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ABSTRACT

PROBABILISTIC THRESHOLD FOR COLLAPSIBILITY
IN RANDOM GRAPHS

BY

Joseph J. Spencer

A graph G is collapsible if for every subset S of V(G) with even cardinality, there
is a connected spanning subgraph H of G whose vertices of odd degree are precisely
the vertices of S. Collapsible graphs form an important class which satisfy the well-
known double cycle conjecture. We have determined the random graph threshold
function for this monotone property, i. e. we have found that a random graph with
minimum degree two is almost surely collapsible. Our approach makes use of the
theorem of Nash-Williams and Tutte which characterizes graphs with k edge-disjoint
spanning trees. This method can also be used to estimate the minimum number of

edges whose removal from a random graph leaves an eulerian subgraph.
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Introduction

The theory of random graphs was founded over thirty years ago by Paul Erdos
and Alfred Rényi. In their fundamental papers [ErR59)], [ErR60] and [ErR61] they
brought the theory of probability into play with graph theory and opened up an area
of investigation that has resulted in a thousand research papers, several books, two
journals and many special conferences. It is now regarded as a major component of
the field known as probabilistic combinatorics and has many important applications
especially in the analysis of algorithms from computer science. One of their most
interesting discoveries was the notion of the threshold function. The idea is that as a
graph accumulates edges at random, certain properties occur rather abruptly. Erdés
and Rényi found that they could predict quite accurately when such phenomena
transpired. It is much the same as chemical phase transition that occurs when a solid
such as ice is subjected to a gradual temperature increase and passes from solid to
liquid and then to gas. In this thesis we will determine sharp thresholds for graph
properties that arise in the study of the double cycle conjecture (DCC). See Jaeger

[Ja85] for a survey of this topic.

The DCC constitutes one of the best-known unsolved problems in graph theory.
It was first raised by G. Szekeres [Sz73] and asserts that if G is a graph with no
bridges, then there is a multiset C of cycles in G such that each edge of G occurs in
exactly two members of the family C. The collapsible graphs originate in the work of

Paul Catlin and are an important set of graphs which satisfy the DCC. So too are the
1



supereulerian graphs. We first provide alternate definitions for collapsibility, relevant
characterization theorems, descriptions of some families of collapsible graphs and a
compulsory threshold. Then we introduce several probability models, discuss their
relationships and give detailed proofs of important structural properties of random
graphs. Next the decomposition theorem of Nash-Williams is presented. Together
with our edge boundary lemma, it can be applied to obtain the threshold for edge-
disjoint spanning trees and consequently the threshold for collapsibility. Finally we are
able to use our techniques to estimate the size of large eulerian subgraphs in random
graphs. During the course of our investigation several difficult unsolved problems
arise. First there is the enumeration problem for collapsible graphs. Then we have
the problem of determining an efficient algorithm for finding edge-disjoint spanning
trees in random graphs with minimum degree two. Finally there is the question of

the asymptotic probability of collapsibility for cubic graphs.

Here are some of the basic definitions we need from graph theory. Those not
included may be found in the books [Bo85] and [Pa85]. A graph G consists of a finite
set of vertices, V(G), together with a set of edges, E(G), which are unordered pairs
of vertices. The cardinality of V(G) is the order of G and the cardinality of E(G) is
the size of G. We will use the convention that n = |V(G)|. If u,v € V(G) and the
edge e = {u,v} we say u and v are incident with e or that e is incident with v. If u
and v are both incident with the edge e, we say that u and v are adjacent. We also
say that e joins u and v. The degree of a vertex v, denoted by degg;(v), is the number
of edges that are incident with v in G. A multigraph is a graph in which any finite

number of edges between two vertices is allowed.

The vertex neighborhood of a set S C V(G) is defined by

N(S) = {v]|v ¢S is adjacent to some u € S}.
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For a singleton set, we will use N(v) = N({v}). A walk in a graph G is a sequence
of vertices vy, vs,...,v, such that v; is adjacent to vy, 2 =1tom —1. If v; = v,
the walk is closed. A pathin G is a walk in which no vertex is repeated. The length
of a path is number of edges in it. A graph G is connected if there is a path between
every pair of vertices. The distance between two vertices is the length of a shortest

path between them.

A cycle is a walk with at least three vertices in which the first and last vertices
are the only ones repeated. A graph is acyclic if it contains no cycles. A treeis a
connected, acyclic graph. A graph that is a path with n vertices and n — 1 edges will
be denoted by P,. We denote a cycle of order n by C,.. A graph with n vertices and all
(’;) possible edges is called the complete graph and is denoted by K,. The cartesian
product or product of the graphs G and H, G x H, is the graph whose vertices are all
ordered pairs (u,v), where u € V(G) and v € V(H). The edges of G x H join (u;,v;)
and (ug,v7) if (i) u; = uz and v; is adjacent to v; or (it) v; = v and u; is adjacent
to u;. For m > 1 the m-cube @, is K, x ... X K,, where the number of factors is m.

We see that @, = P, and Q; = C,.

A subgraph H of G is a graph with V(H) C V(G) and E(H) is a subset of those
edges in E(G) that are incident with with only the vertices in V(H). We will use the
notation H C G to mean that H is a subgraph of G and V(H) = V(G). An induced
subgraph H of G is a subgraph such that if u,v € V(H) and {u,v} is and edge of G
then {u, v} is also and edge of H. For a set X C V(G), X* will represent the induced
subgraph whose vertex set is X. A subgraph H of G spans G if V(H) = V(G). A
maximal, connected subgraph is called a component. An edge whose removal from a
graph increases the number of components is called a bridge. A graph G is eulerian
if there exists a closed spanning walk that includes each edge of G exactly once. A

graph is supereulerian if it has a spanning eulerian subgraph.



Let G, be the set of all 2(;) labeled graphs of order n. A subset Q of G,, is a graph
property if it is closed under isomorphism. A graph property Q is a monotone graph
property or monotone if for any graph H that has Q, all graphs G such that H C G

also have Q.

We will often use a right arrow “—” mean the limit as n goes to oo.



Chapter 1

Collapsibility

1.1 Definitions

A graph G is collapsible (see [Ca88a]) if for every subset S of V(G) with even
cardinality, there is a connected spanning subgraph H of G in which S is the set
of odd vertices in H. We shall refer to this as “definition one” for collapsibility. It
is equivalent that a graph G is collapsible if for every subset S of V(G) with even
cardinality, there is a subgraph I' such that G — E(T') is connected and v € S if and
only if the degree of v in I is odd. We call this “definition two”. We will also consider
K, to be collapsible. The cycle C3 is an example of a collapsible graph while Cy is
not collapsible. More examples will follow later. In this section we will describe some

of the properties of collapsible graphs.

