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ABSTRACT

PROBABILISTIC THRESHOLD FOR COLLAPSIBILITY

IN RANDOM GRAPHS

BY

Joseph J. Spencer

A graph G is collapsible if for every subset S of V(G) with even cardinality, there

is a connected spanning subgraph H of G whose verticas of odd degree are precisely

the vertices of S. Collapsible graphs form an important class which satisfy the well-

known double cycle conjecture. We have determined the random graph threshold

function for this monotone property, i. e. we have found that a random graph with

minimum degree two is almost surely collapsible. Our approach makes use of the

theorem of Nash-Williams and Tutte which characterizes graphs with k edge-disjoint

spanning trees. This method can also be used to estimate the minimum number of

edges whose removal from a random graph leaves an eulerian subgraph.
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Introduction

The theory of random graphs was founded over thirty years ago by Paul Erdos

and Alfred Rényi. In their fundamental papers [ErR59], [ErR60] and [ErR61] they

brought the theory of probability into play with graph theory and opened up an area

of investigation that has resulted in a thousand research papers, several books, two

journals and many special conferences. It is now regarded as a major component of

the field known as probabilistic combinatorics and has many important applications

especially in the analysis of algorithms from computer science. One of their most

interesting discoveries was the notion of the threshold function. The idea is that as a

graph accumulates edges at random, certain properties occur rather abruptly. Erdés

and Rényi found that they could predict quite accurately when such phenomena

transpired. It is much the same as chemical phase transition that occurs when a solid

such as ice is subjected to a gradual temperature increase and passes from solid to

liquid and then to gas. In this thesis we will determine sharp thresholds for graph

properties that arise in the study of the double cycle conjecture (DCC). See Jaeger

[Ja85] for a survey of this topic.

The DCC constitutes one of the best-known unsolved problems in graph theory.

It was first raised by G. Szekeres [3273] and asserts that if G is a graph with no

bridges, then there is a multiset C of cycles in G such that each edge of G occurs in

exactly two members of the family C. The collapsible graphs originate in the work of

Paul Catlin and are an important set of graphs which satisfy the DCC. So too are the
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supereulerian graphs. We first provide alternate definitions for collapsibility, relevant

characterization theorems, descriptions of some families of collapsible graphs and a

compulsory threshold. Then we introduce several probability models, discuss their

relationships and give detailed proofs of important structural properties of random

graphs. Next the decomposition theorem of Nash-Williams is presented. Together

with our edge boundary lemma, it can be applied to obtain the threshold for edge-

disjoint spanning trees and consequently the threshold for collapsibility. Finally we are

able to use our techniques to estimate the size of large eulerian subgraphs in random

graphs. During the course of our investigation several difficult unsolved problems

arise. First there is the enumeration problem for collapsible graphs. Then we have

the problem of determining an efficient algorithm for finding edge-disjoint spanning

trees in random graphs with minimum degree two. Finally there is the question of

the asymptotic probability of collapsibility for cubic graphs.

Here are some of the basic definitions we need from graph theory. Those not

included may be found in the books [B085] and [Pa85]. A graph G consists of a finite

set of vertices, V(G), together with a set of edges, E(G), which are unordered pairs

of vertices. The cardinality of V(G) is the order of G and the cardinality of E(G) is

the size of G. We will use the convention that n = |V(G)|. If 11,2) 6 V(G) and the

edge e = {u,v} we say u and v are incident with e or that e is incident with v. If u

and v are both incident with the edge e, we say that u and v are adjacent. We also

say that e joins u and v. The degree of a vertex v, denoted by degG(v), is the number

of edges that are incident with v in G. A multigraph is a graph in which any finite

number of edges between two vertices is allowed.

The vertex neighborhood of a set S' Q V(G) is defined by

N(S) = {v | v ¢ Sis adjacent to some u 6 S}.



For a singleton set, we will use N(v) = N( {0}) A walk in a graph G is a sequence

of vertices v1,vg, . . . ,1)... such that v.- is adjacent to 1),“, i = 1 to m — 1. If vl = vm,

the walk is closed. A path in G is a walk in which no vertex is repeated. The length

of a path is number of edges in it. A graph G is connected if there is a path between

every pair of vertices. The distance between two vertices is the length of a shortest

path between them.

A cycle is a walk with at least three vertices in which the first and last vertices

are the only ones repeated. A graph is acyclic if it contains no cycles. A tree is a

connected, acyclic graph. A graph that is a path with n vertices and n — 1 edges will

be denoted by P“. We denote a cycle of order n by C... A graph with n vertices and all

(’2‘) possible edges is called the complete graph and is denoted by Kn. The cartesian

product or product of the graphs G and H, G x H, is the graph whose vertices are all

ordered pairs (u, v), where u 6 V(G) and v E V(H). The edges of G x H join (111,121)

and (212,122) if (i) u; = 112 and v1 is adjacent to v; or (ii) v1 = v; and u; is adjacent

to U2. For m 2 1 the m-cube Qm is K2 x . . . x K2, where the number of factors is m.

We see that Q1 = P1 and Q2 = C4.

A subgraph H of G is a graph with V(H) Q V(G) and E(H) is a subset of those

edges in E(G) that are incident with with only the vertices in V(H). We will use the

notation H E G to mean that H is a subgraph of G and V(H) = V(G). An induced

subgraph H of G is a subgraph such that if 21,2) 6 V(H) and {u,v} is and edge of G

then {u, v} is also and edge of H. For a set X C V(G), X" will represent the induced

subgraph whose vertex set is X. A subgraph H of G spans G if V(H) = V(G). A

maximal, connected subgraph is called a component. An edge whose removal from a

graph increases the number of components is called a bridge. A graph G is eulerian

if there exists a closed spanning walk that includes each edge of G exactly once. A

graph is supereulerian if it has a spanning eulerian subgraph.



Let g, be the set of all 2(3) labeled graphs of order n. A subset Q of 9,, is a graph

property if it is closed under isomorphism. A graph property Q is a monotone graph

property or monotone if for any graph H that has Q, all graphs G such that H C_: G

also have Q.

We will often use a right arrow “—i” mean the limit as n goes to co.



Chapter 1

Collapsibility

1 .1 Definitions

A graph G is collapsible (see [Ca88a]) if for every subset S of V(G) with even

cardinality, there is a connected spanning subgraph H of G in which 5' is the set

of odd vertices in H. We shall refer to this as “definition one” for collapsibility. It

is equivalent that a graph G is collapsible if for every subset S of V(G) with even

cardinality, there is a subgraph P such that G — E(I‘) is connected and v E S' if and

only if the degree of v in F is odd. We call this “definition two”. We will also consider

K1 to be collapsible. The cycle 03 is an example of a collapsible graph while C4 is

not collapsible. More examples will follow later. In this section we will describe some

of the properties of collapsible graphs.

