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ABSTRACT

MULTICOMPONENT KINETIC DETERMINATIONS WITH THE

EXTENDED KALMAN FILTER

By

Brett Michael Quencer

This dissertation describes a new method of multicomponent

analysis based on kinetic methods and a chemometric data

processing technique known as the extended Kalman filter. The

resolving power of this technique is based on differences in both the

kinetics and spectra of a series of parallel reactions.

There have been many previous methods developed to allow

kinetic determination of more than one component in a mixture

simultaneously. Unfortunately, all of these previous techniques have

suffered from some severe limitations which arise due to invalid

assumptions made when developing the model for the system. The

extended Kalman filter is shown to be free from these limitations,

and to have improved applicability to multicomponent

determinations, including the ability to determine a greater number

of components than previously. A series of simulations have been

carried out in order to test the validity of this method of data

analysis and to find conditions under which the extended Kalman

filter method is likely to fail. The results of the simulation studies

are described in detail. It is shown that as long as there are some

spectral differences, this method is applicable even in a series of

three parallel reactions where all three rate constants are equal. It is



shown that the method is applicable even under conditions of severe

Spectral and kinetic overlap.

A rigorous test of the method was performed on a chemical

system which has severely overlapped spectra and kinetics. The

system consists of a series of metal species which react

simultaneously with 4-(2-pyridylazo)resorcinol, a complexing agent,

to form a series of closely related complexes. It is shown by

comparison the extended Kalman filter method greatly improves the

accuracy, precision, and utility of multicomponent kinetic methods.

The new method is also shown to have a greatly reduced

dependence on a number of factors which severely affect previous

techniques. These include the previous assumption of rate constant

invariance between runs and use of invalid system models.
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CHAPTER I

Introduction

Curiosity is the very basis of education and if you tell me

that curiosity killed the cat, I say only that the cat died ,

nobly.

Arnold Edinborough

Reaction-rate methods of analysis are becoming increasingly

popular techniques in analytical chemistry. This can be

demonstrated by an increasing rate of appearance of articles in the

literature relating to the subject. Some examples of this are given in

Chapter 11. These methods offer several distinct advantages over

equilibrium-based methods, including speed and selectivity. Perhaps

one of the more interesting applications of reaction-rate methods is

that of multicomponent analysis. The goal of multicomponent

techniques is to obtain accurate estimators of the true concentrations

of two or more components in a sample. Of course, in a perfect

world, this task would not be very difficult because, ideally, each

component in the mixture would exhibit a unique response from the

detector. It would also be ideal if there were no overlap of the

kinetic responses of any of the components in the sample.

The world in which we live is not ideal, and most samples of

analytical interest exhibit overlapped detection and kinetic behavior.

How then, does one go about resolving these overlapped responses?



There have been many attempts at providing methods to do just this.

Chapter II discusses previous techniques which have been utilized to

solve this problem. The limitations to these previous techniques are

discussed, and justification is given for the development of a new

technique, namely, the extended Kalman filter, which is, of course,

the subject of this dissertation.

Chapter III introduces the Kalman filter, and its nonlinear

form, the extended Kalman filter. The uses of the various forms of

the Kalman filter to solve chemical problems since its inception are

described. At this point, the extended Kalman filter algorithm is

presented, and its applicability to the current problem is discussed.

The advantages of using this approach for multicomponent kinetic

determinations are put forth.

In order to test the advantages and limitations of using the

extended Kalman filter for multicomponent kinetic determinations,

an extensive series of simulation studies were performed. In

Chapters IV and V, these simulation studies are described, and the

results are discussed. In Chapter IV, a model for a two-component

irreversible system to be studied is developed, while Chapter V

develops models for more complex chemical systems. The ways in

which these models are applied for use in the extended Kalman filter

are described. The general kinetic model used for the irreversible

simulation studies is that of a pseudo-first-order reaction, described

as:

C+R—L-)P (1.1)



where the reaction is first-order with respect to species C, species R

is in excess, k is the full second-order rate constant, and P is the

product. Under pseudo-first-order conditions, the pseudo-first-order

rate constant, which can be denoted by k', is equal to the product of

the true rate constant k, and the concentration of species R.

In Chapters IV and V, the models used to calculate the

simulated data are described, as is the model used in the extended

Kalman filter algorithm to process the data. Of course, in real

situations, noise is present, so in order to present a more realistic

model, noise is added to the simulated data. The method for

generation of this noise is described in Chapter IV, and its

characteristics are discussed. The results of the simulation studies

are described, and the influence of various parameters on the

accuracy of the filter estimates are analyzed. Finally, some

conclusions are drawn about what conditions it is possible to apply

the filter to a chemical system, and under what conditions

application of the filter would not be advisable.

Simulation studies are useful because they allow one to vary

parameters with a degree of accuracy and precision not possible in a

real experimental system. However, simulated data behave in a

predictable manner, which may lead one to let biases creep into the

conclusions made about a technique. Also, because real systems

have unknown effects, such as synergism, impurities which interfere,

ionic strength variations, and pH effects which are not modeled, it is

necessary to test the technique on a real chemical system. Chapter

VI describes a chemical system used to test the version of the

extended Kalman filter developed for this research. The chemical



system used was that of the general complexing agent, 4-(2-

pyridylazo)resorcinol, which complexes a large number of metal

species. The utility of this system as a good test case for the

extended Kalman filter is described, as are some of its uses in process

chemistry. The experimental procedures used for this study are

described, and the results are analyzed. The results of the estimates

of concentration by the extended Kalman filter technique are

compared to the results obtained by other analysis methods under

the same conditions. The advantages of using this technique are

discussed, as are the disadvantages. The applicability of the Kalman

filter method to even more complicated reaction schemes is

described.

In Chapter VII, conclusions on the utility of the technique to a

wide variety of reactions are made, and the future direction of this

work, as the author sees it, is discussed. One area where this

technique should find great applicability is for principal component

analysis using a network of extended Kalman filters. A possible

extension of the current work to principal components analysis is

described in some detail.

Since simulation studies consist of such a large part of the

current work, the program, NRNDAT, used to calculate the artificial

data for the case of a general number of components following non-

reversible kinetics is presented in Appendix I. This program is

referred to in Chapters IV through VI. The program first calculates

-the true values for the absorbance at each wavelength for each point

in time in the reactions, and then adds a random noise value to the



true absorbance in order to simulate the noise characteristics of an

experimental system.

Finally, Appendix 11 contains the program listing for EKFNRN,

the extended Kalman filter algorithm used to process the data for a

general number of components following non-reversible reactions.

In other cases of different types of reacting systems described in this

work, this program was modified in order to work with the

parameters desired from those systems. However, the general

algorithm remained the same for all systems studied, with the only

changes being made to the system model, the linearized

measurement function, and the number of components analyzed.

The areas which were changed when using different models are

described.

The new technique described in this dissertation should

become a powerful method in analytical chemistry. It has overcome

most of the limitations inherent in previous approaches to problems

of this nature.



CHAPTER II

Multicomponent Kinetic Determinations-An Historical

Perspective

Nothing in life is to be feared. It is only to be understood.

Marie Curie

A. Introduction

Kinetic methods of analysis have become increasingly popular

in recent years. This increase in popularity can be seen by a number

of international conferences devoted to kinetics in analytical

chemistryl, and by two recent books on the subject2»3. There have

also been several recent review articles which deal with kinetic

methods in analytical cheniistry4t5»6t7:3.

Kinetic-based determinations offer several advantages over

equilibrium methods. Among these advantages are those of

simplicity, speed, and precision9. Crouch“), asserts that one of the

major reasons for the increased interest in kinetic methods is the

increased use of automation in kinetics-based procedures. The use of

automation in kinetic methods can be traced to 1960 with the

introduction of an automated, variable time method for glucose“.
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The history of developments from this point until 1988 is

summarized in reference 2. Of course, kinetic methods have some

disadvantages when compared to equilibrium-based methods as

well. Since the analytical results are dependent on the measurement

of a time-dependent quantity which is influenced by a rate constant,

any factor which affects the value of the rate constant can potentially

affect the accuracy and precision of a kinetic technique. Rate

constants, and therefore most kinetic methods, are dependent on

factors such as pH, ionic strength, and temperature. Therefore, in

order to obtain good results with kinetic based methods, one has to

control experimental conditions more so than one usually would in

an equilibrium-based method.

Kinetic methods take the time dependence of a chemical

reaction or an instrumental response into account in order to obtain

analytical information. Although historically analytical chemists

have given little or no recognition to kinetic methods, many popular

techniques are, in fact, kinetic in nature. Pardue4 defines a kinetic

method as any analytical procedure in which the measurement step

is influenced by a transient process and proposes that a majority,

rather than a minority of modern analytical methods are kinetic in

nature. By this definition, any chromatographic, atomic, or mass

spectrometric technique, as well as a number of other analytical

techniques are kinetic in nature, and can be properly classified as

kinetic methods.

Multicomponent kinetic methods, sometimes referred to as

differential kinetics, are one of the more interesting facets of

reaction-rate methods of analysis. In the historical context, the term
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"multicomponent" is somewhat of a misnomer, since most of the

techniques developed to date consist of the resolution of two, or at

most, three components. These techniques might better be called

dual-component kinetic methods.

The general goal of multicomponent kinetic methods is to

determine the kinetic parameters or the analytical concentrations of

the reactants in a system. A general mixture amenable to

multicomponent kinetic methods can be described as follows:

Cl +R-—:1—>P, ( 2.1)

C2 + R—3—->P2

where C1 and C2 are two different species which react with a

common reagent, denoted by R, with two different rate constants, R1

and k2 to form similar, but not identical products, P1 and P2. Reagent

concentrations are usually maintained such that pseudo-first-order

kinetics apply, in which case equation 2.1 reduces to:

C‘ 4513‘ (2.2)

c2 —-£z—>P,

where k'l =k1[R]t and k'z =k2[R]t. By assuring that pseudo-first-order

kinetics are followed, previous researchers were able to obtain

analytical information using the model given in equation 2.2 above

by a variety of methods. The biggest problem that occurs in all of

the previous techniques, however, is that as the ratio of the two rate

constants k'l/k'z becomes closer to unity, the errors in the estimated

concentrations of the components in the mixture get larger and
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larger. The most common methods for the kinetic resolution of

mixtures are described below, followed by a discussion of several

recent techniques that offer the possibility of improved

determinations of several components, as well as increased

applicability to more complicated systems.

B. Principles of Multicomponent Kinetic Methods

Historical approaches to resolving mixtures of reacting species

by kinetic methods have centered on adjusting or taking advantage

of differences in the reaction rates of the components”. These

approaches are subdivided into two categories, methods for mixtures

whose reactions have large rate differences, and methods for

mixtures whose reactions have small rate differences. Since methods

for mixtures with small rate differences make up the large majority

of the work in this field, each of the most popular techniques are

discussed in turn.

1. Methods for large Rate Differences

If a mixture which is to be determined has large differences in

reaction rates, the analysis is quite simple because each species can

be treated separately. It is assumed that during any time interval,

only a single species is reacting, and that the Other species have

already completely reacted, or are reacting so slowly that they do not

interfere with the reaction of interest. The time dependence of the

concentrations of C1 and C2 in equation 2.2 can be given as:
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MEL = kit

[C1].

1n_[C2], = k'zt

[C2].

(2.3)

If both C1 and C2 react during a given time period, a time

independent expression for the two concentrations can be obtained

by dividing the two equations in equation 2.3 above to yield:

11.

I]

ln-‘C2 °

[C2].

1“. 
I
O

 "

R
I
F
,

N

(2.4) 

I
—
A

  

With this equation, Mark, Papa, and Reilley13 were able to determine

the ratio of rate constants necessary to obtain a given error in the

concentration of [C1]o. They found that if an error of <1% was

desired, it was necessary to have a rate constant ratio of >500. If

larger errors were tolerable, smaller rate constant ratios could be

used; however, the errors always increased greatly as k'1/k'2 got

smaller. In general, rate constant ratios of <50 yield errors of greater

than 5% by neglecting the slower reaction. The reported errors

assume that the measured parameters (e.g., absorbance, diffusion

current) are equally as sensitive for C1 and C2.

Criteria are also discussed13 whereby one can neglect the

reactions of faster reacting components. If the reaction rate of C1 is

very large compared to that of C2, then at long times, C1 can be

considered to be completely reacted (i.e., [C1]t=0), at which time the
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change in the signal will be directly proportional to C2. There are

two limitations to this method. The first is the time necessary for the

determination, and the second is that a reasonable amount of C2 must

remain when C1 has completely reacted. This limits the ratio of rate

constants under which precise results can be obtained. The actual

ratio depends upon conditions, but is generally greater than 10:1.

Other methods for simultaneous determination of mixtures of

components are discussed13. For example, assume that a binary

mixture of C1 and C2 is to be determined and C1 reacts essentially

completely in 20 minutes. If k'1/k'2 =SOO, C1 can be easily

determined, but a great deal of time must elapse before one can

accurately estimate C2. Methods are also discussed for estimating

concentrations under such conditions as: changing the reaction

temperature after C1 has reacted to completion, changing the

concentration of the common reagent, B, after the first reaction is

over, or adding a catalyst after the first reaction. Because these

methods are rather self-explanatory, they are not discussed further

here.

2. Traditional Methods for Small Rate Differences

If the ratio of the two rate constants is small, the techniques

described above are not applicable because the assumptions

necessary to neglect one of the reactions are no longer valid. For this

case, special techniques have been developed in order to analyze

mixtures.
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The approaches to solving this problem may behdivided into

three general categories: masking methods, methods involving

changes in the kinetics of a system, and methods for systems having

unchangeable rate constant differenceslz. Each of these traditional

techniques is described, and then more specific approaches are

discussed. Modern computer-based methods are discussed later.

a. Masking methods

Masking methods generally involve shifting the equilibrium of

an interfering species so that it no longer reacts in the presence of

the species of interest13. The most common example of the masking

technique is the conversion of all interfering species into complexes

of extremely high stability such that they no longer react with the

reagentlz. A common example of this process is the titration of

metal ions with EDTA. In this case, it is relatively easy to adjust the

reaction conditions such that only one metal ion forms a stable

complex with EDTA, or to add another complexing agent that

selectively complexes an interfering metal ion so that it does not

interfere with the ion of interest.

b. Methods Involving Changing the Kinetics of a System

The second method for determinations of mixtures with small

differences in rate constant occurs when it is possible to alter the

type of reagent used in order to obtain suitable rate differences”.

In other cases, the rates of reaction are shifted into a more suitable
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region. This could be because the rates of reaction are too rapid to

determine the species under normal conditions. An example of this

method is again the reaction of metal ions with EDTA. In many cases,

the reactions of free metal ions with EDTA are too rapid for common

kinetic techniques. If, however, a complexing agent is added to the

mixture before the addition of EDTA, the reactions can be made

slower. The rates of displacement of the preliminary complexing

agent may be different for the ions being studied, in which case the

rate constant ratios may be more suitable and analysis more

practical.

c. Systems With Unchangeable Rate Constant Differences

The third method is actually a class of techniques that have

been developed in order to obtain analytical information regarding

systems with small differences in the rate constants. This is an

important area of multicomponent kinetics, because often the rate

constants cannot be separated to a sufficient degree by either of the

two methods described above. Many of the previous approaches to

this problem are well covered in the literature, and so will not be

described in detail here.

The most popular approaches to multicomponent kinetic

determinations historically have been graphical extrapolation

methods and the method of proportional equationsZJ3. There have

also been several methods developed recently. These computer-

based methods are described in section 3.
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i. Graphical Extrapolation Methods

The most common graphical method historically has been the

logarithmic extrapolation method13. Linear extrapolation methods

have also been used, however, they have not found as wide an

application as logarithmic extrapolation methods.

The concentration of the products in equation 2.2 can be given

by the following if the two products are identical and the initial

concentration of the product is zero:

[P]! = ([Cllo -[C1]t)+([C2]o -[C2]t) (2'5)

The concentrations of the two reactants at any time follow simple

first-order kinetics as follows:

[C1]. = [Clloe-kh (2 6)

[C2].=[C2].°"‘"‘ '

By substituting equation 2.6 into equation 2.5 we obtain the

concentration of the product at any time in terms of only the initial

reactant concentrations and their respective rate constants. Thus:

[p]! = ([c,]o —[c,]°c’*1‘)+([c,L - [odors-‘2') (2.7)

Using equation 2.7, we can now obtain the following

relationship between the concentrations of the reactants and

products:
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(1C1 11 + [(3211) = ([P]- " [PM = [Czioc-i"zt (2'8)

The logarithmic extrapolation method assumes that when the faster

reacting component, C1, has reacted to completion, the term [C,]°e"""

in equation 2.7 becomes negligible. By taking the logarithm of both

sides of equation 2.8 and plotting 1n([C,]‘ +[C2]‘)=ln([P]_° —[P],) versus

time, one obtains a straight line with a slope of -k'2 and an

extrapolated intercept of ln[C2]o. It is then possible to obtain the

value of [C1]o by subtracting [C2]o from the total initial concentration

of reactants. The range of rate constant ratios where this method is

applicable depends on a variety of factors, such as concentration

ratio and what error is acceptable to the user. A complete error

analysis is given by Mark, Papa, and Reilleylz; however, they found

that under certain conditions, rate constant ratios of as low as 5 could

be tolerated with this method.

The linear extrapolation method requires the total amount of

the two species be known”. For two reactions following second-

order kinetics as described in equation 2.1, and if [R]=[C1]o +[C2]o, the

rate of reaction can be expressed by:

$=§=klkli¢l+k2[R].[C21. (29)

where x is the amount of R consumed at any time, I.

If C1 reacts faster than C2, then when the C1 complex has

reacted essentially to completion, equation 2.9 gives, after

integration:
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x = k,[C2]‘([R]° - x)t + [c,]° (2.10)

The value of [C1]o is then determined from the extrapolated intercept

at t=0 of a plot of x vs ([R]o-x)t.

ii. Method of Proportional Equations

The method of proportional equations is based on the principle

of constant fractional life, which applies to first-order reactions and

to systems which can be reduced to pseudo-first-order kinetics”. A

species is said to have a constant fractional life if, at any given time,

a constant fraction of the initial concentrations has reacted

irrespective of the initial concentration. This is a well-known

property for first-order reactions, where half-lives are often used as

a measure of the reaction rate. It can be shown that the

concentration of the product at any time is directly proportional to

the initial concentration of the reactant. For example, in a one-

component system following non-reversible first- or pseudo-first—

order kinetics, given by:

Cl—lL—aP (2.11)

the concentration of the product P1 at any time, t, is given by:

[p], =[Cl]°(l-e""") (2.12)
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[P], =x,[c,]° (2.13)

where

xl =(1—c‘ki‘) (2.14)

Therefore, the concentration of P at any time, t, is directly

proportional to the initial concentration of C1.

This treatment can easily be extended to the case of two

reactants in a mixture. If C2 reacts under first-order conditions to

form P, the concentration of P at any time, t, will be proportional to

the initial concentration of C2 by:

[p], = x,[c,]° (2.15)

If the two reactions are independent, the concentration of P at time t

for a mixture of C1 and C2 can be given by:

[P], = x,[c,]o +x,[(:,]o (2.16)

and the concentration of P at some later time, t', can be given by:

[PL = x,'[c,]a +x,'[c,]o (2.17)
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In order to use the relationships in equations 2.16 and 2.17 in a real

determination, it is first necessary to determine the values of X1 and

X2 at times t and t'. These values can be determined experimentally

from equation 2.13 by measuring the amount of P produced by

known concentrations of C1 only and C2 only during the two time

intervals. These values could also be calculated by substituting the

known reaction rate constants into equation 2.14.

The analysis of a two-component mixture is achieved by

measuring the concentration of P at times t and t'. The resulting data

are then substituted into equations 2.16 and 2.17 which are solved

simultaneously in order to determine the concentrations of C1 and C2.

This method can be extended to the case of a larger number of

reacting specieslz. However, the errors involved in determining the

values of P and of the various X values at different times limits the

number of species which can be determined to three, or at the most,

four. The accuracy which can be obtained using this method is

dependent on a number of variables. A complete error analysis is

found elsewherelz; however, this method is generally not applicable

to mixtures with rate constant ratios below 5/1.

A variation of the method of proportional equations has also

been developed. This method is known as two point kinetic

simultaneous determination using flow injection analysis (FIA)15.

This method is quite similar to the method of proportional equations,

except it includes a term for the dispersion in the FIA system at each

of the two points measured.

Ultimately, however, these approaches, which have seen their

popularity decline in recent years, are quite limited in a way which
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has been overcome in recent years. These basic limitations are

discussed for graphical extrapolation methods and for the method of

proportional equations below.

