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ABSTRACT

THREE DIMENSIONAL VIBRATION ISOLATION

USING ELASTIC AXES

By

Beop-Jung Kim

Design for three dimensional vibration isolation is an important part of the design of

all motor and pump mounting systems. A three dimensional vibration isolation system is

analyzed here using elastic axes. Optimization is performed to align the elastic axes to a

design specified coordinate system. Partial decoupling of the compliance of this six degree

of freedom system has been accomplished. The performance of the optimized isolation

system is measured through the magnitude of translational and rotational vibration. The

normalized RMS response for the original and optimized designs were compared using real

automobile engine inertia data. Two methods of realigning elastic axes with specified

coordinate system were developed although results show that this alignment did not

improve the vibration isolation of the system significantly. Response decoupling was

found to be very sensitive to small errors in elastic alignment.
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Vibration isolation in engineering has a variety of applications; pumps, electric

motors, air compressors, and so on. For example, isolation of automobile engine vibration

from the body structure is very important to current customer acceptance. The effects of

forces generated by the vibration of these machines can be minimized by proper isolator

design. Some progress has been made with approaches which include; the active damper

[Crosby and Karnopp (1973)], materials for vibration control [Nashif ( 1973)], effect of

on-off damper for isolation [Rakheja and Sankar (1987)], liquid spring design [Winiarz

(1986)], and passive load control dampers [Eckbald (1985)].

The effect of aligning elastic axes to excitation forces and moments on vibration

isolation will be analyzed. It has been observed that engine mount designers believe that

aligning elastic axes to the excitation helps vibration isolation. There has not been any

previously published research on vibration isolation using elastic axes. The objectives of

this study are to determine whether; i) elastic axes can be aligned to a fixed coordinate

system of a designer's choice, ii) response of the system can be decoupled by aligning the

elastic axes, and iii) aligning elastic axes can help the vibration isolation.

A computer simulation program of automobile engine and mount dynamics,

ENGSIM II, was developed at the A. H. CASE Center for Computer-Aided Design at

Michigan State University [Spiekermann (1982)]. A modification, ENGSIM III, has been

developed to run on Macintosh Computers with the additional capability to optimize the

position and orientation of the elastic axes of a mount design.

The elastic axes of a compliant system are a coordinate system which decouples the

system's flexibility matrix, the inverse of the stiffness matrix. Changing the mount

characteristics changes the location of the elastic axes. These may change until they

coincide with the reference coordinate system. In this work, the external forces and



moments are applied along one of the reference coordinate directions. This investigation

determined how the decoupling resulting from elastic axes alignment with the applied

forces and moments affected the translational and rotational response.

The mount design problem discussed here is the minimization of displacement and

rotation of the vibration isolation model. The displacements and rotations of the mounts are

the linear transformation of the displacement and rotational responses of the center of

gravity. The forces transmitted through the mounts are proportional to the

displacements/rotations and the velocities of the mounts. The minimization of the forces

transmitted through the compliant mounts of a rigid body is the primary concern for mount

designers. Only the displacements response at the center of gravity is analyzed and

demonstrated in this study.



This study's vibration isolation model is a rigid body with six degrees of freedom

supported on compliant mounts. The six degrees of freedom are translations along, and

rotations around, each of the three orthogonal coordinate axes. The four compliant mounts

are modeled as springs and dampers to simulate the general automobile engine (Figure 1).

The mounts used in this analysis have linear stiffness and a combination of viscous and

structural damping. The XYZ reference coordinate is the primary fixed rectangular

coordinate with its origin at the center of gravity (CG) and is placed so that the positive Y

axis is along the crankshaft from engine rear to front.

Forces and Torques

Z

 

 

 

 

  X R'g'd Body Mount Stiffness

if; : rig and Damping

Figure 1 Vibration isolation model on four compliant mounts

 

The damped forced vibration problem is formulated. The three-dimensional

equations of motion for a rigid body on compliant mounts have six degrees of freedom.



Mx+Cx+Kx+li=f (1)

where itT = {x, y, z, 9,, 9y, 6,} is the displacement/torsion vector, M is the inertia

matrix, C is the viscous damping matrix, K is the stiffness matrix, D is the structural

damping matrix, fT = { f x, fy, f2, 1,, 1y, 1,} is the operating forces and moments vector,

and i = \/-_1- . This equation is used for the frequency response calculation later in this

paper.

The effect of damping on natural frequencies and mode shapes is assumed

negligible. This common assumption [Rao and Gupta (1985)] simplifies the procedures

for determining natural frequencies and mode shapes. With this assumption, the

eigenvalue problem can be solved from the homogeneous form of the undamped system

equations.

Mx+Kx=0 (2)

This equation is used to find the eigenvalues which are the square of the natural frequencies

of this system, and the eigenvectors which represent the mode shapes at each of those

natural frequencies.



CONCEPTS

HEMMLEMMfl

Calculation of the frequency response of the vibration isolated mass predicts its

vibration characteristics. For harmonic excitation,

f = Fe",
(3)

The system response, {x} is assumed to be of the same form as the harmonic excitation.

x = Xe“ (4)

Substitution of equation (3) and (4) into equation (1) yields a linear equation.

[[K-wM]+MD+mCHX=F m

The frequency response, X, can be obtained by solving this complex linear

equation for the selected range of frequency, (0, using the LINPACK subroutine ZGESL.

The response is a complex value with the magnitude equal to the square root of the sum of

the squares of the real and imaginary parts. The magnitude of this response is the

displacement and torsion of the system at the center of gravity.

 



ElasthAxes

The ideal elastic axes form an orthogonal coordinate system in which the only

displacement or rotational response to an applied force or torque is in the same direction as

the degree of freedom in which the input force or torque is directed. The center of elasticity

(C.E.) is the origin of this coordinate system. In the elastic axes coordinate system, the

response will be pure decoupled translational modes and pure decoupled rotational modes.

This ideal definition of the elastic axes which fully decouples the flexibility matrix can only

occur in planar analysis. Although elastic axis for planar problems can be easily found by

determining the coordinate system in which the flexibility matrix is diagonal, the search for

the elastic axes for three dimensional problem with six degrees of freedom can be achieved

through partial decoupling of the flexibility matrix.

The elastic axes are found by using the general flexibility matrix, A, which is the

inverse of the stiffness matrix, K.

x = K"1 f = A f (6)

In this representation, a force f, expressed in the reference coordinate system causes a

deflection, x. The investigation to find the elastic axes will assume only that the flexibility

matrix, A, is known in the reference coordinate system of the analysis.

Eigenvector based, modal decoupling of the flexibility matrix does not yield its

elastic axes. Although it is always possible to use the eigenvectors to diagonalize the

flexibility matrix, the eigenvectors do not define a physical, orthogonal, coordinate system

[Hall and Woodhead (1965)]. A physical transformation method, consisting of a

combination of rotational and translational transformations defines the elastic axes. This set

of transformation is found through the solution of the set of simultaneous equations (see

page 8,9).

