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ABSTRACT

PARTI

THE SIMULATION OF EFFECTIVE TRANSPORT COEFFICIENTS

IN COMPOSITE MATERIALS

PART II

ELECTRON LOCALIZATION 3 QUANTUM MOLECULAR DYNAMICS

BY

SHEH-YI SHEU

PART I

Simulation methods for the investigation of effective transport

coefficients in composite materials are an extremely important

technique in science. We study composite materials consisting of

spherical impenetrable inclusions embedded in a homogeneous matrix.

The method is referred 'to as an analytic-simulation method. The

effective transport properties can be: diffusion, dielectric behavior,

elastic and viscous constants, electric and thermal conductivity, and

magnetic susceptibility. For a given configuration of inclusions, a

set of coupled algebraic linear equations written in terms of the

t-operators and the propagators between inclusions'is solved to obtain

the multipole moments of the inclusions. The minimum image convention,

a spherical interaction cutoff, is used to evaluate the multipole

moments for each inclusion. The resulting total sample polarization is

related by macroscopic electrostatics to the sample’s effective

dielectric constant. We simulate two classes of properties of a

composite material: the static and frequency dependent dielectric



constant. For the static dielectric constant, we investigate how the

effective dielectric constant, ee’ is controlled by multipolar effects.

The investigated systems are conducting inclusions in an insulating

matrix, the inverse case, and coated inclusions (composite-composites).

Due to the difficulty of obtaining converged results for £6, for

conducting inclusions in an insulating matrix, at volume fractions

above 0.5, we evaluate Ce by a random walk method. The random walk

method permits an accurate evalution of 8e up to volume fractions

corresponding to near to close packing of the inclusions. We also

consider the frequency dependent effective dielectric constant, sew),

of composites with metallic inclusions, modelled as Drude oscillators,

in an insulating matrix such as a glass. The optical properties such

as line-broadening and line—shift of 'the dielectric constant lineshape

of these composites have been studied. We find that the lineshape of

saw) is greatly broadened by the allowance for the electrostatic

interactions among the inclusions in comparison with the

Maxwell-Garnett results. We consider different types of disordered

configurations for this problem. Comparison is made between results

based on the minimum image convention and the lattice-sum approach.

The former method is more efficient than the customary lattice sum

approach, which employs Ewald sums, and yields results in good

agreement with the latter method.

PART II

Quantum molecular dynamics (an Adiabatic Simulation Method) has

been used to discuss an excess quantum electron which interacts through



.pseudopotentials with a fluid of classical molecules. A detailed

algorithm for the investigation of the equilibrium and dynamical

properties of this coupled quantum-classical system is described. This

study focuses on the localization, dynamics, and mode of transport of

an excess electron in condensed helium. Properties investigated

include the correlation functions and electronic energy of the ground

and lowest excited states, and the diffusion coefficient of the ground

state electron.
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PART I

THE SIMULATION OF EFFECTIVE TRANSPORT COEFFICIENTS

IN COMPOSITE MATERIALS



1. INTRODUCTION

Many composite materials are of great scientific and

technological interest. The concept of the dielectric constant is of

considerable importance in the description of the macroscopic electric

behavior of composite materials. Based on the electrostatic point of

view, when an electric field is imposed on a perfect conductor, there

is no difference between microscopic and macroscopic fields. In

contrast, when we apply the same field on a dielectric system, the

dielectric will respond to the field and a polarization will develop at

a molecular level, and dipoles will reorient in response to the field.

If the constituents of the composite are sufficiently large that they

can be assigned a spatially-dependent dielectric constant €(r)1, then

the electric displacement D(r) in the system is related to the electric

~~

field E(r) as

D(r) = 6(5) 51(5). (1.1)

The electric field E(r) is given in terms of the potential field as

E(r) = - Y Mr). (1.2)
~~

Let us combine Eqs. (1.1) and (1.2) to obtain a first order
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differential equation, which can be applied equally well to similar

phenomenologies such as diffusion, electric and thermal conduction,

elasticity, viscosity and magnetizationz. In order to calculate the

dielectric constant of a composite material, we must solve Maxwell’s

equation

V - D(r) = Slr). (1.3)
~ ~~

where S(r) is the source term.

Many composite materials are heterogeneous on a scale such that

at each space point the material properties obey the macroscopic

constitutive equations. Thus, for a macroscopic sample of the material

the ensemble average obeys

<D>(r) = ee<E>(r) (1.4)

which gives a definition for the effective dielectric constant 6e of

the composite. The concept for this description of phenomena must be

on a length scale that is large compared to the typical scale of the

inhomogeneities, or the microscopic correlation lengths. The average

means a configuration average over many realizations of the material

distribution functions, a so-called statistically ensemble average.

In order to evaluate the effective dielectric constant so, the

composite material’s structure must be prescribed; this is done
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statistically. Then an averaging procedure must be carried out over

the prescribed distribution of configurations.

We study materials consisting of spherical non-overlapping

inclusions, which are assumed to be statistically distributed with a

probability distribution independent of the position of the external

applied field, embedded in a homogeneous matrix.

Simulations for the investigation of effective transport

coefficients in composite materials have become an extremely powerful

technique in science. The properties of diffusion, dielectric,

elastic, and viscous constants, electric and thermal conductivity, and

magnetic susceptibility can be studied by analogous methods. There are

two steps in the study of effective transport properties by this

technique: First, an expression for the transport property must be

given in terms of some microscopic quantities, which can be obtained

from the simulation method. For example, the effective dielectric

constant 6e of a composite material is obtained via the polarization of

sample and the electric field. The polarization is defined as the

total dipole moment per unit volume. Here the microscopic quantity is

the dipole moment on each inclusion. Second, a simulation method must

be developed to evaluate these microscopic quantities.

The method we present is a combination of an analytic calculation

and a numerical simulation, which we will refer to as an

analytic-simulation method. It is exact in principle. For the given

dielectric constants of the inclusion and matrix, the sizes, shapes,
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volume fraction ¢ and distribution in space of the inclusions it will

yield as to the accuracy implied by a finite size simulation of an

infinite material.

In order to evaluate an accurate Ce, we employ a technique

similar to the method used by Lebenhaft and Kapral in their study of

diffusion—controlled reactionsa. For a given configuration of

inclusions, a set of coupled linear equations for the multipole moments

of the polarization of the inclusions can be written in terms of the

t-operators of each inclusion and the propagator between pairs of the

inclusions. The total polarization of the sample is obtained by matrix

algebra. The multipole expansion for the polarization is required to

convert the coupled integral equations for the inclusion polarizations

to linear algebraic equations. The t-operator gives the response of

the ith inclusion to an "arbitrary field", which arises from the

external field and all the inclusions excluding the ith inclusion.

Correlations among the inclusions are exactly accounted for with this

method. For high volume fractions of the inclusions it is necessary to

be concerned with the higher multipole contributions for the

calculation of an accurate effective dielectric constant. A systematic

and direct method is used to solve these linear coupled equations, Eq.

(3.19). In the following, numerical results for some special models

will illustrate the importance of multipole contributions to the

effective dielectric constant.

The simulations will be carried out by generating the inclusions

in a primary cell (typically using a Monte Carlo method) and
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periodically imaging the cell. We use a minimum image method to

evaluate the dipole moment and higher order multipoles of a given

inclusion inside the primary cell.

As the multipole moments are defined in terms of the propagator

1

tensors, the dipole field involves the dipole tensor W(—r—). This is

a long-ranged interaction and leads to conditional convergence of

dipole sums. Due to the long-ranged behavior of the dipole tensor, the

dielectric constant is not well-defined i.e. it is sample

shape-dependent in the thermodynamic limit. The lattice sum approach,

which employs a large number of periodic images of the primary cell and

involves an Ewald-summation method‘, has been used to represent the

dipole propagator in an efficient and rapidly convergent form.

Comparison is made between results based on the minimum image method

and the lattice-sum approach.

In the investigation of the optical properties of composite

materials, it is the frequency dependent effective dielectric constant

sew) that is experimentally probed. The absorption

lineshape-broadening and line-shift of the frequency dependent

dielectric constant for composite 'materials can also be studied by the

analytic-simulation method. The types of the configurations we

investigate include: randomized lattice, vacancy lattice, and mono- and

poly-disperse liquid-like structure.

The frequency dependent dielectric constant of the inclusions is

given by a Drude model, as appropriate to metallic inclusions. We find
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that the lineshape of the imaginary part of the effective dielectric

constant is greatly broadened by the allowance for the electrostatic

interactions among the inclusions in comparison with the

Maxwell-Garnett results.

