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ABSTRACT

EXPERINIENTS IN 3D CAD-BASED INSPECTION

USING RANGE IMAGES

By

Timothy Scott Newman

An experimental system for automated visual inspection of three-dimensional industrial

objects that have been designed with a commercial CAD system is presented. Historically,

automation of visual inspection of 3D objects has been a difficult process. Special-purpose

machine vision systems have been developed for some specific assembly guidance and

inspection operations, but very few general-purpose visual inspection systems have been

developed. This dissertation presents a system for inspection of castings using range

images. The specific problem addressed is to ascertain if a 3D object consisting of planar or

quadric surfaces and of known identity satisfies acceptability criteria, given its depth map

(range image) and CAD model.

Our goal has been to create a system with inspection capabilities for any object for which

a CAD model is available. Model-based inspection systems are flexible, allowing easy

adaptation to inspection of a new object. In this dissertation, we demonstrate that flexible

general-purpose inspection is possible when the problem domain—Le, the manufacturing

process, sensor capabilities, and object types—is understood. The problem domain consists
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of range images of small- to medium-sized castings for which there is a CAD model.

A suite of model-driven 3D surface fitting algorithms that are applicable to the surface

classification problem in object recognition is presented. Through extensions to these

classification techniques, surface shape inspections are also carried out. These inspections

allow the detection of common defects in the casting process, including insufficient (e.g.,

pits and short pours) and excess (e.g., dmps) material defects, and warps and mismatches.

The sensor limitations and their impact on inspection are investigated. The effects

of the casting process on the inspection tasks are also examined. Furthermore, a range

image segmentation scheme is presented to allow more reliable casting surface extraction.

Several techniques for object localization, including the Extended Gaussian Image, the

Hausdorff matching, and, particularly, the interpretation tree search, are investigated for

their suitability to the inspection task. Parallel algorithms for interpretation tree search are

presented and then implemented and analyzed on a MIMD machine.

A gross defect detection scheme based on random template matching for in-process

inspection is presented. The system also has capabilities to inspect several high-level

features and dimensions. Information extracted from models built with a commmercial

CAD modeler is used throughout the system. The system presented in this dissertation

is not a complete inspection system, but rather is an experimental system designed to

demonstrate the feasibility of general-purpose inspection of castings in range images. Many

of the techniques presented are also applicable in other inspection realms. The system was

implemented in the C language and tested on a large number of real and synthetic images.
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CHAPTER 1

Introduction

As marketplaces have become increasingly global in their scope, many industries have

experienced heightened concerns about their competitiveness. Domestic manufacturers

cannot rest content in their once-captive home markets, for example, because consumers

are always eager to find the best product at the least cost among a larger number of choices.

Traditionally, technological improvement has been one of the most effective strategies for

maintaining or increasing a company’s market share. Manufacturers in the United States,

and especially those in Japan and Western Europe, have used robotics and automation on

the factory floor to improve product quality and efficiency and to reduce costs. Robotics,

coupled with quality assurance methods, can also reduce product recalls and warranty and

maintenance costs [113].

For robots to become more widespread in manufacturing, however, they must be pro-

vided with some visual abilities. Human workers display great flexibility on an assembly

line, partly because their visual system allows them to rapidly recognize and handle unex-

pected or unusual situations. Some robots already use vision systems to perform “intelli-

gent” tasks in a variety of application domains. For example, machine vision is used to

help position welding and painting robots [20, 63, 141, 153, 154, 178], for guiding insertion

operations in assembly operations [141, 178], and for decoration of foodstuffs [141].

One area that has shown some resistance to automation is visual inspection of parts.
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Inspection is a task that requires flexibility in addition to visual abilities. As such, automation

of vision-based inspection tasks has been a slow process. Automated inspection has been

performed for very specialized applications, but there is no automated inspection system

which can be easily adapted for inspecting a wide variety of products. To ourknowledge, all

of the existing automated inspection systems, with the exception of very few experimental

systems (e.g., [1 l 1]), have been designed to inspect a single object or part whose position is

highly constrained. This dissertation presents automated inspection algorithms applicable

to a class of objects, rather than a specialized system only usable for inspection of a single

product.

The ultimate aim of this research is to be able to inspect any three-dimensional (3D)

solid object for which a Computer Aided Design (CAD) model is available. The use

of CAD models makes the inspection system flexible; a system that uses CAD models

is easily adaptable to inspection of new objects or even new classes of objects. In this

research, inspection is restricted to 3D iron castings composed of planar or quadric surfaces,

however. This dissertation addresses issues of model representation, feature extraction from

models, object localization, fusion of data from multiple viewpoints, efficient matching and

techniques for inspection of surface shape, dimensional tolerance, and assembly integrity.

Parallel algorithms for matching and localization are also presented and analyzed.

A general-purpose industrial inspection system needs to detect three major types of

defects. These include part dimensioning (metrology), surface inspection, and assembly

integrity inspection. The goal of this research is to present a system that includes techniques

to perform these three inspection functions. The experiments focus on metrology and

surface shape inspection, however.

1.1 Definition of Inspection

Inspection is the process ofdetermining if a product (also referred to as a part, object, or item,
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both in this dissertation and in the literature) deviates from a given set of specifications [73,

81, 97, 99]. Inspection usually involves measurement of specific part features such as

assembly integrity, surface finish, geometric dimensions, etc. It is a quality control task, but

is distinguished from testing tasks, such as stress analysis, that involve active examination

of specific operational functions of the product [99]. Part identification or recognition, by

contrast, consists of the positive identification of an object. Identification of the object

usually is not necessary for the inspection task; identity is usually assumed to be known a

priori. Thus, inspection, testing, and recognition are distinct but related tasks.

Some of the papers in the literature which claim to present inspection methods actually

perform either recognition or segmentation. Ker and Kengskool [98], for example, have

presented an Hough Transform-based edge segmentation method that they claimed as an

inspection technique.

Inspection should also be distinguished from guidance and control (i.e., localization)

tasks. Guidance and control consist of measuring the relative position of objects to provide

feedback to a robot [117]. The Partracker system by Automation, Inc., which was reported

as an inspection system in the literature [141], is actually an example of a guidance and

control system. Partracker locates parts whose position is not known precisely. After part

position has been determined, Partracker allows a welding or assembly operation to be

performed.

1.2 The Casting Inspection Problem

In this research, the domain of inspection is restricted to iron castings produced by the

General Motors (GM) Saginaw Malleable Iron (SMI) Plant. The techniques presented in

this dissertation are aimed at detecting defects that commonly occur in the casting process.

While it might seem ideal to present inspection schemes that can function well totally

independent of the problem domain, in practice this is not feasible. In a given application,
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certain defects seldom, if ever, occur, while other defects are very important and must be

detected. The choice of a defect detection scheme is also tightly coupled with the sensing

method. Thus the approach to inspection in this dissertation is domain-specific.

Although the problem domain is restricted to castings, the inspection techniques de-

veloped here are applicable to objects that contain a wide class of surfaces. Most of the

restrictions on which surfaces and defects can be inspected were limited by the available

range sensor rather than the object classes. Details about the range sensor used in this

research and its limitations are presented in Chapter 4.

1.2.1 The Casting Process

Casting is the process of forming an object by pouring molten metal into a mold. The mold,

usually made of sand, consists of a “top” half and a “bottom” half. The cope is the name for

the top part of the mold while the drag is the term for the bottom part of the mold. Some

molds also contain cares that allow the pouring of castings which have hollow centers.

This allows the creation of various housings and some gear and pulley blanks. The cope

and drag are pressed together and then molten metal is poured into the mold, to create the

casting.

Example Images

An intensity and a range image of one of the defective iron castings from GM SMI are

shown in Figure 1.1. These images were collected from similar, although not identical,

viewpoints. The casting in the images is a gear blank whose part identification number is

356 (referred to as gear blank 356 henceforth). This casting contains a small surface pit

near the gate stub (the gate is the rectangular obtrusion from the generally circular border

of the part). The part also contains a small amount of excess material near the outer circular

boundary at a position of about 35 degrees counter-clockwise from the pit. Arrows are

overlaid on the range image to mark the position of both of the defects. Range images of



  
(a) Intensity image of defective casting. (b) Pseudo-intensity rendering 0f depth

map of defective casting.

Figure 1.1. Intensity and range images of a defective gear blank casting.

two other castings, both defect—free, are shown in Figures 1.2 and 1.3.

1.2.2 Casting Defects

This section discusses some of the common defects encountered in the casting process.

Most of the material presented in the remainder of this section is based upon discussions

with the staff at GM SMI, especially with Mr. Robert Huber [80]. Several handbooks of

casting defects were also consulted [1, 2].

Holes and Cracks

Two of the most common surface defects in castings are holes and cracks. These defects

are also two of the more critical defects so their detection is important. As discussed above,

surface defects weaken the part by reducing its ability to withstand mechanical and thermal

loads [62].

Several classes of holes exist in castings, including gas (or blow) holes, slag holes,

and sand holes. Gas holes are caused by pockets of gas becoming trapped in the mold.

Inclusions, or slag holes, are caused by impurities in the molten metal. This is usually

caused by foreign material, such as sand, becoming embedded in the metal during casting.



  
Figure 1.2. Depth map of a cylindrical Figure 1.3. Pseudo-intensity rendering

casting. (Intensity coding of depth.) ofdepth map of gear blank 588x casting.

This foreign material usually washes off during cleaning, however, leaving small pits in

the casting surface. An example of an inclusion defect, from [1], is shown in Figure 1.7.

Sand holes are most often caused by incorrect moisture in the molding sand. This causes

moisture from the sand to condense on the surface of the metal during cooling, leaving

pits behind after the metal has cooled and the moisture evaporated. The classes of hole

defects all appear as pits or “bubbles” on the surface of the casting. There is some overlap

in the “symptoms” of these defects, and many experts disagree on the exact classification

of defects. In this dissertation, all hole-type defects are grouped together into a single class.

We will refer to this class with interchangeable terms such as “pit,” “blow hole,” or “hole."

A pit defect is shown in Figure 1.1.

Cracks are often caused by incorrect rates of cooling and appear as hairline fractures in

the surface of the casting. Cracks are very common defects in the casting process. Currently,

GM detects cracks using a system called MAGSIGHT. This system induces magnetic flux

on the castings and then illuminates the castings with fluorescent light. A human operator
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views the castings and removes defective parts 1" MAGSIGHT uses four cameras to view

the magnetized castings.

Insufficient Material Defects

Another common defect is a poured short defect. This defect is caused by insufficient

metal being poured into a mold. It is usually manifested as a gross feature defect such

as misshapen surfaces or missing features. Foundrymen sometimes classify some poured

short defects as misruns or shrink defects. Technically, a short pour is any casting that

lacks completeness, usually caused by an insufficient amount of metal being poured into

the mold. A misrun is a casting that is missing a feature because metal did not fill an

extremity of the mold while a shrink defect is any depression from the true mold surface.

There appears to be a great deal of overlap in the definition of these three defects, so we

refer to all of them as poured short defects. Two examples of poured short defects from [1]

are shown in Figures 1.4 and 1.5. Runout defects may also cause defects that appear similar

to poured short defects, although the runout defect is caused by metal “running out” of the

mold. This defect is usually the result of a mismatch between the cope and drag.

Excess Material Defects

Excess material defects caused by sand dropping away from the mold, often classified

as drop defects, are also common. An example of a drop defect from [1] is shown in

Figure 1.6. Drop defects usually cause excess material to be deposited on the surface of

the casting. Runout defects, which often are manifested as insufficient material on some

surfaces of the castings, usually also cause excess material on other areas of the casting. In

this dissertation, no distinction is made between the different excess material defects.

 

‘MAGSIGHT is a magnetic particle testing (MPT) method. MPT is discussed in section 2.2.3.
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Figure 1.4. Example of a poured short Figure 15- Anexample ofapoured short

(misrun) defect' atooth is missing. From (shrink) defect. From [1], used by per-
9

[1], used by permission. mission.

 
Figure 1.6. An example of a drop defect. Figure 1.7. An example of an inclusion

From [1], used by permission. defect From [1], used by permission.



Material Allowances

The tolerance for insufficient material is typically 0.06” while the tolerance for excess

material is about 0.12”. Castings are usually machined after the casting process, allowing

small defects (especially defects smaller than the tolerance for excess material) to be

removed. Hence, most small defects can be ignored. However, human inspectors often

reject castings with small pits of depths as little as 0.02”. This is because a small pit defect

often cannot be completely removed during subsequent machining; many times the pit

becomes larger during machining, either because the pit opens into a larger sub-surface pit

(that is not visible through visual inspection) or because the metal near the pit is weak and

breaks away during machining. Cracks may be as small as 0.01” deep with a similar width,

or they may be deeper fissures of a barely visible width. Cracks occur quite commonly and

may be the most serious defect.

1.2.3 Unlikely Defects

Because of the nature of the casting process, some defects are less likely to occur than

others. For instance, there tend to be fewer defects on cylindrical, spherical, and other

curved surfaces than there are on planar surfaces. Defects are most likely to occur on

“flat” surfaces or on the blended surfaces that bridge planar and curved surfaces. This is

because sand that falls out of the casting mold is likely to fall onto a horizontal surface

during casting. The :c-y (horizontal) planes of the cope and drag usually contain planar

surfaces while curved surfaces are most often cast in the vertical direction. Furthermore,

gas defects are more probable on planar than on curved surfaces because gas is more likely

to be trapped at the “top” of the mold. Thus, both excess material and insufficient material

defects occur most often on planar surfaces or on the filleted surfaces that blend curved and

planar surfaces of castings.

Another uncommon defect is a “shift” within a cope or drag section of the casting. It
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is often the case that there is a mismatch or shift between the cope and drag that causes

the “bottom” part of the object to be shifted relative to the “top” of the object, however.

The acceptable limit on such shifts is 0.03”. A mismatch causes most of the dimensional

tolerance defects in the casting process. Most of the dimensional tolerance defects would

be observed when measuring between one point from the “top” and another point from the

“bottom” of the casting. But shifts entirely within the cope or drag are unlikely. Thus, there

are unlikely to be any out-of-tolerance dimension measurements on the same “side” of the

casting.

A defect such as deviation from circularity is one example of a defect that is uncommon

because the plane that contains a circle is usually entirely within either the cope or the drag

section of the casting. Circularity defects are currently detected by measuring total indicator

runout on samples collected approximately once per week. Other tolerances are checked

using a coordinate measuring machine (CMM) on samples collected about once per day.

Scanning with a coordinate measuring machine is time—consuming, however. A CMM

scan commonly takes about two hours. The checks for circularity and other dimensional

tolerances serve primarily to check the tooling of the casting process; such a defect is not

as important as the others because it would generally not occur in isolated instances.

1.2.4 Inspection in the Foundry

GM’s Saginaw Malleable Iron Plant creates over 100 different castings. All of the castings

are currently sorted and inspected by hand. Typically, about 285 castings per hour must be

inspected. Approximately 5% of the castings contain unsalvageable scrap (i.e., defects).

In the early 1980’s, GM installed an intensity-image based machine vision system called

CONSIGHT to automatically inspect and sort castings. It had very general allowances for

casting orientation but required that there be no overlap between castings. This vision

system was removed after about one year of use, however, primarily because it failed to

work properly for parts that were definitionally non-defective yet still deviating from the



 

norm Ultimately.

that it had inspt‘s‘k'

the castings. inclue

always included it

small differences i

pads that were d

only a 1;" differet

functioning in th:

There are sci

For example. the

the final casting

this dissertation

at the foundry k

is 1150 the one

mneflfid iliim

1‘25 Inst]

no - .
Casting 1]

and Manse 1

Challenge {m



ll

norm. Ultimately, a human had to be stationed next to CONSIGHT to re-sort the parts

that it had inspected. One reason for CONSIGHT’s failure was the natural roughness of

the castings, including the presence of additional features such as gate stubs that were not

always included in CONSIGHT’s model base. Many of the parts being sorted had very

small differences in dimensions, making it difficult for CONSIGHT to distinguish between

parts that were defective and parts that were simply different. Some of the parts had

only a %” difference in dimensions, for example. CONSIGHT also experienced problems

functioning in the harsh environment of the factory floor.

There are several places in the foundry where automated inspection would be useful.

For example, the molds could be inspected after construction and again just before pouring,

the final casting products could be inspected, and hot castings could also be inspected. In

this dissertation, we focus on inspection of cold castings in the finishing area. The personnel

at the foundry believed that the most natural place for inspection is in the finishing area. It

is also the one part of the inspection process that can be developed off-site using samples

collected from the foundry.

1.2.5 Inspection Problems Studied in this Thesis

The casting inspection problem is quite challenging because of the nature of the defects

and because the castings contain natural roughness caused by the grain of the sand. The

challenge for this work is to robustly segment, classify, and identify the castings in (range)

images and to determine the nature of any defects present.

The inspection system in this dissertation also relies on model information extracted

from CAD models of castings. CAD packages allow a designer to manipulate shape and

structure parameters and observe their influence on part geometry. CAD can also provide a

mathematical description of object shape. They can also be extended to contain additional

manufacturing information, including dimensional tolerances and surface finish type and

quality. The CAD model therefore presents a centralized object description valuable for
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The Inspection Problem
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Figure 1.8. Dichotomy of Inspection Problems.

interrogation for inspection. Chapter 3 discusses the advantages of CAD models in depth.

The reliance on CAD models in this work also increases the potential to apply the inspection

methods to other industrial inspection problems.

The work presented here inspects the castings using range images because 3D surface

information is explicitly represented in range images. This also makes our methods gen-

erally applicable to many other inspection problems. The advantages of range images are

discussed in more detail in Chapter 4.

Figure 1.8 shows a dichotomy of the various inspection problems. In the diagram, the

unlabeled subtree under “Arbitrary Surfaces” is identical to the subtree under “Quadric

Surfaces.” At the highest level, inspection tasks can be distinguished by the surface types

that compose the object boundary. The second level of the tree indicates if inspection

requires solution of the object recognition problem. Finally, the lowest level of the tree

indicates if the object’s pose is known, perhaps through control of fixtures, or unknown. In

this dissertation, we focus mostly on the leftmost branch of the tree; known objects with

planar or quadric surfaces that are in a given pose are inspected. In Chapter 6, techniques

for pose and identity determination are presented, however.
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1.3 Thesis Contributions

In this thesis, we present a CAD-based system for general-purpose visual inspection of

castings using range images. The techniques are useful for inspection of dimensional

tolerances, gross assembly integrity, surface shape of cylindrical, planar, and spherical

regions, and surface defects such as pits, excess material, short pours, etc. The techniques

presented here are also able to detect some crack defects. Furthermore, the techniques

have been tested on a set of real objects manufactured by an automotive company. To our

knowledge, this is one of the first general-purpose inspection methods to have been tested

on a set of real objects.

The contributions of this work include the following. First, the capabilities and lim-

itations of the lOOX range sensor and the requirements for the model representation are

investigated. We also present an enhancement of the Flynn-Hoffman-Jain [55, 75] range

image segmentation scheme that produces reasonable segmentations of the images of cast-

ings. A suite of techniques for model-driven quadric surface fitting is presented for the

quick and accurate classification of regions in range images. Extensions to the surface

fitting routines are presented that allow robust surface fitting in the presence of defects and

minor segmentation errors. We investigate several techniques for pose localization and

object recognition—including the Extended Gaussian Image, Interpretation Tree Search,

matching to stored views, and the Hausdorf matching—and present a tree search technique

that has been implemented and analyzed on a MIMD computer, thus demonstrating the

feasibility of parallel computation for high-level vision applications. We also present a1-

gorithms for gross defect detection, detection of common casting defects, inspection of

surface shape, and verification of some feature attributes and dimensional tolerances.

A benefit of our methodology is that the techniques presented are applicable to a class

of objects rather than to a specific single object. Our techniques have been successfully

applied to many range images of castings, thus demonstrating their utility. The work in
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this dissertation also makes use of information from the CAD model in various steps of

visual processing. Although the techniques presented here are specific to the domain of

castings in range images, many of the techniques have general applicability to 3D object

recognition and inspection due to the reliance on general models throughout the steps of

visual processing.

1.4 Thesis Organization

The dissertation is organized as follows. Chapter 2 presents typical inspection problems

and discusses many of the automated visual inspection systems that have been reported in

the literature. Chapter 3 discusses CAD models and data representation issues, including

the representations specific to this research. Chapter 4 reviews the techniques for acquiring

range images and motivates the need for the use of range images for inspection. It also

presents the sensing arrangement used in this thesis. Chapter 5 discusses surface feature

extraction, segmentation, and surface classification. Chapter 6 presents techniques for

object localization. Chapter 7 explains the technique proposed for inspection of gross

defects. In this research, the gross feature inspection is the first stage of inspection. Objects

that pass the gross feature inspection are then inspected for common casting defects and for

the success of operations of interest. Chapter 8 contains the techniques for many common

casting surface defect inspections, which can be called surface shape inspection. The

inspection of features or operations of interest and dimensional tolerances is discussed in

Chapter 9. The dissertation is concluded in Chapter 10.

A simplified block diagram of the steps in our inspection system is presented in Fig-

ure 1.9. The boxes in the figure indicate the order of the inspection steps and the chapter

in which each step is discussed. An expanded view of the box labeled “Inspection” is

provided at the beginning of Chapter 7.
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CHAPTER 2

Background on Inspection

In this chapter, we discuss the stages of inspection and motivate the need for and feasibility

of automated visual inspection. We also present an overview of many of the automated

visual inspection systems that have been reported in the literature.

2.1 A Taxonomy of Inspection Problems

In this section, we present a taxonomy of the inspection problems.

2.1.1 Inspection Stages

There are three generally accepted application areas (or stages) for inspection. These

are input (also called receiving or incoming) inspection [44, 97, 166, 185], process in-

spection [44, 63, 94, 97, 159, 166, 178, 185, 194], and output (or, product) inspec-

tion [44, 97, 159, 166, 185, 194]. Receiving inspection is the examination of raw materials

to determine if their quality is acceptable for use. It also involves determining if there is

a sufficient amount of material for use in assembly. Process inspection is the examination

of the output of an intermediate work stage; it is useful for determining if the operations

at a stage were performed within specified tolerances and whether the assembly process

is in control or if tools are worn or broken. Process inspection allows fine adjustments to

16
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Figure 2.1. Stages of inspection in a production sequence.

be made for tool wear and helps prevent nonconforming parts or material from being used

in a later production stage. The advantages of process inspection are discussed further in

Section 2.1.3. Output inspection is the final exhaustive inspection of a product at the end

of all assembly or manufacturing stages to determine the product’s acceptability. Output

inspection is also often used to collect statistical information to discover long-term trends

in the assembly process, for instance to find that tools need to be replaced or that general

maintenance may be required [166]. Figure 2.1 shows several stages of production and

inspection.

2.1.2 Inspection Dichotomies

Wetherill [185] has presented several dichotomies of inspection. One dichotomy for batch

inspection is rectifying inspection versus acceptance inspection. Rectifying inspection

refers to sorting out bad products from the batch and adjusting (or replacing) those items.

Acceptance inspection involves the labeling of batches of products into categories such as

“accept,” “reject,” or, perhaps, “seconds” (e.g., products to be sold at a lower price).

Another dichotomy of inspection tasks is inspection by attributes versus inspection by

variables [185]. Inspection by attributes classifies objects as either acceptable or defective.
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Mair prefers the term qualitative inspection for these visual inspections [109]. Typical

attribute inspection tasks include qualitative and semiquantitative mensuration, such as

checking labels, examining cosmetic and surface finish properties (such as colors or blem-

ishes), detecting cracks and flaws, and verifying part integrity and completeness (including

spurious and missing features) [109, 148]. Inspection by variables produces a measurement

of some feature, such as the product’s length or weight These dimensional inspections

are termed quantitative inspection by Mair [109]. Some of the quantitative geometric fea—

tures and the symbols commonly used to describe them on blueprints are provided in the

chart in Figure 2.2, taken from Kennedy et a1. [97]. These symbols are used on blueprints

to indicate manufacturing tolerances. Another inspection by variables task is measuring

important part dimensions such as exterior wear, tool wear, and workpiece dimensions.

Grading inspection is a hybrid classification that classifies products based on degree of

acceptability of features, such as length or weight [185]. One example of this is grades of

produce, for example, grade A versus grade AA eggs.

Lee [104] identifies an inspection task he terms implicit inspection which involves

detecting that “novel but ‘obviously’ faulty items” are defective. Defects detected by

implicit inspection include poor finishes, dents, scratches, incorrect color, wrong orientation,

improper reflective properties, and other ill-defined faults. While these defects might

appear to overlap with some of the inspection tasks defined above, implicit inspection

involves recognizing an unanticipated defect. Human inspectors are quite flexible and

can easily recognize novel defects. Many of these unanticipated defects are not described

by explicit parameters, making automated detection difficult. Implicit inspection is an

open research problem, calling for sophisticated representations of the object, task, and

processing requirements [104].
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Figure 2.2. Common blueprint symbols for geometric characteristics and features from

Kennedy et al. [97] .

2.1.3 Why Automated Inspection?

100% Inspection vs. Batch Inspection

In industrial environments, inspection has usually been performed by human inspectors on

a small-sized sample from the lot or batch. In this modality, called batch inspection, the

quality characteristics of the sample are generalized to the batch from which the sample

was drawn. Some experiments have indicated that batch inspection by human inspectors

tends to be more accurate than an inspection modality of 100% inspection of parts [185]

(where every product in the lot is inspected), probably because of inspector fatigue and

inconsistency. As a result, achieving 100% inspection using human inspectors typically

requires high levels of redundancy, thus increasing the cost and time for inspection [45].

However, in some critical applications, such as aerospace and medicine, even a single
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faulty product is unacceptable. In other markets, notably those for consumer products,

especially foodstuffs, products having aesthetic appeal sell better [74]. Many manufacturers

also desire 100% inspection to enhance a product’s competitiveness in the marketplace.

Part suppliers to factories using just-in-time inventory practices are especially conscious

of product quality since the recipient factories are generally unwilling to store and pay for

inventory that requires testing before use [113]. The cost of poor quality components (in

terms of lost sales) has been estimated to be between 5% and 10% of the total sales for most

products, and approximately 20% of sales for manufactured goods [113]. Therefore, 100%

inspection is desirable.

Sampling can be formally defined as the “process of selecting a representative set ofdata

from a large number of measurements or observations (the population) in order to perform

inferential reasoning about the population itself” [44]. Two types of risks are associated

with sampling. These are known as producer’s risk and consumer’s risk. Producer’s risk

is the risk associated with a lot or batch of good quality that is mistakenly rejected due to

the extraction of a random sample containing many defective parts. Consumer’s risk is

the chance of mistakenly accepting a lot of poor quality due to the extraction of a sample

containing many good parts. There are many consequences associated with high levels of

consumer’s risk, although the end result of all of them is that the manufacturer’s reputation

and market share are endangered. Consumer’s risk can be reduced through 100% inspection.

General Benefits of Automated Inspection

Automatic inspection is desirable because human inspectors do not always evaluate products

consistently. The consistency associated with automated inspection should allow the level of

quality to be predicted [94], however. Many inspection tasks are also time-consuming and/or

boring for humans to perform. For instance, human visual inspection has been estimated to

account for 10% or more of the total labor costs for manufactured products [109]. Human

inspectors also often reject products based on the satisfaction of quotas rather than the
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actual defect levels [45]. Furthermore, some defects in manufactured parts are too subtle

for detection by the human eye [124]. In contrast, machine vision results in labor savings

and improved quality. Finally, automated inspection allows objects to be inspected in

environments unsafe for people.

Currently, many automated inspection tasks are performed using contact inspection

devices that require the part to be stopped, carefully positioned, and then repositioned

several times [98]. Machine vision can alleviate the need for precise positioning and line

stoppage. Since machine vision inspection operations are, in general, non-contact, there is

also a lower level risk of product damage during inspection [74].

Traditionally, most industrial inspection has focused on product inspection; usually,

only the final assembly of the product is inspected. However, process inspection offers

certain advantages. Without in-process inspection, for example, parts that fit poorly can

cause machines to jam or break, interrupting assembly. If defects are not detected as

they occur, material, time, energy, and labor are also wasted [159]. Zeuch has estimated

that a fault found on bare printed circuit boards immediately after fabrication costs only

25 cents to repair, but if the same fault is found only after the board is fully loaded with

components, then the repair cost increases to approximately $40 [194]. Assembly processes

involving many parts pose a serious challenge to human inspectors. If the assembly process

involves several operations per second, process inspection by humans is probably physically

impossible [159]. One system that inspects the output of several assembly stages has been

presented by Tsatsoulis and Pu [175]. Details of this system are given in Section 2.2.3.

Feasibility of automated inspection

Although automated inspection might seem to be a panacea for improving quality and

reducing costs, it may not always be feasible. For automated inspection to be feasible, it

must run in real-time and be consistent, reliable, robust, and cost-effective. It is difficult to

formally define what is meant by real-time inspection, although Van 6001 et al. [178] have
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suggested a working definition “that the [visual inspection system] should not be the major

bottleneck for reducing cycle time or robot operation speed.” On many production lines, this

would require the inspection of several parts per second [32, 178]. For most assembly line

inspections, the upper time limit for inspection is probably about 1 second. A few inspection

tasks, such as printed wiring board inspection, are not as time-critical, however, and can

take as long as several minutes [186]. Automated inspection systems are also expensive

and time-consuming to develop. Development costs can be as high as $100,000 [178]. The

development cost usually cannot be amortized over many systems, either, because special

illumination, image analysis, and part orientation restrictions are usually necessary steps in

achieving robust system performance [132]. This makes it necessary for the development

process to begin afresh for each application. Therefore, automated inspection is feasible

when the application has large part volumes, demands very precise measurement, requires

very consistent inspection, or is in a hazardous environment.

The complexity of automated inspection procedures can be reduced by requiring precise

placement of the objects to be inspected. Positioning aids such as special fixtures, conveyor

belts, and rotating tables have been used for this purpose. In some inspection systems,

parts are placed on surfaces made of transparent glass or plastic to allow easy extraction of

object silhouettes through backlighting [186]. Backlighting and other sensing environment

constraints are appropriate for the inspection of simple objects. Constraints of these types

have been successfully applied to the high-speed inspection of some products that are

assembled quickly in large volumes. Unfortunately, using positioning aids and lighting

constraints is not necessarily useful for more complex shapes; it is difficult and expensive

to obtain well-jigged and uniformly lit parts on the factory floor [101]. Furthermore, for

automated inspection to compete with the flexibility of human inspectors, the inspection

procedure must allow the object to be in an arbitrary position and orientation.

The flexibility of human inspectors should not be underestimated. Wright and

Bourne [187] have observed that machinists make many careful inspections and diffi-
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cult acceptability judgments throughout the machining cycle. This is especially true when

the part has a complex shape with tolerances on the order of several thousandths of an

inch. For instance, aircraft parts have very complex profiles which require special tooling,

fixturing, and numerical control programming. These parts are usually made of alloys that

are difficult to machine. These alloys impose great stress on the machining tools, forcing

the machinist to carefully monitor tool wear throughout the process. Many of the parts

also contain internal cavities that reduce weight but also result in thin exterior walls, com-

pounding the machining difficulty. Wright and Boume claim that the machining process for

these aircraft parts is “nondeterministic and unstable” and that the machinist’s judgments

and abilities are “irreplaceable secret ingredients of expert machining [187].” Automation

of the expert inspective and adaptive capabilities of a human machinist would be quite a

challenging task for a vision researcher.

Logging Defect Rates and Types

One of the great advantages of automated inspection is that defect rates can be automatically

logged for each defect. This allows defect detection to be more closely connected with

production. A high frequency ofa certain type ofdefect might indicate that a tool or machine

in the production process is malfunctioning, for example, or that the product design needs

to be improved [74, 166]. Consumer complaints and field service records could also be

integrated with the factory log of defects to monitor the complete lifespan of the product.

An integrated record of product defects should enable better part design and production in

the future.

2.2 Literature Review of Inspection

Many automated inspection systems have been presented in the literature. Chin and Harlow

have surveyed some ofthe early work in automated visual inspection in [34]. Chin presented
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a second survey of papers published from 1981 to 1987 in [31].

Commercial inspection systems are available for a wide variety of inspection tasks, in-

cluding checking engine blocks, tool wear, automobile wheel hub structural integrity, spark

plug dimensions, dimensions of ceramic supports for CRTs, and automatic transmission

valve body dimensions [117]. Automated inspection systems have also been used to search

for impurities and fractures in casting processes, to inspect letters and numbers on labels,

to check packaging and content of pharmaceutical and edible products, and to inspect glass

objects for cracks and bubbles [20, 81, 141] or for presence of loose slivers [8]. A robot

that can detect some of the defects in nuclear reactor vessel shells and nozzles has also been

developed [18]. The majority of the automated inspection systems have been developed by

machine vision companies while others have been developed by manufacturers for in-house

applications. In this section, many of the inspection systems that have been presented in

the literature are reviewed. However, most of the automated inspection systems probably

have never been reported in the literature or have received only fleeting reference.

2.2.1 Typical Commercial Visual Inspection Systems

A few of the typical commercial visual inspection systems are presented in this section.

GEI, a machine vision company, has developed the Gemini system for inspecting semicon-

ductor packages for proper closure and correct placement of labels [141]. Machine Vision

International has delivered systems for inspection of painted surfaces [8]. Sira has built

automated inspection systems for monitoring photographic film [8] and for checking gloss

level and other car body paint defects [178]. European Electronic Systems has built high-

speed metal surface inspection systems for use in applications such as a rolling mill [8].

None of the commercial systems have been truly general-purpose, however, which may be

one cause for the lack of business success for many machine vision companies.
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2.2.2 Typical Industrial In-House Inspection Systems

Some large industrial companies have developed their own inspection systems. Saab, for

example, built a system for automated inspection of flywheel castings [178]. Westinghouse

has developed an automated visual inspection system for turbine blade inspection and Delco

has developed an automated system for inspecting chip structure [117].

2.2.3 A Taxonomy of Inspection Systems

This section presents a taxonomy of inspection systems based upon the sensory data used

by the system. We describe many of the systems presented in the literature that use

binary images, gray level images, color images, and range images. Other possible sensing

modalities are also discussed. A summary of some of the specific applications are exhibited

in Table 2.1. A block diagram of one typical inspection system is shown later in the chapter

in Figure 2.3. (The diagram, from [111], is of an automated inspection system that uses

range data.)

Inspection Using Binary Images

Historically, most commercial vision systems for automated inspection have used binary

images [8, 32, 178]. Many of these systems use images of limited resolution and perform

only simple coarse verifications, such as testing for the presence of a part [94]. Binary

data are sufficient to inspect many industrial objects which can be represented using only

their silhouettes. Flat objects with no surface characteristics are also inspected using binary

data [178]. It is economical to use binary images since these can usually be acquired

using inexpensive sensors in conjunction with simple lighting arrangements, such as back-

lighting [186]. High contrast backgrounds and controlled lighting eliminate unwanted

shadows, highlights, and noisy backgrounds but also make it difficult or impossible to use

orientation, texture, and reflectance information in the inspection procedure [32]. The use
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Input Image Application Date Reference

Bolts 1992 [8]

Color Picture Tube photomasks 1988 [84]

1983 [159]

Printed Wiring Boards (PWBs) 1985 [81]

Binary 1986 [191]

1989 [129]“

Screws 1982 [134]

Shrimp Grading 1991 [96]

Steering assemblies 1984 [175]

Surgical staples and ligating clips 1990 [169]

Tablets and capsules 1982 [48]

Disk heads 1986 [139]

Drill bit wear 1990 [107]

Hot steel slabs 1983 [164]

Integrated circuit chips 1985 [81]

Intensity IC photomasks 1983 [186]

1984 [156]

1985 [81]

PWBs 1986 [157]

1986 [133]

1989 [158]

1990 [137]”

Reed switches and fuses 1982 [177]

Semiconductor packages 1989 [141]

Valve Spring key caps 1983 [150]

Batteries 1989 [141]

Citrus fruit grading 1989 [141]

Color Denim dye streaks 1990 [41]

Integrated circuit chips 1991 [188]

Microelectric gate thickness 1987 [138]

Poultry grading 1991 [42]

Bolts, gear teeth, internal bores,

engine valve dimensions and cylinder holes 1982 [142]

Engine castings 1984 [153]

Extruded aluminum profiles 1990 [40]

Range Open-die forgings 1988 [187]

PWBs 1988 [4]

PWB solder joints 1988 [84]

Ship Propellers 1984 [153]

Solder joints 1988 [124]
 

 

Table 2.1. A Taxonomy of Selected Visual Inspection Systems.
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of binary images also reduces the amount of data that needs to be processed, aiding the

system’s designers in meeting speed and cost requirements [32]. Typically, the binary vi-

sion systems use only simple verification schemes [81] such as pixel counting or boundary

examination [8, 32] that can be executed very rapidly.

A number of binary vision systems have been presented in the literature. Hitachi has

developed an inspection system that uses binary images to find ten different types of defects

on the photomask for a color picture tube [84]. Olympieff et al. have inspected screws

using polygonal approximations of object contours [134]. Their system operated at a speed

of approximately five seconds per inspection and reduced consumer’s risk from 0.5% for

manual inspection to 0.05%. Diffracto has built a system that can inspect bolt threads, head

profiles, and overall dimensions at a rate of three per second [8]. JAI of Denmark has built

systems that can be used to inspect items such as rivets at high speeds [8]. Lapidus has

presented a brief description of the Itran 8000, an automated visual inspection system which

avoids special lighting and jigs by matching edge templates for object localization [101].

The Itran 8000 inspection system uses a number of pixels along an edge as the feature for

comparison to a defect-free part. Bosch ofGermany has also developed an image processing

sYStem which was used to inspect pin distances on electronic parts in binary imagery [173].

FUji Electric has developed an inspection system that finds defects in tablets or capsules

using features such as area and contour length extracted from binary images [48]. The

SYStern was able to inspect at a rate of five capsules per second.

Edward Week, Inc., a subsidiary of Bristol-Meyers Squibb, is developing a machine

ViSion inspection system for dimensional verification of surgical staples and ligating

Clips [169]. In this critical inspection task, 100% inspection is required. Few details

0f the inspection system are available, although it appears to use boundary information

elm'fiCted from backlit objects. The objects have some freedom of position and orientation,

allhough each object must be in approximately the same pose.

Tsatsoulis and Fu [175] have developed an in-process automated inspection system
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that inspects the dimensional tolerances and assembly integrity for 16 of the 24 assembly

steps for TRW’s Hydraulic Steering System. Their system collected intensity data from

two cameras and thresholded the data to obtain binary images. This system ran in near

real-time on a VAX 11I780, with an average time of 3 seconds per inspection step, with

times ranging from 0.7 to 8.0 seconds per inspection. Some freedom in part positioning

was allowed, but the system occasionally had difficulty inspecting parts in unexpected

positions or orientations. The performance was quite good, however, in verifying most of

the assembly steps; for twelve of the assembly steps, 100% of the defects were classified

correctly. Unfortunately, little information about their defect detection algorithms was

presented.

Kassler et al. [96] have developed a machine vision system for grading inspection and

packing of shrimp for the Australian prawn industry. Their system operates at a rate of

approximately 20 shrimp per second. It uses silhouette area to grade the shrimp and uses

other statistics to determine the shrimp’s orientation and to find if the shrimp is deheaded

01' not.

PWB Inspection

Due to increasing miniaturization and growing complexity, human inspection of printed

wiring boards (PWBs) has become quite difficult and time consuming. In fact, the cost of

inspection may equal the cost to fabricate the board [157]. Automated PWB inspection

is already cost-effective because the inspection systems are faster and more accurate than

human inspectors [141]. Soon, the complexity and miniaturization of PWBs may make

inspection possible only through automated systems [4]. PWB inspection is considered one

of the most important applications of machine vision.

Many algorithms and techniques for inspecting PWBs have been presented. Typical

defects which must be detected include over-etchings (opens), under-etchings (shorts),

flaws, cracks, holes, etc. Geometric features, such as conductor length and width, hole
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and pad diameters, and distances between conductors, can be examined to find these

defects [186]. Two well-known techniques that have been used to find the defects are

image subtraction and feature-based approaches [186].

Hunt has presented an overview of several of the PWB/1C inspection systems in [81].

Baird at General Motors, for example, developed an IC chip inspection system that finds

cracked or fractured chips by thresholding images and then matching against templates

of IC comers. Hseih and Fu developed a top-down and model-driven “tree-like syntactic

approach” for inspecting IC chips. Chin et a1. developed a PWB inspection system that

checked assembly correctness using graph matching of extracted edges against prestored

ideal edges. Krakauer and Pavlidis developed a PWB inspection system that used binary

template matching with a quick lookup table technique. Jarvis also inspected PWBs using

5 x 5 binary templates. Jarvis’s system performed additional inspection in regions that

appeared to contain a defect.

Ye and Danielsson [191] have also used binary images for printed wiring board in-

spection. They have developed two algorithms for checking conductor and insulator

width. Their technique performed connectivity-preserving shrinking on images of fabri-

cated boards and then compared the resultant images with those of an ideal board. Several

additional steps allowed the techniques to avoid false rejection of boards whose images

contained small protrusions or digitization noise.

Texas Instruments developed a PWB inspection system in the early 1980’s called Parts

Measurement System (PMS) [159]. This system was designed to inspect the dimensional

correctness of parts before their assembly into printed circuit boards, but could also be

used for inspecting molded, stamped, or die-cut metal and plastic parts. The features for

inspecting an 8” x 8” printed circuit board could be programmed in approximately 30

minutes. The time per board inspection was about three minutes. PMS allowed inspection

of features such as holes, slots, printed lines, conductors, etch patterns, corners, edges, and

geometric patterns. The system was able to read numerical control (NC) programs written
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in APT, an NC programming language, and could automatically produce an inspection

sequence to verify the success of the NC operations.

Skaggs [159] reported that the PMS system required about 0.8 seconds to measure and

compute length (with an accuracy of :l:0.0002” at distances up to 10”), 1.8 seconds to

measure and compute the diameter of a hole, and 3.6 seconds to measure the 2 component

(height) of a point. Angles between lines could be measured with an accuracy of i0.10°.

PMS could inspect parts up to 45 x 36 x 12” in size. One application of PMS improved

reliability and increased inspection rate by 40 to 60 times, resulting in a 40-fold increase in

part throughput. That application also saved $120,000 annually in overhead.

Ninomiya et al. [129] have presented a PWB shape inspection system that detects

defects in via hole fillings on IC chips. It detected concave and convex defects as small

as 30 pm and lack-of-filling defects as small as 10 pm. To find defects in the chip, two

silhouette, or “shadow,” images were acquired from different viewpoints and compared

against predetermined criteria. Their method was fast but it was unable to recover 2% D

shape perfectly. Nevertheless, it is very suitable for inspection of simple objects. They

reported perfect defect detection for 161 sample defects with a false alarm rate of less than

one occurrence per IC sheet.