 



Two Dimensional Elastic Axes

Planar motion is described by two translations in a plane and a rotation about an

axis normal to the plane. Two dimensional, planar elastic axes define coordinates such that

a force is applied along one of the axes in the plane generates only a translational along that

axis and a torque applied around the axis normal to the plane generates only a rotation

around that axis.

Planar problems have a flexibility matrix given by

an an a13

_ '1 _.

A — K -— a21 a22 a23 (7)

2131 2132 a33

The flexibility matrix, A, is symmetric so that full decoupling requires only three off-

diagonal terms: a12, a13, and a23 be made equal to zero. These three elastic axes

conditions can be met through two independent translations and one rotation . Analytically,

the result is three independent linear equations for the two translations and one rotation.

After the three coordinate transformations, the planar flexibility matrix, A takes the form

21.11 0 0

AGE. 2 K'1 = O a’22 0 (8)

0 0 333

Three Dimensional Elastic Axes

Full decoupling of a three dimensional flexibility matrix through coordinate

transformation is not possible. Each coordinate transformation can introduce only a single

pair of symmetric, off-diagonal zeros. The six by six, three dimensional, flexibility matrix

has fifteen pairs of off-diagonal terms. Only six, independent, coordinate transformations

are possible so that the definition of three dimensional elastic axes is a compromise and

only partially decouples the flexibility matrix.





The one widely accepted choice for the three dimensional problem maximizes

decoupling between the translational and rotational flexibility. Maximized decoupling can

be obtained by diagonalizing the off diagonal sub-matrices [Fox (1977)]. Writing the six

by six flexibility matrix as

A_K_,_|U WI 9

- 'Iw—Ivl ”

the off diagonal submatrices W and WT will contain the coupling terms. Although W

cannot be made to vanish, it can be made diagonal.

If a stiffness matrix, referenced to some coordinate system, is known, then it can be

referenced to a new coordinate system by a congruent transformation [Fox (1976)]. The

coordinates of the transformation are measured and the translation is performed first by

K'=QKQT (10)

and Q=RT

where R is rotation transformation matrix and T is translation transformation matrix.

ANN—0' 1'I0 RI m

where R is the Euler angle three by three matrix and

_|1 on

“Id-ll (12>

where



0 -P3 P2

T = P3 0 —P1 (13)

—P2 P1 0

P; are locations of the old system measured in the new system. By inverting Equation (8)

the transformation matrix is obtained

A' = (193)"1 (1T)“A'I"‘R" (14)

Equation (14) can be solved to make the off-diagonal elements of submatrices W and WT

zeros. The center of elasticity {P1, P2, P3} and the elastic rotation matrix, R, for this

problem are obtained from the solution of the equation. The partial decoupling for this

problem, the maximal diagonalization form, used here is equation (15).

 

  

* a: at: * 0 0

* :1: a: 0 *

=I< * * 0 0 *

r _ -1

A_AC,,_K_*OO*** <15)

0 >I< 0 * a: *

L0 0 * >1: * *j 
where * are usually non-zero terms.

In this three dimensional diagonalization method, if a force is applied along one of

the coordinate axes, the only resultant rotation will be around that axis combined with a

translation along a direction which is not one of the coordinate axes. If a torque is applied

around one of the coordinate axes, the only resultant translation will be along that axis

combined with a rotation about a direction which is in general not one of the coordinate

axes. To investigate the presence of the displacement response decoupling, the excitation

torque is applied along one of the reference axes when elastic axes are realigned to coincide

the reference axes.
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The Optimization procedure locates the elastic axes each time minimizing the

difference between the elastic axes and coordinate axes. A set of mount design parameters

is sought which aligns the elastic axes to a coordinate system of the rigid body while

avoiding large design changes. The design parameters are changed to minimize a penalty

function that becomes smaller as the design criteria are met. The penalty function, P(E), is

of the form

P(E) = a S(E) + b L(E) (16)

where E is a vector of normalized design parameters, S(E) is a scalar size-of—change

penalty function which becomes large when design changes begin to exceed prescribed

limits, and L(E) is a scalar elastic axes penalty function which is large when elastic axes are

far from the desired coordinate axes. The scalars a and b indicate the relative importance of

the size-of-change penalty as compared to the elastic axes penalty. A single size of change

and two different methods of expressing the elastic axes penalty function are introduced

below. Using the IMSL subroutine ZXMIN, a locally optimal set of design changes, E, is

found which define a local minimum of penalty function, P(E) [IMSL (1980)].

The size-of-change penalty used is expressed by [Spiekermann (1985)]

N .

S(E) = 2 8,03,) (17)

(raj-A)2 for E, > A

This penalty conforms with common design situations, where large design changes

correspond to increased real cost to produce the vibration isolation system. In some design
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situations, small design changes are possible which have no associated real cost. The size-

of-change penalty function includes this situation through a zero penalty for small design

changes less than some value A, with larger changes penalized.

The geometrical penalty function optimizes the elastic axes location through

penalizing the physical differences in angular orientation and origin position between the

elastic axes and the reference coordinate system. Since the angle (DA) and translation (TR)

of the elastic center are obtained by computing the elastic axes, they are a function of design

parameters. First step in determining the minimum angles is to find the angles between

each one of the elastic axes and the X, Y, and Z axes. After obtaining three angles for each

of elastic axes, smallest matching axes corresponding to each elastic axes can be found by

comparing these'angles numerically so that the sum of the square of those angle differences

becomes the minimum (Appendix B). The penalty function expression becomes

L(E) = DA(EA, — X)2+DA(EA2- Y)2+ DA(EAs— Z)2+ 0*TR (18)

where DA(EA1-X), DA(EAz-Y), and DA(EA3-Z) are the smallest possible angles between

the elastic axes, EAs, and XYZ. TR is the translation of the center of elasticity, and c is

scalar weight factor which indicates relative importance compared to DA terms.

The numerical penalty function optimizes elastic axes location by penalizing non-

zero off-diagonal terms of the submatrix in the six by six flexibility matrix (Eq. 15). This

method is a shortcut to align the elastic axes with numerical efficiency, although it does not

necessarily guarantee elastic axes alignment except in the limit.





A = K" = (19) 

   
where: * = off diagonal terms of submatrix

In this case the penalty function is replaced as a function of elements of A.

_ 2 2 2 2 2 2

L(E) - als+al6+a24+a26+a34+a35 (20)

where each aij is an element of the six by six flexibility matrix. Since the flexibility matrix

is symmetric in this study, only the upper off diagonal terms are included in the penalty

function.



W

This example problem used previously published engine/mount data from General

Motors Corporation [Spiekermann (1983)]. A torque around the Y axes, imitating real

engine torque around the crank shaft, is applied by setting force/moment vector elements,

F, zero except the Y axis torque. A simple unit force vector, FT={0, 0, 0, 0, 1.0, 0}, was

used to reduce the complexity and make the results easy to visualize. The example was

used to test the decoupling of the system and whether the elastic axes decoupling helps the

vibration isolation.