For a graph G with a subgraph H, the contraction G/H is the multigraph ob-
tained from G by identifying H with a single vertex vy. Thus G/H has vertices
V(G/H) = [V(G) — V(H)]U {vy} and |E(G/H)| = |E(G)| — |E(H)|. Note that all
edges connecting V(G) — V(H) to V(H) are included in G/H. Multiple edges can
arise when a vertex in N(V(H)) is adjacent to two or more vertices of H. We are

now ready to state a very useful result for the identification of collapsible graphs.

Theorem 1.1.1 ([Ca88a]) Let H be a collapsible subgraph of G. Then G is col-
5



lapsible if and only if G/H is collapsible.

As a result of this theorem, we can sometimes determine whether or not a graph
G is collapsible by performing a series of contractions. Thus G is collapsible if it can
be reduced to a single vertex. But we also have the following important sufficient

condition for a graph to be collapsible.

Theorem 1.1.2 ([Ca88a)]) If a graph has two edge-disjoint spanning trees then it is

collapsible.

Proof: This can be shown directly from “definition one” of collapsibility. Let G
be a graph with two edge disjoint spanning trees and let S be an even ordered subset
of V(G). We wish to construct a spanning subgraph H where vertices of odd degree
are precisely the vertices in S. There are four kinds of vertices depending on their

parity in G and their desired parity in H. Let

A = {v | degg(v) is even and degy(v) is even},

B = {v | degg(v) is even and degy(v) is odd},

C = {v | degg(v) is odd and degy(v) is even}
and

D = {v | degg(v) is odd and degy(v) is odd}.

Note that BUD = S. The vertices in B and C must have their parities changed.
Since |B| + |D| and |C| + |D| count the number of odd vertices in a graph, they are
both even integers. It follows that |B| 4+ |C| + 2|D| is also an even integer. Thus
| B| 4+ |C|, the number of vertices that must have their parities different in H and G,

is even. We arbitrarily pair up the vertices that must have their parity changed and



consider the paths that connect them in one of the spanning trees. By removing the
symmetric differences of these paths, we create a graph H in which the vertices of
S are exactly those of odd degree. The existence of the second spanning tree of G

guarantees that H is a connected subgraph. =

We can see directly from the “definition one” that all collapsible graphs are su-
pereulerian. One simply chooses S to be the empty set. Here is another interesting

trait of collapsible graphs.

Theorem 1.1.3 ([Ca88a]) Let G be a graph with a collapsible subgraph H. Then

G 1s supereulerian if and only if G/H is supereulerian.

This theorem shows how collapsibility can be used to help us identify supereulerian

graphs. Supereulerian graphs are an important class of graphs which are known to

satisfy the DCC.

1.2 Families of Collapsible Graphs

In this section we will give examples of collapsible graphs as well as examples of

non-collapsible graphs. Certain families of collapsible graphs will be described.

Let G be any collapsible graph with |V (G)| > 2. Consider the cartesian product of
G with any connected graph H. Since G is collapsible, we may contract each copy of
G in G x H to a single vertex, resulting in a graph we shall call Hg. Clearly the graph
Hg can be obtained from the graph H by replacing every single edge in H by |V(G)]|
multiple edges. Thus we have |V (Hg)| = |V(H)| and |E(Hg)| = |E(H)||V(G)|. Since
two vertices with two or more edges joining them form a collapsible graph, we may,
by a series of contractions, reduce Hg to a single vertex. Thus it is collapsible and so

ultimately G x H is also collapsible.
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We now need another reduction method which Catlin has described in [Ca88b].
Let G be a graph containing the induced four cycle C which has vertices w, z, y and z
and edges {w,z}, {z,y}, {y,2}, and {z,w}. The reduction = is made by eliminating
the edges of the cycle and then identifying the non-adjacent pairs of vertices and
adding an edge between the two resulting new vertices. If v, is the identification of
w and y and v, is the identification of £ and z, we keep all edges not in C, including
multiple edges that may arise, and add the edge {vi,v2}. We will call the reduced

graph G/~.

Theorem 1.2.1 ([Ca88b]) Let C be an induced four cycle in the graph G. If G/«

is collapsible then G is collapsible.

Now we may consider the m-cube @,;. The graphs @; and @, are not collapsible.
But we can show @3 is collapsible by performing two 7 reductions and then use
contractions to obtain a single vertex. It can easily be shown by induction that @,

for m > 4 is also collapsible.

Next let us next consider the cartesian product of paths, which we will call a
lattice. We find that the lattices of the form P, x P,, m > 1, are not collapsible.
These lattices have no spanning connected subgraphs with the four corners as the
only vertices of odd degree. Also the lattice P, x P, is not collapsible. If we take
S to be a set of eight vertices, leaving out only one of the middle side vertices, we
cannot find a connected spanning graph with the vertices in S having odd degree. It
is easily shown by a series of 7 reductions that P; x P; is collapsible. Using induction,
it follows that all lattices P, x P,, with [ > 2 and m > 3 are collapsible. Here we have

found two non-collapsible graphs whose cartesian product is collapsible.

Another family of collapsible graphs consists of the cartesian products of cycles,

Ci x Cp. If I = 3, then one of the cycles is a triangle, so the cartesian product



is collapsible, as shown above. If both I,m > 4, then the lattice P_y X P,_; is a
collapsible spanning subgraph, so the graph C; x Cy, is collapsible. Using 7 reductions

it is easily seen that the set of graphs of the form K, x C, are also collapsible.

The well-known Petersen graph may described as a five pointed star inside a
pentagon with each point of the star connected to the corresponding vertex of the

pentagon. Here is a more precise description. Let the vertex set be
{1,2,3,4,5,a,b,c,d, ¢}
and the edge set be

{ {1,2},{2,3},1{3,4},{4,5}, {5,1}, {a, b}, {b, c}, {c, d},
{d, e}, {e,a},{1,a},{2,d}, {3,b}, {4,¢}, {5, ¢} }

This is the smallest bridgeless graph with minimum degree three that is not collapsi-

ble.

The Augmented Petersen graph is constructed from the Petersen graph by adding
one vertex on the edge between 1 and 2 and one vertex on the edge between b and
¢ and then connecting these two new vertices with an edge. According to Zhi-Hong
Chen of Wayne State University (email communication) it is not known if this graph

is collapsible.

1.3 Compulsory Threshold

Consider a monotone graph property Q. Suppose every graph with n vertices and
at least M, edges has property Q. Let us assume that M, is the least such value.
Then M,, is called a compulsory threshold for property @. In this section we will find

the compulsory threshold for collapsibility. First we need two lemmas.



