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Abstract

Resampling methods for linear models

By

Krzysztof Podgorski

In this dissertation we study resampling residuals by random permutation in

linear regression with exchangeable errors. For given observations we con-

sider the resampling distribution obtained by this method versus the distri-

bution of errors conditional on its order statistics. We observe that with high

probability both are approximately equal on contrast vectors after suitable

normalization. The results remain valid if we consider the reduced regres—

sion model. This model comes from the original one by removing those data

for which the corresponding errors take extreme values. We obtain general

conditions under which confidence regions produced by such methods are ac-

curate. No moment/distribution assumptions on the underlying errors other

than exchangeability are required. We adopt the term seamless resampling

to indicate this robustness. In the absence of finite second moments random-

ness of the limiting bootstrap distributions has been considered as a failure

of the traditional bootstrap and no practical meaning has been given to the

phenomena. For our method this type of randomness is still present in the

limit but it has clear probabilistic interpretation as a conditional distribution

which can be used to e.g. obtain confidence sets. We study this phenomena

in detail for the case of independent errors with distribution from the domain

of attraction of stable laws. We have developed computer software in which

we implement these methods and provide convenient tools for the analysis of

resampled data in general.
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Part 1

Theoretical Results



1.1 Introduction

This paper considers a multiple regression model

(1) Y = Xfi + e,

where X is an n x d finite matrix of real numbers, fl is a d x 1 vector of real

numbers, and 6 is an n x 1 vector of exchangeable random variables.

For reasons that will be discussed later we will also consider reduced

regression models which come from (1) by deleting some data and the corre-

sponding rows of the design matrix. To describe this submodel, let R; be the

rank of 6.- among (e.-)?___l and M be a subset of m integers from {1, . . . , n} with

cardinality m. For any n x 1: matrix A by AM we will denote an (n — m) x k

matrix obtained from A after deleting those rows indexed by i whose R,- is

in M. With this notation for any M we define a reduced regression model

by the equality

(2) YM = xiv/3 + 6M-

Notice that for different vectors of errors 6 with a fixed set 11/! we can have

different reduced models (2) and thus the design matrix XM becomes ran-

dom.

A k x 1 vector v of real numbers is called a contrast if the entries of 2) sum

to zero, equivalently if the Euclidean scalar product 12- 1 = 0 where 1 denotes

the vector of 1’s in IR" (we will not indicate in notation dependence of l on

a dimension k). Throughout the paper we will assume that XM has rank d

and also that the vector 1 is in the column space of X and thus of any XM



for a subset M of {1, . . . , n}. Without losing generality we can assume that

1 is the first column of X. Then contrast vectors come to (2) in a natural

way. Namely, for i > 1 the least squares estimators fl.- of fl.- are of the form

5,- = V,- - YM for a contrast V.- depending also on M. Indeed, V,- is the i-th

row of the matrix M = (XEXMYIXL and MXM = I. This implies that

any row V.- for i > 1 is orthogonal to the first column which is assumed to be

equal to 1.

Ordinarily one is interested in approximating the joint distribution of v - 6

for several 2) since it is equal to the estimation error, i.e. v-6 = (v-Y)—(v-Xfi).

For i.i.d. errors with finite variance, the central limit theorem is popularly

used for this purpose. Bootstrap methods apply to this case as well (see:

Efron (1979), Freedman (1981), Wu (1986)) but how are we to know if the

underlying assumptions have practical application to the data at hand? See

LePage (1990).

Instead approximating or estimating the unconditional distribution of 12.6,

we propose, without moment assumptions, to estimate the sampling distribu-

tion of v - 6 conditional on the sigma field .7 generated by the order statistics

of the coordinates of 6. For this purpose we will use randomly permuted

residuals. To be more precise let us introduce the following notation. We

will use 2) - 6']: to denote the above conditional distribution. Denote by E‘L

the vector of residuals Y - I”, where I” = Y/X is the projection of Y to the

column space of X. Let 7r denote a uniformly distributed random permu-

tation applied to the coordinates of n-space. Suppose that the distribution

of 1r, conditional on 6, is also uniform over all n! permutations, so that 1r

is independent of 6. We will observe that, provided d/n is small, 1) - 1r6i|Y

3



provides with high probability a close approximation of v - 7r6|.7-'. Notice that

the latter distribution is equal to v-6|.7-' since 6 has exchangeable coordinates.

Proposal 1 For any finite set of contrast vectors {vb k S I}, estimate the

joint f—conditional sampling distributions of contrasts vk - 6 by the distribu-

1
tions of vk - 1r6 conditional on Y.

This proposal provides strong support for the approach taken by Freed-

man and Lane (1983) who develop descriptive tests of linear hypotheses. To

quote from them, “our reference sets are derived by permuting residuals, and

our significance level is a descriptive statistic rather than a probability.” It

will be seen below that v - Tl'f'LlY is an estimate of a conditional distribu-

tion insensitive to the moment assumptions. Thus it is possible to achieve

robust estimation of the conditional sampling distributions of least squares

estimators. Previously only M-estimators with bounded score functions were

known to have this property, see Lahiri (1992).

As we will see Proposal 1 can be applied to a quite general class of

exchangeable distributions. However sometimes the recovered distribution

v - 6|]: itself will posses certain unpleasant properties when some coordinates

of 6 will take relatively very large values. This may happen for example for

long tailed distributions of 6. By our result also the distribution v-7r6i IY will

inherit this. It can happen, e.g. the example in Section 1.3, that confidence

regions will not be in the form of single intervals but sums of widely separated

intervals. In such a case to “improve” the distribution of interest it would be

reasonable to exclude observations with outsized disturbance by errors and

then apply our method of resampling by permutation to this reduced model.



Our results extends also to this situation.

Let us describe this in a more rigorous way. We shall fix a set It! of those

values of ranks (R.-)?=1 for which we have decided to exclude corresponding

observations. For example by taking M = {1,n} we will exclude two ob-

servations: with the smallest and the largest error. Thus we will consider a

reduced model as defined by (2) and by 6}" we will denote its residuals i.e.

6t = YM — YM/XM. We will use the same letter 7r for a random permutation

in R""" (again disregarding dependence on a dimension). We will denote

RM = {R5 : i E M} In the problem of estimation of coefficients 5 we will

use contrast vectors being rows of (XLXMY’XL and the matrix XM is now

dependent on values of RM- For that reason we will allow a contrast vector

V(RM) E R"‘"‘ to be dependent on 6 through its order statistics R16(- Fur-

ther let fM denote the sigma field generated by the order statistics of 6M and

by RM while GM is the sigma field generated by YM and R[4- With this no-

tation and conventions we will find that if the ratio d/(n — m) is small then,

as before, the distribution V(RM) - “MGM approximates the distribution

V(RM) - GMIfM. This can be stated as the generalization of our proposal.

Proposal 2 For any finite set of contrast vectors {V ;k _<_ l}, which may

dependent upon RM, estimate the joint fM —conditional sampling distribution

of contrasts Vk - 6M by the joint QM -conditional distribution of Vk - «61%,.

Notice that RM provides information concerning which data might be

excluded from the model and YM are observations remaining after this ex-

clusion. Thus QM represents information which should be given to us to

consider a reduced model based on extreme values of errors.



1 .2 Main Results

We assume the notation of the introduction. As before, 6 is assumed to has

exchangeable coordinates and to be independent of a random uniformly dis-

2 we will denotetributed permutation 7r. If u is an k x 1 vector then by 21,2:

the arithmetic average and the vector of squares of coordinates, respectively.

By 3?, we will denote the (k — 1)—divisor sample variance of u i.e. 3,2, =

km/(k — 1). Our goal is to show that for any contrast vector V(RM)

dependent on ranks RM the distribution V(RM) - “MGM approximates the

distribution V(RM) - 6M|fM. Here as before QM = 0(YM, RM) = 0(6M, RM).