Four different result cases are investigated in this example problem. Case 1 is the

results using original system input data. Case 2 to 4 are results for various methods of

realignment of elastic axes (Table 1).

Table 1 Classification of the Example Cases

 

 

 

 

 

    

. Optimization Method Design Parameter Change

Case 1 None None

Case 2 Geometrical All (coord., stiffness, orientation)

Case 3 Numerical All (coord., stiffness, orientation)

Case 4 Numerical Only orientation of the Mounts
 

The results for these cases include the elastic center rotation matrix (R), the location

of center of elasticity (CE), and the frequency response plot of the system. The combined

result of the location of the CE. and the elastic center rotation matrix determines the

alignment of the elastic axes. The RMS of the CE. coordinate gives the translational

alignment of the elastic axes to the center of reference coordinates (Table 2). The elastic

center rotation matrix determines the angular alignment of elastic axes (Table 3). The

diagonal elements of the elastic center rotation matrix give the proximity of the elastic axes

to the XYZ reference coordinate. The closer the absolute values of these elements is to 1.0,

13
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the closer the alignment is to the reference coordinate system. More detailed optimized

results for these cases are placed in Appendix A which includes the optimized flexibility

matrices to help visualize the decoupled condition.

Table 2 Center of Elasticity Measured from C.G. (m)

X Y Z

 

Table 3 Elastic Center Rotation Matrices for Original and Optimized

 

Case 1 0.751179 —0.654768 —0.083723

Rods“: 0.642215 0.695601 0.322024

0.152614 0.295666 0.943022

 

Case 2 -0.999973 0.007219 0.001090

Roptimized = -0. 007220 -0.999974 -0.000456

0.001087 —0.000464 0.999999

 

Case 3 0.985475 0.018507 0.168807

Embed: 0.014039 0.999520 0.027623

0.169238 0.024852 0.985262

 

Case 4 0.989988 0.053136 —0.130765

Emu“: 0.137865 —0.984798 0.171045

—0.152614 —0.165375 0.976547   
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The frequency response plots determine the quality of vibration isolation. Figure 2

is the frequency response displacement plot of the original system (Case 1) calculated in

three reference coordinate directions when a unit torque is applied about Y axis. The plot

shows the highest peak of 4.0E-5 (m) at the frequency of 6.42 Hz in Z direction.

 

   

4.0E-5 ——

'X' disp. in X dir.

3.0E- --

5 101' disp. in Y dir.

. '0' dis . in 2 dir.

disp (m) p

2.0E-5 ~-

1.0E-5

 
 

 
frequency (Hz)

Figure 2 Frequency response plot of original system, for a unit torque

(Ty=1.0 N m) applied along Y axes @ C.G. (Case 1)

Figure 3 shows the realigned frequency response using physical location of the elastic

axes, angle and translation, with all design parameters allowed to change (Case 2). In this

plot, there is no sign of response decoupling, even though the elastic axes are aligned very
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closely to the reference coordinate system. The plot shows the response peak of 7.0E-6 m

at 10.28 Hz in Y direction.

 

   

  

     
 

 
 

7.0E-6 (-

'X‘ disp. in X dir.

'A' disp. in Y dir.

5.0E-6

'0' disp. in Z dir.

disp (m)

3.0E-6

1.0E-6

frequency (HZ)

Figure 3 Frequency response plot of geometrically realigned system using

Angle & Translation with all design parameters allowed to change,

for a unit torque (T,=1 .0 Nm) applied along Y axis @ C.G. (Case 2)

Figure 4 shows the realigned frequency response using off-diagonal terms of the

submatrices of the flexibility matrix with all design parameters allowed to change (Case 3).

This plot shows the remarkable decoupling of the response and displacement in X and Z

direction has been greatly reduced. The highest peak of the response has been reduced to

5.0E-6 (m) at 9.36 Hz in Y direction.
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5.0E-6 -— ‘

A

'X' disp. in X dir.

A

4-05'6 r- ‘ fi- disp. in Y dir.

disp (m) _ . .

‘ ‘0' disp. rn Z drr.

3.0E-6 -- ‘

A

A

A

2.0E'6 "'" ‘ ‘

A A

A A

A A

A A
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I
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0 _ "1mm111I|"'"'"WIIII11umummnunruumluulmmum 11111111 111111111111111111111111111"11111111111111".

0 10 20 30 40 ‘ 50

frequency (Hz)

Figure 4 Frequency response plot of numerically realigned system using off-

diagonal terms of A with all design parameters allowed to change for

a unit torque (’5y =10 N m) applied along Y axis @ C.G. (Case 3)

The optimization procedure was constrained by requiring the design parameters to

fall within a prescribed range. Since this was a theoretical investigation, large design

changes were allowed (Table A.2.1,A.3.1 in Appendix A) which may not be acceptable for

real automobile mounts. Nearly all the design parameters were changed by the optimization

(Case 2 and 3). In Case 3, coordinates were changed from 37 to 1230 mm, stiffness from

10.99 to 50.18 percent of the original stiffness, and orientation from 3.24 to 188.58

degrees. The design changes used in the previous realigned examples are too large to be
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practical in automobile industry. Another realignment example with only mount orientation

parameters allowed to change was investigated for this reason (Case 4). Figure 5 shows

the numerically realigned frequency response using the off-diagonal term penalty function

while allowing only mount orientation change. The result does not show any improvement

in response decoupling.

   

   

 

  
 

 
 

2.5E-5 --

x

2-05'5 " X- disp. in x dir.

disp (m) 13' disp. in Y dir.

1.5E-5 —- C" disp. in Z dir.

1.0E-5

0.5E-5

0 .

0 4 8 12 16 20

frequency (Hz)

Figure 5 Frequency response plot of numerically realigned system using off-

diagonal terms of A, with only orientation of the mounts is allowed

to change, for unit torque (“Ky= 1.0 Nm) applied along Y axis @

C.G. (Case 4)

Figure 6 shows the RMS value of the X, Y, and Z displacement for each test case to

demonstrate the total magnitude of the vibration. All the realigned designs shows the
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improved results in reducing the total displacement of the system. The RMS plot shows

that the total magnitude of the vibration can be reduced with only mount orientation change

but not reduced as large as the model realigned with all the parameters allowed to change
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I \ 'x‘ Case 1 : original model
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Figure 6 RMS displacement response plot for various methods of elastic axes

realignment

If the static response is too large, the design may not be feasible due to limited

space or material property constraints. Static response should also be constrained to meet

the desrgn requirements. The static displacement response in XYZ direction ((0-0 0) of

Case 2 and 3 were minimized except the displacement in Y direction. All the realrgned

designs have smaller static RMS displacement than original system
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Table 4 Static Displacement Response of Example Cases for T, = 1.0 N m

disp. in X dir. disp. in Y dir. disp. in Z dir. RMS

 

Natural frequency is a important factor for the vibration isolation. When the

excitation frequency is near one of the natural frequencies of the system, both the rigid

body displacement and the forces transmitted through the mounts can be large. One way to

avoid resonance is to remove the natural frequency from the desirable frequency range. In

present designs, automobile have idle speed range of 600-780 RPM (10 to 13 Hz). An

optimal design should avoid this natural frequency range. In the result of Case 3, the

natural frequencies between 10 and 13 Hz were all removed from the idling frequency

range of the engine.