10

Lemma 1.3.1 Let Q be the graph property that every edge is in a triangle. Then the
n—1
2
(2)

Proof: Consider the graph with vertex set {1,2,...,n} which consists of a complete

compulsory threshold for Q 1is

forn >3.

graph K,_, on the first n — 1 vertices and also has the edge e joining vertex n — 1
n-1

with vertex n. This graph has ( 2 ) + 1 edges but e is not in a triangle. Therefore

the compulsory threshold is at least (";1) +2.

Consider a complete graph K,, n > 3. Each edge of K, belongs to n —2 triangles,

so removal from K, of any n — 3 edges will result in a graph that has property Q.

(§-e-n=(57) 2

any graph with (";l) + 2 edges will have property Q. =

Since

Our second lemma follows from a theorem of Catlin.

Theorem 1.3.2 ([Ca88a]) Let H, and H, be subgraphs of H such that V(H) =
V(H)UV(H;), E(H) = E(H1)U E(H?) and V(H,)NV(H;) # 0. If H, and H; are

collapsible, then so is H.

Lemma 1.3.3 If G is a connected graph in which every edge is in a collapsible sub-

graph of G, then G is collapsible.
Proof: By repeatedly applying Theorem 1.3.2, we see that G is collapsible.m

Theorem 1.3.4 The compulsory threshold for collapsibility for a graph with n ver-

("3 1)+

tices is
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forn > 3.

Proof: Consider the graph G of order n and size (";1) + 1 described in the proof
of Lemma 1.3.1. Let H be the subgraph isomorphic to K,_,. Then G/H = K,. Since

H is collapsible but K is not, it follows from Theorem 1.1.1 that G is not collapsible.

We know from Lemma 1.3.1 that every edge in a graph with (";1) + 2 edges is in
a triangle, which is a collapsible graph. So by Lemma 1.3.3 a graph with (";1) +2

edges is always collapsible. =

The enumeration of collapsible and and supereulerian graphs constitutes an un-
solved problem. For graphs with a small number of vertices we have generated the

following numbers for the labeled and unlabeled cases.

Table 1.1: Numbers of Collapsible and Supereulerian Graphs

Collapsible Supereulerian
n | Unlabeled | Labeled | Unlabeled | Labeled
1 1 1 1 1
2 0 0 0 0
3 1 1 1 1
4 2 7 3 10
5 9 231 10 243




Chapter 2

Random Graphs

2.1 Probability Models

In this section we will describe three probability models commonly used in the
study of random graphs and give a simple illustration of how each model is used.

They will be called Model A, Model B and Model C.

In Model A, the sample space consists of all labeled graphs with n vertices. Given

a number 0 < p < 1, the probability of a graph G with M edges is defined by
P(G)=pM(1-p)" M

where N = (’2‘), the number of unordered pairs of vertices. The number p is the
edge probability. Thus the sample space consists of Bernoulli trials and the edges
are selected independently with probability p. Note that when p = 1/2, every graph
with n vertices has equal probability. In Model A, the expected number of vertices

of degree two is
n—1\ , n-3
n( 9 ) p’(1 —p)*°.
In Model B, the sample space consists of all labeled graphs with n vertices and M

edges. For a given value M, 0 < M < N, the probability of a graph G is defined by

P(G) =

()

12
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In Model B the expected number of isolated vertices in a graph is

(%))
OB

In Model C the sample space for a givenn and r, 1 < r < n, consists of all digraphs
with every vertex having outdegree r. This model is sometimes called “r—out”. Each
digraph D has probability

P(D) = (—1),,

n-1
r

For a digraph in Model C, the expected number of vertices with indegree zero is

By ignoring the orientation of the edges and consolidating multiple edges another

sample space consisting of graphs is created.

In the study of random graphs, we can conclude nothing about any one graph,
what we do study are properties of sets of graphs. If Q is some property of graphs
and A is the set of graphs of order n with property @, and P(A) — 1 as n — oo,
then we say almost all graphs have property Q or the random graph has property Q
almost surely (a. s.). We are studying a sequence of sample spaces and the limit of a

sequence of probabilities.

An important discovery of Erdos is the notion of the threshold function for certain
properties of random graphs. In Model A we express the edge probability p as a
function of the number of vertices n, i. e. p = p(n). The function p*(n) is a threshold

function for a graph property Q if

p(n)/p*(n) — 0 implies that almost no G has Q
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and

p(n)/p*(n) — oo implies that almost every G has Q.

We may similarly define threshold functions in Model B by considering M = M(n).
It has been observed by Bollobas and Thomason that every monotone graph property

has a threshold function [BoT86].

The first moment method is an important tool from probability theory that is used

frequently in the study of random graphs. Suppose X is a nonnegative integer valued
random variable, then E[X] > P(X > 1). Thus if E[X] — 0, then P(X > 1) - 0

and therefore P(X = 0) — 1. So, for example, if

X = the number of vertices of degree 0 in a random graph

and
p=2107gln’
then
E[X] = n(l—p) (2.1)
< nexp(—p(n - 1)) (2:2)
< nexp(—2logn)exp(p) (2.3)
< n(n?)exp(p) — 0. (24)

Thus P(X = 0) — 0 and we may conclude that if p = 2!°%67 then a random graph in

Model A almost surely has no vertices of degree zero.

2.2 Degree Distribution

Having minimum degree at least k is a monotone graph property. It has a well

known sharp threshold function. If

p= logn + (k —1)loglogn + w,

n

(2.5)
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where w, — oo and w, = o(loglogn), then a random graph almost surely has mini-
mum degree k.
Let us look at equation (2.5) with k = 2 and see how each term affects the degree

of a random graph. Let X; be the random variable that counts the number of vertices

of degree i in a random graph. Then the expected number of vertices of degree two
is given by

E[X)] =n (" N 2) p(1 = p)*-2. (2.6)

First let us look at p = lﬁgﬂ We have

E[X)) = (1+o0 1))— (l°g") P (2.7)

n(log n) 1

= (1+0(1)=—— (28)

But this is not the threshold for minimum degree two because the expected number

of vertices with degree one is

n—1
pp) = o" 7o - o 29)
logn1
- 2 2
= (1+40(1)n ——— = 00 (2.10)
In fact we find that E[X;] — oo for all ¢ > 1.
If
_logn +loglogn
- n
then
_ n(logn)? 1
E[X;) = (1+0(1)) T (2.11)
= (140o(1)E" S . (2.12)
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but
Jlogn 1
n nlogn

E[X:)=(1+0(1))n 4 oo

Adding the factor w, with w, — oo and w, = o(loglog n) forces E[X;] — 0 while not

interfering with the behavoir of E[X3).

2.3 Relations Between Models

Usually we find that it is more straightforward to work with Model A than Model
B. Fortunately these two models are very closely related and it is often easy to convert
results from one to the other. In this section a random graph in Model A with n
vertices and edge probability p will be represented by G, , and its set of edges by
E.,,. A random graph in Model B with n vertices and M edges will be represented
by Gn.m. A graph property Q is convez if G; C G, and G, and G, both have Q
implies that any H such that G; C H C G; also has Q. For a convex graph property

we have the following well-known conversion theorem.