Graphical extrapolation methods are limited by erroneous

assumptions regarding the system model. In other words, this

technique makes the assumption that one reaction is complete while

the other reaction is only in its initial stages. As the ratio of the rate

constants approaches unity, this assumption becomes less and less

valid. For this reason, the method of graphical extrapolation becomes

limited as the rate constant decreases.

The method of proportional equations finds its main limitation

from a different source. Since only two data points are used in order

to determine concentrations in a two-component mixture, the

precision of this method is not very good. In a kinetic method,

usually a fairly large number of data points are obtained, often on

the order of 50-1000. But since the method of proportional

equations only uses a small fraction of the available data, the

precision of this method is limited.

Kopanica and Staral6 have summarized the conditions in

reaction systems under which each of the above techniques is

applicable.

iii. Single Point Method

The single point method can be applied to systems such as

those described in equation 2.2. This method requires knowledge of

the total concentration of the mixture and the extent of reaction at a
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single selected time during the course of the reaction”. The method

is based on a plot of ([c,]‘ +[c,]‘) / ([c,]o +[c,]°) or ([C]- -[C],)/ [C], at any

time, t, versus initial mole fraction of C1 in the mixture. This plot

yields a straight line which has a slope of (6“ -c"‘3‘) and intercepts

of 6"” and e4" at a mole fraction C1 equal to zero and unity,

respectively. The plot is used as a calibration curve, and is easily

constructed by measuring the extent of reaction of pure C1 and C2 at

the chosen value of t, and then drawing a straight line through the

points.

This method, like the method of proportional equations, suffers

from a lack of precision. Using data from only one time, when much

more is readily available, severely limits the precision which can be

obtained with this method. It is likely that this lack of precision is

one of the main reasons that the single point method has not found

wider applicability.

3. Modern Computer-Based Methods

The introduction of digital computers in the chemical

laboratory has brought with it an increase in the power of kinetic

methods of analysis. Since kinetic systems most often follow non-

linear relationships, and computers are quite able to model these,

many new applications have been discovered. Computers bring

several advantages to chemists. Among these are speed of

computation, ability to perform non-linear regression rapidly,

automation of data acquisition and processing, and graphical

applications. Several different approaches involving the use of
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computers for multicomponent kinetic determinations have been

utilized. Several of the more popular methods are discussed in this

section.

a. General Methods

Since kinetic systems are non-linear in nature (except for zero

order systems), methods developed before computers became

readily available generally tried to transform the data to fit a linear

function. However, since non-linear regression methods are able to

fit the function without the need for linearization, computers allow

the non-transformed model to be used.

Pausch and Margerum13 were the first to apply digital

computers to kinetic methods of analysis. They used an IBM 7094 to

determine mixtures of magnesium, calcium, strontium, and barium

by the method of proportional equations, using 30-60 data points

instead of just two, as had been used prior to the advent of

computers. This method is described by extending equations 2.16

and 2.17 to having 30-60 simultaneous equations, each of the form

[PL = x“ [q]o + x,‘ [C,]° (2.18)

As long as all values of Xj are known, this becomes a system of 30-60

simultaneous equations with two unknowns. Using this greater

number of data points allows for greater precision.

A simplified linear least squares method was developed for the

analysis of two- and three-component mixtures”. The two-
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component system can be described by equation 2.2. If P1=P2, the

concentration of the product, P, at any time can be expressed by:

[p], f[C,]°(l—e’ki‘)+[C2]o(l—e'k3‘)+X (2.19)

where X is the background signal. At each time, t, the value of Pi can

be expressed by:

[P]t = [C,]Oa, +[C,]°b, +X (2.20)

where at =(l—e’kl‘) and bt =(l—e""‘).

The shape of the response-time curve (formed by [P]1 versus

time) is determined by the values of [C1]o and [C2]o and not by X.

The goal of this method is to find the values of these initial

concentrations which best fit the response-time curve. It is possible

to measure [P]; at hundreds of times, and therefore to have hundreds

of simultaneous equations of the form given by equation 2.20.

The error between the measured value of [P]1 and the

predicted value is denoted by ilt and is given by:

u, =a,[C,L+b,[C,]°+X-P, (2.21)

In order to obtain the least squares error, the sum of the squares of

the errors for each data point from t=1 to n is obtained as given by:

2x10“):=‘2:‘1w,(a,[Cl]a+b,[C2]o +x-[P],) (2.22)

t-
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where wt is a wighting factor associated with each [P]1 value. The

20102 values are minimized with respect to each coefficient ([C1]o,

[C2]o, and X) by partial differentiation and (omitting wt and the

summation bounds) three equations resulting in three unknowns.

The equations are:

2(af[C,]° + a,b,[C2]o + a,X) = 231W],

2(a,b,[c,]o + bf[c,]o + bx) = 2b,[P]t (2.23)

2(aic. 1. + big]. + x) = 2m.

The linear combination coefficients are resolved by solution of the

matrix equation,

Ewtatz zwtatbt Ewtat C110 thaIIPL

zwab, 2‘”th EWJJ, C21, = 2w,b,[P], (2.24)

zwtat thbt 2‘”: X ZWIIPL      

where the summations for all times, t, are taken. The weighting

factor is:

—k.t -k',r

w, =°—fif]—°— (2.25)

to account for differences in weight of the measured data in terms of

both time and magnitude. The exponential terms in the numerator

deemphasize data taken near the end of each reaction. The product

concentration term in the denominator is included to prevent the

data from slower reacting components from being weighted too
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heavily because of reaction product resulting from a faster reacting

component.

Nonlinear regression has also been applied for the treatment of

simultaneous multicomponent kinetic data”. Assuming a two

component system as described in equation 2.2 undergoes first- or

pseudo-first order kinetics, and that the products are identical, the

concentration of P at any time is given by equation 2.19. This

system represents a nonlinear model. Data from such a system can

be analyzed by any of a number of the common non-linear

regression methodsZO. All of the non-linear regression methods have

the same goal, which is to minimize the differences between the

measured value for each point and the estimated value. Good initial

estimates of the regression parameters are necessary in order to

achieve accurate results.

The Kalman filter has also been applied for the kinetic

determination of mixtures“. The Kalman filter is a recursive filter

and offers the advantages of linear least squares, but is simpler and

more efficient. This filter is able to extract parameters from noisy

data and to model complex systemszz. This technique is a major

subject of this thesis and is described in much greater detail in

Chapter III.

Schechter7-3 developed a new error-compensating algorithm for

kinetic determinations of dual-component mixtures without prior

knowledge of reaction orders and rate constants. If a system

described by equation 2.1 follows kinetics of unknown order, the

rate of change of the two components are:
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M= _kl[Cl]nt

d‘ (2.26)
d c .,

131.12.,”

where n1 and n2 are the (unknown) reaction orders. The

concentrations of C1 and C2 at time, t, are given by:

[C] =[k,(n, -1),°'t+[C](1n.)](”“')

l (2.27)

[C] =[k,(n2 —1)t+[C](1-.,)]V( “2)

If ax is the detector sensitivity for compound x, and the signal is

linearly dependent on the concentrations, then the observed signal at

time, t, is:

St = ac,[C1], + arc2 [C2]t + ap’ [P1]. + orP2 [P2]t + X

=[aCl —q,oz,,llC,]t +[ozC2 —q,oz,,2][C,]t +X (2.28)

=fi1[Cl]t +fl2[cl]t +x

where [31 is a constant proportionality factor, qi account for the

reaction stoichiomeuies and X is the constant background. Equation

2.28 is then fit to the experimental data by using a modified

Levenberg-Marquardt algorithm in order to solve the nonlinear

least-squares problem. The method was tested using simulated data,

and it was found to be applicable for the determination of

concentrations, rate constants, and reaction orders in a wide range.

However, there are some severe limitations and restrictions to the

method, such as sensitivity of the detector to each of the components,
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range of rate constants that are applicable, and the initial estimates

of each of the parameters.

Schechter and SchroderZ4 have developed an algorithm based

on the Levenberg-Marquardt method for nonlinear least squares,

which can be used for kinetic determinations in systems of mixed

first- and second-order reactions. The development of the model for

use in the algorithm is similar to that described above for systems of

unknown order. The system can be described as follows:

The algorithm was tested by simulated data, and the influence of the

noise level, the range of the rate constants and other parameters

were studied. It was found to be suitable for a wide range of

parameters, and only a poor estimate of them was needed in order

for the algorithm to converge.

A method applicable to kinetic methods has been developed

which estimates component amplitudes in multiexponential data25.

This technique obtains quantitative information about individual

component contributions to multiexponential data by a reiterative

regression algorithm that employs a linear least-squares

determination of component amplitudes within a nonlinear least-

squares search for the exponential decay times. This is a unique

application of a combination of the linear and nonlinear least squares

methods described above.
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b. Multiwavelength Methods

As multiwavelength detectors such as photodiode arrays and

charge-coupled devices (CCD) have become more popular, interest

has grown in applying the power of these detectors to kinetic

methods of analysis. As more of these devices are incorporated into

analytical laboratories, it is expected that many new applications will

be developed to take advantage of their simultaneous,

multiwavlength capabilities.

Multiwavelength methods were first developed in the 1970's

using vidicon rapid scanning spectrometer326. The use of multiple

wavelengths in kinetics experiments allows a greater diversity of

systems to be successfully analyzed. Systems which have rate

constants that are too close to analyze under normal means may be

determined if there are spectral differences present.

Factor analysis has also been applied to the resolution of

simultaneous kinetic processe527»23»29,30:31. This method has the

advantage of not requiring standards of the components to be

determined or assumptions on the shape of their spectra. The data

to be factor analyzed are required to be arranged in a matrix, D, the

dimensions of which are NT x NW, where NT is the number of spectra

acquired at different times, and NW is the number of wavelengths

acquired for each spectrum. Each row of D corresponds to the

spectrum of the mixture at a given point of its kinetics, and each

colum matches the kinetic curve at a given wavelength. The

algorithm for factor analysis will not be included, as it is well

covered in the literature31,32.



28

A new procedure known as the kinetic wavelength-pair

method has been recently reported33. This process involves

measuring the difference in the rate of change of the absorbance

with respect to time at two preset wavelength pairs. Since the rate

of change of absorbance at any wavelength is dependent on the

wavelength used, by measuring the rate of change of absorbance at

two wavelength pairs, the concentrations of two species in a mixture

can be determined using a single sample. For a mixture of two

components, as in equation 2.1 above, application of the method

involves measuring the rate of change of absorbance at two

wavelength pairs, (11, 12) and (l3, 2.4), which are chosen so that the

difference between the rates of change of the absorbance for the first

wavelength pair, (21, 22) is as large as possible for one of the

components (e.g., C1) and as small as possible for the other. The

reverse should be true for the second wavelength pair. Data were

collected with a diode-array spectrophotometer.

c. Miscellaneous Methods

In addition to the approaches described above, several other

methods have been developed which are not easily classified in the

categories already discussed. These so-called miscellaneous methods

are described here.

An H-point standard additions method (HPSAM) has been

deveIOped for the ultraviolet-visible spectrosc0pic kinetic analysis of

two-component systems34. The method is described under two

cases: the analysis of two species of which only one evolves with
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time, and the analysis of two species with overlapped time

evolutions.

The determination of the concentration of C1 by the HPSAM at

equilibrium entails selecting two wavelengths M and 12 lying on

each side of the absorption maximum of C2, so that the absorbance of

the latter component is the same at both wavelengths. Then, known

amounts of C1 are successively added to the mixture and the

resulting absorbances are measured at the two wavelengths. The

two straight lines thus obtained intersect at the so-called "H-point",

(-C11, A11) where -C11=(-Cc1) is the unknown concentration of C1 and

AH=(Ac2) is the analytical signal of C2. When one of the species

evolves with time, the variables to be fixed are two times, t1 and t2.

Species C2 which should not evolve with time over this range, should

have constant absorbance. This contrasts with the equilibrium

HPSAM, where two wavelengths are chosen. A plot is then prepared

of added [C1] on the ordinate, and AA for the two times on the

abscissa. The point where AA=O is equal to {Q}.

When both species evolve with time, [C1] can be calculated by

plotting AA for the two times against the added concentration of C1

at two wavelengths, A1 and 22, provided the absorbances of C2 at

these two wavelengths are the same.

The continuous addition of reagent technique is also applicable

to multicomponent kinetic determinations”. This method is based

on the continuous addition of reagent at a constant rate to the species

to be determined36. The model for this method is developed here for

a single component, but is applicable to multiple reacting species.

Consider a reaction given by equation 2.1 where only one analyte is
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present. If a solution of a reagent, R, with a concentration, [R]o is

added at a constant rate, a, to a volume V0 of a solution containing

the analyte C1, the overall rate of the process can be given by:

—d|C,l=_[d q) _[d c,]] (2.29)

dt dt (11

if C1 is the monitored species. The reaction rate can be expressed by:

d c,] _
—[ dt 1...... _ k,[c,]R] (2.30)

where k1 is the pseudo second-order rate constant. The reagent

concentration increases with time according to:

[R]: {—2—“IR—L—} (2.31)
V +ut

The term at, the volume of reagent added in time t, is also a dilution

factor for the reagent. The dilution of the analyte C1 takes place

according to:

[c]: [c,1,(V.V+ut] (2.32)

Taking the derivative of equation 2.32 gives the rate of dilution:

9&1) =[“ )c] (2.33)
dt W V+ut
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By combining equations 2.30, 2.31, and 2.33, the overall rate can be

shown to be:

 J1: =k[“_“‘L}1c,1+[ “ )[q] (2.34)
V°+ut V +ut

0

In practice, equation 2.34 forms the basis of the continuous

addition of reagent method using the initial-rate technique. Under

short reaction times (at << V0), dilution of the analyte can be

neglected and equation 2.34 can be rewritten as:

d[C1]_ ill—KL’T‘k( v0 )‘mL (2.35)

Equation 2.35 is used for the construction of a linear calibration

graph by plotting the initial slopes of the kinetic curves as a function

of [C1]o over a fixed time interval in all experiments.

C. Applications of Multicomponent Methods

There have been several different approaches applied for the

simultaneous kinetic resolution of mixtures in recent years. This

section discusses the applications where multicomponent kinetic

methods have been utilized for methods with small rate constant

differences.
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1. Graphical Extrapolation Methods

The most popular graphical technique used for simultaneous

kinetic determinations has been the logarithmic extrapolation

method, which is described in section B above. This method has been

applied to several problems in analytical chemistry. Table 2.1

summarizes some recent applications which have taken advantage of

graphical extrapolation methods.

As can be seen from Table 2.1, graphical extrapolation methods

have performed well as long as there are sufficient differences in

rate constants among the species being determined. The smallest

ratio yielding accurate results reported in the references in the table

was 7.313. Some of the mixtures determined by the reaction of

aniline and its derivatives with DMPD37 had rate constant ratios of

less than two. However, in these experiments, the total concentration

of the two species in the mixture was determined, and not the

individual concentrations of each species. These could not be

successfully determined.

The displacement reaction of the cobalt complex of pyridoxal

thiosemicarbazone with DCTA does not occur, which allowed the

analysis of mixtures of cobalt and nickel, and cobalt and copper to be

successfully determined-i3. Since both nickel and copper complexes

undergo the exchange reaction, their binary mixtures with cobalt can

be analyzed by graphical methods, as the effective rate constant ratio

is infinity. However, the rate constant ratio for the binary mixture of

nickel and copper was 4.40, and could not be successfully
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Table 2.1: Applications utilizing graphical extrapolation methods.

 

  

 

 

 

 

 

     
 

Cont. Rate

System Range Constant Errors Bet.

m

Alkaline earth- 106- 1:7.3:109 9.5% 13

DCTAl/Cd(ll) substitution 10‘5 M Mg:Ca:Sr ave.

reaction

Aniline and 104- * <14% 37

derivatives/DMPDi 10'3 M

Fe & Co with pyridoxal 10-5 M 10.5 55% 39

thiosemicarbazone

Ni & Cu with pyridoxal 11g mL'l NR 56% 40

thiosemicarbazone

Displacement of Co, Ni & Cu. ug mL'1 coll $696 38

with pyridoxal

thiosemicarbazone

complexes with DCTA

Displacement of In & 1.1g mL'l NR <10% 41

Ga/PARfi complexes with

EDTAl‘”

NR-not reported

*-Only total concentration determined

l-DCTA=(1,2,diaminocyclohexane, N, N, N', N'-tetraacetic acid)

LDMPD=N,N-dimethyl—p-phenylenediamine

Tl-Co does not undergo the exchange reaction (kc(,=0)

Il=¢~PAR=4-(2-pyridylazo)resorcinol

ill-EDTA=ethylenediamine tetraacetic acid
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determined by this method. In order to determine this mixture, the

single-point method was used.

2. Proportional Equations Based Methods

The method of proportional equations described in section B

above has also been used extensively in analytical chemistry. Table

2.2 summarizes some recent applications which have utilized the

method of proportional equations. Several of these

applications42,43.44’45:46,47,48.49.50 have utlized the technique of flow

injection analysis to allow large numbers of samples to be processed

in a short amount of time. Sampling rates of 60 h'1 or more have

often been reported using this configuration.

Several of the systems used also required the use of two

procedures47»43:50’51.52. Each of the two procedures was optimized

for the response of one of the components. In this manner, it is

possible to determine more closely related species.

Overall, the method of proportional equations can be quite

useful. Its biggest drawback occurs when the species being

determined are closely related kinetically. Under these conditions,

the results obtained from this technique are not favorable, and it

would be best to use a different method.
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Applications utilizing the method of proportional

 

 

 

 

 

 

 

 

 
 

  

Table 2.2:

equations.

Conc. Bate

sttem Range Constant Errors Bet.

Ratios

Dissociation of Mg & Sr 104- 175 <10% 42

complexes of trans-1,2- 103 M

diaminocyclohexanetetra-

acetic acid

Dissociation of 10-4- large’t <10% 43.44.45

metal/cryptand complexes 10‘3 M

Dissociation of citrate 11g mL-1 43.4 <10% 15

complexes of Co & Ni

Fe(III) & Mn(II) or Ni & Co ng mL'l 27.7(Fe,Mn) <4% 46.51

with ZOH-BATI 10’4 M 24.9(Ni,(b) <10%

Z-component mixtures of 104- NR <6% 53

ammonia, hydrazine, and 10‘2 M

hydroxylamine with 20H-

BAAll

Formation of molybdate ng ml:1 130 <5% 47.54

heterome acids of silicate 106-

and phosphate 10'5 M

Furfural & vanillin with p- ug ml‘l NR <6% 55

amincmhenol
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Table 2.2 continued
 

 
 

 

 

 

 

 

   

9.0m. Bate

sttem Range Constant Errors Ref.

Eli—SIS

histidine & 1- ug mL-l NR <6% 56

methylhistidine with o-

phthaldialdehyde

Fe(II) & Fe(III) with 11g mL-l large <5% 57

pyrocatechol violet

Fe(ll) & Fe(III) by 1.1g mL'1 NR <10% 48

differential catalysis

Co & Ni by ligand exchange ug mL'1 >100 <5% 49

with PSAA=l=‘~t and

nitrilotriacetic acid

Fe(II), Fe(III), and Ti(lV) 11g mL'1 NR <5% 50

with Tironl‘l“l

MO(VI) & W(VI) with 10‘6 M NR <5% 52

DAPm and HLOZ

Ethanol & Methanol with 10-6- NR <896 58

alcohol oxidase 10'5 M    
 

l-The second dissociation did not occur at room temperature, it was

necessary to elevate the temperature after the first dissociation.

L20H-BAT=2-hyroxybenzaldehyde thiosemicarbazone

TT-ZOH-BAA=2-hydroxybenzaldehyde azine

fi-PSAAa-2 -(S-brtrnoZ-pyndylamFS-(Npqryl-Nsulfqrppylamim) aniline

lfi-Tiron=Sodium 1,2-dihyroxybenzene-3,5-disulfonate

iii-DAP=2,4-diaminophenol dihyrochloride
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3. Single-Point Method

The single-point method, as described in section B above has

also been used for several applications. Table 2.3 describes some of

the recent studies that have utilized the single-point method. As is

apparent from the table, this method is applicable to systems with

smaller rate constant ratios than either the logarithmic extrapolation

method or the method of proportional equations. However, once this

ratio gets below approximately 5, the errors start to increase rapidly.

Also, as is mentioned in section B, this method generally has a lower

precision than does the logarithmic extrapolation method.

The single-point method has been compared to the logarithmic

extrapolation method using several of the systems in the

tab1e38»39,40»59. Generally, it was found that the graphical method is

preferable to the single-point method, unless the rate constant ratio

is small. More modern techniques, such as computer methods, have

been shown to be superior to either of these methods”.