Table 5 Natural Frequencies for the Original and Realigned System (Hz)

SC

 

The effectiveness of the vibration isolation in this problem is determined by the

normalized RMS displacement response to an input torque as compared to the original

design. Normalized RMS response is considered because large stiffness of the mounts can

easily reduce the vibratory displacement while the forces transmitted through the mounts

are still large. The normalized response is obtained by dividing frequency response by

static response.
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‘X' Case 1 : original model

’ A“ Case 2 : geometrically realigned

“L . ’ ‘3' Case 3 : numerically realigned
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, only mount orientation

q- 0

U

‘I

“:’ - ‘\

‘s“:‘\““‘\“I"'IIIIIII    

 

n‘ ‘ '[lII ““I/ H’.

<( ‘«( («\«S««( .‘(<§«\<(((:(((\<.~““N:I:!\
" IIIIIIIII|||[""'I(',(’‘(;4;'l..;:.a’/"'19.4%.,,u,:11 ,(‘,'ll'/:/.”I’ I, 1‘

l 1 1 1 1 1 l ""“Muam . .« “‘4‘“ (f ’< '«(«0<< < (< «"I I: 3

I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20

frequency (Hz)

Figure 7 Normalized RMS displacement response plot for various methods of

elastic axes realignment

Case 2 and Case 3 show only small reduction of the normalized peak response compared to

original design, Case 1. The result also shows that changing only mount orientation cannot

make any improvement in vibration isolation. None of the realigned elastic axes designs

show significant improvement in vibration isolation.





SIJMMAR!

An optimization of a three-dimensional vibration isolation system for partial

decoupling of the system's compliance has been demonstrated. This thesis has shown that

elastic axes can be aligned to a fixed coordinate system of a designer's choice. Two

different approaches of aligning elastic axes to a fixed coordinate were investigated: 1)

using physical location of elastic axes and 2) using off-diagonal terms of flexibility matrix.

Both of these approaches could decouple the static response, and only the latter approach

could decouple the dynamic response when the elastic axes are aligned to an excitation

force. The normalized RMS plot showed that this mothod could reduce only small amount

of the vibration of the system. The plot showed that the proper mount design changes can

reduce the original normalized response peak of 11.32 down to 9.01 (Case 3). This 20%

reduction of the normalized displacement is not significant to mount designers and can

hardly be said to help the vibration isolation.

The results showed that the more accurate decoupling of the flexibility matrix does

not necessarily mean decoupling the response of the system. Elastic axes of Case 2 aligned

much closer to the reference coordinate than any other cases (Table 2 and 3), but the

response did not show any improvement in decoupling the response (Figure 3). The clear

explanation about this cause has not been found yet, and the investigation of this reason is

left as a further study of this problem.

Factors not addressed in this thesis are torsional response, and numerical sensitivity

of the results. Since the results are only displacements of the CG. instead of forces

transmitted through each mounts, it does not guarantee that this optimization of elastic axes

is the solution to the minimization of the forces through the mounts. Future topics include

development of a program that computes the forces transmitted through each mount.
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CASEJ. Original System

Table A. 1 .1 Original Engine System Input

M 225.40

Wm).

X X Z

C.G. 0.0000 0.0000 0.0000

monnt 1 -0.1866 -0.2893 -0.0100

mount 2 0.4334 -0.2993 -0.1600

mount 3 -0.0916 0.1707 —0.0850

mount 4 0.4534 0.1657 -0.1000

M9111): stiffinass (Nun)

r i n lateral f r f

mount 1 203667. 30733. 43733.

mount 2 160167. 115050. 49619.

mount 3 219167. 439334. 102583.

mount 4 225207. 440334. 116083.

Mount orientation (geg)

LhflLfi LILQLLY III—etahl

mount 1 0.0 -30.0 0.0

mount 2 0.0 -41.0 180.0

mount 3 0.0 —70.0 0.0

mount 4 0.0 ~48.0 180.0

Table A. 1 .2 Flexibility Matrix of Original System

r1.857 0.068 —0.096 —0.440 -0.736

1.645 0.085 —3.333 0.003

_1 2.259 —0.391 3.440

A1“ = KPH =
37.477 2.338

25.293

 

—0.561

—1.735

-0. 236

-—1. 639

—1.163

9.545  

x106
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CASE 2 Optimized with all design parameters change

(using DA and TR)

Table A2] Optimized System and Changes

r in m

X Y Z

mount 1 .593 .779 -.521 -.231 .460 .470

mount 2 .404 —.029 .645 .945 —.780 -.620

mount 3 -.491 -.399 -.314 —.484 -.396 -.311

mount 4 -.078 -.532 -.001 -.167 .109 .209

NEW VALUE CHG NEW VALUE CHG NEW VALUE CHG

Moan; Stiffnaaa (NZm)

compression lateral fore/aft

mount 1 276676. 35.85% 49584. 61.34% 75350. 72.30%

mount 2 157891. -1.42% 227030. 97.33% 44380. -10.56%

mount 3 232747. 6.20% 496946. 13.11% 123355. 20.25%

mount 4 219866. -2.37% 362468. -17.68% 168123. 44.83%

NEW VALUE % CHG NEW VALUE % CHG NEW VALUE % CHG

W

THETAX THETAY THETAZ

mount 1 9.72 9.72 -159.60 —129.60 —66.07 —66.07

mount 2 115.11 115.11 -56.69 -15.69 212.03 32.03

mount 3 238.14 238.14 —45.09 24.91 252.34 252.34

mount 4 -345.62 -345.62 26.42 74.42 155.82 -24.18

NEW VALUE CHG NEW VALUE CHG NEW VALUE CHG

Table A.2.2 Optimized Flexibility Matrix

Flexibility matrix in rgfergnge coordinates

"1.486 —0.250 —0.l78 -0.352 0.009 0.000 ,

1.313 —0.112 0.009 0.937 0.001

_1 1.412 0.000 0.001 —0.765 _6

ARef = KRcf : X 10

3.202 0.954 1.477

5.486 0.372

_ 8.575 ‘  
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Fl xi ili m trix in rinci l 1 xi r in

”1.490 —0.249 0.177 —0.352 0.000 0.000-

1.310 0.113 0.000 0.937 0.000

_1 1.411 0.000 0.000 —0.765 _6

ACE KCE x10

' ' 3.185 0.937 -1.468

5.500 -0.385

_ 8.578_

QASL}; Optimized with all design parameters change

( using off-diagonal terms of A )

Table A3] Optimized System and Changes

Coordinates (m)

