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ABSTRACT

WEAK CONVERGENCE OF WEIGHTED EMPIRICAL PROCESSES
UNDER LONG RANGE DEPENDENCE WITH APPLICATIONS TO
ROBUST ESTIMATION IN LINEAR MODELS

By

Kanchan Mukherjee

A discrete time stationary stochastic process is said to be long range
dependent if its covariances decrease to zero like a power of lag as the lag tends to
infinity but their absolute sum diverges. In this dissertation, a uniform closeness

result of weighted residual empirical process to its natural estimator is derived
under the LRD setup. These are then used to prove the asymptotic uniform
linearity of a class of linear rank statistics and the asymptotic uniform quadraticity
of a class of L2- distance statistics. These results, in turn, are applied to
investigate the asymptotic behavior of the above estimators in a linear regression
model when the errors are function of LRD Gaussian random variables.

Some intriguing phenomena are observed in connection with the inherent
nature of the limiting distributions of the above estimators. Unlike the weakly
dependent case the limiting distributions may not be normal always. Moreover,
when the errors are LRD Gaussian and the design matrix is centered, the
asymptotic covariances of the class of rank and minimum distance estimators
become those of the least square estimator- a phenomenon which is in complete
contrast with the ii.d. error case. Similar statement applies to LAD and a large
class of M- estimators. These results are proved under some conditions on the
design matrix that are very similar to those under the i.i.d. setup

the asymptotic behavior of regression

The dissertation also conside
quantiles and regression rank scores which are natural generalization of the notion
of order statistics and regression rank scores processes from the one sample model

to the linear model. Under the LRD error setup the aforementioned uniform
ations of i

closeness result is used to obtain the asymptotic repr
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CHAPTER 0
INTRODUCTION

A discrete time stationary hastic process is called a long range

dependent (LRD) or a long memory process if its correlations decay to zero like a
power of lag as the lag tends to infinity but their absolute sum diverges. Quite
often, econometric and time series data appears to be stationary and exhibit
strong correlation between observations separated by large lag which does not
decay to zero at a fast enough rate to be absolutely summable. Similar phenomena
have been observed in hydrology in connection with the construction of the Aswan
dam over the river Nile, Egypt, when hydrologist Hurst noticed that the annual
volume of river-flow shows long term behavior over time (Mandelbrot and Van
Ness, 1966). Mandelbrot and Van Ness proposed fractional gaussian noise to
model observations with such strong correlation. Later, Granger and Joyeux
(1980) and Hosking (1981) independently came up with fractional ARIMA model
to include more processes with non-gaussian marginal distributions. The salient
features of these processes are that their spectral density diverges at zero and their
correlations are mnot absolutely summable and that creates considerable

mathematical difficulties for its analysis.

The usefulness of LRD processes in modeling a wide variety of physical
phenomena heralded an upsurge of interest among many researchers who explored
different probabilistic aspects of LRD processes in the last two decades.
Investigation of the behavior of different statistics and estimators based on LRD
observations are also carried out by some authors. Taqqu (1975) obtained the
weak convergence results of partial sum processes based on random variables

(r.v.’s) that are a measurable function of LRD Gaussian r.v.’s.Taqqu characterized
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the limiting distribution of the partial sum process for r.v.’s having Hermite rank

(see Remark 1.2.1) one and two. Later, Dobrushin and Major (1979) and Taqqu

(1979) independently characterized the limiting process (called Hermite process)

for r.v.’s having arbitrary Hermite ranks through a multiple Weiner-Ito integral
representation. It was observed that the limiting process is non-gaussian if its

Hermite rank is more than unity.

Along with these technical results, parallel research has proliferated on the
estimation of some parameters describing the correlation structure. Fox and

Taqqu (1986) and Yajima (1985) proposed i likelihood estimation of the

index of the LRD @ (see (1.1.2)) based on LRD Gaussian sequence and Yajima

(1985) considered the least square estimation (l.s.e.) of # based on LRD r.v.’s.

In linear regression model with LRD errors, Yajima (1988, 1991) obtained
the strong consistency and the asymptotic distribution of the ls.e. of the
regression parameters under some conditions on the cumulants of the marginal
error distribution function. Koul (1992a) derived the asymptotic uniform linearity
(AUL) of M-statistic and limiting representation of normalized M-estimators in a
regression model when the errors are a function of LRD Gaussian r.v. and the

score function is absolutely continuous.

Motivated by the seminal work of Koul (1992a), in this dissertation we
derive the asymptotic representation of some more robust estimators of the
regression parameters in a linear regression model when the errors are a function
of LRD Gaussian r.v.’s. In particular, we consider the behavior of a class of rank

estimator (R-estimator) proposed by Jureckova (1969) and Jaeckel (1972), and

dist timators (m.d.e.) proposed by Koul and Dewet (1983) and

g
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Koul (1985b). Finally, we also id i iles (RQ) proposed by

8T 1!

Koenker and Basset (1978) of which the special case is the least absolute deviation

estimator (LAD).

The investigation of the behavior of robust

observations started with the work of Gastwirth and Rubin (1975). Gastwirth and

1 O d. Fedh

based on

E = 1

Rubin studied the behavior of R-, M- and L-estimators in a location model under

A-mixing errors. Koul (1977) generalized their results to linear regression model

with strongly mixing errors which contains A-mixing class. In all of the above

weakly dependent cases the correlations are absolutely summable and thus the ¥

effect of dependency becomes relegated, at least asymptotically. Consequently, the

limiting distributions of the suitably normalized estimators is Gaussian as in the

case of independent identically distributed (i.i.d.) errors. But, in the case of the

LRD errors, the limiting distributions of these estimators are quite different from

their weakly dependent counterparts in two fundamental ways. First of all, the

normalizing factors are different and secondly the limiting distribution is not

always normal. For more on these see Remark 2.2.1.

The crux of proving AUL theorems in linear models is unified in the work

of Koul (1991, 1992) in the form of a uniform closeness theorem for a weighted

residual empirical process to its natural estimate. Hence the fundamental tool for

proving most of the results in this dissertation is the uniform closeness result of

weighted residual empirical process to its natural estimate in a linear regression

setting when the errors are a function of LRD Gaussian r.v.

The technical difficulties for proving the uniform closeness result in this

setup is surmounted by using a modification of an i

. ot b
o Jar.)
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which converges to zero ¥6 > 0. Here m, J,, 7, and H,, are defined in Section
1.2. In Theorem 1.2.1 of this dissertation, we invoke a similar chain to prove that

(2. x.!ﬁb o!ﬁl

Pl sup |72 3 7 I(g <% + €) - F(x + &) - Tm(x + &) (m) Y Hin(n;) > 8]
xel i=1

converges to zero. Then, this result is used to derive the uniform closeness result.
In other words, we obtain a partial generalization of the uniform weak reduction
principle of Dehling and Taqqu from the ordinary empirical process to a very
general weighted empirical processes with nonzero ¢, 1<i<n. This partial
generalization allows us to prove the uniform closeness result, which along with
some other results in Chapter 1, is used to obtain the asymptotic representations

of the rank estimat ini distance estimators and . tiles: &3

& 1!

a byproduct of Theorem 1.2.1, we also obtain the weak convergence results of
weighted empiricals. In our case the novelty in proving Theorem 1.2.1 lies in
choosing the chain suitable for weighted empirical process which, of course,
reduces to the Dehling and Taqqu chain when the weighted empirical reduces to
the ordinary empirical.

Notation. In this dissertation, I(A) d the indicator function of an
event A. The index i in the summation varies from 1 to n unless specified
otherwise. For a vector ue RP, u' (jui) denotes its transpose (Euclidian norm).
If D is an nxp matrix, thend:‘i,lsisn,dmotesitsithmlnd‘{,! 3 ;
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where G is & measurable function e RY to B and let X denote the K% p

) matrnix of known constants whose i1h row is A("‘ 1< i gn. Consider a liness model
where one observes the response variable (Y 1, 1 €1 <u, satisfying, 5

(L1) . g ' e R K

for
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where one observes the response variable {Y,;}, 1 <i<n, satisfying,

(1.1) Y= x4+ ¢ 1<i<n, forsomef e€RP.

The long range dependence of the r.v.’s {1} is implied by assuming that

for some 0<f<1,
(12) o) = K9 L(k), k21,

where L(k) is a slowly varying function at infinity, i.e., L(tx)/L(t)— 1 as t—oo for
every x > 0. We assume that L(k) is positive for large k . From Lemma VIIL8 of
Feller (1968, vol 2), it follows that fp(k) = co. Examples of such functions L are
1 1

positive constants or L(k) := log k.

In this dissertation, we derive the asymptotic representation of some

familiar estimators of the regression parameter f that are known to be robust in

the linear models with independent errors. In particular, we conlid& a fnmlyof

li-es‘tim;tm, m.d.e., and regression quantiles. In this chapter, we describe the
i LV k2l ad
buu: proba.bxlutxc results and their proofs that are needed throughout the




Cramer (1946). The basic idea is to derive an asymptotic Taylor type czpansion
a suitable score function and to ensure the existence of stochastically bounded
solutions. Therefore using the same technique with suitable modifications one can
obtain the asymptotic rep tion of R-estimators and M-esti defined as

models, different authors
have used different techniques to derive a Taylor type ezpansion, see, e.g., Koul
(1969) and Jureckova (1971) for R-estimators, among others. Koul (1991)

a solution of a system of i In linear

envisaged a unified approach to these probl as a q of uniform

P AR
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closeness of some weighted to its natural estimate,

centered at its expectation. Using uniform closeness and the smoothness of the
error distribution function one can obtain an one step Taylor Type Ezpansions of
the nonsmooth empirical processes and asymptotic uniform linearity is a

consequence of that.

1.2. Uniform Closeness of Weighted Empiricals.

Let € (n) have the same distribution as that of the marginal distribution of
{e, i>1} ({n;, i21}). Let F be the distribution function of € and I := {x:
0<F(x)<1}; {Hq:q>1) denote the Hermite polynomials (see Remark 2.1 for

definition). It has the following properties:
e sxh
(1) BHyn) =0,a21, EHy(pHy(n) = i - k) Va2 0, ¥, k31, and

as{) 1 : = ralix
’ il (VM) = 0 Vot Wi, o 1 A
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{%Yéfﬁ}." v= Glny) and (1.2) is satisfied. Also 7y, is defived s sbove.

Pﬁﬁ:ﬁ.. L1, Su ¢ 1) satisfy the following
. 34(x) = BXGl) < x)nq(vn, 3 1= BI(G(n) < OlHg(n) x €L, a3 1,
and let m be the Hermite rank of the class of functions {I(G(n) <x), xel}
introduced by Dehling and Taqqu (1989), i.e.,

(2.2) m := minimum{m(x): x € I}
where
m(x) := minimum{q > 1; Jo(x) #0}.

In view of (2.2) we have,

(2:3) Gm)sx)-Fx)= T Jo(x)/a'Hy(m), vV x € I, vix1,
qzm

where the above equality is in the L%-sense.

