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ABSTRACT

PRECISION AUTOMATED MEASUREMENTS

By

Robert Jay Randel

Due to their IEEE-488 GPIB capabilities, the latest series ofFluke/Philips

instruments can be programmed to perform a wide variety of automated

measurements. The Test'l‘eam software package supplied by Philips contains

drivers which make this programming directly possible from Microsoft

QuickBASIC. Techniques and software are developed using these drivers to

automate tedious steady-state measurements. The topics covered are bode

magnitude and phase plots, locating cutofl'(-3 dB) frequencies, measuring gain-

bandwidth-products ofop-amps, and finding the second order filter parameters

fl, Ho, and Q0. This software is tested on numerous circuits.
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CHAPTER 1

INTRODUCTION TO TES'ITEAM SOFTWARE

1.1 Introduction and Preview of Results

One tedious task a modern electrical engineer faces is the testing of a

circuit. Despite advances in computer modelling and simulation, there is no

substitute for building a circuit. Often problems are discovered that did not

show up in the simulation. Many ofthe tests that are run on these circuits are

very tedious measurements that can take even the most skilled of engineers

many hours. Until recently automation of these measurements was not

possible. However many newer test instruments now include some kind of

computer interface. When properly connected to a computer, the computer can

control the test equipment and perform the measurements for the engineer.

Of course the computer and the test equipment both need to be programmed.

One such set of instruments and software is the newest line of Fluke/Philips

instruments and the Philips TestTeam sofiware package.

TestTeam can be an extremely powerful tool to aid in the automation of

circuit measurements. To unleash this power, however, it is necessary to

program the package. The package is composed of a programming

environment (called LabWindows) and a complete set of drivers which support

many Fluke/Philips instruments. When these drivers are combined with some

programming, they allow the experimenter to automate measurements. The
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documentation that accompanies this package can be described as sparse at

best. It consists of descriptions of the drivers and an introduction to

LabWindows, but contains no usefirl examples or techniques. The goal of this

document is to indicate an approach to the deve10pment of software to

automate precision measurements using these drivers. In Chapter 2, sample

software is designed for the automated measurements ofBode magnitude and

phase plots and cutoff frequencies ofpassive networks. This sofizware is tested

on low and high-pass filters. In Chapter 3, the software is expanded to include

active circuits and perform such measurements as gain-bandwidth-products of

op-amps and the second order filter parameters f,, Ho, and Q. In Chapter 4,

the software is utilized to perform measurements to analyze a high-Q band-

pass filter. Complete listings ofthe developed programs are provided to assist

the user in further development. The examples herein will enable a user to

fully exploit the powerful device drivers included in TestTeam.

1.2 Choosing a Programming Language

The TestTeam drivers and the programmingenvironment are compatible

with two programming languages, Microsoft QuickBASIC and Microsoft C.

This study will use Microsoft QuickBASIC. Although not a widely used

language in the academic community, BASIC is widely used in industry.

BASIC achieved great popularity in the late 1970’8 because it was included in
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the ROM of virtually every personal computer of that time. These older

versions of BASIC are best suited to simple tasks. Critics complained that it

is difficult or impossible to write structured, easy-to-follow code since there

were no "while-until" or "repeat-until" commands nor were there subroutines

with parameters. Also, since it is an interpreted language (as opposed to

compiled) it could be too slow for many problems. Microsoft QuickBASIC has

obviated all of these objections. It is a free-form language (requiring no line

numbers) with a compiler, supporting subroutines and functions similar to

Pascal, and has numeric coprocessor support. It would appear to be an ideal

choice for a study whose goal is to make TestTeam more accessible to industry

users.

1.3 Hardware Requirements

The TestTeam software requires an BM PC/XT/AT, IBM PS/2, or

compatible computer with one floppy disk drive, one hard disk drive, 640 KB

of RAM, and the Philips PM 2201 IEEE-488 GPIB Bus Interface. For

graphical output, a graphics card and monitor are also required. This study

employed a 6 MHz Zenith 80286-based computer with monochrome CGA and

an 80287 coprocessor.
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1.4 Installation and Configuration of TestTeam Software

One should begin by making backup copies ofthe TestTeam distribution

disks. To install TestTeam onto a hard drive, insert the first diskette, make

floppy drive A the current drive and type

A>setup

and press the Enter key. The program now prompts the user to insert all of

the TestTeam disks for installation. The directories into which the setup

program will place the files are shown in Table 1.1 [1].

Table 1.1 - Directories of TestTeam Files

 I

 

 

 

  

\LW System files

\LW\FONTS Font files required for graphics I.

operations I

\LW\LIBRARY Library files for linking with

standalone programs

I \LW\INCLUDE Include files associated with

I libraries

: \LW\PROGRAMS Source code to sample programs

I \LW\INSTR Instrument modules

The setup program also performs some necessary changes to the

CONFIG.SYS file in the root directory of the hard disk. These include adding

the lines FILES=20 and DEVICE=\LW\GP1B.COM. The former allows a
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maximum of 20 files to be open simultaneously, while the latter allows the

system to be aware of the IEEE-488 port.

Next one must configure the TestTeam software to the instruments.

The instruments used in this study are the Philips PM 3365 Oscilloscope, PM

5183 Programmable Synthesizer/Function Generator, PM 6666 Programmable

Timer/Counter, and the Fluke 8840A Digital Multimeter. Before we can

connect the instruments to the computer, their IEEE address must be set.

This is done by using the front panel keys (PM 5193, PM 3365) or by setting

DIP switches (PM 6666, Fluke 8840A). Any address can be chosen as long as

there are no conflicts. Using standard IEEE-488 cables, connect each of the

four instruments to the computer’s interface. A typical way to do this is to

"daisy-chain" the instruments to the computer; this makes the detection of a

bad cable easier should that problem arise. Once this is complete turn on the

instruments (making sure there are no front panel connections present) and

type the following commands at the DOS prompt:

c:

cd\lw

contig/a

The last command selects the configuration program, and the la stands for

automatic. The automatic configuration seems to work well. It recognizes the

instruments attached to the GPIB bus and configure itself accordingly.
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1.5 Analysis of the Configuration Program

One of the files created by the configuration program is called

TESTTEAMBAS. A sample listing is shown below:

REM File : TESTTEAM.BAS

REM Setup file for Philips/Fluke Instrument drivers

REM This will assign logical names to the instruments

REM and initialize the instruments

REM Following include statements can be removed in Interactive

window

REM SINCLUDE: '\lw\instr\generato.inc'

REM SINCLUDE: ’\lw\instr\counter.inc’

REM SINCLUDE: '\lw\instr\multimet.inc'

REM SINCLUDE: '\lw\instr\scope.inc’

REM $INCLUDE: '\lw\instr\general.inc’

DEFINT A-Z

COMMON SHARED /DMM1/ DMMI AS INTEGER

COMMON SHARED /GNR1/ GNRl AS INTEGER

COMMON SHARED /OSC1/ OSC1 AS INTEGER

COMMON SHARED /CNT1/ CNTI AS INTEGER

CALL res.glb

CALL reset.config

CALL config(DMM1,"8840A,A 706,N DMMl")

CALL confithNRl,"PM5193/V2.5,A 707,N GNRl")

CALL config(OSC1,"PM3365/V07V04,A 708,N OSC1")

CALL config(CNT1,"PM6666/22,A 710,N CNTl")

CALL allinittDEFAULT.SET)

IF glb.stat > 1 THEN

PRINT "Error: ",glb.str :REM Print global error string

call res.glb :REM Reset global error status

ELSE

IF glb.stat - 1 THEN

PRINT "Warning: ",glb.str :REM.Print global warning string

call res.glb :REM Reset global error status

END IF

END IF

This file serves as the basis for all applications developed. Its purpose is to

initialize the GPIB bus and the instruments so they will be ready for the

commands.
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1.6 Programming the Instruments

Within the QuickBASIC environment, the instruments are given integer

variable names consistent with their function. For example the 8840A is given

the variable name dmml % (which stands for Digital Multi-Meter). Ifmore than

one of a given type ofinstrument is connected, the last digit will increase, e.g.

dmm2%. A summary of these variable names is given in Table 1.2.

Table 1.2 - Variable Names for Instruments

   

   

s...1.v.....1. Name I

 

 

 

 

  

Digital Multimeter dmm1%

Function Generator gnr1%

Timer/Counter cnt1%

Oscilloscope osc1% I

1.7 Using the TestTeam Drivers

The real power of the TestTeam package lies in its driver functions.

These drivers, when properly utilized, can be used to configure the

instruments, perform measurements, and display graphs. The QuickBASIC

syntax for these functions is

CALL function.name (...)

where the ellipses stand for whatever parameters are required for the function.

A summary of these functions is provided in Table 1.3. [2]



Table 1.3 - Summary of Important TestTeam Functions

 

 

 

 

 

 

 

 

 

   
 

.amplitude Sets output amplitude of function generator

. set.function Sets function of instrument (e.g. VOLTS—DC or

‘ VOLTS-AC for multimeter)

I set.speed Sets speed of instrument (note that speed is

. inversely proportional to significant figures)

set.coupling Allows AC or DC coupling to be selected

. set.sensitivity Sets sensitivity of counter

1 measure Triggers instrument and performs measurement

grfreset Clears the graphics display

setxdatatype Sets data type for x-axis (integer, real, etc.)

setydatatype Sets data type for y-axis

grfcuerd Creates x-y plot

grflreset I Resets graphics library

iolocal I Returns instrument to local control
 

setaxname Labels x or y axis

 

1.8 Summary

In this chapter the goals of the document have been outlined. An

introduction to usingTestTeam software was given, and Microsoft QuickBASIC

was chosen as the programming language to use. Finally the TestTeam

software was installed, preparing us for what lies ahead.



CHAPTER 2

STEADY STATE ANALYSIS OF PASSIVE NETWORKS

2.1 Introduction

In this chapter routines are designed to employ TestTeam for steady

state passive circuit analysis. In particular these routines automate common

tedious measurements such as Bode magnitude and phase plots, and to

automatically locate a -3 dB point.

2.2 Creating a Bode Magnitude Plot of a Passive Circuit

To use TestTeam to perform a measurement, one starts by envisioning

how to perform that measurement manually, and then translate those steps

into a program. To make a bode magnitude plot by hand, one would:

Connect the circuit to the function generator and multimeter.

Set the function generator to the beginning frequency.

Set the output of the function generator to 1 V rms.

Set the multimeter to read rms ac voltage.

Wait at least 5 t for the circuit to settle.

Measure the output on the voltmeter.

Convert the output to dB.

Increase the frequency.

Ifnot done, go to 5.P
P
S
P
’
P
‘
P
S
‘
F
’
!
‘
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It would also be wise to choose the frequencies logarithmically if we intend to

make a semilog plot. Translating these steps into QuickBASIC:

CALL set.amplitude (GNR1%, VRMS%, 1.0) ’set generator to 1V RMS

CALL set.function (DMM1%, VOLT.AC%) 'set DMM to read.RMs AC v

pdeS ’points per decade

strt !-1 .5 ' log of starting frequency

stpl-4 . 0 ' log of stopping frequency

for il-strt! to stp! step l/ppd

p-(il-strt!)*ppd 'offset in array

xttp)-10“i! ’actual frequency

CALL set.frequency (GNR1%, x#(p)) ’set freq of generator

CALL measure (DMM1%, y#(p)) 'take voltage measurement

y#(p)-20*log(y#(p))/log(10) 'convert to dB

print x#(p),y#(p) 'print frequency and d3

x#(p)-i! 'store log of frequency

next i!

