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ABSTRACT

IMPLEMENTATION OF A HIGH THROUGHPUT LOW POWER MAC PROTOCOL IN
WIRELESS SENSOR NETWORKS

by

Chin-Jung Liu

This thesis presents the design, implementation, and evaluation of TATD-MAC, a TDMA-based

low duty cycle synchronous MAC protocol that improves throughput by increasing channel uti-

lization with a traffic-adaptive time slot scheduling method. Conventional time division multiple

access (TDMA) introduces significant end-to-end packet delivery delay and its throughput is lim-

ited. TATD-MAC achieves higher throughput by improving TDMA with a novel traffic-adaptive

mechanism that assigns time slots only to nodes that are expecting traffic. Our traffic-adaptive

mechanism is a two-phase design, which decomposes the DATA period into traffic notification part

and data transmission scheduling part. The two-phase design enables TATD-MAC to optimize the

control packets and improve their energy efficiencies according to the characteristics of each phase.

The source nodes inform all nodes on the routing path that these sources have outgoing traffic by

transmitting traffic notification packets in a "pulse" fashion. With traffic notification packets, ev-

ery node on the routing path claims time slots in data transmission part. Therefore, TATD-MAC

is able to forward a packet over multiple hops in a single cycle and thus reduce the end-to-end

delay. The data transmission scheduling mechanism only assigns time slots to nodes with traf-

fic through an ordered schedule negotiation scheme. This innovative traffic-adaptive scheduling

mechanism assigns time slots based on traffic and totally eliminates the idle listening slots on

nodes with no traffic. Moreover, if any other nodes need more time slots, they are able to claim

them, which further improves channel utilization and achievable throughput. We implemented a

TATD-MAC prototype on Tmote-Sky running TinyOS 2.1.0. Performance evaluation shows that

TATD-MAC significantly improves throughput compared to conventional TDMA and achieves the

same throughput as TDMA with slot stealing while having 70% less power consumption.
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Chapter 1

INTRODUCTION

1.1 Motivation

Wireless sensor networks (WSN) are composed of tiny wireless sensing devices with severely con-

strained resources and limited energy. On most sensor nodes, wireless communication is the task

that consumes the highest portion of the energy. It is essential to guarantee that only one node

transmits in a radio channel at a time, otherwise neighboring nodes transmission at overlapped

time may result in collision. Hence, the design of energy-efficient multiple access control (MAC)

protocols on such energy-constraint devices is widely studied. A main issue against energy effi-

ciency is idle listening, in which a node is active and listening to the radio channel even though

no packet is being transmitted to it. One of the primary techniques to reduce idle listening is duty-

cycling. Every node is periodically cycling between sleep state and active state. In sleep state,

nodes minimize their power consumption by turning off as many hardware components as they

can, especially wireless communication components. However, two nodes can only communicate

with each other when they are both active. The main challenge of designing a duty-cycled MAC

protocol is to achieve high throughput and low delay while maintaining good energy-efficiency.

In this thesis, we introduce a novel traffic-adaptive time division multiple access control (TATD-

MAC) protocol, which improves throughput and channel utilization with low overhead. The duty

cycle is reduced to a very low value and the throughput is improved, unlike in prior works. Before

introducing our novel approach, we first identify the common issues of current MAC protocols.

1.2 The Design Challenges of MAC protocols

In this section, we discuss the challenges of designing an energy-efficient MAC protocol and clas-

sify duty-cycle MAC into two main categories and discuss their characteristics.
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We can roughly categorize duty-cycled MAC protocols into synchronous and asynchronous

MAC protocols. Synchronous MAC protocols [1][2][3] arrange a schedule that specify when a

node should wake up to communicate with each other and when a node should sleep within a

cycle. The overhead is the nodes have to be synchronize their clocks to the the global timeso

that the sender and receiver can wake up at their assigned schedule. However, in applications

that require time stamping, synchronization is no longer an overhead. Another MAC paradigm in

wireless networks is asynchronous MAC protocols [4][5][6][7]. They rely on low power listening

(LPL) to ensure reliable message delivery with low power consumption. When a node has to

transmit a packet, it transmits a long control packet that consists of a preamble sequence, which

has to be long enough to span a complete receive check period. Each node wakes up and senses

the radio channel periodically. If a node senses preamble in the radio channel, it stays awake for

the full duration of the preamble and waits for receiving the packet, otherwise it goes back to

sleep. The receiver only wakes up and senses the radio channel periodically, thereby idle listening

is reduced. Several hybrid MAC protocols [8][9] that combine the advantages of synchronous and

asynchronous LPL techniques, are also developed.

1.2.1 Asynchronous MAC Protocols

Although the simplicity of LPL makes it a widely adopted technique to achieve energy-efficiency,

the long preamble in LPL has several disadvantages and side effects. Firstly, although the sender

and receiver do not have to be synchronized, LPL is not able to achieve optimal energy-efficiency

at both sender and receiver ends. The sender has to transmit the long preamble before the data.

The burden of long preamble is totally at the sender side. After the receiver senses the preamble,

the receiver has to stay awake to wait for the preamble to end so that the data/acknowledgment

exchange process can start. The preamble is not exemptible even though the receiver is already

awake. These unnecessary preambles and idle wake-ups inevitably waste certain amount of energy

on both sender and receiver sides. Secondly, all nodes within the transmission range of a sender

are able to sense the long preamble from any sender and they stay awake to receive the data, even
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though the packet is not destined for them. This is the so called overhearing problem, which results

in waste of energy on non-recipient nodes within the sender’s transmission range. Finally, because

the packet recipient has to wait for the whole preamble to end before starting to receive the data,

the length of the preamble bounds the end-to-end delay and limits the achievable throughput. The

accumulated end-to-end delay might be quite considerable on a multi-hop routing path.

1.2.2 Synchronous MAC Protocols

Although synchronous MAC protocols are able to achieve higher throughput than asynchronous

MAC protocols, they suffer seriously from high end-to-end delivery delay. For example, in S-

MAC [1], time is divided into repetitive cycles and a cycle is further divided into three periods:

SYNC, DATA, and SLEEP period. Every node wakes up at the beginning of SYNC period to

synchronize their clock to the global time and remains awake in DATA period. In DATA period,

nodes that have outgoing traffic exchange Request-to-Send (RTS) packets and Clear-to-Send (CTS)

packets in a contention-based manner. In SLEEP period, nodes that are not involved in wireless

communication do not wake up at all. Only nodes involved in wireless communication wake up at

their time slots, exchange data/acknowledgement and then go back to sleep. It is obvious that S-

MAC relays a packet only one hop each cycle and thus the latency is so high that we cannot ignore

it. Although this issue is addressed and improved in S-MAC [10] by introducing the adaptive

listening, the improvement is still limited.

The high end-to-end delay makes synchronous MAC protocols inappropriate for multi-hop

time critical applications. In order to achieve lower latency, some applications [11][12] give up

power management and let the nodes stay awake, while some other applications [13][14] require

the nodes to remain active for a time period long enough to transmit the data. Such approaches

sacrifice energy-efficiency and throughput to achieve low latency. If the events are happening

infrequently, only a small portion of time is involved in reporting these events and a large portion

of time is idle listening.
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1.3 TATD-MAC Overview

As a TDMA-based MAC protocol, a cycle in TATD-MAC is also divided into SYNC, DATA and

SLEEP period. However, in prior works, traffic notification and scheduling of data transmission for

SLEEP period are both done together in DATA period. The control packets in DATA period serve

as traffic notifications and are also responsible for scheduling data transmission during SLEEP

period. Such control packet design limits the scheduling performance and increases the control

overhead, as the scheduling is per-packet based. Therefore, in TATD-MAC, we propose a two-

phase DATA period design, which further divides the DATA period into RESV and SCHED period.

TATD-MAC is a hybrid of carrier sense multiple access (CSMA) and TDMA, where CSMA is

performed in RESV period and TDMA is performed in the SCHED and SLEEP period. The two-

phase design enables TATD-MAC to optimize the control packets in RESV and SCHED period

according to their characteristics and to improve their energy efficiencies, respectively. In RESV

period, sources inform all nodes on the routing path that they have outgoing traffic by initiating a

traffic notification packet. The potential collisions of these traffic notification packets do not affect

the scheduling mechanism in SCHED period and do not affect the data transmission in SLEEP

period. The data transmission scheduling mechanism in SCHED period only assigns time slots

to nodes with traffic through an efficient schedule exchange mechanism. Such two-phase design

of DATA period in TATD-MAC enables the nodes to derive a per-flow traffic notification and

data transmission scheduling method with much lower overhead and yields even higher channel

utilization compared with conventional TDMA protocols.

1.4 Organization

We organize the rest of this thesis as follows. In Chapter 2, we discuss more details about re-

lated works in low duty cycle synchronous MAC protocols and TDMA protocols. In Chapter 3,

we present the detailed design of TATD-MAC, including traffic notification in RESV period and

data transmission scheduling mechanism in SCHED period. The implementation details, such as
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component descriptions and system compositions are introduced in Chapter 4. The performance

evaluations of our implementation prototypes are presented in Chapter 5. We compare the perfor-

mance of our TATD-MAC prototype with TDMA with and without slot stealing. Finally, we draw

a conclusion by discussing the evaluation of this work in Chapter 6.
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Chapter 2

RELATED WORK

In this chapter, we discuss the most representative synchronous MAC protocols and several related

TDMA protocols.

2.1 Synchronous MAC protocols

In this section, we discuss several synchronous MAC protocols and their most important charac-

teristics.

