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ABSTRACT

DEVELOPMENT AND ANALYSIS

OF AN .

OPTIMAL BOUNDING ELLIPSOID ALGORITHM

USING STOCHASTIC APPROXINIATION

By

Ming-Shea Liu

Set-membership-based (SM) techniques provide an alternative to conventional system iden-

tification algorithms. This research is concerned with a class of SM algorithms known as

the optimal bounding ellipsoid (OBE) algorithms which combines the weighted least square

error minimization approach with a bounded error constraint. More specifically, OBE al-

gorithms focus on finding an optimal hyper-ellipsoidal region for thefeasible set when the

additive model noise is bounded. Previous work has shown that OBE techniques have great

potential in many applications involving parametric modelling.

The published OBE algorithms, however, either do not include a formal convergence

proof or do not show interpretable geometrical meaning. In this research, a modified OBE

algorithm, which is both interpretable and convergent, is introduced. This algorithm is

referred to as set-membership stochastic approximation (SM-SA) algorithm because of its

resemblance to the stochastic approximation (SA) method developed by Robbins and Monro

in 1951.

Recently, a general class of OBE algorithms including all methods published to date, is

unified into a single framework called the unified OBE (UOBE) algorithm. UOBE is based

on generalized weighted recursive least squares in which very broad classes of “forgetting

factors” and data weights may be employed. Different instances of UOBE are distinguished



by their weighting policies and the criteria for determining optimal weight values. SM-SA is

a special case of UOBE, and, through the analysis of this research and the paper by Deller,

Nayeri, and Krunz, the convergence properties of SM-SA, which will be introduced later,

can be applied to the UOBE framework.

In this dissertation, the updating criteria and optimal weights for shrinking feasible

sets for SM-SA are first analyzed. Then asymptotic properties and performance of SM-SA

are discussed. Simulation results for different SM algorithms and comparisons to conven-

tional recursive least squares are also examined. Finally, the UOBE formulation and its

convergence properties are introduced.
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Chapter 1

Introduction and Background

“Man creates models of his natural and man-made environments to understand and explain

them better and as prelude to action” [8]. Indeed, from social science to engineering and

natural science, modeling plays an important roll to help humankind describe functions of

processes and to predict future actions. For example, in economics, modeling is used to

study inflation, to predict the trends of stock markets, and to maximize profits on invest-

ments. In engineering applications, modeling can be used to analyze the characteristics

of a process, optimize the performance, and study the functions and dynamics before a

large plant is actually built and large amounts of money and effort are invested. In many

branches of science, modeling is used as an aid to describe and understand reality.

The term “system identification” generally refers to the determination of a mathematical

model for a system or a process by observing its input-output relationships. Based on the

model structures that are used, system identification methods are generally classified into

two categories: Nonparametric and parametric. A nonparametric model is described by

a curve, function, or table. Impulse responses and frequency diagrams are two examples

of a nonparametric model. In this dissertation, we will consider the parametric model

only. Such models are characterized by a parametric vector. Typical parametric models are

auto-regressive with exogenous input (ARX), auto—mgressive-moving-average with exogenous

input (ARMAX) [16], and state-space structures.

For modeling engineering systems and industrial processes in practice, some basic char-

acteristics of the system, such as linearity and stability, are assumed to be known. Further-



more, in many cases, we assume to have basic knowledge about the mathematical structure

of the system such as the order of the system, the type of the model, and so on, so that it

is possible to derive a specific mathematical model of the system dynamics. Consequently,

only a set of parameters in the model equation are left to be determined. In this research,

we derive a new algorithm for identifying model parameters which has well-analyzed con—

vergence properties and an intuitively meaningful optimization criterion. This algorithm is

applicable when the system is corrupted by additive and bounded noise.

1.1 Real-Time Identification and the Recursive Least

Square Estimator

In classical system design, modeling is accomplished once during the design stage. This is

called off-line identification. In most adaptive systems, on-line or recursive identification

is desirable to allow optimum adaptation in the face of environmental uncertainty and

changing environmental conditions.

From computational point of view, the memory requirement for recursive estimators is

quite modest since not all the data are stored. In off-line identification, however, all the

previous data have to be memorized. I

A variety of well-known recursive techniques such as least square error (LSE), maximum

likelihood, instrumental variables [16], and stochastic approximation [1] have been used to

identify system parameters in real time. Among these techniques, the LSE method is most

popular because of its simplicity and well-understood criteria.

To review the LSE method, consider a simple linear regression model

y(t) = ITO)"

where x(t) is an n-vector of known quantities and 0 is an n-vector of unknown parameters.

The LSE estimate of 0 at time n is obtained by minimizing the cost function

n

v<é> = g): (:10) -x"'é)”
t=1



Recursive least squares (RLS) [16] estimates are obtained through an on-line iterative com-

putation of the off-line LSE estimates. Weighted recursive least square (WRLS) is a variation

of RLS which minimizes

me) = g :1 w, (y(t) — xT9)2

where {wn} is a weighting sequence.

1.2 Introduction to Stochastic Approximation

Stochastic approximation algorithm is concerned with the problem of estimating the pa-

rameters of a linear system by using the noisy observations.

Let f : 32’ -+ it” be an unknown function with a unique zero a, i.e.

f(8) = 0 (1-1)

We assume that f() can be observed at any x E 31'. Stochastic approximation (SA) refers

to a general class of recursive algorithms for estimating an equation of the form (1.1) when

the observation f() is corrupted by random noise.

The origins of SA can be traced back to a paper by Robbins and Monro [1] in 1951.

This paper is concerned with the problem of estimating the roots, say a, of an unknown

regression function f(x), which is the mean value of an observable random variable Z(x).

Robbins and Monro prove that a can be estimated recursively by

a'n-H = in + an(éfl) (1'2)

where 1,, is a sequence of positive scalars that converges to zero. The reason why {1"}

must converge to zero is because convergence of a}, can take place only if the product

1,,Z(5,.) = 0. Since Z(in) 7’: 0 with probability one, 1,, must be zero. This ensures that the

noise is rejected by paying less and less attention to the noisy observations.

Robbins and Monro state the sufficient conditions for convergence of the estimate a to



the true parameter in probability [1]:

1,, z 0

2:33:11, = 00 (1-3)

31.10,)? < 00.

Any sequence {l,,};,"i__o which satisfies (1.3) is called a sequence of type 1/n. A common

choice for the sequence {1"} is 1,, = 1 /n. Ljung [12] further weakened the second condition

in (1.3) to

00

EU")? < oo

n=1

for some p > 1. Blum [2] (1954) extended Robbins and Monro’s theorem to the multidi-

mensional case.

In the next two sections we will briefly review the development of “bounding ellipsoid”

algorithms and investigate the problems associated with the previous work on these meth-

ods. We will then demonstrate that these problems can be overcome by an SA formulation.

1.3 Introduction to Set-Membership Theory

Set-membership (SM) identification refers to a class of recursive techniques for estimating

parameters of linear systems or signal models under a prior information that constrains

the solutions to certain sets [25]. In contrast to conventional system identification schemes

(e.g. maximum likelihood, LSE, etc.) which yield point estimates of the parameters, an SM

algorithm yields sets of parameter estimates which are compatible with noise constraints.

These sets are generally called “membership sets.” Based on certain set-theoretic checking

criteria, SM algorithms select and use only the useful data to update the parameter estimates

and refine the membership set. When data do not help refine these membership sets, the

effort of updating the parameters can be avoided.

SM theory was pioneered by Krasovski [3], Schweppe [4], Witsenhausen [5], and Bert-

sekas and Rhodes [7] in the late 19603, in the control and system science domain for estimat-

ing the state of a linear dynamic system. The optimum estimate is the smallest time—varying



ellipsoid which contains the unknown system states.

A major appeal of parameter set estimation is that it does not rely on the availability of

a probabilistic description of the uncertainty affecting the model. It simply delineates the

range of the parameter space yielding model-output values within specified ranges about

the observed output samples. On the other hand, since the estimates are updated only

when the input data contain sufficient information, some SM algorithms are more efficient

in some applications.

In recent years, SM-based signal processing is receiving considerable attention and is

becoming increasingly popular around the world as is evident from the extensive literature

on this topic [14, 20, 23, 26, 29, 31, 36, 39]. This research is restricted to the class of

algorithms known as optimal bounding ellipsoid (OBE) algorithms which follow a bounded

error constraint.

The original OBE algorithm is attributable to Fogel and Huang [14] in 1982. Let us refer

to this algorithm as “F-H/OBE.” Deller [25] and Deller and Luk [26] have reformulated the

F-H/OBE algorithm so that the center of the hyper-ellipsoid is exactly the conventional

WRLS solution. This algorithm is referred to as set-membership weighted recursive least

square (SM-WRLS) algorithm in order to distinguish it from the F-H/OBE algorithm. The

main deficiency of these algorithms is the lack of well-understood convergence properties.

This problem led to the development of the modified OBE algorithm by Dasgupta and

Huang in 1987. We will refer to this algorithm by “D-H/OBE.”

Recently a general class of OBE algorithms, including all methods published to date

as well as the algorithm presented in this work, is unified into a single framework called

the unified OBE (UOBE) algorithm [38, 39]. Historically, this research on the “SM-SA”

(presented in this thesis) algorithm, and that of Krunz on the “Dual-SM-WRLS” algorithm

[33, 34], precedes and contributed to the development of UOBE. We shall later discuss the

fact that SM-SA is an important special case of UOBE and show how the many of the

results of this work apply to all algorithms in broader UOBE formulation in Chapter 5.

Another OBE—like technique called optimal volume ellipsoid (OVE) algorithm was pro-

posed more recently [31, 32] by Cheung, Yurkovich, and Passino to estimate parameter sets.



It is proven that the algorithm is truly optimal in the sense that the volume of ellipsoid is

smallest at each recursive computation. Simulation studies in [31, 32] compare the perfor-

mance of OVE and F-H/OBE. They show that OVE gives tighter parameter bounds. The

estimates given by OVE, however, do not show significant improvement over the estimates

given by F-H/OBE.

1.4 Review of Previous Work on OBE Algorithms

In principle, F-H/OBE and SM-WRLS are the same in spirit. However, SM-WRLS has a

structure which is simpler and more elegant than the F-H/OBE because of the choice of the

weighting sequence (see [38, 39]). Thus we begin with a review of SM-WRLS': similar results

on F-H/OBE and D-H/OBE are found in [38, 39]. Note that the theoretical development

of SM-WRLS can handle a complex vector, multiple-input—multiple-output (MIMO) model,

we consider only real scalars here for simplicity [28]. Let

P 9

yn = Zfiyn-i + Zgjun-j + ”n (1'4)

i=1 j=0

: 9.1.x” + 1),, (1.5)

where O“ = [fl, . . .,f,,go, . . .,g,,], x: = [y,,_1, . . ., ,,_p,u,,,u,,-1, . . .,u,,..,,], y,, and u,, are

real measurable outputs and inputs, respectively, and v,, is an unknown noise process. Let

m = p + q + 1. We assume that m > 1 and, for each time n, v,, is known to be bounded

according to

1),”, < 7,, (1.6)

where {7“} is a known positive sequence.

Let w(n) be a parameter set at time n such that all 9 e w(n) are feasible parameter

estimates consistent with the error bounding in (1.6). In conjunction with the model of

 

‘Generalized results for the more general weighting policies of UOBE are found in [38, 39] to which the

present research contributed.



form (1.5), w(n), which is a “hyper-strip” region, can be expressed as

w(n) = {0 : 0 E 52ma(l’n " aTxn)2 S 7n}

Intersection of these sets over a given time range t E [1, n] form convex polytopes of feasible

parameters

fl

52(1).) = 0 10(1). (1.7)

i=1

In general, 0(n) is an irregular convex set that is difficult to describe and track analytically.

In conjunction with the WRLS processing, however, (Z(n) can be shown to be contained in

a hyper-ellipsoid superset 5(n) [25]

 II(n) = [a : (o — 9,.)TC(")(0 — 0,.) g 1}
Nu

where 0(a) is the weighted covariance matrix,

C(n) = C(n — 1) + 1,3:an (1.8)

5,, is a scalar quantity,

n 2

Kn = 0£C(n)0,, + z: /\,,7,, ( — {1)

i=1 n

and G,,, the center of 5(a), is the WRLS estimate at time n using the weights {A332, and

can be computed recursively using

l
l
l
>

C(n) P'l(n)

G,, = x£P(n—l)x,,

5n = y» - 93.11:"

AnP(n - 1)x,,x3:P(n — 1)

1 + AnGn

 P(n) = P(n — l) —

0,, = 0,,_1+z\,,P(n)x,,£,,



1,53,

1 + AnGn
Kn = 511—1 + A1177; —

The relationship between fi(n) and 9(a) for two dimensional case is shown in Fig. 1.1.

 

 

5‘2 (2)

 
(0(3)

 

 

  
Figure 1.1. Relationship between 17(n) and Q(n) for the two dimensional-case.

The SM-WRLS algorithm begins with a large ellipsoid, 17(0), which contains all admis-

sible values of the model parameter vectors. The objective is to employ the weights An to

sequentially minimize the volume of the ellipsoid defined by

name} 2 deuce-1(a)}



It has been shown that the optimal weight A; is the unique positive root of the quadratic

equation [14, 38]

a,,AE, + b,,A, + c,, = 0 (1.9)

where

an 2 (m — 1)G:7n

b,, = 2mG,,7,, — Kn-1G,2, — G,,‘yn + 6:0,, (mm

2-
ncu = min — me "rt—1G7:-

When the roots of equation (1.9) are both negative, the data do not contain useful infor-

mation and hence updating can be avoided. Since a,, is always positive, if c,, is negative

then there exists a unique positive root for (1.9). When c,, _>_ 0, b,, is nonnegative because

according to (1.10)

‘ b2.“ = (2m — 1)G,,7,, + 6,2,G,, — a,,..le,

17’? 2 mGnn + eiGn‘ — ten-10?.

= G,,(m‘yn + £3, — Kn-1G,,)

Z G,,(m'yn - ms: — n,,-1G,,)

= 0,612,} o.

5..

Therefore both roots are negative. So there is no optimal weight at this time and updating

can be avoided. Thus the estimate: are updated if and only if c,, < 0. The sign of c,, serves

as an indication for updating. Similar result for trace minimization in which optimization

is applied to p,{§(n)} .9— tr{n,,C"1(n)} can be found in [14, 38, 39].

1.5 Motivation for Developing the New Algorithm

Although the SM-WRLS algorithm and related algorithms have been applied in many areas,

it is difficult to formally analyze the convergence properties. From simulation results, we

have found that with F-H/OBE and SM-WRLS the optimal weight A; might drift to infinity

as more data are used. The reason for this anamoly is as follows: The elements of the
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weighted covariance matrix C(n) in (1.8) may become very large when more data are used.

So, relatively speaking, the weight A; in (1.8) must be large enough in order for x,, to make

a difference and to effectively shrink the volume of ellipsoid. To illustrate, we consider an

AR(2) system given by

y,, = 1.6yn-I - 0.68yn_2 + v,,. (1.11)

v,, is a colored noise sequence generated by passing a white sequence through a Butterworth

bandpass filter of order 14 with passband edge frequencies at w = 1.75 rad and 2.75 rad.

The passband attenuation is -ldB and stopband attenuation is -60dB. This system is stable

since the poles are located at —0.8 :l: 0.23' in the z-plane. Figure 1.2 shows that the gradual

growth of the weights as more data are used. In this situation, even if the estimate 0,,

approaches the true parameter asymptotically, the large weights still make this algorithm

difficult to implement on finite word-length machines. This is just an example in which the

optimal weight may diverge. In order to deal with the convergence issues, Dasgupta and

Huang introduced the D-H/OBE algorithm [20] in 1987. In this algorithm, the updated

covariance matrix is a convex combination of C(n — 1) and the new data outer product,

C(n) = (1 — A;)C(n — 1) + A;x,,x;.

