance of this parameter is related to the opening of the shell asso-

ciated with the second neighbors. Although, there is no formal relation between

a“ and b“, it has been found numerically that for most of the range of the values

3/0
fit'

a
b.‘ = .

2

 (2.39)

Figure 2.6 shows these two topological parameters as a function of the ratio of

force constants. Since the edge of the curve on this figure has a large uncertainty,

one can not rule out that this relation holds everywhere. We have not been able,

however, to provide a formal proof or a physical argument supporting this relation.

Nevertheless, since it works numerically, it is possible to use it in order to simplify

the second-neighbor equations.

2.6 Correlation

It is possible to include correlation effects through the topological constants. Go-

ing back to the definition of, say a‘, the correlation can be included in < 03-1-01", >.

Thorpe and Garboczi (1990) and Chen and Thorpe (1992) studied correlated sys-

tems for bond and site mismatch respectively. This problem is very difficult to

solve analytically in all cases execpt for a handful of special functions.

Using a scheme forcing clustering for the first neighbor interaction, Thorpe
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This data is from a numerical calculation (Cai and Thorpe, 1992a).

and

Garboczi(1990) obtained the results shown in Figure 2.7. In spite of

clustering, one could easily fit a straight line through the simulation and conclude

that there is no correlation. Because of this, it would be useful to be able to

introduce correlation only when the experimental results are precise enough to

distinguish between correlated and uncorrelated alloys.

2.7 Conclusion

The general theory of mismatched alloys developed during the last five years

present a very useful scheme in order to understand the meaning and significance of

recent experimental measurements. Although an exact. solution is obtainable only

in certain limits, it is possible to solve it numerically in more complex situations.
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The physical content of the equations is simple and robust since the problem

involves only the topology and connectivity of the pure crystal.

It would be feasible to add complexity to the equations by adding force

constant disorder and correlation but, as shown here, this does not lead to impor-

tant changes in the answers but, especially in the latter case, demands a much

higher knowledge of the local order that we actually have for most alloys at present.



Chapter 3

Metallic Alloys

In the last few years, the problem of length mismatch in alloys has received con-

siderable attention both theoretically and experimentally. As I discussed in the

previous chapter, Thorpe and Garboczi (1990) have recently solved this problem

analytically for alloys with equal harmonic spring interactions between nearest—

neighbor atoms, joined by bonds with different natural lengths. Experimentally,

the development of extended x—ray absorption fine—structure spectroscopy (EX-

AFS) has provided more information concerning the near—neighbor lengths in

alloys. These partial lengths are of primary importance for a proper structural

characterization and in understanding of the deviations from Végard’s law.

From this point of view, the study of fcc binary metallic alloys is very inter-

esting since for these compounds, the deviations from V‘égard’s law are much more

significant than for example in semiconductors, as we will see in the next chapter.

The development of the embedded—atom-method (EAM) potentials (Daw and

Baskes, 1984, and Finnis and Sinclair, 1984) which have given reliable results for

the energies of pure metals, with and without impurities, and binary alloys (Daw

and Baskes, 1984 and Foiles 1985), makes it possible to take into account, in a

39  
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simple way, some of the electronic effects. The EAM potentials are, in general,

fast to compute, allowing the use of very large supercells, which is important when

trying to extract statistical information from random alloys. The version chosen

for the present study is the Johnson EAM potential (Johnson, 1988, 1989, 1990),

developed recently and possessing two major advantages over other EAM poten-

tials for this study: 1) it is completely analytic and 2) it requires no additional

parameters for the alloy once the parameters for the pure metals are fixed. The

lack of additional alloy parameters has ultimately proved to be a problem, as there

are no adjustable parameters to fit experiment. In this chapter, I show that the

Johnson EAM potentials are remarkably good in some cases (e.g. NixAu1-x) but

quite unsatisfactory in others (e.g. alloys containing Pt).

Deviations from Végard’s Law for metallic alloys have been known since

the beginning of x—ray measurements more than sixty years ago. Until recently,

however, Végard’s Law was actually nothing more than an ad hoc assumption

(Végard, 1921), but it has been shown that Végard’s Law is to be expected only

in those cases where there is length mismatch accompanied by no changes in the

force constants (Thorpe 1990). As these conditions never occur in reality, the

discussion must always be about the magnitude and sign of the deviations from

Végard’s Law. These deviations are small in semiconductors, but can be much

larger in "metals. As discussed in the introduction, during the fifties, a few models

were proposed to quantify these deviations (Fournet, 1953 and Friedel, 1955),

but they all started with the assumption that the solid solution forms a perfect

network i.e., all the lengths are identical.

In this chapter, I present computer simulation results from the EAM po-

tential. I also present both analytic and computer simulation results from a much
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simpler spring model. This central force model (CFM) uses only nearest—neighbor

central forces between an atom and its 12 neighbors. It has the virtue that it can

be solved analytically in some cases, and can be used in conjunction with the

EAM results to assess the sensitivity of the results to the local environment. The

CFM is completely independent of the local configuration and incorporates the

transferability of the force constants for a particular type of bond for all environ-

ments. On the other hand the EAM effectively modifies the force constants of a

particular bond in response to the local environment around that bond. This is

accomplished via the embedding function. I shall refer to this effect as electronic

density effects in the rest of this chapter. I show that the EAM potential gives

results in reasonable agreement (better than CFM) with experiment for most of

the binary alloys composed of Ag, Au, Cu, Ni and Pd while alloys containing Pt

all deviate strongly from the EAM results. In this work, I use EAM to refer to

the Johnson EAM, and note that other versions of the EAM for alloys may well

give different results. Surprisingly, CFM gives good agreement with experimental

diffraction data for the NiCu, PdAg and all Pt alloys. These results suppose, as

we shall see in Sec. 3.4, that the electronic density effect is least important for

alloys containing Pt where one can treat the atoms as rigid objects connected by

elastic springs. I also present some analytic and computer results for the bond-

length distributions in alloys. The general features of these distribution are not,

in general, very sensitive to the particular model since they depend on topological

quantities like the number of nearest neighbors and are found to be remarkably

wide, of the order of the length mismatch itSelf.

Another quantity of interest is the variation of the elastic constants with

concentration. I have computed the bulk and shear moduli and found that these

 



CHAPTER 3. METALLIC ALLOYS 42

quantities are also rather insensitive to the model used. In particular, both the

EAM and the CFM show very similar results for the bulk modulus. As there exists

almost no experimental data for the elastic moduli in bulk alloys, the results I

present here must be considered as predictions to be confirmed or otherwise by

future experiments.

3.1 Embedded—atom method

The embedded—atom method was first proposed by Daw and Baskes (1983, 1984)

and was based on the quasiatom or effective medium theory (Stott and Zaremba,

1980). In the quasiatom theory, an impurity interacts with a local and almost

uniform environment. We can describe the energy as

Equas = EZ (ph(R)) (31)

with E2 the quasiatom energy of an impurity with atomic number Z at site R

for a host electronic density p1,. One can of course add an elastic deformation

term Em to take into account the lattice deformation but this technique can

only study single and well-defined impurities, not cracks nor surfaces. Daw and

Baskes extended this formalism to treat all atoms as impurities embedded in the

host consisting of the other atoms. Therefore, using simple energetics, it became

possible to go much beyond the pair potential without a significant increase in the

efforts. At the same time, Finnis and Sinclair (1984) introduced a tight-binding

model that turned out to be completely equivalent mathematically to the Daw

and Baskes model; only the physical interpretation differs. Since these potentials

are empirical, this difference leads to no consequence.

Before discussing further the details of the potential, I want to mention
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a few points. The use of a general EAM potential for alloys commands that the

function describing the atom and its reaction to the local electronic density be the

same for all metallic species involved in the calculation. Recently, Jones (1990) has

shown that in general the results for alloys are less accurate with such potential

rather than with one expressly developed for that particular alloys. However,

when the need comes to compare many different alloys, the EAM remains the

most sophisticated method for the study of large scale statistics. In retrospect,

the EAM potential is based on the two following approximations:

1. The assumption is made that the charge density of each atom is not changed

from the isolated atom density.

2. The background charge density into which the atom is placed is assumed to

be adequately represented by the value at the nucleus of the atom.

However these approximations are not as crude as they may sound since

the potential is largely empirical. Moreover, that the EAM potential has proven

to be very accurate in many different situations.

As I already mentioned, the Johnson (1989) version of the EAM potential

was used for the simulations, and I will summarize it below. In EAM,'the electron-

density functions are only determined to within a scaling factor. For pure metals,

this factor rescales the embedding function. But the situation is very different

in alloys where the relation between the electron density of the two components

strongly affects the mixing energies (Foiles, 1985). The interest in the Johnson

potential is that it is completely analytic and requires no extra parameter for the

alloys. All the parameters are determined using the atomic volume, the cohesive

energy, the bulk modulus, the average shear modulus and the vacancy—formation
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energy for the pure metals. The approximation used by Johnson is based on

the preservation of the invariance of the energy under a gauge transformation

involving the embedding function and the pair potential. This choice of constraint

is of course as arbitrary as the arithmetic mean used by Foiles (1985), but has

the advantage of being fairly natural within the EAM formalism. In the notation

used by Johnson (1988), the EAM potential is defined by:

. 1 ' .. ’ .

E: = 2171101“) + 53;) <I>"(r.-,-).p.- = grew. (32)

where E, is the total internal energy, p,- is the total electronic density due to

neighbors j at site i, F‘(p,-) is the embedding energy for atom i and ¢(r§j) is a

repulsive ion-ion core pair potential. The prime on the summations indicates that

the self terms 1' = j are excluded. The functions used in the potential are defined

as follows: . .

9‘10) = g [f—fiqflr) + (if—32(1)] (3.3)

and

073‘ 0718' 1710"

F‘(p) = —E;'(1—In[(f—) D (g) —6¢; (g) , (3.4)

where

1‘0) = fiexp [-13:11/11 — 1)] (3.5)

and

¢I(r) = (biexp [—7‘.(r/rf3 — 1)] . (3.6)

The parameters used in this work are the same as those given by Johnson (1989)

and are shown in Table 3.1.

The EAM potential for pure cubic metals is not restricted by the isotropy

relation Cu = 2044 + Cu of the CFM, which is rarely obeyed in metals. However
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Table 3.1: Parameters for the Johnson EAM potential. fl is the atomic volume

3 . I

(A ), only the ratios of the f, are relevant and the other parameters are dimen-

sionless.

Atom 0 f. <15. 0 fl 7
 

Cu 11.81 0.30 0.59 5.85 5.85 8.00

Ag 17.10 0.17 0.48 5.92 5.96 8.26

Au 16.98 0.23 0.65 6.37 6.67 8.20

Ni 10.90 0.41 0.74 4.98 6.41 8.86

Pd 14.72 0.27 0.65 6.42 5.91 8.23

Pt 15.06 0.38 0.95 6.44 6.69 8.57

the EAM potential does allow only two independent elastic constants, and as a

result imposes the general EAM condition Cu = C44+C12 which is reasonably well

obeyed for many fcc metals (Jacobsen, 1988). I have found (numerically) that the

relation Cu = C“ + Cl; still holds for alloys, so that there are only two, instead

of three, independent elastic constants. As the bulk modulus B = [Cu + 2012] /3

and the Voight average shear constant G = [3044 + (Cu - 012)] /5 are fitted in

the EAM potential for the pure metals, I use these as the two independent elastic

constants for the alloy.

3.2 Central force model

In order to get an idea of the importance of the redistribution of the electronic

charges in the alloy, and to gain some perspective on the EAM model, I have

compared the results of the EAM potential with a simple nearest—neighbor spring
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model (CFM). The total energy for an A1_,,Bx alloy is given by

l o 2

E = 2 2 1(.-,- (L1,- — L,,-) (3.7)

<i.j>

where the A-A and B—B spring constants and equilibrium lengths are taken from

the parameters for the pure metal as given by Johnson (1989), and the additional

alloy parameters are chosen to be

 KAB = i (3.8)

and the natural (unstrained) lengths are

1

L248 = ‘2‘ (L314 '1” 14%8) . (3.9)

The angular brackets < > in the summation in Eq. 3.7 indicate that each

nearest-neighbor bond is only counted once. The spring constants are functions

of the bulk modulus B and the nearest—neighbor distance L‘J (Feng et al., 1985)

3L°
K = MB. (3.10)

The mean and variance of the bond length distribution become particu-

larly transparent within the CFM when all the force constants are equal, as the

model can be solved analytically. The mean lengths and their variances can be

expressedas a function of a”, the topological rigidity parameter defined in terms

of the radial force on the 12 nearest neighbors, required to open up a cage. These

results have been described in the previous chapter.

It is also possible to find the effective elastic constant Ke by an effective

medium theory (Thorpe and Wang, 1987) when the force constants vary. It can

be shown within the CFM that the equations for the lengths and spring constants

decouple so that the effective spring constant K,3 is independent of the length



CHAPTER 3. METALLIC ALLOYS 47

mismatch. From effective medium theory, and using the relation (3.8), we have

(1 — your“ — K.) 2(KBBK.)

K.(1- P1) + KAAPI 11’.(l - P1) + Keep:

  :0, (3.11)

where p1 = %(1 + 0“) determines the initial slope for the conductance (Thorpe

and Wang, 1987, and Cai et al., 1990), which obeys the same effective medium

equation as the spring constant. Equation (3.11) is a quadratic for Kc, which

always is sublinear and monotonic in the concentration 2:. As we will see in the

Sec 3.4, these analytical results are very close to the ones obtained with the EAM.

The CFM is a very simple and somewhat crude model, but gives surprisingly good

results for some of the alloys, particularly those containing Pt.

3.3 Computer simulations

The computer simulation results shown in this paper for both the EAM and CFM

have been obtained by statically minimizing the total energy using a conjugate—

gradient program developed by Press at al ( 1986) (see appendix A). I have checked

this algorithm against the simplex algorithm as well as against analytical results

(see next chapter). The conjugate—gradient method is in general faster than the

simplex method and at least as accurate. Moreover, it is in almost perfect agree-

ment with the exacts analytical results presented for c-SiGe alloys. The simula-

tions have been performed with 4000 atoms in an fcc arrangement with a cubic

supercell and periodic-boundary conditions. In the relaxation, all the atoms were

free to move and the volume of the supercell could change while remaining cubic.

The elastic constants are computed by varying the shape and/or size of the unit

cell appropriately and re—relaxing the system. This method leads to three figure

accuracy, which is comparable or better than the available experimental results.
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It was found that the supercell was large enough so that it was not necessary to

do any ensemble averaging.

3.4 Results

In Figs. 3.1 — 3.6, I compare the EAM and CFM computer simulation results

with diffraction data where available, and with EXAFS data for Ni1.,,Aux in

Figure 3.6. In Figure 3.1 for AuAg, the EAM results agree extraordinarily well

with diffraction data and are clearly superior to the CFM results. Because Au

and Ag atoms have very similar sizes, one Would expect this case to be quite

uninteresting as indeed the results are for the CFM. The experimental data show

a minimum in the mean length at about :1: 9: 0.4. Fournet (1953), using an elastic

sphere approximation, predicted that the deviation form Végard’s law should be

maximum for very small length mismatch but gave no number and was working

in the virtual crystal approximation. As seen in Figure 3.1, the EAM follows

almost exactly the experimental data except at low concentration of Au, where

the difference is only due to the fact that the lattice parameter of pure Ag has not

been taken at the experimental temperature to fit the parameters for the EAM

potential. For this alloy only, the simulation results have been obtained using a

polynomial potential with a cut-off radius after the third shell of neighbors. This

potential is very similar to the one described here, for more details see Appendix B.

