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ABSTRACT 

 

DEVELOPMENT OF A NEW SOLUTION FOR VISCOELASTIC WAVE PROPAGATION 

OF PAVEMENT STRUCTURES AND ITS USE IN DYNAMIC BACKCALCULATION 

 

By 

 

Hyung Suk Lee 

 

 

Due to the viscoelastic nature of asphalt materials and the dynamic nature of pavement structures, 

it is important to consider both effects simultaneously in modeling of asphalt pavements. In this 

study, a new computational algorithm, namely ViscoWave, has been developed and implemented 

for modeling the pavement dynamics and viscoelasticity under an impact load generated by a 

Falling Weight Deflectometer (FWD).  The primary advantage of the proposed solution over 

some of the existing solutions is that it uses continuous integral transforms (Laplace and Hankel 

transforms) that are more appropriate for the FWD time histories whose signal characteristics are 

transient, nonperiodic, and truncated.  

Prior to the mathematical formulation of the developed algorithm, the fundamental properties of 

a viscoelastic material and the theory of uniaxial viscoelasticity are reviewed. Then, the theory of 

linear, uniaxial viscoelasticity is extended to multi-axial viscoelasticity. The multi-axial theory of 

viscoelasticity is, in turn, applied to develop a methodology for analyzing the laboratory Indirect 

Tensile (IDT) test data. 

The theoretical development of ViscoWave follows similar steps to those used for the 

development of the spectral element method. However, in place of the discrete transforms 

adopted in the spectral element method, ViscoWave utilizes the continuous integral transforms 



 

 

(namely Laplace and Hankel transforms) that are more appropriate for transient, nonperiodic 

signals. The theory behind ViscoWave was verified by comparing the ViscoWave simulation 

results to other existing solutions such as the Finite Element Analysis (FEA) and spectral 

element method.  

To backcalculate the pavement layer parameters, two of the well known unconstrained 

optimization algorithms (Gauss-Newton and Levenberg-Marquardt methods) were adopted for 

use with ViscoWave.  The backcalculation was conducted using both theoretically-generated and 

field-obtained FWD time histories. The results indicate that ViscoWave has great potential for 

modeling the viscoelastic and dynamic effects of a pavement structure under an impact load.  
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CHAPTER 1 - INTRODUCTION 

1.1. General 

The use of a Falling Weight Deflectometer (FWD) is one of the most frequently employed 

nondestructive testing (NDT) methods for evaluating the structural integrity of an existing 

pavement.  As its full name implies, the FWD is equipped with a falling mass mechanism 

capable of inducing an impact load on the pavement surface.  Due to the nature of the impact 

load generated by a falling mass, the load typically has a short duration (usually 20 ms to 40 ms) 

and gives rise to a stress wave that propagates through the pavement structure.  The resulting 

time dependent response of the pavement structure or more specifically, the vertical deflection at 

the pavement surface resulting from the stress wave is measured at various radial distances from 

the load and is recorded for the structural analysis of the pavement system.   

The process of estimating material parameters from the FWD data can be categorized as an 

inverse problem whose objective is to determine the system characteristics (e.g., layer modulus) 

from the known input (e.g., applied load) and output (e.g., measured deflection).  In the 

pavement engineering community, such inverse problems have typically been solved using a 

procedure commonly referred to as backcalculation.  

In general, backcalculation of layer parameters is carried out by matching the FWD load and 

deflection to those from a theoretical model.  Therefore, as is the case for most inverse problems, 

the two crucial components of a backcalculation methodology are (1) a forward solution or a 

theoretical model capable of simulating the FWD load and deflection, and (2) an iterative or 
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statistical routine capable of determining the optimum layer parameters that minimize the error 

between the measured and simulated results.  

1.2. Problem Statement 

The forward models adopted for use in the dynamic backcalculation methodologies are typically 

based on the solutions that stem from the theory of elastic wave propagation.  One of the 

common characteristics of these available solutions is that the analytical developments for 

solving the wave equations were made in the frequency domain.  As a result, these solutions 

commonly utilized the Discrete Fourier Transform (DFT) algorithm for converting the load and 

deflection signals from the time domain to the frequency domain.   

However, there has been varying levels of success in dynamic backcalculation using the 

theoretical time histories generated by the forward solution. Furthermore, dynamic 

backcalculation using the field FWD data has generally shown fair to poor level of success and 

still remains a challenge in the field of pavement engineering. Since it is recognized that the 

difficulties in dynamic backcalculation arose from the forward solutions derived in the frequency 

domain and from the use of the discrete transforms, it is emphasized that there is a need for a 

more suitable forward solution for dynamic backcalculation in time domain.  It is believed that 

such a solution should not only eliminate the difficulties inherent to the solutions derived in the 

frequency domain but also allow for modeling the wave propagation phenomenon while 

accounting for the fundamental viscoelastic properties in a more appropriate manner.  
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1.3. Research Objective 

The primary objective of this research is to develop a new forward solution that could be used 

for dynamic backcalculation in time domain.  In order to overcome some of the drawbacks 

related to the discrete transforms, the new solution will utilize continuous integral transforms that 

are more appropriate for transient, nonperiodic time domain signals such as the FWD time 

histories.   

Then, the resulting algorithm is to be verified against some of the existing solutions that are 

capable of modeling the FWD time histories. In addition, sensitivity analyses will be conducted 

in order to understand the behavior of various pavement structures subjected to FWD loading. 

The research will also look into using the developed algorithm as a forward engine for dynamic 

backcalculation.  A feasible backcalculation algorithm will be recommended based on the 

lessons learned from the sensitivity analyses.  

1.4. Report Layout 

The remainder of the dissertation is organized as follows: 

Chapter 2 provides a brief review of the existing dynamic solutions typically used for 

backcalculation. It also addresses some of the difficulties that are present in the backcalculation 

procedures frequently being used currently. 
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Chapter 3 provides a brief review of the uniaxial theory of linear viscoelasticity. The 

fundamental properties of a viscoelastic material will be described in both the time and the 

frequency domains. Then, the time-temperature superposition of a thermo-rheologically simple 

(viscoelastic) material will be reviewed. In addition, a review of the analytical models frequently 

used for modeling the viscoelastic constitutive relations is provided with a discussion on the 

interconversion of various viscoelastic properties. Finally, the chapter concludes with a brief 

discussion on the elastic-viscoelastic correspondence principle in the uniaxial mode.  

Chapter 4 builds upon the uniaxial theory of viscoelasticity in Chapter 3 and provides a brief 

review of the multi-axial theory of viscoelasticity. The chapter begins with an introduction to the 

viscoelastic Poisson’s ratio which is critical in the development of the multi-axial viscoelasticity 

and the extended elastic-viscoelastic correspondence principle. Then, a methodology for 

applying the multi-axial viscoelasticity in the analysis of the laboratory Indirect Tensile (IDT) 

test is presented.  This chapter is critical since the viscoelastic properties backcalculated from the 

FWD data are compared to those obtained from the IDT tests.  

Chapter 5 describes in detail, the mathematical development of the new algorithm. The 

theoretical development for the proposed methodology follows similar steps to those used for the 

development of LAMDA, the spectral element method which utilized the discrete transforms for 

solving the wave equations.  However, the proposed solution utilizes the continuous integral 

transforms (namely Laplace and Hankel transforms) that are more appropriate for transient, 

nonperiodic signals. 
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Chapter 6 presents the verification results for the developed algorithm which is done through 

comparing the simulation results from the developed algorithm to some of the other existing 

solutions.  

Chapter 7 provides a brief mathematical background on the iteration schemes selected for use 

with the new forward solution developed in this research. Then the iteration algorithms are tested 

using theoretically generated deflection time histories. The results of the theoretical 

backcalculation provided in this chapter for both the single and multiple temperature 

backcalculation.   

Chapter 8 presents the results of the preliminary backcalculation exercise using the field-

measured FWD data. Then the backcalculated results are compared to those obtained from the 

laboratory. 

Chapter 9 summarizes the findings of the current research and some recommendations for future 

research.  
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CHAPTER 2 - LITERATURE REVIEW 

Evidently, the forward solutions used for the static backcalculation procedures assume that the 

pavement structure under the applied load is in static equilibrium.  In other words, these 

solutions do not allow for simulating the FWD load and deflection as functions of time. 

Correspondingly, the material properties adopted for use in these solutions have been acquired 

from the constitutive models that do not depend on time – e.g., linear elastic (Uzan et. al., 1988) 

and nonlinear elastic (Irwin, 1977) models. Because the time dependent solution cannot be 

achieved, only the peak magnitude of the impact load and the peak deflection measured at 

different sensor locations (also known as the deflection basin or deflection bowl) are taken into 

account in the backcalculation process. Although the static backcalculation methods are 

extremely efficient, these solutions do not properly account for the dynamic (time dependent) 

nature of the FWD load and deflection.   

As it has been proven by numerous researchers in the past, asphalt mixtures that comprise the top 

layer of flexible pavements are viscoelastic in nature.  Unlike an elastic material, because their 

fundamental properties are time or frequency dependent, viscoelastic materials such as an asphalt 

mixture show time dependent response even under a static (or constant) load (A review of the 

theory of linear viscoelasticity will be provided in the next chapter and hence it will not be 

discussed extensively as part of this chapter).  The forward solution such as the ones recently 

developed by Kim (2011) and Kutay et. al. (2011) accounts for such material time dependency 

through the use of viscoelastic constitutive relations.  The primary advantage of such forward 

models is that they allow for simulating the FWD time histories without a significant loss of 
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computational efficiency.  However, as it was pointed out by Kutay et. al. (2011), because the 

viscoelastic solutions do not consider the effect of wave propagation attributed to the impact load, 

they are not capable of modeling the different time delays measured at different sensors as well 

as the free vibration of the pavement structure which may be significant in the presence of a stiff 

layer (e.g., a bedrock) at shallow depth.  

Some of the existing dynamic forward and inverse solution pairs are summarized in Table 2-1. 

The forward models adopted for use in the dynamic backcalculation methodologies are typically 

based on the solutions that stem from the theory of elastic wave propagation.  Therefore, the 

stress wave propagation is naturally modeled in these solutions.  The viscoelasticity of the 

material typically has been taken into consideration through the use of a damping ratio which is a 

concept derived from the theory of vibrations (Chatti and Yun, 1996, Chatti et. al., 2004, Ji, 2005, 

Matsui et. al., 2011).  Excluding the solutions based on the Finite Element Analysis (FEA) that 

are generally more time consuming and inefficient for backcalculation (Hadidi and Gucunski, 

2007), the dynamic forward solutions can be categorized into the finite layer type (Chatti and 

Yun, 1996, Chatti et. al., 2004, Ji, 2005, Matsui et. al., 2011) or the spectral element type 

solutions (Al-Khoury et. al., 2001a, 2001b, & 2002, Grenier and Konrad, 2007). However, one 

of the common characteristics of both solution types is that the analytical developments for 

solving the wave equations were made in the frequency domain.  As a result, these solutions 

commonly utilized the Discrete Fourier Transform (DFT) algorithm for converting the load and 

deflection signals from the time domain to the frequency domain.   
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Table 2-1 Existing Dynamic Forward Solution and Backcalculation Pairs 

Program Name 

Forward 

Calculation 

Program 

Backcalculation Method Domain Developed By 

PAVE-SID SCALPOT System Identification (SID) Frequency 
Magnuson, et. al. 

(1991) 

FEDPAN SAP IV Linear Least-Squares Time 
Ong, et. al. 

(1991) 

No Name UTFWIBM Newton’s Method Frequency/Time 
Ujan, et. al. 

(1994) 

BKGREEN GREEN Nonlinear Least-Squares Frequency 
Kang, Y. V. 

(1998) 

No Name FEA Gauss-Newton Time 
Matsui, et. al. 

(1998) 

No Name SAPSI Levenberg-Marquardt Frequency 
Losa 

(2002) 

No Name LAMDA 

Secant Update, 

Levenberg-Marquardt, 

Powell Hybrid 

Frequency 
Al-Khoury, et. al. 

(2002) 

DYNABACK-

F/T 
SAPSI Newton Raphson Method Frequency/Time 

Ji 

(2005) 

No Name FEA Neighborhood Algorithm Time 
Hadidi and 

Gucunski (2007) 

UCODE DYNAPAV-UL Levenberg-Marquardt Time 
Grenier and 

Konrad (2007) 

 

As it was pointed out by Bendat and Piersol (2010), the aforementioned discrete transform is not 

appropriate for transient nonperiodic signals such as those generated by the FWD.  Some of the 

drawbacks and difficulties arising from the use of the discrete transform that are documented in 
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the dynamic backcalculation literature can be summarized as: (1) the truncation in the FWD time 

histories – i.e., the recording of the signal being terminated before the pavement system has 

come to a rest, which acts like a box filter applied to the signal, (2) the periodicity of the signal 

assumed in the discrete DFT algorithm not being able to accurately disclose the frequency 

content of the transient FWD time histories with short duration, (3) the DFT being very sensitive 

to noise that is always present in the FWD data (Chatti et. al., 2004, Ji, 2005, Matsui et. al., 

2011), and (4) the DFT being impractical for representing the fundamental properties of a 

viscoelastic material such as creep compliance or dynamic modulus, due to a large number of 

harmonics necessary for modeling them (Zhang et. al., 1997a, 1997b) – this is also the reason 

behind most of the frequency domain solutions utilizing the damping ratio concept and hence 

failing to model and/or backcalculate the fundamental properties of a viscoelastic material .  
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CHAPTER 3 - REVIEW OF UNIAXIAL THEORY OF LINEAR VISCOELASTICITY 

Prior to the presentation of the mathematical formulation of the developed algorithm, it is 

necessary to review the constitutive relation of a viscoelastic material. Therefore, this chapter is 

dedicated to providing a theoretical review on the fundamental properties of a viscoelastic 

material and the theory of linear viscoelasticity.  