In all that follows for a random variable Z or a sigma field H by EZ , B” we

will denote conditional expectation with respect to Z and H, respectively.

Also using Z[71 we will mean both conditional distribution of a random vari-

able with respect to a o-field 'H and an example of a random variable with

this distribution allowing context to distinguish between these two concepts.

This convention will simplify notation later when we will consider weak con-

vergence of conditional distributions.

First notice that for a E 23"-", we have (6M,RM) rd— (06M,RM). Here

2,, denotes the set of all permutations of coordinates of vectors in IR". To

see that let consider an event {6M 6 A, RM = RM}. Define a permutation

6 E 2,. such that it permutes 6,- for 7'.- ¢ M the same way as a and leaves 6;

unchanged for r,- E M. Then RA:,(&6) 2 RM“) on a set {R,{,(6) = By} thus



by exchangeability of 6 we have

P(€M(€) E ARM“) = Rn) = P(€M(56) E A.Rn(5€) = RM)

= P(06M(€) 6 «4.3151(6) = RM)-

This implies that V(RM) . emf," é V(R,,—,) - 7r6MIQM. Indeed, for each

bounded and measurable function h and a random permutation of coordi-

nates in R””" independent of 6 we have

E’thmm-em) = {1,—55,5“ Z hum-nee...)
' UEEn—m

= Emmi/(Rn) - ml)

= EGMMl/(RM) ‘ 7r6M).

where in the last equality we use that fM is a sub-o—field of QM and the

fact that the last conditional expectation is fig-measurable. Moreover both

V(RA-,) - 7r6Ai4|QM and V(R,;,) ' 6M|fM are centered at zero since, by indepen-

dence of 1r and 6 we have

Eg”(V(RM) - net) = EQWVW) ' 6i!)
— 1 g

[r _ .1.

— m
E M deg-nfai (RM) 2 6M)

: EQM (E(7IV(RA_I))|RM=RM . 6:2!)

:0,

where in the last equality we use the fact that E(7ru) = a1 = k‘1(u - 1)1 for

any k x 1 vector u and thus E(7ru) = 0 if u is a contrast vector. Similarly



we have

E’M(V(RM).7reM) = EfM(7rV(R,—,).eM)

‘—“ Eif-M (E(WV(RM))IRM=RM ° 6,11)

= 0.

The main result can be stated as follows.

Proposition 1 Let A/I _C_ {1, . . . , n} have cardinality m. If 1 is in the column

space of XM which has rank (1 and 7r is a random permutation of coordinates

in Rn‘m then for each contrast vector V(RM) we have

E9M(V(RA-,) - 7r6M - V(R,,-4) - 7rd,)2 _ d—l

ECHO/(RM) - 7r6M)2 _ n — m -1 '

 

Ef

For the proofs of this and other results in this section see Section 1.4.

As a consequence of the above result we have that the distributions

V(R,g) - 6M|fM and V(RM) - 7r6jt,|QM are approximately the same when

scaled by EfM(V(RM) - 6M)2 provided that d/(n — m) is small. This follows

directly by Markov’s inequality applied to the second moment which stands

in the denominator of the left side in Proposition 1 (see also the proof of

Proposition 2; Section 1.4). One can use as well the Mallows metric (12 as

a measure of this closeness (see Bickel and Freedman (1981)). The result is

interesting by itself. For example any picture illustration of a distribution

is in general invariant on rescaling. But when no moment assumptions are

involved the scaling EfM(V(RM) - 6M)2 may diverge to infinity with n. In

such a case we need more arguments to apply our methods of resampling to

confidence regions.



The next result explains the practical meaning of our result when we do

not use the scaling. For the sake of simplicity of notation we will state it for

the case M = 0 but it can be restated in the obvious way also in the general

case. For a given contrast vector v, let

7(6) = E‘(v . 7r6 — v - r6i)2/E‘(v - 7T6)2,

C1=‘/Ef(t’° €)2,

where in the latter we do not show explicitly dependence on the order statis-

tics of 6 and let

 

C2(Y) = JE‘(v - 7T6‘L)2.

Denoting by F1, F2 the distribution functions of v'€|f, v- 7T6‘L |l", respectively,

we then have the following relations.

Proposition 2 For any positive 6 we have

  

 

d -— 1 d —1
< -l

(3) P(7(€)> "_16)_ n_ 6 .

(4) as) e {no — 0.6) — new. F2(417 + 6.6) + WW2]

for all a: 6 IR and

f 2 / _ ”_d 2

E C20 )_ n—1C"

We can use Proposition 2 to examine accuracy of using the distribution given

by F2 obtained by resampling residuals instead of the unknown conditional

distribution given by F]. For example (4) allows us to assess a value of the



confidence regions based on F2 as approximations for corresponding confi-

dence regions based on F1. More precisely, we should adjust the first ones

by taking their halo of thickness C16 and then their significance will differ at

most by 7(6)/62. By (3) the random variable 7(6) is small with high proba-

bility. Thus the accuracy of proposed approximation of F1 by F2 depends on

how large C16 is. Suppose for example that we would like to use quantiles of

F2 for obtaining confidence intervals. Then we want C16 to be small relative

to these quantiles and thus to lengths of confidence intervals. In the next

paragraph we will explore this problem in more detail.

For any p 6 (0,1) let Kri'Kri denote p-quantiles of F1,F2, respectively.

By (3) for any 60 there exist (20, a subset of underlying probability space,

with P(Qo) > 1 — 60 and a constant M > 0 dependent neither on n nor on

d such that on {20 we have

7(6) 3 Add/n.

By (4) on {to for each 6 > 0 we have

Md C1 Md C'1

F-z(.l‘- ——\/—n:) - 6,F2 (1' + —T)+ 6]

for all .1: 6 IR. This implies that for any p,6 > 0 such that p - 6,12 + 6 still

F1(.T) E

 

are in (0, l) we have the following relations between corresponding quantiles

. M_d C1_ M__c_l C__1

Thus it would be desirable to have CIA/n, at least asymptotically, small

relatively to K;. We can say equivalently that we are interested in the cases

10



when quantiles of M17 W" are convergent to infinity, where

= (v-1r6)|6 .

Jew-m)?

We will examine this question for errors sampled independently from a dis-

(5) W.

tribution belonging to the domain of attraction of a symmetric stable law.

Let G(a:) = 17‘°1[1,°°)(:r) and for any n E N let (UM)?=1 and (6i)?=1

be independent sequences of i.i.d. random variables such that Um.- has the

uniform distribution on (0, 1) and P(6,- = :lzl) = 1 /2. Let us define a sequence

6,, = (6,”)?=1 of errors by the equality

(6) 6n,i = 6iG—1(Un.i)= 6tUn—i/a-

It is well known that the distribution of 6",,- belongs to the domain of attrac-

tion of a symmetric stable law with index of stability 0. In fact for 1' > 1

we have P(|6,,,,-| > 1') = 1"“ (see also LePage (1980)). Although we will

assume here this special form of errors by application of invariance principle

of the type obtained by Kinateder (1990) it is possible to extend our results

on an arbitrary law from the domain of attraction of a stable distribution.

We will also need a special form for contrast vectors. Let v : [0, 1] —* IR be a

continuous function such that. [01 v(:r)d.r = 0. Define a sequence v" = (Um, )?:1

of contrast vectors by

i 1 " k

(7’ - " (a) ' a 2; v (5)-

To express the limit distribution of Wu = (vn - r6")|6,,/(E‘(v,, - 7re)2)1/2

we will need a notion and some basic properties of the stochastic integral

11



of a function v with respect to a Levy motion. For details see for example

Schilder (1970) or Kuelbs (1973).