4. Computer Methods

As mentioned previously, the introduction of computers in the

analytical laboratory has allowed a broader range of systems to be

studied. Table 2.4 summarizes some recent applications of computer

methods to kinetic methods of analysis. Also included in the table is

which of the computer analysis methods described in section B was

used for each application.
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Table 2.3: Modern applications utilizing the single-point method.

 

  

 

 

 

 

 

 

Cong. Me

Sistem Bans: Constant Errors Rm

53.1115; £29;

Fe & Co with pyridoxal 105 M 10.5 <5% 39

thiosemicarbazone

Co, Ni, Cu/pyridoxal 11g mL'1 4.4 <5% 38

thiosemicarbazone ligand (Ni:Cu)

exchange with DCTA

Ni & Cu/pyridoxal 11g mL'1 large <5% 40

thiosemicarbazone

Co & Cu and Co & Ni with pg mL'1 large <5% 60

TrADATl

Secondary amines with 103- 18-232 <10% 61

carbon disulfide 10'1 M

Cortisone & hydrocortisone 11g mL-1 1.8 most 59

with Blue Tetrazolium <30%     
 

l—TrADAT=3-( 1'H-l ',2',4'-triazolyl-3 '-azo)-2,6-diaminotoluene
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Table 2.4: Applications of computer methods to multicomponent

kinetic determinations.

 

   

 

 

 

 

 

 

 hLdrochloride      

Cont. Bate

5351:2111 Range Constant Errors M21113 Ref.

Ratios

Alkaline earths with 105- 6.5-1660 <10% MPE& 18.19

CyDTA 10‘4 M (2) L13

<20%

(3)

Al(III) & Al-citrate 10‘5 M >100,000I <5% NLR 20

with Calcein Blue

Metal-Zinconl 106- 12-183 <896 LIS 62

dissociation 10-5 M

Epinephrine, roS- 2.4-20.3 <15% us 62

norepinephrine and L- 10‘4 M (> 15%

Dopa with ascorbic acid for k=

2.4)

H801) & Zn(II) with 10‘5 M 1.6 NR WIS 26

Zincon

Amino acids with 105 M 2.5 <1496 KP 21

Tl‘initrobenzenesulfonic

acid

Alkaline phosphatase 10‘6- 4.6 15% KP 63

isozymes/guanidinium 10'5 M
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Table 2.4 Continued

Cont. Bale

5361:2111 Range Constant Errors Mound Ref.

Ratios

Cortisone & 1.1g mL'1 1.8 <8% KP 59

hyrocortisone with Blue

Tetrazolium

Co-EGTA & Ni-EGTA 1.1g mL-1 20 NR PA 31

complex displacement

with PAR

Co-EGTA & Ni-EGTA 1.1g mL-1 20 <10% NLR 64

complex displacement

with PAR

Alcohols with alcohol 103- 2.2-3.3 <10% KP 65

dehydrogenase- 10'6 M

nicotinamide adenine

dinucleotide

Simulation studies varied varied varied NLR, 2123.241

L15, ,25,31,

K12, 66,67

and

PA   
 

l—Zincon=( 2-carboxy-2'-hydroxy—5'-sulfoformazylbenzene)

MPE=modified proportional equations

NIS=non-linear least squares'I.I.S=linear least squares

Nl.R=non-linear regression

WIS-weighted least squares

KP=Kalman filter

PA=Factor analysis
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As is mentioned in Table 2.4, simulation studies were reported

in several of the references. Simulations allow easy control of the

"system" being studied. It is quite easy to change conditions on one,

some, or all of the parameters of interest. In a real system, it is often

difficult to change just one parameter without changing others. In

most of the simulation studies listed in Table 2.4, many factors were

varied. Among these are: rate constant ratios, concentration ratios,

amount of noise present, and data acquisition rate. The errors found

in the simulated systems varied greatly, often from O to >100%

depending on the conditions chosen for each "experiment".

Some of the computer methods also utlized detection at

multiple wavelength526t31. This allows a broader range of systems to

be studied. Since using data at multiple wavelengths allows

resolution of signal due to both spectral and kinetic differences, these

methods are applicable to even more systems. It is expected that

more work in this area will appear shortly.

S. Multiwavelength Methods

Rapid-scanning spectrometers were the first devices used to

perform multiwavelength studies for multicomponent kinetic

analysis. Since then, diode array spectrometers have become

popular tools for multiwavelength kinetic determinations. Table 2.5

summarizes the progress in multiwavelength methods to date.



Table 2.5: Applications utilizing multiwavelength detection.
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Cong. Rate

Sststem Range Constant Errors Bet.

m

Hg(Il) & Zn(II) with Zincon 10—5 M 1.64 NR 26

Hemoglobin and 10'3 M NR <7% 68

Methemoglobin with

cyanide and

hexacyanoferrate(IH)

Formaldehyde and acrolein 11g mL'1 2.9 <10% 33

with MBTHT

Co & Ni EGTA complex 11g mL‘1 20 NR 31

displacement with PAR

Co & Ni EGTA complex 11g mL'1 20 <10% 64

displacement with PAR     
 

l-MBTH=3-methylbenzothiazolin-2-one hydrazone
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6. Miscellaneous Methods

In addition to the methods for multicomponent kinetic

determinations categorized above, there have been several

applications which have not used one of the common techniques.

These methods are discussed in section B above, and the applications

which utilize these are summarized in Table 2.6.

Although these methods have had few applications to date,

they both seem quite promising. It is entirely possible that either or

both of these techniques will become widely applied to

multicomponent kinetic determinations.

D. Conclusions

The introduction of computers in the analytical laboratory has

had a great impact in kinetic methods. This advance has allowed

kinetic methods to become better automated, as well as the changes

in the data analysis methods previously discussed. Kinetic methods

are well suited to intelligent automationlo, since these techniques

require precise timing and careful control over such reaction

conditions as temperature, pH, ionic strength, and reagent

concentrations.

These advances have led to new data processing methods, such

as the Kalman filter and non-linear regression methods. These

techniques generally lead to more accurate and faster results than

those that were used before the advent of computers.
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Table 2.6: Miscellaneous applications.

 

  

 

 

 

 by the Laffé method      

F Cont. Rate

sttem Range Constant Errors Metlm Bet.

Ratios

Zineb and maneb with 11g mL'1 5.4 <5% CAR 69

zincon

Cu & Pe with pyridoxal 11g mL'1 4.67 <S% CAR 70

thiosemicarbazone

Mn & V with Pyrogallol ug mL'1 large <20% HPSAM 34

Red

Creatinine and albumin 11g mL'1 large <8% HPSAM 34

 

CAR-Continuous addition of reagent technique

HPSAM-H-point standard additions method
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Similarly, the recent increase in the popularity of array-type

detectors has started to have an impact on multicomponent kinetic

methods. Although relatively few applications have incorporated

these new detectors to date, it is expected that there will be a large

increase in the applications using them in the next few years.

Another area where advances are possible is with the use of CCD

detectors, which allow two-dimensional imaging of light. With the

use of these detectors, it would be possible to obtain data both

spatially and over multiple wavelengths.

In the future, we should see many advances in multicomponent

kinetic methods. By incorporating new data analysis techniques and

taking advantage of the greater amounts of information available

from array-type detectors, it is expected that the speed and accuracy

of these methods will improve substantially in the next decade. One

area that should see advances is in compensation for changes in rate

constants from run to run. Rate constants are often functions of such

variables, as temperature, pH, and ionic strength. There have been

several methods developed for single component kinetics that

compensate for the changes in the rate constant between runs. For

example, Wentzell and Crouch developed the two-rate method“,

which involves measuring the rate of change of the reaction at two

different times, and then taking the ratio of the two rates. This ratio

is not dependent on the value of the rate constant. Another

approach to the same problem is the predictive kinetic approach of

Mieling and Pardue9. This method uses a model of the chemical

reaction under study to predict the position of equilibrium. This

offers the advantages of equilibrium methods without having to wait
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for equilibrium to take place. Corcoran and Rutan72 used the

extended Kalman filter to correct for changes in the rate constant

within a run.

Multicomponent kinetic methods have been shown to be a

powerful tool to the analytical chemist. These techniques offer

selectivity and throughput advantages over equilibrium based

methods. However, equilibrium methods are generally more

sensitive than kinetic methods. In the future, it is expected that

kinetic methods will improve in both precision and accuracy, and will

have even greater reliability and throughput than they do today.
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CHAPTER III

The Kalman Filter in Analytical Chemistry

A. Introduction

As computers have become commonplace in the chemistry

laboratory, new ways in which to utilize their capabilities are being

explored. It is common for computers to be used for instrumental

control and for graphical applications. More recently, they have been

used for data analysis. Since instruments now commonly produce

data in digital form, applications such as background subtraction,

Fourier domain noise removal and peak integration are simplifiedl.

Such a data analysis technique is the Kalman filter, which was

introduced in 19602 for the engineering sciences, and has since been

used extensively in fields such as navigation and hydrology3. The

Kalman filter is able to model complex systems and to extract

information from noisy systems. The filter is recursive in nature,

and therefore is faster and requires less disk storage than does a

batch type data analysis procedure1 .

A rendition of how the Kalman filter might progress is shown

in Figure 3.1. Since the filter is recursive in nature, it is necessary to

provide initial estimates of the parameters to the filter. These initial

estimates are then used through the system model to calculate the

final estimates of the measured values. The example in Figure
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Figure 3.1: Pictorial representation of true absorbance (0) versus

Kalman filter estimate (+)
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B. 1 shows the appearance of a single product from a first-order

Linetic process followed by spectrophotometry. The initial estimates

>f the parameters are used to calculate the estimated absorbance at

he time the first measurement is to be made. The measurement is

:hen made, and the difference between the actual and predicted

absorbance values is calculated. This difference is then used to

readjust the parameters and the weighting of the filter, and to

provide an estimate of the absorbance of the system when the

second measurement is made. The second absorbance measurement

is then made, and the process is repeated for each of the remaining

measurements. If a valid model of the system being studied is

provided, the estimates of the absorbance will converge on the true

(measured) absorbance. The example shown in Figure 3.1 is an ideal

(noiseless) case. In reality, all measurements have some noise

associated with them, and the differences between the actual and

measured values should have a random distribution with zero mean.

Kalman's original filter required the use of a linear model,

however, modified versions of the filter have appeared in recent

years. There are three main implementations of the filter in current

use. These are: the linear (original) Kalman filter, the extended

Kalman filterl, and the adaptive Kalman filter4.

All versions of the Kalman filter use a "model" of the system,

which is constructed of state variables as described below. Also used

is a sequence of weighted measurements made on the system to

obtain improved (filtered) estimates for the state variablesl. The

original Kalman filter was developed for use with linear models.

However, many of its applications have dealt with nonlinear
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problems. In order to deal with a nonlinear system of state

variables, the extended Kalman filter is used. The adaptive Kalman

filter is used to compensate for the presence of model errors or

outlying data points4. The idea is that data points which are

inconsistent with the model are attributed to random noise in order

that the data points not be used to corrupt the parameter estimates.

Some of the applications of all three forms of the filter are

described, followed by the algorithm for the extended Kalman filter,

as this is the form of the filter that is most used in the current work.

B. The Extended Kalman Filter Algorithm

Although the Kalman filter was originally developed for use

with linear models, it has been applied to several nonlinear

problems, as described above. These problems often require the use

of models with nonlinear system dynamics, nonlinear measurement

models, or both. Systems of this type require the use of the

extended Kalman filter, which is a modified version of the filter that

allows the use of nonlinear systems. The algorithm for the extended

Kalman filter is well covered in the literature, but is included here

for the sake of completeness.

First, we consider a time-variant process, called the system,

from which noisy measurements are obtained at discrete time

'ntervals, t. Like other filters, the process does not need to be time

'ariant, but must consist of measurements made at discrete

1 tervals. For example, the noisy measurements could be made at

iscrete wavelengths. The extended Kalman filter is an algorithm
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which recursively estimates state parameters from the series of

noisy measurements in agreement with a system model. The

parameters of this model, which are unknown prior to filtering, are

the state parameters, and collectively form the state vector, which is

not required to be static.

One way in which the Kalman filter differs from ordinary

digital filters is that it is a state space methods. This means that the

objective of the algorithm is to obtain the best estimate of the state

vector, and therefore, of the true signal. In order to do this, we must

first define a measurement model for any point in time of the form:

Z,=h(X,)+v, (3.1)

In this model, Zt is an m x 1 vector which consists of m

measurements made at interval t (i.e., for t=1,2,...). The n x 1 state

vector is given by Xt, where n is the number of state parameters.

The 111 x n observation matrix is given by h(), and provides the

connection between Z: and K: under ideal (noiseless) conditions.

Finally, V: is an m x 1 vector which describes the noise in the

measurement. This term is assumed to be a white noise sequence.

In addition to the measurement model, the extended Kalman

filter requires a model to define the propagation of the state vector

between discrete measurement intervals. This is known as the

system dynamics equation, and is given by:

X‘. = LX, +G,w, (3.2)
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where the "U” subscript refers to the predicted values for the state

vector, ft is the n x n system dynamics matrix, which describes how

the state vector Xt, propagates between measurements. G: is an n x

11 matrix which describes the system noise and wt is an n x 1 white

noise vector which accounts for the noise in the state vector

(parameter estimates). Equation 3.2 is often simplified when the

state vector is time invariant (ft=I, where I is the identity matrix)

and considered to be noise free (Gtwt=0).

Once the models given by equations 3.1 and 3.2 have been

defined, the extended Kalman filter may be applied. However, since

the models are non-linear in nature, their form must be adapted for

use in the filter. This is done by means of a Taylor series expansion

for the observations matrix and the state transition matrix, with the

expansion being truncated after the first term. These adjusted

models may then be used in the extended Kalman filter as follows.

First, the Kalman gain is calculated by:

Kt = PVH,1[H,P'.H,T + M" (3.3)

In the notation used here, the "T" superscript refers to the transpose

of a matrix and the "t" subscript indicates that this is the best

estimate of a parameter prior to including the new measurement. K:

is the n x m Kalman gain matrix which describes how the new

measurement is to be used to update the state vector estimate. The

n x 11 matrix, Pt- is the current estimate of the error covariance

matrix for the state parameters. The diagonal elements of this

matrix contain the variances of each of the elements of the state
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vector. Usually, since we have no a priori knowledge of the values of

the state vector, the diagonal elements of the error covariance matrix

are taken to be large, and the off-diagonal elements are taken to be

zero. Since this matrix is updated by the extended Kalman filter

algorithm, only the initial value needs to be provided. R: is the

covariance matrix for the measurement noise element vt, and is of

the size m x m. The diagonal elements of this matrix are taken to be

the variances of the associated measurements, 2;, and the off-

diagonal elements are taken to be zero.

One the Kalman gain has been calculated, the next step is to

include the measurement at interval t to update the estimate of the

state vector. The correction factor between the actual measurement

vector Zt and the predicted measurement vector h(Xt) is weighted

by the Kalman gain, as shown in equation 3.4:

x, = X.— + K,[z, - h(x,)] (3.4)

Similarly, the Kalman gain is used to estimate the updated covariance

matrix, Pt:

P, = (I-K,H,)Pt-(I—K,H,)T +K,R,K,T (3.5)

Where I is the n x 11 identity matrix. Ht is the m x n observation

matrix. This is the linearized form of h(Xt) obtained from the Taylor

series expansion described above. Simpler forms of equation 3.5 are

sometimes given, but are rarely used in practice because of poor

numerical stability5.
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The next step of the extended Kalman filter algorithm is to

project the estimate of Xt ahead to the next measurement interval

using the system dynamics matrix ft.

x‘, = r,x, (3.6)

The final step of the algorithm is to project ahead the estimate of Pt

using F(Xt), which is the linearized form of the system dynamics

matrix using the Taylor series expansion described above. This

update is given by:

P‘, = F(X,)P,F(x,)T +0, (3.7)

where Q is the covariance matrix for the white noise sequence Gtwt

used in the system dynamics descriptor given in equation 3.2. It is

often taken to be zero.

Equations 3.3 through 3.7 constitute the algorithm for the

extended Kalman filter. This is the exact form of the algorithm used

for the work presented in this thesis. For each of the systems which

are studied in this work, the measurement model, linearized

measurement function, and state vector are given in the sections

describing the systems under study. In all the work described in

this thesis, the state vector is set to be a static entity. This simplifies

the algorithm by making equations 3.6 and 3.7 equal to their

previous values (since Q; is taken as zero).
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C. Applications

All three versions of the Kalman filter described have found

many applications in analytical chemistry. This section describes

some of the uses each form has found.

1. Linear Kalman Filter

The linear version of the Kalman filter has been used to a much

greater extent than either of the other two forms of the filter. Some

of the uses of the Kalman filter in chemistry have recently been

reviewed1.6»7. The Kalman filter has been applied to the resolution of

overlapped chromatographic responses3’9,10,11.111314, and for

chromatographic optimizationl 5. Resolving overlapped responses,

such as poorly resolved chromatographic techniques, requires the

detection of more than one response parameter. This is

accomplished either with several different types of detectors, or with

multiwavelength array type detectors, such as photodiode arrays or

charge-coupled devices (CCD).

Another area where the Kalman filter has been applied using

data from more than one wavelength is in multicomponent analysis

of mixtures at equilibrium. This has been done utilizing both

ultraviolet-visible spectrophotometry16»17.13»19:20, and

fluorimetryzLZZ. These applications do not require the use of array-

type detectors or multiple detectors, however, since the

measurements are performed at equilibrium, and the time evolution

of a species is not limiting.
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The linear Kalman filter has also been applied to

electrochemical processes. It has been used for anodic stripping

voltammetry23, for resolving overlapped electrochemical peaksZ4 and

square-wave voltammetric responses-25.26,, for estimating

electrochemical charge transfer parameters”, and for evaluating the

current-time function in dc polarography23.

The linear filter has also been applied tp the analysis of

enzyme kinetic data29»30»31, and for kinetic determinations of two-

component mixtures32.33. The linear Kalman filter has also been

used in inductively coupled plasma-atomic emission spectrometry

(ICP-AES) for the determination of spectral interferents34,35, for data

reduction36, and for the determination of trace elements37. The

reliability of Kalman filtering results in ICP-AES has been

evaluated”.

The filter has also proven well suited for the compensation of

drifts in several systems39»40.41»42»43. Other areas in which the linear

form of the filter have been applied include: pulsed photoacoustic

spectrsocopy for the determination of metal complexation

parameters“, setpoint control in continuous titrations45, the planning

of sampling“), beam modulation for alpha-particle diagnostics47, for

"removal" of interferences in complex sample matrices43, for

modeling of chemical response surfaces49, in circular dichroism

spectroscopy”, and in x-ray fluorescence spectrometry5 1.

As can be seen from the great variety of applications. the linear

Kalman filter is quite adaptable and widely used.
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2 . Extended Kalman Filter

The extended Kalman filter has not been as extensively utilized

as the linear form. This is probably due to the greater complexity of

the modeling required, and the fact that the linear form of the filter

is sufficient for many applications. Also, the extended filter is less

stable than the linear form. There is more dependence on the initial

estimates provided to the filter, and if care is not taken in choosing

these estimates, convergence of the estimates is not always obtained.

There are two other reasons that this form of the filter has not been

as widely applied. The first is that the computations resulting from

using this form of the filter are more complex, and therefore more

time consuming, and the second is that the filter is not necessarily

optimal in the least squares sense. Greater care must be taken using

this form of the filter, and this has probably been one of the main

reasons it has not been applied more often. However, its

demonstrated applicability to several non-linear problems with

excellent results will probably cause this method to become more

popular-

The extended Kalman filter has been applied to optimize

simulations for step voltammetry52. The extended Kalman filter has

been compared to the simplex and Marquardt procedures in the

estimation of parameters from voltammetric curvesS 3. The filter was

found to be very favorable to the other two methods.

The extended Kalman filter has also been used in kinetic

methods of analysis. First-order kinetic parameters of one-

component systems have been estimated54.55. Changes in the rate
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constant during a reaction due to changes in temperature have been

modeled and corrected56-57. The extended Kalman filter has also

been applied to the estimation of ester hydrolysis parametersSS.

3. Adaptive Kalman Filter

The adaptive form of the Kalman filter has been applied to

systems where there are errors in the model. When using the

adaptive Kalman filter, it is necessary that the model be correct for a

portion of the response, and the errors must be attributable to a

single component. This method has been applied to compensate for

model errors in multicomponent spectrometry59. The adaptive filter

has also been combined with simplex optimization60»61. In this

combined method, the initial guesses for the filter are generated by

the simplex algorithm.