The number (1 — A;) is referred to as a “forgetting factor” by Dasgupta and Huang. In a

sense, this D-H/OBE represents significant progress in OBE theory because it involves a

formal convergence proof for the weights A;. However, the optimal weight A; in D-H/OBE

is obtained by minimizing 14,, at each n. Since the magnitude of 5,, is not clearly related

to the size of the membership sets (see [30, 38, 39]), this makes the D-H/OBE algorithm

difficult to interpret geometrically.

Therefore, the objectives of this research are:

e To develop a new algorithm to remedy the trade-off between interpretability in weight-

ing strategy and convergence issues.

0 To provide a convergence proof for the new algorithm.
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Figure 1.2. The weights become very large when more data are used.
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e To perform simulations to study and compare the performance of the new algorithm

with that of existing methods.

In the next chapter, the new algorithm “set-membership stochastic approximation” (SM-

SA) is derived for an ARX model with bounded noise. SM-SA is developed in a systematic

way to accommodate bounded weights and covariance matrix. The relationship of SM-SA to

the stochastic approximation approach is investigated. If the weights of SM-SA are chosen

to be 1 /n, then SM-SA is exactly the RLS estimator.

In Chapter 3, the convergence properties of SM-SA are discussed. First we show that

the sequence of optimal weights {A;} converges to zero as it approaches infinity. The

convergence of the weights to zero is important because it is a good indication that the

estimates converge. This is so since we pay less attention to noisy observations when A;

is close to zero. The main point in this chapter is the convergence of the ellipsoid and its

center, that serves as the estimate of the SM-SA. For RLS, the performance of the estimator

is highly dependent on the statistics of the noise sequence. In SM-SA we will see that the

dependency is much less than that of RLS.

Simulation studies are presented in Chapter 4. In light of the theory and analysis

established in the previous two chapters, we will examine the performance of SM-SA excited

by different noise sequences.

The UOBE framework is introduced in Chapter 5. We will show that the convergence

properties of SM-SA can be applied to the more general weighting policies of UOBE.

Chapter 6 lists the conclusions of this research. We will also suggest some possible

directions for future study.



Chapter 2

The Development of the SM-SA

Algorithm

In the previous chapter, we have observed that in SM-WRLS, the weights A; may become

very large, particularly for large n, leading to huge numbers in computations and numerical

instabilities. In this work, we will show a feature that tends to promote convergence of the

ellipsoid by preventing the “drift” of the covariance matrix toward infinity. In this chapter,

we will start deriving the SM-SA algorithm by modifying SM-WRLS so that the covariance

matrix is normalized to the sum of the weights. We will develop the optimality test based

on the minimum volume criterion and find the similarities between SM-SA and SM-WRLS.

2.1 The Set-Membership Stochastic Approximation Algo-

rithm

We begin with an ARX model given in (1.5) and let the noise bound be the same as in

(1.6). For convenience, we rewrite the system here:

9 q T

yn = Zfil/n—i + zgjun-j '1' ”1: = a. xn '1’ ”a (2.1)

i=1 j=0

In an unweighted RLS algorithm, the problem of numerically unstable quantities can be

eliminated by normalizing the covariance matrix to the time n, that is, by replacing C(n)

by (1/n)C(n). In principle, if the sequence {x,,} represents a stationary stochastic process

13
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with appropriate ergodicity properties, then (1/n)C(n) will tend to E [anZ]. Clearly,

however, this strategy may not work for weights determined by SM considerations as C(n)

may grow much faster than n. In the SM-SA approach, SM-WRLS is modified so that the

covariance matrix is normalized to the sum of the weights.

Let AfM be the optimal weight of SM-WRLS at time n. Define

2 21,51" = 2,.., + AS“, 20 2 o

t=1

and

R(n) §;C(n)

= fl; [C(n — 1) + AfonXZ]

= 2i [2,,_,n(n — 1) + AfonXZ]

En— SM

     
    

 

  

_ 1 n T

' 2,, R(n 2,,

If we define the normalized weight A,, by

13M
A,, — En , (2.2)

then

2..-: _ AfM _
2n — l — n — 1 — A,,

Thus the normalized covariance matrix R(n) can be written as

R(n) = (1 — A,,)R(n — 1) + 1,):an (2.3)

where A,, 6 [0,1]. Remarkably, this approach in which R(n) is a convex combination of past

normal matrix andincomingputer product, resultsin the same “covariance” matrix and re-

cursive formula as thosein D-li/OBE. However, SM-SA has been developed systematically

from SM-WRLS expressly to connect the gap between the convergence issues and geomet-
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rical meaning in previous work. This philosophy is quite different from the development of

D-H/OBE in which geometrical interpretability is sacrificed.

Replacing A,, for ASM leads to the modification of the SM-WRLS original recursions.

’ \

i)!

The description of the corresponding ellipsoid is given in the following theorem.

W.

 

Theorem 2.1 The hyper-ellipsoid region corresponding to the SM—SA algorithm is given

by

r(n)_{0|(e a,,) (o a,,)<1} (2.4)

where 14,, is the quantity

., = f: ( f1 (1 — A») to. — y?) + otmnwn. (2.5)
i=1 j=i+l

G,,, which is the weighted LSE estimate at time n using weights {A,,}, can be computed

recursively using the relations

  

P(n) é R-1(n) (2.6)

G,, = x£P(n — 1)x,, (2.7)

5,, = y,, - 9541:, (2.8)

__ 1 A,,P(n — l)x,,x,7,'P(n - 1)
P(n) _ 1 _ A” P(n— 1) — 1 _ A” + ("an (2.9)

0,, = 0..-, + A,,P(n)x,,e,, (2.10)

A,,(l — A,,)e;
 14,, = (1 — A,,)n,,_1 + A,,7,, — (2.11)

1—A,,+A,,G,,'

 

Proof: From the bounding condition 12,2, 5 7n, the accumulated inequality holds:

n 71

2v? S 275-

i=l i=1
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That is,

Z(l/i - O'sz‘)2 S 27;.

i=1 i=1

The relationship remains true if the individual constraints are first multiplied by any non-

negative quantity. Thus, we have

2":( fi (1 - AD) Ai(y,- - 013(1)2 S i( ii (1 — A,)) An; (2.12)

i=1 j=i+1 i=1 j=i+l

where

n

A

H (-) = 1.
i=n+l

Therefore, given a sequence of weights A;, (2.12) represents a global membership set, say

P(n), to which 0" must belong. Since R(n) in (1.7) is the smallest known set, it must be

true that 9(n) C P(n). Let usflldelnote any general element of P(n) by 9. Upon expanding

.rtj ,...

the square, we then hav€that

z": ( fl (1 " A1)) Ail/i2 - 22”:( fi (1 - Afl) AgygaTx,

i=1 j=i+1 i=1 j=i+l

+ E“: ( fl (1 — AD) MOTXiXiro S i( ii (1 — A,-)) Am.

i=1 j=i+l i=1 j=i+l

The following quadratic inequality in 0 emerges after rearranging the terms

: ( fl (1 _ M) M? - 291‘: ( f1 (1 - M) Aim-X.-

i=1 '=i+l i=1 j=i+l

i=1 j=i+l i=1 j=i+l

+9T [2“: ( f1 (1 ’ A11) AiXixf] 9 S i ( fi (1 - A19) Am (2-13)

For the WRLS solution, we have [21]

9,, = [i( fl (1 — A,-)) A,-x,-x,T]-1 [ii f1 (1 — A,)) A,-x,-y,-] . (2.14)

i=1 j=i+l i=1 j=i+l
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Thus

[2": ( f1 (1 - ’21)) Aixixir] 9n = Z": ( n (1 - A») Aims/,3 I (2.15)

i=1 j=i+1 i=1 j=i+l

Substituting (2.15) into (2.13), we have

5::( fi (1 - 1,)) 1,3,3 — 297' [i( 1"] (1 — A,)) A,x.~x,T] 0,,

i=1 j=i+l i=1 j=i+l

n n n n

‘1' 9T 2 H (1 — Aj) Agxgx? 9 S 2 H (1 - Aj) Ag‘fi. (2.16)

i=1 j=i+l i=1 j=i+1

For an off-line estimator, the covariance R(n) can be computed as

i=1 j=i+l

R(n) = i ( fi (1 - Afl) A,‘X,‘X,T.

Thus

i=1 j=i+1 i=1 '=i+1
in: ( fi (1 — A») My? — 29111009" + ”TR(")9 S i ( fi (1 - Aj)) Am.

Since R(n) is symmetric, this can be written as

n

2”: ( fl (1 " Ail) A:‘1/1‘2‘l’(9"9n)TR(n)(9"'97:)"9£11(")9n S in: ( H (1 — *0) Am-

i=1 j=i+l i=1 j=i+l

(2.17)

Since 14,, is given by

Na = i( fl (1 - M) Mu — y?) + 9511009,"

i=1 j=i+l

(2.17) is reduced to

(a — a,,)TR(n)(a — a,,) g A,,,

and (2.4) and (2.5) are established.
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The matrix inversion lemma [16]:

(A + BCD)“ = A-1 — A-IB(C-1 + DA-lBrlDA"1

in which A and C are nonsingular matrices, and B and D are matrices with appropriate

dimensions, can be used in (2.3) to obtain

 

(1 -— A,,)“1P(n — 1)x,,x;(1 - A,,)‘1P(n — l).

  

  

 

 
 

 
 

  

 
 

 
  

  

P = 1—,\,,-1P —1— 2.18

(n) ( ) (n ) A;1 + x£(1 — A,,)‘1P(n — 1)x,, ( )

Replacing x£P(n — 1)x,, by C(n) in (2.18) yields

1 _ (1 — A,,)‘1P(n — 1)x,,xTP(n — 1)

P = P - l — n

(n) 1 — A,, _ (n ) A? + (1 - A,,)-1G,,

r __ T _
= 1 P(n— 1) _ A,,P(n 1)x,,x;P(n 1) .

1—A,,_ l—A,,+A,,G,,

For the WRLS estimate G,,, we have

a. = P(n) [)3 ( H (1 — A») Amt/s]
i=1 j=i+l

_ 1 ' A,,P(n — l)x,,x£P(n - 1)“ " ' n ,
_ 14” P(n—1)— 1—A..+A..G.. 2; II (14,) A,x,y,

. . i— J—i-i-l

_ 1 ' A,,P(n — 1)x,,xfp(n — 1)“

" 1—.\,. _P("‘1)‘ 1—A,,+A,,G,, ,

n—1 n-1

'(1 - A,,) 2 H (1 - *1) Amt/1+ Anxnyn

i=1 j=i+1

A,,P(n - 1)x,,xT0,,_1 1 A2P(n — 1)x,,G,,y,,

= 0"- - n — n - n n - n

1 1—A,,+A,,G,, +1—A,,[’\ P(n my 1—A,,+A,,G,,

_ 0 _ A.P(n — maxim.-. + A.P(n - 1)x,,y,, (1 1.6.. )

' "‘1 1—.\,,+.\,G,, 1—.\,, 1—A,,+A,,G,,

__ 0 _ AnP(n - 1)x,,x,7,‘0,,_1 A,,P(n — 1)x,,y,,

‘ "‘1 1 — A,, + A,,G,, 1 — A,, + A,,G,,

= and + A,,P(n — 1)x,,£,,
 

1-A,,+A,,G,,'
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Note that

1 AnP(n — 1)ann

P(n)x,. _ 1 __ 1,. [P(n— 1)xn — 1 __ A” + Ana"

_ P(n — 1)xn (1 _ «\nGn )

— 1—,\,. 1—A,.+,\nG,.

_ P(n — 1)xn -

" 1 - A,, + AnGn

Therefore

0,. = 0....1 + AnP(n)xnen.

To show (2.11), consider

Kn

Thus the proof is complete.

n-1 n-1

(1 — An) 2 ( H (1 "' A») )‘ih’i ’ 3’?) + An(7n — 3172;)

5:1 '=i+1

+(95—1 + AanP(n)6n)R(n)(0n_1 + AnP(")xn5n)

n-1 n-1

(1 - A») Z ( H (1 - 15)) M7.- - y?) + Anm - 113.)
J=i+1

+0£_1R(n)0,._1 + flux:911-1 5,. + Aix£P(n)xn£:

71—1 11—1

(1 - An) 2 ( H (1 " A») Aihi ‘ 31?) + An(7n - 31:) + 2Anoz—1xn5n

i=1 j=i+l

i=1 '

P in — 1 xnsi

+(1 — Art)01:I;--1R'(‘n
- 1)0"-1 + An0£_lxnx£0n-l

+ Aile —( A" +)’\nGn

 

 

 

 

 

(1 — An)Kn—1 + Anon — vi) + mien-1)” + ”#591145" + "31 — giant?"

(1 — A,,)nn_1 + Ann — An [:12 - 2(XZOn-1)yn + (X3'911-02] + A311 _ AffanGn

(1 — An)"n—1 + Anvn - A7163. + 13.1 _ (fig/("Ga

(1 - Anya-1 + A1177; — 1A:(:n—+’\;:§n '
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2.2 Initial Values

The covariance matrix in SM-SA is

i=1 j=i+1

Rm= Z(fiO-M)mnT

In order to start the recursive algorithm, it is necessary to choose initial values for 0,, and

P(n). If we incorporate the initial condition into the covariance matrix, then it will become

R(n): 121(1—1.) 110112301 (1—1))1T.-x.-x. (2.19)

i=1 5:] j=i+1

Note that [H?__.1(1 — A0] R0 will not be zero if R0 is chosen to be positive definitive.

Generally speaking, P(O) = R61 reflects the confidence in the initial estimates 00. If

E- ..

 

P(O) is large, from (2.10) we see that the next estimates, 01, will jump away from its initial

value. Without any a prior information about 90, it is common to take

00 = 0 and P(O) = 0'1.

where a is a “large” number, typically 106 so that the impact of the choices of initial values

is small. From (2.19) we can also see that this choice will ensure the estimates to be close

to the off-line LSE estimate.

Note that given any initial condition P(O), if

n

“11:30 11(1 — 1,) = o (2.20)

i=1

then the recursive estimates will approach to the off-line estimates asymptotically. Using

material in Appendix A, (2.20) implies that

il;=oo

n=1

From theory of stochastic approximation, as discussed in Chapter 1, this is an essential
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condition for the convergence of estimates to the true parameters.

2.3 The Optimal Weight

The optimal weight A; of SM-SA is found by using the minimization criterion 1 introduced

in Chapter 1. That is, A; minimizes

11mm} 3 det{~.R-‘(n)}.

Let B(n) é nnR'1(n). Then by definition,

B(n) = KnP(n)

  

  

n" AnanZBUz — 1)

' B(" ' 1)(1 — 1m...l ’ n..-l(1 — 1.. + AnGn) '

Define

h, 2 1 — 1,. + A,,Gn, (2.21)

and

A 1 Nu An‘rn Ans“
dn = _ _ 1 + — —-"—.. 2.22

1 — An Kn_1 (1 - An)“‘1n-1 "n-l hn ( )

Then

B(n)= B(n -- 1) {dI — dfl[B(A"x--——h—:n — 1)x,,]T}

n-

and

d"Aux"

det B(n) = det B(n — 1)det{d,,I — Kn——[B(n - 1)x,,]T}

Since B(n — 1) is a known quantity at time n, it suffices to minimize the volume ratio V(/\,,)

given by

A det B(n)

det B(n— 1).