By a Levy motion we mean here a stochastic process (A,),E[0,1] continuous

in probability with independent and homogenous increments such that for

any t 6 [0,1] a distribution of A, is symmetric stable with characteristic

function ¢,(u) = exp(—t|u|°‘). Then the integral fol vdA is defined in a usual

way by as a limit in topology of convergence in probability of simple functions.

A random variable fol vdA has a stable distribution with the characteristic

function ¢v(u) = exp(-— fol |v(x)|°'d;z: |u|°). There exists a version of Levy

motion such that its trajectories with probability one are right continuous

and left limits exist at any point t 6 [0,1] (cadlag) (cf. Doob (1953) p.422).

Thus we can define a o-field J generated by values of jumps of trajectories

of this process. We can do it, for example, by ordering values of jumps of a

given cadlag trajectory in a sequence since the number of jumps exceeding

given positive value is finite. Then J is just a o—field generated by such a

sequence. By 1" = (I‘,),-€N we will denote arrival times of a Poisson process

with intensity one. In this situation we have the following limit behavior of

W...

Theorem 1 For each continuous function v : [0, 1] —-> IR with probability one

the conditional distributions

_ v,, - «6,,

- \/E‘~(v,, ~1r6,,)2

converge weakly to the distribution

[,1 vdA

\/Z [01 v2(:1:)d:r

We 6..

 

 

 

12



where Z is J measurable and Z 4 23:1 [.72/0.

Remark Proposition 1 implies that the joint distribution (vn - net,” -

ren)|6,, scaled by ‘/E‘"(v,, - 71'6")2 converge to (f0l vdA, f0l vdA)|j scaled by

\/Z fol v2(:r)d:r.

As a corollary we obtain desired property for the quantiles of the distri-

butions of \/7_i Wn.

 

 

Corollary 1 For a non-zero continuous function v : [0,1] —-> IR the quantiles

of J17 W", different from median, converge to plus or minus infinity with

probability one.

For the proofs we refer again to Section 1.4.

The special form of contrast vectors assumed above is in some sense es-

sential for obtaining a result of this type. We will see that in some extreme

cases i.e. for a very unusual choice of contrast vectors, the quantiles con-

verge to zero. In such a case usage of quantiles of F2 as approximations of

corresponding ones for F1 becomes worthless.

Example 1

Assume that our contrast vectors are of the form v,, = (m, . . . , Up, 0, . . . , 0) 6

IR", where k S 72 does not depend on n and (v1, . . . ,vk) is a fixed contrast

vector. Further let 6,, = (61,...,6,,), where £5, i E N are i.i.d. random

variables such that s.,,/./E diverges in probability to infinity. In such a

case vfl - realen converges in distribution to the same limit as v,, - 6;|6,,,

where 6; means random variable obtained by traditional bootstrap i.e. by

resampling with replacement form (61, . . . , 6”). It becomes more clear if we

13



notice that because of the special form of v,, permuting 6,, in v,, - 71'6” is

equivalent to sampling without replacement k-element sample form a pop-

ulation of n-elements (we have here k fixed and n going to infinity). Thus

the distribution of vn - r6n|6n converges weakly to the distribution of V). - 6k.

But assumption that SQ/fi diverges in probability to infinity implies that

fi/JE‘(v,, - ire")2 will be convergent to zero so do the quantiles of fi W...

 

See Section 1.4 for more rigorous arguments.

As a specified example of a random variable satisfying the required con-

dition one can consider the errors given by (6) for a 6 (0,1). Indeed, for

such 6 we have

 

n ‘2 O n —i O

i _ i=1 Pi / —2 _ i=1 (Siri / —-3

n I‘n-l/l Fn+/l

(8) —2+2/o (Pu-H )2/0 Zn: l—v-‘Z/o

= n _ i

n i=1

1" 1 1/0 n

_n-3+1/0 (£22.) Zéirfl/a-

i=1
n

We are using here the well known fact that

(Pl/Fn+la - - - a Fn/Pfl+l) g(U1.na - - - 9Un,n)-

By Law of Large Numbers I‘ ,, /n converges as. to 1. The series 2,921 6.1",— 1/a

and 2:21P?” are convergent as. to the continuous distributions. Since

n‘2+2/°‘ for a E (0, 1) diverges thus in this case with probability one sf” /n is

convergent to infinity.

However in some cases our approximations will be justified regardless of

the form of contrast vectors. Namely, this will happen if S... /,/77 is convergent

14



in probability to zero. Indeed, by simple application of Proposition 1 we can

obtain the following corollary. In its formulation we do not indicate explicitly

dependence of sf” as well as F1, F2 on n and also it should be remembered

that F1, F2 being conditional distributions are dependent on a random value

of 6.

Theorem 2 If sf/n converges in probability to zero then for any 6 > 0 and

for sufliciently large n on a set of probability not less than 1 — 6 we have

F1(.’L‘) 6 [F2(.’II — 6) — 6,F2(.’E + 6) + 6].

for all a: 6 IR.

Notice that the assumption required in this result is satisfied for errors in

domain of attractions of stable laws when a 6 (1, 2]. In Section 1.4 there are

given arguments for errors given (6) but by series representations of stable

laws given by LePage (1980) they can be easily extended to the general case.

Theorem 1 and Theorem 2 validate approximation of the unknown dis-

tribution of errors of contrasts by permuting residuals under special assump—

tions on distributions of errors. The failure of this approximation in Ex-

ample 1 is due to the asymptotically pathological choice of contrast. At

this moment we do not know any example with an essentially different type

of contrasts for which applicability of Proposition 1 for this approximation

would not be valid.

We will end this section with the following result, uniform with respect

to numbers of contrast vectors.

15



Proposition 3 Under the assumptions of Proposition 1 and for contrast

vectors VAR“), k =1,...,r we have

E722=1E0M[(Vk(RM) ' WGM) _ (Vk(RM) ° “(it )12 = d -1

22=1Eg“(Vk(Rn)°W6M)2 n - m -1'

 

1.3 Examples

Example 2

We now present a simple example which illustrates resampling by permu-

tations and the advantage of using a reduced model. The vector of errors

considered here has one value dominating the other ones and typifies what

can happen when the distribution of errors has a long tail (in particular when

our errors do not satisfy the usual assumptions about existence of moments).

Consider an n x 2 matrix X defined as follows

1 ll

1 1
X:

1—1

1.1—1‘  
We assume that n is even and the columns X1 = l and X; of X are orthog-
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onal. Suppose that our actual errors consist of an n-vector 6 given by

  

 

  

" 1

a

0

e =

In 0 d

One can notice at once that

1-6 Xz'f

6/X = - 1+ ——- - X2

lllll2 ||X2H2

P 2a/n .

2a/n

: — 1+ — - X2 = ,

n 0

.. O .I

and thus _ q

a -— 2a/n

-2a/n

fi = —2a/n

0

0  I- a:

Let us take for our contrast vector v the second column X2 of the matrix X.

One can easily observe that the distribution v - 6|? is concentrated on two

17



points a and --a with the equal weights 1 /2. We will compare three differ-

ent methods of estimating this distribution: the resampling by permutation

of residuals, the traditional bootstrap with replacement and the normal ap-

proximation. On Figure 1 we present the distribution of interests itself versus

first order approximations for n = 625 of distribution obtained by resampling

residuals while on Figure 2 we present first order approximation of the dis-

tribution obtained by applying the traditional bootstrap with replacements

and the normal approximation. See Appendix 2.5 for details.