The adaptive Kalman filter has been employed in thin-layer

chromatography (TLC) for background subtraction62»63, and for

resolution of severely overlapped responses in TLC64. The adaptive

filter has also been compared to other robust regression methods in

the analysis of linear calibration data“. The adaptive filter was

found to be the best suited for the detection of outliers in small

calibration data sets. This method has also been used to find a

previously overlooked contribution to gas-liquid partition

coefficients from excess-solute-induced solvent reorganization66
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4. Kalman Filter Networks

The most recent implementation of Kalman filtering has been

in the area of Kalman filter networks. This techniques employs a set

of parallel models through which each data point is passed67. The

performance of each of the models is then evaluated, and the best

model is selected. This method has the advantage of being a

recursive implementation of principal components analysis.

To date, there have been only two applications of this method.

The first uses this technique for peak purity analysis66. The second

uses a set of 40 or more parallel filters for the correction of errors

from between-sample variations in the pseudo-first-order rate

constant for kinetic methods for a one-component system“.

Although there have been very few implementations of this

filtering scheme, the technique is quite new, and should be widely

applicable to a variety of chemical problems. All three forms of the

Kalman filter should work quite well in this implementation as well.

D. Conclusions

The three forms of the Kalman filter described in this chapter

have found an ever growing list of applications in analytical

chemistry. Each of the three forms has its own applications to which

it is most suited. The extended Kalman filter appears well-suited to

the task of multicomponent kinetic determinations. All previous

methods of multicomponent kinetic determinations have assumed

the rate constant to be invariant from run to run. However, as





65

described in Chapter II, this is seldom the case. Conditions can be

held such that the variations in the rate constant are minimized, but

these variations will always be present to some extent. By using the

extended Kalman filter though, the rate constants can be included as

modeled parameters, and the filter can help to compensate for their

between run variations.

There are a number of advantages in using the Kalman filter

and its various forms for the analysis of chemical data1. The first is

the possibility of including time in the model, which permits the

modeling of drift, reaction kinetics, and of time-dependent inputs

(e.g., titrations) in a straightforward manner. A second advantage is

that the filters are simple and fast enough to be used on most

analytical instruments. Finally, they are applicable to most analytical

methods. As long as it is possible to mathematically model the

processes occurring, the filter can be applied. Use of adaptive

filtering allows unmodeled processes to be compensated for.

This chapter discusses the Kalman filter and the modifications

to Kalman's original linear filter algorithm that have appeared since

its introduction. Applications of the various forms of the filter to

chemical problems are discussed.
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CHAPTER N

Simulation Studies of Two-Component Systems

A series of simulations was used to test the applicability of the

extended Kalman filter for multicomponent kinetic determinations.

Simulations offer a number of distinct advantages when testing a

data analysis technique. These advantages include the ability to

adjust parameters which might affect the results of the filter, the

ability to adjust parameters to any value desired without need to

search for a chemical system which may be hard to control, and the

ability to vary each parameter independently. This allows precise

knowledge and control of all of the inputs to the Kalman filter, which

can let one develop a greater understanding of the advantages and

limitations of the method.

A. Kinetic Model

1. Two-Component Mixture Following Irreversible Kinetics

A typical system which could be used for multicomponent

kinetic determinations is described below. For a two-component

mixture following irreversible kinetics, the system can be described

as:
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Cl +R-—"I—9P,

C2 + R—"L—->P2 (4° 1)

where R is a common reagent reacting with two similar species,

denoted by C1 and C2 to form two similar, but not identical products

P1 and P2. If the common reagent is held in excess such that its

concentration does not change appreciably throughout the course of

the reaction and pseudo-first-order kinetics apply, equation 4.1

simplifies to:

C,—£i—->Pl

(4.2)

C2—"1—>P2

where k'1 and k'z are the pseudo-first-order rate constants and:

k'r =k1[R]t and k'z =k2[R]t

Under these conditions, the concentrations of C1, and C2 are given by:

c = C 6““
[ 1]: 1 110 k. (4.3)

[C2], =[C2LC- ’1

If [Pl]o-[Pz]o=0, the concentrations of products at time t are given by

equation 4.4:

P = C — C[I]. [11. [11. (44)

[P2]\ = [C210 -[C2]:

and [Rh can be obtained by subtracting the concentration of products

from the initial reagent concentration as shown in equation 4.5:
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[R]. =[R].-([C1].-[C1].)-([C2].-[C2].) (4.5)

If molecular absorption measurements are used to follow the

reaction, and the absorbances of all species are additive (i.e., Beer's

law is obeyed), then the absorbance of the system described in

equation 4.2 per unit pathlength at any time t, and any wavelength j,

is given by:

Alt = 81°C. [Cl]: '1' Sic; [C2 1‘ '1' 5511115]: ‘1’ ejP. [P1]! '1' 5,1),[1’21‘ (4-6)

If we now take the relations for the concentration of each species as

a function of time given in equations 4.3-4.5 above, and substitute

them into equation 4.6, followed by collection of terms and

simplification, we obtain the measurement function for this system:

A), = (55c, + 5m - £11,! )[C,]¢e"‘it + (sic2 + $5,, - sip2 XC2]°e“9‘ (4.7)

+(ejp‘ - 85R)[C1]° + (raj,2 — £3,1ch + 85,,[R]o

The measurement function described in equation 4.7 is now

expressed as a function of five parameters, [C 110, [C 210, [R]o, k'1, and

k'z. By using equation 4.7 as a model for a first-order or pseudo-

first-order chemical reaction, information about the unknown

concentrations can be obtained, even if the spectra of the reactants

and products are severely overlapped. Also, because measurements

are taken at several wavelengths, a greater amount of information is
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available to the filter so that the reaction need not be monitored to

completion.

2. Use of the Model in the Extended Kalman Filter

The extended Kalman filter requires a system to be defined by

two equations. The first is the measurement model, and the second

is the linearized measurement function. The linearized measurement

function relates the quantities in the state vector to measurable

quantities. For example, with the two-component non-reversible

system following pseudo-first-order kinetics defined by equation 4.1,

and the measurement model defined by equation 4.7, then the state

vector for this case would be a 5x1 vector and is given by:

"[C1].

[02].

(4.8)

  

As each new data point is obtained and passed to the filter, the

estimates for each of the elements in the state vector are updated

and used as the initial estimates for the next loop of the filter. The

kinetic model used to derive equation 4.7 assumes that the reactions

behave independently and there are no synergistic effects.

The extended Kalman filter also requires a function which

relates the quantities in the state vector to a measurable quantity,

which in this case would be absorbance. This is done by means of
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the linearized measurement function, which was described in detail

in Chapter III. For the measurement model defined in equation 4.7,

and the state vector defined in equation 4.8, the linearized

measurement function is a 1x5 vector, and is given in equation 4.9

below:

-k'r

11 (55C. + Era " 55p. ' + (£59. ' 53R)

4!:

12 (sic, +5111 75% )e 2 +(3jP. ‘53:!)

1 £51: (4.9)

_ -k't

1‘ - —t(£jct + £113 - £191 ){C1loc 1

_ -k':

15 - -t(£lcz + elk ’ 55?; )[CZLC 2

0
’

ll

I
‘
V
E
-
'
1
‘
!
"

The linearized measurement function is simply a Taylor's series

expansion about the mean of the measurement model with respect to

each component in the state vector and with truncation after the

linear term. In the cases described here, this amounts to the first

derivative of the measurement function with respect to each

component in the state vector.

In an ideal reaction, each product would absorb at a unique

wavelength, there would be no spectral overlap, and the reactants

would not absorb. A more realistic case, however, is where most

species absorb to some extent, and there is at least some spectral

overlap.
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B. Experimental

1. Simulated Data

Simulated kinetic data were used to test the filter under a

variety of conditions which would be difficult to obtain

experimentally. Exact knowledge of the reaction conditions also

allows the user to change one or more parameters at a time to

determine their influence on the filter, and thereby provide a better

understanding of its advantages and limitations. Data were

generated using a full second-order kinetic model with the common

reagent, R, in excess. The filter assumes that the data follow a first-

order or a pseudo-first order model. The second order system was

used for the data to avoid biasing the filter by using the same model

for data analysis as for data generation. Because the filter also

estimates the concentration of [R]o, small variations in its

concentration are tolerated. Random noise was added to all synthetic

data; the algorithm used to generate the noise is discussed below. All

studies presented contained 100 data points unless otherwise

specified. It was also possible to vary the number of wavelengths

that were used for the simulations. In the cases discussed in this

chapter, this value was varied from only one wavelength being

monitored to 15 wavelengths. Studies were performed on systems

containing anywhere from one to eight separate reacting

components. The derivation for the measurement model for

reactions with n separate components is given in part A above.
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Since the extended Kalman filter is a recursive algorithm, it is

necessary to provide initial estimates of the state parameters. Some

knowledge of the rate constant is presumed, and an approximate

value is provided to the filter as an initial estimate. The initial

values of the rate constants input to the filter were varied by as

much as 5096 in the simulations, and the results of this are presented

later. Also, the initial concentration of the common reagent, R, should

be known, so this value was provided to the algorithm with no error.

The concentrations of the reactants are assumed to be unknown, and

are the which are desired from the filter. In order to avoid bias, the

initial estimates provided to the filter for reactant concentrations

were zero in all cases.

While providing the expected values of the rate constants and

the common reagent concentration to the filter is not strictly

necessary, it does help to speed up the filtering process. Acceptable

values for all parameters can usually be determined with no prior

knowledge of any of the parameters, but multiple passes through the

algorithm are necessary.

2. Generation of Random Noise

Random noise with a Gaussian distribution was added to the

pure (noiseless) absorbance values calculated according to the full

second-order kinetic model. In order to add this noise to the pure

absorbance values, it is first necessary to generate Gaussian noise. In

Microsoft QuickBASIC, a function called RND is available. This

function generates random numbers between 0 and 1 with a uniform
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distribution. The method used to obtain normally distributed

random variables using the RND function is based on obtaining a

random number which is used as the argument in an approximation

to the inverse of the standardized cumulative normal distribution

function1»2:3. The noise generated has zero mean, and the standard

deviation can be defined by the user. Figure 4.1 shows a histogram

for the added noise. The theoretical standard deviation of the noise

given to the algorithm used to generate the noise was 0.005 and

20000 points were determined. The skewness and kurtosis both

indicate that the added noise is Gaussian in nature, and the data also

pass the chi-square test for a Gaussian distribution.

3. Data Processing

Unless otherwise stated, all computations described in this

dissertation were carried out on an IBM-compatible 286-type

microcomputer equipped with a math co-processor. All programs

were written in Microsoft QuickBASIC (version 4.0) using double

precision arithmetic. The functional form of the extended Kalman

filter used for these studies is described in Chapter III of this work,

with the appropriate changes in the system dynamics and

measurement function equations made as necessary. These changes

include incorporation of the appropriate measurement function and

linearized measurement function as described above.
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Figure 4.1: Histogram for added noise. 20000 total points,

theoretical standard deviation=0.005.
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The listing of the program NRNDAT, which was used to

simulate the data for irreversible reactions is included in Appendix

A. This includes the algorithm for the generation of the pure (no

noise) absorbance values, and the algorithm for generation of

normally distributed random noise described in part B.2. above.

The listing of the program EKFNRN, which was used to process

both simulated and real data for irreversible reactions is included in

Appendix B. This program is applicable to a system containing any

number of irreversible reactions which are monitored at any number

of wavelengths.

C. Results and Discussion

The great majority of simulations were done on the Mo-

component system. Using this system is a compromise because the

filter is quite capable of accurate results using more complex

systems. However, the smaller number of variables makes this

system more amenable to rigorous study.

The concentrations, rate constants, and molar absorptivities

used are given in Table 4.1. These values were held constant

throughout all simulations unless otherwise noted. In cases where

the concentrations were varied, the starting values were those given

in Table 4.1.

For all studies discussed in this section, one hundred points

were collected over a constant total elapsed time period. Different

numbers of wavelengths were used, but data were always generated

for each wavelength at each point in time. This was done because
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Table 4.1: Values of molar absorptivity times pathlength (L mol’1)

used for simulations unless otherwise noted. [C1]o=0.0001 M,

[c2]o=o.ooor M, [R]o=0.01 M, k1=50 3'1,k2=10-50 s-1

20 # €c1 €c2 8R 8P1 8P2

1 0 0 10 5000 2500

2 O 0 5 2500 5000
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the diode array spectrometer system used for experimental

verification of the simulation studies is capable of storing only 100

scans. Therefore, in order to match experimental capabilities, the

simulated data were limited to only 100 points. However, the effect

of changing the data interval, and the total number of points was

investigated, and it was found that the most important factor

affecting the accuracy of the filter estimates was not the number of

data points, or the data interval (although at extremely short

intervals oversampling became problematic), but was the percent

completion to which all reactions were sampled.

1. Error vs. Percent Completion

Throughout the course of the simulations, it became apparent

that one of the main factors affecting the accuracy of the estimates

was the extent of the reaction that was monitored. Figure 4.2 shows

the error in estimated concentration versus percent completion of

the reaction. Although these results were obtained with only one

component, the same trend holds true for each component in a

multicomponent mixture. As can be seen, the estimates become

more accurate as the extent of reaction increases. This increased

accuracy is primarily a result of the time required for the Kalman

filter to converge as can be seen in Figure 4.2. For analytical

purposes it would be desirable to obtain results as rapidly as

possible and thus to use a small extent of reaction. In order to obtain

accurate results (<596 error), it was generally necessary to follow each

reaction to approximately 50—60% completion. This is in agreement
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Figure 4.2: Error in estimated concentration of [C110 vs. 96 completion

of the reaction. [C1]o=1x104 M, k=100 sec-1
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with results reported by Mieling and Pardue4 for the predictive

kinetic approach. These workers found that it was necessary to

follow a reaction for one to two half-lives (SO-75% complete) in order

to predict accurately the final equilibrium position. However, in

competing parallel reactions, if the faster reacting species is greater

than 50% reacted, while the slower species is not, the estimates from

the first reaction can be accurate, while those from the slower

reaction are not. (The estimates from the faster reaction are not, of

course, as accurate as they would be in the absence of the slower

reaction.) The accuracy of the estimated concentrations is fairly

independent of other species in the mixture, as long as there are

sufficient spectral differences.

The effect of varying the concentrations of the reactants was

investigated for a two component mixture. This study was done in

tandem with another in which the ratio of the two rate constants was

varied. For each rate constant ratio and concentration ratio, the

simulation was repeated nine times, and the average error was

obtained. The results of these studies appear in Figures 4.3-4.6.

Figures 4.3 and 4.4 show the average error in the estimated

concentrations of C1 and C2 when C2 is held constant, while Figures

4.5 and 4.6 show the average error when C1 is held constant. Note

that in Figure 4.3 that for all values tested, the largest error in

estimated concentration was still less than 5%. Figures 4.4 and 4.6

show that even though the errors in the estimated concentration of

C2 are greater, the largest errors come at rate constant ratios

corresponding to a small percent completion of the reaction of C2 and

at concentration ratios where C2 is a much small value than C1 . Also,
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Figure 4.3: Error in estimated C1 as a function of concentration ratio

and rate constant ratio. C2 constant for all experiments.
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Figllre 4.4: Errorin estimated C2 as a function of concentration ratio

and rate constant ratio. C2 constant for all experiments.
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in the great majority of experiments, the error was less than 5%. It

Seems quite likely that if the reaction were followed for a longer

time in the cases where errors were the highest, accuracy would be

inrproved. For example, under the conditions used for these

Simulations, at the end of data collection when the rate constant ratio

is 5.0, the second reaction is only 39% complete, while the first

reaction is 92% complete at the end of the analysis. Following the

second reaction to 50-60% completion would improve the results for

both components, as can be seen in Figure 4.1; however, the

improved estimates would be greater for the second reaction. These

experiments follow the general trend of improving accuracy as the

responses of the components become approximately equal, and the

reaction is sampled for at least 1 to 1% half-lives.

2° Spectral Overlap

Simulations studies were performed for the kinetic

deteI‘Ininations of mixtures in which the products absorb with

varying amounts of spectral overlap. The same kinetic behavior was

assumed for these studies as that shown in Table 4.1. Three cases

were tested: no spectral overlap, medium overlap, and severe

overlap. Molar absorptivities for the three cases are given in Table

4.2. Figures 4.7 to 4.10 show the estimated concentration of

component C2 for no overlap, medium overlap, and severe overlap,

l’eSpectively. The response for component C1 was better, since it is

the faster reacting species, and therefore, is sampled to a larger

eXtEnt of reaction. The solid line represents the actual concentration,
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Table 4.2: Molar absorptivities for spectral overlap study.

Concentrations and rate constants appear in Table 4.1.

nomerlan medium totalmerlan

oletlan

Zn 1.2 11 2a 1.1 2.2

£c1 0 O O 0 O 0

8C2 0 0 0 0 0 0

8R 10 5 10 S 10 5

3P1 5000 0 5000 2500 5000 5000

8P2 0 5000 2500 5000 5000 5000
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while the dotted lines represent 5% errors in estimated

concentration. Each rate constant ratio was repeated 9 times, and all

points are included. Note particularly that the error in estimated

concentration actually decreases with the rate constant ratio for the

no overlap and medium overlap cases. This result was unexpected

and has not been observed previously. As a comparison, the medium

spectral overlap case was repeated using data from only the first

wavelength. Results are presented in Figure 4.9. From this figure, it

is apparent that the addition of the second wavelength causes a large

increase in the accuracy of the results. Also, there is no

improvement with decreasing rate constant ratio. In several cases,

at relatively large rate constant ratios, the estimated concentration

was in error by a large amount (> 100%). The reason for this is not

clear; however, the statistics provided by the filter (e.g., covariance

matrix) let the user know that there is a problem with the fit, and

another trial can be done. Many values of molar absorptivities for all

components were tested, although not as thoroughly as those

described here. Examples were tested where one, some, or all

components exhibited absorbance at the wavelengths used. The only

cases where the filter was not able to obtain accurate estimates were

when there was no absorbance change throughout the course of the

reaction. Of course, other methods would also fail under these

Conditions.

Mixtures of species with rate constant ratios as low as unity

were determined as long as there were sufficient spectral

differences. In these cases, the rate constant ratio did not affect the

ability of the filter to obtain accurate concentration estimates. As
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long as all reactions were followed for a long enough period, accurate

results were obtained. Quite severe spectral overlap still allowed

determination of reactant concentrations in most cases. As the

amount of spectral overlap increases, it becomes necessary to use

more wavelengths in order to obtain accurate concentrations from

the filter. The filter has been tested using up to six wavelengths, and

it will accept as many as the user desires up to the memory limit of

the computer used. The problem with using a greater number of

wavelengths is the trade-off in the amount of time required to obtain

the estimates. This increase in data analysis time is not linear with

increasing number of wavelengths used. This is due to the necessity

to invert an m x m matrix, where m is the number of wavelengths

used. In general, it is advisable to use the minimum number of

wavelengths necessary in order to obtain estimates with an

acceptable amount of error to the user. In practice, this may require

some initial experimentation, but once the number of wavelengths

required for a given system is known, it should remain constant. Of

course, as microprocessors become faster, the number of

wavelengths that can be analyzed in a given time should increase,

and this method should become even more powerful.

3 - Effect of Random Noise

The effect of varying the amount of noise added to the

simulated data was investigated. The noise added to the true

absorbance was Gaussian in nature, and its standard deviation was

user-contr‘olled. The standard deviations for this study varied from
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0.001 to 0.9 absorbance units, and five replicate determinations were

made with each set of conditions. The signal-to-noise ratio was 848

when both reactions are complete and s=0.001, and was 0.942 when

both reactions are complete and s=0.9. Figure 4.1 1 shows the error

in the average estimated concentration of C2 versus the standard

deviation of the noise and the rate constant ratio, while Figure 4.12

shows the corresponding standard deviation of the mean estimated

concentration of C2. Errors for component C1 were generally less

severe as this reaction is followed to a greater extent completion in

all cases except when the two rate constants are equal. In general,

excellent accuracy (<5% error) was maintained as long as the

standard deviation of the noise was less than approximately 0.1,

which corresponds to a S/N ratio of =8.5 at the completion of both

reactions. Figure 4.13 shows the absorbance versus time curve for

an example with a standard deviation of the noise of 0.1, and a rate

constant ratio of 1.2. The estimated concentrations for this

experiment were: C1=9.63 x 10'5 and C2=1.05 x 1074.