 

V(1,,)=

Thus

(I"Aux"

V(1,.) = det {dnl — n.—’:;[B(n — 1)x,,]T}. (2.23)
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Using the matrix identity [26]

det(cI + sz) = c'"“‘(c + yTz) (2.24)

and letting

d A x I
c=dn, =—-1—n—n-, z=B n—l X“,y 5H,," ( )

then (2.23) becomes

 

V(’\n) = dzln-l (dn Kn—lhn

( Anxznfl-1P(n - 1)x,,)
1 _

Kn-lhn

(Kn—1hr: - AnKn-lGn)

Kn-lhn

(ha - A,,Gn)

h

dnAnx£B(n -— 1)x,,)
u

=°
§

 ll =°
§

a
“
;

:
5
3

To minimize the volume ratio with respect to A,,, we must differentiate (2.25) and set the

result to zero:

 

  

0 _ 6 _1

a1,. m.) — K [m1 - 1.1». ]

dart-l

= F(A,,)——h% (2.26)

where

6d,,

P(An) = (1 — A,,)mhnai— - dnGn. (2.27)

Since

6d,, _ 1 Kn 1 6 Kn

a—A: — (1 — A702 Kn_1 + (1 - A") 6A" Kn_1 (228)

1 1 7,. _ e:[1 — 1,. — A,,hn]

—d.. +—— -1 + ,
(1 '- An) (1 '- An.) Kn-l hi’cn—l
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(2.27) becomes

  

  

m1.) = m1... [4,. — 1 + “:1 — 53‘“ 22;":1*"h")] — 1.0... (2.29)

The Optimal weight A; is found by setting F(A,,) = 0. Thus

mhn [an — 1 + “:1 - €:(1;;:n:l’\;h")] = duo”... (2.30)

Expanding the ha and d”, we have a quadratic equation

(1,13, + b,,1,. + c,, = o (2.31)

where

an = mm. - "163. + menn — 2mGn7n - nn—lGn + ten—10,2. + Gn7n - 0.2.7.1 - 5:0,,

b,, = 2m£,2, — 2m")fl + 2mGn7n + 2nn_1Gn — M403, — Gn'yn + 63,0“

2
c,, = m7n — me,1 — nn_1Gn.

This SM technique is called set-membership stochastic approximation (SM-SA) because of

the resemblance to the stochastic approximation method. The central difference between

D-H/OBE and SM-SA is that the A; in their algorithm is obtained by minimizing Kn,

while in SM-SA.it is obtained by minimizing the volume ratio. Indeed, there is an ellipsoid

associated with Dasgupta-Huang’s OBE at each step, but the meaningful measures of its

size are ignored in the optimization process — sacrificing interpretability.

2.4 Data Selection

In this section, we will derive the criterion for updating. From (2.25) and the definitions

of ha and (In in (2.21) and (2.22), it is easy to see that V(O) = 1 and V(A,,) > 0 for all

0 < A,, < 1. Note that dn and hfl are unity when A; = 0. Thus from (2.26) and (2.29), we
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have

 

 

 

6V(’\n)
= 2.32

0A7; fl:0 F(0) ( )

2

___ m( “In _ En ) _ G,, (233)

Kn-l 511—1

6,; ‘

= ~14 (2.34)

where nn_1 > 0 by definition (2.4) for A,,-l 6 [0, 1). Equation (2.34) reveals some interesting

relationships between the sign of c,, and the volume ratio, because if c,, < 0, there exists

some A,, such that the volume ratio is less than unity, which means that the volume shrinks.

Before we develop the main theorem on this point, we need some preliminary lemmas:

Lemma 2.1 If G,, < 1, then hn > 0 for all A,, E (11%?) and

lim hn = 0+

Anfifi-

IfGn > 1, then hn > 0 for all An 6 (1710;, 1) and

lim h" = 0"
1 +

An" 1-(3fl
 

where ha is defined in (2.21).

Proof: By definition,

hn = 1—1n+A,.G,.

= 1 — A,,(l — G,,).

/—\.

If/an) 1, then 1/(1 — G,,) > 1. So the interval (1,1/(1 — G,,)) is not empty. For all

AJE (1, 1/(1 — G,,)), we have

1

1<An —.

< l—Gn

Multiplying each term by (1 — G,,),

0<(1—G,.)<A,,(1—G,.)<1.
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Thus, for all A,, E (1, 1/(1 — G,,)), hn = 1 — A,,(l - G,,) > 0 and

lim hn = 0+.

.__1_-

A,,-+14%

If G,, > 1, then 1/(1 -— G,,) < 0. Therefore the interval (1/(1 — G,,),O) is not empty and for

all A,, E (1/(1 — G,,),O), we have

<A,.<0.
 

l—Gfl

Multiplying each side by (1 — G,,), we obtain

0< An(1-Gn)< 1.

Thus hn > 0 when An 6 (1/(1 - Gn),0) and

lim + hn = 0"".

1

"n-trra:

Lemma 2.2

lim V(An) = +00

Anfll-

Proof: From (2.25), we have

V(A,,) = d—rfllifl.

Since lim,\"_,1— hn yé 0, it suffices to show that

lim (1:3(1 — A,,) = +00.

Angl-
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From the definition of d”,

 «1:30 — A.) = (1),")... (5:1)...“ - 1.)

_ 1 ( A;,, )m

— (1 — An)m-l Kn_1 .

The positiveness of Kn can be immediately seen from (2.4). Thus at any time n, nn/nn_1 >
um__ fifl._._—r—----__ __ _ _. 1-

m“...-- -—--"

 

I~

0' SO ”(I — An) approavChes +m as An approaches 1-. (I, *’ (,th ‘I fr; an" "an." . ' [3

Theorem 2.2 If c,, 2 0, then there is no extremum of V(An) in the open interval (0, 1).

Proof: From (2.34) we know that

aV(/\n)
— >

a1, “:0 - 0

when en 2 0. First we consider the case when c,, > 0, for which there are three possible

sub-cases:

1. Suppose G,, < 1. Then there are two asymptotes at A,, = 1 and A,, = '1-_IG',I > 1.

Claim 2.1 If on > 0 and G,, < 1, then

A,,—91+

lim dn = —m.

1 _

Ara-.75:

Proof of Claim 2.1: From (2.22),

  

A 1 5,, A,,7n Ans2

d = — = 1 + _ n

n 1 -' An Kn—l (1 - A1:)"11-4 Kn—lhn

Note that since

lim hn > 0,

0"]
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and since “-1 > O at time n, the second term in the right hand side will dominate

in the limit. So

lim d“ = -w.

Avg-91+

Similar arguments also apply when A,, approaches 1/(1 — G,,)', because in this con-

dition, 1 — An (1 roach zero, but hfl approaches 0+ from Chi/1:131. So the last

term dominates and 4///z/ 5k!

d" = --00.lim

1,.—+,—_15;"

Cl

Note that for all A,, 6 (1, 1/(1 — G,,)), the sign of 1 — A,, and hn remain unchanged, so

from (2.25) and Claim 2.1, the value of V(A,,) near the two asymptotes (A,, = 1 and

A,, = l/(1 - G,,)) will both approach +00 or —oo, depending on whether m is even

or odd. Note that in Lemma 2.2 we have shown that V(A,,) approaches +00 when

A; approaches 1‘, so minima can not exist in (0, 1) because otherwise more than two

extrema will exist. Therefore there are only two possibilities in this case, as illustrated

in Fig. 2.1.

V(1,,) V(An)

‘ l

   
 

  1/ \+ ‘| U +
  

Figure 2.1. Plots of V(A,,) when on > 0 and G,, < 1.



28

2. Suppose G,, = 1. Then there is only one asymptote at A,, = 1. Note that in this

condition, a,, = -m€,2., — 6,2, < 0. So c,,/a,, < O. This means that the extrema have

different signs. If there exists one extremum in the region of (O, 1), then there must

be another extremum in (0, 1) since lim,\n_,1_ V(A,,) = +00. This is contrary to the

fact that the roots’ signs must be different. Therefore we conclude that there is no

extremum in (O, 1).

3. Suppose G,, > 1. Then there are two asymptotes at A,, = 1 and An = ,—_1G—"- < 0. We

claim that

lim + V(A,,) = +00. (2.35)

An‘-’
 

l—Gn

For convenience, we rewrite (2.25) as follows

V(A,,) = 172$.

Note that lirnA , + h,, = 0+ from Lemma 2.1, 1 - A,, > O, and
fl_’"Tn

1—

2
d; = 1 Kn = 1 + A,,‘yn Ana;

1 — An Kn—l (1 " An)Kn-1 — Kn—lhn

  —) +00. (2.36)

Equation (2.36) holds because hn -> 0+ and A,, is negative. Now (2.35) is satisfied

which implies that there must be one local minimum in the interval (1 /(1 - G,,), 0). If

there is one extremum in the interval of (0, 1), then there must be another extremum

since limanl- V(A,,) = +00. This situation can be seen in Fig. 2.2, which shows

the existence of more than two roots in (2.31)—contradiction. Thus we conclude that

there is no extremum for A,, E (0, 1).

Suppose c,, = 0. Then

 

and

am.) 0
8A,, “:0

. We.)

.1, W =0”-
 



29

 

V(An)

1

1/-\./

+ I A"

   

Figure 2.2. When G,, > 1 and c,, > 0, if there exists one extremum of V(A,,)1n (0,1), then

there exist more than two extrema. .

This means that V(A,,) is convex in the neighborhood of A,, = 0 and there is one minimum

when Afl = 0. If there exists some extrema in (0,1), there are at least three extrema which

violates (2.31) since the number of extrema must becervenl Soweconclude that there18 no

extremum in (0, 1), and if there exist some A,, in (0,1) such‘thht(2.31) holds, it must be a

saddle point. The only possibilities with and without saddle points can be seen in Fig. 2.3.

C]

V(1..) V0,.)

    

  
(I) (b)

Figure 2.3. When c,, = 0, the the only two possibilities for V(A,.) in (0,1) are: (a) There is

a saddle point, or (b) no extrema and saddle points exist.
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Theorem 2.3 Suppose c,, < 0. Then V(A,,) has a unique minimum in the open interval

(0, 1).

Proof: When c,, < 0, we have

3V(An)
0.

6A1: A,,:O <

 

By construction of the algorithm, there are two An’s such that

6V(A,,) ___
6A,, 0. 

Also, from Lemma 2.2,

lim V(An) = +00,

An-OI‘

so there is at least one minimum in (0, 1). If there exist more than one extremum in

(0, 1), then there must be at least three extrema as shown in Fig. 2.4, contrary to (2.31).

Therefore, there must be exactly one minimum in the interval [0, 1). 0

V0,.)

A

\

 

  
Figure 2.4. When c,, < 0, if more than one extremum appear in (0, 1), then there must be

at least three extrema.
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From Theorems 2.2 and 2.3, we conclude that there exists an optimal weight if and only

if cfl < 0.

 

Theorem 2.4 There are always two real roots of the quadratic equation (2.81). Further-

more, if c,, < 0, then there is a unique root A; E (0, 1) with

A" _ —b,, + «b,,? — 4a,,cn

2a,,

(2.37)

 

Theorem 2.4 implies that if c,, < 0, then the optimal weight A;, which belongs to (0, 1),

can be obtained from (2.37).

Proof: First we will show that the real roots of (2.37) exist. Let a,,, b,,, and CT. be

coefficients of (2.31). For convenience, we rewrite them:

a,, = m7", — me; + mGi‘yn - 2mGfl7n - 53-10,, + Kn-1G; + Gn'yn - 0,2,7” — 53,0”

c
-

a

I

2m5; — 2m?fl + 2mGn7n + 21\:,,.1G,I — xn_1G; — Gn‘yn + 53,63.

_ 2

Define in and 5,. as:

"
D

(m — 1)G;7n (2-38)

@
I

I
I
D

G,,(2m7n — Kn-1Gn — 7n + 5;). (2.39)

Then

and
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Note that the expression of 6,, and 3,, are exactly the same as the coefficients of the quadratic

equation in (1.9). Let the solutions of (2.31) be A; and A3,. Then

 

A1 _ _bn + Vb; — 4a,,cn

" 2a,,

A2 —b,, — Mb; — 4a,,cn

2afl

Note that

b; - 4a,,cn = (—2c,, + 75,.)2 — 4c,,(cfl — 75,, + a,,)

= 4c; — 4an,, + '13,”, — 4c; + n.3,. — 4.:an

= h; - 4H,,cn

= Gib: + 46.2.1712711 — 2GnKn-1‘Yn - 253.771 + Gish " 25:2;th"71-1 '1' 5:)

= G3.(G?.K3.-1 + 73. + 63. - 2GnKn—17n + 25:1,. - 253,613,.-.)

+46im’7n03. - 40:63.71

= G;(Gnnn_1 - 7,. — 5,2,)2 + 4£;G;m27n — 463,637,.

= G;(G,,K.,,_1 — 7,. — 5;)2 + 415,2,G27,,(m2 — 1) 2 0.
n

Thus two real roots always exist.

To prove that A; = A;, consider the following four cases:

1. Suppose a,, < 0 and b,I < 0. Then Vb; — 4a,,cfl < Ibnl since one" > 0. So —b,. :l:

«b,,! — 4a,,cn > 0. But since a,, < 0, both solutions are negative. This violates the

existence of positive A; when c,1 < 0. Therefore we can rule out this possibility.

2. Suppose a,, > 0 and b,, > 0. Then A; < 0. The only possibility to obtain a positive

root is to choose A; = A3,.

3. Suppose a,, > 0 and b,, < 0. Then Vb; — 4a,,cn > lbnl since a,,cfl < 0. So A; < 0 and

A; > 0. To obtain a positive root, we must have A; = A3,.
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4. Suppose a,, < 0 and b,, > 0. Then both roots are positive when cfl < 0. Since

a,,cn > 0, Mb; — 4a,,c,. < 'an and hence A; < A3,. To obtain the unique root in (0, 1),

we must have A; = A},.

We conclude that A; = A; when c,, < 0. CI

2.5 Relations Between SM-SA and SM-WRLS

As shown in Theorems 2.2 and 2.3, the ellipsoid will shrink if and only if c,, in equation

(2.31) is negative. If we compare c,, in (2.31) and c,, in (1.9), we find that they are exactly

the same quantity. This fact led us to explore whether relationships exist between SM-SA

and SM-WRLS.

The following simulation shows some apparent equivalencies between these two algo-

rithms. Consider the system

yn = 1-6yn—l "’ 0°68yn—2 + ”n (2.40)

where {v,,} is a sequence of pseudo-random numbers uniformly distributed in [—0.5,0.5].

A set of 120,000 data points is generated using the model. Table 2.1 and Table 2.2 are the

results of the simulations for SM-SA and SM-WRLS using the system in (2.40). It can be

seen that both algorithms update the parameters at the same time and result in the same

“volume measure” and estimates.

These empirical results, and others due to Krunz et al. [33, 34], led Deller et al. [38, 39]

to the discovery that the volume measure defined by det B(n), the data points selected,

and the parameter estimates 9(n) is independent of the choice of weighting sequences when

UOBE is considered. Thus the relationship between SM-SA and F-H/OBE is expected to

be the same as that between SM-SA and SM-WRLS. This implies that the present research

on SM-SA has much broader implications for the entire class of UOBE algorithms. Details

will be discussed in Chapter 5.

On the other hand, SM-SA has some features which are not necessarily general. The
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simulation results also reveal that the average weights satisfy Robbins-Monro’s require-

ments in (1.3) under the condition that the noise input is a pseudo-random number with

uniform distribution in [Vi‘fi]. Figure 2.5 shows the relationship between the time and

the “averaged optimal weight” from six experiments. The vertical and horizontal axes are

logarithms of weight and time, respectively. The two dotted lines are logarithms of 1/n

and Mn“. The curve of the averaged weights is very close to the curve of 1/n and hence

the estimates could approach to the true parameter. Therefore, experimental results show

that SM-SA has a great potential in theoretical development and its theoretical analysis

can help explain some features in SM-WRLS which cannot be obtained directly from the

original algorithm.
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Figure 2.5. The relationship between logarithms of time and weight
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SM-WRLS SM-SA

time volume measure 5,. time volume measure 5,.