3.1. Fundamental Properties of a Viscoelastic Material in Time Domain 

According to the theory of linear viscoelasticity, the time-dependent stress-strain relationship of 

a viscoelastic material subjected to a constant uniaxial stress, , can be expressed as the creep 

compliance, D(t):  

   
 

0

 t
tD   for 0t     (3-1) 

where (t) is the resulting time dependent strain. The strain resulting from any stress history can 

be expressed in the form of a convolution integral by means of the Boltzman’s superposition 

principle as: 

   
 

 




t

dtDt

0





     (3-2) 

where  is the integral variable.  
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On the other hand, the relaxation modulus, E(t), is defined as the time dependent stress resulting 

from an applied step of constant unit strain, that is: 

   
 

0

 t
tE   for 0t     (3-3) 

where (t) is the resulting time dependent stress and  is the magnitude of the constant strain. 

With the relaxation modulus defined as above, the stress history resulting from any strain history 

can be expressed as: 

   
 

 




t

d
t

tEt

0





                                                (3-4) 

3.2. Fundamental Properties of a Viscoelastic Material in Frequency Domain 

In the frequency domain, the sinusoidal oscillations of stress and strain are commonly 

represented by complex variables through Euler’s formula: 

   titet ti   sincos00                                       (3-5) 

where 0 and  are the amplitude and the angular frequency of the axial stress oscillation. The 

resulting strain, (t) , at a steady state oscillates at the same frequency as the stress oscillation but 

with a phase angle: 
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    titi eet     *0                                    (3-6) 

where 0 is the strain amplitude,  is the phase angle by which the strain lags behind the stress, 

and * is a complex strain amplitude defined as:  

   sincos* 00 ie i  
                             (3-7) 

The complex compliance defined as the strain over stress can be obtained from Equations (3-5) 

and (3-7), analogous to the creep compliance as follows: 

      








 ieDDD  

0

0

0

*
                             (3-8) 

where  D  and  D   are the real and imaginary parts of the complex compliance. Similarly, 

if the viscoelastic material is subjected to a sinusoidal strain oscillation, that is: 

   titet ti   sincos00                                      (3-9) 

Then, the resulting stress is: 

    titi eet     *0                                   (3-10) 

where * is the complex stress amplitude defined as: 
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   sincos* 00 iei                               (3-11) 

The complex modulus is defined as the ratio between the complex stress amplitude, *, over the 

input strain amplitude 0: 

      








 ieEEE 

0

0

0

*
                             (3-12) 

where  E  and  E   are the real and imaginary parts of the complex modulus. 

It is also worthwhile to note that within the field of pavement engineering, the magnitude of the 

complex modulus given as the following equation has frequently been referred to using the term 

“Dynamic Modulus” (Kim, 2009). 

       22  EEE 
                           (3-13) 

3.3. Relationship between Viscoelastic Properties 

Since creep and stress relaxation phenomena are two aspects of the same viscoelastic behavior of 

a given material, they are obviously related. In other words, the viscoelastic properties presented 

above are not independent of each other. However, determining the relationship between the 

fundamental properties in time domain becomes quite tedious (although possible) due to the 

convolution integrals shown in Equations (3-2) and (3-4). Instead, it is more convenient to derive 
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the relationships in the Laplace domain. Taking the Laplace transform on Equations (3-2) and (3-

4) yields the following: 

     ssDss 


                                      (3-14) 

     ssEss 


                                      (3-15) 

where s is the Laplace variable and   
 
0

)()]([ dttfesftfL st
 is the Laplace transform of 

the function  tf . By combining the two equations above, the relationship between creep 

compliance and relaxation modulus can be expressed as an algebraic equation in the Laplace 

domain as follows: 

2/1)(ˆ)(ˆ ssEsD       (3-16) 

The inverse Laplace transform of the above equation reveals the relationship between the creep 

compliance and relaxation modulus in time domain: 

        tdtDEdDtE

tt

 
00

     (3-17) 

In the frequency domain, the relationship between the complex compliance and the complex 

modulus can easily be derived by combining Equations (3-8) and (3-12) as: 
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    1   ED                                   (3-18) 

In addition, the relationship between the complex compliance and the creep compliance can be 

obtained by substituting Equations (3-5) and (3-7) into Equation (3-2). After rearranging the 

variables, the final relationship can be written as (Findley et al, 1976): 

   



is

sDiD


 


                         (3-19) 

The relationship between the complex modulus and the relaxation modulus can be obtained in a 

similar manner. Substituting Equations (3-9) and (3-11) into Equation (3-4) results in the 

following upon summarizing: 

   



is

sEiE


 


                         (3-20) 

Although the detailed derivation for Equations (3-19) and (3-20) is omitted here, similar 

derivation will be shown in the following chapter for the viscoelastic Poisson’s ratio (Section 

4.1.3). 

3.4. Time-Temperature Superposition Principle 

As it has been reported by several researchers in the past, the behavior of a viscoelastic material 

is strongly affected by temperature (Findley et. al., 1976, Tschoegl, 1989, Wineman and 

Rajagopal, 2000). However, the constitutive relations provided so far did not account for the 
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effect of temperature (since the fundamental properties were assumed to be function of time only) 

and hence, they should be used only when the material is subjected to a constant temperature. In 

order to account for the effect of temperature, it is necessary to generalize the fundamental 

properties described above to include temperature as an independent variable. For example, the 

relaxation modulus can now be defined as: 

 TtEE ,                              (3-21) 

where the uppercase T has been used for temperature to distinguish from the time variable, t.  

Fortunately, there has been sufficient theoretical and experimental evidence showing that most 

linearly viscoelastic materials obey the Time-Temperature Superposition Principle (TTSP) which 

allows for combining the effect of time and temperature (Findley et. al., 1976, Tschoegl,  1989, 

Wineman and Rajagopal, 2000). A viscoelastic material obeying the TTSP is also frequently 

referred to as a “Thermorheologically Simple” material. According to the TTSP, the above 

relaxation modulus can be written as the following: 

   0,, TETtEE                     (3-22) 

 where T0 is the reference temperature andis called the “Reduced Time” which is related to the 

physical time in the following manner: 

 Tat T                             (3-23) 
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where aT is the shift factor. The above equation can be also be written as: 

         TatTat TT loglogloglog                         (3-24) 

The above equations indicate that fundamental property of a viscoelastic material at the time t 

and at temperature T is equal to that property at the reduced time  and at the reference 

temperature T0. This in turn, indicates that the fundamental properties at different temperatures 

can be shifted by the amount log(aT) when plotted in log-scale (or stretched/shrunk in arithmetic-

scale), as shown conceptually in Figure 3-1.  

As shown in the figure, once the fundamental properties obtained from multiple temperatures 

have been shifted to their equivalent at the reference temperature T0, it results in a curve 

representing the viscoelastic material property for a wide range of frequencies (or time) and is 

called the mastercurve of a viscoelastic material.  

In reality, testing of a viscoelastic material for its characterization is typically conducted at a 

limited range of frequencies or for a short duration of time. This is due to (1) the limitations of 

the testing equipment (e.g., the duration of the FWD load is typically between 20 ms and 40 ms) 

and (2) the specimen being damaged when tested for a long period of time (or a wide range of 

frequencies).  In that sense, the TTSP provides a great deal of advantage for characterization of 

viscoelastic material properties because it provides a methodology for overcoming this problem.  

In other words, instead of testing the material at a wide range of frequencies or time, the TTSP 
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allows for testing the material at multiple temperatures (and at a limited range of frequencies or 

time) and providing the same mastercurve. 

 

Figure 3-1. Concept of Time-Temperature Superposition Principle and Mastercurve (For 

interpretation of the references to color in this and all other figures, the reader is referred to the 

electronic version of this dissertation). 
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3.5. Analytical Models for Viscoelastic Properties 

Numerous closed form equations have been proposed and used to model the fundamental 

properties of a viscoelastic material and they will be briefly reviewed in this section. Although 

the equations will be presented in the form of creep compliance or relaxation modulus, they can 

generally be used to model both (Kim, 2009).  

One of the simplest equations for modeling the viscoelastic property is the pure power function 

shown below: 

  mtDtD  1         
(3-25) 

where D1 and m are the power function parameters. The Laplace transform of the above equation 

is given as: 

 
1

1 )1(






ms

mD
sD



     
(3-26) 

where mis the gamma function.   

Although the above equation is very simple, the critical disadvantage of the pure power function 

is that it does not account for the instantaneous (or elastic) response of the viscoelastic material 

which may become important at low temperatures.  
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Alternatively, the generalized power function still maintains a simple form while representing 

the viscoelastic property effectively.  The function is expressed as: 

  mtDDtD  10      
(3-27) 

where D0, D1, and m are the power function parameters.  The disadvantage of the above equation 

is that it fails to model the entire creep compliance (or dynamic modulus) mastercurve which 

spans over a wide range of temperature and frequency.  Nevertheless, it has been shown that the 

generalized power function is an excellent analytical representation of the uniaxial viscoelastic 

creep compliance at a single temperature (Roque et al. 1997, Roque et al. 1998, Kim et al. 2005, 

and Kim et al. 2008). In addition, it has been shown by some of the previous research studies 

(Lee et. al., 2012, and Kim et. al. 2010) that the generalized power function can be used 

successfully to fit the laboratory test data for each temperature prior to fitting the master curve 

using a sigmoidal function proposed by the latest Mechanistic-Empirical Pavement Design 

Guide (MEPDG) (ARA, 2004).  Therefore, it was decided to use the generalized power function 

for modeling the viscoelastic material behavior in this research. Taking the Laplace transform on 

the above equation results in: 

 
1

10 )1(






m

m

s

mDsD
sD



     

(3-28) 

On the other extreme, the modified power function shown below is one of the most complicated 

closed form equations that have been used for modeling the viscoelastic creep compliance. 
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  









 


M

i
n

i

i

t

D
DtD

1

0

1


                              (3-29) 

where D0, Di, i, and n are the parameters for the modified power function.  Although the above 

function is generalized enough so that the entire creep compliance mastercurve can be fitted, 

taking the Laplace transform of the above equation is close to impossible due to its complicated 

form and the number of parameters involved.   

The recent Mechanistic-Empirical Pavement Design Guide (MEPDG) has adopted the sigmoidal 

function for representing the mastercurve which is given as the following (ARA, 2004): 

 
 




log1
*log




e
E                              (3-30) 

where , , , and  are the parameters for the sigmoidal function. The advantage of the above 

equation is that the mastercurve can be fitted accurately with less number of parameters when 

compared to the modified power function.  Nonetheless, as it was the case for the modified  

power function, the Laplace transform of the above cannot be obtained in closed form.  

3.6. Prony Series 

Although the analytical functions introduced above have been successfully used as fitting 

functions that represent the viscoelastic behavior of materials, mathematical difficulties arise 
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when attempting the strict analytical interconversion of the fundamental properties necessary for 

the stress or strain development under various loading conditions in viscoelastic media. For 

example, the Laplace transforms of the modified power function and the sigmoidal function 

cannot be obtained in closed form and hence the interconversion equations presented earlier 

cannot be used directly.   

Although the Laplace transforms of the pure power function and the generalized power function 

can be obtained analytically, they still fail to provide an analytical interconversion of the 

viscoelastic properties. For example, substituting Equation (3-27) into Equation (3-16) results in 

the following for the relaxation modulus in the Laplace domain whose inverse transform cannot 

be carried out analytically: 

 
)1(10

1






mDsD

s
sE

m

m

     

(3-31) 

Furthermore, substituting Equation (3-27) into Equation (3-19) results in a non-integer power of 

the (i) term (since 0 < m < 1), which in turn yields a non-unique solution for the complex 

compliance (Findley et. al., 1976).  

Instead, Prony series (generalized model), which has one Maxwell model (a spring element and 

dashpot element connected in series) and several Kelvin elements (a spring element and dashpot 

element connected in parallel), has been widely used for analytical representation of viscoelastic 

materials due to its remarkable computational efficiency. For creep compliance, the Prony series 

representation is of the following form: 
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





N

i

i

t

i eDtDtD

1

0 )1(
1

)(



                                           (3-32) 

where D0, and Di are Prony series parameters,  is the dashpot constant, and i are retardation 

times.  