For L and 8 in (1.2) define 7, := ot mG)/sz/z(n) n>1. Throughout
tlludl.ernhon, we assume that 0 <6 <1/m.

Let {7, &, 1 <i<n} be arrays of real numbers and define, for xeI,

Va(x) = 73 Tyyl(g <x + &), Vi(x):= f;‘}l:‘v..il(qsx),

S m@) = f'-');‘r.il’(x + &) m(x) =7y )‘:1
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andU.Hue &= G('ﬁ) lnd (1 2)nut1lﬁed Allor.ndoﬁnodunbove.
proof the al chariing argumeat similar to

L Suppoae that the weights {y,;; 1 <i<n} uﬁs]y the fo‘&o@i&
co‘%‘uﬁtmm -

(A. 1) nlms.knyﬁfou). (A2) }157'2“= 1, Va>1.
Then,
(24) s 19309] = 03(1)

Moreover, assume that (A.3), (A.4), (A.5) and (A.G) hold, where

(A3) max €] =o(1), (A4) 7}.’§I7,.;€,.i| =0(1),

1<i<n

(A.5) The d.f. F of € has uniformly continuous density f on I, £>0 a.e. (Lebesgue) on I,

(A.6) The functions Jy, and J}, are conti ly differentiable with respecti
derivatives J};, and J3. Moreover, Jj(x) and J}/(x) converge to zero as x

converges to ¢ :=infland d :=supL




for ewrybe (€S i A
Mﬂ ‘sﬁ!‘s M‘lr:‘v;udl(q SX4 &) - U sx)) - 7 Bt )=

@7 aprlyy (g <x+¢,)-I(e <x)}-ro! Gif ()] =G5 (0w
FinalX€hy & hz_vplx.'sgh:(rl of -4'-");.,4(?2'0),) )-.-"or nT.?‘."i.Z'mm

Teok Pe-pider of the above theorem ‘uses a chaining argument similar to
ﬁ&hliﬁgind anqu (1598'9) and appears in the next section, An iﬂﬂogd'(@"j
when the errors are i.i.d. appears in Koul (1969, 1970) and was further generalized

to include the case of strongly-mixing errors by Koul (1977, Proposition A1) 38

Using the technique similar to the proof of Theorem 2.1 one can obtain
pointwise and uniform convergence over compact versions of the above theorem.

This is stated below in a form that is useful in Chapter 4.

Theorem 2.2. Suppose §:=G(n;),i>1 and (1.2) is satisfied.

If (A.1), (A.2) and (A.3) hold, and F is continuous at x €1, then
(2:8) [Un(x) - Up(x)| = 0p(1). g

If, in addition, F has a conti density f at x € I and (A.4) holds, then §

(2.9) I8! Syl <x + €,) - [ <x)} - T;.‘Fi."r..,-i..if(!ﬂ)l= op(1).

{ . :i.l‘ xix}
In addition to (A.1) - (A.4), suppose that the following hold: 2 kni'ﬂ) i
Hy/ (k) 5} i

© (AT) {is continuous and positive on I onzere w

in the Pouricr expassia
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(Ad)nitdins Jit are continuously differentiable.

Then for every b ¢ (0, ),

@) g <o T Tl I <x 4 ) - T <)) - T S it ()= op(1).

Finally, as a byproduct of (2.4) and (2.6), we obtain a weak convergence
result of weighted residual empirical processes based on LRD observations. Note
that from (A.1) and (T1.2) of Section (1.3), the sequence of r.v.’s L7 27m m(7;)
} is bounded, uniformly in L2 norm and hence has a subsequence converging to a
L.V. Zp(7), say. The determination of Zm(7) for general weights {Tni 1<i<n}
with m > 1 is still an open problem. In the following corollary, the weak
convergence is understood in D[-00, o0] equipped with the o-field generated by the
open balls of the sup metric.

Corollary 2.1. Under (A.1)-(A.6) the process {2} E‘ym[l §<. + &4)-
F(. + &)1} is tight and converges weakly to the process {(m!) GLISE ()Zm(7)}

along a subsequence. //

Some remarks about the Hermite ranks and the assumptions of the above

theorem are now in order.

Remark 2.1. Let 7 be a standard Gaussian r.v. and Q: R'SR! pe a
measurable function such that EQ(5) < . Recall froln Sansone (1959) that the
Hermite polynomials {H,, k> 0}, defined by o o(x) = (¥ H(x)d(x) (
alternatively, e‘“z'mx)/-" = Et“Hk(x /k!') have the property that {Hk/(k')l/z) is
an orthonormal basis for LAR!, B!, d®). The index of the first nonzero coefficient

in the Fourier expansion of the r.v. Q(7) with respect to this orthonormal basis is
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called its Hermite rank (see Taqqu, 1975). Clearly, if Q is an odd (even) function

then its Hermite rank is 1 (2). Also integration by parts shows that if Qis
monotone and right continuous such that the function Q¢ vanishes at -0 and oo

then the Hermite rank of Qis 1. //

Remark 2.2. Here we consider some examples of the Hermite ranks of a
class of functions, see (2.2). If Q is strictly monotone and continuous, then the
Hermite rank m in (2:2) is equal to 1. To see this, consider the case when Qis
strictly increasing. Then using the fact that ¢(x) Hi(x) dx = - d{¢(x) H  (x)}, we
obtain  that for yel, r>1, El(e< yHi(n) = El(n< Q"(y))H,(q)
= q}(Q"(y))HH(Q"(y)), which is nonzero for r = 1. The same is true when Q is

strictly decreasing.

Now let Q be an odd function with the additional property that
{xeRL: Q(x) <0} equals either [0, %) or (-o0, 0]. Then also m s equal to one. To
see this, consider the case {xeR: Q(x) <0} = (-0, 0]. Note that this implies that
Q(x) 20 for x > 0. Then for y <0, y e, EI(Q() <y)n = EIQ(n) <y)y I(n <0) < 0,
since the range of Q is L. Similarly, for y >0, y eI,

EI(Q(n) <y)n = EI(Q(n) < 0)nl(n < 0) + EI(0 < Q(1) < y)n 1(z>0)

<-6(0) + 4(0) = 0.
The proof is similar in the case {xeRL: Q(x) < 0} = [0, ).

An example of Q for which m = 2 in (22) and conditions (A.5) and (A.6)
are satisfied is given by Q(x) = lel/‘s, 6>1. Dehling and Taqqu (1989) showed
that for any m>1, there is a Q for which the Hermite rank of the class of

functions {I(Q(n) <x), x €I} is m. //
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Remark 2.3. Note that Jm and JF are functions of bounded variation and

hence are differentiable almost everywhere. Also, under (A.6), a:ué l]J;n(x)l and
. ()] are fiite. 7

If G is strictly monotone and continuous with d.f. F, then from Remark
2.2, m=1. The following proposition states that in this case (A.6) is satisfied if the

Fisher information I(f) of the density f is finite.

Proposition 2.1. Assume that G is strictly monotone, continuous and (A5)
holds. If, moreover G(n) has an absolutely  continuous density f and
I(6) = J[f//]2dF <co, then (A.6) holds, //

Proof. Consider only the case when G is strictly increasing and continuous.
Note that this entails G = F'4. Hence from Remark 2.2, Jj(x) =
#(G(x))/C" (G (x)) = (x)&F(x). Note that for any a€(0, 1) there is a
K, € (0, 00) such that ]‘I"l(u)] <Ka[u(l-u)[® 0<u<l. Fixab € I'such that F(b)
> 0. Then for x > b,

If(x) @ (F(x))| <K, f(x) [F(x) (1-F(x)]*
<K [FOO)I* {-£(6) de/[1-F (o)
<Ka [FO)F* JH/801/1F ) %aF ()
<K PO (J1-£(0/0 4P} 2 (f-po2e ap 2,

Upon choosing 2a < 1 in this inequality, it follows that |f(x)‘Ifl(F(x))] —0asx—

d. Similarly one can prove that |f(x)(I)"(F(x))] —0asx —c. //
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1.3. Proofs.

In order to prove Theorem 2.1, we need some preliminary facts about
Hermite expansions and ranks which are summarized below. These can be found
in Taqqu (1975, 1979) and Dehling and Taqqu (1989). In what follows, L, with or
without suffix, is a generic notation for slowly varying functions and c is a generic

constant.

Let {n;, i>1} and p be as in Section 1.1 and p > 0 be a fixed integer. Then
the following facts hold:
@Y TTIPE-1)| = 0@ L))  ifpa<,
= 0( nLy(n)) ifph =1,
= O(n) if pf > 1.
(I1.2) For any measurable function L € L¥R!, B!, d®) with Hermite rank p < 1/6,
Variance( £ h(n) ) = O(E TIpP(i-r)]) = O@>P? [L(a)pP)
(IL.3) (i) Reciprocal and product of slowly varying functions are slowly varying.
(i) For any slowly varying function V, V(n)n® — oo (0) for all §>0 (<0).
Now, we shall give the proof of (2.5). That of (2.4) is similar and simpler.
To begin with we obtain an upper bound for the expected value of the square
increment of the Sy process. Throughout the rest of this chapter, for a function h :
RI-R!, h(x, y) stands for h(y) - h(x), x <y.
Lemma 3.1. Suppose & :=G(1;), 121, and (1.2) is satisfied. Then
(1)  7%E[ Sy(x, y)J?
£ 5 Zf‘inﬂuj' [F(x‘f..iv y+6,:) F(x+f"j,y+£"j)]l/2 lp(i-j)|m+1,
N
Proof. The Hermite ezpansion of {I( < x+€,) - F(x+£ni)} and (2.3)

yields that



@4 Plxy) < Mx,y), z<v 5
(33) Pulx, y)/m!| <Ihix, y)/ m! < Mx,y), x<vy. T

2.1 uuaboveu equal to veseip o
F:xaﬁ( 2.::1:! an n all that 7, s ot "'ﬂnL"’/‘.ul and Jet ‘ a

I§ g | M Jqxtey, YHe) Jalxtéy y+£q,)/q' »“(l J)l
= lz]zhnﬂm, q>m+l IJq(x'“,.is Y+f,,i) Jq(x+£nj, }'+5,.j)/q~'| |Pm+l(i'j)l
SEShumgl [ £ oty yHe)/a)' | T ek, e ) /al]'/2 1 i),

where the last step follows from the Cauchy-Schwarz inequality applied to the

sum involving q. But the Hermite expansion of

{I(x+¢,; < ¢ Sy+6y) - Fx+ey,, y+6,;)} and (2.1) yield that

(x+fnn Y+6i)/a! = E [[(x+6,,<6 < y+¢,;)-Flx+e, v PP

< Flx+ey, y+e,), Vi>1.
Hence the lemma is proved. /!
Proof of (2.5). Without loss of generality, assume that %420, 1<i<n,
For the general {7} the result follows from Ti= T - 7pi and the triangle
inequality. In what follows, we use a modification of the chaining argument of

Dehling and Taqqu (1989). Let
(3.2) A(x) :=F(x) + JE(x)/ m!, xel
{3.10

Note the following facts: -



BhTn) 5.2 o) 28 Aol g )40
-y v :
(9) Pl y)/ml| <3ex y)/ m! < Ax,y), x<y. ) .
First consider the lnat ¢ the M ey
Fix a ;’> 0 and u: n> 1?% tlu?zl: m';“/f{"g’l(’.’) :’n‘:e 5
inequality, its absolute value i bownded b Aa(x) + Bofx) + €y(x), where

(3.6) & = K(6, n) := integer part of 1052{A(d)i£:l i (67a) 1} + 1.