E. l l

mount 1 -.610 -.423 -.476 -.l87 .307 .317

mount 2 .396 -.037 -.727 —.428 —.676 -.516

mount 3 -1.322 -1.230 .531 .360 1.098 1.183

mount 4 .520 .066 .479 .314 —.413 -.313

NEW VALUE CHG NEW VALUE CHG NEW VALUE CHG

Mount Stiffness (N/m)

compression lateral fore/aft

mount 1 284917. 39.89% 42994. 39.89% 61180. 39.89%

mount 2 203768. 27.22% 146369. 27.22% 63126. 27.22%

mount 3 109194. -50.18% 218887. —50.18% 51109. —50.18%

mount 4 249957. 10.99% 488727. 10.99% 128840. 10.99%

NEW VALUE % CHG NEW VALUE % CHG NEW VALUE % CHG

Mount Orientation (deg.)

theta X theta Y theta Z

mount 1 3.24 3.24 -218.58 —188.58 54.20 54.20

mount 2 51.24 51.24 -68.24 -27.24 142.20 -37.80

mount 3 -58.50 -58.50 -136.27 -66.27 51.53 51.53

mount 4 84.01 84.01 —128.67 -80.67 267.01 87.01

NEW VALUE CHG NEW VALUE CHG NEW VALUE CHG

Table A.3.2 Optimized Flexibility Matrix
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Flgxibility mam'x in rafaranca gmrdinatgs

  

   

”2.825 -0.336 0.134 0.354 0.048 —0.005-

1.366 —0.042 —0.046 -0.582 0.014

A _ K _] _ 1.293 0.024 —0.030 0.362 x10‘6

R” ‘ R” ' 3.509 0.102 -2.230

2.406 0.460

_ 3.554 _

Flexibility matrix in principle elastic axis coordinates

"2.724 0.325 —0.388 0.340 0.000 0.000“

1.372 —0.104 0.000 —0.583 0.000

A _ K _1 _ 1.386 0.000 0.000 0.376 x10'6

C‘E- ’ C-E‘ ’ 4.253 0.064 2.100

2.431 0.519

_ 2.785_

W Optimized with only mount orientation change

( using off-diagonal terms of A )

Table A.4.1 Optimized System and Changes

Mount Orientation (deg)

theta X theta Y theta Z

mount 1 -25.51 —25.51 -240.44 —210.44 98.89 98.89

mount 2 27.49 27.49 -27.19 13.81 181.05 1.05

mount 3 -82.13 -82.13 -135.08 -65.08 -103.80 -103.80

mount 4 29.95 29.95 20.78 68.78 128.87 —51.13

NEW VALUE CHG NEW VALUE CHG NEW VALUE CHG

Table A.4.2 Optimized Flexibility Matrix

r1.661 —0.118 0.323 —0.217 0.4860 0.3191

1.596 0.166 —0.286 —0.858 -1.128

-1 1.487 —0.140 1.015 0.571 _6

ARcf : KRcf : X10

30.357 4.374 —7.895

19.908 —-3.572

_ 15.084_  



 

I
I
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PP IX - imiz i n in El . i Ax

This appendix presents the elastic axes analysis and detailed example results for

determining location of the elastic axes. Elastic axes coordinates as a vector can be found

by multiplying the three by three elastic center rotation matrix, R, to the reference

coordinate system. The following shows the way to find the one of three elastic axes

X XX'

EA1 = Elastic Axis (X) = R 0 = XY' (13.1)

0 XZ'

By adding these coordinate to the center of elasticity, the transformed coordinates of the

location of elastic axis can be found. Since the final purpose is the angle difference, only

vector form of the elastic axes (equation BI) is needed to calculate the angle difference.

Simple trigonometry is used to determine the angle-difference, DA, between EA] and three

X, Y, and Z coordinate (equation B.2,3,4).

 

 

 

* 1

DA(EAl—X) = cos“( X XX ) B 2
\IXZ*\/XX'2+XY’2+XZ'2 ( ° )

* I

DA(EAl-Y) = cos'1( Y XY ) B 3

x/Xz*\/XX'2+XY'2+XZ'2 ( - )

Z*XZ'
DA(EA —Z) = cos"( )

1 \/?=1=\/XX'2+XY'2+XZ'2 (B4)

The rest of the angles can be obtained by the same manner. Once all the angles are

obtained, three angles per one elastic axes, the matching angles should be found to

minimize the penalty function. The following shows the example run to calculate the angle
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difference and to find the smallest matching axes. The following is the result from original

model.

> Choose one of the options 'by entering two letters

ANIMATE MODE-(AM) STATIC DEFLECT-(SD) RESTART ENGSIM----

(RS)

MOUNT FORCES-(MP) FREQ RESPONSE--(FR) RESTART NEW INPUT—

(NU)

CHG NORM——————CN) OPTIM PARAMS---(OP) SAVE ENGSIM FILE--

(EF)

ELASTIC AXIS—(EA) QUIT--------------

(QU)

EA

CENTER OF ELASTICITY (Measured from the C.G.)

X Y Z

.150992 .005021 -.045411

ELASTIC CENTER ROTATION MATRIX

.751179 -.654768 -.083723

.642215 .695601 .322024

-.152614 -.295666 .943022

TRANSLATION OF THE ELASTIC CENTER (m) .15775

3 ANGLES BETWEEN #1 ELASTIC AXIS & X-Y-Z COORD (rad)

.72095 .87341 1.41758

3 ANGLES BETWEEN #2 ELASTIC AXIS & X-Y—Z COORD (rad)

.85692 .80154 1.27064

3 ANGLES BETWEEN #3 ELASTIC AXIS & X-Y-Z COORD (rad)

1.48698 1.24293 .33920

CLOSEST 3 ANGLES BETWEEN 3 ELASTIC AXIS AND X-Y-Z

COORD. (rad)

.33920 .72095 .80154
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. in E mm

This appendix presents an example run of the rigid body engine dynamics

simulation program, ENGSIM III, which was used for main analysis discussed in this

thesis. Because ENGSIM II was developed to run on Prime Computers and ENGSIM HI

was modified to run on Macintosh Computer, some of the ENGSIM II capabilities were

deleted. One of main capability deleted is the graphic capability, since the MacFortran 11

does not support graphics. Since the clear explanation to use this software has been

already introduced in the thesis of the writer of ENGSIM II, the user's manual is not

repeated and the thesis is placed in reference list. Only the parts which related to this study

are demonstrated here.

The following is the input file used for the simulation and also shows the

format of the file.

———————————— INPUTl ——————-——————————

***************************

Oldsmobile engine test stand configuration.

**

************************

Mass of engine. Kilogram mass and kilogram force are

numerically equal.

**

225.4

****~k***********~k*******

Engine center of gravity coordinates. (X Y Z Meters)

**

1.4366 .0793 .51

************************

Number of engine mounts.

**

4

*******~k****************

Engine mount coordinates. (Meters) (X Y Z mount #1, X Y Z

mount #2 etc.)

*9:

1.250 —.21 .500

1.870 -.220 .35

1.345 .25 .425
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1.89 .245 .410

************************

Mount Stiffness.