Prony series is convenient for viscoelastic analysis in cases where the stress history is prescribed, 

whereas the generalized Maxwell model, which is several Maxwell elements connected in 

parallel, is rather convenient for predicting stress associated with a prescribed strain. Therefore, 

converting creep compliance to relaxation modulus is the process of converting the Prony series 

to the generalized Maxwell model.  Taking the Laplace transform on the above equation results 

in: 

 








N

i i

i

ss

D

ss

D
sD

1
2

0

1

1
)(




                                          (3-33) 

Substituting the above into Equation (3-16) yields the following equation for the relaxation 

modulus in the Laplace domain: 

 
























N

i i

i

s

D

s
Ds

sE

1

0
1

1

1
)(




                                          (3-34) 

The above equation can be rearranged as a ratio of two polynomials of s:  
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


                                (3-35) 

where, a and b are the coefficients of polynomial functions. Expanding Equation (3-35) by 

partial fractions yields the following form:  

 

M

M

s

E

s

E

s

E
sE



111
)(ˆ

2

2

1

1











                                          (3-36) 

where, 1/1, 1/2, etc., are the roots of the denominator in Equation (3-35), and E1, E2, etc., are 

numerators that satisfy the partial fractions (the terms i are frequently called the relaxation times 

in the literature). Performing inverse Laplace transformation finally yields the generalized 

Maxwell model in parallel (Prony series for relaxation modulus): 







M

i

i

t

i
M

t

M

tt

eEeEeEeEtE

1

2
2

1
1)(

              (3-37) 

Frequently, the Prony series of the following form is used in which the term including the 

dashpot constant is eliminated by setting 0  in Equation (3-32), that is: 







N

i

i

t

i eDDtD

1

0 )1()(


                                           (3-38) 
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Following the same procedure above, it can be shown that the relaxation modulus corresponding 

to Equation (3-38) is obtained as: 







M

i

i

t

i eEEtE

1

0)(


               (3-39) 

Using the Prony series presented above, their frequency domain counterparts can also be derived 

easily. Substituting Equation (3-33) into Equation (3-19) results in the Prony representation of 

the complex compliance: 


 


N

i i

iD
DD

1
220

1
)(


                                              (3-40) 


 


N

i i

ii DD

1
22 1

1
)(






                                          (3-41) 

Similarly, the Prony representation for the complex modulus can be obtained by substituting 

Equation (3-36) into Equation (3-20). Upon summarizing, the outcome is given as: 


 


M

i i

ii E
E

1
22

22

1
)(




                (3-42) 


 


M

i i

ii EE

1
22 1

)(



                (3-43) 
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3.7. Elastic-Viscoelastic Correspondence Principle 

The uniaxial constitutive equation for a linear elastic material is given as the well known 

Hooke’s law: 

 E                 (3-44) 

where , , and E are the stress, strain, and the Young’s modulus, respectively. Alternatively, the 

above equation can also be written in terms of the elastic compliance D=1/E as: 

 D                 (3-45) 

By comparing Equation (3-44) to Equations (3-15) and (3-12), it can be seen that replacing the 

Young’s modulus, E, in Equation (3-44) by  sEs


 and E* results in the uniaxial viscoelastic 

constitutive relation in the Laplace domain as shown in Equation (3-15) and in the frequency 

domain as shown in Equation (3-12), respectively. Similarly, replacing the elastic compliance, D, 

in Equation (3-45) with  sDs


 yields the viscoelastic equation shown in Equation (3-14) while 

replacing it with the complex compliance, D*, results in the constitutive equation shown in 

Equation (3-8). This indicates that the viscoelastic constitutive relation can be obtained easily in 

the Laplace domain or in the frequency domain if the elastic constitutive relation is determined 

and the elastic constants are replaced with their appropriate viscoelastic counterparts. This is 

known as the elastic-viscoelastic correspondence principle. Although it seems obvious and trivial 
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in the uniaxial case shown here, the elastic-viscoelastic correspondence principle will prevail a 

great advantage in the multi-axial viscoelasticity which will be discussed later. 
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CHAPTER 4 - EXTENSION TO MULTI-AXIAL VISCOELASTICITY AND ANALYSIS 

OF INDIRECT TENSILE TEST DATA 

In this chapter, the theory of viscoelasticity introduced in the previous chapter will be extended 

to multi-axial viscoelasticity. After a brief theoretical development, the methodology for 

analyzing the laboratory Indirect Tensile (IDT) test data will be presented. 

4.1. Viscoelastic Poisson’s Ratio 

4.1.1. Viscoelastic Poisson’s Ratio in Time Domain 

Tschoegl (1989), Wineman and Rajagopal (2000), and Tschoegl et al (2002) emphasized that the 

time-dependent Poisson’s ratio,  t , of a linearly isotropic viscoelastic material should be 

defined as the ratio of the time dependent lateral strain,  t2  to a constant axial strain, 0
1 . By 

the definition, Poisson’s ratio is expressed as: 

 
 
0
1

2






t
t   for 0t                                    (4-1) 

The above definition implies that the theoretical viscoelastic Poisson’s ratio can be obtained 

from a uniaxial relaxation test in which the strain in the axial direction is held constant. The 

definition also reveals that Poisson’s ratio cannot be obtained directly by taking the ratio of the 

time-dependent strains resulting from a uniaxial creep test because in this testing mode, the axial 
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stress is held constant rather than the axial strain. Hence, the ratio of  t1  and  t2  directly 

measured from a creep test cannot be termed Poisson’s ratio (Tschoegl et al, 2002).  

From the definition of the Poisson’s ratio shown in Equation (4-1), one can observe that the 

Poisson’s ratio is the lateral strain as a function of time resulting from a unit step strain applied in 

the axial direction. Therefore, for any given time-dependent axial strain function,  t1 , the 

resulting lateral strain,  t2 , is given as a convolution integral (observe the similarities between 

Equations (3-3) , (3-4), (4-1), and(4-2)): 

   
 

 




t

dtt

0

1
2 




                               (4-2) 

Taking Laplace transform on the above equation yields: 

     ssss 12 


                                     (4-3) 

Equation (11) can also be expressed in terms of the axial stress,  s1


, by means of Equation (3): 

       ssDsss 1
2

2 


                                  (4-4) 
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4.1.2. Viscoelastic Poisson’s Ratio in Frequency Domain 

Similar to Poisson’s ratio in the time domain that was defined under the uniaxial relaxation 

testing mode, Poisson’s ratio in the frequency domain can be defined under a uniaxial, strain-

controlled complex modulus testing mode as (Tschoegl, 1989 and Tschoegl et al., 2002): 
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where   0
2  is the amplitude of the lateral strain and    is the phase angle between  t1  and

 t2 . 

Under a uniaxial, stress-controlled complex modulus test, the axial strain,  t1 , lags behind the 

axial stress,  t1 , with a phase lag . At the same time, the lateral strain,  t2 , lags behind the 

axial strain,  t1 , which already has a phage lag. Therefore, the lateral strain can be expressed as: 

      tittipti eeet     ,
2

,
2

0
22                     (4-6) 

In the above equation, two complex amplitudes are introduced. First, 
p,

2


  is the complex 

amplitude that contains only the phase lag between  t1  and  t2 : 




 ip
e0

2
,

2                                        (4-7) 
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whereas 
t,

2
  is the complex amplitude that includes both phase angles: 
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  iipt ee 0

2
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2                                 (4-8) 

Then, the definition of the complex Poisson’s ratio,  , can be rewritten in terms of the complex 

strains as: 
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It should be noted that the last term shown in Equation (4-9) is the same as the form of that 

shown in Equation (4-1). After substituting Equation (3-8) into the above equation for 
1 , the 

complex lateral strain can be described as a function of the complex compliance and complex 

Poisson’s ratio as follows: 

          0
11

,
2

 
 D

t
                      (4-10) 

4.1.3. Relationship Between Time and Frequency Dependent Poisson’s Ratios 

In order to find a relationship between  t  and    , a new integration variable   t  is 

substituted into Equation (4-2): 
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Since a stress term is not included in the above equation, it is more convenient to use the 

complex strain function, tie  0
1

, than Equation (4-8) because the phase angle between the axial 

stress and strain is not included in this equation. According to Euler’s formula, the complex 

strain function can be expressed as: 

   titet ti   sincos0
1

0
11                            (4-12) 

or 
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11   ieeeet tiititi               (4-13) 

Substituting the above strain into Equation (4-11) yields: 

       
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t
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                  (4-14) 

The lateral strain,  t
2

 , in the above equation is a result of an axial strain oscillation, 

  tiet  0
11  , and can be expressed as the lateral complex strain function with only the phase 

angle between the two strains, that is:  



33 

 

  tip
et 

*,
22

                                      (4-15) 

Therefore, from Equations (4-14) and (4-15), 
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After canceling tie   and dividing both sides of the above equation by 0
1 , the left-hand side of 

the equation is left with the complex Poisson’s ratio due to Equation (4-9).  
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After changing the upper limit to infinity: 
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The last equality in the above equation indicates that the relationship between the Poisson’s ratio 

functions in the two domains is obtained as:  
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is

si
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                                     (4-19) 

4.2. Extension of the Elastic-Viscoelastic Correspondence Principle 

In the previous chapter, it was shown that for the uniaxial case, the viscoelastic constitutive 

equations can be obtained by replacing the elastic constant by its appropriate viscoelastic 

counterpart.  Equation (4-4) indicates that in order to apply the elastic-viscoelastic 

correspondence principle for the multiaxial case, the elastic compliance, D, and the Poisson’s 

ratio, , should be replaced by  sDs


 and  ss


, respectively.  On the other hand, Equation (4-

10) shows that the above elastic constants should be replaced by D* and * in order to yield the 

viscoelastic constitutive relations in the frequency domain.  For example, starting with the three-

dimensional constitutive equation for an elastic material given as: 



35 

 

 

 

 yxzz

xzyy

zyxx

D

D

D













                                (4-20) 

The viscoelastic constitutive relation in the Laplace domain can be obtained as: 
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Similarly, in the frequency domain, the following is obtained: 
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4.3. Determining the Viscoelastic Property from the Indirect Tensile (IDT) Test 

Although the uniaxial tension or compression test is desirable for testing of the materials, the 

problem associated with size requirements makes it difficult to perform the uniaxial test, 

especially on cored mixtures from the thin asphalt layers.  

As an alternative to the uniaxial tests, the indirect tension test (Buttlar and Roque 1994, Zhang et 

al., 1997a, 1997b, and Kim et al., 2005), which is often called a Brazilian test, has been widely 

used for testing both laboratory-made and field-cored mixtures because the test requires 

relatively thin specimens. Therefore, the remainder of this chapter will be dedicated to 

developing a methodology for obtaining the viscoelastic properties from the IDT which is a 

biaxial test.  This is critical because the viscoelastic property backcalculated from the FWD data 

will be compared to the IDT result from the pavement cores which will serve as a ground truth.  

A picture of the IDT set up and the IDT specimen geometry are shown in Figure 4-1.  
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(a) 

 

(b) 

Figure 4-1. (a) Indirect tensile test setup and (b) specimen dimensions 
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4.3.1.  Stress Distribution within an Indirect Tensile (IDT) Specimen 

For an IDT specimen with radius R and thickness d subjected to a strip load of width a = 

2R·sin() and magnitude P as shown in Figure 4-2 (Zhang et al., 1997a, 1997b, and Kim et al., 

2005), the distributions of the tensile stress along the horizontal axis and the compressive stress 

along the vertical axis were given by Hondros (1959) under the assumption of plane stress 

conditions as: 
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(a) 

 

(b) 

Figure 4-2 (a) Schematic illustration of the IDT test and (b) plane stress distributions   

 

It would be ideal if the strain values could be measured at a point located at the center of the 

specimen, i.e., x = y = 0. The corresponding stresses then could be obtained easily as  0,0x  
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average or the mean of the strain distributions between the gauge points. Therefore, the average 

stresses calculated over the gauge length in conjunction with the measured strains were used. 

The average stresses are calculated as:  
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For an IDT creep test, the load P in the above equations can be substituted with 

   tHPtPP 0 , where 0P  is the magnitude of the creep load, and H(t) is the Heaviside step 

function. Substituting this into Equations (4-25) and (4-26), and taking the Laplace transform 

yields:  
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where the magnitudes of the stresses 0
x  and 

0
y  are: 
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Similarly, if the load is a sinusoidal oscillation with magnitude 0P  and angular frequency , 

then   tiePtPP 0  and Equations (4-25) and (4-26) become: 
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,     (4-32) 

Another constant that is derived in this section is the ratio of the stress magnitudes. This ratio, , 

will be used later to simplify the equations for the viscleoastic stress-strain relation significantly:  
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With the above definition for , the relationship between the two stresses can be written as: 
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avgxavgy ,,                                     (4-34) 

For the remainder of the chapter, the subscript “avg” will be dropped from the above equation 

and, x and y will be used to represent the average stresses over the gauge length unless stated 

otherwise. 

4.3.2. Indirect Tensile Creep Test 

From Equation (4-21), the plane stress constitutive equations for a viscoelastic material with 

time-dependent Poisson’s ratio can be written in the Laplace domain as: 
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After eliminating the term  ss


 from the above equations and reorganizing the variables, one 

can solve for an expression for the creep compliance in the Laplace domain. Upon simplifying 

the result using Equation (4-34), one arrives at: 
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For an IDT creep test, the stresses in the Laplace domain were given in Equations (4-27) and (4-

28). After substitution of these stresses, the denominator in the above equation simply reduces to 

a constant, that is:  
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                              (4-38) 

Taking the inverse Laplace transform on the above equation results in the creep compliance in 

time domain: 

    tttD yx

yx








00

1
)(

 

                              (4-39) 

4.3.3. Indirect Tensile Complex Modulus Test 

Equation (4-22) indicates that the plane stress constitutive equations for a viscoelastic material in 

the frequency domain can be written as: 

 0*0
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                                   (4-40) 

 0*0
xyy D   

 
                                   (4-41) 

Combining Equations (4-40) and (4-41) by eliminating * yields:  
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The complex strain amplitudes in the numerator of the above equation can be expressed in a 

form shown in Equation (3-7) as: 
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where 
0
x  and

0
y  are the horizontal and vertical strain amplitudes and x  and y are the 

horizontal and vertical phase lags measured from the IDT test. However, through IDT 

experiments, Lee and Kim (2009) showed that the difference between the two phase lags x  and 

y is negligible, that is, yx   . Substituting this into Equations (4-43) and (4-44), and the 

resulting equations into Equation (4-42) results in: 
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CHAPTER 5 - THEORETICAL DEVELOPMENT OF A TIME DOMAIN FORWARD 

SOLUTION 

5.1. Governing Equations For Viscoelastic Wave Propagation 

Similar to any other wave propagation problems, the proposed solution begins with the classical 

equation of motion for a continuous medium given as the following (Malvern, 1969): 

ubσ ρ
      (5-1) 

where  is the stress tensor, b is the vector of body forces per unit volume,  is the mass density 

of the material, and u is the displacement vector.  According to the theory of linear elasticity, the 

stress-strain relationship for a linear, homogenous, and isotropic material is obtained from the 

generalized Hooke’s law: 

  εIεσ  2 tr      (5-2) 

where  is the strain tensor,  and  are the lamé constants, and  is the identity tensor.  The 

strain tensor in the above equation is related to the displacement vector according to the 

following: 

  T
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2

1

     
(5-3) 
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For a viscoelastic material such as an asphalt concrete mixture, the fundamental materials 

properties – in this case, the lamé constants – as well as the stresses and strains are time-

dependent and hence, their relationship can be written as the following in reference to the theory 

of linear viscoelasticity (Schapery, 1974, Wineman,and Rajagopal, 2000, Christensen, 2003): 

  εIεσ   2tr
      

(5-4) 

where the function  represents the well known Stieltjes convolution integral defined as: 
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(5-5) 

It should be noted that the kinematic strain-displacement relationship shown in Equation (5-3) 

also applies to linear viscoelastic materials.  The only difference from an elastic material is that 

the displacement and hence the strain are functions of not only the material (or spatial) 

coordinates but also time. Substituting Equations (5-3) and (5-4) into the equation of motion 

shown in Equation (5-1) and ignoring the body forces result in the following equation in terms of 

displacements: 

    uuu   2

    

(5-6) 
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By means of the Helmholtz decomposition, the displacement vector in the above equation can be 

expressed in terms of potentials as follows: 

Hu       (5-7) 

where  represent a scalar potential and H is a vector potential whose divergence vanishes (i.e., 

0H  ).  