I used a longer range interaction for this alloy because Johnson (1990) mentioned

that it is the only one which shows some change in energy with the range of

interaction. All the other alloys studied here are quite stable under such a change.

Note that the condition Cu = C'12 + C“ is not obeyed in either the pure materials

or the alloy due to the further neighbor interactions. It is worth mentioning
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Figure 3.1: The mean A-A, A-B, B-B nearest-neighbor distances and the lattice

parameter are shown for the alloy A1-,Bx. Dashes are for A—A distance; dot—

dashes, for A-B distance; dots, for B—B distance; and the continuous line is for

the mean distance. The symbols are experimental data. The upper panel is for

the embedded atom method (EAM) and the lower panel is for the central force

model (CFM). This figure is for Au1-,Ag,. The diffraction data for Au1_,,Agx

(Karmazin, 1969) is shown as diamonds.
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that Ackland and Vitek (1990) also see a minimum with their EAM potential

but around a: z 0.5. The behavior of the Au—Au bond length in this alloy is

quite strange; instead of becoming closer to the length of the Ag—Ag bond, it

decreases by more than 0.07A (3%), close to 10 times the length mismatch! This

behavior can be explained by looking at the parameters for the potential: the

easiest way for the Au atom to satisfy its need for a large electronic density is to

become closer to another Au atom. But, besides the mean length which agrees

with the experiment, it is impossible to tell whether or not this behavior is real.

As this behavior is probably too small to be discerned by EXAFS, only ab initio

calculations, especially of Au—Au pairs in Ag, can give further insight into this

phenomenon.

In Figure 3.2, the results for CuAu alloys show that the EAM and CFM

are about equally good, but do show systematic discrepancies with the diffraction

results. The results for CuPd in Figure 3.3 give impressive agreement with the

diffraction results for both EAM and CFM. The partial mean lengths are also

similar, suggesting that electronic density effects do not make much difference

here. In contrast the results for PdPt in Figure 3.4, show that the CFM is superior

to the EAM in reproducing the diffraction data. The CFM produces a very narrow

range of mean lengths in this case with a minimal amount of bowing. The results

of EAM and CFM are quite remarkably different in NiAg as shown in Figure 3.5,

giving bowing with opposite signs. There is no experimental data on NiAg as it

phase separates.

In Figure 3.6, I present the results for NiAu alloys, which are particularly

important at the present time, as this is the only fcc metallic alloy for which there

is EXAFS data (Renaud et al., 1988). This alloy was chosen for the first EXAFS
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Figure 3.2: Same as Figure 3.1, except for Cu1_,Aux. The diffraction data for

Cu1..,Au, is shown as diamonds (Linde, 1932; Nix and Macnair, 1941; Newkirk,

1953; and Lihl et al. 1971).



CHAPTER 3. METALLIC ALLOYS 52

 

h

' Cu,-,Pd,

2.8 TYTWT'rrrIflYTI‘rTIIfi‘T'TITj

. l
T

\ \

U

o

I
0

.
A
L
‘
.

A

V
'
V
V
V
T
‘

N
N

D
i
s
t
a
n
c
e

(
A
)

  

   LLLLIIALLlllllLllLLILIH

0.0 0.2 0.4 0.6 0.8 1.0

Concentration x

Figure 3.3: Same as Figure 3.1, except for Cu1_dex. The diffraction data for

Cu1-,Pd, is shown as diamonds (Pearson, 1958).



CHAPTER 3. METALLIC ALLOYS 53

 

‘11Yr1rTT'II‘rrYVITrl—TIYITTfi'

l
N
N

D
i
s
t
a
n
c
e

(
A
)

 

  
CFM 1 2.70 .LLLUJ.“L1“+L1UU _

0.0 0.2 0.4 0.8 0.8 1.0

Concentration it

Figure 3.4: Same as Figure 3.1, except for Pd1_th,. The diffraction data for

Pd1-,Pt, is shown as diamonds (Darby and Miles, 1972).



CHAPTER 3. METALLIC ALLOYS

 

   

  

l

r

l

l

A "

04
v

0

0

:3

d

a 1

U)

0—0

Q -

- - .a
z ,

z 2.8 *— ...’ I-’ i

:- ..- .I. /q

I / d

/

/

// d

r- ".1" x/ ' -*

2.6 FD...~"./' //
.—

U.” /’ J

C,’ CFM

lllLLWLllJLJlLlIJlJlJJ
 

0.0 0.2 0.4 0.6 0.8 1.0

Concentration 1:

Figure 3.5: Same as Figure 3.1, except for Ni1-,Ag,.

 



CHAPTER 3. METALLIC ALLOYS 55

study because the length mismatch between Ni and Au is about 1.5%, which is

around the upper limit for forming solid solutions (Hume-Rothery, 1948). The

EAM results are good for all the partial length distributions and clearly superior

to the CFM. Note that some of the error bars on the EXAFS results are quite

large. Note also that the EAM and CFM give bowing of opposite sign for the

mean length. The difference between these two sets of results, suggests that

electronic density effects are significant in NiAu alloys. The agreement obtained

here between experiment and EAM is good. The large experimental uncertainties

at low Ni concentration cannot discriminate between the EAM and the results with

the Morse potential, used by Renaud et al. (1988), but the Morse potential gives

a crossing of the Ni-Ni and Ni-Au curves which is perhaps less acceptable that

the results presented here. Comparing with earlier EAM simulations by Ackland

and Vitek (1990), using the Finnis—Sinclair model for CuAu and AuAg, and Foiles

(1985) using the Daw-Baskes model for CuNi, we see that the overall behavior of

the Johnson EAM potential produces a smoother variation of the lattice constant

with concentration.

In Figs. 3.7-3.9, I show only the more successful of the EAM and CFM

results for each alloy, as determined by comparison with the diffraction data. In

all nine cases shown, one method was clearly superior to the other. Surprisingly,

when examining results in Figs. 3.1-3.9, the CFM is superior to the EAM in at

least as many cases as the EAM is superior to the CFM. Table 3.2 also shows

that the there is no clear preference for one approach over the other, which was of

considerable surprise to us. With alloys containing platinum, the Johnson EAM

potential does not give the right curvature for the mean length. Johnson already

showed that his potential is weaker for Pt. It seems that the crude electronic



CHAPTER 3. METALLIC ALLOYS 56

 

}rTTTlFrIIII—TrT—TITUFIIVII

 

2.8

 

N
N

D
i
s
t
a
n
c
e

(
A
)

 

 
2.8

 

CFM ‘

ILALLJJLLRILLILLJIIIIIL

0.0 0.2 0.4 0.8 0.8 1.0

 
Concentration it

Figure 3.6: Same as Figure 3.1, except for Ni1_,‘Aux. The diffraction data for
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bars, is also taken from Renaud at al.. The diamonds, squares and small circles
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model used in the embedded—atom method is not sufficient for platinum. But

surprisingly, the CFM (with no adjustable parameters) is in very good agreement

with the mean experimental nearest-neighbor distance for all but one alloy for

which the embedded—atom potential fails (see Table 3.2). In Figs. 8 and 9, the

simulations using the CFM and the diffraction results for the PtAg, PtAu, CuPt

and NiPt are shown. There are small discrepancies for the NiPt alloy, although the

curvature is negative, the same as in the experimental results. For PdPt, shown

in Figure 3.4, the CFM does not give better agreement with experiment than

the EAM potential, both having the wrong sign for the deviation from Végard’s

law. Figure 3.8 shows CFM simulations for NiCu and PdAg, which, as one can

see, agree with the experimental data. In the next chapters, we will see that

semiconductors can be described analytically by a simple harmonic spring model

(with angular forces) because they approximately obey Pauling’s rule of additivity

of atomic radii, as expressed in Eq. (8). The results of simulations would suggest

that platinum alloys also respect the Pauling rule with no or little anharmonicity

in the potential.

A selection of results for the elastic constants is shown in Figure 3.9;

experimental elastic data for alloys are virtually non—existent. But the smooth,

rather uninteresting, behavior in every case might lead us to suppose that they

are not too far from the real behavior, especially as the CFM and EAM give very

similar results. The relation Cu = C“ + C12 holds for every concentration x

within the limits of the precision on the numerical calculations using EAM for the

alloys. In Figure 3.10, I present the bulk modulus and the Voight average shear

modulus, computed using the EAM. The results for the pure metals are exact as

they were used as input in determining the parameters in the EAM. Computing
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Table 3.2: Alloys for which the EAM or the CFM gives the lattice parameter in

agreement with experimental diffraction results (shown by a bullet). The crosses

indicate disagreement with experimental results, and the blanks indicate that no

experimental data was available. The third columns refers to the Figure number(s)

in this paper where the results are shown.

Alloy EAM Central Force Figure

 

AuAg o x 1, 10

CuAg o x 7

PdAg x o 8

CuAu o o 2

NiAu o x 6, 10, 11

PdAu o x 7

NiCu x o 8

CuPd o o 3

NiPd o x 7

PtAg x o 8, 10

PtAu x o 9

CuPt x o 9

NiPt x o 9

NiAg 5

PdPt x x 4
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Figure 3.7: Showing the EAM results for Cu1-,Ag,, Pd1_xAu,‘ and Ni1_,‘de in

the three panels. In all cases, I show only the EAM results which were clearly

better than the CFM results when compared with diffraction data (Pearson, 1958;

Nagakura et al., 1966; Mealand and Flanagan, 1964; and Bidwell, 1964).
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Figure 3.8: Showing the CFM results for Pd1_xAgx, Ni1_,‘Cux and Pt1_,‘Agx in

the three panels. In all cases I show only the CFM results which were clearly

better than the EAM results when compared with diffraction data (Coles, 1956 ;

Owen and Pickup, (1934); Lihl et al., 1971; Johansson and Linde, 1930, Novikava

and Rudnitskii, 1957, Klement and Lui, 1963; and Ebet et al., 1983).
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the bulk modulus with both the spring model and the EAM potential, I find that

its behavior is not very sensitive to the model used, and well described by the

simple effective medium theory as given by (16). This effective medium approach

must be applied separately to the bulk and shear moduli by fitting the end points

via KAA and K33. Note that the effective medium theory is designed to get the

correct initial slope for small 1: and 1 — a: (Thorpe and Wang, 1987). I find also

that the behavior of the elastic constant is very different from that determined

by Ackland and Vitek (1990). The calculation shows no change of curvature with

the concentration in any of the alloys studied in this paper, as they observed for

CuAu. Some experiments would be useful here.

Figure 3.11 shows the bond—length distribution for the CFM with all

the force constants equal and for the EAM potential. The CFM with equal spring

constants can be solved exactly to give the result 2.22 for the widths, in agreement

with the simulation results shown in Figure 3.11. The widths for the three peaks

for the CFM in Figure 11 are all equal and indeed the shapes are all similar apart

from a vertical scale factor. The CFM results are rather different from the EAM

results, but have the important common feature that the widths are comparable

to the peak separation. The full width at half the maximum, compared to the

peak separation < L33 > - < LM > is given by

 

(1 - a"')
a.’

2\/;r(1- x)ln2 (3.12)

where I have used the relations given in chapter 2 (Eqs. 2.29 and 2.34). The

lattice enters through the topological rigidity a". At a: = § the ratio (3.12) is

much larger for metals, 2 1.48, than for semiconductors, 9: 0.18, where a similar

relation exists, so that the length distributions are wide in the metal alloys studied

here as seen in Figure 11. In semiconductors the component peaks are more
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separated. These results make it very hard to justify using any virtual crystal

type of approximation for the electronic properties of alloys, even at the crudest

level.

3.5 Conclusion

This work gives no clear result in determining as to whether the central force

model (CFM) or the embedded—atom method (EAM) is superior. For platinum

alloys and a few others, the CFM is clearly superior, but in all other cases the EAM

is better. This may be related to the amount of electronic density effects in the

alloy. The Johnson RAM is very successful in NiAu alloys; the only case in which

EXAFS data is available. The surprising contraction of the Au-Au bond in Ag

rich AuAg alloys within the EAM, points out that more ab initio calculations are

needed for both single and pair defects in metals. Armed with this information, it

will be possible to construct EAM potentials that will interpolate over the whole

concentration range. In the absence of such calculations, the present results can be

taken as a guide, but with a good deal of skepticism. The CFM explains why the

widths of the length distributions are so wide, when compared to semiconductor

alloys. This is because the fcc metal lattices have a topological rigidity parameter

a " z 0.24 as compared with semiconductors where a" 2 0.8. The width of

these distributions means that the virtual crystal approximation is particularly

inappropriate in metallic alloys.

The effect of variation of electronic density is important in many cases and

is taken into account by the embedded-atom-method potential and is sufficient

in many cases to give the correct variation of the lattice parameter with the

concentration for most alloys, not containing Pt. The elastic constants show
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monotonlc behavior with the concentration, and seem to be insensitive to the

model used.



Chapter 4

Crystalline and Amorphous SiGe

The SiGe alloys represent an important opportunity for the micro-electronic in-

dustry because of their opto—electronic properties when deposited as a multilayer

alternating with Si. To fully understand their properties, it is necessary to obtain

a good knowledge of the effect of length mismatch, which is about 4%, on the

strain. Recently, a few experimental and simulational papers have been published

on this topic (de Gironcoli, et al., 1991; Matsuura et al., 1991; Weidmann and

Newman, 1992; Incoccia et al. 1985; and Nishino et al., 1988). In this chapter, I

examine the mismatch problem in bulk semiconductor binary alloys, which are a

special case of the general theory for quaternaries, presented in Cai and Thorpe

(1992a, 1992b). I will concentrate on studying the effect of length mismatch for

the SiGe alloys and show that it is possible to understand most of the important

structural features with the help of simple analytic results.

Amorphisation is also a very important phenomenon in semiconductor

technology, as amorphous materials often share similar electronic properties with

crystals while being much easier to grow (Stutzmann et al., 1989; and Mackenzie

et al., 1985). Very little work has been done to date to study the effect of amor-

67
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phisation on the length mismatch problem. Incoccia et al. (1985) and, a few years

later, Nishino et al. (1988) have measured the Ge—Ge and Si-Ge nearest-neighbor

distances in hydrogenated amorphous silicon (a-SiGe) but I am not aware of any

computational or analytical work. Schemes for constructing a perfect tetrahe-

dral amorphous structure (i.e. every site is fourfold coordinated) with periodic

boundary conditions were introduced a few years ago (Wooten et al, 1985; and

Wooten and Weaire, 1987). When studying amorphous systems, analytical results

for structural properties are usually difficult to obtain since one cannot generally

use expressions valid in the pure crystal limit. However, the situation in a—SiGe

is made tractable because the length mismatch in SiGe is small and therefore

the strain induced by the alloying can be treated as a perturbation on the ideal

amorphous network. Such behavior allows us to use the theory developed for the

crystalline case without any major modifications. Végard’s law is again predicted

and the topological rigidity parameter a" is unchanged by the amorphisation such

that the mean partial length equations are still valid and shown to be independent

of the amorphisation. For the next-nearest— neighbor distances, one must include

some effects due to the amorphisation and we will see that all the length distribu-

tions are completely dominated by the amorphisation, which leads to much larger

angular distortions between the tetrahedral bonds, than does the alloying.

In section 4.1, I describe the theory for a binary alloy of the form A143,,

for Si1-,Ge,. with results for the nearest and next—nearest neighbors. In section

4.2, I compare the analytical results with computer simulations using the Kirk-

wood model and with some ab initio results recently obtained by de Gironcoli et

al. (1991). In section 4.3, I examine the effect of amorphisation on the strain

energy by substituting Ce for Si atoms in a a-Si supercell constructed by Wooten
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Table 4.1: The force constants a and B in N/m for the Keating and Kirkwood

models obtained from the elastic modulus Cu and the bulk modulus B = §(C11 +

2C”) (Bublik et al., 1974).