For a graph G with a subgraph H, the contraction G/H is the multigraph ob-

tained from G by identifying H with a single vertex v”. Thus G/H has vertices

V(G/H) = [V(G) — V(H)] U {v3} and lE(G/H)| = |E(G)| — IE(H)|. Note that all

edges connecting V(G) — V(H) to V(H) are included in G/H. Multiple edges can

arise when a vertex in N(V(H)) is adjacent to two or more vertices of H. We are

now ready to state a very useful result for the identification of collapsible graphs.

Theorem 1.1.1 ([Ca88a]) Let H be a collapsible subgraph of G. Then G is col-

5



lapsible if and only if G/H is collapsible.

As a result of this theorem, we can sometimes determine whether or not a graph

G is collapsible by performing a series of contractions. Thus G is collapsible if it can

be reduced to a single vertex. But we also have the following important sufficient

condition for a graph to be collapsible.

Theorem 1.1.2 ([Ca88a]) If a graph has two edge-disjoint spanning trees then it is

collapsible.

‘Proof: This can be shown directly from “definition one” of collapsibility. Let G

be a graph with two edge disjoint spanning trees and let S be an even ordered subset

of V(G). We wish to construct a spanning subgraph H where vertices of odd degree

are precisely the vertices in 5. There are four kinds of vertices depending on their

parity in G and their desired parity in H. Let

A = {v | degG(v) is even and degH(v) is even},

B = {v | degG(v) is even and degy(v) is odd},

C = {v I degG(v) is odd and degy(v) is even}

and

D = {v I degg(v) is odd and degy(v) is odd}.

Note that BUD = S. The vertices in B and C must have their parities changed.

Since IE I + IDI and ICI + |D| count the number of odd vertices in a graph, they are

both even integers. It follows that IBI + IC I + 2|D| is also an even integer. Thus

[8 I + IC I, the number of vertices that must have their parities different in H and G,

is even. We arbitrarily pair up the vertices that must have their parity changed and



consider the paths that connect them in one of the spanning trees. By removing the

symmetric differences of these paths, we create a graph H in which the vertices of

S are exactly those of odd degree. The existence of the second spanning tree of G

guarantees that H is a connected subgraph. I

We can see directly from the “definition one” that all collapsible graphs are su-

pereulerian. One simply chooses .S' to be the empty set. Here is another interesting

trait of collapsible graphs.

Theorem 1.1.3 ([Ca88a]) Let G be a graph with a collapsible subgraph H. Then

G is supereulerian if and only if G/H is supereulerian.

This theorem shows how collapsibility can be used to help us identify supereulerian

graphs. Supereulerian graphs are an important class of graphs which are known to

satisfy the DCC.

1.2 Families of Collapsible Graphs

In this section we will give examples of collapsible graphs as well as examples of

non-collapsible graphs. Certain families of collapsible graphs will be described.

Let G be any collapsible graph with IV(C)I Z 2. Consider the cartesian product of

G with any connected graph H. Since G is collapsible, we may contract each copy of

G in G x H to a single vertex, resulting in a graph we shall call Hg. Clearly the graph

HG can be obtained from the graph H by replacing every single edge in H by |V(G)I

multiple edges. Thus we have |V(HG)I = |V(H)| and IE(HG)I = IE(H)||V(G)I. Since

two vertices with two or more edges joining them form a collapsible graph, we may,

by a series of contractions, reduce HG to a single vertex. Thus it is collapsible and so

ultimately G x H is also collapsible.



We now need another reduction method which Catlin has described in [Ca88b].

Let G be a graph containing the induced four cycle C which has vertices w, 1:, y and z

and edges {w,a:}, {:c,y}, {y, z}, and {2, w}. The reduction 1r is made by eliminating

the edges of the cycle and then identifying the non-adjacent pairs of vertices and

adding an edge between the two resulting new vertices. If 121 is the identification of

w and y and v; is the identification of a: and 2, we keep all edges not in C, including

multiple edges that may arise, and add the edge {111, v2}. We will call the reduced

graph G/n.

Theorem 1.2.1 ([Ca88b]) Let C be an induced four cycle in the graph G. If G/7r

is collapsible then G is collapsible.

Now we may consider the m-cube Qm-. The graphs Q1 and Q2 are not collapsible.

But we can show Q, is collapsible by performing two 1r reductions and then use

contractions to obtain a single vertex. It can easily be shown by induction that Qm

for m _>_ 4 is also collapsible.

Next let us next consider the cartesian product of paths, which we will call a

lattice. We find that the lattices of the form P1 x Pm, m 2 1, are not collapsible.

These lattices have no spanning connected subgraphs with the four corners as the

only vertices of odd degree. Also the lattice P; x P2 is not collapsible. If we take

5 to be a set of eight vertices, leaving out only one of the middle side vertices, we

cannot find a connected spanning graph with the vertices in 5 having odd degree. It

is easily shown by a series of 7r reductions that P; x R; is collapsible. Using induction,

it follows that all lattices P; x Pm with l 2 2 and m 2 3 are collapsible. Here we have

found two non-collapsible graphs whose cartesian product is collapsible.

Another family of collapsible graphs consists of the cartesian products of cycles,

G; x Gm. If I = 3, then one of the cycles is a triangle, so the cartesian product



is collapsible, as shown above. If both l,m 2 4, then the lattice 131-1 x Pm_1 is a

collapsible spanning subgraph, so the graph G: x C... is collapsible. Using 7r reductions

it is easily seen that the set of graphs of the form K2 x Cn are also collapsible.

The well-known Petersen graph may described as a five pointed star inside a

pentagon with each point of the star connected to the corresponding vertex of the

pentagon. Here is a more precise description. Let the vertex set be

{1,2,3,4,5,a,b,c,d,e}

and the edge set be

{ {1,2}.{2.3}.{3.4},{4.5},{5.1}.{c.b}.{b.c}.{c.d}.

{d, e}, {e,a}, {1,a}, {2,d}, {3, b}, {4,6}, {5,6} }.

This is the smallest bridgeless graph with minimum degree three that is not collapsi-

ble.

The Augmented Petersen graph is constructed from the Petersen graph by adding

one vertex on the edge between 1 and 2 and one vertex on the edge between b and

c and then connecting these two new vertices with an edge. According to Zhi-Hong

Chen of Wayne State University (email communication) it is not known if this graph

is collapsible.

1.3 Compulsory Threshold

Consider a monotone graph property Q. Suppose every graph with n vertices and

at least Mn edges has property Q. Let us assume that M... is the least such value.

Then Mn is called a compulsory threshold for property Q. In this section we will find

the compulsory threshold for collapsibility. First we need two lemmas.
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Lemma 1.3.1 Let Q be the graph property that every edge is in a triangle. Then the

n — l

2

( 2 l +

Proof: Consider the graph with vertex set {1, 2, . . . , n} which consists of a complete

compulsory threshold for Q is

forn Z 3.

graph K -1 on the first 72 - 1 vertices and also has the edge e joining vertex n -— 1

71—1

with vertex n. This graph has ( 2 ) + 1 edges but e is not in a triangle. Therefore

the compulsory threshold is at least (”131) + 2.