If we consider the reduced model (2) for M = {n} and if the residual

a — 2a/n is large compared to residuals —2a/n we will delete the first row

from our model and then we will obtain 6M = 6]} = 0 and thus resampling

of residuals gives us a perfect estimate of the distribution of errors.
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19

The normal approximation



Example 3

As a second example, assume that errors are made from the errors in the

first example by adding a sample vector from Gaussian white noise with a

small deviation relative to the value of a. In our numerical simulations we

will take it equal to a/\/1_i. Let us take as before M = {n}. Figures 3

and 4 present the conditional distributions of error of the contrast in the

reduced and unreduced model. It illustrates the advantage of the reduced

model. Although approximations in both cases are accurate, in the case of

the unreduced model the confidence region which should be used consists of

two separated intervals around —a and a while in the reduced model one can

consider the natural confidence interval around the origin.
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based on the maximal error after deletion

Figure 4: Conditional distributions in the reduced model
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Example 4

As a third illustration we have made computer simulations which compare

resampling permutations of errors vs resampling permutations of residuals

in a linear regression model fitting a cubic polynomial. Consider a 101-

dimensional symmetric a—stable error 6 with independent coordinates and

a 101 x 4 matrix X obtained by substitution of equally spaced x—values in

l 2 13 __ J'-
,:1: ,x ), so :rm- — LL,-

j = 1,2,3,4, 1:,- = (i — 1)/101, i = 1,...,101. We have used the Chambers

the interval [0,1] to the vector of monomials (11:0,:1:

et. a1. formula (1983) to generate stable errors by pseudo—random numbers.

Since our result does not require any assumption on moments of errors we

have observed three notable cases: the normal distribution (a = 2), Cauchy

distribution (a = 1) and a = 0.8. We first compute three 101 x 1 row

vectors v,, i = 1,2,3 of the matrix (XTX)‘1XT as well as the matrix of

projection on the column space of X. Then, by generating pseudo—random

permutations 7r we get a sample of two hundred errors v,- - 7r6, residuals v,- - rel

and projections of errors 2), - r6, i = 1, 2, 3. Visual comparison of the values

of these samples is made on parallel plots. Since scale changes in 6 apply

equally to v,- - M, v,- - 71'6‘L ,v, ~ fit? it is the relative comparisons between these

plots which are important. Four parallel lines represent the coordinate axes of

four dimensional space and any point of this space corresponds to a polygonal

line which joins values of the coordinates on each axis. For convenience all

polygonal lines are started at the origin. For details concerning parallel plots

see Chernoff (1973).

In these parallel plots we see a very close agreement between the multivari-

ate sampling distribution of {'v,--7r6,i = 1, 2, 3} and that of {'Ui'7ffJ','l = 1, 2, 3}

22



conditional on the given 6. As might be expected the agreement is even bet-

ter than suggested by the sampling distribution of {v.- - r6, i = 1,2, 3}. For

this example(d — 1)/(n - 1) = .03.

In Part 2 we will give more detailed description of numerical methods

and procedures we have used here.
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Figure 5: Results of resampling, Gaussian case
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1.4 Proofs

Variants of the following lemma, in the special case when V is not ran-

dom, are apparently well known Chernoff (1973) Section 4.1; Freedman and

Lane (1983), pg 296, Lemma 1). Although formulated here in probabilistic

language it illustrates rather a geometrical property of the group of permu-

tations. We present the simple proof of this result.

Lemma 1 Let V be a random contrast vector. Assume that V, a random

n x 1—vector 6 and a o-field 9 all are independent of a random permutation

7r. Then

      Eg<v - :5)? = Egu

PROOF. We have

Eg(V-{)2 = E? )3 E°<V~9>(v-ag)2/n!

062"

= Eg(: V252{em + Z V1:’lb€a(a)€a(b)) /”'

a¢b

)a¢b a¢b

= E9{uvue+—mvn2— (v 1M]? -n€2)}.

= EG((:(E:1VO2){_2+1)(ZVan711(WXZCa(a)€a(b))))

where 2,, denotes the set of all permutations of coordinates of vectors in IR".

Since (V - 1) = 0 we obtain

n

—1

 Eg(V - we)? = E, (llVll'zn ('52 — a?) = Eanvuaszn



The above lemma and some elementary properties of conditional expec-

tation are the only tools in the proof of our main result.

PROOF OF PROPOSITION 1. By Lemma 1 we have that

E... [(vme) - W) — MRI.) - «emf = Ewe/(Re) - ”EM/XM32

= E9“(||V(RIII-s“?site.)

(93 = EQMIIVI(.RI‘I33II2SEM/XM

where the last equality follows from measurability of 33M /XM with respect to

GM. By similar arguments we have also

(103 EQM(V(RM 3 7r€M32 = SEHEQMIIV(RN133”2

Using the fact that (6M, RM) ; (06M, RM) obtained in Section 1.2 and since

both 33M and E‘Ms2m:m" are TM measurable we have

2

fEGMkI/(Rm-«em-(vmm new] = EfsEM/XM
EQM(V(RM)

° W6M)2
83M

EfEstgu/XM

2
36M

 

(11) =
 

_ .FMS

— E stun/X1“

= Ems?
SJMM/Xu

The proof can be completed using an equality

E’s3x=«d—nMn—ne3
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obtained by Box and Watson (1962); Section 4.1 in their study of F—distribut-

ion approximations for sf/x/sf with non—normal errors 6 and also mentioned

by Freedman and Lane (1983); see (21), p. 267. In our case it may be

obtained from Lemma 1 by expanding in an orthonormal basis {ua} of XM

with u1 = 1/(n — m) as follows

1

Ems?SnM/xM = —.—E‘" (IIWfM/XMII2 " (MM/KM '132/(71 — m3)
n — m —

1 d 2
= —— “2:1(ua-1r6M)2 — (6M - 1) /(n — m)

n — m —1E 01:

= ———ZE‘“(u -27r6M)

n — m- al__2

= ———1——dZ||ua| 232

n — in - 1 0:2

d—l 2

= ———s

n—m—l ‘M'

where Lemma 1 was used in the third equality.

CI

Likewise we can obtain the result on the relative second moments of

difference of 7I’€M — Mil. For simplicity of the notation let us formulate it in

the case M = 0. If we denote by X e l the orthogonal complement of 1 in

the column space of X we have then

E‘||(7r6 — 7r6l)/X e 1”2 _ d -1

E‘||(7r€)/X 9 1||2 — n -1'

Indeed, for any vector u we have by the definition of 3,2, that 3?, = Si/xei and

||u||2= (u 1)2/n+((n—1)s2. Thus

E]:  

Ef||((7r6—7r6 )/=X91||2 (n—l)EfSim/v): (n—1)Ejrs29e/x
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and

Ef||(7r6)/X e 1”2 = (n —1)Ef32.
C

PROOF OF PROPOSITION 2. For any random variables Z1, 22 with marginal

distribution functions F1,172 and for each 6 > O, C > 0 we have that

  F2(x — ca) — P (Z2 E Z‘
— Z

26) s F1(x)5F2(:r+C«5)+P(Z2C ‘26),

which applied to Z = v . 7T6, 22 = v . 71'6‘L, P = P‘ and C = C1 (notice that

Z1|€ = v - elf, Z2|€ = v - 7r6i|Y and C1 = ‘/E‘Z12) together with the Markov

inequality

'22 — le E‘IZ2 - le2 _2
P‘ —— > 6 < 6

( Cl — _ 012

gives us the second part of Proposition 2.

From the Markov inequality applied to non-negative 7(6) we get

P(7(6) > <5) S E 7(6)/<5-

Thus the first part of Proposition 2 follows from Proposition 1 since it implies

that E 7(6) = (d — 1)/(n — 1). The third part of Proposition 2 follows from

Proposition 1 if we notice that it remains valid when we replace FL by 6 — FL

and d — 1 by n — d. In fact it follows from (11) that

2

Eff-36(1) ' “filz = Ersc/xi

C? S? ’

 

where Xi denotes orthogonal complement of X. So the expansion in or-

thonormal basis in Xl gives us, as before, that Efsf/xi = 33(71 — (1)/(11 - 1)

(notice that basis will consist of n — d contrast vectors).