Kirkwood Keating

a [3 a 5

Si 53.09 13.81 48.49 13.81

 

Ge 42.28 11.30 38.51 11.31

(1991) using the Wooten, Winer and Weaire algorithm (1985). I compare the

results with EXAFS experiments performed on hydrogenated amorphous silicon—

germanium alloys by Incoccia et al. (1985) and by Nishino et al. (1988).

4.1 Solution for binary alloys

As discussed in chapter 2, analytical results have been obtained using the Kirk-

wood potential,

V: g 2 (ng-L?j)2+-§LZ Z (C036;jk+§)2, (4.1)

<ij> <ijk>

where a and 19 are taken to be the same for all bonds. This is a reasonable assump-

tion in the case of semiconductor alloys since the topological rigidity constants

are not very sensitive to changes in the elastic constants and, as can be seen in

Table 4.1, differ only by about 20% between pure Si and pure Ge (Bublik et al.,

1974). As there is no evidence for any appreciable bowing in the partial lengths,

there is no reason to go beyond this assumption for SiGe alloys. The mean length

L, is introduced in (4.1) so that the ratio 18/a is dimensionless. For the potential

(4.1), the mean length follows Végard’s law.
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The natural (unstrained) lengths Lily‘s,- and Lche are obtained from the

pure crystals while the mixed length Lgiac is taken to be the arithmetic average

I
F
"

LgiGe = (Lgi51' + LgeGe)' (4.2)6

N

Although inappropriate for most metal alloys, the additivity of the atomic radii

(Pauling, 1967) has been found to hold generally for semiconductors. Martins and

Zunger (1986) obtained a value very close to sum of the radii of Si and Ge in a

first-principles self-consistent calculation of an ordered zincblende SiGe structure.

The solution for binary alloys can be obtained directly, as mentioned

earlier, as a special case of the general solution for quaternaries presented in Cai

and Thorpe (1992a) where A = C = Si and B = D = Ge in A1_,BxC1_,,Dy. The

mean lengths are then given by

L8 = (1 _ x)LgiSi + ngeGe

< L515; > = Le - 30" (148.0. " Lgisz')

< LGeGe > = < L3151 > “Hi" (LgeGe "’ Lgiss')

1

< Lsgae > = §(< LGeGe > + < Lsgsg >) . . (4.3)

The topologiCal rigidity parameter, a“, is defined by a lattice integral and is

related to the ratio of force constants fl/a by an interpolation formula (Cai and

Thorpe, 1992b):

u _ 1+ 1.249(fl/a)

- 1+ 3.600(fl/a) + l.171(fl/a)2'

 (4.4)

that is valid for any reasonable value of fl/a.

The second moments of the three length distribution functions about their

centers are given by

< LSiSi > - < Lsgsg >2 = < [420803 > - < LGeGe >2
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= < 142510: > - < Lsgac >2

1 .. 2

= 5'30 — 2:)a1 (LgeGe — LgiSi) (4-5)

where a'i" is defined as

a(W3!)

8y '

where y = fl/a The third moments can also be computed; they are all identical for

 

a," = (4.6)

the three distributions and vanish at :1: = 0.50 (Cai et al., 1990). Using supercells

of up to 125 000 sites relaxed with a Kirkwood potential, Weidmann and Newman

(1992) confirmed numerically that the bond length distributions are identical for

Si- Si, Si-Ge and Ge—Ge at all concentrations. A

The strain energy per atom can also be written as a function of the topo-

logical rigidity parameter

a .. .

6 = 555(1 _ I)(I _ 0' )(LgeGe _ Lg‘iSi)2' (47)

From the general theory for quaternaries, one can obtain all the next—

nearest—neighbor distances,

< L >332“ = L2“

(LgeGe—Lg'iSi) \/§ ..(2$-1+€2) f..( €1+€3
+ 2 3a 2 + 8b 2x+1— 2
 

where L2“ = ML: is the mean next nearest neighbor distance and e is +1 for

Si, and —1 for Ge. It easy is to see that all the distances are, contrary to the

results obtained for pseudobinary alloys (Cai and Thorpe, 1992b), a translation

of the same straight line. Here, as the two sublattices contain the same atoms,

one cannot distinguish between them and the slope for the six curves is the same.

There are two groups of curves, corresponding to the type of atom sitting at
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the center of the triplet. Using results from Cai and Thorpe (1992a), the mean

next-nearest neighbor distances can be written explicitly as

L0 _ 0.... '
< LSiSiSi > = LGn _( GeGe Lbzbi) fian- $+ \/§bu 223]

2 l. 3 8

L0 .. LQ. _ '
< LSiSiGe > = Lremn _ ( GeGe 8131) fian- I + \/§bte (21. _ 1)]

2 L 3 8

L0 - L°.. .
< LGeSiGe > : Licmn _ ( GeGe .5151) \/§aae 1' + \/§btt 2(3 _ 1)

2 3 8

and

L0 — L0... .
< LSiGeSi > = L211". _ ( GeGe ‘ $1.51) flaw-(x _ 1) + \/§bxu 22

2 3 8

L0 — L°.. . 8
< [15‘0ch > = Lzmn _ ( GeGe 2 .5351) [\/;a“| (I _ l) + fibu- (227 __ 1)]

L0 —L°- -
< LGeGeGe > = L:nn_( GeG'e2 $151) [fian- (SC- 1)+\/gbnu2(x_ 1)] .

(4.9)

 

 

 

 

 

 

 

The topological rigidity parameter b" is also defined by a lattice integral and

describes the opening of the second-neighbor shell when applying a force on the

first neighbors. As explained in chapter 2, it is found numerically that b" = a"/2,

with the Kirkwood potential (Equation 4.1) (for all values of fl/a).

Therefore all the partial nearest and next-nearest-neighbor lengths de-

pend on only a single parameter, a“. This parameter can be obtained from the

Z plot via

a" _ < 1’0ch > — < LSiSz’ >
 

LgeGe — ngsg (410)

where the partial lengths are taken at the same concentration. One can then

predict the width of the nearest—neighbor bond length distribution (4.5) and all
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the next-nearest-neighbor distances using (4.9). The slopes of the set of parallel

lines for the mean next—nearest—neighbor lengths (4.9) is given by (since L2“ is

8 0 0 11 m-

\/;(LGeGe - LSiSi) [1 - 16a ] (4'11)

and the distance between the curves in the same group is ‘/3/ 128 a" ( 2;ch — Lg,5,),

also :1: dependent)

while the distance between the two groups is ‘/2/3 a" (Law, — 14955;).

4.2 Results

To ascertain the quality of this theory, as applied to binary semiconductor alloys,

I performed simulations using the Kirkwood model from which the analytical

model has been developed. I statically relax unit cells of 8(12)2 = 13824 atoms

with periodic boundary conditions using the conjugate gradient method.

From Figure 4.1, we can see that the analytical results and the simulations

performed using the Kirkwood potential correspond closely. This agreement was

expected from previous studies of similar systems which showed that the approach

used holds to a very good accuracy up to a mismatch much greater than the one

studied here (Thorpe and Garboczi, 1990; Cai et al, 1990). Also shown in this

figure are results obtained recently by de Gironcoli, Giannozzi and Baroni (1991)

who have computed the structural (and thermodynamic) properties of a relaxed

random solid solution of Si1_,Ge,, by expanding the pseudopotential to second

order about the virtual crystal. In order to compare our respective simulations, I

adjusted a” = 0.707 from their results, which corresponds to fixing the ratio fl/a

at 0.20 using Equation (4.4). By so choosing a", one determines the mean bond

lengths for Si—Si, GcLGe and Si—Ge in Figure 4.1.
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Figure 4.1: Mean nearest-neighbor bond lengths for Si1-3Ge,. The solid line is

the analytic theory compared to simulations for the Kirkwood model shown as

the solid symbols. The open symbols are from de Gironcoli et al. (1991).
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It is also possible to compare the nearest—neighbor distribution predicted

by the theory with the data computed by de Gironcoli and collaborators as shown

in Figure 4.2(a). Around a: = 0.50, the third moment of the distribution is

small and the distribution is well described by a gaussian with the width given

by Equation (4.5). De Gironcoli’s length distributions are wider than predicted

by this model. This difference lies in the fact that they obtained their results

with constant chemical potential instead of constant concentration, broadening

the distribution. In Figure 4.2(b), the same peaks are shown but they have been

moved to place their center at the origin. The heights have been rescaled but not

the widths. As predicted by the theory, all the peaks are identical. In Figure 4.3,

we see the distribution for x = 0.11 with the gaussian second moment predicted by

the theory. The small asymmetry is explainable by higher order moments. Note

that again the three peaks scale perfectly as expected. it is particularly surprising

that this scaling still holds in the dilute limit of small x or (1 - :r).

The length for the Si-Ge bond lies within the experimental error limits

of a recent EXAFS experiment performed on silicon—rich SiGe/Si(100) films by

Matsuura, Tonnerre and Cargill III (1991) where they obtain (for low. concentra-

tion of Ge), 2.375 :1: 0.02A. This error is much too big to eliminate any model of

Si1-,Ge,. To distinguish between models, an experiment would have to have an

error of no more than :t0.002A.

This theory gives the exact Végard’s law while we know from X—ray

diffraction that there is a downward bowing with a maximum deviation of about

4% (Dismukes et al., 1964). It would be possible to implement this bowing by

changing the length of the heterobond (see Appendix A). The causes of this small

effect are subtle and would require much more advanced simulations to understand
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0.45. The solid lines are gaussians using the correct weights, centers (3) and

widths. The solid symbols are from simulations using the Kirkwood potential.

The open symbols are from the simulation by de Gironcoli et al., with squares:

Si-Si; triangles: Si—Ge; diamonds: Ge—Ge. (b) The three peaks have been moved

to have their maxima at the same position and their height has been rescaled.

Symbols have the same meaning has in (a). The solid line is a gaussian obtained

with the parameters from the analytic theory (5).
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with the parameters from the analytic theory (5).
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them. In their calculations, de Gironcoli et al. (1991) obtained a 4% upward bow-

ing from their ab initio calculations.

In Figure 4.4, I show the nextwnearest—neighbor distance for all the possi-

ble triplets where the solid lines are the theory, obtained from Equation (4.8), and

the solid symbols are from the simulation. As noted in section 4.1, all the curves

have the same slope and divide in two groups. I have not found any experimen—

tal data on these quantities nor any other calculations. But as calculations and

experiments performed on Ca, Inlqu are in very good agreement with this the-

ory (Thorpe and Cai, 1992b), one expects the same in the binary semiconductor

alloys.

4.3 Effect of amorphisation

To understand the effect of amorphisation on the length-mismatch problem, one

notes that the strain energy introduced by the length mismatch between Si and

Ge is much smaller than the strain energy due to the amorphisation. One would

therefore expect the two phenomena to be largely independent of each other since

the tetrahedral topology is conserved. The effects of each kind of disorder can

than be simply added, at least to a first order approximation. we. can see that

there is no correlation between the two effects by computing the strain energy

due to the length mismatch in the amorphous network. Figure 4.5 compares

this energy with the one predicted by Equation (4.7). I subtracted the strain

energy due to amorphisation, leaving only the term due to the length-mismatch

distortions. The latter is about two orders of magnitude lower that the strain

energy due to amorphisation.

It is useful to compare the magnitude of the disorder induced by the
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length-mismatch and the amorphisation. The comparison is made for a--Si1.,,GeJc

and the numbers are obtained from the relaxation of a giant supercell containing

eight times the 4096 atom amorphous supercell recently constructed by Wooten

using the Wooten, Winer and Weaire algorithm (1985; and Wooten and Weaire,

1987). I used a giant supercell to increase the probabilities of finding specified

triplets at low a: and (1 — x). This structure is perfectly tetravalent and can be

considered as a perfect amorphous structure, containing no dangling bonds. The

cell has been relaxed with the Kirkwood potential using the parameters described

in the previous section. Because the length mismatch in SiGe is small, about 4%,

and the network is relatively floppy, the values of the structural quantities in crys-

talline SiGe random alloy do not have a large variance. On the other hand, the

amorphisation entails considerable disorder leading to wide distributions. For ex-

ample, in Table 4.2 we see that the deviation of the bond length Si—Si in crystalline

Sio,5Geo,5 is 0.2% while it is ten times larger (2.0%) in the pure a—Si. Similarly,

the standard deviation for the bond angle is 11° in the amorphous network and

only 0.77" in crystalline Sio_5Geo,5.

What effects should the amorphisation process have on the theory pre-

sented in section 4.1? Because the equations for the partial nearest—neighbor

distances are linear, depending only on the average lengths, they remain valid

here and the mean nearest-neighbor distance in a-Si is identical to the crystalline

one. The only question to settle is whether or not a“ will remain the same. From

the definition, the topological rigidity constant represents the force needed to open

up a cage in the equilibrium structure. In the harmonic approximation which con-

stitutes the basis for this theory, a" should remain essentially unchanged as long

as the coordination stays fourfold. Indeed, Figure 4.6 shows that the theoretical
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predictions are well supported by the simulation.

The next—nearest—neighbor distances must be examined carefully since

they involve second-order equations. In the pure length-mismatch problem, one

can neglect the deviations from the perfect tetrahedral angle and obtain a very

good agreement with simulations and experiments. In the amorphous material,

the angular deviations are important and one cannot neglect them.

For a triplet ij k in pure a—Si, the next—nearest—neighbor distance is given

by

mn=135n34+ msmaB mAm

where L,,- and ij are nearest—neighbor distances and the angles %— (13,1 and §—¢3

are the angles between the nearest—neighbor vectors and the next nearest bond

iIc.

Taking the average over all the triplets and neglecting correlations between

angle and bond length, we obtain

< me >= 2Lg,5, < sin¢ > (4.13)

since in a tetravalent amorphous system to first order the mean length is the ideal

length in this problem. Using the fact that, in this system, the distribution of

tetrahedral angles is almost gaussian (Mousseau and Lewis, 1990), we need only

the first two moments:

<0>

2

 <¢>= (4M)

where 0 is the bond angle. If the angular distortions are large enough, we cannot

approximate < sin¢ > by sin < 45 >, and we must include higher order terms.

Expanding around < <15 >, we obtain

< sin¢ > = sin(< 03 > +645)
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Table 4.2: Values of various quantities in the a—Si network and in the crystalline

binary sem1conductor Sio,5Ge0_5.

Slo,5Geo.5 a-Si

 

Ar5,5, (A) 0.005 0.050

< 0 > (deg) 110.05 109.17

A6 (deg) 0.77 11.

= sin < 03 > cos(6¢) + cos < 05 > sin(605). (4.15)

Averaging over all angles, the second term on the right—side vanishes and we can

expand the cosine:

< sin 05 > = sin < 05 >< cos(6¢) >

= sin < 05 > e’kw’)2>

= 0.9954 sin < 45 >

= 0.9935 sin 050 (4.16)

taking the mean angle and the deviation for a—Si values of a-Si given in Table 4.2.

2450 is the tetrahedral angle in a perfect diamond lattice. Using (13), we obtain

< L'm" >= 3.807 instead of me = 3.833 given by \/8/—3 Lg,5,. This change can

seem insignificant but it is easily perceived in computer simulations as shown in

Figure 4.6, which should be compared with the crystalline result in Figure 4.1.