Similar to the spectral element solution provided by Al-Khoury et. al. (2001a), a cylindrical 

axisymmetric coordinate system shown in Figure 5-1 shall be employed herein.  Then, the 

following equations are obtained for the potentials by substituting Equation (5-7) into Equation 

(5-6): 
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(5-8) 
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(5-9) 

where His the tangential and also the only component of H that does not vanish. By defining 

H as: 

r
H






      
(5-10) 
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it can be shown that the scalar potential  satisfies the following wave equation. The proof can 

be obtained immediately if Equation (5-11) is differentiated with respect to r (Ewing et. al., 

1957).  
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(5-11) 

 

Figure 5-1 Coordinate System for Axisymmetric Layers on a Halfspace  
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Equations (5-8) and (5-11) are the wave equations that govern the axisymmetric wave motion in 

a continuous, linear viscoelastic medium.  It is also worthwhile to note that if the lamé constants, 

 and , were independent of time (i.e., the material is linear elastic), then the convolution 

integral in Equations (5-8) and (5-11) reduce to an arithmetic multiplication and these 2 

equations become the well known axisymmetric wave equations for a linear elastic material 

(Ewing et. al., 1957, Graff, 1991).   

Another immediate consequence of adopting the axisymmetric coordinate system is that the 

displacement component in the tangential direction, u, vanishes (Graff, 1991).  The remaining 

deflections can be written as the following in terms of the scalar potentials and :  
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(5-12) 
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(5-13) 

And the stresses can be written as: 
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5.2. Solutions For The Wave Equations In The Laplace-Hankel Domain 

The solution to the wave equations presented above can be worked more conveniently by 

utilizing the integral transforms.  Taking the Laplace transform of Equation (5-8) results in: 
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(5-16) 

where s is the Laplace variable and   
 
0

)( dttfesf st
 is the Laplace transform of a function 

f(t).  Then, taking the Hankel Transform (also known as the Fourier-Bessel transform) of order 

zero defined as     



0 0)( rdrkrJrfkf


 on Equation (5-16), one finds: 
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(5-17) 

After a simple rearrangement of the terms, the above equation can be written as: 
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(5-18) 

where, 
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


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 22
1


c

      

(5-19) 

From Equation (5-18), the solution for the Laplace-Hankel transformed potential function,  , is 

obtained as the following, after dropping the term that develops an unbounded result, that is the 

wave that propagates in the negative z direction (Ewing et. al., 1957, Graff, 1991): 
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s
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AeAe ,
2
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    (5-20) 

where A is an arbitrary constant.   

By following the same mathematical steps shown above, Equation (5-11) can be rewritten as: 
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(5-21) 

where, 







2

2c

     

(5-22) 

Again, after dropping the term leading to unbounded results, the solution for the transformed 

potential,  , is obtained as: 
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 skzgc

s
kz

CeCe ,
2
2

ˆ

2





     (5-23) 

where C is also an arbitrary constant.  

In order to make use of the solutions obtained above for the transformed potentials, it is also 

necessary to acquire the equations for the displacements and the stresses in the transformed 

domain.  While taking the Laplace transform on the displacements and the stresses is straight 

forward, additional attention is needed in taking the Hankel transform due to the spatial 

symmetry supplied by the cylindrical coordinate system adopted for the solution.  Referring back 

to Figure 1, one finds that the displacement at any point on the z-axis (i.e., when  r = 0) is only 

allowed to occur in the z-direction (i.e., uz ≠ 0 when r = 0) but is confined in the r-direction (i.e., 

ur = 0 when r = 0), unless the axisymmetric assumption is to be violated.   Due to these physical 

characteristics of the axisymmetric displacements, Hankel transforms of different orders need to 

be applied to ur and uz.   

Figure 5-2 shows the first few cycles of the Bessel functions of the first kind, and of orders zero 

(J0) and one (J1) that make up the kernels of the Hankel transform.  The primary difference 

between the two Bessel functions shown in the figure is that while the Bessel function of order 

zero (J0)  has a nonzero value at r = 0, the Bessel function of order one (J1)  is equal to zero 

when r = 0.  This implies that the Hankel transform of order zero whose kernel is composed of  

J0 is appropriate for transforming the functions that exhibit nonzero values at the origin, whereas 
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the the Hankel transform of order one whose kernel is made up of J1 is more appropriate for 

transforming the functions that have zero values at r = 0.  Therefore, the appropriate Hankel 

transformed that should be applied to ur and uz are of orders one and zero, respectively. Taking 

the Laplace and the respective Hankel Transforms on the displacements, ur and uz, shown in 

Equations (5-12) and (5-13) results in: 

z
kkur





     
(5-24) 


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 2k

z
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(5-25) 

 

Figure 5-2 Bessel Functions of the First Kind 
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It should be noted that although the Hankel transform of order one was used to transform ur 

shown in Equation (5-12), the Hankel transform of the potentials shown in Equation (5-24) is 

still of order zero.  This is a consequence of the partial derivative with respect to r that is present 

in both terms of the right hand side of Equation (5-12) and the following property of the Hankel 

transform which associates the first order transform of a function’s derivative to the zero order 

transform of the original function (Graff, 1991, Sneddon, 1995):  
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0 00 1 )(
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(5-26) 

Subsequently, the Laplace-Hankel transforms need to be carried out on the relevant stresses.    

Due to the same mathematical arguments presented above for the displacements, the Hankel 

transform of orders one and zero should be applied respectively on rz and z to allow for a 

solution that is compatible with the axisymmetric coordinate system chosen for the solution. 

After simplifying, these equations are obtained as: 
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5.3. Formulation of the Stiffness Matrices for the Layer Elements 

The solutions presented above for the scalar potentials in the transformed domain are not readily 

applicable for a multi layered system such as the one shown in Figure 5-1. In order to allow for 

the analysis of a layered system such as an asphalt pavement, it is necessary to develop the 

formulations for the layer elements of which the underlying concept origins from the method of 

Finite Element Analysis (FEA).  In this section, two types of layer elements are developed – a 2 

noded element for a layer with a finite thickness (e.g., the top layer inFigure 5-1) and a 1 noded 

element for simulation of a semi-infinite halfspace (e.g, the bottom layer in Figure 5-1).  

5.3.1. Two Noded Element for a Layer with a Finite Thickness 

The solutions for the scalar potentials shown in Equations (5-20) and (5-23) only account for the 

incident waves that propagate from the upper boundary of a layer in the direction of the positive 

z-axis, i.e., downward direction in Figure1.  However, a layer with a finite thickness also 

encompasses the waves that reflect from the lower boundary and propagate in the direction of the 

negative z-axis. To account for these reflected waves, an additional term must be added to each 

of the potentials, which results in the following equations: 
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  fzhzf BeAe        (5-29) 

 gzhzg DeCe        (5-30) 

where B and D are arbitrary constants and h is the layer thickness. Substituting the above 

equations into Equations (5-24) and (5-25) results in the following equations for the 

displacements within a two noded element: 

   gzhzgfzhzf
r DkgeCkgeBkeAkeu      (5-31) 

   gzhzgfzhzf
z eDkeCkBfeAfeu   22

   (5-32) 

For the formulation of a layer element, the displacements at the upper and lower boundaries need 

to be extracted from the above equations.  The radial and the vertical displacements at the upper 

boundary, denoted respectively as  1ru  and 1zu , can be obtained by substituting z = 0 in the 

above equations.  Similarly, the displacements at the lower boundary ( 2ru  and 2zu ) are 

acquired by substituting z = h.  In matrix form, the resulting equations for the displacements can 

be written as: 
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(5-33) 
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It is also necessary to obtain the equations for the stresses.  By substituting Equations (5-29) and 

(5-30) into Equations (5-27) and (5-28), one arrives at the following equations: 

    gzhzgfzhzf
rz DKeCKeBfeAfeks   22


  (5-34) 

    gzhzgfzhzf
z geDkgeCkBKeAKes   22 22


  (5-35) 

where, 
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(5-36) 

Again, the stresses at the upper boundary ( 1rz  and 1z ) are obtained by substituting z = 0 in 

Equations (5-34) and (5-35), while those at the lower boundary ( 2rz  and 2z ) are found by 

substituting z = h, all of which can be summarized in a matrix form as follows: 
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(5-37) 

Combining Equations (5-33) and (5-37) by eliminating the vector of arbitrary constants, the 

stresses can be expressed in terms of the displacements as:  
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where S1 and S2 are the 4 by 4 matrices defined in Equations (5-33) and (5-37), respectively. 

According to the concepts of FEA, the stiffness matrix of an element defines the relationship 

between the displacement vector and the boundary traction vector.  Owing to the Cauchy stress 

principle, the boundary tractions are obtained by taking the dot product between the stress tensor 

and a unit vector directed along the outward normal of the boundary.  Calculating these tractions 

at the upper and the lower boundaries of the element and reorganizing them in a vector form 

results in the following relationship between the tractions, stresses, and displacements:    
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   (5-39) 

From the above equation, it is seen that the 4 by 4 matrix S2-noded is the stiffness matrix of the 2 

noded layer element which is calculated as: 

1
  12noded2 SSNS 


s      (5-40) 

where 
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5.3.2. One  Noded Semi-Infinite Element 

The axisymmetric one noded element was schematically shown as the bottom layer in Figure 5-1.  

As shown in the figure and as its name implies, the one noded element only has a single 

boundary at the top of the layer and extends infinitely in all other directions. As a consequence, 

the waves in this element are only allowed to propagate away from the upper boundary (which is 

also the only boundary) without any waves reflecting back.  Therefore, the solutions for the 

scalar potentials shown in Equations (5-20) and (5-23) can be used without any modifications. 

Substituting these two equations into Equations (5-24) and (5-25) results in the following for the 

displacements: 

zgzf
r CkgeAkeu        (5-42) 

zgzf
z eCkAfeu   2

     (5-43) 

The displacements at the boundary are obtained by substituting z = 0 in the above equations and 

can be written as the following in matrix form:  
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Again, the equations for the shear and normal stresses are obtained by substituting the potentials 

(Equations (5-20) and (5-23)) into Equations (5-27) and (5-28), respectively: 

  zgzf
rz egkCkAkfes   222


   (5-45) 

  zgzf
z geCkegkAs   222 2


   (5-46) 

Substituting z = 0 in Equations (5-45) and (5-46) results in the stresses at the boundary: 
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 From Equations (5-44) and (5-47), the following relationship is attained between the stresses 

and the displacements: 
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     (5-48) 

where S3 and S4 were defined in Equations (5-44) and (5-47), respectively.  By applying the 

Cauchy stress principle, the following relationship is achieved between the tractions, stresses, 

and displacements:  
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where the stiffness matrix for the one noded element can be written in terms of the previously 

defined variables as: 

1
1


  43noded SSS 


s

     
(5-50) 

 

5.4. Incorporating Elastic And Viscoelastic Layer Properties 

For a homogenous, isotropic, elastic material whose properties are independent of time, the 

relationship between the elastic modulus, E, and the lamé constant, , is given by the theory of 

linear elasticity as: 

)1(2 





E

      

(5-51) 

Because the parameters in the above equation are not functions of time, the Laplace transform of 

the above equation is simply obtained as: 

 
s
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s
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(5-52) 
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However, as it was noted by the pioneer of the spectral element method for layered media (Rizzi, 

1989), it is advantageous to add a small amount of damping to the lamé constant, , as no 

realistic material is purely elastic. Following Rizzi (1989), this artificial damping can be added to 

the above lamé constant as: 

     sss   1


     

(5-53) 

where  is a damping constant. To simulate the wave propagation through an elastic layer, the 

above simple equation can be substituted into the equations for the layer elements presented 

earlier.  