[:1
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We will precede the proof of Theorem 1 by some considerations on con-

structions of series representations of stable laws and Lévy processes as in-

troduced by LePage (1980). Let u = (tn-)3; be any sequence of numbers

belonging to (0, 1). We will define

I?(U,t) = 1{s€[0,l]:u15[ns]/n}(t)

and for 1 < i g n, by recursion,

1‘ (u,t) : 1{8€[0»Il=U-’- 1:1 12(U»t)S["81/(n-i)}(t)'

It is not difficult to verify the following list of properties of a sequence

(I?(u,t) 15;] (see also LePage (1980) and Kinateder (1990)). First it is obvi-

ous that a sequence (1,-"(u, t))?=1 consists only of zeros and ones. Moreover for

fixed t and n there are exactly k = [nt] ones in this sequence. Such a sequence

can be interpreted as a combination without replacement of k-elements form

n-elements when positions of ones indicate elements of {1, . . . ,n} which are

chosen to this combination. On the other hand if we fix n, and u then the

number of ones in the sequence will increase from O to n as t will increase

form 0 to 1. A sequence of positions of subsequent appearance of ones or,

equivalently, jumps in the sequence (1,."(u, t))§‘=l is a permutation of elements

of {1,...,n}. It is worth notice here that these jumps can occur only at

t = k/n and one at the time. The combination and permutation, which

can be related in this way to (I?(u,t))?=1, depend in fact only on values of

u = (um-”:1. We will refer to this as a combination and a permutation chosen

by u.
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Now if U = (Um-:1 is a sequence of i.i.d. random variables with uniform

distribution on (0,1) then for fixed t E [k/n,(k + 1)/n), k E {0,...,n}, a

random combination chosen by U has a uniform distribution over all possi-

ble (2) combinations. Also the positions of jumps of (I,-"(U,-))?=1 i.e. the

permutation chosen by U will be uniformly distributed over all 11! possible

permutations. Moreover I,-"(u,t) as a function of t, for fixed 11, n and i, will

change its value form zero to one at one and only one of the points t = k/n,

and it is right continuous. It follows from that

1?('u,t) = 1[0,,](J,-"(u)),

where J," denotes the jump of I?(u, -). So for any sequence of random vari-

ables 6,, = (6w)?=1 independent of U a formula

(12) W) = :e.,.-I."<U,t),
i=1

defines cadlag process on [0, 1] constant on intervals [(k — 1) /n, k/ n), where

k E {1, . . . ,n} and with n-jumps at points k/n,k = 1,... ,n equal to values

of 6:1,.» z' = 1, . . . , n randomly permuted by U. Thus

nn _ n E _ n k_1 n

Mimi-(L t.) L ( . l).-.
is a random permutation of 6,, chosen by U. Consequently, for any vector

 

v 6 1R” we have

v - 7r6n |6,, = Z vaL?|(6iI‘,-)§:1

1:1

From now on let I‘ = (I‘0221 will be arrival times of a Poisson process

with intensity equal to one i.e. P.- = 21 + - - - + Z.- where Z,- are i.i.d. random
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variables with exponential distribution with a parameter equal to one. Then

(P,/Pn+1)?=1 is a vector of i.i.d. random variables uniformly distributed over

(0,1). Let 6 = (6,);‘21 be random signs defined as in Section 1.2. Moreover

let P and 6 be mutually independent. Then

11-1/6: 71

en = 6113?: = 61+.—

( ) ‘ ( nil“)
i=1

is a vector of i.i.d. random variables with a distribution form the domain of

attraction of a symmetric a-stable law.

For a continuous function 2) on [0,1] let Riemman type sums be defined

by 2&1 v(k/n)AA2, where AA}; = A(k/n) - A((k — 1)/n). They converge

in probability to ID1 vdA (see Schilder (1970)). Kinateder (1990) proved that

a sequences of cadlag processes (L"(t)),€[0,1] is weakly convergent under Sko-

rohod metric to (A"(t)),€[0,1] (see also LePage (1980)). The main idea was

to apply the series representation of LePage (1980) of a Lévy motion and

integrals with respect to Lévy motion. This representation states that a

symmetric a—stable Lévy motion with cadlag trajectories can be written as

Mt) = Stiff/alumna) = :6iPPI/al[0.t](Ui)a

i=1 i=1

where U is independent of (6,I‘). One can easily extend this formula for

stochastic integral with respect to Lévy motion to obtain

1 00

/ vdA = :6,r;‘/°U(U,).
0 ‘_

1—1

The next proof exploits this convenient representation once again and applies

it in a similar manner to Kinateder (1990) to obtain that

n
1

"lingo:v(k/n)AL2|(6,-I‘,-)f:1a‘zs'jo vdAlj.

k=l
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PROOF OF THEOREM 1. By definition of v,, (see (7)) and Lemma 1 we have

vn ' 71'6"]6" = “6n” ( ?=1v(i/n)AL?I(6iFi)?:l

fi‘fivn - man)2 llvnllse. ”5n“

?=l v(i/n) ?=1AL?)

n llénll '

 

 

 

Notice that

H—“—..'—'- = 0-31/1:(3.434%)

—1/2

 

(
11:1 [72

/0
”2

L1 [72/0 - (>3?=16.-I
‘.‘”°>2/n)

'

and

AL? 22;] 6.17”“

||€n|| = \/Z?=1 p.72”.

By almost sure conver
gence

of 23:1 6,I‘,—1/
°
and 22:1 [72/0 and the fact that

limn_. 22;, v (i) /n = f v(t)dt = 0 we have with probability one

 (13) lim ”6"” = ([v2(t)dt)-1,

"Tm I'vnllscn

2&1 v(i/n) 221:1 AL? : O
 (14) lim

”“°° ’1 llénll

(15) 321;, Ilenll = ,l Err”.
i=1
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Now we will show that 2?_1v(;:-)AL'-‘ converges almost surely to f vdA.

Kinateder (1990) has proven that a sequence L,,(t) is convergent with prob-

F—l/a

ability one to 23°_1I‘6,1(0,])(U,) (in fact convergence of the sequence of

entire stochastic processes holdsin Skorohod metric). Mostly the same ar-

guments apply here when instead of 1(0.t) we will take a continuous function

v. Namely with probability one

"1320: r.‘ ”“6v((R"(U =2 r:”°6(v(U

i=1

since

lim R?(U) '—S' U.-

(see Kinateder (1990); Proof of Proposition 3.1). In view of the series repre-

sentation and definition of AL;1 this is equivalent to

"11.11.1321;v:()AL"_8‘3 2Ff1/°cS,-v(U,-) éfol vdA.

This implies that

"lingo 1),, -7r6,, e, g "lingo iv(i/n)AL,’-'|(6,P,)E°=l

121

= iP:‘/°é.-v<U.-)I(6.-r.-)?:l
i=1

[01 vdAlJ.H
Q
-

(16)

Combining (13)—(16) we obtain Theorem 1.
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PROOF OF COROLLARY 1. By Theorem 1 it is enough to show that the

limiting distribution of W,, does not have an atom at zero with probability

one. Assume to the contrary that the event

{P (i PPI/aéiWUi) = 0'(Pi6i)i€N) > 0}

i=1

has positive probability. Then

P(§I‘:”°6.v(v.) =0) = EP (iff/“a-MU.) =0I(r.6.-).-EN)

(17) > 0.

But 22:, P:l/°6,-v(U,-) = fol mm and since 12 is a non-zero function thus

fol vdA has a—stable distribution which is continuous. This contradicts (17).

[:1

Let us discuss now the statements included in Example 1 in Section 1.2. For a

fixed w belonging to the underlying probability space by 6;(w) = (6;’5(w))?=1

we will denote a random variable obtained by traditional bootstrap i.e. by re-

sampling with replacement from (6,-(w))?=1. For w from the set of probability

one forl= 1,...,k we have

.
1 n

(18)
“In Eellw-f;.l(wl) = lim _ Zeitvfiflw) : Eeitv'q

71—.00
"#00 n j_1

.
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We will assume that for our fixed on (18) holds. Denote 6,,(w) = (6,-(w))?=1.