In general, binary inspection systems are advantageous because their hardware and

software requirements are usually modest. Binary inspection is inadequate for many

inspections of surface characteristics and 3D shapes, however.

Inspection Using Gray-level Images

Several systems have been presented in the literature that use gray level intensity data for

inspection. There are few systems, however, that are capable ofperforming visual inspection

on intensity images in complex industrial environments with dirt and unfavorable lighting

conditions [32]. Most of the industrial inspection systems that use intensity imagery have

limited capability and use image subtraction or localized histograrnming methods for defect
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detection [8].

Vanderheydt et al. [177] developed a system in the early 1980’s for inspection of reed

switches, flash tubes, and fuses. Few details were presented about this system, although the

authors have stated that graph matching of intensity and width profiles was used to identify

defective objects.

kaler has developed an automated system for inspection of photomasks used for

fabricating integrated circuits [186]. The photomasks must be examined for defects such

as registration errors, dimension variations, and other visual defects. Winkler’s system was

designed to replace a manual inspection process using a microscope that took approximately

thirty minutes. Feature-based approaches using color separation were used in the automated

system.

Ratcliff et al. [143] have developed an experimental system for defect detection on

ground metal components. They detect defects first at a coarse resolution and then zoom

in on any potential defective regions to find the size and location of the defect. Their

system performed the inspection using images collected from several known viewpoints.

The position of the part was also known a priori.

Rossol developed an intensity-based inspection system called KEYSIGHT to inspect

valve spring assemblies on engine heads for the presence of valve spring cap keys [150].

The variation in the location of the assembly is greater than one-half of the key width, so

KEYSIGHT first determined the assembly location and then inspected for the presence of

the keys. The assembly’s location was determined by thresholding and thinning an edge

image. The object center was found using symmetry. The location was then verified using a

template constructed from the edge image of an ideal valve spring cap assembly. The keys

on the assembly were located by examining the intensity profile along a circle which passes

through the keys. Since missing keys exhibited large dark areas in this intensity profile,

high rates of dark pixels along the circle indicated missing keys. KEYSIGHT was not

programmable and was only applicable to the valve key inspection task [150]. The system
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was robust with respect to reflectance variations, different colors, and oil films covering the

keys, however.

Intensity images have also been used in the inspection of tool wear. Currently, tool

wear is usually monitored manually by a machine operator. Wright and Bourne have noted

that machinists occasionally examine tool points during machining to make certain that

the tool edge is still acceptable and to estimate the time duration in which the tool will

remain usable [187]. Liu [107] has developed a system which examines the flank wear of

a multifaceted drill bit to determine if the tool is still usable. A typical test for drill wear

would use the width of the drill flank wear, but because the drill in Liu’s application was

multifaceted, he used drill wear area instead. Drill wear area can be measured through a

toolrnaker’s microscope, but that is very tedious and time-consuming. Liu found that worn

areas of the drill had a higher reflectivity than unwom surfaces, so be located regions of

high wear using an intensity histogram. Liu compared his system’s performance to manual

measurement of areas under a microscope and found that his system exhibited a 3.5-4.5%

deviation from the performance of a human expert.

Petkovic et al. [139] have developed an automated visual inspection system fordetecting

disk (magnetic storage media) head defects. Disk head inspection is quite challenging for

a machine vision system because it is necessary to rapidly locate small defects on a large

surface. In addition, there are usually only a few training samples of defective disk heads

available. In Petkovic et al.’s system, images were gathered through microscopes to find

defect size and position. Defects were classified using boundary fitting and a set of rules

generated from a model of a defect-free disk head. Object size, shape, position, and grey-

level features were used to determine the most likely labeling for the defect (e.g., noise,

dirt, contamination, voids, etc.). The list of possible defects was then matched into a rule

database of the disk head’s engineering specifications to produce a list of violations. Their

system required 3.5 to 7 minutes per disk head to acquire the image, perform all processing,

and produce the list of violations. Petkovic et al. tuned and tested the system on over
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10,000 images and reported 99% accuracy for defect classification.

Several systems have been presented in the literature for defect detection in PWBs using

gray-level images. Sreenivasan et al. [160], for example, have recently presented a method

for inspection of the ball and wedge bonds that connect bond pads to the lead fingers of

microelectronic circuit chips. Their method uses histogramming with varying thresholds

that are dependent upon the region (e.g., bond region, background, and pad region) of the

intensity image. Bond size and shape are inspected after segmentation.

Odawara et al. [133] have used feature extraction to detect micro defects, including

incorrect line width, nicks, and pinholes. Dimensional errors of larger patterns, such as

the size and position of traces, were detected using design rule checking. They claimed

that their system operated at video rate, although they did not state which functions were

performed at video rate nor did they indicate the accuracy of their system.

Silvén et al. [156, 157, 158] have developed an experimental CAD-based visual inspec-

tion system for verifying printed circuit boards using edge information. Their system is

somewhat robust with respect to board alignment. Minor misorientations were resolved

by picking several line segments and rotating the board to align the sensed image with an

image generated from the model [156]. The system used both a statistical and a structural

approach for defect recognition. The statistical analysis performed well for simple, tightly

controlled wiring patterns, while the structural analysis worked better in complex wiring

patterns. In the structural approach, defects were recognized by a depth-first matching of

a structural graph derived from a sensed image with stored structural graphs of commonly

occurring defects. Heuristic rules, such as commencing the search from nodes which have

a high matching score, were used to simplify the matching [157].

Park and Tou [137] have presented a CAD-based inspection method for examining

printed circuit board solder joints. Fifteen features were extracted from four frames of

512 x 512 intensity images. Each frame was collected using a different light source.

Features were extracted using CAD models that contained the sizes and locations of ideal
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solder joints and pads. Park and Tou used a fuzzy set-based classification algorithm to

categorize defects into one of seven classes. The classifier was designed using training

data of defective joints. They reported an average correct classification rate of 93.9% and

a false alarm rate of 5.6%. In 3.8% of the cases, the defect could not be identified. Their

system used a simple lighting arrangement and was able to process up to 250 solder joints

per frame. Because four images were used, however, the inspection process was not very

fast.

Suresh et al. [164] of Honeywell have developed a system which finds, identifies, and

measures surface flaws on hot steel slabs in a steel mill. Manual inspection of continuously

cast steel requires the steel to be cooled after it has been cast. After inspection, if the

steel is defect—free, it is reheated for further processing. If the steel contains defects, it

is conditioned to remove the defect and then reheated for more processing. Automatic

inspection is useful because it allows the slab to be inspected with little or no cooling,

thus resulting in large energy savings. The Honeywell system used a four-processor array

to extract edge features from the slab as it traveled underneath a sensor. One processor

delivered a peak performance of 10 MFLOPs and performed the edge detection using the

Roberts edge operator. The other three processors, which operated at l MFLOP each, found

connected edges and performed object labeling and feature extraction. The slab traveled

at a rate of 4 inches per second, requiring a processing rate of 546 Kpixels/sec. As each

set of labels and extracted features were generated, they were downloaded to a Honeywell

minicomputer delivering 1 MFLOP peak performance that identified and classified the

imperfections. Defect classification was performed using syntactic rules and a binary

decision tree. Unfortunately, error rates of the system were not presented. Before each use,

it was necessary to fine-tune system performance using training data, which is not a trivial

task in the hazardous environment of a steel mill.

Applied Intelligence Systems and AECL Advanced Systems have developed a fluores-

cent lamp inspection system for General Electric [5]. This system uses 6 cameras, controlled
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lighting, and three SIMD array computers to inspect for nine defects in lamp bases. It per-

forms 100% inspection at a rate of 8000 lamps per hour. The system is somewhat flexible

for lamp pose, although the assembly line imposes some constraint on the general position

of the lamp. TWO salient features on the ends of the lamp are used to determine the pose.

A11 dimensional inspections on the lamp are made with respect to these datum features.

West, Fernando, and Dew [184] have developed an experimental CAD-based system

for flat object inspection in intensity images. Their system inspects positional tolerances of

planar and cylindrical surfaces. They determine approximate object pose using Stockman’s

pose clustering technique [162] and then inspect distances between edges, positions of

circle centers, and circularity.

Park and Mitchell [136] have developed an experimental system for feature-based

inspection of objects in intensity images. Their system is designed to inspect dimensional

tolerances and for the presence or absence of features such as holes, slots, edges, and

vertices. Their research is aimed at automatically generating an inspection plan based

on a CAD model of a part. They estimate part position using a variant on Bolles and

Horaud’s [17] local feature focus method. Specifically, they use holes/circles, line fitting,

and morphological image Operations as well as the pairwise relations between these features

in a hypothesize-and-verify scheme to recognize the part and determine its position. Park

and Mitchell restrict object position and orientation, however; i.e., they do not allow six

degrees of freedom in pose. After the part has been identified, the dimensional tolerances

extracted from the CAD model by the inspection planning algorithm are examined. Park

and Mitchell did not quantify the performance of their technique.

Inspection Using Color Images

As Daley and Rao [41] have observed, color is an especially important factor in apparel

and food inspection where changes in shade or variations in color indicate a defect. Human

color inspectors are not reliable, primarily because humans do not have a very good memory
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for color. Therefore, color inspection tasks are very appropriate for automated systems.

A few experimental automated inspection systems using color images are currently under

development. One barrier to more widespread application of color inspection systems is

the necessity for more computing power, intricate optics design, and lighting. Factors such

as light source intensity, color temperature, angle of illumination, and magnification and

lens aperture are crucial for accurate color monitoring [138] due to the increased sensitivity

to the energy distribution from the light source [41].

Some of the current commercial agricultural applications of automated color vision

inspection include systems that check the color of bell peppers or examine apples for

bruises [141]. Sunkist Corporation has developed a citrus grading machine that uses

machine vision to grade oranges and lemons according to size, color, blemishes, and frost

injury. This machine grades eight pieces of fruit per second [141].

Poole [141] has reported an automated inspection system for batteries. Color registration

of the label, battery length and width, and correct formation of the positive and negative

tips were checked by this system. Since 80% of the defects were color registration errors,

the system first checked for that defect, and, if no registration errors were encountered,

procwded to search for other defects. The battery was removed from the assembly line as

soon as the first defect was detected.

Daley and Rao [41] are exploring automated inspection to find dye streaks on denim

and discolorations on poultry skin. (Specifically, they wish to detect overscalds, which

are pinkish or reddish skin in the birds’ neck area.) They were able to find dye streaks

on denim by transforming color data into HSI (hue, saturation, and intensity) space and

then segmenting the image using a histogram-based thresholding on the hue values. Daley

and Carey [42] have also used thresholding and morphological operations to segment HSI

color images of poultry. Their current system achieved near real-time performance using 4

T800 transputers. Their goal is to achieve real-time processing (human inspectors currently

examine one bird every two seconds) using an array of 16 T9000 transputers.
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Parthasarathy et al. [138] have developed an experimental inspection system using color

vision for rapid inspection ofmicroelectric gate oxide thickness. Microelectric structures are

usually fabricated using a thin film that is optically transparent. Optical interference effects

produce colors that are characteristic of film thickness. Parthasarathy et al. presented

two schemes to determine the film thickness. One method determined thickness with a

resolution of 20 angstroms in less than 100 msec using a nearest-neighbor matching in the

RGB color space. It achieved an accuracy of approximately 90%, but this percentage was

optimistic because every test sample that was examined was of a thickness identical to one

of the training samples.

Xie and Beni [188] have used fuzzy clustering for detecting defects in the thin film layer

of IC chips. Particles on 1C wafers cause the film thickness to vary nonuniformly in the

region around the particle, which produces light interference patterns that appear as several

concentric rings of different colors around the defect. They were able to estimate the size

of the defect by counting the number of color rings in the interference pattern.

Inspection Using Range Images

For many applications, inspection using binary, grey-level, or color images is impractical.

Pryor has noted that surface inspection of turbine blades is usually not possible using

intensity (binary, grey-scale, or color) imagery because silhouette information provides

negligible information about the blade surface and intensity data can contain variations

in reflected light as large as 100,000:1 over the surface of the blade [142]. Pryor has

listed gears, female thread forms, and bore inner diameters as other surfaces for which 3D

information (depth or range images) is necessary for inspection. Dimensional inspection

of parts that have etched height variances, warp, or reliefs also requires accurate 3D

measurement of depth [159]. The greatest advantage in using range data, though, is that

it explicitly represents surface information [92, 111]. As Marshall has observed, when

explicit surface information is available, the shape information can be used for efficient
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matching. In contrast, matching on edges, which is the practice of many of the grey-level

inspection systems, discards much of the surface information [1 1 1]. Range images and their

acquisition are discussed in more depth in Chapter 4 of this dissertation. Unfortunately,

there do not appear to be any complete 3D industrial inspection systems for complex objects

that have been placed on-line yet [32].

Robotic Vision Systems developed a structured light sensor and MC 68000-based image

processing system in 1984 which were claimed to acquire 3D data in real-time [153, 154].

Their claim of real-time operation is somewhat dubious, however, because the sensor

was reported to take 40 minutes to scan all six sides of a cubic object (although over

800,000 points were scanned). The sensor has been used for inspecting large propeller

surfaces for the US Navy; engine castings for Cummins Engine (in this application, over

1250 dimensional inspections were required); and for adaptive weld seam following (with

inexact workpiece positioning) on production lines at General Motors, Westinghouse, and

Caterpillar.

An automated 3D inspection system has also been developed for inspection of open-

die forgings [187]. The 3D image was constructed by backlighting the object and using

a rotary turntable to collect silhouette data from 360 viewpoints. Three cross-sectional

measurements and two vertical measurements were extracted from the image and verified

by the system. The system replaced a person who had manually measured some of the

critical locations on the forging using calipers.

Several PWB or IC inspection systems that utilize range data have been reported in

the literature. Hitachi, for example, has developed a system that examines solder joints

on printed circuit boards [84]. Their system detects four types of defects and inspects ten

Points per second using a 3D structured light arrangement Badami et a1. [4] have presented

a System that uses dense range data to inspect leads on a PWB. The system checks for the

Presence or absence of leads and verifies lead height and angle when necessary. They used a

triangulation arrangement for data acquisition with a depth resolution of 0.0006 inches that
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measured 120,000 points per second (i.e., about 0.5 in2 of the board per second). Few other

details were presented about how the system functioned or how accurately it performed.

Dahle et al. [40] are developing a system that inspects extruded aluminum profiles

using a structured light arrangement. Their system uses information extracted from CAD-

generated models for inspecting surface planarity, gap dimensions, and angular deviations.

Their goal is an inspection rate of 1-2 objects per second, although the current inspection

rate is not yet that fast.

Pryor has developed several inspection systems using structured light, some of which

are discussed in [142]. These systems were developed in the early 1980’s but were able to

achieve high accuracy. (i) One system inspected pitch line runout *and tooth spacing errors

in gears at a rate of one pair of mating gears every 10 seconds. (ii) Another system qualified

and sorted bolts on ten different dimensions at rates of 10,000 bolts per hour. (iii) A third

system inspected the internal bores of a power steering housing, performing a complete

inspection for surface defects such as pits, scratches, voids, tool marks, and cracks in less

than 6 seconds. (iv) 12 cameras were used to inspect the dimensions of engine valves at a

rate of 4200 valve inspections per hour on the production line. (v) Power steering worm

assemblies were inspected at a rate of 1500 parts per hour using two cameras and two

microcomputers. (vi) Threaded and machined holes in cylinder heads were inspected using

80 image sensors to check for the presence of each thread in every hole and to detect hole

blockage. A part throughput rate of 600 parts per hour was achieved.

Many systems have also been created for automatic inspection of solder joints. Range

images are well-suited for solder joint inspection because the joints and their key process

indicators are complex geometric shapes [147]. Nayar et al. [124] recently developed a

System that used structured highlighting, which consists of illuminating the object by a large

number of point light sources, to compute local surface orientations. These orientations

 

 

’Pitch line runout refers to the eccentricity in the line of contact between gear teeth.
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were utilized to build an Extended Gaussian Image (EGI) representationiof the joints.

The solder joints were then classified using features extracted from the EGI. The system

required 12 seconds to inspect each joint. This inspection time included image capture and

all computation steps. A misclassification rate of three percent of the joints was observed,

a rate which is within the variance of human experts in solder inspection.

General-Purpose Inspection

All of these range-based inspection systems are highly optimized and constrained for use

in a single application. Several experimental systems are under development at research

laboratories and universities that are more general, however. Marshall [1 l 1] has developed a

system for gross feature inspection, including verification of hole presence, part dimensions,

and feature relationships (e.g., distances and angles) using dense range data collected from

multiple views. His system inspected objects composed of planar, cylindrical, or spherical

faces, although only planar surfaces (which can be extracted more reliably) were used to

match the model to the sensed object.

Marshall matched the surfaces in one of the sensed views to the model surfaces using a

depth-first search of an interpretation tree? The tree was pruned to a manageable size using

rigidity constraints; i.e., the model-to-view transformation generated after several (usually,

three or four) surfaces had been matched. Specifically, a “current transformation” between

model and scene was computed afer several surfaces had been matched. Searches deeper

than the first few levels were pursued only at nodes that satisfied the current transformation,

which was then refined using the most recent matching. Rigidity constraints have also

been used in several of the approaches to 3-D object recognition presented in the literature,

including those of Faugeras and Hebert [49] and Chen and Huang [27]?i The best match

 

tEGIs are discussed in more detail in Chapter 6 of this dissertation.

*The interpretation tree search technique is discussed in detail in Chapter 6.

sThe local-feature-focus method of Bolles and Cain [16] and the 3DPO object recognition scheme of

Bolles and Horaud [17] also employ rigidity constraints, although Bolles, Cain, and Horaud prefer different

terminology.



View at

0m

human

Details



41

ff 7 V' . I Depth Data *

rsron .
System I Segmentation

  

 

 

  

 

  

  

 

 

 

  

List of primitive

surfaces and

surface properties

Database of or points or edges

Geometric

Object Models

. . 1
mm Transformation

s (Rotation, Translation) I

Inspection Matching 

 

gure 2.3. Schematic diagram of Marshall’s [111] 3D Inspection System.

, view provided the position and orientation of the object. Therefore, it was

y to perform matching between the model and the sensed object surfaces in the

s.

ier views were used to check geometric tolerances. Specifically, Marshall in-

'errors in position, size, and shape of model primitives. No details about system

imes were presented, although real-time performance did not seem to have been

[arshall’s work is significant because of its generality (any object can be inspected

of the object exists, provided that the object contains several planar surfaces

tible to the sensor) and its use of multiple range images. Marshall apparently

)nly two fairly simple objects, however. Also, many of the defects his system

ere artificially induced on the objects, so the general application of his method

tited. A diagram of Marshall’s inspection method is shown in Figure 2.3. The

)roach outlined in this diagram is similar to that followed in our work.
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Inspection Using Other Sensing Modalities

Other sensing modalities are also possible for inspection. For example, X-ray inspection

is often used to inspect complex industrial parts [72]. Noble et al. [132] have proposed a

technique based on deformable templates to inspect drill holes in X-ray images. Heden-

gren [72] has developed real—time algorithms to verify the presence, size, and location of

drill holes in metal using X-ray images. Jain and Dubuisson [87] have located defects in

X-ray and ultrasonic C-scan images ofcomposite materials using adaptive thresholding and

the Canny edge detector.

Alternate Modalities for Food Inspection

Chan et al. [25], have examined the suitability of other sensing modalities for use in

automated visual inspection of foodstuffs. X-rays could be used to detect foreign bodies

in food, for instance, although only foreign bodies whose density is higher or lower than

the food sample’s density can be detected. X-rays are also useful for texture analysis of

foods. Other advantages in using X-ray images for inspection include the high contrast

nature of the images and the potential for real-time imaging. There are cost and safety

considerations, however, in the use of X-rays.

Chan et al. [25], also discuss the potential application of nuclear magnetic resonance

(NMR) imaging for inspection of the texture and composition of food. NMR equipment is

very expensive, however.

Gamma rays are similar to X-rays but can be used to inspect denser materials. Chan

et al. [25] have noted that while gamma ray images can be acquired in real time, they also

present several disadvantages. One disadvantage is that gamma ray images typically are

of lower contrast than X-ray images. There are also several safety considerations. Like

X-rays, there are dangers from gamma radiation, but unlike X-ray machines, gamma ray

machines cannot be switched on and off. This makes transportation and storage difficult
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and also presents constant safety concerns.

Ultrasound images may also be useful for foodstuffinspection, particularly for packaged

foods with no air content and high water content [25]. There are no safety concerns about

ultrasound although it is not well-suited to many industrial environments because it requires

special transducers for imaging.

Another potential sensory source for automated visual inspection offoodstuffs is thermal

(infrared) imaging [25]. Infrared (IR) sensors are flexible and easily recalibrated. As many

as five images per second can be collected with current IR sensors. There are also no safety

considerations about IR sensors. A disadvantage of IR imagery is that the sensors have

limited sensitivity and produce images which usually require pre-processing.

Ultraviolet (UV) light can also be used for fluorescent analysis of certain foods. While

ultraviolet light does not penetrate materials, some foods, such as eggs, milk, and fish,

exhibit changes in fluorescence with freshness [25]. Fresh milk, for example, exhibits a

yellow fluorescence while sour milk has a fluorescence which is white to grey violet in

color. Ultraviolet images can be acquired in real-time, although high intensity UV light

can cause eye damage or skin cancer. It also may affect some foodstuffs. Furthermore,

automated vision systems using ultraviolet images require color processing, which adds

complexity to the system software and hardware.

Defect Enhancement - Magnetic Particle and Liquid Penetrant Testing

Nondestructive visual inspection has also been conducted using magnetic particle and liquid

penetrant testing. These two testing techniques are especially applicable to inspection of

cast or forged parts [62, 97]. Both techniques increase the contrast between defective and

defect-free regions of a part. Liquid penetrant testing (LPT) consists of applying a visible

dye to make cracks, pores, and other surface defects more visible. Usually, a penetrant is

sprayed on a surface, and after the penetrant dries, the surface is treated with a deve10per

that colors the area of inspection white while also removing the penetrant from defects.
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As a result, defects usually appear as dark or red lines or spots [97]. Often a fluorescent

penetrant dye is used which, when viewed under ultra-violet light, allows defects to appear

bright and sharp [97].

Magnetic particle testing (MPT) is one of the most widely used contrast enhancement

techniques [62, 97]. Magnetic particle testing consists of applying fine ferromagnetic

particles to the object surface by dipping the object in a water- or oil-based suspension [97].

The part is then magnetized using either a longitudinal or circular magnetic field. Magnetic

particles are attracted to regions where the magnetic field crosses a crack or pore, indicating

defect location to a human operator. In a similar fashion, near-surface nonmetallic inclusions

in castings can also be detected [62]. The object is often inspected under ultraviolet light to

further enhance the contrast of the defects. Magnetic particle testing is preferable to many

other inspection techniques because it is affected less by surface geometry, roughness, and

material structure [62].

LPT and MPT testing are particularly important due to their ability to greatly enhance

detection of surface defects. As Goebbels and Ferrano [62] have noted, mechanical and

thermal loads as well as corrosion are directed at surfaces. Surface defects greatly reduce

the ability of objects to withstand such loads.

Gages and machines to aid human inspectors in LPT or MPT have been developed

by many companies. Magnaflux, for example, dominates the market for MPT machines.

Automated inspection using LPT or MPI‘ techniques has also been conducted. Goebbels

and Ferrano [62], for instance, have developed automated inspection systems for many

applications. Their systems use from one to four cameras under both visual and ultraviolet

light sources to detect flaws in many small parts, including casting rods, coil springs, axle

housings, turbine blades, and wheel hubs.



2.2.4 lnsPe

Automated \‘ist

first approach i'

image) to the 5

match the mod

ohjoct and con

mcdel. If all 0

approaches are

Template Ma

Automated ins;

using template

Value of pixels

fro: model. Tl

slllthetically g;

One area in

“5113] inSPCCtlt



45

2.2.4 Inspection Schemes

Automated visual inspection techniques can be separated into two general approaches. The

first approach involves matching a template of a defect-free model (often this is a synthetic

image) to the sensed image of the object to be inspected. Objects which are defect-free

match the model well. The second approach involves extracting features from the sensed

object and comparing those features to a description or list of rules that describes an ideal

model. If all of the rules are satisfied, the object is considered to be defect-free. The two

approaches are described in detail in the following two subsections.

Template Matching

Automated inspection has been performed on object silhouettes and also on grayscale images

using template matching schemes. These pixel-by-pixel matching schemes compare the

value of pixels in an image of the sensed object against pixels in stored images of a defect-

free model. The image of the defect-free model may be a sensed image or, alternately, a

synthetically generated image, perhaps from a CAD model.

One area in which template matching techniques have been successful is the automated

visual inspection of printed circuit boards [132, 158]. One example of a pixel-by-pixel

matching system for printed wiring board inspection was proposed by Silvén et al. [158].

(Their system was discussed in more detail in Section 2.2.3 of this dissertation.) Tem-

plate matching has also been used for inspection of integrated circuit photomasks [158].

The template matching was performed in that system by comparing images of fabricated

photomasks with images of perfect photomasks. The system experienced difficulty with

frequently occurring variations of patterns, however. This is a common complication in

template matching approaches; there are natural (non-defective) variations between parts

that arise from most manufacturing processes [132]. Template matching techniques have

also been used for seam detection in industrial seam tracking applications [178] and for
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inspection of drill holes [132].

Pixel-level comparison schemes are flexible and are probably the only reliable way to

detect many faults [156]. However, comparing low-level pixel values utilizes only a small

portion of the potential information which could be used in inspection [156]. Exhaustive

template matching is also quite time consuming; no matching strategy can efficiently

match the hundreds of thousands of pixels commonly encountered in an image [111, 178].

Schemes for reducing the size of the template have been proposed, though, such as the

learning algorithm based on statistical pattern recognition proposed by Lin et al. [106].

Template matching becomes painstakingly slow if the pose (orientation and position) of

the object is unknown, or if the scale of the pattern to be matched is unknown [178]. (In

practice, many template matching schemes are not very flexible because they assume that

the approximate pose of the object is known.) Furthermore, “good” and “bad” parts can

often take a variety of shapes, making it difficult to detect which objects deviate from

the template [147]. This is one of the key problems in inspection of solder joints, for

example [147]. On the other hand, most inspection techniques that rely on high-level

features suffer from the difficulty and time-consuming nature of extracting features from

the imagery.

Rule-based Methods

Most of the industrial inspection systems that have been reported in the literature utilize

rule-based comparison schemes. Rule-based schemes make decisions about object quality

according to classification rules [178]. The sensed object is checked against a list of design

rules, which, in most industrial inspection systems, consists of features such as surface area,

perimeter, ratio of perimeter to area, number of holes, area of holes, minimum enclosing

bounding box area, maximum radius, minimum radius, etc. [178]. One advantage of these

schemes over template matching is that it is unnecessary to maintain an extensive database

of templates [147]. The rule-based methods suffer from the disadvantage that they are



 

less adaptable I

New SChCl

Hybrid techniqu

bk, Noble ct al.

and mile-based It

to examinfi drill

firs: determines

comisting of cm

template an: Inc:

The model temp.

examined to (kit

CSSary to align tl

ranges specified l

collecting sutistit

23 Sum

In this Chapter. a 1

“10mm visual '



47

less adaptable to design changes than pixel-level comparison schemes, however. Some

rule-based schemes also require complicated schemes to eliminate false alarms [156].

A Hybrid Method

Hybrid techniques that combine template-matching and rule-based reasoning are also possi-

ble. Noble et al. [132], for example, have presented a variation on the usual template-based

and mle-based techniques. Their technique uses deformable “templates” in X-ray images

to examine drill holes. Strict pixel-based matching is not performed, rather their method

first determines a coarse match between edges extracted from the image and a template

consisting of curve primitives. After a coarse fit has been made, the curves in the model

template are locally deformed to more closely match the edges extracted from the image.

The model template is augmented with higher-level geometric constraint rules which are

evaluated to determine acceptability. The part is accepted only if the deformations nec-

essary to align the model template to the edges extracted from the image fall within the

ranges specified by the constraint rules. Noble et a]. established their constraint rules by

collecting statistics on a large sample of defect-free parts.

2.3 Summary

In this chapter, a taxonomy of the stages of inspection was presented. An overview of the

automated visual inspection systems reported in the literature was also presented.
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CHAPTER 3

CAD Models

The representation of the three-dimensional, or volume, data from solids is very important

for computer graphics, robotics, computer-aided design, and object recognition and inspec-

tion. Each of these application areas has different, sometimes conflicting, requirements for

object representation. For graphical display purposes, objects need to be represented such

that various renderings of the objects can be quickly generated, while for computer vision

applications, it may be more important to represent a model of an object in a manner that

allows for efficient matching of image data to a real-world model.

This chapter presents an overview of some of the requirements and popular represen-

tations for object recognition and inspection. Our approach to object modeling is also

discussed.

3.1 Industrial Uses and Advantages of CAD Models

Representations for computer-aided design need to support many operations including

stress and heat transfer study, volume and mass property calculations, computer-controlled

manufacturing, interference detection, modification of design parameters, and fast graphics

rendering [151, 116].

Many manufactured parts and assemblies are currently designed using computer-aided

48
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design tools. The CAD models representing the parts and assemblies provide a ready, well-

defined model for inspection [81]. Most CAD models provide a mathematical description

of an object’s shape, including an explicit parametrization of surface shape and an explicit

encoding of inter-surface relationships. The CAD model’s abstract representation is useful

for product design and potentially useful for inspection operations that compare an assem-

bled product to the ideal model designed by the CAD system. CAD databases can also be

augmented with manufacturing information, including material type, geometric tolerances,

desired quality of surface finish, and finish color, thus providing a unified description ap-

plicable for inspection. Another advantage of using CAD representations for inspection is

that new object models can be quickly added to the current inspection framework.

3.1.1 Tolerances and Features

With the exception of a few recent releases, CAD modeling packages generally lack ca-

pabilities for representing and manipulating variational information such as dimensional

tolerances, however [136, 111]. One problem with current dimensional tolerancing is that

there are often ambiguities in interpretation depending on which area or point on the object

is treated as a datum (or landmark) [111]. Datums (reference landmarks) and dimensional

tolerances are discussed in more detail in Chapter 9.

Manufacturing features such as holes and slots usually are not explicitly represented in

current solid models. (The notion of a “feature” is defined only vaguely in the manufacturing

and CAD literature, usually as a region of interest on a part [116].) As a result, features for

inspection usually have to be extracted from the CAD database. A few of the commercial

CAD packages are beginning to support feature-based representations, however. Feature-

based representations allow a higher level of abstraction than the geometric primitives of

traditional CAD systems and form a connection across design, analysis, and manufacturing

aspects of CAD [116]. Merat et al. [114] have identified a dichotomy of features that

includes “form features” and “geometry-modifying features.” The first class includes slots,
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through-holes, ribs, pockets, etc. The other class includes chamfers, fillets, and other

features that modify the geometry that the form features define.

The CAD modeling system being used in this research, IDEAS V1, is one package

that supports feature-based representations of objects. Using feature-based models allows

observed features extracted by a vision system to be directly compared against those stored

in the CAD database. Park and Mitchell [136] have inspected simple flat 3D objects in a

single 2D image using a feature-based CAD modeler.

Figure 3.1 is an example of a defect-free block which contains a slot. Three of the

block’s surfaces are labeled “1,” “2,” and “3.” Surfaces 1 and 2 are coplanar while surfaces

1, 2, and 3 are parallel. Figure 3.2 is a defective instance of the block, however, where

surfaces 1 and 3 are parallel but surface 2 is not parallel to surfaces 1 or 3. The slot is

also defective in the defective block (one of the side “walls” of the slot is not perpendicular

to the “floor” (surface 3) of the slot). A feature-based CAD system would allow the

explicit representation of the slot, usually as a single high-level entity that is a component

of the block object (most of the CAD packages actually implement features as instances

of primitives‘ with several size and location parameters that can be varied). Thus, slotting

operations could be directly verified by an automated visual in-process inspection system.

3.1.2 Defect Modeling

CAD models are also useful because they offer the potential of modeling common defects.

It is likely that some of the possible part defects are known a priori and that they can be

modeled geometrically [73]. If a part is defective, an automated inspection scheme can

attempt to determine the nature ofthe defect by comparing the observed defect to the models

of common defects. The generality of the CAD representation also allows new defects to

be quickly introduced into the existing structure. It should be noted, however, that there do

 

‘Primitive instancing is a popular solid modeling representation that is discussed further in Section 3.2.4.
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Figure 3.2. Block with defects. The slot is

defective and the surfaces labeled 1 and 3 are

parallel but 2 is not parallel to 1 or 3. Surfaces

1 and 2 are not coplanar.

Figure 3.1. Defect-free block with slot. Sur-

faces labeled 1, 2, and 3 are parallel and sur-

faces 1 and 2 are coplanar.

not appear to be any current CAD packages which allow descriptions of potential defects

to be included in the model of a part; defects must be modeled separately from the part.

3.1.3 Disadvantages of CAD Models

There are a few barriers to the widespread use ofCAD models for automated visual inspec-

tion, however. One problem is that the process of image formation is very complex and is

usually not modeled completely by the CAD model or by a supplemental image formation

model [132]. For example, images often contain specular reflections, complicating the

inspection and/or recognition tasks. Another problem is that computing offset surfaces that

are a tolerance offset from curved surfaces is very difficult, requiring the solution of high

degree polynomial equations [132]. For some surfaces, there are not any known methods

to compute exact offsets. The greatest barrier to using CAD models for inspection or

recognition, however, is that many times the actual manufactured part is different from the

original model [132]. This difference arises due to adjustments made in the actual manufac-

turing processes during development. The CAD model should be updated to reflect these

adjustments, but often there is no feedback loop from manufacturing back to the design

stage.
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3.2 Representation of Solids

Many solid representation methods have been proposed. Each of the methods has certain

advantages and disadvantages that will be discussed in this section.

Solid models can generally be classified into two categories, representation by boundary

and representation by interior [151]. Some researchers prefer the equivalent terms surface

and volumetric representations, respectively. Many of the early geometric models did

not use either of these two general solid modeling techniques, but instead used wireframe

representations. Wireframes use edges to represent projections of solids and are simple

extensions of drafting systems [151]. Wireframe models are ambiguous because they

contain no information about the shape of the faces of the object, unless the class of objects is

restricted to the convex polyhedra [151]. Other advantages of solid models over wireframes

are that interference checking and mass property calculations can be accomplished easier

and 3D objects can be described quicker and easier using solid models [161].

The six most common solid modeling techniques are the B-rep, sweep, primitive in-

Stancing, constructive solid geometry (CSG), spatial enumeration, and cell decomposition

representations [151]. All of these techniques are unambiguous object representations [161].

The CSG and B-rep methods are the most common and best understood of these six. The

B‘rep and sweep methods are true boundary techniques while the spatial enumeration and

Primitive instances techniques are based solely on region interiors [151]. The other two

techniques are hybrid methods.

3'2. 1 B-l'epS

me boundary representation, or B-rep, method explicitly represents the object model

using boundaries that are decomposed into sets of faces, edges, and vertices. Objects are

organized into “shells” (closed connected sets of faces) and “loops” (face boundaries that

are Closed and connected edge sets) along with one or two vertices (endpoints) that bound
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Figure 3.3. A line drawing of a block.

each edge [116, 151]:t The B-rep contains topological and geometric information. The

topological information describes the connections between the vertices, edges, and faces

that form the solid object [161, 116]. The geometric information encodes vertex locations

and the equations describing the edges and faces [161]. Often, surface intersection curves

cannot be represented exactly, particularly when the face equations have degree greater

than two [116, 151].

A line drawing of a block is shown in Figure 3.3. A portion of the B-rep for the block

is displayed in Figure 3.4. The face entities and some of the topological information are

shown.

B-reps are ideal for computer graphics and are also attractive for vision applications

because it is easy to extract object surface information and object features such as holes,

corners, and other salient features [1 1 l, 161]. The list of vertices and holes or openings asso-

ciated with each face provide local features that may be useful for pose determination [161]

and inspection. B-reps are also appropriate for numerically-controlled operations that re-

QUire traversal of the outer boundary of the object, such as generation of instructions for

milling [116]. Finally, local changes to the model, such as edge chamfering or filleting are

acComplished more easily using the B-rep than other representations, such as CSG [116].

Many 3D object recognition systems in computer vision have used object models based

on the B-reps. Polyhedral and piecewise quadric representations have been the most popular

\

0 fFor example, the circular boundary of the planar “caps” of a cylinder is often represented as an edge with

he (arbitrary) vertex. Most edges have two vertices, however.
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Figure 3.4. Portion of B-rep for a block.

B-reps in the computer vision literature [127].

3-2-2 CSG

me other most common representation is the constructive solid geometry (CSG) model.

The CSG representation is usually a strictly volumetric representation of the part, although

it is possible to include boundary information in the CSG model. A CSG representation

itTuIJIicitly represents an object using Boolean operations and transformations on primi-

five solid volumes. Usually a binary tree is used to describe the representation where

e:"“e<>l'1 nonterrninal node contains a Boolean set operation or a scaling, translation, or rota-

tion transformation. Some of the construction operations in the tree have direct physical

atiiilogs. For example, one Boolean operation might represent a hole created by a drilling

operation [151].

The CSG representation is non-unique, however (that is, there are many different CSG

representations for the same object), and the CSG representation of objects cannot be
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Figure 3.5. A CSG representation of the block of Figure 2.3. Union operation is shown.

directly compared. Instead, it is necessary to apply the operations in the representation

to create objects that are compared [151]. The extraction of surface information is also

non-trivial [111]. Finally, representing tolerance information in the CSG model is very

difficult [112]. The principal difficulty with tolerances is caused by non-explicit datums

that are difficult to determine and which result in tolerance stack-up. Tolerance stack-up is

discussed in more depth in Chapter 9.

CSG representations offer several advantages. Many of the advantages arise from

the fast, robust divide-and-conquer algorithms that operate on the CSG. These include

Sylltllesis of shaded images and computation of volumetric quantities [116]. It is also easy

to modify or delete primitives or subtrees in the CSG. Deletion of operations is usually not

as Straightforward in the B-rep.

One CSG representation of the block of Figure 3.3 is shown in Figure 3.5.

3-2-3 CSG vs. B-rep

There are certain advantages to both the CSG and B-rep methods, many of which have

been presented in the previous sections. Several additional issues are also germane to

this discussion. One issue is the representation of manifold versus non-manifold objects.

The Current B-rep systems can only represent manifold objects [116]. The definition of
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manifold objects requires that each edge belongs to only two faces. CSG representations

can represent manifolds as well as any non-manifold that is also a regular set [116]. A

regular set is an object whose faces separate solid material from background and all of

whose edges form part of the face boundary. Since non-manifolds are not manufacturable,

this is not a serious fault with the B-rep. However, non-manifolds can be easily created

during modeling operations.

Feature-based modeling is another factor that complicates the decision to use either a

strictly boundary-based representation scheme or to use a CSG representation. Features

are usually created by performing some operation on existing portions of the boundary and

often involve the creation of datum planes and reference lines [116], items that are difficult

to encode in the CSG tree. But features also may have global effects, particularly if the

design is modified in the future by modification of feature parameters [116]. B-rep models

usually do not contain the information necessary to make such changes. Thus, feature-based

modeling seems to require both a CSG tree and a boundary representation.

Representation Conversion

There are several known algorithms for converting a CSG representation to a B-rep. These

algorithms tend to be very involved and numerically delicate, however [116]. Furthermore,

there is no known algorithm to derive CSG from a B-rep. Thus, one of the apparent so-

1“tions to the feature-based modeling problem—using a dual representation—is not very

Straightforward. Thus, most dual-representation models allow only the CSG to be modi-

fied [116]. Another possible solution is to use a hybrid model where a CSG tree can contain

an evaluated B-rep as a leaf node. This solution requires the design software to be able to

“Se both the CSG divide-and-conquer approach and the B-rep trimmed surface approach,

whiCh may “introduce more conceptual and architectural problems than it solves” [116].

 



Free-lonn Sui

The demands ol

lions, resulting i

representations.

MhMMI

of free-form sul

recognition and

The class of

Coon's Patches

l'nifonn Rauor

quaint surface

are also imam

Proletlion [14(1

fetcm Shapes C;

“RES aft? sur

Sta"lard nor:

hemeen most (

A NL’RB 31

where a.” are

dc

on .\
in+pj no“.

A key dimC



57

Free-form Surfaces

The demands of current manufacturing almost necessitate the use of boundary representa-

tions, resulting in most CAD packages using either B-reps or some form of hybrid or dual

representations. The increasing use of plastics in industry is one of the key factors requir-

ing the ability to represent complex surface geometries [116]. However, representation

of free-form surfaces introduces additional complications for modeling and also for object

recognition and inspection.

The class of free-form surfaces includes representations such as rational Bezier patches,

Coon’s Patches, Rational B-Splines, Gordon Surfaces, Algebraic Surfaces, and the Non—

Uniform Rational B-Splines (NURBs). NURBs can exactly represent conic sections and

quadric surfaces and contain the class of Bezier curves and surfaces [140, 171]. NURBs

are also invariant under scaling, rotation, and translation and under parallel and perspective

projection [140]. As is the case for other splines, NURBs offer design flexibility since dif-

ferent shapes can be designed by manipulating the NURB control points and weights [140].

NURBs are supported as an allowable representation within the Initial Graphics Exchange

Standard (IGES), an ANSI standard data exchange format supported for data exchange

between most CAD systems.

A NURB surface S with parameters u and v is defined as:

in: f: ngB,p(u)qu(v)Ptj
3(11, v) = 1:] i=1 ,

n in

ZZwiJ'Bip(")qu(v)
i=1 i=1

 

where W are the weights, P“ are the 3-D control points with m control points in the u

direction and n control points in the v direction, and B;p(u) and qu(v) are the B-splines of

degree p and q, respectively, defined on a knot vector. The knot vector for B,,,(u) is a set

of (n + p) non-decreasing constants {uo, ul , ..., un+p_1} that divide the evaluation domain.

A key difficulty with NURBs and other free-form surface representations is the compu-
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tation of surface intersections. While surface intersections can be computed exactly for the

quadrics, free-form surface intersections require higher-order curves. Some intersections,

such as the intersection between two bicubic parametric surfaces, cannot be represented

exactly [116]. As a result, it is usually impractical, if not impossible, to represent surface

intersections. The intersections are commonly approximated using meshes of planar facets

or piecewise quadrics [116]. Approximating the intersections saves some time during ren-

dering, but introduces additional complications since the intersection curve does not lie

completely on both surfaces.

Blending, trimming, transformations, and surface offsetst are also difficult to compute

for free-form surfaces. If NURBs are adopted as the free-form surface representation,

blendings and intersections can be implemented in a single algorithm, although the com-

plexity of the resultant surface can be quite high. In general, surface offsets are not closed,

however, using any representation; for example, the offset of a parabola is not a parabola

and the offset of a NURB curve or surface is not even a NURB [116].