S-MAC [10] with adaptive listening is a low-power, synchronous, RTS/CTS-based MAC pro-

tocol with adaptive listening. The nodes in the network wake up periodically and exchange syn-

chronization and scheduling information.

contend

RTS

CTS

data

ACK

RTS

wake up

Listen (Active) Sleep

CS

CS

CS

DATASYNC SLEEP

Tx SYNC

CS: carrier sense RTS: Request-to-Send CTS: Clear-to-Send

A

B

C

D

Figure 2.1: The adaptive listening in S-MAC.

As shown in Figure 2.1, during Listen/Active period, node A broadcasts a request-to-send

(RTS) packet to notify all nodes in its communication range that node A has some data to transmit.

After receiving the RTS from node A, node B transmits a clear-to-send (CTS) packet as a reply
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to notify node A that node B knows node A has some data to transmit. In the mean time, node

C overhears this CTS from node B and node C knows that node B is going to receive some data.

Therefore, node C wakes up at the end of the transmission from node A to node B so that node

B can forward the data to node C right away, instead of waiting until next cycle. S-MAC with

adaptive listening can relay packets by at most two hops per cycle and generally cannot go beyond

this because the next hop (i.e., node D) knows nothing about current transmission from node A to

node C and thus will not wake up.

contend

RTS

CTS

data

ACK

RTS

wake up

FRTS: Future-Request-to-Send

wake upTA

DS

FRTS

DS: Data-Send

sleep

sleepactive

active

active

TA: determines the minimal amount of idle listening before 

going back to sleep. Here node D can directly go back to 

sleep because it knows when to wake up.

A

B

C

D

CTS

Figure 2.2: The FRTS mechanism in T-MAC.

T-MAC [8] proposes future request-to-send (FRTS) to extend the delivery of a packet by one

hop. As shown in Figure 2.2, node C transmits a FRTS after it overhears the CTS from B. The

original purpose of FRTS is to let node C with outgoing data to notify the intended receiver (i.e.,

node D in Figure 2.2) to not access the medium at current time. Since the FRTS packet contains

the length of current data transmission, which is accessible from the overheard CTS packets, node

D knows when to wake up and receive from C. Therefore, with a slight modification that node

C sends a FRTS packet either when it has pending data to send or when it overhears a CTS, the

FRTS can extend the delivery of a packet to up to three hops per cycle. However, nodes further

downstream cannot overhear FRTS and thus do not wake up.
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RMAC [2] further improves the number of hops that a packet can be relayed in a cycle by

introducing PION, the source-initiated pioneer frame. In DATA period, any node with outgoing

traffic initiates a PION and forwards it multiple hops in order to inform all nodes on the routing path

when to wake up to receive possible incoming packets during the SLEEP period. A PION, while

propagating on the routing path, not only serves as a RTS frame to request communication, but

also confirms a request in a way similar to CTS frame. Since every node on the routing path wakes

up to receive packet when its upstream node is ready to send the data packet to it, RMAC not only

relays a packet multiple hops in a single cycle, but also reduces forwarding latency significantly.

A

B

C

transmit receive

CW SCH SCH

SCH SCH

DIFS

SCH

SCH SCH

data ACK

data ACK data ACK

data ACK

SIFS

T2
D

T1
D

T3
D

SYNC
DATA SLEEP

T2
S

T1
S

T3
S

S

SLEEP

D

DATA

S

D

S

D

S

D

T

T

T

T

T

T

T

T


3

3

2

2

1

1

Figure 2.3: Multihop forwarding of a packet in DW-MAC

As shown in Figure 2.3, DW-MAC [3] has a mechanism similar to PION of RMAC, called

SCH. The time point TS
1 in DW-MAC is 0 in RMAC. However, the PION of RMAC has a main

drawback, that two hidden terminals might cause collision during data transmission although the

exchanges of PION are successful. For instance, in Figure 2.3, both node C and node A initiate
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their own PIONs, either at the same time or one is later than the other. Since both node A and C

are the first hop and their PION are confirmed by their receiver, they start data transmission at the

same time when SLEEP period starts and their data transmissions collide. If collision happens, all

downstream nodes wake up but receive no data, because the expected packet is lost due to collision.

Therefore, DW-MAC [3] also introduces a one-to-one mapping function to ensure collision-

free data transmission during SLEEP period. As shown in Figure 2.3, when node A receives a

confirmation SCH from node B, the time length of TS
3 is assured to be collision-free, because node

B receives a SCH correctly during TD
3 and they are one-to-one scaled based on the ratio between

TSLEEP and TDATA. Therefore, if the sending and receiving SCH are successful, the reservation

process is completed and data transmission during SLEEP period never collides. If the SCH sent to

node B is collided and lost, node A is not going to receive a confirmation SCH and the reservation

during TS
3 between node A and node B is failed. However, if collisions happen at node A and the

confirmation SCH is lost, node A does not wake up to send the data at TS
3, but node B will wake up

to receive. It is hard for the sender to distinguish whether the collision is happening to the request

SCH or to the confirmation SCH. The sender can only conservatively assume the reservation is

failed. Therefore, if a confirmation SCH is lost, the downstream nodes will wake up unnecessarily

to receive the expected packet that never arrives.

The problem with waking up nodes unnecessarily is relatively tolerable compared to the prob-

lem that the length of DATA period is wasted. Nodes can always go back to sleep if there is no

channel activity for a certain amount of time. Any failure of a sequential SCH reservation not only

waste the time it spent, but it also significantly limits the number of packets that can be delivered

in a cycle. Those time slots that have been reserved by other nodes, but no data will be transmitted

to them, whereas any other node that has data to send cannot obtain those slots. In a more complex

multiple flow scenario, throughput, delivery delay, and energy consumption might get significantly

compromised.
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2.2 TDMA-based MACs

TDMA is widely studied and has been studied for decades. How to assign time slots in TDMA

is usually modeled as a graph-coloring problem. DRAND [15], which is adopted by Z-MAC [9],

is a remarkable distributed time slot assignment algorithm. Conventional TDMA protocols suffer

from low channel utilization and high delay under light traffic loads, because a node only transmits

in the time slots it owns. Aiming at improving channel utilization of TDMA, Z-MAC proposes

a slot stealing technique, by allowing nodes to contend for the slots that are not owned by these

nodes with less probability than that of the owner. Impressively, under light traffic loads, Z-MAC

approaches the baseline CSMA in a dense network, because nodes with data to send contends for

slots that are owned by neighboring nodes. On the contrary, TATD-MAC assigns time slots to

those nodes that need time slots at the very start of each cycle, instead of each node contending for

slots when they need time slots.

TDMA-ASAP [16] also studies the slot stealing technique. To achieve slot assignment at the

start of each cycle, a low overhead time slot assignment algorithm must be developed. NAMA [17]

proposes a neighbor-aware contention resolution (NCR) algorithm, a time slot assignment method

that selects only one transmitter per two-hop neighborhood without introducing any extra commu-

nication overhead by utilizing the deterministic characteristic of pseudo-random functions. This

method is a possible approach for achieving traffic-adaptive slot assignment. However, the NCR

results in an unfair time slot assignment and the channel utilization is low due to inconsistent

knowledge of the schedule of the nodes.

TRAMA [18] is a traffic-adaptive MAC that switches between random access mode and sched-

uled access mode. Neighbor discovery and schedule exchanges are performed in random ac-

cess mode. Nodes exchange data packets in scheduled access mode according to the schedule

they agreed in random access mode. TATD-MAC differs from TRAMA in several ways. First,

TRAMA’s slot assignment algorithm, which is adopted from NAMA, is not able to achieve good

channel utilization. Second, because the schedule exchange is done in random access mode, the
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time it takes to complete the schedule exchange process is unpredictable. On the contrary, TATD-

MAC exchange schedule through TDMA, which guarantees the time spent on schedule exchange

is predictable and minimal.

Third, the memory requirement of TRAMA is high. A sender uses a bitmap to indicate its

intended receivers, which indicates that every node has to keep track of the one-hop neighbors of

all its one-hop neighbors. The bitmap is an n×n matrix, where n is the number of all its one-hop

neighbors. When an owner of a slot has done sending all its data, it selects a possible candidate

neighbor to take over the slot. The candidate has to be the node with highest priority among

all of the candidate’s two-hop neighbors, which implies that the owner of a slot has to know the

priorities of all its one-hop neighbor’s two-hop neighbors and thus the memory usage is high.

On the contrary, TATD-MAC only needs to store a list of two-hop neighbors. Compared with

the high memory usage of TRAMA, TATD-MAC fits better to the resource constrained wireless

sensor nodes. Fourth, the schedule packet of TRAMA is more complicated and is piggybacked

to each data packet for consistency consideration, which makes the overhead much higher than

TATD-MAC. Fifth, downstream nodes do not know whether they have data to send/receive or not

and thus do not reserve time slots for data transmission until next cycle. The consequence is that

a packet cannot be forwarded multiple hops in each cycle and the delay is high. With the traffic

notification packet we propose, TATD-MAC notifies the whole routing paths of incoming data so

that downstream nodes reserve time slots and it is possible to deliver a packet in single cycle.
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Chapter 3

TATD-MAC DESIGN

In this chapter, we first present our motivation of designing a traffic adaptive MAC protocol in

Section 3.1. In Section 3.2, we introduce the two-phase design, which decomposes DATA period

into RESV period for traffic notification part and SCHED period for data transmission scheduling

part. In Section 3.3, we describe how TATD-MAC calculate the priority for data transmission

scheduling in SCHED period. In Section 3.4, we explain in detail about how TATD-MAC exchange

scheduling packets efficiently using minimal overhead.