The rest of our work is outlined as follows. In Chapter 2 we

review some methods for calculating the effective dielectric constant

of composite materials. The first section discusses the historical

development of the methods of calculation of the. static dielectric

constant in random media. The second section contains an introduction

of the concept of the Drude model for a metallic inclusion and the

development of the frequency dependent dielectric constant in composite

materials. We also discuss the Quantum size effect that becomes

important for small particles. In Chapter 3 the analytic development

of analytic-simulation method is presented in terms of the t-operator

or the polarizability of the inclusion and the propagator tensor gal.

The relation between the microscopic dipole moments and the macroscopic

averaged polarization is discussed. The other part in this Chapter

discusses the properties of the dipolar tensors including the basic

idea of the lattice 'sum approach. In Chapter 4 we describe the

numerical simulation methods and introduce the different methods to

generate the different types of configurations. We extend the minimum

image method to calculate the dipole moments and higher order

multipoles for each inclusion. The rest of this Chapter demonstrates

the intent of the computer programs and lists the algorithm for

computations. In Chapter 5 we present the results for the different

physical models. First, in the static dielectric problem we use the
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analytic-simulation method to discuss the conducting case, the inverse

case and a composite-composite case. Then, the results from the random

walk method are compared with those of the analytic-simulation method

for the conducting case. The second section contains the calculation

of the frequency dependent dielectric constant for the different types

of configurations for a hypothetical and more realistic model of silver

in glass. Finally, we compare the results of the analytic-simulation

method using the minimum image method with the results of the

lattice-sum approach. Chapter 6 contains the conclusions and outlines

future applications of the method to composites with non-spherical

inclusions, electromagnetic , versus electrostatic effects and

wavevector-dependent effective transport coefficients.



2. HISTORY

2.1 DEVELOPMENT OF THE STATIC e:e

Theories about the static dielectric constants of composite

materials have a long history. For this field there is a great deal of

literature reviewed by Landauer‘. In the following we will briefly

summarize some approaches to these problems.

A general expression for the. dielectric virial coefficient for

the one inclusion problem was derived by Maxwell5 in 1873. He

considered a spherical inclusion of dielectric constant t:1 embedded in

a matrix of dielectric constant 62. The dielectric constant Ce of a

macroscopic sample of the material depends on the ratio 61/62 and the

volume fraction of inclusions, ¢. His formula takes into account the

induced dipole moments of the inclusions, and the Ce is calculated by

taking the result from one inclusion and multiplying by the number

density of inclusions. This can be applied to obtain an accurate 8e

for small volume fractions. For the dilute inclusion problem 6e is

given by

86/6 = 1 + 3 a 4’ (2.1)



 

£1 - :2 4n 3

where a = and 1» = -—- a N. V is the volume of the system,
:1 + 252 3V

3 is the radius of inclusion, and N is the number of inclusions.

Maxwell-Garnetts presented an effective medium theory for the

calculation of £6. The 8e evaluated by this theory is identical to a

result from the Clausius-Mossotti formula7’a. In effective medium

theory the effective field applied on a given inclusion is defined as

the sum of an applied field and a field due to the polarizations

induced on the other inclusions. The matrix is thought of as a

homogeneous polarized medium surrounding the inclusions. This leads to

an expression

  

( 5 - E ) ( E - 5 )

° 2 = 1 2 4. (2.2)

( c + 252 ) ( £1 + 252 )

called the Maxwell-Garnett or Clausius-Mossotti formula.

A similar expression was also obtained by Bruggeman 9. He

iterated the polarization of the inclusions and the matrix until the

average net polarization vanishes. It is a self-consistent field

calculation. He employed this method to improve the Clausius-Mossotti

result. The formal expression is

  

(8-6) (8-6)

[ 1 ° ]¢+[ 2 ° ](1-¢)=o (2.3)

( £1 + 26° ) ( £2 + 256 )
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This treats the two phases in a symmetric fashion.

These mean field theories neglect the correlations among the

inclusions, which become important at high volume fractions of

inclusions. Certainly, these theories have the virture of simplicity

and give physically meaningful results over the entire range of volume

fractions. However, it is necessary to ascertain whether 66 can be

calculated accurately by these theories.

Ce can be expressed as an expansion in the volume fractions of

inclusions. It is a virial series :

_ 2
56/5 - 1 + A1¢ + A24 4» (2.4)

2

Batchelorm discussed the calculation of the second virial coefficient.

The second virial coefficient involves the two-body distribution

function and reflects the local structure of the system. In 1968,

Levine and McQuarrien obtained the polarizability of metallic spheres

embedded in insulating medium by solving Laplace’s equation in

bispherical coordinates to get an exact second dielectric virial

coefficient. In 1973 Jeffrey” expanded the work of Maxwell to second

order by using Batchelor’sm method, which reduced the problem to a

consideration of interactions between pairs of spheres, in order to

avoid the cOnvergence difficulties. He used a twin spherical harmonics

expansion due to Ross” to solve the two-spheres Laplace problem. In

Jeffrey’s work the second dielectric virial coefficient AZ,

corresponding to thermal conduction, is evaluated explicitly for all
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values of the ratio of conductivities of the two phases.

Subsequently, Felderhof, Ford and Cohen“ developed a multiple

scattering expansion in order to obtain a formal expression for the

virial coefficients. They formulated an infinite system as an

expansion in cluster terms, each of which is absolutely convergent. By

rearrangement of the terms, corresponding to removing the

depolarization effects, problems of conditional convergence never arise

in their problem.

Sridharan and Cukieris developed a t-operator multiple scattering

(e -s

theory for the Clausius-Mossotti function as a virial

expansion in terms of a reference medium dielectric constant am. There

are several results obtained from their expressions. When they neglect

the correlations among the inclusions and cm is set to be equal to the

medium dielectric constant 62, they get the Clausius-Mossotti formula.

When cm is set to the effective dielectric constant 66, the Bruggeman

result is established. As the correlations among inclusions are

considered, the second virial coefficient is able to be calculated

exactly when we set emzez. Another result also can be obtained with

emu‘3 called pair order effective medium theory. It is not possible to

get results without an approximate evaluation of the formal expression.

This theory generalizes .Bruggeman’s self-consistent lowest order

theory. However, the shortcoming of this theory is the difficulty of

evaluating the results even at pair order.
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Because the virial diagrammatic expansion has not been carried

out beyond the second virial coefficient, it is restricted to low

volume fractions. Meanwhile, the self-consistent expansion is not well

controlled. This theory is limited to spherical inclusions and to

static material properties. The evaluation of this theory for

arbitrarily shaped inclusions and frequency dependent material

properties has not been carried out.

A variational approach leading to upper and lower bounds for the

effective material properties was developed by Hashin and Shtrikmanm.

For a two-phase problem the bounds for 8e are in terms of the ratio

511/62 and 45. When the ratio, 81/82, is extremely large or small, the

bounds are far apart for moderate volume fractions. The variational

approach is summarized in the literature”.

In 1892 Rayleigh18 solved the partial differential equation to

second order for periodically arranged conductors and provided results

for a wide range of conductivity and the entire range of volume

fraction. McPhedran and McKenzie19 extended his method to calculate

the conductivity of periodic lattices consisting of conducting spheres

in an insulating matrix. They solved the problem by a potential and

. field expansion On each sphere and obtained the expansion coefficients

of the fields. They were able to include multipolar effects to very

high order. Their results for the conductivity of a regular array of

spheres yield good agreement between theory and experimental

measurements”, even when the volume fraction approaches a lattice

close packed value.
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2.2 DEVELOPMENT OF THE FREQUENCY DEPENDENT 88(0))

2.2.1 DRUDE FUNCTION FOR METALLIC INCLUSION

The development of frequency dependent dielectric properties

starts from the assumption of the Drude21 model for the dielectric

constant of metallic inclusions. If the inclusions are so small that

the quantum size effect comes out, then Drude model can no longer be

used. Let us consider a system consisting of spherical inclusions of

H N

radius a embedded in a homogeneous medium with dielectric constant

61(0)). If the absorption of the medium can be neglected 62 is

frequency independent and therefore real. For example, the medium

22,25 23,24

could be a. ceramic , glass , K0125, gelatin25 and so on. The

definition of the Drude model for the dielectric constant of metallic

inclusions is

up?