There are several other barriers to more widespread use ofNURBs (and most other spline

representations). For one, they require more storage than analytic curves and surfaces [140].

Incorrect application of the weights can also result in a poor parametrization of a surface

patch [140]. To avoid degeneracies on some simple surfaces, such as a sphere, several

NURB patches may be required to represent the surface [115]. Finally, the “natural”

parameters ofcommon surfaces, such as the radius of a sphere or cylinder, are not explicitly

stated in the representation. Although it is technically possible to recover these parameters

from the representation (though this may not always be feasible since recovery of “simple”

parameters such as sphere radii requires the ensemble examination of several NURBs),

there can still be round-off errors in retrieval [115].

One obstacle to the use of NURBs for computer vision purposes is that NURBs are

 

3The ofi'set surface S, of a surface S is defined to be that surface which is a uniform distance (i.e., offset)

from surface S. An example of a surface offset 0.1” from the planar surface 2 = 0” is the planar surface

2:0”.
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not tensor product surfaces in three-space. This makes it very difficult to compare image

data to the model’s NURB representation. Determining where the surface knot points are

in image data is very difficult and is an open research problem. It is also, in general,

quite difficult to determine visually salient features on spline surfaces [110, 112]. It is also

challenging to segment surfaces in image data of objects modeled by splines; since all the

patches are smoothly joined (i.e., blended), it is not usually apparent where one surface

patch begins and another ends [112]. In addition, there are no constraints on free-form

surfaces. There need not be any piecewise-planar or piecewise-quadric regions on the

surface(s), nor do they generally contain axes of symmetry [10]. These characteristics

make feature extraction difficult and prevent the use of well-understood and often-used

geometric features. Furthermore, free—form surfaces can contain cusps or isolated points

of discontinuity in surface normals [10]. These issues make segmentation, classification,

recognition, and verification difficult.

In general, 3D range sensors also do not deliver data accurate enough for free-form

surface matching, particularly when the matching must be accurate within a very small

error tolerance [10]. Inaccurate range data makes it more difficult to segment images and

extract features for matching from the images; robust feature extraction and segmentation

is difficult. Sensor technology is improving rapidly, however, so this objection may soon

be overcome [10]. A more serious objection to the use of free-form surfaces is that it is

not possible, in general to determine the distance of a point from a free-form surface [167].

Taubin [167] has presented a numerical method that finds a first-order approximation of

this distance, although his method sometimes finds local minima that are not reasonable

approximations of the global minimum. Matching and inspection of NURB and other

parametric spline surfaces is thus a difficult task.
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A Possible Matching Technique

Despite the difficulties with free-from surfaces, it may be possible to match free-form

surfaces in the object to those in the model. Besl [10] has presented an outline of a

potential surface matching algorithm that is theoretically possible but which has not yet

been successfully implemented. He has suggested a hierarchical collection of techniques

to be applied to the surface representation of the model and to the image data. The first

technique would consist of trying to match point features extracted from the data and from

the model. If that is not possible, or if not enough point features could be matched to

generate an acceptable or complete correspondence, then matching of curve features could

be attempted. Finally, if that also did not produce an acceptable matching, then surface

matching could be attempted. After matches have been hypothesized, Besl’s proposal

includes a global verification step to compute the pointwise difference between data points

and model surfaces.

Besl has suggested that cusps, vertices, isolated umbilic points, curvature extrema,

etc., could be used as invariant point features for matching. Curve features that could be

extracted include zero crossings of curvature, surface boundaries, curvature discontinuity,

and surface normal discontinuity. For surface matching, Besl proposed the extraction of

Gaussian curvature to partition smooth surfaces into elliptic, parabolic, and hyperbolic

surface patches.

There are a few problems with Besl’s proposal. One of the major problems, according

to Besl [10], is that current sensor limitations prevent accurate estimation of curvature.

Also, spurious point features are invariably extracted by feature extractors and curves

extracted from image data are usually broken curves. Segmentation and feature extraction

are difficult problems and are areas of ongoing research in computer vision. Finally, Besl’s

hierarchy seems to emphasize point features more than curve and surface features, despite

the general consensus that surface parameters are more easily and robustly extracted from
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Figure 3.6. Example of a swept solid.

range data [58].

3.2.4 Other representations

Samet [151] briefly discusses the other four common solid model representations. The

sweep representation is a solid that is defined by the volume swept by a planar (i.e., two-

dimensional) shape along a curve. The sweep can have both rotational and translational

components. An example of a swept solid is provided in Figure 3.6. The solid consists of a

circle swept along an arc. The sweep representation has been commonly used in computer

vision, primarily in the form of generalized cylinders, although few CAD systems have

adopted it for their internal representation [55]. Mirolo and Pagello [119] have designed a

solid modeler that combines CSG and generalized cylinders, however, by allowing the leaf

nodes of the CSG tree to contain generalized cylinders.

In primitive instancing, all possible object shapes are defined apriori. Specific instances

are created by changing scale and dimension parameters of the primitives. Objects can be

created by “attaching” several of the primitives together. The block in Figure 3.3 could be

viewed as an object consisting of two of a “rectangular box” primitive whose dimensional

parameters are different in the two joined instances.

Spatial enumeration approximates the object using a collection of equal-sized volume

elements, also called voxels. The spatial enumeration model of the block in Figure 3.3

would appear similar to the representation in Figure 3.7.

Cell decomposition is a hierarchical adaptation of spatial enumeration. In cell decom-



positi

are r}

FEpr'eS

marke

Space

the hat

of the

0f the t

“Cupie

”page“



62

 

Figure 3.7. Example of spatial enumeration representation of block.

 

Figure 3.8. Example of cell decomposition representation of block.

position, the volume element sizes usually vary. Cells that are “higher” in the hierarchy

are typically larger than the cells “lower” in the hierarchy. One cell decomposition tree

representation for the block in Figure 3.3 is shown in Figure 3.8. In the tree, each node is

marked with a solid, hollow, or half-solid square indicating if the node represents a region of

space that is interior, exterior, or both interior and exterior to the object, respectively. (All of

the half-solid cells are decomposed into smaller-sized volumetric cells in descendant nodes

of the half-solid parent node.) The octree and its variants are probably the most common

of the cell decomposition techniques.

Octrees

Octrees [77, 151] are a recursive hierarchical division of cubic space into subcubes. An

octree’s terminal nodes represent volumes of space that are either “full,” (i.e., they are

occupied by the interior of the object), or “empty,” (i.e., they are occupied by “background”

meaning that the node represents space exterior to the object). The root node of the tree

represents the entirety of 3-space. Any node within the tree that is not homogeneous—that
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is, any node that is not completely full or empty—is split into eight equal subcubes, each of

which becomes a child of the node. This process continues until all nodes are homogeneous

or a resolution limit is reached. Thus, an octree contains object leaf nodes, background leaf

nodes, and non-leaf nodes.

Octrees are a pure volumetric description of the object that can be stored compactly.

They are somewhat popular due to several additional advantages, including the speed

with which volume elements can be located and their position determined [77]. Octrees

are useful for graphics applications because they allow for easy rendering and hidden

surface removal [77]. Octrees are also well-suited to robotics applications such as collision

avoidance and path planning [77].

A disadvantage of the octree and, to a lesser extent, the spatial enumeration techniques,

is that they do not provide an exact representation of the object. Furthermore, the represen-

tation is highly dependent on the position and orientation of the object in space [77, 151].

Since octrees have finite resolution, any rotational or translational transformation does not

preserve the exact shape of the object. Several techniques have been proposed to minimize

the shape distortion, however [77]. Octrees can also represent the exact geometry of only a

limited class of objects [116]. In fact, octrees and other volumetric models are not ideal rep-

resentations for many applications. For example, in the design of airplane fuselages and car

fenders, volumetric characteristics are irrelevant and make modeling unnecessarily tedious

and time-consuming [116]. The time to construct an octree can also be quite lengthy [151].

Octrees do not appear to be ideal for inspection purposes due to the difficulty of extracting

features and surface information, although Tarbox and Gerhardt [166] are attempting to use

octree representations for casting inspection purposes.
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3.3 IDEAS and IGES

The IDEAS CAD package is an attractive platform for building object models because

it is a popular commercial package in industry. One drawback of many of the ongoing

projects in CAD-based object recognition in the computer vision community is their use of

experimental CAD systems. By using a commercial package such as IDEAS, the algorithms

developed in this dissertation have more practical value for manufacturing and assembly

applications. Another advantage of the current version of IDEAS (IDEAS V1) is that

it allows construction of feature-based models which have some potential for inspection

tasks. IDEAS’ feature-based construction capabilities are somewhat primitive, however.

One limitation is that tolerance information cannot be stored with the feature. Furthermore,

features can be constructed such that their location with respect to a desired datum is

only implied by the design rather than made explicit. This introduces ambiguity into any

inspection task.

IDEAS uses a hybrid technique for solid modeling [102]. It stores both a precise B-rep

and a CSG-style history tree for each object. Two B-reps are actually stored for an object.

One is a faceted approximate representation that is used to generate displays quickly and

to perform fast calculations. The other B-rep is a precise mathematical representation. The

CSG tree for an object contains the history of the construction steps that created the object.

This tree can be modified. IDEAS’ CSG tree also supports the use of rules that define

design intent. For instance, a through-hole can be defined to be a percentage distance d

along some edge and at some fixed distance from the edge. Should the dimensions of the

0'3th be changed in the future, the position of the hole would be adjusted automatically by

IDEAS to reflect the global change in the object. (For example, if the edge was scaled by

some Operation, the position of the hole would be adjusted such that it was still located at

percen tage distance d along the edge.)

Extracting features from the CAD model is not a simple and direct process. This is
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because the CAD model files were not designed for object recognition and inspection,

but rather to permit many different CAD systems to read and write the same format files,

allowing designers to easily port their designs from one system to another. For example,

most CAD representations, including the IGES format, do not explicitly store information

about surface relationships [59]. However, surface adjacencies and relative orientations

are popular features for object recognition (matching models to sensed objects). CAD

representations also do not usually contain viewpoint—dependent data such as surface area

and visibility. Flynn and Jain [59] have presented techniques for estimation of these

parameters from analytic-form (but not free-form) surfaces in CAD data, however.

Flynn [55] has written a LISP program to extract several features from the CAD models

created by the IDEAS CAD package. Flynn [55, 59] used the following features for

3D object recognition: surface type and parameters, surface areas, visibility attributes,

bounding box area, rotational validity, inter-surface orientational validity, and distances

between surfaces. Except for surface area, bounding box area, and visibility, these were

directly extracted from the CAD model. Flynn estimated the other features by observing

their values in synthetic images generated from many viewpoints. These features, along

with several additional features, are used in this thesis for object recognition and pose

estimation. (The reader should note that although we present techniques that may be

potentially useful for object recognition, the focus of this dissertation is inspection where

the identity of the object is known.) Details about feature extraction and pose estimation are

included in Chapters 5 and 6, respectively, of this dissertation. We also use the CAD model

to synthesize range images from which a template is drawn for the gross defect detection

scheme proposed in Chapter 7.
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3.4 Representation Requirements for Automated Visual

Inspection

Many of the requirements for a representation useful for object recognition and inspection

have been discussed in this chapter. Marshall [110, 111, 112] has outlined several of the

desirable properties that 3D object models should possess for vision applications. An ideal

representation would allow direct pairing of model and data features for efficient matching

and inspection, direct estimation of pose, prediction of appearance from any position,

representation of tolerances, and creation of a unique representation for any of a wide range

of objects. Surfaces are compactly and explicitly represented by B-reps, so B-reps seem

better suited than other representations for vision applications.

3.5 CAD Models of Castings

The castings that were inspected in this project were modeled using the IDEAS VI CAD

package. Models were built based upon blueprints supplied by General Motors. GM did

provide some CAD models in electronic format, but those models were only wireframe

models, and they were stored in IGES format. Although IGES is an accepted exchange

format, most CAD packages appear unable to completely translate all aspects of a model

into the package’s internal representation. This was certainly the case for the CAD package

we used, which was unable to translate some portions of the GM models.

The GM CAD models were not usable because they were wireframes, not solid models,

and because they only contained information related to set-up for the casting process. As a

res“1t. there were no dimensions stored in the GM IGES model. Thus, we had to build CAD

models from the part blueprints. Model-building was a very tedious and time-consuming

pr00388, chiefly because ofIDEAS ’ difficulties in creating filleted and rounded surfaces. All

ofthe CaStings provided by GM contained many filleted and rounded surfaces, making this
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a severe problem. There are, in fact, known “bugs” in IDEAS VI’s fillet and round creation

subroutines. These bugs cause small polyhedral artifacts to appear on the filleted surface(s) §

Another problem in model creation involved revising or correcting the model, a process

that was often quite difficult. Usually, if a construction step so had to be corrected, it was

necessary to first remove all the construction steps 3,, i > c. Step sc could then be corrected,

followed by the manual re-entry of construction steps 3,, i > c. Furthermore, as the model

grew more complex, IDEAS became very, very slow and occasionally would unexpectedly

terminate. Some operations also required IDEAS to re-execute every prior construction

step, which usually took about 30 minutes of clock time on our system. (IDEAS probably

re-executes prior construction steps to make the global model reflect local changes. For

example, IDEAS must ascertain if the current operation will intersect any existing surfaces

or other primitives.)

Because ofthe time-consuming nature ofconstructing a filletedCAD model, we actually

constructed a complete CAD model for only one object, the gear blank 356 casting. We

will demonstrate that we can extract the necessary inspection features from this model and

assume that similar features can be extracted from the other models. This thesis aimed

to demonstrate the feasibility of inspection, so the focus was on developing techniques

for inspection rather than feature extraction from models. For the objects studied, feature

extraction should be simple since no spline curves or surfaces were present.

A drawing of the CAD model generated in this research for the gear blank 356 casting

is shown in Figure 3.9. The gear blank is shown from four different views. A more general

outline of this gear blank with many of the dimensions labeled is shown in Figure 3.10.

A range image of a defective instance of this gear blank was shown in Figure 1.1. A

defeCt-free image from the top view is shown in Figure 4.9. A side and a bottom view are

shOWn in Figure 4.4.

A drawing of a cylindrical casting is shown annotated with dimensions in Figure 3.11.

\

5'17)
e artifacts look like small bumps on the otherwise smooth surfaces.
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Figum 3.10. A simplified wireframe of gear blank 356 casting with dimensions.
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Figure 3.11. A simplified wireframe of a cylindrical casting with dimensions.

When cast, this casting also contains a gate that is about 1.5” wide and 2.2” in height, where

the height dimension is in the direction of the cylinder’s axis. All the instances of this

casting that GM provided had nearly the entire gate removed, however. The only remnant

of the gate was a region on the cylinder that was about 0.04” higher than the surrounding

region. This casting will be referred to as “Cyl” in this dissertation. A range image of the

casting is shown in Figure 4.8.

The drawing of a large cylindrical casting is shown in Figure 3.12. Instances of this

casting will be referred to using the shorthand notation “Big Cyl.” A range image of this

casting is shown in Figure 4.7. A gear or pully blank casting, denoted number 588x, is

Shown in Figure 3.13. This casting will be referred to as “588x” in this dissertation. A

range image of this casting is shown in Figure 4.6. Inspection models of two other castings,

Whose range images are shown in Figures 4.10 and 4.11, were also created.

The inspection techniques in this dissertation are applicable to any object for which

there is a CAD model, although objects with non-quadric surfaces can only be inspected



Figure 3.1:

Figure 3.1



7O

   
Figure 3.12. A simplified wireframe of a large cylindrical casting with dimensions.

 
ISigure 3.13. A wireframe of gear blank 588x casting annotated with dimensions.
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if they are in a known position (pose localization is discussed in detail in Chapter 6). If

object pose is unknown, then our techniques allow the inspection of the planar, cylindrical,

spherical, and some of the conical surfaces of any object.

3.6 Conclusions

This chapter has discussed the common representations used for computer-aided design and

for 3D object recognition and inspection. In particular, the two most common representa-

tions, CSG and B—rep, were discussed in detail. The strengths and weaknesses of each of

the common representation schemes were investigated. The best available representation

that allows for both functions may be a hybrid or dual representation supporting both CSG

and B-rep representations.

This dissertation uses CAD models built by the IDEAS commercial CAD modeler (the

only suitable CAD package available to us) because it supports a hybrid representation using

both CSG and B-reps. Because IDEAS is a popular commercial package, our work is more

applicable to other inspection and recognition applications. IDEAS does have limitations,

however. It is difficult to construct models of some objects in IDEAS, particularly objects

with filleted or rounded surfaces. IDEAS also may not be mature enough for easy application

to inspection; it may be difficult to generate an inspection plan for some objects modeled

by IDEAS. Future versions of IDEAS or other CAD packages may be better suited for

inspection.
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CHAPTER 4

Image Acquisition

Video, or intensity, images gathered by standard CCD cameras have been a popular data

source for 3D object recognition and inspection. However, deriving 3D structures or depth

information from a single 2D image continues to be a difficult and challenging problem.

To circumvent this problem, 3D data, called range or depth images, are now often

acquired directly [92]. Unfortunately, the range sensing hardware is usually slower, and al-

most always more expensive than intensity sensing hardware. The cost of range sensors has

been decreasing, however, while the quality of the acquired images has been improving [85].

Range data is now a preferred mode for 3D object recognition. Various triangulation and

time-of—flight sensors have been built that collect three-dimensional (m, y, z) coordinates of

visible object surface points.

For complete inspection of the object, it would be desirable to integrate range infor-

mation with intensity and/or color (reflectance) data. This would allow labels, textures,

and similar structures on object surfaces to be examined. In this dissertation, the focus

is on geometric shape defects, and thus inspection based on color and intensity sensing

modalities has not been investigated. As has been noted in Chapter 2, intensity data is also

potentially useful for detection of cracks and pits, however. Chapter 9 briefly discusses the

role of intensity data in detecting defects in castings. Range information is the dominant

data source in this research, however.
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This chapter presents some of the common techniques for range image acquisition for

object recognition and inspection and discusses the sensing arrangement used in this thesis.

4.1 Range Sensing

4.1.1 Range vs. Intensity Imagery

Range images offer several advantages over intensity images. Many of these advantages

were presented in Chapter 2. One example of the need for range images is dimensional

inspection of parts that have etched height variances, warp, or reliefs. This type ofinspection

requires that depth be measured accurately [159]. Another advantage of range sensing is

that it is usually not sensitive to ambient lighting. It is also usually much easier to extract

an object from its background in range images than in intensity images. In the casting

inspection problem, range images offer the additional advantage of being less affected

by grease and surface scratches than intensity images. The greatest advantage in using

range data, though, is that it explicitly represents surface information [92, 111]. This

makes it easier to extract and fit mathematical surfaces. Explicit surface information also

allows shape information to be used in developing efficient matching algorithms [111].

In contrast, matching based on edges, which is the practice in many inspection and/or

recognition systems, discards much of the surface information [111].

A range and intensity image of one of the defective gear blank 356 castings was shown in

Figure 1.1. A set of three additional images of the gear blank casting is shown in Figure 4.1.

In this figure, the leftmost image (a) is a pseudo-intensity rendering of the depth map‘ of

a defective instance of the casting. The defect is a small pit in the upper left portion of

 

'A pseudo-intensity rendering of the depth map displays the relative orientation of the surfaces. Points

that are rendered in lighter shades are oriented nearly horizontally, while darker shaded points indicate that

the surface is oriented almost vertically. The rendering is called pseudo-intensity because it looks similar to

a “perfect” photograph of the scene in which the object is lit from above by a directional light source and

imaged using an orthogonal projection onto the 2D image plane.
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(a) Pseudo-intensity ren- (b) Intensity image with (c) Intensity image using

dering of depth map. one light source. a different light source.

Figure 4.1. Three images of a defective gear blank 356 casting comparing range and

intensity images.

the casting, at a position of approximately 10 o-clock near the outer circular boundary. An

arrow has been overlaid on the image to highlight the defect. The images in Figures 4.1(b)

and (c) are intensity images that are taken from the same viewpoint but using different light

sources. The viewpoint is almost identical to that in the range image. In Figure 4.1(b),

the defect is not very apparent, whereas in Figure 4.1(c), the defect is visible as a dark

region. The two intensity images used light sources in different positions, illustrating

the importance of lighting placement in intensity-based inspection. Furthermore, when

the lighting was positioned such that the pit was more visible, some of the scratches and

rough spots on the surface of the casting appeared as bright regions. In practice, it may

be difficult to distinguish brightly colored regions that represent surface scratches (non-

defects) from brightly colored regions that represent excess material (a defect). In fact,

when histogram-based thresholding was applied to the image in Figure 4.1(b), the defect

could not be isolated (its intensity is the same as many of the non—defective regions in the

casting’s planar surface) I The techniques presented in Chapters 8 and 9 can isolate the

defect in the range image, however.

 

lHistogram-based thresholding did isolate the defect in the other intensity image, however.
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4.1.2 Depth Maps

A range image can be viewed as a depth map of data 3.3. where R is the range and (i, j) are

the image coordinates in the a: and y directions, respectively. Some sensing arrangements

do not deliver this information directly and instead provide depth data in polar coordinates

or simply provide a list of coordinates. The range sensor used in this research, the Technical

Arts IOOX White Scanner, produced a grid of depth values at regular intervals in :1: and y

(although the grid was actually not completely regular in the y direction). Details about the

range scanner are presented in Section 4.3.

4.2 A Taxonomy of Range Sensors

In this section, five of the common range sensing techniques are described. These include

(i) triangulation methods, (ii) spot ranging, (iii) shape-from-X, (iv) ultrasound, and (v)

other indirect methods. More detailed presentations of range sensing methods can be found

in [6, 55, 130].

4.2.1 Triangulation

Triangulation techniques are quite popular for depth determination in both the research

literature and the industrial vision applications [85]. In triangulation sensing, a point

(z, y, z) in the 3D scene is projected to a point (u, v) in the 2D image plane. A calibration

procedure is necessary in triangulation sensing to determine the geometric relationship

between the 3D scene points and their 2D image plane projections. Usually, the relationship

between the sensor and the light source is known a priori, allowing similar triangles to be

used to determine the 2D—to-3D transformation for each image point.

In all triangulation systems, there is a tradeoff involved in the choice of the baseline

separation between sensor(s) (and the illumination source if active illumination methods
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Figure 4.2. Diagram of triangulation sensing.

are used). If the baseline separation is large, depth can be estimated more accurately,

although many surface points, especially in surface concavities, will not be visible from all

viewpoints. Small baseline separations allow less accurate estimation of depth but result

in fewer occluded surface points. This problem can be alleviated somewhat by the use of

multiple light sources or multiple sensors [6, 130], although this also adds cost, complexity,

and measurement time to the system [130]. A diagram ofa typical triangulation arrangement

is shown in Figure 4.2.

Stereo

Stereo vision is used by human and many other animate vision systems to find a disparity

map for the points in an image. In stereo sensing, the known coordinate transformation

between two (or sometimes more) sensors positioned at each of two triangle vertices can

be used to determine the range values of the points in the image.

The main problem in stereo vision is the correspondence problem [130]. Matching, or
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corresponding, the points in the two (or more) images nwds to be done quickly and reliably.

This process is complicated by missing data because some points are visible in only one

of the images. Stereo is usually a passive process (i.e., it uses ambient light) that employs

fairly inexpensive equipment, commonly consisting of only two intensity cameras. The

software or hardware to compute point correspondences may be expensive and execute

slowly, however [85]. Stereo methods also appear to be unable to generate dense depth

maps in uniform (smooth) regions because of the difficulty in extracting features [85].

Determining range from motion stereo has also been investigated by Weng et al. [183].

Structured Light

Structured light techniques are low-cost active ranging methods. Most of the structured

light arrangements can only produce sparse depth maps, however. A single plane of light

is usually projected onto the scene, although techniques have also been developed that

project 2D grids, coded stripes, or texture patterns onto the scene [85]. Usually, a laser

beam or light is projected through a slit to illuminate the scene. A calibration procedure is

used before image acquisition to establish the coordinates of the scene points illuminated

by the light source. One example of a depth-from-structured light technique is by Hu and

Stockman [79]. Their technique used one inexpensive light projector and a single camera.

Structured light methods tend to be slow, especially if the light stripes are projected

serially onto the scene [130]. However, methods have been developd that project light

patterns in parallel or by using time-sliced patterns. Specular reflections also present a

problem since they can result in no depth measurement or in false depth measurements

from multiple reflections.

4.2.2 Spot Ranging

Spot ranging methods for determining range have been used by civil engineers for many

years [6]. This class of range sensors usually consists of a signal transmitter, receiver, and
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the electronics for measuring round trip travel time (or its equivalent) and the intensity

of the returned signal. This active technique usually utilizes a laser that is directed along

orientations with equal angular increments using a scanning mirror. Spot ranging techniques

can deliver a high density range map fairly quickly, although the cost of the sensor is usually

quite high [85].

Three different techniques are used to measure the time of flight [130]. One method

uses a pulsed signal and measures the actual pulse time delay for the roundtrip travel of the

pulse. The phase shift of an amplitude modulated laser can also be measured to determine

range (the phase shift is proportional to the time of flight). Phase shift determination is

ambiguous, however, if the shift is more than 27r. The third method uses laser beams that

are emitted as “chirps” that are frequency modulated as a linear function of time [130].

Range is determined by measuring the frequency-modulated signal.

All of these spot ranging techniques are accurate to within 1% of range [6]. There are

several difficulties, however. One of the problems is specular surfaces that reflect little or

no light back to the sensor. Alternately, multiple reflections from several specular surfaces

can make the measured range appear much larger than its true value. Range cannot be

determined reliably for such surfaces. The spot ranging techniques tend to measure range

slowly because a long integration time is usually required to reduce photon noise [130].

4.2.3 Shape-from-X

The shape-from—X methods are a collection of techniques that determine depth using a single

intensity image [85, 130]. Most of these techniques cannot determine depth explicitly.

Rather, they determine surface orientation or relative depth. A wide body of literature

has been presented on computing shape-from-shading. In shape-from-shading, surface

orientation is obtained by examining image brightness, given the position of the light source

and the reflectance properties of the object surface. A variation on this approach, called

photometric stereo or range from shadows, uses several point light sources to illuminate
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the scene. The different light sources create sets of shadows that provide clues to the

position of objects in the scene. Altemately, the object(s) can be rotated while the camera

and light source remain stationary. Unfortunately, photometric stereo is not applicable in

some scenes of solid 3D objects that are self-occluded. Self-occlusion prevents either the

sensor or the light source from viewing or illuminating (respectively) many object points.

Specular surface orientation has been determined using a variation on photometric stereo in

which nonuniformly distributed light sources, such as circularly polarized light, were used

to illuminate the object [130].

Surface orientation has also been determined using shape-from-perspective, a technique

based on finding vanishing points. Orientation has also been determined using texture-

based methods, although most of the shape-from-texture presentations in the literature are

restricted to orientation determination for a single planar surface [14]. The shape-from-

texture techniques usually determine orientation by fitting a line to a set of vanishing

points.

4.2.4 Ultrasound

Ultrasound images are often used in medical imaging and in mobile robotics [39, 181].

Ultrasound sensors measure the time of flight of sound waves. The sound wave is often

reflected from many surfaces, which results in a higher risk of incorrect range data [130].

Each surface encountered by the wavefront partially transmits and partially reflects the

wave [6]. Due to the partial transmissions and reflections, ultrasound can provide informa-

tion about the medium that makes up an entire column of data in a 3D matrix of 3-space

coordinates. Most other methods, such as pulsed light beam ranging, provide information

only about a single point in the scene [130]. This can be useful in medical imaging to

find internal properties of a region of the body. Ultrasound images generally have a poorer

resolution than other forms of range images because it is very difficult to generate a narrow

acoustic beam [130].
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Figure 4.3. Ultrasound image of MSU PRIP Laboratory, from [39], courtesy of Jonathan

Courtney.

An ultrasound image is shown in Figure 4.2.4, from [39]. This image is rendered

as an occupancy grid map. Each cell in the map is of a fixed size and displays the

measured intensity of ultrasound reflection in the MSU PRIP Laboratory, an indoor office-

like environment. The darker cells have a higher probability of occupancy.

4.2.5 Other Indirect Methods

Several indirect passive methods for range sensing have also been used [130]. One of these

methods is depth from focus. By focusing a lens and then finding the focal length and the

distance of the image plane from the lens, the range can be determined. Another technique

is range from known geometry which uses known camera parameters and known scene

object identity and size to compute the range of other points in the image.

One other common technique for range sensing is called moiré interferometry, or depth

from moiré fringes [130, 144]. The moire’ fringe technique illuminates objects with light

that has passed through a grating and views the scene through a camera that has been

covered with an identical grating. The gratings produce a visible grid pattern, called moiré

patterns or fringes, on the object surface. This pattern is a phase shift in the light that
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yields information about the change in object contours. Moiré fringe techniques have the

advantage of allowing range to be measured on smooth surfaces. The techniques also tend

to execute very quickly and offer great potential for rapid acquisition of depth values [46].

One disadvantage of moire’ interferometry systems is that they are difficult to design and

adjust [46].

Air Gage and the Industrial Technology Institute have jointly developed a range sensor

based on moiré fringe techniques [165]. An experimental system they designed has a depth

resolution of 1 micron and provides 14 bits of depth data through an image processing

technique that is applied to the sensed data. A 512 x 484 depth map can be acquired in

approximately 5 seconds. Air Gage has developed several commercial products based on

this design, which offer a resolution of about 1.5 microns and can deliver a depth map every

15 seconds [21]. Their products have a field of view of approximately 3” by 3” by 1.5”,

although they have also developed custom designs for imaging automotive side panels. A

complete systems retails for approximately $80,000.

Dubowsky et al. [46] have presented a moire fringe technique that they used to inspect

the dimensions of a diesel engine head gasket.

4.3 Range Image Acquisition

In this research, a Technical Arts 100x White Scanner in the Pattern Recognition and

Image Processing (PRIP) Laboratory at Michigan State University was used to acquire

range images. The presentation here follows that of Flynn [55]. A diagram of the sensing

arrangement is shown in Figure 4.5. The White Scanner is a structured-light range sensor

that actively illuminates a scene using a low-power 5 milliwatt helium-neon laser.

The laser beam is emitted from the laser tube and then reflected off two mirrors, the

second of which is an optical spreader. It rapidly oscillates to create the appearance of a

triangular sheet of light that illuminates objects within the work envelope ofthe scanner. The
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sheet of light is perpendicular to the x-y plane of the sensor coordinate system. The work

envelope is a grid of maximum size 12” x 12” with a maximum height of approximately

10 to 12 inches.

The object(s) to be imaged are placed on a translation stage that is moved in the a:

direction using a stepper motor. The stage is usually moved 240 times over 6 inches (a

slightly larger or smaller range of movement can be used when acquiring images of larger

or smaller objects, respectively, allowing the capture of slightly higher resolution images).

Each time the stage is moved, a 2D silhouette image is formed by the intersection of the

sheet of laser light with the object(s) to be imaged. Each of the silhouettes is imaged by a

camera and stored in the 100X computer. The collection of silhouettes is then merged into

the final range image. The Laboratory also has a rotary stage that allows the object to be

rotated about the z axis. If the object is imaged following rotation(s), multiple images can

be collected, simulating a multiple viewpoint mode of image acquisition. No method was

available to turn the object over, however. Thus, an object could only be scanned at known

viewpoints in one viewing hemisphere.

The sensor is a CID camera that has a 248 x 388 grid of sensing elements. The camera

is oriented at a fixed angle of 45° (about the y-axis) to the sheet of light. The a: coordinate

of each point in the scene is determined using the movement of the stepper motor while the

y and z coordinates are determined using their position with respect to several calibration

points. (A calibration procedure must be performed at the beginning of each scanning

session to allow these points to be determined. The y coordinate is proportional to the

row number in the CID image while the z coordinate is proportional to the column in the

C11) image.) The sensing arrangement delivers a resampling of the original 248 rows of

data to yield an image that has 240 points of information at each of the imaging steps.

The range image is formed by joining each of the rows of information associated with the

stage movement. This results in a depth map 2 = f(2:, 3;) that has values at evenly spaced

intervals in a: (the direction of stage motion) and at nearly evenly-spaced values in y.
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Sensor noise is present in both the y and z coordinates. The error in y appears to

be very small but systematic, although its nature has not been characterized. The error

in 2 appears to follow a Gaussian distribution with a standard deviation of approximately

0.002” to 0.005”, both in tests performed by us and by those reported elsewhere. The vendor

specification for the device claims that depth error is between 0.002” and 0.005” [170], so

the observed behavior is similar to the expected behavior of the scanner. (More information

about the sensor error is found in Chapter 8.) The depth values obtained by this White

Scanner are estimated to 0.001”. According to the White Scanner’s reference manual, it

is possible to achieve accuracies of “better than a few one ten-thousandths of an inch” if

a focusing lens is fitted to the laser [170], although such a lens was not available for this

project.

Not all pixels contain range information due to shadowing effects caused by concavities,

self-occlusion, specularities, or noise. Two images of one of the gear blank 356 castings are

shown in Figure 4.4 to illustrate typical problems with occlusion from the White Scanner.

Black regions in the image represent points for which depth could not be determined. These

represent shadows from occlusions or background pixels. Background pixels usually do

not contain any range information because the stage and supporting devices are painted

black and/or covered with a black cloth to minimize unwanted reflections.

The scanner is usable at temperatures between — 18° and 50° Celsius and is reported to

have excellent immunity to vibration [170]. It is also usable in variable ambient lighting

environments [170].

The sensing arrangement produces registered range and intensity information, although

the intensity information is the value of the reflected laser beam rather than the usual

intensity visible under regular indoor or natural lighting. The intensity data is somewhat

similar in appearance to pseudo-intensity renderings of range images. Figure 4.4 displays

the White Scanner intensity data for two images. It is also possible to collect fused range

and intensity images from the White Scanner using Lee and Stockman’s [103] imaging
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(a) Side view of gear blank 356 cast- (b) View from underneath gear blank

ing. 356 casting.

Figure 4.4. Two self—occluded images of gear blank 356 casting. The White Scanner’s

intensity map is displayed in both images.

procedure, although the procedure is unable to fuse any point that is not visible in either

the range or the intensity image? This dissertation has focused primarily on range images,

although the feasibility of using fused range and intensity images has also been investigated.

One limitation of the White Scanner is that it takes about five minutes to acquire the

depth image of an object. Another problem in using the White Scanner is that while each

point has a very accurate or, y, and z coordinate value, the sampled points in the y direction

are separated by approximately 0.045” while the sampled points in the x direction are

typically separated by about 0.025”. Thus, the accuracy of the system is limited more by

sample spacing than by measurement accuracy. Object surface points located near depth

discontinuities are also often not sensed properly because the measured depth values could

be the mean of the depth values of two points on either side of the edge [170].

Range images of some of the castings collected using the PRIP lab’s 100X White

Scanner are shown in Figures 4.6 through 4.11. These images are defect-free instances of

 

iThe intensity image in Lee and Stockman’s procedure is not formed from an orthogonal projection, unlike

the White Scanner's intensity image. The potential visible surface area is thus much larger in their procedure.



 

  
Figure 4.5. Diagram of Technical Arts Range Image Acquisition System.

the castings examined in this thesis. A depth profile plot of the gear blank 588x casting of

Figure 4.6 is shown in Figure 4.13 and a depth profile plot of the spindle-like casting of

Figure 4.11 is shown in Figure 4.12.

In addition to real range images, synthetically-generated range images have also been

used in this project. Some of the synthetic range images were generated by sampling the z

coordinates ofquadric surfaces at regular intervals over a range of a: and ycoordinates. Other

range images were synthesized from CAD models using a program that was originally based

on Paul Besl’s GEOMOD JUNIOR. Pat Flynn adapted GEOMOD JUNIOR to read IDEAS

IV CAD models and we then extended it to read IDEAS VI CAD models. Synthetic range

images were used to allow Monte Carlo testing of both defect-free and defective objects in

many poses, allowing the capabilities of the algorithms to be explored in detail.

4.4 Summary

This section has presented some of the issues involved in data acquisition for 3D object

inspection. The motivations for using range data rather than intensity data were discussed.

The common techniques for acquisition of range data for 3D object recognition and inspec-
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Figure 4.6. Pseudo-

intensity rendering of

depth map of defect-free

588x casting.

 

Figure 4.9. Pseudo-

intensity rendering of

depth map of defect-free

gear 356 casting.
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Figure 4.7. Pseudo-

intensity rendering of

depth map ofdefect-free

large cylindrical cast-

ing.

 

Figure 4.10. Pseudo-

intensity rendering of

depth map ofdefect-free

housing casting.

Figure 4.8. Pseudo-

intensity rendering of

depth map of defect-free

small cylindrical cast-

ing.

 

Figure 4.11. Pseudo-

intensity rendering of

depth map ofdefect-free

spindle-like casting.
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Figure 4.12. Depth rofile plot of the spindle-like casting.

 
Figure 4.13. Depth profile plot of the gear blank 588x casting.



de-



88

tion were also presented. Finally, the range image acquisition system used in this research

was discussed.

The Technical Arts scanner available for this research can deliver accurate depth in-

formation, although its accuracy may not be acceptable for some high precision tolerance

measurements. A more serious problem is that the scanner cannot inspect deep concavities

in objects. Furthermore, self-occlusions become a difficult problem due to the large baseline

separation between the sensor and the active light source. The available sensor is also too

slow for real-time inspection applications, although other sensors have been reported that

appear to meet (or nearly meet) this goal [165].

The problem of self-occlusions can be limited somewhat by collecting multiple images

of the object from different viewpoints, however. This could be accomplished using

rotating stages and fixtures to hold the objects. In this work, equipment was available to

rotate lightweight objects about one axis, allowing collection of data from one “side” of the

object. It is, in general, better to move the sensors than the object, however, since some

objects are fragile. Ideally, the sensor would be mounted on a robot arm to collect multiple

viewpoint data. Altemately, multiple sensors could be placed about the viewing area to

collect nearly complete 3D data from the object to be inspected.

In the remaining chapters of this dissertation, the techniques for inspection are pre-

sented. Many of these techniques assume that the input data are range images collected

with a triangulating sensor and thus include “corrective” action to overcome some of the

deficiencies of the scanner.
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CHAPTER 5

Surface Segmentation and Classification

This chapter discusses procedures for extracting and classifying surface regions from range

images. The process of extracting surfaces, called segmentation, groups range pixels

into homogeneous regions. The goal of the segmentation process is to group range pixels

corresponding to different types ofsurfaces into different regions. The process ofrecovering

the parameters of surfaces and subsequently labeling the region types in the image is called

surface classification. Segmentation and classification are useful in determining which

of the model surfaces are present in the image. They are important preliminary steps

in nearly every object localization, recognition, and inspection paradigm. For inspection

purposes, segmentation isolates surfaces and allows them to be compared against their ideal

realization. Surface defects can sometimes confuse segmentation schemes, however, and

complicate subsequent processing.

In this dissertation, segmentation was accomplished using an enhancement ofthe method

of Flynn [55] which itself is an extension of the method first proposed by Hoffman and

Jain [75]. The Flynn, Hoffman, and Jain algorithm performs a clustering of surface normals

and (z, y, z) coordinates at every range pixel followed by a refining step of filtering and

merging. This method is designed for images containing quadric surfaces but appears to

also deliver adequate segmentations of some images containing other surface types.

Classification of surfaces into planar, spherical, cylindrical, or conical regions was

89
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accomplished using model-driven techniques utilizing geometric characteristics of the sur-

faces and known model parameters, and based on linear fitting and Hough accumulation

techniques. The planar, cylindrical, spherical, and conical surfaces are probably the four

most important surface types for inspection because most manufactured parts are bounded

solely by these surfaces [111].

In this chapter, we first discuss approaches to range image segmentation and our tech-

nique for segmentation of range images of castings. We then discuss surface classification

and our model-driven technique for quadric surface classification.

5.1 Segmentation

Segmentation can be defined as a process of grouping pixels to form “homogeneous”

regions or surfaces. Specifically, in an image I(2:,y) composed of surfaces {S,,z' =

l,2,...,n},withpj E I,wherep,-,j==1,2,...,marepixelsintheimage,m =|| I(:r:,y) II.

segmentation is the process of assigning one of the labels 5,- to each pixel pj.

However, it is unlikely that any currently available image segmentation technique

can provide a perfect segmentation for a wide variety of objects and imaging geometry.

Therefore, it is necessary for matching, localization, and inspection schemes to be robust

to segmentation errors. It is generally easier to recover from over-segmentation of an

image (where the number of segments extracted is larger than the true number of visible

surfaces on the object) than under-segmentation since over-segmented regions tend to be

homogeneous whereas under-segmented regions exhibit heterogeneity, making subsequent

processing much more difficult. Many of the segmentation schemes in the literature aim to

produce over-segmentation in images.

An example of a range image with correct, over-, and under-segmentations is shown

in Figure 5.1. The under-segmentation in Figure 5.1(d) is the result of Flynn’s [55]

algorithm following the iterative merging step applied to the over-segmented image of
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(b) Properly segmented image of a Y

pipe fitting.

   
(c) Over-segmented image of a Y pipe (d) Under-segmented image of a Y pipe

fitting. fitting.

Figure 5.1. Range image with correct, over-, and under-segmentations.

Figure 5.1(c). One artifact to note is that the over— and under-segmented images both

contain some missing data. This is because the range image in Figure 5.1(a) was captured

with a triangulating range scanner and, as a result, self-occlusions caused shadows to appear

in the image“. The depth data is indeterminate in these shadow regions. Sensor noise also

caused unreliable range measurements at some surface points. Several one or two-pixel

components on the object’s surface thus have no range value associated with them. Our

segmentation scheme does not label those pixels or pixels within a small neighborhood

about them. In contrast to the over- and under-segmented images, the correctly segmented

image shown in Figure 5.1(b) was generated synthetically. Segmentation errors usually

occur due to problems in the imaging process and due to problems in the segmentation

algorithm (although most segmentation schemes do perform better on synthetic data than

 

‘Chapter 4 discussed triangulating range sensors and some of the issues particular to the lOOX scanner.
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“ K>0 K=0 K<0

H > 0 Pit Valley Saddle Valley

H = 0 Not possible Plane Minimal Surface

H < 0 Peak Ridge Saddle Ridge

Table 5.1. Surface type labels from surface curvature signs, from [12].

 

 

 

       

on noisy data).

5.1.1 Literature Review

Region-based segmentations

Segmentation of range images has been an area of considerable interest in the research

community. In some 3D vision systems, features ofa region are extracted and a region-based

segmentation approach is followed. Region-based range image segmentation schemes have

been developed by many researchers, including Besl and Jain [12], Faugeras et al. [50],

and Hoffman and Jain [75]. Jain and Hoffman [89] grouped pixels using a squared error

clustering on point coordinates and normal vectors to form surface patches and then merged

the patches using knowledge of objects in a model database. The split-and-merge paradigm

has been very popular in the literature for segmentation of both range and intensity images.