1 1588030880 0.045102 1 6250000000 0.045102

2 61090735 0.325878 2 122037760 0.325878

3 75912.859375 -1.841745 3 93237.984375 -1.853359

4 67.021507 6.571213 4 66.320511 8.059097

5 19.407402 0.208971 5 19.290403 0.212660

6 17.094551 -0.261806 6 17.005600 -0.262197

7 6.657953 -0.219103 7 6.645070 -0.222424

8 2.566225 0.210988 8 2.566096 0.208843

9 0.861677 -0.235759 9 0.861815 -0.236259

10 0.399760 -0.076875 10 0.399806 -0.076872

11 0.191688 -0.458952 11 0.191711 -0.458865

12 0.191604 0.157472 12 0.191627 0.157516

13 0.169054 -0.062481 13 0.169072 -0.062429

17 0.168957 -0.355722 17 0.168976 -0.355732

18 0.130553 -0.420661 18 0.130561 -0.420695

19 0.102843 0.197666 19 0.102846 0.197650

20 0.089835 0.242533 20 0.089836 0.242511

21 0.051043 -0.607100 21 0.051041 -0.607123

23 0.044455 -0.433844 23 0.044454 -0.433845

41 0.044317 -0.433763 41 0.044316 -0.433759

55 0.043492 0.340501 55 0.043491 0.340501

58 0.043200 0.330139 58 0.043199 0.330139

115034 0.000072 -0.498830 115034 0.000072 -0.498830

115258 0.000072 -0.500641 115258 0.000072 -0.500641

115280 0.000072 -0.496111 115280 0.000072 -0.496111

115463 0.000072 -0.491712 115463 0.000072 -0.49l711

116302 0.000072 -0.483166 116302 0.000072 -0.483166

116350 0.000071 -0.499281 116350 0.000071 -0.499281

116643 0.000070 -0.503710 116643 0.000070 -0.503710

116738 0.000070 -0.501659 116738 0.000070 -0.501659

116934 0.000070 -0.500541 116934 0.000070 -0.500541

117060 0.000069 -0.499384 117060 0.000069 -0.499384

117354 0.000069 -0.491482 117354 0.000069 -0.491482

117706 0.000069 -0.502020 117706 0.000069 -0.502020

118516 0.000068 -0.503093 118516 0.000068 -0.503093

118709 0.000068 -0.498520 118709 0.000068 -0.498520
 

Table 2.1. The data-selection and the performance of SM-WRLS and SM-SA for the AR

model (2.50).
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SM-WRLS SM-SA
 

time 01 “2
time 01 02
 

 

 

 

.
m
a
m
m
a
l
-
1

115034

115258

115280

115463

116302

116350

116643

116738

116934

117060

117354

117706

118516

118709  

0.000000

2.659994

2.659676

2.504596

2.485668

1.602177

1.600430

1.601612

1.601638

1-596280

1.594492

1.591593

1.602305

1.604294

1.602866

1.603187

'1.597315

1.600800

1.605809  

0.000000

0.000000

2.490193 .

-1.994164

-1.956294

-0.678578

-0.676362

-0.677525

-0.677555

-0.673320

-0.670988

-0.668343

-0.678133

—0.680194

-0.678490

-0.678821

-0.678648

-0.681055

-0.682360  

.
m
h
w
w
w

115034

115258

115280

115463

116302

116350

116643

116738

116934

117060

117354

117706

118516

118709  

0.000000

2.662042

2.661741

2.505078

2.485804

1.602176

1.600430

1.601612

1.601639

1.596280

1.594492

1.591593

1.602305

1.604294

1.602866

1.603187

1.597315

1.600799

1.605808  

0.000000

0.000000

-2.496096

-1.995054

- 1 .956493

-0.678578

-0.676362

-0.677525

-0.677555

-0.673320

-0.670988

-0.668343

-0.678133

-0.680194

-0.678490

-0.678821

-0.678648

-0.681054

-0.682360
 

Table 2.2. Estimates of SM-WRLS and SM—SA for the AR model (2.50) where a1 = 1.6

and a; = —0.68.

 



Chapter 3

Convergence Issues

In the previous chapter, we have developed the SM-SA algorithm with a selective updating

scheme and non-increasing volume. In this chapter, the convergence properties of this

algorithm will be discussed. However, for all the estimation problems, the parameters in

model (2.1) can not be determined unless some conditions are imposed on the input signal.

A commonly assumed condition is persistency of excitation (PE)‘in which the input signal

is sufficiently rich in frequency components. PE has been defined in a variety of ways

[15, 17, 19, 20, 21, 22]. The following definition has been used extensively in adaptive

control and system identification.

 

Definition 3.1 A signal u(t) is said to be persistently exciting (PE) of order n if for all t

there is an integer N such that

t+N

911< Z w(thTUC) < 021 (3-1)

k=t+l

where 91, 92 > 0 and the vector w(t) is given by

W) = [u(t - 1) - - °u(t - ”HT

 

 

'Pleaee read “PE” as “persistency of excitation” or “persistently exciting” as appropriate.
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The underlying meanings of the PE condition have been discussed extensively in the

literature [6, 15, 17, 10]. From a frequency-domain point of view, a stationary signal u(t) is

persistently exciting of order n if its frequency spectrum is non-zero at n points (or more).

That is, its frequency components have to be rich enough so as to drive the estimates toward

the true parameters. According to this definition, white noise is persistently exciting of all

orders.

Research in SM-theory, however, is concerned with PE of xn, the regression vector.

Anderson and Johnson [15], and Bitmead [17] proposed that the PE of the input signal

implies the PE of x,, under some mild restrictions on the system function. The major result

is given in the following theorem:

 

Theorem 3.1 [15, 17] Consider a linear system with transfer function H(z) = B(z)/A(z)

where A(z) = z” — alzr".1 — ~ - - — apz”'? and 8(2) = 602" + 512’"1 + - - . + qu”‘9, which

are co-prime, and with input sequence {uk} and bounded output sequence {yk}. Then with

.f/ I‘M\~/

x; = [yn_1, . . .,y,,_,,u,,,u,,_1, . . .,u,,_q], PE of {v,,} implies PE of {x,,}.

 

Non-coprimeness of A(z) and 8(2) usually renders the parameters non-identifiable. This

discussion, however, is far beyond the scope of this research.

For LSE estimates of the parameters of a finite impulse response model with n param-

eters, the estimate is consistent and the variance of the estimate goes to zero if the input

signal is persistently exciting of order n. In order to deal with the convergence issues in

D-H/OBE, Dasgupta and Huang claimed that if for all t,

t+N

911 < Z xkxf < 921 (3.2)

k=t+l

for some N 6 N and 91, 92 > 0, then the covariance matrix

C(n) = (1 - A;)C(n — 1) + A;x,,x;
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in D-H/OBE, which has the same form as R(n) in SM-SA, is nonsingular. From Theorem

3.1, if the system function is co-prime, then the statement in (3.2) is validated. However,

examining the proof of their argument, we find that the condition (3.2) is not sufficient

because of the time index mismatch. In (3.2), k varies over all the natural numbers between

(t + 1) to (t + N). In their proof, however, the time index varies only over those instances at

which updates take place. Consequently, we require a more strict definition for PE which

would accommodate non-uniform time indexing.

Given that x" is PE, the question of whether the subsequence of {x,,} in which the

updates take place is PE or not is still an open issue and is difficult to prove formally.

However, this problem can be simplified if we impose the mixing condition to the noise

sequence. The mixing condition will be introduced in Section 3.4. For the moment, we

assume that the subsequence of {x,,} used in updates is PE. For SM-SA with ARX model,

we give the following theorem:

 

Theorem 3.2 Given the update equation:

R(n) = (1 — A,,)R(n — 1) + 1,x,.x£, R(O) = no > o (3.3)

the eigenvalues of R(n), for all n, will remain bounded if the signal energy is bounded, i.e.,

there exists an L 6 R such that xxx“ 5 L < 00 for all n, and 0 S A,, 5 1.

Let {tn} be a subsequence such that c,,, < 0 Vn. If there exists an N 6 N and 91, 92 > 0

such that for all ”A;

I] n+N

911 < E xuxg; < 921, (3.4)

.4 k=n+1 /

then R(n) is nonsingular.

 

Proof: Use induction. Note that from the above recursion, R(n) Z 0 for all n. So it

suffices to show that trace(R(n)) < 00.

v ,

,J

-~ “111/
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1. n = 1

R(I) = (I — A1)R(0) + Alxnx;

tr[R(1)] = (I - A1)tr[Ro] + Altr[x1xf]

= (1 — A1)tr[Ro] + A1X¥X1

S max[tr(Ro), L].

2. Let

tr[R(n)] S max[tr(Ro), L] < 00.

We have to show that

tr[R(n + 1)] S max[tr(Ro), L] < 00.

Since

R(n + 1) = (1 " A,,+1)R(n) + An+lxn+lx£+11

trlR(n + 1)] (1 — Art-H )trlR(n)l + An+lxz+lxn+l

I
A

multr(R(n)).x£..x...1

I
A

InnaLXItr(R(")). L]

I
A

max[max(tr(Ro), L), L]

max[tr(Ro), L].

Therefore, the sum of all eigenvalues is bounded for all n. So the eigenvalues have to remain

bounded.

The non-singularity of R(n) under the assumptions in (3.4) that the subsequence of

{x,,} in which updates take place is PE has been proven in the paper by Dasgupta and

Huang [20]. EJ
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Theorem 3.2 ensures that the covariance matrix R(n) in (3.3) is always bounded and the

boundedness property holds for all the noise processes. Although boundedness of R(n) is

sufficient for proofs of some fundamental properties, positive definiteness of R(n) is essential

in order to prove the convergence of parameter sets as discussed in the next few sections.

3.1 Fundamental Convergence Properties of SM-SA

The most important feature of SM-SA, which differs from previous work, is the convergence

of weighting sequence {A;}. In this section, the fundamental convergence properties of

SM-SA are analyzed.

 

( NS] MHI-l’fll/ Vic C(chr/‘r PM Cl (“M/l l (L;

Theorem 3.3 Let (3217:,“ ' ll) be a normed space. Given the R(n) in (3.3) and the update

equation (2.7)-(2.11). Let A; be defined as

“bn‘l’vba-4ancn 1.an < 0

A. 20a l

, 0, otherwise

If infinitely many data points are selected, then the SM-SA algorithm developed in Theorem

2.1 converges in the sense that

"11.120 A; = O (3.5)

"11,205: 6 [0:7nl- (3'6)

Furthermore, if R(n) is positive definite, then

"11.1130 “0,, — 0,,_1|| = 0. (3.7)

If there exists positive real numbers 91 and 92 and integer N1 such that for all k

f.

\

lei-N1

911 < z xnx; < 921 (3.8)

n=lc+l
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then [31]

a! _

t
2 4

n+N1

lim 0 — 9 < _ um i
3.9

n—ooo ll
nll2 —

91 "“00 £3.24
7

( )

 

The proof of this theorem is very significant because, as a member of UOBE [39], SM-SA

sets the stage for a formal proof of the converging behavior of this family. Before we prove

this theorem, we need the following lemma:

Lemma 3.1 Consider the coefi‘icients of the quadratic equation (2.31) and the conditions

stated in Theorem 3.3. Let c; and c; be defined by

c,,, i c < 0

c; = f " . (3.10)

0, otherwise

0: = C... ifcn > 0

0, otherwise

Then lim,H00 c; = 0 if and only if limn_.oo A; = 0.

Proof of Lemma 3.1: From Theorem 2.4 and the definition of A; in Theorem 3.3, if

cfl < 0, then

A" = —b,, + «b,,; — 4a,,cn

n 2afl

Let 6,, and b,, be the same as in (2.38) and (2.39), then from the proof of theorem 2.4, we

have

—2 —

b; — 4a,,cn = b,, — 4a,,cn

If cn < 0, then A; becomes

 

,_ 2c; - b,, + Vb; — 4(m — 1)G§,c;:y‘ A
A = 2a C (3.11)

Ti.

 

Suppose limnnoo c; = 0. If lim,H00 an 75 0, then from (3.11) we know that lim,H00 A; = 0.

Iflimnqoo afl = 0, then we claim that limndoo b,, 76 0 because from the definitions of ("in and
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b,,, we can write

an+bn=_cn+6n

and for en < 0, we have

”11.53.00,. + 3,.) = .132. a» + .113. bu

= lim b,,
n—ooo

= lim (-a,, +6“)
fl-OCXD

= lim 5,,
fl—‘W

= (m - 1)Gn7fl>

That is, Emu—.00 b,, > 0. Thus from (2.31),

lim 1;; = — 11111 91 = o
n—ooo n-ooo bn

Suppose limn_.oo A; = 0, it follows from (3.11) that when c,, < 0, then in the limit

 

2c; — b,, = —\/b; — 4(m — 1)G3,c;7n

Thus /

“11.00111M — 4c;b,, + b,,] = "lim0°[b; - 4(m— 1)G;c;'7,,]

and

m[4c;" — 4c;b,,] = “lim —4(m — 1)G,2,c,, 7]
fl-Ougfi

Suppose limn_.oo c; at 0. Then

lim c,, =-nle [(m—1)G,,7+bn].
fl-‘m
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The numerator of equation (3.11) becomes

  

2c; — b,, + «b; — 4(m — 1)G'3,7flb,, + 4(m — ”203,7: = 2c; - b,, + \/(b,, - 2(m — 1)G,’,‘y,,,)2

(3.12)

Comparing (3.12) and (3.11), we have in the limit

 

 

(fit, — 2(m — 1)G§,7)2 = \/33, — 4(m — 1)G,2,c..7, (3.13)

 

Note that in left hand side of (3.13), \/(b',, -— 2(m — 1)G'3,‘)r)2 < [b,,]; while in right hand side

 

of (3.13), \/b,2, — 4(m — 1)G,’,c,.7n > Ibnl since c,, < 0. This is a contradiction. So the only

possibility when limnnoo A; = 0 is limnnoo c,, = 0. 0

Proof of theorem 3.3: Suppose A; does not converge to zero. Then there exists a

strictly increasing sequence (mafiil such that A;,“ 2 a for some a > 0. From Lemma 3.1,

we have lim sup,,_,°° cfl < 0. From (2.34),

6V(Am,,) _ __ cm;

BAN“; Amn=0 — F(0) - nmn" .

 

For the “volume measure” of P(mn), we have

det B(mn) = det nmnP(mn) = Km" det P(mn)

Since R(mn) is always bounded, det P(mn) = det R‘1(m,,) > 0. Also note that

{det B(n)};,‘°=1 is non-increasing, so 5,, is bounded. Since 1imsup,,_,°o c,, 314 0, there ex-

/.

\

ists infinitely many n such that

0V(Am;) _ cm;

—- < —b

0A,"; Amnzo ”mu—1

where b > 0. So there are infinitely many n such that V(A;,n) 5 c for some 0 < c < 1. Let

Mm; be the volume at time mu, then Mm; = VoV,,.,V,,,2 ' - -Vm,,. Thus limnnoo Mm; = 0.

1

(m'
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Note that {Mn} is non-increasing. Thus we have Emu...» Mn = 0. By definition,

Mn = det rc,,P(n) = K? det P(n).

fuel i/ ll.

Since det P(n) is positive definite by Theorem 3.2, lim,,_.oo rs; = 0. This leads to the

conclusion that lim,,_.oo 16,, = 0. Let 0,, = 0,, — 0", then

5n = yn - 07T—1xn

= 031+ 12,, — 9;_1x,, (3.14)

~T

Since the volume of the ellipsoid converges to zero, the estimates converge to the true

. - . ~T

parameters. Thus 11m,,_.°° ||9,,-1|| = 0 and hence 11m,,_.°° 0,,_1x,, = 0. Thus, from (3.14)

we have lim,,_.°o |e,, -— v,,] = 0. Since 1im,,_.°° 16,, = 0 and since c,, = my; - me; - xn_1G,,,

we have

.1982 = .EamWJ-Efl-Nngn

= lim r”(x-£3.)
n-voo

= mm- ”3) 2 0

By the definition of c,‘, in Lemma 3.1, lim,,_.oo c; = 0 and hence lirn,,_..,,o A; = 0, contrary

to the assumption. Thus we conclude that the sequence {A;} must converge to zero.