5 (w) = e -' (2.5)

1 1‘” u ( u + 1 r )

where 610 is the (complex) high-frequency dielectric constant, (61" =

I

810 :1: i 81;), up is the plasma frequency, which is the natural

frequency of the density fluctuation for the free electron in bulk

metal, and 1‘ is the damping constant or width, defined as
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u l

100 2

 

I‘:7+I‘.b:ya+e . (2.6)

a 1

where (a. is the resonant frequency and 7a is the damping constant for a

' 00 ' I e s 26

radius a' of Inclusion given by

7a 3 10° + VF/a. (2.7)

where 10 is the bulk damping constant, VF is the Fermi velocity, and

1‘ib is the interband contribution. The Drude model provides that the

dielectric constant of metal inclusion is a function of the frequency

and the damping constant 1". The dielectric constant can also be

written in terms of the frequency dependent conductivity 0(0)

i 0(4))

5 (u) : s - ————- (2.8)
1 100 m

For one inclusion effect, the frequency independent 8e is replaced by

56(0)) in Eq. (2.1). By combining Eqs. (2.1) and (2.5), the effective

dielectric constant 66(0) has an absorption peak of width 1' centered at

the approximate resonant frequency

w

u = p
(2.9)

( c ’ + 2 £2 )1/2
1m

 

When the Clausius-Mossotti (CM) or Maxwell-Garnett (MG) expression is

applied for 86(4)), we can write the CM formula as



( E (0) - E )

e 2 = 4 (2.10)

( sew) + 262 ) ( 61(0) 4» 262 )

Eqs. (2.5) and (2.10) show that the lineshape is similar to a

Lorentzian distribution with its absorption peak centered around

r 1 1/2

( 1-¢ )

(2.11)
 8

|

1
1

E
:

P 515(1-¢)+(2+¢)ezl

  

The width is independent of the volume fraction of inclusions. These

approximate expressions result from the conditions 1" << up and (08 >>

"1'2; The CM results predict that there is a shift of the line to lower

frequency due to increasing CD and no line broadening since the width

does not change.

The description of electromagnetic propagation and the

investigation of the optical properties of composite materials in terms

of the properties of the dielectric constants of the components and the

volume fraction of the inclusions have been done both experimentally

and theoretically1'27. One of the key issues involves the broadening

of the spectrum due to the effect of interactions among the inclusions.

Kreibigza calculated 59(0) for silver in gelatin by using the

average-t-matrix approximation (ATA)6. The ATA is also a

Maxwell-Garnett approximation, corresponding to obtaining an accurate

result at low 4!. Another approach is the Coherent Potential
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Approximation (CPA). The CPA corresponds to Bruggeman’s effective

medium theorys. These approximations have the common properties : 1)

They are long-wavelength approximations. 2) The scattering process is

only dipole, because this is one sphere problem and the response is to

a constant applied field. 3) The structural information is only the

volume fraction of inclusions.

The interesting problems are related to the strong scattering

properties and the higher volume fractions of inclusions. Davis and

Schwartz”. employed multiple scattering theory to evaluate 88(6)) for a

disordered system with spherical inclusions at quite high ct. They used

Lax’s quasicrystalline approximation (QCA)29, which is known as

the Maxwell-Garnett approximation, and compared with the application of

Roth’s effective medium approximation (EMA)30'_31 . The-EMA provides a

complete description of the spatial correlations of the inclusions but

not the electromagnetic correlations, and an accurate description of

the plasma resonance in composite problems. They found that the EMA is

better than the QCA.

Felderhof and Joneszr3 calculated send) for silver in glass or

water by a cluster expansion technique, which is combined with a

spectral representation analysis based on the work by Bergman”. The

58(0) in Bergman representation is an integral of Hilbert type with a

spectral density determined by the statistical geometry of the

configurations, and is accurate to second order in ¢. The results

obtained by them assume dipolar .intersphere interactions, and neglect

higher multipolar interactions. From section 2.1, note that it is
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necessary to include the higher order multipolar effects during the

calculation of the static dielectric quantities at high 4’. For

example, the contributions from all multipoles to the second dielectric

virial coefficient are roughly double that of the dipole contributions.

Meanwhile, they” found that around the resonance peak the dipolar

interaction term dominates the multipolar contributions. They predict

that when the distance between the pairs of inclusions is roughly equal

to the mean pair separation, d : (1.49)“3 a {U3 , (a is the radius of

inclusions) only pairs of inclusions dominate the line-broadening and

line-shift of resonance. The dipolar approximation is quite accurate

for 66(0)) at large pair separation or at low 4). At high «t due to the

contributions of the electrostatic interactions between inclusions the

absorption peak differs from that at low 4’.

Kantor and Bergman2 also used Bergman’s spectral representation

and an expansion in spherical harmonics in order to describe the

interactions among the inclusions. They derived an exact theory for

calculating 86(0) for composites. 1 Their theory is not restricted to

lower order interactions between inclusions.

2.2.2 THE QUANTUM SIZE EFFECT OF 86(0))

33, 34 (QSE)

What is the quantum size effect? Quantum size effects

occur when the inclusion size is so small that the material properties

( e.g. 61(0) ) do depend on size because of the discreteness of the

energy levels, yet, it is still useful to describe ,the inclusion in
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terms of a macroscopic material property.

From the expression Eq. (2.6), 7a is larger than 10 due to the

V

finite size of inclusion or the term ~52. The size of inclusion

controls the value of 7a' Consequently, the width 1‘ is dominated by

18. Therefore, the Drude model of 61(0)) is size dependent and 58(4)) is

too. The interesting problem is how 68(0) is affected as the inclusion

size decreases.

"As the particle size continues to decrease to the tens of

angstrom range, new phenomena involving quantum physics,

electromagnetics, and hydrodynamics are still to be explored."35 For

very small inclusions of equal size and shape, the plasma resonance

absorption shifts and broadens, and shows fine structure corresponding

to transitions between discrete conduction band energy levels. Two

main effects on optical properties may occur as a function of size: a

shift of the peak and a change in the width. There are two expressions

for the dielectric constant: the classical Drude model used with a size

limited mean free path and the quantum mechanical theory of Kawabata

and Kubo:39 accounting for quantum size effects. If the inclusions are

so small that the Drude model can no longer be used, the dielectric

constant should take quantum size effects into account.

Friihlich37 pointed out in 1937 that the continuous electronic

conduction band of a metal should break up into observable discrete

states when the dimension of the metal become small enough. Kubo 35
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formulated this problem quantitatively in 1962 and observed these

quantum size effects. Both theoretical and experimental results on

these problems have been reviewed by. Kreibig and Genzelaa. There are

quantum mechanical and classical models used to explain the changes in

the optical properties as the size of particle decreases. In the

classical model, the damping constant in the Drude free electron

theory, which is the inverse of the collision time for conduction

electrons, is increased due to increasing collisions with the boundary

of the particles. In quantum mechanical model, Kawabata and Kubo 39

have argued that the optical spectrum should be discrete with the

spacing increasing as the particle size decreases. The width of the

resonance should be described as due to the plasma mode damping which

resultes from the excitation of one-particle modes. The 'peak width

predicted by the quantum mechanical model is in better agreement with

experiment:33 than that predicted from the size-dependent Drude model,

where the size dependence arises from the classical limitation of the

electrons’ mean free paths.



3. ANALYTIC DEVELOPMENT

We study the problem of the effective transport properties of

small material inclusions dispersed in a dielectric host. We use a

method similar to that used by Lebenhaft and Kapral in a

reaction-diffusion problems. Let us consider a system consisting of N

non-overlapping spherical inclusions of dielectric constant 61 and

radius "a" embedded in a composite medium of the dielectric constant 52

all within a volume V.

If one attempts to impose an external electric field on. such a

heterogeneous material, it is important to understand the response of

the system and that of the inclusions due to an external field. For

instance, in rather dilute media, since the inclusion separation is

quite large, there is little difference between the macroscopic

electric field of the system and that incident on every inclusion. But

in dense media due to the closeness of the inclusions, the polarization

of neighboring inclusions induces an internal field Ei at any given

inclusion in addition to the average macroscopic electric field of the

system. The induced dipole moment is proportional to the electric

field acting on the inclusions. The polarizability of an inclusion, or,

is defined as the ratio of the average polarization to the total

applied field on the inclusions. Thus, the inclusion’s polarizability

20
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characterizes the capacities of the response to an applied field for

inclusions.

The approach is: First, the microscopic induced dipole moments of

the inclusions must be addressed by an analytic method. Then, the

effective dielectric constant has to be obtained by relating the

ensemble average of the total polarization and the macroscopic electric

field.

3.1 THE PRINCIPAL EQUATION

According to the electrostatic problem, the material equation for

the electric potential, (Mr), is

2 ° ( 6(5) ENE) ) = 8(5) (3.1)

where E(r) = 61 ( £2 ) for 5 inside ( outside ) any of inclusions, and

8(2) is a source term, which is independent of the positions of the

inclusions. For convenience, let 65(5) = E(r)-£2. If I; is inside an

inclusion, 5dr) equals 61-62; otherwise it is zero. Rewriting Eq.