One example of a split-and-merge intensity image segmentation scheme is that of Gay [61]

who used both region and edge data to initially over-segment the intensity image and then

to subsequently merge segments iteratively. Gay performed merging by computing forces

of “attraction” and “repulsion” between segments. Marshall [110] adapted this technique to

segment range images, although he apparently did not use any edge information. Faugeras

et al. [50] segmented surfaces into planar or quadric patches using a region-growingmethod.

Segmentation methods based on the signs of Gaussian and mean curvatures have been

quite popular. Since estimated image curvature values are very sensitive to noise, most

vision researchers have instead used the sign of two curvature measures. Table 5.1 shows the
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meanings of the combinations of curvature signs for mean (H) and Gaussian curvature (K).

Mean curvature is the mean of the two principal curvatures and Gaussian curvature is the

product of the two principal curvatures. The minimum and maximum principal curvature

directions refer to the orthogonal directions in which curvature attains its minimum and

maximum values, respectively [118]. The principal curvature values are these minimum

and maximum values. Curvature is a measure of the bending of a surface. Curvature is

defined as 5(3) = :79}, where T(s) is the tangent vector to a curve 01(3) and N(s) is the

normal vector to the curve. Curvatures are attractive for use in computer vision because

they are invariant to translations, rotations, and parametrization changes.

Besl and Jain [12] generated an initial coarse segmentation of range images by labeling

each region with one of the eight possible combinations of H and K curvature signs. Ferrie

al. [52] have presented a representation scheme for 3D objects based in part on principal

curvatures.

In applying curvature-based approaches to computer vision tasks, several practical issues

must be addressed. The major concern is the method of estimating the curvature from a

discrete set of data (pixels). Since curvature describes the local behavior of a surface, it is

important that pixels in only a small neighborhood around the pixel of interest be used in the

computation of curvature. However, use of too small of a region in the image can result in

an unreliable estimate of curvature. Curvatures are second-order differential properties and

thus are inherently more sensitive to noise in the input image than first-derivative features

such as surface normals. Flynn and Jain [56] reported difficulties in using curvature-based

techniques to fit conic parameters to synthetic data even in the presence of only small

amounts of Gaussian noise. The general consensus in the literature is that range sensors do

not yet deliver data accurately enough for curvature-based approaches to be reliable [10].
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Edge-based Segmentations

Another technique for range image segmentation is an edge-basedsegmentation. Bolles and

Horaud [17] and Fan et al. [51] have developed object recognition systems that have utilized

edge-based segmentation schemes. Fan et al. [51] presented a system for recognizing 3D

objects that used curvature sign changes and extremal values as the basis for segmentation

of range imagery. Bolles and Horaud [17] developed the 3DPO object recognition system

and applied it to several images, including those of castings. 3DPO extracts circular and

linear edge segments from range images and then recognizes objects by comparing these

edges to lists of circular edges extracted from an extended CAD model. 3DPO’s matching

technique is similar to the local-feature—focus method of Bolles and Cain [16], because a

few likely feature clusters are used to form an initial match hypothesis. Additional feature

matchings that are consistent with the initial matching are then added to the match set and,

finally, a least squares technique is used to compute the precise transformation between

object and model.

Hybrid Segmentations

Hybrid segmentation schemes that combine region-based and edge-based approaches to

segmentation have also been presented. Yokoya and Levine [192] used both surface and

edge features for segmentation. They used the eight possible combinations of curvature

signs to generate an initial region labeling. In addition, two initial edge-based segmenta-

tions were generated using depth discontinuities (i.e., jump edges) and surface orientation

discontinuities (i.e., roof or crease edges). These three initial segmentations were then

integrated into one final segmentation.

Several other segmentation methods that integrate region-based and edge-based ap-

proaches have been proposed. Jain and Nadabar [90], for instance, performed segmenta-

tion by combining clustering-based region segmentation with a Markov random field model
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technique for edge extraction.

Segmentation of Fused Images

Several methods for segmentation of integrated range and intensity images have been

presented in the literature. Sensor integration (fusion) is desirable for several reasons.

Perhaps the most fundamental of these is that sensor fusion can allow more robust feature

extraction than is possible when using a single sensor. Additionally, a sensor fusion model

seems to be favored by natural vision systems. Mitiche and Aggarwal have observed that

nearly all higher life forms use a variety of sensors to solve basic survival problems [120].

One example of a hybrid segmentation scheme was presented by Nadabar and Jain [122],

who detected and labeled edges by fusing intensity and range images.

Jain et al. [91] have extracted regions containing vehicles (tanks, APCs, jeeps, and

trucks) and calibration plates from registered range and intensity images by building a

histogram of intensity values at regular range intervals. Each bin in the histogram is

constructed by summing the intensity of all image points that are within that bin’s range

interval. The three highest peaks in the histogram are taken as the range values at which

objects of interest may be present. Regions are then extracted by connected component

labeling of pixels whose range fell within the interval of each of the peak bins.

The method of Jain et al. is related to the work of Nitzan, Brain, and Duda [131]

and Duda, Nitzan, and Barrett [47]. Nitzan, Duda, et al., sequentially identified horizontal,

vertical, and then arbitrarily—oriented planes in a range image. They constructed a histogram

of range values whose peaks were used to extract all points lying on horizontal planes in

the image. Vertical planes were found next by projecting all the remaining image points

(i.e., points not lying on horizontal planes) onto a horizontal plane and then using a Hough

technique to detect lines in the plane. In [47], arbitrarily-oriented (i.e., non-horizontal,

non-vertical) planes were found by building intensity histograms of connected components

that remained in the image after extraction of all detected vertical and horizontal planes. A
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plane was fit to each set of pixels whose intensities were near peaks of this histogram.

Chu et al. [37] have presented a segmentation scheme for extracting vehicles from

registered range and intensity images. Their method segmented the range and intensity

images separately and then integrated the segmentations. Planar surface fitting was used

to segment the range image. Image statistics (mean and standard deviation) were used to

segment the intensity image. Chen and Jain [29] have also extracted vehicles from registered

range and intensity images. Their method was based on background removal. Verly et

al. [179] have extracted and recognized military vehicles in identically registered range

and intensity images produced from infrared-radar range imagery. They integrated contour

primitives, such as comers and arcs from the object silhouette, and region primitives, such

as region labels and inter-region relationships, in their scheme.

5.1.2 Range Image Segmentation Methodology

Flynn-Hoffman-Jain Segmentation

The segmentation scheme we used for extracting homogeneous regions from range images

of castings is a refinement of the method of Flynn [55] and Hoffman and Jain [75]. Flynn’s

method used the surface labelings from Hoffman and Jain’s algorithm as its initial estimate

of segmentation. Flynn then filtered the segmentation and merged some of the adjoining

regions. His filtering step consisted of first re-labeling the image using a connected com-

ponent algorithm and then removing all small regions containing less than 20 pixels. An

iterative scheme was used to merge adjacent regions provided that their surface orienta-

tion, as measured by the average change over all boundary pixels, varied little across the

boundary. Merging was only allowed for adjacent regions whose difference in depth was

0.4” or less. (This tolerance delivered acceptable results for all of Flynn’s model database

of objects.) Next, regions with similar curvature features were merged. Finally, any region

which contained less than 100 pixels after the merging process was removed.
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New Segmentation Technique

The technique used for segmentation of casting images is a revision of Flynn, Hoffman,

and Jain’s method. It was necessary to revise their method because it did not deliver

acceptable segmentation results for the casting images. An example of Flynn, Hoffman,

and Jain’s segmentation of gear blank image A-l is shown in Figure 5.3(a). Clearly, the

natural roughness of the castings created problematic segmentations. One problem was

that too many small regions were removed in early stages of the segmentation, producing

images with many unlabeled pixels. Their technique also assumed that small segments that

deviated slightly from the surrounding data were composed of noisy measurements. Thus,

many small clusters were not labeled by their scheme.

The Flynn, Hoffman, and Jain segmentation technique was actually not designed for

inspection applications. Rather, it was designed to label regions for recognition purposes.

An object can be recognized even if not every pixel can be labeled. But inspection requires

more complete utilization of data. Small defects, for example, can only be found by

examining all of the data.

We enhanced the Flynn-Hoffman-Jain algorithm in the following ways. First, we did not

remove small regions until after the merging step based on surface orientation was carried

out. After the merging, regions with less than 10 pixels are removed. Additionally, the

merging tolerance value is much more conservative in the current segmentation. Merging

was only conducted for adjacent regions with a difference in jump boundary of less than

0.1”. These enhancements resolved many of the problems of unlabeled points on the interior

of surface regions. A block diagram of the segmentation algorithm is shown in Figure 5.2.

A comparison of segmenting an image with the Flynn-Hoffman-Jain method versus our

enhanced technique is shown in Figure 5.3. Our segmentation of gear blank 356 casting

image A-l is shown in Figure 5.3(c). Another comparison is shown in Figure 5.4. The

new segmentation discards fewer points on the interior of the regions and near the region
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Figure 5.2. Block diagram of segmentation process
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Figure 5.3. Segmentations of defect-free gear blank casting image A-l.
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(a) Range Image of spindle— (b) Flynn. Jain, and Hoff-

1ike casting. man Segmentation.
(c) New Segmentation.

Figure 5.4. Segmentations of defect-free spindle-like casting.

boundaries.

Initial Segmentation - CLUSTER

As mentioned above. the initial segmentation of the image was accomplished using Hoffman

and Jain’s technique. Their method used an unsupervised classification algorithm called

CLUSTER [86]. CLUSTER minimizes a squared error function that measures the distance

of a feature vector from cluster centroids. The input to CLUSTER was a sampling of

no more than 1000 range pixels with six features drawn from each pixel. The 1‘, y, and z

coordinate of each pixel along with the corresponding surface normals formed CLUSTER’s

six-dimensional input. Figure 5.5 shows six features associated with each point in the range

image. The surface normals were computed using a principal components analysis on

a 5x5 neighborhood about each pixel. CLUSTER can be categorized as a local feature

clustering since the features are local image properties [55].

CLUSTER performs classification in an iterative two-step process. The following

process is repeated until none of the clusterings change during an iteration. First, a set of

{1, 2, . . . , K}, where K = 20, clusters is generated sequentially, where set {77} contains 27

clusters. Set {i + 1} is formed by selecting the pattern that is the greatest distance from the
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Figure 5.5. Clustering was performed using six features of each pixel 19,-, including the

coordinates of the point and the 2:, y, and 2 components of the normal vector ft,- at the point.

set of {1'} cluster centers as the center of the new cluster. The total squared error for each of

the K sets of clusterings is calculated and retained. Within each set of clusters, patterns are

classified as members of the cluster whose center is the shortest distance away. The second

step within an iteration creates a new set of clusterings using a greedy merging technique.

In the greedy merging, if any two clusters within the ith clustering can be merged to produce

a smaller total squared error than that of the previous (2' -— l)th clustering, then the clusters

are merged and the old (i — l)th clustering is replaced with the new clustering.

After the iterations, the resultant sets of clusterings are examined to determine which

is “best.” A statistic M(k), proposed by Coggins and Jain [38], measures the compactness

and separation of the clusters. The clustering containing k clusters, where k is as close to K

as possible and for which M(k) is at a local maximum, is chosen as the correct clustering.

Each pixel in the image is then labeled as a member of whichever cluster is closest, using

a minimum Euclidean distance classifier to measure the distance of the pixel feature vector

from the feature vector associated with the center of the cluster.

The initial segmentation by CLUSTER usually produces over-segmentations, but the

subsequent processing merges adjacent regions of similar surface types.
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Figure 5.6. Range image of defect- Figure 5.7. Segmentation of casting

free gear blank casting. image shown in Figure 5.6.

5.1.3 Segmentation Results

In the remainder of this section, we discuss the performance of the revised segmentation

scheme.

A pseudo-intensity rendering of a range image of a defect-free gear blank 356 casting

is shown in Figure 5.6. Two planar surfaces are visible in this image. Our modified

segmentation scheme correctly segmented the image into two regions (displayed as gray

and black regions), as shown in Figure 5.7.

We applied the segmentation algorithm to 138 images of castings (25 different images

of three instances of the 588x gear blank, 8 different images of the big cylinder, 9 different

images of the cylinder, 16 different images of two of the spindle-like castings, 12 different

images of two instances of the housing, and 68 different images of ten instances of the

gear blank 356 castings) and to several non-casting images, including images of plastic

pipe fittings, mannequin heads, and wooden blocks. The segmentation generally performed

quite well, seldom creating heterogeneous regions. A total of 123 of the 138 casting images

were segmented well. A characterization of the segmentation performance for the casting

images is shown in Table 5.2. The table shows the number of good segmentations, over-
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Identifier Good Seg. Over-seg. Under-seg. Poor Seg.

588x Gear Blank 24 0 O 0

Big Cyl 9 O O 0

Cyl 8 1 O O

Spindle 9 5 l 1

Housing 6 0 5 1

356 Gear Blank 67 l 0 0       
 

Table 5.2. Characterization of segmentation performance.

segmentation, under-segmentations, and “poor” segmentations (segmentations that were

over-segmented in one portion of the image and under-segmented in another portion of

the image). Most of the problematic segmentations (the under-segmentations and “poor”

segmentations) occurred in cylindrical regions, probably due to poor estimation of surface

curvatures.

The scheme did have difficulties segmenting filleted regions on castings, however, and

occasionally was overly agressive in the merging step. Filleted regions were often merged

with one of the adjacent regions or else segmented into two or more patches representing

sub-fillet regions. The merging step seemed to be too liberal for some images of cylindrical

castings. This is especially troublesome because some of the cylindrical casting surfaces

contain the remnant of a gate. The gate is also cylindrical and has been machined to a

height of 0.05” above the surrounding surface. This is a very small difference that can

probably be ignored during object recognition tasks that need only to distinguish between

dissimilar objects. However, it is an important variance in the context of inspection and

must be detected. If it is not detected by the original segmentation, then it must be detected

by subsequent processing prior to inspection.

A pseudo-intensity rendering of the range image of a small cylindrical casting is shown

in Figure 5.8. The segmentation of this image is shown in Figure 5.9. The segmentation

algorithm did not merge any surface patches that should not have been grouped. Some

surface patches were not identified by the segmentation scheme, however. For example,
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Figure 5-8- PFCUdO'if‘te’lSitY rend?“ Figure 5.9. Segmentation of defective

ing of defective cylindrical castmg cylindrical casting of Figure 5g

depth map.

the central ridged “ring” about the casting consisted of several very small patches that could

not be merged together and which were too small to retain. A filleted region containing two

small defects was also not retained by the segmentation. We address this problem below.

Several other segmentations of castings are shown in Figures 5.10 and 5.11. In these

images, not all of the pixels in the images were labeled. This is because small regions

that could not be merged with adjacent regions were removed during the segmentation.

In Figure 5.11(b), the defect was segmented into the same region as the pixels which

surrounded it. Therefore, the defect detection routines must be able to handle defects that

are not isolated by the segmentation scheme. In Figure 5.11(c), the pit defect was too deep

(concave) to return a depth value, so that region appears as a “void" (a connected region of

pixels for which depth could not be sensed and which is contained within regions for which

depth could be sensed) in both the range image and its segmentation. The excess material

in the center of the casting was mostly merged with the small planar ring surrounding it,

although a small third segment was also found at the junction of the center area and the

small ring. Thus, presence of defects may cause slightly unpredictable segmentations. The
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defect detection schemes developed in this thesis can handle some false segmentations,

although there are some limits. These issues are discussed in Chapters 7-9 on defect

detection. In general, small defects are segmented into the same region as the surrounding

points while large defects are either segmented into regions by themselves or segmented

into several different regions. This implies that the inspection algorithms which operate on

this data should search for small defects within larger regions and also search for regions

that represent defects.

Segmentations of two images of a defect-free spindle-like casting are shown in Fig-

ure 5.12. The image in Figure 5.12(b) is over-segmented while the image in Figure 5.12(d)

is incorrectly segmented. Segmentations of the latter type are particularly problematic

for the defect detection schemes deve10ped in this thesis, but only a few such incorrect

segmentations have been observed in our experiments“.

Large defects can also produce similar segmentation problems, as illustrated in Fig-

ure 5.13. The object in this image contains an excess material defect between two cylindri-

cal regions. The defect in the image was segmented into two different regions. Part of the

defect region was merged with the cylindrical region below it while the rest of the defect

was merged with the filleted surface between the two cylinders.

Problems in Segmentation

One of the weaknesses of most range image segmentation schemes, including ours, is that

pixels nearjump boundaries are assigned no label (or are labeled incorrectly). The labels for

those pixels cannot be recovered accurately because of their relative lack of context; that is,

the neighborhood around the pixel is not homogeneous, making it difficult to extract stable

features. Small regions, such as the ridged “rings” in Figure 5.8, also are not labeled for

similar reasons. Ifthe segmentation is only to be used by an object recognition module, this

 

lWe are currently extending the segmentation scheme to use model information to allow over-segmented

regions to be merged.
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(a) Range image of bottom of gear (b) Segmentation of the gear blank

blank 356 casting. casting.

 

(c) Range image of side of gear blank ((1) Segmentation 0f side 0f gear

casting. blank casting.

Figure 5.10. Range images and resulting segmentations of occluded castings.
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(a) Range image of defective gear (b) Segmentation of the defective

blank 356 casting. gear blank casting.

 

(0) Range image of gear blank cast- (d) Segmentation of gear blank cast-

ing with two defects. ing with two defects.

Figure 5.11. Range images and resulting segmentations of defective castings.
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(a) Range image 0f defect-free (b) Segmentation of thc defect—free

spindle-like casting. spindle-like casting.

  
(C) Range image 0f defect-free (d) Segmentation of defect-free

spindle-like casting. spindle-like casting.

Figure 5.12. Range images and resulting segmentations of spindle casting.
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(a) Pseudo—intensity rendering of (b) Segmentation of the casting

the depth map of casting. image.

Figure 5.13. Range image and resulting segmentation of part of a defective spindle-like

casting.

is probably acceptable because the other extracted regions provide adequate information to

allow successful matching to the stored object model. However, for inspection purposes

this deficiency is a problem. It is desirable to inspect as much of the casting surface in the

range image as possible and being unable to assign a label to pixels near region boundaries

makes this more difficult. For example. in the case of Figure 5.8, the region containing the

small amount of excessive material just “above” the central ring was not extracted. As was

discussed in Chapter 1. defects commonly occur on filleted surfaces of the object, but only

rarely occur on other curved surfaces. Thus, in Figure 5.8, the region most likely to contain

a defect could not be inspected. We propose a solution to this problem at the end of this

chapter.

Some of the segmentation problems are related to the deficiencies of the sensor. If range

data were available in regions of self-occlusion, segmentation might be improved.
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5.2 Surface Classification

As stated in Chapter 3, many 3D object recognition systems have used object models

based on surface representations called boundary representations or B-reps. Using B-reps

requires that the parameters of the sensed surfaces be estimated reliably. We treat surface

classification as a separate step from segmentation and use the results ofsegmentation during

classification. This is because the segmentation scheme did not use any surface model when

pixels were grouped to form connected patches. Other techniques in the literature, such as

Besl and Jain’s [12] variable-order surface fitting procedure for segmentation, have used

integrated segmentation and classification schemes.

Surface classification is important for object recognition and inspection systems because

it allows the sensed surfaces to be correctly matched to model surfaces, thus providing

evidence for the identity and pose of the object. In object inspection systems, object

localization and/or identity may already be known, but it is still necessary for a vision

system to compare the extracted surface shape properties of the object with the ideal and

desired properties encoded in the object model.

Many papers in the literature have proposed surface classification and/or parameter

estimation techniques (e.g. [23, 163]). Lozano-Pere’z et al. [108] have presented a

technique for finding the direction (but not the position) of cylinder axes in a scene using

just three depth scans (two scans to hypothesize axis direction and the third to verify the

hypothesis). They claimed high accuracy (up to one or two degrees), but their method

assumed that there were actually cylinders present in the scene. They also suggested a

general method for fitting cylinders and cones to range data that is similar to our techniques.

Recently, many researchers have used curvature estimates for quadric surface classifi-

cation and parameter estimation. These methods are very appealing because curvatures are

exhaustive descriptors of local surface shape and a collection of local curvature estimates

over the surface can yield estimates of quadric surface parameters [56, 57]. In general,
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curvature is estimated at each pixel using second derivatives of a local surface fit. Mean and

Gaussian curvatures, or equivalently, the pair of principal curvatures, can then be used to

classify each pixel. This strategy was explored by Flynn and Jain in [56] and the problems

in curvature estimation were examined in [57].

The use of surface curvature has been p0pular in the computer vision literature. A

discussion of curvature-based approaches to segmentation was presented in Section 5.1.

As has been noted in that section, there are some difficulties in using curvature-based

techniques. Most of the curvature-based segmentation techniques either implicitly or ex-

plicitly perform a region classification as part of the segmentation. A few additional efforts

that focus more on curvature-based classification than on segmentation are summarized

in this section. Yokoya and Levine [193], for example, have used principal curvatures

to extract solids of revolution from range data. Hoffman and Jain [75] used curvature

to classify surface patches as planar, convex, or concave. Bolle and Sabbah [15] used

curvature information to classify synthetically generated planes, spheres, cylinders, and

cones. Their method actually required third-order properties (i.e., change in curvature) to

extract the parameters of conical surfaces, making it very susceptible to noise. Bhanu and

Nuttall [13] used principal curvatures for surface characterization which was implemented

on a shared-memory parallel processor.

Many researchers have used methods based on the Hough transform for surface pa-

rameter estimation. The Hough methods seem appropriate at times, especially if small

amounts of noise or partial occlusion must be handled. Hough-based techniques have

been very popular in 2D vision and have been occasionally useful in 3D vision, although

simultaneous estimation of many parameters is demanding in both space and time. Yokoya

and Levine [193] have used Hough techniques to determine the parameters of surfaces of

revolution. Muller and Mohr [121] have presented a general framework for quadric surface

parameter extraction using a divide-and-conquer Hough approach in the parameter space.

Hebert and Ponce [71] have used Hough techniques for classifying surfaces as planar,
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cylindrical, or conical patches by clustering projected points along surface normals onto a

Gaussian sphere. Taylor [168] has presented a Hough-based approach for fitting spheres,

cylinders, and cones in a parameter space arranged as a k-tree to allow for quick evidence

accumulation. Only zeroth and first derivative measures are used in the voting although

curvature is used as a consistency check to reduce the number of false hypotheses. Wahl

and Biland [180] have recognized 3D polyhedral objects in 2D images by decomposing

Hough spaces into polyhedral primitives.

5.2.1 Motivation for Fitting Technique

We use the Hough transform for spherical and cylindrical parameter estimation. In each

case, the size of an accumulator in the parameter space depends on the surface model

parameters. Overlapped bins are used to reduce the effects of quantization.

Our suite of techniques relies only on first-derivative and positional (spatial) information

for estimation of spherical, conical, and cylindrical surface parameters. We do not use

second derivative quantities such as curvature which are unreliable in the presence of

noise. Geometric characteristics of the known surface types are exploited to extract surface

parameters. Model parameters (radii of cylinders and spheres and vertex angles of cones)

are used to constrain the surface fitting. This reduces the number of free parameters in

the surface fitting problem and improves the parameter estimates. We use the Hough-

based techniques in the extraction of spherical and cylindrical parameters and least squares

methods in estimation of conic parameters.

Since a large majority of man-made parts can be modeled exactly or at least well—

approximated by a small set of planar or quadric surfaces [15, 111], our approach to surface

fitting is appropriate? Among the quadrics, the natural quadrics (spheres, cylinders, and

cones) are observed often in machined parts.

 

tMarshall [111] has noted that 80-90% of manufactured parts that a typical industrial company (such as

British Aerospace) needs to inspect consist solely of planar, cylindrical, and/or spherical faces.
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Most of the available algorithms that fit quadric surfaces to the segmented surface

patches use regression or some variant of regression. For planar surfaces, a simple linear

regression procedure can be used to estimate the four parameters (a, b, c, d) of the planar

surface as described by the implicit equation:

ax+by+cz+d=0.

The planar surface parameters are not invariant to translation and rotation. Quadric

surfaces can be characterized using the implicit quadric form

axz+by2+czz+dcry+ezz+fyz+gx+hy+iz+j =0

which yields a linear regression procedure for fitting implicit quadrics to sampled data.

Invariants of this implicit form have been used by Hall et al. [68] to identify surface type,

but the behavior of the fitting in the presence of noise in the 3D data has not been explored.

It may also be difficult to discriminate between different quadric forms based on estimated

parameters.

Another difficulty in using the implicit quadric form is that known surface parameters

cannot be easily injected into the fitting procedure. In model-based object recognition

systems, it is usually possible to know which types of surfaces can be present in the data

and the range of the surface parameter values. The fitting procedure that is used in this

research uses information about surface type and known parameter values to estimate the

remaining parameters.

After surfaces have been identified and their parameters estimated, an object recognition

and/or inspection system can match image surfaces to model surfaces. This allows the

identity and the pose of the object to be determined. In some inspection systems, it may

not be necessary to explicitly determine object pose, however; the identity and pose of the
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object may be known. In such cases, surface classification is useful as a precursor to surface

shape inspection. For instance, it might be desirable to find how closely a curved surface

in the data matches the parameters of the ideal surface encoded in the model.

5.2.2 Classification of Planar, Spherical, Cylindrical, and Conical Sur-

faces

This section presents the suite of techniques for planar, spherical, cylindrical, and conical

surface classification in range imagery (additional details about these techniques are avail-

able in [126, 127]). The input data is assumed to be a set of 3D points and accompanying

estimates of surface normals

{(plvn1)a ° ° ' a (pmnnn

(where p,- = (22,-, y,, 2,) and n,- = (n3, , nm, 71,, )). The classification technique also assumes

that “homogeneous” regions (i.e., smooth surface patches) have already been identified

in the image by the segmentation scheme outlined in section 4.2.2? Model information,

namely known surface types and their geometric parameters, constrains the fitting problem

and serves as a guide to the extraction of the remaining unknown surface parameters.

A block diagram showing the processing in the surface classification algorithm is shown

in Figure 5.14. First, the various model surfaces are fit to the sensed surface patches. Then,

the goodness-of-fit between each transformed model surface and the sensed surfaces is

evaluated. The model surface hypothesis that minimizes a uniform error measure between

sensed and model data is accepted. Error in fit is measured using the average RMS (root

mean squared) distance between sensed surface points and the hypothesized model surface.

 

sThe segmentations produced by the Flynn- Hoffman-Jain segmentation were not always acceptable for

input to the classification. Specifically, many cylindrical regions were too small to allow recovery of surface

parameters. However, the new segmentation technique discarded fewer surface points, providing better input

to the classification algorithm and improved parameter estimation.
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This algorithm fits all model surfaces to each patch in the image, so the order in which

surfaces are fit is not critical.

The errors resulting from fitting the best Sphere, cylinder, cone, and plane to the surface

patch are compared. The classification and parametrization that fits the patch with the

smallest error is chosen as the best fitting surface. The error in fit is also used by the surface

shape inspection method described in Chapter 8.

It is assumed that each patch in the image is an instance of one of the model surfaces.

Thus, there is no reject Option in this algorithm. However, a reject option could be added

by use of a threshold on error in fit.

Some of our fitting techniques use linear least squares procedures, implying an assump-

tion of Gaussian noise contaminating the range data. In experiments with a Technical Arts

100x White Scanner, this assumption seems very appropriate (Chapters 4 and 8 contain

more information about the assumption of Gaussian noise in the scanner). If the range data

were collected with some other sensor that had non-Gaussian noise, then robust regression

techniques might be preferable to the traditional least squares methods used here. Further-

more, in such cases it might be desirable to use an error measure based on mean absolute

deviations instead of the RMS fitting error used in our model-based fitting procedures.

Fitting Planes

The data-driven approach presented in [56] can be used to fit planes to surface patches.

A plane is fit to each surface patch using the principal components of the set of points

{p,-,i = 1, 2,. . . , n} on the surface. The plane that minimizes squared perpendicular error

is selected as the best—fitting plane. The principal component analysis (PCA) technique [93]

is well-known in exploratory data analysis .‘ It determines a vector in = (13,, n}, if.) as a

surface normal estimate. Given n, the estimated maximum distance d between the plane

 

‘It is used to reduce the dimensionality of a data set or to extract new features from the original data

that are not correlated. Our use of PCA in surface classification arises from a geometric interpretation of the

vector-valued portion of the technique’s output.



K
S
C
R

I
‘
A
(
‘

 



115

 

 

   
   

 

 

 

   

   

 

 

 

  
 

  

   

       

       

   

  

 

 
 

 

 
 

   

 
 
            

   

  

 

 
 

    

 

  

  

     

       

23;; Input _

image segmentation

l

Plane fitting

procedure . . Best-fitting plane

(data-driven)

T1 *- 1 — Extracted sphere (I D —

Known I - _ (r )

Model 2 H I _ 33:33:th ’ Extracted sphere 2 . RMS error

Sphere . (model-driven) , calculation

Radii ' L - i

T __
(f v

m l Extracted sphere m) Best-fitting sphere _._

rl T JExtracted cylinder ('1 )F

ml" 1'2 H Cylinder fitting t—Exu'mted cylinder (1' 2) — RMS OTTO!

. _ _., procedure , . j . —.’ calculation

CY'W ° (model-driven) .

“d“ J ' l
rm 1 *- xtracted cylinder (rm) T Best-fitting cyhndc" —.'

K00 $1 t— . - Extracted cone (4) l) -

wn -

MOdCl $2 '— Cone fitting h-i Extracted cone (4) 2) .

Cone —>procedure _._ , RMS error

Vertex . (model—driven) . calculation

Angles ' ( '

dim "J *‘ Extracted cone d’m) Best-fitting cone  
  

 

 

 

 

  

Best-Jfitting 9

surface

 

Figure 5.14. Surface classification procedure block diagram.
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and the origin is

where m is the sample mean vector of the n points p,-. The RMS fitting error for the plane

fit to the patch is defined as

 

E=J%:[fi-pg+d]2. (5.1)

Since the geometric parameters of planes are not invariant to rotation, model- driven planar

fitting was not investigated. This plane-fitting procedure requires 0(n) time and C(12)

space and. takes less than a second per segment on a Sun SPARCstation 2.

Fitting Spheres

A sphere can be characterized by its radius r and the position of its center (so, yo, Zn). The

radius r is invariant under rotation and translation and is known prior to the fitting process.

Our sphere-fitting method accumulates evidence for the location of the sphere center in a

3D parameter space (a Hough space). For each model radius r), j = 1, 2, ..., M, where M

is the number of spherical models, we estimate the best centroid 6,- = (ch , c3). , c2!) of the

surface in the range image. The following procedure is used for each radius r,-.

1. An empty three-dimensional accumulator array is created. This array has

dynamically-sized bins whose size varies with the radius r,. The bins are over-

lapping and of size T'J' /4. The overlap reduces the effects of quantization noise. Each

cell is logically overlapped by 25% of the bin size in each dimension. During the

voting procedure, if any vote falls within the upper 25% of the range ofany dimension

of the bin, both that bin and the appropriate neighboring bin(s) are incremented. A

two-dimensional analog of the overlapping bins is shown in Figure 5.15.



1 17

The array encloses a subset of R3 given by

18 18 18

[3min "' rji xmin + 3"le X [ymin — 7‘)“, ymin + _5—rj] X [2min — T'j, zmin + —rj],

5

where mm," , ym,,,, and 2...," are the minimum :c, y, and z coordinate values, respec-

tively, in the region. Similarly, we define 2",“, gm“, 2",“ to be the maximum :r, y,

and z coordinate values in the region to be fit. This subspace is guaranteed to contain

the center of any sphere of radius r,- passing through the sampled points p.-. The

accumulator array has 23 quantiles along each of three dimensions (for a total of 233

or 12, 167 bins) U The accumulator array should have a minimum of 20 cells along

each dimension, although a total of 23 cells were used in this work to allow for some

noise and quantization error to be present in the sensed data Larger voting spaces

improved the fitting little while smaller spaces resulted in an increased number of

poor fits.

2. Each surface point p,- and its associated normal vector estimate ti,- yields two estimates

p.- :l: rjn, of the sphere’s center location for radius Tj, corresponding to a concave or

convex surface, respectively. These two position estimates cause two or more Hough

array accumulators to be incremented. Each vote in the accumulator array has as its

attributes the estimated coordinates of the center.

3. Following the processing of all points p,, the cell of the Hough space that contains

the most votes is determined. The attributes of the votes contributing to that cell are

averaged to produce a location estimate c} for the hypothesized sphere of radius r).

This Hough procedure is performed for each model radius T'J', producing M center

estimates c}. These hypothesized spheres are then evaluated using the sample surface

 

"Due to the overlapping bins, the size of the Hough space is 25—3rj in the 1:, y, and z directions.



 

(
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points p.- and a standard RMS error measure:

E,- = —znjd,-2 , (5.2)

Tl. i=1

 

where d.- = \/(a:,- — 02.).)2 + (y; — 6;). )2 + (z,- — c;j)2 - r,- , j: 1,2, ...,M. The hypothe-

sized sphere with the lowest EJ- is labeled the most likely spherical parametrization of the

surface patch.

The time complexity of this fitting procedure is 0(nM), where n is the number of input

points and M is the number of possible model radii. The space complexity is 0(n), due

to the storage needed for the set of input points p,. The 3D accumulator array consumes

a constant 0.2 megabyte in the current implementation. Fitting takes no more than a few

seconds per patch (on a SPARCstation 2) per model radius. (The specific time depends

on the size of the patch. We observed times between 0.21 and 1.56 seconds in 240 x 240

range images.)

Fitting Cylinders

A right circular cylinder can be uniquely defined using three parameters: a point P0 on the

axis, the axis direction ('1', and the radius r. Similar to the fitting method for spheres, it is

assumed that all possible radii of model cylinders are known a priori and drawn from a

collection ofM possible values {r1 , r2, ..., rM}. Our earlier fitting strategy proceeded [127]

as follows.

1. An empty accumulator array A was built. The entries accumulated votes for points

on the axis ('1'. The array contains 23 quantiles along each axis with a bin size of r,- /4

and 25% overlap. It again corresponds to the following region in R3

[Imgn — rj, xmin + 3.6Tj] X [ymin — T‘j, ymin + 3.6Tj] X [2min — T'J', 2min + 3.613].
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2. Possible axis points on the cylinder are updated by incrementing the accumulators

corresponding to p, :l: r,n,-,i = 1,2, ...,n. This is analagous to the accumulation

of estimates for the center of spheres as described above, except that the points

accumulated will be distributed along the hypothesized axis, not concentrated at a

specific location in the accumulator array. Each point p,- increments (at least) two cells

allowing the extraction of parameters for both concave (e.g., troughs) and convex

cylinders. Votes that fall outside the accumulation region are discarded.

3. The hypothesized axis (‘1‘ is extracted from the accumulator array by performing a

principal components analysis [86] on the set H of 3D points whose elements are the

centroids of the projected points that fall within high-count cells. High-count cells

are defined to include the highest-population bin, bma, , and all other bins with 50% or

more of the maximum population, count(bm,,, ),. Details of the principal component

technique are available in [93] and Dubes. The analysis produces an estimate of the

3D direction along which the variance of the data is largest; this direction is taken as

a hypothesized direction of the cylinder’s axis ii. The centroid of the highest-count

cell is hypothesized as the axis point P0.

This original technique was found to be unsuitable for inspection purposes, however. In

some cases, the fitting exhibited what would appear to be acceptable RMS error measures,

but upon examination of the local deviations of the data from the surface, some portions

of the surfaces were found to have unacceptably large deviations. By “unacceptable,” we

mean that the deviations were larger than the tolerances for insufficient material (0.06”). It

was also found that the fitting was very poor (or not possible) for many cylinders whose

axis length was much smaller than their radius. A final cause for concern was that the depth

data near some edges in the image (specifically, points near certain limb edges where the

points’ normals had a large horizontal component) appeared to be noisier than data from

near the “top” of a cylindrical region.
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An attempt was made to resolve the latter problem by restricting the surface points that

participated in the Hough voting technique. This was achieved by applying a morphological

constriction operation to the surface segment. However, this technique actually produced

poorer fittings. Constrictions of 1, 2, and 3 pixels were tried, and each produced increasingly

poorer fittings. This problem is caused by a limitation of the sensor rather than the surface

fitting procedure, so our proposed solution is to either use multiple scans or to restrict the

orientation of the object. (Further details about this problem are presented in Section 5.2.3.)

The fittings were significantly improved by three enhancements to the original cylindri-

cal fitting, though.

(1) The position of the Hough accumulator array A was improved using the following

heuristic. The morphological constriction operation is repeatedly applied to the candidate

region until the region is shrunk to a single pixel (or to a collection of curves of width one).

This point (or, in the case of the collection of curves, the point that is first in a raster scan

search of the image), called pc, is used as a cue for the location of the Hough space. If p,

= (mayo, 2,), then the origin of the Hough space is set to (are — grj, yc — grj, zc - grj).

This change produced some improvements in fitting because it allows the Hough space to

enclose more votes from the central part of the region. If this positioning technique does

not yield at least 3 high-count cells to “vote” for the axis, a new position for the space is

computed and then voting is reconducted. The new position uses a different seed point p,

= %(a:,,,,-,, + mm“, ymin + yum, 2min + 2",”). The origin of the Hough space is set to p,

—§r,-(l, 1, 1). Originally, a coefficient of % was used instead of g, but it was found to yield

a poorer fit than the final coefficient.

(2) We also refined our original definition of what constituted a high-count cell within

the Hough space. This was especially effective in improving the fit for cylinders whose

height was smaller than their radii. Under the original fitting technique, cylinders of this

type typically had less than four high-count cells, making parameter estimation unstable at

best and impossible at worst. By relaxing the definition of a high count cell, the collection
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Bc of high-count cells was enlarged. All cells whose count was at least 9213M, where

count(bm,) is the count in the highest-count cell, were used to estimate axis direction

using principal component analysis. For small cylinders, this usually added one or two

cells to the set 8,. The position of the axis point P0 was also estimated differently. P0

was hypothesized as the weighted average of the elements of BC. The population of each

high-count cell was used as the weight in this computation.

(3) A multi-resolution, or foveal [22], approach to fitting was adopted for cylinders

whose height was less than their radius r, 1" For these cylinders, the above fitting

procedure, including the new enhancements, was followed, although the axis position and

orientation estimation steps were not immediately carried out. Instead, the Hough space was

refined and a second accumulation was conducted. The centroid, pm = (mm, ym, 2...), of the

highest count bin in the first accumulation was used as a focus point (i.e., the approximate

center) for the new space. In the new space, a bin size of [if] was used ll, where h,- is the

height of cylinder j with radius rj. The origin of the new Hough space was approximately

(mm, gm, 2",) - 321 [5‘51] (1, 1, 1). This refinement technique greatly improved fitting for small

cylinders.

This procedure is invoked for each model radius, r,. The hypothesized cylinders are

then evaluated. As with spheres, an RMS error of fit is computed and the radius yielding

the smallest error is accepted as the most likely cylinder. The RMS error in fit associated

with the cylinder of radius r,- is

 

E... = \J-l— :{I "(n—Po) x6.- ll -r.-|2} , (5.3)

where p,- is a point on the surface patch, P0 is the axial point, a‘, is the axis direction

associated with r,-,j = 1,2,...,M.

 

”We initially attempted foveation for cylinders whose height was less than 2r,-, but this improved fitting

very little.

"Smaller bin sizes tended to produce poorer fits because they yielded cells that were too small and a

smaller space that discarded too many votes.
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Figure 5.15, An example showing overlap- Figure 5.16. Sample cone showing axis, ver-

ping bins for Hough Transform. The data tex angle, and normal VBCtOI'S 31008 111111]

point at (0.8.0.8) contributes votes to bins A. edges.

B, C, and D.

As with the sphere-fitting procedure, time complexity for this fitting method is linear

in the number M of hypothesized radii r_,- and the number n of input points {p,-}. Storage

requirements are linear in the number of points with an additional amount required for the

parameter array. Each run of the program takes no more than a few seconds per model

radius and per surface segment. Execution times are slightly larger than the sphere-fitting

technique.

Fitting Cones

The strategy to fit cones to sets of 3D points differs from the cylinder- and sphere-fitting

techniques. Cones are represented by three parameters, the axis 5, the vertex v = (2:0, yo, 20),

and the vertex angle as between the axis and surface. First, the axis 6 is estimated. Then

the estimate of ('1' is used to estimate the vertex v. The vertex angle 45 can be selected

from a pre-specified set {(231, oz, ..., 45"} or estimated. This yields both model-driven and

data-driven approaches to fitting.

Figure 5.16 shows a sample cone including normal vectors, the axis \Té, and two vectors



123

VA and VB, which are surface rulings. The vertex angle of the cone is d. The intersection of

all the planes tangent to the surface of the cone is the vertex v of the cone. This characteristic

is the basis for the technique to estimate v.

Each surface point p,- = (17;, y,-, 2,) and its associated normal 1?,- = (113,, n“, n,,-) defines

a plane tangent to the surface at p, whose implicit equation is:

”rd-1'0 - 331') + Tim-(yo "‘ 3“) + nzi(ZO "" 2i) = 0,

Hence,

"$.30 + ”ml/0 + 712.20 = ”will; ‘1' ”yd/i + ”20%-

Therefore, the following system of linear equations is solved for the vertex position

v = (v,, 1),, v2):

  

 

anl ny] n21 ”1:131 + "vs/1311+ "2121

”:2 ”y; 7122 ’ ' "1:232 + "yzyz + 712222

”1:

0y :

vz

lL nz'n nyn nzn J _ nxmxn + nynyn '1" ”211211 J   
Once the vertex v has been found, it is possible to determine the axis and vertex angle

()3 of the cone. Since the scalar product of a unit vector from the vertex to any point on the

conical surface with the unit vector in the direction of the conic axis is constant, the axis

direction if and vertex angle ()3 can be determined by a least squares method. A unit length

vector expressing axis direction ('1‘ = (ax, a,, a2) is estimated using 4’1 - k5 = k5 cos 45,

"mil

where fill is the unit vector in the direction from the vertex v to a point p; and E is a vector
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in the direction of the axis, 120. Therefore, we solve

P - F ‘

  

    

c1(1'31 — $0) 01(3/1 - yo) 01(Zn - 20) 1

62(952 - $0) C2(3/2 - yo) 02(Zn - 20) ' ' 1

Ira,

lea, =

- kaz

_ Cn($n " $0) c,,(y,, - yo) c,,(z,, — 20) j . 1 .

for k6, where c,- is W135i

In this formulation, k5 is the vector Ii scaled by (1 / cos ¢). Hence, the length of Icii is

(1/ cos 45). Thus, estimates of both the axis ('1' and vertex angle (6 could be extracted from

the output of this regression procedure. However, it is assumed that n distinct vertex angles

{451, (#2, ..., ¢,,} are present in conical surfaces in the object model database. This a priori

information is used to verify estimates ('1' and f) as well as to select the appropriate d, as

follows: for each known vertex angle ¢,, the squared error-of-fit between the points p, and

the hypothesized cone is calculated and the ()3, yielding the minimum error is accepted.