It follows from (2.10) that lim,,_,°° ”0,, - 0,,_1|| = 0 when lim,,_.°o A; = 0. Thus (3.7)

is satisfied.

Consider the coefficient 6,, in (2.31). At any time n, we can write

c,, = c; + c;

where c; and c; were defined in Lemma 3.1. Since lim,,_.oo c; = 0, we have

liminf c,, = liminf(c;' + c,‘,’) 2 0.
n-‘m n-‘w
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Let s > 0. Then there exists an N E N such that for all n > N,

m(7fl— 6;) — nn_1G,, > —m5.

Let n > N. Then

7,1- 5; > —5 + 3137:7031 > —e. t (3.15)

Let 5 be arbitrarily small, then we have

7 - 63. Z 0-

Thus 6; 6 [0,7] and, hence, (3.6) is satisfied.

-, Due to the slow convergence of the ellipsoid for large n, one can argue that for sufficiently
“K Km,

—__,,

large n, there exists a positive integer M such that M > N1 and

lyn-Hc — 9£Xn+kl < «77.44;, 1 S lC S M

In other words, no update takes place on {n + 1,. . .,n + M}. Substituting for ya“, by

07:9,“, + v,,+;, and noting that |v,,+;,| < ,/7,,+k, we can write

|(9¥— 0,,)Tx,,+kl = |(9‘— G,,)Tx,,+;t + v,,+k — ”n‘H‘l (3.16)

>4“ 16-0073... +v.+.| + 14.3.: (3.17)

3 2w... . (3.13)

for 1 _<_ k 5 N1. Therefore, squaring both side of (3.18) and, then, summing over 1:,

1 S k 3 N1, it is found that

n+N1 J fl+N1

(9*;- 0,,)T [ z: x,-x,T (920,.)<4 Z 7,-

i=n+1 i=n+1
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Hence, using (3.8), it follows that

r 4 "+N’,

“0- 0..“2 < — 2‘ 7.-

91 i=n+l

Theorem 3.3 assumes that infinitely many data points are selected. The algorithm,

however, may stop at some finite time N, that is, optimal weights no longer exist after N,

when noise excitations are “too colored” or noise bounds are over-estimated. In this case

the convergence properties (3.5) and (3.7) still hold since the volume of the ellipsoid and

the estimates will remain constant, and the optimal weights A; become zero after time N.

For c,,, recall that

c,, = m(7,, — 5,2,) — 5,,_1G,,.

Since cn20forn> N,

m(7,, — 53,) 2 Kn_1Gn > 0 (3.19)

Equation (3.19) ensures that (3.6) still holds even if the algorithm stops at finite time.

3.2 Convergence of Parameter Sets and Suboptimal Test

In this section, we will first investigate the condition under which the membership sets

converge to a point. Then, a “suboptimal test” criterion is introduced. We will find that

employing the suboptimal test not only improves computational complexity, but also results

in excellent convergence properties.

3.2.1 Convergence of Parameter Sets

Since the volume of the ellipsoid in SM-SA is non-increasing, it converges for all the sta-

tionary signals and linear time-invariant models. The ideal performance for SM-SA is the

convergence of membership sets to a point asymptotically. In this section, we will study

the asymptotical properties of parameter sets.
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Theorem 3.4 Let {t,,} be a subsequence such that 7,; - a?" < 0 Vn. If there exists an

N E N and 91, 92 > 0 such that (3.4) holds, then the volume of the ellipsoid converges to

zero if {tn} is infinite.

 

Proof: In Theorem 3.3 we have shown that 11an“, A; = 0. Let c; be defined as in

(3.10). Then from Lemma 3.1, lim,,_.°o c; = 0. That is,
.-

A

('0, —‘—>0 ; -..» ,1" _;_. .7 H (1,», c", < H ’ 1 1

"lingo [m(7,, - 6;) — xn_1G,,] = 0. . l (3.20)

I/ 1 "l ,I - l \

Note that the ellipsoid at time n is defined by (f); L?” firm/r C (Cr

7/

P(n) = {0| (0 — 0,.)7’ R(n) (0 — 0,.) < 1...}.

Thus it is obvious that 14,, is positive if P(n) is non-empty.

We claim that there exists a a > 0 such that

 

  

 

x£B(n — 1)x,, V l)

0' < llxnllz det B(n _ 1). (3.21)

To show (3.21), consider

xZB(n - 1)x,, _ xznn_1P(n — 1)x,, (3 22)

||x,,||2 det B(n — 1) — ||x,,||2rc$_l det P(n - 1) '

T _x,,P(n 1)x,, (3.23)

1:""'1||x,,||2 det P(n - 1)
13-1

Since the PE condition defined by (3.4) holds, P(n) is positive definite. Therefore

0 < A,,,,-,,||x,,||2 g x£P(n — 1)x,,,
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where Am," is the minimum eigenvalue of P(n — 1). Now

 
  

A,,,gnllxnuz x;P(n — 1)x,, __ x£B(n - 1)x,,

Isl-11 ||x,,||2 det P(n - 1) - K231 ||x,,||2 det P(n — 1) le,,||2 det B(n — 1)'

That is,

A,,,,-,, x£B(n - 1)x,,
  

52:11 det P(n - 1) - ”In“2 det B(n — 1).

m-l

By the positive definite property of P(n), we have det P(n — l) < 00. Also “71-1 < 00.

Thus we conclude that there exists a a > 0 such that

A,,,,-,, x;B(n — 1)x,,

52:11 det P(n — 1) - ||x,,||2 det B(n — 1)’

  

o<

and, hence, (3.21) is satisfied.

In the remaining part of this proof, we consider the subsequence {tn} only. In order to

simplify the notation, we replace the time index t,, by n for the rest of this proof. Since x,,

> _.

satisfies (3.4), there exists a 6 such that there are infinitely many n for which ||x,,||2 > 6.

Let c > 0. According to (3.20), there exists an N1 such that if n > N1 then

|m(7,, — 5,2,) — nnGnl < 660. (3.24)

Let n > N1. Since 7,, - a; < 0, we have from (3.24) that

m '7” - 5;] + Kn_1G,, < 660.

Thus

0 < 5,,_IG,, = nn_1x£P(n — 1)x,, = xZB(n — 1)x,, < £60.

By (3.21),

0 < 0‘||x,,||2 det B(n — 1) < x;B(n — 1)x,, < 660.

Thus

6

det B(n — 1 < ——e.

) "an?
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Note that there exists an N > N1 such that

“lip/“2 > 6.

Therefore

6

detB N—l <——£<e.

( ) llleP

Since det B(n) is non-increasing,

det B(n) < e for all n > N. (3.25)

By definition, the volume of the ellipsoid converges to zero. Cl

4

Recall that 6,, ; —0,,_1x,, + v,,. Therefore 7,, — 5,”, < 0 if and only if

lvn " éZ—lxnlz > 7n (3.26)

If the volume of the ellipsoid keeps shrinking, the value 934x" will decrease to a small

number as n becomes large.\When 911x" is small, from (3.26) we see that 0,, must be

sufficiently close to the {blind/”:1 thaftj7n — 5,2, < 0 for infinitely many n. This is very

important for the convergencelbf the parameter set. In Section 3.3.2 we will show that if

either the noise bound is over-estimated or the realization of the noise process does not visit

an arbitrary neighborhood of the bound infinitely often, then the ellipsoid can not converge

to a point asymptotically.

3.2.2 A Suboptimal Test for Innovation in the SM-SA Algorithm

Theorem 3.4 leads to the pursuit of a suboptimal test. Recall that one important feature for

members of UOBE is “selective updating.” That is, no updating is taken when incoming

data do not contain useful information. Sub optimal test is a small modification of the

updating criterion associated with SM-SA. Instead of checking c,, = m(7n - 5;) — n,,._1 G,,,

the suboptimal test checks only 8,, g 7,, - 5?, since the negativeness of 6,, implies the
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- r
.

negativeness of c,,. Note that the unique root A; on (0, 1) still exists for suboptimal test.

Suboptimal testing has been studied in previous work [28]. The computational benefits

of employing a suboptimal test can be substantial since the updating criterion is reduced

to 0(m) computations where m is the model order. The weights obtained from suboptimal

test, however, may not be optimal in the sense of volume ratio minimization. In order to

obtain similar convergence properties as we do in SM-SA, define

c,, ifE,,<0

n a

II

0 otherwise

Lemma 3.2 Given the coefl‘icients of the quadratic equation (2.31) and the conditions

stated in Theorem 3.3, we have lim,,_.°° 5,, = 0 if and only if lim,,...°o A" - 0, where A;n—

is obtained by solving the quadratic equation

a,,A; + b,,A,, + c,, = 0

when 8,, < 0 and is set to be zero when 5,, Z 0.

We do not intend to give formal proof for this lemma because 2,, < 0 implies t t c,, < 0

and hence the proof follows directly from that of Lemma 3.1. Only note that c,," proof of

lemma 3.1 must change to 6;. The importance of the suboptimal test in theor cal analysis

can be seen in the next theorem.

 

Theorem 3.5 Let (33m, ll ’ ll) be a normed space. Given the R(n) in (3.3) and the update

equations (2.7)-(2.11), if R(n) is positive definite and the suboptimal test is employed with

infinitely many data points selected, then the SM-SA algorithm developed in Theorem 2.1

converges in the sense that

"lingo 1:, = o (3.27)

lim det B = o (3.28)
n-ooo

 



52

Proof: If we change c,, in the proof of Theorem 3.3 to En, then by Lemma 3.2, the

proof of (3.27) follows directly from the proof of Theorem 3.3. Since infinitely many data

points are taken using the suboptimal test, there exists infinitely many points such that

7,, -E; < 0. By Theorem 3.4, the volume of the ellipsoid converges to zero and hence (3.28)

is satisfied. 0

Again, if the algorithm stops at finite time N, then lim,,_.oo A; = 0 for n > N. Thus

(3.27) still holds. In this case, however, the volume of the ellipsoid cannot converge to zero.

Simulation results will be presented in the next chapter in support of the above analysis.

3.3 Convergence of the Parameter Set with White Noise

Case or Errors Disturbances

White noise has been studied frequently in the analysis of many estimation algorithms as

well as model structures. A sequence {v,,} is defined to be white noise if

Ev,, = 0 (3.29)

and

0 ° 0

Ev,v,-_,- = J 7a (3.30)

02 j = 0

where a2 is referred to as variance of the process. If (3.30) holds, {v,,} is said to be

uncorrelated. It is common to assume that {v,,} is second moment ergodic so that the

statistical properties in (3.29) and (3.30) can be realized by time averages, that is,

O 1 n

“1320 E ‘E— v,- — 0 (3.31)

and

1 " 0 j 0

lim — E v,-v,-_,- = # (3.32)
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For LSE algorithms, white properties have been shown to be sufficient for the convergence of

the estimates for the structure in (2.1) [13]. Since the estimates in SM-SA belong to a class

of LSE estimates, it is of interest to know whether the white property of noise excitation

also applies to SM-SA.

In this section, we will first consider a special class of white noise which is called i.i.d.

white noise in which the random variables v,- and v,- are not only uncorrelated but also

independent, and identically distributed for all i, j. Following the analysis of the i. i.d. case,

the general white noise processes defined in (3.29)-(3.30) or (3.31)-(3.32) are considered.

3.3.1 IID White Noise Case

 

Theorem 3.6 Suppose the noise process {v,,} is an i.i.d. white noise in which {v,,} is zero

mean and uniformly distributed on [—,/7,,/7] for all n. If .S'M-SA is employed with noise

bound given by

v; < 7 for all n,

then the volume of the ellipsoid converges to zero.

 

Proof: LetFé{n€N:c,,<0}={n€N:c;#0}andletnEF. Since

limn m c- = 0

,_ r: ;.

f7 _. n ’ / .

. , ' 2 ._

‘r if— ,‘f 7‘1" 7‘» .I‘ . ' l nanolo m(7 - En) - ”TI-1071 — 0'

'r My my ,. 1, W
Note that '1 '

n,,-1G,, = nn_1x;P(n — 1)x,, = x;B(n — 1)x,,.

Thus

0 — — .
2 T

—

11111 c,, — “11120 [m(7 — c,,) — x,,B(n - 1)x,,] — 0. (3.33)
n—roo

Equation (3.33) implies that in the limit

_ £84-1an
m .m

:
N
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We may assume that ||xn|| 76 0 since the probability of ||x,,|| = 0 is zero. Suppose the

volume of the ellipsoid does not converge to zero, that is, lim,,_.0° det B(n — 1) ¢ 0. Since

B(n — 1) is positive definite, x£B(n — 1)):n > 0. Thus

n1i_rr&7—e§,>0forn€F.

For other n g F, the inequality 7 — 5,2, > 0 still holds since m(7 - 53,) > nn_1G,,. Thus we

.' I _.

. i\

have

”lingo 7 — 6,2, > O for all n, (3.34)

and there exists an e > 0 and a subsequence {mdfigl such that

7 — 5,2,," > 6 Va. (3.35)

. ~T

Since 5,, = —0n_1x,, + v,,, we have

7 - 63,... (J7 + lemanW - lsmnl)

= cm Ism.l)(./~7- Ivm. - 03..-1xm.l)

>6.

Thus

~T 6

—v,,—9 _x,, >——

6

2,/-7 . , /«

I

=6.

”
R

Therefore (3.35) holds if and/only if

T

lvmn — Omndxmnl < J? — 6' Vn. (3.36)
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Expanding (3.36), we have

— (,fi _ a) < v,,," _ é:n_,x,,.,, < fi— a,

and thus

_fi-Jf- (6' + é:n_1xmn) < v,,," <‘\/")7 — (6' '— bin-1x711»)

1. Suppose é:n_1xmn > 0. If —fi < v,,," < —\/7+ 6’ (see Fig. 3.1(a)), then fi- 6’ <

|vmn| < fl and thus

6T

vmn — mn-lxmfl

  

“T

= lvmnl + |0mn-lxmn

“T

> fi—e’,

 

violating (3.36). Consequently, v,,," cannot be in the shaded area in Fig. 3.1 (a).

Since v,, is uniformly distributed, the probability that (3.36) holds is less than 5%?1.

2. Suppose gin-139m. < 0. If fi— 6’ < v,,," < fl, then

  

  

“T ”T

lvmn _ emu-lxmn = vmn + lama-1x731:

“T

> J? — c’ + 9",“,me

> \f7- 6’,

violating (3.36). The graph interpretation is in Fig. 3.1 (b). Since vn is uniformly

distributed, the probability that (3.36) holds is less than 2%:

Let the probability of ~é,1:_lx,, > 0 be q". Then, the probability that (3.36) is satisfied is

less than

2 —e’ 2 —€’ 2 —e’
L+(1_qm)_fl_-_\/7_<1

gm" 2%? 2J7 — 2fi (3.37)



56

 

 

flvn)

*m i 1 v"

—E e’ o f;

(a)

flvn)

1 T v

.5; e 0 "

 

Figure 3.1. (a) If 673;",me > 0 and v,,," in shaded area, then a contradiction results. (b)

If dandxmn < 0 and v,,m in shaded area, then a contradiction results.

Let A,, be the event that (3.36) holds at time mn. Then from (3.37),

P(An) _<_ 1% < 1.