If an error of <20% is acceptable, the standard deviation of the

noise can be as high as 0.5, corresponding to a S/N of 1.7 at

Completion. Overall, the filter is highly tolerant of noise, and is able

to yield accurate results at very poor signal to noise ratios.
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and standard deviation of the noise of 0.10. (Solid line)-True

absorbance, (+)-estimated absorbance.
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4. Effect of Varying Estimated Rate Constant

Since the Kalman filter is recursive in nature, it requires initial

estimates for the parameters. As mentioned previously, to avoid

biasing the filter, the initial estimates provided to the filter for the

unknown concentrations are 0. Also, since the concentration of the

common reagent is known, this value is provided to the filter. Some

knowledge of the value of the rate constants is necessary in order for

the filter to calculate accurate estimates of concentrations. However,

rate constants are dependent on temperature, pH, and ionic strength,

as well as other factors. Therefore, the value of the rate constant

may change somewhat from sample to sample. With carefully

controlled reaction conditions, this variation can be minimized, but

not totally eliminated.

In order to determine the effect of inaccurate estimates of the

rate constants on the results of the filter, a study was performed in

Which the values of the rate constants given to the filter were varied

from 50 to 150% of the actual value. Three cases were studied. In

all cases, the value of k1 was kept constant at 50 3‘1 while kg was

given values of 10, 25, and SO 5‘1 in the three cases. This

corresponds to rate constant ratios of S, 2, and 1, respectively. Plots

0f error in the estimated concentrations of both components versus

the input values of the rate constants appear in Figures 4.14 to 4.19.

As is apparent from the charts, errors are at a minimum for values of

R1 and k2 closest to the true values, and generally get worse as

eStimates get farther from the true values. As long as the estimate

for the rate constants are within 10%, the error in the estimated
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value of C1 was less than 2.5%, and the error for C2 was less than 16%

(this error decreases to 2.5% as k2 approaches k1). Also, in general, it

seems to be preferable to overestimate the rate constants, rather

than to underestimate them.

5. Other Considerations

The filter performed remarkable well over a large range of

concentrations, as long as the absorbance change was approximately

0.05-0.1 absorbance units, and as long as there was a reasonable

signal-to—noise level. The filter was also tested at a variety of molar

absorptivity values for all components. The only area where it failed

was when the reactants and products had the same molar

absorptivity such that there was no absorbance change observable.

The filter was able to estimate concentrations from this level up to a

level where the accuracy of the absorbance measurements would be

instrument dependent. Generally, this allows for linearity of two to

four orders of magnitude.

The filter is also able to perform other functions. For example,

using equation 4.7, the final absorbance for the reaction can be

estimated at each point. The accuracy of this estimate is also

dependent on the extent of the reactions, and the error becomes

quite acceptable when 1 to 1.5 half-lives have been completed. This

provides a way of performing predictive kinetic determinations“.

Since the absorbance of a system at equilibrium is often less

dependent on temperature, pH, and ionic strength, than is a dynamic
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system, such a predictive approach would provide additional error

compensation.

Use of the extended Kalman filter and multiple wavelengths to

perform multicomponent kinetic determinations offers several

advantages. First, the nonlinear filter does not depend on knowing

precisely the rate constants of the reacting components. Although

some knowledge of rate constants is necessary, accurate results can

be obtained as long as the value given the filter initially is within

10% of the true value. By using multiple wavelengths, the kinetic

constraints of previous approaches have been overcome. As long as

spectral differences exist, accurate results are obtained even if the

reactions occur at exactly the same rate. The filter processes data

rapidly, which allows the possibility of data analysis in real-time as

long as the reactions under investigation are sufficiently slow.
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CHAPTER V

Simulations of Complex Chemical Reactions

The simulations described in Chapter IV were continued using

models of other chemical systems. Several other types of reacting

systems were studied; some with greater than two components

present, and others with reversible chemical reactions present.

Although these complex systems were not studied in as great detail

as was the two-component irreversible system , it is shown that the

extended Kalman filtering method is applicable to complex systems

as well. These systems and the results of the simulation studies are

discussed in this chapter.

A. Kinetic Models

1. General Irreversible Reactions

The two-component irreversible model developed in Chapter

N Can be generalized to a system with any number of components

all reacting with a common reagent. Such a general case can be

dEScribed as follows:
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C,+R—"1—)P,

C2+R—"J—-)P2

(5.1)

Cn+R—5—+Pn

which simplifies as was shown previously in equation 4.2 if the

common reagent, R, is in excess, and pseudo-first-order conditions

apply. In the general case, the absorbance at any wavelength, j, and

at any time, t, is given by:

A], = 85c. [C1]t + rajc2 [C2]‘ + . . . + 81c, [Cal + 51?.[1’1]. (5.2)

+8].p2 [P2]t + . . . + em [Pu], + 5:1.R[R]t

assuming that the pathlength is unity. If we now substitute the

functions for the time-dependent concentrations of each of the

Species in equation 5.2, collect the terms and simplify, we arrive at

the general absorbance function for any number of components, n,

given by:

It

+(ejc_ + 85R - £1,_)[Cn]°c“"-‘ + (53?. - €51: )[C,]o (5 .3)

+(ejpz - ejR )[Cz], + . . . + (£11,. - a), )[Cn], + sz[R]o

_ -k': -k't

A. -(£jC, +£iR-EiPrXClioe l +(85C2 +£5R-85P2 Xczloc 2 +0“

Equation 5.3 can then be truncated after the appropriate number of

terIns to give the correct model for the extended Kalman filter to use.

This measurement function is expressed in (2*n)+1 parameters
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where n is the number of unknown components. The parameters

that are unknown to the extended Kalman filter are: [C 110, [C2]o, ...,

[CnJo, [R]o, k'1, k'2, ..., and k'n. This equation can be used for any

number of parallel first— or pseudo-first-order irreversible reactions,

and for any number of wavelengths.

2. Reversible Models

If conditions are such that the reaction is reversible, yet

another model is required for the extended Kalman filter. A

reversible chemical system can be described by the following:

C,+R€$P, (5.4)

If the concentration of R is held in large excess such that pseudo-

first-order reversible conditions apply, the concentration of each

sPecies with respect to time can be given by:

_ [c1
[C1] (19++k_)[k-1 _kl ]

kIC]

131:“ (k—k—+_,)[l-c

[R]: = [R10 - ([CIL " [C1].)

—(k,+k_, )1] (55)

The absorbance at any time, t, and any wavelength, j, of the system

described in equation 5.4 can then be obtained by substituting,

C0llecting terms, and simplifying the terms in equation 5.5. The

re$ult of this is:
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Art =(8iCr+£J'R(—[C—]_—)[k H:)‘1-[k R‘s-(WW1)

(5.6)

+£jPl[(—_——:ll[Cll‘]___o_1ll__c)[c,-(k +k;)t]]+£jR[R]o

This equation is now expressed in four parameters, [C 1]o, [R]o, k1 and

k1. These four parameters are those that the extended Kalman

filter must estimate. This form of the filter could now be used to

estimate these parameters from a one-component system following

reversible kinetics.

We can again develop a model for n-parallel reacting species as

was done for the pseudo-first-order non-reversible reactions case

above. This case can be shown by:

kI

C1 + RfvP,

1:.

C2 +Rsz

(5.7)

kl

Cn+RfoPn

If we now extend equation 5.5 to include all reactions, and substitute

the time-dependence of each of the species into the absorbance

function, we obtain the following:
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Aj,=(ejcl +54);“kCi—-T°-—-l)[k__ 4,4441% gjpl[(k‘[Ci—Lol)[H4..+4.41}.

44:44 1H[4
(816- +8{ah—I21]?—..k'“)[ Iii-“JWUH’((1:“Ch1:1:1-6)[( ”1)+

8,-an1.

As is apparent from the above derivations, it is possible to

 

derive a model to be used in the extended Kalman filter as long as

one can describe the system mathematically. More complex systems

tend to have more limitations, and are not applied to the filter as

easily; these problems are discussed in more detail later.

3. Use of Models with the Kalman Filter

Similarly, the state vector for the n-component case described

in equations 5.1 to 5.3 can be shown to be an (2*n)+1x1 vector which

is shown in equation 5.9 below:



 
The linearized measurement function for the n-component system is

a 1x(2*n)+1 vector, and is analogous to the result obtained above for

the two-component case extrapolated to 11 components.

In the case of reversible reactions, described for the one-

component case in equations 5.4 to 5.6, the state vector consists of a

4x1 vector given below:

 

’[CJJ

[R].

kl

 

The linearized measurement function for this system is a 1x4 vector

given by the following:

 L k-1

(5.9)

(5.10)
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1 - + -l t k " 1+ 4‘

L“ =£3C1(k +k )(k_l+klc (k, k ))-|-(£jpl -£jk)(k +lk yl—c (k k ))

l -l 1 -1

L =8- [C110 —k-l +c‘(kl*k-I)‘ 1-6(1 __ kl

‘3 ’C' k,+k_ k H: k «H:

+(£~p -£-a) [‘—C—'—]°1L—c'("”"')t 1- tk + k

" k +k_ k+k_, +_k1‘1

L :3. [C110 1____+kck-1-(k.+k-.):
(5.11)

14 ’C‘ kid-lg1 k1+k-

+(8jp._£ja)[kl[Cl]° -1 +c‘(‘““‘")‘ 11:11:)

  

  

 

  

 

k1+ k_1 k1 + l(_1

  

This system can easily be extended to the general case where

there are n parallel reactions. The linearized measurement function

for this case is a 1x(3*n)+1 vector, and is analogous to the equations

shown above for the one-component case extrapolated to 11

components.

B. Experimental

Simulated data were generated in order to test the different

versions of the extended Kalman filter described above. Data were

generated using an appropriate model for the system under study.

Random noise was then added to the noiseless absorbance data

calculated as is described in Chapter N. Data processing was also

Performed as described in Chapter IV, and so its description is not

repeated here.
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C. Results and Discussion

1. Three-Component Irreversible System

A three-component system was tested in order to determine

the effect that the values of the three rate constants have on the

errors in estimated concentration of the components. Such a system

is described by equation 5.1 where n=3. In the system studied, R1

was held constant while IQ and k3 were varied. The values of the

concentrations, rate constants, and molar absorptivities are given in

Table 5.1. For this study, three wavelengths were used, and data

were simulated for 100 times. Plots of error versus IQ and k3 appear

in Figures 5.1 to 5.3 for each of the three components. From these, it

is apparent that the general trend mentioned in Chapter IV for the

two component case is again followed here. In order to obtain

accurate results, it is necessary for there to be either sufficient

spectral or kinetic differences, or a combination of the two. Also, it is

necessary to follow the reaction of interest to a sufficient degree. In

Chapter IV, it was found that, in general, it was necessary to follow a

particular reaction to at least 50-60% completion. Figure 5.2 shows a

high error in the estimated concentration of C2 when the rate

constant for the second reaction is equal to 10 5'1, and moderate

errors (IO-15%) occur when the rate constant is equal to 20 5'1. For

these two cases, the reaction has not progressed to an extent

Sufficient for accurate results to be obtained. When the rate constant

is equal to 10 $4, the reaction is only ~40% complete when the data

C011ection is complete. In Figure 5.3, the high error in the estimated



Table 5.1: Values of molar absorptivity for the three component

SYStem Studied. [C110 =[ C2]0 = [C3]0 =1 X 10'4 M, [R]O = 0.01 M, k1 =

100 8'1, k2 = 10-100 8'1, k3 = 10-100 5'1.

8C2

8C3

8R

8P1

8P2

8P3

11

5

10

15

2

750

2000

2800

12

20

16

9

4

3000

1800

1200

13

1 1

20

5

3

1500

3000

1700



Figure 5.1: Error in estimated value of C1 versus IQ and k3.
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Figure 5.2: Error in estimated value of C2 versus IQ and R3.

121



122

 
8
8
2
8
8
8
8
8
5
2
"

Figure 5.3: Error in estimated value of C3 versus kg and k3.
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concentration of C3 occurs when the rate constant for the third

reaction is equal to 10 5'1. Figure 5.1 shows no areas of large error

in the estimated concentration of C1. This indicates that sufficient

spectral or kinetic differences are present in this example so that the

concentrations can be accurately determined.

2. Four-Component Irreversible System

A system consisting of eight simultaneously reacting

components was simulated. From this system two sets of four

components each were chosen with different degrees of spectral

overlap. These components are the same as those used for the eight-

component study which is described later. A four-component system

can be described by equation 5.1 where n=4. For this trial, two

separate sets of conditions were used. The first consisted of a

moderate amount of spectral overlap, and the second consisted of a

greater extent of spectral overlap. Synthetic spectra were generated

for eight separate reactions at 15 different wavelengths. Each of the

reacting components was given a molar absorptivity of 0, while the

common reagent was given a small (but not 0) molar absorptivity.

Each of the eight products was given a Gaussian absorbance profile,

with an identical peak response. For the case with moderate spectral

overlap, the peak-to-peak separation was 0.8 standard deviations

from one peak to the next, while for the case with greater spectral

overlap, the peak-to-peak separation was 0.4 standard deviations.

Figure 5.4 shows the synthetic molar absorptivities for the eight

Components and the common reagent, R,
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Figure 5.4: Synthetic spectra of eight components. (solid line)-

products, (dotted line)-common reagent.
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at all fifteen wavelengths. The moderate overlap case used the first,

third, fifth, and seventh spectra, from left to right in Figure 5.4, while

the case with the greater spectral overlap used the first four spectra.

For both cases, the initial concentrations of all reactants was 5 x

10‘5 M, the concentration of the common reagent was 0.01 M, and

the rate constants were: k1=60 5'1, k2=40 5'1, k3=20 5'1, k4=30 S'l,

giving a maximum rate constant ratio of three. The number of

wavelengths used was varied from three to six, and the wavelengths

used corresponded to the first n wavelengths from Figure 5.4. Table

5.2 shows the final estimated concentrations and errors for each of

the components for the moderate overlap case, while Table 5.3 shows

the final estimated concentrations and errors for each of the

components for the greater spectral overlap case. As can be seen

from the tables, the errors from the moderate overlap case are

smaller than those from the greater overlap case. It is also apparent

that the errors decrease with increasing number of wavelengths

used. However, this is a trade-off, since the amount of time

necessary to complete the data analysis increases with increasing

number of wavelengths used. These examples also illustrate the

general rule that it is necessary to use at least as many wavelengths

as there are components present, and sometimes more. The number

of wavelengths necessary for a particular analysis is dependent on

several factors, such as: number of components present, amount of

noise present, and spectral and kinetic overlap of the species. If

there is either total spectral or total kinetic overlap of the species,

and no noise is present, the number of wavelengths necessary would

be equal to the number of components. This is so that there are at
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Table 5.2: Final estimated concentration, and error in the estimated

concentration for the four-component case with moderate spectral

overlap.

Numhemfflaxelengths

3 4 s 6

[C1]o/1O'S 5.00 5.01 5.02 5.03

[C2]o/ 10-5 5.8 5.09 5.05 5.03

[C3]0/1O'5 4.79 4.93 5.00 5.05

[C4]o/1O-5 5.27 5.16 5.06 5.03

err C1/% 0.0 0.2 0.4 0.6

err C2/96 2.8 1.8 1.0 0.6

err C3/96 -4.2 -1.4 0.0 1.0

err C4/% 5.4 3.2 1.2 0.6
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Table 5.3: Final estimated concentration, and error in the estimated

concentration for the four-component case with greater spectral

overlap.

WW

3 4 5 6

[C1]o/ 10’5 4.87 5.20 5.6 4.92

[C2]o/10'S 5.48 4.26 4.83 5.39

[C3]o/10'5 4.49 6.23 5.25 4.58

[C4]0/10'S 5.23 4.5 1 4.94 5.23

err C1/% -2.6 4.0 2.0 -1.6

err C2/% 9.6 -14.8 -3.4 7.8

err C3/% -10.2 24.6 5.0 -8.4

err C4/% 4.6 -9.8 -1.2 4.6
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least as many equations as there are unknowns. However, with noise

present and varying degrees of overlap present, the actual number

of wavelengths required is dependent on the factors above. For

example, one wavelength is sufficient as long as enough kinetic

difference is present, but as the kinetics of the systems under study

exhibit more overlap, a greater number of wavelengths are required.

Since the number of wavelengths used in the data analysis is the

limiting factor in the amount of time the analysis takes, it is

generally advisable to use the smallest number of wavelengths that

provides accurate results. This number can be determined from an

analysis of a known mixture, and should be constant as long as the

experimental conditions do not vary too greatly from the standards.

The addition of extra wavelengths after accurate results have been

obtained does not provide much more accuracy. This is illustrated in

Table 5.2 in which the increase from three to four wavelengths

provides a fair improvement in the accuracy of the estimates, while

increasing beyond four wavelengths does not provide much more

improvement. This can also be seen in Table 5.3 where an increase

beyond five wavelengths does not provide much improvement in the

accuracy.

3. Eight-Component Irreversible System

A study using eight components was performed in order to test

the limits of the filter. This system can be given by equation 5.1

where n is equal to eight, and corresponds to a state vector that

contains 17 parameters. The molar absorptivities for all reactants in
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this study was taken to be 0 at all wavelengths used. The common

reagent, R, was assigned a small molar absorptivity at all

wavelengths, described by a Gaussian distribution. The spectra of all

products was given by a Gaussian distribution, and the peak-to-peak

separation of each of the components was 0.4 standard deviations.

Figure 5.4 shows the spectra for all eight of the components plus the

common reagent. This system was tested using both the first ten

wavelengths, and all fifteen wavelengths, and it was found that all

fifteen wavelengths were necessary in order to obtain accurate

estimates of the concentrations of the species. The concentrations of

all species were taken to be 5 x 10'5 M, the concentration of the

common reagent was taken to be 0.01 M, and the rate constants for

each of the reactions were: k1=50 3'1, k2=40 s-l, k3=30 5'1, k4=20 3'1,

k5=25 S'l, k6=35 8'1, k7=55 8'1, and k3=60 5'1. This yields a

maximum rate constant ratio of three. A summary of the estimated

concentrations of each of the components, and their errors is given in

Table 5.4.

It is apparent that increasing the number of wavelengths from

10 to 15 greatly improves the accuracy of the determination.

Unfortunately, this analysis was quite time consuming. Running on a

286-type microcomputer equipped with a math coprocessor running

at 10 MHz required 3400 seconds to carry out the analysis using 15

wavelengths. Running the same analysis on a 486-DX type

microcomputer running at 33 MHz required approximately 1700

seconds. It is certainly possible to perform determinations of even

greater numbers of components. However, if the spectral overlap is

large, as it often is in systems of this type, the analysis time can



Table 5.4: Estimated concentration of each component and error in

components for eight-component case.
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10 wavelengths

8.85 77.0

-9.27 -285.4

30.7 5 14.0

-22.3 -546.0

22.7 354.0

—0.67 —1 13.4

4.85 -3.0

5.43 8.6

15 wavelengths

5.15

4.59

6.15

4.15

4.75

6.00

4.42

5.20

3.0

-8.2

23.0

-17.0

-5.0

20.0

-1 1.6

4.0
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become prohibitive. Of course, as processors become even faster, this

will not be as great a problem. Whether or not a system of this

complexity should be analyzed using this method depends on a

number of factors. These include: suitability of other methods for

the analysis, the time other methods would take, and availability of

powerful computers.

4. Reversible Systems

The extended Kalman filter method has also been tested using

systems which follow reversible kinetics such as the reaction given

in equation 5.4. Such a system is sometimes seen in ligand

displacement reactions. For example, the displacement of

metal/EGTA complexes with 4-(2-pyridylazo)resorcinol (PAR) shows

reversible behavior for some metals. This version of the filter was

tested to see which ratios of the forward and reverse rate constants

are tolerated. For this study, a one component model was used, and

the value of the forward rate constant was held constant at 100 5'1,

while the reverse rate constant was varied from 0.1 to 500 $4,

giving ratios of k1/k-1 of 1000 to 0.2. A plot of the error in the

estimated concentration of C1 is plotted against this ratio in Figure

5.5. As can be seen, all ratios tested yielded very accurate results,

and the errors only started to become appreciable as k1 became

much larger than k.1. Of course, under these conditions, the reverse

reaction is negligible, and the irreversible form of the filter discussed

Previously is applicable.
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Figure 5.5: Error in estimated C1 versus ratio of forward to reverse

rate constants.
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A two-component version of this system was also studied. This

system can be described by extending equation 5.4 to two parallel

reactions. This system was tested for the effect of the ratio of the

rate constants of the two forward reactions. In this case, the rate

constant for the first reaction, k1, was held constant at 200 8’1, and

the forward rate constant for the second reaction was varied from 20

to 200 s*1, which gives values of the ratio of the forward rate

constants of 10 to 1. For all cases, the rate constants of the two

reverse reactions were held constant at 20 5'1. Figure 5.6 shows the

error in the estimated concentrations of the two components as a

function of the ratio of the forward rate constants. As can be seen,

the error in the first component is relatively constant, and is less

than 1.0 96 for all cases, while the error in the second component

becomes smaller as the rate constant ratio approaches unity. This is

again due to the filter seeing more of the second reaction.