(3.1) by using the definition 65m yields

e2 v2 1411;) = - g - 1 55(5) 3 4(5) 1 + 5(5) (32)



22

This alternative permits us to introduce the medium propagator,

corresponding to the inverse of the operator EZVZ. Let us take the

gradient of Eq. (3.2) and solve it formally to get

E(r) = f dr'gdr-r’ I) v v - [6am E(r'n + How (3.3)

The electric field in Eq. (3.3) has been defined as

E(r) = - V Mr). (3.4)

the propagator in the medium is

-1
g(r) = (4xezr) , (3.5)

and the external source field Eo(r) is

Eom = 3] dg'ng-g' I) 815') (3.6)

Then, integrating Eq. (3.3) by parts, we have

E(r) : I dr’§(|r-r'|) - sew) E(r') + E°(r) (3.7)

where
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1

C(lr|)=VVs(r) =H(r)- 3E 16(r) (3.8)
- ., ~~ -~ 2- ~

1 A.

g(r)=-_—'—‘3—'(l-3rr). (3.9)

” 4n€2 r

A

g(r) is a dipole propagator for r at 0. r is a unit vector of r. ° We

only need g(lrl) for r at 0, so that the 5-function in Eq. (3.8) is

dropped. Therefore, the electric field is given in terms of dipole

propagators and 56(r), the response of the inclusion due to Eo(r).

In order to get an expression for the effective dielectric

constant, 6e or 88(0), we define a polarization related to the electric

field by 66(r)

N

P : 5cm E(r) = 2 “1"" (3.10)
.. .. .. .. i=1 .. ..

where we anticipate that in isotropic media the polarization and field

are parallel. The last equality is the sum of the polarization of the

inclusions over the N inclusions. Because 6£(r) is zero outside the

inclusion, the ui(r) is non-zero only inside the ith inclusion.

We review the theory developed by Sridharan and Cukier 15. It is

an application of the t-operator method expressed as a multipole

expansion. First, we express the { ui(r) ) in terms of the

~~
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one-inclusion scattering operator ti(r,r’), then we write ui(r) to be

ui(r) = I 45' li(r.r') - Ei,eff(5') (3.11)
~ ~ - ~~

Here E. eff(r) is the effective1 field at r that arises from the

~ ’ ~

presence of all the inclusions excluding the ith. From the perspeCtive

of the ith inclusion, all the other inclusions serve to produce a field

Einff‘f” which acts on the ith inclusion. Hence, the field Ei,eff(£)

is given by

Elififflr) = E0(1') +j£° Idr' g(Ir-r’ I) “ff ) (3.12)

We use the solution of the electrostatic problem of one inclusion's

response to an external field E°(r) to obtain an expression for

Eilrm’) as a multipole expansion and we hav915,*

°° c ' t
.(r,r’) = 4ue2 1: 2 t ( v ) 6(r-Ri) O ( v ) 6(r’-Ri) (3.13)
l

 

* The multipole expansion for the t-operator is defined as:

0
I CI

155. 5') =42 (-1)M (4202)" 1&00w‘Mr-R.”(W ) «Hy-gin.

I

where L“ is a tensor of rank ((+0 +2). As E“ is constructed as:

1"" a 5= 5 . ....5 5

“B’HIHZ. ° wt”?! ' “7/ t a M1”1 "Cut 015

this yields Eq. (3.13).
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where Ri is the center of the ith inclusion relative to an arbitrary

. . C ’ C . .
or1g1n. The term ( V ) 5(r-Ri)@( V) 5(r -Ri) 1nvolves the {th order

gradient with respect to r of a 5-function centered at Ri fully

contracted with the corresponding Cth order gradient with respect to r'

to give a scalar. The operator 0 means the contraction of two tensors.

For a spherical inclusion, t? is given in terms of the

polarizability of inclusion, are, to be

 

 

(X

2+1

tf’c : (3.14)

[ ((+1)! (2C+1)!! ]

and

f. ( s - s )

2 1

ac = am”) (3.15)

el£+ez(£+1)

£i(r,r’) is proportional to the unit tensor ,_1_ and only the terms tf’c

exist in Eq. (3.13), as t? = 0 for C at C'. This simplification is

only obtained for the spherical inclusion problem and since the Eq.

(3.1) is a scalar Maxwell equation.

By combining Eqs. (3.11) and (3.12), an important equation can be

produced as
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N

u.(r) : I dr' t.(r,r’) ' E (r’) + E I dr’ J‘ dr" t.(r,r’)
~14» 4» -l~~ ~O~ j¢i ~ ~ -1~~

g(l§'-g"l) - (3(5"). (3.16)

The first term of the right hand side in Eq. (3.16) describes the

single inclusion’s polarization induced by the applied field Eo(r).

The second terms imply that the modification of the { ui(r) } arises

from the interaction among the inclusions. As an important issue, let

us consider the effects on the ith inclusion, as arising from an

external field due to the other inclusion. In other words, the

inclusions j at i set up some field that the ith inclusion feels. The

i(r,r') operator gives the response of the ith inclusion to this
.1.

field.

Eq. (3.16) is an integral representation for the { ui(r) }; given

in terms of the one-inclusion t operator, the dipole propagator c; and

the external applied field. In order to obtain { ui(r) ), if we assume

§i(r,r') is known as a multipole expansion such as Eq. (3.13) and if we

express ui(r) as a multipole expansion,

a)

u.(r) = 2 (-1)é (42)" D? 0 VC 5(r-Ri), (3.17)

(1:0 ~ ~ ~ ~
~1~

then we might be able to obtain a set of coupled algebraic equations

for the multipole moments of the ui(r). Here the multipole moment .(If
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is an (6+1)th rank tensor for each Cartesian component wi’t) (u = x, y,

z) of the vector ui(r). It is defined by
~~

(i

u. = I dr 1.1.(r) r r ------ r (3.18)

Where U - ' - - DC each run on the cartesian indices x, y, z and we have
1

set R1: 0. Note that (J? is independent of r and it is a constant.

~

Substituting the multipole expansion of Eqs. (3.13) and (3.18) in

Eq. (3.16), and equating terms of equal orders in ( V )Car-Ri) yields

the main analytic equation

N
e _ _ 00 0° a

‘51 - 4m: [ti 5&0 E + t. 2
(’2' 6'

2 g (IRij|)®£l ] (3.19)

The first term on the right hand side involves the assumption that

Eo(r) is a constant external field, BC. This is to correspond to the

standard exper1mental situatIOn. The quantity G (IRijI) depends only

on the center to center distance IRUI = I Hi - le between the ith and

jth inclusions and is defined as

g“ (3.20)
' C

as = v v - ’ I O

”51.)“ ~ .. g(lff " IE-I; I=IR I

It is a rank ( C+C'+2) propagator tensor.
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The reason that we use the multipole expansion in this problem is

to reduce the coupled integral equations to coupled algebraic equations

which can be solved easily. In practice, the problem becomes

numerically large, since for N inclusions, we have to solve the linear

algebraic equations, and to get convergence C may have to be quite

large.

In order to relate ( “i0 ) to the Ee’ we need to define a

macroscopic parameter, 9, called the average polarizability tensor,

whichconnects the mean polarization to the external electric field.

The mean polarization is written as

 

 

1 N 0

av <i§13i > = 9.510
(3'21)

2 ..

1

Due to the dipole propagator’s 3 range, the polarization depends on

r

the macroscopic system’s shape. .9 is a shape-dependent polarizability

tensor, but 6e cannot be shape dependent”. Macroscopic electrostatics

provides the connection between 9 and 864°. F‘ixman“1 has provided a

clear discussion of this connection. For a spherical macroscopic

system, the relation is given as

 

: —— (3.22)
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1

where Q = 3 Tr( Q )-
 

Other macroscopic geometries lead to other functional dependences

of 5e on 9, but 9 also changes and the result will always be that Ce is

independent of the shape of the macroscopic sample. The value of Se is

determined as well by this relation, since we can evaluate Q from Eqs.

(3.17), (3.19) and (3.21).

3.2 DIPOLE TENSOR W (:4)

When we attempt to calculate the effective dielectric constant of

a system, we must solve the set of equations Eq. (3.19), which includes

the dipole propagator goo acting between the inclusions. A source of

difficulty is the long-ranged nature of the dipole field. Since these

equations involve the long-ranged dipole-dipole interaction operator,

1

W (T), summation over the inclusion separations leads to a
~~

conditionally convergent, sample shape-dependent sum. Qualitatively,

if a divergence can be subtracted from the given conditionally

convergent integral to get another conditionally convergent integral

whose integrand has the same asymptotic behavior as the integrand of

the original integral, then the ensemble average of the given integral

is unchanged, but the divergent behavior of the integrand is removed.

The result is well-defined.