** Compression Lateral Fore/Aft (N/m) ThetaX ThetaY ThetaZ

(Degrees)

203667. 30733. 43733. 0. —30. 0.

160167. 115050. 49619. 0. —41. 180.

219167. 439334. 102583. 0. ‘—70. 0.

225207. 440334. 116083. 0. -48. 180.

******************

Engine mass moment of inertia matrix. (N-M—SEC2)

*9:

15.80 -O.80 .9

-0.80 11.64 -3.2

.90 -3.2 15.69

******************

Direction Cosine Angles to Principal Inertia Axis (Degrees)

**

17.87 73.91 82.43

100.52 31.07 118.87

104.28 64.19 30.03

******************

Mount viscous damping. Compression Lateral Fore/Aft (N-

sec/M)

**

'A' 100. 110. 120.

'A' 130. 140. 150.

'A' 160. 170. 180.

'A' 190. 200. 210.

******************

Mount structural damping. Compression Lateral Fore/Aft

(N/M)

*9:

'A' 4000. 5000. 6000.

'A' 7000. 8000. 9000.

'A' 10000. 11000. 12000.

'A' 13000. 14000. 15000.

************************

Number of cradle mounts. (enter 0 for no cradle)

*9:

E***********************

Cradle mount coordinates. (Meters) (X Y Z mount #1, X Y Z

mount #2 etc.)

**

.125 —.541 .511

.125 .541 .511

.041 —.4265 .3495

.041 .4265 .3495

.168 -.584 .3495

.168 .584 .3495

************************

Cradle stiffness (N/M) (X Y Z mount #1,X Y Z mount #2 etc.)

**

N
N
N
N
I
—
‘
H

 



 



144000

144000

250000

250000

250000

250000

*********************

EOF

280000

280000

520000

520000

520000

520000

400000 0 0

400000 0 0

950000 0 0

950000 0 0

950000 0 0

950000 0 0

*** *
O
O
O
O
O
O

*
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The following is the optimization design change input file used in the main part of

this thesis (Case 2 and 3 of the Example problems) which shows the amount of design

changes allowed in the simulation. In this file "A" means absolute value change and "%"

means percentage of the value change.

 

Demo Optimization input file,

design

Changes all possible

associated with E=1 (% or A)(XYZ values)

0.50

0.50

0.50 0.50 0.50

0.50 0.50 0.50

Starting E

0.50

0.50

0.50

0.50

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Minimum E without penalty

0

0

.00

.00

0.00

0.00

0.

0.

00

00
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Maximum E without penalty

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Changes associated with E=1

100

100

100

100

.000

.000

.000

.000

100.000

100.000

100.000

100.000

Starting E

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Minimum E without penalty

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 ' 0.00 0.00

Maximum E without penalty

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

(%

'A'

IA!

'A'

[Al

100.000

100.000

100.000

100.000

100.000

100.000

100.000

100.000

Starting E

0 .00 0.

or A)(XYZ values)

100.000

100.000

100.000

100.000

parameters

or A)(XYZ values)

.000

.000

.000

.000



 



0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

Minimum E without penalty

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

Maximum E without penalty

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

EOF

A sample run of ENGSIM III is presented next. Program prompts and output are

indented and user typed answers shown underlined.

EEEE N N GGGG

E NN N G

EEEE N N N G GG

E N NN G G

EEEE N N GGGG

Michigan State University
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8888

S

8888

S

8888 H
H
H
H
H

M M 3333333

MM MM 3 3 3

M M M 3 3 3

M M 3 3 3

M M 3333333

RIGID BODY ENGINE DYNAMICS OPTIMIZATION/SIMULATION

** Rev. 3.0 **

> ENTER NAME OF FILE WITH MOUNT GEOMETRY, STIFFNESS,

DAMPING

INPUTl

&

 



 1:“
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WEIGHT (NEWTONS) 2208.92 MASS (KILOGRAMS) 225.40

COORDINATES(METERS) GLOBAL LOCAL

X Y Z X Y Z

C.G. 1.4366 .0793 .5100 .0000 .0000 .0000

MOUNT 1 1.2500 -.2100 .5000 -.1866 -.2893 -.0100

MOUNT 2 1.8700 -.2200 .3500 .4334 -.2993 -.1600

MOUNT 3 1.3450 .2500 .4250 -.0916 .1707 -.0850

MOUNT 4 1.8900 .2450 .4100 .4534 .1657 -.1000

MOUNT STIFFNESS (NEWTONS/METER)

COMPRESSION LATERAL FORE/AFT THETAX THETAY THETAZ

MOUNT 1 203667. 30733. 43733. .O .0 -30.0 -.5 .0 .0

MOUNT 2 160167. 115050. 49619. .0 .0 -41.0 -.7 180.0 3.1

MOUNT 3 219167. 439334 102583. .0 .0 —70.0 -l.2 .0 .0

MOUNT 4 225207. 440334 116083. 0 .0 -48.0 -.8 180.0 3.1

MOUNT DAMPING (N-seC/M) VISCOUS STRUCTURAL

COMPRESSION LATERAL FORE/AFT COMPRESSION LATERAL FORE/AFT

MOUNT 1 100.0 110.0 120.0 4000.0 5000.0 6000.0

MOUNT 2 130.0 140.0 150.0 7000.0 8000.0 9000.0

MOUNT 3 160.0 170.0 180.0 10000.0 11000.0 12000.0

MOUNT 4 190.0 200.0 210.0 13000.0 14000.0 15000.0

> DO YOU WANT TO CHANGE ANY OF THESE VALUES ENTER Y OR N

 

N

> ENTER COMPREHENSIVE LEVEL OF OUTPUT (MINIMUM= 1

MAXIMUM= 4)

l

MASS MATRIX EQUALS...

225.40 .00 .00 .00 .00 .00

.00 225.40 .00 .00 .OO .00

.00 .00 225.40 .00 .00 .00

.00 .00 .00 15.80 .80 -.90

.00 .00 .00 .80 11 64 3.20

.00 .00 .00 -.90 3.20 15.69

STIFFNESS MATRIX EQUALS...