Then

lEeitvn-x6n(w) _ eitvrql S IEeitv.-1r6,,(w) __ eitVn-£;(w)|

+|Eeitv"£;(w) _ eith-ékl

n! (n - k)! 1

S (n—k)!( n! —3)

[C

H Eeitvlc;‘k(w) _ eika-Cg.’ .

(=1

 

+

 

Thus by (18) we get that v,,-7r6,,|6,, converge weakly to n.6,. with probability

one.

PROOF OF THEOREM 2. By Proposition 1 and Lemma 1 we have

2

Ef(v - 7r6i — v - #6)2 = (d —1)||v||2—s‘—.

n - 1

Thus by our assumption Ef(v ~ 7T6'L — v - 7r6)2 converges to zero in probability

and thus for a given 6 > O and for sufficient large n we have

P(Ef(v . 7r6i — v- #6)2 > 6) < 6.

Now using Markov’s inequality in the same manner as in the proof of Propo-

sition 2 we immediately obtain the result.
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The next proof is just a slight variation of the proof of Proposition 1.

PROOF OF PROPOSITION 3. By (9) and (10) we have

22:1 Eg“ [(V1(Rr4) - W614) - (WARM) ° «61,112

ZZ=1EQM(Vk(RM)-W€M)2

SfM/xM 22:1 E9” ”(l/10911)”2

83M 22=1EQM||(V1(RM)||2

2

Saw/x14
——-,2 .

ScM

 

 

Now conclusion follows immediately from the proof of Proposition 1.
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Part 2

Numerical Analysis
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2.1 General Description of Software

This section contains the description of our software which was created to ver-

ify results on resampling methods for linear models. The software is intended

to be developed to a package which, we believe, will become a very useful

tool not only for verifying theoretical results and comparing different resam-

pling methods but also for tracking new phenomena which can contribute

to the development new effective statistical methods. The linear regression

and time series are the two main areas in which these programs are assumed

to be useful but we believe that there can be more applications for them.

From the point of view of functionality our software has two complementary

components. The first one includes all procedures for numerical analysis of

data will be written in the C—language. To assure the maximal portability

we use the standard C—language as defined in Kernighan and Ritchie (1978).

The second component has as its goal a visualization of Obtained sets of data.

We would like to assure simplicity and functionality together with high qual-

ity of graphics and we found that the NeXTSTEP environment available on

NeXT computers and IBM compatibles satisfy both requirements the best.

The whole software in the portable C—language serving the numerical part of

our project was written by the author while the front—end and graphical ap-

plications available in NeXTSTEP computer environment was programmed

by Isaac Tsaiyi in cooperation with author and Dr. R.LePage.
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2.2 The Numerical Procedures

As we have mentioned our software is designated to enable simulations and

analysis of the resampling methods in linear regression models and time

series. It will serve as an easy to use but powerful research tool for wide

range of problems connected with resampling methods and linear models in

statistics.

In its current stage the data analysis is made in the two steps. First all of

our strictly numerical programs and procedures write their results into files

with names usually chosen by a user. Then the graphical interface can be used

for analysis of the data contained in these files. Thus the analysis and display

of the data are separated processes here. In the future however we would like

to control them under one joint application running on NeXTSTEP.

In its present form our software has subroutines which compute all linear

algebra objects which are extensively used in studies of linear models such

as inverse matrices, projections on given subspaces and more. We have also

provided procedures for finding the least square estimates of unknown pa-

rameters of a given model. Many of them can be applied to time series as well

as to linear regression without any change but, of course, the properties of

these two classes of linear models are quite different. Figure 8 illustrates the

difference in the character of data obtained when resampling by permutation

is applied to two different models (linear regression and autoregression). In

both cases the underlying distribution was normal.

We also have efficient procedures for generating samples of data which

correspond to a given model when its parameters are specified. Once we

41



7.1m 14.475665 11.339018

 

#831691 44.421016 JIM

Dub 2 Data 3 Dan 4

03639] 0.130009 0.273100

 

W 41.1391” JJIO‘IM

Duh 2 Dan 3 Data 4

Figure 8: The sample of 1000 elements obtained by permuting residuals in a

linear regression model versus an autoregression model

42



generate an appropriate set of data we can apply to them a chosen resampling

method. We have incorporated many programs which compute different

characteristics of the resampled data. In our simulations we needed a very

efficient generator of resampling schemes therefore we have written quick

procedures for generating random sampling based on the generator of pseudo-

random numbers.

In our theoretical research we have concentrated on the method of re-

sampling by permutation but in the proposed package a user has also access

to other resampling methods like the traditional bootstrap or bootstrapping

by signs (see LePage (1990)). Generating sets of data from as many classes

of distributions as possible will be also assured. Currently because of our

research interests we implemented methods of generating data from the do-

main of attraction of stable laws. In Figure 9 we can observe how the nature

of underlying distributions can influence the Obtained numerical results even

for the same autoregression model.

We have also made simulations for an autoregression time series. Let

us briefly describe this model. Let (Xn),,ez be an autoregressive process of

order (I or AR(d) for shortness i.e. a stochastic process such that for each

n 6 2 the following equation is satisfied

d

1Y1: = Z [Ban-k + 6n,

k=l

where (6n),,ez is a sequence of i.i.d. random variables and (1301;, is a finite

sequence of real numbers. Let n E Z and m 2 (1 will be fixed integers.

Denote
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Figure 9: Resampling residuals in an autoregression model with Gaussian

errors versus Cauchy errors.
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5 = (51,...,n,,o,...,0) l

6 : (6n1---a€n—m+1)

1673'"

X = (Xn,.--,Xn—m+1)

 Skdx = (Xn—ka - ° - a Xn—lc—m-H)
J

A symmetric random Operator M : ’R" —> ’R" will be defined by its matrix

  

representation

- Xn-l Xn—2 Xn—m .

M = Xn-z Xn—s -°- Xn—m_1

L Xn—m Xn—m—i Xn—2m+1 .

Notice that the columns of this matrix constitute the vectors 5X, . . . , S'"X .

Denote by M a vector space spanned by them and for any vectors 1:, y E 72'"

by 33-31 we denote their inner product while a:/M will stand for the projection

Of a: on M. With this notation we have

X = MH + 6.

Moreover,

MfiEM.
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Indeed,

Mfl = (sx-U,...,smx.13)

d d

(2 [Ban—ka - - - a Z fian-k—m+1)

k=l k=l

d

2: ms’cx

k=l

By ordinary residuals for this model we will mean the coefficients Of a random

vector

6']- =JY_X/M

Since M,8 E M we have

E'L = 6 - 6/M

The term adaptive residuals will be used when referring to a random vector

(X - X/Mh

(Sm—IJY — Sm—lX/M)1

Xn — (X/M)1

X,,_,,,+1 — (Sm-IX/M)1

where (:r);c stands the k—th coordinate of a vector 1: E 72'”. Of course, we

have

(5 — 6[Mk

(Sm-15 _ Sm_1€/Sm_lM)1
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The estimate 6 Of 6 which is defined by the equation

X/Sm‘lM = sm-lMfl‘

was considered even in the case when the second moment Of 6,, does not exist

see Kanter and Steiger (1974), Harman and Kanter (1977).

Then we have

X=M6+6l.

It seems thus to be reasonable to consider the adaptive estimate 6“ Of 6 by

the equation

X = M6“+e°.

For such a model we have carried on analogous resampling methods. An

autoregression model of the order four was considered with the same coef-

ficients in the both cases but in the first one we deal with the Gaussian

distribution of underlying stationary random sequence while in the second

one a sample from Cauchy distribution was generated. Although we do not

have any specefic theoretical results verifying applicability of our method of

resampling to this model, results of simulations strongly sugest that results

of this type can be true also in this case.