For a finite system the dipole tensor is well defined. However,
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in order to coincide with the thermodynamic limit, N —) 00 V -) do and

N/V = constant, the present consideration must apply to an infinite

system. To include the long range interactions, we calculate the

interactions of the dipoles and higher-order multipoles under periodic

boundary conditions, where a primary cell is periodically imaged to

form a large spherical (or ellipsoidal) supercell surrounded by vacuum

(see Figure 3.1). Macroscopic electrostatics can be applied to the

supercell. We proceed to sum the interactions by the Ewald method 4,

and to obtain the effective dipole propagators by the lattice sum

approach“.

The dipole propagator evaluated at the positions i and j is

l (3.23)
I

with I fijl : | {j - Si' .

As we develop the dipole propagator over all the images, we can

express the dipole propagator as the following

' 1

I:Z{_vz[—_—]}
(3.24)

n ~ “311'

Here,|Rij|=|rj-ri+n|,andnznx1+nyj+nzk. Herenfiny,

nz are arbitary integers, and n = 9 corresponds to the primary cell.
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Figure 3.1 Spheroidal macroscopic sample consists of supercells and

the center heavy line is the primary cell.
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The prime on the sum indicates that if i = j, the n = 0 should be

omitted.

1

By applying the two grads on —-— in Eq. (3.24), we obtain

I 13,, I

. I 3(rij+n)(rij+n)

T : E - «125)

- |r..+n(3 Ir..+n|“S
n ~IJ ~13

In such circumstances, there are two issues: (1) The existence of

the sum and (2) The shape-dependent effects of the thermodynamic limit.

1

As we can see, I has a singularity at RU: 0 and the integrand 3

‘ * |R..|
~1J

is shape-dependent at Rij -2 the boundary.

The lattice sum of the dipole propagator in Eq. (3.25) is

conditionally convergent. Both sums in Eq. (3.25) diverge

independently. So it is important to use a summation method to adjust

I

the cancellation of the divergences‘

Let us multiply the terms of the conditionally convergent series

by a convergence factor exp(-s|n|2). We may write Eq. (3.25) as

  

' 1 3 ( Eij + “ ’( Eij + n ’ -s|n|2

I = 2 3 - 5 e «126)

' Ir..+n I |r..+n| .
n ~13 ~13
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Then we expand these sums as power series in s and subsequently take

the limit 8 —> O to obtain convergent results.

We start with a general form

Then Eq. (3.27) multiplied by exp(-s|nlz) is

2
’ . _ ’ -2x -s|nl

¢(rij,x)-§|rij+nl e .

Henceforth, lim 4) ( ri., n, x ) = ¢( 151., n, x ).

s--20 ” J “' J

We introduce the identities”. '

1 ' m 2

-22 _ Z-l -R t

0

By using Eq. (3.30), we express Eq. (3.28) as

 

representation

' ' 1 0° x-1 -|r +n|2t -sInI2
¢(rij,x)'£ F(x) dtt 9 1J e

n o

(3.27)

(3.28)

(3.29)

(3.30)

the integral

(3.31)

Another important identity is the Jacobi transformationnb. This
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transformation serves to invert the lattice space sum from the

coordinate space to the reciprocal space, wherein the lattice vectors

arek=2nn.

Z 2 Z .

Z e-|;~~+n| t : 3/2 X e( -n n /t + 1 2n n-r L (3.32)

Applying the Jacobi transformation, we rewrite the integral of Eq.

(3.31) (assuming rm: 0) as

 

11>

I

1

n

¢1 r... no X ) 2 X r(x) J dt tx'l ( t )3/2

D

2 2 . 2

e‘ "' n A I 1 2" “'Elj’] (“I") (3.33)

x-5/2 is an analytic function for x >In Eq. (3.33) the integral of t

3/2. For x s 3/2, there is a singularity as t —9 0. We split the

integral in Eq. (3.33) into two parts. The integral of the first part

is from a2 to 0 , with a2 an arbitrary value. The second one is over

the range (0 , <12)-

Now, we are able to integrate Eq. (3.33) over ((12, 00) and take

the limit s -b 0 without difficulty. The divergence is due to the

second integral at t = 0 so that in k space we subtract this term at k

= 0 (n = 0) from the integrand and add it on again as a separate term.
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In other words, the divergent behavior is due to the lattice sum over

the whole r space at large r, k —4 0 in reciprocal space, which causes

the shape-dependent effect of the problem. At n = O (k = O) the
~

transformed sum yields the shape-dependent term. For instance, for a

 

spherical supercell, the shape-dependent term is 4g 1,. , as r —P 00 .

For PU: 0 , then n must have a nonzero value. But it is

necessary to include n = 0 term during a Jacobi transformation, and to

do that we add a contribution from n = 0 in r space in the second part,

and subtract again the same term , which can been evaluated to produce

3
4 O:

 

the self-term operator of the inclusion, 1 , at r = 0 .

3(11' "

From Appendix A we obtain the two different dipole propagators:

(1) 1‘ diff is the dipole propagator for the different dipoles, rij # O.

and (2) 1‘ self is the self-dipole propagator for the dipole and the

 

image dipole, til: 0.

l

3 diff =2 { 3 B<alfij+ ““
I r . + n

n ~iJ

3(r..+n)( r..+n)

- '5 C(dlrijd- uh} 
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2 2

n n

4nnn (- ) . . 4n

+ _—3- e?- (4‘12" “ 51,-) + I . (3.34)

mtg Inl 3

and

I 3 nn

2 self :2 |n|3 B(alnl) - 7;];- C(alnl)

n¢0

“ans 3

4nnn (- 2 ) 4!! 40

+ ———- e or + ( - ) I . (3.35)

2
n¢0 In] 3 31‘ n

 

Here, B(x) erfc(x) +

C(x) B(x) + 

34'?

where erfc(x) is the complementary error function.

The Jacobi transformations of the calculations have exponentials

which decay as fast as exp(-n2n) to produce rapid convergence compared

with that in r space. By means of the integrand splitting and the

transformation, it has been shown that the integrals are quickly

convergent as erfc(x) in r space and exp(-n2n) in k space.

In practice, the rate of conVergence of the sum depends upon the
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choice of the a value. We choose a to be 5 or It.

When we increase the number of supercells in r space, the

dielectric constant does not change significantly, because erfc(x)

decays quickly in the primary cell. Relatively, erfc(x) decays faster

than exp(-n2n), such that it is important to add enough supercells in k

space to get an accurate result. When the n value in k space is

increased to 4 the results are quite stable and convergent.



4.. NUMERICAL METHOD

We summarize the techniques of the simulations in the following.

The different methods of generating the configurations and the boundary

conditions on the system will be discussed.

4.1 METHODS OF GENERATING CONFIGURATIONS

Conventionally, there are several ways to generate the relevant

fluid-like configurations for these calculations. In this section, the

methods which we use are listed as follows. Generally speaking, when

the volume fraction of the system islless than 0.1, the immediate

method (see below) is more efficient; when the volume fraction is

greater than 0.1, the Metropolis method‘H is a good candidate. Some

methods for generating configurations with other types of disorders

also are developed.

4. 1. l IMMEDIATE METHOD

3
 

Let us consider either a spherical system with volume g“ R

where R is the radius of system, and the center point of the spherical

sYstem is at (R, R, R), or a cubic system with the side of length 2R.
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A sequence of random numbers between one and zero have to be assigned

as the coordinates of the centers for N inclusions of radius "a" inside

the given system. The configurations must satisfy the conditions: (1)

no inclusion is outside the system. That is, if the minimum distance,

D, between the center of spherical system and the center of the

generated inclusion is equal or less than the radius of spherical

system, R, we accept it. Otherwise, we reject it and generate a new

inclusion repeatly until D S R. (2) inclusions cannot overlap with

each other. A new inclusion can not overlap with any other inclusions

which are already in the system; otherwise we will reject it and try a

new one.

An important feature of this method is that a boundary effect

appears when the volume fraction increases. Because the excluded

volume effects have most of the inclusions generated on the edge _of

system, about 50% of the inclusions gather on the surface. This is due

to a small finite volume system. When we employ these configurations

to evaluate any quantities, the statistical error becomes large. This

is not true for a real system, because for a real system the inclusions

do not gather on the edge of the system at low (9.

At lower volume fractions 4 s 0.1 we can directly generate the

inclusions in an empty spherical or cubic system without difficulties.

This immediate method is efficient.
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4. 1.2 METROPOLIS METHOD

In contrast, for a higher volume fraction configuration, it

becomes gradually more difficult to throw these inclusions one by one

into a system, because the rate of overlapping is rising. In addition,

at higher volume fractions (b > 0.1, periodic boundary condition must be

used to minimize boundary effects. We must: (1) set up a cell with

length, L, containing N inclusions. (2) duplicate such a cell -—

called the primary cell — in all directions to provide the

conventional periodic boundary conditions. The initial configuration

is established by placing the inclusions randomly inside the primary

cell or choosing a lattice structure, i.e. simple cubic or

face-centered cubic, and then equilibrating such a configuration by

using the Metropolis algorithm“ to correspond to a hard sphere fluid.