To incorporate the viscoelastic material effects into the solution derived in the previous sections, 

it is necessary to adopt a simple function that is capable of representing the fundamental property 

of a viscoelastic material analytically.  In addition, because all of the time-dependent variables 

including stresses, displacements, and material properties (i.e., lamé constants) were transformed 

into the Laplace domain, it is preferable to choose a function that is easily transformable into the 

Laplace domain.  Among the analytical functions described in Chapter 3, the generalized power 

function has been selected because it still maintains a simple form while representing the 

viscoelastic property effectively.  Again, this function is expressed as: 

  mtDDtD  10      
(5-54) 
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where D0, D1, and m are the power function parameters. Taking the Laplace transform on the 

above equation results in: 
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(5-55) 

where mis the gamma function. By substituting Equation (5-55) into Equation (3-16) and 

rearranging, one obtains the following equation for the uniaxial relaxation modulus in the 

Laplace domain: 
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(5-56) 

As it was mentioned in Chapter 4, the Poisson’s ratio of a viscoelastic material is also time 

dependent.  However, the Poisson’s ratio has typically been assumed to be a time-independent 

constant in past literatures (Huang, 2004).  In addition, Lee and Kim (2009) showed that 

assuming a reasonable constant value for the Poisson’s ratio still results in accurate viscoelastic 

responses.  The assumption of a constant Poisson’s ratio implies that the time dependent 

behavior of a viscoelastic material in shear or bulk is identical to the behavior in uniaxial mode, 

and simplifies the solution significantly (Kim et. al., 2010).  With this assumption, the 

relationship between the viscoelastic lamé constant and the uniaxial relaxation modulus shown in 

Equation (5-56) is found to be the following: 
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5.5. Construction Of The Global Stiffness Matrix 

After the stiffness matrices have been obtained for all the layers that make up the structure, the 

global stiffness matrix may be constructed in the same way as the traditional FEA methods 

(Cook et. al., 2001).  In-depth explanation on the concept of the FEA as well as the relationship 

between the element and the global stiffness matrices is beyond the scope of this paper.  Hence, 

it will not be explained herein and interested readers are referred to a variety of textbooks 

available on this subject.  In this paper, only the generic conceptual schematics will be outlined 

and the discussion will be kept to a minimal for conciseness of the manuscript. Figure 5-3 shows 

the schematics of the global stiffness matrices for the two types of layered structures that are 

most widely adopted for modeling a pavement system.   

Figure 5-3(a) shows how the global stiffness matrix is constructed for a layered system resting 

on a halfspace.  As mentioned, this pavement model is capable of dissipating the energy 

geometrically through the one noded halfspace and is generally used for simulating the FWD 

time histories that do not show free vibration at the end of the loading. On the other hand, Figure 

5-3(b) shows the global stiffness matrix that can be used for a layered system sitting on a stiff 

bedrock at shallow depth.  In general, the bedrock in such a model is generally assumed to have 

an infinite stiffness, not allowing any displacements to occur within the layer.  This implies that 
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the wave energy is trapped between the pavement surface and the top of bedrock, which may 

induce free vibration in the layered system at the end of the loading.  

 

(a) 

 

(b) 

Figure 5-3 Construction of the Global Stiffness Matrix for Structures (a) with and (b) without a 

halfspace  
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Upon constructing the global stiffness matrix, the displacements at the system nodes can be 

found from the following equation:  

PSU 
1

Global      
(5-58) 

where,  

  znrnzirizr UUUUUU 11U
   

(5-59) 

is a vector of system displacements to be calculated in global coordinates with riU and ziU  

being the radial and vertical

 

displacements at the i
th

 node from the top, respectively.  Similarly,  

  znrnzirizr PPPPPP 11P
   

(5-60) 

is a nodal force vector in global coordinates, with the radial and vertical forces at the i
th

 node 

denoted as riP  and ziP , respectively.  The nodal forces in this vector should be obtained from the 

boundary conditions as will be presented in the next section.  
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5.6. Boundary Conditions for a Circular Unit Impulse Loading at the Ground Surface 

For the problem in hand where the loading is induced by an impact of a falling weight at the 

ground surface, all components of P in Equation (5-60) vanish except for 1zP . In other words, 

the only external load applied to the system is in the vertical direction at the top node (node 1).  

In this paper, this surface force will also be in the form of a unit impulse load acting over a 

circular area, for the reasons to be explained in subsequent sections of the paper. In the physical 

time and spatial domain, this boundary condition is mathematically expressed as the following: 

)()(),(1 trRtrPz       (5-61) 

where (t) is the dirac delta function for the impulse loading and, 
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(5-62) 

where a is the radius of the circular loaded area.  However, it should be noted that the stiffness 

matrices were previously derived in the Laplace-Hankel domain rather than the physical domain.  

As such, it is also necessary to convert the above boundary condition into the one in the 

transformed domain.  Because the Laplace transform of (t) is equal to 1, taking the Laplace-

Hankel transforms on Equation (5-61) simply results in the following equation: 

 kaJ
k

a
skPz 11 ),( 

     
(5-63) 
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5.7. Inversion Of Laplace And Hankel Transforms 

As mentioned, the displacements at all nodes of the system can be obtained through Equation (5-

58) from the global stiffness matrix and the force boundary condition described in the previous 

sections.  It is noted again that the displacements obtained in this manner are in the Laplace-

Hankel domain and need to be inverse transformed back to the physical domain.  However, it has 

been shown that even for an elastic halfspace (which simply has a single boundary) subjected to 

a point load, the closed form inversion of the Laplace-Hankel transformed displacement is rather 

complicated and is close to impossible for a generalized problem (Graff, 1991).  Therefore, the 

closed form inversion of the displacements obtained from Equation (5-58) is not even attempted 

due to the mathematical complexity arising from the viscoelastic material behavior and the wave 

propagation phenomenon.  Instead, the inversion will be carried out numerically for both the 

Laplace and Hankel transforms.   

5.8. Numerical Inversion of the Hankel Transform 

As it was mentioned earlier, Hankel transforms of orders zero and one were used to transform 

the vertical and radial displacements, respectively.  Therefore, the inverse Hankel transform of 

respective orders must be carried out for the two displacements.  In this paper, the numerical 

integration scheme will be outlined for the vertical displacement (i.e, the inverse Hankel 

transform of order zero). The inverse transform of the radial displacement can also be evaluated 

in a similar manner.   
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The closed form equation for the inverse Hankel transform of the vertical displacement at node i 

is given as:  
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(5-64) 

The above integral can also be written as a series of integrals:  
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Then, each integral in the right hand side of Equation (5-65) needs to be evaluated numerically. 

Upon selecting the 6-point Gaussian quadrature as the numerical scheme to be used, the integral 

in the above equation can be evaluated as (Abramowitz and Stegun, 1972): 
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and xp and wp are the Gaussian nodes and their corresponding weights, respectively.   
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The parameter bn defines the limits of each integration which can be chosen arbitrarily.   

However, Cornille (1972) indicated that the convergence of the Gaussian quadrature is greatly 

improved if the limits are selected to be the successive roots of the derivative of the Bessel 

function that comprise the kernel of the inverse transform.  Based on a sensitivity analysis 

conducted by the author, subdividing the region between the successive roots of the Bessel 

function of order one (that is, the derivative of the Bessel function of order zero) into ten smaller 

regions of equal intervals provided satisfactory results for the numerical integration.   

It is also noted that the upper bound of the integral shown in Equation (5-64) is equal to infinity.  

This indicates that the summation of integrals shown in Equation (5-65) should also span over an 

infinite range.  However, as it was indicated by Kim (2011), the numerical integration converges 

very rapidly even after the first few cycles of the Bessel function comprising the kernel of the 

inverse Hankel transform.  Therefore, in his static solution for a viscoelastic layered system, the 

first five cycles of the Bessel function were used to invert the Hankel transform near the loaded 

area, and less number of cycles in the region far from the loading (Kim, 2011).  The developers 

of the axisymmetric spectral element method used the Fourier-Bessel series (which is the 

discrete version of the Hankel transform) in their solution and the summation was also carried 

out approximately for the first five cycles of the Bessel function (Al-Khoury et. al., 2001a).  

Although the details will be omitted for the compactness of this paper, the sensitivity analysis 

performed for the proposed algorithm also showed that the numerical integration over the first 

five cycles of the Bessel function is adequate for the solution.   
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5.9. Numerical Inversion of the Laplace Transform 

For the inverse Laplace transform, a multi precision numerical scheme known as the Fixed 

Talbot Algorithm is adopted in this paper due to its efficiency, accuracy, and ease for 

implementation (Abate and Valko, 2004).   The Bromwich integral which is the standard 

equation for the inverse Laplace transform is given as: 
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(5-68) 

where 1j .  The contour, B, chosen for the above integral is along the following path: 

      ,cot js     (5-69) 

where  is a fixed value calculated as:  

t

M

5

2


      
(5-70) 

In Equation (5-70), M is the number of precision decimal digits to be used for the numerical 

analysis.  For the sake of accuracy, this value is specified to be equal to the machine precision.  

By replacing the contour path in Equation (5-68) with the one shown in Equation (5-69), one 

finds: 
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where, 

     cot1cot       (5-72) 

Finally, the inverse Laplace transform is obtained by approximating the integral shown in 

Equation (5-71) through the trapezoidal rule: 
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where, 
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(5-74) 

 

5.10. System Response To Arbitrary Loading 

As it was described in Equations (5-61) and (5-62), the boundary condition considered in the 

previous sections was for a unit impulse load distributed over a circular area.  As such, the 

vertical displacement, ziU , obtained from Equation (5-73) represents the unit impulse response 
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of the layered system in time domain.  The primary advantage of the time domain unit impulse 

response is that the system response to any arbitrary loading can be obtained through the 

convolution integral (Santamarina and Fratta, 1998, Bendat and Piersol, 2010).  Theoretically, 

this convolution integral for a continuous function is given as: 
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(5-75) 

where T(t) could be any arbitrary time dependent loading function and yzi(t) is the corresponding 

vertical displacement at node i. For a discrete signal such a FWD time history, the above 

equation needs to be evaluated numerically as (Santamarina and Fratta, 1998, Bendat and Piersol, 

2010): 

     



nt

pt

ppnzinzi ttTttUty

1     

(5-76) 

where t is time interval of the discrete signal and tn = nt for an integer n.   
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CHAPTER 6 - IMPLEMENTATION AND VALIDATION OF ALGORITHM – 

VISCOWAVE 

The solution presented in the preceeding chapter has been implemented into a computer 

algorithm named ViscoWave (for Viscoelastic Wave analysis).  The algorithm was used to 

simulate the behavior of elastic and viscoelastic structures subjected to a FWD loading. In 

addition, other available solutions were also used to simulate the response of the same pavement 

structures for validation of the ViscoWave algorithm.  The results of these numerical simulations 

are presented in this chapter.   

6.1. Simulation of an Elastic Structure using ViscoWave and LAMDA 

The properties of the pavement layers used for the elastic analysis are shown in Table 6-1.  The 

FWD loading was idealized to be a half-sine load distributed over a circular area of radius 6 in., a 

peak magnitude of 9.0 kips, and a duration of 26 ms.  The surface deflections were calculated at 

radial distances of 0 in., 8 in., 12 in., 18 in., 24 in., 36 in., and 60 in.from the center of the 

loading plate.   

Table 6-1 Layer Properties for Elastic Simulation of LAMDA and ViscoWave  

Layer 
Elastic Modulus 

(ksi) 
Poisson’s Ratio 

Thickness 

(inch) 

Mass Density 

(pcf) 

Asphalt 145 0.35 6 4.503 

Base 30 0.40 10 3.882 

Subgrade 15 0.45 ∞ 3.106 
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In order to verify the results from ViscoWave, the elastic simulation was also conducted using 

the axisymmetric spectral element algorithm, namely LAMDA, which has already been verified 

through a comparison with 3-dimensional FEA solution (Al-Khoury et. al., 2001a, Lee, 2011).   

The time histories for the resulting surface deflections are shown in Figure 6-1.  The figure 

indicates that ViscoWave and LAMDA showed almost identical results, which validates the 

algorithm behind ViscoWave. 

 

(a)                                                                        (b) 

Figure 6-1 Surface Deflections of a Layered Elastic Structure from (a) ViscoWave and (b) 

LAMDA 

6.2. Simulation of Viscoelastic Structures using ViscoWave 

The viscoelastic simulation was carried out using the same pavement structure that was used for 

the previous elastic simulation (Table 1) with a couple of exceptions.  The viscoelasticity of the 

asphalt concrete was modeled using two different creep compliance functions: one that 
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represents a low temperature behavior (Figure 6-2a) and the other representing a high 

temperature behavior in which the viscoelastic effects are more pronounced (Figure 6-2b).  In 

addition, for each of the creep compliance functions shown in Figure 6-2, the subgrade layer was 

first modeled to be a halfspace (infinite thickness) and then with a shallow bedrock (infinite 

sitffness) located 9.6 ft. below the pavement surface.  

 

(a)                                                                        (b) 

Figure 6-2 (a) Low Temperature and (b) High Temperature Asphalt Creep Compliance Curves 

Used for ViscoWave Simulation 

To verify the results of the viscoelastic simulation from ViscoWave, a commercially available 

FEA package, ADINA, was used to simulate the dynamic response of the viscoelastic pavement 

subjected to the FWD loading. Figure 6-3 shows the geometry and the FEA mesh that was used 

for the analysis. Although the elements in ViscoWave assume that the elements extend to infinity 

in the horizontal direction and also in the vertical direction for the one noded element, the FEA 

simulation was inevitably conducted with a finite geometry.  More specifically, the FEA model 

only extended to 20 ft. in the horizontal direction and 41.3 ft. in the vertical direction for the 
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simulation of the halfspace (Figure 6-3a). The FEA mesh was generated in such a way that finer 

meshes were used near the loaded area and coarser meshes were used near the geometric 

boundaries. A total of approximately 8,600 axisymmetric elements, each consisting of 9 nodes, 

were consistently used for all FEA simulations.  

  

(a) 

 

(b) 

Figure 6-3 (a) Axisymmetric Finite Element Geometry and (b) Finite Element Mesh Used for 

Simulation of Pavement Response Under FWD Loading 
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The simulated deflection time histories generated for the low temperature asphalt pavement with 

a halfspace and with a shallow bedrock are shown in Figure 6-4 and Figure 6-5, respectively.  