The RMS fitting error for the hypothesized cone with vertex angle 43,- is defined as

COS"l ( If): a) — ¢j

llvpill

 

 ]2 . (5.4)
  

l n —-. .

Ea” = \J;Z[H0Pill 31“
i=1

The technique to estimate conic parameters can be used in a purely data-driven fashion

by accepting the estimate of d implicitly resulting from the least square estimate of axis

orientation. Since the length of k5 is (1 / cos d), :15 can be estimated using

1

II In? ll ' (5'5)
 

¢ = arccos

Model-driven fitting is performed in real scenes, however, to ensure that a vertex angle



125

present in the pre-specified set is selected. This allows instances of known conical surfaces

in the model database to be detected. We accept the cone that fits the data with the smallest

error. The model-driven cone fitting procedure takes at most a few seconds per segment

per model vertex angle. We observed CPU times between 0.18 and 1.75 seconds in 240 x

240 range images on a SPARCstation 2. The time complexity is linear in both M and n.

The data-driven procedure’s time requirement is linear in 12, since no a priori parameters

are used. Space requirements are linear in the number of points n and radii M.

Selecting the Best Surface

In the preceding sections, specialized fitting procedures were presented for spheres, cylin-

ders, cones, and planes. The quality of each fit was measured by the RMS perpendicular

distance between the sampled data points and the fitted surfaces. Since these error measures

are identical in character, their values can be compared directly to determine the best-fitting

surface among the four types (i.e., the surface type with the smallest RMS error). Currently,

it is assumed that each patch in the image is an instance of one of the model surfaces.

Hence, there is no reject option in the algorithm. A reject option could be included by using

an error threshold. Setting the appropriate threshold, however, is not trivial.

5.2.3 Surface Fitting Results

The surface fitting algorithm has been tested using synthetic and real range data of 3D

objects and surfaces. Synthetic data was used to study the performance degradation under

increasing levels of additive Gaussian noise. Experiments with real range data collected

with the Technical Arts 100x range sensor demonstrate the techniques’ usefulness for

object recognition and inspection.
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Radius 5: 3} 2 Error

0.90” -0.0006 -0.0006 0.0752 0.055

1.00” 0.0002 0.0002 -0.0004 0.0003

1.05” -0.0001 -0.0001 -0.0333 0.029

1.15” 0.0084 0.0084 -0.1043 0.081  
 

 
Table 5.3. Noise-free synthetic spherical data tested against spherical models. True radius

of the sphere is 1.00”.

Synthetic Image Data

Both noise-free and noisy depth data were generated to test the performance of the fitting

technique. Noise-free depth data from the surfaces of Spheres of radius 1”, cylinders of

radius 1”, and cones of 45° vertex angles were generated. Figure 5.17 shows plots of the

noise-free synthetic surfaces. Spheres, cones, and cylinders corrupted by various levels of

additive zero-mean Gaussian noise were also generated. A cylindrical surface corrupted

by Gaussian noise added to the z-coordinate is shown in Figure 5.18. For all test cases,

data points were sampled on a 6.4” x 6.4” grid with 240 rows and 240 columns. For

the experiments on noisy synthetic data, 1000 Monte Carlo trials were performed for each

surface type to estimate the classifiers’ performance.

Table 5.3 summarizes fitting results for noise-free synthetic spherical data of radius 1”

centered at the origin against various model radii. The noise-free data is drawn from the

positive-z hemisphere of the unit-radius sphere centered at the origin. Since the minimum

error is associated with the case of r=1.0 (the true radius), the hypothesis that the sphere is

of unit radius with center location a = (:2, 3}, 2) = (0.0002, 0.0002, —0.0004) is accepted.

In Table 5.3, results are listed only for model radii close to the true radius. Spheres of

other radii were also fit to the data, but the resulting error was quite large (therefore, those

incorrect radii would also be rejected).

Table 5.4 contains the results of testing spherical data with two different levels ofrandom

noise against the model spheres of different radii. The results for both of these experiments
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Figure 5.17. Synthetic primitive surfaces: (a) sphere, (b) cylinder, (c) cone.

 

a = 0.01 [I a = 0.1

r :i: g] 2 Error [I :3: g) 3: Error

0.90” 0.0022 -0.0021 0.0823 0.052 ~0.0123 -0.0120 0.2354 0.09T

1.00” 0.0080 0.0080 0.0142 0.013 0.0459 0.0455 0.1343 0.1 16

1.05" -0.0080 -0.0080 -0.0310 0.031 -0.0579 -0.0577 0.1234 0.150

1.15” 0.0173 0.0173 -0.0979 0.086 0.0296 0.0375 0.1453 0.258

Table 5.4. Spheres fit to synthetically generated spherical data of radius 1.0 centered at the

origin. Noise is sampled from a Gaussian distribution with a = 0.01 and a = 0.1 and was

added to the true 2 coordinate of the spherical surface data. Parameter estimates and errors

were averaged over 1000 Monte Carlo trials.
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Figure 5.18. Noisy synthetic cylinder of radius 1.0” with additive Gaussian noise ofstandard

deviation 0:0.05 present in the z-coordinate.

are averages computed from 1000 Monte Carlo trials. As expected, RMS fitting error

increases with higher levels of noise. Under high levels of noise (e.g., a = 0.1), an

incorrect spherical hypothesis could be accepted. For example, the mean error for a sphere

of radius 0.9” was lower than the mean error resulting in fitting spheres of radius 1.0”.

However, this level of noise (or = 0.1) is not realistic for the data acquired with the

Technical Arts lOOX sensor; carefully collected range data should not be corrupted to the

extent present in this example. Even if a parameter estimation error of this type did occur,

an object recognition and/or inspection system could resolve the problem by accepting

multiple spherical hypotheses that yielded nearly identical error measures. Naturally, the

inspection system could falsely reject an object if the fit parameters varied too much from

the expected model parameters. Thus, it is important that measurement error resulting

from sensor noise be less than the allowable dimensional measurement tolerances in the

inspection task.

The cylinder—fitting technique was tested with synthetic data extracted from a cylinder

of unit radius with axis direction a = (a,,a,,az) = (1,0,0) and passing through the
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Noise-free a = 0.01

r 15;, p“, p“z a} a}, (1‘2 Error 12“,, 15“,, 6,, Error

0.90 4.77 0.00 0.08 1.00 0.00 0.00 0.04 0.05 0.00 0.09 0.038

1.00 -2.93 0.00 0.00 1.00 0.00 0.00 0.00 -0.07 0.01 0.01 0.013

1.05 -2.92 0.00 -0.04 1.00 0.00 0.00 0.02 -0.07 -0.01 -0.03 0.028

1.15 -2.88 0.00 -0. l 3 1.00 0.00 0.00 0.05 -0.06 0.03 -0.1 1 0.066

Table 5.5. Fitting cylindrical models to noise-free and to noisy synthetic cylindrical data with

r = 1.0”, a = (0,, av, dz) = (1.0, 0.0, 0.0), and axis containing the origin. The synthetic data was

corrupted by additive Gaussian noise with standard deviation 0 = 0.01. (p3,, p}, 15,) is the average

estimated location of a point on the axis of the cylinder and (6;, a}, a‘,) is the hypothesized axis

direction (which was essentially identical in both tests). Parameter estimates and error for noisy

data averaged over 1000 Monte Carlo trials.

 

  

       

origin. Table 5.5 contains the estimated parameters for the noise-free synthetic cylinder

and for samples from cylinders corrupted by additive noise randomly sampled from a zero-

mean Gaussian distribution with standard deviation 0 = 0.01. The error columns in the

table represent RMS error between data points and the hypothesized surfaces. Estimated

parameters and RMS errors are averaged over 1000 Monte Carlo trials. For both the

noise-free and noisy data, the smallest fitting error corresponds to the correct cylindrical

hypothesis. However, as expected, the noisy data is not fit as well as the noise-free data.

The cone fitting technique was tested with synthetic data extracted from a cone with

axis vector :1 = (a,, a,, az) = (1.0, 0.0, 0.0), vertex angle ¢ = 1r/4 (about 0.785 radians),

and with vertex location v at the origin. The results of model-driven fitting to noise-free

and noisy data are shown in Table 5.6. For noisy data, 1000 Monte Carlo trials were

performed and mean results compiled. The table lists the hypothesized vertex location,

axis, and vertex angle for the data and the resultant error. Error is estimated using Eq. (5.4).

A data-driven fitting to estimate (6 was also explored. For the synthetic conic data, the

data-driven fitting had a smaller mean error (approximately 0.01 for the three noise levels

in Table 5.6) than the model-driven fitting, but it estimated a vertex angle slightly different

from the true parameter ¢ = 0.785 radians. Tests with Gaussian noise with a = 0.05 and

higher did not produce good fits.
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a 43 v} v“, v“, a} a], a“z Mean Error

0.0 0.785 0.0236 0.0000 0.0242 1.00 0.00 -0.03 0.0040

0.001 0.785 0.0237 0.0000 0.0242 1.00 0.00 -0.03 0.0043

0.01 0.785 0.0363 0.0000 0.0172 1.00 0.00 0.00 0.0210 
 

Table 5.6. Fitting conical models to samples from synthetic cones with vertex v =

(vx,v,,v,) = (0.0,0.0,0.0), a = (az,ay,az) = (1.0,0.0,0.0), and ¢ = 0.785 radians.

Parameter estimates (averaged over 1000 Monte Carlo trials) are reported for noise-free

synthetic data and data corrupted by Gaussian noise with standard deviations a = 0.001

and a = 0.01. (dua‘mcg) denotes the mean of the estimates of a and (6,, v}, 6,) is the

mean of the estimates of v.

 

 

 

 

 

 

 

 

 

a r a“: 3} :2 Mean Error

0.0 0.9” -1. 173 -0.001 0.083 0.969

1.0” -1.333 0.000 0.003 1.020

1.1” -0.640 0.000 -0.077 0.984

1.15” - 1.280 0.002 -0.130 0.911

0.1 0.90” -0.022 0.050 0.611 0.483

1.00” -0.052 -0.008 0.330 0.608

1.10” -0.093 -0.007 0.495 0.560

1.15” 0.077 0.031 0.567 0.491      
Table 5.7. Fitting spherical models to cylindrical data. Parameter estimates and error for

noisy data have been averaged over 1000 Monte Carlo trials of synthetic cylindrical surfaces

with r = 1.0” corrupted with additive Gaussian noise with a = 0.1. (:3, 32, 2) is the mean

estimated center position.

The above experiments demonstrate a low surface classification error rate for synthetic

data. In Table 5.7 error rates are shown for fitting spheres to synthetic cylindrical data. The

synthetic data was created in the same manner as the earlier tests. In comparing Table 5.7

to Table 5.5 we note that the cylindrical models fit the cylindrical data much better than

any of the spherical models. The conical models and planes also did not fit the cylindrical

data as well as cylindrical models. Classifications of other synthetic surfaces indicate no

misclassifications of noise-free data and very few misclassifications of noisy data at the

noise levels tested (uniform and Gaussian noise at levels up to a = 0.1 for spherical and

cylindrical surfaces and at levels up to a = 0.01 for conical surfaces).
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Figure 5-19- 11116115“)! coding 0f Figure 5.20. Pseudo-intensity ren-

depth. dering of range image.

Real Images

The performance of the surface classification techniques has been tested on a number of

range images of isolated objects as well as to jumbles of occluded objects.

Table 5.8 shows the performance of the fitting techniques on the range image shown in

Figure 5.19. The table shows fitting for the cylinder of radius 0.66” (the cylinder attached to

the block). Figure 5.19 shows the range data rendered as intensity (lighter shaded points are

closer to the sensor) and Figure 5.20 shows the “pseudo-intensity” image. The best-fitting

surface is the correct surface, a cylinder of radius 0.66”. Other cylindrical surface models

exhibited larger RMS errors and other surface types fit the data even more poorly.

Table 5.9 shows the results of classification of a cylindrical pipe of radius 0.46” that was

imaged in four different positions and orientations, one of which is shown in Figure 5.21.

The image is displayed as an intensity-coded depth map. The results are compared with

a data-driven parameter extraction method [56] by comparing the RMS error measures.

In three of the four cases, the model-driven fitting performed better than the data-driven

techniques. In the fourth case, the performance of the two techniques was essentially the
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Table 5.8. Data from the cylindrical surface in Figure 5.20 tested against various hypotheses.

An ‘*’ denotes that the specific parameter is not applicable for the surface type.

  
Figure 5.21. Intensity-coded range image Figure 5.22. Profile plot of range image

of a pipe of radius 0.46” (Pipe 1). of a funnel.
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Method Surface

Pipe 1 M

Pipe M

Plpe M

MPipe

 
Table 5.9. Surfaces fit to real cylindrical data (a pipe of radius 0.46” in various orientations).

Comparison of the performance of model-driven (M) versus data-driven (D) parameter

extraction.

same. In all cases, the model-driven technique’s best—fitting surface was a cylinder of radius

0.46”. For the “Pipe 4” image, the data-driven technique resulted in a lower error than

the model-driven technique, but the data-driven fitting recovered a slightly smaller radius

parameter than the true value.

The model-driven conic fitting technique was applied to several scenes containing

funnels whose vertex angle was approximately 0.53 radians. A profile plot of the range

image of one of the images is shown in Figure 5.22. Another image of the same funnel,

displayed using a perspective projection, is shown in Figure 5.23. The funnel in the

latter image was occluded by a light-absorbing covering that prevented the range scanner

from determining the depth of the occluded pixels. Table 5.10 summarizes the estimated

parameters and classification of the conical patch segmented from Figure 5.22. The best

fitting surface was a cone of vertex angle 43 = 0.53 radians. Table 5.11 shows the estimated

parameters and classification of the conical surface patch segmented from Figure 5.23.

Although the conic surface was partially occluded, the proper cone was accurately fit to the

surface. The conical fit to the occluded funnel resulted in a larger error than the fit to the

larger surface patch of Figure 5 . 10, however.

The classification method was also applied to several scenes of jumbles of parts and

objects with multiple surface types. A pseudo-intensity rendering of a range image of an



 |Surf| ()5 I v“, 0‘, 0‘2 6, a], d, [Error]

[ConeL0.53 ] -0.494 2.564 0.352 | (0.004, 0.009, -1.000) | 0.004]

Table 5.10. Classification and parameter estimation for funnel in Figure 5.22.
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Figure 5.23. Depth profile of the range image of an occluded funnel.

 lsm] ¢ 1 v; 13,, 1);] a; d, a; [Error—I

[Cone 1 0.53 | 0.046 3.191 0.307 “-0.001, -0.006, 4.000) [0.0091

Table 5.11. Classification and parameter estimation for occluded funnel in Figure 5.23.
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Figure 5.24. Pseudo-intensity ren- Figure 5 25

dering of range image of an adapter ' “

pipe fitting.

Segmentation of the

adapter in Figure 5.24.

object composed of two cylinders is shown in Figure 5.24. A segmentation of that image,

using the range image segmentation method of Flynn [55]. is shown in Figure 5.25. Three

regions were extracted. the planar base of the object and two cylindrical regions (with

correct radii of 1.125” and 1.375”).

The classification of the surfaces in Figure 5.25 is shown in Table 5.12. Only the

hypothesized surface type and recovered radius parameter are displayed: the positional

parameters are not shown it The estimated parameters and classification by the model-

driven technique is contrasted with the data-driven technique of Flynn and Jain [56].

The model-driven technique for cylindrical parameter estimation performed better for the

smaller cylindrical surface. Both methods classified the other cylindrical patch quite well.

The planar surface, as mentioned earlier. was fit using the data—driven technique [56].

Table 5.13 shows the performance of the fitting technique applied to the surface patches

in Figure 5.27. The model database contained several spherical and conical surfaces (none

of which fitted the surfaces in the image well) and cylindrical surfaces with radii of 1.0”,

1.125”, 1.25”, 1.375”, 1.75”. 2”. and 3”. Note that there are several “voids” (small black

regions inside surface patches) in the segmentation in Figure 5.27. The split-and-merge

 

“It should be noted that the model-driven and data-driven techniques do not recover identical positional

parameters.
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Table 5.12. Comparison of classification and parameter estimation of the surface patches

of the adapter (Figure 5.25) by the data-driven technique and by our model-driven method.

 

Figure 5.26. Pseudo-intensity render— Figure 527- Surface segmentation

ing of range image of a Y pipe fitting. of the Y pipe fitting shown in Figure

5 26
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Actual Surface True Parameterjlfilyp. Surface Est. Par. Error

Cylinder r = 1.25” Cylinder r = 1.25” 0.041

(red)

Cylinder r = 1.375” Cylinder r = 1.375” 0.019

(green)

Cylinder r = 2.0” Cylinder r = 2.0” 0.066

(yellow)

Cylinder r = 1.25” Cylinder r = 1.125” 0.004

(pink)

Cylinder r = 1.75” Cylinder r = 1.75” 0.024

(aqua)

Cylinder r = 2.0” Cylinder r = 2.0” 0.027

(white)        
 

Table 5.13. Classification and parameter estimation of surface patches of the Y-shaped pipe

fitting shown in Figure 5.27.

segmentation technique initially over-segmented the image, discarded tiny regions, and

then merged regions. Most of the “voids” are small patches that were discarded by the

segmentation scheme. Some of the voids were caused by missing range data, however. The

fitting performed well for all the patches except the two small narrow patches (shown as

indigo and gray colored patches). The pink patch was classified correctly but was fit with a

slightly smaller cylinder (radius = 1.125”). The second-best hypothesis for the pink patch

was a cylinder of radius 1.25”, though. Hence, as mentioned earlier, in practice one could

retain several high-ranking hypotheses for use by the object recognition module.

These techniques have been tested on images containing both convex and concave

surfaces. One such image (see Figure 5.28) contained two concave spheres (the inside of

two tennis balls) of radius 1.0” and one convex sphere (a rubber ball) of radius 1.21”. All

of the patches were classified correctly except for two patches that represent the fuzzy outer

wrapping of the tennis balls. In the segmented image, Figure 5.29, these regions are shown

in pink and yellow. The green, blue, and aqua concave surface patches in the segmented

image were all classified as spheres of radius 1.0”. Despite the segmentation of one of

the concave surfaces into two patches, the estimated center positions for the spheres were
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Figure 5'28' Depth profile 0f range image Figure 5.29. Segmentation of the balls

of two concave tennis balls and a convex shown in Figure 5.28.

rubber ball.

within 0.035” of one another. The RMS errors in the fitted surfaces were less than 0.01 for

the concave surface patches. The red patch. which is a (convex) rubber ball, was correctly

classified as a sphere of radius 1.21” again with an RMS error measure of less than 0.01.

For this image. the algorithm executed in approximately 27 seconds on a Sun SPARCstation

2 using a model database of 3 cones. 4 cylinders. and 3 spheres.

7‘:

7':

7':

 

Table 5.14. Surface classification of the jumble of parts shown in Figure 5.31 showing

comparison of model-driven versus data-driven parameter estimation. Only the top-ranked

hypotheses for each surface is shown.
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Figure 5.30. Pseudo-intensity rendering of Figure 5.31. Segmentation of the jumble

range image ofjumble of parts. of parts shown in Figure 5.30.

A pseudo—intensity rendering of the range image of a partjumble is shown in Figure 5 .30.

The surface segmentation is shown in Figure 5.31. This segmentation contains four regions

that correspond to a sphere of radius 1.21”, a cylinder of radius 0.46”. a cylinder of radius

0.39”, and a cone of vertex angle 0.53 radians. In Table 5.14. the estimated parameters

and classification of the patches is compared to Flynn’s [56] data—driven technique. Both

methods quite satisfactorily classified the sphere and the cylinder of radius 0.39”. But

the model-driven fitting provided much better classification for the cone and the second

cylinder of radius 0.46”. The reader should note that the data—driven fitting to which the

method is compared cannot fit cones; it can only extract parameters for planar. spherical,

and cylindrical surfaces.

Figure 5.32 contains a range image of a cylindrical casting. A depth profile plot of the

cylindrical housing is shown in Figure 5.33. The surface segmentation of this image is

shown in Figure 5.34. The segmentation technique employed included the extensions to

the method of Flynn, Hoffman, and Jain discussed in Section 5.1. There are six regions in

the segmentation, two of which (the blue and yellow regions) are non-quadric. The other



 

flit”.
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Figure 5.33. Depth profile plot of cylindri-
gure 5.32. Pseudo-intensity rendering of , , , .

cal housmg image 01 F1gure 5.32.
tge image of cylindrical housing.

 

Figure 5.34. Segmentation of the image of

the cylindrical housing in Figure 5.32 .
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Actual Surface True Parameter Method Hyp. Surface Est. Par. Error

Cylinder r = 0.7875” M Cylinder r = 0.7875 0.005

(red) D Cylinder r = 0.64 0.020

Cylinder r = 0.985” M Cylinder r = 0.985 0.008

(green) D Cylinder r = 1.06 0.019

Non-quadric * M Plane * 0.006

(blue) D Plane "' 0.006

Non-quadric * M Cylinder r = 0.985 0.004

(yellow) D Cylinder r = 10.29 0.003

Cylinder r = 1.063” M Cylinder r = 0.985 0.004

(pink) D Cylinder r = 1.26 0.010

Cylinder r = 0.985” M Cylinder r = 0.850 0.006

(aqua) D Cylinder r = 0.87 0.011        
 

Table 5.15. Classification and parameter estimation of surface patches of the cylindrical

housing in Figure 5.34. Model- and data-driven fittings are contrasted.

four regions are all cylindrical. Table 5.15 shows the performance of the model-driven

classification technique (indicated with an M) against the data-driven technique (indicated

with a D). The model-driven fitting performed much better than the data-driven fitting.

For the model-driven fitting, nine different cylinders were in the database. The radii of

these cylinders were 0.50”, 0.7875”, 0.85”, 0.985”, 1.063”, 1.25”, 1.50”, 1.75”, and 2.00”.

We attempted to fit spheres of several radii, also, but none of the spherical hypotheses fit

the data very well. The parameters of two of the regions were recovered accurately by the

model—driven fitting. For two other surfaces (the pink and aqua colored regions), the correct

parametrization was the second best hypothesis. (The correct parametrization of the pink

region had an RMS error measure of 0.0062. The aqua region’s correct parametrization

had an RMS error of 0.0061.)

The acceptance ofan incorrect parametrization of two of the cylinders in the image ofthe

cylindrical casting illustrates a problem with the Technical Arts range sensor. The casting

was oriented such that the sensor could only view (at most) one fourth of the cylinder. In

the image, limb edges appear at the top of the cylinder and at the side of the cylinder. The

shaded area in Figure 5.35 shows the portion of the cylinder that is visible to the sensor in
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Figure 5.35. Diagram of the sensing arrangement for Figure 5.32.

the image of Figure 5.32. The depth values returned by our range sensor near the cylinder

limb whose normals are oriented in the horizontal (x-y) plane are very noisy. This effect

results because the sensor estimates depth near edges by averaging several points whose

depths vary significantly. The estimation of the position of where the beam is brightest

introduces the error for those values. As a result, our cylinder-fitting technique cannot

recover the position of the cylindrical axis as accurately for this orientation. The next

example, in Figure 5.36, illustrates that if the cylinder is rotated 90° about the z axis, then

the parameters can be recovered accurately. This is because the depth values near the two

limbs “cancel out” one another.

The casting in Figure 5.36 is oriented such that the range scanner can sense a larger

surface area of the casting. Instead of observing a limb edge at the “top” and “side” of the

cylinder, now both the limb edges are observed at the “side” of the cylinder. Unfortunately,

these limb edges are not the ideal limb edges one would observe in a backlit intensity image.

Furthermore, the edges are very noisy. Thus, jump edges found in range images from

the White Scanner are problematic and probably ill-suited for classification or recognition

purposes. For classification to be acceptable, the object must be oriented such that the range

sensor can image a significant amount of the surface. Therefore, we restrict the position
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(a) Range image. (b) Segmented image.

Figure 5.36. Cylindrical housing image and its segmentation.

of the object to be such that the sensor can acquire an acceptable image. Alternatively, we

could collect images from several viewpoints and merge the data or invest in a better sensor.

Table 5.16 indicates the model-driven classification for the surfaces in Figure 5.36(b).

The same model database was used as in the previous example (the image of Figure 5 .34). A

data-driven fitting performed worse for every surface. either by fitting incorrect parameters.

or by fitting nearly correct parameters but with much larger errors than the model-driven

fitting. Our fitting is, in general. better than the fitting for the object in Figure 5.34. Region

3 (the blue region). is very small and as a result a cylinder of radius 0.85” fits better than the

correct cylinder of radius 0.985” (the 0.985” radius cylinder is the second-best hypothesis

and has RMS error 0.0091).

There is still some sensor noise near the limb jump edges. but the noise from the two

limbs “cancels out” because the Hough technique that accumulates evidence for the axis

position is able to average the off-center votes from each side and thus generate reasonable

axis position estimates. Larger local deviations from the fit surface are observed near the

limb edges than near the center of the regions, as is illustrated in Figure 5.37.

The diagram in Figure 5.37 shows the actual surface of the casting, the fitted surface,
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Actual Surface Parameter Hyp. Surface Est. Par. Error

Cylinder r = 0.7875” Cylinder r = 0.7875” 0.0053

# 1 (red)

Non-quadric * Plane * 0.0039

# 2 (green)

Cylinder r = 0.985” Cylinder r = 0.85” 0.0070

# 3 (blue)

Non-quadric * Cylinder r = 0.7875” 0.0079

# 4 (yellow)

Cylinder r = 1.063” Cylinder r = 1.063” 0.0042

# 5 (pink)

Cylinder r = 0.985” Cylinder r = 0.985” 0.0052

# 6 (aqua)         
Table 5.16. Classification of surfaces of cylindrical housing in Figure 5.36 by model-driven

fitting technique. Only the top-ranked hypothesis for each surface is shown.
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Figure 5.37. Cross-sectional view of cylinder showing deviation of sensed data from the

fitted cylindrical surface. The diagram is exaggerated to illustrate the sensor problem.
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and the sensed data. We observe that the sensor regularly delivered cylindrical data in this

form. The deviation in fit in many images followed this same pattern of very large negative

deviations near the limb edges and small positive deviations near the “top” of the cylinder.

5.3 Conclusions and Extensions

Segmentation of the castings is accomplished by using a revision of Flynn, Hoffman, and

Jain’s local feature clustering and merging algorithm. Further extensions to the method are

being explored to allow more model information to be incorporated into the segmentation

scheme. Ideally, an initial coarse segmentation could be used to provide rough evidence for

the presence of certain model surfaces. The model could then be used to directly impose

segmentation on the data.

The suite of classification techniques extracts quadric surface parameters by incorporat-

ing geometric characteristics of the surface type and invariant parameters directly into the

fitting procedure. The methods are model-driven and use Hough Transform techniques for

cylindrical and spherical fitting. Many experiments on real and synthetic data containing

concave and convex surfaces demonstrate the utility and accuracy of the techniques.

The size of many of the quadric surfaces on castings is small, making both segmenta-

tion and classification difficult problems. We also experienced difficulty segmenting and

classifying filleted surfaces on the castings. These problems could be alleviated by making

more use of model information during segmentation. It is also possible to use the output

of the current segmentation and classification as an input to a second segmentation. The

re-segmentation could use a coarse estimate of pose arising from matching the reliably

labeled surfaces of the first segmentation and classification to the model. The coarse pose

estimate could be applied to the model and the model’s labelings could then be imposed

onto unlabeled regions in the range image. This new segmentation could be used to com-

pute a better estimate of pose. It might be necessary to re-segment some regions using the
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model-imposed labels, however. We are currently working on model-based segmentation.

One weakness of the conic fitting procedure is its two-step sequential nature. Errors

that arise in the first step of vertex location determination are propagated into the second

step (axis vector estimation). There are probably enhancements that can be made to the

algorithm to reduce the effects of this error. It was difficult to fit cones with vertex angles

less than 15 degrees perhaps due in part to the two-step process.

The technique could execute faster by using a random sample of the data points for

hypothesis generation and/or for verification, similar to the Randomized Hough Trans-

form [189] and the RANSAC method [53]. Parallel computing could also be used to

speed up the performance. The Hough voting scheme could be implemented in parallel,

for instance, on a machine such as the Connection Machine. Using a subset of the data and

using parallel computing should result in very fast extraction of surface parameters. On

a coarser level of parallelism, several different surfaces could be fit at the same time by

different teams of processing elements where each team ofelements is devoted to extracting

parameters for one type of surface in parallel.

Currently, only planes, spheres, cylinders, and cones can be fit, so extensions need to

be made to allow fitting of other surfaces. It would probably be advantageous, though,

to develop an algorithm for filleted surface fitting, provided that filleted regions can be

segmented reliably and that they are large enough to allow reliable fitting. Ideally, a

free-form surface fitting algorithm could be developed to fit all surfaces. But free-form

surface fitting is a difficult problem that has only recently begun to receive substantial

attention. The algorithms we have developed execute quickly and seem ideal candidates

for implementation on SIMD or systolic architectures. Parallel implementations could be

used to achieve real-time execution.



CHAPTER 6

Object Localization

In the inspection algorithms of this research project, we generally assume that the object is

in its correct pose (i.e., both position and orientation), thus bypassing the object localization

problem. In the context of the tree diagram of Figure 1.8, our approach has thus followed

the leftmost branch of each level of the tree down to the leftmost terminal node. In fact,

constraining object pose is a reasonable assumption on many assembly lines. Operating

with constrained pose is analogous to inspecting in a well-jigged (well-fixtured) environ-

ment. However, special-purpose fixtures are expensive and probably only cost-effective

when large volumes of parts are being produced. Ideally, we would like to relax the pose

constraint to increase the flexibility of our automated inspection algorithms. In the inspec-

tion algorithms presented in this dissertation, we assume that the correspondence between

model and object surfaces has been established, perhaps using one of the techniques pre-

sented in this chapter, and that it is necessary to inspect the object surfaces. An explicit

estimate of pose is not necessary for the surface shape and feature inspections of Chapters

8 and 9, although a pose estimate is necessary for the gross feature inspection of Chapter 7.

One difficulty in using estimated transformations is that these typically introduce positional

errors that complicate inspection. In this chapter, several techniques for determining pose

are presented.
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6.1 Mechanical solutions

One approach to the object localization problem is to assume that the object is always

presented to the sensor in approximately the same position (although the orientation may

vary greatly). This is a reasonable assumption because simple mechanical probes can be

used, and have been used for some time in industry, to determine the presence or absence

of a part within the visible envelope of the imaging sensor [99]. (A simple illustration of

this is a beam of light projected 1 inch above an assembly line from one side to another.

A photovoltaic sensor opposite the beam projector detects when the light beam is broken

by a moving part. When the beam is broken, the range sensor can acquire an image of the

object.)

A number of techniques have been proposed for 3D object localization in the computer

vision literature. We have investigated several techniques for pose estimation in the con-

text of object inspection. Our current system assumes that the objects for inspection are

presented in constrained poses through fixturing or that a reliable localization method has

determined their approximate pose. Because of the limitations of our sensor, precise esti-

mation of pose may only be possible through fixturing. Only the inspection techniques we

present in Chapter 7 require precise pose estimation, however. The inspection techniques of

Chapters 8 and 9 merely require that the correspondence between object and model surfaces

has been established.

6.2 Overview of Approaches to Localization

Several papers on part position localization have been presented in the literature. Gunnars-

son and Prinz [66], for example, have presented a scheme for locating polyhedral objects.

They claim that their method can also be extended to arbitrary shapes. Their method

is an iterative technique to find an optimal transformation matrix. Stockman [162] has
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proposed pose clustering for localization of objects. His technique, which is similar to

a generalized Hough transformation, determines a globally acceptable transformation by

detecting a cluster in the space of all coordinate transformations. Most of the 3D object

recognition approaches compute object location simultaneously with recognition: usually

using a search technique. A short discussion of some of these approaches to 3D object

recognition is presented later in this chapter in the discussion of interpretation tree search.

Techniques based on the Extended Gaussian Image (EGI) [78] have also been pursued. EGI

is discussed in Section 6.3.2. Aspect matching techniques have also received a great deal

of attention.

An aspect is a viewer-centered representation that models object appearance from one

viewpoint [174]. The aspect graph consists of a collection of views, or aspects, and the

relationship between the views. Usually, the nodes in the graph represent general views

of the object. A general view is a set of viewpoints that are equivalent. The links in the

graph represent the transitions between adjacent views. The aspect graph concept was first

proposed by Koenderink and Van Doom [100] who termed it visual potential. Chen and

Freeman [30] and Bowyer et al. [19] have also investigated aspects, although Chen and

Freeman prefer the term characteristic views.

6.3 Techniques for Pre-Segmentation Localization

This section presents techniques for pose determination without (or before) segmentation.

Two of the techniques for this include the EGI method and matching to stored views

(aspects). Several methods for pre-segmentation localization were investigated in our

research. These methods all appear to have some limitations. The most reliable of these

methods appears useful only for resolving 2D rotational transformations, or very small 3D

rotational transformations (e.g., less than 3-5 degrees).

 

’Our focus in this dissertation is on inspection, not recognition, however.
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6.3.1 Matching to Stored Views

We attempted to determine a coarse estimate of pose by matching a sensed image of an

object to stored views of the object model using the matching scores presented in Chapter 7.

This technique is similar to aspect graph matching, although our approach avoided explicit

computation of the general views. Computing the general views of the aspect graph is a

difficult task. We matched real and synthetic range images against 500 stored views of

several polyhedral objects and one object with curved surfaces.

This technique was not able to determine a good initial estimate of pose, however.

The correct view usually did not exhibit a high matching score. The correct view ranged

anywhere from the highest matching score to the fortieth largest score, with a typical

ranking of tenth to fifteenth largest. Thus, we abandoned this approach and examined other

methods for pose determination. It should be noted that stored view matching may only be

a poor approach for polyhedral objects (since we did not perform exhaustive testing of the

approach for non-polyhedral objects); view matching may be acceptable for other objects.

Boundary Alignment - Chamfering and Hausdorff Matching

Two techniques for matching the silhouette of an object to the silhouette ofa model were also

investigated. These techniques require the viewing direction to be known; the techniques

are restricted to 2D rotations? Our experience with these techniques has been that they

produce good results (rotation can usually be recovered with 0.5° accuracy) within this

constraint. However, we were unable to reliably detect the approximate viewing direction

(through EGI or stored-view matching), so these techniques are not currently useful for our

inspection system.

The first technique is the Chamfering algorithm implemented by Chen and Stock-

 

tThe Chamfering method has been extended to have a limited capability to recover 3D rotational parame-

ters [28]. This extension requires the use of multiple stored views. It also requires that the approximate pose

be known (that is, the actual pose must be a small rotation from one of the stored views). We have only used

the Chamfering method to recover 2D rotations, however.
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man [28]. The Chamfering technique measures the difference between the object and the

model silhouettes. The charnfering expands each point in the edge map in all directions.

For each pixel in the expansion, the distance of that pixel from the edge is stored. The set of

distances forms a distance function. Silhouettes can be aligned by minimizing the distance

function.

The second technique is the Hausdorff matching [82]. We used Pankanti et al.’s [135]

implementation of the Hausdorff matching to recover :c and y translations and rotations

about 2. The Hausdorff matching is used in [135] to compare the “distance” between model

and scene edge maps. A constrained search strategy is used to find the best transformation

that aligns the model with the scene. The boundary of the model can be viewed as a point

set P that must be aligned with the transformed point set Q that represents the boundary of

the object in the scene. The l-Iausdorff matching between P and Q measures the proximity

of the edge points when no correspondence between points in P and Q is known. Formally,

the Hausdorff distance is the max-min distance

H(P,Q) = maX(h(P,Q), h(Q,P)),

where

I P = ' —L( ,Q) 3133,1513 II p q II,

and [I - II is the Euclidean norm. To allow for some occlusions, the Hausdorff matching

scheme did not require a matching of all of the points. A typical threshold for matching

would use 85 to 95 percent of the points.

Both the charnfering and Hausdorff matching were able to resolve 2D rotations within

0.5°. Our application of Hausdorff matching for inspection is described in Chapter 7.
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6.3.2 EGI

There are a number of descriptions in the literature of the Extended Gaussian Image (EGI),

for pose determination (and object recognition) [33, 70, 78, 112]. The EGI was first

proposed by Horn and is described in detail in his book [78]. The EGI of an object is a unit,

or Gaussian, sphere whose surface contains the distribution of the object surface-orientation

normals. The Extended Gaussian Image represents an object as the collection of its unit-

length surface normals. The surface normal at each point on the object is translated to the

origin and assigned a unit weight. The Gaussian sphere is then extended by storing, at each

position on the sphere that corresponds to the head of a surface-orientation normal vector,

a value equal to the number of surface normals oriented in that direction. For example, a

planar surface with unit-length surface orientation normal vector 11 = (n3, 12,, n,) would

cause a weight proportional to the plane’s surface area to be stored at (11,, av, n,) on the

Gaussian sphere. The EGI is actually a surface normal vector histogram in three dimensions.

The EGI is also related to the collection of Gaussian curvatures K of the object. For

instance, if 60,- is a small surface region on the object and if 65',- is the corresponding region

on the Gaussian sphere, then Gaussian curvature

65', d3,-

" = 58205—0: = :55:

where O,- is a finite region of the object and S,- is the area of the corresponding region of the

Gaussian sphere. The EGI is G({, TI) = Eli—.7), where (5,17) is the Gaussian sphere point

that corresponds to object surface point (u, v).

An object can be modeled by constructing the extended Gaussian sphere, usually sup-

plemented by additional features about each possible viewing direction on a unifome

sampled viewing sphere. The additional features typically encode the total amount of

surface area visible from the viewpoint.

Object recognition (or pose determination) consists of matching the EGI of the sensed
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object with the EGI of the stored model(s). The object and model EGI centers are made

coincident and the model EGI is then rotated about (each) candidate line of sight until a

position of minimum difference between the mass distributions in the EGIs is reached.

Candidate viewpoints are usually selected using a heuristic based on the additional features

stored about each of the possible viewpoints.

The EGI is usually modeled as an approximation of a tesselated sphere. The masses

of the surface orientation normals are accumulated in the tesselated sphere’s cells and

stored along with the supplemental matching features. Unfortunately, there are no known

methods to create a uniform tesselation on a sphere. Instead, the EGI methods use polyhedral

approximations of tesselated spheres.

Horn [78] has identified the ideal characteristics of a tesselation to be used for an

EGI. Ideally, any tesselation should have cells that have the same area and shape and

which occur in a regular pattern. Also, there should be enough cells to allow for fine

resolution in pose determination. Finally, the cells should have somewhat rounded shapes.

Unfortunately, there is no known tesselation that meets all of these goals. Only the five

platonic (or regular) solids (tetrahedra, hexahedra, octahedra, dodecahedra, and icosahedra)

have regular polygons as faces with each of the polygons identical on the solid. All of these

tesselations lack the resolution necessary for object recognition and/or pose determination.

Instead, polyhedra which are semiregular are commonly adOpted for use as an approx-

imate tesselated sphere. Most of the applications of EGI have used polyhedra constructed

from dodecahedra or icosahedra. The faces of these platonic solids are subdivided into

equal-sized triangles and then projected onto the sphere to produce a geodesic dome that

closely approximates a uniform tesselation of the sphere. The “cells” of the discrete EGI

are the faces of these projected polyhedra. A 320-cell tesselated sphere created by subdi-

viding an icosahedron is shown in Figure 6.1. In practice, the dual of the geodesic dome

is preferred to the geodesic dome to create cells that are more “rounded” in shape. The

dual can be constructed by defining a new polyhedron formed by connecting the centers of
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Figure 6.1. Tesselated sphere (frequency 4 geodesic polyhedron derived from icosahedron).

adjacent cells in the geodesic dome.

Horn [78], Caponetti et al. [24], Chen and Kak [26], Nagata and Zha [123], Shirai et

al. [155], and Yang and Kak [190] have all developed object localization systems that utilize

the Extended Gaussian Image. Nayar et al. [124] have used features extracted from the EGI

to detect defects in solder joints.

We have implemented the EGI technique for pose determination. We built EGIs of

several models of polyhedral blocks, one of which is shown in Figure 6.2 and tried to

match synthetic and real range images to the EGI model. (The synthetic range images

were synthesized from a CAD model of the block using the program discussed at the end

of Chapter 4.) Our orientation histogram contained 320 cells; the frequency 4 geodesic

polyhedron derived from an icosahedron was used.

We initially attempted to use a heuristic proposed by Yang and Kak [190] for determi-

nation of viewing direction and then rotated the model about the viewing direction to find

the best match between model and object. It is important to use a good heuristic to limit the
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Figure 6.2. Pseudo-intensity rendering of polyhedral block.

number of candidate viewing directions. Otherwise, the search will take a very long time.

The heuristic that Yang and Kak used was based on the ratio of visible surface areas to the

projected area onto the image plane. This type of constraint is common for the EGI-based

efforts reported in the literature. Yang and Kak computed a statistic R,“ for both the object

and model EGI to compute the most likely viewing direction. For the model EGI, an R,“

was computed for each cell of the sphere as follows:

in d _,

1:1

221 lMil ,

.Pa =

where m is the number of cells in the EGI, l7 is the viewing direction, and AT, is the ith cell

in the EGI with direction and magnitude determined by the model. The dot product M.- - I7

gives the first moment of mass of the visible hemisphere of the model. For the object EGI,

a single R,m statistic was computed:

— ZLJJETJ’

where n is the number of visible patches and 9, is the angle between the surface normal

of the ith patch and the viewing direction (which is the z axis). We found that a bound of

0.1 was necessary in matching R1,, scores and that this only eliminated half of the potential

viewing directions.
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The matching score between model and object EGI was computed using

n

E H Ci - M£+d “2,

i=1

where c; denotes the contents of object cell i and M,“ denotes the contents of the cell

i + d in the model that is closest to object cell i (i.e., d is a minimum). Cells that were not

visible from the candidate viewing direction were not considered. The correspondences

that produced the forty smallest matching scores were retained.

Eventually, we abandoned the heuristic of R1,, because the correct pose hypothesis was

usually not among the twenty highest-ranked matches. We did not choose the viewing

direction explicitly after abandoning Rm. Instead, we matched the tessel in the object EGI

that had the highest weight with every non-empty cell in the model, matching the highest

weight model EGI cell first and then proceeding to the second largest, down to the smallest

weight model cell. For each of the matchings between the object and model tessel, the

model was rotated about its matched tessel. This generated a series of hypotheses which

were ranked according to their matching scores.

Furthermore, we removed all object EGI cells that had a small 2 component (less than

0.1) because they were highly likely to result from sensor noise. Object cells with a very

small weight (i.e., corresponding to a surface area of less than 0.01) were also discarded.