These systems were also tested to see the effect of the initial

estimates of the rate constants and of added noise. Results were

similar to those found for the irreversible reactions discussed in

Chapter IV. These systems are tolerant of noise to quite a high

degree, and are also capable of converging on accurate results even if

the initial values for the rate constants are not completely accurate.

As long as the estimates are within 10 to 20% of the true values, the

estimates from the filter are quite accurate.
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D. Conclusions

The extended Kalman filter has been successfully applied to a

number of systems of varying complexity and differing kinetic

parameters. This method has been shown to be quite versatile and

tolerant of the initial estimates of the kinetic parameters supplied.

The filter has also been shown to be able to resolve systems

containing a larger number of components with highly overlapped

spectral and kinetic characteristics.

The method of the extended Kalman filter is applicable to any

kinetic system as long as the behavior of the system is known and

sufficient kinetic and spectral differences are present. These

differences do not have to be very large in order for accurate results

to be obtained. This can be useful for providing information on

systems with several similar species present in a sample, all of which

have highly overlapped responses to the detection method and

highly overlapped kinetic responses. An example of such a system is

given in Chapter V1 with the complexation reactions of a series of

metals. This technique could also be applied to functional group

determinations in organic mixtures with a reagent specific to a

certain functional group. Other areas of application include

resolution of fluorescent and phosphorescent species. Since the

decay of luminescence is exponential, and different species have

different luminescent lifetimes, the extended Kalman filter technique

described here can be used to determine multiple species in these

methods as well.



136

The extended Kalman filter is the main form of the filter used

in the current work. An extension of this work could be the use of a

combined adaptive Kalman filter-extended Kalman filter. The

adaptive Kalman filter is not applicable to nonlinear systems.

However, by using the adaptive filter to identify problems with the

model used, and the extended Kalman filter to analyze the data

points with no problems, interferents could be detected more readily.

Another extension of the current work involves the use of Kalman

filter networks for principal components analysis. This would be a

very interesting application. By using networks of extended Kalman

filters, the number of reacting species could be determined, as well

as their concentrations.

Chapters IV and V describe simulation studies of

multicomponent kinetic systems using the extended Kalman filter.

Reactions of differing complexity are modeled and tested for their

suitability for use with the filter. Another area where the work

could be continued is in the use of mixed models. This would allow

analysis of systems following mixed-order kinetic processes.

Another area where the work could be furthered would be the use of

a Kalman filter on a chip. It is possible to produce integrated circuit

chips to perform many of the calculations used in the Kalman filter.

If these chips become readily available, they could greatly increase

the speed of the calculations. The advantages of this are obvious:

faster processing of the data would allow fast reactions to be

analyzed in real time, and more complex models containing a greater

number of reacting species could be utilized.



CHAPTER VI

Simultaneous Kinetic Determination of Lanthanides with the

Extended Kalman Filter

A. Introduction

Many metal complexing agents are in common use in analytical

chemistry. One of these is 4-(2-pyridylazo)resorcinol (PAR) whose

structure is shown in Figure 6.1. PAR has proven to be very

versatile for the determination of metalsl. PAR reacts with over 50

elements to form either colored complexes and/or precipitates from

aqueous solutions. The resulting complexes which are formed when

OH

Figure 6.1: Structure of 4-(2-pyridylazo)resorcinol (PAR)

a metal and PAR are reacted are often highly colored, with molar

absorptivities ranging from 104 to 105. These highly colored

1‘37
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solutions offer the ability to determine trace amounts of metal

species in aqueous solutions.

The versatility of PAR as a reagent for many metals is also one

of its shortcomings. This is because the complexes resulting from the

reaction of a metal and PAR are quite similar spectrally. Therefore,

determination of most metals with PAR is interfered with by the

presence of other metals. This can be compensated for by

maximizing the formation of one of the metal-PAR complexes while

trying to minimize the formation of all other complexes. Selective

formation can be accomplished in some cases by pH control. The

spectra of the resulting complexes are quite overlapped, and do not

offer enough differences by themselves to lead to a separation of

signals for many species. However, if these spectral differences are

combined with kinetic differences, the combination can be enough

for resolution of mixtures. The approach of combining the spectral

and kinetic differences for the simultaneous determination of

mixtures using PAR as a common reagent has been evaluated.

For all of the previous studies, an exchange reaction has been

used such as that described by equation 6.1:

M-EDTA+PAR4=M-PAR+EDTA (6.1)

where EDTA is ethylenediamintetraacetic acid, and M stands for any

metal. Using this exchange reaction serves two purposes. First, most

complexation reactions of a metal with PAR are rapid and occur on

the stopped-flow time scale, while the exchange reaction occurs on a

longer time scale, with reactions often being monitored for several
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minutes. The second purpose of the exchange reaction is that the

differences in the rate constants of the exchange reaction are usually

greater than for the metal-PAR complexation reaction.

This approach has been used for the determination of gallium

and indiumz. The exchange reaction described in equation 6.1 has

also been applied with a substitution of EGTA (ethyleneglycol bis(2-

aminoethylether)N,N,N',N'-tetraacetic acid) for EDTA. With this

reaction, mixtures of cobalt and nickel have been analyzed by

logarithmic extrapolation3, and more recently by non-linear

regression and factor analysis with multiple wavelengths4»5.

If no exchange reaction is used, the sample throughput could

be much greater. Since the complexation is quite fast, monitoring of

the direct reaction would be necessary for only several seconds at

most. This would allow many samples to be tested in a short time.

The current work focuses on the reaction of PAR with a group of

lanthanides. The straight complexation reaction is used, and the

amount of time that the reactions were monitored was less than two

seconds. Two and three-component mixtures of lanthanum,

praseodymium, and neodymium were determined based on their

spectral and kinetic differences. The reaction can be described by

equation 5.1, and the measurement function used for the data

analysis can be given by equation 5.3, when both equations include

the appropriate number of terms.
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B. Experimental Section

1. Apparatus

A Tracor Northern (Model TN-6123) SlZ-element intensified

linear photodiode array was used to acquire spectra in the 300-700

nm wavelength range. Software to control the data acquisition was

written in house. A stopped-flow reagent mixing system,

constructed in house6, was used to mix the reagents.

2. Reagents

4-(2-pyridylazo)resorcinol (Sigma Chemical Co. #P-8019) was

used as the common reagent. Salts of all metals used were dried and

used to prepare stock solutions. No buffering or ionic strength

control was used.

3. Procedure

Solutions of 4-(2-pyridylazo)resorcinol (PAR) were mixed with

solutions of the appropriate mixture of metals in the stopped-flow

mixing system. Progress of the reaction was followed

spectrophotometrically with the linear photodiode array (LPDA).

Using the LPDA, it is possible to take one complete spectrum every

3.5 ms, and up to 100 spectra may be acquired in a single run.

Actual length of time between acquisition of spectra was varied as

necessary.
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4. Computational Aspects

The extended Kalman filter programs used were written in

QuickBASIC (Microsoft Corp.) version 4.0; the algorithm and the

measurement model described in Chapter III were used.

Calculations were carried out on a 286 type computer equipped with

a math coprocessor.

C. Results and Discussion

In all situations described below, certain information needs to

be supplied to the filter for it to be able to obtain accurate estimates

of concentrations. First of all, it is necessary for the algorithm to

have the pure component spectra available to it for all species

present. This is done in practice by having separate data files

containing molar absorptivities for each component in a reaction. In

order to provide estimates of the rate constants to the filter, they

were first determined by fitting a nonlinear function to a single run

of each metal. The relative rate constants for lanthanum,

praseodymium, and neodymium are 1:1.7:1.9.

1. Single Component Studies

In order to determine how well the filter works under the

conditions used in this work, it was first tested in a one-component

system.
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Varying amounts of each metal solution and PAR were mixed

in the stopped flow under the conditions given in Table 6.1. The

extended Kalman filter algorithm described above was then applied

to the data from each diode individually in order to determine which

wavelength regions were best for this study. Figure 6.2 shows the

molar absorptivities for each of the products of the complexation

reaction. As can be seen, there is a great deal of spectral overlap

among the species. This spectral overlap, combined with the

closeness of the reaction kinetics for the three species makes this

system an excellent test of the extended Kalman filter method for

multicomponent kinetics. Figures 6.3 to 6.5 show the estimated

concentration of each of the three lanthanides versus the

wavelengths used for analysis for an example run. Each of the three

lanthanides was run at several concentrations from 7 x 10‘6 M to 3 x

10'5 M. The error bars represent the standard deviation in the filter

estimates for triplicate determinations. Relative standard deviations

were approximately 10% or less for each of the three metals in the

region of the optimum wavelength.

If a greater number of wavelengths is used by the filter for the

analysis, the precision improves. However, the greater the number

of wavelengths used, the longer the filter takes to analyze the data.

It is apparent from Figures 6.3 to 6.5 that the area from

approximately 450 nm to 550 nm is analytically useful for all metals

while the rest of the spectral region studied is less useful. The

spectral region below 450 nm is not useful due to the strong

absorbance of PAR. Since PAR is in excess to maintain pseudo-first-

order conditions, the overall absorbance in this region changes little
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Table 6.1: Conditions for spectral acquisition of single component

data

Metal Time between Delay before Total data

scans (ms) first scan (ms) collection time

(ms)

La(III) 8.5 or 10.5 13.0 or 15.0 863 or 1065

Pr(III) 8.5 or 10.5 13.0 or 15.0 863 or 1065

Nd(III) 8.5 or 10.5 13.0 or 15.0 863 or 1065

2.00 x 10‘4 M PAR used for all reactions
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Figure 6.2: Molar absorptivities of lanthanides and 4-(2-

pyridylazo)resorcinol (PAR). (o)-PAR, (+)-La(PAR) complex, (__)-

Pr(PAR) complex, (--)-Nd(PAR) complex.
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Figure 6.3: Estimated initial concentration of 2.88 x 10'5 M

lanthanum with respect to wavelength. True concentration shown by

solid line. 8.5 ms scans.
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Figure 6.4: Estimated initial concentration of 1.42 x 10‘5 M

praseodymium with respect to wavelength. True concentration

shown by solid line. 8.5 ms scans.



147

3.0 10'5

2.5 10'5

2.0 10'5

e
s
t

[
N
d
]
,
M

_
L

'
0
1

—
L

O

O
!

1.010‘5

5.0 10'6

   0 .

425 468.7 512.5 556.2 600

nm

Figure 6.5: Estimated initial concentration of 1.39 x 10'5 M

neodymium with respect to wavelength. True concentration shown

by solid line. 8.5 ms scans.
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throughout the course of the reaction. Therefore, the Kalman filter

has little information to work with in this region, and is not able to

obtain accurate estimates of the metal concentration. Above 550 nm,

the metal/PAR complexes exhibit little absorbance, and so again,

there is little absorbance change throughout the course of the

reaction, and little information for the filter to work with. Of course,

in these wavelength regions, other techniques would also fail to

obtain accurate results, since there is little useful analytical

information.

Figures 6.6 to 6.8 show the estimated concentrations of samples

of lanthanum, praseodymium, and neodymium with respect to time

that result from the filter. These figures represent single component

data processed at only a single wavelength (495 nm). For

consistency, the wavelength was kept the same for all three

determinations. Note that this wavelength does not necessarily

provide the Optimal estimates for any of the metals. However, this

wavelength does provide quite accurate results for all three metals,

while other wavelengths may be better for some of the metals. It is

apparent that the filter settles onto an approximate value early in

the reaction, and after that, the estimated concentration values vary

little from point to point. Error bars are included on the plots, and

these represent square roots of values taken from the diagonal of the

covariance matrix, which yields the standard deviation of the

estimated values. As the reaction progresses and more data are

available to the filter, the precision of the estimated values improves

while the accuracy is essentially unchanged once the filter settles

onto a stable estimate. Note that the size of the error bars is quite



149

2.8 10'5

2.4 10'5

2.0 10'5

 21.610‘5 
.--------------------------------------.

"1.210‘5

8.010'6

4.010‘6  
 

0 0.2 0.4 0.6 0.8 1 1.2

Time(s)

Figure 6.6: Estimated concentration using 1 pixel at 495 nm of 1.44 x

10‘5 M lanthanum with respect to time. Error bars :1 standard

deviation. (_)-True concentration, (--)-10% error in concentration.

10.5 ms scans.
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Figure 6.7: Estimated concentration using 1 pixel at 495 nm of 1.42 x

10-5 M praseodymium with respect to time. Error bars 21:1 standard

deviation. (__)-True concentration, (--)-10% error in concentration.

10.5 ms scans.
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Figure 6.8: Estimated concentration using 1 pixel at 495 nm of 1.39 x

10'5 M neodymium with respect to time. Error bars :tl standard

deviation. (__)-True concentration, (--)-10% error in concentration.

10.5 ms scans.
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small. This provides an indication that the filter has enough

information to give accurate estimates of concentrations using only a

single wavelength. This is not surprising, as most multicomponent

kinetic methods only use data from a single detector. However, as

the number of components increases, and the spectral and kinetic

overlap increases, the errors can increase if only a single wavelength

is utilized.

Figure 6.9 shows the residual absorbance values for a reaction

of neodymium. This figure is from the same run as the concentration

estimate shown in Figure 6.8. Note that the residual values are

randomly distributed about zero. This shows that the model used to

fit the data in the extended Kalman filter algorithm is adequate. The

only residual that is large and is not due to fitting error is the very

first point. This residual is due to the initial values provided to the

filter.

The values of the rate constant provided to the filter were also

varied from the calculated value. These values were varied from 50

to 150% of the true value. Although the best errors were usually

observed when the calculated value of the rate constant was

provided to the filter, even values that were off by as much as 50%

provided excellent results. The maximum increase in error for any

of the trials tested was less than 3%. This seeming insensitivity to

the value of the rate constant is due to the nonlinear form of the

Kalman filter. Since the rate constant value is one of the parameters

that is adjusted at each iteration, as long as the rate constant

provided to the filter initially is approximately correct, the filter is

able to calculate accurate results.
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Figure 6.9: Residual absorbance values using 1 pixel at 495 nm for a

reaction of 1.39 x 10'5 M neodymium with respect to time.
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2. Two- and Three-Component Studies

All three possible two-component mixtures of the three

lanthanides were prepared, as well as three component mixtures.

These mixtures were then reacted with the PAR reagent in the

stopped flow apparatus and the reactions followed

spectrophotometrically as described above. Conditions for the data

collection are described in Table 6.2 for each of the mixtures studied.

The number of wavelengths necessary to achieve accurate estimates

of species concentrations was tested. For greater than one

wavelength used, the choice of which wavelengths to utilize for the

analysis was made by a simplex optimization procedure7»8. Once

these wavelengths were determined, they were kept constant for all

remaining analyses of that mixture. Tables 6.3 to 6.5 summarize the

final estimated concentrations from the extended Kalman filter for

each of the possible two-component mixtures using from one to three

wavelengths. Table 6.6 summarizes the final estimated

concentrations for a three component mixture using from one to four

wavelengths. Note that in general, the more wavelengths used for

the analysis, the more accurate the results from the extended Kalman

filter. One notable exception to this is in the mixture of

praseodymium and neodymium where the increase from two to

three wavelengths actually decreases the accuracy of the

determination. However, the precision of the determination always

increases with more wavelengths being utilized, and the differences

for this determination using two or three wavelengths are within the

relative standard deviations of the estimates. Another interesting



Tabi

com

llit‘

1&ij

PI]



155

Table 6.2: Conditions for spectral acquisition for two and three

component mixtures

Mixture Time between Delay before Total data

scans (ms) first scan (ms) collection time

(m5)

Ia/Pr 8.5 13.0 863

Ia/Nd 8.5 13.0 863

Pr/Nd 6.5 1 1 .0 66 1

La/Pr/Nd 6.5 1 1.0 66 1

2.00 x 10‘4 M PAR used for all reactions



 

iii

for
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Table 6.3: Final extended Kalman filter estimates of concentration

for mixture of lanthanum and praseodymium.

   

La E_I

r Iaken Found Error Taken Bound Error

ME. LIQSM LIQSM 4%) LIQSM [J.Q'SM Mi

1 1.44 0.82 —43.0 1.42 1.49 4.9

2 1.44 1.21 -16.0 1.42 1.27 -10.6

3 1.44 1.29 -10.4 1.42 1.42 0.0  
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Table 6.4: Final extended Kalman filter estimates of concentration

for mixture of lanthanum and neodymium.

44% SQ

8 18km Eormd Error Taken Eormd Error

M21051! LlQ‘SM 21%) LID-5M 2105M M

1 1.44 0.74 -48.4 1.39 1.45 4.3

2 1.44 1.24 -13.7 1.39 1.35 ~2.8

3 1.44 1.26 -12.5 1.39 1.37 -1.4
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BI

Table 6.5: Final extended Kalman filter estimates of concentration

for mixture of praseodymium and neodymium.

  
 

IakenEoundError

 

2105M LLQ'SM M

1.06 -0.39 -137

1.06 1.06 0.0

1.06 1.17 10.2  

NJ

Taken Found Error

2105M 2105M 2126)

1.04 1.67 60.6

1.04 1.08 4.0

1.04 1.16 11.8
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Table 6.6: Final extended Kalman filter estimates of concentration

for mixture of lanthanum, praseodymium, and neodymium.

  

 

   

All; fl N4—

1 Iaken Eound Error Iaken mung Error Taken Eounsi Error

M 210511 LIQ‘SM 2061 2105M 2105M 21261 2105M 0.0-SM 21416;

1 1.44 0.67 -53.3 1.06 23.6 2126 1.04 -4.69 -551

2 1.44 -0.49 -134 1.06 3.05 188 1.04 1.41 35.6

3 1.44 0.81 -43.5 1.06 1.99 87.7 1.04 0.98 -6.3

4 1.44 1.24 -13.9 1.06 0.87 -17.9 1.04 0.97 -6.7
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result is seen in Table 6.4 for the analysis of lanthanum and

neodymium. The estimated concentration of neodymium using only

one wavelength appears to be quite accurate. However, the relative

standard deviation for this number from the covariance matrix is

approximately 80%. It is generally advisable to use three

wavelengths to determine two-component mixtures, and four

wavelengths to determine three component mixtures. Under these

conditions, the relative standard deviations from the covariance

matrix were generally less than 5%. Increasing the number of

wavelengths used beyond these three or four will yield an

improvement in the precision of the determination, but will also take

longer to analyze. Relative standard deviations from multiple runs of

samples were generally less than 10% for two-component mixtures

and less than 15% for three-component mixtures.

Different concentrations of each of the species were tested to

see the range over which the method is applicable to this system.

Table 6.7 summarizes the results of these studies. The

praseodymium/neodymium system was tested the most thoroughly,

and excellent results were obtained for concentration ratios from 5:1

to 1:2. At ratios higher than these, excellent results were obtained

for the more concentrated species, while the errors for the less

concentrated species increased. This is most likely due to the limits

of detection for the chemical system, and not a flaw in the method.

Simulations presented in Chapter IV show excellent results for

broader concentration ratios.

As a comparison to other methods for multicomponent kinetic

determinations, the concentrations of praseodymium and
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Table 6.7: Final extended Kalman filter estimates of concentration

for mixtures of lanthanum, praseodymium, and neodymium.

  

 

  

La if; M

taken £61m Error Taken Bound Error Iaken Eound Error

LIQ‘SM 2105M 2061 210% LID‘SM 21261 LIQ'SM LLQ’SM 21261

1.44 1.29 -10.4 1.42 1.42 0 - - -

1.50 1.09 -27.3 3.00 4.22 40.7 - - -

1.44 1.26 -12.5 - - - 1.39 1.37 -1.40

- - - 1.06 1.06 0 1.04 1.08 4.0

- - - 1.50 1.72 14.7 0.75 0.72 -3.5

- - - 1.50 1.40 -6.7 0.30 0.29 -4.0

- - - 0.750 0.756 0.8 1.50 1.35 -10.0

- - - 1.50 1.31 -12.7 0.15 0.25 67.0

1.44 1.24 -13.9 1.06 0.87 -17.9 1.04 0.97 -6.7

1.44 1.58 9.9 1.42 1.61 13.7 1.39 1.51 8.9
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neodymium in their two-component mixture was determined by the

method of proportional equations. This method was modified to be

used at the two wavelengths used for the extended Kalman filter

analysis shown in Table 6.5. Table 6.8 shows a comparison of the

two methods. As can be seen in the table, the extended Kalman filter

shows a vast improvement over the method of proportional

equations.