3.1 Motivation

WSN application differs from each other significantly. The traffic amount of some applications

are quite dynamic. Take a typical WSN surveillance system [14] for example, when no intruder

is detected, the whole network does not generate much data traffic. However, whenever a certain

event is detected, the network generates a lot of data traffic. This kind of application needs a

protocol that adapts from low data rate to large bursts of traffic. Moreover, such kind of applications

demands a protocol that is able to provide low latency and high data throughput. Simply letting

every node to stay active is not appropriate, since such kind of applications has to last for weeks,

even months. Existing MAC protocols either are not able to achieve high throughput [2][3] or are

not energy-efficient enough [9]. This motivates us to design a traffic-adaptive MAC protocol that

not only achieves high throughput when there is large bursts of traffic, but also be energy-efficient

when there is only small amount of data.
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3.2 Two-Phase Design

As a synchronous duty-cycling MAC protocol, TATD-MAC divides time into repetitive cycles and

each cycle is divided into SYNC, DATA, and SLEEP period (as shown in Figure 3.1). TATD-

MAC further divide the DATA period into RESV period and SCHED period. In order to better

distinguish the time slot during SCHED period and time slot during SLEEP period, a time slot in

SCHED period is denoted as "dslot" and a time slot in SLEEP period is denoted as "sslot". All

nodes wake up and synchronize with each other at the beginning of the SYNC period. The nodes

remain active during DATA period.

SYNC RESV SCHED SLEEP

Frame 1 Frame 2 Frame 3

dslot1 dslot2 dslot3 dslot4

sslot1 sslot2 ……...sslot3 sslotn

Figure 3.1: Time Division in TATD-MAC

TATD-MAC proposes a two-phase design of DATA period by dividing the DATA period into

RESV period for traffic notification and SCHED period for data transmission scheduling. In RESV

period, nodes with outgoing data inform all nodes on the routing path about the incoming data for

them by initiating traffic notification packets. After RESV period, every node knows if it needs

sslots for data transmission or not. Nodes exchange exactly three data transmission scheduling

packets in the SCHED period. The time slot assignments in SLEEP period for all nodes are de-

termined using these scheduling packets. In SLEEP period, for each sslot, a node only wakes up

when it has data to send and it owns the sslot or when it is the receiver of the sslot.

Dividing DATA into two phases enables us to handle these two distinctive kinds of control
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packets according to their characteristics. Data transmission scheduling packets are more complex

and thus need a smart design in order to achieve high channel utilization with minimized overhead.

On the other hand, the forwarding of the traffic notifications must be fast so that we can shorten

the common RESV period. We make the transmission of traffic notifications faster by using as few

fields as possible to make the packets short and compact.

Same as Z-MAC [9], TATD-MAC also adopts DRAND [15] to compute the time frame size

and slot assignment for each node in setup phase. DRAND guarantees that no two nodes within

a two-hop communication neighborhood can be assigned to the same slot and the time frame size

is significantly smaller than the size of local neighborhood. However, the communication cost

of performing DRAND one time is non-trivial. It is impossible to achieve traffic-adaption by

applying DRAND on the set of nodes that has traffic once every cycle. Therefore, TATD-MAC

only runs DRAND once at the setup phase. Using the slot assignment generated by DRAND,

nodes exchange data transmission scheduling packet in TDMA in a collision-free fashion.

3.3 Priority Calculation

In this section, we introduce the neighbor-aware contention resolution (NCR)[17], which TATD-

MAC adopts to determine the owner of a slot in SLEEP period. We then discuss the drawbacks of

NCR and show our improvement.

A pseudo-random function with the same seed, generates the same sequence pseudo-random

numbers deterministically. NCR defines the priority pi
k for each node k in set N2(u) ∪ u as:

pi
k = rand(k⊕ i)⊕ k,k ∈ N2(u)∪u (3.1)

where rand(x) is a pseudo-random number generator that produces a sequence of random numbers

that are approximately uniformly distributed with seed x, the sign ⊕ means concatenating its two

operands, and N2(u) denotes the set of two-hop neighbors of node u.
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Node u wins the ith slot if for all other nodes in N2(u), u is the node with highest priority:

∀v ∈ N2(u), pi
u > pi

v (3.2)

Note that although rand(x) may still generate the same number with different seeds x, each pri-

ority pi
k is concatenated with another k, the node ID. Therefore, each node is able to calculate all its

two-hop neighbors’ priority and thus determine which one of them is the winner of a particular time

slot without exchanging any information. TATD-MAC takes advantage of this characteristic for

traffic-adaptive time slot assignment. NCR is more than perfect for TATD-MAC’s slot assignment

algorithm, because NCR does not require any communication, which makes it a viable solution to

perform traffic-adaptive time slot assignment with minimized overhead. However, NCR has two

main drawbacks that may result in throughput bottleneck. Firstly, although rand(x) generates ran-

dom numbers that are approximately uniformly distributed with seed x, the chance of each node

winning a slot is still biased. The nodes with more neighbors have lower chances to win a slot,

which results in potential bottleneck on a routing path. Secondly, although a node knows which of

these neighbors wins a time slot locally based on priority, the slot is wasted if the winner does not

have data to send and thus channel utilization is low.

3.3.1 Fairness

As the simple chain topology shown in Figure 3.2, node C contends with four neighbors while

node A and node E contend with only two neighbors. The chance of node C winning a slot is less

than that of node A and node E if they all use the same uniform pseudo-random number generator.

A possible solution is to use non-uniform pseudo-random number generator that produces random

numbers with different distributions. TATD-MAC adopts an alternative way to achieve fairness by

generating priority more times to compensate nodes with more contenders.

For the ith slot, the jth priority for a particular node k ∈ N2(u)∪u is modified to:

pi
k⊕ j = [rand(k⊕ i)] j⊕ k,k ∈ N2(u)∪u, j = 1, ...,nk (3.3)
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A DCB E

Figure 3.2: A simple chain topology

where nk denotes the number of one-hop neighbors of node k, and [rand(k⊕ i)] j denotes the jth

random number generated by rand(k⊕ i). TATD-MAC only considers the number of one-hop

neighbors because it is easier to maintain the consistency among one-hop neighbors.

Furthermore, in order to randomize the slot assignment of each cycle, the seed, k⊕ i is added

with another random number generated by using the current cycle number as seed, rand(cycle).

pi
k⊕ j⊕l = [rand(k⊕ i+ rand(l))] j⊕ k,k ∈ N2(u)∪u, j = 1, ...,nk (3.4)

where l is the current cycle number according to synchronization packets. Node u wins the ith slot

if the following equation is true:

∀v ∈ N2(u),∃m, pi
u⊕m > pi

v⊕ j,1≤ m≤ nu,1≤ j ≤ nv (3.5)

3.3.2 Channel Utilization

Depending only on pseudo-random function for time slot assignment might result in low channel

utilization. As a simple example, in Figure 3.2, let the priority order of the ith slot for the nodes

generated by aforementioned method is Pi
A > Pi

B > Pi
C > Pi

D > Pi
E . We see that only one node

in the entire network wins a particular slot if the priority is sequential, which is the worst case.

Although the occasions that the priority being sequential is infrequent, these occasions harm the

channel utilization significantly. In this example, node D assumes that node B wins the slot as node

B has the highest priority among all node D’s two-hop neighbors and node E assumes node C wins

the slot. However, ideally, node D or node E should be able to win this slot along with node A.

Moreover, if node A does not have any data to send, all of its winning slots are wasted. Previous

works [18][17] do not mention the low channel utilization problem, which substantially limits the
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achievable throughput. One of our major contributions is our traffic-adaptive time slot assignment

technique, which solves the problem with minimal overhead.

In order to increase channel utilization, nodes must know all their two-hop neighbors’ schedule

so that it can maximize the channel utilization while setting up its schedule. However, a node can

only obtain its two-hop neighbors’ schedule via its one-hop neighbors. To minimize the overhead,

we must assign the nodes an order for their schedule broadcast. Since all node have to broadcast

their schedule in the SCHED period, there is no low channel utilization issue of using conventional

TDMA. Therefore, we adopt conventional TDMA scheme using the slot assignment generated by

DRAND for our scheduling packet exchange process in SCHED period. As we mentioned earlier,

it is acceptable to perform DRAND once in the setup phase along with the initial synchronization

and neighborhood discovery.

SrcAddr 1hop_slot_assingment my_slot_assignment finalized_list

0 0 0 1 0 0 0 1 1 0

my_slot_assignment represents slots that have been 
occupied by this node.
The parent of this node uses this field to construct its 
wakeup_slot_assignment

several 32-bit integers several 32-bit 
integers

0 1 1 1 0 0 0 1 1 1

IDs of one-hop neighbors that 
have finalized their schedules

1hop_slot_assignment represents slots that have been 
occupied by the one-hop neighbors and this node.

Figure 3.3: The format of schedule packets
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3.4 Schedule Exchange

In this section, we discuss the three schedule exchanges during SCHED period and how TATD-

MAC performs schedule exchange. TATD-MAC proposes an efficient schedule exchange algo-

rithm using minimal overhead.

3.4.1 Schedule Exchange Algorithms

Our novel schedule exchange algorithm aims at maximizing channel utilization. In SCHED period,

nodes exchange schedules in a collision-free manner using conventional TDMA. In each of the

three frames, every node constructs the schedule by claiming the sslots it wins and broadcasts

the schedule to all its one-hop neighbors. The decision whether a node wins a particular sslot

in the SLEEP period is made based on its priority calculated by our modified NCR described in

Section 3.3 and the schedules of the node’s two-hop neighbors. For each sslot in the SLEEP period,

a node decides whether it wins this sslot if either of the following condition holds. First, a node

wins an sslot if the node has the highest priority among its two-hop neighbors. Second, a node wins

an sslot if every node with higher priority than this node has already discarded this sslot. A node

discards sslots by claiming its schedule has been finalized and broadcasts the scheduling packet

again, which includes a finalized list containing itself and all its one-hop neighbors who have been

finalized. The neighbors of this node know that the schedule of the nodes in the finalized list have

been finalized and they discard any other sslots they win. There is no collision if neighboring

nodes claim the unused sslots of the nodes in the finalized list, because their schedules are already

finalized and they discard those sslots that are not needed.