Consider a complete graph Kn, n 2 3. Each edge of Kn belongs to n — 2 triangles,

so removal from Kn of any n — 3 edges will result in a graph that has property Q.

12 71—1

any graph with ('31) + 2 edges will have property Q. I

Since

Our second lemma follows from a theorem of Catlin.

Theorem 1.3.2 ([Ca88a]) Let H1 and H; be subgraphs of H such that V(H) =

V(H1)UV(H2), E(H) = E(H])UE(H2) and V(H1)nV(H2) # 0. IfH1 and H2 are

collapsible, then so is H.

Lemma 1.3.3 If G is a connected graph in which every edge is in a collapsible sub-

graph of G, then G is collapsible.

Proof: By repeatedly applying Theorem 1.3.2, we see that G is collapsible.-

Theorem 1.3.4 The compulsory threshold for collapsibility for a graph with n ver-

Inf)”

tices is
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forn Z 3.

Proof: Consider the graph G of order n and size ("31) + 1 described in the proof

of Lemma 1.3.1. Let H be the subgraph isomorphic to K -1. Then G/H = K2. Since

H is collapsible but K2 is not, it follows from Theorem 1.1.1 that G is not collapsible.

We know from Lemma 1.3.1 that every edge in a graph with (”'24) + 2 edges is in

a triangle, which is a collapsible graph. So by Lemma 1.3.3 a graph with (7:1) + 2

edges is always collapsible. I

The enumeration of collapsible and and supereulerian graphs constitutes an un-

solved problem. For graphs with a small number of vertices we have generated the

following numbers for the labeled and unlabeled cases.

Table 1.1: Numbers of Collapsible and Supereulerian Graphs

Collapsible Su erian

l

0

1

10

 

1 1

0 0

1 1

7 3

321 10



Chapter 2

Random Graphs

2.1 Probability Models

In this section we will describe three probability models commonly used in the

study of random graphs and give a simple illustration of how each model is used.

They will be called Model A, Model B and Model C.

In Model A, the sample space consists of all labeled graphs with n vertices. Given

a number 0 < p < 1, the probability of a graph G with M edges is defined by

13(0): PM(1- PlN’M

where N = ('2‘), the number of unordered pairs of vertices. The number p is the

edge probability. Thus the sample space consists of Bernoulli trials and the edges

are selected independently with probability p. Note that when p = 1/2, every graph

with n vertices has equal probability. In Model A, the expected number of vertices

n (n ; 1)p2(1 — p)”’3.

In Model B, the sample space consists of all labeled graphs with n vertices and M

of degree two is

edges. For a given value M, O S M S N, the probability of a graph G is defined by
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In Model B the expected number of isolated vertices in a graph is

(_<__:e;‘>>

(<7)

In Model C the sample space for a given n and r, 1 _<_ r < n, consists of all digraphs

with every vertex having outdegree r. This model is sometimes called “r—out”. Each

digraph D has probability

P(D) = (17...
13-]

r

For a digraph in Model C, the expected number of vertices with indegree zero is

By ignoring the orientation of the edges and consolidating multiple edges another

sample space consisting of graphs is created.

In the study of random graphs, we can conclude nothing about any one graph,

what we do study are properties of sets of graphs. If Q is some property of graphs

and A is the set of graphs of order n with property Q, and P(.A) -—> 1 as n —-> 00,

then we say almost all graphs have property Q or the random graph has property Q

almost surely (a. 3.). We are studying a sequence of sample spaces and the limit of a

sequence of probabilities.

An important discovery of Erdbs is the notion of the threshold function for certain

properties of random graphs. In Model A we express the edge probability p as a

function of the number of vertices n, i. e. p = p(n). The function p“(n) is a threshold

function for a graph property Q if

p(n)/p"‘(n) —+ 0 implies that almost no G has Q
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and

p(n)/p’(n) —» 00 implies that almost every G has Q.

We may similarly define threshold functions in Model B by considering M = M(n)

It has been observed by Bollobas and Thomason that every monotone graph property

has a threshold function [BoT86I.

The first moment method is an important tool from probability theory that is used

frequently in the study of random graphs. Suppose X is a nonnegative integer valued

random variable, then EIX] _>_ P(X 2 1). Thus if EIX] -—* 0, then P(X Z 1) —) 0

and therefore P(X = 0) —» 1. So, for example, if

X = the number of vertices of degree 0 in a random graph

 

and

pzzlorgln,

then

Em = n<1—pr-‘ (2.1)

S nexp(—p(n-1)) (2-2)

s nexp(—2logn)exp(p) (2.3)

S n(n‘2)exp(P)-*0o (24)

Thus P(X = 0) ——> 0 and we may conclude that if p = 21353, then a random graph in

Model A almost surely has no vertices of degree zero.

2.2 Degree Distribution

Having minimum degree at least k is a monotone graph property. It has a well

known sharp threshold function. If

p— logn-I—(k-1)]oglogn+wn

‘n

 (2.5)
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where w" -+ 00 and 1.12,. = o(log log n), then a random graph almost surely has mini-

mum degree lc.

Let us look at equation (2.5) with k = 2 and see how each term affects the degree

of a random graph. Let X.- be the random variable that counts the number of vertices

of degree i in a random graph. Then the expected number of vertices of degree two

is given by

E[X2] = n (n g 2)P’(1 - p)"”- (2-6)

First let us look at p = 1353. We have

 

3 o n 2

EIXg] = (1+0(1))%(l i ) e‘”" (2.7)

= (1+ 0(1))____”(1°§")2%_. 00 (2.8)

But this is not the threshold for minimum degree two because the expected number

of vertices with degree one is

Em = n(" ;‘ 1)pu — p)“ (2.9)

2 (1+ 0(1))n210—1g12%—+ oo. (2.10)

In fact we find that E[X.-] —> 00 for all i _>_ 1.

 

 

 

If

__ logn + log logn

p— n

then

_ n(logn)2 l
E[X2] _ (1+o(1)) 2 ”logn (2.11)

l

= (1+0(1))0gn—>oo- (2.12)
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but

 E[X1]=(1+o( 171))21°“ 7400
n nlogn

Adding the factor (on with can —» 00 and 1.12,, = o(log log n) forces E[X1] —2 0 while not

interfering with the behavoir of E[X2].

2.3 Relations Between Models

Usually we find that it is more straightforward to work with Model A than Model

B. Fortunately these two models are very closely related and it is often easy to convert

results from one to the other. In this section a random graph in Model A with n

vertices and edge probability p will be represented by GM, and its set of edges by

Emp. A random graph in Model B with n vertices and M edges will be represented

by GmM' A graph property Q is convex if G1 (_3 G2 and G1 and G2 both have Q

implies that any H such that G1 Q H Q G2 also has Q. For a convex graph property

we have the following well-known conversion theorem.