The rate constants provided to the filter for two—component

mixtures were varied from 50% to 150% of the true value for each of

the components. The worst estimates of concentration occurred

when both rate constants were below the true values. The maximum

change in the errors in concentration for the mixture of

praseodymium and neodymium described in Table 6.5 using two

wavelengths was 6% when both rate constants were underestimated

significantly. The maximum error for either component under these

conditions was 9.6%, compared to 4.0% when accurate rate constants

for both reactions are provided to the filter.

Residual absorbance values at each of the wavelengths in

multicomponent mixtures are similar to those shown in Figure 6.9.

The residuals are random and centered about zero. The number of

iterations that it takes the filter to settle onto accurate estimates is

longer in multicomponent mixtures than it is in single component

samples. Figure 6.10 shows the progress of the estimated

concentrations of praseodymium and neodymium with time. Again,

however, once the estimated concentrations have settled, they

remain quite stable.
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Table 6.8: Comparison of the method of proportional equations and

the extended Kalman filter.

1?: N0
 

Method Taken Found Error IakenEound Error

2105M 21058 426) 2105M [.LQ‘SM 4g)
 

Prop. Eqn. 1.06 2.25 112.3 1.04 -0.07 -106.7

Extended 1.06 1.06 0.0 1.04 1.08 4.0
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Figure 6.10: Estimated concentrations of praseodymium (o) and

neodymium (+) versus time using two wavelengths. True

concentrations: [Pr]=l.06 x 10'5 M, [Nd]=1.04 x 10-5 M, [PAR]=2.00 x

10‘4 M.
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D. Conclusions

The extended Kalman filter has been shown to be a powerful

technique for multicomponent kinetic determinations. There are

several advantages to this method over most previous approaches.

Determinations are based on differences in both spectral and kinetic

behavior, which allow differentiation of more closely related species.

The recursive nature of the Kalman filter provides fast computations.

Finally, the use of the nonlinear, extended form of the Kalman filter

avoids the most common assumption used in other methods, which is

that the rate constant has been required to be invariant from run to

run. This method does not require that this assumption be valid.

Previous multicomponent kinetic methods require strict control of

reaction conditions, such as pH, ionic strength, and temperature.

These controls were not used in the determinations described in this

chapter. '

This chapter describes the analysis of mixtures of lanthanides

reacting with a common complexing agent by the extended Kalman

filter. The filter was shown to be applicable to systems with highly

overlapped kinetic and spectral responses. A mixture of three

reacting metals was successfully analyzed even though the ratio of

their pseudo-first-order rate constants was less than 2:1. A further

application of this work would be to use a greater number of reacting

components, and to use parallel Kalman filter networks for the data

analysis. By using this method to analyze data, both the number of

reacting metals, and their identities could be determined. Unknown
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samples could be qualitatively and quantitatively analyzed with very

little effort on the end-users part. This area would also be very

amenable to the use of faster processors and to the so-called Kalman

filter on a chip. Since the amount of data processing necessary

increases greatly with an increasing number of parallel Kalman

filters, these systems are numerically very intensive. With the

increase in computational power that is sure to materialize, the

amount of time necessary for data analysis using these complex

models will not be as great as is currently the case.

Another area where this method could be extended is to the

variation of a rate constant within a run due to changes in

temperature or pH during the reaction. This has already been done

for single component systems by monitoring temperature as well as

absorbance, and using an Arrhenius-type temperature dependence

in the model9. This could easily be extended to a multiple

components case. If the rate constant for a reaction is dependent on

pH then simultaneously monitoring the pH of the solution as well as

its absorbance and including a term in the model for the pH

dependence could allow this correction to be included.

The extended Kalman filter with data from multiple

wavelengths has been shown to be a powerful data analysis tool for

multicomponent kinetic studies. This is the first method for

multicomponent kinetics which has not required that the rate

constants be invariant from run-to-run. This has allowed a greater

flexibility in the conditions used to perform the reactions. It is also

not necessary to use such rigid controls on the reaction conditions as

has previously been the case. This method has been shown be an
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effective data analysis tool even if the kinetics or spectra of a system

are too close to be determined by other methods. The technique has

been shown to be more flexible, more powerful, and more accurate

than previous methods for multicomponent kinetic determinations.
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Appendix I

Program NRNDAT

The sciences do not try to explain, they hardly even try

to interpret, they mainly make models. By a model is

meant a mathematical construct which, with the addition

of certain verbal interpretations, describes observed

phenomena. The justification of such a mathematical

construct is solely and precisely that it is expected to

work.

John Von Neumann

This appendix describes the program NRNDAT, which was

written to simulate multicomponent kinetics data. The system that

this program is modeled after is described by equation 5.1, the

simultaneous, irreversible reaction of n components with a common

reagent to form 11 different products. The actual number of

components and number of wavelengths to be used for a particular

run is input by the user. The user also inputs the rate constants for

each of the reactions, and the names of the files containing the molar

absorptivities for each of the components. The program then

correctly dimensions the necessary arrays to hold the data. A full

second-order irreversible kinetic model is used to generate the

concentration of each species at each point in time. Since this model

contains an interdependency between the concentrations of the

common reagent and each of the reactants, the program iterates the

calculation of each of these concentrations at each point in time until
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the difference in the calculated concentration of each of the

components is less than 0.001% between two successive iterations.

The program then uses the molar absorptivity files to obtain

the true absorbance for each component for each time interval. The

absorbance due to all of the components is then summed, and the

total true absorbance for each wavelength at each time is obtained.

As it is written, the program simulates absorbances for 100 time

intervals each separated by 0.05 time units. The true absorbances

are then passed to the subroutine ADDNS2 which adds randomly

distributed noise to the true absorbance values1’2»3. The standard

deviation of the noise to be added is set by the variable STD, and has

the units of absorbance units. The resulting simulated absorbances

for each point in time and for each wavelength are then printed out

to a file specified by the user. These files are of the form:

TIME, ABS(1), ABS(Z), ..., ABS(N)

where ABS(n) is the absorbance at the nth wavelength. These files

are then in the form necessary to be read by the extended Kalman

filter program described in Appendix II.
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DECLARE SUB ADDNS2 (IDIMll, IDZI, SIGMAl, BCKGRDI, ISEEDl, IMODE!)

PROGRAM NRNDAT.BAS

VERSION 1.0

This program was written in QuickBASIC 4.0

This version uses the full second order model to determine []'s and

absorbance values.

This program generates kinetic data for the system:

C1 + R -> Pl rate constant k(l)

C2 + R -> P2 rate constant k(2)

Cu + R --> Pn rate constant k(n)

at a user specified number of wavelengths. The program prompts the user

for values for the rate constant, the initial absorbance of each

reactant, and the molar absorptivities of each reactant and each product

at each wavelength. The program outputs 100 time, absorbance at

wavelength 1, absorbance at wavelength 2, etc. sets. A random noise term

is added to each absorbance to simulate data that would be obtained

in a real experiment.

Written by:

Brett Quencer

Dept. of Chemistry

Michigan State University

East Lansing, MI 48824

Date completed: Feb. 23, 1993

Modified:

Subroutine ADDNSZ adapted from a (very) similar one written in FORTRAN-77

by Pete Wentzell. His version of the subroutine may be found on p. 170

of his Ph.D. dissertation (MSU, 1987).

DEFDBL T

CIS

INPUT "# OF COMPONENTS"; NUMCOMP

NUMSTATES = (2 * NUMCOMP) + 1

INPUT "# OF WAVELENGTHS"; NWAVE

'NWAVE = 3

'INPUT "ENTER INTERVAL TO USE"; INTER

INTER = .05

'INPUT "ENTER # POINTS"; PTS

.I’I‘S = 100

REDIM BACK(NWAVE), AFIN(NWAVE, I’I‘S) AS DOUBLE

REDIM EPS(NUMSTATES, NWAVE) AS DOUBLE

REDIM K(NUMCOMP) AS DOUBLE, CONC(NUMCOMP + 1) AS DOUBLE

REDIM TCONC(NUMSTATIB, P'IS) AS DOUBLE
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REDIM RCONC(NUMSTATES) AS DOUBLE

REDIM CONC1(NUMCOMP, PTS) AS DOUBLE, T(NUMCOMP * 2) AS DOUBLE

REDIM XX(NUMCOMP + 1) AS DOUBLE

REDIM TEMP(NUMSTATI~S) AS DOUBLE

REDIM ABSV(NUMSTATES) AS STRING

Prompt user for wavelengths, initial concentrations of components, rate

constants for each component, molar absorptivities of each component,

and the background absorbance at each wavelength.

CLS

FOR I = 1 TO NUMCOMP

PRINT "INITIAL CONCENTRATION OF COMPONENT C("; l; " ";

INPUT CONC(I)

NEXT 1

INPUT "INITIAL CONCENTRATION OF COMPONENT R "; CONC(NUMCOMP + 1)

FOR I = 1 TO NUMCOMP

PRINT "RATE CONSTANT FOR REACTION "; 1;

INPUT 1((1)

NEXT I

FOR I = I TO NUMCOMP

PRINT "Enter molar absorptivity file for C("; I; ")";

INPUT ABSV(I)

NEXT I

PRINT "Enter molar absorptivity file for R";

INPUT ABSV(NUMCOMP + 1)

FOR I = 1 TO NUMCOMP

PRINT "Enter molar absorptivity file for P("; I; ")";

INPUT ABSV(NUMCOMP + 1+ 1)

NEXT 1

FOR I = 1 TO NUMSTATB

FILNUM = 30 + 1

OPEN ABSV(I) FOR INPUT AS #FILNUM

NEXT I

FOR I = 1 TO NWAVE

FOR] = 1 TO NUMSTATES

FILNUM = 30 +1

INPUT #FILNUM, EPSU, 1)

NEXT 1

NEXT I

FOR I = 1 TO NUMSTATES

FILNUM = 30 + I

CLOSE #FILNUM

NEXT I

' Determine concentration of each component. Then determine the

absorbance at each wavelength and time. (Time is in arbitrary

units, equally spaced), and find the absorbances at each wavelength.

Need to loop the calculation of concentration at each time, since

each component (A, B, and C) is dependent on the concentration of R

at time T, which is in turn dependent on the concentration of A, B, & C.

The calculations are iterative until there is less than .01% change in

' the concentration of each component at that time.

FORI= l TONUMCOMP+1

RCONC(I) = CONC(I) 'Starting concentrations
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'are set to original

NEXT I 'concentrations.

FOR I = 1 TO NUMCOMP

T(I) = CONC(I) / CONC(NUMCOMP + 1) 'Simplifying equations

NEXTI

FOR I = 1 TO NUMCOMP

T(NUMCOMP + I) = CONC(I) - CONC(NUMCOMP + 1)

NEXT I

FORJ=1TOPTS 'Loop forall times

L = INTER * J 'Set time spacing to 0.1 time units

FORI=1TONUMCOMP+1

42 : XX(I) = RCONC(I) 'Set for previous concentration

NEXT I 'for iterations

RCONC(NUMCOMP + l) = CONC(NUMCOMP + l)

' Determine concentrations

K = NUMCOMP + 1

FOR I = I TO NUMCOMP

RCONC(I) = (T(l) * RCONC(K)) * EXP(T(NUMCOMP + I) * 1((1) * L)

NEXTI

FOR I = I TO NUMCOMP

RCONC(NUMCOMP + I + 1) = CONC(I) - RCONC(I)

RCONC(K) = RCONC(K) - RCONC(NUMCOMP + I + 1)

NEXT I

FORI: ITO NUMCOMP+1

XX(I) = XX(I) / RCONC(I) 'Calculates ratios

IF XX(I) > 1.00001 THEN 42 'Convergence test

NEXT I

FOR I = 1 TO NWAVE

FOR K = 1 TO NUMSTATB

TEMP(I() = EPS(I(, I) * RCONC(K)

AFIN(I, J) = AFIN(I, J) + TEMP(K)

NEXT K

NEXTI

FORI = 1 TO NUMCOMP

CONC1(I, J) = CONC(I) - RCONC(I) 'Conc. of component C(I) at time t

NEXTI

NEXT J

Now we have the pure (no noise) absorbance values. Call the subroutine

ADDNSZ to generate random noise, and add to or subtract from the pure

absorbance values.

'INPUT "ENTER STD. DEV."; STD

STD = .001

'INPUT "ENTER SEED"; SE

SE = RND(250) * 1000

CALL ADDNSZ(NWAVE, PIS, STD, 0, SEE, 1)

' Print results to output file

CIS

INPUT "NAME OF OUTPUT FILE FOR KALMAN FILTER"; GS

OPEN GS FOR OUTPUT AS #1

FOR I = 1 TO P'IS

PRINT #1, USING "##.### "; 1* INTER,

FOR J = 1 TO NWAVE
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PRINT #1, USING "#.##### "; AFIN(J, I),

NEXT]

PRINT #1,

NEXT I

CLOSE #1

END

DEFSNG T

SUB ADDNSZ (IDIMl, ID2, SIGMA, BCKGRD, ISEED, IMODE)

[This subroutine was originally written in FORTRAN-77 by Pete Wentzell.

It was adapted to QuickBASIC by Brett Quencer, and contains all of the

comments of the original. New comments are delimited by square brackets]

This subroutine adds random noise with a Gaussian distribution to the

data in an array. The parameters involved are:

DATA- is the array containing the data to which the error is to be

added or the array which will contain the errors generated,

depending on the setting of IMODE.

[NOTE DATA is named AFIN here and is a shared array.]

IDIM#- is the size of the data array [in the dimension in

#].

SIGMA- is the desired standard deviation of the errors to be added

(value is absolute).

BCKGRD- is a constant background level to be added to all of the

errors generated.

ISEED- is the random number seed to be used in generating the random

errors.

IMODE- is the mode of error generation:

IMODE=1 indicates errors generated are to be added to the

data already in the array

IMODE=2 indicates errors generated are to be put directly

into the array (not added).

' To generate the normally distributed random errors, this subroutine

' uses the random number generator, which gives a rectangular distribution,

' in conjunction with the cumulative Gaussian distribution. The random

' number generated is used as the argument in an approximation to the

' inverse of the standardized cumulative normal distribution function (see

' M. Abramowitz and LA. Stegun, 'Handbook of Mathematical Functions' (1968),

' Equation 26.2.23). This method is briefly described by L Kaufman in

' 'Trends in Anal. Chem.', vol. 2, p. 244

' Set up house

SHARED AFIN() AS DOUBLE

C0 = 2.515517

C1 = .802853

C2 = .010328

D1 = 1.432788

D2 = .189269

D3 = .001308
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' Zero data array if mode 2 is being used

IF IMODE = 2 THEN

FOR I = 1 TO IDIMl

FOR J = 0 TO ID2

AFIN(I, J) = 0!

NEXT J

NEXT I

END IF

' Generate errors and add to array

' Generate random number. Needs to be in range 0<P<=0.S. If number is

' in range 0.5-l, subtract 0.5 and make sign of error negative. Ensure

' number <> 0. Compute error, scale, and add background

FORI=1TOIDIM1

FORJ = 1 TO ID2

P = RND(ISEED)

IF P > .5 THEN

SIGN = -II

P = P - .5

ELSE

SIGN = 1!

IF P = 0! THEN P = .00001

END IF

T = SQR(-2! * LOG(P))

XP=T-(C0+Cl*T+C2*T*T)/(l +D1*T+D2*T*T+D3*T*T)

AFIN(I, J) = AFIN(I, J) + SIGN * SIGMA * XP + BCKGRD

NEXT J

NEXT I

' All finished, now go home

END SUB
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Appendix II

Program EKFNRN

You think you know when you learn, are more sure when

you can write, even more when you can teach, but certain

when you can program.

Alan J. Perlis

This appendix contains the program listing for EKFNRN. The

program was written to process multicomponent kinetics data using

the extended Kalman filter. This particular version was written for

the analysis of n simultaneously reacting components with a common

reagent to form n different products following pseudo-first-order

kinetics as described in equation 5.1. The program utilizes the

extended Kalman filter algorithm described in equations 3.3 to 3.7.

The measurement function for this system is given by equation 5.3.

The user enters the number of components to determine as well as

the estimated rate constants for their corresponding reactions. The

user also enters the initial concentration of the common reagent, as

this would be known, and the filenames for the files containing the

molar absorptivities of each of the components. The program then

dimensions all arrays according to the number of components and

the number of wavelengths used.

The filter then proceeds through the extended Kalman filter

algorithm for each point in time. The absorbance at each of the

wavelengths used is printed out to a file (name specified by user) for
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each cycle of the filter. The estimated values and their

corresponding standard deviations for all of the parameters in the

state vector are printed to a second file for each loop through the

filter. Finally, after all points have been processed, the program

prints out the final estimates for each of the parameters in the state

vector along with their standard deviations. The standard deviations

are taken from the covariance matrix. The diagonal of this matrix

contains the variances of the parameters of the state vector. For

example, the value of the first row and the first column in the

covariance matrix contains the variance in the first parameter in the

state vector. The square root of this value is computed to achieve

the standard deviation in that parameter. This is repeated for each

of the elements in the state vector.

Also printed to the screen at the end of the run are the

standard error of the estimate for each of the wavelengths used, and

the sum for all wavelengths used. Also, the inverse of the sum of the

standard errors is also printed to the screen. Finally, the program

outputs the time required to process all of the data from the input

file. I

This program has been utilized for systems containing

anywhere from a single component to systems containing eight

simultaneous reacting components. This latter case is described in

Chapter V.
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DECLARE SUB INV3 (M11, AINV#(), A#(), IK!(), JK!())
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PROGRAM EKFNRNBAS

VERSION 1.0

This program was written in QuickBASIC v. 4.0

This version handles any number of wavelengths.

This version takes into account the change in the pseudo—first-order

rate constant because of the decrease in R(t). (K(1)=k(1)*R(t)

This program employs the extended Kalman filter algorithm and the

Potter-Schmidt square root algorithm to determine the starting

concentrations of reactants and the rate constant in the kinetic

system defined as:

C1 + R -> Pl , rate constant k(l)

C2 + R -> P2 , rate constant k(2)

Cu + R -—> Pn , rate constant k(n)

where all components absorb. It is assumed that the system is pseudo-

first—order in C(1), C(2), ..., C(n).

Parameters required to be input by the user are:

-name of input file

-name of output file

-number of component (NUMCOMP)

-number of wavelengths (Ml)

-molar absorptivity of each component at

each wavelength(EPS(2*NUMCOMP+ l , M1))

—initial guess for the concentration of C(1), C(2),..., C(n), & R.

(X(1.1).X(2.l).---.X(n.l).X(n+1.1))

-initial guess for the rate constants (X(n+2,1),X(n+3,1),...,X(2n+l,l)

-initial guess for the error covariance matrix (P(2n+1,2n+l))

-variance in data at each wavelength (R(M1,M1))

The input file is expected to be in the form:

TIME, ABS(1), ABS(Z), ..., ABS(M)

where the number in parentheses is the number of the wavelength.

The initial set up for the program will handle data provided at two

wavelengths. To increase the number of wavelengths, a new array needs

to be defined for each additional wavelength (Zx(COUNT)) where x is

the wavelength number. Also, the INPUT #1 and INPUT #2 statements

need to be changed to read in the correct number of variables.

There will be two output files. The first will be in the form:

TIMB(N). est [C(1)](0). est [C(2)](0).--.. est [C(n)](0).

est k(l), est k(2),..., est k(n)

The second will be in the form:
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TIME(N), est Abs(wavelengthl )(N), est Abs(wavelength2)(N)

The name of each output file and the input file can be specified by

the user. The input files can contain any number of points, but must

be in the form specified above.