When the length mismatch is superposed on the amorphisation, Equation

(4.9) remains valid except that the average next-nearest-neighbor distance is now

given by Equation (4.13) where the bond length Lia-S,- is replaced by L2" obtained

from Végard’s law,

L2“ = 0.9935 (/8/3 ((1 — mugs, + xL%.c.) , (4.17)
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Figure 4.6: The nearest—neighbor distance for a—Si1_,Ge,. The symbols are from

simulations using the Kirkwood potential and the lines are the analytic theory.
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leading essentially to a downward displacement of the six next—nearest—neighbor

curves for a small mismatch. We can also neglect the corrections in the second

term on the right-hand side of (4.8) since the are already very small compared

with the average next-nearest-neighbor distance. Figure 4.7 shows the simulation

and theoretical results. There is some noise in the computer data, due to the wide

distribution but the agreement with the theory is excellent.

These results contradict EXAFS experiments performed on a—Si1_,Ge,,:H

by Incoccia et al. (1985) and repeated using a different analysis method but with

the same results by Nishino et al. (1988). Both groups observed that the Ge—Ge

and Si-Ge bond lengths remained unchanged as the composition 2: changes. Such

a behavior is highly surprising and not believable. In order to follow Végard’s law,

the Si-Si nearest-neighbor distance would also have to remain constant, indicating

a topological parameter a“ = 1, meaning a completely floppy network. The only

way to bring such freedom to the amorphous network is via the introduction of

large amounts of hydrogen. By saturating dangling bonds, the hydrogen atoms

decrease the effective coordination of the network. The next chapter will examine

this problem in more detail; besides, more recent experiments have shown that

the uncertainties in the measurement are much too wide presently to challenge

this theory (Matsuura et al., 1991)

4.4 Conclusion

The simple analytical model presented here gives results which are in general

agreement with ab initio calculations. For the random crystalline solid solution,

the calculations by de Gironcoli et al. (1991) give even the wrong curvature for

the mean length emphasizing that it would require a more SOphisticated theory
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than is presently available to obtain the small deviations away from Végard’s law.

This theory provides a simple understanding of the mean partial nearest

and next nearest—neighbor lengths, in the absence of bowing. To go beyond this

and to be able to predict the bowing with any confidence is a formidable task. This

theory predicts that the width of the distributions of nearest—neighbor distances

will be all identical; a prediction which is robust when compared with parameter—

free simulations and I also show that all the next-nearest-neighbor distances have

the same slope. There are very few experimental results on these alloys; the

calculations and theory are consistent with (Matsuura et al., 1991).

Finally, contrary to experimental results obtained a few years ago (Incoc-

cia et al, 1985; Nishino et al., 1988), I predict that the amorphisation will have

no effect on the length mismatch problem, when all the atoms are tetravalently

bonded. The strain energy produced by the amorphisation is larger by two or-

ders of magnitude, compared to the strain energy produced by the alloying. The

length mismatch disorder can be treated as a perturbation on top of the disorder

already present in the amorphous network. This leads to very similar results for

the mean lengths to those found in the corresponding crystalline alloy. The widths

of the length distributions, for nearest neighbors, is dominated by the distortions

produced by the amorphisation.



Chapter 5

About EXAFS Results

With the development of EXAFS techniques, there has been a renewed interest on

the part of experimentalists to examine the local structure of disordered materials.

Some of the most exciting work in the past decade has been on crystalline semi-

conductor alloys (Balzarotti, 1987; Podgorny et al. , 1985); both III—V and II-VI

compounds. Many different materials have been examined at various composi-

tions and a very consistent picture emerges. The mean bond length of chemically

specific pairs, for example Ga—As bonds in Gazlnlqu, is composition depen-

dent but much less strongly so than the overall mean bond length. The overall

mean bond length, or unit cell size, can be obtained independently from X—ray

diffraction experiments, and is always found to be close to linear (Végard’s law,

1921) in agreement with the result expected if a weighted average of the different

bond lengths is found using the EXAFS results. The weaker composition depen-

dence of the chemically specific mean bond lengths is due to the soft nature of

the zincblende lattice.

The situation is very different for binary semiconductor alloys made from

the group IV elements Si, Ge and Sn. Recent experimental EXAFS results involv-

88
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ing the alloy SiI-,Gex have shown that the Ge—Ge and Ge—Si mean bonds lengths

are independent of the composition 51:, for both crystalline and amorphous alloys.

Similar composition independent bond lengths results have also been reported for

SiC and GeSn alloys, but these systems are more complex because of the likeli-

hood of some local graphitic bonding of the C in SiC, and the possibility of local

metallic bonding associated with the Sn in GeSn. This chapter will therefore try

to understand the divergence between experiment and theory for Si—Ge alloys.

5.1 Assumptions

In the previous chapter, I have extended the theoretical description of the local

structure of crystalline, and with minor changes, amorphous binaries to group

IV alloys. Recent EXAFS measurements on a-SiGe and c—SiGe compounds (Ka-

jiyama et al., 1992; Incoccia et al., 1985; Nishino et al., 1988) have shown quite

severe disagreement with both CT theory and simulation predictions. The goal of

this paper is to examine these discrepancies between experimental EXAFS work

on one side and theoretical and simulation work on the other, as well as to propose

a new structural model that may resolve these discrepancies.

In order to solve the set of equations for the partial lengths, using a

Kirkwood potential (see chapters 2 and 4), I have used two major assumptions

that are worth repeating here:

(A) The elastic constants are the same for all interactions. The topological rigidity

parameter a“ is not very sensitive to changes in the local force constants, and

the elastic constants for the pure Si and Ge differ by about 20%, which will only

produce a hardly perceptible bowing of the Z-plots to be discussed later.

(B) The length Lgiac is the arithmetic average of the two other partial lengths.



CHAPTER 5. ABOUT EXAFS RESULTS 90

The additivity of atomic radii is found to hold generally in the case of semicon-

ductors.

5.2 Comparison between theory and experiment

The theory predicts an average length following Végard’s law, and the three paral-

lel partial lengths varying linearly with the concentration 2:. As I have commented

earlier, similar straight line behavior is predicted and has been seen experimen-

tally in ternary III—V and II—VI compounds (Balzarotti, 1987). For the binaries,

there exists a few experimental papers on SiGe alloys, using either X—ray mea-

surements or EXAFS on the Ge atoms. Kajiyama et al. (1992) measured the

mean Ge—Ge and Ge—Si bond lengths in bulk c—SiGe alloys; Incoccia et al. (1985)

and Nishino et al. (1988), in bulk a—SiGe alloys; and Matsuura, Tonnerre and

Cargill (1991) measured these lengths in SiGe/Si(100) films. There has also been

some work on a—GeSn and a—SiC alloys; both by the same group (Pascarelli et al.,

1992a and 1992b). However, since Sn and C can have variable bonding (Sn can

have local metallic bonding and C can have local graphitic bonding), conclusions

in these cases are more difficult to draw and will not be directly addressed here.

Moreover, because the CT theory applies only to the bulk, I will concentrate on

the three first papers (Kajiyama et al., 1992; Incoccia et al., 1985; and Nishino

et al., 1988). Nevertheless note that all these experiments cited above on SiGe,

SiC and GeSn alloys are consistent with the result that there is no composition

dependence of the chemically specific bond lengths, for both crystalline and amor-

phous samples. In the three papers on SiGe, both the Ge—Ge and the Ge—Si mean

nearest-neighbor bond lengths have been measured using Ge EXAFS, but not the

Si—Si bond length. All of these experiments agree on the fact that the measured
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mean bond lengths do not vary with composition. The exact bond length varies

only slightly and within a 0.02A error bar from one paper to the other, but the

conclusions are the same: the Ge—Ge and Si—Ge nearest—neighbor distances are

independent of concentration. Since the maximum variation from the length pre-

dicted by the theory is 0.026A, the predictions of this theory are at the limit of

the error bars.

Looking at Equation (4.3), we see that the only way to obtain flat curves

for Ge—Ge and Ge—Si bond lengths is for the network to be floppy, i.e. to have

a" very close to 1. Even relaxing the condition where I have used the same force

constants for the three different kinds of pair interactions, one finds in the low

concentration (single defect) limit (Thorpe, Jin and Mahanti, 1989).

(1 - a“)asaae

(1 - a")as.'sa' + 0"01516e

 

< LSiG’e >= LgiSi + 3 ] (LgiGe - LgiSi) 1 (5-1)

where I have introduced different central force constants 05,-5.- and 05503 for the

Si—Si and Si—Ge bonds. Different angular force constants can be incorporated

by adjusting a”. I have also not assumed that Lgice = (Lg-S,- + Lgch)/2. So,

independently of the values of the force constants, we can only obtain a flat

EXAFS curve (i.e. independent of composition 1:) with a“ = 1. The first way

to achieve this result is to affect the value of a“ by varying the ratio fl/a. From

Equation (2.31), we have the behavior of a" as a function of the ratio of the

angular force 8 to the bond stretching force a from CT. To obtain a" = 1,

we need a ratio fl/a that is essentially zero, and certainly much smaller than

the usual range 0.1 — 0.2. In order to explain their results, Kajiyama et al.

(1992) suggested that the angular term 3 is anomalously small compared to the

stretching term a but for this explanation to be valid would require a ratio fl/a

of less than 0.05 which would lead to a much weakened shear modulus. Direct
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measurements of the elastic constants in SiGe solid solutions grown by evaporation

in the absence of hydrogen show no such weakening (Bublik et al., 1974). It

would be interesting to repeat these experiments on hydrogenated samples. Also

indirect measurements like Raman spectra can be well reproduced theoretically

using the same force constants for all bonds and taking into account only the

mass differences (Yndurain, 1978). The Raman peak at about 470 cm‘1 in pure

silicon can be rescaled using only the appropriate reduced mass to the Ge peak at

280 cm‘1 and to the new Si-Ge peak centered at about 380 cm“, all to within 5

percent, confirming that the force constants are close for the three kinds of bonds.

The samples used for the Raman scattering were polycrystalline and should not

contain hydrogen. It is therefore very unlikely that any appreciable change in

the ratio fl/a occurs, and I dismiss this possibility. One does however expect

a softening of the elastic constants in hydrogenated samples —not due to the

weakened angular forces— but due to the mechanical degradation of the network

caused by the presence of large amounts of hydrogen.

In their paper on c—SiGe alloys, Kajiyama et al. (1992) measured the

lattice constant as a function of the composition :1: using X- ray diffraction. It

is worth mentioning that previous measurements showed a small deviation from

Végard’s law of less that 4% (Dismukes, Ekstrom and Paff, 1964) compared with

the much larger 16% presented in Kajiyama’s paper. Using the (exact) sum rule

< L >= (1 - 1:)2 < L555; > +2:r(1 — I) < Lsgac > +132 < LGeGe >, (5.2)

and the values for < LSi-Gc > and < Lake: > obtained by EXAFS, it is possible

to predict the expected value of < L555.- >. If Végard’s law is exactly obeyed, then

(5.2) gives < L355.- > = Lag,- which is also concentration independent. However
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the measured X—ray diffraction data (Kajiyama et al. 1992) can be fit with

< L >=(1- $)Lg13i+ ILche ‘— 017(1— 13), (5.3)

where 0 is the bowing parameter. From (5.2)

0 1'

< LSiSi >= LSISI "" 6'1: (5.4)

showing that the composition dependence of < L35; > will become large as the Ge

composition (1 — 2:) increases, as shown in Figure 5.1. I emphasize that the result

(5.4) is exact and independent of any model. It would be useful to have EXAFS

experiments on the Si available so that this quantity would be available to provide

an important internal consistency check. It would be quite unusual if the length

of the Si-Si bond decreased upon the introduction of the larger Ge. Theoretically

this behavior has been predicted in some metallic alloys (e.g. AuAg) where it is

attributed to the effects of variation of electronic charge density. However, we

cannot use the same argument here since Si and Ge are in the same column of the

periodic table and charge transfer effects are negligible. It is difficult to justify

the Ge—Ge and Si-Ge bond lengths remaining so constant compared with such

a marked change in Si—Si bond length, although such an occurrence would not

violate any geometrical constraints.

Another way to increase floppiness in the alloy, would be to decrease the

average coordination number of the atoms. This is a likely explanation since in

all three experiments (Kajiyama et al., 1992; Incoccia et al., 1985; Nishino et al.,

1988), the sample preparation took place in the presence of hydrogen. Hydrogen

is a network terminator, and attaches itself to one (or more) of the four bonds

formed by the Si and Ge ions. As a consequence its main effect on the network is

to decrease the effective coordination and hence the rigidity of the network.
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Figure 5.1: A Z-plot from the Kajiyama et al. (1992) experiments. The Ge-

Ge and Si-Ge bond lengths measured by EXAFS are shown by full squares and

the average length obtained by X-ray diffraction, by crosses and the dashed line

is Végard’s law. The Si-Si bond length (empty circles) was deduced using the

definition of the average len ths. The solid line is the quadratic relation given in

the text and using 0 = 0.06 . The horizontal dotted lines are guides to the eye.
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5.3 Structural model

I have examined the effect of the inclusion of hydrogen on the topological rigidity

of the network. Hydrogen is a terminator that makes a single bond to either

Si or Ge, both of which remain four—fold coordinated. Hydrogen that goes in

interstitially or as molecular hydrogen is irrelevant to the mechanical properties

of the network and will be ignored here. The method used here gives an estimate

for the variation of a" with the degree of hydrogenation. The numerical method

used is the same as the one presented in the previous chapter where the Kirkwood

potential is used and the static relaxation is accomplished using a conjugate—

gradient algorithm. I have introduced hydrogen into the network by cutting a

bond and inserting two hydrogens. This is an unphysical procedure as the Si-

H and Ge—H bonds lengths are too large (about 1.5A) compared with 2.35 and

2.43A for Si—Si and Ge—Ge bonds respectively, for this to occur. Nevertheless,

since I consider the hydrogenated bond as absent, this procedure does encompass

the main effects of hydrogen which is to act as a terminator and hence lower the

mean coordination of the network (He and Thorpe, 1985). In the simulations, the

bonds are removed randomly , but never attach more than two hydrogens to a

Si or Ge atom. This procedure can be accomplished with equal computational

facility for both the crystalline and amorphous networks.

It is possible to obtain the limits of a" analytically, i.e. the fully coordie

nated and the floppy limit when the rigidity vanishes. In between these two limits,

one has to resort to computer simulations. The four—fold coordination limit of a"

is found from Equation (4.4) to be 0.707 for a ratio fl/a = 0.20. The floppy limit

is obtained by looking at the rigidity percolation transition, using a mean field

approach. This has been used elsewhere (Thorpe, 1983) and has been shown to be
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very accurate. The network becomes floppy when F, the number of zero frequency

modes is greater than zero (Thorpe, 1983). The number of zero frequency modes

is equal to the number of degrees of freedom minus the number of constraints.

Because I don’t allow more than two hydrogens per Si or Ge, the whole network

remains fully connected. Counting 4/2 central force and 5 angular constraints per

Si and/or Ge, and 1/2 central force constraint for each H in Si1_xGe,:Hy, one gets

F = 3N(1+y)—N[2+5]—Ny[%]

= N(gy-4). (5.5)

For F =0,

c
m
o
o

y, = = 1.6 (5,6)

which corresponds to a yp/ (1 + yp) = 8/13 = 62% atomic fraction of hydrogen.