Both figures indicate that the results from ViscoWave and ADINA are in excellent agreement.  

In Figure 6-4, the effect of phase characteristics in the viscoelastic material can be clearly 

identified as shown by the increased duration (or delayed recovery) of the deflections when 

compared to the elastic simulation results shown in Figure 6-1.  However, the deflections 

calculated from ADINA at 60 in. from the center of the load plate showed some unexpected 

outcome towards the end of the time history, especially for the case with a shallow bedrock 

(Figure 6-5b).  It is believed that this is primarily due to the horizontal boundary at which the 

stress wave is reflected back towards the loaded area and secondarily due to the increased error 

coming from the increased size of the mesh used for the FEA analysis (Lee, 2013). 

 

 (a)                                                                      (b) 

Figure 6-4 Surface Deflections of a Layered Viscoelastic Structure with a Halfspace at Low 

Temperature Simulated Using (a) ViscoWave and (b) ADINA 
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(a)                                                                      (b) 

Figure 6-5 Surface Deflections of a Layered Viscoelastic Structure with a Bedrock at 3 m below 

Surface at Low Temperature Simulated Using (a) ViscoWave and (b) ADINA  

The simulated deflection time histories for the high temperature asphalt pavement are shown 

inFigure 6-6 for the case with a halfspace and in Figure 6-7 for the case with a shallow bedrock.  

As expected, the viscoelastic effect is even more pronounced when compared to the low 

temperature results, as evidenced in Figure 6-6 by the delayed recovery and in Figure 6-7 by the 

noticeable phase difference seen in the free vibration response. Although it is not as significant 

as the one shown in Figure 6-5b, the deflection simulated for the outmost sensor (60 in. from 

center of load plate) shown in Figure 6-7b again shows the effect of the horizontal boundary 

placed at 20 ft.  Nonetheless, both Figure 6-6 and Figure 6-7 again show that the ViscoWave 

results are in excellent agreement with the FEA results. This concludes the validation of the 

viscoelastic simulation using ViscoWave.  
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(a)                                                                      (b) 

Figure 6-6 Surface Deflections of a Layered Viscoelastic Structure with a Halfspace at High 

Temperature Simulated Using (a) ViscoWave and (b) ADINA 

 

 

(a)                                                                      (b) 

Figure 6-7 Surface Deflections of a Layered Viscoelastic Structure with a Bedrock at 3 m below 

Surface at High Temperature Simulated Using (a) ViscoWave and (b) ADINA 
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CHAPTER 7 - THEORETICAL BACKCALCULATION USING VISCOWAVE 

In this chapter, the ViscoWave algorithm developed in the previous chapters will be used along 

with available non-linear optimization algorithms for backcalculation of layer properties from 

theoretically generated FWD time histories.   

7.1. Review of Selected Optimization Algorithms 

The non-linear optimization algorithms that were selected for backcalculation were the Gauss-

Newton and Levenberg-Marquardt methods. As these are classical optimization methods and the 

detailed description of these algorithms are available in most optimization textbooks, only a brief 

overview will be provided in this report (Scales 1985, Rao 2002, Venkataraman 2002).  

7.1.1. Objective Function for Optimization and its Derivatives 

If the optimization problem includes n independent scalar variables denoted as x1 through xn, it is 

more convenient to gather all the scalar variables together and represent them in a vector form. 

That is:  

 Tnxxx 21x      (7-1) 

Similarly, the scalar valued functions of x can also be gathered into a vector form: 
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        Tmfff xxxxf 21     (7-2) 

In backcalculation, the individual functions, fi, in the above equation is frequently taken as the 

scalar difference between the measured and simulated deflections, whereas the xi is referred to 

the pavement layer parameter that needs to be backcalculated. Then, the objective of the 

backcalculation would be to minimize the error between the measured and simulated deflections. 

Mathematically, this can be achieved by finding the vector x that minimizes the following 

objective function which is a simple sum of squares of the error:  

       xfxfxx 


T
m

i

ifF

1

2     (7-3) 

It should be noted that in practice, the differences between the predicted and the measured values 

are more frequently presented in terms of the Root Mean Square Error (RMSE) which has the 

same units as the measured values. The objective function shown above is related to the RMSE 

in the following manner: 

m

F
RMSE       (7-4) 

For the purpose of optimization, taking the first partial derivative on Equation (7-3) with respect 

to xj results in a gradient vector of F which can be written as: 
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
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









m

i j

i
i

j
j

x

f
f

x

F
g

1

2      (7-5) 

or, equivalently in vector form as the following: 

     xfxJxg
TF 2      (7-6) 

where the Jacobian matrix, J, is defined as the following. 
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J      (7-7) 

Differentiating Equation (7-5) or Equation (7-6) with respect to xk results in the Hessian matrix 

of F. That is: 


 






























m

i jk

i
i

j

i

k

i

k

j
kj

xx

f
f

x

f

x

f

x

g
G

1

2

2     (7-8) 

which can also be written in matrix form as: 

       xSxJxJgxG 22  T     (7-9) 
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where the matrix S is given as: 

     



m

i

iif

1

xTxxS      (7-10) 

and Ti is the Hessian matrix of fi: 

   xxT ii f2      (7-11) 

7.1.2. Basics of Iteration 

In order for the objective function given in Equation (7-3) to be minimized, it is evident that its 

corresponding gradient vector in Equation (7-6) must be a vector of zeros. Denoting the 

independent variable, objective function value, and the gradient after the p
th

 iteration as xp, Fp, 

and gp, respectively, the goal of the following iteration is to find xp+1 that satisfies the zero-

gradient condition. Mathematically, this can be stated as the following: 

    0rxgxgg   pppp 11     (7-12) 

where rp is the search vector (or direction vector). Expanding the above expression by Taylor 

series and eliminating the higher order terms results in the following expression: 

ppp grG        (7-13) 
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After the search vector has been found from the above equation, the vector of independent 

variable, x, is updated in the following manner and the iteration is continued until a satisfactory 

point has been reached.  

ppp rxx 1      (7-14) 

7.1.3. Gauss-Newton Method 

By substituting Equation (7-6) and Equation (7-9) into Equation (7-13), the following 

relationship is obtained for the search vector: 

  p
T

pppp
T

p fJrSJJ      (7-15) 

The above equation, along with Equation (7-14), defines the Newton’s method. However, the 

major problem with the above formulation is that the computational effort needed for calculating 

the Sp is extremely expensive. In the Gauss-Newton method, the computationally expensive 

matrix Sp is completely neglected and the search vector is found from the following relationship.  

p
T

ppp
T

p fJrJJ       (7-16) 
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7.1.4. Levenberg-Marquardt Method 

Although the Gauss-Newton method is known to be very efficient, the problem that is frequently 

encountered is that the matrix p
T

p JJ  being singular or ill-conditioned (Scales 1985).  The 

Levenberg-Marquardt method incorporates a technique for handling the issue of p
T

p JJ  being 

singular by adding an identity matrix to p
T

p JJ . In other words, the search vector is found from 

a modified version of Equation (7-16) which can be written as: 

  p
T

ppppp
T

p fJrIJJ      (7-17) 

It should be noted that as 0p , the above equation becomes identical to the Gauss-Newton 

method. On the other extreme, as p , the matrix p
T

p JJ  becomes negligible and the 

search vector pr  becomes an infinitesimal step in the direction of steepest descent (Scales 1985).  

However, the actual magnitude of p  should be found such that the objective function, F, is 

minimized at pp rx  . 

7.1.5. Remarks on the Optimization Routine 

Both the Gauss-Newton and Levenberg-Marquardt optimization routines used for this study were 

readily implemented in the “lsqnonlin” function of Matlab’s Optimization Toolbox (Mathworks 

2008).  The backcalculation was initiated using the Gauss-Newton method which is known to be 
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more efficient.  However, when the problem of p
T

p JJ  matrix being singular or ill-conditioned 

for inversion, the Gauss-Newton was terminated and the backcalculation was continued using the 

Levenberg-Marquardt method.  

7.2. Theoretical Backcalculation Using ViscoWave 

The theoretical backcalculation was carried out in two folds: (1) using a single set of FWD time 

histories representing a single temperature and multiple sets of FWD time histories at various 

temperatures. The results and findings of the theoretical backcalculation exercise are provided in 

the remainder of the chapter.  

7.2.1. Single Temperature Backcalculation 

7.2.1.1. Reference Pavement Structures and Seed Values for Backcalculation 

The properties of the reference pavement structures sitting on a halfspace and on a bedrock are 

summarized in Table 7-1. The generalized power function was used for modeling the viscoelastic 

behavior of the asphalt surface with its coefficients shown in the table. The FWD loading was 

again idealized to be a half-sine load with a peak magnitude of 9.0 kips and a duration of 26 ms, 

distributed over a circular area of radius 6 in.  The time histories were modeled with a discrete 

time interval of 0.2 ms and a duration of 50 ms for pavement with a halfspace and 70 ms for the 

pavement on a bedrock. The surface deflections were calculated at radial distances of 0 in., 8 in., 

12 in., 18 in., 24 in., 36 in., and 60 in. from the center of the loading plate. Table 7-2 shows the 
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three sets of seed values that were assigned to the variables prior to backcalculation. The first set 

of seed values set to ±50 percent increase from the true values.  In order to study the effect of 

seed values, the second and the third sets of seed values were set to 100 percent and -80 percent 

increase from the true values, respectively, for all variables.  These seed values were consistently 

used for both the pavement structures with and without a halfspace.  

Table 7-1 Reference Pavement Structures 

 Layer 
D0 

(1/psi) 

D1 

(1/psi) 
m 

Elastic 

Modulus 

(psi) 

Poisson’s 

Ratio 

Density 

(pcf) 

Thickness 

(in.) 

Asphalt 3.00E-07 5.00E-07 0.3 N/A 0.35 145 6 

Base 
N/A 

30,000 0.4 125 12 

Subgrade 15,000 0.45 100 ∞
1
/60

2
 

Note 1: For pavement with a halfspace  

Note 2: For pavement with a bedrock 

Table 7-2 Seed Values Used for Backcalculation 

Variable 
Seed Value (Percent Increase from True Value) 

Seed Set 1  Seed Set 2 Seed Set 3 

D0 (1/psi) 4.50E-07 (50%) 6.00E-07 (100%) 6.00E-08 (-80%) 

D1 (1/psi) 2.50E-07 (-50%) 1.00E-06 (100%) 1.00E-07 (-80%) 

m 0.45 (50%) 0.60 (100%) 0.06 (-80%) 

EBase (psi) 15,000 (-50%) 60,000 (100%) 6,000 (-80%) 

ESubgrade (psi) 22,500 (50%) 30,000 (100%) 3,000 (-80%) 
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7.2.1.2. Backcalculation Results for Pavement Structure With a Halfspace 

The deflection time histories generated from ViscoWave for the reference pavement with a 

halfspace (Table 7-1) are shown in Figure 7-1a, whereas those generated for the pavement 

structures with the three sets of seed values (Table 7-2) are shown in Figure 7-1b through Figure 

7-1d.  As shown by the deflection time histories in Figure 7-1, the first set of seed values resulted 

in the deflection time histories that are very similar to those from the reference pavement.  The 

second set of seed values resulted in deflection time histories that are quite different from those 

of the reference pavement in terms of magnitude but the shape of the time histories still resemble 

those of the reference pavement. The last set of seed values resulted in the poorest deflection 

time histories both in terms of shape and magnitude. Based on these observations, it is expected 

that this set of seed values has the greatest potential for converging to the true values with the 

fewest number of iterations, followed by the second and third set of seeds.  

The backcalculation was conducted using the Gauss-Newton and Levenberg-Marquardt 

optimization routines previously described in this chapter.  The backcalculation was initiated 

using the Gauss-Newton method and was switched over to the Levenberg-Marquardt method 

after 2 iterations for seed sets 1 and 2, and after the first iteration for seed set 3. The three 

solutions converged after 24 (seed set 1), 60 (seed set 2), and 42 (seed set 3) iterations. The 

RMSE histories and the deflection time histories obtained after backcalculation are shown in 

Figure 7-2 and Figure 7-3, respectively.  As expected, Figure 7-2a and Figure 7-2b show that the 

first set of seed values converged faster than the second set, and the backcalculated deflection 

time histories shown in Figure 7-3b and Figure 7-3c indicate that the backcalculated solution 



90 

 

may be reasonably close to the true values. On the other hand, the terminal RMSE shown in 

Figure 7-2c indicates immediately that the backcalculation with the third set of seed values 

converged to a wrong solution and this is confirmed by the time histories shown in Figure 7-3d.   

 

(a)                                                                      (b) 

 

(c)                                                                      (d) 

Figure 7-1 Deflection Time Histories from Pavement Structure on a Halfspace; (a) Reference 

Pavement, (b) Seed Set 1, (c) Seed Set 2, and (d) Seed Set 3 

-1

1

3

5

7

9

11

0 0.01 0.02 0.03 0.04 0.05

D
ef

le
ct

io
n

 (
m

il
s)

Time (Sec)

0 in.

8 in.
12 in.

18 in.

24 in.
36 in.

60 in.

Sensor 

Offset

-1

1

3

5

7

9

11

0 0.01 0.02 0.03 0.04 0.05

D
ef

le
ct

io
n

 (
m

il
s)

Time (Sec)

0 in.

8 in.

12 in.
18 in.

24 in.

36 in.
60 in.

Sensor 

Offset

-1

1

3

5

7

9

11

0 0.01 0.02 0.03 0.04 0.05

D
ef

le
ct

io
n

 (
m

il
s)

Time (Sec)

0 in.

8 in.

12 in.
18 in.

24 in.

36 in.
60 in.