By (A.1), (A.2) and the inequality

R ) "
T"]i£:17"i 2 0™/ (L ()] m/zigl“’ii /! ey Tni)»

it follows that

N and A 8/ .

i=

Next define refining partitions of I as follows. Note that ) is invertible and

define }'
(3.8) moe= MA@ 29, 5= 0,1, ., 25 k=0, 1, 20k ?"
Clearly,

C="’o,k<”1.k<~--<"':,k-1,k<"2k,k=dv
and
(3.9) A1, k) - Alm, ) = Md)/2k.

Su

Foranxelandake{0,1, ..., x} define J¥ by the relation

(3.10) _ ik S % < TELL ke D idul
gwdeﬁneaclmt’nﬁnb'ngeuhpointxelto c by :




i conider the st term i e gt had e of 013, By e
R by e bl by ) + e+ 043, b i
B R S

By (x) = r;tigl Toi P €is x4 6,0),

Calx) 1= 73l | B Tlre 4 € X+ €45) Bl fsnt, e,

By the tonicity of the indicat

function, triangle inequality and (3.4), (3.5),

Ap(x) sr;,‘igl'yni I(”ii St e < Txei,w i)

n
. :
SSalme, o omryy I+ a2 Vi P o+ i oy 6) 8

< len
+ 7' liEI‘Y,.i Jm(”jf‘ R Ay ol &) Hi(n;)] /m!

il
s |sn("'jf‘ e "'ji_,,l L3 )N+ Tn‘i£7ni(l+|ﬂm(7li)| )A (’rji et Eop ’fj'x‘_‘_l St tni)

= Isn(rjﬁ R Tj:-H s n)' + by(x), say. b

Similarly, B,(8) + Cy(x) < by(x)and e

G13) il 0 Sl ey I 200

imply that for every b ¢ @, «



balx) = 7! Jh’vm‘.@)ﬁ’m o T W) Mol

; where, n:‘;,(v,;i,)‘ m"bamm“ SR ‘4?‘3([’# My

&l ). Therefore by (3.9), Px Sal¥px "
[ba(x)] <73 27... (14 [Hy(m)] ) A (d) 2%

e Wlia) - Nouil 7 5905 1+ ()] ) I

But by (A.4), the stati ity and the G.

ity of {n;},
(3.15) 7 B (L4 [Ha)) lef = O, [ vl j=0,1.
Hence by (3.7) @
(3.16) bu(x) < {6+ =p (i) - vyl } Op(1). g

‘Now to show that sup (w0 ) - N(vix)| = o(1), note that,
i;x

l"s"i‘xs'l '“nix"”nml 5'J,’§+l " -’j:,x+2 12?"5.1 knil'
The uniform continuity of A on compacts and the fact ket i, bl

T M) Amx ) = Ad) 2 sﬁl(ra'»iglm)-ﬂ

m&athmbe(o,w),mﬂ'ﬁ“', “mx Il <b,



““‘7#:!“ -4 l«i-r“&m““&%m

Nowﬁunl( 12) and (3.13) we obtain R

1/2
3. m:u..,, lsntx')! Dk, Is..(irx & .r, l)| + IR ,"r, ‘,:“,')l’ forl]
4 52 +.prlsn(’j:.l oo v"jg’,)l""“hsn(" o ,tx“")

whe

+2 sup by(x).
x€l
Fixa ke {0, 1, ..., x-1}. Observe that
e ol ol
= max sup [Sn(m.x s ex 15
0<i<oktl 1 T TRk T kL

If i, k+1 = Ty, | for some re {0, 1, 2, ..., 2} then for x€[1rI k+1 0 il k1)

5 = =, that the abov remum for the ith j al i
r]:lk T kil ’Jf“,kﬂ'so af above suprem or i interval is

zero. If m ypy # m y for all re{1, 2, .., 2%} then i is odd. Therefore for

XEM k41 Mgt ke T,k T T, k1 20d 7 i 41 k1T Ti, ky1 50 that

agd

Balmac ko T )] = 19a(; -1 kel T k)

by thxelm, k+|- ikl k+1)

et

Hence by Chebychev’s inequality and Lemma 3.1, v 6>0,




,|+l_‘ % S(inn) (nomer 2 )07 125 B ltioc) Rl J

[Ft”k+1+€m, “'qu.gm') F(x; PRE k+l+¢")]m

g .

- .
S 48T S tior) 1,

Here, ti m.3)(i} and
v{hm-e the last inequality follows from the Cauchy-Schwarz mequa.hty applxed to

the factor involving F and the fact that

2k+1
[B(7, 41 + 2, Titl, k+1 T+ 2) <1, vaeRL

Similarly, we also obtain )

Plow [Sulmx omx,y ) 1> 82 <46252% X Mo lo(i-r) [HL,
1

Hence from (3.17) we obtain that
(3.18) P[sup [Sy(x)| > 4]
xel

<d(k+1)6?2 r'n’z: E haine lo(i-r) ™+ 4 Ploup bu(x)> 6/4].

We now analyze the first term in this upper-bound. Since for h.rge n, ‘r,,>l n,:d

by the Cauchy-Schwarz inequality, 27,“ <!/ P (3.6) yields that

Since by (2.5), sup |3, i1} wehen
€l x+l<2+logz[l(d)/ﬂ+chq,

applied with &t




-houﬁhmlﬂ-“mﬂgud X, !sisn.m

© . Consider fist the case when (m + 1) < 1.

ISign -
sup{ Iu,,(x)"llﬁ()“ )‘ﬁr‘?<n )t ';’E;l’(‘ =) i X

'.‘
~L(n) [o? - (D 2 -mey { Mol )1 fon
o Hu'e, the last asymptotic equivalence follows from (A.1), (1. 3’(1) and
(lrl) Assertion (3.19) for this case, now follows from (TL3)(ii). Assertion (3. 19)
for other cases follows from (1) in a similar fashion.
The proof of (2.5) now follows from (3.14) (3.18) and (3.19). //
Remark 3.1. The main difference hetween the above chain and the Dehling-
Taqqu chain is in the definition of x in (3.6). Note that when Toi = nl/2 , the g

above chain reduces to that of the Dehling-Taqqu. Also, (2.5) generalizes some of

the results of Dehling and Taqqu (1989) from the ordinary empiricals to the

weighted empiricals. !/
Proof of (2.6). Define,

va(x) := [Un(x) - Sy(x)] - [ Uf(x) - S3(x)]

=7 E il (x+6y)-Tm ()] (m!) ' Hn(y),  xe L

et for x <y,
Smoe by (2 5), lup IS,,(x)I = 0p(1), and also s |S (x)] = op(1) when (2.5)
» ¥ €[k,
lpphed with tm— 0 V i, 1<i<n, it is enough to show that

Mal¥) - va(x

o llvn(x)l = op(1).




'hue l%f‘ﬂ.(!’r uﬁr m‘“ y) Note that, iyl 52-; IJ"'(I)I <-V .

iy, x, y. Hence using (A. llam 1} 1) un e & W (8) we ubum that Co= O(l}.

o sew{ )] x> k- wy, xed) ‘g:lue.,}l&hw-l-

By (A6), sup{ [T5,()] : el Skex ), 0samk = ops Hane et d(s/f)
with j = 1, to prove (3.20) it suffices to show that ¥ 0 < k < oo,

(3.21) sup{ [vu(x)] : [x| <k, x I} = o,(1).
Fix a k. Viewing v, as a process on [-k, k] N1, it is enough to show that

(3.22) (8) va(x) = 0p(1) v xel,
and
(b) Eln(x) - va()]* e (x-y)?,  for some ce (0, o)

For (a), note that
Bl = i 2 T X063 T, 30 p73)
i

< o Dl 06) 1 (g 23) w7l 28 ptir) g,

since Jp, is continuous in a neighborhood of x and by (A.1), (IL.1) the rest of the
term is bounded. For (b), note that the mean value theorem entails that for x SI.

x, y €[k, k]N],
n(y) - V.(X)-r'}:'r...{[Jm(Hc,,.) T (x+6,) ] - Pn(y)-Tm(¥)]} (n




’ )
braneh of nonparasnetric deals with the rasik
whete, Ayiyyi= Jiu(tyiyy) - Jo(uyy). Note that, 2 rM
of vumu .;( mm)m. x:(:“)"v..m ‘.,.,..'A""’I = <D I (x)|
i, x, y. Hence using Al)md(Fl)oncemmum(n)weobtnnthnc.zou)
obséervation. Geners : §

I ressed in ¢ of I
Now (3.22) follows from Billngsey (196s; Theorem 12. :'i) "This Somplts OF

This completes the
statistics, < statwtics fon "t
proofof(26)also : ”""//v

Lhe key tool

Proof o] (2.7) . This follows from (2. 6) in conjunction with the following:

;zpllfilii:”/,.i{l“(x &)} F(0) - Eygf(x)] = o(1),

;vhich can be proved by applying the mean value theorem on {F(x-}-fni)}-i‘()‘(‘)}’ ‘
and using the uniform continuity of f and (A4). Vi ‘

Proof of Theorem 2.2. Proof of (2.8) follows directly from the Hermite

S T

expansion at each fixed x and the continuity of J,, which in turn follows from the

ption of the continuity of the d.f. F. Proof of (2.9) follows from (2.8) in a
simple manner. Finally, assertion (2.10) follows along the same line as in the proof

of (2.5) and (2.6) with suitable modifications. 1/

f  the i rality of the

sanderdized Sy,




CHAPTER 2
RANK ESTIMATION
2.1 Introduction.

The idea of estimati g location p based on rank statistics finds its
root in the seminal work of Hodges and Lehmann (1963). Since then, a major

branch of nonparametric statistics deals with the rank-estimation (R-estimation)

of p s by intmizing certain dispersions based on the ranks of
observation. Generally, these dispersions are expressed in terms of linear rank
statistics. Thus, the widespread applicability of linear rank statistics for a variety

of testing problems leads to its use in estimation in a natural way. The key tool

for studying the R-estimators is the AUL of linear rank statistics.

To explain R-estimation in a regression set up, let 1 be a nondecreasing
real-valued function on (0, 1) and {Rjp, 1<i<n, A €RP} denote the residual
ranks, i.e., R;A is the rank of 2 xI‘)iA among Y“j - x,'U-A, 1<j <n. Define
(1.1) 5(8) := ¥ (xy; - %) ¥(R;p /(n+1)) = [S1(4), ... Sy(A))

1
3A) = T ¥(Rip /(n+1) (Yo x:]iA).
1
Note that S is a linear rank statistic. Jureckova (1971) defined a class of

linear rank estimators of g, the regression parameter, by
5 ’ n
(1.2) By = argmin, m,{j)::l|SJ-(A)”.