The essential idea is that each hydrogen atom terminates a bond and

has no other interactions. Since hydrogen does not participate in connecting the

network together, being a terminal bond, one can consider it as being absent

for most purposes. The simulation procedure consists then in removing bonds

at random in fiSlGe or a—SiGe solid solutions to obtain the topological rigidity

parameter 0" associated with a certain concentration x and y. This is done by

computing the various mean distances, as in Figure 5.2 and fitting the resulting

straight line Z-plot found with the single unknown parameter a". This is a

somewhat indirect procedure, but appropriate in the present context. Indeed it is

probably the best way to obtain the topological rigidity parameter in amorphous

networks. The quantity of hydrogen needed to take the topological rigidity a" of

the lattice to unity (i.e. the floppy limit) would be extremely large (62% atomic

fraction) and it is difficult to imagine such amounts of hydrogen distributed evenly

throughout the sample.
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alloy. The solid lines correspond to a topological rigidity parameter a" = 0.707

and the dashed lines are a fit to the simulation results (shown by solid circles)

where y = 1.0 and a" = 0.923. The fraction of hydrogen is determined by

assigning two hydrogens to each removed bond.
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The bulk calculations for Figure 5.3 have been made for randomly re-

moved bonds in crystalline as well as amorphous cells of 215 = 32,768 atoms

with periodic boundary conditions, constructed by Wooten (1991) following the

Wooten, Winer and Weaire algorithm (1985). The Wooten sample contained

2” = 4,096 atoms but was replicated 8 times to form a larger cube. I then dec-

orated the full lattice randomly with Si and Ge atoms following the procedures

described in chapter 3. In the previous chapter I have shown, using computer

simulations, that since the connectivity is the same in the crystalline and perfect

amorphous Si structure, the topological rigidity a" is identical in both systems.

Moreover, as the strain due to alloying is about two orders of magnitude smaller

than the strain due to amorphisation, one can treat the former as a perturbation

and use the CT theory developed for crystalline alloys. The results for all the

partial lengths in both the amorphous and crystalline structures are always the

expected set of three parallel straight lines that can be fit with the single parame

ter a”. From computer simulations, 1 find that the topological rigidity parameter

a” is linear in the mean coordination < r > of the network and so can be written

*. 5 it I

a = §[(4- < r >) + (10 (< r > —2.4)] (5.7)

where < 1' >= 4 — y is the mean coordination of the network '(ignoring the

hydrogen), and the topological rigidity parameter a” = a5‘ = 0.707 when no

hydrogen is present.

The precise way in which the hydrogen is distributed in the network is ir-

relevant as far as the topological rigidity is concerned, as long as it is homogeneous

on some reasonable length scale. It is therefore possible to think of a physically

more plausible model that could result in the same amount of floppiness in the

network. I have studied the topological rigidity for finite pieces of crystalline
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Figure 5.3: The variation of the topolo ical rigidity parameter a" with the mean

coordination < r > in SiGe alloys. T e open symbols are for simulations with

periodic boundary conditions (bulk) and the solid symbols for (clusters) with free

boundary conditions. The solid line is a linear interpolation between the floppy

limit a“ = 1 and the a" = 0.707 for the perfect network, given in the text.
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571-306, alloys of different sizes and shapes with free surfaces. The three shapes

I used were cubic (I x I x I), tubular (I x I x L) and planar (l x L x L), where I is

a variable and L was fixed at 54A which one can regard as infinite (Figure 5.4).

There is no hydrogen implanted in these pieces. A physical realization of this

situation would be that all the dangling bonds at the surface of these pieces are

saturated with hydrogen. Again the topological rigidity parameter is extracted

from the computer simulations by fitting the three parallel lines in the Z—plot

like that in Figure 5.2 with the single unknown parameter a". We do indeed

always obtain simple straight line Z—plots from the simulations on cubes, tubes

and planes. The results in Figure 5.3 shows that the geometry of the defects

is almost irrelevant to the topological rigidity a"; the mean coordination of the

system uniquely determines its topological rigidity.

For these structures shown in Figure (3), the open surfaces are saturated

with hydrogen. One is therefore free to choose any geometry, for a given concentra-

tion of dangling bonds, without affecting the mechanical rigidity of the network.

A probable structural model would be one with a high density of thin planar

cracks with a typical size of the two regions between cracks being about 10A as

deduced from Figure 5.5. A sketch of this model is presented in Figure 5.6. These

cracks will be filled with hydrogen saturating the dangling bonds of the surfaces.

Such a structure would be almost completely free of strain due to the alloying,

resulting in an almost flat Z—plot, and would also respect the random proportion

of Si-Ge to Cue-Ge bonds found experimentally from EXAFS (Kajiyama et al.,

1992; Incoccia et al., 1985; Nishino et al., 1988.

From this model, it is also possible to find the softening of the elastic

constants. This is done by applying an external strain to the model and then
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[XIX]

[XIXL I

[XL xL

Figure 5.4. A sketch of the cube, tube and plane, where the long dimension

L= 54A and t e short dimension can be varied. The results obtained were not

sensitive to the ength L which can be regarded as infinite.
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Figure 5.6: A sketch of the proposed structural model for SiGe alloys. The dark

region is network and the open cracks are saturated with hydrogen to tie off the

dangling bonds.
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*
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lean coordination <r>

Figure 5.7: The variation of the bulk modulus B as a function of the mean coor-

dination < r > in c—SiGezH. The solid symbols are from a simulation on a sample

with planar cracks like that shown in Figure 5.6 and the solid line is Equation

(5.8).

again minimizing the energy as before. The difference in the relaxed energy leads

to the elastic moduli (He and Thorpe, 1985). Figure 5.7 shows how the bulk

modulus varies with the effective coordination < r >, in a bulk c—Si where planar

cracks where introduced. Theses cracks were created the following way: in a

crystalline cell of 215 = 32,768 Si atoms, the position and direction of a plane

were chosen at random; all the bonds that crossed the plane in a square area of

side 2 unit cells around the origin of the plane were removed.

I can compare these results with an expression found by He and Thorpe
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(1985) for removing bonds at random. This expression is valid around the rigidity

threshold, but is not supposed to be critical behavior,

8 = 0.328 (< r > —2.4)‘°5 (5.8)

in units where the bulk modulus is 1 at full coordination (< r >= 4). Within the

numerical accuracy, we see that the distribution of the hydrogen does not effect

the bulk modulus either. We see once again that the mean coordination is much

more important that the detailed geometry in determining the mechanical/elastic

properties of the system. For hydrogenated samples near the rigidity threshold,

which are required to explain the EXAFS results, the elastic constants should be

an order of magnitude lower than in SiGe alloys that do not contain hydrogen.

Sample annealing, allowing for the removal of cracks and hydrogen, would increase

the rigidity of the lattice, and hence produce more composition dependence of the

EXAFS results and larger elastic moduli.

5.4 Discussion

How does one account for these fundamental disagreements between theory and

experiment in crystalline and amorphous alloys? It is possible that the angular

forces fl become anomalously small in the alloy: much smaller than in pure Si or

Ge. This could be due to some complicated charge transfer effects of the kind

that are known to occur in metals. However no such effects have been seen in any

III—IV or II-VI compounds and so this possibility has to be regarded as extremely

unlikely. It is possible that the presence of hydrogen might substantially weaken

the angular force B, but no evidence of such a phenomenon has been seen in

hydrogenated amorphous silicon. For example Maley and Lannin (1987) showed

, -‘l
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with Raman scattering that the position of the peaks remains the same in a—Si

with or without hydrogen.

A second possibility is that the EXAFS data has been incorrectly in-

terpreted. While some theory is necessary to extract the number and distance

associated with the various nearest neighbor pairs, the EXAFS technique has

been very successful in other semiconducting alloys for nearest neighbor distances

and it is difficult to see why it would fail here. However, although these results

are all consistent with a flat curve, we must not forget that the error bars on

the measurements are around 0.02A. It is true that the size mismatch between

Si and Ge is only 5% but this is comparable with the 8% bond length mismatch

in for Ga—As and ln—As bonds GaInAs for example. One should also note that

all the experiments cited agree that SiGe forms a good random solid solution, as

evidenced by the relative weights in the EXAFS components. It is true that if the

Si and Ge were phase separated, this would account for the observed composition

independence of the Ge—Ge and Si-Ge bond lengths. However this would lead to

very little weight in the Si-Ge component, as these bonds would only occur along

the interfaces between the two phases.

Finally we have the possibility that there is a very large, between 45%

and 65% atomic fraction of hydrogen. Although this is a huge amount, we can

find proportions of hydrogen in a—Si and technological a-Si that contain typically

between 10 and 30 atomic %H (Pankove and Johnson, 1991). Such material would

be mechanically weakened and show very soft elastic behavior. when compared

with crystalline Si and Ge (see Figure 5.7). ,I have been unable to find any mea-

surements of the elastic constants for hydrogenated material. Maley and Lannin

(1987) also pointed to a marked sharpening of the TO peak associated with hy-
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drogen and due the improvement of the local structure in a—SiGezH alloys with

up to 40 atomic %H. Also the same results are obtained experimentally for both

crystalline and amorphous SiGe alloys and it is even harder to envisage how so

much hydrogen could be incorporated uniformly into the crystalline alloys. How-

ever, the presence of planar cracks on a very short length scale can apply to both

crystalline and amorphous alloys and is compatible with the preparation method

used to obtain these samples.

5.5 Conclusion

EXAFS is a very powerful technique that has opened up a new field of mea-

surements i.e. the local structure of disordered systems. However, because this

technique is an indirect one, one has to remain very careful in interpreting the

results. The curious results for SiGe alloys open up many questions which will

require more experiments to sort out. In particular, I would suggest EXAFS

measurements on SiGe samples not containing hydrogen.



Chapter 6

Surface of semiconductors

The development of tools to observe directly the surface with an accuracy of

about 0.01 A vertically has opened a whole new field of observation which is very

important in order to sustain the rapid technological inventions in the field of

semiconductors. The surface effects, for example, will become noticeable when

trying to construct thinner and thinner samples. The study of surface can also

provide, indirectly, some information on the nature of the bulk disorder which

would complement results obtained from other experimental methods like EXAFS.

In this chapter, I propose to expand the theory used in the preceding

chapters to cover the surface problem. I will study the surface relaxation of 2D

triangular lattices as a test case, as well as surfaces of zincblende binary alloys. I

will show that the successful theory developed previously by Thorpe, Garboczi and

Cai (Thorpe and Garboczi, 1990; Cai and Thorpe, 1992a and 1992b) is portable

to this problem and is very helpful in putting together a clear image of the re-

sults. This theory predicted correctly distortions of the lattice for the ternary

semiconductors although there are still conflicts between it and experimental re-

sults regarding the binary semiconductor SiGe. I am, however, confident that the

108
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theory will prove to be accurate also in the latter case. In section 6.1, I present

the theory adapted to the surface problem and in section 6.2, I discuss different

methods to obtain the topological rigidity parameters in lattices. I then present,

in section 6.3, the triangular lattice results and in section 6.4, the diamond lattice,

SiGe crystalline alloy with (100) and (111) surfaces.

6.1 Theory

The formalism developed and presented in chapter 2 was applied to crystalline

and amorphous bulk alloys. However, this fermalism can be extended to solve

the problem of surface relaxation in semiconductor alloys. I will repeat a few step

from chapter 2 in order to show that the existence of a surface does not preclude

the application of this theory and that the formalism is general enough to include

the loss of symmetry due to the surface.

I can start directly from the demand that fully relaxed structure must

have no net force,

2 K,,-(L.-,- - LEE-m..- = 0- ‘ (6.1)

Therefore, if one draws a plane across layers I , along any direction, the total force

must also vanish:

(l - :r)2KA,4(< LAA >1 _L31A) +2.2(1- x)KA3(< LAB >1 -1813) (6.2)

+$2K33(< L33 >1 -L%B) = 0. (6.3)

If the elastic constant KM = [(A3 = K33 = K then, using the general definition

< L >1=(1- :1?)2 < L,“ >1+2x(1— x) < LAB >1+:1:2 < L33 >1, (6.4)
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with I being a layer index, one obtains

< L >,= (1 — 3ft)” + 2::(1— x)L§’,B + $2L%B. (6.5)

On any layer, as well as between them, Végard’s law is therefore obeyed. I can

now address the question of partial length average. Assuming small displacements

in the solid, one gets, as in chapter 2,

L11 Rn‘ - Rj (6'6)

= 141+ [(u, - U1) ' Rileij

where L1 =< L >1 R?)- and RE),- is the unit vector of a perfect lattice and u.- is the

displacements from this lattice. Using the previous equation in the force equation

0 = z: L:+1(u.-- u.) ~11?) — Lam..- (6.7)

one can write

Du = v, (6.8)

where D is the dynamical matrix of the system or the inverse Green function

u = —Gv (6.9)

and

v = :(L1— Lang), 7 (6.10)

so that i

L.) =< L >1+K?:R?j-(G.-m - GJ-m) '- R?m(L?m— < L >1). (6.11)

This equation is exactly the same as the one presented in chapter 2 except that

the value of < L >1 can vary from layer to layer. In a homogeneous solid, we can
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drop the layer index. In the case of a bulk solution, one can easily obtain G’gm

and from there solve exactly for the partial lengths. By the surface, however, each

layer will present a different average and the case is not so simple. For example,

close to the surface, the relation

2: Ru = 0 (6.12)

no longer holds and i and j indices are not symmetric anymore.

6.1.1 Bond mismatch

The previous arguments are identical for both bond and site mismatch; only during

the averaging does the nature of the disorder, and hence, the correlations, appear.

And one would not expect, a priori, to obtain the same form at the surface as in

the bulk. Nevertheless, by doing the complete algebra one finds that the bond

mismatch problem leads to the same solution as previously found regarding the

average lengths

< L; >1 = < L >1-:ra,'(L%— Lg) . (6.13)

< LB >1 = < L >1 +(l — x)af(L% - Lg)

where the topological rigidity parameter a; now varies through the layers

K

a] = N 2R3- -(G.'1 - 2011' + ij) ' 1191-. (6.14)

‘1'

In this equation, the summation over i and j is restricted over their respective

layers defined by I. With the loss of symmetry across the surface, the Green’s

function cannot be obtained through the reciprocal space. In the real space, the

equations are non-linear and direct calculation can become very cumbersome. I

use a’ from the definition of Equation (6.14).
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6.1.2 Site mismatch

For the site—mismatch problem, the situation is similar to the bond problem. After

averaging over the different partial lengths, one obtains

< LM >1=< L >1 +ra,“(L?M — L233) (6.15)

and

< L33 >1=< L >1 -(1— x)a,"(L?,A — L333) (6.16)

where

519': 11,-,( G1,, — ,m)-R1m(61k + 61... + 8,1 + 6,-m). (6.17)

Nijkm

In the bulk, the symmetries are recovered and the equation becomes identical to

the one described in chapter 2.

In site—mismatch alloys, another quantity becomes interesting at the sur-

face: the average displacement u1 from a reference position. In the bulk, for

symmetry reasons, this quantity vanishes everywhere. At the surface, however,

the symmetry is broken along z and should reflect in this quantity. Averaging a,-

over the sites A of a particular layer, from Equation (6.9),

=—KZG:;"R§’ (L9,—< L >1) (6.18)

J'kfi

we obtain

2 KxUJ 22 22 2

< “A >1=—2N“; Lola);(Gfi -G:j) Rij’ (6.19)

and

K 1-

< 11; >1= -(—2N—fl(LgB — LL)2 (fo — 05;) 125,. (6.20)

*5

Because of symmetry,

< u; >1=< ui’, >1=< 113 >1=< uB >1= 0. (6.21)
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However, the interesting quantity is the difference between the two displacements

z I{ ”T ‘2 z

'.7

i.e., it is independent of the concentration and varies only with the layer and the

size mismatch. If one also adds the difference in radius, defining the maximum

height at the surface, the total distance between the two peaks in an alloy is

 

K L0 — 0

Aug -.- 1+ N: (fo — 05;) 12:, ( BB 2 L“). (6.23)

11

One can easily verify that the average over all the species indeed vanishes.

Moreover, in the bulk, the partial average displacements < uA >1 and < 113 >1

vanish due to the symmetries of the Green’s function and the lattice.

6.2 Topological rigidity parameters

There are many methods to obtain the topological rigidity parameters of a system.