Each sslot in the SLEEP period is represented by one bit (1: occupied, 0: free), thus the

SLEEP period is represented by several 32 bit unsigned integers. The schedule of a node includes

a 1hop_slot_assignment that indicates which sslot is still available, a my_slot_assignment that

helps its parent node to build the parent node’s wake_up_assignment, and a f inalized_list that

contains its one-hop neighbors’ ID whose schedules have been finalized. The format of a schedule

18



def occupySlot (i):
my_slot_assignment[i/32] |= (1� (i%32));
1hop_slot_assignment[i/32] |= (1� (i%32));
2hop_slot_assignment[i/32] |= (1� (i%32));

if traffic == True then
slotAssigned← 0;
for i in range(0, num_of_slots) do

if slot i is available then /* by checking 2hop_slot_assignment */
if highestPriority == True then

occupySlot (i);
slotAssigned ++;
if slotAssigned == slotNeeded then

finalized_list.append(myNodeID);
break;

end
else if each node with higher priority can be found in the 2hop_finalized_list
then

occupySlot (i);
slotAssigned ++;
if slotAssigned == slotNeeded then

finalized_list.append(myNodeID);
break;

end
end

end
end

else
finalized_list.append(myNodeID);

end
Algorithm 1: Schedule construction.

packet is shown in Figure 3.3. Note that a node does not regard the sslots claimed by any two-hop

neighbor as occupied, because another one-hop neighbor of this node can still reuse this sslot, if

this one-hop neighbor is three-hops away from the two-hop neighbor. Take node E in Figure 3.4

as an example, it does not care whether an sslot is taken by node B or not. Therefore, node D

should not regard any sslot claimed by node B as occupied. The schedule construction of a node

is illustrated in Algorithm 1. A node also maintains records for its own reference, including a

2hop_slot_assignment and a 2hop_ f inalized_list.
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1hop_slot_assignment |= pkt→my_slot_assignment
2hop_slot_assignment |= pkt→1hop_slot_assignment
if pkt→nodeID in my_child_list then

wakeup_slot_assignment |= pkt→my_slot_assignment
end
foreach nodeID in pkt→finalized_list do

if nodeID is not in 2hop_finalized_list then
2hop_finalized_list.append(nodeID);
if nodeID is oneHopNeighbor then

finalized_list.append(nodeID);
end

end
end

Algorithm 2: Schedule handling.

A node knows if it has the highest priority for a particular sslot and which of its neighbors has

higher priority than itself by using the pseudo-random function described in Section 3.3. When

a node receives a schedule from its neighbor, it uses the bitwise OR (|) operator to aggregate the

schedule with the schedule it already obtained as described in Algorithm 2.

3.4.2 A Simple Example

To simplify the presentation, we focus on the example illustrated in Figure 3.4 and Figure 3.5 (on

page 21 and 22). As shown in Figure 3.4, suppose that DRAND has already generated a time

frame of size 3 and node C owns the first dslot, node A and node D own the second dslot, and

node B and E own the third dslot. In this example, the three SCHED frames are composed of nine

dslots. Suppose our modified NCR algorithm generates a round robin priority order (as shown in

Figure 3.4) and node A has no data to transmit. The goal is to assign five sslots according to nodes’

traffic. In Figure 3.4, there are five sslots, which are represented by five dark blocks. We illustrate

which node takes the sslot for easy understanding, but in real implementation, node ID is not part

of the message exchanged and thus the overhead is low.

In the first dslot of the first SCHED frame, node C claims its schedule and broadcast the sched-

ule to node B and node D. Node C has the highest priority for sslot 3 among all its two-hop
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C
(1)

B
(3)

A
(2)

D
(2)

E
(3)

The first line denotes node ID.
The second line is DRAND slot. DRAND frame is 3

Local slot assignment on a node, after 
broadcast

Broadcast scheduling packetPriority:
sslot 1: A B C D E
sslot 2: B C D E A
sslot 3: C D E A B
sslot 4: D E A B C
sslot 5: E A B C D

ID
(dslot)

C C C

SCED frame 1, dslot 1
Node C claims its schedule in dslot 1. It has the highest priority for sslot 3

C

SCED frame 1, dslot 2
Node A and node D claim their schedule in dslot 2.
Node A has no traffic and thus claims no sslot. Node A still broadcasts to inform 
others that has finalized its schedule. Node D has the highest priority for sslot 4.

C D

SCED frame 1, dslot 3
Node B and node E claim their schedule in dslot 3.
Node B knows node A has finalized . Node B can take node A’s sslots, but B only 
need 2 sslot. B takes sslot 2 and 5. Node E has the highest priority for sslot 5.

Assume that node A needs 0 sslot and node B, C, D, E need 2 sslots

C
(1)

B
(3)

A
(2)

D
(2)

E
(3)

C C D C D C D

C D EB C B

C
(1)

B
(3)

A
(2)

D
(2)

E
(3)

B C B B C B B C D B C D E C D E

Figure 3.4: Time slot assignment in TATD-MAC, frame 1
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C
(1)

B
(3)

A
(2)

D
(2)

E
(3)

B C B C B C D B C B C D B C B C D BE C D E

SCED frame 2, dslot 1
Node C also know that node A and B have finalized. It now has the highest priority 
for sslot 1. C B C D B

SCED frame 2, dslot 2
Node A and node D claim their schedule in dslot 2.
Node A and D has to broadcast its one-hop neighbor’s schedule.
Node D does not claim sslot2, because node B has claimed sslot 2.

C C D EB B

SCED frame 2, dslot 3
Node B and node E claim their schedule in dslot 3.
Node E takes sslot 2, since both C and D have finalized.

C
(1)

B
(3)

A
(2)

D
(2)

E
(3)

B C B C B C D B C B C D B C B C D C C D EBE

E D EC B C B

C
(1)

B
(3)

A
(2)

D
(2)

E
(3)

C B C B C B C D B C B C D B C C D C E C D EBEBE

Figure 3.5: Time slot assignment in TATD-MAC, frame 2
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neighbors and thus it claims that it takes sslot 3. If node C only needs one sslot, it also set its

schedule as finalized, which means it needs does not need any more sslots. Otherwise, node C

does not set its schedule as finalized and it waits to see if all other nodes with higher priority are

finalized so that node C can take the sslots those nodes discarded. Next, node A and node D claim

their schedule in the second dslot of the first frame, then node B and E, then node C, and so on.

3.4.3 Summary

Through the schedule exchange process, the adverse effect of the sequential priority order is dimin-

ished. Otherwise, for the example shown in Figure 3.4 and Figure 3.5, only one node can transmit

in an sslot and none will transmit in sslot 1. The underlying principle is that for each frame, a

node claims sslots once and then it broadcasts its schedule once. After the first frame, every node

knows the sslot assignment of all its one-hop neighbors. After the second frame, the information

is relayed to every node’s two-hop neighbors and thus each node knows the sslot assignment of

all its two-hop neighbors. In the third frame, every node can finalize its schedule and broadcast

the schedule to its neighbors to inform them when they should wake up. Throughout these three

SCHED frames, nodes that do not have data to send or do not need extra sslots set their schedules

as finalized and their neighbors know that these nodes discard every sslot they win. Any other node

that needs extra sslot can also claim those sslots if all other nodes with higher priority than itself

are finalized. On the other hand, if a node intends to acquire more sslots, it does not set its schedule

as finalized, so the nodes with lower priority cannot claim the sslots that might be taken by this

node. Consequently, even though nodes claim sslots in the second or third frame, there is still no

collision. To sum up, each node broadcasts three scheduling packets and this schedule exchange

procedure takes three frames. This little overhead substantially increases the channel utilization.
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3.5 Traffic Notification

In previous sections, we demonstrated how to achieve high channel utilization. In this section, we

introduce the mechanism to inform the nodes on the routing path about the incoming packets to

them, and thus they have to claim sslots in the SCHED period.

In the beginning of the RESV period, every node with data to send initiates a traffic notification

packet, called NOTI, which contains an Src (source ID) field and an Nxh (next hop) field. The

Src (source ID) field indicates the sender of this message. Based on the Src field, a node that

receives multiple NOTIs builds a list of child nodes and then uses this child list to aggregate the

wakeup_slot_assignment from the schedules it receives in the SCHED period. The Nxh (next hop

ID) field gives the NOTI a dual function, to act as a traffic notification and a confirmation as well.

3.5.1 The Dual Function of NOTI

When a node receives a NOTI, it responds a NOTI immediately. The responded NOTI has two

functions. First, it acts as a confirmation message to the sender of the request NOTI it receives.

Second, it acts as a request NOTI to the next hop. For example, when node A sends a NOTI to

node B, node B receives it and node B responds with a NOTI immediately. The NOTI sent by B is

not only a request NOTI to node C, but also a confirmation to node A.

When node A initiates the NOTI, it sets Src as A and Nxh as B so that B knows itself is the

intended receiver of the NOTI. When node B receives the NOTI, it sets Src as B and Nxh as C so

that A knows its next hop node has received the NOTI and sends a new request NOTI to the next

hop of B. Node A’s notification is done when node A receives this confirmation NOTI. Node C also

sets the Src to itself and Nxh to its own next hop. This procedure repeats until the NOTI reaches

the sink.
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3.5.2 Lost NOTI Retransmission

It is possible that a packet is lost due to various reasons, and so are NOTIs. If node A does not

receive a confirmation when the NOTI times out, either the NOTI from node A to node B is lost, or

the confirmation NOTI from node B to node A is lost. In either case, node A retransmits the NOTI

when the last NOTI times out. In the first case, everything is still the same as if the last NOTI did

not even occur. In the second case, if node B has already sent a request NOTI to C and node B

receives another NOTI from node A, node B responds a confirmation NOTI with Nxh as -1 so that

the NOTI only serves as a confirmation NOTI.