Now, given (3.36) holds at time n, we claim that

. 2 _ a
P(A..+1|An) s i— < 12J7 , (3.38)

where A,,.” is the event that (3.36) holds at mu“. To show (3.38), consider

P(An+1lAn)

= p (A,,.1 n {éflwrlxmm > 0} | A,,) + P (A,,+1 n {(17anme < 0} | A,,)

= P (A,,+1 | {3:,,,_1xm,.,, > 0} n A,,) P ({é:n+l_1xmn+, > 0} | A,,)

+P (A,,+1 | {(‘9,T,,”+1_,x,,,,,+1 < 0} n A,,) P({9:n+1_1xmn+, < 0} | A,,)

P (-,/»7 + e’ < v,,“, < fil {61”,me > 0} n A,,) P ({éflflflxmw > 0} | A,,)

~T
~T

+1) (-\/‘7 < ”mini-1 < W- 6’ l {omn+1-lxmn+1 < 0} n A“) P ({9m3+1-lxmn+1 < 0} I A") '

I
A
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Since {v,,} is an i.i.d. white noise process,

/"

I "T
f 2 7 — 6’

P (—‘/7+ 6, < ”mu.“ < WI {9mn+1—1xmn+1
> 0} m A") : __\/;__

2fi

and

~T - 2 7 - e’

P (—\/7< ”mu-+1 < fi- 6’ I {0mn+1-lxmn+1 < 0} n An) = —\g:—/—:r—_-

Thus

2 ‘7 - 6' -T 2 7 - 6’ ~T
P(An+l|An) S f—fl.—' P ({omn+1—lxmn+l} > 0 I An)+-\g-—\/7_ P ({omn+1—lxfl‘ln+1 < 0} I An) °

T

mn-l-l

Let qn.“ = P ({6 _,x,,,,,,, > 0} | A,,). Then

2 —€’ 2 -€' 2 -€’

P(An+l I A,,) = an—‘é-if—‘Y- + (1 - 9n+1)—\/77‘/—,7— : Jé—i‘fi—

Thus (3.38) is proved and

_ g 2

P(A,,+1 n A,,) = P(A,.+1 | A,,)P(A,.) g (%.7—)

A similar method can also be used to show that

2 7 — e’

P(An+2|An+l n An) S _‘éZfi—

and

2J7 — e’ 3
P(AnH n A,,“ n A,,) = P(AnHIAnH n A,,)P(A,,+1 n A,,) s (W) .

By induction, we have

.. g "

n—ooo n—soo 2J7

Thus we conclude that the ellipsoid converges to zero. 0
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3.3.2 General White Noise Case

Set-membership-based algorithms are derived from noise bounds. In Theorem 3.4 we showed

that if there exists infinitely many data points such that 7,, -_£,2, < 0, then the volume of the

ellipsoid converges to zero. Since 6,, = v,, - 63:43:”, the geometrical meaning of 7n - 5,2, < 0

is that vfl must be very close to the boundaries if more data points are to be used. Before

we study the general white noise case, consider the cases in which the noise bounds are

over-estimated or when the noise processes are highly correlated such that

v}, < 7,. — 6 Va 2 N (3.39)

for some N and 6.

Claim 3.1 Suppose there exists N and e such that (3.39) holds. Then the ellipsoid does

not shrink to a point.

Proof: We prove this claim by contradiction. Consider the N and c in (3.39). Suppose

the ellipsoid converges to a point. Let n 2 N. Then

(\/7—n- Ivn|)(¢7;+ Ivnl) > 6.

Therefore

f

‘/7 — v > ——

n lnl V7n+lvnl

6

«7.. + WT.

6

2,/7—,,'

 

Since xn is bounded, by the stability assumption on (1.5), and since the volume of the

ellipsoid is assumed to converge to zero, there exists an N1 2 N such that

6

7 <3V7n,

 |0n_1xn|3<——



where 7 = maxneN{7,,}. Let n 2 N1, then

7n—En
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(um lenl)(\/'7Z- lenl)

(«m Ien|)(¢7_n- Iv. - “3.994)

We lane/7;— lvnl 461ml)

 

  

 

>

> (W? langfi - 1591.33)

> (m+le.l)(2j77-3jfi)

= (muesxsjfi)

> 5

Now the convergence of the ellipsoid to a point implies that 5,, converges to zero. So

there exists an N; 2 N1 such that

6

Kn_1Gn < - Va 2 N2.

Let n > N2. Then n > N and

Cn

2c

6

O.

6

"‘(Vn " 512:) - "n-l Ga

3

6

This result is contrary to the assumption since the algorithm stops taking points after time

N2. Thus we conclude that the volume of the ellipsoid can not converge to zero. C]

Claim 3.1 points out the impact of the noise bounds on the volume of the ellipsoids

and thus leads us to study the relationship between the white noise process and the noise

bounds. Let {v,,} be a white noise process defined in (3.29)-(3.30). If {v,,} is i.i.d., then

from theorem 3.6 the volume of the ellipsoid converges to zero. The key point in the proof

is that the magnitude of the noise can be arbitrarily close to the boundaries. If we eliminate
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the condition of independence, then the noise may not be arbitrarily close to the boundaries.

Consider the following example.

Let {v,,} be a noise process taking only discrete values at -\/'7, —\/2W3, 0, m, and

fl. Let A be an event defined in an appropriate probability space, and v0 be the initial

condition such that P(vo 6 A) = 2/5.

If v0 6 A, then {v,,} is defined as

\/2 73, wn Z 0

—\/27/3, 10,, < 0

Otherwise

fl, 1<wns3

”n: 0, -1<wnsl

—\/7) -3Swns_1

Sequence {wn} is an i. i.d. white noise with mean zero and uniform distribution on [—3, 3].

The mass function of {v,,} is

PM = —\/27/3) = P(v. = «27/3) = gm. 6 A) = g

P(vn = -f7) = P(vn = 0) = P(vn = J7) = %P(vo ¢ A): g.

h.

>

Thus, (v,,,n _<:1) is uniformly distributed over {—‘/7', —\/2773,0, V2773, fl}, and hence

we can write v3, 3 7 for all n. The conditional expectations are given by

E(v,,|vo E A) = (/27/3P(w,, 2 0) - ‘/27/3P(w,, < O) = O

E(v,,|vo ¢ A): fiP(1 < wn S 3) — fiP(—3 S 10,, S —1)= 0.

Therefore,

B(vn) = E(v,,|vo E A) P(vo E A) + E(v,,|vo ¢ A) P(vo ¢ A) = O.
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Also, we find that

a}, if s = t

E(v,vt I v0 6 A) = ,

0, otherwise

and

131, if s = t

E(v,vt | v0 5? A) = .

0, otherwise

Consequently,

231, if s =t

E(U,Ut) =

0, otherwise

As a result, {v,,} is a white noise with mean zero and variance 1}. Furthermore, if second

moment conditional ergodicity is assumed, as defined in (3.31)-(3.32), given v0, then v,, is

also second moment ergodic. If RLS algorithm is used to identify the model parameters

in (2.1) with this noise model, then the estimates converge to the true parameters since

vn is uncorrelated. This may not happen to SM-SA if the initial condition v0 6 A, simply

because v,, can not be arbitrarily close to the boundaries. By Claim 3.1, the ellipsoid cannot

shrink to a point.

In this presented example vn can not be close to the boundaries since the dependency

between v,, and v0 can not be eliminated, even for large n. In addition to this noise process,

there are other white noise processes in which {v,,} rarely hits the boundaries. In this case,

the performance of SM-SA may not be favorable. ‘ .

For the following example, we will assume {wn} to be a sequence of pseudgrandom

numbers with uniform distribution on [-0.5,0.5]. First, let {v,,} be a white noise process

generated by passing {wn} through a first-order all-pass filter

0.5 + 2’1

HM = 1 + 0.52-1'

Figure 3.2 and 3.3 show the sample correlation coefficients of {wn} and {v,,}. ,3

Both sequences have identical sample mean and second moment properties. \Consider

the systems

yn = Glyn—1 + a2yn-2 + asyn—s + vn

12"
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o2 - -

-o.4 - «

-O.6
.

-o.s - -

'10 5 10 15 20 25 so 35 40

Figure 3.2. Sample correlation coefficients of {wn} in the example on page 63 up to time

lag 40.

 

 

   

-02 - l

-o.4 - «

-o.5r ~

-o.s - -

'10 5 1o 15 20 25 so 35 40

Figure 3.3. Sample correlation coefficients of {v,,} in the example on page 63 up to time

lag 40.
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and

ya = Glyn—1 + aZyn-Z + “syn-3 + wn

where a1 = 2.1, a; = —1.48, and a3 = 0.34. Comparing the estimates obtained by RLS and

SM-SA in Fig. 3.4 (a) and (b), we find that the behavior of SM-SA for these two noise

processes is completely different while the estimates obtained by RLS are almost the same

because both noise processes {v,,} and {wn} are white.

The difference in SM-SA performance can be explained by analyzing the visitation

frequency of the noise bounds. Fig. 3.5 compares the relative frequency of {wn} and {v,,}

at each amplitude interval. In these figures, the horizontal axis represents the amplitude

and the vertical axis represents the number of times the noise amplitude falls in a specific

interval. We see that the distribution of {wn} at each interval is close to be uniform on

[—0.5,0.5], while the distribution of {v,,} appears Gaussian, although it is not, within the

interval [—O.9,0.9]. Since {v,,} rarely stays in the neighborhood of the noise bounds, the

ellipsoid cannot shrink enough to provide good estimates as shown in Fig. 3.6.

However, if we pass {v,,} through a soft-limiter such that v,, is set to be 0.5 or —0.5 if

v,, > 0.5 and v,, < —0.5, respectively, and otherwise left unchanged, then the frequency of

visitation take a neighborhood of the bound, namely 7 = 0.55, increases as depicted in Fig.

3.7. This new {v,,} still seems to have white properties as ghown in Fig. 3.8. However, from

Fig. 3.9, we find that the performance of SM-SA in this case is much better than before.

If we multiply the original {v,,} by two and pass it through the same soft-limiter, then

the rate of visiting the neighborhood of the noise bounds by {v,,} is much higher as shown

in Fig. 3.10. Figure 3.11 shows that in this case the performance of SM-SA is extremely

good.

If we examine the proof of Theorem 3.6, we find that the convergence of the ellipsoid

does not depend on the first and the second moment properties of the noise input. That

is, even if the conditions defined in (3.29) - (3.32) are not satisfied, the estimates may

still converge to the true parameters if the “close-to-boundaries” condition is satisfied. For

example, let {v,,} be a noise process obtained by passing {wn} (i.i.d. noise, see page 61)
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True ----

-O.4 - ~

200 400 600 800 1000

(13)

§

Figure 3.4. Estimates of the parameter (13 when the system is driven by (a) an i. i.d. white

noise (b) a white noise but not i.i.d..
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Figure 3.5. Distribution of {wn} and {v,,} at each amplitude interval.
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4

white noise .

4

i.i.d. noise ‘

‘5 .

10 A A A l A A l A A A A

10° 101 1o2 103

n

Figure 3.6. The logarithmic plot of volume versus the actual time n. We see that the volume

of ellipsoid is much smaller when the noise is i.i. d.
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350. ........ , ................... 3 ................... i: .............................................. _

3 _
gwl ........ ................... ......

gag. ...................... _,l_l_r1 F. .i. T.

s (i— - '
20,. .. 5 .. .

'6 E

g 10" 3* *' 1 .

G -O:2 (I)

Amplitude

Figure 3.7. Distribution of a white noise at each amplitude interval after passing {v,,}

through a soft-limiter.
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Sample correlation coefficients in to time difference a: 40

 

1 I U I T I V I

 

  
 

-0.2 ~ .

-0.4 - .

-O.6l-
.

-0.8 - -

'10 5 io 15 2b 25 ab 35 40

time difference

 

 
  
 

-02 - -

True ---

-O.4 ' 1

200 400 600 800 1000

n

Figure 3.9. Estimates of the parameter a3 when 1),, is passed through a soft-limiter.
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Figure 3.10. Distribution of a white noise at each amplitude interval after multiplying vn

by two and then passing it through a soft-limiter.
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Figure 3.11. Estimates of the parameter (1;, when v,, is multiplied by two and then passed

through a soft-limiter.



69

through an all-pole filter described by

1

H(Z) : 1 + 0.5.?"1

The output is bounded on [—1, 1]. From its sample correlation coefficients in Fig. 3.12, we

know that {v,,} is colored noise. Figure 3.13 shows that the performances of SM-SA and

 

 

   

1 T . . .

0.8 - -

0.6 .

0.4 - 4

0.2 —
.

0 .

.02 )- _.

-0.4 - -

-0.5r- .

-0.s - -

'10 5 1b is 20 25 ab 35 40

time difference ‘

Figure 3.12. Sample correlation coefficients of {v,,} up to time lag 40.

RLS are severely affected by the autocovariance of {v,,}.

Again, the distribution of {v,,} is examined in Fig. 3.14 where we find that {v,,} rarely

appear in the neighborhood of the noise bounds. If we multiply {v,,} by two and pass it

through a soft-limiter, as we described before, then {v,,} stays in the neighborhood of the

noise bounds, $0.5, most of the time. Note that in this case the new {v,,} is still a color noise

as shown by its sample correlation coefficients in Fig. 3.15. However, the performance of

SM-SA is excellent as shown in Fig. 3.16, while RLS is still affected by the autocovariance.
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Figure 3.13. Estimates of 03 by SM-SA and RLS when the noise is color.
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Figure 3.14. Distribution of a color noise at each amplitude interval.
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Sample correlation coefficients Lp to time difference - 4O
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time difference

Figure 3.15. Sample correlation coefficients of a noise sequence obtained by passing {v,,}

through a soft-limiter.
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Figure 3.16. Estimates of the parameter a3 when the color noise {v,,} is passed through a

soft-limiter. '
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The above examples show that the whiteness of the noise processes is not important in

the performance of SM-SA, although it is important to the conventional RLS. The most

important factor for the convergence of SM-SA is the probability for which the noise visits

a neighborhood of the bounds. Thus, while SM-SA employs similar recursions to RLS, the

two algorithms have totally different convergence properties. The convergence properties

in RLS arise from the second moment properties; while the ones in SM-SA come from the

noise bounding assumption.

3.4 Independence and The Mixing Conditions

To generalize the convergence of SM-SA to colored noise and give a more rigorous treatment,

we first introduce the measure-preserving transformation T. Let (5, ?) be a measurable

space consisting of a set 5 and a-algebra ? of subsets of S. Let P be a probability measure

defined on (5,?) so that (5, ?, P) is a probability space. In our case, if X is a real set

bounded by «7,

X = [‘fiH/fl’

then S = X°°, the collection of all real sequences (vo,v1, . . .,). Let T : (5,?) —> (5,?) be

a measurable transformation on (5,?, P), then T is said to be measure-preserving if and

only if P(T"1 A) = P(A) for all A 6 ? [10]. In order to simplify our discussion, we can take

the measure-preserving transformation T as a one-sided shifter,

T(‘Uo, ‘01, . . .) = (1)1, 02, . . ..)

Note that P(T"A) = P(A) implies that P(T‘kA) = P(A) for k = 1,2,.... Thus

P{(vo,v1,...,v,,_1) 6 Ba} = P{(vk,vk+1,...,v,,+k_1) e Bu} for all n and k and n-

dimensional Borel sets Bu.
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Definition 3.2 Let T be measure-preserving on (5, ?, P), T is said to be independent if

for all A,B E ?,

P(A n T‘"B) = P(A)P(B) Vn e N.

T is said to be mixing iffor all A,B E ?,

lim P(A n T‘"B) = P(A)P(B). (3.40)
73-.”

 

The mixing condition is a very reasonable assumption since it reflects the physical

characteristics of many common random processes. In this research, let {v,,} be the noise

input of the model in (1.5), then {v,,} satisfies the mixing condition if the dependency

between v,- and v,- decreases to zero when |i — j| —. 00.