Theorem 2.3.1 ([Bo79]) Let 0 < p = p(n) < 1 be such that pn? — oo and

(1 —p)n? — 00 as n — oo and let Q be a property of graphs.

(i) Suppose € > 0 is fized and, if (1 — ¢)pN < M < (1 + €)pN, then Gppm has Q
almost surely. Then G, , has Q almost surely.

(1) If @ is a convez property and G, has Q almost surely then G, |,n) has @

almost surely.

For a graph property Q that is not convex we have the following method of
conversion from Model A to Model B that is presented in [BoFF87]. Note that at
times we will use non-integral quantities that ought to be rounded up or down. It

should be clear that this practice will not affect the results.
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Lemma 2.3.2 ([BoFF87]) Let Q be any graph property and suppose M = pN. If
nP(Gnp has Q) - 0 asn — o

then

P(Gpm has Q) = 0 as n — oo.

Proof: First note that
N
PA1Ewsl = 1) = ()= 1", (2.13)

Now using Stirling’s formula and the fact that M = pN, we can show that

P(|Eap] = M) > (1 - O(l))\/—217r=N' (2.14)

Also, using equation (2.13) we find that

P(Gnp has Q and |E, ,| = M)

P(Gn,P has Q | |E",PI = M) = P(IEnpl = M) (215)
[{Gn,m has Q}|pM(1 — p)N-M

)0 - p (219

= P(Gnm has Q). (2.17)

Now clearly it follows from the definition of Model A and from (2.17) that

P(G,p has Q) = 2 :P(G,.,,, has Q | |E’,,',,| = M’)P(IE,,,pl = M’) (2.18)
M/

= 3" P(Gam has Q)P(|E,,| = M"). (2.19)
M’

By using a single summand of the right hand side of (2.19), say when M’ = M, we

see

P(G., has Q) > P(Gnas has Q)P(|En,| = M) (2.20)
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But now with equation (2.14) and using that N is asymptotic to n?/2,

P(G., has @) > (1 — 0(1))\/%712P(G,‘,M has Q). (2.21)

Thus
nP(Gnp has Q) > (1 - o(l))\/gP(G,,,M has Q)

and our result is proven. =

2.4 Structural Properties

We are interested in random graphs with edge probability p roughly equal to
logn/n. The average degree of the vertices of such a graph is about logn. We need
to know that vertices of low degree are not too close to each other in a random
graph and that there are not too many of these. These structural properties will be
needed to help us show that in random graphs, small sets of vertices have large edge
boundaries and to show the existence of edge-disjoint trees in random graphs. We let
d = pn, and we say that v is small its degree is less than 2%, otherwise we say v is
large. In [BoFF87] the authors gave only a sketch of the proof of the next theorem,
but here we shall include more details. As in [BoFF87)] the proof will be given for

both Models A and B.

Theorem 2.4.1 ([BoFF87]) In Model A with edge probability

p2 log n (2.22)
n
or in Model B with
M > %nlogn (2.23)

the following statements for a random graph G hold almost surely:

. 1 .
(a) G contains no more than n3 small vertices.
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(b) G does not contain two small vertices at a distance of four or less apart.
Proof: (a) Let @, be the property that a random graph G has more than n3 small
vertices. We would like to show that almost all graphs do not have this property.

Let X count the number of sets containing n¥ small vertices. We know from the first

moment method that

P(Gn, has Q,) < E[X]. (2.24)

For each vertex v in a set S of order s consisting of only small vertices, the number
of edges joining v to vertices not in S will be (".T') for0<: < 2“—0. Each of the edges
occurs with probability p and each non-edge with probability 1 —p. So the probability

that a given S consists of small vertices is bounded by

[i%: (n A s) P(1- p)""“] .. (2.25)

1=0

So the expected number of sets S of small vertices with |S| = s will be

EIX] < (';) [_ (" - S)p‘(l - p)"-'-'} ) (2.26)

Now using the facts that || = n¥ and p > &7 along with the bound for the tail of

»|

a binomial distribution (see [Pa85] page 133) we see

E[X] < (n) [(n_s)p%(l—P)"“‘%p(n_s_’%ﬂ) ’ (2.27)

s) [\ d/20 pln—s+1)- %
< (?)' [0(1)(20.3" —p)"/® exp(—pn + ps + g—g)]. (2.28)

< [0(1)1} exp(24—0d) exp(—d + ps + dp/20)] | (2.29)
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nt
< [0(1)n%exp(-§d)] (2.30)
< [0(1)n§exp(—2d/3)exp(—5d/60)]n§ (2.31)
< O(I)exp(—%dni). (2.32)

Because d = np > logn, clearly exp(—ll—zdn?li) — 0asn — 0. Thus P(G,, has Q,) —

0 and so almost surely G, has fewer than n! small vertices.

This result is easily converted to Model B as follows. Multiply both sides of
inequality (2.32) by n and we see that nexp(—l—]idn%) — 0 as n — oo. It follows from

Lemma 2.3.2 that almost surely @, does not hold in Model B.

(b) Let Qs be the property that there exist two small vertices at a distance of four
of less apart. We would like to show that this property does not hold almost surely.
Let X count the number of pairs of small vertices at a distance of four or less apart.

Then

P(Gnp has Q) < E[X]. (2.33)

The expected value of X is bounded by the expected number sets of two small vertices
multiplied by the probability that the two vertices have a path of length four or less

between them. So we multiply inequality (2.26) by n3p* + n2p® + np? + p to obtain

1=0

/20 2
-2\ . .
E[X] S (721) [E (n 1 )p;(l _p)n—t—2] (n3p4 + n2p3 +np2 +p) . (234)
Using the same estimates as in part (a) for s = 2, we find
P(Gnp has Q) < n°ple™1% (2.35)

Since d > logn we see that P(Gpp has Q) — 0. Therefore in Model A we know that

almost surely there are not two small vertices at a distance of four or less apart.



21

Now for Model B. If p > 1‘-‘-?2 then d > 2log n. Multipling inequality (2.35) by n
we find that

n(n®pte=1%) < nfpin=3 50 (2.36)

and thus by Lemma 2.3.2 we know P(G, m has Q;) — 0. This gives us our result for
Model B if M > |nlogn].

For smaller M, corresponding to the range l"% <p< 2"’—‘;2, more work is required.
First let M = [pN|. Now we will show that there exists an M’, with M —(n log®n)¥ <
M' < M such that

P(Gn has Q) < 3n’ple1%, (2.37)

Suppose that no such M’ exists. Then using equation (2.19) we have

M
P(G,p has Q) > E P(Gnm has Q) P(|E, | = M') (2.38)
i=M-M'

il 5.4_-1.5d N { )
> 3 e (Y)ra-h e
=M-M'

t

Then using inequalities (2.35) and (2.39) we see

nSple=1% > P(G,, has Q) (2.40)
M N\ . .