One would be to solve directly Equations (6.14) and (6.17), using the Green’s

functions of the system. For a bulk crystal, this method can be useful, providing

for exact analytical result; however, for non—symmetric systems, like surfaces,

clusters or glasses, obtaining the Green’s functions can require huge efforts.

Another method is to use Equations (6.14) or (6.16). If one replaces a

bond of length Le by one of length L’e in a perfect crystal, the energy changes by

AB = K(L — LL)? - K(L — Le)2. (6.24)

The force of the bond on the lattice is

F = —— = K(L; — L). (6.25)
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But the force can also be expressed by

K

= ;(L — L'c) (6.26)

and so

AL = L — L; = 111*(L'c — L.) (6.27)

which is simply Equation (6.14). It is therefore possible to obtain the topological

rigidity parameters by applying forces on atoms of a pure system or by alloying

a lattice and relaxing the whole network. In most cases, the latter method is

used because it allows a better comparison with experiment. However, for the

local calculation of the topological rigidity constants (i.e., for a kink, an edge or a

cluster), it is often simpler to use forces. For a‘, a force must be applied at both

ends of a band while it must be applied on all neighbors of a particular atom,

radially, to obtain a" for each bond around the central atom.

I have verified numerically the equivalence between using alloying or local

forces to obtain the topological rigidity. In two dimensions, the local force method

in unstable under relaxation close to the surface. As discussed in the next section,

there is nothing surprising about this since there are problems with fluctuations in

two dimensions. I have also verified this equivalence for a" and a" on a diamond

structure and it works perfectly within the numerical error. It is therefore possible

to extend the concepts and formalism developed in the previous section to almost

any configuration.

Although the application of the force is direct for a bond case, it becomes

trickier when trying to obtain a“ at the surface. In the bulk, one can pull on

all bonds symmetrically thus involving only the pair term. At the surface, the

symmetry is broken and if one pulls only on the neighbors, a net force would

result, moving the system as a whole. A solution can be to add a counter force on
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the central atom to compensate and keep the total force zero. Since full symmetry

is lost, there could also be a contribution of the three—body term to the energy.

Happily, this term vanishes to first order with a Kirkwood potential and the

relation between the force and alloying described here is recovered.

6.3 Triangular lattice

The first system looked at is the triangular lattice. Although it does not exist in

nature, it provides a useful test for the theory both because of its simplicity and

of its two dimensionality which allows a simple graphical representation. For this

lattice, I have used the harmonic potential described in chapter 2.

I have done the simulation using slabs with periodic boundary conditions

along x and surfaces perpendicular to y. The relaxation was performed using a

conjugate-gradient method presented in Numerical Recipes (see Appendix I). In

the triangular network, there are two important directions, (10) and (01). Figure

6.1 (a) and (b) shows these two surfaces in a disordered state. The (10) surface

has a low coordination number, three nearest-neighbors, while the sub-layer has

five. This very low coordination leads to an unstable surface. On the other hand,

the (11) surface, which is closer the (111) surface of semiconductors and of most

interest, is more stable due to its higher coordination: the (11) surface has a

fourfold coordination and all the sub-layers are perfectly coordinated.

In this chapter, I have used the experimental definition of the topological

rigidity

a._<LA>1-<’LB >1

1" 0 O

104-LB

 (6.28)

This definition has the merit of being simple to implement and remains valid
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Figure 6.1: Triangular network cut along (a) (10) and (b) (11) direction. Mis-

matched bonds have been distributed at random with a. 50—50 % probability.
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in almost any geometry. Figure 6.2 shows the value of a; as a function of the

layer index I in a 100 x 100 slab, averaged over 100 configurations. As expected,

the surface presents a much floppier relaxation than the bulk; from a‘ = 2/3, in

the bulk, it reaches 0.82 for the first interlayer and 0.80 for the top intralayer

along the (11) surface. So, we obtain an enhancement of the topological rigidity

of about 25%. The difference in topological rigidity between the first inter and

intralayer can be understood in the following manner. Inside the top layer, bonds

are confined along 2: because of the periodic boundary conditions. Note that the

problem would be the same for an infinite slab. However, interlayer bonds have

an important component along y, which is almost free of topological constraint

close to the surface. It is therefore easier for a bond in the first interlayer to keep

its natural length than for an intralayer bond.

Besides the topological constant, it is important to look at the fluctuations

in height at the surface. Since we are interested in probing the surface itself,

such a quantity should provide us with useful information. However, the position

fluctuations diverge in two dimension as was first demonstrated by Landau (1937)

and Peierls (1934) in the 19303. We can see the effect of fluctuations in the large

averaging needed to obtain an accurate value for the topological rigidity. This

peculiarity brings many new questions to the surface of a 2D configuration. I will

not elaborate more on this problem in this chapter, delaying the discussion until

the next chapter which is strictly concerned with 2D phenomena.

6.4 Silicon-Germanium alloy

I have also studied the surface relaxation for SiGe alloys using the Kirkwood

potential described in chapter 2. As shown previously, the use of different elastic
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Figure 6.2: Variation of the topological rigidity parameter a‘ as a function of

depth in a triangular slab cut along (11) direction. The results are an average

over 100 configurations of a 200 x 200 sites cell with a 2% mismatch.
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constants for the three different interactions (Si-Si, Ge—Ge and Si-Ge) leads to

almost identical results since they differ by only 20%. To remain closer to the

analytical calculations, the same elastic constants are used for all interactions.

I used periodic boundary conditions along :1: and y, leaving the two sur-

faces perpendicular to z. The two simplest directions are the (100) and (111)

surfaces. As for (10) in the triangular network, the atoms at the surface (100)

have few neighbors (only two), they are relatively unstable and hence, reconstruct

easily. One method to inhibit surface reconstruction is to satisfy the surface dan-

gling bonds with hydrogen. With only two bonds attached to the bulk, the surface

Si atoms are etched away during this process. The atoms at the surface (111),

on the other hand, have three neighbors and form a relatively stable structure

(Schulze, 1983; Ancilotto, 1992; Itaya, 1992; and Steinmetz, 1990). The hydro-

genation process leaves a perfect surface with no reconstruction and should allow

measurement that can compare with the theory and simulations presented here .

All the results can be understood in terms of the formalism developed in section

6.1

The relaxation process is much faster in 3D than in 2D. Without aver-

aging over many configurations, the a“ value of the bulk shows only very small

oscillations. Because of that, the averaging has been made over 20 configurations

and the céll contained 31,250 atoms (25 x 25 x 25 unit cells). The relaxation has

been done using a conjugate-gradient method.

As predicted by the theory, the average bond length on each layer < L >1

remains constant throughout the slab < L >1E< L >. Because the subsurface

atom is tied to the bulk by only one bond, we expect, and indeed get, a” to be

very floppy at the surface and even more in the subsurface layer. Figure 6.3 shows
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the variation of a“ as one moves closer to the surface. For the first two interlayers,

a“ is about 17% larger than in the bulk. The surface effect decreases very fast,

the third interlayer already gives a a" value about 1% only larger than the bulk

value; even at a few layers under the surface, it becomes difficult to distinguish the

environment from that of a deep bulk. Figure 6.4 presents the topological rigidity

as a function of the distance from a (100) surface. Since the coordination at the

surface is lower than for (111), the variation of a“ is greater by about 27%. The

same results are obtained for a“ using the local forces method instead of alloying,

as discussed in section 6.2.

Table 6.1 shows the value of Au along different directions and for two

concentrations 15—85 and 50-50. As predicted by Equation (6.22), the partial

displacement vanishs in the bulk and are non-zero only for the layers close to the

surface, along the z direction. As predicted from the symmetry of the system,

Au vanishes along a: and y. The difference between the average height of each

species is independent of the concentration which is very similar to the difference

< L33 >1 - < L,” >1 is also concentration independent.

The height at the surface is described by Equation (6.23) where the radius

of species is also included. From Table 6.1, and considering a mismatch of 0.09A

for SiGe, the separation between the centers of height distribution at the surface

should be" around 0.085A. However, it would be possible to determine locally

the species only if the partial distributions were completely separated. Figure 6.5

shows the density distribution at the surface; it also presents the partial distri-

butions. As one can see, these partial distributions are gaussian like (Figure 6.6)

where the width of the distribution follows more or less a". The overlap between

the peaks is too large to permit an atom by atom distinction between species at
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Table 6.1: Partial displacements and their difference perpendicular (z) and parallel

(:r and y) to the surface at various depths for two concentrations of SiGe alloys.

Slsoceso Sl15G€35

 

Surface

<u,> -0.0010 -0.0014

< u, > 0.0017 -0.0011

1

< u. > 00434 0.0446

  < uz > -0.0011 -0.0018

 

the surface.

Although the floppiness is isotropic in the bulk, it is not at the surface, as

we could expect (Figure 6.7 and 6.8). On the top layer, the width of displacement

along 2:, y, and z is almost the same, with 2 being only slightly larger. However,

on the sub-surface layer, the difference is very important. The values of the width

of distribution along a: and y is bulk—like while along 2, it retains almost the

surface value. The effect of the layer directly over it does not seem to have any

noticeable effect on the z relaxation. It is easy to understand this phenomenon

directly from the geometry of the layers. The bond between the second and third

layers is initially only in the z direction, because there is not much push from the

top layers, it relaxes almost fully by disturbing the second layer which is almost

free, not the third one which has all the bulk behind it.

As seen in the theory section, all the quantities described previously are
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Figure 6.5: Height distribution at the surface (111) of SlgoGego (solid line). The

dashed and dot—dashed lines are the Si and Ge height distributions respectively.

The curves are smoothened results from a 35, 152 atom cell.
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Figure 6.6: Gaussian fit (solid line) for partial z displacement distribution in

SigoGego (a). The dashed and dot—dashed lines are the smoothed Si and Ge

distributions respectively, the solid lines are two gaussians with identical width.
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curves are averaged over 20 configurations from a 16, 000 atom cell.
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function of the mismatch and the concentration of species. These relations have

been spelled out in section 6.1 and provide and easy check of the simulation. I

have therefore performed relaxation at two different concentrations (1: = 0.85 and

0.50 in Si1-,,.Ge,) and verified that all quantities behaved as they should. From

the results presented in this section, the called z—plot is indeed respected for any

layer; the topological rigidity parameter a)“, although a function of layer number,

remains unchanged when varying the concentration of species.

6.5 Conclusion

Although reconstruction is often present at the surface, it is interesting to be able

to develop a phenomenological theory that would allow some understanding of the

relaxation phenomenon at the surface. I have presented such a theory here and

applied it the 2D triangular lattice and the SiGe (111) and (100) surfaces. These

predictions could be verified (1) by measuring the distances between the centers

of atoms at the surface or (2) directly, using some kind of scanning microscope

(see Figure 6.9). Recent developments in scanning force microscopy give some

hope to see a precision along the vertical displacement good enough to see the

distributions described here (Meyer and Heinzelmann, 1992; Meyer, 1993).

The study of surfaces is also important because in emphasizes the effects of

mismatch. All the distributions are enhanced and therefore easier to see, the strain

is reduced at the cost of increasing the distortions in the crystalline lattice. As we

could see, the concept of topological rigidity allows us to describe quantitatively

the floppiness of the network as we approach the surface. In both the 2D and

3D cases, the effects of surface on the relaxation die out very fast in the bulk,

after only a couple layers. I have also shown that it is possible to calculate the
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Figure 6.9: Simulated density plot of the surface (111) of SisoGe5o alloy. The

darker peaks are Si atoms and the lighter, Ge.
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topological constant locally simply by applying a force on a few atoms. This

method is much simpler that trying to obtain a‘ or a" directly from the Green’s

functions, particularly in non—symmetric configurations.

Although a“ and the displacement distribution are not directly related,

the same theory applies at the surface and in the volume. If the surface results are

in agreement with the theory then one can hope that the theory is also valid in

the bulk. Therefore, a measurement of the surface relaxation can give important

clues about the volume strain in the limits of this theory.

 



Chapter 7

Two-dimensional melting

The concept of bond and site mismatch can also be useful in two dimensions

where the stability of phases is very sensitive to disorder. Unlike surfaces, which

are quasi two— dimensional systems, these systems are restricted to motion in the

plane only, leading to unique behavior. This peculiar behavior of phases in two-

dimensional systems has been predicted a long time ago, independently, by Peierls

(1934) and Landau (1937) who showed that a long—range crystal cannot persist

at any finite temperature. More recently, Mermin (1966) was able to show that

only the position-position correlation would decay at any finite temperature while

the angular correlation would remain long—range. A few years later, Kosterlitz

and Thoul_ess (1973) introduced a theory of melting particular to two-dimensional

systems that would be driven by defects (vortices in superconductors, point defects

in crystals).' This theory was refined by Young (1979) and Nelson and Halperin

(1978) in the case of elasticity. The KTHNY theory of two-dimensional melting

predicted a third phase, included between the solid and liquid phases, that was

called hexatic. This phase has been the subject of a large number of studies since

1979, but, to this date, it has not been found in any perfectly two—dimensional

131
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system.

After reviewing the KTHNY theory of melting, I will present an applica-

tion of the size—mismatch theory to the two-dimensional case. I will then describe

the details of the simulation and present the results. Almost all the theoreti-

cal and experimental study of the two—dimensional melting has concentrated on

temperature as the driving force. However, the temperature is fairly difficult to

control with a great accuracy close to a phase transition. It is possible to define in

size—mismatch systems, a quantity that is strictly equivalent for the description of

effects of disorder, to the temperature. By using size mismatch, one can therefore

drive the phase transition from a different perspective, offering complementary

results to the temperature driven transition. Also, since with size mismatch a

simple static relaxation is enough to reach equilibrium, it is possible to use much

a larger system size which is always needed when one wants approach as close as

possible a phase transition.

7.1 Review

The proof of the crystalline instability in two dimensions is very simple and can

be obtained by various ways. I will be using here the Landau theory of phase

transitiorLand the general discussion he gives in his book on statistical physics

(Landau and Lifshitz, 1980).

Defining u(z, y) as the displacement from equilibrium r(z, y), the proba-

bility of any thermal fluctuation is given by

w o: exp(—AF/kBT), (7.1)
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where

AF = [(F — Pym (7.2)

is the deviation of the total free energy from its average value and F is the free

energy per unit of area. Taking the harmonic approximation for interactions in

the solid, the free energy becomes

AF:

w
l
l
l
v
—

V2 uikulkAtlmnkm kn, (7.3)

ijk

where /\ is a real tensor, and is a function of the direction of the vector k and ng

is the first derivative with respect to 1:,- of the momentum space representation of

the displacement

u = Zuke‘l”. (7.4)

I:

To obtain the mean square value of the displacement, we use the usual

statistical technique

2mm} uikulk C’AFM/kfl

Z{U(I’)} c-AFTUUICBT

 

< u,ku1k >= (7.5)

where the sum is over all possible displacement fields u(r). Solving for this equa-

tion, we obtain

< u u > (z)A (7 6)
1k ‘1‘ A km kn 3

and I

_ < uikulk. >= 0 (7.7)

for k’ 75 —k.

The mean values are found by summing over the k’s. The mean square

displacement vector is therefore given by, changing the discrete sum into an inte-

gral:

 < |u|2 > = TfA”(n) (d: , (7.8)
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T 2w l/ddk

z (2702/0 A”(¢)d¢/o T'

If one performs the integral over Is, one finds that it diverges logarith-

 

mically as k -> 0 or, in the real space, as the distance goes to infinity. The

divergence of the mean square displacement implies that, on average, the atoms

on a heated lattice find themselves at an infinite distance (logarithmically speak-

ing) from the point they were at, at zero temperature. For any fluctuation greater

thanW3 a, the ideal lattice spacing, it becomes impossible to assign a

posteriori a crystal point to an atom, and therefore the long—range periodicity is

lost. Thus, in two dimensions, thermal fluctuations always destroy the long—range

periodicity of a lattice, for any non-zero temperature.