Theorem 2.3.1 ([3079]) Let 0 < p = p(n) < 1 be such that pn2 -> 00 and

(l -- p)n2 -» 00 as n —+ 00 and let Q be a property of graphs.

(i) Suppose e > 0 is filed and, if(1 —- e)pN < M < (1+ c)pN, then GmM has Q

almost surely. Then G",p has Q almost surely.

(ii) If Q is a convex property and GM, has Q almost surely then GmLpNJ has Q

almost surely.

For a graph property Q that is not convex we have the following method of

conversion from Model A to Model B that is presented in [BoFF87]. Note that at

times we will use non-integral quantities that ought to be rounded up or down. It

should be clear that this practice will not affect the results.
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Lemma 2.3.2 ([BoFF87]) Let Q be any graph property and suppose M = pN. If

nP(G,,,p has Q) —» 0 as n -+ 00

then

P(GmM has Q) —-+ O as n —> 00.

Proof: First note that

P(lEn.pl = M) = (13);)“(1 — PlN-M- (2.13)

Now using Stirling’s formula and the fact that M = pN, we can show that

 

 

 

1

P(IEMI = M) 2 (1 — 0(1))m. (2.14)

Also, using equation (2.13) we find that

P G”, h Q (1 En, = M

P(Gn, has Q | |E..,,,| = M) = ( P PaflE ail—I114)” ) (2.15)
‘71,? —

M _ N—M

(1")le — p)”-M

= P(GmM has Q). (2.17)

Now clearly it follows from the definition of Model A and from (2.17) that

P(GM has Q) = ZP(G,,,p has Q | IBM] = M')P(IE,,,,,| = M’) (2.18)

Ml

= E P(G’mM. has Q)P(|E,,,,| = M’). (2.19)
M!

By using a single summand of the right hand side of (2.19), say when M’ = M, we

see

P(GM, has Q) 2 P(GW has Q)P(|E.,,,| = M) (2.20)
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But now with equation (2.14) and using that N is asymptotic to 722/2,

P(Gw has Q) 2 (1 _ 0(1))(/;:3P(G,,M has Q). (2.21)

Thus

nP(G,,,p has Q) 2 (1 — o(l))\/;P(Gn,u has Q)

and our result is proven. I

2.4 Structural Properties

We are interested in random graphs with edge probability p roughly equal to

log n/n. The average degree of the vertices of such a graph is about log n. We need

to know that vertices of low degree are not too close to each other in a random

graph and that there are not too many of these. These structural properties will be

needed to help us show that in random graphs, small sets of vertices have large edge

boundaries and to show the existence of edge-disjoint trees in random graphs. We let

d = pn, and we say that v is small its degree is less than 2%, otherwise we say v is

large. In [BoFF87] the authors gave only a sketch of the proof of the next theorem,

but here we shall include more details. As in [BoFF87] the proof will be given for

both Models A and B.

Theorem 2.4.1 ([BoFF87]) In Model A with edge probability

 

p _>. logn (2.22)
n

or in Model B with

M _>_ énlogn (2.23)

the following statements for a random graph G hold almost surely:

. l .

(a) G contains no more than n3 small vertices.
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(b) G does not contain two small vertices at a distance offour or less apart.

Proof: (a) Let Q, be the property that a random graph G has more than ni small

vertices. We would like to show that almost all graphs do not have this property.

Let X count the number of sets containing ni small vertices. We know from the first

moment method that

P(Gn, has Q.) g E[X]. (2.24)

For each vertex v in a set S of order 3 consisting of only small vertices, the number

of edges joining v to vertices not in S will be (”F’) for 0 S i S 2‘1—0. Each of the edges

occurs with probability p and each non-edge with probability 1— p. So the probability

that a given 5' consists of small vertices is bounded by

If): (n : 8) p‘(1 — p)"““] s. (2.25)

i=0

So the expected number of sets 5 of small vertices with IS I = s will be

EIX] S (Z) If (n:s)p‘(1-p)"”“I - (226)

Now using the facts that IS I = ni and p _>_ “-53 along with the bound for the tail of

a binomial distribution (see [Pa85] page 133) we see

it n—s d d 71-3—1 8

Em S (ll(d/20)PT°(1—p)“"'fip(
20“) (2.27)
 

s p(n — s + 1) — 2%

s Q): [0(1)(20e9;—8p)d/2°exp(—pn + ps + 313)] (2.28)

S [0(1):Z exp(24—Od) exp(—d + ps + dp/20)I 8 (2.29)



20

.i

g [0(1)n§exp(—-;—3d)] (2.30)

. .11
g [0(1)n3exp(—-2d/3)exp(—5d/60)I (2.31)

S 0(l)exp(—-1-1§dn'1’). (2.32)

Because if = np 2 log n, clearly exp(—1—1§dn‘i) —2 0 as n —2 0. Thus P(Gndp has Qa) —+

0 and so almost surely GM, has fewer than ni small vertices.

This result is easily converted to Model B as follows. Multiply both sides of

inequality (2.32) by n and we see that nexp(—-11—2dn?15) —2 0 as n ——> 00. It follows from

Lemma 2.3.2 that almost surely Qa does not hold in Model B.

(b) Let Qb be the property that there exist two small vertices at a distance of four

of less apart. We would like to show that this property does not hold almost surely.

Let X count the number of pairs of small vertices at a distance of four or less apart.

Then

P(GM, has Q) _<_ E[X]. (2.33)

The expected value of X is bounded by the expected number sets of two small vertices

multiplied by the probability that the two vertices have a path of length four or less

between them. So we multiply inequality (2.26) by nap4 + n2p3 + np2 + p to obtain

i=0

d/20 2
_ 2 . .

E[Xl S (g) [E (n z. )p'(1 - p)"""] (72317“ + 122133 + 1w2 + p) - (2-34)

Using the same estimates as in part (a) for s = 2, we find

P(Gmp has Qb) _<_ n5p4e‘l‘5“. (2.35)

Since d 2 logn we see that P(Gnm has Q5) —+ 0. Therefore in Model A we know that

aJmost surely there are not two small vertices at a distance of four or less apart.
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Now for Model B. If p 2 93333 then d 2 210g n. Multipling inequality (2.35) by n

we find that

12(125p‘e'1‘5") S n6p4n‘3 —> 0 (2.36)

and thus by Lemma 2.3.2 we know P(GmM has Qb) —> 0. This gives us our result for

Model B if A! _>_ In log n}.

For smaller M, corresponding to the range 135-3 S p S 25?, more work is required.