For most system identification problems, we assume that the PE condition on {x,,}

holds over all natural numbers. Since the SM-SA has a “selective updating” feature, we

should confine the consideration of the PE condition to the subset of {x,,} in which updates

take place. Since we do not know in advance which points will be used in the updates,

this requires that all the infinite subsets of {x,,} are PE. However, this problem can be

alleviated if the mixing condition is imposed on {v,,}. Consider the following corollary

given by Bitmead [17]:

 

Corollary 3.1 If x" is such that E(x,,x,7;) is positive definite and either x,, is ergodic or

mixing, then there exists a constant fl > 0 and a finite integer N such that

n+N

Z x,x,~T 2 M > o (3.41)

i=n

holds infinitely almost surely.
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In the present work, the upper bound of (3.41) is guaranteed by the stability assumption.

Note that all the subsequences of {x,,} are also mixing if {x,,} is mixing. Thus if B(xan)

is bounded below at the points which updates take place, then (3.4) is satisfied.

The next two corollaries serve as an extension of Theorem 3.6. First we consider the

independent case in which the mean of the noise process does not have to be zero and the

distribution does not have to be uniform.

 

Corollary 3.2 Let {v,,} be a noise sequence and let T be independent on (5, ?, P) according

to Definition 3.2. Given 6, let D¢+ = [fi— c,,/7] and De. = [—\/7', —\/7+ 6]. If SM-SA

is employed and there exists a 6 such that for all n

P(vfl E De...) > 6, and P(vn E DC.) > 6,

then the volume of the ellipsoid converges to zero.

 

Proof: Consider the proof of Theorem 3.6. If the volume of the ellipsoid does not

converge to zero, then (3.36) must hold. Given 6’, by assumption there exists a 6’ such that

for all n

P(vn 6 D¢I+) > 6’, and P(vn 6 Dy-) > 6’.

1. Suppose Sirlxmn > 0. Then the probability that (3.36) holds is less than 1 - 6’.

2. Suppose (findxm, < 0. Then the probability that (3.36) holds is also less than 1 —6’.

If we change the quantity 235i in the proof of Theorem 3.6 by 1 - 6’, then we have

0 o I n _

nlLlIgoP(Ann/ln_1“An_gn...A1)Snango(1—6) -0

and thus the ellipsoid converges to zero. 0
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The key point to the proof of the convergence of the parameter set is the independence

between v,, and 5,7,1] X". In order to extend the convergence property from independence

to mixing condition, SM-SA has to be modified. The reason is that for the original SM-

SA with the ARX model, xn contains yn_1, the output at time n - 1, thus we cannot

separate the dependency between v,, and 011x" unless {v,,} is independent. However, if

we modify the SM-SA so that x,, is not changed unless an update takes place, provided

that for large n the time difference between two updates is large, then we can apply the

mixing condition to show convergence. This is possible since xn depends only on the events

up to the previous update. This modified version is identical to the SM-SA algorithm

'r

except for the regression vector X". In SM-SA, x,, = [yn_1, . . .,yn_,,u,,,u,,_1, . . .,un..q],

. . . . T
while in the modified algorithm, xn = [y;,,. . .,y¢,,_P,u,,,u¢,‘,. ..,ut,‘_g] where y", a,, are

the same as in (1.5), and {t,-} is a subsequence such that ct, < 0 and t,‘ < n 5 “+1. ,

Note that in this situation, the algorithm is identical to RLS with a decimated input. The

corresponding decimator has a time-varying sampling rate, say D“, which is controlled by

the data selection process. Generally, if y,, is wideband, then D" is large and the data

picked are usually sparse.

‘ All the convergence proofs developed previously for SM-SA are still applicable to this

modified algorithm, since those convergence properties are not affected by this modification.

1”"

The following corollary applies to this modified algorithm.

 

Corollary 3.3 Let {v,,} be a noise sequence and let T be mixing on (5,?, P) according to

Definition 3.2. Given 6 and N, let D“. = [fi- 6,‘/‘—7-] and D,. = [—fi, -\/7+ 6]. If the

modified SM-SA is employed and there exists a 6 such that for all n

P(vn 6 DC...) > 6, and P(vn 6 DC-) > 6,

and there exists an M > N such that there are infinite number of interval [n — 1,n - M]

on which no update takes place, then the volume of the ellipsoid converges to zero.
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Proof: Consider the proof of Theorem 3.6. Again let {mu} be the subsequence such that

7 - 83,,” > e for some 6 > 0. If the volume of the ellipsoid does not converge to zero, then

(3.36) must hold. For convenience, we rewrite (3.36)

Iv..." — Pirlxmnl < y; — e' where c": 7%. (3.42)

Given 6’, then, by assumption, there exists a 6’ such that for all n

P(vfl 6 DH.) > 6’, and P(vn 6 Dev-) > 6’.

1. Suppose airlxmfl > 0, then the probability that (3.42) holds is less than 1 — 6’.

"v

2. Suppose bin-13%.. < 0, then the probability that (3.42) holds is also less than 1 — 6’.

Again let A,, be the event that (3.42) holds at time mu, then

7"? Alhlm/Ak‘: 4):”) : fillv'/
l

P(An) < P(--\/7+e’<vmn<\/7|0mn_1xm >0) P(0T0_1xm,,>0)

+P (-\/’7 < v"... < f-
6’ I Emu-1x11».

< 0) P (6:3,...1an
< 0) .

m"

'H-————-—-
——-~ly-—~—

/'<

. k 77‘

‘ .C

l/l/l‘~{jl

Note that {0:n_1xmn > 0} does not depend on the events which take place after the

ill"

previous update. Let the time difference betweenqr and the time index of the previous

update be 1:. Define WM], =A{0,,,"_1xm > 0} and Xn--A{-f+ 6’ < v,,," < J7}. Then

WM)“ X" E ? and P(Xn)al— 6’. By the definition of mixing conditionm (3.40),

an; P(X, n w.-.) = P(x,)P(w _,.). (3.43)

Suppose P(W _k) is not zero. Then (3.43) can be written as

m P(Xn 0W —k)

lc-ooo P(Wn_k)

 =klim P(Xn | Wn_k)-_. P(Xn).

Let 0 < f < 6’, then there exists an N such that

IP(Xn I Wn-Nl—P(Xn)l<£r
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and, hence,

P(Xn) - E < P(Xn | W -N) < P(Xn) + E. (3.44)

. "dn’A/v’, Nil

Note that (3.44) holds only if no update takes place on - N, n}.

Due to the slow convergence of the ellipsoid for large 11, most incoming data are rejected.

By assumption, there exists a positive integer M Z N such that no update takes place on

{n — 1,n — 2, . . (,1:— M}. Thus (3.44) is satisfied and

P(An) g P (-,/7+ 6 < v,,, < J? | birlxm” > o) P (614me > o)

+P (—fi < v,,,” < fi- 5’ | 6:“,an < 0) P (6143:...“ < 0)

(P(—,/~7+ c’ < v,,,” < «7) + 6) P (6141:...” > 0)

+ (P(-fi < v,,.” < fi— 6’) + 5) P (bin-1x77»: < 0)

1-€+£<1,

I
A

Q ( i
‘\,

I
A

and

P(A,|A,._N) ” »'

I
A P (—,/~7+ a < v,,," < (m {éiflxmn > 0} n A,,-N) P ({éiflxm > 0} | 11..-”)

P+P (-,/j< v,,." < fi- 6’ | {gin—139m. < 0} n A,,-N) ({éZn-lxmn < 0} | A,,-IV)

/

i 1.I
A

1-€+£

Therefore,

P(An n A,,-N) = P(AnlAn-N)P(A,,_N) g (1 - 6’ + ()2 < 1.

Note that

P(An n A...l n ---n A,,-N) g P(An n A,,-N) g (1 — 5' + ()2 < 1,
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and

klgrgo P(An-HcN n An-HcN—l “-0 An)

I
A

#520 P(An-HcN n An+(k—1)N n -° ' ° 0 An)

3 klim(1—6'+£)"=O.

That is, the probability that the ellipsoid converges to zero is one.



Chapter 4

Simulation Studies

Set-membership based algorithms have shown great potential in applications for many signal

processing and control systems problems involving parametric modeling [25, 26, 28], such

as speech processing, image coding, neural networks, and adaptive control. This chapter is

concerned with simulation studies using the SM-SA algorithm with optimal and suboptimal

strategies for the properties discussed in Chapter 2 and 3.

The simulations performed in this chapter are designed for those noise processes which

are commonly seen in engineering applications. These simulations not only serve as a test

for theoretical analysis, but also provide heuristic descriptions for those phenomena which

cannot ‘ be proven by rigorous mathematics even though they work for most, engineering

applications. We will see that the SM-SA performs better than conventional RLS in many

problems if the noise bound can be correctly estimated.

In Section 4.1 we use an AR(3) time-invariant model to examine the general properties

discussed in Chapter 3, including the behavior of the estimates, the volume of the ellipsoid,

the estimation error, and the resemblance of SM-SA to stochastic approximation. Section

4.2 deals with a time-varying system derived from a speech signal. Comparisons to the

conventional RLS are also made. Section 4.3 is concerned with the suboptimal test when

the model is time-invariant. Finally, a more general case in which the noise bounds are

over-estimated for the time-varying system is considered in Section 4.4.

For all the simulations in this chapter, the models are driven by the noise process {Sn}

which is the name representing all the noise processes summarized in Table 4.1. Note that
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5,, Characteristics of the noise processes

wfl IID white noise with distribution U[—0.5, 0.5]

v,, Obtained by g-(wn + 0.1)

2,. Zero mean binary Bernoulli sequence obtained from {wn}

tn Biased binary Bernoulli sequence obtained from {wn}

 

      
Table 4.1. Noise processes used in the simulations in this chapter.

the sequence {2"} in Table 4.1 is obtained by

0.5 wfl Z 0

Zn:

—0.5 112,, < 0

and {tn} is obtained by

0.5 10,, 2 -0.081

tn:

-0.5 ton < —0.081

4.1 Performance of SM-SA for Time-Invariant Systems

In this section, an AR(3) model given by

yn = Glyn-1 + (Wyn—2 + “33111—3 + Sn (4.1)

is considered. This model has three poles at 0.8 :l: 0.2j and 0.5 when a1 = 2.1,a2 = —1.48,

and a3 = 0.34. For these simulations, a set of 50,000 data points is generated to identify

the model parameters using {5...} with

5,3 5 0.25 (4.2)

Note that Sfl should be replaced by the random sequences given in Table 4.1.
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4.1.1 SM-SA with Pseudo-Random Excitation

In this section, the model (4.1) is driven by a pseudo random sequence {wn} with mean

fl = -8.9 x 10", which is obtained using a C-language version of the machine-independent

random number generator URAND describe in [11]. Only 1.58% of data points are selected

by SM-SA. Figure 4.1 shows the non-increasing volume measure 11,, on a logarithmic scale

for the model in (4.1). Figure 4.2 shows that the estimation errors Isnl falls into the dead

zone [0, 0.5]. The first 1000 SM-SA estimates can be seen in Fig. 4.3. We observe that the

estimates are “almost” consistent and converge at a reasonable speed with only 1.58% of

the total data points used.

Figure 4.4 illustrates the weighting sequence {A;} averaged over six experiments. It

shows that the averaged {A;} is type l/n sequence, which implies that it satisfies Robins-

Monro’s conditions for convergence.

1o1o 

10-10 _    
Figure 4.1. The logarithmic plot of 11,. versus time n for the linear time-invariant AR(3)

model with pseudo-random excitation.

For LSE algorithms, the estimates are consistent when the noise excitation is white. If
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Figure 4.2. The logarithmic plot of lenl versus time n for the linear time-invariant AR(3)

model with pseudo random excitation.
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Figure 4.3. First 1000 estimates of the parameters in the AR(3) model obtained using

SM-SA and a pseudo-random excitation, where a; = 2.1, a; = -1.48, and 03 = 0.34.
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Figure 4.4. The relationship between logarithms of time and weight.

we let 1),. = %(wfl -- 0.1), then the noise bound given in (4.2) still holds for {v,,} but the

sample mean is now —-113. Figure 4.5 compares the performance of RLS and SM-SA. It is

seen that RLS is severely affected by the bias of the noise excitation. The bias in SM-SA,

however, is very small. Note that only 0.89% of the data points are used by SM-SA.

4.1.2 AR Models with Binary Bernoulli Excitation

SM-SA algorithm is derived from bounded noise constraints. The weight A; is optimal in

the sense that the feasible set is minimized given that the previous information is known.

We may view the size of the feasible sets as a “confidence interval.” If the optimal weight

exists most of the time, it is expected that the performance of SM-SA is much better than

RLS because of the optimal weights. From the analyses in the previous chapter, we know

that optimal weight A; exists when the magnitude of the noise is close to the bound. In

this simulation, a zero-mean Bernoulli process {2”} is employed to drive the system. Let

7 = 0.25, then {2"} always hits the bounds. 80.11% of the data points are used. This is

not surprising because {2"} is always at the boundaries and thus updating is carried out



84

True value a1 -2. 1

2.4 a . v w
 

2.35 - ‘4

2.3

2.25  
2.2

 

2.15

 2.1

 

2.05    
2

x10‘

True value e2--1 .48

' 1

'1 .2 f r I f

-1 .3 ‘

-1.4 -

SM-SA

-1 .5

-1 .8

-1 .7 ..

1

 

  

 

   

 

 
 

  

'1'8 2 3 4 5

" x 10‘

True value 33-0.34

0.6 Y r U ‘I

0.5 ~ «

0.5 - J

I

0.45 I q

. 1 RLS

0.4 l H _ v '1

035‘ 4

0.3 SM-SA ~

0.25 -

" x 1 0‘

Figure 4.5. The estimates of model parameters by RLS and SM-SA for biased noise se-

quence.
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most of the time. One of the advantages of this extensive updating is that the volume of

the ellipsoid converges very fast to a very small number as indicated in Fig. 4.6.

Non-increasing volume when binary Bemoulli sequence is used

 
I v Vfivvvv' *7

   
Figure 4.6. The logarithmic plot of pa versus time n when a binary Bernoulli sequence is

used.

A comprehensive comparison of SM-SA and RLS is shown in Fig. 4.7.

If we replace {2"} by a non-zero mean Bernoulli sequence {tn}, then, according to Fig.

4.8, the performance of SM-SA with 78.16% of the data points selected is not affected by

the non-zero mean {tn}. However, the RLS estimates are clearly influenced.

4.2 Performance of SM-SA for Time-Varying System

In this section, a speech model with time-varying coefficients

ya = 61(n)yn-1 + b2(n)yn—2 + b3(n)yn-3 + wn (4-3)
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Figure 4.7. First 30,000 estimates obtained using SM-SA and RLS when a binary Bernoulli

sequence is used.
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Figure 4.8. First 30,000 estimates obtained using SM-SA and RLS when a biased binary

Bernoulli sequence is used.
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is considered. Simulations for speech signals have been performed by Odeh [28]. Here we

use a similar experiment just to examine the performance of SM-SA. True parameters in

this model are derived using short-term linear prediction analysis [37] of order two with a

256-point Hamming window and Levinson-Durbin recursion (see [37]) on an utterance of

the word “four” by an adult male speaker. The acoustic waveform is shown in Fig. 4.9.