CALL GrfReset (4) 'set up graphics screen

np-(stpt-strt!)*ppd 'number of points read

CALL GrfCuerD (x#(). y#()' np) 'do x-y'plot/wait for key

CALL GrfLReset (0, 0, 1, 2) 'return to text mode

This program may be run directly from the LabWindows environment,

provided it is added to the configuration program, TESTTEAMBAS. To enter-

the LabWindows program, type the following commands at the DOS prompt:

cd\1w

1w

This program is relatively straightforward in its operation. The first two lines

set the function generator to 1 V rms and the multimeter to AC voltage,

respectively. The next three set the number of points to take per decade and

the starting and stopping frequencies. After this comes the loop which takes

the frequencies. Since the FOR-NEXT loop chooses points linearly, ifwe take .

the antilog of each point, we will have the actual frequency. This is done in

the line x# (p) =1 0 " i . Next the frequency ofthe function generator is set and

the measurement is taken. Note that the internal settling time of the
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multimeter (551 ms in VAC mode) [3] is sufiicient for many circuits to settle,

thus no delay is included. Then the measurement is converted to dB (log in

QuickBASIC is to the base e, thus we must divide by log(10) to convert to base .

10) and the result is displayed. The log of the fi'equency is stored so we can

plot dB vs. log(frequency). Finally the data is plotted using the graphics

library drivers.

A test run of this program was done using the first-order Butterworth

low-pass filter shown in Figure 2.1. The actual values of the components (as

measured by the HP 4284A Precision LCR Meter) are R = 1.0169 k!) for the

resistor, and R3 = 7.6 Q and C8 = 100.11 nF (measured at 4 kHz) for the

capacitor. The generated plot appears in Figure 2.2. This plot appears to be

what would be expected from such a circuit.

 

 
 

R

0——_W\r O

+ +

VIN ;:C VOUT

C ‘ C

Figure 2.1 - Low-Pass Filter
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.
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Figure 2.2 - Bode Magnitude Plot of Low-Pass Filter

2.3 Speeding Up Operation of This and Other Routines

The LabWindows interactive environment, an interpreted subset of

QuickBASIC, is too slow by modern standards. Each measurement and

calculation takes several seconds. For professional lab measurements, one

must employ the full Microsoft QuickBASIC 4.5 compiler. An additional driver

package is then required: the PM2233 Instrument Drivers. This package

allows the interface of compiled QuickBASIC with the necessary drivers to

control the instruments. The installation of these drivers is identical to the

installation of the TestTeam software. It will place its files in the directory

\DRIVERS. The only necessary changes to the program are in the INCLUDE

statements at the beginning ofthe program. These changes can be seen in the
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listing of the program BODE3C.BAS in the next section.

It is possible to program directly in the QuickBASIC environment using

these libraries, however it is limited to small programs. Thus the QuickBASIC

editor was used to type the programs, and then they were compiled and linked

from DOS. To automate this procedure, the batch file DOIT.BAT was created.

Its listing is shown below.

bc/o %1;

\qb45\link %1,,@linkme.lnk

The command bc invokes the QuickBASIC compiler, and the / o parameter

tells it to compile stand-alone, i.e. without a run-time module. The % 1

represents the parameter passed to the batch file. Finally the @linkmelnk for

the linker tells it to get its input fi'om the file linkmelnk. The contents of this

file are shown below.

NUL.MAP/NOE/NOD/SEGMENTS:IOOO/STACK:10000,

\LW\LIBRARY\formatio+

\LW\LIBRARY\graphics+

\LW\LIBRARY\gpib qn+\LW\LIBRARY\1wqb1+\qb45\bcom45+

\LW\LIBRARY\ttdrqub+\DRIVERS\drivers+\LW\LIBRARY\lwqbZ:

The first line tells the linker not to create a cross-reference file and to set aside

10 KB for the stack. The other lines tell the linker where to find the necessary

libraries. For example, to compile and link the program BODE3C.BAS, type

at the DOS prompt: ’ .

doit b04034:

and press ENTER. Afier the process is complete, to run the program simply

type bodeac and press ENTER.
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2.4 Creating a Bode Phase Plot

A method of measuring phase angle is via an oscilloscope by finding a

common point on the two waveforms and measuring the time delay between

them. The ratio of this time delay to the period of the waveform is then

proportional to the phase angle. Symbolically this is

ALL.
T 360°

The problem is obtaining an accurate measure of AT. Fortunately there is a

simple solution. The PM6666 counter has a measurement mode called "TIME

A-B". This mode gives the time delay between a positive slope on channel A

and a positive slope on channel B [4]. Since the frequency (and thus the

period), is known, the calculation of phase follows. The only other

consideration is the coupling of the counter. For low frequencies, below about

500 Hz., the counter should be on DC coupling to avoid errors. Above 500 Hz.

the counter should be set for AC coupling. The QuickBASIC implementation

of this is shown below.

REM File : BODE3C.BAS

REM SINCLUDE: '\lw\instr\generato.inc'

REM SINCLUDE: '\lw\instr\counter.inc'

REM SINCLUDE: '\lw\instr\multimet.inc'

REM $INCLUDE: '\1w\instr\scope.inc'

REM SINCLUDE: '\lw\instr\general.inc'

REM SINCLUDE: '\lw\include\phildecl.inc'

REM SINCLUDE: '\lw\inc1ude\graphics.inc’

DEFINT A-Z

COMMON SHARED ldmml/ dmml AS INTEGER

COMMON SHARED Ignrl/ gnrl as INTEGER

COMMON SHARED /osc1/ oscl AS.INTEGER
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COMMON SHARED /cntl/ cntl AS INTEGER

CLEAR ’ ' 2048

DIM SHARED x#(100), y#(100): ph#(100)

CALL getmemIZOOOO)

overlay.memory.size& - 98304

memory.size& - SETMEM(640000)

memory.size& - SETMEM(-overlay.memory.size&)

CLS

CALL res.glb

CALL reset.config

PRINT "Initializing Multimeter..."

CALL config(dmm1, "8840A,A 706,N DMMl")

PRINT "Initializing Function Generator..."

CALL config(gnr1, "PM5193/V2.$,A 707,N GNRl")

PRINT "Initializing Oscilloscope..."

CALL config(oscl, ”PM3365/V07V04,A 708,N OSC1")

PRINT "Initializing Counter..."

CALL config(cnt1, “PM6666/22,A 710,N CNTI”)

PRINT "Setting up defaults...”

CALL allinit(DEFAULT.SET) 'or ACTUAL.SET to leave unchanged

IF Glb.Stat > 1 THEN

PRINT "Error: ", Glb.Str: REM Print global error string

CALL res.glb: REM Reset global error status

ELSE

IF Glb.Stat - 1 THEN

PRINT "Warning: ", Glb.Str: REM Print global warning string

CALL res.glb: REM Reset global error status

END IF

END IF

PRINT

StartOfProg:

CALL set.amplitude(gnrl%, VRMSt, 1!)

CALL set.function(dmm1%, VOLT.AC%)

CALL set.speed(dmm1, low)

CALL set.function(cntl%, TIMEINTERVAL.A.B)

CALL set.coupling(cntl%, chall%, dc%)

CALL set.sensitivity(cnt1%, cha%, .02)

CALL set.sensitivity(cnt1%, chb%, .02)

INPUT "Enter starting frequency ->", strt!

INPUT "Enter ending frequency ->', stp!

INPUT "Enter number of points per decade ->", ppd

PRINT

PRINT "Frequency dB Angle"

PRINT

strt! - LOG(strt!) / LOG(10)

stp! - LOG(stp!) / LOG(10)

FOR i! - strt! TO stp! STEP 1 / ppd

p - (i! - strt!) * ppd

X#(p) - 10 “ 1!

CALL set.frequency(gnr1%, x#(p))

CALL measure(dmm1%, yi(p))
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IF x#(p) > 500 THEN 'set AC coupling above 500 82

CALL set.coupling(cnt1%, chall%, ac%)

ELSE

CALL set.coup1ing(cntl%, chall%, dc%)

END IF

CALL measure(cnt1%, diff!)

ph#(p) - -di£f# * x#(p) * 360*

IE ph#(p) < -180 THEN

ph#(p) - ph#(p) + 360!

END IF

y#(p) - 20 * LOG(y#(p)) / LOG(10) 'convert to dB

LOCATE CSRLIN - 1

PRINT USING "##.###“““ +###.### +###.###"; x#(p); y#(p);

Ph*(P)

x#(p) - i!

NEXT i!

CALL GrfReset(4)

np - (stp! - strt!) * ppd 'number of points

CALL SetXDataType(4)

CALL SetYDataType(4)

CALL GrfCurv2D(x#(), y#(). np) ’x-y plot of dB vs. log(f)

CALL GrfReset(4) 'clear the graphics display

CALL GrfCuerD(x#()p ph#(), np) 'x-y plot of phase vs.log(f).

CALL GrfLReset(0, 0, 1, 2) ’return to text mode

CLS

PRINT "Again (y/n)?";

a$ - INPUT$(1)

PRINT : PRINT

IF UCASE$(a$) - "Y" THEN GOTO StartOfProg

REM Now return to local control

CALL ioloca1(dmm1%)

CALL ioloca1(osc1%)

CALL iolocal(cnt1%)

CALL ioloca1(gnr1%)

END

REM $DYNAMIC

SUB ReportError

END SUB

The output of this program for a the high-pass R—C circuit in Figure 2.3 is

shown in Figures 2.4 and 2.5. The values of the components used were Cs =

105.48 nF, R5 = 11.9 9 (measured at 400 Hz), and R = 4.028 kn. The frequency

range was from 20 Hz to 50 kHz, taking 9 points per decade.



17

 

7
:
0

 

 

O o

+ +

VIN R VOUT

O 0

Figure 2.3 - High-Pass Filter

l’
s.
’

 

E
a

“Iii 111 m E] w ill an ill all

Figure 2.4 - Bode Magnitude Plot of High Pass Filter



18

E
E
‘
L
E
E
E

E
“

Figure 2.5 - Bode Phase Plot of High Pass Filter

2.5 Defects and Potential Improvements

The program BODE3C.BAS discussed above suffers from several defects.

When measuring a low-pass filter, as the output voltage falls below a certain

level, the counter can no longer lock onto the signal and erroneous data is

taken. Also no access is given to the raw data in case an error is suspected.

In addition the counter may occasionally give a time delay that is ofi‘ by a

period or two, e.g. yielding a phase angle of -362° as opposed to the correct

value of -2°. Still another problem is that the output of the function generator

may not be exactly 1 V RMS. It would also be useful to label the axes of the

graph. Another desirable feature would be to implement a routine that would

locate a -3 dB point.
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2.6 Implementation of Improvements

2.6.1 Access to Raw Data

Providing the user with access to the raw data accumulated would be a

convenient feature. This way the user could verify the data by hand ifan error

is suspected, or even use this data in another program. It would be best to

supply all the calculated quantities as well as the measured values. The

values to be stored in the file are: frequency, dB, phase, measured voltage,

and measured time delay.

2.6.2 Correcting for Input Voltage Errors

When the PM5193 Function Generator is set for 1 V RMS output, the

open-circuit output is not exactly 1 V RMS. This effect does depend upon

frequency somewhat, although if we were to assume a constant error over a

range of fiequencies (which may or may not be accurate depending upon the

range), we could divide all our voltage measurements by a correlation to

approximate the actual transfer function. The optimum solution, of course,

would be to use a second voltmeter, then the transfer fimction would simply

be output divided by input. The former shall be implemented for the time

being, assuming that access to a second voltmeter is not possible. The
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implementation of the second voltmeter is addressed in Section 3.2. 1.

2.6.3 Disabling the Counter to Prevent Erroneous Data

When the output voltage falls below 10 mV RMS, the counter becomes

unable to lock onto the signal even when it is set for maximum sensitivity. To

solve this problem there are several options: (1) discard phase measurements

when the output falls below the 10 mV threshold (although some value must

be assigned to the array), or (2) we could stop taking phase measurements

below the threshold. The latter shall be implemented.

2.6.4 Correction of Phase Angle

Occasionally the counter gives a time delay that is offby a period or two.