First let M = {pN} . Now we will show that there exists an M’, with M—(n log3 n)% S

M’ S M such that

P(GmM’ has Q5) S 3n5p4e‘1'5“. (2.37)

Suppose that no such M’ exists. Then using equation (2.19) we have

P(GM, has Q5) 2 P(GmM' has Qb)P(|E',,,p| = M’) (2.38)

MI2
M
:

M 5 4 —1.5d N i N—i

Z 2: (3nPe )(2)P(1—Pl - (2-39)
I=M- ’

M

Then using inequalities (2.35) and (2.39) we see

nsple'l's" Z P(Gnm has Qb) (2.40)

M N . .
Z Z (3n5p4e-1.5d)( )pt(1_ p)N—t. (241)

i=M—M’ 2

So we have

1 M N i N—:‘

-3-_>_ Z 2 p(l-p) - (2.42)
i=M—M'

It follows from the normal approximation to the binomial distribution that the

1'ight hand side of inequality (2.42) approaches % as n —-> 00, so we have a contradic-

tion. Hence there exists an M’, with M — (nlog3 n)i S M’ S M such that

P(GmM. has Q.) g 3n5p46-1'5". (2.43)



22

Now let

P1 = P(GmMI has Q5 and Gn,M has Q5)

and

P2 = P(GmM’ does not have Q1, and Gn,M has Q5).

Clearly

P(GmM has Q.) = P1 + P). (2.44)

Next we show that both P1 —-+ 0 and P2 —) 0 as n —> 00.

First we see

P1 : P(Gn,hf’ has Q5 and Gn,M has Q5)

_<_ P(Gn,MI has Q5)

S 3125p4e‘1°5“ —) 0.

Now we focus on P2. Let n be the probability that GmM: does not have Q), but

Gn,M obtained from GmM’ by adding M — M’ edges has at least one of its new edges

incident with a small vertex or a neighbor of a small vertex. Clearly P2 S 1r. To show

that P2 —2 0, we will show that 1 — 71' ——> 1. Now 1 —- 7r is the probability that GmM:

does not have Q5 and GmM obtained from GmM: by adding M — M’ edges has none of

its new edges incident with a small vertex or a neighbor of a small vertex. The number

of positions where these new edges may be placed is at least N — M’ — n§(1 + %).

To see this, observe that the number of small vertices and their neighbors is at most

ni' + nif—o. There could be at most n — 1 edges incident with each of these. And so

n(ni' + "iiiol is an upper bound on the number of possible edges that are incident
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with a small vertex or a neighbor of a small vertex. Thus

(N—M’—n§(1+2%))

(1 — 7r) 2 $3221; ) . (2.45)

M—M’

The right side of (2.45) is of the form

Q. (2.46)

The behavior of such an expression was considered in [Pa85]. It is shown that if

a—b
 

 

k2 b2 —+ 0 (2.47)

and

k b — a 2 —+ 0 (2 48)

b — k '

then

). (2.49) 

Now since M —M’ S (n log3 n)i and n§(1+ 5%) = 0(ni log n), we see that conditions

(2.47) and (2.48) hold and that the binomial expression in (2.45) is asymptotic to 1.

Therefore 7r —+ 0 and then so must P2. This shows that both P1 —> O and P2 —+ 0

and it follows from equation (2.44) that

P(GmM has Qb) -—> 0.

Hence property Q1, almost surely does not hold for Model B when M = pN _>_

I§nlog it]. That is, almost surely the distance between any two small vertices is at

least five. I.



Chapter 3

Edge-Disjoint Trees

3.1 The Theorem of Nash-Williams

We will make use of a beautiful theorem found independently by Nash-Williams

and Tutte, which provides necessary and sufficient conditions for a graph to have

k edge-disjoint spanning trees. We use P to denote a partition of the vertex set

of a graph and IPI is the number of parts in P. For a graph G with partition P,

contracting each part of P to a single vertex leaves the graph which we denote as

Gp. We will call the edges of Gp external edges and denote them by either E(Gp) or

Ep(G).

Theorem 3.1.1 ([N-W61] , [Tu6l]) A graph G has I: edge—disjoint spanning trees

if and only if

IEr(G)I Z I~‘(I7’I - 1) (3-1)

for every partition P of V(G).

The necessity is easy to show. Let G be a graph with k edge-disjoint spanning

trees T1, T2, . . .T), and let P be a partition of V(G). Then each (T;)p is connected

and so it has at least IPI — l edges. Hence

IEMGI > Z IBMTI> k((IPI - 1) (3-2)

24
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as required.

The proof of the sufficiency is more complicated. We will provide an algorithmic

proof for the case when I: = 2 that is implicit in [N-W61]. The algorithm will explicitly

find two edge-disjoint spanning trees in any graph that satisfies condition (3.1). We

will prove results for arbitrary 11: when it is no more complicated than the case in

which I: = 2.

We need the following definitions. In a graph G for any non-empty subset X of

V(G) let Aa(X) = lc(|XI — 1) — IE(X‘)I. The set X is called .critical if Aa(X) = 0.

A partition P of V(G) is admissible if it satisfies inequality (3.1) and critical if the

inequality can be replaced with an equality. A graph G is called admissible if all

partitions of V(G) are admissible and critical if IE(G)I = lc(IV(G)I — 1)

The algorithm is recursive. We wish to reduce a graph to one of the base cases

when IV(G)I = 1,2 or 3.

Start the algorithm by considering a graph G. Every partition of V(G) must

be examined to make sure G is admissible and to find which partitions are critical.

Checking every partition will mean that this algorithm cannot be done in polynomial

time. Every graph returned by the algorithm will be admissible. If G = K1, then

we will consider G to be admissible and to have two edge-disjoint spanning trees.

If G has two or three vertices and is admissible, it will be clear that there are two

edge-disjoint spanning trees and they will be easily found.

For IV(G)I 2 4, every graph G falls into one of three classes:

(I) The only critical partition is P = {V(G)}, the trivial partition (which is always

critical).

(II) There is a critical partition that is neither the trivial partition, P : {V(G)},

nor the singleton partition, P = V(G).
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(III) The singleton partition and the trivial partition are the only critical parti-

tions.

For each of the three classes the algorithm will send a graph or a set of graphs

that have fewer edges and/or fewer vertices than the original graph back to the start

for treatment.

Class I graphs:

In this case, for every partition P # {V(G)}

lEr(G)| > k(l7’| - 1)-

So we may pick any 6 E E(G) and remove it, creating an new graph H = G — {e}.

Now every partition P of V(H) has

IEPIHII Z HIPI - 1)

and thus H is admissible and may be returned to the beginning of the algorithm.

Class II graphs:

Here there is a critical partition P of V(G) other than the singleton or trivial

partition, so

IEr(G)I = HIPI - 1)

with IPI 515 l and IPI 79 IV(G)|. Let P = {X1,X2,...,X¢}. For any X16 P, let Q be

a partition of X; and ’R = (P — {X;}) U Q. Then since G is admissible,

HIRI - 1) S IE‘R(G)I = IEr(G)I + IEQ(X£")| (3-3)

and so

IEQ(X.")I Z HIRI -1) - lEr(G)| = (3-4)

MRI-1) - kIIPI - 1) = (3-5)

MRI - IPI) = k(|Q|-1)- (3-6)
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Thus we see that X: is admissible since Q is arbitrary and that every X: is admissible

since i is arbitrary.