In the computation of the matching score, the best matching model cell was taken as

whichever cell within 10° of the central angle of the object EGI cell that most closely

matched the object cell. (This is in contrast to the original technique of only choosing the

model cell whose distance is closest.)

We also “blurred” the model EGI by overlapping the cells during model EGI generation.

Specifically, every cell within 10° of an ideal normal ii was incremented with the weight of

the surface associated with normal direction ii.

The EGI matching procedure executed slowly and did not deliver very good results
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Figure 6.3. Two objects that have the same EGI representations.

 

      

even after these enhancements. Execution of the matching took between 5 and 10 minutes

of CPU time on a SPARCstation 2. Generation of an EGI took less than 30 seconds. The

correct hypothesis usually was fairly low in the ranking of hypotheses. For five range

images of the polyhedral block of Figure 6.2, the correct hypothesis was the third highest

ranking in one case, fifth highest in another, sixteenth in another, and twentieth in two

others. Pose was estimated within 3° in one case, 5° in another, and ranged from 10° to

20° in the others. For another polyhedral block, the matching was even poorer. The correct

hypothesis was the tenth highest ranking in one of the two instances tried and was the

fortieth in the other.

We experimented with “blurring” the object EGI in the same manner as the model

EGI was blurred, but found that, in general, it did not improve results. We tried object

EGI blurring both with and without model EGI blurring. Object EGI blurring without

model EGI blurring produced little changes in the position of the correct hypothesis on the

listing of best-ranked hypotheses. When coupled with model EGI blurring, the effect on

the position of the correct hypothesis was also generally neutral, although in one case the

correct hypothesis dropped from twentieth to below fortieth and in another case the correct

hypothesis improved from sixteenth to first.

We are pessimistic about the EGI method, however, sharing the reservations expressed

by Haralick and Shapiro [70]: the Gaussian image is not invertible for planar objects and

it does not represent objects precisely enough for use in most vision tasks [70]. Also, the

EGI is only unique for convex solids [112]. An example of two objects that have identical
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EGI representations is shown in Figure 6.3.

Several additional problems with the EGI method have been presented in the litera-

ture [78] and have been confirmed by our experience. First, when the model EGI is rotated

about a viewing angle, few of its rotated tessels exactly match tessels of the object EGI. This

is caused by the non-uniform size and irregular distribution pattern of the cells. Also, it is

very laborious to resolve the rotation about the viewing direction due to the large number of

potential correspondences. It might appear that the EGI method could be implemented in

a hierarchical manner, but most hierarchical approaches have not worked well because an

object’s appearance can change dramatically over only a small change in viewing direction.

Our experiments verified this. EGI’s greatest limitation for inspection purposes may be

that it can, at best, determine pose within 5° to 10°, which is far too coarse for practical

application. Finally, the general application of EGI is limited because there is no known

way to generate the EGI for objects that are more “complicated” than objects that only have

planar, spherical, and cylindrical surfaces.

6.4 Techniques for Post-Segmentation Localization

Probably the most successful techniques for object localization require that a reasonable

segmentation of an image be available. Most of the techniques for post-segmentation

localization have at least some capacity to tolerate small segmentation errors, although

occasionally the trade-off is a decreased ability to determine the pose accurately.

6.4.1 Interpretation Tree Search

Most object recognition systems in the literature have determined object position and

orientation either during, or as a result of, the recognition process. The transformation from

model to the sensed view can be determined using the interpretation tree (IT) search [64, 65]

method for matching model surfaces to sensed object surfaces. The interpretation tree
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Figure 6..4 Wireframe “10961 Of a Figure 6.5. Visible surfaces on the

prism wrth surfaces numbered. prism with surfaces numbered.

paradigm enumerates all of the possible mappings between features on a model with

features derived from a sensed object. The interpretation tree can be searched to find one

or more consistent mappings from a model to the sensed object. A variety of constraints

and heuristics are commonly used to prune the tree in order to reduce the computational

complexity of the search.

Each node in the interpretation tree represents an association between one scene feature

and one model feature. Object recognition can be viewed as matching an object’s features

against an interpretation forest consisting of a tree for each object model in the database.

The set of valid mappings from the object features to the corresponding model features that

survive the pruning constraints form a collection of hypotheses indicating which object is

present in the scene. Each valid mapping also contains evidence for the position of object

features vis-a-vis model features. An interpretation tree search is, therefore, useful for

recognizing objects and for determining the rotation and translational parameters which

transform the hypothesized model onto the sensed object. In practice, the interpretation

tree usually has to be at least four levels deep to allow accurate estimation of the rotational

and translation parameters.

A diagram of an interpretation tree is provided in Figure 6.6. In this tree, the features

being matched are surface regions. The sensed object, shown in Figure 6.5, has three visible
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Sl,Ml Sl,MZ Sl,M3 Sl,M4 Sl,MS Sl,NULL

SZ,M2 32m SZNULL 82,NULL

82,M1'°° SIMS

S3,M3"' S3,NULL

Figure 6.6. Interpretation Tree for an image with 3 visible surfaces matched to a model

with 5 surfaces.

surfaces and the model, shown in Figure 6.4, has five surfaces. A surface region is defined

as a patch of the object which is homogeneous in some sense. For instance, on the prism in

Figure 6.4, there are five regions and the surface normals are all identical within a region.

In Figure 6.6, object features can also be matched to a model feature labeled as a “wildcard”

or “NULL” node, which is useful for handling any spurious features in a sensed image.

Spurious regions could result, for example, from sensor noise which caused the violation of

the homogeneity criteria. This might cause additional (false) regions to appear in an image

which have no analog in the model. Allowing these types of regions to map to a “NULL”

feature is an important aspect of the matching procedure because both sensors and low-level

vision algorithms generally produce imperfect results. Unfortunately, the wildcard match

feature causes many searches in practice to approach exponential complexity [64, 54].

Fisher [54] has recently developed an alternate method of generating the search tree that

reduces the expected size of the search tree, although its worst case complexity is still

exponential. In Figure 6.6, the top level of the tree matches model surfaces (denoted M1,
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M2, M3, M4, M5, and NULL) to image surface S1. The second level denotes the matching

of model surfaces to image surface 82. The third level, most of which has been omitted

from the diagram, denotes the matching of model surfaces to image surface S3.

There is substantial parallelism inherent in the interpretation tree search and even more

parallelism in a search of a forest of interpretation trees (one tree per object model). The

problem of object recognition can be posed as a search of a forest of interpretation trees.

Each of the nodes in the tree or forest can be mapped onto a processing element that

evaluates the pruning constraints for that node. If there are multiple constraints to be

evaluated, each constraint for the node could be evaluated by different processing elements.

The nodes need to be evaluated in a top-down manner, since if any constraints are violated

for a node, then it is unnecessary to examine any descendants of the node in the tree.

Interpretation tree search has been used as the matching strategy for object recognition

and subsequent pose determination in many vision systems ([58],[59],[64],[83], and [111]).

Even if the identity of the object is already known, interpretation tree search can be used

to determine the mapping from model surfaces to object surfaces [125]. In this research,

we have used interpretation tree search to generate these mappings and to determine the

model-to-view transformation (i.e., to estimate pose).

Parallel IT search

Because inspection requires a large amount of data to be processed in a short amount of

time, serial processors may be inadequate for real-time processing. Most computer vision

tasks have been pursued on sequential machines. Some low-level vision tasks, such as

image convolution, are ideally suited for implementation on SIMD machines, such as the

Connection Machine-2, or on systolic architectures [36] and have received some attention

in the literature. Parallel approaches to higher level computer vision tasks such as matching

or verification have received far less attention. An exception is Bhanu and Nuttall [13],

who have implemented a 3D object recognition system on an 18-node BBN Butterfly.
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Bhanu and Nuttall’s technique is an MIMD implementation of a clustering algorithm for

classification of quadric surfaces, such as spheres, cones, and cylinders, using curvature

information from range data. Bhanu and Nuttall’s work used mostly synthetic range data.

However, their results are significant because the parallel implementation achieved near-

linear speedup. They observed a maximum relative speedup of about 8 when using 12

processing elements. The speedups depended on the specific object, however. Few details

of their implementation are known to us.

Our Approach to IT Search

In the remainder of this section, we describe our work on model-to-view transformation

determination (and object recognition) using IT search for objects constructed of planar or

quadric (spherical, cylindrical, or conical) surfaces. A parallel technique is then discussed

which we have used for object recognition and pose determination. In this section, we

focus on IT search for polyhedral objects, although the serial version of our IT search

can also handle objects with quadric surfaces. We wish to demonstrate that the IT search

is appropriate for parallel implementation. Parallel computation may be necessary for

real-time automated visual inspection.

The features matched in our interpretation tree are the surfaces of the 3D objects. We

used characteristics of each planar face as constraints to prune the search tree‘; a match

between image surface 2' and model surface j was only considered if the constraints were

satisfied. The facet constraints which were used for polyhedral objects included surface

area, surface adjacencies, vertex angles of planar surface vertices, visibility attributes, and

angles of intersection between surfaces. Surface area and the edge intersection angles can

be considered to be unary constraints. The other characteristics were binary constraints that

 

tAs mntioned earlier, we have implemented a version of interpretation tree search on the Sun SPARCsta-

tions that can handle objects with quadric surfaces. That version uses the curved surface pruning constraints

in addition to the constraints for planar surfaces. Specifically, the visible surface area, surface type, and

surface parameters for spherical, cylindrical, and conical surfaces are used.
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captured inter-surface relationships. Finally, we eliminate any surviving hypotheses that

do not have at least 3 surface correspondences.

A complete matching between all image surfaces and corresponding model (or NULL)

surfaces was considered an hypothesis which must be verified. The verification step

computed the total angular difference between the mean surface normals of sensed object

surfaces with the estimated surface normals of the transformed model. We then accepted the

hypothesis which had the smallest total angular difference. A better verification approach

would be to use the matching statistics proposed in Chapter 7.

The correspondences between image and model features are used to estimate the ro-

tation transformation necessary to orient the model with the object. We then estimate the

translation necessary to make the position of the rotated model coincident with the position

of the object.

We first report our results of using IT search on a serial machine and then discuss the

feasibility of implementing the search on a parallel machine.

A set of four images of a defective object is presented to demonstrate the localization

capabilities of IT search in the presence of defects. The images of the defective object

and their segmentations are shown in Figures 6.7, 6.8, 6.9, and 6.10. The defects in this

case were created by stretching rubber bands around a polyhedral object we call Block2.

In general, our technique for pose estimation performed quite well. Visual results indicate

that we can generally determine pose within one or two pixels.

For the object in Figure 6.7, we were unable to find the correct pose estimate because

the two small patches on one side of the block were not matched to any of the model

surfaces. Our interpretation tree search uses edge features as a pruning constraint and this

constraint was violated for the patches resulting from the segmentation. Edge features

may be unreliable in the presence of defects. This is unfortunate, because edge features

are a strong pruning constraint in our interpretation tree search. For instance, for one of

the defect-free Block2 objects, the use of edge features reduced the number of hypotheses
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(a) Range image Ofa defective Block2 (b) Segmentation of the image in (a).

object.

Figure 6.7. A range image of a defective instance of Block2. A rubber band has been tied

around the block to generate the defect.

  

(12331183 image Of a defective Block2 (b) Segmentation of the image in (a).

o ject.

Figure 6.8. A range image of a defective instance of Block2. A rubber band has been tied

around the block to generate the defect.
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(a) Range image ofa defective Block2
. (b) Segmentation of the image in (a).

object.

Figure 6.9. A range image of a defective instance of Block2. A rubber band has been tied

around the block to generate the defect.

  

(1)). One view Of a dEfBCtiVC BIOCkZ (b) Segmentation of the image in (a).

o ject.

Figure 6.10. A range image of a defective Block2. A rubber band has been tied around the

block.
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Figure 6.11. Wireframe of trans— Figure 6.12. Wireframe of trans-

formed model overlaid on sensed formed model overlaid on sensed

range image of Figure 6.8. range image of Figure 6.9.

which survive pruning from 280 to 151.

However, for Figures 6.8 and 6.9, our pose estimate was quite good. We have overlaid

a wireframe of the model on the sensed images in Figures 6.11 and 6.12. In each case,

the model was transformed using the rotation and translation estimates generated by the

interpretation tree search software.

Another difficulty in pose estimation was observed during these experiments. It is im-

portant that at least three surfaces which, in some sense, effectively span three-dimensional

space, be present in the sensed image. By “effective spanning,” we mean that three planes

which are almost orthogonal should be present in the image. Orientation estimates are

unreliable, for instance, if only one plane’s surface normal has a 2 component and if the

z and y components are much larger than the 2 component for that plane. One example

of this is the image in Figure 6.10. Our pose estimate for the object in this image was not

as accurate as for the objects in Figures 6.11 and 6.12. The overlaid model wireframe is

shown in Figure 6.13.
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Figure 6.13. Wireframe of transformed model overlaid on sensed range image of Figure

6.10.

Parallel Implementation of IT Search

To investigate the feasibility of conducting the IT search on parallel machines, a version

of interpretation tree search restricted to polyhedral objects was implemented on a serial

machine, a Sun SPARCstation, and on two parallel MIMD machines, a 96 node BBN

Butterfly GP-1000 at Michigan State University and a 48 node BBN Butterfly TC-2000 at

Argonne National Laboratory. The GP-1000 has 96 MC68020 processing elements, each

of which has 4MB of memory that can be accessed by all of the other processing elements

over an interconnection network. The TC-2000 has a similar architecture, although it uses

48 MC88000 processing elements each with 16MB of memory. Programs written using

BBN’s Uniform System for parallel programming are portable between these two machines.

Interpretation tree search seems well-suited for implementation on these MIMD ma-

chines because nodes of the tree can be mapped onto different processors, each of which

has enough power and memory to independently evaluate the pruning constraints on the

relevant data. Two algorithms, identical except for having different levels of granularity,

were implemented on the Butterflies. The programs consist of approximately 2000 lines of

code. For timing comparison purposes, the same algorithm was implemented on the Sun

SPARCstation.



168

All timings and speedups reported here for the Butterflies were found using the Uniform

System call to the routine TrmeTestFullO. Only the interpretation tree search was timed;

the time taken to input the images and to build the internal models of the objects was not

included. The time to initialize the Uniform System was also not included in the timings.

The spwdups reported are averages over several (usually about 10) trials. It was necessary

to compute averages using “trimmed” means for configurations using large numbers of

processing elements, because occasionally one trial exhibited much longer execution times

than the other trials. This behavior appears to have been a consqeuence of sharing the

machine with other users. Thus, we considered that trial an outlier and did not use it in

calculation of the mean.

“Trimmed” means were only necessary for configurations that contained a large number

of processors. For instance, a typical tree search can be executed in approximately 200

milliseconds in large-processor configurations. However, other Butterfly users and system

applications cause contention for the Butterfly switch and I/O resources, thus inducing

artificial delay into our timings. A small delay of only 50 additional milliseconds, for

example, would reduce the apparent speedup of a 200 millisecond run by one-fourth.

The coarse-grained implementation achieved relative speedups of 4 or less while the

medium-grained implementation achieved relative speedups of9 to 14 for the objects tested.

Images, Models, and Feature Extraction

To test the feasibility of the parallel—processing approach, we conducted experiments on

several images of three polyhedral objects. Our IT search on serial machines can also

handle objects that have spherical, cylindrical, and conical surfaces, and we could easily

extend those capabilities to our software on the BBN. However, in this chapter, the parallel

search performance is compared to a serial search that has no capabilities for objects with

curved surfaces. The three objects tested here are labeled Blockl, Block2, and Block3. A
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range image of Block] is displayed as a pseudo-intensity image in Figure 6.1435 A Block2

image is displayed using a similar rendering in Figure 6.16. The other images used in our

experiments are rendered in a “catalog” in Figures 6.18 to 6.23. All of the images are real

range images except for the Block3 image which is a synthetically generated range image.

The segmentation of the range images and extraction of resulting surface features were

done off-line on a SUN SPARCstation using the technique of Flynn [55], Hoffman, and

Jain [75] discussed in Chapter 5. Surface segmentations of the two range images in

Figures 6.14 and 6.16 are shown in Figures 6.15 and 6.17, respectively. Various features of

the surface patches were then extracted and downloaded to the Butterfly.

The CAD models of the Blockl, Block2, and Block3 objects, built by Flynn [55] using

the IDEAS CAD package on a Sun workstation, were used for these experiments.

Two Parallel Implementations

Coarse-Gralned Parallelism

Our first experiment was to test a coarse-grain parallelism, where one task was generated

for each node at the first level of the interpretation tree. Each task performed a recursive

depth-first search on its own subtree.

Speedup graphs for this approach applied to the polyhedral object called Block2 are

shown in Figure 6.24. The speedups shown are from timings on the BBN GP—1000. Similar

results were achieved on the TC-2000, although the speedups were never quite as high on

that machine. The total number of hypotheses generated depended on the specific range

image and varied from 12 to 229 for the five Block2 test images. The transformation

arising from the correct matching of the surfaces in Figure 6.16 to model surfaces is shown

in Figure 6.25. Clearly, the two viewpoints of the Block2 images are nearly identical.

 

5As noted earlier, this rendering displays brighter gray levels where object surfaces are oriented perpen-

dicular to the viewing angle and darker gray levels for points on surfaces that are oriented parallel to the

viewing angle.
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Figure 6.14. Pseudo-intensity ren- Figure 6.15. Segmentation of

dering of Blockl Image 1. range image in Figure 6.14.

  

 

Figure 6.16. Pseudo-intensity ren- Figure 6.17. Segmentation of

dering of Block2 Image 1. range image in Figure 6.16.   

 

Figure 6.18. Block2 Im- Figure 6.19. Block2 Im- Figure 6.20. Block2 Im-

age 2. age 3. age 4.

 

Figure 6.21. Block2 Im- Figure 6.22. Block3 Im- Figure 6.23. Blockl Im-

age 5. age 1. age 2.
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Figure 6.24. Speedups for coarse—grain parallelism for Interpretation Tree Search for Block2

images.

 

Figure 6.25. Transformation applied

to Block2 model to match its image

shown in Figure 6.16.
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The spwdups observed were acceptable, but not impressive—we never achieved more

than 4 times speedup. This is because early pruning of the tree resulted in most of the

processors running out of work relatively quickly. A few of the processors continued

running, and generated the majority of the matchings. In fact, the speedup can never be

greater than n + l, where n is the number of model surfaces, since only n + 1 tasks will

be generated. The sublinear behavior may indicate that the pruning constraints are very

powerful or that very strong evidence exists for the presence of a few of the model surfaces.

A diagram of the behavior of each processing element in a cluster of ten processing

elements working on Block2’s Image 5 is shown in Figure 6.26. This figure shows the

activity in each processing element over time. The process traces were created using a

BBN utility called gist and are a reasonable approximation of the behavior of the program

(the traces are not a completely faithful portrayal because the bookkeeping necessary for

gist degrades performance slightly). Five of the processors were utilized heavily while the

others were grossly underutilized. Early violation of the pruning constraints in the subtrees

assigned to the underutilized processors resulted in quick termination of the search of their

subtrees. One processor was not assigned any work at all because the branching factor ofthe

tree was less than 10. Five of the subtrees were searched for much longer times, indicating

a deeper search within those subtrees (and no early violation of the pruning constraints).

The deeper searches seemed to be balanced evenly.

Medium-Grain Parallelism

The interpretation tree search was parallelized at a medium-grain granularity by generating

tasks in a top-down fashion. That is, a task is generated for a child node only after the

parent node had satisfied the constraints. Since the tasks were generated in a top-down

fashion, surface matchings were only attempted for image surface i after image surfaces

1, 2, ...,i — 1 had been matched to some model surfaces. Ideally, children would each be

mapped onto a different processing element. Figure 6.27 shows the speedup graphs for
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Figure 6.27. Speedups for medium-grain parallelism for Interpretation Tree Search on three

images of Block2.

three images of the Block2 polyhedral object.

Figure 6.28 shows the speedup graphs for the Blockl images, the other two Block2

images, and for the Block3 image. Twenty-four hypotheses were generated for Blockl

Image 1 and six hypotheses were generated for Blockl Image 2. Block2 Image 5 and

Block3 Image I achieved the greatest speedups, probably because they contained more

surfaces than the other images. (In fact, Block2 Image 5 was over-segmented by the

segmentation scheme.) The large number of surfaces resulted in a deeper and wider

interpretation tree, thus creating more tasks for the team of processors. All of the speedup

graphs exhibit slightly sublinear behavior, although the region in the graph between 10 and

20 processing nodes is approximately linear. These results do not reflect any fine-tuning of

the implementation. Through more careful coding. speedup could perhaps be ten to twenty

percent higher.

Processor traces for the Medium-Grain parallelism implementation on an 8-node cluster
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Figure 6.28. Speedups for medium—grain parallelism for IT Search on Blockl, Block2

Images 3 and 5, and on Block3 Image 1.

for Block 2 Image 5 are shown in Figures 6.29 and 6.30. Figure 6.29 shows the trace at the

beginning ofexecution while Figure 6.30 shows the trace at the end of execution. Although

this output may appear to show that the coarse-grained implementation executed much

faster than the medium-grained implementation, this was not the case. The instrumentation

required to generate the gist output made the medium-grained implementation execute

very slowly. Without instrumentation, the cluster of 8 nodes mnning the medium-grained

implementation always executed much faster than 8 (or more) nodes running the coarse-

grained implementation. Near the end of execution, several of the processing elements

appear to be starved. This is probably because at lower levels of the tree, the branching

factor is very small, commonly only 1 or 2. When a parent process creates child processes,

the BBN Uniform System usually tries to minimize the number of immediate task switches

by allowing the processor allocated to the parent process to immediately begin working on

one of the child processes. Thus, at the bottom of the search tree, the node assigned to the
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Figure 6.29. Process traces at the commencement of medium-grained IT search on a cluster

of 8 processing elements applied to Block2 Image 5.
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parent processor continues to be busy, generating little work for other processing elements.

A graph of the processor utilization for the medium-grained search on the cluster of 8 nodes

applied to Block2 Image 5 is shown in Figure 6.31. A histogram showing the distribution

of execution times for each node of the interpretation tree is shown in Figure 6.32. A total

of 6618 nodes of the tree were visited. This histogram shows that the tasks (nodes) were

very evenly balanced across the processing elements, underscoring the fitness of IT search

for parallel implementation.

As processor configurations become larger, the task execution time increases as a result

of increased memory contention and more overhead due to task creation. For example, in

the 8-processor configuration for Block2 Image 5, average task length was 1.59 msec. For

a 10 node configuration, average time was 2.1 msec. For a 30-node configuration, average

time was 2.7 msec. These tasks are close to the ideal task length for the BBN GP-1000 [9],

although performance would probably improve if task lengths were slightly longer.

Gustaffson [67] has suggested that speedups should be measured using a bounded

speedup, in which the total amount of time, T, a process takes to execute is kept constant as

the number of processors increases. Speedup is then measured by comparing the problem

size which can be solved in time T using one processor versus the problem size which

can be solved in time T using N processors. We could scale up the amount of work for

our system by using models and/or images which have more surfaces, although this would

involve measuring the amount of work done by the system as the number of processors is

increased.

Graphs of the execution times on the GP-1000 are shown in Figure 6.33. Block2 Images

1, 2, 3, and 4 exhibited minimum times of between 0.08 and 0.23 seconds. Image 5 took a

minimum of 0.95 seconds to execute.

Another set of experiments was conducted that consisted of executing the search and

verification without producing any output. The speedups were roughly the same as those

observed above, although the execution times were reduced by at least twenty percent. For
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Figure 6.30. Process traces at the conclusion of Medium-Grained IT search on a cluster of

8 processing elements applied to Block2 Image 5.
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Machine CPU Time

SPARC l 4.05 s

SUN 4/390 2.84 3

SPARC 2 1.76 s

GP-1000 0.98 s

TC-2000 0.42 5

Table 6.1. CPU times for IT search for Block2 Image 5 on various architectures.

 

 

Block2 Image 3, execution time for a single processing element was reduced from 1.37

seconds to 0.43 seconds and the time using 12 processing elements was reduced from 0.25

seconds to 0.08 seconds.

For comparison, our algorithm was implemented on the Butterflies and on SPARCstation

1’s and 2’s. The chart in Table 6.1 compares the execution times for interpretation tree search

to generate and prune the search tree and produce the model-to-view transformations on

the various machines. The chart shows execution times for Block2 Image 5. The minimum

time, 0.42s was achieved using 24 nodes of the TC-2000. The same program executed in

1.22 seconds using 20 nodes of the GP-1000 and in 0.98 seconds using 40 nodes of the

GP-1000. The time for 40 nodes on the GP-1000 is the minimum time on it while the time

for 24 nodes on the TC-2000 was smaller than the time for any other number of processing

elements.

In general, the GP—1000 performed interpretation tree search approximately twice as

fast as a SPARCstation 2. The TC-2000 was approximately 4 to 4.5 times faster than the

SPARCstation 2. These execution times are still too large for many real-time inspection

applications.

Several approaches were investigated to improve the performance of IT search on the

BBNs. Most of the effort was concentrated on memory contention. We first tried to

allocate the memory for child processes on the parent processor. Later, we allocated the
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memory at random. Allocating the memory on the parent processor produced slightly

improved speedups, but only for configurations of a small number of processors. This

is probably because one or more of the child processes were actually initiated on the

parent’s processor. In larger configurations, it is less likely for the parent node’s processor

to be selected to do the work. We also observed some improvement in performance for

configurations of small numbers of processors if we used asynchronous task generation

(while continuing to use synchronous task generation whenever the number of processors

exceeded the branching factor at the top level of the tree). Synchronous task generation

means that a parent node waits for all of its children to finish searching their subtrees before

continuing any termination activities at the parent node (perhaps consisting of outputting

information or updating data structures). Asynchronous task generation allows the parent

node to continue processing while the children begin processing. In our experiment, we

allowed the parent processing element to begin processing one of the child nodes. In small

processor configurations, proper use of asynchronous task generation reduces some of the

task-switching overhead by allowing the parent node’s processing element to directly search

one of its subtrees without operating system intervention.

Summary of IT Search

The IT search procedure seems well-suited to MIMD machines that have 10 to 20 processing

elements. Parallel approaches to other high-level vision problems may have similar success.

Our experience in converting a serial implementation into a parallel one also presents

several lessons. First, a simple conversion of code is usually not possible. At the minimum,

parallel computation structures must be added to the code. If optimal performance is de-

sired, a great deal of effort must be invested in reducing memory contention and choosing

an optimal level of granularity. The non-deterministic nature of most parallel programs is a

major barrier to program development, frequently producing quite unexpected—and some-

times unreproducible—pattems ofexecution. This complicates debugging and performance
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optimization. Typical parallel programming environments also complicate development.

This is because development, debugging, and execution monitoring tools tend to be quite

primitive at present (if they are available at all).

Future Directions for IT Search

In the future, several extensions to our interpretation tree search technique should be

considered.

(i) The verification step is crude, and should use more of the sensed surface pixels

to verify the hypotheses. Model and object surfaces should be compared

directly, or at least a random sampling of points should be compared. We have

used the techniques of Chapter 7 for verification of pose, and propose that those

methods be used to evaluate the hypotheses that survive IT search’s constraints.

(ii) The current search technique matches all object surfaces with a model surface.

This usually results in too many hypotheses being evaluated. The approach by

Marshall [1 1 1] (also suggested by Flynn [55]) of only matching enough surfaces

to estimate an approximate model-to-view transformation, and using this as a

constraint on matches deeper in the tree, should make the matching process

faster, although the speedups on the parallel machines may not be as dramatic

since there would be less work to distribute. It may not even be necessary to

search to the bottom of the tree, although Marshall used the matches deeper in

the tree to refine the original transformation estimate. Time performance and

transformation accuracy should be explored for various search depths.

(iii) Different pruning constraints should be examined. Weaker constraints would

result in a deeper and wider search tree that would make more work available

for the processors. This might not be detrimental on the parallel machines

because the processing elements are currently being underutilized. Stronger
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constraining features should also be examined; strong constraints will generate

fewer and longer tasks but this could result in more efficient use of a small

number of processors, leading to fast processing.

(iv) Our interpretation tree search on the serial SPARCstations already includes

quadric surfaces and this functionality should be extended to our parallel im-

plementation. The parameters of quadric surfaces could be estimated using the

surface classification techniques discussed in Section 4.3. We could determine

the rotational component of the model-to-view transformation for objects con-

taining quadric surfaces using features such as the normal vector of the planar

surfaces, the axis directions of cylinders and cones, and the shortest vectors be-

tween sphere center(s) and planes, cylinders, and cones, etc. The translational

component of the transformation could be determined from examination of

polyhedral vertices, sphere and cone centers, and the intersections of cylinder

and cone axes with planar surfaces.

(v) The effects ofmemory contention should be explored further. The performance

should be improved if memory contention can be reduced. Specifically, the

effects of making local cache copies of data structures before referencing them

should be investigated. Local cache copies can be created using the GP—1000

Mach Operating System’s Do_bt() call. The effects of locking mechanisms and

coding styles on memory contention should also be explored.

(vi) Finally, different granularities of implementation should be examined. A finer

granularity could be achieved if parallelism within a task can be exploited.

Perhaps a coarser parallelism would yield better results, however. Since there

is a limited amount of work available near the bottom of the depth first search,

it would seem that a finer granularity is in order, however.
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Preliminary work on Interpretation Forest Search

If multiple objects need to be inspected, object recognition and localization are both prereq-

uisites to inspection. Our parallel implementation of interpretation tree search as presented

above can only “recognize” single objects. That is, interpretation tree search is useful for

pose determination of a known object. A parallel interpretation forest (IF) search algorithm

has also been implemented to allow the matching of scene objects to multiple models. We

anticipated that this would enable the amount of work to be scaled-up and should deliver

even greater speedups since the processors are currently underutilized, especially in clus-

ters of twenty or more processing elements. In fact, our observed speedup measures for

IT search may already be overly pessimistic because we have not scaled-up the amount of

work as we scaled up the number of processors.

Our work in this area is preliminary. We have not investigated the effects of memory

contention, task size, or number and type of models and objects on the performance.

We have tested the performance of coarse-grained and medium-grained implementations

of IF search on both the TC-2000 and GP-1000. We were unable to achieve speedups for

IF search that were as large as those observed for IT search. More study is needed to

determine reasons for this. We hypothesize that memory contention becomes a much more

serious factor in IF search, and believe that it is limiting the speedup. These effects should

be investigated in depth.

The performance of a coarse-grained implementation of interpretation forest search is

compared on the GP-1000 and TC-2000 for Block2 Image 5 with a model database of two

models in Figure 6.34. In a one-processor configuration, the GP-1000 executed the search

in 14.42 seconds while the TC-2000 executed in 5.8 seconds. With a cluster of 8 processors,

the GP-1000 took 3.74 seconds and the TC-2000 took 1.43 seconds.

The medium-grained implementation for the same image and models took 3.45 seconds

with 8 processors and 2.13 seconds with 18 processors on the GP-1000. (Since there is
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Figure 6.34. Speedups for coarse—grain parallelism of IF search on Block2 Image 5 on the

GP—1000 and TC-2000. Search was for two models.

more work in the medium granularity implementation, better speedups could be achieved

in configurations with a larger number of processors.) On the TC-2000, the medium-

grained implementation took 1.1 seconds with 8 processing nodes and 1.02 seconds with

11 processing nodes. The speedup graph for the medium-granularity algorithm is shown in

Figure 6.35.

If all three models are used in the recognition of Block2 Image 5, we observe slightly

better speedups. On TC-2000, the coarse-grain parallelism exhibited a top speedup of

4.83 with 10 processors (time: 2.58 seconds). The coarse-grain speedup was 5.1 with 26

processors on the GP-1000 (time: 5.86 seconds). The medium-grain parallelism executed in

2.06 seconds with 10 T‘C-2000 processors and in 3.76 seconds with 28 GP-2000 processors

(maximum speedups of 6.7 and 10.5, respectively). The speedups are plotted in Figure 6.36.
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Figure 6.35. Speedups for medium-grain parallelism of IF search on Block2 Image 5 on

the GP-1000 and TC-2000. Search was for two models.
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Figure 6.36. Speedups for medium-grain parallelism of IF search on Block2 Image 5 on

the GP-1000 and TC-2000. Search was for three models.
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6.5 Conclusions

In this chapter, methods for object localization have been presented. We discussed some of

the popular techniques for localization in the computer vision literature and experimented

with several techniques for use in pose determination for inspection.

We have used Chamfering and the Hausdorff matching when there is only 2D rotational

uncertainty (actually, Chamfering is useful when there is 2D and limited 3D uncertainty).

Both techniques seem to function acceptably within their 2D constraints. For 3D pose de-

termination, we have tried to match images to stored views of a model. We also investigated

the EGI method. Both techniques were problematic. Interpretation tree search seems to

perform within acceptable limits for some vision tasks. We studied parallel interpretation

tree search in detail in this dissertation and this is our proposed technique for 3D pose

determination (and object recognition). At present, our interpretation tree search method

may not be accurate enough for inspection purposes, however, and further work is required

to enhance its performance in the presence of defects.



CHAPTER 7

Inspection of Gross Features

In this chapter, we present techniques for detection of gross defects. The techniques

presented are useful for checking assembly integrity and for presence (or absence) of large

features such as holes or slots. Ideally, objects would be inspected at several stages of the

manufacturing process. For the casting inspection application, a part might be inspected

first after it is cast, then again after a region of the part has been stamped by a press,

again after a gate has been machined off the object, and finally after any other machining

operations have been performed. The incremental inspection is useful because it limits the

number of defective parts that continue through the manufacturing process.

Process inspection, which could be called incremental verification, can use information

from previous verifications to simplify, or constrain, the current inspection operation. For

example, the regions of the part that should not have changed since the last inspection could

be tested quickly, although perhaps not completely. instead, most of the inspection should

focus on areas of interest in the object. An area of interest is defined to be any portion of

the object that may have been altered, either accidentally or intentionally, by the assembly

process.

A technique for fast incremental inspection is presented in this chapter. The entire

object is first inspected for gross defects. Later, regions of interest can be inspected using

the techniques of Chapters 8 and 9.
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Figure 7.1. Block diagram of steps in inspection system.

A block diagram of the steps of our inspection system is shown in Figure 7.1. The

chapters that discuss each inspection step are also indicated within the boxes.

7.1 Random Subtemplate Matching

We perform in-process inspection by testing a random sampling of range pixels from an

image synthesized from the CAD model of a defect-free object against the range pixels of

an object image [128]. Random subtemplates have commonly been used as the first stage

of a two-stage template matching procedure [105, 149]. Several template-based inspection

systems have been presented in the literature and were discussed in Section 2.2.4. Template—

matching has also been used by Bolles and Cain [16] in their local-feature-focus technique

as a verification step.

Our verification method is efficient and is proposed as the first step of a two-stage

verification process. Several parts, including castings and other small objects composed of
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Figure 7.2. Block diagram of gross defect inspection using template matching.

polyhedral and/or quadric surfaces, were inspected for defects using this coarse verification

technique.

This technique verifies object features against the features extracted from the CAD

model. An outline of the inspection scheme follows. At each assembly step where

verification is required, range data is collected from one (or more) viewpoint(s) to verify

the part’s integrity. A subtemplate, consisting of a small set of randomly sampled 3D

points from an image synthesized from the CAD model, is compared against the sensed

data. Missing or extraneous subparts are detected by discrepancies between measured and

expected position of points in the templates. A block diagram of the system is shown in

Figure 7.2.

A small subtemplate was used to allow quicker execution than a brute force comparison

ofevery 3D point in the model and object. Exhaustive template matching can be quite time-

consuming, as has been mentioned in Section 2.2.4. The subtemplate {S,-, i = l, 2, . . . , M},

where M is the number of pixels in the subtemplate, was constructed by randomly sampling

approximately 1%‘ of the “relevant” pixels from a synthetic range image generated from

the CAD model. Only those pixels which were on object surfaces and not near region

 

‘We attempted a few trials using subtemplates with approximately 0.5%, 2%, and 3% of the pixels. 0.5%

was found to yield much less reliable results while 2% and 3% yielded only slightly more reliable results.
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boundaries are “relevant.” (One of the matching statistics relies on estimation of surface

normals, and since computation of surface normals near region boundaries is unreliable,

we do not include those points in the subtemplate). The subtemplate is augmented with

points from each visible surface of the model to ensure that each region contributes to the

matching score.

The matching technique assumes that the expected pose of the part is known, either

through fixturing or by a localization procedure. Since the range images are depth maps

generated on an a: — y grid, only a small (5 x 5) neighborhood N, needs to be searched to

find the closest object point 0, to subtemplate point 5,. An Euclidean distance metric was

used to select the pixel 0,- closest to the point 5,.

The point coordinates and the corresponding surface normal vectors were used as

features from which several matching statistics were computed to test the null hypothesis

(Ho) against the alternate hypothesis (HA), where

Ho : the object is a defect-free instance of the model, and

HA : the object is defective or not in the correct pose.

7.1.1 Matching Statistics

Three families of statistics were examined:

MSE - The mean squared error in position of object points 0,- relative to subtemplate

points 5,, defined as

I n

MSE = '5 Z N 01-5.- ”2,
1:!

01'6”!

where n, n g M, is the number of subtemplate pixels for which there is a corresponding

object pixel 0,- in the neighborhood N,.
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MDN - The mean difference in normal vectors to the tangent plane at corresponding

points in object and model, defined as

 

I n _ —+ —o

MDN = ;;|cos ’(no, ~ ns.) ,

where n3). is the normal vector to the object surface at 0,, n; is the normal vector to the

model surface at 5,, and n, n g M, is the number of subtemplate pixels for which there is

a corresponding object pixel 0,- in the neighborhood N5.

Ratio(d) - The ratio of the number of times object pixel 01- was greater than a distance

d from the corresponding subtemplate pixel 5,, defined as

M

2 CO) 0 if u 0,- - 5.- Mg d

Ratio(d) = iz'M , where C(i)=

1

 

if H O,- — S,- ||> d or no 0,- exists.

These statistics were used to test Ho against H,4. Ho was accepted if the statistic was

less than a threshold value T. The three tests of hypotheses were:

IfMSE > TMSE. Reject Ho;

If MDN > TMDN, Reject Ho;

If Ratio(d) > Tam-o, Reject H0.

If Hg was rejected, the object could be rejected as defective, or an additional verification

step could determine the nature of the defect. If H0 is accepted then a more detailed

verification step is initiated to check for small defects within regions of interest.

We wanted to accept H0 in all cases where the object was in its expected pose and reject

it in all cases where the object was rotated 5° or more or translated 0.25” or more. For

smaller tolerances on rotation or translation, different thresholds would be used.

We first present thresholds that were determined empirically to deliver acceptable results
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for synthetic noisy range images. We then present thresholds for real range images.

Performance

Generation of the random template, matching object pixels to the template, and testing

the hypothesis using all the statistics took an aggregate time of less than one second on a

SPARCstation 2. This time did not include the time to estimate the surface normals for the

object, although that could probably be done at frame rates via convolution operation.

7.1.2 Synthetic Range Images

For synthetic images, the thresholds are as follows. The threshold value Tam-o depends on

distance d. Specifically, for d = 0.08”, T3,“, = 0.025; for d = 0.06”, T3,“, = 0.025; for

d = 0.04”, T3,“, = 0.05; and for d = 0.03”, T3,“, = 0.1. The MSE statistic was tested

at thresholds TMSE of 0.001”, 0.0015”, and 0.002”. TMDN was tested for values of 3°,

25°, and 2°. These thresholds were determined empirically by examining the statistics for

images where objects were moved by a small amount from their expected positions. In the

experiments that follow, we will investigate the suitability of these statistics and thresholds

for the inspection task.

In order to evaluate the significance level of the statistics, extensive Monte Carlo trials

were conducted on synthetic noisy images generated from the CAD models using the

polygon-conversion software discussed in Chapter 3. In these images, the object’s true

position and orientation was known. For each position or orientation to be verified, a set of

200 Monte Carlo trials (i.e., 200 images of an object) was conducted to estimate rejection

rates for the statistics. Each trial consisted of testing one synthetically-generated noisy

range image against the model. The noise was in the form of random Gaussian noise of

standard deviation 0.01” added to the 2 component of each pixel.
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(a) Pseudo-intensity ren- (b) Pseudo-intensity ren-

dering of synthetic range dering of synthetic range

image of a cup. image of a Y pipe fitting.

  
(c) Pseudo-intensity ren— (d) Pseudo-intensity ren- (e) Pseudo-intensity ren-

dering of synthetic range dering of synthetic range dering of synthetic range

image of a cube. image of an adapter. image of Block2.

Figure 7.3. Range images from models of inspected objects.
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Rot. MDN MSE Ratio(d)

3.0 2.5 .002 .0015 .001 .08 .06 .04 .03

0° 0.0 .10 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1° .31 .57 0.0 0.0 0.0 0.0 0.0 .26 .39

2° 1.0 1.0 0.0 0.0 0.0 0.0 0.0 .33 .99

3° 1.0 1.0 0.0 0.0 .08 0.0 .03 1.0 1.0

4° 1.0 1.0 0.0 .14 1.0 0.0 .50 1.0 1.0

5° 1.0 1.0 .48 .69 1.0 .48 1.0 1.0 1.0

10° 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

 

 

              

Table 7.1. Rejection rates of H0 for different object rotations; Ho: object is an instance of

the adapter in an expected pose. Rates for 1° rotations are aggregate means from several

sets of trials using different starting positions and rotations about different object coordinate

axes.

Orientation Tests

Table 7.1 shows the rejection rates for each statistic in images of an adapter (see Fig-

ure 7.3(d) ) at various rotations from an expected position. Note that the MDN statistic

at the 2° threshold was omitted because it caused Ho to be rejected for 98% of the 0°

rotations. Similar behavior was observed for nearly all of the other objects tested. Thus,

the 2° threshold does not appear to be useful for verification. This probably also indicates

that our estimation of surface normals was not very accurate.

Figures 7.4 and 7.5 express the rejection rates for Block2 (Figure 7.3(e) ) for the MDN,

MSE, and Ratio(d) statistics at various thresholds. The MDN and Ratio(.03) were the most

powerful statistics. The 3° threshold on the MDN statistic appears to offer good power and

few false rejections. It is well-suited for small rotational tolerances of about 2°. The average

distance statistic (MSE) also appears to be acceptable for verifying polyhedral objects like

Block2. The Ratio(.08) statistic performed similarly to the MSE statistic at threshold 0.002

for the block. These statistics would be useful when the rotational tolerance for the block

was 3°. The Ratio(.04) and Ratio(.06) statistics seem well-suited if the tolerance is about
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Rotation MDN MSE Ratio

3.0 2.5 .002 .0015 .001 .08 .06 .04 .03

0° .03 .79 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1° 1.0 1.0 0.0 0.0 0.0 0.0 .063 .66 .667

2° 1.0 1.0 0.0 0.0 1.0 .005 .725 1.0 1.0

3° 1.0 1.0 .94 1.0 1.0 .99 1.0 1.0 1.0

 

 

              
Table 7.2. Rates of rejection of Ho under various statistics; Ho: object is an instance of the

cup. Results for 1° are aggregate means over 4 sets of 200 trials where each set of trials is

a rotation in a different direction.