2 z (3n5p4e—1.5d)( )p’(l—-p)N"'. (2.41)

i=M-M' 2
So we have

1 ud N t N-—s

S (2)p<1—p) . (2.42)
i=M-M'

It follows from the normal approximation to the binomial distribution that the
right hand side of inequality (2.42) approaches % as n — 00, so we have a contradic-

tion. Hence there exists an M’, with M — (nlog®n)? < M’ < M such that

P(Gnm has Q) < 3n’ple1-%, (2.43)
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Now let
P, = P(Gn M+ has @y and Gn,a has Q)
and
P; = P(G, um+ does not have Q, and G, m has Q).
Clearly

P(Gapm has Q) = P, + Ps. (2.44)

Next we show that both P, - 0 and P, — 0 as n — oo.

First we see

Pl = P(Gn’hp has Qb and Gn,M has Qb)
< P(Gnm has Q)

S 3n5p4e—l.5d — 0.

Now we focus on P,. Let = be the probability that G, m+ does not have Q, but
Gn um obtained from G, m+ by adding M — M’ edges has at least one of its new edges
incident with a small vertex or a neighbor of a small vertex. Clearly P, < x. To show
that P, — 0, we will show that 1 — = — 1. Now 1 — 7 is the probability that G, -
does not have Q; and G, u obtained from G, um+ by adding M — M’ edges has none of
its new edges incident with a small vertex or a neighbor of a small vertex. The number
of positions where these new edges may be placed is at least N — M’ — n}(1 + 4.
To see this, observe that the number of small vertices and their neighbors is at most
n} 4 n%:—o. There could be at most n — 1 edges incident with each of these. And so

n(n% + n%%) is an upper bound on the number of possible edges that are incident
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with a small vertex or a neighbor of a small vertex. Thus

(1-m)2 %Zﬁ/’ ) (2.45)

M-M!

(N—M’-n§(1+2%))

The right side of (2.45) is of the form
< (2.46)

The behavior of such an expression was considered in [Pa85]. It is shown that if

a—b
k - -0 (2.47)
and
b—a\?
k(b—k) =0 (2.48)
then
Q = (1 + (1))exp(—kb_a). (2.49)

Now since M — M’ < (nlog®n)# and n¥(1+ 2) = O(n¥ log n), we see that conditions
(2.47) and (2.48) hold and that the binomial expression in (2.45) is asymptotic to 1.
Therefore # — 0 and then so must P,. This shows that both P, — 0 and P, — 0

and it follows from equation (2.44) that
P(Gnm has @) — 0.

Hence property @, almost surely does not hold for Model B when M = pN >
l%nlog nJ. That is, almost surely the distance between any two small vertices is at

least five. m.



Chapter 3

Edge-Disjoint Trees

3.1 The Theorem of Nash-Williams

We will make use of a beautiful theorem found independently by Nash-Williams
and Tutte, which provides necessary and sufficient conditions for a graph to have
k edge-disjoint spanning trees. We use P to denote a partition of the vertex set
of a graph and |P| is the number of parts in P. For a graph G with partition P,
contracting each part of P to a single vertex leaves the graph which we denote as
Gp. We will call the edges of Gp ezrternal edges and denote them by either E(Gp) or
E»(G).

Theorem 3.1.1 ([N-W61)] , [Tu61]) A graph G has k edge-disjoint spanning trees
if and only if
|Ep(G)| 2 k(|P| - 1) (3.1)

for every partition P of V(G).

The necessity is easy to show. Let G be a graph with k edge-disjoint spanning
trees Ty, T, ... Tk and let P be a partition of V(G). Then each (T;)p is connected

and so it has at least |P| — 1 edges. Hence

k
|Erp(G)] 2 3_ |ER(TV)| 2 K(IP| - 1) (3.2)

=1

24
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as required.

The proof of the sufficiency is more complicated. We will provide an algorithmic
proof for the case when k = 2 that is implicit in [N-W61]. The algorithm will explicitly
find two edge-disjoint spanning trees in any graph that satisfies condition (3.1). We
will prove results for arbitrary & when it is no more complicated than the case in

which k = 2.

We need the following definitions. In a graph G for any non-empty subset X of
V(G) let Ag(X) = k(| X| —=1) = |E(X*)|. The set X is called .criticaI if Ag(X) =0.
A partition P of V(G) is admissible if it satisfies inequality (3.1) and critical if the
inequality can be replaced with an equality. A graph G is called admissible if all
partitions of V(G) are admissible and critical if |E(G)| = k(|V(G)| — 1)

The algorithm is recursive. We wish to reduce a graph to one of the base cases

when |V(G)| = 1,2 or 3.

Start the algorithm by considering a graph G. Every partition of V(G) must
be examined to make sure G is admissible and to find which partitions are critical.
Checking every partition will mean that this algorithm cannot be done in polynomial
time. Every graph returned by the algorithm will be admissible. If G = K;, then
we will consider G' to be admissible and to have two edge-disjoint spanning trees.
If G has two or three vertices and is admissible, it will be clear that there are two

edge-disjoint spanning trees and they will be easily found.

For |V(G)| > 4, every graph G falls into one of three classes:

(I) The only critical partition is P = {V/(G)}, the trivial partition (which is always
critical).

(IT) There is a critical partition that is neither the trivial partition, P = {V(G)},

nor the singleton partition, P = V(G).
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(III) The singleton partition and the trivial partition are the only critical parti-

tions.

For each of the three classes the algorithm will send a graph or a set of graphs
that have fewer edges and/or fewer vertices than the original graph back to the start

for treatment.
Class I graphs:
In this case, for every partition P # {V(G)}

|Ep(G)| > k(|P| - 1).

So we may pick any e € E(G) and remove it, creating an new graph H = G — {e}.

Now every partition P of V(H) has
|Ep(H)| 2 k(|P| - 1)
and thus H is admissible and may be returned to the beginning of the algorithm.

Class II graphs:

Here there is a critical partition P of V(G) other than the singleton or trivial
partition, so
|Er(G)| = k(|P| - 1)
with |P| # 1 and |P| # |V(G)|. Let P = { X1, Xa,...,X,}. For any X; € P, let Q be
a partition of X; and R = (P — {X;})U Q. Then since G is admissible,

k(IR| - 1) < |Er(G)| = |Ep(G)| + |Eo(X])] (3.3)

and so
|Eo(XI)l 2 K(IR[-1) - |Ep(G)| = (3.4)
k(IR|-1) - k(|P| - 1) = (3.5)

K(IR| = PI) = k(IQ| - 1). (3.6)
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Thus we see that X is admissible since Q is arbitrary and that every X is admissible
since 1 is arbitrary.