Now consider the graph Gp. Any partition 8 of V(G'p) is also a partition of

V(G). Since G is admissible, Gp is also admissible. We can then return IPI + 1

graphs, Xf, X5", . . . ,X,‘ and Gp, to the beginning of the algorithm. In each of these

graphs, 2 edge-disjoint spanning trees will be constructed and then put together to

form 2 edge-disjoint spanning trees on G.

Class III graphs:

We need the following lemmas.

Lemma 3.1.2 ([N-W61]) Let G be a critical graph. Then G is admissible if and

only ifAG(X) Z 0 for every 0 # X C V(G).

Proof: Let us start by showing the necessity. If G is admissible, let X C V(G) and

the complement of X be X = {1:1, ‘02, . . . , vr}. Also let P = (X, {v1}, {v2}, . . . , {v,}}.

Then

mM)=mmawwwm on

=HMW-FWWHWM4hmn (w)

=kmm4wmumflnml as

= Ik(IV(G)I - 1) - IE(G)” + [132(0) - k(l7’| - 1)] (3-10)

2 o (3.11)

using that G is critical and admissible. Now let us show the sufficiency. We assume

A0(X) 2 0 for all X C V(G). For any partition P of V(G),

IEr(G)I = IE(G)|- Z IE(X1)I (3-12)

XiE‘P

zkwmvu-ZMM—mwwvn (we
XiGP
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so G is admissible. This ends the proof of the lemma.

We also need some results about critical graphs with IV(G)| 2 4 and k = 2 that

are summarized in the following lemma.

Lemma 3.1.3 Suppose a graph G is critical with IV(G)I Z 4 and Aa(X) Z 0 for

every 0 yé X C V(G). For k = 2 the following hold:

(a) There are no vertices of degree two.

(b) There exists a vertex of degree three.

(c) For any vertex v of degree three, IN(v)| > 1.

(d) If a vertex v has degree three and X is a critical set not containing v, then

IN(v)flXI Sl

Proof: (a) If v is a vertex of degree 2, then the partition {{v}, V(G) — {v}} is

critical. But we are assuming that G has only the singleton and trivial partitions as

critical partitions.

(b) The average degree of the vertices in G is

2|E(G)| : 2(2(|V(G)|—1))= 4 __ 4 < 4

|V(G)| |V(G)l (V(G): '
  

Since there are no vertices of degree 2, then a vertex of degree 3 must exist.

(c) If v has degree three and N(v) : {u}, a single vertex then

Ac;({v,u}) = 2(2 — 1) — 3 = —1

which contradicts Lemma 3.1.2.

((1) First suppose the vertex v has degree three and that N(v) C X. Then since

Aa(X) = 0, we see that Ag(X U {v}) = 0 which contradicts Lemma 3.1.2. So one of

v’s neighbors is not contained in X.



29

Next suppose X contains two neighbors of v. Let X = {u1, U2, . . . , u,} and con-

sider the partition

’p = {X U {1)},{u1},.. .,{Ur}}-

Using that G is a critical graph, X is a critical set IPI = IXI + 1, we see

IE2(G)| = IE(G)|-IE(1’{"‘)|-2 (314)

= 2(|X|+|X|+1—1)—2(|X|—1)—2 (3.15)

= 2(|7‘(’|+1—1) (3.16)

= 2(|r|—1) (3.17)

But this contradicts the assumption that G only has the singleton and trivial parti-

tions as critical partitions. This ends the proof of the second lemma.

Let v be a vertex with degree three and with neighbors u and w. Let H be the

graph constructed from G by adding an edge e between u and w while deleting v and

the edges incident to v. Clearly H is critical and we must show that H is admissible.

For any set X C V(H), if u or w are not in X, then

AH(X) = A(AX) 2 0-

If both u and w are in X, then because X cannot be critical and contain both u and

w we know AC;(X) > 0. From this we see that AH(X) = Ag(X) - 1 Z 0. Thus by

Lemma 3.1.2 we know that H is admissible. We then may return H to the beginning

of the algorithm.

From H we construct two edge—disjoint spanning trees in G as follows: When H

returns it will have two edge-disjoint spanning trees and the edge e = {u, w} will be

in one of them. For that tree, replace c with the edges {v,u} and {v,w}, and add

the third edge incident to v to the other tree.
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Thus by reducing the graph G to one of the base cases we may construct two edge

disjoint trees on G. I

The computational complexity of this algorithm is, of course, exponential because

every partition of the vertex set must be examined. On the other hand, the proof

seems easier to follow and more convincing than traditional proofs when presented

in this style. Furthermore it is apparent that the traditional proofs do not lend

themselves easily to adaptation for efficient algorithms. Dave Johnson has told us

that finding edge-disjoint spanning trees can actually be achieved in polynomial time

(email communication). The best known treatment makes use of the matroid greedy

algorithm. See [RoT85] for related references.

3.2 Edge Boundary Lemma

To implement the theorem of Nash-Williams, we must have some knowledge of the

edge boundary of a set of vertices. We need to show that a vertex set of small order

will have a large number of edges joining it to the rest of the graph. For a subset S

of V(G), let us define the edge boundary ofS to be

61(5) = {(155} | u e s, v e V(G)\S}. (3.18)

Lemma 3.2.1 (Edge Boundary Lemma) Let the edge probability p be defined by

equation (2.5) so that almost all graphs have minimum degree 11: and let 0 < e < 1 be

fixed. Then almost every graph G has the following property: For every subset S of

V(G) with IS'I S en we have

I61(5)I Z k|S|. (3-19)
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Proof: The expected number of sets with cardinalities between the integers a and

b inclusive for which condition (3.19) does not hold is

b ks—l _ ' .

F(a.b) = Z: (") Z (3”,. 3))17'0 — P)’(n_”_’- (3.20)
a=a j=1

We would like to find the largest interval possible on which F(a, b) -+ 0 as n —> 00.

Now by using the fact that the inner sum is a binomial tail and applying Stirling’s

formula we see

 

 

 

  

b ”-3 s—1)sn—s sl p{S(n— S)—(l€3—1)+l}

F(“”)- aimi)s—1l”k(1 ( )H [p{s(n: s)+1}—(ks—1)

(3.21)

b

S 3230(1)(:) (S(k: : 111)):ks— 1(1 _ p)s(n-s)—ks-l (3.22)

” 1 — p ne ‘ 3(n - 3)€ “-1 s(n-—s)—ks

‘- 20“)? (I) (W) (1‘ 1”) (3'23)

< 2:: 0(1)1-:){S—)s (((Z_—3—1—)):) (np)" epr—p(n — s — k)]] (3.24)

(l _(1 e’PePk 8

O(-l-0—g))o(1):[ (ogn))kn(logn)"‘1ewnI (3.25)

b logn lc- .9 ea: s/ne—w 3
S ;0( logn))[o(1) {12(logn) "} "I . (3.26)

We now split the sum in (3.26) into two parts. First we would like to have

6012-52 < 1 and {n(logn)""1e“’"}’/" < L where co and L are constants. For this we

need

a = cologn < s

and

s< Cln —fl—b

"' log+(k—1)loglogn+w,, _ p _

 

where c1 = log L. It then follows that F(colog n, 9:) —+ O.
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Secondly, for the upper part of the sum, if a = 5; and b = an we see

 

Cl (n 1 log k—l w a/n —w 8
_ < _ n n .