3.5.3 Multiple Flow on a Routing Path

Since traffic in wireless sensor networks converges at the sink, there might be multiple flows on

a routing path. If a node has already notified its next hop and there are more NOTIs coming to

it, it only responds confirmation NOTIs, instead of dual function NOTIs, because we only need to

notify common paths once. We conservatively assume that the longest path of a wireless network

is along the network border. Therefore, we can set the length of the RESV period as:

T RESV =
X +Y

R
×(durNOT I +SIFS)+CW (3.6)

where X and Y are the length and width of the network field, R is the communication range,

durNOT I is the time spent to send one NOTI frame, SIFS is the shortest inter-frame space, and

CW is the contention window. Compared with RMAC [2] and DW-MAC [3], the most significant

advantage is that the collision of the control packets no longer limits the performance of data

delivery and we can set the length of the RESV period to be fixed and short.
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Chapter 4

PROTOTYPE IMPLEMENTATIONS

This section describes the structure of our TATD-MAC prototype, TDMA prototype and TDMA

with slot stealing prototype in detail. We implement our prototypes running TinyOS 2.1.0 on

Tmote-Sky [19] mote, which integrates TI MSP430 microcontroller with 10kB RAM and an IEEE

802.15.4 compliant RF transceiver CC2420 [20].
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Figure 4.1: The application developer’s view of MLA. Each block is a component and an arrow
denotes an interface. The boxes are software components.

We implement our prototypes in MAC layer architecture (MLA) [21], a component-based ar-

chitecture for power-efficient MAC protocol development in wireless sensor networks. As shown
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in Figure 4.1, MLA inserts an extra layer, MacC, into TinyOS CC2420 radio stack above the radio

core. Various components compose the MacC, which uses a set of unified interfaces provided by the

radio core, and exposes a set of unified interfaces to the upper layers. Each MAC protocol defines

their MacC with the components the MAC protocol needs. Since MacC uses and exposes a unified

set of interface, MLA can switch MAC protocols simply by replacing the configuration MacC.

As we can see in Figure 4.1, MacC interacts with upper layer through the three interfaces

MacC exposes, including Send, Receive, and SplitControl. SplitControl is the interface

that upper layer uses to control MacC, either to start it or stop it. MacC interacts with radio core

through Send, Receive, RadioPowerControl, and ChannelMonitor. Controlling the core radio

to achieve energy efficiency is the fundamental reason of designing MAC protocol. The interface

RadioPowerControl enables MacC to turn on, or turn off the radio core. ChannelMonitor is the

interface for MacC to control radio core to do clear channel assessment (CCA).

4.1 TATD-MAC Prototype

This section describes our TATD-MAC implementation in detail. We walk through the structure

of TATD-MAC. Then we identify various challenges and explain how we conquer them. Table 4.1

shows the default values of TATD-MAC prototype’s parameters.

4.1.1 Structural Overview

As shown in Figure 4.2, the interactions between components in TATD-MAC is rather complex.

Although we have already simplified this composition graph by showing only important compo-

nent and interfaces, it is not easy to understand our implementation merely by composition graph.

Hence, we choose to explain our TATD-MAC prototype in a high-level top-down approach.

There are three phases in TATD-MAC, synchronization phase, setup phase, and working phase.

Every node in the network starts with synchronization phase, in which nodes synchronize with each

other through the flooding time synchronization protocol (FTSP) [22] for a certain amount of time.
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Table 4.1: The default TATD-MAC parameters

Parameter Value
slot size (both dslot and sslot) 50 milliseconds

Number of slot (dslot and sslot) in a cycle 1280 slots / 64 sec
The length of schedule SchedC constructs 32 sslots

The times the schedule being repeated 40 times
Maximum neighbor count 20 nodes

Maxmum one-hop neighbor 8 nodes
SYNC period 1 DRAND frame
RESV period 1 DRAND frame

SCHED period 3 DRAND frame
Total sslot 1280 - 5 DRAND frame

Synchronization frequency once per cycle
Synchronization protocol FTSP

NOTI retry limit 10 times
Maximum child count 7 nodes

END_RECEIVE_TIME 25 milliseconds
TATDMacSchedulerC queue size 200

Synchronization phase length 120 sececonds for 10 nodes
(depend on network size)

Setup phase length 240 seconds for 10 nodes
(depend on network size)

After synchronization phase is over, TATD-MAC runs neighbor discovery and DRAND. In our

implementation, we combine neighbor discovery and DRAND into a single component DrandC.

In working phase, time is divided into repetitive cycles. As we mentioned in Chapter 3, a

cycle is further divided into SYNC, RESV, SCHED and SLEEP period. We simply implement one

component for each of these periods, SyncC, ResvC, and SchedC. These components handle their

jobs independently and interact with each other through various software interfaces. Meanwhile,

we need another scheduler component to control when should these components do their jobs.

Therefore, we implement a scheduler component TATDMacSchedulerC, which is also responsible

for controlling the sending and receiving during SLEEP period.

After DRAND is done, DrandC informs TATDMacSchedulerC about the DRAND assignment

and the neighbor information. TATDMacSchedulerC starts to work as a repetitive cycle. For each

sslot during the cycle, TATDMacSchedulerC determines what should this node do and controls the
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Figure 4.2: The composition graph of TATD-MAC prototype.
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corresponding components. We introduce these component in the same sequence they do their jobs

in a cycle.

4.1.1.1 SyncC

SyncC is the component that keeps track of current global time and determines when a new cycle

should start. SyncC gets global time from the component FtspC. According to this global time,

SyncC notifies TATDMacSchedulerC when it is time to start a new cycle. Each time SyncC notifies

TATDMacSchedulerC that it is time to start new a cycle, it also calibrate TATDMacSchedulerC’s

timer with the latest global time. When TATDMacSchedulerC is aware that a new cycle has started,

TATDMacSchedulerC resets the current slot number of this cycle to 0 and the cycle starts over

again. After the new cycle starts, it is SYNC period, TATDMacSchedulerC then commands SyncC

to broadcast an FTSP synchronization packet.

4.1.1.2 ResvC

ResvC is responsible for traffic notification. ResvC keeps a childList to record which children are

sending data to this node in this cycle. ResvC also records if the parent of this node is responding

to its NOTI using a Boolean value isConfirmed. When the first slot for traffic notification starts,

ResvC clears the childList to an empty array, and sets isConfirmed to false. If this node is a data

source, TATDMacSchedulerC commands ResvC to initiate a NOTI packet. Throughout the whole

RESV period, if a node receives a NOTI from its child, it appends the child ID to the childList.

If a node receives a confirmation NOTI from its parent, it sets isConfirmed to true. When RESV

period is over, ResvC informs TATDMacSchedulerC about the childList and isConfirmed it

constructed. Then TATDMacSchedulerC informs SchedC about these information for SchedC to

build the schedule for data transmission.
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4.1.1.3 SchedC

Based on the algorithm we proposed in Section 3.3 and Section 3.4, SchedC is responsible for con-

struction of the schedule for data transmission in SLEEP period. At the beginning of SCHED pe-

riod, TATDMacSchedulerC informs SchedC about childList and isConfirmed and commands

the SchedC to construct the schedule.

If a node does not have any child (i.e., childList is empty.) and itself is not a data source, it

does not need any sslot in this cycle. On the other hand, if a node’s parent does not respond to its

NOTI (i.e., isConfirmed is false), this node does not claim any sslot either. This node’s parent

might be out of synchronization, or even out of order. If this node claims any sslot and its parent

is not receiving, all these sslots are wasted. It not only harms channel utilization, but also wastes

energy. Note that even if a node does not need any sslot, it still broadcasts its schedule packets, in

order to inform its neighbors that this node is finalized and the sslot it wins are now available for

other nodes to contend.

However, according to childList and isConfirmed, SchedC can only know about whether

there is traffic or not in this cycle, but SchedC is not able to know how much traffic this node is

expecting. Therefore, SchedC also needs to know how much traffic it is expecting. We discuss

how SchedC obtains the expected traffic in next section.

4.1.1.4 TATDMacSchedulerC

After SCHED period is over, it is the SLEEP period. SchedC has constructed the SLEEP schedule

already. At the beginning of every sslot, TATDMacSchedulerC inquires SchedC about the assign-

ment of this sslot.

As shown in Figure 4.3, there are three different kinds of sslot assignments, I_SEND, I_RECEIVE,

and I_SLEEP. If its current sslot assignment is I_SEND, TATDMacSchedulerC turns the radio on,

gets a packet from its packet queue and transmits it. TATDMacSchedulerC repeats this process

until this sslot is over. If this sslot assignment is I_RECEIVE, TATDMacSchedulerC turn on the
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Figure 4.3: The timeline of an sslot in TATD-MAC.

radio, listens to the radio channel, and expects to receive packets. If there is no incoming packet

for a certain amount of time (see Table 4.1 END_RECEIVE_TIME), TATDMacSchedulerC turns off

the radio and goes back to sleep. If the sslot assignment is I_SLEEP, TATDMacSchedulerC does

nothing and remains sleeping.

TATDMacSchedulerC is also responsible for estimating the amount of traffic in a cycle for

SchedC. We implement a simple traffic estimation method by using history traffic. During these

sslot in SLEEP period, TATDMacSchedulerC records the number of incoming and outgoing pack-

ets. Based on the history of the amount of incoming and outgoing packets, a node estimates the

traffic amount for the coming cycles. At the beginning of SCHED period, TATDMacSchedulerC

not only informs SchedC about childList and isConfirmed, but also informs SchedC a predic-

tion of traffic in this cycle.
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4.1.2 Challenge

4.1.2.1 Generating Priority

The computation power of a mote is very limited. We measured that it takes a Tmote-Sky [19]

mote 75µs to generate a random number using the TinyOS built-in RandomC component. For

each sslot, a node has to generate tens of random numbers itself and its two-hop neighbors. The

computation takes time, and the length of dslot in SCHED frame is only 50 milliseconds. It is not

feasible to compute the priority right before constructing schedules. We overcome this challenge

by generating the priorities of cycle L in cycle L−1 during SLEEP period.