For square integrable score function 1, Jureckova (1971) obtained the AUL
of the linear rank statistics S(A) and the asymptotic normality of the

standardized BJU by exploiting the contiguity of a sequence of densities of the
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ii.d. errors. Koul (1969, 1970) obtained the AUL of § for right continuous and

bounded 1 under weaker assumptions on the design matrix X and the error

density. He used weak convergence techniq and the inh tonicity of

the w.e.p. to come up with a better result for the bounded score functions. Koul
(1992, Theorem 3.2.4) also obtained the AUL of rank statistics under more general
heteroscedastic errors that allow the study of the robustness of linear rank

timators under ind dent errors.

Jaeckel (1972) defined another class of R-estimators by

(1.3) B = argmin, o 3(A),
where

HA) = Y U(Rip /(n+1) (Y- x:]iA).
i
Jaeckel showed that if the score function 1 satisfies

¥(i/(n+1)) = 0,

(L.1)
1

™=

I
then 9 is nonnegative and convex on RP. Moreover, using the AUL results of
Jureckova and the observation that almost everywhere differential of § is -S,
Jaeckel proved the asymptotic equivalence of ﬁJU and ﬂJ.

Our aim in this chapter is to investigate the asymptotic behavior of
Jureckova-Jaeckel type estimators under the model (1.1.1) and (1.1.2). We
consider nondecreasing, right continuous bounded score function ¥ and follow the
weak convergence approach of Koul. The question of the AUL of rank statistics is
first reduced to that of the asymptotic uniform continuity of the w.e.p. of the
residuals. The results of Chapter 1 are then applied to yield the asymptotic

representations of the above estimators in the LRD set up.



) s y 3
~ 2 long as,the definitions, make sense. Define the following process based o
x;lernd\yllgmkq and we_ights,corretponding to centered design as

> & F(u, A) := E(x"i- x) I(R'iA <nu),0<u<l, AeRP.
1

We are now ready to state the AUL theorem of the linear rank statistics S.

Recall conditions (A.5) and (A.6) from Theorem 1.2.1.

%+

Theorem 2.1. In addition to (1.1.1), (1.1.2), (A.5) and (A.6) assume that ;
the following hold: "i

(W.1) (W'W)! exists for all n > p.

(W.2)n max n’s‘.;(W‘W)"x..; =0(1).

(L:2) p e ¥:= {g: [0, 1]=R), g is nondecreasing, right conti , g(1) - g(0) = 1}

Then V b€ (0, ),

(22) IBid iz, B+ AT s) - ()] - s £(F () | = 0p(1),

sup
0<u<l,seNb)
(23)

IBIS(8 + A 9)- 8] + 8 [£ au(F) | = 0p(1),

sup
YE W, s€ Nb)




lLufS Koul obtaiyed the
im; Lei(r,i,:;ll; 2¢¢ataxlwn¢ry mean zero, unit variance Gaussian
process with correlation p(k) := E(mmygy)s k210 Suppose € = G(n;), i21
udcmmthat(l 1.2), (W.1), (W.2) and (L.2) hold. Then,

which

(2.5) ByS = SyJi(¥) + op(1),
where,
Jq($) := E $(F(e)) Hy(n) = - qu(P'(u)) dy(u), g1,

and for any nx p matriz D,

(2.6) Sq = B&l fi:dniﬂm('li)/m!- /1

The next corollary gives the asymptotic rep ti of the suitabl
normalized R-estimators defined in (1.2) and (1.3). These representations are
obtained from (2.3) in a routine fashion as in the proof of Theorem 4.1 of
Jureckova (1971) and Theorem 3.3 of Jaeckel (1972). We omit the details for the
sake of brevity.

Corollary 2.1. Under the assumptions of Theorem 2.1 and condition (I:l),
127 Aw (By - B) = Ay (Byy - B) + 0p(1) v desigus, in
PR S (£ ap(E)) B + 0y(1), » et
(28 S ) Sl 0p1)




mms ulﬂrw mm.n.

(W*2) " Puly, A) = ERh O M)"n{fﬁil) T
Using the AUL of 5, Koul obtained that . .~ =

(WW)'2(Byp) = {11 dU(E) (WW)'S + o)1),

which converges in distribution to N(0, { [ dy(F)}? iw(u) -9 dulyyp).

Note that the limiting representations in the LRD case differ from those of

the ii.d. errors case in two fundamental ways. Firstly, they have different

lizations. If, for pl

(W‘W)l/2 is of the order of n'/? whereas A, is of the order of nmo/z/l.mﬂ(n).

liII;nW‘W/n exists and is positive definite then

Secondly, unlike the i.i.d. errors case, the limiting distribution may not be always

normal. The value of m is very crucial for determining the limiting distribution.

If, either G is strictly monotone and continuous or G is an odd function
with the property that {x € R: G(x) <0} equals either (-c0, 0] or (0, oo] then m=1
(See Remark 1.2.2). In such cases the first approximation of Ay(fj-f) is exactly
N(0, 03T,,) where Tyi= 7, 2W'W) /W RW(W'W) /%, R the dispersion matrix
of (11, ..70)t and o3 := { [{ dy(F)}? [Ev(F(e))n]>. Yajima’s (1991) results can be
used to calculate the limit of Iyunder some additional conditions on the design. //

Remark 2.2. Conditions (W.1) and (W.2) are satisfied by many designs, in
particular, by polynomial designs with Xpif= #, 1<i<n, 1<j<p and by
trigonometric designs with Xyig= cos(ipy) or sin(igg), 5 # py for j#k.




- 4 ;W o
i.(y, };.1({', ASY)a "i '

s rwiwey VY A
B'T’n( u,A).= (x lv& A  F 5’ 2‘%‘!"‘ I

1 a vector of 3 Vi pr es with sde of (W'W)Y "m ) and [ =

‘A Thp bmc ndea of the proofof (2.2) can be sketched as iollowp. Note tlut.ﬂ
(31) B, B+ Als) = ;(xni. %)I[Rank of(¢; - x,;A;) s) <nu)

= 2 (3 X)[Fus(e; - x,‘,iA;,‘ s) <ul,

where Fy(.) is the empirical distribution function of {¢ - x;A{)s, 1<i<n}.
Therefore Bjl%(u, 8 + A;l s) can be approximated by the process Byl%(u, s)
(defined in (3.5) below) in the sense of (3.6). Now use (3.4) below along with the
AUL of the T, process to conclude the AUL of the % process. To that effect, the
following preparatory lemma states the AUL of the F,, and T, processes which are

interesting for their own sake.

Lemma 3.1. Assume that (1.1.1), (1.12), (W.1), (W.2), (A.5) and (A.6)
hold. Then for every b e (0, o),

3.2 sy ¢ 1 ye ol lFaly B+ A 9) - Fuly, B)] - n'/% x'Dils f(3)) = 0,(0),

I §
pape ¥

B3 |BT B+ AL 8- Tyl B - s K )| = ),

i

and

in%

FF;L (u)-u=

op(1),
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where

op = n'l/‘zrn—.O and (1) denotes a sequence of stochastic processes

converging to zero uniformly in 0 <u <1, se N(b), in probability. //

Proof. We first consider (3.3). Observe that for fixed s € RP,
BilTu(u, B+ A}l s) = 1}l & T(W'W W) 2 (x,- %)l < Frl(u) + x4 AL 8]

1s a vector of V|, processes with 7 .:= ith coordinate of (WtW)'l/g(xni- x) and ¢ ;=
x;iA;vl 8, 1 <i<n. Notice that (W.1) entails (A.1) and this choice of {~,;} satisfies
(A.2). Note also that

t t tyy-1/2
xt A, s] <7, max ” (W'W “ Isi
lSiSnI nit"W | Mi<i<n m( )

:.nlﬂlnzui( ” m(Wt )'1/2“0(11""0/2L’]]/2(11)) =o(1),

<ign

so that (A.3) holds Vse N(b). Finally, to verify (A.4), obscrve that, by the

Cauchy-Schwarz inequality applied to the second step,

= (WW) 2 x, sd (WW) s ll

= l“_l;)i(<n( xnl(ww l/-blzﬂ ww ( i f()”
< max_ [ wwy 2 s u'/'-’[g||(WLW)"/2(x,,i- x) /2

1 <i<nl

= Jowtwy 2 sl = 0q0)

Therefore, by (1.2.7) and the fact that Bl ¥ (x,;- %)xt Ay = Lpxp it
1

ni-

follows that for all s € RP,

sup, ¢ 1o, 1y IBWITu(n, B+ Al s) - Tuly, B)] - s £(F ()| = 0,(1).
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The uniform convergence over 8 € N(b) is achieved by exploiting the monotonicity
of the indicator function and the d.f. F along with the compactness of N(b) as in
Theorem 2.1 of Koul (1991). This completes the proof of (3.3). Assertion (3.2) can

be proved similarly by taking v, ;= w2 v <i<nand € ; as before.

For (3.4), note that [FFjy (u) - u| < [FFjj (u) - FuFy (w)] + [FusFog (u) - ul.
The first term is o,(1) from (3.2) and the fact that Fy4(y) = Fy(y, 8 + Al s)

vy € I. The second term is at most 1/n. Hence (3.4) follows. //

Proof of Theorem 2.1. We first prove (2.2). Define

(3.5) B(u, 8) := ¥ (x, %)l <Fph (u) + xLAl 8],  0<uc<i, seRP.
1

From representation (3.1) and by the fact that

(3.6) Ple; - x A s=¢- anA s, for somei, j; 1<i#j<n] =0,

we obtain that w.p.1

”B'w}[ %(u, B+ Ayl s) - B(u, b]“<T max “ x (W'W) 172 “ = of

1 <i<n
vO0<uc<l,seRP

Therefore, it suffices to prove that
(3.7) By [B(u, s) - B(n)] - s {(F'(w)) = o,(1).
Now by (3.3), Bil%(u, s)
= BT, (FF;L (u), B + Al s) = BT (FF;L (u), B) + s fFIFF;L (u) + 5,(1).

Therefore using Byl%(u) = BT, (u, B), the uniform continuity of the function
foF-! and (3.4) it is clear that (3.7) will follow from the tightness of {BIT,(u, B),

u € [0, 1]}. Therefore, it remains to prove that Va > 0,36 >0 >

(3.8) litn sup, P| sup ”B“ [T.(u, B) - Tu(v, B)] “ >al<a.
Ju-vij<é
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But (1.2.4) applied p times, with the choice of {y,;} and {¢ .} as in the proof of

(3.3), yields that

(3.9) supy ¢ o0, 1) 1B Tu(t, B) - Ju(F 1 (@)Su] = 0,(1),

where E ||S, P = 0(1).

Note that for u < v € [0, 1], the Cauchy-Schwarz inequality yields that

(310) [Im(FL(v) - Jm(F ! (w))] < EV*[I(u<F(e) < v)}* E/2HZ,(9) < {m!(v-u)} /2.