F( , en) Fig/p 0(log ) [0(1) 3 {n(log n) e } e (3 27)

 
en

1+‘(k“1l
s

z 0( 1 ) [o(l)(log:zzl_c {logn + (k — 1) log log n + ewn}e-Wn(1-C)]

1

(3.28)

—>0

l—c

because the term n in the denominator will dominate. So F(colog 11, en) —* 0 as

n—+oo.

Showing F(0,colog n) --+ 0 cannot be accomplished using the estimates we have

employed here. In fact, we can easily see that the right hand side of (3.26) does not

go to zero if a = l and b = 2. An entirely different approach must be used for sets of

smaller order. First consider sets 8' with ISI Smlog 72.. If 3 contains only small

vertices then a consequence of the structural properties of Theorem 2.4.1 is that none

of the vertices in S are adjacent to one another. Hence all of the edges incident with

vertices in S are in 61(5), and since the minimum degree is k, inequality (3.19) holds.

If S contains a large vertex, v, then at least %logn - 20(—Ii+T5 logn = mtg—filogn

edges incident with v are in 61(5), and again inequality (3.19) is satisfied. I

3.3 Threshold Theorem

Now we apply the structural properties, the edge boundary lemma and the theorem

of Nash—Williams to establish our main results. First we will find the threshold func-

tion for edge—disjoint spanning trees and as a consequence we also have the threshold

function for collapsibility.
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Theorem 3.3.1 Let the edge probability be defined by

 

p— logn+(k——1)loglogn+wn

n

where can -—) 00 and can = o(log log n) so that almost all graphs have minimum degree

1:. Then almost all graphs have I: edge-disjoint spanning trees.

Proof: We wish to show that for every partition P of V(G) we have

IENGH Z k(|P| — 1)-

We will use the convention that the t = IPI sets of P are ordered as follows

MI 2. MI 2 .>_ MI-

There are three cases. In the first two, 6 is arbitrary.

Case I: IPI S %n +1 and IVII < en.

Since en 2 IVII Z |V2| Z .. . Z IVA, Lemma 3.2.1 will apply to every V5. Hence

1 IPI

IEp(G)| = 536.04): (3.29)

1 IPI

2 52km (3.30)
i=1

nlc

2 72— (3.31)

2 tum—1). (3.32)

Case 2: IPI > %n +1 and “GI < en.

It is sufficient to show that the average number of edges in the edge boundary of

the sets of P is at least 2k almost surely, i. 6.

WI

2 I61(V.-)I 2 2km. (333)
i=1
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Then it will follow that

IEp(G)| 2 klpl- (334)

We call a set V; of P primary if it consists entirely of large vertices. Otherwise

a set of P is secondary. If a primary set consists of one or two vertices, its edge

boundary has at least 5355'! or 2132561I — 1 edges respectively. In each case, the edge

boundary will have at least 311: edges for n sufficiently large. Lemma 3.2.1 implies

that any set with at least three vertices has at least 3k edges in its edge boundary.

Hence all primary sets have at least 3k edges in their edge boundaries. Lemma 3.2.1

also implies that each secondary set has at least k edges in its edge boundary.

Theorem 2.4.1 states that there are at most 121/3 small vertices, so it follows that P

has at most 711/3 secondary sets and at least in — n1/3 primary sets. Thus the number

of primary sets exceeds the number of secondary sets and so the average number of

edges in the edge boundaries of the sets of P is at least 21:.

Case 3: WI] > en.

Let c > % so we have |V,-| < en for i = 2 to t. Let R = U§=2 V.- and then clearly

[RI < m and 61(V1) = 61(R). It follows from Lemma 3.2.1 that for i = 2 to t almost

surely

I510?)  2 WI (3.35)

and

|61(V1)| = |61(R)| _>_ klRl- (3-36)

So from these relations

i=2

IPI

we): = -;-(l61(%)|+2|61(14)l) (337)

I
V

1

503(3) + k|R|) = HR! (3.33)

I
V k(|P| — 1). (3.39)
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Thus Theorem 3.1.1 can be applied to all three cases and so we know that a

random graph of minimum degree I: has In edge-disjoint spanning trees a. s. I

It follows from Theorem 3.3.1 that a random graph with minimum degree two

has two edge-disjoint spanning trees almost surely. Hence Theorem 1.1.2 implies

that with probability approaching 1 these are collapsible. Obviously a graph with a

vertex of degree one is not collapsible. Thus, we have determined the threshold for

collapsibility.

Corollary 3.3.2 Let the edge probability p be defined by equation (2.5) with k = 2

so that almost all graphs have minimum degree two. Then almost all graphs are

collapsible.

Theorem 3.3.1 and Corollary 3.3.2 can be refined. Suppose p is defined by equation

(2.5) but can —> c, for a constant c. No doubt it can be shown that the probability that

the minimum degree is k and the probability that there are k edge-disjoint spanning

trees are the same in the limit, namely exp[—{exp(—c)}/(lc — 1)!], (see [B085], p. 61

for further details on the degree distribution).

Our proof of Theorem 3.3.1 is not algorithmic. On the other hand, if the minimum

degree is at least k = 2r + 1, then there is a method for finding 1' + 1 edge-disjoint

spanning trees in a random graph. First we need another consequence of the Edge

Boundary Lemma 3.2. 1.

Theorem 3.3.3 Let the edge probabilityp be defined by equation (2. 5) with k 2 2r+1.

Then a random graph G has r edge-disjoint spanning cycles, C1, C2, . . . , Cr, and the

subgraph H, which is obtained from G by deleting the edges of the r spanning cycles,

is connected.
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Proof: Bollobas and Frieze have shown in [BoF85] that a random graph G with

minimum degree 21‘ + 1 has r edge-disjoint spanning cycles. Now fix 6 > 1/2. Then

from Lemma 3.2.1 it follows that for any subset S of V(G), with |S| S n/2, we have

as

I61(S)| 2 (2r +1)|S|. (3.40)

Removing the edges of r edge-disjoint spanning cycles from G means at most 2r|5 I

edges are removed from 61(5). Thus

|51(5)| - 21‘ISI 2 ISI > 0, (3.41)

so 61(5) in H is non-empty. Hence H is almost surely connected. I

Suppose we have a random graph G with minimum degree at least 2r + 1. The

algorithm of [BoFF87] can be used to find r edge-disjoint spanning cycles, and hence

r edge-disjoint spanning paths. Let H be the graph obtained by deleting the edges of

these paths from G. Theorem 3.3.3 implies that H is almost surely connected and so

Depth-First Search on H will produce another spanning tree of G disjoint from the r

paths.