Sensor 

Offset

-1

1

3

5

7

9

11

0 0.01 0.02 0.03 0.04 0.05

D
ef

le
ct

io
n

 (
m

il
s)

Time (Sec)

0 in.

8 in.
12 in.

18 in.

24 in.
36 in.

60 in.

Sensor 

Offset



91 

 

 

(a)                                                                      (b) 

 

(c) 

Figure 7-2 History of Root Mean Square Error for (a) Seed Set 1, (b) Seed Set 2, and (c) Seed 

Set 3 
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(a)                                                                      (b) 

 

(c)                                                                      (d) 

Figure 7-3 Backcalculated Deflection Time Histories from Pavement Structure on a Halfspace; 

(a) Reference Pavement, (b) Seed Set 1, (c) Seed Set 2, and (d) Seed Set 3 
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The backcalculated results are summarized in Table 7-3, for all sets of seed values.  Again, the 

table confirms that the first set of seed values resulted in the best outcome in terms of the 

backcalculated values and their percent errors. It also confirms that the third set of seed values 

converged to a wrong solution, with the backcalculated D1 parameter being negative and the 

backcalculated base and subgrade moduli being very close to the initial seed values. 

Table 7-3 Backcalculated Values and Percent Error – Pavement on a Halfspace 

Variable True Value 
Backcalculated Value (Absolute Percent Error) 

Seed Set 1  Seed Set 2 Seed Set 3 

D0 (1/psi) 3.00E-07 
3.00E-07 

(<0.001%) 

3.14E-07 

(4.7%) 

2.14E-07 

(28.8%) 

D1 (1/psi) 5.00E-07 
5.00E-07 

(<0.001%) 

5.27E-07 

(5.5%) 

-2.24E-07 

(144.8%) 

m 0.30 
0.30 

(0.002%) 

0.34 

(12.9%) 

0.05 

(84.7%) 

EBase (psi) 30,000 
30,000 

(<0.001%) 

30,229 

(0.8%) 

5,997 

(80.0%) 

ESubgrade (psi) 15,000 
15,000 

(<0.001%) 

14,988 

(0.1%) 

3,003 

(80.0%) 

 

The above observations confirm the well-accepted fact that both the Gauss-Newton and 

Levenberg-Marquardt methods may only find the local minimum and not necessarily the global 

minimum (Scales, 1985).  In other words, with the Gauss-Newton and Levenberg-Marquardt 

methods, it is important that reasonable seed values are chosen in order for the backcalculation to 

converge to the correct solution. Figure 7-4 through Figure 7-8 show the convergence histories 

of the backcalculated parameters for all three cases and confirm the observations already made in 

the above.  
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(a)                                                                      (b) 

 

(c) 

Figure 7-4 Convergence of Power Function Parameters D0; (a) Seed Set 1, (b) Seed Set 2, and 

(c) Seed Set 3 – Pavement Structure on a Halfspace 
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(a)                                                                      (b) 

 

(c) 

Figure 7-5 Convergence of Power Function Parameters D1; (a) Seed Set 1, (b) Seed Set 2, and 

(c) Seed Set 3 – Pavement Structure on a Halfspace 
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(a)                                                                      (b) 

 

(c) 

Figure 7-6 Convergence of Power Function Parameters m; (a) Seed Set 1, (b) Seed Set 2, and (c) 

Seed Set 3 – Pavement Structure on a Halfspace 
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(a)                                                                      (b) 

 

(c) 

Figure 7-7 Convergence of Base Modulus; (a) Seed Set 1, (b) Seed Set 2, and (c) Seed Set 3 – 

Pavement Structure on a Halfspace 
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(a)                                                                      (b) 

 

(c) 

Figure 7-8 Convergence of Subgrade Modulus; (a) Seed Set 1, (b) Seed Set 2, and (c) Seed Set 3 

– Pavement Structure on a Halfspace 
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7.2.1.3. Backcalculation Results for Pavement Structure on a Bedrock 

The deflection time histories generated for the reference pavement and the seed structures on a 

bedrock are shown in Figure 7-9. As was the case with the pavement on a halfspace presented 

above, the first set of seed values resulted in the deflection time histories that resemble the true 

histories both in shape and magnitude.  The second set of seed values resulted in deflection time 

histories that are similar in shape but reduced in magnitude when compared to the true ones. The 

last set of seed values resulted in the poorest deflection time histories both in terms of shape and 

magnitude.  

The backcalculation was initiated using the Gauss-Newton method. As shown by the RMSE 

histories in Figure 7-10, the first, second, and third sets of seed values converged after 17, 42, 

and 39 iterations, respectively. The respective backcalculation was switched over to the 

Levenberg-Marquardt method after 13, 1, and 2 iterations. The deflection time histories obtained 

after backcalculation are shown in Figure 7-11.  Both Figure 7-10 and Figure 7-11 indicate that 

the first set of seed values were most successful followed by the second set, and that the third set 

converged to a wrong solution.   
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(a)                                                                      (b) 

 

(c)                                                                      (d) 

Figure 7-9 Deflection Time Histories from Pavement Structure on a Bedrock; (a) Reference 

Pavement, (b) Seed Set 1, (c) Seed Set 2, and (d) Seed Set 3 
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(a)                                                                      (b) 

 

 

(c) 

Figure 7-10 History of Root Mean Square Error for (a) Seed Set 1, (b) Seed Set 2, and (c) Seed 

Set 3 
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(a)                                                                      (b) 

 

(c)                                                                      (d) 

Figure 7-11 Backcalculated Deflection Time Histories from Pavement Structure on a Bedrock; 

(a) Reference Pavement, (b) Seed Set 1, (c) Seed Set 2, and (d) Seed Set 3 
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The backcalculated results for all sets of seed values are summarized in Table 7-4 which shows 

that the first and second sets of seeds were able to backcalculate the true values with reasonable 

errors. The third set of seed values converged to a wrong solution, as clearly seen by the negative 

power function parameters and the minimal improvement in the unbound layer modulus from the 

seed values. Again, these observations confirm that the Gauss-Newton method that was used for 

backcalculation is sensitive to the seed values. The convergence histories shown in Figure 7-12 

through Figure 7-24 confirm the above observations.  

Table 7-4 Backcalculated Values and Percent Error – Pavement on a Bedrock 

Variable True Value 
Backcalculated Value (Absolute Percent Error) 

Seed Set 1  Seed Set 2  Seed Set 3  

D0 (1/psi) 3.00E-07 
2.96E-07 

(1.2%) 

3.01E-07 

(0.4%) 

5.93E-07 

(-97.6%) 

D1 (1/psi) 5.00E-07 
4.99E-07 

(0.2%) 

5.01E-07 

(0.2%) 

-5.11E-07 

(202.3%) 

m 0.3 
0.29 

(2.5%) 

0.30 

(0.9%) 

-0.01 

(102.9%) 

EBase (psi) 30,000 
29,936 

(0.2%) 

30,049 

(0.2%) 

5,989 

(80.0%) 

ESubgrade (psi) 15,000 
15,007 

(0.1%) 

14,998 

(0.01%) 

3,000 

(80.0%) 
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(a)                                                                      (b) 

 

(c) 

Figure 7-12 Convergence of Power Function Parameters D0; (a) Seed Set 1, (b) Seed Set 2, and 

(c) Seed Set 3 – Pavement Structure on a Bedrock 
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(a)                                                                      (b) 

 

(c) 

Figure 7-13 Convergence of Power Function Parameters D1; (a) Seed Set 1, (b) Seed Set 2, and 

(c) Seed Set 3 – Pavement Structure on a Bedrock 
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(a)                                                                      (b) 

 

(c) 

Figure 7-14 Convergence of Power Function Parameters m; (a) Seed Set 1, (b) Seed Set 2, and 

(c) Seed Set 3 – Pavement Structure on a Bedrock 
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(a)                                                                      (b) 

 

(c) 

Figure 7-15 Convergence of Base Modulus; (a) Seed Set 1, (b) Seed Set 2, and (c) Seed Set 3 – 

Pavement Structure on a Bedrock 
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(a)                                                                      (b) 

 

(c) 

Figure 7-16 Convergence of Subgrade Modulus; (a) Seed Set 1, (b) Seed Set 2, and (c) Seed Set 

3 – Pavement Structure on a Bedrock 
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7.2.2. Multi-Temperature Backcalculation 

7.2.2.1. Theoretical Development of Generalized Power Function Relationship at Multiple 

Temperatures 

The purpose of the theoretical backcalculation at multiple temperatures is to study if the dynamic 

modulus mastercurve can be obtained for a broader range of time (or frequency) and more 

accurately from the FWD time histories. As such, it is important to understand how the 

generalized power function used in ViscoWave behaves theoretically under the time-temperature 

superposition principle. The theoretical development is provided in this section of the report in a 

brief manner.  

Rewriting Equation (3-27) given for the generalized power function in terms of the reduced time, 

, results in: 

  mDDD   10      
(7-18) 

Upon substituting the Equation (3-23) into above, the following is obtained. 

  mT
m

T

tDD
a

t
DDD 








 1010    (7-19) 

where, 
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 
 mT

T

Ta

D
TD 1

1       (7-20) 

The above equations reveal that D1 is the only parameter affected by the change in material 

temperature and the other parameters D0 and m remain constant irrespective of temperature. In 

addition, the above equations also indicate that if the creep compliances of a viscoelastic material 

at multiple temperatures are given in terms of generalized power functions, the shift factors can 

easily be obtained through Equation (7-20), since the parameter m does not vary with 

temperature.  

7.2.2.2. Reference Pavement Structures and Seed Values for Backcalculation 

For the multiple temperature backcalculation exercise, the FWD time histories were first 

obtained for a couple of pavement structures (with and without halfspace) exposed to four 

different temperatures: 0⁰C, 10⁰C, 20⁰C, and 40⁰C.  The D1 values for the viscoelastic asphalt 

material corresponding to these temperatures are summarized in Table 7-5 along with the other 

properties used for generating the time histories.  Figure 7-17 and Figure 7-18 show the shift 

factors that were used to obtain the D1 values and the creep compliance curves at the above 

mentioned temperatures, respectively. The properties of the base and subgrade layers with and 

without a halfspace are summarized in Table 7-6. The pavement structures were imposed to a 

half-sine load with the same characteristics provided in the previous section for the single 

temperature backcalculation. The surface deflection time histories were again obtained at radial 

distances of 0 in., 8 in., 12 in., 18 in., 24 in., 36 in., and 60 in. from the center of the loading plate.  
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Table 7-5 Asphalt Properties Used for Reference Pavement Structures 

Temp(⁰C) D0 (1/psi) D1 (1/psi) m 
Poisson’s 

Ratio 

Density 

(pcf) 

Thickness 

(in.) 

0 

1.01E-07 

7.52E-06 

0.27 0.35 145 6 
10 1.74E-05 

20 3.82E-05 

40 1.57E-04 

 

  

Figure 7-17 Time-Temperature Shift Factors 

 

Figure 7-18 Creep Compliance Curves at Multiple Temperatures 
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Table 7-6 Base and Subgrade  Properties Used for Reference Pavement Structures 

 Layer 
Elastic Modulus 

(psi) 
Poisson’s Ratio Density (pcf) Thickness (in.) 

Base 30,000 0.4 125 12 

Subgrade 15,000 0.45 100 ∞
1
/60

2
 

Note 1: For pavement with a halfspace  

Note 2: For pavement with a bedrock 

Table 7-7 summarizes the seed values used for backcalculation. Although the D1 parameter was 

dependent on temperature, a single seed value was assigned regardless of temperature.  

Table 7-7 Seed Values Used for Backcalculation 

Variable Temperature (⁰C) Seed Value 
Percent Increase from 

True Value 

D0 (1/psi) N/A 1.52E-06 50.0% 

D1 (1/psi) 

0 

8.71E-06 

15.9% 

10 -50.0% 

20 -77.2% 

40 -94.5% 

m N/A 0.4 50.0% 

EBase (psi) N/A 15,000 -50.0% 

ESubgrade (psi) N/A 22,500 50.0% 

 

7.2.2.3. Backcalculation Results for Pavement Structure With a Halfspace 

Figure 7-19 shows the deflection time histories of the reference pavement for all temperatures. 

The seed deflection history that was used regardless of temperature is shown in Figure 7-20. It is 
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also noted that the seed deflection time histories resemble the shape of the true time histories 

reasonably well. 