This would result in a phase angle of say -722° or -362° instead of -2° (it

always appears to be off in the negative direction). The simplest method to

correct this is to add 360° to the phase angle as long as it is less that -180°.

Translated to QuickBASIC:

while phttp) < —180

ph#(P) - phttp) + 360!

wend
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2.6.5 Finding a -3 dB Point

Finding a -3 dB point is a common required measurement. It may

represent the bandwidth or a cutofi‘ frequency of a circuit. By hand it is a

tedious procedure, which makes it a particularly desirable feature to

implement by machine. The method chosen here is the linear interpolation

method. This method assumes a Bode plot has already been performed and

that the data from this plot is stored in an array. The steps followed are

detailed below.

1. Find two points whose magnitudes are "close" to- ‘12/2 ~ 0.70711.

If there are none, inform the user to re-run the bode plot to

include such points.

2. Use the linear interpolation formula (from basic calculus)

flx+Ax)~flx)+f’(x)Ax

where fix), flx+Ax), f(x), and x are known and Ax is the only

unknown. (f(x+Ax) = ‘12/2 and f(x) can be approximated by using

the two points found in step 1). That is, if the two known

frequencies are f1 and f2, and the two magnitudes are t1 and t2,

respectively, then

‘2 Itl

f2‘f1

and the target frequency is

f’(x)- 

[3:2

f’(x) +f"

 

3. Set the target frequency to the value found in step 2. Read the

output voltage from the voltmeter. If the voltage does not equal

0.70711 V (the 8840A displays 5 decimal points) then use one of
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the original points and point found in step 2 and return to step

2.

Translating steps 2 and 3 into QuickBASIC:

DO

slope! - (t2! - t1!) / (f2! - f1!)

f0? - (0.70711 - t1?) / slope? + £1!

CALL set.£requency(gnr1%, f0#)

CALL measure (dmm1%, t0#)

IE (f2? - £0!) < (f0# - f1?) THEN

f1¥ - f0¥

tlt - t0#

ELSE

f2# - f0#

t2# - t0#

END IF

LOOP UNTIL t0# - 0.70711

In practice this routine seems to require an average of 6 or 7 tries before it

finds the cutofi' frequency. Also we will want to include this value in the raw

data file.

2.7 The Program BODE5C.BAS

A listing of the finished code with the modifications discussed in

Sections 2.5 - 2.6 and some miscellaneous cosmetic changes is shown below:

REM File : BODE5C.BAS

REM- SINCLUDE: ’\lw\instr\generato.inc’

REM SINCLUDE: '\lw\instr\counter.inc'

REM $INCLUDE: '\lw\instr\multimet.inc'

REM SINCLUDE: '\lw\instr\scope.inc’

REM SINCLUDE: '\1w\instr\genera1,inc’

REM SINCLUDE: '\lw\include\phildec1.inc’

REM SINCLUDE: '\1w\include\graphics.inc’

DEFINT A-Z

COMMON SHARED ldmml/ dmml AS INTEGER

COMMON SHARED lgnrl/ gnrl AS INTEGER

COMMON SHARED /osc1/ oscl AS INTEGER

COMMON SHARED /cnt1/ cntl AS INTEGER
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CLEAR , , 2048

DIN SHARED X#(500)I Y‘(500)I Ph#(500)

CALL getmethOOOO)

overlay.memory.size& - 98304

memory.size& - SETMEM(640000)

memory.size& - SETMEM(-over1ay.memory.sizeE)

CLS

CALL res.glb

CALL reset.config

PRINT "Initializing Multimeter..."

CALL configtdmml, "8840A,A 706,N DMMl”)

PRINT "Initializing.Function Generator...”

CALL configtgnrl, "PM5193/V2.5,A 707,N GNRl")

PRINT "Initializing Oscilloscope..."

CALL config(oscl, "PM3365/V07V04,A 708,N OSC1”)

PRINT "Initializing Counter..."

CALL config(cnt1, "PM6666/22,A 710,N CNTl")

PRINT "Setting up defaults..."

CALL allinit(DEFAULT.SET) 'or ACTUAL.SET to leave unchanged

IF Glb.$tat > 1 THEN

PRINT "Error: ”, Glb.$tr: REM Print global error string

CALL res.glb: REM Reset global error status

ELSE

IF Glb.$tat - 1 THEN

PRINT "Warning: ", Glb.$tr: REM Print global warning string

CALL res.glb: REM Reset global error status

END IF

END IF

PRINT

StartOfProg:

OPEN "rawdata." FOR OUTPUT AS #1 'save data in file

CALL set.amp1itude(gnr1%, VRMS%, 1!)

CALL set.function(dmml%, VOLT.AC%)

CALL set.speed(dmm1, low)

CALL set.function(cnt1%, TIMEINTERVAL.A.B)

CALL set.coup1ing(cnt1%, chall%, dc%)

CALL set.sensitivity(cnt1%, cha%, .02)

CALL set.sensitivity(cnt1%, chb%, .02)

INPUT "Enter starting frequency ->", strt!

INPUT ”Enter ending frequency ->", stp!

INPUT ”Enter number of points per decade ->", ppd

INPUT ”Enter actual RMS output of function generator ->”, ff?

IF ff! - 0 THEN ff? - 1 'assume 1 if they hit return

PRINT

PRINT "Frequency dB Angle"

PRINT

strt! - LOG(strt!) / LOG(lO)

stp! - LOG(stp!) / LOG(lO)

np - (stp! - strt!) * ppd 'number of magnitude points

nph - np 'number of phase points

FOR 1! - strt! TO stp! STEP 1 / ppd
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p - (i! - strt!) * ppd

x#(p) - 10 “ i!

CALL set.frequency(gnr1%, xttp))

CALL measure(dmm1%, dvmt)

dvmi - dvmi / ff#

IF dvmt > .01 AND nph - np THEN ’take phase reading only if

voltage

'is greater than 10 mv RMS

IF xttp) > 500 THEN

CALL set.coup1ing(cnt1%, chall%, ac%)

ELSE

CALL set.coup1ing(cntl%, chall%, dc%)

END IF

CALL measure(cntl%, difft)

phitp) - -diff# * x#(p) * 360i

WHILE ph#(p) < -180

phttp) - ph#(p) + 360!

WEND

ELSE

IF nph - np THEN nph - p

END IF

y#(p) - 20 * LOG(dvmt) / LOG(lO) ’convert to dB

LOCATE CSRLIN - 1

PRINT USING "##.###“‘““ +###.### +###.###": xttp); yttp);

ph#(p)

PRINT #1, USING "#§.§t#“‘“ +§##.### ‘+###.##i -+###.#t#

##.####“‘“‘": x#(p): yitp): phttp): dvmt; diff!

x#(p) - i!

NEXT i!

PRINT

'Now look for -3 dB point

targeti - .70711# / ff#

1 - 1

WHILE ABS(EXP(LOG(10) * y#(i) / 20) - target#) / target¥ > .1 AND 1

< np

i - i + 1

WEND

IF i - np THEN

PRINT ”Couldn't find -3 dB frequency... run again with different

points"

PRINT #1, ""

PRINT #1, ”Couldn’t find -3 dB frequency... run again with

different points"

ELSE

flt - 10 ‘ x#(i - 1) 'starting frequencies

f2! - 10 ‘ x#(i)

t1! - 10 ‘ (y#(i - 1) / 20) 'starting target values

t2# - 10 “ (ytti) / 20)

DO

slope} - (t2# - t1!) / (f2! - fl!)

f0! - (target! - t1!) / slope! + £1! ,

PRINT USING ”Locating -3 dB frequency: #####.##": f0!

LOCATE CSRLIN - 1

'now find to

CALL set.frequency(gnr1%, f0!)
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CALL measuretdmml%, t0!)

IF (f2# - f0#) < (f0! - flt) THEN

f1! - f0#

t1} - t0#

ELSE

f2! - f0#

t2! - t0!

END IF

LOOP UNTIL t0# - target?

PRINT USING "The cutoff frequency is ##i##.## Hz.": f0!

PRINT #1, ""

PRINT #1, USING "The cutoff frequency is #####.## 32.”; f0!

END IF

WHILE INKEY$ - ”"z WEND

CLOSE #1 'output raw data file

CALL GrfResett4)

CALL SetAxGridVist-l, 1) 'enable grid lines for both

axes

CALL SetAxAutot-l, 21) 'auto-scale both axes every

time

CALL SetXDataTYPe(4)

CALL SetYDataTYP6(4)

CALL SetAxNametO, ”log(f)") 'set name of x-axis

CALL SetAxName(1, ”dB') 'set name of y-axis

CALL GrfCurv2D(x#(), y#(), np) 'x-y plot of dB vs. log(f)

CALL GrfReset(4) 'clear the graphics display

CALL SetAxName(1, "Phase Angle”) 'set name of y-axis

CALL GrfCurv2D(x#(), phtt), nph) 'x-y plot of phase vs. log(f)

CALL GrfLReset(0, 0, 1, 2) 'return to text mode

CLS

PRINT "Again (y/n)?":

as - INPUTS (1)

CLS

IF UCASE$(a$) - "Y" THEN GOTO StartOfProg

REM Now return to local control

CALL iolocal(dmm1%)

CALL iolocaltosc1%)

CALL iolocaltcnt1%)

CALL iolocaltgnr1%)

END

REM $DYNAMIC

SUB ReportError

END SUB
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2.8 Sample Data from BODE5C.BAS

The program was run for the high pass circuit shown in Figure 2.3. The

resulting Bode plots are shown in Figures 2.6 - 2.7, and the raw data is shown

in Table 2.1. The actual values of the components are R = 3.801 kn, R8 =

12.120, and Cs = 105.31 nF (measured at 400 Hz.). The data was collected

using 10 points per decade over a frequency range of 20 Hz to 50 kHz. The

cutoff frequency was found to be 416.59 Hz by the program. Note that this is

not the same as the theoretical cutofl‘ frequency (396.34 Hz) but rather is the

frequency at which the voltmeter read 0.70711. The error is due to the

presence of R8 of the capacitor and the output impedance of the function

generator. Correction of these errors is dealt with in the next chapter.
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Table 2.1 - Raw Data For High Pass Filter

2.000D+01 -26.225 +82.968 +0.049 3.8477D-02

2.518D+01 -24.164 +83.496 +0.062 3.0505D-02

3.1?0D+01 -22.159 +82.968 +0.0?8 2.4277D-02

3.991D+01 -20.16? +82.852 +0.098 1.9292D-02

S.024D+01 -18.18? +81.544 +0.123 1.5397D-02

6.325D+01 -16.225 +80.142 +0.154 1.2292D-02

?.962D+01 -14.288 +78.08? +0.193 9.8352D-03

1.002D+02 -12.386 +75.480 +0.240 7.8846D-03

1.262D+02 -10.S43 +72.680 +0.29? 6.3246D-03

1.589D+02 -8.??S +68.233 +0.364 5.1016D-03

2.000D+02 -?.120 +63.631 +0.441 4.1162D-03

2.518D+02 -5.613 +58.315 +0.524 3.3283D-03

3.1?0D+02 -4.294 +52.302 +0.610 2.6965D-03

3.991D+02 -3.191 +45.??9 +0.693 2.18730-03

5.024D+02 -2.315 +38.062 +0.?66 1.?801D-03

6.325D+02 -1.653 +32.418 +0.82? 1.4388D-03

7.962D+02 -1.1?4 +26.988 +0.8?4 1.1618D-03

1.002D+03 -0.842 +22.121 +0.908 9.3633D-04

1.262D+03 -0.616 +18.199 +0.932 7.5239D-04

1.589D+03 -0.465 +14.543 +0.948 6.0404D-04

2.000D+03 -0.366 +11.691 +0.959 4.8376D-04

2.518D+03 -0.299 +9.530 +0.966 3.86650-04

3.170D+03 -0.255 +7.596 +0.9?1 3.08820-04

3.99ID+03 -0.224 +6.383 +0.9?S 2.4615D-04

5.024D+03 -0.203 +5.30? +0.97? 1.96120-04

6.325D+03 -0.189 +4.190 +0.979 1.5627D-04

7.962D+03 -0.177 +3.380 +0.980 1.2442D-04

1.002D+04 -0.168 +2.?31 +0.981 9.900?D-05

1.262D+04 -0.159 +2.1?3 '+0.982 ?.8?6?D-05

1.589D+04 -0.150 +1.?01 +0.983 6.2649D-05

2.000D+04 -0.140 +1.282 +0.984 4.9822D-OS

2.518D+04 -0.138 +0.954 +0.984 3.9611D-05

3.1?0D+04 -0.14? +0.?95 +0.983 3.1478D-05

3.991D+04 -0.154 +0.?31 +0.982 2.5009D-05

The cutoff frequency is 416.59 Hz.