4.1.2.2 Optimized Concatenation

Concatenation is also performed quite often while generating priorities. Intuitively, we use sprintf

to writes two operands into a buffer and then convert the buffer back to an integer by using atoi.

Although this method is the most general way to do concatenation, it is extremely slow and un-

necessary. In our implementation, due to the limited memory on Tmote-Sky, a priority value is a

16-bit unsigned integer. The concatenation operands are always a 16-bit unsigned integer and an

8-bit unsigned integer. Since both of the operands are unsigned integers, instead of using a general

method (sprintf and atoi), we optimize our special case concatenation using multiplication and

summation. For example:

300⊕5 = 300∗10+5 = 3005 (4.1)

300⊕10 = 300∗100+10 = 30010 (4.2)

4.1.3 The Length of the Schedule Constructed by SchedC

In our implementation, a cycle is composed of 1280 slots, including dslot and sslot. For each

dslot in SCHED period, a node does the following things: claim the sslots belonging to it, make a
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schedule packet, and broadcast the schedule packet. However, a dslot in a SCHED frame is merely

50 milliseconds in length. It is impossible for a node to scan through the priority of whole 1280

slots and claim every sslots this node wins within such a short time. Not to mention a node has to

broadcast its schedule to its neighbors.

Our solution to this problem is to construct a shorter schedule and we repeat it several times. In

our implementation, we only construct the schedule of thirty-two sslots and repeat it forty times to

make a 1280 sslots schedule. This approach not only significantly reduces the amount of compu-

tation for constructing a scheduling packet in the SCHED period, but also reduces the amount of

computation to generate priorities and the memory consumption by storing priorities. Moreover,

this approach does not have any obvious drawbacks. Instead, repeating a schedule brings us a

desirable characteristic, that the nodes win sslots in a more distributed way. We will discuss more

about this in Section 4.1.4.

2
(0)

3
(1)

1
(2)

Each circle represents a node. The first number is 
node ID. The second number in the parenthesis is 
the dslot. The DRAND frame is 4.

Slot Claimed – before improvement

Slot Claimed – after improvement

2 2 2 2 3 3 2 2 3 3 3 3 …
1 2 3 4 5 6 7 8 9 0 10 …

2 3 2 3 2 3 3 2 2 3 2 3 …
1 2 3 4 5 6 7 8 9 0 10 …

Figure 4.4: The sslot claimed that are not distributed. The dark blocks in slot claimed - after
improvement, denotes that this node claims these sslot based on its dslot.
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4.1.4 Claiming sslots in a Distributed Fashion

Consider a simple topology shown in Figure 4.4. Node 2 and node 3 are transmitting to node 1,

the root node. The DRAND frame is 4 and the dslot of node 1, node 2, and node 3 are 2, 0, and 1,

respectively. Node 1 does not transmit, only node 2 and node 3 need to claim sslots. The schedule

constructed by SchedC before improvement might happen. Node 2 wins consecutive sslots from

sslot 0 to sslot 3 and from sslot 6 to sslot 7, while node 3 wins consecutive slot from sslot 6 to sslot

7 and sslot 8 to sslot 11. Although the number of slot node 2 and node 3 claimed are still fair and

the channel utilization is still high, the end-to-end latency is still high. Suppose that node 2 and

node 3 generate exactly one packet per sslot, from sslot 0 to sslot 3, there will be 4 packets being

blocked in the queue in node 3.

We came up with an improvement by decomposing the whole SLEEP period into repetitive

DRAND frames. For each DRAND frames inside of the SLEEP period, the owner of the dslot has

the highest priority to own the sslot. In Figure 4.4, sslot 0 to sslot 11 are decomposed into three

DRAND frames. The dslot of node 2 is 0. Node 2 owns the first sslot of all three DRAND frames,

sslot 0, sslot 4, and sslot 8. The dslot of node 3 is 1. Node 3 owns the second sslot of all three

DRAND frames, sslot 1, sslot 5, and sslot 9. In this way, node 2 and node 3 only contend for sslot

2, sslot 3, sslot 6, sslot 7, and so on. In best case, node 2 and node 3 do not claim any consecutive

sslot. In worst case, a node claims at most 3 consecutive sslots.

Note that we do not achieve this by forcing a node to occupy an sslot regardless of the priorities.

Instead, we improve the priority generating part in SchedC by setting the priority of sslot i of node

k to maximum priority if sslot i is mapped to the dslot of this node k. For each node k, the priority

of sslot i is redefined as following equation:

pi
k⊕ j⊕l = max priority if i % d f rame≡ dslotk

pi
k⊕ j⊕l = [rand(k⊕ i+ rand(l))] j⊕ k,k ∈ N2(u)∪u, j = 1, ...,nk otherwise (4.3)
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where d f rame is the DRAND frame size and dslotk denotes the dslot of node k.

Such design has several advantages. First, nodes are guaranteed to claim sslots in an even more

distributed fashion. Second, the computation time SchedC spends to generate priority is further

reduced. Third, a node can still discard every sslot it does not need by declaring itself finalized so

that any other node that needs more sslot can still claim those sslots.

4.1.5 Minimum sslot a Node Has to Claim

The minimum sslot a node has to claim is a two-sided blade. The delay is reduced if more sslots

are claimed, but the power consumption is inevitably increased.

TATD-MAC estimates the incoming packet rates of future cycles using history traffic. As

mentioned earlier, SchedC constructs a schedule of 32 sslots and repeats it. We can only claim

exactly one sslot out of 32 if the data rate is low. Claiming as few sslots as needed can substantially

improve energy efficiency in low data rate. However, less sslots also means higher end-to-end

delay, which is not desirable.

As a result, we improve our TATD-MAC prototype by demanding every node to claim at least

one sslot out of a DRAND frame. This limit guarantees low delay without increasing power

consumption compared with conventional TDMA in low data rate.

4.2 TDMA Prototype with or without Slot Stealing

In this section, we give an introduction to our TDMA prototype and the slot-stealing component.

We implement TDMA prototype as a comparison baseline. Moreover, we implement the slot

stealing technique which is adopted by Z-MAC [9] to improve channel utilization. Table 4.2 show

the default values of TDMA prototype’s parameters. We still use the term sslot to denote a slot in

SLEEP period.
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Table 4.2: The default TDMA prototype parameters

Parameter Value
slot size 50 milliseconds

Number of slot in a cycle 1280 slots / 64 seconds
Maximum neighbor count 20 nodes

Maxmum one-hop neighbor 8 nodes
SYNC period 1 DRAND frame

Total sslot 1280 - DRAND frame
Synchronization frequency once per cycle
Synchronization protocol FTSP

Maximum child count 7 nodes
END_RECEIVE_TIME 25 milliseconds

TDMASchedulerC queue size 200
Synchronization phase length 120 seconds for 10 nodes

(depend on network size)
Setup phase length 240 seconds for 10 nodes

(depend on network size)

4.2.1 Structural Overview

Although TDMA is simple and straightforward, we still follow the way we introduce TATD-MAC

to introduce TDMA. Our implementation of TDMA also takes advantage of DRAND to obtain the

sslot assignment of each node.

There are also three phases in our TDMA protocol, synchronization phase, setup phase, and

working phase. The synchronization phase and setup phase is the same TATD-MAC, described in

Section 4.1.1.

In working phase, time is divided into repetitive cycles. In TDMA protocol, a cycle is only

divided into SYNC and SLEEP period. Therefore, we only need a SyncC component and one

TDMASchedulerC. After DRAND is done, DrandC informs TDMASchedulerC about the DRAND

assignment and the neighbor information. TDMASchedulerC starts to work as a repetitive cycle.

For each sslot during the cycle, TDMASchedulerC determines what this node should do and controls

the corresponding components.

37



TDMAMacScheduler

SyncC
DrandC

Se
n

d
Sy

n
c

Ft
sp

N
o

ti
fy

D
ra

n
d

C
o

n
tr

o
l

N
b

rI
n

fo

Radio Core

FtspC

Se
n

d
Sy

n
c

G
lo

b
al

Ti
m

e

send

se
n

d

se
n

d

rc
v

rcv
Send and receive dispatcher

se
n

d

rc
v

R
ad

io
P

o
w

er
C

o
n

tr
o

l

se
n

d

rc
v

ct
rl

C
h

an
n

el
M

o
n

it
o

r

UpperLayers

SlotStealer

rc
v

Tr
yT

o
St

ea
l

Fr
ee

B
u

sy

Figure 4.5: The composition graph of TDMA with slot stealing prototype.
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4.2.1.1 TDMASchedulerC

After DRAND informs TDMASchedulerC about the DRAND assignment, TDMASchedulerC sim-

ply repeat the DRAND frame to complete the whole 1280 slots. Meanwhile, DRAND also pro-

vides all two-hop neighbors’ DRAND slot assignments. A node not only knows about its DRAND

assignment, but also its parent and child’s assignment. A node wakes up at its DRAND slot to

transmit and wakes up at its child’s DRAND slot to receive from its child.

In TATD-MAC, for each sslot, the TATDMacSchedulerC follows the schedule constructed by

SchedC and only perform one kind of job in an sslot, either I_SEND, I_RECEIVE, or I_SLEEP.

In TDMA without slot stealing, the TDMASchedulerC also follows the DRAND assignment and

only does one kind of job, either I_SEND, I_RECEIVE or I_SLEEP. However, in TDMA with slot

stealing, the TDMASchedulerC tries to use an sslot if the owner is not using it or is done using it.