Now consider the graph Gp. Any partition S of V(Gp) is also a partition of
V(G). Since G is admissible, Gp is also admissible. We can then return |P| + 1
graphs, X}, X3,...,X; and Gp, to the beginning of the algorithm. In each of these
graphs, 2 edge-disjoint spanning trees will be constructed and then put together to

form 2 edge-disjoint spanning trees on G.
Class III graphs:
We need the following lemmas.

Lemma 3.1.2 ([N-W61]) Let G be a critical graph. Then G is admissible if and
only if Ag(X) >0 for every 0 # X C V(QG).

Proof: Let us start by showing the necessity. If G is admissible, let X C V(G) and
the complement of X be X = {v1,vs,...,v,}. Alsolet P = {X, {v}, {v:},..., {v}}.

Then
As(X) = K(IX]-1) - |E(X")] (3.7)
= K|V(G) - 1-P|) - (E(G)| - |E(G)) (3.8)
= KV(G)| - |E(G)| - kIP| + |E»(G)] (3.9)

= [k(IV(G)-1) - |E(G)] + [Er(G) — k(IP| - 1)]  (3.10)
> 0 (3.11)

using that G is critical and admissible. Now let us show the sufficiency. We assume

Ag(X) > 0 for all X C V(G). For any partition P of V(G),

|Er(G)] = |E(G) - 3 |E(X)) (3.12)

X,eP

> KV(G)-1)= ¥ kIX|-1) =k(P|-1)  (3.13)

X.eP
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so G is admissible. This ends the proof of the lemma.

We also need some results about critical graphs with |V(G)| > 4 and k = 2 that

are summarized in the following lemma.

Lemma 3.1.3 Suppose a graph G is critical with |V(G)| > 4 and Ag(X) > 0 for
every @ # X C V(G). For k = 2 the following hold:

(a) There are no vertices of degree two.
(b) There ezists a vertex of degree three.
(c) For any vertex v of degree three, [N(v)| > 1.

(d) If a vertex v has degree three and X is a critical set not containing v, then

INW)N X[ <1

Proof: (a) If v is a vertex of degree 2, then the partition {{v}, V(G) — {v}} is
critical. But we are assuming that G has only the singleton and trivial partitions as

critical partitions.

(b) The average degree of the vertices in G is

2E(G) _22(VG)I=1) _, 4 _,
ViG)] V(o) vien <"

Since there are no vertices of degree 2, then a vertex of degree 3 must exist.

(c) If v has degree three and N(v) = {u}, a single vertex then
Ag({v,u})=2(2-1)-3=-1

which contradicts Lemma 3.1.2.

(d) First suppose the vertex v has degree three and that N(v) C X. Then since
Ag(X) = 0, we see that Ag(X U {v}) = 0 which contradicts Lemma 3.1.2. So one of

v’s neighbors is not contained in X.
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Next suppose X contains two neighbors of v. Let X = {u;,ua,...,u,} and con-

sider the partition

P = {X U {v},{ul},---,{“r}}'

Using that G is a critical graph, X is a critical set |P| = |X| + 1, we see

|E»(G)| = |E(G)|—|E(X7)| -2 (3.14)
= 2(]X|+[X|+1-1)=2(|X]|-1) -2 (3.15)
= 2(X|+1-1) (3.16)
= 2(|P|-1) (3.17)

But this contradicts the assumption that G only has the singleton and trivial parti-

tions as critical partitions. This ends the proof of the second lemma.

Let v be a vertex with degree three and with neighbors u and w. Let H be the
graph constructed from G by adding an edge e between u and w while deleting v and
the edges incident to v. Clearly H is critical and we must show that H is admissible.

For any set X C V(H), if u or w are not in X, then

An(X) = Ac(X) 20.

If both u and w are in X, then because X cannot be critical and contain both u and
w we know Ag(X) > 0. From this we see that Ag(X) = Ag(X) —1 > 0. Thus by
Lemma 3.1.2 we know that H is admissible. We then may return H to the beginning

of the algorithm.

From H we construct two edge-disjoint spanning trees in G as follows: When H
returns it will have two edge-disjoint spanning trees and the edge e = {u,w} will be
in one of them. For that tree, replace e with the edges {v,u} and {v,w}, and add

the third edge incident to v to the other tree.
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Thus by reducing the graph G to one of the base cases we may construct two edge

disjoint treeson G. =

The computational complexity of this algorithm is, of course, exponential because
every partition of the vertex set must be examined. On the other hand, the proof
seems easier to follow and more convincing than traditional proofs when presented
in this style. Furthermore it is apparent that the traditional proofs do not lend
themselves easily to adaptation for efficient algorithms. Dave Johnson has told us
that finding edge-disjoint spanning trees can actually be achieved in polynomial time
(email communication). The best known treatment makes use of the matroid greedy

algorithm. See [RoT85] for related references.

3.2 Edge Boundary Lemma

To implement the theorem of Nash-Williams, we must have some knowledge of the
edge boundary of a set of vertices. We need to show that a vertex set of small order
will have a large number of edges joining it to the rest of the graph. For a subset S

of V(G), let us define the edge boundary of S to be

6(S) = {{u,v} | u € S,v € V(G)\S}. (3.18)

Lemma 3.2.1 (Edge Boundary Lemma) Let the edge probability p be defined by
equation (2.5) so that almost all graphs have minimum degree k and let 0 < e < 1 be
fized. Then almost every graph G has the following property: For every subset S of
V(G) with |S| < en we have

6:(5)] 2 kIS]. (3.19)
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Proof: The expected number of sets with cardinalities between the integers a and

b inclusive for which condition (3.19) does not hold is

F(a,b) = Z:j (':) ’;’z; (3("],“ 3)) p(1 = p)etn=a)=i, (3.20)

We would like to find the largest interval possible on which F(a,b) — 0 as n — oo.
Now by using the fact that the inner sum is a binomial tail and applying Stirling’s

formula we see

: s—1 s(n—s)—ks+1 p{s(n—-s)-—(ks—l)+l}
Faw < 3 (5) (i 7)o (B S

(3.21)

) ( ) ks—-1 (1 _ p)s(n-—s)—ks—l (322)

b l—p n e ks—1 R
<TomiZE (2) () T gy

s=a

)
<3 ol) (

$=a

<3 o)’ ”’“_1)[ (5= )) (np)* expl— p(n—s—k)]] (3:20)

= (n 1)

e*PePk °
Z‘:’O(—) o(l) (log n)* (logn)"'le“’"] (3.25)
b ]
< 20 o) atiogmy ey ez

We now split the sum in (3.26) into two parts. First we would like to have
001352 < 1 and {n(logn)*~le“»}*/» < L where c; and L are constants. For this we
need

a=cologn<s
and

an (5]

< =
$= log+(k—1)loglogn +w, p

where ¢; = log L. It then follows that F(clogn, &) — 0.
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Secondly, for the upper part of the sum, if a = & and b = en we see

Q1 — 1 log k-1 _wn\s/n_—w ’
—_ < o n n .
F( >’ en) < mzq:/pO(logn) [0(1) p; {n(logn)*te“~}*'"e (3.27)

- 1 (log n)1+e(k=1) L
= T o ol-¢ - wn wn(l=c¢
< .E/,O(l"g") [o(l) ppe {logn + (k — 1)loglogn + e~ }e
(3.28)

-0

1—¢

because the term n!~¢ in the denominator will dominate. So F(cologn,en) — 0 as

n — o0.