2.9 Summary

In this chapter TestTeam was utilized to analyze passive networks.

Routines for creating Bode magnitude and phase plots were developed, and an

algorithm for locating a -3 dB point was presented. These programs were

tested as they were developed and sample data was provided.



CHAPTER 3

STEADY STATE ANALYSIS OF ACTIVE NETWORKS

3.1 Introduction

In the previous chapter we developed techniques to analyze passive

networks. Now techniques are developed to measure active circuits. The

topics covered include gain-bandwidth-products of op-amps and the second

order filter parameters ft, Ho, and Q0.

3.2 Enhancements for the Measurement of Active Circuits

3.2.1 Addition of a Second Voltmeter

There are many circuits to which the 50!) output impedance of the PM

5193 function generator is significant. That is, for the one-port network shown

in Figure 3.1, V5' is significantly less than Vs. Until now, we have been

assuming that Vs a V8, which can result in significant errors. Consider the

passive notch filter shown in Figure 3.2 with component values R=116.9 0, C3

= 206.2 nF, Rec = 0.87 9, L3 = 907.34 uH, Ra = 12.45 9 (measured at 10 kHz).

The output ofthe program as it is now is shown in Figures 3.3 - 3.4. The data

was collected using 80 points per decade over a frequency range of 1 kHz to

'29
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100 kHz. The magnitude plot, however, is incorrect. At the center (notch)

frequency, the input impedance of this circuit is R+R3L+Rsc = 130.22 Q. Thus

assuming the 50 52 output impedance of the fimction generator is purely

resistive,

Vg= 13022 (1 V)=0.723 V
130.22+5o
 

which is already nearly 3 dB down. The best solution to this problem is to add

a second voltmeter to measure Vs’. As stated earlier, as long as the IEEE

address is different, there will be no conflict on the bus. Afier re-running the

configuration program, a new TESTTEAMBAS file is generated.

REM File : TESTTEAM.BAS

REM Setup file for Philips/Fluke Instrument drivers

REM This will assign logical names to the instruments

REM and initialize the instruments

REM Following include statements can be removed in Interactive

window

REM SINCLUDE: '\lw\instr\generato.inc’

REM SINCLUDE: '\lw\instr\counter.inc'

REM SINCLUDE: '\lw\instr\multimet.inc'

REM $INCLUDE: '\1w\instr\scope.inc'

REM $INCLUDE: '\lw\instr\general.inc’

DEFINT A-Z

COMMON SHARED /DMM1/ DMMl AS INTEGER

COMMON SHARED /DMM2/ DMMZ AS INTEGER

COMMON SHARED /GNR1/ GNRl AS INTEGER

COMMON SHARED /OSC1/ OSC1 AS INTEGER

COMMON SHARED /CNT1/ CNTl AS INTEGER

CALL res.glb

CALL reset.config

CALL config(DMM1,"8840A,A ?05,N DMMl”)

CALL config(DMM2,"884OA,A 706,N DMMZ")

CALL confithNRl,"PM5193/V2.5,A 707,N GNRl")

CALL config(OSC1,"PM3365/V07V04,A 708,N OSC1")

CALL configtCNTl,"PM6666/22,A 710,N CNTl")

CALL allinit(DEFAULT.SET)

IF glb.stat > 1 THEN

PRINT "Error: ",glb.str :REM Print global error string

call res.glb . :REM Reset global error status
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ELSE

IF glb.stat - 1 THEN

PRINT "Warning: ",glb.str :REM Print global warning string

call res.glb :REM Reset global error status

END IF

END IF

There are only three difi‘erent lines in this code. First is the declaration of the

new variable ('11ng . TestTeam recognizes the two meters as dmml and dmmz .

Then in the two CALL config lines the proper IEEE address is assigned to

each meter (address 5 is assigned to the new meter). These three changes may

be made directly to the BODE5C.BAS program.

 

+, 1-Port

3 VS Network
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The only necessary changes to the code to utilize the two meters are to

take the ratio of the two measurements instead of taking only one

measurement. The correct magnitude plot for the notch filter is shown in

Figure 3.5.

Another advantage ofusing a second voltmeter is increased bandwidth.

The upper frequency limit for the 8840A is 100 kHz. When using a second

meter though, if its measurements roll ofi' at the same rate as the first meter,

their ratio will still be correct. For the set of instruments used, an efi‘ective

increase in bandwidth to 400 kHz within 1% (0.1 dB) was observed.
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Figure 3.3 - Incorrect Bode Magnitude Plot for Notch Filter
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3.2.2 Modification of .3 dB Routine for Active Circuits

In previous sections we have found the -3 dB point with respect to 1 V.

For many circuits this may not be true. Let us examine a one-pole active low-

pass filter. In this case we will measure the DC gain of the circuit, then find

the -3 dB point with respect to it. Of course this will not work for high-pass

or band-pass filters since their DC gain will be small. A solution to this

problem is presented in section 3.6.3.

3.2.3 Measuring the Gain-Bandwidth-Product of an Op-Amp

Measuring the gain-bandwidth—product ofan op-amp is another common

required measurement. However certain circuit configurations make the

measurement easier than others. Consider the inverting amplifier in Figure

3.6. By inserting a controlled source model of the op-amp (Figure 3.7) it can

be shown that

V _ _ Ii!2 1

TI: TI: _1_R,+R,' . (3.1)

A4,. R1

 

1+  
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Likewise for the non-inverting amplifier (Figure 3.8) it can be shown that

V: R2+R1 1

V, R, 1 R,+R,' (3.2)
1+...

A4... 31

 

 

Note that both of these configurations (and indeed all one op-amp circuits [5])

have a transfer function of the form

 

1
-KF(s) __ 1

1+ 1 ' (3.3)

Ade

 

For low to mid frequencies, the open-loop difi'erential mode gain A,“ is

not constant, rather it acts as a one-pole transfer function. A one-pole model

for Ad... is given by

 Adm- A°‘°°. (3.4)
8+0)o

The frequency (on is the frequency at which the gain is down by 3 dB. From

the Fairchild data sheet for the 741 op-amp, A0 is 200,000 and f, is 5 Hz. The

product Aof0 is the gain-bandwidth-product. For frequencies much greater than

1;, Ah can be approximated as

A°‘°°. (3.5)
8

Ad,"- 

Inserting this expression into Equation 3.3 yields
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F(s)-K 1 .

1+ 8 .1;

A000 B

and making the substitution 3 = jm gives

 

(3.6)
 

pom-K 1 ,

1&2.

 

(3.7)

where

" 1 (3.8)

Note that if K = 1/B, then the product K-fe = GBP. The non-inverting

amplifier has this property; the inverting amplifier does not. Thus to find the

gain-bandwidth-product ofan opoamp, configure it as a non-inverting amplifier.

Then use BODE6C.BAS to find the -3 dB frequency ofthe circuit. The product

of the DC gain and the cutofi' frequency is then the gain-bandwidth-product.

This is true as long as the one-pole approximation of Adm holds. Thus K must

be chosen large enough that the second pole ofAdm does not efi'ect the results.

3.2.4 Aborting the Program

At certain times it may be desirable to abort operation of the program.

Perhaps the circuit is not responding as expected, the wrong number ofpoints



38

per decade was selected, or a different sweep is desired. It would be

convenient to simply press the ESCape key to stop operation of the program.

This feature will also be implemented below.

3.3 The Listing of BODE6C.BAS

A listing of the program as it stands now is shown below.

REM File : BODE6C.BAS

REM Support for second voltmeter added

REM and support for active circuits

REM Following include statements can be removed in Interactive

window'

REM $INCLUDE: '\lw\instr\generato.inc’

REM $INCLUDE: '\lw\instr\counter.inc'

REM $INCLUDE: '\lw\instr\multimet.inc'

REM $INCLUDE: '\lw\instr\scope.inc'

REM $INCLUDE: ’\lw\instr\general.inc’

REM $INCLUDE: '\1w\include\phildecl.inc'

REM $INCLUDE: '\lw\include\graphics.inc'

DEFINT A-Z

COMMON SHARED ldmmll dmml AS INTEGER

COMMON SHARED /dmm2/ dmm2 AS INTEGER

COMMON SHARED /gnr1/ gnrl As INTEGER

COMMON SHARED loscll oscl AS INTEGER

COMMON SHARED /Cnt1/ Cntl AS INTEGER

CLEAR , , 2048

DIM SHARED x#(500), y#(500). PhttSOO)

CALL getmem(20000)

overlay.memery.size& - 98304

memory.size& - SETMEM(640000)

memory.size& - SETMEM(-overlay.memory.size&)

CLS

CALL res.glb

CALL reset.config

PRINT "Initializing Multimeters..."

CALL config(dmml, ”8840A,A ?05,N DMMl“)

CALL config(dmm2, "8840A,A 706,N DMMZ")

PRINT "Initializing Function Generator..."

CALL config(gnrl, ”PMSl93/V2.5,A ?0?,N GNRl")

PRINT "Initializing Oscilloscope..."

CALL config(oscl, "PM3365/V0?V04,A 708,N OSC1")

PRINT "Initializing Counterr..”
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CALL config(cntl, "PM6666/22,A ?10,N CNTl")

PRINT "Setting up defaults..."

CALL a11init(DEFAULT.SET) ’or ACTUAL.SET to leave unchanged

IF Glb.$tat > 1 THEN

PRINT "Error: ”, Glb.$tr: REM Print global error string

CALL res.glb: REM Reset global error status

ELSE

IF Glb.$tat - 1 THEN

PRINT "warning: ", Glb.$tr: REM Print global warning string

CALL res.glb: REM Reset global error status

END IF

END IF

PRINT

StartOfProg:

OPEN "rawdata." FOR OUTPUT AS #1 'save data in file

CALL set.function(dmm1%, volt.ac%)

CALL set.function(dmm2%, volt.ac%)

CALL set.speed(dmml, low)

CALL set.speed(dmm2, low)

CALL set.function(cnt1%, TIMEINTERVAL.A.B)

CALL set.coupling(cnt1%, chall%, dc%)

CALL set.sensitivity(cnt1%, cha%, .02)

CALL set.sensitivity(cnt1%, chb%, .02)

INPUT "Enter starting frequency ->", strt!

INPUT ”Enter ending frequency ->", stp!

INPUT "Enter number of points per decade ->", ppd

INPUT "Enter desired RMS function generator voltage (default 1 V)

->", gnv!

IF gnv! - 0 THEN gnv! - 1

CALL set.offset(gnr1, 0%)

CALL set.amplitude(gnr1, vrms, gnv!)

PRINT

PRINT "Frequency dB Angle"

PRINT

strt! - LOG(strt!) / LOG(10)

stp! - LOG(stp!) / LOG(10)

np - (stp! - strt!) * ppd 'number Of magnitude points

nph - np 'number Of phase points

FOR i! - strt! TO stp! STEP 1 / ppd

p - (i! - strt!) * ppd

x#(p) - 10 ‘ i!