All of the results in this section can be converted to Model B. Let us restate

Corollary 3.3.2.

Corollary 3.3.4 Let the number A! of edges be given by

M = [lg-(logn + log logn + wn)J , (3.42)

where can —i 00 but can = o(log log n). Then almost all graphs in 9(n, M) are collapsi-

ble.

We conclude by pointing out that Frieze and Luczak [FrL90] established a theorem

corresponding to Theorem 3.3.1 for a slight variation of Model C. To obtain the



37

graphs of their version, the orientation of the r arcs out of each vertex is ignored but

a symmetric pair of arcs becomes a pair of multiple edges. They showed that these

graphs obtained from r-out almost surely have r edge-disjoint spanning trees. They

used the Nash-Williams theorem but their proof was significantly different because of

the nature of the probability model.

3.4 Regular Graphs

In a regular graph all vertices have the same degree. A graph is r-regular if

each vertex has degree r. Our sample space for random regular graphs consists of

all labeled r-regular graphs on n vertices. We use the equiprobable model. In this

section we will explore the collapsibility of regular graphs.

The connectivity n(G)of a graph G is the minimum number of vertices whose

removal from G results in a disconnected or trivial graph. The edge connectivity /\(G)

of a graph G is the minimum number of edges whose removal from G results in a

disconnected or trivial graph. We will now determine the number of edge-disjoint

spanning trees in a random regular graph.

Theorem 3.4.1 For a fixed r 2 3 almost all r-regular graphs have ng edge-disjoint

spanning trees.

Proof: Wormald has shown that for r 2 3, almost all r-regular graphs have

connectivity 1' (see [W081]). Now let G be an r-regular graph, 1' Z 4, and let

P={V1.V2,---,V1}

be a partition of V(G). Using the fact that E(G) 2 A(G) and the above mentioned

result of Wormald, we see that I61(V.-)| Z r for all 0 S i S t almost surely. Therefore
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for almost all r-regular graphs,

1 IPI

133(0)) = 5};|61(V.-)| (3.43)

1 IPI

2 §£=lr (3.44)

2 [glam—1). (3.45)

It then follows from Theorem 3.1.1 that almost all r-regular graphs will have (gj

edge-disjoint spanning trees. I

Using Theorem 1.1.2, we can easily arrive at the following corollary.

Corollary 3.4.2 For fixed r 2 4, almost all r-regular graphs are collapsible.

The question as to whether random 3-regular graphs (also called cubic graphs) are

collapsible has yet to be answered. It is a much more difficult problem. As stated

above, it is not even known if the Augmented Petersen graph is collapsible. The use

of “definition two” of collapsibility will lead to a rather concise equivalent statement

of the problem. Recall that a graph G is collapsible if for every subset S of V(G) with

even cardinality, there is a subgraph P such that G — E(F) is connected and v E S if

and only if the degree of v in I‘ is odd. So if G is a cubic graph, in order for G - E(F)

to be connected the only odd degree allowed in F is one. This means I‘ must be a

collection of paths. Thus a cubic graph G is collapsible if and only if for every subset

S of V(G) with even cardinality there exist IS I /2 disjoint paths whose ends are the

vertices of S and the removal of the edges of these paths does not disconnect G.

Let us refine the problem further. Suppose G is a cubic graph. Consider “definition

one” of collapsibility and let the subset S of V(G) be the empty set. We wish to find

a spanning connected subgraph H in which the vertices of 3 have odd degree. Since
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G is 3—regular, all vertices of H must have degree two. Hence, this case shows that if a

cubic graph G does not have a spanning cycle, it is not collapsible. It has been shown

by Robinson and Wormald that almost all cubic graphs have a spanning cycle (see

[ROW92]), so it is possible that almost all cubic graphs are collapsible. However there

are examples of cubic graphs that contain a spanning cycle and are not collapsible.

A diamond is a K4 with one edge removed. By arranging m diamonds in a circle and

connecting each one to its successor by a new edge joining vertices of degree two, we

create a ring of m diamonds. This ring is clearly hamiltonian but not collapsible if

m 2 4, because on contracting the triangles in the diamonds, a cycle Cm is left.

3.5 Large Eulerian Subgraphs

Let p(G) be the minimum number of edges whose removal from a graph G leaves

a spanning eulerian subgraph H. It follows from a result in [Pa88] that if pn _>_ logn

and p —+ 0 as n —> 00, then the number of vertices with odd degree is asymptotic to

n/2. Furthermore if pn 2 210g 12, then the subgraph induced by the vertices of odd

degree has a perfect matching (a. 8.). Hence for pn 2 210g n, p aproaches n/4. Our

object now is to estimate bounds on ,u for smaller p.

Suppose p is defined by equation (2.5) with k 2 3 so that the minimum degree

is at least 3 (a. s.). From Theorem 3.3.3 we know that a random graph G has a

spanning cycle C whose edges may be removed and a connected graph will remain.

This cycle can be expressed as the edge-disjoint union of paths joining vertices of odd

degree. On removing the edges of alternate paths of the cycle from G, we obtain

an eulerian subgraph. Clearly no more than n/2 edges need to be removed. Hence

u S n/2 almost surely.

On the other hand, suppose p is defined by equation (2.5) with k = 2 so that
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a. s. the minimum degree is 2. We know from Theorem 3.3.1 that a random graph

G will have two edge-disjoint spanning trees, T1 and T2. Now arrange the vertices

of odd degree in pairs arbitrarily and consider the paths in T1 that join each pair.

By forming the symmetric difference of these paths, we obtain a set of edge-disjoint

paths in T1. The deletion of the edges in these paths leaves an eulerian graph and

hence u S n —1 (a. 3.).

These results are summarized in the following theorem.

Theorem 3.5.1. Suppose the edge probability p of a random graph is defined by

equation (2.5) and e > 0 is arbitrary.

Iflc 2 3, then a. s.

(1 — e)n/4 S p S n/2,

and iflc = 2, then a. s.

(1—e)n/4SuSn—1.

Now there is the problem of refining these results. In the range where pn = clog n,

1 < c < 2, can the upper bound of n/2 be lowered? For p defined as in equation (2.5),

a random graph will most likely not have a matching on the vertices of odd degree, so

how may the lower bound of (1 — e)n/4 be raised? And finally, for the case 11: = 2 in

Theorem 3.5.1, how much can the upper bound be improved? If a spanning cycle on

the vertices of degree at least three can be found whose removal almost surely does

not disconnect the graph, the upper bound can be lowed to n/2.
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