Written by:

Dept. of Chemistry

Michigan State University

E. Lansing, MI 48824

' Brett Quencer

' Date completed: Feb. 18, 1993

' Modified:

' Find out what we need to know from the user:

CLS

INPUT "How many components do you want to test for"; NUMCOMP

INPUT "What is the name of the input file "; AS

'INPUT "What do you want to name the output file for [] & k "; CS

CS = "CONIC.OU'I"

'INPUT "What do you want to name the output file for abs.'s "; DS

DS = "CON1 OUT“

INPUT "How many wavelengths were used "; M1

'M1 = 3

NUMSTATES = (NUMCOMP * 2) + 1

ST: CIS

' Set up the arrays

REDIM X(NUMSTATES + 1, 1) AS DOUBLE, P(NUMSTATES, NUMSTATES) AS DOUBLE

REDIM H(Ml, NUMSTATES) AS DOUBLE

REDIM EPS(NUMSTATI:S, M1) AS DOUBLE, PHALF(NUMSTATES, NUMSTATES) AS

DOUBLE

REDIM IDENT(NUMSTATES, NUMSTATES) AS DOUBLE, R(Ml, M1) AS DOUBLE

REDIM GAIN(NUMSTATES, M1) AS DOUBLE

REDIM YA(NUMSTATES), YB(NUMSTATES)

REDIM ABSV(NUMSTATES) AS STRING

DEFSNG Y

CIS

FOR I = 1 TO NUMCOMP

PRINT "Enter molar absorptivity file for C("; I; ")";

INPUT ABSV(I)

NEXT I

PRINT "Enter molar absorptivity file for R";

INPUT ABSV(NUMCOMP + 1)

FOR I = 1 TO NUMCOMP

PRINT "Enter molar absorptivity file for P("; I; ")";

INPUT ABSV(NUMCOMP + I + 1)

NEXT I

INPUT "Enter filename for wavelength variances"; VARS

FOR I = 1 TO NUMSTATFS

FILNUM = 30 + I

OPEN ABSV(I) FOR INPUT AS #FILNUM

NEXT 1
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OPEN VARS FOR INPUT AS #21

FOR I = 1 TO Ml

FORJ = 1 TO NUMSTATES

FILNUM = 30 + J

INPUT #FILNUM, EPS(J, I)

NEXT J

INPUT #21, R(I, 1)

NEXT 1

FORI=1TONUMSTATFB

FILNUM = 30 + I

CLOSE #FILNUM

NEXT I

CLOSE #21

FOR I = 1 TO NUMCOMP

X(I, l) = 0

NEXT I

20 : INPUT "What is the initial estimate of R0"; X(NUMCOMP + l, 1)

FOR I = I TO NUMCOMP

PRINT "What is the initial estimate of k("; I; ")";

INPUT X(NUMCOMP + I + l, 1)

NEXT I

PINIT = 50

FOR] = 1 TO NUMSTATB

PRINT X(J, 1)

NEXT J

PRINT PINIT

PRINT "Are the above values correct? (Y/N)"

INPUT W5

IF W$ = "N" OR WS = "n" THEN 20

R0 = X(NUMCOMP + l, 1) 'Set R0 to be initial conc of reagent

CLS 'for use in later calculations

FORI=1TONUMSTATFB

PRINT X(I, 1)

NEXT I

PRINT: PRINT

LOCATE 12, 25, 0

PRINT "CALCULATING, PLEASE WAIT . . ."

' Set up covariance array. Also, define the identity matrix.

FOR I = I TO NUMSTATES

FOR] = 1 TO NUMSTATES

IF I = J THEN P(I, J) = PINIT ELSE P(I, J) = 0!

IF I = J THEN IDENT(I, J) = I! ELSE IDENT(I, J) = 0!

NEXT J

NEXT I

' Calculate the upper triangular square root matrix of the covariance

' matrix. This will be used for propagation of the covariance

' throughout the filtering. This is the main change for the Potter-

' Schmidt square root algorithm. The formulas for calculating the

' upper triangular square root matrix are found in the book:

' V.N. Faddeeva, "Computational Methods of Linear Algebra", Dover

' Publications, NY, 1959, pp. 81-4.

FORI= ITO NUMSTATES

PHALFU. 1) = SQR(P(I. 1))

NEXT I
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' Find out number of data points

REDIM DIFF(M1) AS DOUBLE, TSUM(M1) AS DOUBLE, RAVE(M1) AS DOUBLE

P = M1 + 1

REDIM DUM(P)

COUNT = 0

OPEN AS FOR INPUT AS #1

WHILE NOT EOF( 1)

FOR I = 1 TO P

INPUT #1, DUM(I)

NEXT I

COUNT = COUNT + 1

WEND

CLOSE #1

' Determine constant sums that will be used in calculating the linearized

' measurement function vector.

REDIM TEMPSUM(Z * NUMCOMP, M1) AS DOUBLE

FOR I = 1 TO M1

FOR] = 1 TO NUMCOMP

TEMPSUM(J, I) = EPS(J, I) + EPS(NUMCOMP + 1, I) - EPS(NUMCOMP + J + l, I)

TEMPSUM(NUMCOMP + J, I) = EPS(NUMCOMP + J + l, I) - EPS(NUMCOMP + 1, 1)

NEXT J

DIFF(I) = 01

NEXT I

' Set up all the arrays

REDIM TIM(COUNT) AS DOUBLE, Z(Ml, COUNT) AS DOUBLE, RESID(M1, COUNT)

DEFDBL T

' Open the data file and start filtering

OPEN AS FOR INPUT AS #2

OPEN CS FOR OUTPUT AS #5

OPEN DS FOR OUTPUT AS #4

PRINT #5, " Time ";

FOR I = 1 TO NUMCOMP

PRINT #5, ” est C("; I; ") "; " Std Dev";

NEXT I

PRINT #5, " est Ro "; " Std Dev ";

FOR I = I TO NUMCOMP

PRINT #5, " EST k"; I; " Std Dev ";

NEXT I

PRINT #5,

IT] = TIMER

FOR F = 1 TO COUNT

INPUT #2, TIM(F)

FOR I = 1 TO Ml

INPUT #2, Z(I, F)

NEXT I

m**********************************************************

“*‘k**

' Calculate the linearized measurement function vector (H(M1,NUMSTATES))

' But first calculate R(t) (X(NUMSTATFS+1,1))

REDIM TMP(NUMCOMP) AS DOUBLE, T(NUMSTATES) AS DOUBLE

X(NUMSTATFS + 1, 1) = R0

FOR I = 1 TO NUMCOMP

K = NUMCOMP + I + l



183

L = NUMSTATES + 1

TMPU) = (X(I, 1) -X(I. 1) * EXP(-X(K. 1)* X(L, 1) * TIM(F)))

X(L. 1) = X0. 1) - TMP(I)

NEXT I

FOR I = 1 TO Ml

FOR] = 1 TO NUMCOMP

T0) = (TEMPSUM(J, I) * (EXP(-X(NUMSTATFS + l, l) * X(l + NUMCOMP + J, l) *

TIM(F))))

110, J) = T(J) + TEMPSUM(NUMCOMP + J, I)

T(NUMCOMP + J + 1) = (-X(NUMSTATFS + 1, 1) * TIM(F)) * (TEMPSUM(J, 1))

H0, NUMCOMP + J + 1) = T(NUMCOMP + J + l) * X(J, 1) * (EXP(-X(NUMSTATES +

l, l) * X(J + NUMCOMP +1,1)* TIM(F)))

NEXT J

H(l, NUMCOMP + l) = EPS(NUMCOMP + l, 1)

NEXT 1

From the algorithm, the state

estimate extrapolation is equal to the last update. Also, the

error covariance extrapolation is equal to the last update plus

the system covariance matrix. But, since this is a static system,

the system covariance matrix is equal to 0, so the error covar.

extrapolation is just equal to the last update. Therefore, there

are no updates performed here.

*****m**m************************************************

*‘k****

' Now calculate the Kalman gain

' Now zero the temporary arrays

REDIM TRANSP(NUMSTATB, M1) AS DOUBLE, TEMP1(NUMSTATES, M1) AS

DOUBLE

REDIM TEMP2(M1, Ml) AS DOUBLE

REDIM TEMP3(M1, M1) AS DOUBLE, TEMP4(NUMSTATES, M1) AS DOUBLE

REDIM IK(M1), ]K(Ml)

FOR I = 1 TO Ml

FORJ = 1 TO Ml

TEMP2(I, J) = 0!

NEXT J

NEXT I

' Now find the transpose of the linearized measurement function vector

' H(M1,NUMSTATB), and zero TEMP1(), & GAIN()

FOR I = 1 TO NUMSTATB

FORJ = 1 TO Ml

TRANSP(I. l) = HO. 1)

TEMP1(I, J) = 0#

GAIN(I, J) = 0#

NEXT]

NEXT I

' Multiply PHALF() by TRANSPO, and store in TEMP1().

FOR I = 1 TO NUMSTATES

FOR] = 1 TO Ml

FOR K = I TO NUMSTATES

TEMP1(I, J) = TEMP1(I, J) + (PHALF(I, K) * TRANSP(K, J))

NEXT K

NEXT]
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NEXT I

' Next, multiply the linearized measurement function vector H() by

' TEMP1(), and store in TEMP2().

FOR I = 1 TO Ml

FORJ = 1 TO M1

FOR K = 1 TO NUMSTATES

TEMP2(I, J) = TEMP2(I, J) + (H(I, K) * TEMP1(K, J))

NEXT K

NEXT J

NEXT I

' Now add R() to TEMP2() and put the result back into TEMP2()

FOR I = 1 TO Ml

FORJ = 1 TO M1

TEMP2(I, J) = TEMP2(I, J) + R(I, J)

NEXT J

NEXT I

' Now invert TEMP2() and put into TEMP3().

CALL INV3(M1, TEMP3(), TEMP2(), IK(), JK())

' Now multiply TEMP1() by TEMP3(), and this is GAIN().

FOR I = 1 TO NUMSTATES

FORJ = I TO M1

FOR K = 1 TO Ml

GAIN(I, J) = GAIN(I, J) + (TEMP1(I, K) * TEMP3(K, J))

NEXT K

NEXT]

NEXT 1

*************************************************************

******

' Now update the state estimate.

' Zero temporary arrays.

REDIM TEMP21(M1, 1)AS DOUBLE, TEMP22(M1, 1) AS DOUBLE

REDIM TEMP23(NUMSTATES, 1) AS DOUBLE, TMl(NUMSTATFB, M1) AS DOUBLE

FOR I = 1 TO M1

TEMP21(I, 1) = 0!

TEMP22(I, l) = 01

NEXT I

FOR I = 1 TO NUMSTATES

TEMP23(I, l) = 0!

NEXT 1

' Determine the estimated absorbance at each wavelength.

FOR I = 1 TO Ml

FORJ = 1 TO NUMCOMP

K = l + NUMCOMP + J

L = NUMSTATES + 1

TMl(J, 1) - TEMPSUM(J. 1) * X(J. 1) * (EXP(-X(L, 1) * X(K. 1) * TIM(F)))

TMl(K - l, I) = TEMPSUM(K - l, I) * X(J,1)

NEXT J .

TMl(NUMSTATFB, I) = EPS(NUMCOMP + l, I) * X(NUMCOMP + 1, 1)

FOR J = 1 TO NUMSTATES

TEMP21(I, l) = TEMP21(I, 1) + TMl(J, I)

NEXT J

NEXT I

' Subtract TEMP21() from Z(), and store in TEMP22().
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FOR I = 1 TO M1

TEMP22(I, l) = Z(I, F) - TEMP21(I, 1)

RFSID(I, F) = TEMP22(I, 1)

TSUM(I) = TSUMU) + TEMP22(I, 1)

NEXT I

' Multiply the Kalman gain GAIN() by TEMP22() and store in TEMP23().

FOR I = ITO NUMSTATES

FOR K = 1 TO Ml

TEMP23(I, l) = TEMP23(I, l) + (GAIN(I, K) * TEMP22(K, 1))

NEXT K

NEXTI

' Add TEMP23() to the previous state estimate to get the state estimate

' update X().

FOR I = 1 TO NUMSTATFB

X(I, l) = X(I, 1)+ TEMP23(I, 1)

NEXTI

'*************************************************************

*******

' Now update the covariance matrix

' First, set up and clear temporary arrays.

REDIM TEMP01(NUMSTATES, NUMSTATES) AS DOUBLE, TEMP02(NUMSTATES,

NUMSTATES) AS DOUBLE

REDIM TEMP03(NUMSTATES, NUMSTATES) AS DOUBLE, TEMP04(NUMSTATES,

NUMSTATIS) AS DOUBLE

REDIM TEMP05(NUMSTATES, NUMSTATES) AS DOUBLE, TEMP10(NUMSTATES, Ml)

AS DOUBLE

REDIM TEMP11(M1, NUMSTATES) AS DOUBLE, TEMP12(NUMSTATES, NUMSTATES)

AS DOUBLE

FOR I = 1 TO NUMSTATES

FORJ: ITO NUMSTATES

TEMP01(I, J) = 0!

TEMP04(I, J) = 0!

TEMP05(I, J) = 0!

NEXT J

FOR K = 1 TO Ml

TEMP10(I, K) = 01

TEMPl l(K, I) = 01

NEXT K

NEXT I

' Multiply the gain by the linearized measurement function. Store in

' TEMP01().

FOR I = 1 TO NUMSTATES

FORJ = 1 TO NUMSTATES

FOR K = I TO Ml

TEMP01(I. J) = TEMP01(I. l) + (GAIN(I, K) * H(K, J))

NEXT K

NEXT J

NEXT I

' Subtract this from the identity matrix, and store in TEMP02().

' Also, transpose TEMP02() and store in TEMP03().

FOR I = 1 TO NUMSTATES

FORJ = 1 TO NUMSTATES

TEMP02(I, J) = IDENT(I, J) - TEMP01(I, J)

TEMP03(J, I) = TEMP02(I, J)
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NEXT J

NEXT I

' Multiply TEMP02() by the previous covariance matrix and store in

' TEMP04()

FOR I = 1 TO NUMSTATES

FORJ = I TO NUMSTATES

FOR K = 1 TO NUMSTATES

TEMP04(I, J) = TEMP04(I, J) + (TEMP02(I, K) * PHALF(K, J))

NEXT K

NEXT J

NEXT I

' Multiply TEMP04() by TEMP03(), and put the result into TEMP05().

FORI= ITO NUMSTATB

FORJ = 1 TO NUMSTATES

FOR K = 1 TO NUMSTATES

TEMP05(I, J) = TEMP05(I, J) + (TEMP04(I, K) * TEMP03(K, J))

NEXT K

NEXT J

NEXT I

' Multiply the Kalman gain GAIN() by the measurement variance R(),

' and store in TEMP10(). Transpose the gain, and store in TEMP11().

FORI=1TONUMSTATES

FORJ = 1 TO Ml

FOR K = l T0 M1

TEMP10(I, J) = TEMP10(I, J) + (GAIN(I, K) * R(K, J))

NEXT K

TEMP11(J, I) = GAIN(I, J)

NEXT J

NEXT I

' Multiply TEMPIOO by TEMP11() and store in TEMP12()

FOR I = 1 TO NUMSTATES

FORJ = 1 TO NUMSTATES

FOR K = 1 TO Ml

TEMP12(I, J) = TEMP12(I, J) + (TEMP10(I, K) * TEMP11(K, J))

NEXT K

NEXT J

NEXT I

' Add TEMP05() and TEMPIZO together to get the new covariance update.

FOR I = 1 TO NUMSTATES

FORJ = 1 TO NUMSTATES

PHALF(I, J) = TEMP05(I, J) + TEMP12(I, J)

NEXT J

NEXT I

Imm*******************************************************

m****

' Now print out the results.

PRINT #5, USING "##.### "; TIM(F);

PRINT #4, USING "##.### "; TIM(F);

FOR I = 1 TO NUMSTATES

YA(I) = X(I, l)

YB(1) = SQR(PHALF(I. 1))

NEXT 1

FOR I = I TO NUMSTATES

PRINT #5, USING "#.####NVV\ "; YA(I);
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PRINT #5, USING "##.###AAAA "; YB(I);

NEXT I

PRINT #5,

' TEMP21( ) gives the predicted absorbance at each wavlength.

FOR I = 1 TO Ml

PRINT #4, USING "##.###### "; TEMP21(I, 1),

NEXT 1

PRINT #4,

NEXT F

F = F - 1 ' Because F=101, we need to subtract 1.

1001 : 1T2 = TIMER

CLOSE #2

CLOSE #5

CLOSE #4

' Determine standard deviations of residuals.

REDIM SD(M1) AS DOUBLE

FOR I = 1 TO Ml

RAVE(I) = TSUM(1) / COUNT

s0(1)= 01

NEXTI

FOR1= 1 TO COUNT

FORJ = ITO M1

80(1) = SDU) + ((RESIDU. I) - RAVE(J)) A 2)

NEXT]

NEXTI

FORI: 1 TO M1

SD“) = SQR(SD(I) / (F- 1))

SSD = SSD + SD(I)

PRINT "STD. ERROR OF THE ESTIMATE FOR WAVELENGTH "; I; " = "; SD(I)

NEXT 1

PRINT

' Print final estimates.

PRINT "NUMBER OF POINTS: "; F

FOR I = 1 TO NUMCOMP

PRINT "C("; I; ")o=";X(1, l); " +/— "; SQR(PHALF(I, 1))

NEXT I

PRINT "Ro="; X(NUMCOMP + 1, 1); " +/- "; SQR(PHALF(NUMCOMP + 1, NUMCOMP +

1))

FOR I = 1 TO NUMCOMP

J=NUMCOMP+I+1

PRINT "k("; I; ")=": X(J. 1): " +/- "; SQR(PHALF(J. 1))

NEXT 1

PRINT

PRINT "SUM OF STD. ERRORS = "; SSD

PRINT "INVERSE = "; 1 / SSD

PRINT

PRINT "TIME ELAPSED= ”; TTZ - 'ITl

END

DEFDBL A, D, S

SUB INV3 (M. AINV#(). A#(). IK(), JK())
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' Based on the subroutine MATINV (originally written in FORTRAN), found

' on pp 302-3 of "Data Reduction and Error Analysis for the Physical

' Sciences", by Philip R. Bevington, McGraw-Hill, 1969

' DET=determinant

' A#()=array to be inverted

' AINV#()=inverted array

' M=order of array

' N=number of parameters

' Set AINV#() to be equal to A()

FOR I = 1 TO M

FORJ = 1 TO M

AINV#(I. l) = M0. 1)

NEXT J

NEXT 1

10 : DET = 1#

ll:FORK= l TOM

' Find largest element in rest of AINV#(I,J)

AMAX# = 0#

21 : FOR 1= K TO M

FORJ = K TO M

23 : IF (ABS(AINV#(I, J)) >= ABS(AMAX#)) THEN 24 ELSE 30

24: AMAX# = AINV#(I, J)

IK(K) = I

JK(K) = l

30: NEXT]

NEXT 1

' Interchange rows and columns to put AMAX# in AINV#(K,K).

31 : IF (AMAX#) <> OTHEN 41 ELSE 32

32 : DET = 0#

41 : I = IK(K)

42:1F(1-K) <0THEN 21

IF(1-K)=0THEN51

1F(I-K)>0THEN 43

43:FORJ= l TOM

SAV = AINV#(K, J)

AINV#(K. J) = AINV#(I. l)

50: AINV#(I, J) = -SAV

NEXT J

51 : J = JK(K)

IF (J- K) <0THEN 21

IF(J—K)=0THEN61

IF(J-K)>0THEN S3

S3 : FOR I = 1 TO M

SAV = AINV#(I, K)

AINV#(I, K) = AINV#(I, J)

60: AINV#(I, J) = -SAV

NEXT 1

' Accumulate elements of inverse matrix

61: FORI: 1 TOM

1F(I- K) <> OTHEN 63 ELSE70

63 : AINV#(I, K) = -AINV#(I, K) / AMAX#

70: NEXT 1

71: FORI=1TOM



HITS(INEI

T.LXEIN

ILXEIN30931

AVS=(I‘I)#ANIV3021

(I‘I)#ANIV-=(I‘)1)#ANIV

(I‘)1)#ANIV=AVS

WOLI=IIIO:I3£II

£11EISIEI0E1NEIHLO=>()1-1):11

()I))II=13III

ILXEIN

AVS=(I‘1)#ANIV3011

(I‘1)#ANIV‘=()I‘I)#ANIV

()1‘I)#ANIV=AVS

W01.1=ItIO:I3901

$01EISIEIIIINEIHLO=>()1'I):11

()I))II=1

I+'1-N=)1

W01.1=THO:I3101

xureurJOBupaproarorsag,

)1.LXEIN

#XVWV4.130=.1303001

#XVWV/#I=()I‘)I)#ANIV316

ILXEIN306

#XVWV/(I‘)I)#ANIV=(I')I)#ANIV3£8

06EISIEI£8NEIHLO<>()1-I):11

W0.1.I=[110:1318

ILXEIN

ILXEIN308

(I‘)I)#/\NIV4()I‘I)#ANIV+(I‘I)#/\NIV=(I‘I)#ANIV3SL

0831SIEISLNEIHLO<>()I-I):II3171.

08HSIEII7LNEIHLO<>()I-I):II

W0.1.I=ItIO:1

681



MICHIGAN S

tii111111111111

 