Showing F(0,cologn) — 0 cannot be accomplished using the estimates we have
employed here. In fact, we can easily see that the right hand side of (3.26) does not
go to zero if a = 1 and b = 2. An entirely different approach must be used for sets of
smaller order. First consider sets S with |S| < -20(:—“) logn. If S contains only small
vertices then a consequence of the structural properties of Theorem 2.4.1 is that none
of the vertices in S are adjacent to one another. Hence all of the edges incident with
vertices in S are in §,(5), and since the minimum degree is k, inequality (3.19) holds.
If S contains a large vertex, v, then at least X logn — 2()(—,:+f5 logn = mﬁ; logn

edges incident with v are in §;(S), and again inequality (3.19) is satisfied. m

3.3 Threshold Theorem

Now we apply the structural properties, the edge boundary lemma and the theorem
of Nash-Williams to establish our main results. First we will find the threshold func-
tion for edge-disjoint spanning trees and as a consequence we also have the threshold

function for collapsibility.
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Theorem 3.3.1 Let the edge probability be defined by

o= logn 4+ (k—1)loglogn + w,
n

where w, — 00 and w, = o(loglogn) so that almost all graphs have minimum degree

k. Then almost all graphs have k edge-disjoint spanning trees.

Proof: We wish to show that for every partition P of V(G) we have
|Ep(G)| 2 k(|P| - 1).
We will use the convention that the t = |P| sets of P are ordered as follows
Vil 2 [Va 2 ... 2 V.

There are three cases. In the first two, € is arbitrary.
Case I: |P| < jn+1 and || < en.

Since en > |Vj| > |V2| > ... > |Vi|, Lemma 3.2.1 will apply to every V;. Hence

|Ep(G)| = EZ:I&(V.‘)I (3.29)
LIl

> 53 KV (3.30)
i=1
k

> 2 (3.31)

> K(|P|-1). (3.32)

Case 2: |P| > jn+1 and |Vi| < en.

It is sufficient to show that the average number of edges in the edge boundary of

the sets of P is at least 2k almost surely, i. e.

i
; 16:(Vi)| > 2k|P|. (3.33)
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Then it will follow that
|E»(G)| 2 k|P|. (3.34)

We call a set V; of P primary if it consists entirely of large vertices. Otherwise
a set of P is secondary. If a primary set consists of one or two vertices, its edge
boundary has at least '2256'3 or 2'—‘%’3 — 1 edges respectively. In each case, the edge
boundary will have at least 3k edges for n sufficiently large. Lemma 3.2.1 implies
that any set with at least three vertices has at least 3k edges in its edge boundary.
Hence all primary sets have at least 3k edges in their edge boundaries. Lemma 3.2.1

also implies that each secondary set has at least k edges in its edge boundary.

Theorem 2.4.1 states that there are at most n!/3 small vertices, so it follows that P
has at most n'/3 secondary sets and at least 1n —n'/3 primary sets. Thus the number
of primary sets exceeds the number of secondary sets and so the average number of

edges in the edge boundaries of the sets of P is at least 2k.
Case 3: |V1| > en.

Let ¢ > % so we have |V;| < en for i = 2 to t. Let R = Ji_, Vi and then clearly

|R| < en and 6,(V;) = 6:(R). It follows from Lemma 3.2.1 that for i = 2 to t almost

surely
|8:(V))| = k[Vi] (3.35)
and
16:(V1)| = |6:(R)| 2> K|R]. (3.36)
So from these relations
] id
|Er(G) = 5 (|61(V1)| + g |51(Ve)|) (3.37)
> S(HRI+HR]) = KR (3.38)
> k(|P|-1). (3.39)
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Thus Theorem 3.1.1 can be applied to all three cases and so we know that a

random graph of minimum degree k has k edge-disjoint spanning trees a. s. m

It follows from Theorem 3.3.1 that a random graph with minimum degree two
has two edge-disjoint spanning trees almost surely. Hence Theorem 1.1.2 implies
that with probability approaching 1 these are collapsible. Obviously a graph with a
vertex of degree one is not collapsible. Thus, we have determined the threshold for

collapsibility.

Corollary 3.3.2 Let the edge probability p be defined by equation (2.5) with k = 2
so that almost all graphs have minimum degree two. Then almost all graphs are

collapsible.

Theorem 3.3.1 and Corollary 3.3.2 can be refined. Suppose p is defined by equation
(2.5) but w, — ¢, for a constant ¢. No doubt it can be shown that the probability that
the minimum degree is k and the probability that there are k edge-disjoint spanning
trees are the same in the limit, namely exp[—{exp(—c)}/(k — 1)!], (see [Bo85], p. 61

for further details on the degree distribution).

Our proof of Theorem 3.3.1 is not algorithmic. On the other hand, if the minimum
degree is at least k = 2r + 1, then there is a method for finding r + 1 edge-disjoint
spanning trees in a random graph. First we need another consequence of the Edge

Boundary Lemma 3.2.1.

Theorem 3.3.3 Let the edge probability p be defined by equation (2.5) with k > 2r+1.
Then a random graph G has r edge-disjoint spanning cycles, C,,C,,...,C,, and the
subgraph H, which is obtained from G by deleting the edges of the r spanning cycles,

s connected.
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Proof: Bollobas and Frieze have shown in [BoF85] that a random graph G with
minimum degree 2r + 1 has r edge-disjoint spanning cycles. Now fix € > 1/2. Then
from Lemma 3.2.1 it follows that for any subset S of V(G), with |S| < n/2, we have
a.s.

16:(5)] 2 (2r + 1)IS]. (3.40)

Removing the edges of r edge-disjoint spanning cycles from G means at most 2r|S]|

edges are removed from 6,(S). Thus
16:(S)] = 2r|S]| 2 |S| > 0, (3.41)

so 6;(S) in H is non-empty. Hence H is almost surely connected. m

Suppose we have a random graph G with minimum degree at least 2r + 1. The
algorithm of [BoFF87] can be used to find r edge-disjoint spanning cycles, and hence
r edge-disjoint spanning paths. Let H be the graph obtained by deleting the edges of
these paths from G. Theorem 3.3.3 implies that H is almost surely connected and so
Depth-First Search on H will produce another spanning tree of G disjoint from the r

paths.