557431.60 -.02 ~2276.35 —6247.89 18656.93 33880.79

-.02 1025451.00 —.01 100092.11 .01 203532.37

-2276.35 -.01 562794.40 10993.51 —77328.33 6247.89

-6247.89 100092 11 10993.51 37070.46 -4011.25 23970.00

18656.93 .01 —77328.33 —4011.25 51183.29 4730.49

33880.79 203532.37 6247.89 23970.00 4730.49 148587.11

> Choose the MODE SHAPE NORMALIZATION method

MASS-——(MA) STIFFNESS---(ST) LARGEST DOF———(LD)
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THE MODE SHAPES ARE ... (normalized to largest DOF)

X -.002 .014 -.O60 -.024 —.009 .002

Y .033 -.002 -.017 .046 -.011 .028

Z .001 -.057 -.016 -.004 .031 .004

ThetaX —.215 .014 -.030 .103 .018 .074

ThetaY -.029 -.l42 -.006 .014 —.247 -.097

ThetaZ -.010 -.002 .057 —.116 -.017 .226

NATURAL FREQUENCIES ... (CYCLES/SEC)

5.94 6.42 7.67 9.11 11.54 18.06

> Choose one of the options 'by entering two letters

ANIMATE MODE-(AM) STATIC DEFLECT-(SD) RESTART ENGSIM----

(RS)

MOUNT FORCES-(MP) FREQ RESPONSE--(FR) RESTART NEW INPUT-

(NU)

CHG NORM————— (CN) OPTIM PARAMs—-—(OP) SAVE ENGSIM FILE——

(BF)

ELASTIC AXIS—(EA) QUIT——————————————

(QU)

QR

OP> ENTER LOWER & UPPER FREQ LIMITS FOR UNDESIRABLE RANGE

10.13

OP> ENTER # OF SIG DIGITS (3 OR LESS)

3

OP> ENTER MAX NUMBER OF FUNCTION CALLS (500 OR SO)

2000

OP> ENTER SCALE FACTORS FOR SIZE OF CHG & FREQ PENALTIES

0101_0_0_1000000000000

OP> SHOULD THE 3 PRINCIPAL MOUNT STIFFNESSES

CHANGE INDEPENDENTLY-—(I) MAINTAIN CONSTANT RATIOS--(C)

0

OP> ARE YOU ENTERING THE OPTIMIZATION PARAMETERS

FROM A FILE (FILE) or INTERACTIVELY (INTER)

EILE

OP> ENTER NAME OF INPUT FILE TO BE READ IN

INEUIQBS

OPTIMIZATION PARAMETER TABLE

COORDINATES LOCAL

X Y Z

MOUNT 1 .500 ( .0 .0 .0 ) .500 ( 0 .0 .0 ) .500 ( .0 0 .0 )

MOUNT 2 .500 ( .0 .0 .0 ) .500 ( .0 .0 .0 ) .500 ( .0 0 .0 )

MOUNT 3 .500 ( .0 .0 .0 ) .500 ( .O .0 .0 ) .500 ( .0 .0 .0 )

MOUNT 4 .500 ( .0 .0 .0 ) .500 ( .0 .0 .0 ) .500 ( .0 0 .0 )

E=1 START MIN MAX E=1 START MIN MAX E=1 START MIN MAX

MOUNT STIFFNESS



 



COMPRESSION

FORE/AFT

MOUNT 1 100.

MOUNT 2 100.

MOUNT 3 100.

MOUNT 4 100. .0

E=1 START MI

START MIN MAX

.0

.0

.O

O
O
O
O

o
\
°

o
\
°

o
\
°

0

0

0

0

N

MOUNT ORIENTATION

THETAX

THETAZ

MOUNT 1 100. ( .0 .0 .0 )

MOUNT 2 100. ( .0 .0 .0 )

MOUNT 3 100. ( .0 .0 .0 )

MOUNT 4 100. ( .0 .0 .0 )

E=1 START MIN MAX

36

LATERAL

.0 )

.O )

.0 )

.0 )

MAX E=1 START MIN MAX E=1

THETAY

100. ( 0 0 .0 ) 100. ( .0 .0 .0 )

100. ( .0 .0 .0 ) 100. ( .0 .0 .0 )

100. ( .0 .0 .O ) 100. ( .0 .0 .0 )

100. ( .O .0 .0 ) 100. ( .0 .0 .0 )

E=1 START MIN MAX E=1 START MIN MAX

OP> DO YOU WANT TO CHANGE ANY OF THESE VALUES ENTER Y OR N

N

OP> OPTIMIZATION IN PROGRESS

CODE = 131, ITERATIONS EXCEEDED

FINAL FUNCTION VALUE IS 0.24635D+00

TO MOVE FREQUENCIES OUT OF THE RANGE

OBTAINED IN 0.20370D+04 ITERATIONS

OP>

COORDINATES (M)

X

MOUNT 1 -.610 -.423

MOUNT 2 .396 -.037

MOUNT 3 -1.322 -1.230

MOUNT 4 .520 .066

NEW VALUE CHG

MOUNT STIFFNESSS (N/M)

COMPRESSSION

FORE/AFT

MOUNT 1 284917. 39.89%

MOUNT 2 203768. 27.22%

MOUNT 3 109194. -50.18%

MOUNT 4 249957. 10.99%

-.476

-.727

.531

.479

2000

10.00 TO 13.00

LOCAL

Y Z

-.187 .307 .317

-.428 -.676 -.516

.360 1.098 1.183

.314 -.41 -.313

NEW VALUE CHG

42994.

146369.

218887.

488727.

NEW VALUE % CHG NEW VALUE

\

MOUNT ORIENTATION (DEG)

THETAX

THETAZ

MOUNT l 3.24 3.24

MOUNT 2 51.24 51.24

MOUNT 3 -58.50 —58.50

—218.58

-68.24

-136.27

NEW VALUE CHG

LATERAL

39.89%

27.22%

-50.18%

10.99%

9 CHGO

THETAY

-188.58

—27.

-66.27

61180. 39.89%

63126. 27.22%

51109. -50.18%

128840. 10.99%

NEW VALUE % CHG

54.20 54.20

142.20 -37.80

51.53 51.53
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MOUNT 4 84.00 84.01 -128.67 -80.67 267.01 87.01

NEW VALUE CHG NEW VALUE CHG NEW VALUE CHG

OP> Choose one of the options by entering the two letters.

FREQS & MODES----(FM) CHG NORM----- (CN) ANIMATE MODES---

(AM)

OP PARAMETERS----(PA) RESTART OP---(RO) RESTART W/ZEROS-

(RZ)

SAVE ENGSIM FILE-(BF) SAVE OP FILE-(OF) QUIT OP ---------

(QU)

Qfl

WEIGHT (NEWTONS) 2208.92 MASS (KILOGRAMS) 225.40

COORDINATES (METERS) GLOBAL

LOCAL

X Y Z X Y Z

C.G. 1.4366 .0793 .5100 .0000 .0000 .0000

MOUNT 1 1.2500 -.2100 .5000 -.6095 -.4760 .3067

MOUNT 2 1.8700 -.2200 .3500 .3963 -.7272 -.6764

MOUNT 3 1.3450 .2500 .4250 -1.3220 .5312 1.0983

MOUNT 4 1.8900 .2450 .4100 .5196 .4795 -.4126

MOUNT STIFFNESS (NEWTONS/METER)

COMPRESSION LATERAL FORE/AFT THETAX THETAY THETAZ

MOUNT 1 284917. 42994. 61180. 3.2 1 -218.6 -3.8 54.2 .9

MOUNT 2 203768.146369. 63126. 51.2 9 -68.2 —1.2 142.2 2.5

MOUNT 3 109194 218887. 51109.-58.5-l.0 -136.3 -2.4 51.5 .9

MOUNT 4 249957.488727. 128840. 84.0 1.5 -128.7 -2.2 267.0 4.7

MOUNT DAMPING (N-sec/M) VISCOUS

STRUCTURAL

COMPRESSION LATERAL FORE/AFT COMPRESSION LATERAL FORE/AFT

MOUNT 1 100.0 110.0 120.0 4000.0 5000.0 6000.0

MOUNT 2 130.0 140.0 150 7000.0 8000. 9000.0.0 0

MOUNT 3 160.0 170.0 180.0 10000.0 11000.0 12000.0

MOUNT 4 190.0 200.0 210.0 13000.0 14000.0 15000.0

> DO YOU WANT TO CHANGE ANY OF THESE VALUES ENTER Y OR N

N

> ENTER COMPREHENSIVE LEVEL OF OUTPUT (MINIMUM=

1 MAXIMUM= 4)

l

MASS MATRIX EQUALS...