2.3 The Graphical Interface

In our studies of resampling by permutations we have used the £a’Plot ap-

plication developed by R. LePage, K. Pongrski and I. Tsaiyi. It exploits

the idea of parallel plots. The main window Of this application is presented
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Figure 10: The main Window of the Euplot appli *ation for analysis Of 111111—

tivariate data.
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on Figure 10. On the upper right side of the main window there is the

“Create profile” icon which makes it possible to set a profile on the parallel

plot symmetric with respect to the horizontal axis. This profile can be com-

pressed (rescaled) by using the “Profile Compression” slide. Those points on

the parallel plot which lie outside of the profile are automatically painted in

a different color than the others. A user can select the colors used. In Fig—

ure 10 a profile was set up on the second and third vertical axes. The profile

is indicated by two horizontal lines which show its actual position. Using

the “Modify profile” icon one can easily change it. The current percentage

of points which are not pruned by our profile is shown in the “Confidence

Percentage” display. Confidence interval half—widths appear in the smaller

dark windows at the bottom. A change of the horizontal gap between axes

can be also regulated by a horizontal slide on the right bottom side of the

display window.

The slide just below the graph enable to track the data in the cases when

the number of axes is such big that dimensions of our graph exceed horizontal

dimension of the graph window. This can be also regulated by a change of

the horizontal gap between axes by the horizontal slide on the right bottom

side of the main window. The rest of the slides corresponds to the axes

showed on the plot and can be used for changing the scale of each of them.

Numbers on the top and the bottom of each axis indicates the actual value

of the corresponding coordinate of the first point which is not pruned by a

given profile.

The data for this graphical interface should be prepared in a file where

coordinates of each n dimensional point are written in a one separate row.
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In other words a file should have the form of a matrix where rows represents

points from the n dimensional Euclidian space which we want to view on

the parallel plot. Many additional features which come usually with any

NeXTSTEP application are also added as for example possibility of saving

a picture as a Post Script file.

2.4 Numerical Experiments

In this section we will discuss some simulation data obtained for few different

specifications of the model (2). In our simulations we check the accuracy of

taking Iy as conditional confidence intervals based on resampling residuals by

comparing them with random intervals I, obtained by resampling real errors.

We also compare our method with the methods based on the traditional

bootstrap. The conditional distributions of both Z and Z’ will be examined

too. Here we will include only a small variety possible numerical studies.

Some others requires additional procedures and supporting programs which

are not yet available. The descriptions Of existing software, as used here, are

given in Appendix B.

The proposed method of resampling is based on rearrangements of resid-

uals by random permutations which corresponds to 7r in our notation. Al-

though hypothetically we can calculate the exact values of quantiles of a

distribution obtained by resampling by considering all permutations of n—

dimensional vectors, in practice it would not be possible even for not very

large n (52! estimates the number Of subatomic particles in the visible uni-

verse). We can omit this by sampling independently from the distribution
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of 1r and then using the empirical distribution GN(1:) = £le 1(4be where

Z}, = v, - 7r" (Y — I”) and 7r", 1: = 1,... , N are independent permutations of

vectors in R“. Then by the law of large numbers or, better, by the Glivienko—

Cantelli Theorem the 01/2 and 1 — a/2 sample quantiles a” and b” of GN

will be approximations of corresponding quantiles for actual errors a’ and b’.

In our computer programs we have used this method for finding conditional

confidence intervals for a parameter 6 in a linear regression model.

Example 5

Here we will consider the model based on fitting of the cubic polynomial

as described in Section 1.3. The vectors of errors will be an independent

sample from stable distributions with the parameter of stability equal to 2, l

or, in other words, with Gaussian and Cauchy distributions. More precisely,

we will consider the matrix X with the coefficients given by x,”- = r171

'=1,2,3,4, 1:,- = (i — 1)/101, i = 1,. . . ,101 and as the contrast vectors the

rows of the matrix of projection on the column space of X.

Generating independently permutations we have obtained the empirical

distributions of random variables denoted earlier by Z and Z’. We can ob-

serve that the computable distribution Of Z’, independently of the underlying

distribution, is quite close to the unknown distribution of Z. On Figures 11

and 12 vertical lines on the third axis indicate approximately the same .85

confidence interval for 33 whether using resampled errors or residuals.
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Figure 11: The distribution of resampled errors and residuals, Gaussian case.
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Figure 12: The distribution Of resampled errors and residuals, Cauchy case.
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2.5 Conclusion

We propose resampling from the permutations of residuals as a method of es-

timating the conditional sampling distributions of contrasts; without moment

assumptions and assuming only exchangeable errors. The idea Of resampling

permutations of residuals occurs in Box and Watson (1962), Freedman and

Lane (1983) and possibly elsewhere. Both papers place considerable empha-

sis On establishing conditions under which F—distributions associated with

standard tests in regression are recovered by resampling permutations. In

fact Box and Watson (1962) do not otherwise recommend the method while

Freedman and Lane (1983) recommend it, but only as a descriptive method.

Neither paper makes the crucial observation that the relations of Proposi-

tions 1, 2 imply that with probability tending to one the distribution v-7r6i IY

approximates v - elf, when rescaled byW, as (d — 1)/(n — 1) —» 0.

In fact we have independently discovered Propositions 1,2 in the course of

extending the results of LePage (1990) which exploit resampling the signs

6 of residuals in much the same way: 12 - 66i|Y x v - 6| |6| for symmetric

errors. We believe that methods which approximately recover conditional

distributions by resampling are more widely applicable, e.g. to time series,

and we have adopted the term seamless resampling to indicate their robust

character.
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Appendices

Appendix A

We present some facts about exact distributions and their approximations

which were described and illustrated in Section 1.3.

We propose v - 7r6'Ll6 as a good approximation of v - 7r6|.7-' except in un—

usual circumstances. Notice first that this random variable has the same

distribution as 7w - {J‘IE and thus takes the values

yf = :l:(a—2a/n—2ak/n+2a(l—k—1)/n)

= i2a(1— 2(k +1)/n)

with corresponding probabilities

(:14),
2(8)

where k = 0,... ,l —- 1 and l + 1 = 11/2. This follows from the fact that

 

it corresponds to the distribution which samples one’s or minus one’s. The
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above probability is assigned to the event when the choice consists of k one’s

(minus one’s) and l — 1 — k minus one’s (one’s). The weight 1/2 comes from

the two symmetric events in which the first value of 1m is equal either to one

or to minus one.

Let 7 denote the hypergeometric distribution with parameters n - 1,1 —

1,1 — 1. Then around points to our conditional distribution corresponds to

the distribution of the random variable :té = i2a(1 — 2(7 + 1)/n). Since

E6) = (l—1)2/(n -1)zI/2 = n/4.

and

(l — U212

(71 - 1)2(n - 2)

for large n we have approximately

Var(7) =
 z 71/16,

E(:l:{) z :l:(a — 4a/n) z :ta,

and

Var“) z E(—4a/n(7—n/4)—4a/n))2=

= 16a2/n2E(7 — 11/4)2 +16a2/n2

z a2/n(1 + 16/11) x a2/n.

This confirms the fact that our distribution is concentrated quite close to

points a and —a and thus is reasonable approximation of the distribution of

interest. One can also argue through the normal approximation of 7 for large

n. Namely, it follows from Theorem 3 of Bickel and Freedman (1984) that

(47 - n)/fl converges in law to the standard normal distribution N(0,1).
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So for large 11 distribution of 7 is approximately equal to N(n/4, n/ 16) and

consequently the distribution of 5 is equal to N(a, az/n).