The data were sampled at 10kHz after 4.7kHz low-pass filtering. While more meaningful

The acoustic waveform of the word "lour‘

1 000 I I r I I

 

800-

600'

400P

       
200'-

400'-

-600'        soc» -    
-1 000° 1 000 2000 3000 4000 5000 ' 6000

11

Figure 4.9. The acoustic waveform of the word “four”.

analysis of speech would involve model orders of 10-14 [37], this small number of parameters

is used here so that the results are easily illustrated [28]. The true parameters for the word

“four” are shown in Fig. 4.10. A set of 5376 data points were generated by driving this

model by 11:". In this simulation, only 2.15% of data points are used by SM-SA with good

performance. Simulation results by using SM-SA and RLS algorithms can be seen from

Figs. 4.11 to 4.12. Similar results by using SM-WRLS can be seen in [28] in which 1.86%

of data points are used. In each figure there are two curves, one for the true parameters as

reference, the other for the estimates obtained by using SM-SA or RLS.
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Figure 4.10. The “true” parameters for the word “four”: (a) b1(n) (b) bg(n).
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The power of the SM-SA algorithm is evident in this simulation. Upon comparing the

estimates obtained by SM-SA and conventional RLS algorithms, we find that SM-SA shows

better tracking capability than conventional RLS. For most algorithms, there is a trade-

off between improved computational complexity and improved performance. For SM-SA,

however, improved performance comes along with improved computational efficiency. More

discussion about SM-SA in time-varying system is left in section 4.4.

4.3 Suboptimal Test

More computational saving can be achieved by employing the suboptimal test. In Section

3.2.2 we have shown that many convergence properties of the suboptimal SM-SA are similar

to the “optimal” SM-SA. In this section, simulations and comparisons to the conventional

RLS are performed to verify the performance of SM-SA and its convergence properties.

Only the time-invariant AR(3) model given in (4.1), will be examined. The reason we do

not apply suboptimal test to speech signal is explained in Section 4.4.

4.3.1 AR Models with Pseudo-Random Excitation

First the model (4.1) is driven by {wn}. Only 0.46% of data points are used by the subop-

timal strategy. Compared with 1.58% in “optimal” SM-SA, this is a significant saving. But

more importantly, the checking procedure is 0(m). Figure 4.13 shows the non-increasing

volume measure pa in logarithmic scale. Fig. 4.14 shows that the estimation errors [5"]

also falls into the dead zone [0,05]. The first 2000 estimates can be seen in Fig. 4.15. We

see that the estimates are consistent and converge at a reasonable speed with only 0.46%

of total data points used.

Figure 4.16 illustrates that {A;} is a 1/n-type sequence, satisfying Robins and Monro’s

conditions for convergence.

Only 0.19% of data are used if {v,,} is the driving process, Note that the same ex-

periment performed in Section 4.1.1 used 1.03% of the data points. Figure 4.17 compares

the performance of RLS and SM-SA. We see that the effect of biased noise on suboptimal

SM-SA is much less than it is on RLS.
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Figure 4.11. Estimates of bl(n) for the word “four” using (a) SM-SA (b) RLS.
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Figure 4.12. Estimates of b2(n) for the word “four” using (a) SM-SA (b) RLS.
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Non-increasing volume using sub-optimal test
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Figure 4.13. The logarithmic plot of #7: versus time n for the AR(3) model when the

suboptimal test is used.
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Figure 4.14. The logarithmic plot of |£n| versus time n for the AR(3) model.
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Figure 4.15. First 2000 estimates of the parameters using SM-SA, where a1 = 2.1, a; =

-1.48, and a3 = 0.34.

 

 

  
  

Figure 4.16. The relationship between logarithms of time and weight.



95

True value 31-2.1

 

 
 

 

 

 
 

 

 

 

  
 

 

 

 
 

 

  

2.4
I

I
Y

I

2.35 ‘

2.3

.4

2.25 ‘

2.2 ' ‘

I _ RL§

2.15
-

2-‘ SM-SA #

2.05 ‘

" 1 2 3 4 5

x 10‘

True value 32--1 .48

'1 .2 r 1 I v

-1 .3 r '

'1 .4

-

SM-SA .

-1 .5
g . ..

'1 .8 . . hmA WA RLS
-

-1.7
4

-1.e . 1 ‘ ‘ ‘ '
1 2 3 4 5

n x 1 0‘

True value eta-0.34

0.6 I I I I V

0.55
.

0.5
.

0.45 -

1| ‘ RLS

0.4 I ’ ‘ .

0.35
.

SM-SA

0.3 ‘

0.25 1

0.2 l 1 1 1

1 2 3 4 5

n
x 1 0‘

Figure 4.17. Estimates of parameter using RLS and SM-SA for the suboptimal test.
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4.3.2 AR Models with Binary Bernoulli Excitation

Let 7 = 0.25 and let the AR(3) model is driven by {2”}. In the simulation for suboptimal

test, 49.86% of data points are used. The corresponding experiment for optimal SM-SA

used 80.11% of data points.

Figure 4.18 compares the performance between SM-SA and RLS. We find that SM-SA

shows excellent performance in the convergence of estimates even for the suboptimal test.

If we change the noise process to {tn}, Fig. 4.19 shows that the performance of SM-SA

is not affected by the bias of excitation, which is similar to the result for the “optimal”

SM-SA. In this case, 48.91% of data points are used, while 78.16% data points are used in

the corresponding optimal SM-SA.

4.4 More Studies on Time-varying Systems

SM-SA algorithm is derived assuming a time-invariant system. In the previous simula-

tion, we have seen that SM-SA has some tracking ability. The adaptability of SM-WRLS

algorithm have been studied in previous work [28]. Although we do not intend to pur-

sue theoretical analysis of SM-SA for adaptivity of SM-SA, we can make some heuristic

descriptions. Consider the weighted covariance R(n)

R(n) = (1 — A;)R(n — 1) + A;,xnxf

The (1 — A;,) term in this equation can be viewed as a forgetting factor for the algorithm.

The smaller the quantity A;, the lesser the impact of the current point. By controlling the

magnitude of the weights, the algorithm can decide the importance between the new and

old data. This is why SMoSA can trace some time-varying systems. In this situation, the

ellipsoid cannot shrink too fast, and since the parameters are always changing, the ellipsoid

cannot converge to zero either. A better way to estimate system parameters is to “over-

estimate” the noise bound because we can prevent the ellipsoid from shrinking to a very

small set. For the speech signal we discussed in this chapter, if we “over-estimate” the noise
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bound so that the bound be chosen as

3
.
0

|
/
\

O 0
"

but the real bound is

103, S 0.25

we will find that the algorithm has better tracking ability as shown in Fig. 4.20. In this

case 4.09% of data points are used, which is more than before.

Note that SM-SA is developed for time-invariant systems. If it works in a time-varying

system, some assumptions may be violated, for example 5,, may become negative. Thus it

is not appropriate to apply the suboptimal test to time-varying system since a negative c2,

may not imply a negative c,,. Some simulations show that if we apply the suboptimal test

to time-varying systems, the results are often not encouraging.
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Figure 4.20. Estimates of (a) b1(n) (b) 02(12) by using SM-SA algorithm for the word “four”
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Chapter 5

The Convergence Properties of

UOBE Algorithms

UOBE algorithm, a general class of OBE algorithms, is based on generalized WRLS in

which very broad classes of “forgetting factors” and data weights may be employed. Histor-

ically, this research on the SM-SA algorithm, and that of Krunz on the “Dual-SM-WRLS”

algorithm [33, 34], precedes and contributed to the development of UOBE. In this chapter,

we will generalize the convergence properties of SM-SA to all UOBE algorithms and show

the significant implication of this research to broader applications. A brief review of UOBE

is given here. Details are found in [38, 39].

5.1 The UOBE Algorithm

Given the system in (1.5) and the noise bound in (1.6), the hyper-ellipsoid set 5(a) associ-

ated with UOBE is defined by

6(a) = {o no — 0.0T 07“)“: - a.) s 1}

where 0,, is the WRLS estimates obtained by minimizing

1 fl

V(0) = ; Z w,m(yt. — £9)?

7:1
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in which

a,,wn_1,., 1' S n — 1

mu 1 —

fin 1' = n

and Kn is a scalar quantity,

n, = 910009,
, + :

wan (“1.5—,3
)

1'=l

C(n) is fundamentally defined as the sum of the weighted outer products,

C(n) = a..0(n — 1) + flnx(n)xH(n)

Different algorithms in UOBE are distinguished by the weighting sequences {a,,} and .

{flu}, in conjunction with the optimization criterion employed in selecting them. Three

criteria have been applied to the optimization process:

Optimization Criterion 1 Minimize the determinant of the inverse ellipsoid matrix,

in, {C(n)} é det{nnC'1(n)}.

Optimization Criterion 2 Minimize the trace of the inverse ellipsoid matrix,

_ A —l

#:{QW} = tr {MC (7%)}-

Optimization Criterion 3 Minimize the parameter Kn.

Criteria 1 and 2 were first suggested by Fogel and Huang [14], while criterion 3 was used by

Dasgupta and Huang [20]. In the single-output case in which B(n) is clearly interpretable

as an ellipsoid in 52'", p” {C(n)} is proportional to the square of the volume of the ellipsoid,

while pt{fl(n)} is proportional to the sum of squares of its semi-axes. Criterion 3 has been

used in conjunction with a specific weighting strategy to achieve a rigorous proof in certain

sense [20].

Let us adopt the policy of writing the weights a,, and flu as functions of a single param-
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eter to be optimized at time n, say A,, so that

a,,(An)

fin = fln(An)

0" (5.1)

where {an} and {flu} should now be considered to be sequences of functions. If we choose

a,,(An) = l and fln(z\,,) = A,,, then UOBE is exactly the SM-WRLS algorithm. SM—SA is

obtained by choosing a,,(An) = (1 - A,,) and 04),.) = A,, and optimization criterion 1. The

extension of the optimization process of SM-SA to criterion 2 is left as a future work.

5.2 Convergence Properties of UOBE

The most important theorem for the theoretical framework of UOBE is given as follows

[38, 39]:

 

Theorem 5.1 Consider a UOBE algorithm in which volume or trace is to be minimized.

Then the following are independent of the choices of function sequences {an(/\n)} and

{fln(’\n)}:

1. the sequence of measures of optimality ({pv(n)} or {p¢(n)});

2. the data points selected (times for which there exists A; > 0);

3. the parameter estimate, 0“.

However, in a UOBE algorithm with n minimization, none of these items is independent of

the sequence {an()\n)} and {fln()\n)}.

 

Theorem 5.1 concludes that any UOBE algorithm with volume minimization, regardless of

the weighting policy, will “behave” similarly in three senses. By using this theorem, we can

extend the convergence properties from SM-SA to UOBE:
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Corollary 5.1 Consider the UOBE algorithms in which volume is to be minimized. Let
 

{tn} be a subsequence such that update takes place at time tn. If there exists an N 6 N and

91, 92 > 0 such that for all n

n+N

911 < Z xth?; < 921, (5.2)

k=n+l

then

"112;, "0,, "' 0,,_1|| 3' O-

In addition to (5.2), if the noise process {v,,} is independent, and given 6 there exists a 6

such that for all n

P(vn 6 DC...) > 6, and P(vn 6 De.) > 6,

where Dc... = [\fi — e,\/'7] and D,.. = [—‘/'7,-\/'7 + c], then the volume of the ellipsoid

converges to zero and the estimates obtained using any UOBE algorithm converge to the

true parameters.

 

This corollary is very important since, through the research on SM—SA, the convergence

properties of all UOBE algorithms are established? This implies that SM-SA has much

broader implications for the entire class of UOBE algorithms.

 

’The original OBE paper by Fogel and Huang [14] is sometimes misunderstood to indicate the convergence

of the bounding ellipsoid to a point under ordinary conditions on {vn} (see [38]). Now the convergence

properties are proved.



Chapter 6

Conclusion

6.1 Concluding Remarks

6.1.1 Summary of Landmark Developments of SM-Based Techniques

Set-membership-based algorithms are developed to estimate the parameters of a linear

system in which the noise perturbance is additive and bounded.

After the first publication of the OBE algorithm by Fogel and Huang [14] in 1982,

SM-techniques attracted the attention of many research groups in the signal processing

field. However, the lack of convergence proof has been a serious weakness for the OBE-like

algorithms, although it shows good performance in many applications.

In order to remedy the convergence problem, Dasgupta and Huang proposed a modified

OBE [20] in 1987. Instead of minimizing the volume of the ellipsoid, they minimize the

upper bound of the set. This algorithm is convergent in the sense that the optimal weight

and the difference of the estimates converge to zero. However, it has been criticized by some

researchers [30, 38, 39] due to the lack of geometrical meaning.

The Adaptive Signal Processing and Speech Processing Laboratories at Michigan State

University have been pioneers in the research on SM-based techniques. The problem of the

tradeoff between the interpretability and convergence led to the study of SM-SA. During

the course of this research, it is found in parallel work that almost all OBE algorithms, can

be combined into a unified frame work called UOBE, and, SM-SA is just a special case of

UOBE obtained by choosing a,,(An) = 1 - A,, and fl,,(z\,,) = A,,, and volume minimization.
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The name SM-SA comes from the structural resemblance to the stochastic approximation

method.

6.1.2 Contributions of this Research

Selective updating so as to improve the computational load is the common feature among all

the members in UOBE. In contrast to RLS estimation in which the parameter estimates are

updated at every iteration, UOBE updates the estimates only if the incoming data contains

sufficient information. In addition to this advantage, the major contribution of this work is

the establishment of an algorithm which is both interpretable and convergent.

The interpretability of SM-SA comes from the optimization process in which the optimal

weight is found by minimizing the volume of the ellipsoid defined by

_ A _1

#u{9(n)} = det{KnR (71)}-

The convergence properties come from the boundedness of the covariance matrix. In

this work, we have shown that:

1. The optimal weight A; converges to zero.

2. The squares of the estimation error sequence fall into a dead zone given by [0,73,]

asymptotically.

3. If the noise sequence {v,,} is independent and the probabilities are non-zero in the

neighborhoods of the noise bounds, then the volume of the ellipsoid converges to zero.

4. If the noise process is mixing, then under a slight modification of SM-SA, the volume

of the ellipsoid converges to zero.

More importantly, through the analysis on SM-SA, the convergence of estimates presented

in Chapter 3 can be extended to all UOBE algorithms.

The other contribution is the illustration of the central difference between SM-SA and

RLS. While both algorithms have the same recursive formulation, they show completely

different behaviors. The reason is because the weight of SM-SA at time n is a random
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variable which depends on all the previous and present noise samples, while the weight of

conventional RLS or WRLS is deterministic. We have shown the difference in Chapters 3

and 4 by theoretical analysis and simulation studies.

6.2 Future Work

This research is concerned with the theoretical analysis of a special case of UOBE, SM-

SA. While we have seen in Chapter 4 that SM-SA performs well in tracking time-varying

parameters, we should not rely on an algorithm, which is developed in a time-invariant

setting, to perform well in a time-varying environment. It is of practical interest to develop

the adaptive SM-SA since most engineering applications deal with time-varying models.

Secondly, we have shown the convergence of SM-SA only on volume minimization, while

it is believed that the convergence properties under trace minimization are similar, it is still

necessary to provide a rigorous proof.

Finally, it is often difficult to get an accurate estimate for the noise bounds. In order not

to violate the bounded error assumption, it is natural to give conservative noise bounds. As

we have discussed, this often leads to a bad estimates. One way to solve this problem is to

use soft noise bounds in which the bounded noise assumption may be‘violated sometimes.

Thus the author suggests the study of soft-bound SM-SA algorithm as a further work.

In conclusion, the following topics are proposed for future research:

1. To develop an adaptive SM-SA algorithm.

2. To establish the convergence proof for SM-SA under the trace minimization.

3. To extend the model from ARX to ARMAX.

4. To develop a soft~bound SM-SA algorithm.
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APPENDIX A

Infinite Product

 

Definition A.1 Given an infinite product [1:11 a,,, let p,, = [12:1 a,,. If no factor a,, is

zero, we say the product converges if there exists a number p 96 0 such that {pa} converges

to p. If {pa} converges to zero, we say the product diverges to zero.

 

The following theorem is given without proof [9]:

Theorem A.l Assume that each a,, 2 0. Then the product [[(1 — a,,) converges if, and

only if, the series 2a,, converges.
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