225.40 .00 .00 .00 .00 .00

.00 225.40 .00 .00 .00 .00

.00 .00 225.40 .00 .00 .00

.00 .00 .00 15.80 .80 -.90

.00 .00 .00 .80 11.64 3.20

.00 .00 .00 -.90 3.20 15.69
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STIFFNESS MATRIX EQUALS...

374450.5 101313.6 —22271.4 -62917.7 27244.1 —40643.5

101313.6 850849.8 41437.2 -47587.8 219098.5 —65773.8

-22271.4 41437.2 823767.9 -103689.6 55011.2 -156180.8

-629l7.7 -47587.8 -103689.6 514269.9 -99492.5 346190.2

27244.1 219098.5 55011.2 -99492.5 498592.9 -133433.7

-40643.5 -65773.8 -156180.8 346190.2 -133433.7 531961.5

> Choose the MODE SHAPE NORMALIZATION method

MASS---(MA) STIFFNESS---(ST) LARGEST DOF-—-(LD)

LD

THE MODE SHAPES ARE . (normalized to largest DOF)

X .065 -.015 -.002 .002 .001 -.001

Y -.014 -.055 -.034 .002 —.006 -.004

Z .006 .033 -.057 —.005 .002 —.003

ThetaX .009 -.004 .002 -.l67 -.128 .139

ThetaY .004 .026 .017 .028 -.217 —.206

ThetaZ 0.000 .013 —.020 .172 —.064 .183

NATURAL FREQUENCIES (CYCLES/SEC)

6.21 9.25 9.36 16.23 28.06 45.96

> Choose one of the options

ANIMATE MODE-(AM)

'by entering two letters

STATIC DEFLECT-(SD) RESTART ENGSIM—-—-

(RS)

MOUNT FORCES-(MP) FREQ RESPONSE--(FR) RESTART NEW INPUT-

(NU)

CHG NORM----- (CN) OPTIM PARAMS-—-(OP) SAVE ENGSIM FILE--

(EF)

ELASTIC AXIS-(EA) QUIT--------------

(QU)

EA

CENTER OF ELASTICITY (Measured from the C.G.)

X Y Z

-.001752 -.005120 -.015521

ELASTIC CENTER ROTATION MATRIX

.985475 .018507 -.168807

.014039 -.999520 -.027623

-.169238 .024852 -.985262

TRANSLATION OF THE ELASTIC CENTER (m) .01644

3 ANGLES BETWEEN #1 ELASTIC AXIS & X-Y-Z COORD (rad)

.17065 1.55676 1.40074

3 ANGLES BETWEEN #2 ELASTIC AXIS & X-Y-Z COORD (rad)

1.55229 .03099 1.54594

3 ANGLES BETWEEN #3 ELASTIC AXIS & X-Y—Z COORD (rad)
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1.40118 1.54317 .17190

CLOSEST 3 ANGLES BETWEEN 3 ELASTIC AXIS AND X-Y-Z COORD.

(rad)

.03099 .17065 .17190

X Y Z

—.33

ON TORQUE AXIS FROM C.G.

5.25 -l.09

> Choose one of the options 'by entering two letters

ANIMATE MODE-(AM) STATIC DEFLECT-(SD) RESTART ENGSIM----

(RS)

MOUNT FORCES-(MF) FREQ RESPONSE--(FR) RESTART NEW INPUT-

(NU)

CHG NORM----- (CN) OPTIM PARAMS---(OP) SAVE ENGSIM FILE-—

(BF)

ELASTIC AXIS—(EA) QUIT--------------

(QU)

EB

MASS MATRIX (SECOND ORDER)

225.4 .0 .0 .0 .0 .0

.0 225.4 .0 .0 .0 .0

.0 .0 225.4 .0 .0 .0

.0 .0 .0 15.8 .8 —.9

.0 .0 .0 .8 11.6 3.2

.0 .0 .0 —.9 3.2 15.7

VISCOUS DAMPING MATRIX (SECOND ORDER)

643.2 —4.1 5.7 9.9 43.0 —27.0

-4.1 612.1 -11.1 —37.3 —4.5 -124.7

5.7 —1l.1 604.7 28.2 137.4 -5.4

9.9 -37.3 28.2 490.3 84.4 333.9

43.0 —4.5 137.4 84.4 751.3 -119.7

-27.0 —124.7 -5.4 333.9 -119.7 605.1

STRUCTRUAL DAMPING MATRIX (SECOND ORDER)

40322.8 —413.8 571.0 993.5 2400.6 -3854.5

-413.8 37206.1 -1112.7 —1837.4 -453.5 -6375.0

571.0 -1112.7 36471.1 3974.5 7649.1 -540.1

993.5 -1837.4 3974.5 29854.3 5733.2 20662.7

2400.6 —453.5 7649.1 5733.2 48281.2 -7584.5

-3854.5 —6375.0 ~540.1 20662.7 —7584.5 37631.8

STIFFNESS MATRIX (SECOND ORDER)

374450.5 101313.6 -22271.4 —62917.7 27244.1 -40643.

101313.6 850849.8 41437.2 -47587.8 219098.5 —65773.

—22271.4 41437.2 823767.9 -103689.6 55011.2 —156180.

-629l7.7 -47587.8 —103689.6 514269.9 -99492.5 346190.

27244.1 219098.5 55011.2 -99492.5 498592.9 —133433.

-40643.5 —65773.8 —156180.8 346190.2 -133433.7 531961.

ENTER FORCE VECTOR ( Fx Fy F2 TX Ty Tz )

l
e
J
N
C
D
C
D
U
'
I
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0 0 O 0 1,0

ENTER THE FREQUENCY RANGE YOU WANT TO SEE

0.20,

FREQUENCY RESPONSE IS ON PROCESS

(HZ)

> Choose one of the options 'by entering two letters

ANIMATE MODE-(AM) STATIC DEFLECT-(SD)

(RS)

MOUNT FORCES-(ME) FREQ RESPONSE--(FR)

(NU)

CHG NORM----- (CN) OPTIM PARAMS---(OP)

(BF)

ELASTIC AXIS-(EA)

(QU)

RESTART ENGSIM----

RESTART NEW INPUT-

SAVE ENGSIM FILE--

QUIT——————————————

.'
.
H
'
t
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