All of the results in this section can be converted to Model B. Let us restate

Corollary 3.3.2.

Corollary 3.3.4 Let the number M of edges be given by
M= l%(]ogn + loglogn + wn)J , (3.42)

where w, — 00 but w, = o(loglogn). Then almost all graphs in G(n, M) are collapsi-

ble.

We conclude by pointing out that Frieze and Luczak [FrL90] established a theorem

corresponding to Theorem 3.3.1 for a slight variation of Model C. To obtain the
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graphs of their version, the orientation of the r arcs out of each vertex is ignored but
a symmetric pair of arcs becomes a pair of multiple edges. They showed that these
graphs obtained from r-out almost surely have r edge-disjoint spanning trees. They
used the Nash-Williams theorem but their proof was significantly different because of

the nature of the probability model.

3.4 Regular Graphs

In a regular graph all vertices have the same degree. A graph is r-regular if
each vertex has degree r. Our sample space for random regular graphs consists of
all labeled r-regular graphs on n vertices. We use the equiprobable model. In this

section we will explore the collapsibility of regular graphs.

The connectivity £(G)of a graph G is the minimum number of vertices whose
removal from G results in a disconnected or trivial graph. The edge connectivity A\(G)
of a graph G is the minimum number of edges whose removal from G results in a
disconnected or trivial graph. We will now determine the number of edge-disjoint

spanning trees in a random regular graph.

Theorem 3.4.1 For a fized r > 3 almost all r-regular graphs have l%J edge-disjoint

spanning trees.

Proof: Wormald has shown that for » > 3, almost all r-regular graphs have

connectivity r (see [Wo81]). Now let G be an r-regular graph, r > 4, and let
P= {‘/13‘/%,‘4}

be a partition of V(G). Using the fact that x(G) > A(G) and the above mentioned

result of Wormald, we see that |6;(V;)| > r for all 0 < ¢ < t almost surely. Therefore
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for almost all r-regular graphs,

1 7!
IEp(@)] = 52 1Vl (343)
=1
1 [Pl
> igr (3.44)
> |Z]api-. (3.45)

It then follows from Theorem 3.1.1 that almost all r-regular graphs will have lg]

edge-disjoint spanning trees. w

Using Theorem 1.1.2, we can easily arrive at the following corollary.
Corollary 3.4.2 For fired r > 4, almost all r-regular graphs are collapsible.

The question as to whether random 3-regular graphs (also called cubic graphs) are
collapsible has yet to be answered. It is a much more difficult problem. As stated
above, it is not even known if the Augmented Petersen graph is collapsible. The use
of “definition two” of collapsibility will lead to a rather concise equivalent statement
of the problem. Recall that a graph G is collapsible if for every subset S of V(G) with
even cardinality, there is a subgraph I' such that G — E(T') is connected and v € S if
and only if the degree of v in I is odd. So if G is a cubic graph, in order for G — E(T")
to be connected the only odd degree allowed in I' is one. This means I' must be a
collection of paths. Thus a cubic graph G is collapsible if and only if for every subset
S of V(G) with even cardinality there exist |S|/2 disjoint paths whose ends are the

vertices of S and the removal of the edges of these paths does not disconnect G.

Let us refine the problem further. Suppose G is a cubic graph. Consider “definition
one” of collapsibility and let the subset S of V(G) be the empty set. We wish to find

a spanning connected subgraph H in which the vertices of S have odd degree. Since
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G is 3-regular, all vertices of H must have degree two. Hence, this case shows that if a
cubic graph G does not have a spanning cycle, it is not collapsible. It has been shown
by Robinson and Wormald that almost all cubic graphs have a spanning cycle (see
[RoW92]), so it is possible that almost all cubic graphs are collapsible. However there
are examples of cubic graphs that contain a spanning cycle and are not collapsible.
A diamond is a K, with one edge removed. By arranging m diamonds in a circle and
connecting each one to its successor by a new edge joining vertices of degree two, we
create a ring of m diamonds. This ring is clearly hamiltonian but not collapsible if

m > 4, because on contracting the triangles in the diamonds, a cycle C,, is left.

3.5 Large Eulerian Subgraphs

Let x#(G) be the minimum number of edges whose removal from a graph G leaves
a spanning eulerian subgraph H. It follows from a result in [Pa88] that if pn > logn
and p — 0 as n — oo, then the number of vertices with odd degree is asymptotic to
n/2. Furthermore if pn > 2logn, then the subgraph induced by the vertices of odd
degree has a perfect matching (a. s.). Hence for pn > 2logn, p aproaches n/4. Our

object now is to estimate bounds on y for smaller p.

Suppose p is defined by equation (2.5) with & > 3 so that the minimum degree
is at least 3 (a. s.). From Theorem 3.3.3 we know that a random graph G has a
spanning cycle C whose edges may be removed and a connected graph will remain.
This cycle can be expressed as the edge-disjoint union of paths joining vertices of odd
degree. On removing the edges of alternate paths of the cycle from G, we obtain
an eulerian subgraph. Clearly no more than n/2 edges need to be removed. Hence

¢ < nf2 almost surely.

On the other hand, suppose p is defined by equation (2.5) with ¥ = 2 so that
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a. s. the minimum degree is 2. We know from Theorem 3.3.1 that a random graph
G will have two edge-disjoint spanning trees, T} and T;. Now arrange the vertices
of odd degree in pairs arbitrarily and consider the paths in T} that join each pair.
By forming the symmetric difference of these paths, we obtain a set of edge-disjoint
paths in T;. The deletion of the edges in these paths leaves an eulerian graph and

hence p < n -1 (a. s.).

These results are summarized in the following theorem.

Theorem 3.5.1. Suppose the edge probability p of a random graph is defined by

equation (2.5) and € > 0 is arbitrary.

Ifk > 3, then a. s.

(1-¢)n/4 < p<nf2,

and if k = 2, then a. s.

(1-en/a<p<n-1

Now there is the problem of refining these results. In the range where pn = clogn,
1 < ¢ < 2, can the upper bound of n/2 be lowered? For p defined as in equation (2.5),
a random graph will most likely not have a matching on the vertices of odd degree, so
how may the lower bound of (1 — €)n/4 be raised? And finally, for the case k¥ = 2 in
Theorem 3.5.1, how much can the upper bound be improved? If a spanning cycle on
the vertices of degree at least three can be found whose removal almost surely does

not disconnect the graph, the upper bound can be lowed to n/2.
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