Hence (3.8) follows from (3.9) and (3.10). This proves (2.2) also. (2.3) follows from

(2.2) using an argument similar to the proof of Koul (1992, Theorem 3.2.2). //

Proof of (2.5). Let Z(u) := ¥ (x,;- x) [I(¢ < Fl(u)-n), 0<uc<l. Note

1
that because of the continuity of F,

(3.11) P[ %(u) = B(u), for some ue(0,1)] =0

- 1
Since S = - [ %(u) dy(u), (2.5) follows from (3.11) and (3.9) and the boundedness
0

of the function 1. //



CHAPTER 3
MINIMUM DISTANCE ESTIMATION
2.1 Introduction.

In minimum distance (m.d.) method of estimation, one estimates the
unknown parameter by a minimizer of some discrepancy measure between a
function of observations and that of a family of underlying distributions.
Wolfowitz (1957) discussed m. d. estimation as a general principle of estimation
that can be applied in many statistical problems and showed that under
identification and continuity assumptions, m.d. estimators (m.d.e.) are strongly
consistent. Research on m. d. estimation proliferated during the mid seventies and
eighties. Beran (1978) discussed asymptotic normality and robustness of the one
sample location estimators obtained by minimum Hellinger distance. Parr and
Schucanny (1980) and Millar (1981) discussed asymptotic normality and
robustness of a large class of m.d.e. that includes Cramer-Von Mises type
distances in the one sample location model. Boos (1981) discussed minimum
Cramer-Von Mises type distance estimation in the one and two sample models
and its application to the ‘goodness of fit’ tests. The above authors, in some way
or another, viewed m.d.e. as a functional defined on an appropriate subset of
univariate distribution functions, that satisfies Frechet differentiability condition
and proved the asymptotic normality of these estimators by techniques delineated

in Serfling (1980, Chapter 6).

Koul and Dewet (1983) and Koul (1985a, 1985b) visioned appropriate
extensions of m.d.e. from the one and two sample location models to the multiple

linear regression model via weighted residual empirical processes. Their technique

33
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of proving the asymptotic normality and qualitative robustness of the m.d.e. is
completely different from that of the predecessor’s work. It uses the asymptotic
uniform quadraticity of the Cramer-Von Mises type statistics based on weighted

empirical processes.

While most of the asymptotic literature on m.d.e. assume independent
observations, little seems to be known for the dependent observations. Motivated
by the important application of linear models with LRD errors, we study in this
chapter the large sample behavior of m.d.e. of the regression parameters under the
model (1.1.1). In Section 2 we derive the limiting representations of the
)

normalized m.d.e.’s. The following empirical processes with weights {w, .= x ; - x

1<i<n} and {x;, 1 <i<n} are useful in this chapter.

(LDVu(4,y) := EW,“I(Y <xA +y) = Z vl <x;(A-B) +y)
mw(A, y) := v, F(xi(A-B) +y)

Uu(A, 9) = Twfl(g < x'(A-B) +y) - F(x':(A- B) +y)}, AeRP, yeRL

Similarly, define Vy, py and Uy with weights {x ;}.

For linear regression model, Williamson-Koul minimum distance estimator

of the regression parameter 8 is defined by

(1.2) BKzz argmiuA e P M(A),
where

My(A):= 7,2 [ (WW) v (A, ) [ dy.

Under the assumption that the error d.f. F is symmetric around zero Koul

(1985b) defined, for each H, a minimum distance estimator of B by
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(1.3) B = argmin l{"M (A),

where

+ xmA <y}

ni

M, (A):= r,,-2fu(xtxy‘/2{)i:x,,i{I(Y xbA<y) - 1Y,

FdH(y),

and H is a nondecreasing right continuous function from R! to RL

Note that BK and ,B'lt are the estimators # and BT respectively defined in
Koul (1985b) for the independent errors case. The motivation for considering
these estimators and its finite sample properties are discussed in Koul (1985b). In
particular, as noted by Fine (1966), for p = 1 with x; =1, 1<i<nj, and x;
=0, ny+1<i<n, BK reduces to the two sample Hodges-Lehmann estimator of
the location parameter. Also, for x; = 1, H(x) = x [ H(x) = [{0 <x) ], ﬂ is the
Hodges-Lehmann estimator of the one sample location parameter [ median

estimator ] (see Koul 1985b).

3.2. Asymptotic representation of minimum distance estimators.

In this section we first derive the asymptotic uniform quadraticity of
My (A). To that effect, apart from (W.1) and (W.2) in Section (2.2.2), we need
the following assumptions on the model (1.1.1) and (1.1.2):
(W.3) For every seRP, f"B‘“} pw(B + Al s) - s f(y)”2 dy = o(1),
(D.1) The d.f. F of € has a continuous density f.
(D.2) [f? dy < 0.
(D.3) [F(1-F) dy < oo.

Define,

Qu(B) = [ |BIV,(8, y) + BYW' X (A-B) f(y) [Py, AeRP.
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Theorem. 2.1. In addition to (1.1.1), (1.1.2) assume that (W.1) -

(W.3), (D.1) - (D.3) hold. Then, for all be (0, ),

(2.1) E sup | My(B+ Adls) - Qu(B + Als)| =o(1). /]
8 € N(b)

Proof. The technique of the proof is similar to that of Theorem 2.1 of Koul

(1985a). As there, it is enough to show that V b € (0, o0),

(2:2) E sip  [[BIUWB y) + sty dy = 0(1),
8 € N(b)
(2.3) sup [ By palB + A 5) - s £(n) [P dy = o(1),
8 € N(b)
(2.4) Eswp [|Bid Un(B + Al 5.y) - By UG (B, y) [P dy = o(1).
8 € N(b)

Proof of (2.2). Using [a+b| 2<2 (1al® +Ibl?) for a, b € RP and Fubini,

Lhas. of (2.2) <2[E| B UL(B, y) [ dy + 2 b? [£2dy.

)

Now, [E|By Uy(8, ) dy =7, 2 B[S {1(6<y) - F(y)}12 dy,
1= 1

: : - tpy-1/2
where, for any matrix D, Xyij = the jth entry of the vector (D'D) / d,;.

Using the Hermite expansion of {I(e;<y) - F(v), yel} in (1.2.3) and the

properties stated in (1.2.1) the integrand of the jth summand is equal to

= Tn-2 ? ;a“’“ij Xwnrj q ;m (llgll] '](l(y)/(l! ']q/()’)/(l’! EHq(’li) Hqt("r)

= 7'n-2 2 Zawnij Qwnrj z [.]i')l(y')/(l!]/)q(i-l’).

i T q>m

2 mes:_, 2
Sq);,m 2(y)/q! nmax O Y Y |p"(i-r)|/ nry
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(25) < FO-F@)n max_wiy(WW) by o000 mn) £ 5 pm(i-n)|

< S n lll

(26) < KF(y)(1-F(y)).

Here, (2.5) is obtained from Z) .];':(y)/q! = E[I(eigy)-F(y)]?' = F(y)(1-F(y))
q-2m

while (2.6) from (F.1) and (W.2). Now (2.2) follows from the assumptions (D.2)
and (D.3). The assertion (2.3) follows from (W.3) and a monotonicity argument of

Koul (1985a, Theorem 2.1). //

Proof of (2.4). For fixed se RP,
EJ|Bil Uy(B + Ayl s, ) - By Uu(B.y) [P dy
<2fE|B Su(B + Au's, v) - By Su(B, )P dy

ni{']lll x! A\\ s+y)- ]m(Y)}(ln!)-le(’]i)

F dy

=2 [T1+ T2],

where, for Ae RP, y € R,
Sw(A,y):=2w, i {I(¢ <x' (A-B)+y)-F(x Xt (A-B)+y)-Ti( X' (A-B)+y)(m!) Ho,(n:)}
1

From (1.2.3), T, is equal to

P o) 9
_21 ITn-Q E[ zi:awnij q >Zn:l+l ']q(Ys ,L“Aw s + Y)(q ) q("i)] dy,
)= 2

where for a function h : R'=R!, h(x, y) stands for h(y) - h(x), x <y.

Now using the properties in (1.2.1) as in the proof of (2.2) the jth integrand

of the above expression

o ? £ Sl O | LT 0y xt A sHy) oy xhAY s+y)/alt [P (i-r)]
> m+
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-9 2 )
<7 ? ;Iawmj Qwnrj Iq izr:nﬂ Ta(y, x:txiA“} s + y)/q!]l/2

(T T8y, Al s + y)/q ]2 pm(ior))

q2>m+l
t a-1 - -(2-mf); - .
< lrnsznicS nF(y, X, iAw s+y) ulmsa)itsnw;i(WCW) l"'ni p(&m )L m(n)iz Zrilp'“(l-r)l-
t a-1
< K max_ F(y, Al s +3)

Using (1.2.1) once more, it is easy to sce that the integrand in Ty is

bounded by K max J?“(y, x"-A;J 8 + y) which by the Cauchy-Schwarz

1 S i S n n
inequality is bounded by K max F(y, x“-A;J s+ y).
1<i<n m 7
toA-l -1/2
Note that lm<a)i<S nl x Ay sl <7, l“_l<_mi(5 “”xl‘li(WtW) / “ s
12 -1/2 -m8/2; m/2
(2.7) = al/ ln;ui(S“”x;i(WLW) Plo™Lm/2(h)) < o1),

by(W.2) and the fact that for any slowly varying function V and v§>0, V(n)/n® =

o(1). Therefore, with a,, := max | xl‘IiA;‘! s|, Fubini’s theorem yields that,
<i<n
oa-l ytay
I s | FOdls )Pl ay < 10T 10 @ ay = 2.0, = o)

Again the uniform convergence in (2.4) is achieved in a routine fashion, see, e.g.,
Koul (1985a). This completes the proof Theorem 2.1. //

The following corollary gives the asymptotic representations of the suitably
normalized minimizer of My (A).

Corollary 2.1. Under the assumptions of Theorem 2.1,
(2.8) Aw(By - B) = - (J£ dx)"! By [U(B, v) dF(y) + 0p(1),
(2.9) = ([ dx) 1Sy [Im(y) dF(y) + 0p(1),

= (J£2dx)"! SLEF()H,,(n) +o0,(1). /)
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Proof. Proof of (2.8) is routine from the asymptotic uniform quadraticity

result (2.1) and hence omitted. For (2.9) note that
[ 1083 U8, ) - Suun(y)] aF(y)
< s [ B Un(BLy) - Sl = op(1),
by (1.2.4) when applied p times, j th time with Tui = Quyijy 1<3<p. //
Remark 2.1. In the independent errors case Koul (1985b) derived the

asymptotic representation of ﬁK, which when specialized to i.i.d. errors case states

that under the conditions (W.1), (W*.2) (W.3) and (D.1)-(D.3)
(WW)' (B - ) = -(11 d) (WW) V21U, (B, y) dF(y) + (1),

where (W*.2) is as in Remark 2.2.1. Therefore, remarks similar to that of Remark
2.2.1 is also applicable here. Also note that condition (W.3) is satisfied in the
presence of other conditions when for example, the density f is uniformly

continuous.