The Metropolis procedure consists of moving an inclusion to a new

position at random. The new position is accepted only if the ith

inclusion does not overlap with any other inclusions already placed in

the primary cell and its periodic images. The density is conserved

because when an inclusion moves out across the surface of the cell,

then another will move into the cell from the opposite surface. Thus

if the position of an inclusion’s center is outside the primary cell,

it is brought inside the primary cell by translating it by :t L, where L

is the length of the cell. This procedure of randomly moving, checking

overlap and translating into the primary cell is repeated for each

inclusion inside the primary cell. One attempt to move each inclusion

is called one Monte Carlo step (MCS).
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In order to provide equilibration, the acceptance rate for the

Monte Carlo moves is chosen to be about 50% and the maximum step size

for one Monte Carlo step is determined. If after such a move an

inclusion happens to overlap with another inclusion, we place it in its

original position.

For higher volume fractions ¢ 2 0.3 the configurations are

started from a lattice structure, and run for several million

6 x N MCS) to equilibrate. For the volumeconfigurations (typically 10

fractions between 0.1 and 0.2 the configurations are started as

generated from the immediate method, and equilibrated for 10:3 x N MCS

initially. After such an initial equilibration, these configurations

have been selected at intervals of 102 x N MCS apart. This is in order

to establish a Markov chain of configurations, thereby eliminating

correlations among the configurations.

To check that these configurations correspond to a fluid,

the pair distribution functions for these configurations have been

calculated. A similar case, the pair distribution function for a hard

sphere fluid has been evaluated by Alder et al.45 in 1954, and by

Henderson“5 to higher precision.

The following outline describes how to measure the pair

distribution function by the Monte Carlo method:

(1) In a generated configuration we choose each inclusion as

the central inclusion and evaluate, ni(r,dr), the density



(3)

(4)
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of the inclusions in the ith shell of radius r and r+dr

centered around the central inclusion, normalized by the

total number of inclusions in the bulk.

The pair distribution function is defined as

1 m

g(r) = 75- .Zlni(r.dr) (4.1)

I:

where m is the number of configurations.

The number of configurations must be rather large in

order to reduce the statistical error. Repeat step (1) In

times, and sum ni(r,dr).

Average the sums over m to obtain g(r).

The comparison of our configurations with Henderson’s result“5 is

shown in Figure 4.1. This shows that our configurations are correct.

4.1.3 THE DISORDER OF CONFIGURATIONS

The effects on 5e of other types of disordered configurations

have been investigated (see section 5.2). We will consider:

a) RANDOMIZED LATTICE

At volume fractions below 0c: 0.524 (simple cubic lattice close

packed volume fraction), the inclusions are initially placed on a
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simple cubic lattice and are then displaced randomly within the

Wigner-Seitz primitive cell47 centered on their respective lattice

cells. Here, a DS parameter is defined to control the degree of

randomness of a configuration. In a unit cell of side 1 let max = 0.5

- a, where a is the radius of inclusion. DS is the actual displacement

allowed in the randomization around the lattice position divided by

max. DS = 0 corresponds to the periodic lattice and DS = 1 the maximum

randomness.

When the volume fraction is above 0.524, we replace the simple

cubic lattice by a face-centered cubic lattice (fcc) and use the same

procedures. Note that the Wigner-Seitz primitive cell of the fcc

lattice is a rhombohedron. For convenience, we choose the biggest

sphere with 00: 0.74 (fcc close-packed volume fraction) instead of the

rhombohedral cell.

b) VACANCY LATTICE

Here we start with a lattice structure as in a). The inclusions

are deleted randomly and the size of the remaining inclusions is

expanded to regain the original volume fraction. The original volume

fractions must be smaller than the close packed volume fractions of the

lattice structures.
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4.1.4 MINIMUM IMAGE METHOD

In the previous sections, the system has either a spherical

boundary condition or a periodic boundary condition. In our

calculations, we have extended the periodic boundary condition by using

a minimum image method to evaluate the induced multipole moments for

each inclusion in the primary cell.

This method is to generate the inclusions in a primary cell and

duplicate its identical replicas throughout space. Then, the mutual

interaction between ith inclusion and jth is not restricted to be

within the primary cell. The ith inclusion is only allowed to interact

with those inclusions in the primary cell or the periodic replicas,

which are inside a radius R z L/2 of a sphere centered on the ith

inclusion -- image sphere. This method corresponds to setting a

spherical cutoff, R, for the pair interaction range. We have measured

the effective dielectric constant followed by changing the size of this

image sphere: 0.5L, L, and 1.5L. The results show that the effective

dielectric constants seem very stable with any size of image sphere.

This method provides accurate values for the induced multipole moments.

4.2 COMPUTATIONAL ALGORITHM

Now, we have to evaluate the induced. dipole moment and higher

multipole moments for each inclusion in the primary cell by using the

minimum image method. We repeat this method for each inclusion inside

in-.. _
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the primary cell to yield a set of 3n N linear algebraic equations for

the induced multipole moments )4? on each inclusion. Here n : t’. +1 is

the nth multipole moment, and N is the number of inclusions inside the

primary cell.

The solution of the linear equations, Eq. (3.19), for the

multipole moments depends on the shape of the system, due to the

dipole-dipole interactions. That is, the second term on the right hand

side of Eq. (3.19) is conditionally convergent when the summation its

extended to an infinite system, for example, by using periodic boundary

condition. We have discused this problem in Chapter 3 and Appendix A.

We have evaluated the dielectric constants of a composite

material at the dipole level approximation using our minimum image

method and compared the results with those of Cichocki and Felderhof 48,

who used a version of the lattice sum method, and found that the

results are in excellent agreement. We will show this comparison of

our results with those of Felderhof and Cichocki"a for the frequency

dependent dielectric constants of a composite composed of metallic

inclusions in an insulating matrix evaluated at the dipole

approximation level in Chapter 5. The minimum image method is

considerably faster than lattice sum method; results for the system in

Chapter 5 are in accord with the minimum image method. We use it for

the simulations presented in our work.

In Order to get dipole moments and higher multipoles, the
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propagators, Ga (Irl), must be determined. We discuss the

construction of these tensors in Appendix B.

Now we must relate the microscopic dipole moments to the

macroscopic polarization of the sample. To do so we inscribe a sphere

of radius L/2 in the primary cell. The polarization of this sphere is

defined by the volume average of the sum of the dipole moments of the

inclusions inside the sphere. The macroscopic polarization is then

obtained by averaging the polarization over a suitable number of

configurations. Then, the effective dielectric constant can be

evaluated with the use of Eqs. (3.21) and (3.22).

We have tested the convergence of the simulations by changing the

number of inclusions in the primary cell. The dielectric constants

from three sets of numbers of inclusions: 25, 125 and 256 are nearly

independent of the number of inclusions. The spatial distribution of

the polarization was also monitored. The fluctuation of the

polarization is quite small throughout the space, even up to the edge

of the cell, indicating that the boundary effects are under control.

Computer programs have been written for the numerical

simulations. A listing of the programs is in Appendix C. These

programs are written in FORTRAN.

The program STDIEL is used to compute the static effective

dielectric constants (used in section 5.1). This program is written at
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the multipole level, expanding n up to 5. The multipole moments on the

inclusions are evaluated by the minimum image method. The matrix

equations are solved by using the LINPACK facilities. It is essential

to have sufficient memory space for storing the large matrices

generated by the multipolar expansion method.

The program FRQDIEL was written for the calculations of the

frequency dependent effective dielectric constants (used in section

5.2). This program is constructed at the dipole level. There are two

subroutines called LSMATRIX and MIMATRIX. LSMATRIX is used to compute

the dipole moments by the lattice sum approach. MIMATRIX uses the

minimum image method to compute the dipole moments. In the program

FRQDIEL complex matrices are created. Therefore, we solve these linear

complex equations by calling CSOLVQ, which is one of the routines in

the mathematical library (IMSL) of the FPS-164 Floating Point Systems

Attached Processor.

The statistical error analysis is addressed in both of programs.

The principle of the error analysis is the application of the

statistical standard deviation. For instance, if the measured quantity

and the number of measurements are respectively x and m, the

statistical error is defined by“

m 1/2

ABS( 2 x2 -m <x>z )

5x ”'1 (4.2)

m(m-1)
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In

Here (x) = 2: xi /m. The larger the ID value the smaller the error. In

i=1

our calculations In is chosen between 100 and 200, and our results are

quite stable.