2°. The Ratio(.03) statistic is probably useful if the tolerance on rotation is very small.

In both of these tables, the results for 0.5° and 1° are aggregate averages over 4 sets of

200 trials where each set of trials is a rotation in a different direction. We also tested the

rejection rate for rotations of Block2 from different starting orientations. Results similar to

those in Figures 7.4 and 7.5 were observed.

Table 7.2 shows the rejection rates for incorrectly oriented instances of the cup (see

Figure 7.3(a)). If the tolerances on rotation were about 2°, the MSE statistics or the

Ratio(.08) statistics would appear to be appropriate for this object. The Type I error

associated with using the MDN statistic at the 2.5° threshold is too large, suggesting that it

may not be suitable for this object. The Type I error for the MDN statistic at the 3° threshold

may also be too large. For small tolerances on rotation (i.e., approximately 1°) the MSE

statistic at the .001 threshold and the Ratio(.04) and Ratio(.03) statistics may be useful.

A false rejection rate of 0.79 was observed for the MDN statistic at the 2.5° threshold

for unrotated instances of the cup, however. This Type I error is too large, suggesting that

the MDN statistic at threshold 2.5° is not suitable for that object.

The estimated rejection rates for incorrectly oriented instances of the pipe fitting (see

Figure 7.3(b)) are shown in Table 7.3. The statistics exhibit similar rejection behavior

although the Ratio(.06), Ratio(.04), Ratio(.03), and MSE statistic at threshold .001 may

reject too many instances of very small rotations of the object. The other statistics are
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Figure 7.4. Estimated rates of rejection of Ho under the MSE and MDN, and Ratio statistics

with tolerances as shown; Ho: object is an instance of Block2. Rates for 05°, 1°, and 2°

are aggregate averages over multiple sets of trials where each set of trials is a rotation along

one of the object coordinate axis.
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Rotation MDN MSE Ratio

3.0 2.5 .002 .0015 .001 .08 .06 .04 .03

0° 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1° 0.0 .0075 0.0 0.0 0.5 0.0 .495 1.0 1.0

2° .335 1.0 1.0 1.0 1.0 .515 1.0 1.0 1.0

3° 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0          
 

Table 7.3. Rejection rates of Ho under various statistics; Ho: object is an instance of the

pipe fitting. Rates estimated using 200 Monte Carlo trials of synthetic range images of the

pipe fitting with additive Gaussian noise of s.d. 0.01”. Rates for 1° are aggregate means

over 4 sets of 200 trials, with each set a rotation in a different direction.

 

 

 

 

Rotation MDN MSE Ratio

3.0 2.5 .002 .0015 .001 .08 .06 .04 .03

0° 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1° .43 .853 0.0 0.0 0.0 0.0 0.0 .027 0.0

2° .61 .995 0.0 0.0 0.0 0.0 0.0 .22 1.0

3° .965 1.0 i‘ 0.0 0.0 .49 0.0 .04 1.0 1.0

5° 1.0 1.0 » .585 1.0 1.0 .995 1.0 1.0 1.0            
 

Table 7.4. Rejection rates of Ho under various statistics; Ho: object is an instance of the

cube. Rates estimated using 200 Monte Carlo trials of synthetic range images of the pipe

fitting with additive Gaussian noise of s.d. 0.01”. Rates for 1° are aggregate means over 4

sets of 200 trials, with each set a rotation in a different direction.

useful when the rotational tolerance is about 1 degree.

The rates of rejection for various orientations of the cube are shown in Table 7.4. The

MDN statistic at threshold 2.5° rejects Ho for most of the rotated objects but also rejects

some of the non-rotated objects. MDN at a threshold of 3° is better than at a threshold of

2°, but still is only useful when the rotational tolerance is small. The MSE, Ratio(.08), and

Ratio(.06) statistics are useful when the rotational tolerance is approximately 3° to 5°. The

other Ratio statistics are useful only when the rotational tolerance is quite small.
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Position Tests

The rejection rates for translations of the objects by distances of 0.05 inches, 0.1 inches,

0.25 inches, 0.5 inches, and 1.0 inches in the a: direction were also estimated. Results are

presented here for translations of Block2. For translations of 0.25 inches or more, all of

the statistics rejected Ho for every trial, where Ho: the object is a defect-free, correctly

positioned instance of Block2. The Ratio(.06), Ratio(.04), Ratio(.03), MSE, and MDN

statistics rejected Ho for every instance of 0.1 inch translations at the tested thresholds. The

Ratio(.08) statistic accepted Ho for all of the 0.1 inch translations, however.

The Ratio(.08) and Ratio(.06) statistics accepted Ho for all of the translations of 0.05

inch. The Ratio(.04) and Ratio(.03) statistics rejected Ho for all of the 0.05 inch translations,

however. The MDN statistic at thresholds 2.5° and 3° rejected over 99% of the 0.05 inch

translations. The MSE statistic at threshold .0002 and .0015 accepted all of the 0.05 inch

translations but the MSE statistic at threshold .001 rejected 99% ofthe 0.05 inch translations.

Pose Testing Summary

Our tests indicated that the Ratio(.08) statistic and the MSE statistic at thresholds of .0015

or .002 appeared well-suited for verification of blocks when translational tolerances were

approximately 0.1 inches and rotational tolerances were approximately 3° to 6°. The

Ratio(.06) statistic was useful when the positional tolerances were 0.1 inches for translation

and the rotational tolerances were about 2° to 4° . The other Ratio statistics were fairly useful

when the rotational and translational tolerances were very small, although they may exhibit

too many cases of false acceptances for rotated blocks to be very useful. The MSE statistic

at the 0.001 threshold performed well when the rotational threshold was approximately 1°

and the translational threshold was about 0.05 inches. The MDN statistic was fairly useful

when the rotational tolerances were very small and the translational tolerance was about

0.05 inches.
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Figure 7.6. Block2 with a comer missing.

We obtained similar results in testing the cup, Y pipe fitting, and in testing instances of

a cubic object. Through empirical testing of the performance of the statistics for a specific

objects, a correct choice could be made for the desired inspection application.

Gross Defect Detection

Deformed objects were also generated for testing. The Block2 object with one of its

surfaces deleted is shown in Figure 7.6. We conducted 200 Monte Carlo trials which

compared images of this block to an ideal Block2 in the same position as the deformed

block. Hg was accepted by the MDN statistic at the 3° threshold for all of the instances

of the deformed Block. The rejection rate for Ho was 77% at the 2.5° threshold on MDN,

however. The MSE statistic at all three thresholds and the Ratio(d), d > 0.04, statistics

rejected Hg for all the trials. Ratio(.03), though, accepted Ho for all of the instances.

We also attempted verification of images containing a cubical object against the block

model. The cube was positioned so its visible Y junction was coincident with the visible

Y junction of the block. All of the statistics resulted in rejection of all of the cube images.

It seems that all three families of statistics are well-suited for detecting large defects in the
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objects, even when substantial portions of the object closely match the model subtemplate.

A deformed block with 0.25 inches removed from one of the surfaces (with all the other

surfaces being correct) was also tested. The MDN statistic with 3 3° threshold accepted Hg

for all of the trials. At the 2.5° threshold, Hg was rejected 4% of the time. All of the Ratio

statistics accepted Hg for each of the test images.

Our experimental results would seem to suggest that the MDN statistic has too high

of a significance level to be useful for verification of many objects unless the tolerances

on pose are quite small. In many of the tests, the MSE statistic had a very low power

although it did seem to perform satisfactorily in cases where the object was positioned

much differently than the model. Statistics such as Ratio(.04), Ratio(.06), and Ratio(.08)

have strong discriminatory capability and seem to be the most worthwhile for use in this

verification task. The Ratio statistics measure both the “closeness” of objects in two images

and also the rate of local deviations from an ideal, so it is not surprising that they were the

best-suited in these experiments. There may be some types of objects or defects that are

detected more reliably by the other statistics, however.

7.1.3 Real Range Images

We applied the template-matching scheme to a large number of real range images ofcastings

and other objects and discovered several limitations to the technique. The major limitation

is sensor-related. Because of the large baseline between the camera and laser in the lOOX

sensor, self-occlusions are present in most range images. The occlusions tend to increase the

value of the matching statistics (except MDN), making it difficult to distinguish defective

parts from occluded parts. Another problem is that excess material on the object may not be

detected. For example, Figure 7.7 contains the range image of a casting that has two defects

including a blow hole and excess material in the center. Yet, the value of the matching

statistics are very small for this image. Also, while the sensor depth resolution is quite good,

the :r and y resolutions are relatively poor (pixels are separated by a distance of 0.025” in
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Figure 7.7. Image of a casting with two defects: blow hole and excess material obstructing

a through-hole.

the a: direction and by 0.04” in the y direction). Because it is unlikely for the sampling grid

to be known in object and model images, this can lead to significant discrepancies during

template matching. Finally, the template-matching technique is too inflexible, requiring

rigid fixturing or precise localization.

To address these problems, the template-matching scheme was enhanced in several

ways. First, the image from the CAD model was synthesized at a finer resolution than the

object image. This minimized the effects of poor spatial resolution in the real range images.

(Before, the pixel in the template might be as much as 0.02” distant from the closest pixel

in the sensed image due to the sparseness of the depth map, thus yielding large scores for

the Ratio(d), d S 0.04 and MSE statistics.)

To relax the positional requirements, we assume only that the object to be inspected

is resting in a stable position on a known surface. For the gear blank casting, this would

mean that it would be restricted to lying on its bottom planar surface on the assembly

line. a position that would be likely even without the aid of fixturing devices. Positional

uncertainty is resolved by aligning centers of mass of model and object images and then

using the Hausdorff matching technique discussed in Chapter 6 to determine the rotation

about the z axis to align the image silhouettes.
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The problems of detecting excess material were resolved by using 2-way template

matching (i.e., matching both from object to model and from model to object). Although

both templates randomly draw 1% of the pixels from the images, since the model image

has a higher resolution there are more pixels in the model template than in the template

drawn from the sensed image. The matching scores were computed by aggregating the two

matchings. For example, the new MSE statistic becomes

MSE =
 

I n, I!)

"26: ll 01' — Sn “2 +2 ll Mi — 52.- ”2),

i=1"1 + i=1

where n1 is the number of model subtemplate pixels for which there is a corresponding

object pixel 0,- in the neighborhood N,- of model subtemplate pixel S1,- and n2 is the

number of object subtemplate pixels for which there is a corresponding model pixel M,-

in a neighborhood N,- of object subtemplate pixel 52,-. The other statistics are extended

similarly. Because the model template is larger than the object template, the model template

has a stronger effect on the matching statistic than does the object template.

Finally, the effects of occlusion were reduced by acquiring range images from multiple

known viewpoints and merging the data into a single image. We have used an additional

viewpoint that is “behind” the object. In practice, this additional image could be acquired

simultaneously with the original image taken from the “front” of the object by adding a

second camera to the 100x sensing arrangement.

We tested these enhancements on several images of the gear blank castings. We

performed one set of experiments on non-merged data and another set on merged data

collected from two viewpoints. We found that the Ratio(.04) and Ratio(.03) statistics were

most useful, although it was necessary to use thresholds different from those used for the

synthetic images.
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Figure 7.8. Image of defect-free gear blank 356 casting.

 

Table 7.5. Matching statistic values for 2-way template matching for gross defect detection

in the defect-free gear blank image.

Application to a defect-free part

In the remainder of this section, we report the actual observed matching scores of the

statistics rather than error rates at specific thresholds. In our first experiment, we tested the

method on the image of a defect-free gear blank 356 casting shown in Figure 7.8. Table 7.5

shows the statistic values for 2-way template matching applied to the casting.

Applications to defective parts

Three images of a casting with a poured short defect were tested against an ideal defect-free

image synthesized from the model. These three images are shown in Figure 7.9.

Table 7.6 shows the statistic values when a one-way template was used for the poured
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(a) Pseudo-intensity ren- (b) Pseudo-intensity ren- (c) White Scanner Inten-

dering of Image 1. dering of Image 2. sity plane for Image 3.

Figure 7.9. Range images of casting with poured short defect.

 

Table 7.6. Matching statistic values for l-way template matching for gross defect detection

in the 3 poured short images of Figure 7.9.

 

Table 7.7. Matching statistic values for 2-way template matching for gross defect detection

in the 3 poured short images of Figure 7.9.
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short images. Table 7.7 shows the increase in values of matching statistics when using a

two-way template. We would generally expect to see this increase mostly in cases ofexcess

material in the object. The behavior was probably observed because the object has some

small regions of excess material, such as around the gate, and because the template drawn

from the model is biased toward regions of the model (namely, filleted regions) that are

present in the object. If the model template was biased toward regions that were not present

or were defective on the object, we would not observe this behavior. Specifically, since the

model template is augmented with up to ten points from every surface, the model template

tends to include many points from filleted regions. The cause of this are the bugs in the

IDEAS CAD modeler’s filleting feature. The filleting causes many polyhedral artifacts to

appear along filleted surfaces, and the model template will be augmented to include up to

ten points from each of these regions. The object template has no such bias. We could

remove the bias from the model template, but then the template matching method would

not be able to inspect for the presence of legitimate (non-artifact) features in the models.

On this gear blank casting, there are many fillet artifacts, however. In fact, the rendering of

the model at this orientation contains 45 regions, no more than 14 of which should actually

exist in the model. Figure 7.10 shows the regions in the model for this view. Thus, the

one-way template matching produces biased matching scores.

In the two-way template matching, thresholds of Tam-o = 0.15 for d = 0.04 and Tm“,

= 0.2 for d = 0.03 seem to produce the desired discriminability, allowing the acceptance of

defect-free parts and rejection of defective parts. It is not clear what threshold levels would

be appropriate for the other statistics.

The two-way template matching for gross defect detection was also applied, first sepa-

rately, to two images of a gear blank casting with a blow hole. These images, denoted A

and B, are shown in Figures 7.11(a) and (b). The two images were later merged and the

two-way template matching applied again. The defects in these images are fairly small and

we do not expect the template-matching scheme to detect this type of error. The matching
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Figure 7.10. Labeling of surface regions for gear blank model exhibiting artifacts in filleted

and rounded regions.

   
(a) Image A. (b) Image B. (C) Image of B merged

with A.

Figure 7.11. Range images of gear blank 356 casting with blow hole defect. White scanner

intensity map shown for (a) and (b). Depth map of merged image displayed in (c).
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Statistic Image A Image B Merged Image

Ratio(.08) .13 .13 .12

Ratio(.06) .133 .132 .12

Ratio(.04) .14 .14 .123

Ratio(.03) .166 .155 .128

MDN 4.3° 37° 39°

MSE .0009 .0006 .00037    
 

Table 7.8. Matching statistic values for 2-way template matching for gross defect detection

in a gear blank 356 casting with blow hole defect (Figure 7.11).

scores for the two-way template matchings are shown in Table 7.8.

The two images were collected from known viewpoints, 180° apart. We merged the two

images by applying the rotation transformation to image B and “filling in” the transformed

values to all points in image A for which no range values were recorded. The translational

transformation was computed by aligning the centers of mass of the two images. The

merged range image is shown in Figure 7.11(c). Matching scores are presented in the last

column of Table 7.8.

In these examples, the MDN and MSE statistics have not been very useful. The Ratio

statistics seem better suited for detection of defects when position is controlled. The MDN

and MSE statistics may be useful for some gross defects, although the defects would likely

be much different than any of the most common defects encountered in the casting process.

7.1.4 Summary

We have presented a method for fast verification of given 3D objects in a known position

and orientation. The verification was performed using a template composed of randomly

selected pixels from a CAD-generated model that was matched to corresponding pixels

in the object. Several matching statistics were defined to determine the goodness-of-fit

between the template and object. The Ratio statistics, which were based on the number

of object points sufficiently close to template points, offered the best discriminatory power
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in most of the cases tested. Merged data acquired from multiple viewpoints was used to

reduce the effects of occlusion.

The coarse verification procedures assume that the object’s pose is tightly controlled

through fixtures. It is questionable if these techniques can be extended into a fixtureless

environment. For instance, the techniques probably can not be extended to allow acceptance

of objects that contain no defects but which are grossly misoriented since the methodology

tightly couples detection of defects with detection of improper orientation. We propose this

gross defect detection scheme for use in process inspection when the object is restricted to

be in an expected pose.

7.1.5 Extensions

We propose that at the conclusion of the assembly sequence, or at important steps during

assembly, images from multiple views could be collected to more thoroughly inspect the

object. The approach presented in this chapter would allow quick incremental verification

and complete final verification.

Our approach to coarse verification can also be used by a verification process after the

object has been localized. Objects which pass the coarse inspection would be inspected

to ensure their adherence to the dimensional tolerances and other features encoded in the

model.

We could apply this verification technique to regions of interest in the object. We

define a region of interest as any portion of the object that may have been altered, either

accidentally or intentionally, by the assembly process. Our primary goal is to verify that

operations of interest have succeeded. A dense template could be constructed for those

regions and then compared to the object. Altemately, a pyramidal template could be used

with additional dense verification performed as necessary in regions around pixels which

do not match the coarse subtemplate well. Califano et a1. [22] have suggested a similar

multiresolution approach for visual perception that processes an entire range image at a
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coarse resolution and small windows of the image at finer resolutions.

Several other extensions should also be possible. After defect candidates are found,

perhaps by considering object pixels which exhibit a poor correspondence to model pixels

using the coarse defect detection procedures outlined above, the extent of the defect and

the identity of the defect would be determined. Region growing around subtemplate pixels

which are far from their expected positions can be used to determine defective regions.

The defect region consists of all pixels adjacent to the original “bad” pixel; all neighboring

pixels which are also far from their expected positions are added to the defect region. A

related technique currently being investigated is determination of all pixels in the image

which do not fall within a certain distance of their expected position. The first technique is

probably quicker although it may not find all defective regions.

7.2 Conclusions

In this chapter, wehave presented a template-matching scheme and matching statistics useful

for detection of gross defects. First, a 1—way template matching scheme was proposed as a

verification technique to determine if an object was positioned correctly. A 2-way template

matching scheme for gross defect detection was then proposed and demonstrated on real

data. The techniques perform well and execute quickly. The gross defect detection scheme

is envisioned as a general in-process inspection step that would be used to quickly eliminate

from consideration parts that contain gross defects. The matching statistics are probably

also useful to evaluate pose hypotheses, perhaps in conjunction with one of the localization

schemes of the previous chapter, such as IT search.



CHAPTER 8

Surface Shape Inspection

8.1 Introduction

Several classes of defects are commonly encountered in iron castings. Most of the defects

could probably be classified into three categories—cracks, excess material, or insufficient

material. In this chapter, the topic of detecting the presence of insufficient or excess material

on planar or cylindrical surfaces of castings is addressed. Common examples of insufficient

material include pits or holes, while a common example of excess material is a drop.

As indicated in Chapter 5, our surface classification algorithms [126] and [127] are used

for fitting quadric (cones, cylinders, and spheres) or planar surfaces in segmented range

images. Those techniques perform model-driven fittings to image surfaces. Poor surface

fits probably indicate the presence of a surface shape defect on the object. It is possible that

some surface defects such as mars, scratches, and irregular finish can be detected using these

techniques, but, in general, those defects cannot be detected merely by examining errors

in surface fit. In this chapter, we focus on inspecting surface shape, including planarity,

cylindricity, and insufficient and excess material defects.

A rich body of literature exists for surface inspection. Many studies on image texture,

for instance, are applicable for surface inspection. It is beyond the scope of this dissertation

to explore surface inspection in detail. In fact, the complex mathematical presentations for

212
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surface inspection using texture often have little practical application in manufacturing. This

is because defects like cracks and pits in metal surfaces can almost always be easily detected

by edge detection under bright lighting. Instead, most of our effort focuses on surface shape

inspection. We did attempt to find cracks in range images using the proposed techniques

for insufficient and excess material detection but were unsuccessful. We were able to detect

some cracks using edge operators on intensity images illuminated with carefully controlled

directed lighting, however. In practice, complete inspection is probably possible only if

multiple sensory modalities are used.

8.2 Pits and Excess Material Defects in Planar Surfaces

For the castings used in our investigations, the factory allowance for excess material is

0.120” or less deviation from the reference surface. The allowance for insufficient material

is 0.060”. Castings that have pits deeper than 0.060" are considered defective. The diameter

of a pit is usually the same as its depth; thus, the diameter of a pit defect is usually 0.060”

or greater. Surface deviations that are shallower than 0.06” are not of concern because the

casting typically contains about 2mm (about 0.079”) of finish stock. Thus, all material that

surrounds pits of less than 0.060” depth will be removed from the casting during subsequent

machining. However, small pits (i.e., pits whose diameters are 0.04” or less) of depth 0.03”

or greater should also probably be rejected, as discussed in Chapter 1.

In this section, we discuss our technique for inspecting the mostcommon casting defects,

namely excess or insufficient material defects on planar surfaces.

8.2.1 Roughness of castings

Surfaces of unmachined castings are very rough. The roughness of the metallic surface is

caused by the grain of the sand in the cope and the drag into which the metal is poured.

There are also other marks on the castings, including scratches caused by rubbing against
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other castings and identification markings such as part numbers and logos. This lack of

smoothness is a typical and difficult problem for machine vision inspection systems.

Measuring Surface Roughness

With the generous assistance of Dr. Salim Hiziroglu of Michigan State University’s Forest

Products Lab, a Bendix Microcorder depth gage (based on the stylus method) was used to

obtain surface profiles from two 1” sections of planar surfaces on each of two gear blank

356 castings. These profiles provide reference information about the casting, allowing us

to compare surface information acquired in range data with the actual surface deviations.

The stylus profiling method evaluates the surfaces in two dimensions. A stylus is passed

over the material in one direction and stylus position and vertical deviation are recorded.

Graphs of one of the profiles from each of the two castings are shown in Figure 8.1. In the

graph, vertical grid lines are 0.05” apart and horizontal grid lines are 0.001” apart.

Dr. Hiziroglu’s equipment computed three standard roughness measures for ten intervals

of each collection of profile data. These are (i) Ra, the arithmetic mean roughness value,

(ii) Rm”, the maximum peak-to-valley height, and (iii) the mean deviation of the surface

from a reference height. The following expression defines Ra " [76]:

1 l

R. = —,— ] |f(ar) — pldw,
0

where I is the evaluation length of the profile, f(2:) is the height of the profile at x, and p is

the mean value of the profile.

The values of Ra, Rm“, and Mean Height (all values are in inches) for the profiles are

shown in Table 8.1. Profiles 1A and 1B are from two different regions of one planar surface

of one of the gear blank 356 castings. Profiles 2A and 2B are from the same surface on a

different gear blank 356 casting.

 

'Based on DIN and ISO standards.
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Profile Number Mean Height Ra 12,,m

1A -0.001863 0.000498 0.004399

1B -0.000371 0.000707 0.006307

2A -0.001625 0.001052 0.007374

2B -0.000426 0.000573 0.005436      
 

Table 8.1. Measures of Surface Roughness.

 

 

Profile Number Mean Standard Deviation (a)

1A -0.0020 0.000829

1B -0.0007 0.002539

2A -0.0018 0.001558

2B -0.0004 0.000865     
 

Table 8.2. Estimated sample means and standard deviations of surface profiles.

Because we did not have access to the raw surface profile data, it was necessary to

estimate the deviations from the graph. We estimated the mean and standard deviation of

these surface profiles based on 19 samples from each graph. We did this at regular intervals

of 0.05”. Table 8.2 contains the estimated sample means and variances (all in inches).

Ideally, the standard deviation or of the surface could be derived from Ra, however there

is no clear way to directly express a in terms of R... It may be possible to bound 0 by an

expression involving Ra, however.

Sensed surface data

We also investigated the roughness of planar surfaces in castings using range images

acquired by the Technical Arts White Scanner in the PRIP Laboratory. Figure 8.2 shows

a range image of a planar patch (Patch 1). A plot of the density of the deviation of points

from the plane (fitted using the method of Chapter 5) for the patch is shown in Figure 8.3.

A histogram of the deviations for the patch is shown in Figure 8.4. The bounding box of

this patch is approximately 1” by 2”. The patch contains 2530 pixels. A plot of the density

of the point deviations for a second patch is shown in Figure 8.5. This patch is bounded
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Figure 8.2. Defect-free planar patch (referred to as Patch 1) on casting.

by a box of size 1.7” by 1.2” and contains 1802 pixels. The deviation of the sensed points

from these planar surfaces was approximately Gaussian.

A Chi-squared goodness-of-fit test for normality was applied to the data from Patch 1

(shown in Figure 8.2) and is shown in Table 8.3. The cutoff value for this data at the 0.05

significance level is 27.6 (assuming 17 degrees of freedom), so the assumption of normality

cannot be rejected. The observed Chi squared value, 26.42, is very close to the cutoff value,

however. In our experiments, we have, therefore, assumed that deviation of depth data

from planar castings as sensed by the White Scanner is approximately Gaussian. However,

there seems to be some departure from normality in the tails of the distribution. This may

be related to physical limits in the manufacturing process, which places definitive limits on

maximal local deviations, restricting the possibility of deviations larger than some amount.

We also performed a Chi-squared goodness-of-fit test on the data from Patch 2 and

found that we could not reject the hypothesis of normality, again at the 0.05 significance

level.

A normal Q-Q plot of the data from Patch 1 is shown in Figure 8.6. This plot shows
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Figure 8.3. Density of deviations from a plane for surface Patch 1.
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Figure 8.4. Histogram of deviations from plane for surface Patch 1.
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Class Deviation Obs. Freq. Exp. Freq. )8 value

1 -0.00747 138 126.5 1.045

2 -0.00582 128 126.5 0.018

3 ~0.00471 131 126.5 0.160

4 -0.00382 125 126.5 0.018

5 ~0.00306 129 126.5 0.049

6 -0.00238 1 10 126.5 2.152

7 -0.00175 1 16 126.5 0.872

8 -0.001 146 130 126.5 0.097

9 -0.00057 1 17 126.5 0.713

10 -0.000002 1 13 126.5 1.441

1 1 0.000574 1 18 126.5 0.571

12 0.001 151 108 126.5 2.706

13 0.00175 136 126.5 0.713

14 0.00238 139 126,5 1.235

15 0.00307 133 126.5 0.334

16 0.00382 1 16 126.5 0.872

17 0.00471 162 126.5 9.962

18 0.00582 137 126.5 0.872

19 0.00747 134 126.5 0.445

20 0.014 110 126.5 2.152

Total 26.42  
 

Table 8.3. Chi-squared goodness-of-fit on surface Patch 1.
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Figure 8.5. Density of deviations from plane for surface Patch 2.

the sorted Patch 1 depth data plotted against the quantiles of the normal distribution. The

data would be considered to be normal if all the points fell approximately on a straight line.

The upper and lower tails do appear to depart slightly from the straight line, but the points

appear to be reasonably straight, so the assumption of normality is probably acceptable.

8.3 Method for Detection of Planar Defects

We define a defective pit or drop as having a surface area of at least two connected

pixels in the sensed image whose depth deviates more than the allowable defect threshold.

Unfortunately, many small pits (e.g., almost every pit of depth greater than 0.06” and many

pits of diameter 0.04” or less) often are occluded from the view of the camera of the 100X

range scanner. For such defects, the method for through-hole inspection and “void region’

pit detection in Chapter 9 is usually sufficient, however. In detection of planar defects, we
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Figure 8.6. Normal Q-Q Plot of surface Patch 1.

also define as defective any local region where there is a single “void” pixel that is adjacent

to a pixel whose depth deviates from the plane more than the planarity tolerance.

In the following discussion, we assume a fixed image size of 6.2 ” over 240 pixels in

the a: direction and 10.8” over 240 pixels in the y direction. This work envelope is typical

for the 100X scanner. Thus, a pit or drop will be detected only if it is 0.05” or larger

in diameter, consistent with the definition of insufficient material (actually, this caveat is

more aggressive than the actual definition). To detect pits, we define a defect threshold

of 0.025” deviation from the plane within local regions of the casting surface. We also

define a planarity tolerance of 0.010” within the local region. We then iteratively fit local

planes in the image. After the first iteration, the planes are fit to the set of points that

lie within the planarity tolerance of the previously fit planes. (Points that do not meet

the planarity tolerance from the previous plane could be defects or could be due to poor

segmentation.) Pixels which deviate from the plane by more than the defect threshold of
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0.025” are considered to be pits or other errors. A more global insufficient material defect

can be detected by finding all points that deviate more than 0.06” or 0.12” (for insufficient

and excess material, respectively) from a global fit.

Several issues were explored to detect pits and drops, including the limitations of the

sensor, the natural characteristics of defect-free planar surfaces ofcastings, and the tolerance

of the algorithm’s implementation to the effects of noise and natural variance of the casting

surfaces.

Through tests on real data and Monte Carlo trials on synthetic data, we have attempted

to determine, given the expected level of noise in the sensed image, what pit or drop depths

can be detected with at least 99% accuracy by our method. We have also determined the

probability of a false alarm, i.e., the probability that a cluster of pixels in the image have

a variance from the plane which exceeds the planarity tolerance due to random imaging

CITOI'S.

8.3.1 Segmentation

The segmentation method described in Chapter 5 was used to obtain an initial segmentation

of the image. We then subdivided the resulting planar regions. The subdivision allowed us

to detect small defects in local regions while still allowing the detection of more “global”

defects such as unacceptable tolerances. Initially, we tried to detect defects over the larger

surface, but were unable to find most small defects? The largest desirable region size was

estimated by examining the performance of the surface fitting algorithm over regions of

different sizes in real and synthetic data. The present empirical evidence suggests that any

region smaller than approximately 2” by 2” is small enough to avoid most of the problems

of false rejections and acceptances. However, if the regions are too small, then too much

time is spent performing the fitting.

 

1The small defects tended to be obscured by the natural roughness of the casting. This is explained in

Section 8.5.1.
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(c) Planar Regions Sub-

divided Into Smaller Re-

gions.

(a) Flynn, Jain, and Hoff- (b) New Segmentation

man segmentation. (from Chapter 5).

Figure 8.7. Segmentations of defective gear blank casting.

In the experiments on real data. we subdivided the planar surfaces into regions which are

approximately 1.25” by 1.25” in size. Two repartitionings were generated of each image.

Each repartitioning was formed by imposing a grid over the planar regions. The grid

lines marked the region boundaries of the subdivided regions. We used a spacing of 1.25”

between grid lines. The grid lines in the second repartitioning are offset approximately

0.25” from the grid lines used in the first repartitioning. In both repartitionings, any small

sub-region less than 0.25” by 0.25” was merged with an adjacent sub-region to prevent

unstable fitting in small regions (especially in small regions that contained defects).

The Flynn, Hoffman. and Jain segmentation of a defective gear blank is shown in

Figure 8.7(a). The extended method’s new segmentation of that same image is shown

in Figure 8.7(b). A repartitioning of the large planar surface in that image is shown in

Figure 8.7(c).

8.3.2 Plane Fitting

Planes were initially fit using a principal components analysis of local areas of sensed range

images. Pixels that deviated from the plane by more than the planarity tolerance were
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then located. Next, the poor-fitting points were discarded and a new plane was fit to the

remaining data This process was performed for 5 iterations. In most cases, little or no

change was observed in the fittings after the second or third iteration, however. After the

final iteration, the equation of the plane was returned along with a list of all subregions

consisting of multiple connected pixels which deviate from the plane more than the defect

threshold.

8.4 Trials on Synthetic Data

8.4.1 Defect-Free Planar Data

Small square planar patches of sizes 0.75”, 1.0”, 1.25”, 1.5”, 2”, and 3” were synthesized

and subjected to additive random Gaussian noise with different noise levels (variances) and

zero mean i The planar patches were oriented at several angles with respect to the :r — y

plane, including inclinations of 0°, 15°, 30°, and 45° (rotations about the y axis). Noise

levels of a = 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, and 0.009 were used. In the real

planar data of the castings acquired using the White scanner, noise levels of a between

0.003 and 0.005 were observed for all patches smaller than 2” square.

200 Monte Carlo trials were conducted for each possible combination of the plane size,

noise level, and orientation. In all cases for a < 0.007, the technique for plane fitting

and defect detection found no defects on the planar patches in any of the trials. For cases

with noise a 2 0.007, Table 8.4 summarizes the results. High levels of noise are clearly

a complicating factor in defect detection, but for the lower levels of noise (a < 0.007)

that are typical of all of the real data collected, noise does not seem to cause false alarms.

 

*A test for normality of the additive random Gaussian noise was performed to ensure that the noise was

truly normal. The density of the distribution and the normal Q-Q plot both appeared to be nearly normal.

A Chi squared Goodness-of-Frt test with 19 degrees of freedom (20 classes) was also performed and the

hypothesis of normality could not be rejected at the .05 (or lower) significance leve1(s). (The Chi-squared

value was 30.03 and the cutoff was 30.1, however.)
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Noise Orient. Patch Size

0° 0% 0% 0% 1%

a = 0.007 °

50

0° 0% 1% 0.5% 1.5% 1.5% 7%

a = 0.008 15° 0% 0% 1.5% 1% 0% 3.5%

30° 0% 0% 0% 0% 0% 0%

45° 0% 0% 0% 0% 0% 0%

0° 5% 7.5% 10.5% 14.5% 26% 45%

0‘ = 0.009 15° 3% 4% 5% 7% 14% 28%

30° 0.5% 0.5% 0.5% 0.5% 1.5% 4.5%

45° 0% 0% 0% 0% 0% 0%        
 

 
 

Table 8.4. Rates of false detection of defects in defect-free synthetic planar data.

This indicates that it is extremely unlikely for random noise from the imaging process and

natural grain to cause false alarms in defect-free castings.

8.4.2 Planar Data with One Defect

200 Monte Carlo trials were also conducted on data containing defects (a single pit). Planar

data with a single defect were generated for each of the combinations of size, noise level,

and orientation that were tested in section 3.1 on defect-free planar data. The single defect

was created in the central region of the synthetic plane. It was 0.035” deep, 0.052” in

length and 0.045” in width and contained two pixels § The six 4-neighbors of those pixels

were also made to be depressed by 0.01” from the other pixels in the plane? Then, random

Gaussian noise of mean zero and standard deviation 0 was added to all of the pixels in the

plane.

The rate of detected defects is indicated in Table 8.5. Ideal performance would be 100%

 

5There are approximately 39 pixels per inch in the a: direction and approximately 22 pixels per inch in the

y direction in the synthetic images.

'This is typical of pit defects that have been observed in real images.
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Noise Orient. Patch Size

.75” 1" 1.25” 1.5" 2" 3”

0° 100% 100% 100% 100% 99.5% 100%

0:0.003 15° 99% 99% 99.5% 100% 100% 100%

30° 94% 94.5% 96.5% 95% 98% 97%

0° 97% 98.5% 99% 99.5% 99.5% 99%

6:0.004 15° 97.5% 98.5% 98.5% 97.5% 97.5% 97.5%

30° 88% 93% 85% 88% 86% 86.5%

0° 93% 94.5% 97% 95% 98% 95%

6:0.005 15° 95.5% 94.5% 93.5% 91% 92% 94.5%

30° 80% 78.5% 73.5% 80.5% 78.5% 79.5%

0° 87% 90% 92% 92.5% 90.5% 90.5%

a=0.006 15° 85.5% 89% 87% 82.5% 90.5% 87%

1 30° 73% 72% 75% 72.5% 174-5% 75.5%

T 0° 85% 87.5% 87.5% 83%7'85.5% 85%

0:0.007 15° 81% 84% 80.5% 84.5% 82% 82.5%

30° 65% 61% 59% 60% 70% 65%

0° 78% 83.5% 82.5% 80% 85% 83%

(moms 15° 82% 75.5% 82% 79.5% 77.5% 80.5%

30° 60.5% 59% 56% 57.5% 59.5% 61.5%

0° 78% 81% 80.5% 80.5% 83.5% 90%

a=0.009 15° 75% 78.5% 81% 78% 82.5% 87%

30° 63% 56.5% 62% 64% 55% 56%
 

 

 
Table 8.5. Rates of correct detection of defects in synthetic planar data with one defect of

.035” depth.

detection of the defect. For low levels of noise, very few of the defective samples are

accepted. Greater inclination angles tend to decrease the likelihood of detecting the defect.

A similar set of experiments was conducted on synthetic data that contained pits of

0.04” depth. The results are summarized in Table 8.6. The deeper pits are detected very

reliably, except in cases of high noise levels coupled with surfaces that were oriented

non-horizontally.
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Noise Orient. Patch Size

.75” 1” 1.25” 1.5” 2” 3”

0° 100% 100% 100% 100% 100% 100%

0:0.003 15° 100% 100% 100% 100% 100% 100%

30° 100% 100% 100% 100% 100% 100%

0° 100% 100% 100% 100% 100% 100%

0:0.004 15° 100% 100% 100% 100% 100% 100%

30° 100% 99% 99% 99.5% 99.5% 100%

0° 100% 99% 99.5% 100% 100% 100%

0:0.005 15° 99.5% 100% 99.5% 99.5% 98.5% 99.5%

30° 97.5% 98% 100% 99.5% 99.1% 98.5%

0° 98.5% 99.5% 100% 100% 99% 99%

a=0.006 15° 97% 98% 99.5% 99.5% 98.5% 99%

30° 94% 90.5% 94.5% 94.5% 93.5% 95%

0° 97% 98% 96% 99% 95.5% 98%

0:0.007 15° 96% 98% 97.5% 96.5% 97% 95.5%

30° 82.5% 91.5% 86.5% 89.5% 87.5% 88.5%

0° 89.5% 93.5% 96% 93.5% 96.5% 93%

0:0.008 15° 93% 95.5% 92% 94.5% 93.5% 96.5%

30° 86% 86.5% 87% 83% 84% 87%

0° 93% 91% 95% 92.5% 93.5% 98%

6:0.009 15° 89.5% 88% 93.5% 94% 93% 94%

30° 82% 82% 81.5% 80% 79.5% 80%
 

 

Table 8.6. Rates of correct detection of defects in synthetic planar data with one defect of

depth 0.04”.
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Figure Id. Pixels Size n 0 Min. Max.

8.8(a) 2-a 884 0.8” x 1.2” 2.7 x10“7 0.00465 -0.0207 0.0125

8.8(b) 2-b 1266 1.35” x 1” 4.0 x10'° 0.0058 -0.0198 0.1910

8.8(c) 2-c 1986 1.8” x 0.8” -7.7 x10‘6 0.0032 -0.022 0.011

Table 8.7. Planar patch statistics of defect-free surface.

 

         
 

8.5 Trials on Real Data

To test the validity of the approach, we initially tested data drawn from 3 different castings,

one of which was defect-free while the others contained small pits. The estimated depths

of the two pits were 0.035” and 0.060”!I When the planes were fit to small regions (less

than about 1.5” by 1.5”), no defect-free regions are flagged as defective and no defective

regions are accepted as defect-free.

Three defect-free planar patches are displayed in Figures 8.8(a), (b), and (c). All these

patches are extracted from different regions of the same planar surface of a gear blank 356

casting. The planar surface is oriented approximately parallel to the :1: — y plane. Another

defect-free region of a different casting, referred to as Patch 1, was shown in Figure 8.2.

Several statistics about the patches in these Figures are indicated in Table 8.7. A plane

was fit to each patch using the method of principal components 1‘" The Mean Deviation

(p) was the average deviation of the depth values of the points from the plane. Standard

Deviation a, and minimum and maximum deviations (Min. and Max., respectively) were

computed on these deviations.

The equations of the planes fit to these sets of data are shown in Table 8.8. Only

the plane equations from the first and fifth iterations of the fitting algorithm are shown in

the table. The table also indicates the number of points used in the computation of the

 

'1We did not have a method to measure these pits other than the range information collected from the White

Scanner. The deeper of the two pits was a “void” region in all range images, forcing us to estimate its depth

(it is at least half again as deep as the other pit, but probably not quite twice as deep).

”PCA was introduced in Chapter 5.
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(a) Defect-free planar (b) Defect-free planar (c) Defect-free planar

patch (Region: 2-a). patch (Region: 2-b). patch (Region: 2-c).

Figure 8.8. Defect-free planar patches from a range image of a gear blank casting.

 

 

 

 

    

Region Identifier Iteration Pixels Plane Equation

a b c d

2-a l 884 -.0203 .0121 .9997 -2.264

5 848 -.0183 .0109 .9998 -2.27 1

2-b 1 1266 -.01 10 .0270 .9996 -2.221

5 l 153 -.0094 .0230 .9997 -2.239

2-c 1 1986 .00417 .00731 .99997 -2.329

5 1976 .00418 .00737 .99996 -2.328 
 

Table 88. Equations of planes fit to Regions 2-a, 2-b, and 2-c of a defect-free casting.

Plane equation is a2: + by + cz = (1.

plane. Although the differences in the equations seem very small, they are actually quite

significant. All of the planes are more or less parallel to the a: — y plane, but there is more

than 0.03” difference in the height of the planes, which is in excess of our algorithm’s

tolerance for detecting a defect. This underscores the necessity of subdividing large planar

surfaces into smaller regions which are tested individually. Our algorithm did not detect

defects in any of the three regions.
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Figure 8.9. Range image of half of a defect-free casting (Region l-d).

8.5.1 A Large Defect-Free Region

The importance of fitting planes to small regions of the casting is emphasized by our

experiments. If a plane is fit over a large region of the casting, local “dips” and “crests” in

the surface cause occasional false detection of errors according to our algorithm. Planes fit

to smaller sub-regions of the casting are more robust for the purpose of defect detection.

Figure 8.9 is an example of part of a defect-free casting (Region l-d) that illustrates this

phenomenon. If a plane is fit to this entire region, the standard deviation of the points from

the plane is a = 0.0097 and several “defects” are identified on the casting. Figure 8.10

shows the location of these detected defects over a wireframe of the casting outline.

If the planar surface of this casting is segmented and then subdivided into small regions,

no defects are found, however. The subdivision of the casting (Region l-d) is shown in

Figure 8.11. When a plane is fit separately to each of the regions, there is less deviation of

the pixels from the local planes. The largest standard deviation of points from a plane in

any region was 0.0049 for this image.
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Figure 8.10. Location of defects on casting (Region l-d), in Figure 8.9.