To cite an example of error distribution under which the limiting
distribution of BK is nonnormal, consider G(x) = x> - 1. In this case m = 2 (see
Dehling and Taqqu, 1989). Hence from the representation (2.9) it is clear that in
the case of the two sample (n}, ny) location model for the centered chisquare
random variables with design vector, Xpp = 1, 1<i<np and x; = 0,
n+1<i<ni= nj+n,y, n? L'l(n)(/}K - /), the normalized two sample Hodges-
Lehmann estimator of the location parameter converges in distribution to the
random variable [A(l-/\)]'l{Z2()\) - AZy(1)}, where A:= lim(n;/n) is assumed to
exist, 0<A<1 and {Z,()):A€[0,1]} is the Rosenblatt process (see Dehling and

Taqqu, 1989). Clearly, the limiting distribution is nonnormal. //
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Now we turn to the asymptotic representations of the m.d.e. ﬂ?\' under the
symmetric error distribution. For the sake of clarity we assume that the
integrating measure H is symmetric around zero. The techniques of proofs are

similar to those of Theorem 2.1 and Corollary 2.1 aund are omitted.

To derive the asymptotic uniform quadraticity of the dispersion My (b)
and the limiting representation of ﬂi\*’ we assume the following conditions on the

design matrix and the underlying distribution:
(X.1) (X*X)! exists for all n > p.

(X.2) n max

max_ . nl(X‘X) =0(1).

(X.3) For every seRP, [[Byl [(B + Acls, v) - Jx (B, ¥)] - bi(y)[ dH(y) = o(1).
(D*.1) The d.f. F of € has a continnous symmetric density f.
(D*2) (i) 0 <TfdH <oo, (ii) 0 < Jf dH <oc.

0 0

(D*.3) 0 <2f°(1-F) dH <oo

(D*4) lim [£(y+s) dH(y) =[£(y) dH(y).

Theorem 2.2. In addition to (1.1.1) and (1.1.2) assume that (X.1)-(X.3)
and (D*.1)-(D*.4) hold. Then

(2.10) Ax(ﬂﬁ-ﬂ):(2yf‘3(1H)-‘B;Jf{ (B.y)+Ux(B,-y) }(y) dH(y) + op(1).
- (2 £2AH) S, [[Tn(y) + Jm(-y)JE(y) dH(y) + op(1).

= (2[£2dH) 'S, Ep()H,,(n) + op(1);
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where,

X
P(x) = po(x) - po(-x), py(x) := | fdH. /1

Remark 2.1 From representation (2.10) it follows that in the case of one
sample location model for symmetry, the normalized Hodges-Lehmann estimator
n™é/2 L'm/2(n)(ﬂ§ - B) converges in distribution to the random variable
(f£2 dx)! EF()Hp(n) Zm(1), where {Z,,(t) : te[0, 1]} is the m*" Hermite
process as defined in DT. //



CHAPTER 4
REGRESSION QUANTILES AND RELATED PROCESSES
4.1. Introduction

In their fundamental paper, Koenker and Basset (1978) (KB) introduced
regression quantiles as a natural extension of the notion of sample quantiles and
order statistics from the one sample location model to the multiple linear
regression model. Most of the asymptotic literature on these assume either
independent errors or weakly dependent errors as in Portnoy (1991). In this
chapter, we study the large sample behavior of the regression quantiles processes
under the dependent setup (1.1.1). We also investigates the asymptotic behavior
of the regression rank-score processes, L- and linear regression rank-score statistics
of Jureckova (1992a) and Gutenbrunner and Jureckova (1992) under the LRD
setup. In particular we obtain the AUL of the regression rank-score statistics

under the LRD errors.

For an a € (0, 1), KB defined an ol regression quantile as any member

ﬁn(a) of the set
(1.1) B,(a) := {beR: .)l_l:lh(,(Y“i - x:b) = minimum},
1=

where h,y(u) := o ul(u>0) - (1 - a) ul(u< 0),ue Rl, 0 <u<1. Note that, 111/2(u)

= | u| /2 and so, B.(1/2) reduces to the well-known least absolute deviation
(LAD) estimator of f.
Theorem 3.1 of KB gives the following lincar programming version of the

above minimization problem (1.1):
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(1.2) minimize o 1% r¥ + (1-a) 14 r

subject to Yy - Xb=r1t-r, (b, 1*, r) e RPxR} xR},

where lf, = [1,....1]{x, and Y, is the response vector. By the linear
programming theory, ﬁ,,(a) is the convex hull of one or more basic solutions of
the form

(1.3) b, = XY,

where h is a subset of {1,2...n} of size p and X}, ( Yy, ) denotes the sub-design

matrix ( sub design vector ) with rows xltli, i€ h ( co-ordinates Y

ieh).

ni’

In general, one can choose ﬁ“(.) from (1.1) in such a way that it is a
stochastic process called regression quantile process that has sample path in [D(0,
1)]P. There will also be ‘break-points’ 0 = aj < a; < ... < aj = 1, such that
Bu(.) is constant over each interval (aj, @j41), 0<i<Jy-1. See Gutenbrunner and

Jureckova (1992) (GJ) and references therein for more on this.

The corresponding dual program, mentioned in the appendix of KB is the

following:
(1.4) maximize Y!a with respect to a
(1.5) subject to Xha = (1-a) X}1,, a€(0, 1)"

GJ investigated the statistical properties of the optimal solution of (1.4)
when the errors are independent. Note that a maximizer of (1.4) also maximizes
a'(Y, - Xt) subject to (1.5), for any t € R”. Now choose t = 8, (a), where for some
p-dimensional subset h,(a) of {1,...n} an optimal solution for (1.2) is given by
ﬁn(a) = xixln(a) Yhn(a)‘ Then one particular solution of (1.4) corresponding to

this choice of Bn(a) can be given as follows:
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For i not in h,(a), let

(1.6) dpil@) =1, Y- xt.B,(a)>0,

and for i in h,(a), 4 ;(a) is the solution of the p linear equations:
. n i -
(1.7) ; e}zli(a)x"janj(a) =(1- a)jgl X, -jglx"j I(Y,; - xflj B.(a) > 0).
GJ call 4,(a) the regression rank-scores for cach a € (0, 1). When p =1 and

X5 = 1, 1 <i<n, GJ observe that

(1.8) a;(a) =1, a < (R;-1)/n
=R .-na, (R

ni i 1)/11 sa SRni /“

1

=0, R, /n <a,

where R; := Rank(Y ;). Hence in the one sample location model, the processes
{a;(.), 1 <i<n} reduces to the familiar rank process (See Hajek and Sidak, 1967,
Section V.3.5). GJ observed that a,(.) satisfying (1.6) and (1.7) can be chosen in
such a way that it has piccewise lincar paths in [C(0, 1)]" and
a,(0) = 1, = 1,- 4,(1). See GJ also for a discussion on the generalization of the
duality of order statistics and rank process from the one sample location model to
the linear regression model by the RQ (:= regression quantiles) and RR (:=

regression rank-scores) processes.

Using these processes one can construct various statistics such as L-
statistics and RR statistics that are useful to make inference about the regression

parameter f. In the context of i.i.d. errors, different types of L-estimators were



45
proposed by Ruppert and Carrol (1980), Koenker and Portnoy (1987), Portnoy

and Koenker (1989) and GJ. Among them, Koenker and Portnoy (1987) and GJ
considered smoothed L-estimators that are asymptotically equivalent to the well
known M-estimators but have the added advantage of being invariant with respect
to scale and reparametrization of the design. In this paper we shall consider these
type of L-estimators and will observe that under appropriate conditions, the above

asymptotic equivalence continues to hold even in the LRD setup.

As pointed out by Jureckova (1992a), one of the major advantages of using
RR statistics based on the residual is that the corresponding estimators of the
some of the components of B8, when others are treated as nuisance parameters do
not require the estimation of the nuisance parameters. The basic result needed to
study these estimators is the AUL of the RR statistics based on residuals as given
in Jureckova (1992a) for the i.i.d. errors. The corresponding result under (1.1.1)
and (1.1.2) is given in section 4. Section 2 obtains the joint asymptotic
distribution of the finite number of suitably normalized RQ s and asymptotic
representations of RQ and RR processes. Section 3 applies this results to yield
the asymptotic behavior of L- and RR statistics. The proofs heavily depend upon

the uniform closeness result of Chapter 1.

4.2. Theorems and Proofs.

To find out the asymptotic distribution of RQ, we first define the following

minimum-distance type estimator of 8 by

.

(2.1) Broa(@) := argmin, | (XtX) /2 9(A, @)

where,
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(4, a) := Tx,{I(Y,; - x'.A <0)-a}, O<ac<l, AeRP.
i

nl

By the continuity of the df. F, 9(A, a) is an almost everywhere

differential of the function Y h,(Y; - xt.A) with respect to A. Therefore,
1

ni

intuitively, minimizer of Fhy(Y,; - x:]iA) and Bmd(a) should be asymptotically
1

equivalent. The following lemma is enunciated towards this direction. It also gives

the joint asymptotic representation of the finite number of RQ. To state it, we

need to introduce

Bla) := B + F'l(a)cl, ¢ := (1,0, .., 0)', and q(a) := f(FYa)),0<a<]l.

Also, recall the definition of Sy from (3.2.8), conditions (X.1), (X.2) from Theorem
3.2.2 and conditions (A.7), (A.8) from Theorem 1.2.2. Moreover, the following
design condition is assumed:

(X.0) The first column of the design matrix X counsists of one only.

Lemma 2.1. Assume that (1.1.1) (1.1.2) and (X.0) - (X.2) hold. Then
(@) sy ep, ) IBRI(B(), @) - T(F ' (a))Sy] = 0p(1),
(i) If, in addition, (A.T) holds then ¥V b € (0, =) and ¥ « € (0, 1),
spy ¢ (o) | BRIT(B(0) + Ail's, ) - T(B(a), )] - s a(a) | = 0p(1),
(ii)  If, in addition, (A.7) and (A.8) hold then V¥ a € (0, 1/2] and ¥ b € (0, ),
SUPy ¢ [a. 1-a] 8 € (D) IBil[=(Bla) + AYs, a) - T(B(a), a)] - s q(a) | = op(1).

(iv)  Under the conditions of (ii), for every a € (0, 1),
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(a) Ax(Bma(@) - B(a)) = - ¢ (a) BlF(B(a), a) + oy(1)

= - q'!(a) Sx Jn(F (@) + op(1).
(b) Ax(Bn() - Bq(a)) = op(1).

(c) Consequently, for any 0 < a| < ay, ..., < a < 1,

where, for any two matrices A and B, A & B stands for its Kronecker product. [/

Proof. (i) follows from (1.2.4) when applied p times, j“l time to vy,; = jth

coordinate of D;lxni, 1<i<n,1<j<p.