IF INKEY$ - CHR$(27) THEN

PRINT

PRINT ”Run aborted..."

PRINT

PRINT #1, "”

PRINT #1, "Run aborted..."

CLOSE

GOTO Again

END IF
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CALL set.frequency(gnr1%, x#(p))

CALL measure(dmm1%, dvmli)

CALL measure(dmm2%, dvm2i)

dvm! - ABStdva! / dvmli)

'input

'output

'find transfer fn output/input

IF dvm2# > 0 AND nph - np THEN

output

'take phase reading only if

'is greater than 10 my RMS

IF x#(p) > 500 THEN

CALL set.coupling(cnt1%, Chall%, ac%)

ELSE

CALL set.coup1ing(cnt1%, Chall%, dc%)

END IF

CALL measure(cntl%, diff!)

ph#(p) - -diff# * x#(p) * 360*

WHILE ph#(p) < -180

ph#(p) - phttp) + 360*

WEND

ELSE

IF nph - np THEN nph - p

END IF

y#(p) - 20 * LOG(dvmi) / LOG(lO) 'convert to dB

LOCATE CSRLIN - 1

+##§.### +§§#.#§#”; x§(p):PRINT USING "##.##§““

ph#(p)

PRINT #1, USING ”##.###““““ +###.i## +t##.###

##.##i#““‘": x#(p): yttp): ph#(p): dvmi: difft

x#(p) - i!

NEXT i!

Yttp):

+###.###

PRINT

'Now

CALL

CALL

CALL

CALL

CALL

CALL

hdci

CALL

CALL

CALL

CALL

find DC gain

'turn Off AC voltage from gen

'turn on DC volts from gen

set.amp1itude(gnr1, vrms, 0)

set.offset(gnr1, gnv!)

set.function(dmm1, volt.dc)

set.function(dmm2, volt.dc)

measure(dmm1, dvml!)

measure(dmm2, dvm2t)

- dvm2§ / dvmli 'DC gain (NOT dB)

'return DMM to its original

’state

set.offset(gnr1, Oi)

set.function(dmm1, volt.ac)

set.function(dmm2, volt.ac)

set.amplitude(gnr1, vrms, gnv!)

PRINT

PRINT #1,

PRINT USING "DC Gain - i#§.###"; hdci:

IF hdc’ <> 0 THEN PRINT USING ' - ##.##i dB": 20 * LOG(ABS(hdc§)) /

LOG(IO)

PRINT #1, USING ”DC Gain - ###.###": hdci:

IF hdci <> 0 THEN PRINT #1, USING " - ##.### dB": 20 *

LOG(ABS(hdc#)) / LOG(lO)
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'Now look for -3 dB point from.left side

PRINT

PRINT #1, ”"

target# - hdc? / SQR(2#)

IF target! < .001 THEN

PRINT "DC Gain is too low - Cannot sweep for -3 dB point from

left"

PRINT #1, "DC Gain is too low - Cannot sweep for -3 dB point from

left"

GOTO graphit

END IF

i - 1

WHILE ABStEXP(LOG(10#) * ytti) / 20%) - targett) / target! > .1# AND

i < np

i - i + 1

WEND

IF 1 - np THEN

PRINT "Couldn't find -3 dB frequency... run again with different

points"

PRINT #1, ""

PRINT #1, "Couldn't find -3 dB frequency... run again with

different points"

ELSE

flt - 10 “ x#(i - 1) 'starting frequencies

f2! - 10 “ x#(i)

t1! - 10 ‘ (y#(i - 1) / 20) 'starting target values

t2? - 10 “ (y#(i) / 20)

DO

slope# - (t2t - t1!) / (f2! - f1!)

f0! - (target# - t1!) / slope! + f1#

PRINT USING "Locating -3 dB frequency: #####.##”; f0#

LOCATE CSRLIN - 1

IF INKEYS - CHR$(27) THEN .

PRINT "Location of -3 dB frequency aborted... . "

PRINT #1, "”

PRINT #1, "Location of -3 dB frequency aborted..."

GOTO graphit

END IF

'now find to

CALL set.frequency(gnr1%, f0!)

CALL measure(dmm1, dvmlt)

CALL measure(dmm2, dvm2#)

t0! - dvm2§ / dvml!

IF (f2! - £0!) < (f0# - f1!) THEN

fli - f0!

t1? - t0!

ELSE

f2! - f0!

t2! - t0#

END IF

hgs - 100000! * t0! / hdci

LOOP UNTIL hg& - 70711

PRINT USING ”The cutoff frequency is #####.#t Hz.'; f0!

PRINT USING "GBP - ##§!#####.## Hz"; f0! * hdct

PRINT #1, USING "The cutoff frequency is #####.## Hz.'; f0#

PRINT #1, USING "GBP - ###}#####.## Hz"; f0! * hdct
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PRINT #1, "Actual cutoff ratio - ": t0# / hdc#

END IF

graphit:

CLOSE #1 'output raw data file

CALL set.amp1itude(gnr1, vrms, 0) 'turn off AC voltage from gen

'to facilitate changing components

PRINT

PRINT "Press any key to see graphs...";

WHILE INKEYS ' "": WEND

CALL GrfReset(4)

CALL SetAxGridVis(-1, 1)

axes

'enable grid lines for both

CALL

time

CALL

CALL

CALL

CALL

SetAxAutO(’1, 21)

SetXDataType(4)

SetYDataType(4)

SetAxName(0, "log(f)")

SetAxName (1, "dB")

'auto-scale both axes every

'set name of x-axis

'set name Of y-axis

CALL GrfCurv2D(x#(), y#(). np) ’x-y plot of dB vs. log(f)

CALL GrfReset(4) ‘ 'clear the graphics display

CALL SetAxName(1, "Phase Angle”) 'set name of y-axis

CALL GrfCurv2D(x#()p ph#(), nph) 'x-y plot of phase vs. log(f)

CALL GrfLReset(0, 0, 1, 2) ’return to text mode

CLS

Again:

PRINT "Again (y/n)?";

a$ - INPUT$(1)

CLS

IF UCASE$(a$)

REM

CALL

'CALL

CALL

CALL

CALL

END

Now return to local control

ioloca1(dmml%)

iolocal(dmm2%)

iolocal(osc1%)

ioloca1(cnt1%)

iolocal(gnr1%)

REM SDYNAMIC

SUB ReportError

END SUB

- "Y" THEN GOTO StartOfProg
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3.4 Sample Data from BODE6C.BAS

As stated earlier, one useful application of this program is to measure

the Gain-Bandwidth-Product of an op-amp. A non-inverting amplifier (Figure

3.8) is configured using an LM741 op-amp with R1 = 1 k!) and R2 = 47 k9

(nominal values). The resulting Bode plots are shown in Figures 3.9 - 3.10.

Unfortunately, the bandwidth of the meters is only 400 kHz, since by

examining the phase plot there appears to be a second pole around 4 MHz.

The DC gain was found to be 48.01, with a GBP of 828.3 kHz. The Fairchild

data sheet for the 741 lists a GBP 'of 1 MHz, however this characteristic varies

widely from sample to sample. Thus the results are considered acceptable.
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Figure 3.9 - Bode Magnitude Plot of Non-inverting Amplifier
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Figure 3.10 - Bode Phase Plot of Non-inverting Amplifier

3.5 Testing for Linearity

The measurements we have been taking are only valid when performed

on linear systems. Ifa circuit is not behaving linearly, the measurements may

be worthless. One possibility is that an op-amp in a circuit has saturated. A

method of checking for linearity is to reduce the input by some ratio (perhaps

50%) and check that the output is also reduced by the same ratio. If not, a

warning to the user is displayed. The QuickBASIC code to add to the program

to do this is given below.

CALL set.amplitude(gnr1, vrms, gnv! / 2!)

CALL measure(dmml, dvmlfl

CALL measure(dmm2, dvm2#)

IF Assmvair / dvmli - dvmi 7 2+) / (dvmt / 2:) > .01 THEN



45

PRINT USING "Warning - Linearity Check Failed at f - ##.####"“"":

pr)

LOCATE CSRLIN - 1

PRINT #1, USING "Warning - Linearity Check Failed at f -

#§,*§##eecc"; pr)

END IF

CALL set.amplitude(gnr1, vrms, gnv!)

It may also be desirable to do this only once every five or ten points, since it

slows down the program considerably. Due to the delays imposed by this

routine, it is not included in any other listings.

3.6 Automated Measurement of Filter Parameters

Another tedious measurement that would be useful to implement is the

measurement of the second order filter parameters f,, Ho, and Q0. Finding Q0

ofa high-Q filter by hand is particularly dificult. When properly programmed,

however, it becomes as simple as the touch of a button.

3.6.1 Location of a Second -3 dB point

If the program BODEGCBAS was run on a notch filter, it would locate

the -3 dB fiequency to the left of the notch. This is because we begin our

sweep from the left. If we were to sweep for a second -3 dB point from the

right, we would be able to calculate the bandwidth of this filter. One question

that rises immediately is what to find this second -3 dB point with respect to:
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the DC value or the highest fi'equency point taken. There are some notch

filters that do not return to the DC gain to the right of the notch. We will

assume that all notch filters swept by this program do return to the DC gain.

To ensure compatibility of this program with other filters, we will allow the

user to look for 0, 1, or 2 cutofi‘ frequencies.

3.6.2 Calculation of the Center Frequency of a Second-order Notch

Filter

If the notch filter is a second-order filter, then the center frequency can

be calculated by the formula

fcgfi (3.9)

where f, and f, are the two cutofi‘ fi'equencies, and the Q of the filter can be

found by

f
,=._¢_. (3.10)

Q f2 ‘f1

Calculatingf; is certainly faster than searching for the center ofthe notch, and

is sufficiently accurate for many applications. In the next section we will

develop a technique for locating the peak of a band-pass filter; if desired that

routine could be altered to locate the center of the notch.
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3.6.3 Finding the Parameters of Band-pass Filters

Locating the cutofi' frequencies of a band-pass filter is much more

difiicult than it was for the notch filter. The hardest part is finding the center

fi-equency. Unlike the notch filter, where we could use the DC gain as the

reference for the -3 dB frequencies, there is no reference to begin with. Thus

the only way to find the cutoff frequencies is to first find the peak of the filter.

An algorithm to find the peak is detailed below.

Sweep the bode plot as before.

Find the maximum value in the array y#. This will be the

starting point. Call this point Q.

3. Set the variable Alogf = 0.1. This will be the logarithmic window

in which we will look.

4. Measure the voltage at the two endpoints of the window,

P
!
"

f13=100°lfM

5. If the voltage at either f1 or f2 is larger than at f0, then set f, to

the frequency at which the voltage is highest, and go to step 4.

6. Otherwise divide Alogf by 2.

7. If Alogf > 0.00001 (or some acceptable tolerance), go to step 4.

Otherwise, f, = fo is the center frequency.

Once we have found )2. we can find H(, by measuring the output voltage at that

frequency, and we can find the cutoff frequencies relative to H0 in the same

manner as we have done all along. The formula given for Q0 in Equation 3.10

is still valid, and now we have all the filter parameters. Note that once these

modifications are made to the program, it can be used to locate the cutoff

frequency of a high-pass filter by sweeping the bode plot to the highest
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allowable frequency (400 kHz for the set ofinstruments used), then finding one

cutofi' frequency with respect to the peak output.

3.7 Accuracy of These Routines

The accuracy ofthese routines are limited mainly by the accuracy ofthe

instruments used. For a Fluke 8840ADMM calibrated within one year in True

RMS AC volts mode, the worst case accuracy (fi'om 50 - 100 kHz) is given by

the manual to be :(0.5% + 400 counts). In the 2 V range (full scale reading

1.99999 V), if the voltmeter reads 1 V, this says that the actual voltage lies in

the range

0.991 S V 5 1.009.

So the worst possible readings of a transfer function of 1 when using the ratio

of two meters are

flame

0.991

and

L991=oaaa

1.009

Based upon the agreement of theoretical and experimental data presented in

chapter 4, however, it appears that these numbers may be quite pessimistic.