 

 

    
Figure 8.11. Repartitioning of casting (Region l-d), in Figure 8.9.
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Identifier Defects Detected Inspection Errors

Big Pit 0 / 4 4 l 4

2 Depress 8 l 8 0/ 8

Blow-Hole 6 I 6 0/ 6

Blow-Hole 2 3 / 6° 3 I 6

Pits & Excess 0 / 5 5 l 5

Poured Short 5 / 5 0 I 5

Small Pits 0 / 4 4 I 4

Good A 1 l4 1 /4

Good B 0 / 3 l l 3     
 

 

Table 8.9. Surface shape inspection for local deviations from planarity. Number of images

for which local deviation from planarity defect detected versus total number of images

tested is displayed for each gear blank.

 

“The methods of Ch. 8 were able to detect defects in 2 more cases, ultimately allowing the detection of

the defect in all but 1 image.

8.5.2 Planar Defect Detection on Gear Blank 356 Castings

We applied this technique to 45 images of 9 gear blank 356 castings. One image of each

of these castings is shown in Figure 8.12. Each of the 9 castings is assigned an identifying

label and these are also shown in the image. The inspection results are shown in Table 8.9.

Although the results may appear poor, most of the pits in the images appear as “voids” and

are detected by the method presented in Chapter 9. Ultimately, the defects were detected in

all but one image of the “Blow-Hole 2” casting. One of the images of a defect-free casting

(“Good A”) was mistakenly found to contain a defect, however. (Only two of the three

images of “Good B” do not contain defects. In the third image, a small amount of excess

material is visible in the through-hole.) The method of Chapter 9 also mistakenly found a

defect in another of the defect-free casting images, though.

Thus, the defects in only 1 of 39 images of defective castings were misclassified as

defect-free and 2 of the 6 images of defect-free castings were considered to contain defects.

We also inspected for the planarity of each of the local regions. The mean absolute

deviation from planarity for the points in each local region was computed. If that devi-



 

(a) Image of defective

casting labeled “Big Pit”.

 

(d) Image of defective

casting labeled “Blow-

Hole 2”.

 

(g) Image of defective

casting labeled “Small

Pits”.
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(b) Image of defective

casting labeled “2 De-

press”.

(e) Image of defective

casting labeled “Pits—and-

Excess”.

 

(h) Image of defect-free

casting labeled “Good”.

 

(c) Image of defective

casting labeled “Blow-

Hole”.

 

(f) Image of defective

casting labeled “Poured

Short”.

 

(i) Image of defect-free

casting labeled “Good 2”.

Figure 8.12. Images of gear blank 356 castings.
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Identifier Planarity OK/ No. Images

Big Pit 4 / 4

2 Depress 7 / 8

Blow-Hole 0 / 6

Blow-Hole 2 6 I 6

Pits & Excess 5 I 5

Poured Short 0 / 5

Small Pits 4 / 4

Good A 4 l 4

Good B 3 / 3     
Table 8.10. Surface shape inspection for planarity of sub-regions. Number of images for

which no planarity defect is detected for any sub-region versus number of images tested.

ation exceeded an allowable measure, the local region was considered to be non-planar.

Specifically, we tested for this using a tolerance of0.0075” in all of the repartitioned regions.

The results of this test on the 45 images of castings is shown in Table 8.10. The test

is not very powerful, although it was able to detect the non-planarity in the center of the

“Blow-Hole” casting. (That casting has a very rough region in its center where poured

metal filled what should have been a through-hole.) It was also able to detect non-planar

regions on all of the “Poured Short” casting images in the regions where the metal “dips”

from the ideal plane. A shallower depression was also noticed in one of the images of

the casting labeled “2 Depress.” The major reason this test does not appear to be very

successful in many of these images is that most of the pits are too small to influence the

mean deviation of the region that contained them.

8.6 Theoretical Expectation of Performance

If the deviations from true planarity of a planar surface in a casting range image follow

a Gaussian distribution, then it is rather straightforward to compute the probability of

falsely detecting a defect in a defect-free region. The real defect-free planar casting

range data collected with the White Scanner exhibited standard deviations in the range
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Region Identifier 0 Approx. Size

l-a 0.0049 0.5” x 3.5”

2-a 0.0046 1.2” x 0.8”

2-b 0.0058 1.35” x 1.0”

2-c 0.0032 1.8” x 0.8”

3-a 0.0045 2” x 1”

6-a 0.0033 0.8” x 0.9”

6-b 0.0038 1.7” x 1.2”    
 

Table 8.11. Standard deviations from planarity in small planar regions.

0.003 < a < 0.006 over small planar regions (ofapproximate size 1.5” by 1.5”). Table 8.11

shows the standard deviations and region sizes of seven small defect-free planar regions

extracted from range images of the three gear blank 356 castings used in this experiment.

Images of three of these regions (2-a, 2-b, and 2-c) were shown in Figure 8.8. Larger

deviations were only observed when the planar regions were larger than 2” x 2” or when

defects were present. For instance, in a doughnut-shaped planar region of approximately

2.3” radius with a center hole of approximate radius 1” (e.g., the large planar surface of the

top of the gear blank 356 casting), a standard deviation of 0.005 to 0.008 was commonly

observed.

The planar fitting technique is designed to test for defects in small regions, approximately

1” by l” in size. If two or more adjacent (connected) points that deviate more than 0.025”

from the fitted plane are detected in the image, they are flagged as pit defects. If a Gaussian

noise model is assumed with zero mean and a reasonable 0 standard deviation, there is very

little probability that even a single pixel in a small region will deviate more than 0.025”

from the plane. For instance, if it is assumed that a = 0.003, this probability is equal to the

area in the tails of a standard normal curve farther than 8.333 standard deviations from the

mean. This area is almost nil. Even if a is assumed to be as large as 0.005, this probability

is still almost negligible (5.7 x 10-7).
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a P(d(P, Z) > 0.025)

0.004 4.09 x10‘w

0.005 5.733 x10‘7

0.006 3.09 x10"5

 

   

0.007 0.000355

0.008 0.001778

0.009 0.005469
 

Table 8.12. Probability of pixel deviation for various levels of a.

The probability that one point deviates more than 0.025” from the plane is

 

0.025/0 1 2

P(|deviation| > 0.025) = 2 =1: P(deviation > 0.025) = 2 [I — j e-2 du] .

-00 V21r

Table 8.12 contains the probabilities that a pixel P deviates more than 0.025” from a plane

Z for various values of a.

The probability that a defect would be falsely detected by our algorithm is approximately

equal to the probability that two (or more) adjacent pixels both (all) deviate more than 0.025”

from the plane. For most of the images collected, 1” by 1” square planar regions contain

39 pixels in the z direction and 22 pixels in the y direction. The probability of falsely

detecting a defect within this region is, therefore, the probability that at least two adjacent

pixels within the region both deviate more than 0.025” from the plane.

This probability is

PUalsealarm) = 1—[1“4*P(0-025,0)]37'21*[1—3*P(O.025,a)]2'*

[1 — 2 * P(0.025, 0)]21 * [1 _ P(0025,0)]38 ,

where P(0.025, a) is the probability, given a noise level a, that a pixel deviates more than

0.025” from the plane. The first term of this expression is the probability that no adjacent

pixels vary more than 0.025” in the subregion formed by removing the first and last columns
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a P(false alarm)

0.004 5.2 x 10-16

0.005 1.067 ><10'9

0.006 3.1 ><10‘6

0.007 0.000410

0.008 0.0102

0.009 0.093

Table 8.13. Probability of falsely detecting defect(s) in a 1” square planar region.

 

    

and the top row. The second term is the probability that there are not two adjacent pixels

deviating more than 0.025” in the last (rightmost) column. The third term is the probability

that there are not two adjacent pixels deviating more than 0.025” in the first (leftmost)

column. The last term is the probability that two defective adjacent pixels do not appear in

the top (uppermost) row.

Table 8.13 contains the computed probabilities that the defect-free l” by 1” area contains

a defect (due to the addition of random noise caused by the natural roughness of the casting

and the imaging process). For small regions, the probability of falsely detecting a defect

in a planar region of a casting range image is negligible. At the higher noise levels which

are observed in larger regions of the casting, the technique proposed here would probably

cause too many false alarms. This is another reason that it was necessary to fit planes to

small regions.

8.7 Detection of Defects on Cylindrical Surfaces

This section discusses our method for detecting cylindricity defects and also pit defects on

cylindrical surfaces. The method assumes that cylindrical surfaces have been segmented

and classified using the technique of Chapter 5. First, the approach is described and then

its performance on several real range images is presented.

Initially, the general technique for detection of defects on planar surfaces was applied
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to cylindrical surfaces as well. Specifically, the cylindrical regions supplied by the output

of the segmentation scheme were subdivided into approximately 1.25” x 1.25” regions

and cylinders were separately iteratively fit to each region. This technique produced poor

results, however, since the regions created by the subdivision were too small to support

reliable fits. The model-driven fitting was poor and Flynn’s data-driven fitting was even

worse.

Thus, we decided not to subdivide the cylindrical regions. The iterative fitting was

instead applied to the cylindrical segments. Five iterations were performed, but in practice

2 or 3 iterations were almost always sufficient. The region’s parameters were selected from

the iteration that exhibited the smallest error. The original segment was then constricted by

one pixel and searched for deviations from cylindricity. The region was constricted because

pixels near limb edges tend to have noisy depth values and produce too many false alarms.

Any set of two or more connected pixels that deviated more than the tolerances for excess

or insufficient material were considered to be cylindricity defects.

This technique is probably sufficient to locate large cylindricity defects caused by short

pours or drops, but is not very useful in locating pit defects. If a threshold of 0.025” is used

to signal pit defects, few of the pits are located and many false alarms (usually near limb

edges) are detected.

Instead of using a global threshold, we used the geometric definition of a pit to detect

blow holes. A pit can be defined as a very small region ofthe part that deviates approximately

0.025” or more from the surrounding pixels. When the complete region was searched for

pixels that deviated more than 0.025” from the fitted cylinder, the pits were usually “lost”

in the natural roughness of the surface; a pit might be 0.025” deeper than the region around

it but still deviate only 0.015” from the fitted cylinder. So, the collection of deviations in

fit (i.e., the residuals for each pixel) was examined using a “difference filter” that, for each

pixel p,- of the region, returned the maximum difference in deviation between p,- and the

points in a neighborhood N,- about 11,-. We applied the difference filter on the cylindrical
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Identifier Cylindricity (Pit) Defect] No. Images

DR 2 / 2

Big Cyl 4 / 6

Def-Free 0 / 2

Cyl 0 / 3    
 

 

Table 8.14. Cylindricity inspection using 5 x 5 difference filter. Number of images for

which cylindricity defect detected versus number of images tested.

regions after constricting them twice (to avoid the problems of noisy depth measurements

near the limb edges).

Two sets of experiments were conducted to verify the suitability of this approach. In

the first set, we used a difference filter of size 5 x 5. If a pixel p,- deviated -0.025” from

any other pixel in the 5 x 5 neighborhood N,, p,- was classified as a defect. This approach

was tested on 8 different images of 2 castings with pit defects in cylindrical surfaces and

on 5 images of 2 defect-free cylindrical castings. An image of each of the 4 castings,

with segmentations of 2 of them, is shown in Figure 8.13. The radii of these cylinders are

shown in the caption of each image. Figure 8.14 shows the collection of deviations from

the fitted cylinder for the image in Figure 8.13(c). The rates of error detection are reported

in Table 8.14. No defects were detected in any of the defect-free images (“Def—Free” and

“Cyl”). Six of the 8 defects were detected.

In the second set ofexperiments, a difference filter of size 3 x 3 was used with a deviation

threshold of -0.02”. The results on the same set of 13 images is shown in Table 8.15. No

defects were detected in any of the defect-free images (“Def-Free” and “Cy1”). Out of 8

defects, 7 were detected. A defect would have been detected in one of the “Cyl” images

if the threshold was lowered to -0.018”, however. (The “Cyl” images contain a small pit

whose depth is less than the 0.025” threshold for a pit defect.)

The 3 x 3 filter seems to yield slightly better results, although the test set size was quite

small. Unfortunately, pit defects on cylindrical surfaces are not very common and only a
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(a) Defect-free casting (“Def- (b) Segmentation of defect-free

Free”), cylinder radius r = 3.04”. casting (“Def—Free”) in (a).

 

(c) Defective casting (“DR”), ((1) Segmentation of defective

cylinder radii r = 2.22” and 2.42”. casting (“DR”) in (c).

  
(e) Defect-free casting (“Cyl”). (l) Defective casting (“Big Cyl”),

cylinder radii r = 2.22” and 2.42”. cylinder radius r = 3.04”.

Figure 8.13. Images of 2 defective and 2 defect—free cylindrical castings.
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Figure 8.14. Deviations from cylindricity for an image of casting “DR”. Brightest points are

largest positive deviations (i.e., excess) and darkest points are largest negative deviations

(i.e., insufficient material).

 

Table 8.15. Cylindricity inspection using 3 x 3 difference filter. Number of images for

which cylindricity defect detected versus number of images tested.
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small number of defective castings was available.

8.8 Conclusions and Future Directions

In this chapter, we have presented a set of techniques useful for detection of errors on planar

and cylindrical surfaces, the two most common surfaces on castings. These techniques are

useful to inspect for planarity and cylindricity as well as common casting defects such as

insufficient or excess material. Coupled with the techniques of Chapters 7 and 9, we were

able to achieve a very high level of precision in accepting and rejecting defect-free and

defective parts, respectively.

In the future, we will examine similar techniques for spherical, conical, and free—form

surfaces. It should be straightforward to extend our approach ofcylindricity defect detection

to the spherical and conical defects. But the spherical, conical, and free-form surfaces do

not seem to be very common on castings, however, so it may be difficult to collect a set of

defective castings for testing. Small filleted or “blended” surfaces between planar and/or

cylindrical surfaces are very common in castings, and thus require special attention. We

believe that the techniques presented in this chapter are suitable for inspection of most

planar and cylindrical surfaces on castings, and provide for detection of the majority of

non-crack defects in the casting process. We have been unable to detect cracks in range

images. This is an important area for future research. It is possible that cracks may be

detected more reliably in intensity images than in range images.



CHAPTER 9

Inspection of Features and Dimensional

Tolerances

This chapter discusses our inspection techniques for feature and dimensional inspection.

These are considered the highest-level inspection tasks, and perhaps also the most difficult

inspection tasks. We first discuss our techniques for feature inspection and then discuss

our techniques for dimensional tolerance inspection. Our collection of techniques is not

intended to be complete, in fact there are such a great variety of potential features and

geometric dimensions that it would be quite difficult to present a complete set of tools.

Thus, the techniques in this chapter represent possible methods for inspecting several of

the more common features in the domain of castings.

In this chapter, we wish to demonstrate that our system has feature-based and dimen-

sional inspection capabilities. We first present our techniques for feature-based inspection

and then present techniques for dimensional inspection. The distinction between feature

and dimensional inspection is slightly blurred—there is a great deal of overlap in the two

tasks. We view the feature-based inspection as a local technique that functions on a local

region of interest on the object while the dimensional inspections are more general tech-

niques that are applicable both in verifying the dimensions of features and in verifying the

global properties of the object.
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9.1 Feature Inspection

After the inspection for gross defects, a rule-based inspection for the presence or absence

of high level features is conducted. At present, our system is limited to inspection of

through-holes. We inspect for presence/absence of expected holes, detect undesired holes,

and inspect the shape and size of the hole. We wish to distinguish inspection of high-

level features such as holes or slots from inspection of the dimensional tolerances of those

features and other entities, such as the distance between surfaces or features. Much of the

computer-aided design literature either blurs or does not make this distinction, however.

Inspection of dimensions, circularity, and planarity are discussed in the second section of

this chapter.

In this section, we present our method for inspection of presence/absence of through-

holes and for size inspection of this feature. We view these techniques as potentially

applicable during in-process inspection to verify that an operation of interest has succeeded

or as part of a larger complete module to verify a finished part.

Our technique for through-hole inspection requires that the range image ofthe object has

been segmented by the method of Chapter 5 and that the correspondence between surfaces

in the object’s image and surfaces in the CAD model has been established by interpretation

tree search or fixturing. Through holes are found in the image by first locating all “voids’

in the range image“. Regions with no depth value are either background, noise, or concave

portions of an object, so they are strong predictors of both through-holes and a common

casting defect—pits (or blow holes). We only consider void regions 0,- that are completely

within the interior of a single segment R.- of the image. Regions Cj that consist of only one

pixel are not considered as candidates, however. This reduces the impact of sensor noise

on the inspection problem. In general, the void regions represent either blow holes (which

are defects) or through-holes (which are features).

 

‘By “void,” we mean a connected region of pixels, each of which has no depth value associated with it.
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The CAD model contains information about the size and location of the through-holes.

This information, as well as the surface(s) that the hole cuts through are extracted from

the model. A separate representation that contains acceptable tolerances on these values is

queried to generate the inspection plan.

Because the void regions have no depth information, we estimate its parameters by

dilating the region Cj by one pixel to form a new region 0”. so that its outline consists of

pixels that are members of the surrounding surface region R4. The center of mass of the

outline is used as the estimate of the position of the hole’s center. The cross-sectional area

(size) of the hole is computed using the parameters of the surrounding region R,-, which we

assume to have been estimated using the model-driven method of Chapter 5. At present,

we have only computed this area for holes in planar surfaces, although the principle is

easily extended to cylindrical, spherical, and conical surfaces. For through-holes in planar

regions, each pixel of void region CJ- is projected onto the plane p fit to the surrounding

region 12,. The total surface area is estimated as nJ-A, where n,- is the number of pixels in C,-

and A is the area of each rectangular pixel in 0,- when it is projected onto plane p. We also

determine the radius and position of the circle, although this is presented in Section 9.2,

where we discuss dimensional tolerancing.

The inspection module next verifies that the size (surface area) of the circle is within a

pre-specified tolerance from the ideal parameters encoded in the model. Any void regions

that are outside the limits or which do not correspond to a specified hole in the model are

flagged as errors. This means that many pit defects are also detected by this technique. The

size of the region is used to determine if the region represents a pit (or a through-hole of

insufficient size), a through hole of correct size, or a through-hole of excessive size.

9.1.1 Application of the Technique

A defect-free example ofone oftheGM castings is shown in the range image in Figure 9.1(a).

This image is a top view of a gear or pulley blank, identified as gear blank 356. A defective
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  (9
(a) Range Image A—l of Defect-free Gear (b) Range Image D-l of Defective Gear

Blank Casting. Blank Casting.

   
Figure 9.1. Range images of two castings.

casting is shown in Figure 9.1(b). This casting has a pit which appears as a void in the range

image. The location of the void is marked with an arrow. (The arrow has been overlaid on

the casting image and is not actually a part of the casting.)

We tested the technique for hole inspection on a total of 45 images of 9 gear blank 356

castings. One image of each of these castings is shown in Figure 8.12 along with the label

we assign to each casting.

Table 9.1 shows the performance of the hole inspection and pit detection for these

images. The central through-hole is correctly classified as being acceptable in 34 of 38

cases and correctly classified as being the wrong size (not present) in all 7 images (the 6

images of the casting labeled “Blow-Hole” and one image of the casting labeled “Good

B”). “Good B” contains a small amount of excess material within its through-hole although

this defect is only visible in one of the three images. Four of the images of the “Poured

Short” casting were classified as having a through—hole of incorrect size, but this apparent

misclassification is acceptable because the casting is defective anyway. In fact, one of the
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Identifier Through Hole OK/ Pit(s) Detected / Inspection Errors /

No. Images No. Images No. Images

BigPit 4/4 4/4 0/4

2Depress 8/8 8/8 0/8

Blow-Hole 0/ 6 6 / 6 0 / 6

Blow-Hole 2 6 / 6 2 / 6° 4 / 6

Pits&Excess 5/5 5/5 0/5

Poured Short 1 / 5 4 / 5 l / 5°

SmallPits 4/4 4/4 0/4

Good A 4 / 4 0 I 4 0 / 4

Good B 2 / 3 0 / 3 0 / 3c       
 

 

Table 9.1. Feature inspection results. Number of images satisfying given criteria versus

total number of images is displayed for each gear blank.

 

“The methods of Ch. 8 were able to detect defects in 3 more cases, ultimately allowing the detection of

the defect in all but 1 image.

°The methods of Ch. 8 were able to detect the defect in the one image where it was not detected hae.

cThe defect is visible in only two of the images of Good B. The image with the defect was recognized as

a defect.

defects in this casting was in the lip around the through-hole, making it difficult to detect

the through-hole, so these errors are acceptable. Pits were detected in 33 out of 38 cases in

which they were present 1 and were not detected in the 7 cases where they were not present

(in the defect-free images of “Good A” and “Good B”). For the 5 cases where pits were not

detected, the methods of Chapter 8 could detect errors in 4 of them.

Thus, the techniques presented here are very useful for inspection of features, specifi-

cally, detection of the presence or absence of through-holes. The technique also allowed

detection of pits or blow holes in the surfaces.

 

l'lhe “Poured Short” casting actually does not contain pits, but it contains a depression which could be

viewed as a large pit.
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9.2 Dimensional Tolerance Inspections

When an object is designed using a CAD system, the collection of part dimensions forms the

Specification of an ideal part. But variances in the production process make it impossible

to build a part in exact accordance with the specification. Thus, the design is usually

augmented with information defining acceptable limits on size and shape variations. These

limits are referred to as tolerances? Tolerances describe the nature and size of “features”

based on roundness, cylindricity, position, perpendicularity, etc. [111] (although in this

context, “features” need not be strictly equivalent to the features present in a feature-

based design-‘1). Historically, most mechanical design tolerances have been expressed

informally and are mathematically non-rigorous [176]. This makes it very difficult to

compute tolerances [176], especially for automated inspection applications. The study

of formal tolerance specification and analysis has received some attention, especially in

the CAD and manufacturing literature [95, 145, 146, 176]. Most of the current tolerance

analysis techniques rely on the designer to formulate the problem and explicitly resolve

any ambiguities resulting from groups of related features or tolerances [43]. While the

importance of including tolerance analysis capabilities in CAD packages has been generally

recognized, very few analysis techniques have been provided [43].

One of the problems with tolerancing information is that there is no robust definition of

tolerance [11 1]. Specifically, tolerances usually involve no precise definition of the features

involved and do not formally define the allowable “size.” One suggestion to resolve the

notion of size involves defining the boundary of the surfaces that a measure must lie within.

For instance, scale could be specified through a “size zone,” while a “form zone” could

 

tTolerance limits must be chosen carefully because they have a great impact on the overall manufacturing

cost. Turner and Wozny [176] have noted that it is possible for improper tolerances to make up 50% or more

of manufacturing costs.

sThe term “feature” is overloaded and perhaps slightly confusing to the reader. It generally refers to

some area of interest on a part, but can have slightly nuanced meanings depending on the context. There are

features in the pattern recognition sense (e.g., the input to the CLUSTER algorithm), features that represent

a high-level abstraction or mini-component of a design, “features” that are really geometric dimensions or

tolerances, and also “features” that are merely points, lines, planes, or other foci of interest on an object.
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specify shape and a “position zone” could specify the bounds on location [111]. Requicha

has presented several papers addressing this problem and has proposed that tolerances be

specified using a volume that defines the maximum and minimum allowable offsets from

faces of the object [145, 146]. Requicha’s method does not specify the minimum and

maximum allowable amounts of material, however. His specification actually defines a

region in a high dimensional space [145, 176]. In addition, Requicha’s method varies

considerably from historical methods of tolerance specification, and it does not allow a

unified description of all possible types of tolerances [176]. Turner and Wozny [176] have

proposed that tolerances be interpreted as variables that define a real-valued normal vector

space of model variations. A region is defined in the vector space using the limits on

the tolerance variables. Every object that is constructed within allowable tolerances can

be mapped into a point within the region. Turner and Wozny’s method requires careful

selection of basis vectors for the space, however.

Deciding what actually needs to be inspected to determine tolerance fulfillment is

difficult. Merat et al. [114] have formalized the problem of determining the optimal

number of inspection points to determine adherence to tolerance as:

GivenasurfaceS,letP ={P,~;1$z’§ m} andQ = {QJ-;l Sj S n} be

sets of variables representing points on S. Let C be a set of constraints on the

points in P and let D be a set of constraints on the points in Q. We want to find

values for all P,- and Q,- such that (1) all constraints in C and D are satisfied,

and (2) the set P U Q is as small as possible—i.e., as many points of Q are

identified with points of P, and vice versa.

Although this formulation is aimed at determining points for a coordinate measuring ma-

chine (CMM) to sense, it is also applicable to the related problem in vision-based inspection.

Apparently, there are only some heuristics available that attempt to achieve this [114].
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For any dimensional inspection, it is necessary that one or more datums'be determined

for each model so that all tolerances are consistent and unambiguous. Datums might consist

of a specific point, line, plane, or other region on a part [111]. It is probably necessary to

introduce redundancy in the datums, i.e., define multiple datums, because (1) objects may

contain defects and (2) images of the objects may be from viewpoints in which the datum is

invisible. For object recognition and inspection applications, Marshall [111] has outlined

several requirements for datums. These include:

1. A datum must be robust with respect to the viewpoint of the sensor.

2. A datum plane should have a large surface area.

3. The datum should be on a region whose texture does not make the recovery of depth

data problematic.

4. If no single datum is satisfactory, a system of planes should be used.

For most object models, it is necessary to specify one or more primary datums as well as

several secondary datums that capture the relationships between part features or regions.

The inspection of dimensional tolerance is not a trivial undertaking. There are many

unresolved problems, especially in the determination of datum points and the “stackup”

of tolerances. Datums are often not eXplicit within the design, making it quite difficult

to determine how to measure tolerances. We do not address the problems of datum

determination and tolerance stack-up in our work. While these are clearly important issues,

they go beyond the scope of this dissertation. We wish to demonstrate that automated

visual inspection is able to verify tolerances, provided that the datums and the tolerances

are available in the model in an explicit form. We assume that such information is available.

Dimensional tolerances will be inspected by extracting the tolerance information from

the CAD model and then examining the object’s dimensions for adherence. The level of

 

‘Datums are reference points or features. Tolerances are usually measured with respect to one (or more)

datum(s).
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tolerances we can check are limited by the spatial resolution of our range scanner, however.

The White Scanner quantizes y and z coordinates to 0.001”, with a standard deviation of

noise in the z coordinate of less than 0.01 inch [55].

9.2.1 Tolerance Analysis

Several methods related to tolerance analysis and generation of tolerance inspection plans

have been presented in the literature.

Merat et al. [1 14] have presented a system that allows automatic generation ofinspection

plans from certain feature-based CAD models. Their system presents the feature-based

computer-aided designer with a menu of choices that allows the designer to describe

feature dimensions and tolerances. The selected dimensioning technique is translated into

a representation that conforms to the ANSI Standard for Geometric Dimensioning and

Tolerancing. The selection of a technique also triggers the generation of an appropriate

pre-fabricated inspection plan for use by a coordinate measuring machine.

Dong and Soom [43] have proposed a technique for resolution of tolerance stackup

through a tree search method. Their technique extracts tolerance information from IGES

entities that contain a CAD drawing’s text annotations. A tree structure is constructed

from this extracted data which implicitly contains the relationships between all tolerances.

Search of the tree allows recovery of related tolerances.

9.2.2 Dimensional Tolerance Inspection of Castings

In the remainder of this section, we present our techniques for verification of several

tolerances. We inspect for circularity, circle radii, distances between circular arcs, distance

between planes, and parallel planes. We also inspect for cylindricity and planarity using

the techniques presented in Chapter 8.
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Identifier Orientation OK I No. Images Separation OK / No. Images

Big Pit 4 / 4 4 / 4

2 Depress 8 / 8 8 / 8

Blow-Hole 6 / 6 3 / 6

Blow-Hole 2 6 / 6 6 / 6

Pits & Excess 5 / 5 5 / 5

Poured Short 3 / 5 l / 5

Small Pits 4 / 4 4 /4

Good A 4 / 4 4 / 4

Good B 4 / 4 4 / 4      
 

 

Table 9.2. Dimensional inspection for planar separation and orientation. Number of images

for which there is no defect in any sub-region versus number of images tested.

Planar Separation and Orientation

We inspect for the distance between parallel planes and for the difference in planar orienta-

tion by examining the planar surface parameters that were extracted using the methods of

Chapter 5. The surface classifications were carried out upon the segmentations generated

using the method of Chapter 5. We assume that the correspondence between model and

object surfaces has been established. We also assume that the model database has been

queried to determine the ideal values and tolerances for these measures.

In the model of the gear blank 356 casting, tolerances of 5° in difference of planar

surface orientation and 0.04” in parallel planar separation were used. We performed the

inspection in the 45 images of9 castings shown in Figure 8.12. The results of the inspection

are shown in Table 9.2. Except for the “Poured Short” and “Blow-Hole” castings, the planar

separations and orientations were determined to be acceptable, which is the correct result.

For the “Poured Short” image, the defect causes the small planar “lip” in the center of the

casting to be both non-planar and “short” of its desired height. The excess material in the

center of the “Blow-Hole” casting is also very rough and, while it is almost as “high” as

the surrounding lip, is slightly “short” of the desired height of the lip. The segmentation

scheme did not always isolate these defects in a fashion that made it possible to easily detect
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the planar orientation defect. However, in the few cases where the planarity defect was not

detected, the defective nature of the casting could still be recovered (e.g., by detection of

insufficient material defects in the region of the defect). It could be argued that the planar

separation and orientation defects in these two castings are minor symptoms of the actual

errors that we recover in other stages of defect detection.

Circularity Inspection

In this subsection, we describe our technique for circular dimensional inspections, including

circle size, position, and circularity (i.e., excess or insufficient material along a circular

boundary). We assume that the image regions in which circularity is to be tested are known

through their correspondence with model surfaces. A general segmentation of the part is

assumed to have been conducted using the technique of Chapter 5. We also assume that

the model database has been queried to determine the ideal values and tolerances for these

measures.

For the measurement of circular tolerances, we use the center of the through-hole as

the datum point on the gear blank 356 casting. The recovery of this datum is important

because the model of the gear blank casting measures several dimensions from the center

of the part. We estimate this point by first finding the center of mass of the largest planar

region P (i.e., the doughnut-shaped region) in images of the casting. This estimate of the

center 01 of the through-hole is then refined.

We sweep an arc of radius r in P’s plane about the initial estimate 01 and mark all pixels

in the interior of the swept circumference. The set of marked pixels is then dilated twice.

The largest unmarked connected component outside this marked area is then removed from

the region P. (This component should correspond to most of the “gate” on the side of the

casting.) The new estimate of the center of the through-hole C; is then refined to be the

center of mass of the new region P.

It may appear to have been more straightforward to estimate the center of the through-
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hole simply by determining the position of the through-hole and then finding its center of

mass, but this did not provide a stable estimate of the center. The initial approaches we

attempted to estimate the center were unsuccessful. First, we tried to find the center ofmass

of the points that make up the innermost boundary of the upper circular “lip” of the casting.

Next, we estimated the through-hole’s center as the center of mass of the entire lip region.

Both of these methods were unstable, probably because very little data was being used to

estimate the position of the center. Finally, we attempted to locate the large central void that

represents the through-hole and find the center of mass when these points were projected

onto the plane that contained the upper lip. This was also unsuccessful due to depth values

being returned from some of the points lying inside the cylinder of the through-hole (i.e.,

some of the points along the wall of the through-hole were visible, especially those near the

top of the through-hole next to the upper “lip,” thus reducing the size of the through-hole

void).

The maximum allowable size of the through-hole was then extracted from the model.

A circle of this radius was inscribed in the plane 19., of the upper “lip” region 11 about the

estimated through-hole center 02", where C2“ is the through-hole center C; projected onto

the plane pu. The circumference of this circle was traversed in region u. If any pixels were

missing from the circumference, the casting was considered to have a circulaIity defect.

Similar techniques are followed for the other two circles, although since they form the

outer boundaries of regions, we first inscribe the minimum size circle to determine if there

is enough material present and then inscribe the maximum size circle to make sure that no

additional material is present. (If any pixels are missing from the minimum size circle’s

circumference or if any pixels are present outside the maximum size circle’s circumference,

a circularity defect is considered to be present.)

In the model ofthe gear blank 356 casting, we inspected for the presence of three circular

outlines—the inner and outer outlines of the innermost central “lip” and the outer outline

of the part. We could not inspect the circular boundary of the larger doughnut-shaped
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A

 

Table 9.3. Dimensional inspection for circularity. Number of images for which no planarity

defect detected for one or more entire sub-region versus number of images tested.

 

“An additional defect was detected by the methods of Ch. 8. so only 2 of the 4 “Good A" instances were

judged defect-free.

planar region near the lip because occlusion limited the visible portion of this outline. We

performed the inspection in the 45 images of 9 castings shown in Figure 8.12. The results

of the inspection are shown in Table 9.3. Only the casting labeled “Blow Hole” actually

contains a circularity defect—there really is no central circle due to excess material filling

the through-hole. An example showing the detected—and acceptable—circular arcs on one

of the images of the casting labeled “2 Depress” is shown in Figure 9.2.

   
(a) Outermost Circular (1)) IDHCT Circular (0) Innerrnost Circular

Arc, Arc. Arc.

Figure 9.2. Detected circular arcs overlaid on labeled image of a casting.



256

Unlike our testing of the relationship between planes, the circularity dimensional in-

spection must be carried out on a single region. Sensor limitations complicated our task in

this regard. The main problem was the limited spatial resolution of the sensor in the :1: and y

directions. This was probably the chief culprit in the rejection of one instance of each of the

defect-free castings (“Good A” and “Good B”) and for the one instance of the “2 Depress”

casting. In all three cases, only one pixel was found missing from the circumference of one

of the three desired circles. Frequently, the tolerance on a measurement is very close to the

spatial resolution of the sensor. More dense range data would be necessary for robust per-

formance of dimensional inspection. It may also be possible to achieve better performance

by refining the estimation of the circle center slightly using a hill-climbing technique.

9.3 Conclusions

In this chapter, we have discussed some of the issues involved in tolerance specification

and analysis. The study of tolerances is an area of considerable interest in the CAD and

manufacturing literature. If the tolerances are not specified in a manner such that the

inspection algorithms can easily recover them in a usable, explicit format from the model,

then the dimensional inspection task becomes more difficult.

We have presented techniques for inspection of casting dimensional tolerances and for

common casting features, namely through-holes. Our through-hole inspection techniques

also allow the detection of pit defects in castings. When coupled with the techniques

of Chapters 7 and 8, we are able to detect most of the defective castings in our testbed of

images. Table 9.4 shows the performance of our system on the 45 gear blank casting images.

Table 9.5 shows the performance of our system on the 13 cylindrical casting images. The

spatial resolution of the White Scanner presented difficulties for our inspection algorithms,

however. A better sensor or multiple range images would be necessary to perform a

complete inspection of all dimensions.



257

Defect Detected Defect Not Detected

Defect Present 38 1

No Defect Present 2 4

Table 9.4. System performance for gear blank casting inspection.

 

   
 

Defect Detected Defect Not Detected

Defect Present 7 1

No Defect Present 0 5

Table 9.5. System performance for cylindrical casting inspection.

 

   
 

The feature inspection technique in this chapter focuses on a specific area of interest

within the part, while the dimensional inspection techniques are applicable to the part as

a whole. We view these inspection as the high-level inspection tasks in our system. In a

complete inspection system, methods to inspect all potential high-level features would have

to be built-in.



CHAPTER 10

Conclusions and Future Directions

10.1 Overview

In this dissertation, we have focused on the inspection of 3D objects whose identity is

known. A system for the inspection of castings in range images has been developed and

examined. Information from the CAD model of the object has been used throughout the

inspection system to allow for more reliable performance. The techniques presented are

applicable for inspecting objects with planar, cylindrical, spherical, and conical surfaces.

Specific inspection tasks performed include inpsection for dimensional tolerances, gross

assembly integrity, and common casting defects such as pits, excess material, short pours,

etc. The performance of the system has been examined through theoretical models, Monte

Carlo trials on synthetic range data, and on many real range images of industrial castings.

We believe that this work is one of the first “general-purpose” inspection methods to have

been tested on a set of 3D castings using real range images.

We discussed the behavior of our range sensor and the representation requirements for

the object models. Segmentation and model-based quadric surface classification techniques

were also presented. The model-based surface classification scheme exhibits very good

performance, as measured by comparison to a data-driven classification procedure, and has

been extensively tested on noisy synthetic and real range images. The surface classification

258
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techniques exhibit fitting errors in real data that tend to be very close to the resolution

limits of the range sensor. Several possible techniques for pose estimation were also

examined, although the current implementations of those techniques may not provide

sufficient accuracy for inspection purposes. We also studied the feasibility of parallel

computing for real-time object localization and recognition by implementing and analyzing

the performance of the interpretation tree search on a MIMD machine.

A bidirectional template matching scheme for detection of gross defects on castings was

presented. This scheme is useful for quick in-process inspection and as a verification pro-

cedure to check pose hypotheses. Several techniques for detection of excess or insufficient

material casting defects were also developed and extensively tested. Finally, we exhibited

inspection techniques for verification of dimensional tolerances and design features. Our

system contains techniques to inspect for part dimensioning, surface shape defects, and

assembly integrity (gross defects). Ultimately, we were able to correctly identify 38 out of

39 instances of defects on planar surfaces in castings and 7 out of 8 instances of defects on

cylindrical surfaces in castings. In defect-free castings, the system falsely reported errors

on 2 out of 6 planar surfaces and on 0 of 5 defect-free cylindrical surfaces.

10.2 Future Research Directions

There are several open research issues requiring attention in every stage of the inspection

process. At the first stage, model building, bugs were encountered in the IDEAS CAD

package (which was the only package available to us). IDEAS V1 is unable to model fillets

without introducing artifacts. It can also be difficult to modify complex CAD models in

this CAD package. IDEAS VI seems prone to unexpected crashes, too, probably because

of bugs in subroutines for fillet representation. In the future, we hope to create models

using a new version of IDEAS that corrects these problems. The 100X range sensor also

limits the type of inspection tasks we can perform. This sensor is too slow for real-time
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inspection, although other faster sensors are available. The sensor’s spatial resolution is also

inadequate for many dimensional measurements. The sensing arrangement causes many

self-occlusions to occur as well. Some of these problems can be overcome using multiple

range images, although it is not possible with our current sensing arrangement to “turn

over” an object, limiting data collection to only one hemisphere of an object. Registration

of multiple range images of a given 3D object is not a trivial problem. Our lack ofprecision

fixtures created additional difficulties in verifying the absolute performance of our system

because no ground truth data was available. A more fundamental problem we faced was

the difficulty in acquiring objects. We were unable to obtain any castings with conical

or Spherical surfaces. Furthermore, we were unsuccessful in finding multiple instances of

castings with mismatch or warp-like defects.

One of the failures in our segmentation algorithm is that pixels adjacent to region bound-

aries cannot be labeled. The pixels which are close to the region boundaries, especially

pixels near or on filleted or blended surfaces, are often mis-labeled. The depth value of

many pixels near limb edges also appear to deviate a large amount from their expected

values, producing both segmentation and classification errors. The classification procedure

cannot estimate surface parameters reliably for any region which is too small. Conical

surfaces with a small vertex angle also cannot be fit reliably. Furthermore, we are unable to

estimate the parameters for filleted and blended regions. These difficulties in segmentation

and classification probably cannot all be resolved by refinement of the existing segmentation

and classification procedures. We are investigating model-based segmentation to address

most of these issues. Information from the model may be useful to assign a region label

to any unlabeled pixels, and may also be used in a second merging and splitting step that

re-segments the current labeling. Another approach we are investigating involves using

the initial segmentation and classification to generate a coarse estimate of object pose. If

several regions can be extracted reliably, the coarse estimate of pose should be reasonably

accurate. After this pose transformation is applied to the model, the surface labeling from
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the model could be imposed on the range image of the object to re-label any existing mis-

labeled or unlabeled regions. We are also exploring RANSAC-type extensions and parallel

computation for the classification schemes. One very challenging area that we wish to

address in the future is matching of free-form surfaces. This is a difficult, but important,

problem, especially in inspection of many products constructed of plastic or sheet metal.

Perhaps the weakest stage in our system is the object localization stage. We are exploring

iterative refinement of pose estimation and stronger verification steps to ensure better pose

estimation. Pose estimation has heavy computational requirements, so we would like to

continue to investigate parallel algorithms for pose estimation. The trade—off between

stronger and weaker constraints in the interpretation tree search also needs to be studied. In

addition, we are eager to explore object recognition, especially in the MIMD environment.

It is somewhat difficult to develop, debug, and fine-tune parallel programs, however, so

those explorations could be lengthy.

Several extensions to the coarse verification stage of inspection are also envisioned.

First, the current verification scheme assumes that pose is restricted through the use of

fixtures. Less rigid requirements would make the technique more flexible and generally

applicable. The use of the Hausdorff matching is a good first step in this area, although

additional exploration of that technique, especially in allowing another degree of rotational

freedom, is necessary. We are particularly interested in adapting the coarse verification step

into a multi-resolution template approach, in which points that do not fit the template well

in the first stage, are used as focus or seed points for a finer resolution template matching.

We also aim to develop template-matching schemes for verification of specific operations

of interest.

The surface shape inspection techniques function quite well, but are restricted to only

planar and cylindrical surfaces. We would like to extend these methods to spherical, conical,

and other surfaces if it is possible to obtain castings containing such surfaces. One weakness

of the surface shape inspection is that very few cracks can be detected using range sensing.
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Detection of cracks in castings is quite important and will be investigated in the future,

perhaps using intensity images.

Finally, additional capabilities for feature inspection need to be built into the system.

Our system concentrated on inspecting through-holes because they were a very common

casting feature. Additional castings with other features would have to be acquired to test

any other feature inspection methods. The issues of datum determination and tolerance

stack-up were ignored in our system, although any practical system would have to address

those issues. In the future, we hope to investigate tolerance analysis.

10.3 Summary

We have discovered that for even a fairly straightforward inspection algorithm to function

well, the techniques must be carefully tailored to consider the capabilities of the sensor,

the interaction and feedback between various earlier stages of the inspection system, and

the manufacturing process. This factor may limit the development of true general-purpose

inspection systems; true general-purpose inspection may only be possible by collecting

many specialized defect detection functions together into one system. Careful attention

to the commonly occurring defects in the manufacturing process must be built-in to any

inspection technique as well. Perhaps the greatest contribution of this thesis to automated

visual inspection is that the inspections conducted are designed to detect actual defects in

real industrial parts. This stands in contrast to many of the other experimental inspection

systems that sometimes function on contrived defects on only one or two objects.

Finally, general-purpose inspection is a difficult undertaking, especially if free-form

surfaces must be inspected. The methods presented in this dissertation provide a good basis

from which a more general system could be developed, although there are many unresolved

issues with free-form surfaces, tolerance specification and analysis, segmentation, and, to

a lesser extent, data and model representations and classification. Unfortunately, these
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apparently separate issues cannot be completely decoupled. Each of them, especially at the

later stages of processing, depends on some or all of the other decisions in the inspection

system. General-purpose automated visual inspection is an enticing proposition, but much

more progress must be made on these unresolved issues before general-purpose inspection

can truly become reality.
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