4.2.2 SlotStealerC

As shown in Figure 4.6, the timeline of an sslot is more complex compared with an sslot in TATD-

MAC shown in Figure 4.3. At the beginning of each sslot, if the assignment is I_RECEIVE

or I_SLEEP, TDMASchedulerC try to steal the sslot by commanding the SlotStealerC to do a

clear channel assessment (CCA). SlotStealerC commands the radio core to do CCA by using

the ChannelMonitor interface. The SlotStealerC keeps doing CCA for 15 milliseconds plus a

small random back off time and signal an event to notify TDMASchedulerC whether the channel is

free or busy.

If the channel is free, it means that every one-hop neighbor is not transmitting, since an owner

of the sslot definitely starts to transmit at the very beginning of the sslot. After SlotStealerC

informs TDMASchedulerC that the sslot is free, TDMASchedulerC starts to transmit packets right

away.

If the channel is busy, it means that either the owner is still using the channel or some other

node has already stole the channel and is transmitting. Even if the channel is busy, a node should
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Figure 4.6: Time line of an sslot in TDMA with slot stealing.

still listen to the channel for a certain amount of time, because if the node who stole the sslot is the

child of this node, this node is the intended receiver.

4.2.3 Challenge

4.2.3.1 How Much Should We Steal?

Consider the topology shown in Figure 4.7, node 2 and node 3 transmit to node 1. Node 2 and

node 3 are out of each other’s transmission range.

Suppose a stealing sender now sends as many packets as possible. If both node 2 and node 3

try to steal an sslot for transmission, both of their SlotStealerC thinks the channel is free and
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2 31

Figure 4.7: A simple topology composed of three nodes.

their TDMASchedulerC think they can steal the sslot. Both node 2 and 3’s packets collide and node

1 receives nothing. In even worse case, node 2 is the owner of this sslot, but node 3 does not

know the channel is occupied by node 2 and node 3 steals the sslot. The sslot owned by node 2 is

also wasted due to collision. In this case, the slot stealing of node 3 does not improve throughput,

instead, it harms.

This problem is in fact the hidden terminal problem. In Z-MAC [9], this problem does not

affect as much as it does in our case, because Z- MAC is built on top of B-MAC. Whenever a

node with B-MAC is transmitting, there is a random back off time and a congestion back off time.

It is still possible to collide at node 1, but the chance is much lower in B-MAC than in TDMA.

We cannot be overconfident about the CCA and transmit several packets in a single stolen sslot.

Instead, we limit a node which thinks it has stolen the sslot to transmit only one packet and the

retry limit is 3. If this stealing sender does not get the acknowledgement within three transmits, it

stops and gives up the sslot it stole.

We have done a simple throughput test using two motes. The more detailed results are listed

in Table 5.2 in Section 5.1.1.1 in page 44. In our TDMA implementation, the software acknowl-

edgement is enabled. In a single sslot, which is 50 milliseconds long, a node can transmit 3 to 10

packets. Therefore, stealing only 1 packet in a stolen sslot is still helping the performance.
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Chapter 5

PERFORMANCE EVALUATION

In this chapter, we evaluate our TATD-MAC prototype under different packet generation rates in a

random topology. We also conduct the same experiments on our TDMA prototype, with or without

slot stealing in order to compare the performance of all three prototypes. Moreover, we conduct

another experiment to demonstrate the fairness of our modified NCR priority generation algorithm

in Section 5.2.

5.1 Evaluation in a Random Topology

We first give a brief overview about the experiment topology and the experiment setting. We then

examine the performances of TATD-MAC, TDMA and TDMA with slot stealing from several

viewpoints, including throughput, duty cycle, and end-to-end latency. We also examine the traffic

adaption feature of TATD-MAC in Section 5.1.5.

5.1.1 Experiment Overview

We evaluate our TATD-MAC prototype in a simple yet realistic and representative test bed com-

posed of 13 Tmote-Sky motes, as shown in Figure 5.1. Node 1 is the data sink. All leaf nodes

are data sources, except for node 4 and node 13. Every parent-child pair is at least 35 centimeters

away from each other. We set CC2420 radio power level to minimum -25 dBm [20] so that the

transmission range of Tmote-Sky is about 50 centimeters. Leaf nodes, such as node 9, node 10,

and node 11 are close to each other, but it does not affect anything because they are all two-hop

neighbors and they are guaranteed to get different dslot. Note that node 4 and node 13 do not

generate data. They do not initiate NOTI and they do not claim any sslot, but they still wake up

during the control frames and they do give up every sslot they win.
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Figure 5.1: Experiment topology.

Although DRAND generates a DRAND frame of 8 due to the fact that node 1 has 4 children,

the DRAND frame is still much lower than local neighbor count, which is 13. In order to compare

our prototypes without being affected by DRAND results, we save the DRAND assignment and

use the same DRAND assignment for all three prototypes.

The experiment parameters are listed in Table 5.1. We conduct five different experiments on

each of the three prototypes, 1 packet per second, 2 packets per second, until 5 packets per second.
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Table 5.1: The experiment parameters

Parameter Value
CC2420 radio power level -25 dBm, minimum

Packet generation rate 1 to 5 packet/second
Minimum sslots a node has to claim in a cycle 160 sslots

Packet size 128 bytes
slot size 50 milliseconds

Number of slot in a cycle 1280 slots / 64 sec
The length of schedule being constructed 32 sslots

The times the schedule being repeated 40 times
Maximum neighbor count 20 nodes

Maxmum one-hop neighbor 8 nodes
SYNC period 8 slots
RESV period 8 slots

SCHED period 24 slots
Total sslot 1240 slots

Synchronization frequency once per cycle
Synchronization protocol FTSP

NOTI retry limit 10 times
Maximum child count 7 nodes

END_RECEIVE_TIME 25 milliseconds
TATDMacSchedulerC queue size 200

Synchronization phase length 180 seconds
Setup phase length 360 seconds

5.1.1.1 Theoretical Throughput Bound

We also conduct a simple throughput test using two motes. The sender keeps sending packets to

the receiver as fast it can. The CC2420 transmission power level is set to max (0 dBm). We test the

throughput of a mote transmitting packets with 0 bytes payload and 114 byte payload. The results

are listed in Table 5.2.

Table 5.2: The throughput test.

Software Ack CCA/back off Payload 0 bytes throughput payload 114 bytes throughput
on on 97 to 102 47 to 49
on off 199 67
off on 96 to 100 46 to 50
off off 466 79
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In our implementation prototypes, software acknowledgement is enabled and the payload is

114 bytes. In this throughput test, the throughput of payload of 114 bytes is 67 packet/second.

Even if we assume there is no overhead to divide time into tiny time slots, a sender is able to

transmit about 3.35 packets in a 50 milliseconds time slot.

For interpretation of the references to color in this 
and all other figures, the reader is referred to the 
electronic version of this thesis.
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Figure 5.2: The throughput at the data sink, node 1. For interpretation of the references to color in
this and all other figures, the reader is referred to the electronic version of this thesis.
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5.1.2 Throughput

The throughput results are shown in Figure 5.2. These throughputs are the number of packets

received at the data sink, node 1. The packet received at the data sink is 6, 12, 18, 24, and 30

packets per second respectively. TATD-MAC’s throughput outperforms the other two protocols on

all experiments. TDMA with slot stealing’s throughput is slightly less than TATD-MAC. TDMA

fails to handle high throughput, because its schedule is fixed and cannot adapt to different traffic

loads.

As we can see in Figure 5.2, TDMA only survived packet generation rate of 2 packets per

second. TDMA simply uses DRAND assignment and repeats the DRAND frame to make a 1280-

slots-schedule. Let us assume a node can transmit 3 packets per slot. Each node owns a dslot out

of a DRAND frame, which means a node can transmit at most 3 packets per DRAND frame. In

our topology, the DRAND frame is 8. Each second has 20 slots, which is equal to 2.5 DRAND

frames. The maximum throughput on a node is cut down to 7.5 packets per second.

Node 8 has three children. Suppose the packet generation rate is r packets per second. The

packet incoming rate on node 8 is 3r packets per second. However, the maximum packet outgoing

rate is 7.5 packets per second.

3r ≤ 7.5≡ r ≤ 2.5 (5.1)

Theoretically, node 8 is the throughput bottleneck and the throughput of TDMA should start to fall

after 2.5 packets per second, which is confirmed by our experiment.

Let us examine our TATD-MAC prototype, which also fails to achieve ideal throughput in the

experiment of 5 packets per second. Under the packet generation rate of 5 packets per second,

a leaf node needs 200 sslots in a cycle. The leaf nodes are able to claim the sslots they need,

since we have guaranteed a node can win at least one sslot out of a DRAND frame as described

in Section 4.1.4. However, the intermediate nodes are not able to claim the sslot they need in this

experiment. Node 2 has a child and it needs 200 sslots as well. Node 5 has two children and it
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needs 400 sslots. Node 8 needs 600 sslots. Node 2, node 5, and node 8 are contending for the sslot

to transmit to node 1, while their children are also contending for sslots. Node 5 and node 8 are

not able to claim the sslot they need and they are not able to deliver the packet generated by their

children. Therefore, the throughput is not able to achieve the ideal value of 30 packets per second.

TDMA with slot stealing also works well, but it is not able to achieve as high throughput as

TATD-MAC. Whenever a node steals an sslot, it sends at most one packet only, while the sslots

claimed in TATD-MAC are fully utilized.

5.1.3 Radio-on Percentage

The average radio-on percentage results on all nodes are shown in Figure 5.3. We measure the

percentage of time a node turns its wireless communication component on, which is the main

source of power consumption. TATD-MAC outperforms TDMA and TDMA with slot stealing.