Now consider the traditional bootstrap where the distribution of interest

is approximated by the distribution of ’U°(€‘L )* I6, where (61’). indicates random

variable obtained by sampling n-times with replacement from values of the

vector €‘L. This random variable is distributed over points of the form

(’61 — k2)(a — 20/”) + 20,02 — (1)/n

with probabilities

7111-1(6‘1, (1)7},1;%_le2, 12),

where k1,k2 = 0,...,n,11= 0,...,l -k1,12 = 0,...,1— k2. Here and

henceforth T1,,“ 4,, stands for the trinomial distribution given by

l l — :r x l_£_

T1.p..m(~v,y) = (191) (192)”(193) y.

1' y

where :1: = 0,...,l, y = 0,...,l —:r and p3 = l—pl -—p2. Similarly, Bum will

denote the binomial distribution. Now one can notice that the distribution

of v - (6i)"|6 has asymptotically nonvanishing mass around zero.

Indeed, from the following equality

71,121,122”, g) = Bl,P1(x) Bl—x,—£2—(y)a
1_P1

and taking k1 = k2 = 0 we obtain that the points 2a(lg—ll)/n, 11,12 = 0,. . . ,l

are distributed with probabilities

(1—1/71)nBz,§';;_25(11)Bz,L(12)-
271—2
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and using the Poisson approximation for the binomial distribution and Cen-

tral Limit Theorem we will obtain for large n the approximate distribution

equal to e'lN(0,a2/n), which gives asymptotically the mass equal to e".

In fact the mass will be even bigger since we should take into account not

only k1 = k2 = 0 but also all cases when k, — k2 = 0. This implies that in

this case the traditional bootstrap fails to recover the distribution v - elf.

It is possible to explore the distribution of v - (ei)"'|6 even more carefully

a — 2a 11

since it is equal tO the distribution of 7’ - / , where a two dimen-

2a/n

sional vector 7 has a trinomial distribution with parameters 1, l /n, 1 /2 — 1/n

and X" denotes symmetrization Of a random variable X. SO we can find that

the distribution will have the positive mass around all points of the form

:l:ka, k =0,1,2,....

As the last method considered here we will consider the normal approxi-

mation N(O, 62|lvl|2) of our original distribution, where

(a — 2a/n)2 +(l—1)(2a/'n.)2

n —1 '

 

We have then 62llv|l2 z a2(1—2/n) and this method fails completely in recov-

ering the distribution of v - elf, and of course the unconditional distribution

may be far from normal.

Appendix B

Now we will give short descriptions of the computer programs we have used

to obtain the numerical simulations presented in the previous section. In the
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near future we intend to develop with Dr. LePage this software to a package

which will serve as a useful tool for exploring of the resampling phenomena

of the linear models in statistics.

From the point of view of functionality we have divide our tools into two

independent although complementary parts, numerical and graphical.

Numerical subroutines and programs. All strictly numerical pro-

grams were written in the standard C—language as described in Kernighan

and Ritchie (1978) so can be run on any computer with a C—language com-

piler. All numerical results of these programs are held in files with names

specified by a user. The main routines for resampling linear models are called

blr, plr, slr. They provide quick and convinient tool for resampling in these

models. Below we put more detailed description of their usage.

The programs plr, blr, slr create sets of bootstrap replicate betahat

vectors using three different methods of resampling: by permutations, by

traditional bootstrapping and by sign change, respectively. For example

plr 1000 observ design outputl output2 + <ENTER/RETURN>

will produce a file outputl with the least square fit of observ to the model

design and a file output2 containing 1000 bootstrap betahat vectors Ob-

tained by applying ordinary least squares to 1000 independent uniform ran-

dom permutations of the residuals (i.e. residuals from the original fit).

The programs can also be used with only four parameters if a user wants

to have a design matrix and a vector of observations in one file. Then one

should just type
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plr 1000 input outputl output2 + <ENTER/RETURN>

The observation vector y is assumed to be the first column in the input file.

The programs blr and slr work in an analogous way but instead of per—

muting residuals blr uses with-replacement sampling of the residuals while

slr uses independent sign changes.

Example 6

Consider input files with the following data

observations: design:

-3 1 1

2 1 0

1 1 -1

Notice then that the vector of residuals has the form

-1

-1

Here are examples of output files Obtained by applications of our programs

to these data. Thus

plr 1000 observ design outputl output2 + <ENTER/RETURN>

will produce a file output2 with data
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betahat1*

0.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

O
O
O
O
O
O
O
O
O

.000000

betahat2*

-1.500000

-1.500000

-1.500000

0.000000

1.500000

1.500000

1.500000

-1.500000

1.500000

1.500000

Similarly for two others programs.

blr 1000 observ design outputl

betahat1*

-1.000000

1.000000

2.000000

0.000000

-1.000000

0.000000

-1.000000

betahat2*

0.000000

-1.500000

0.000000

1.500000

0.000000

-1.500000

0.000000
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0.000000 0.000000

-1.000000 0.000000

1.000000 -1.500000

slr 1000 observ design outputl output2 + <ENTER/RETURN>

betahat1* betahat2*

1.333333 0.000000

-0.666667 1.000000

-1.333333 0.000000

1.333333 0.000000

0.666667 1.000000

0.666667 1.000000

0.666667 -1.000000

0.000000 0.000000

0.000000 0.000000

-0.666667 -1.000000

The file output 1 in all three cases will include the fit:

0.000000

-2.000000

Here is the list of other subroutines with their short descriptions.

vanderm0.c This programs creates matrices which are used to define a lin-

ear regression models when fitting coefficients of polynomial is consid-
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ered. In linear algebra matrices of this type are named Vandermonde

matrices and they are of the form [351'] = [If],i= 1,...,n,j= 1,...,m.

stab_err.c We are using the generator of pseudorandom numbers and for-

mula given in Chambers et. a1. (1983) to generate a sample from

symmetric stable distribution. The values of a sample are written into

a file specified by a user.

pow_uni.c Here we are generating a sample from a distribution which is

power of the uniform distribution on a given interval.

lin_regr.c For a given regression model we compute all matrices and vectors

which are important for statistical analysis (including the projection

matrix, the least square fit of unknown parameters and the vector of

residuals).

permJes.c This program generates a sample obtained by resampling a

given vector by a random permutation and then taking the inner prod-

uct with another given vector.

bootstrp.c For a defined regression model and a given vector of errors this

program produces three samples connected with our technique of re-

sampling. Namely, we will get samples from exact and approximated

conditional distributions as described above as well as a sample which

is difference between them. These program was used to verify the ac-

curacy Of our approximation.

trad_bts.c The same function as the above program but when the tradi-
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tional bootstrapping is considered instead of resampling by permuta-

tions.

res_err.c This program computes the distribution of the ends of random

intervals defined in Section 1.2 for a given regression model.

conf_res.c A sample from the conditional distribution of the ends of confi-

dence intervals proposed in Section 1.2 is computed.

clt_appr.c A sample of the ends of confidence interval obtained when the

normal approximation is used to our distributions. This program was

used to compare two methods.

Graphical support. To visualize Obtained numerical data we have used

two systems Turbo-C, Borland implementation of the C—language available

on IBM—compatibles and utilities provided by the NeXTSTEP. The last one

we have found particularly useful for creation Of the high level graphical

utilities and therefore finally we would like to have our package available in

the compact form on this computer.

Turbo-C graphics We have created several programs using Turbo Graphic

which deliver some pictures illustrating properties of our numerical

data. The one which was used here to draw histograms Of obtained

samples enables to produce a histogram of any set of data (not nec-

essary bell shaped) and illustrates how heavy are the “tails” of our

sample which is important when distributions without finite moments

are considered.
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La’Plot The new application in the NeXTSTEP computer environment was

developed to simplify analysis of our data. It enables to track mul-

tidimensional data exploiting the idea of parallel plot (see Chernoff

(1973)). Confidence regions can be Observed in great detail. High

quality graphics produce pictures. This application will be developed

to the full software serving resampling techniques in linear models. See

also Section 2.3.
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