(i1) Note that

B [T(B(a) + Ails, @) - T(B(a), )] - s q(a)

= il S Dx, {16 < Fl(0) + x Als) - I, < F(0)} - s q(a)

ni
Now (i) and (iii) follow from (1.2.9) and (1.2.10) of Theorem 1.2.2 respectively, as
in the proof of (2.3.3).
(iv)(a) Note that v ae (0, 1), Vv 8 RP, 6'Bl9(8(e) + rA}l8, a) is an
increasing function of r > 0. This fact together with an argument like the one

given in the proof of Theorem 2.1 below implies (iv)(a) in a routine fashion.

(b) First we show that for every 0 < o < 1,

(2.3) IBila(Bu(a), )] = op(1).
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From Theorem 3.3 of KB, we have the following algebraic identity:
[Exp (1Y iba(@) <0)-a} - T x{I(Y, x}Bu(e) SO)-a}]X () = wi(e),
i i€hp(a) n
where, hj(a) is as in (1.6) and each element of the px1 vector w,(a) belongs to
the interval [a -1, a]. Hence
Bl9(Aula), o) =By T x,(l-a) + BXp ) w().
i € by (a) n
Therefore, (2.2) follows from (2.3) and (X.2) by noting that the right hand side is
t p-1j —

bounded by 2 p lmsaui(S . "xnin " = o(1).

Now the claim in (b) follows along the same line as in the proof of (2.5) below.

The claim about (c) follows from (h) with the help of Cramer-Wold device. //

Remark 2.1. An interesting special case of (2.2) is when k =1 and a;= 1/2.
Here regression quantile reduces to the celebrated LAD (least absolute deviation)
estimator. As an example of errors when the limiting distribution of the LAD
estimator is nonnormal, consider the model (1.1.1) when the error r.v. is a chi-
square centered at its median, i.e., G(x) = x2 - v, where v is the median of X:l! r.v.
Then, as shown in DT, m equals two. Hence in the one sample location model
with chi-square errors centered at its median, it follows that the asymptotic
distribution of the LAD estimator is the same as that of v.{n!" oL(n)}'l E(n? -1)
which converges weakly to the r.v. v.Zy(1) where {Zy(a), a€l0, li} is the

Rosenblatt process as in example 2 of DT. //

Remark 2.2. A very intrigning phenomenon is observed regarding the
asymptotic efficiency of different estimators when the errors are exactly Gaussian,
1.e,, G(x) = x. In this case, m equals one and all the estimators discussed in this

thesis are asymptotically normally distributed. Morcover, (2.2) implies that the
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asymptotic dispersion of the regression quantiles {f,(a); a € (0, 1)} is independent
of a. In addition, it is same as the asymptotic dispersion of the least squares
estimator, M-estimators and that of Koul’s m. d.e. ﬂf\i, irrespective of the scores -
functions (in the case of M-estimators) and integrating measure H (in the case of
m.d.e.). Similarly, in this situation, R-estimators and Koul’s m.d.e. BK continue
to have the same asymptotic dispersion irrespective of the score function (. This is
in complete contrast with the i.i.d. errors case. Finding an estimator with better

asymptotic efficiency in the case of Gaussian errors is still an open problem. //

Remark 2.3. Recall that in the i.i.d. errors case, under (X.0), (X.1), the

assumption that max nx;i(xt)()‘lx“i = 0(1), and (A.7) one obtains that vV a € (0, 1),

(2.4) Dy(Bu(a) - B(a)) = N[0, I, @ (1 - a) ¢ %(a)] r.v.

This essentially follows from the work of Koul (1992, section 5.4) by viewing
Pu(a) as an M-estimator corresponding to the convex score function h,. Under
stronger conditions on the design matrix it also follows from KB. Hence, remark

similar to that of Remark 2.2.1 is also applicable here by comparing (2.2) and (2.4).

In the following theorem, we depict the asymptotic representation of the
regression quantiles process uniformly over the compact subset of (0, 1). The basic
idea for its proof can be found in Jureckova (1971) and Koul (1985). Here, for an
RP valued stochastic process {Xy(a), a € [0, 1]}, | X, | := sup{ | Xy(@)|; 2 < a < 1-a}
and we say that X, = Of(1) (o5(1) ) if | X, [, = O,(1) (0,(1)) for every a e (0, 1/2].

Theorem 2.1. Assume that (1.1.1), (1.1.2), (X.0) - (X.2) and (A.7) - (A.8)
hold. Then

(2.5) Ax(B (@) - B(e)) + ¢ (o) BYF(A(a), a) = o}(1),
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(2.6) Ax(Bu(@) - Bpg(@)) = op(1). //
Proof. The proof will be given in several steps. Let D,(a) denote the set of
minimizers of D! 9(A, a)|. Note that |Dy! (A, )| can take at most 2
possible values and the set D, () is nonempty for each a in (0, 1/2]. Now define
An(a) by A [AL(a) - Bla)] := - ql(a) BlF(B(a), a). Therefore, to prove (2.5), it

is enough to show that for every a in (0, 1/2],

(27) WP € 1,5 A ¢ D (o) | A A-B(0)] - AllA,(0) - Bla)]] = 0p(1).
Step 1. ”B;(l ‘:T(A,,(a), 0)” = ol*)(l).

Proof. Follows from the above Lemma (2.1)(iii) by observing that
AAn(a) - Ba)] = O}(1).

Step 2. mf cRP "B T(A, O)” -‘=Ol*,(1).

Proof. Immediate from Step 1.

Step 3. For a b>0, define

Op(a) := {AeDy(a); |Ax(A - B(a))| <D} and

O4(a) := {AeD,(a); |Ax(A - B(a))]| > b}
Thenv M > 0,

(28)  Plswpg ¢ 15w ¢ o () | Ax(B-Bu0))| > M, Oyf0) #ova el = o(1).

Proof. Note that A (A-A,(a)) = A¢[A-B(a)] - (- (@) [BT(B(a), o).
Therefore, the left hand side of (2.8) is less than
Plsup ¢ 1,50 ¢ 0 (o) | Ax[A-A(0)] - (-7 () (BT (B(a), o)) > M,
WP € 1,4 € O, (o) l¢ ! ()B;l9(A, o) ]| < M/2, Oy(@) #¢ Vael)]

+ Pl supg ¢ 1,59 ¢ 0, (a) lat(@)Bla(a, )| > M/2, O (a) #6 vael,
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<Plsupg ¢ 1,5 A ¢ 0, (o) | (MBYIT(A, @) - T(B(0), )] - AclA-B(e)) | > M/2,

Op(a) #¢ Vael,]
+ Plaupg ¢ 1,5 ¢ 0, (o) |9 (BLT(B, )| 2 M/2, Oy(e) #6 vaely)

Now, the first and second terms are o(1) by Lemma (2.1)(iii) and Step 2 respectively.

Step 4. Given e, M >0, 3 6>0 and ng such that ¥ n > n,

(2.9) Plinf, ¢ 1 infyg, 5 5 [BYT(Bl0) + Ads, o) > M > 1- e

Proof. The polar representation of vectors, the Cauchy-Schwarz inequality
and the fact that Vv ae(0, 1) and v 8eRP, 6'Bl[F(B(a) + rA}l8, a) is a

monotone increasing function of r > 0, yields that for any é > 0,
. -l _l
mfIIBIIZ ) " By 9(B(a) + AY's, a)"

> inf, 0'B;19(B(a) + A8, a) > in 0'Bla(B(a) + A0 6, a).

>6Mg)= foy =1

Therefore, using Lemma 2.1(iii), for all sufficiently large n, the left hand side of

(2.9) is not less than

P[inf

a1 M= 0'B;l9(B(a) + A} 6, a) > M|

> Plinf, . Lo = [6'BlT(B(a), a) - 6 q(a)] > M + 1] - /2

>P[ ¢ inf €l, q(a) - inf G‘B;(lff(ﬂ(n), a)>M+ 1] - ¢€/2.

ael,o)=1

Now, using inf,, I, q(a) > 0 and inf, LiMo) = 1 0'B;l9(B(a), @) = Op(1), we

can choose § sufficiently large so that the above probability is not less than 1- €/2.
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Step 5. Given e, M >0, 3 n, such that v n > n,

(2.10)  Plsup, ¢ supy ¢ D, (o) |AdA-B(a)] - AJA (o) - Bla)]] > M] <e.

Proof. By Step 4, choose § and n large such that P| ()6(“) # ¢ for some o
in Iy] < €/3 . Then the left hand side of (2.10) is less than

Plsupy ¢ 1,59P ¢ p, (o) [ Al A-B(0)] - AlAy(0) - B(a)]| M, Oy(a) #4 Vael,]

+ P[Og(a) #¢ for some a in I,]
< Plsupg ¢ 1,594 ¢ 0, (o) [AXA-Bl0)] - AdA () - Blo)]| >M, Oyla) #46 vael,]
+P[supa€lasupAeo ||A [A-B(a))-Al[A,(a)-Bla)]]| > M, O4(a) # ¢V € 1] +e/3.

The first probability is less than €/3 by Step 3. The second probability is less than
€/3 by the choice of §. This completes the proof of (2.5). Assertion (2.6) can be

following the same lines by observing that N B;(l T(B,(a), a) ” = op(1). //

We now turn to the RR processes. To define these, let {c,;» 1<i<n} bea
triangular array of px1 vectors and let C, p be the matrix with rows C:li’
1 <i < n. Define sequences of weighted RR processes by

U¢(a) := Yela(a)-(1-a)), 0<a<l,
and an approximating sequencel of weighted empirical process
Ui(a) := {1 > Flla))-(1-0a)}, 0<ac<l.
For convenience we now rec;ll the following algebraic identity from (5.15) of GJ.
(210) 4 (a)-(1-a)=1I>Fla)]-(1-a)
{Ilg < Fla) + x;(Bul@) - (@) - I < Fl(a)]}
+ ay(@) I[Y,; = xX(Bu(a)], l<i<n, 0<ac<l
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This identity is useful in approximating US by Ui The following theorem gives

the desired asymptotic representation of Ufl
Theorem 2.2. In addition to (1.1.1), (1.1.2), (X.0) - (X.2) (A.7) - (A.8)

assume that (C.1) - (C.2) hold where,

(C.1) (C'C)! exists for all n >p. (C.2) n [nax ct.(C'C)le. = 0(1).

<i<n “ni

Then the regression rank-scores process admits the following representation:

(211)  B[Uf(e) - U(a)] = BACKAL Ag(Bula) - Bla)) qla) + o}(1),

and
(2.12) B;'Uf(a) = - ScJu(F (@) + o(1).
Consequently,
(2.13) B US(a) = - [S, - B{!C'XA!S,] J,,(F ! (a)) + op(1). //
Remark 2.4. Let § := B;'C'XA;!. Then from its definition § = D;!CtXD;l.
Hence by the Cauchy-Schwarz inequality § is bounded. //
Proof of the Theorem. Let E (o) : [ﬂ,, - B(a)]. From (2.10) we obtain that

B;'U5(a) = B'US(a) - g(a) q(a)
(B Eeyiflle < Fl(a) + xA{Ey(0) - 1l < FY(a)]} - 6Bu(er) q(a)
+ By Z i ) I[Y 5 = xti(By()]
= B{!U§(a) - § E,\(a) q(a) - Ry(a) + Ry(a), (say).