The algorithm of the simulation procedures is summarized below:

(1) The configurations must be generated with the

information on the number of inclusions, the number of

configurations, the volume fraction, the radius of the

system, the radius of the inclusions and the positions of

the inclusions in x, y, z stored in "TININP".

(2) The parameters must be set: the number of inclusions, the

number of configurations, the radius of the inclusions,

the radius of the system, the volume fraction, the

sdielectric constants : c 2 and cm, the magnitude of1)

the applied electric field, the convergence factor a, the

frequency scanning range ( from BF to FF ), -- - ° and so

on stored in "TININZ".

(3) Data from (1) and (2) is read.

(4) The 6 matrix and the constant parts, B, are created, i.e.

Q - u = B and the matrix equations are solved. to obtain

all the multipole moments on the inclusions.

(5) For each run all of the dipole moments of the inclusions

are summed. The above steps from (3) to (5) are repeated

In times to accumulate the total dipole moments, then the

average of the total dipole moments for each run is



taken.

(6) as is calculated according to Eqs. (3.21) and (3.22),

then the error analysis is performed.

For convenience, we set the side of the system to be unity, and

fix the number of inclusions to vary the radius of inclusion in accord

with the desired volume fractions. In these programs the radius of

image sphere is set to be half of the side length. The x-component of

applied field is a constant, and the others are 0. The parameters have

been set in Chapter 5 according to these considerations.



5. RESULTS AND DISCUSSION

In this chapter, we will present results on the effective

dielectric constant of a composite material that are obtained by use of

the analytic-simulation method.

We simulate two properties of a composite material, the static

and frequency dependent dielectric constant. To address the former

problem, a multipole simulation of the static effective dielectric

constant Ce is carried out. We study the effects of multipole moments

on the effective dielectric constant for a uniformly-conducting

inclusion case, the inverse case of insulating inclusions, and for

coated inclusions. Then we compare the results obtained from the

analytic-simulation of the uniformly conducting case with a random walk

method‘g’ 50.

Another problem~ is the calculation of the frequency dependent

effective dielectric constant, 68(0). Here, we will investigate the

effect of disordered configurations on the frequency dependent

effective dielectric Constant. Thus, we consider systems, including a

randomized lattice, a vacancy lattice, random size-distributed fluids,

and real silver in glass. Finally we will compare the effective

dielectric constants, 88(0)) which result from both of the methods,

51
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the minimum image method and the lattice sum approach, discussed in

section 3.2. The results presented below demonstrate the use of these

different models.

5.1 THE STATIC DIELECTRIC CONSTANT

We consider a system of N non-overlapping, spherical inclusions

of radius "a" and dielectric constant £1 embedded in a matrix phase of

dielectric constant 82 all within a volume V. In the current problem,

we attempt to calculate the effective (dielectric constants of composite

materials accurately, discuss the effects of multipoles on the Ee’ and

determine how the convergence of .the effective dielectric constant

depends upon the various physical models.

5.1.1 CONDUCTING INCLUSIONS

We first study perfectly conducting inclusions embedded in an

insulating matrix. In other words, the dielectric constant of the

inclusions is much larger than that of the matrix. A typical case, for

example, is a cermet, a ceramic matrix with metallic inclusions.

Analytic results of a similar multipole expansion method for 6e have

been obtained by Dukhin‘51 and McPhedran19 for lattices. The computer

simulation of the conductivity of the simple cubic lattice by

McPhedran19h has a good convergence. Their calculation is restricted

for m = 0 component among the ( 2£+1 ) moments for order 4. McPhedran
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shows by direct comparision that the m¢0 components do not contribute

to the dielectric constant for cubic lattices, though no proof of this

observation is available. For a random structure we find that the m at

0 components must be included. Since our interests are focused on

random systems with liquid-like volume fractions we must consider many

multipoles with all the m values included.

We choose the dielectric constant of the inclusions, e to be1.

108 and set the dielectric constant of the insulating matrix, 62, equal

to 1. The volume fractions are chosen to produce fluid structure. The

range of the fluid structure is defined from a extremely dilute gas to

a liquid-solid compatible state, where the volume fraction is about

0.45. We have implemented the calculations for multipole moments €

from 0 up to 4. For convenience, we set C + 1 = n so that, for

example, I) = 1 corresponds to the dipole term.

We carried out the simulations at seven volume fractions: 4) =

0.001, 0.01, 0.1, 0.2, 0.3, 0.4, and 0.45. The results for 5e as a

function of the number, n, of multipole moments versus the volume

fraction 4 are shown in Figure 5.1. These have been compared with the

convergent results, corresponding to n —) 0° for a simple cubic lattice,

calculated by McPhedran and McKenzie‘gb, which are indicated by the

solid curve in Figure 5.1.

As can be seen from Figure 5.1, for O below 0.3, the interaction

among inclusions can be treated with dipole-dipole interactions only.

Thus, the calculation at the dipole level is enough to obtain an
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Figure 5.1 The effective dielectric constant (Ea/e:2 for conducting

inclusions (81:108) embedded in an insulating matrix (8231) as a

function of the volume fraction O for n=1(o), n=2(A), n=3(D), n=4(0),

and n=5(V). The error bar is indicated. These results have been

compared with the exact results, indicated by the solid curve, for the

simple cubic lattice (11:0) calculated by McKenzie and McPhedran‘”.
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accurate effective dielectric constant. As O increases above 0.3, the

higher order interactions must be included. The results show that

multipole effects are important at high volume fractions. At O higher

than 0.45, the n = 5 results do not converge. This conductor in

insulator case is the most difficult to converge as the electric field

in the gap between a pair of nearly touching inclusions has a very

rapid spatial variation.

5.1.2 AN INVERSE CASE

Figure 5.2 shows the inverse case of the previous uniform case,

where the system consists of poorly conducting inclusions in a

conducting medium.

The ratio of the effective dielectric constant to the dielectric

constant of metallic matrix, eels:2 versus the volume fraction O from

0.05 to 0.7 has been presented. The reason we can calculate the Ee at

higher volume fractions in this case is that these insulating

inclusions avoid a divergence of 8e' Physical models include

impurities in metals.

Comparison of the variation of 66/52 with increasing n indicates

that for n = 5, even when 82/51 -—> 0) , quite good convergence is

obtained even for O near to the hexagonal close packed volume fraction

OC = 0.74. In our calculation the highest O is chosen to be 0.7, which

is between the random close packed OC = 0.63 and the hexagonal close
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packed OC = 0.74. The difference between the results with n = 4 and n

= 5 is very small, and cannot be resolved in Figure 5.2. From Figure

5.1 and Figure 5.2, explicitly, the effective dielectric constants of

the inverse case converge faster than those of the conducting case.

The rate of convergence of 5e with n exhibits an even-odd pattern

at high O. It is important to realize that, in principle, the high

.density liquid structure is quite symmetric, and therefore most of the

contribution to the polarization is from the odd n multipoles. For

example, in a simple cubic lattice, due to the symmetrical structure,

the dipole moment at a given inclusion will have equal in magnitude but

opposite in sign contributions from symmetrically located pairs of

inclusions when n is even.

5.1.3 A SPECIAL CASE

From the results of the uniform case, when 81/622 —) 00, the

effective dielectric constant will diverge at high O. It is

interesting to study how the closeness of. the inclusions affects the

effective dielectric constant. We generate two sets of configurations:

one set at volume fraction O = 0.4 and 0.6, and the other initially at

O = 0.5 and 0.7, but then the inclusions are shrunk sufficiently to

adjust the volume fraction to be O = 0.4 and 0.6. A characteristic

feature of these two sets of configurations is the different value of

the closest distance between inclusions.
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We compare the results from these two different sets of

configurations in Table l with 51 : 100 and £2 = 1. Clearly, by

directly generating configurations (the former method), the inclusions

can get closer than in the latter method. Thus, the effective

dielectric constant Ce evaluated from the former configurations should

be higher than that from the latter configurations, as is borne out by

the data. Also, note that at the higher O value, the difference

between n and n+1 is much larger than low O illustrating the

non-convergence of the multipole method at very high volume fractions.

This is similar to the case of oxide-coated metallic inclusion in

insulating matrix which we consider in the next section. The

conclusion there is that a thin layer (i.e. oxide-coated or insulating

material) is capable of preventing the divergence of the effective

dielectric constant arising from touching inclusions.

5. 1.4 COATED INCLUSIONS

An interesting extension of our methodology is to consider a

problem of composite composites. In this section, we investigate the

effect on the 8e of a coated-metal inclusion with an arbitrary

thickness of coating material.

That is, we consider spherical inclusions which are composed of

spherical layers. For example we consider the modification of the

effective dielectric constant by coating an inclusion with a thin layer

of material. The conductivity of the coating material is relatively



Table l

0.6/0.6 set

sets are generated at O

56e/
2

= 0.5 and 0.7 and the inclusions are then

two sets of configurations:

is generated as for Figure 5.1.

shrunk to correspond to O = 0.4 and 0.6, respectively.