The lack of long—range periodicity does not preclude all long—range order.

As noted by Landau in 1937, “[i]f the body is isotropic, then p = const; however,

from p = const it does not follow that the body should necessarily be isotropic”

(from Brock, 1992). For example, the angle between the local crystallographic

axes and the axes of the ideal lattice (Mermin, 1968)

1 1

0(1),!” = 5(63111, - agar), (7'9)

where u(x,y) represents the displacement field vector introduces in its Fourier

transform a factor I: more than in the displacement field itself:

1 .

0(z, y) = 5 2(Ik,u,,k — ikyu,,k)e‘k'“. (7.10)

I:

Therefore, the thermal average becomes

:r

(4r)2

 

21v . l/d

/. f.(¢)f.(¢)A..((n))d¢/o kdk. (7.11)<02 >=

with f,(¢) = cos(¢) and fy(¢) = sin(¢). In this thermal average of the angular

fluctuations, all divergence is lost and the quantity < 02 > is well defined. Because
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Table 7.1: The three phases of a two—dimensional solid as predicted by the

KTHNY theory with their associated correlation and defects.

Solid Hexatic Liquid

 

 

Ca( R) Algebraic Exponential Exponential

decay decay decay

 

C9(00) Constant Algebraic Exponential

decay decay

 

Defects Pairs of Pairs of Disclinations

dislocations disclinations    
 

all the fluctuations do not diverge at d -—1 0, this phase is called quasi—long-range

order.

A few years later, Kosterlitz and Thouless (1973) proposed a model for

melting in two dimensions. This model was applied in multiple contexts from

superconductor-normal state to solid-liquid transition. In the latter case, it pre-

dicted that the melting would be driven by the separation of dilute dislocation

pairs. Later and independently, Nelson and Halperin (1979) and Young (1979) dis-

covered that another transition could be predicted from the Kosterlitz—Thouless

theory if one would let the dislocations break into pairs of disclinations. The new

phase wasintroduced between the solid and liquid phase and was called the hex-

atic phase in reference to liquid crystals where this type of oriented phase happens

frequently. Table 7.1 presents the different phases as well as the kind of defect

and correlation associated with them.

In two dimensions the translational order Cg(R), defined as

00(3) =< PG(R)PG(0) > (7-12)
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with

pea?) = e‘G'lR+“<R”. (7.13)

can be rewritten as

00(12): R-"Gm (7.14)

for T < TM, using the logarithmically divergent < 712 > from Equation (7.9).

And 170(T) is function of the Lamé elastic constants of the solid (p and A):

3713 + An

4WR(2#R + AR).

 

7200") = kBTlGl2 (7-15)

So the translational order decays algebraicallyto zero at large distance in the solid

phase. The only defects present are isolated pairs of dislocations with opposite

Burger’s vector (see Figure 7.1). These defects affect the lattice only very locally;

they do not perturb the general properties of the solid and so they only renormalize

the Lamé constants. The deformation due to these pairs decays as R” and they

can therefore be seen a the elastic equivalent of electric dipoles.

As one raises the temperature to T > Tm, the pairs of dislocations begin

to unbind, creating a new phase similar to what is found in liquid crystals. Above

Tm, the finite number of free dislocation leads to an exponential decay of the

translational order,

CAR) ~ eXp(-R§+(T)) (7-16)

where the correlation length 5+ diverges as T approaches Tm from above

5+ ... 617%.? (7.17)

with

17 = 0.36963... (7.18)
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However, if one looks at the orientational order, one finds that the correlation

decays only algebraically with distance

< ¢‘(R)1b(0) >~ Rm”) (7.19)

where

17(3) = e6“) (7.20)

and 0 is given by Equation (7.10). The 6 appears because of the local coordination

on a triangular lattice; for a square lattice, it would be 4. Although in this phase

the translational order is completely lost, there is still quasi-long range order for

the orientation of the solid. Since there is still some angular correlation in this

phase region, Nelson and Halperin (1979) dubbed it hexatic, in reference to the

typical names given for phases in liquid crystals.

Until now, the disclinations, a missing or surplus row of atoms on a lattice,

have not been considered since they are very unfavorable in view of their high

energy cost (see Figure 7.1). As free dislocations appear on the lattice, they offer

a screening for the disclinations, producing a weak logarithmic binding. Since

dislocations can be seen as a bound disclination pair, it becomes possible to apply

again the KT theory to study the unbinding transition of disclinations. Above

the second transition temperature T1, both the translational and the orientational

order decay exponentially, signature of a liquid phase.

After the KTHNY theory of two-dimensional melting was proposed, a

large amount of theoretical and experimental studies was performed in order to

find the hexatic phase. However, the search forsignatures of two different second-

order phase transition has been unsuccessful until now. For a more detailed review

of the work done in this field, the article by Strandburg (1988) remains appropriate

since few major articles have appeared since then. On the experimental side, the



Om>~uflmm N H€6-D~3m2m~02>b EELS/5 5m

 

.5

 
39:6 .2” Damage 86mm commas on $8 "Soramaasmwoofi gamma—E. $.38. Amv

anowaon Cow: 0m ammo—mowsosmvw A5 Emnmswaosm Awnonr an is 5mg. .55 <mnno~

Woo—on— vwa E mummnwnom :5 mafia} $22. $89».an is; $5 Eva—common.



CHAPTER 7. TWO-DIMENSIONAL MELTING 139

hexatic phase has been found only in liquid crystal where one can argue about

the dimensionality of even mono—layered films; it is difficult to consider these long

molecules as a perfect two-dimensional system. There are interactions along these

molecules that can distribute the strain along the third dimension also. Some

work has also been performed with magnetic bubbles and colloidal suspensions

(see Murray, 1992, for a review of this work) but the phase transition happens at

a much higher density of defects than predicted by the KTHNY theory. From the

theoretical side, the efforts have gone on two fronts. The first one, analytical, was

the development of first-order transition theory for the two-dimensional melting,

analogous to what is found in three dimensions. One of the major problems

with the KTHNY theory is that the density of defects must be low enough so

that onelcan neglect the interactions between them. In most simulations, the

number of defects present at the phase transition is large enough so that it is not

clear if this approximation misses important physical interactions. Chui (1983)

and Kleinert (1983) have proposed another mechanism for melting that do not

support the presence of an hexatic phase. However, there are also problems with

the different approximations present in the later theories. The second theoretical

efl'ort was directed to trying to simulate directly the two—dimensional melting but

this project turned out to be much more difficult that predicted. Many groups

have tried' to obtain a phase diagram for two—dimensional melting using different

configurations and potentials but nobody has yet seen the hexatic phase.

7.2 Theory

The problems with computer simulations are numerous: finite-size, sensitivity to

boundary conditions and difficulty in handling the long—range fluctuations close
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to the phase transition. One of the solutions is to use size mismatch to drive

the transition. Thorpe and Cai (1991) have shown that it is possible to map the

mismatch to the temperature in two-dimensional harmonic solids. The efl'ective

temperature was found to be, for bond mismatch,

kBTD = K1:(1-— x)(L% — L9,)2, (7.21)

and

1 .

ICBTD = 51(230 — (CHI/$3 — [491,02 (7.22)

for site mismatch, when L913 = l/2(L?M + L998). In the rest of this chapter, I put

k3 = 1 and K = 1.

The relation 7.22 is found by comparing the equations for the correlation

as a function of size mismatch with the one found in the KTHNY theory. In the

case of translational order, the position—position correlation is

 

(70(3) = 91);? (7.23)

where

‘2 o 0 2

n= 377.?“ -..) [cuss—L10] . (724)

Which is equal to Equation (7.15) for kBT described by Equation (7.22) and the

Lamé constant A = p = x/3K/4.

Si—milarly, by using similar derivations as those used in Thorpe and Cai

(1989) for the bond mismatch, one finds that the angular correlation in the site

mismatch case are

09(00) = 5‘“, ' (7.25)

where

 

o _ o 2

W6 = 2.466x(1 — :13) [(LB: L :AA)] . (7.26)
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These results are valid only in the solid phase and are not directly exten-

sible to predict a phase transition since the derivation assumes that the network is

perfectly coordinated. The inclusion of defects would call for an effective—medium

theory similar to the KTHNY derivation and therefore lead to identical results.

However, there are fundamental differences between temperature and mismatch

disorder in the localization of the second compared with the former. Nevertheless,

following the exact results described earlier, we can propose a phase diagram in

the temperature-mismatch plane (see Figure 7.2). It would he therefore possible

to pass continuously from the pure mismatch disorder to the pure temperature

disorder. There is of course a difference between these two disorders: the equi-

librium phase. In mismatch alloys, the random configuration is never the lowest

energy one. Even if the potential favors equally phase separation and ordering,

the equilibrium phase would be a mixture of phase separated and ordered regions.

In spite of this difference, such alloys exist in real life because the time scale for

reaching the lowest state is too long, this is why the analogy proposed here can

be regarded as exact.

7.3 Details of simulations

For simulations, it is important to have a finite-range potential, to allow for the

formation of defects, i.e. variable number of neighbors, which is not included

in the harmonic theory deve10ped in the preceding section. However, I had to

keep a quadratic term around the minimum of the potential so that it would be

possible to compare the results in the solid phase with the analytical theory. I
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Figure 7.2: Proposed phase diagram of the two—dimensional melting in the

mismatch-temperature plane.
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had therefore constructed a pseudo-harmonic potential composed of four parts:

12

(f) + 61 for r < r1 (7.27)

V(r) = 11’2(r — reg)? + £2 for r1 < r < r2

11'3(r - r3)? for r < r3 (7.28)

0 for r > r3,

where K2, r1, req, 7'; and r3 are variables and

 

K, = 19M (7.29)
7‘2 _' 7‘3

62 = [1,203 — reg)? — 113(7) — 1‘3)2

r 6

0' = [l\2rf3(rcq — rl)]1/ (7.30)

6

12

61 = [(203 - 7‘2)2 - £2 — (1)

1'1 -

The shape of this potential is shown in Figure 7.3 and its derivative, in

Figure 7.4. Typically, I chose the same depth for all interactions, insuring that

there would be no tendencies to cluster or phase separate. Also, the AB length is

always taken to be

1

2

I have also performed simulations using a truncated Lennard-Jones po-

L913 = (L313 + Lisa) ‘ (7-31)

tential (truncated between the 3rd and 4th neighbor) in order to verify which

results are general and which ones depend on the nature of the potential. The

functional form of the potential is

a 12 a 6

V(1) _ e K?) (7) J , (7.32)

where I defined the 6 related to the partial lengths AA, AB and BB such that

the depth of the potential is constant:

__ 07213

6A3 — 6AA '7- (733)

0AA  
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Figure 7.3: Pseudo—harmonic potential.
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and

2
a

688 = 6,1,4 +38- (7.34)

”M

By using the geometric average for the AB ideal bond length,

(7‘3” + T033) < 7‘23 (7-35)

N
I
H

0 _

rAB"

with

7.0 7.0

7“ =fi—M (7.3.6)

”‘3 1/r9é. +293.

where rfw is the mixed length needed for no favoring clustering or phase separa-

tion. In the present situation, clustering would be favored at T # 0.

The minimization procedure was completed using the conjugate gradient

algorithm described in Appendix A. The simulation presented in this chapter were

performed using large cells of 10,000 sites with randomly distributed species A and

B. In most cases, the concentration was 50-50 or 25—75.

Finally, it is no longer possible to obtain the neighbor simply from a list,

as was done in the previous chapters. I have used the standard Voronoi algorithm

to find, uniquely, the first neighbor shell. Although not perfect for very distorted

lattices, it is the most effective and stable method for defining clearly the local

environment.

7.4 Results

The first step was to verify the application of the harmonic theory to the pseudo-

harmonic potential in the solid phase region and to verify the validity of the

effective temperature as the main disorder parameter. Figure 7.5 also presents

results at different concentrations but with the same TD. Figure 7.5 also shows
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Figure 7.4: First derivative of the pseudo—harmonic potential.
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that the pseudo— harmonic potential agrees well with the theory until the first

defects develop. Again, the results are in excellent agreement with the theory.

This is not the case with the Lennard-Jones potential which is highly anharmonic

even at very low mismatch although the general behavior is consistent. As the

effective temperature increases, the Lennard—Jones system departs strongly from

the harmonic theory well before the first structural defect appears (see Figure

7.6). The abrupt change of slope at large R in Figures 7.5 and 7.6 is only due to

the finite size of the lattice.

I have also tested the validity of the parameter TD after the creation

of defects. For a harmonic potential, this parameter is strictly valid; however,

nothing guaranties that the relation holds when the first defects appear.

As the number of defects created increases, a phase transition occurs and

the nature of the correlation functions changes. The translational order decays

exponentially while the angular correlation decays algebraically. One can see the

latter results in Figure 7.7 which shows the value of angular correlation coefficient

at R -» 00 as well as the number of defects as a function of TD. It indicates

that around TD = Tm = 0.005 a transition occurs. However, this transition is

not the one predicted by the KTHNY theory. For TD < Tm, we find essentially

no defects in the solid: in a 100 x 100 lattice, they begin to appear only as we

reach Tm.” Contrary to the prediction of the KTHNY theory, there are no pairs

of Burger’s vectors in the lattice at low mismatch. For To > Tm, we assist at

the creation of a large number of defects. However, almost none of them unbinds

into pairs of dislocations. Only by going to very large mismatch do we begin to

see the unbinding predicted by Kosterlitz and Thouless; however, the density of

defects becomes large enough such that the mean-field non-interactive KTHNY
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Figure 7.5; Variation of the position-position correlation as a function of distance

at two effective temperatures. The solid curves are from the theory, the open

squares are for a 50-50 concentration using the seudo—harmonic potential on

a 100 x 100 site lattice; the crosses are for a per ectly harmonic potential on a

200 x 200 site lattice; and the closed circles are for a 25-75 concentration with

pseudo-harmonic potential on a 100 x 100 lattice.
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1.0 .. .

 
 
 
Figure 7.6: Variation of the position- osition correlation as a function of distance

at two effective temperatures using t e truncated Lennard-Jones potential. The

solid curves are from the theory and correspond to the effective temperature at

which the systems where relaxed. The full symbols are for a 50-50 concentration

on a 80 x 80 site lattice.
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theory, the dash line is a guide to the eye, the open symbols are from a 50 - 50

alloy while the closed ones are from a 25 - 75 alloy.

theory can hardly be thought to apply. Here again, the lattice relaxed using

a truncated Lennard-Jones potential departs from the harmonic theory for the

angular correlation at very low effective temperature and it becomes therefore

difficult to point to a phase transition.

When looking at the total configurational energy for the pseudo—harmonic

potential as function of temperature (Figure 7.9), we find an inflexion point at

To = Tm, indicating a second-order phase transition at this point. Even by

going to very large temperature, up to 4Tm, when it is almost impossible to find
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Figure 7.9: Configurational energy as a function of effective temperature To for

a lattice relaxed using the pseudo-harmonic potential.

a relatively stable minimum, there is no sign of a second phase transition as

predicted by the KTHNY theory. Since the depth is not the same for the three

interactions with the truncated Lennard-Jones potential, the total configurational

energy does not indicate so clearly the presence of a phase transition. These

effects are convoluted with the difference in the potential depths between the

species. However, it is clear, from directly looking at the cell, that there is no

phase transition at a low concentration of defects corresponding to the KTHNY

solid-hexatic transition.