By Theorem 2.1, (2.6) and Remark 2.4, R| = op(1). By (C.2), sup,, e[, 1] "R,Z(a)"
= 0(1) almost surely. Hence (2.11) follows. The relation (2.12) follows as in the

proof of Lemma 2.1(i).
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Remark 2.5. As in Remark 2.1, the nature of the approximating process in

(2.13) is quite different from that in the i.i.d. errors case. The leading r.v.
(2.14) Z:=-[S. - B;!C'XA;lS,] J,,(F}(a))

in the right hand side of (2.13) is a product of a random quantity, independent of
@, and a nonrandom continuous function of a, which also depends on the Hermite
rank m. f m =1, then Z is a multivariate normal r.v. with mean 0 and

dispersion matrix proportional to
(2.15) B.!CY(I- X(X'X)X) R (I- X(X'X)"!X)CB,

where R is the dispersion matrix of (Mysm9-..my)'. For m other than one the
limiting distribution may not be normal. Also note that unlike the i.i.d. errors

case the limiting distribution may not be distribution free. //

4.3. L-estimators and regression rank scorces statistics.

In this section we derive the asymptotic distribution of smoothed L-
estimators based on RQ processes. For a finite signed measure v on (0, 1) with

compact support, an L-estimator of f is defined by
I.
(3.1) T,= gﬂ“(a) dv(a).

Note that for v with dv(a) = I(a <a <1-a)da, T, reduces to an analog of the

trimmed mean. The following theorem is an immediate consequence of Theorem 2.1.

Theorem 3.1. Under the assumptions of Theorem 2.1, with pu := v(0, 1),

(3.2) ATy - Bu- € }F-l(a)d”(“)] = 'Sxi']m(F-l(“)) (l-l(“) dv(a) + Op(l)' //
0
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Remark 3.1. Consider the linear model (1.1.1) where now {¢} are i.i.d. F.
Let 1 be an absolutely continuous function from R! to R! such that [ydF =0, 0
<f¢?dF<co and its almost everywhere derivative ¥’ satisfies 0 < [¢'dF,
[(¥")%dF <oo. Then from GJ, it can be deduced that if € has a continuous
positive density f, then the normalized M-estimator corresponding to ¥ and an L-
estimator corresponding to the measure » given by the relation dv(a) =
¥'(FY(a))/E¥’(€)da coincide asymptotically. The same phenomenon happen in

the LRD setup with the same choice of the measure v.

To explain this further, suppose that the m in (1.2.2) 1s also equal to the
Hermite rank m; of ¥(G(7)), i.e., m = inf{k >1: Ey(G(7n))H,(n) #£0} and 9 is
constant outside compact. Koul (1992) showed that under the assumptions that the
function z—E|y’(€ - z)-1’(¢)| is coutinnous at zcro, (1.1.1), (1.1.2) and (X.0) - (X.2),
(3.3) Ag(B - B) = [Ev'()] 1S Ju() + op(1),
where B is the M-estimator of B corresponding to % and J,(¢) :=

Ey(G(n))H,,(n). Note that with dv(a) = [E¢'(e)] " (F 1 (a)) da,

Im(F1(a)) ¢ H(@)dv(a)

O Sy s

1
= [E4/(e)] "R (n) J1(G() < Fl(0)) ¥(F (@) a(a) da = [Ey/(] Tun(w).
Hence from (3.2), we readily obtain that

Ax(Tn -B- cl[E'/"(f)]-lE[f'?/',(f)] ) = '[E’»/'I(f)]-l J(3) Sx + Op(l)' //

Next we turn to the Lnear regression rank-scores statistics as defined in

GJ. They are of the form V|, = Zc“ilﬂ)"i, where {l‘)ni} are the scores generated by
i

N |
(3.4) b .= -[b(a) di (a),1<i<n,

ni 0 ni
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for a function b from (0, 1) to R! which is of bounded variation and constant
outside a compact sub-interval of (0, 1). From (1.8) it is easy to see that, in the

location model, bni reduces to the familiar one sample score

-

Ri/n
=n I Db(a) da
(Ri -1)/n

ni

Theorem 3.2. Under the assumptions of Theorem 2.2,

(3.5) B (V5 - Te,b) = - (Sc- §S,)h + o,(1),
where
_ 1 .
(3.6) b:= i[)b(n) da and b :=-E{L(F(G(y)))H,,(n)}. //

- 1
Proof. Integration by parts yiclds that b ;= Db(0) + [4;(a) db(a). Hence,
0

B [0 db(e) = B! Sy~ B oy 0) + J(1- aldbla)

0

S —

= B} (V¢ - Ye,b).
1

Therefore (3.5) follows from (2.13), since by Fubini’s Theorem

:I)-L,.(F“(a)) d(a) = - E{b(F(G()))Hu(n)}. /)

Remark 3.2. Obscrve that the random coefficient in the leading term on
the right hand side of (3.5) is the same as in (2.14). In general, b depends on the
unknown G. This in turn implies that unlike the 1.1.d. errors case, the sequence of

r.v.’s {B'cl(Vfl - chil_))} is not asymptotically distribution free. (a.d.f.).
i

However, if G is strictly increasing with d.f. F, then G = F1® and in this
case m =1, b = - E b(®(7))n. Hence in this case the r.v.’s are a.d.f. In order for
this result to be useful for testing about the slope parameters f it is necessary to

estimate 6 that appears in B, and R in (2.15). Let 9,, be an estimator of 8 such
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that (6, - 6)loge n = op(1). The estimator of 6 given by Yajima (1988) is known
to satisfy this condition. Let ﬁc and R denote B, and R respectively after @ is
replaced by 8, in these entities. Then, the sequence of statistics r!/? B! [VE -
Ecnil_)] converges in distribution to a N[0, I, ,] r.v. and this can be used to test
i

different hypotheses concerning S.

4.4. Asymptotic uniform linearity of lincar rcgression rank-scores statistics.

residuals. These results are similar to those obtained by Jureckova (1992a) for the
i.i.d. errors case. They are useful for testing sub-hypotheses and the estimation of
some slope parameters when others are treated as nuisance parameters. See

Jureckova (1992b) for other applications of the AUL results.

Accordingly, let {r ., 1 <i<u} be a triangular array of px1 vectors and let

ni’

Ry, xp be the matrix with rows rltli, 1 <i<u satisfying the following two conditions:

-1 tebe Fan ‘ ] -1
(R.1) (R'R)! exists for all n > p. (R.2) 1rllsd)i(s ) " rfﬁAr " = o(1).

Let Y ;,:=Y,- r:‘liA;lt, 1<i<n, teRPand Yy := (Y 10, Yoor oo Y b
Let 9(B(a), o, Yyu ), Brna(@ Yoe )s Bule, Y,y ) denote 7(B(a), @), Bpg(@), Bala)
etc. respectively, when {Y .} are replaced by {Y,;} in their definitions. The
following lemma is similar in spirit to Lemma 2.1 and Theorem 2.1. It gives the
asymptotic representation of the regression quantiles processes based on the
residuals {Y;;} and the proof is similar to that of Lemma 2.1. Here 6,(1) (O(1))
denotes a sequence of stochastic processes that converge to zero (bounded) in
probability, uniformly over a<a <1 - a, lItll<L, v ae(0, 1/2], L €(0, x). Also

racall the notation op(1) from Theorem 2.1.
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, (1.1.2), (X.0) - (X.2), (A.7), (A.8), (R.1)

(&7

Lemma 4.1 Assume that (1.1.1
and (R.2) hold. Then

~—

(41) | BlF(B(e), &, Yyo) - T(Bla), @)] - BYX'RA g(a) | = 5,(1),

(42)  sup{ | B[F(B(a) + Ails, o, Yyp) - T(B(c), @, Yyy)] - 3 q(a) | }= op(1

where the above supremum is taken over a<a <1 - a,Isi<K, tl<L.

(4.3) Ax[Boq(as Yo) - B(a)] = - ¢ () {S:Jiu(F (@) + BYX'RAt q(a)}+5,(1),
(4.4) Ay [Bna(es Yoo - Bulo, Y] = 5,(1),

(4.5) Ax[Bu(a, Y,) - Bla)] = O,(1). /]

The following theorem gives the main result of this section.

Theorem 4.1. Assume that (1.1.1), (1.1.2), (X.0) - (X.2), (A.7), (A.8),
(R.1), (R.2) and (C.1) - (C.3) hold, where

(C.3) C'X =
Then
(4.6) B U5(a, Y,,) = BlUG(a) + BIC'RA;t q(a) + 5,(1).

Moreover, if the score function b s of bounded variation and constant

outside a compact subinterval of (0, 1), then V0 < L < ~,

= op(l)- /1

1
(47 supypeg [BEVE(Yad) - Vil - BICRAY ¢ [q(a) db(a)
- 0
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Proof. Let E (a, t) := A, [ﬂn(a Y, i) - B(a)]. From (1.6), for 1 <i<n,

a.m(a Ynt) - I[Ymt > xm 'BH a Ynt ] + am a, Ynt) I[Ymt xm :Bn((Y Ynt)]

=1-1Ig <Fla) + x . AlE,(a, t) + ' A;lt]
+ a0, Yy 1Y 5 = xm Bula, Yy
Hence, B;l[flf,(a, Yoo - B;lfjf,(a)]
=-B;1<i;cni{1[eigp- a) + x\ . ALE, (a, t) + 1t AT < Fl(o) + x A E ()])
+ B! 2 nifnil e Yoo M50 = x; b Bulo, Y] - B E eyl ) I[Y,; = xt; Bula)]
(4.8) = - Ry(o, t) + Ry(a, t) - Ry(a), (say).
By (C.2), Ry(e, t) = 5,(1) and Ry(a) = of(1). To handle R,(a, t), let

T(a, s, t) == BT, {Ile; <Fla) + x5 AL s + 18 A ], s, teRP.

1

-th

Applying Theorem 1.2.2(i1i) p times, ith time with Y, = ) component of

Dlc., 1<j<p, and ¢..

c “ni

teRP,
T(a, s, t) - T(c, 0, 0) - B Z(‘ x Al B Zcm N t.—op(l)

ui ni

= xmA s + rmA t to conclude that ¥ ae (0, 1/2], s,

ni—

In view of (C.3) and an argument similar to the proof of (2.3.2) yiclds that
(4.9) sup{T(a, s, t) - T(a, 0, 0) - BC'RA;! t q(a)} = op(1),
where now the supremum is taken over a<a <1 - a,Isi<K, It <L. Hence, (4.5)
and (4.9) yields that
(4.10) B! zi:cnil[ei <Fla) + XX A{E, (0, t) + L At - T(a, 0, 0)

- BIC'RAM q(a)=5,(1).
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By a similar type of argument,

(4.11) B! T, lle; <Fl(a) + x4ALE,(0) - T(e, 0,0) = of(1).

ni

Combining (4.8), (4.10) and (4.11) to get (4.6). Assertion (4.7) follows from

(4.6) by using integration by parts and the assumption that 3¢ ;= 0.
1
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