 

(a)                                                                      (b) 

 

(c)                                                                      (d) 

Figure 7-19 Simulated FWD Deflection Time Histories for (a) 0⁰C, (b) 10⁰C, (c) 20⁰C, and (d) 

40⁰C 
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Figure 7-20 Seed FWD Deflection Time History for All Temperatures 
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used throughout. Figure 7-21 shows the history of RMSE and Table 7-8 summarizes the 
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successful, with the percent errors for all variables being less than 0.001 percent expect for the m 
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Figure 7-21 History of Root Mean Square Error 

Table 7-8 Backcalculated Values and Percent Error – Pavement on a Halfspace 

Variable 
Temperature 

(⁰C) 
True Value 

Backcalculated 

Value 

Absolute Percent 

Error 

D0 (1/psi) N/A 1.01E-07 1.01E-07 <0.001% 

D1 (1/psi) 

0 7.52E-06 7.52E-06 <0.001% 

10 1.74E-05 1.74E-05 <0.001% 

20 3.82E-05 3.82E-05 <0.001% 

40 1.57E-04 1.57E-04 <0.001% 

m N/A 0.27 0.27 1.1% 

EBase (psi) N/A 30,000 30,000 <0.001% 

ESubgrade (psi) N/A 15,000 15,000 <0.001% 

 

The convergence history of the viscoelastic parameters are shown in Figure 7-22 while those for 

the base and subgrade layers are shown in Figure 7-23. 
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(a)                                                                      (b) 

 

(c) 

Figure 7-22 Convergence of Power Function Parameters (a) D0, (b) D1, and (c) m – Pavement 

Structure on a Halfspace 
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 (a)                                                                      (b) 

Figure 7-23 Convergence of (a) Base and (b) Subgrade Layer Moduli – Pavement Structure on a 

Halfspace 

7.2.2.4. Backcalculation Results for Pavement Structure on a Bedrock 
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(a)                                                                      (b) 

 

(c)                                                                      (d) 

Figure 7-24 Simulated FWD Deflection Time Histories for (a) 0⁰C, (b) 10⁰C, (c) 20⁰C, and (d) 

40⁰C 
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Figure 7-25 Seed FWD Deflection Time History for All Temperatures 

The backcalculation converged and was terminated after 26 iterations. As expected, the 7 

additional iterations when compared to the case with a halfspace, are believed to be due to the 

seed deflection time histories not showing any free vibration (i.e., the shape of the deflection 

time histories not resembling the true ones). As was the case with the pavement on a halfspace, 
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over to the Levenberg-Marquardt method. Figure 7-26 shows the history of RMSE and Table 7-9 
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Figure 7-26 History of Root Mean Square Error 

Table 7-9 Backcalculated Values and Percent Error – Pavement on a Halfspace 

Variable 
Temperature 

(⁰C) 
True Value 

Backcalculated 

Value 

Absolute Percent 
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10 1.74E-05 1.74E-05 <0.001% 

20 3.82E-05 3.82E-05 <0.001% 

40 1.57E-04 1.57E-04 <0.001% 

m N/A 0.27 0.27 1.1% 

EBase (psi) N/A 30,000 30,000 <0.001% 

ESubgrade (psi) N/A 15,000 15,000 <0.001% 

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20 25 30

R
M

S
E

 (
m

il
s)

Number of Iterations



121 

 

 

(a)                                                                      (b) 

 

(c) 

Figure 7-27 Convergence of Power Function Parameters (a) D0, (b) D1, and (c) m – Pavement 

Structure on a Bedrock 
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(a)                                                                      (b) 

Figure 7-28 Convergence of (a) Base and (b) Subgrade Layer Moduli – Pavement Structure on a 

Bedrock 
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CHAPTER 8 - FIELD BACKCALCULATION USING VISCOWAVE 

In this chapter, the ViscoWave algorithm and the optimization routines described in previous 

chapters will be used for backcalculating the pavement properties using the FWD data collected 

in the field and the results will be compared to those obtained in the laboratory.  

8.1. Test Site and Protocol 

The tested pavement was part of the Accelerated Pavement Test (APT) tracks in the State 

Materials Office (SMO) facility of the Florida Department of Transportation (FDOT). The 

pavement consisted of a 6.5 in. asphalt surface layer on top of a 10 in. limerock base. The asphalt 

mixture included a PG-76-22 polymer modified binder which is typically used in regular FDOT 

projects. The FWD testing was conducted in June of 2010 and the pavement cores were sampled 

immediately after the FWD tests. According to the measurements made at several monitoring 

wells installed around the APT facility, it was found that the ground water table at the time of 

FWD testing was located approximately 11.0 ft to 11.5 ft. below the surface.  

8.2. Laboratory Dynamic Modulus Test  

As was mentioned in Chapter 4 of the report, although the uniaxial tension or compression test is 

desirable for testing of the viscoelastic materials, the problem associated with size requirements 

(4 in. diameter and 6 in. thickness) frequently makes it impossible, especially on cored mixtures 

from thin asphalt layers. As an alternative to the uniaxial test, the dynamic modulus tests were 
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conducted in the IDT mode (as described in Chapter 4), with the adoption of the dynamic 

modulus testing procedure used in AASHTO TP 62. 

A total of four field cores obtained from the test track and were delivered to the FDOT’s asphalt 

laboratory. Each core was carefully cut to yield two IDT specimens (one of each from the top 

and the bottom lifts) with a diameter of 6.0 in. and a thickness of 1.5 in. To allow for generating 

the viscoelastic mastercurve, the dynamic modulus test was conducted at three distinct 

temperatures: 0⁰C, 10⁰C, and 20⁰C. For each temperature, the specimens were placed in the 

target temperature for at least 12 hours prior to the IDT tests. For each temperature, the dynamic 

modulus tests were then conducted at five frequencies: 0.1 Hz, 0.5 Hz, 1.0 Hz, 5.0 Hz, and 10.0 

Hz. The resulting IDT dynamic modulus data was analyzed as described in Chapter 4 and the 

mastercurve was constructed according to the procedures shown in Chapter 3. Figure 8-1 shows 

the dynamic modulus mastercurve for both the top and the bottom lift at a reference temperature 

of 10⁰C while the corresponding shift factors are shown in Figure 8-2. 
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Figure 8-1 Laboratory Dynamic Modulus Mastercurves 

 

Figure 8-2 Laboratory Time-Temperature Shift Factors 

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

1.0E-06 1.0E-03 1.0E+00 1.0E+03 1.0E+06

|E
*
| (

k
si

)

Frequency (Hz)

Top

Bottom

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20 25

L
o
g
(S

h
if

t 
F

a
ct

o
r)

Temperature (⁰C)

Top

Bottom



126 

 

8.3. FWD Backcalculation Using ViscoWave 

The load and deflection time histories measured from the FWD is shown in Figure 8-3. Similar 

to the deflection time histories shown in Figure 7-19d, it is noted that due to the increased 

temperature of the asphalt at the time of FWD testing (58⁰C), the deflection measured at the 

center of the load plate did not return to zero.  

 

(a)                                                                      (b) 

Figure 8-3 Measured FWD (a) Load and (b) Deflection Time Histories 

The backcalculation was carried out in two folds: (1) with a 3 layer pavement system and (2) 

with a 5 layer pavement system to incorporate a ground water table at 11.3 ft. below the 
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Table 8-1 Assumed Pavement Properties for Backcalculation 

 Layer Poisson’s Ratio Density (pcf) 
Thickness (in.) 

3 Layer System 5 Layer System 

Asphalt 0.35 145 6.5 

Base 0.35 125 10 

Subgrade 0.40 115 ∞ 12 

Emb. 1
1
 0.45 110 N/A 108 

Emb. 2
1
 0.45 110 N/A ∞ 

Note 1: Only applicable to the 5 layer system. 

Table 8-2 Seed Values Used for Backcalculation 

Variable 
Seed Value 

3 Layer System 5 Layer System 

D0 (1/psi) 5.00E-06 

D1 (1/psi) 2.00E-05 

m 0.60 

EBase (psi) 80,000 

ESubgrade (psi) 32,000 

EEmb-1 (psi)
1
 

N/A 
30,000 

EEmb-2 (psi)
1
 30,000 

Note 1: Only applicable to the 5 layer system. 

8.3.1. Backcalculation Results from the 3 Layer System 

The backcalculation using the 3 layer system converged after 31 iterations with a terminal RMSE 

value of 0.23 mils. The history of the RMSE is shown in Figure 8-4 and the backcalculated 

values are summarized in Table 8-3.  
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Figure 8-4 History of Root Mean Square Error for the 3 Layer System 

Table 8-3 Backcalculated Values from 3 Layer System 

Variable Backcalculated Value 

D0 (1/psi) 1.90E-06 

D1 (1/psi) 1.02E-04 

m 0.64 

EBase (psi) 32,732 

ESubgrade (psi) 62,225 
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8-5 which clearly shows that the backcalculated time histories are more comparable to the 

measured histories (Figure 8-3b) than the seed histories. Figure 8-6 and Figure 8-7 show the 

convergence histories for the viscoelastic parameters of the asphalt and the unbound layer 

moduli, respectively.  
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(a) 

 

(b) 

Figure 8-5 Simulated Time Histories for the 3 layer System with (a) Seed and (b) Backcalculated 
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(a)                                                                      (b) 

 

(c) 

Figure 8-6 Convergence of Power Function Parameters (a) D0, (b) D1, and (c) m – 3 Layer 

System 
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(a)                                                                      (b) 

Figure 8-7 Convergence of Unbound Pavement Layer Moduli for the 3 Layer System (a) Base 

and (b) Subgrade  

Figure 8-8 shows the seed and backcalculated creep compliance functions graphically. As can be 
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8-9a and Figure 8-9b show that the backcalculated dynamic modulus master curve is in good 

agreement with those obtained from the laboratory.  

 

Figure 8-8 (a) Seed and (b) Backcalculated Creep Compliance Functions from 3 Layer System 

 

(a)                                                                      (b) 

Figure 8-9 Backcalculated Dynamic Modulus Mastercurves at Reference Temperatures (a) 58⁰C 

and (b) 10⁰C – 3 Layer System 
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8.3.2. Backcalculation Results from the 5 Layer System 

The backcalculation using the 5 layer system converged after 20 iterations with a terminal RMSE 

value of 0.18 mils. Compared to the 3 layer backcalculation results, this means that the 5 layer 

backcalculation resulted in a decrease of 0.05 mils in RMSE even with 11 less iterations. The 

history of the RMSE is shown in Figure 8-10 and the backcalculated values are summarized in 

Table 8-4.  

 

Figure 8-10 History of Root Mean Square Error for the 5 Layer System 
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Table 8-4 Backcalculated Values from 5 Layer System 

Variable Backcalculated Value 

D0 (1/psi) 2.34E-06 

D1 (1/psi) 1.20E-04 

m 0.69 

EBase (psi) 29,199 

ESubgrade (psi) 204,522 

EEmbankment_1 (psi) 44,390 

EEmbankment_2 (psi) 155,565 

 

The time histories using the seed and the backcalculated values are shown in Figure 8-11. Again 

the backcalculated time histories clearly show the delayed recovery of the pavement system 

which is also seen in the measured time histories (Figure 8-3b). Figure 8-12 and Figure 8-13 

show the convergence histories for the viscoelastic parameters of the asphalt and the unbound 

layer moduli, respectively.  
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(a) 

 

 (b) 

Figure 8-11 Simulated Time Histories for the 5 layer System with (a) Seed and (b) 

Backcalculated Values 
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(a)                                                                      (b) 

 

(c) 

Figure 8-12 Convergence of Power Function Parameters (a) D0, (b) D1, and (c) m – 5 Layer 

System 
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(a)                                                                      (b) 

 

(c)                                                                      (d) 

Figure 8-13 Convergence of Unbound Pavement Layer Moduli for the 3 Layer System (a) Base, 

(b) Subgrade, (c) Embankment 1, and (d) Embankment 2 
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Figure 8-14 shows the creep compliance functions plotted using the seed and the backcalculated 

parameters. It is noted that although the backcalculated creep compliance shows increased 

viscoelastic behaviour when compared to the seed creep compliance, the increased viscoelastic 

creep behaviour was slightly higher than the one backcalculated using the 3 layer system.   

The backcalculated creep compliance was again converted to the dynamic modulus through the 

use of Prony series. The dynamic modulus mastercurves at 58⁰C and 10⁰C are shown in Figure 

8-15. Although the mastercurve plotted for 58⁰C (Figure 8-15a) may seem fairly reasonable, the 

mastercurve at 10⁰C (Figure 8-15b) clearly shows that the backcalculated dynamic modulus 

underestimates the laboratory dynamic modulus.  

Although the backcalculation with a 5 layer system resulted in a lower RMSE than the 3 layer 

system, the 3 layer backcalculation showed better agreement with the laboratory results for the 

asphalt modulus.  
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Figure 8-14 (a) Seed and (b) Backcalculated Creep Compliance Functions from 5 Layer System 

   

(a)                                                                      (b) 

Figure 8-15 Backcalculated Dynamic Modulus Mastercurves at Reference Temperatures (a) 

58⁰C and (b) 10⁰C – 5 Layer System 
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CHAPTER 9 - CONCLUSIONS AND RECOMMENDATIONS 

Due to the viscoelastic nature of asphalt materials and the dynamic nature of pavement structures, 

it is important to consider both effects simultaneously in modeling of asphalt pavements. In this 

study, a new computational algorithm, namely ViscoWave, has been developed and implemented 

for modeling the pavement dynamics and viscoelasticity under an impact load generated by a 

Falling Weight Deflectometer (FWD).  The primary advantage of the proposed solution over 

some of the existing solutions is that it uses continuous integral transforms (Laplace and Hankel 

transforms) that are more appropriate for the FWD time histories whose signal characteristics are 

transient, nonperiodic, and truncated.  

The theoretical development of ViscoWave follows similar steps to those used for the 

development of the spectral element method but in place of the discrete transforms adopted in 

the spectral element method, ViscoWave utilizes the continuous integral transforms (namely 

Laplace and Hankel transforms) that are more appropriate for transient, nonperiodic signals. A 

comparison of the ViscoWave results with other existing solutions such as the Finite Element 

Analysis (FEA) and spectral element method indicated that ViscoWave is capable of simulating 

the viscoelastic and dynamic effects of asphalt pavements.  

Preliminary backcalculation efforts were conducted by adopting the Gauss-Newton and the 

Levenberg-Marquardt methods as the optimization routines. Both the theoretical and field 

backcalculation indicate that the new solution (ViscoWave) has great potential for 

backcalculation, which has remained a major challenge in pavement engineering. Nonetheless, it 
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is recognized that the field data presented in this report only include the FWD data from a single 

temperature.  Additional effort is needed to look into the FWD data collected at multiple 

temperatures.  

It is also recommended that future work be conducted to improve the dynamic backcalculation 

using ViscoWave with different optimization routines that may show improved efficiency. It is 

also noted that the backcalculation routines used for this study fall into the category of 

unconfined optimization, meaning that the backcalculated variables were allowed to take on any 

value (even negative values).  Future work should include looking into the use of confined 

optimization routines which may increase the efficiency and reliability of the backcalculation.   
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