Although TDMA has lower radio-on percentage in higher data rate experiments, TDMA failed to

achieve the same throughput as TATD-MAC.

Every node has to claim at least one sslot out of a DRAND frame as described in Section 4.1.5,

which means TATD-MAC is active at least the same amount of sslot as TDMA during SLEEP

period. In this experiment, a TDMA cycle is 8 control slots and 1272 sslots. Each node wakes

up exactly 8+1272
8 = 167 slots. A TATD-MAC cycle is 40 control slots and 1240 sslots. Each

node wakes up at least 40+1240
8 = 195 slots. TATD-MAC’s radio-on percentage is still lower than

TDMA, because node 4, node 12, and node 13 do not have packet to transmit and do not wake up

during SLEEP period. The radio-on percentage of each node of TATD-MAC is still slightly higher

than that of TDMA, except for node 4, node 12, and node 13. The percentage of time TDMA with

slot stealing turn on the radio is significantly higher than TATD-MAC due to CCA and listen time.
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Figure 5.3: The average duty cycle on all nodes.

5.1.4 End-to-end Latency

The end-to-end latency comparison chart is shown in Figure 5.4. Although there are 5 different

packet generation rates and we have three prototypes, we only show 10 experiment results in this

figure. It is because in those experiments, the network is not able to deliver such a heavy data

rate and we observe significant packet loss due to queue overflow. Even for the packets that were

delivered to the data sink, they are blocked in certain nodes’ packet queues and they are delivered

at the data sink with very high end-to-end delays.

As we mentioned in last section, there are 40 control slots in TATD-MAC. During these control

slots, all nodes do not transmit/receive any packet. It is inevitable to delay the packets in the

packets queues during those control slots. There are 40 slots in the control frames, which means
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Figure 5.4: Average end-to-end delay of all packets received at the data sink.

if a packet is blocked, the delay drastically increases 2000 milliseconds. Although the chance of

a packet being blocked during control slots is low, any packet get blocked in the packet queue has

abnormally high delay.

On the other hand, TDMA with slot stealing has significantly lower delays, because in low data

rate, successful steals happen very often. The amount of time packets being blocked in the packet

queue is significantly reduced and therefore the end-to-end delay is reduced. As we can see in

Figure 5.4, the delay of TDMA with slot stealing is increasing in a higher rate than TATD-MAC

as packet generation rate increases. As the data generation rates at the leaf nodes increase, more

nodes start to contend for unused slots and the chances of successful steal decrease. Even though

the delay of TDMA with slot stealing is lower, TATD-MAC still outperforms TDMA-slot stealing
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Figure 5.5: The number of sslots node 5, node 8, node 9, and node 10 claimed.

in throughput and radio-on percentage by 70%.

5.1.5 Traffic Adaption

Figure 5.5 shows the number of sslots claimed by node 5, node 8, node 9, and node10 of TATD-

MAC in packet generation rate of 3 packets per second. At the beginning of the system, nodes know

nothing about neighboring traffic. Therefore, they claim only the minimum amount of sslots, i.e.

160 sslots.

After the second cycle, nodes estimate the traffic from the history of previous cycle. Node

8, which has more children, claims more sslots than node 5. Note that node 9 and node 10 are

children of node 8. We remove node 9 between cycle 9 and cycle 10. During the control frame of
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cycle 10, node 8 is not yet aware of the removal of node 9. Throughout cycle 10, node 8 sees that

the incoming traffic to it has decreased. Since the traffic in cycle 10 decreases, node 8 knows that

it needs fewer sslots in cycle 11. After node 9 is removed, node 8 has 2 children, which is the same

as node 5. Therefore, node 8 claims the same number of sslots as node 5 from cycle 11 to cycle

14. Then we remove node 10 as well in cycle 14. Node 8 has only one child left, and it only needs

the minimum sslots per cycle, 160 sslots per cycle.

1
(1)

2
(0)

50
(3)

10
(2)

250
(4)

The first line denotes node ID.
The second line is DRAND slot.
Drand frame is 8.

Figure 5.6: Fairness experiment topology.

5.2 Fairness of Slot Claiming

In this section, we conduct another experiment using TATD-MAC prototype to show that our

modified NCR enables the nodes win sslots fairly, especially regardless of node ID. The experiment

topology is shown in Figure 5.6. Node 1 is the data sink and all other nodes are data sources. The

length of schedule constructed by SchedC is still 32 sslots and repeated for 40 times. The nodes

claim as many sslots as possible.

The result is shown in Figure 5.7, the nodes contend for 1280 sslots in a cycle. On average,

node 2, node 10, node 50, and node 250 claims 317.0, 339.51, 302.44, and 329.78 sslots per cycle.
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Figure 5.7: Fairness experiment result.

The average number of sslots each node claimed per node is not as biased as it seems. Note that the

schedule constructed during SCHED period is repeated for 40 times. Therefore, a node claimed

320 sslots in a cycle means it wins 8 sslots out of 32 sslots in the schedule TATD-MAC contructed.

Therefore, on average, node 2, node 10, node 50, and node 250 claims 7.93, 8.49, 7.56, and 8.24

sslots per 32-sslot-schedule respectively.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

High throughput and low power consumption are both critical issues in wireless sensor networks.

This thesis proposes a novel MAC protocol, called TATD-MAC, which adapts itself from low data

rate to high data rate with low overhead. The two-phase control packet design allows us to achieve

a per-flow based traffic notification and a low overhead energy-efficient scheduling. Through our

innovative scheduling method, TATD-MAC achieves the traffic adaption and high throughput with

slightly increased delay. The fast traffic notification control packet informs the node on the routing

path about the incoming traffic. When there is no incoming traffic, a node simply claims zero sslot

and stays sleeping throughout the whole SLEEP period. When there is traffic, the traffic-adaptive

characteristic of TATD-MAC brings us several advantages. Under low data rate, TATD-MAC starts

to claim only minimum number of sslots it needs to deliver the traffic it is expecting. In higher data

rate, TATD-MAC adjusts itself to claim more sslots to increase channel utilization and achieves

higher throughput.

From the experiments we conducted, TATD-MAC is able to sustain high data rates and achieves

higher throughput, compared to TDMA and TDMA with slot stealing. Moreover, TATD-MAC is

more power efficient under all data rates. Nodes on the routing path that do not have traffic do not

wake up at all. As the throughput increase from 1 packet per second to 5 packets per second, the

radio-on percentage only increased from about 11 percent to less than 22 percent. Compared with

TDMA, we see that the traffic adaptive characteristic of TATD-MAC makes TATD-MAC survive

much higher traffic loads. We can see that our novel slot scheduling method increases channel

utilization and throughput while consuming 70 percent less than TDMA with slot stealing.
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We summarize the contribution of this work as follows:

• TATD-MAC is a novel, low overhead, low duty cycle, synchronous MAC protocol that in-

herits the high throughput characteristic of TDMA protocols.

• TATD-MAC assigns time slots only to nodes with traffic, which further improves the energy-

efficiency. Our traffic-adaptive data transmission scheduling technique maximizes the chan-

nel utilization with minimal overhead.

• The two-phase control packets design that derives a per-flow traffic notification and the

scheduling method has a lower overhead than traditional per-packet based solutions.

• We propose a simple yet efficient schedule representation and exchange method that further

improves the channel utilization with extremely low overhead.

6.2 Future Work

Our implementation prototype has demonstrated that our data transmission scheduling mechanism

achieves high throughput and low power consumption with low overhead. There is several potential

ways to further improve performance.

Currently, TATD-MAC relies only on history traffic to estimate the traffic for future cycles.

As we mentioned above, nodes in the first cycle can only claim the minimum amount the sslots,

because they know nothing about their traffic. Moreover, in our traffic adaption experiment in

Section 5.1.5, node 8 can only perceive the change of incoming data rate in next cycle. A possible

improvement is to add an expected traffic field into traffic notification packets. When the source

node initiate a NOTI, they not only inform the routing path that there will be traffic in this cycle,

but also they inform the routing path about how much traffic they need. An intermediate node with

more than one child can aggregate the expected traffic of its children and transmit the NOTI with

aggregated value to its parent. The traffic adaption can be achieved in the current cycle, instead of

in a future cycle.
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Another possible improvement is trying to learn history traffic pattern. In many applications,

such as weather monitoring, the data generation rate is periodic. In our experiments, the data

sources also generate packet in a periodic fashion. We observed that the traffic a node receives

from its child has certain patterns. If it is possible to learn the pattern, an intermediate node might

be able to give up the sslots if it is not likely to have incoming data. For example, in our 1 packet

per second experiment, claiming more than 1 slot per second is not helping performance. In our

prototype, a node has to claim at least one sslot out of the DRAND frame, which is equal to 2.5

sslots per second in our experiment. If learning the traffic pattern is possible, an intermediate node

might be able to predict future incoming packets and claim the sslot that is closest to next packet’s

expected arrival time in order to forward this packet as soon as possible.

Inspired by PIP [23], a hybrid MAC protocol based on TDMA and frequency division multiple

access (FDMA), we think that using multiple channels in TATD-MAC might bring substantial

improvement. Currently, TATD-MAC can only assign an sslot to a node if and only if all its two-

hop neighbors are not using the sslot. If there are multiple channels, a node can still claim an sslot,

even if a two-hop neighbor of this node has already claim the sslot, as long as this node is using

another channel. Nodes can inform each other through the existing three scheduling frames using

modified scheduling packet format, that include the channel assignments.

The first possible future work is more straightforward and most realistic. We need to analyze

and investigate the traffic patterns in depth for the second option. Assigning and using multiple

channel is much more ambitious and challenging. If these improvements can be implemented, our

TATD-MAC will be even more traffic adaptive and will be able to achieve even higher throughput.
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