The program does appear to be quite consistent in its results, within one count
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at the fourth significant figure. Henceforth all measured values are reported

to four significant figures.

3.8 The Program BODE7C.BAS

A Hating of the program BODE7C is given below. The program will be

tested in the next chapter.

REM File : BODE7C.BAS

REM Added ability to search for two -3 dB points

REM and calculate Ho, 00 for band-pass & notch filters

REM Following include statements can be removed in Interactive

window

REM $INCLUDE: '\lw\instr\generato.inc'

REM . $INCLUDE: '\lw\instr\counter.inc’

REM $INCLUDE: '\1w\instr\multimet.inc'

REM $INCLUDE: ’\lw\instr\scope.inc'

REM $INCLUDE: '\lw\instr\genera1.inc'

REM $INCLUDE: '\lw\include\phildecl.inc'

REM $INCLUDE: '\lw\include\graphics.inc'

DEFINT A-Z

COMMON SHARED /dmml/ dmml AS INTEGER

COMMON SHARED /dmm2/ dmmZ AS INTEGER

COMMON SHARED /gnr1/ gnrl AS INTEGER

COMMON SHARED /Oscl/ oscl AS INTEGER

COMMON SHARED Icntll cntl AS INTEGER

CLEAR , , 2048

DIM SHARED x#(500), y#(500), Ph#(500)

CALL getmem(20000)

overlay.memery.size& - 98304

memery.size& - SETMEM(640000)

memory.size& - SETMEM(-overlay.memery.sizes)

CLS

CALL res.glb

CALL reset.config

PRINT "Initializing Multimeters..."

CALL config(dmml, “8840A,A ?05,N DMMl")

CALL config(dmm2, "8840A,A 706,N DMMZ")

PRINT "Initializing Function Generator..."

CALL config(gnrl, "PM5193/V2.5,A ?0?,N GNRl")
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PRINT "Initializing Oscilloscope..."

CALL config(oscl, "PM3365/V0?V04,A 708,N OSC1")

PRINT "Initializing Counter..." '

CALL config(cntl, "PM6666/22,A ?10,N CNTl")

PRINT "Setting up defaults..."

CALL a11init(DEFAULT.SET) 'or ACTUAL.SET to leave unchanged

IF Glb.$tat > 1 THEN

PRINT "Error: ”, Glb.$tr: REM Print global error string

CALL res.glb: REM Reset global error status

ELSE

IF Glb.$tat - 1 THEN

PRINT "Warning: ", Glb.$tr: REM Print global warning string

CALL res.glb: REM Reset global error status

END IF

END IF

PRINT

StartOfProg:

OPEN "rawdata." FOR OUTPUT AS #1 'save data in file

CALL set.function(dmm1%, volt.ac%)

CALL set.function(dmm2%, volt.ac%)

CALL set.speed(dmm1, low)

CALL set.speed(dmm2, low)

CALL set.function(cnt1%, TIMEINTERVAL.A.B)

CALL set.coupling(cnt1%, chall%, dc%)

CALL set.sensitivity(cnt1%, cha%, .02)

CALL set.sensitivity(cnt1%, chb%, .02)

INPUT "Enter starting frequency ->", strt!

INPUT "Enter ending frequency ->", stp!

INPUT "Enter number of points per decade ->", ppd

INPUT "Enter desired RMS function generator voltage (default 1 V)

IF gnv! - 0 THEN gnv! - 1

CALL set.offset(gnr1, 0%)

CALL set.amplitude(gnrl, vrms, gnv!)

PRINT

PRINT "Frequency dB Angle"

PRINT

strt! - LOG(strt!) / LOG(lO).

stp! - LOG(stp!) / LOG(lO)

np - (stp! - strt!) * ppd 'number of magnitude points

nph - np 'number of phase points

' FOR i! - strt! TO stp! STEP 1 / ppd

p ' (i! - strt!) * ppd

x#(p) - 10 “ i!

IF INKEY$ - CHR$(27) THEN

PRINT

PRINT "Run aborted..."

PRINT

PRINT #1, ""

PRINT #1, "Run aborted...“
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CLOSE

GOTO Again

END IF

CALL set.frequency(gnr1%, x#(p))

CALL measure(dmml%, dvml#) 'input

CALL measure(dmm2%, dvm2#) 'output

dvm# - ABS(dvm2# / dvm1#) 'find transfer fn output/input

IF dva# > 0 AND nph - np THEN 'take phase reading only if output

'is greater than 10 mV RMS

IF x#(p) > 500 THEN

CALL seg,coupling(cnt1%, chall%, ac%)

ELSE

CALL set.coupling(cnt1%, cha11%, dc%)

END IF

CALL measure(cnt1%, diff#)

ph#(p) - -diff# * x#(p) * 360#

WHILE ph#(p) < -180

ph#(p) - ph#(p) + 360#

WEND

ELSE

IF nph - np THEN nph - p

END IF

y#(p) - 20 * LOG(dvm#) / LOG(lO) ’convert to dB

LOCATE CSRLIN - l

PRINT USING "##.###“‘“ +###.### +###.###”; x#(p); y#(p);

ph‘lI (p)

PRINT #1, USING "##.###““ +###.### +###.### . +###.###

##.####““‘"; x#(p): y#(p); ph#(p); dvm#; diff#

x#(p) - i!

NEXT i!

PRINT

’Now find out what to do with this data

DO

INPUT "Find (P)eak or (D)C gain? ", g5

95 - UCASE$(g$)

LOOP UNTIL 95 3 ”P" OR g5 - "D"

DO

INPUT "Search for how many -3 dB frequencies (0,1,2) ? ", cf

LOOP UNTIL Cf - 0 OR of - 1 OR cf - 2

IF g$ - "D” THEN GOTO dcgain

'Find peak value of the points we took first

k - 1 'pointer to maximum value

FOR i - 2 TO np - 1

IF y#(i) > y#(k) THEN k - i 'reset pointer if we found a new

max.

NEXT i

IF k - np - 1 THEN 'if rightmost point is max, use it

as h0

h0# - 10# ‘ (y#(k) / 20#)

GOTO sweepleft

END IF
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PRINT

deltalogf# - .1

f0# - x#(k) ’log of freq. of peak magnitude

t0! - y#(k) ’dB of peak magnitude

WHILE deltalogf! > .00001

PRINT USING "Locating center frequency: ######.##"; 10! “ f0!

LOCATE CSRLIN - 1

CALL set.frequency(gnr1, 10% “ (f0# - deltalogf#))

CALL measure(dmm1%, dvmlt) 'input

CALL measure(dmm2%, dvm2#) ’output

tlt - 20# * LOG(dvat / dvmlt) / LOG(lOt) ’gain at lower freq.

CALL set.frequency(gnr1, 10% ‘ (f0# + deltalogf#))

CALL measure(dmm1%, dvmlt) 'input

CALL measure(dmm2%, dvm2#) ’output

t2# - 20% * LOG(dvm2# / dvmlt) / LOG(10#) 'gain at upper freq.

IF t1§ < t0? AND t2? < t0? THEN

deltalogft - deltalogft / 2i

ELSE

IF t1# > t0# THEN

t0! - t1}

f0! - f0# - deltalogft 'set new freq. lower

END IF

IF t2# > t0! THEN

t0# - t2#

f0! - £0} + deltalogf! 'set new freq. higher

END IF

END IF

WEND

h0i - 10* ‘ (t0# / 20*) ’convert back from dB

fcnf - 10* “ f0§

PRINT USING "fc - ######.### Hz. ”; fcni

PRINT USING "HO - ##.*§§§§"; h0#

PRINT #1, USING "fc - ##§#i§.### 32."; fen?

PRINT #1, USING "HO - ##.#i#§§"; h0§

GOTO sweepleft

'Now find DC gain

dcgain:

CALL set.amp1itude(gnr1, vrms, 0) 'turn off AC voltage from gen

CALL set.offset(gnr1, gnv!) ’turn on DC volts from gen

CALL set.function(dmm1, volt.dc)

CALL set.function(dmm2, volt.dc)

CALL measure(dmml, dvmli)

CALL measure(dmm2, dvm2#)

h0# - dvm2# / dvmlt ’DC gain (NOT dB)

CALL set.offset(gnr1, 0!) ’return DMM to its original

CALL set.function(dmm1, volt.ac) 'state

CALL set.function(dmm2, volt.ac)
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CALL set.amplitude(gnr1, vrms, gnv!)

PRINT

PRINT #1, ""

PRINT USING "DC Gain - ##§.#####"; h0#:

IF hat <> 0 THEN PRINT USING " - ##.### dB"; 20 * LOG(ABS(h0#)) /

LOG(lO)

PRINT #1, USING "DC Gain - ###.#####"; hat;

IF hat <> 0 THEN PRINT #1, USING " - ##.### dB"; 20 * LOG(ABS(h0#))

/ LOG(lO)

'Now look for -3 dB point from left side

sweepleft:

IF cf - 0 THEN GOTO graphit

PRINT

PRINT *1, ""

target! - h0# / SQR(2#)

IF target¥ < .001 THEN

PRINT "DC Gain is too low - Cannot sweep for -3 dB point from

left"

PRINT #1, "DC Gain is too low - Cannot sweep for -3 dB point from

left”

f0! - 0

GOTO sweepright

END IF

i - 1

WHILE ABS(EXP(LOG(10#) * y#(i) / 20%) - target!) / target! > .2# AND

1 < np

i - i + 1

WEND

IF i - np THEN

PRINT "Couldn't find left -3 dB frequency... run again with

different points"

PRINT #1, "”

PRINT #1, "Couldn’t find left -3 dB frequency... run again with

different points”

ELSE

flt - 10 ‘ x#(i - 1) 'starting frequencies

f2! - 10 ‘ x#(i)

t1! - 10 “ (y#(i - 1) / 20) 'starting target values

t2! - 10 “ (y#(i) / 20)

DO

slope! - (t2# - t1!) / (f2! - f1!)

f0! - (target# - t1?) / slope§ + £1}

PRINT USING "Locating left -3 dB frequency: #####.##"; f0!

LOCATE CSRLIN - 1

IF INKEYS - CHR$(27) THEN

PRINT ”Location of left -3 dB frequency aborted...

PRINT #1, "”

PRINT #1, "Location of left -3 dB frequency aborted...”

f0! - 0

GOTO sweepright

END IF
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'now find to

CALL set.frequency(gnr1%, f0#)

CALL measure(dmml, dvm1#)

CALL measure(dmm2, dvm2#)

t0# - dvm2# / dvm1#

IF (f2# - f0#) < (f0# - f1#) THEN

f1# - f0#

t1# - t0#

ELSE

f2# - f0#

t2# - t0#

END IF

hg& - 100000# * t0# / h0#

LOOP UNTIL hg& - 70711

fcl# - f0# ’left cutoff frequency

PRINT USING "The left cutoff frequency is #####.## Hz.'; f0#

PRINT #1, USING "The left cutoff frequency is #####.## Hz.': f0#

IF Cf - 1 THEN

PRINT USING "GBP - #########.## Hz": f0# * h0#

PRINT #1, USING "GBP - #########.## Hz"; f0# * h0#

GOTO graphit

END IF

END IF

sweepright:

'Now look for -3 dB point from right side

PRINT

PRINT #1, ""

IF target# < .001 THEN

PRINT "Rightmost Gain is too low - Cannot sweep for -3 dB point

from right"

PRINT #1, "Rightmost Gain is too low - Cannot sweep for -3 dB

point from right"

GOTO graphit

END IF

1 - np - 1

YHILE ABS(EXP(LOG(10#) * y#(i) / 20#) - target#) / target# > .2# AND

> 0

i - i - 1

WEND

IF 1 - 0 THEN

PRINT "Couldn’t find right -3 dB frequency... run again with

different points"

PRINT #1, ”"

PRINT #1, "Couldn’t find right -3 dB frequency... run again with

different points"

ELSE

f1# - 10 “ x#(i - 1) 'starting frequencies

f2# - 10 “ x#(i)

t1# - 10 ‘ (y#(i - 1) / 20) 'starting target values

t2# - 10 “ (y#(i) / 20)

DO

slope# - (t2# - t1#) / (f2# - f1!)

f0# - (target# - t1#) / slope# + f1#

PRINT USING "Locating right -3 dB frequency: #####.##"; f0#
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LOCATE CSRLIN - 1

IF INKEY$ " CHR$ (27) THEN

PRINT "Location of right -3 dB frequency aborted...