Another characterization can be performed by measuring the elastic con-

,
“
h
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stants of the system. For a triangular network with nearest-neighbor interactions,

only one elastic constant defines the full macroscopic elasticity. However, as the

number of defects increases, the lattice loses its symmetry and the need for more

elastic constants appears. Since the shear modulus vanishes in the liquid phase

while the bulk modulus remains finite, the choice of these two elastic constants

seems a good one: monitoring the variation of the elastic constants with effec-

tive temperature should provide a reliable test of phase transition. Since the

shear modulus would also vanish in the hexatic phase, another elastic constant

is needed. The most obvious one is the splay rigidity (Figure 7.10) which, in the

solid phase is simply

S = C44 = §Cu. (7.37)

(
C
l
i
o

As we go to the hexatic phase, the orientational order is still present so it costs

energy to apply a splay deformation to the system. In the liquid, any deformation

that preserves the volume costs no energy so the splay rigidity should vanish at the

hexatic-liquid transition. As a signature of the behavior of the elastic constants

for the different phase of the KTHNY theory of melting is presented in Figure

7.11. Note that the measurement of the bulk modulus does not really bring any

information on the status of the system but does provide a useful scale against

which to check the two other elastic constants.

It.turns out that the measurement of these quantities is not as simple as it

may seem. As soon as the defects appear, the lattice becomes extremely unstable

against even very small deformations. Some defects appear and then disappear,

creating jumps in the total energy and us preventing from obtaining a significant

value for the elastic constants. Although straightforward and easy to interpret in

theory, the actual computation of elastic constants turns out to be a real problem
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Figure 7.10: Splay rigidit . The arrow indicates the direction of the strain field

applied to measure the sp ay rigidity.
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Figure 7.11: Possible phase transitions for the KTHNY theory in the elastic

constants-temperature space.

and more work is needed to find ways to stabilize the system enough to be able to

obtain reliable results. The problem does not seem to be the choice of potential

since these difficulties are found using a Lennard-Jones potential. It comes more

probably from the strain on the lattice at these high TD.

7.5 DiscussiOn

From all the different tests and simulations performed on lattices statically re-

laxed using a pseudo—harmonic or Lennard—Jones potential, one can draw two
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conclusions: (1) The harmonic theory extends very well to the pseudo—harmonic

potential for T < Tm and only at very low mismatch for the Lennard—Jones

potential. (2) There is no sign of a hexatic phase or any phase transition 2‘). la

Kosterlitz-Thouless. The first point emphasizes the validity of the TD parameter

to study and understand the properties of the lattice until the first defects appear.

This one—to—one correspondence between size—mismatch and temperature disor-

der allows one to compare two very different methods of driving a phase transition.

The temperature disorder creates a globally equilibrated system while the size—

mismatch disorder is only locally equilibrated. Waiting long enough, at a non zero

temperature, we would see the atoms segregating in ordered or phase-separated

alloys. However, as with glasses, on normal time scales, the two dimensional size

mismatched alloys can be considered as equilibrated. As the mismatch increases

and defects are created, the effective temperature is no longer a meaningful quan-

tity. Once defects appear, the local stress as well as the number of contact points

between the two species of the alloy will determine the overall properties. For

example, by looking at Figure 7.12, which indicates the defects and the bond type

on a lattice with 40 % mismatch, one sees that there is a tendency for the pairs of

dislocation to form in a diamond configuration with alternate species on the cor-

ners. It is therefore natural that To defined previously no longer gives an accurate

picture ofthe situation. In other terms, TD is valid only when harmonic terms

dominate. The creation of defects, being non-harmonic, opens other avenues for

decreasing the stress that are not accounted for in the previous theory.

The second point is very important in the search for the elusive hexatic

phase. It shows that static systems will not organize themselves in a hexatic

phase. Any local strain (due to the local and frozen nature of mismatched alloys

 



pseudo—harmonic potential. The solid line represents A — A bonds, the dash one,

A — B bonds, and the dotted line, B — B bonds; a open square indicates an atom

its 7 first neighbors and a full circle, an atom with five—fold coordination.

Figure 7.12: Section of a 50—50 alloy with 40 % mismatch relaxed using the
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by opposition with the non-local nature of temperature disordered systems) will

preclude the separation of Burger’s vectors. Only when a very high density of

defects screens considerably the interaction do some dislocation pairs unbind.

In the case of pseudo—harmonic potential, one can almost fill up the lattice with

defects before single disclinations appear. This effect could be due to the choice of

the potential parameters, too deep or too shallow. However, it would not explain

the second— order phase transition indicated by the configurational energy when

the first defects appear, at Tm = 0.0005. This transition is totally different from

the expected KTHNY one. The new phase seems extremely unstable and efforts

to calculate the elastic constants have shown that a very small perturbation can

create or destroy hundred of defects. One could believe that the problem lies

in the potential. However, although many results differ between the pseudo—

harmonic and the Lennard—Jones potential, there are two constants: (1) Even

at very high mismatch, single disclinations do not appear; and (2) the density

of defects at which some unbinding happens turns out to be very high and a

theory ignoring interactions between pairs of dislocations cannot be valid. Figure

7.13 represents a lattice relaxed with Lennard-Jones potential, even at very large

defect concentration, one finds only very few single disclinations.

*7.6 Conclusion

Although the search for hexatic phase comes in empty—handed once again, the

study of mismatch—driven phase transitions gives us a better understanding of

the limits of the harmonic approximation and of the KTHNY theory. Because

static relaxation is more straightforward than Monte—Carlo or molecular dynam-

ics, it is possible to look at much bigger samples. The correspondence between
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Figure 7.13: Section of a 50—50 alloy with 26 % mismatch relaxed usin

Lennard—Jones potential. A open square indicates an atom with 7 first nei

and a full circle, an atom with five—fold coordination.
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temperature and mismatch is exact at low TD, allowing a meaningful comparison

between both. However, this relation breaks down somewhat when the first de-

fects appear. Also, lattices become unstable at large mismatch and create chains

of pairs of dislocations that eventually fill up almost all the lattice without evi-

dence of a second phase transition. Since the details of the phase transition in the

system presented here differ dramatically from what is predicted by the KTHNY

theory, it is possible to conclude that the KTHNY transition is not always favored

in 2D and, at least, does not reflect the behavior of mismatched systems.

 



Chapter 8

Conclusion

The knowledge of the structure of a solid is primordial to a satisfying under-

standing of its electronic properties. Too often, physicists make very accurate

calculations based on a poor model. In this thesis, I have tried to improve the

understanding of the structural properties of relatively weakly disordered systems:

binary solid solutions. Even with this low disorder, the structure turns out to be

very different from what was predicted using perturbation theory; instead of a

large distribution around the linear combination of the properties of each species,

we find multiple peaks centered close to the individual natural lengths.

In the case of metallic alloys, the simple Hooke’s spring approach pursued

here does_ not always give precise results; it is often necessary to account for

the changes in the electronic environment that affect the quality of the chemical

bonds. Nevertheless, the qualitative predictions of the harmonic theory remain

valid: small rigidity parameter, three—peak distributions, etc. It is to be noted

also that the more complex embedded—atom potential fails as often as the spring

model to replicate the average length of the alloys.

Using the Cai and Thorpe (1992a) theory for semiconductor alloys, 1

161
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have calculated the structural properties one would expect for crystalline and

amorphous SiGe solid solutions. I have shown that the effect of size mismatch on

amorphous semiconductor is roughly the same as that predicted for a crystalline

one. In the former case, it is possible to treat size mismatch as a perturbation

compared to the large disorder introduced in the process of amorphisation. How-

ever, it turns out that the predictions for crystalline and amorphous SiGe alloys

are in disagreement with recent experimental results. Because the topological

rigidity parameter, which determines all the properties of the disordered network,

depends only on the connectivity of the perfect lattice, it is difficult to believe that

the predictions are wrong qualitatively. Some more experimental work remains to

be done on this problem in order to obtain a definitive answer.

I have also extended the formalism to the surface. Although it is not

possible to obtain analytically the value for a", the general ideas developed pre-

viously still hold. At the surface, the difference between the average partial lengths

is larger than in the bulk, due to the lower coordination. Having predicted the

height distribution as it should be seen from the surface, we can only wait to

see how this prediction will compare with experiment. A consistent result at the

surface would probably indicate that the bulk predictions are equally valid. It is

obvious that in the treatment of the surface problem, I have not considered any

reconstruction. First, due to the generality of the principle, one would expect to

obtain a qualitatively similar result. Second, by covering the surface (111) with

hydrogen or by heating it up to 600 C, it is possible to deconstruct completely

the surface and to obtain a structure similar to what I have studied here. I have

also showed the equivalence between the topological rigidity calculated globally

and locally. This equivalence will be very helpful in understanding the rigidity of
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non-symmetric systems.

Finally, I have attempted to look at the solid-hexatic mismatch-driven

phase transition. At low mismatch, a perfect correspondence between temperature

and mismatch can be found that will predict the appropriate structural correla-

tions. However, I could not find any trace of the hexatic phase or Kosterlitz-

Thouless type of phase transition. The problem of hexatic phase has been around

for almost 15 years but it remains highly controversial. However, we have seen

that it is not universal in the size-mismatch problem. Moreover, at low mismatch

(strictly equivalent to low temperature), there is no sign of the bound dislocations

predicted by the KTHNY theory, even in systems much larger than studied previ-

ously. As the first defects appear, a transition seems to occur but with the density

of defects increasing very rapidly there is not even the appearance of phase tran-

sition or global unbinding of defects to be seen. With the creation of defects, the

correspondence between mismatch and temperature is weakened leaving a direct

extrapolation of the results between both kind of disorder somewhat less direct.

It remains, nevertheless, that the results speak not for a KTHNY-type phase

transition but for a more conventional one that remains to be fully characterized.

A lot of questions have been raised in this thesis. I believe that they

will be answered in a near future. Many of the answers lie on the experimental

side and one can only hope for the development of better analysis for EXAFS

measurements. This way, it would be possible to settle the questions about the

predictions for SiGe random alloys. It would also complement happily the series of

numerical results obtained for the metallic alloys particularly regarding the strange

behavior observed in the AuAg alloy. Some more theoretical work is still needed

to understand why the EAM and CFM potentials seem to be so complementary
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in their predictions. The study of surfaces is still in its infancy and so I am

confident that we will soon have some experimental results to compare with the

many predictions presented here. Some research would be useful to characterize

quantitatively the effect of size—mismatch on reconstruction. It may be possible to

prevent reconstruction by using large enough impurities at the surface. Although

2D melting has been heavily studied during the last decade, I believe we have

here a solid proof that the hexatic phase is not universal. However, more work is

needed in order to develop efficient tools to characterize the phase transition. The

choice of elastic constants seems very appropriate but many problems remain to

be solved before one can use them, in a computer simulation, as a good indicator

of the structural phases. I have no doubts that many of these questions will be

addressed in the next few years.



Appendix A

Conjugate—gradient method

The problem of finding the global minimum of a multidimensional surface is gen-

erally impossible to solve. However, there exists multiple techniques that allow

one to find a local minimum. In the case discussed in the main text, with relatively

weak disorder and fixed coordination, we can be almost certain that the minimum

found by a straightforward and linear method will lead to the global minimum. In

view of this insurance, the conjugate—gradient method (CGM) was used in every

case. The following discussion is based on the one given in Numerical Recipes

(Press et al., 1986).

The first step in the minimization is to convert the multidimensional prob-

lem to a set of line minimizations, i.e. that we try to find a scalar A that will

minimize the energy E(x + Ay). The problem is now to choose appropriately the

vectors x and y. The CGM is based on the fact that the gradient of a function

miminized along a vector x will be perpendicular to it at the minimum.

To see how this method works, let’s start by a Taylor expansion around

165  
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some point x0:

E(x): E()x0)+Z:—':3le33+"22??2(If-:17;fllrox$1+ " (AJ)

By keeping only up to the quadratic term, we get

1

E(x)2c+b-x+§x-A-x. (A.2)

Using this latter equation to obtain the gradient of the total energy,

VE=A-x+b. (A.3)

By posing VE = 0, one finds a set of linear‘equations to solve by inverting the

matrix A. However, this method would require the knowledge and the storage of

a matrix N x N. The CGM demands only the total energy and its gradient, an

order N in information.

So, let’s take two sets of vectors g,- and h,- with go = ho and a recursion

defined as

gm = g. - AIA ° hi (AA)

11i+1 = 8141-1771115

where orthogonalisation for g and conjugation for h are required:

51.1.1 ° 3; = 11.4.1 ' A ° I1; = 0. (A.5)

This latter requirement defines the two scalars

A,- = 378?in (A.6)

and

“=8i+1'A'hi

7' h,-A-h,~.

 (A.7)
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Moreover, these relations also imply (as can be proven by induction) that for all

 

i 961'

gg°gj=hg'A'hj=0. (A.8)

It is also possible to rewrite equations A.6 and A.7 as

_ = Si+1 'Si+1 = (gi-H " 8i) '8i+1 (A 9)

g.- - g.- g. - g.- ’

and

g.- ' hi
A,- = —. .h.‘ . A . h.‘ (A 10)

Although the last two terms in equation A9 are equal when the function is exactly

quadratic, most of the time, the total energy used is not and therefore the orthog-

onalisation is not perfect. The first term on the right is named after Fletcher and

Reeves while the second one is called the Polak-Ribiere method. I have used the

latter.

The interest of the CGM is that it does not require the knowledge of the

Hessian matrix A. Suppose that one has

g,- = —VE(x,-) = —A - x,- -+- b. (A.ll)

one also sets g,-+1 = —VE(x,+1) where X1.“ is the new minimum of the total

energy obtained by minimizing the energy along a vector h,-.

Since

5+1 = A ' (X; '1' Ah.) + b (A.12)

= Si - Ahi.

at the minimum, obtained by varying A,

ll; ° VE = -h.' ° 31.1.1 = 0. (A.l3)
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Using this condition and equation A.10, A13 is the same as A5. It is therefore

possible to find the minimum of the total energy without ever evaluating the

Hessian matrix A.

..
.
.
‘

 



Appendix B

Johnson’s long—range potential

As I mentioned in chapter 3, the gold—silver alloy was treated a bit differently

from the other alloys. Instead of using a first-neighbor interaction, I have used a

long-range one, going up to the thirteenth neighbor, developed also by Johnson

(1990). It is essentially an extension of the embedded—atom potential presented

in chapter 3.

The basic equations are the same as the one given in chapter 3. The

energy is a sum of a repulsive pair potential and an attractive electron-density

term

E: Z: 45(7‘0') +ZF(’°‘)’ (B-1)

- P.- = Effie). (3-2)

#1

with

1/3 a: 1 16 1

W) = E.{1+..[(%e) ’1l}6a[(p)/_]
(3.3)

_¢ (3.)“ _ 1(a) ,
Pe ,6 Pe

The parameter 0 depends on the core energy EC, the bulk modulus B, and the
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atomic volume (I, a = 1/9128/ EC. The exponents fl and 7 are given by

 

fl: 
J 159013.135,

(Elf; + EC)El1/,

 

1590(13,’ + E.)
= . 13.5

7 \J E(quc ( )

where G is the shear modulus.

 

Moreover, in this potential the electron—density function and the pair

potential are given by

N) = f. [1]” (3.6)

and

rle

0(7‘) = .1.H (8.7)

where the parameters fe and 03., are scaled a weighted sum of the atoms in the

first n neighbor shells:

 

Ec _ 71 Ni

fe — 5309 SH " E; k?) (8'8)

Be It Ni

3. _ 23:, S, _ g kg, (13.9)

where N,- is the number of atoms in the ith shell and k,- is the distance a the ith

shell to the central atom in units of r1, r,- = 16,-r1.
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