PRINT #1,

PRINT #1,

' GOTO graphit

END IF

’now find to

CALL set.frequency(gnr1%,

CALL measure(dmml, dvm1#)

CALL measure(dmm2, dvm2#)

t0# - dvm2# / dvm1#

IF (f2# - f0#) < (f0# - f1#)

f1# - f0#

t1# - t0#

ELSE

f2# - f0#

t2# - t0#

END IF

hg& - 100000# * t0# / h0#

f0#)

LOOP UNTIL hg& - 70711

fc

PRINT

PRINT

IF 93

r#‘- f0#

PRINT

PRINT

- fc

PRINT

PRINT

(fcr# -

END

USING "fc - #####.##

l#)

*1, an

#1, USING

fc1#)

”fc = #####.##

IF

graphit:

CLOS

CALL set.amplitude(gnr1, vrms,

E #1

0)

PRINT

PRINT "Press any key to see graphs...

WHILE INKEY$ - "":

CALL

CALL

axes

CALL

time

CALL

CALL

CALL

CALL

CALL

CALL

WEND

GrfReset(4)

SetAxGridVis(-1, 1)

SetAxAuto(-1, 21)

SetXDataType(4)

SetYDataType(4)

SetAxName(0, "log(f)")

SetAxName (1, "dB")

GrfCurv2D(x#(), y#(), np)

GrfReset(4)

Oo - ###.####”:

"Location of right -3 dB frequency aborted...”

THEN

'right cutoff frequency

USING "The right cutoff frequency is #####.## Hz.":

#1, USING "The right cutoff frequency is #####.## Hz."; f0#

- "D” THEN fcn# - SQR(fc1# * fcr#)

f0#

fcn#; fcn# / (fcr#

do = ###.####"; fcn#: fcn# /

'output raw data file

’turn off AC voltage from gen

'to facilitate changing

'components

'enable grid lines for both

'auto-scale both axes every

'set name of x-axis

'set name of y-axis

'x-y plot of dB vs. log(f)

'clear the graphics display



56

CALL SetAxName(1, "Phase Angle") 'set name of y-axis

CALL GrfCurv2D(x#(), ph#(), nph) 'x-y plot of phase vs. log(f)

CALL GrfLReset(0, 0, 1, 2) 'return to text mode

CLS

Again:

PRINT ”Again (y/n)?";

as - INPUT$(1)

CLS

IF UCASE$(a$) - "Y" THEN GOTO StartOfProg

REM Now return to local control

CALL iolocal(dmml%)

CALL iolocal(dmm2%)

CALL iolocal(osc1%)

CALL iolocal<cntl%)

CALL iolocal(gnr1%)

END

REM SDYNAMIC

SUB ReportError

END SUB

3.9 Summary

In this chapter techniques were developed to measure active circuits.

A second voltmeter was added to improve accuracy, along with the necessary

changes to the code. A method ofmeasuring the gain-bandwidth-product ofan

Op-amp was also given. Finally a program to measure the second order filter

parameters fc, Ho, and Q0 was designed.



CHAPTER 4

EXPERIMENTAL AND THEORETICAL VERIFICATION

4.1 Introduction

In this chapter the routines developed in the previous chapters are used

to investigate and verify the properties ofa second-order active band-pass filter

presented in a recent paper.

4.2 The Filters to be Tested

The most dificult band-pass filter to measure by hand is a high-Q filter.

In a recent paper [6] a new relocated Tow-Thomas filter was presented (Figure

4.1) derived from the original Tow-Thomas filter (Figure 4.2). It claims to be

insensitive to the gain-bandwidth-product of the op-amps used provided that

they are matched. We will use BODE6C.BAS and BODE7C.BAS to attempt

to verify these results.

The new filter was generated from the original by a method called op-

amp relocation. This method generates circuits that have the same idea]

characteristics but may react difi'erently to a real (non-ideal) op—amp. The

basis upon which this method is founded is that the voltage across the

terminals of an ideal op-amp is zero (in the presence of feedback). So if one

terminal ofan op-am'ii is grounded, the other is forced to zero potential. Thus
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any other ground connection in the circuit may be made to the Op-amp node

instead ofground. Consider the original Tow-Thomas filter. The non-inverting

node of Op-amp 2 is connected to ground. Thus there will be no change in the

ideal characteristics of the circuit if it is connected to the inverting node of op-

amp 1 or op-amp 3 instead. Now the non-inverting node of op-amp 3 may be

connected to the inverting node of either op-amp 1 or op-amp 2. Certain

connections can make the circuit unstable, however. There are software

programs that perform op-amp relocation and check for stability; one was used

to design the relocated filter and led to the addition of R, and R,. The non-

ideal characteristics (due to finite GBP, et. al.) of a relocated circuit may be

dramatically difi'erent. In fact, the original Tow-Thomas filter is unstable

above about 6 kHz, whereas the relocated filter is stable to a much higher

frequency.

4.3 Measuring the Gain-Bandwidth-Products

The paper [6] calls for the use ofthe Texas Instruments TL084 quad Op-

amp. This integrated circuit contains four op-amps whose gain-bandwidth-

products are supposed to be "reasonably" close. The data sheet for this IC

claims a typical GBP of about 3 MHz. Measurements were taken for six

TL084’s with varyinggain-bandwidth-products. The summary ofthe measured

results are shown in Table 4.1.
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Figure 4.1 - Relocated Tow-Thomas Filter
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Table 4.1 - Gain-Bandwidth-Products of Measured Op-Amps

 

 

 

 

 

 

GBP 1 Room

(MHz) (MHz) Temp. (°C)

1

2 2.971 2.376 2.909 24

3 2.761 2.903 2.690 24

4 2.979 2.930 2.357 24

16 3.356 3.613 3.479 23

21 2.373 2.716 2.305 24
      

 

While measuring these gain-bandwidth-products a crucial error was almost

made. The chips were being measured by placing them into the circuit,

applying power, taking the measurement, and then removing them. While

doing this, it was noticed that subsequent runs ofthe program were producing

significantly different results - as much as 10%. This was caused by the

failure to allow the IC to reach its normal operating temperature. From the

data sheet for the TL084, 168 mW is being dissipated by the biasing current

when using :15 V power supplies. Since the thermal resistance is 131.6° C/W,

we can expect an increase of 22° C above ambient. Out of curiosity, several

runs were performed at varying intervals after applying power. These results

are shown in Table 4.2. They are not conclusive since they only apply to one

op-amp on one 10, but they are interesting nonetheless. Based upon these

results, all op—amps were allowed at least 15 minutes to reach operating

temperature before any measurements were taken.
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Table 4.2 - Gain-Bandwidth-Product vs. Time

Time After Power

Application (min) GBP (MHz) g

I 3

| . 

 

 

 

 

 

 

1 2.915

5 2.332 ‘

II 10 2.373 f

15 2.377 r

20 2.376 ’

| 25 2.876 1';

‘ , ,, _ _ 2.37 , E

4.4 Testing the Filter

Now we are ready to build and test the filter. A list of the component

values recommended in the paper and the actual values used are shown in

Table 4.3. The results ofthe measurements are summarized in Table 4.4. The

filter performed as the authors claimed. Despite the varying gain-bandwidth-

products of the op-amps used, the filter parameters remained relatively

constant. The consistency of the center frequency was most impressive,

varying only in the least significant digit. The maximum deviation in Q0

among the filters, between op-amps 1 and 16, was only 2.94%, and the

maximum deviation of Ho was 2.49%. A typical set of generated Bode plots

are shown in Figures 4.3 - 4.4.
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Table 4.3 - Component Values for the Tow-Thomas Filter

j Recommended

._ Component __ _ Value

 

 

 

 

 

 

 

 

 

  

1 Actual Value i

; R1 100 kg 101.05 m

f R, 4 m 3.355 m

l R, 1 m 1.030 m

IR, 1 kn 1.020 m

I R, 1 kn 1.014 kg

R, 100 m 104.25 m

R, 2.47 m 2.240 m

R, 1.175 m 1.203 kg

(31 7.953 nF C, = 7.370 nF

R, = 4.67 M12

6 10 kHz.

7.953 nF cP -.- 7.951 nF

R9 = 4.53 MO

@ 10 kHz. j

 

  

 

 

 

 

 

 

 

     

Room Temp.

Op-Amp f I H - (°C)

1 l 10.12 49.61 0.9513 24

2 10.13 49.43 0.9501 24 I

3 10.13 49.60 0.9532 24 I

4 10.12 49.54 0.9539 24 I

16 10.13 43.15 0.9343 24 n

21 10.12 49.33 0.9573 23 l
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As a measure Ofhow good this circuit is, the original Tow-Thomas circuit

was Constructed and tested with two TLO84s. Unfortunately it is unstable at

10 kHz, simply acting as an oscillator. The solution to this is to lower 1; by

making the two capacitors larger. In this case the capacitors were increased

toCl= 19.73nF(Rp=2.04MQ@4kHz)andC,= 19.88nF(Rp=2.90MO@

4 kHz). The results are given in Table 4.5. In the next section, it is shown

that when using an ideal Op-amp model, ,Q0 and Ho are not a function of the

capacitor values. Thus it is clear that in the original design Q0 and H0 are

dependent upon the gain-bandwidth-products of the op-amps used.

(
a
;

09

Figure 4.3 - Bode Magnitude Plot of Relocated Tow-Thomas Filter
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Figure 4.4 - Bode Phase Plot of Relocated Tow Thomas Filter

Table 4.5 - Measured Results of Original Tow-Thomas Filter

Room Temp. l'

Op-Amp f (kHz) (°C)

4.039 71.03 1.357

21 4.035 82.35 1.589 23

      
 

4.5 Theoretical Verification of Measured Results

There is a symbolic SPICE (Sspice) computer program under

development at Michigan State University [7]. We will use this program to

verify the measured results of the relocated Tow-Thomas filter. The input to



Sspice is similiar to PSpice, and is given below.

Rel
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fl

r5
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r3

r6
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N
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b
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Q
O
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Tow-Thomas Filter

ac

101.05k

3.855k

Note the addition of the r0 resistors, representing the output resistance of the

TL084. They are included because later in this section we will show that they

affect the filter parameters in the non-ideal case. These values do not afl’ect

the filter parameters in the ideal case so they may be ignored for now. Also

note that since an ideal op-amp model is being used, the formulas found for

this filter will also apply to the original Tow-Thomas (R, and R3 do not appear

in the formulas for the parameters). The Sspice output file is given below.

Relocated Tow-Thomas Active Filter

[0

[0

[0

[0

[O

[0

[1

Y(

Ii

Y(

Y( h
U
N
H

“
“

N
N
H
H

v
v
v
v

I
I

I
I

,1 0 -G3 0

,1 0 0 -G0

Y 3,2 0 0

Y 4,2 0 0

-GS -G4 0

0 Y 6,3 0

0 o 0

-sC1-GP1-G1

+sC1+GP1+GZ+G1+GO

-sC2-GP2

+sC2+GP2+GS+Go

O
I
0
0
0
0
0

GG

H
O
O
O
O
O

1 [v2

][V4

][V6

][V7

][V8

1 [v9

1 [v10

i
—
l
l
—
J
H
H
H
L
—
J
O
—
l
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Y( 6,3 ) - +G4+G3+GO

*Ignore nodes 11 and higher if present. They are used for internal

numbering.

Numerator of: v2

TERMS SORTED ACCORDING TO POWERS OF 3

s**1 terms:

+ sC2*G6*G4

s**0 terms:

+ GP2*GG*G4

********************t***************************

NUMERICAL VALUE OF ABOVE SYMBOLIC RESULT

+ 7.47731e-017 * s**1 + 2.053330-015 * s**0

***t********************************************

Denominator of: v2

TERMS SORTED ACCORDING To POWERS or s

s**2 terms:

- sC2*sC1*G4

s**1 terms:

- 3C2*GP1*G4 - sC2*G4*Gl - sCl*GP2*G4

s**0 terms:

- GP2*GP1*G4 - GP2*G4*G1 - GS*G3*G2

**************************************i*********

NUMERICAL VALUE OF ABOVE SYMBOLIC RESULT

- 6.134740-020 * s**2 - 8.049480-017 * s**1 - 2.483730-010 * s**0

************************************************

Relocated Tow-Thomas Active Filter

SECOND ORDER FILTER PARAMETERS:

Go is:

SQRT{( + C2*C1)*( + GP2*GP1*G4 + GP2*GQ*GI + GS*G3*GZ)}

( + C2*GP1 + C2*G1 + C1*GP2)*SQRT{ + G4}

8 48.4933
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Wo**2 is:

( + GP2*GP1*G4 + GP2*G4*G1 + G5*G3*G2)

 

( + C2*C1*G4)

fo I 10126.88:

*****i**********************************

The important parameters in the Sspice output have been highlighted. Sspice

does not give Ho, so a hand calculation was done using the given transfer

function. This calculation yields |T02n-10126.8)| 50.923913.

Sspice also has the ability to predict the shifiing of f, and Q0 due to

finite gain-bandwidth-products. It was stated earlier that the output

resistance also efl‘ects these shifts. Thus it is necessary to measure those

values, and they are given in Table 4.6. The Sspice results are tabulated in

Table 4.7.

Table 4.6 - Measured Output Resistance of Op-Ampsl

 

 

 

 

 

 

 

: Op-Amp H , 1(0) Row 2 (n) Rm 3 (a)

‘ 1 235.0 233.6 306.3

I 2 273.3 272.3 267.4

I 3 279.3 340.6 296.2

4 295.5 237.5 295.5

I 16 263.5 325.4 256.0

I 21 312.5 293.9 237.5

 

1This data was collected by Bassam Hindeleh
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Table 4.7 - Parameter Shifting Predicted by Sspice

 

 

     

 

 

 

 

 

 

___. AW

1 0000916259 0.033277500

" 2 0001009520 0.020737300

3 0001061240 0072313000

n 4 0001027560 0.061305000

16 0000740414 0.000161553

21 0001259700 0022055900 

Table 4.8 - Predicted Parameters and Errors

 

 

 

 

Prediced fc (kHz) Predicted Q0 % Error

1 10.12 0.000 50.11 1.003

2 10.12 l 0.099 49.50 0.040

3 10.12 0.099 52.02 4.379

4 10.12 0.000 51.47 3.396
 

 
 

     
16 10.12 0.099 48.50 0.727

21 10.11 0.099 ' 49.56 0.365 I
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The experimental results agree well with theory for the most part. The most

glaring inconsistencies are the Q0 errors for op-amps 3 and 4. In section 3.7

it was noted that the results ofthe program are consistent to within one count

at the fourth significant figure. In this case, a change in that last significant

figure of one count in one of the cutofi‘frequencies is enough to cause the error

in the calculation of Q0.

4.6 Summary

In this chapter the previously developed routines were tested on a high-

Q band-pass filter presented in a recent paper. Sspice was used to provide

theoretical verification of the measured results. The results were found to

compare favorably with theory.



CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

The goal of this document was to indicate an approach to the

development ofsoftware using TestTeam to automate precision measurements.

TestTeam has been found to be a powerful and useful toOl in this study. In

Chapter 2, routines were developed using one voltmeter to analyze passive

networks. In particular, a program to read data and create Bode magnitude

and phase plots and -3 dB fi-equencies was designed. In Chapter 3, a second

voltmeter was added to correct errors due to the output impedance of the

function generator. Routines were then developed to analyze active circuits,

such as finding the gain-bandwidth-products of op-amps and finding the

second-order parameters ft, Ho, and Q0 of band-pass and band-stop filters.

Although not explicitly developed for this purpose, the routines presented could

be altered to measure the aforementioned parameters of low and high-pass

filters also. Finally in Chapter 4 the routines were successfully tested on a

high-Q band pass filter.

5.2 Future Research

The next logical step in the progression of automated measurements is
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to move from steady state to transient measurements. Measurements such as

step response and calculations such as slew rate, step response, and FFTs can

be made from digitized oscilloscope data. In order to use TestTeam with an

oscilloscope, another driver package is required: The PM2235 Oscilloscope

Drivers. An attempt to write a program to capture oscilloscope data was made.

However when feeding the same signal to both channels and performing a

measurement, there was a voltage shift between the two channels, and neither

one had a correct ground. Attempts with other oscilloscopes yielded difl'erent

shifts, but no correct results. Phone consultations with a Fluke engineer have

not provided a satisfactory solution as of this writing.

The code written to capture the oscilloscope data is shown below. The

header on this program is slightly difi'erent due to a replacement for

TES'I'I‘EAMBAS supplied with the oscilloscope drivers.

'************* PM2233 INSTRUMENT DRIVERS INITIALIZATION PROCEDURES

'* File name : SCOPEBC. BAS

'****************************************************************

SDYNAMIC $INCLUDE: '\driver3\DRIVERS.INC'

' $DYNAMIC $INCLUDE: '\lw\include\graphics.inc’

V*******************i********************************************

’* DRIVERS INITIALIZATION

l**t*******************************************t*****************

CLEAR , , 10000 ' Reserve 10K bytes stack

Drivers.Initialization

GOTO Application

Drivers.Report.Error:

IF (ERR <> 11) THEN

PRINT : PRINT "BASIC error"; ERR; "in line": ERL

ELSE

ReportError

END IF

RESUME NEXT

'END Drivers.Report.Error

Application:

' USER APPLICATION STARTS HERE
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DIM SHARED ca%(512), cb%(512), ma#(512), mb#(512),

reg.settings#(89), t#(512)

CALL getmem(20000)

overlay.memory.size& - 98304

memory.size& - SETMEM(640000)

memory.size& - SETMEM(-over1ay.memory.size&)

CLS

PRINT

StartOfProg:

PRINT "Into my routine...”

CALL Set.Frequency(GNRl, 1000#)

CALL Set.Amplitude(GNR1, PP, 8!)

CALL Set.Waveform(GNR1, triangular)

PRINT "Calling Auto Set..."

CALL Auto.Set(osc1)

CALL set.polarity(oscl, chall, positive)

PRINT ”Setting DC coupling..."

CALL Set.Coupling(oscl, chall, DC)

PRINT "Setting channel format..."

CALL set.chan.trans.format(oscl, 1, real.data, 512)

PRINT ”Setting horizontal mode..."

CALL Set.Horizonta1.Mode(oscl, SINGLE.SHOT)

PRINT "Measuring scope data...”

CALL measure.chan.data(oscl, accu, cha, ca%()) 'measure forces

trigger

CALL read.chan.data(osc1, accu, chb, cb%()) 'read does not

PRINT ”Scaling data..."

CALL get.reg.settings(osc1, accu, reg.settings#())

CALL scale.chan.data(osc1, cha, reg.settings#(), ca%(), ma#())

CALL scale.chan.data(osc1, chb, reg.settings#(), cb%(), mb#())

FOR i - 0 TO 512

t#(i) - i

NEXT 1

graphit:

CALL Set.Amplitude(GNR1, VRMS, 0) 'turn off AC voltage from gen

PRINT

PRINT "Press any key to see graphs...":

WHILE INKEYS ' "": WEND

CALL GrfReset(4)

CALL SetAxAuto(-1, 21) ’auto scale both axes

CALL SetPlotMode(0) 'no wait for keypress

CALL SetXDataType(4)

CALL SetYDataType(4) 'eight-byte floating point

CALL GrfCurv2D(t#(), ma#(),.512)
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CALL SetPlotMode(2) 'wait for keypress

CALL GrfCurv2D(t#(), mb#(), 512)

CALL GrfLReset(0, 0, 1, 2) 'return to text mode

CLS

Again:

PRINT "Again (y/n)?";

as - INPUT$(1)

CLS

IF UCASE$(a$) - "r" THEN GOTO StartOfProg

REM Now return to local control

CALL Iolocal(DMM1%)

CALL Iolocal(DMM2%)

CALL Iolocal(osc1%)

CALL Iolocal(CNT1%)

CALL Iolocal(GNRl%)

END

REM $DYNAMIC

DEFSNG A-Z

SUB Drivers.Initialization

'******************i************************************i*********

'* DRIVERS INITIALIZATION PROCEDURE

't********************t*******************************************

ON ERROR GOTO Drivers.Report.Error

CLS

CALL Reset.Config

overlay.memory.size& - 141312

memory.size& - SETMEM(640000) ' Try' to get all memory' now

available

memory.size& - SETMEM(-overlay.memory.size&) ' Free memory for

instrument overlays

PRINT "Initializing Multimeters...”

CALL Config(DMM1, ”8840A,N DMM1,A 705")

CALL Config(DMM2, ”8840A,N DMM2,A 706")

PRINT "Initializing Function Generator..."

CALL Config(GNRl, "PM5193/V2.5,N GNR1,A 707")

PRINT "Initializing Oscilloscope..."

CALL Config(oscl, ”PM3365/V07V04,N OSC1,A 708")

PRINT "Initializing Counter..."

CALL Config(CNT1, "PM6666/22,N CNT1,A 710”)

PRINT "Setting up defaults..."

CALL Allinit(actual.SET)

END SUB 'Drivers.Initialization

SUB ReportError

f******************ti***************************************t**t**

'* DEFAULT ERROR HANDLER

I*****************************************************************

GPIB.ERR - Err.Num

IF (GPIB.ERR <> 0) THEN

GPIB.STAT - Err.Stat

GPIB.ERR$ - Err.Str$

GPIB.GLBSTAT - Glb.$tat.
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GPIB.GLBERR$ - Glb.$tr$

PCIB.ERR - IOErr.Num

PCIB.ERR$ - IOErr.Str$

status = GPIB.STAT

SELECT CASE status

CASE 0: PRINT ”IOdrivers error in line”; ERL: PRINT GPIB.ERR$

CASE 1: PRINT ”Warning in line"; ERL: PRINT GPIB.ERR$

CASE 2: PRINT "Error in line"; ERL: PRINT GPIB.ERR$

CASE 3: PRINT "Fatal error in line"; ERL: PRINT GPIB.ERR$: END

END SELECT

END IF

END SUB 'ReportError

The output of this program with the same signal fed to both channels is shown

in Figures 5.1 - 5.3. It is clear from these plots the ofl'set of the two channels

is not the same, nor is it consistent among different waveforms.

Ifthe two outputs were correct, one measurement which could be made

is the slew rate of an op-amp. The first step is to read the oscilloscope data

when the time base of the oscilloscope was set see the slewing. Then two

points could then be used to calculate the slope, perhaps at 30% and 80% of

the peak voltage values. The sampling rate can be read from the oscilloscope

using a driver, and the calculation of the slew rate follows.
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Figure 6.1 - Oscilloscope Output for Positive Pulse
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Figure 5.2 - Oscilloscope Output for Triangle Wave
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Figure 5.3 - Oscilloscope Output for Square Wave
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