The 0.4/0.4 and

The 0.4/0.5 and 0.6/0.7

 

 

n=l n=2 n: n=4 nzo

0.4/0.4 2.9848 3.0705 3.1527 3.2069 3.2333

0.4/0.5 2.9562 3.0107 3.0631 3.0969 3.1121

0.6/0.6 5.4109 5.4764 5.6676 5.7692 6.1042

0.6/0.7 5.4121 5.4350 5.5822 5.5899 5.8884
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small compared with that of the medium, and the interior of the

inclusion is a good conductor. For parameter values we choose 51 :

108, e = 1, and Em : 103, where £1, 8 refer, respectively, to the

2 2’ 8m

dielectric constant of the metal inclusion, coating and medium. Now,

if the multipole polarizability for this composite inclusion is known,

then we can solve the problem. Let us define that the inner radius of

the composite as a, corresponding to a metal inclusion, and the outer

is R, for the metal inclusion and coating. The expression for the

multipolar polarizabilities of a composite inclusion has been given by

Maxwells as

2441+ 2104-1
((1)-INN {+1 )+ (40R a p—u)(£+ u( (+1))a

- {u( (1+1 ) + “CHM {+1 ) + 120+ a 01H wu)(1—u)(a/R)

 

“4 2t+1

(5.1)

Here )1 : (El/eIn and u : ez/em. In Table 2 we list the data from the

simulations, the parameter values, and the volume fraction Oi and O0

corresponding to the inner and outer sphere volume fractions. The

first three data sets are for a/R ~ 0.9999, a thin coating. Comparison

of Figure 5.1 (uniformly-conducting inclusion) and Figure 5.3 (this

case) shows that a thin, protective layer rapidly reduces the

dielectric constant relative to the uniform inclusion case. These

simulations also describe the effective thermal conductivity of

composites. This simulation method can be used to predict the

degeneration by oxidative coating of metal-insulating matrix

composites. Meanwhile, note that the multipole expansion for the

composite-composites converges at much higher volume fraction than

those for the uniform composite.
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Table 2 86/8“) for composite-composites. The first three data sets

are for a thin insulating coating; the final two are for a thick

-).

insulating coating, as discussed in the text ()1 = 105, u = 10

 

 

Oi/Oo n=1 n=2 n: n=4 n=5

0.3999/0.4 2.4004 2.4263 2.4446 2.4538 2.4569

0.4499/0.45 2.7490 2.7838 2.8138 . 2.8315 2.8384

0.4999/0.5 3.1615 3.2067 3.2531 3.2844 3.2998

0.3/0.45 0.4567 0.4545 0.4510 0.4487 0.4475

0.4/0.45 0.4695 0.4666 0.4633 0.4611 0.4602
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m

   
Figure 5.3 The effective dielectric constant as”? of metal

inclusions coated with an insulator as a function of the volume

fraction O for n=l(o), n=2(A), n=3(D), n=4(O), and n=5(V). See Table 2

for the chosen parameters.
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The last two data sets in Table 2 correspond to thicker coatings

a/R = 0.9615 and 0.8735, respectively, where the composite-composites

are now clearly acting as insulators in the sense that ee/em < 1.

Conditions on the values of u, u, and a/R were previously obtained by

Sridharan and Cukier15 which indicate which regime (se/ern < 1 or > 1)

composite-composites would fall in for the second virial coefficient.

The results presented here obey those conditions. The results

displayed in Figure 5.3 show that a thinly coated inclusion permits the

multipole expansion to converge quickly in comparison with a uniform

inclusion. The thickness of the coating controls the

composite-composites behavior as insulator or conductor-like.

5.1.5 CONCLUSION

For the static case, if we know the expression of the n rank

tensor and the analytic form of the multipole polarizabilities, then

the analytic simulation of the higher order multipole contributions to

the effective dielectric constants of a composite material can be

carried out straightforwardly. By adding as many multipoles as we can,

we can obtain more accurate results for the effective dielectric

constant. However, the application of the multipole simulation method

runs into the following problem.

In Appendix B we have represented an n rank tensor as a power

series in the reciprocal distance between inclusion pairs and

summarized it into a general expression to arbitrary 11 value (n z 0).
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The solid line is generated by the multipole method of Ref. 19b for the

simple cubic lattice. For the Metropolis (randomized lattice)

configurations the random walk method is denoted by A (x). For the

face-centered cubic lattice the random walk method is denoted by CL

The o’s are generated for the Metropolis configurations by the

multipole simulation method (see section 5.1.1) for a conducting case.
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Thus, it is not difficult to figure out. But, because the computation

involves complicated matrix algebra, the computing time and computing

space of the computer system must be of concern. Figure 5.4 shows the

total CPU (Central Proceding Unit) time versus the dimension of the

matrix of these calculations with 25 inclusions and 100 configurations.

It demonstrates that if the higher multipoles are included, the CPU

time increases parabolically.

Due to the non-convergence of 8e for the conducting case, the

comparison of Figure 5.1 and the 8e resulting from a random walk

methodsz has been shown in Figure 5.5. The benefit of the random walk

method is that it can be applied to higher O than a multipole

simulation. As can be seen from the above, the multipole simulation of

the conducting case is difficult to converge at O higher than 0.45.

From Figure 5.5, at low O (~ 0.3) the multipole simulation (n = 5) and

random walk method results are in quite good agreement with each other.

It also shows that a multipole simulation is sufficient to obtain an

accurate result. Thus, at high O the use of the random walk can supply

the data not available from the multipole simulation.

5.2 THE FREQUENCY DEPENDENT 86(0))

We have studied cam) of a composite material consisting of

inclusions of dielectric constant 81(0)), which have a Drude model

resonant form, embedded in a background medium of frequency-independent

dielectric constant 62.
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Our interest is to find how the optical properties of such

materials are affected due to the electrostatic interactions among the

inclusions. The frequency dependence of the effective dielectric

constant as a function of the inclusions’ geometry, size-distribution,

spatial distribution and concentration is explored. Our method is the

analytic simulation method described in Chapter 4.

We assume that the quasi-static Maxwell equations are valid.

Because the wavelength of the applied field ( ~ 3600 X ) that we choose

is long compared with the inclusions’ size ( ~ 100 I: ) and the mean

distance between inclusions, the electrostatic approximation with 61(0))

can be used here. The multipolar effects on 56(0)) at high volume

fractions of inclusions have been inVestigated in several hypothetical

cases. From the previous static multipole simulation, at low volume

fraction the dipole approximation is enough to obtain 66 quite

accurately. Thus, a comparision with the Clausius-Mossotti formula,

which applies to dilute inclusions, is shown in the Figures.

In the following, we have set the plasma frequency w =

P

9.4x1015s‘1, the damping constant 1" = 10143-1, £100: 1 and £2: 1 for a

hypothetical case. Only the resonant, imaginary part of 68(0)) is

displayed in the Figures. All of the parameters are defined in Chapter

2.
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5.2. 1 RANDOMIZED LATTICE

In Figure 5.6, sew) of the randomized lattice is compared with

88(0)) of the fluid structure at volume fraction O = 0.03. The

parameter DS is chosen to be 1 or 3/4. DS = 1 corresponds to the

maximum randomness for this method of randomization. Each curve

corresponds to an aVerage over 200 configurations. They demonstrate

that the fluid structure broadens the spectrum. That is, each

inclusion is presented with a different local environment. Since the

Clausius-Mossotti theory predicts that the plasma resonant peak

position (3 depends on O (see Chapter 2), the local environments

associated with slightly different local densities lead to a broadening

of the resonance.

An important feature of the definition of (3 is that as O

increases, the resonant peak has a redshift. Similarly, this is the

case for a randomized lattice. DS = 0 for the randomized lattice

corresponds to the periodic case. We then certainly obtain the

Clausius-Mossotti result. With some randomization of the

configurations the resonant absorption peak is broadened. The reason

has been explained previously. The broadening increases with

increasing randomization, i.e., increasing DS value of the

configurations. From Figure 5.6, for the maximum possible excursion,

DS = 1, the broadening is still considerably less than that of the

fluid. The broadening for the randomized lattice is very symmetric,

which indicates that on average the local fluctuations in (3 are

themselves symmetric.
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Figure 5.6 Im 56(0) for fluid .(A) and randomized lattice (op). The

solid line is the Clausius-Mossotti expression. See text for the

definition of DS.



5.2.2 VACANCY LATTICE

In the following, we apply the same parameters to a vacancy

lattice. Figure 5.7a and 5.7b presents the 68(0)) for a vacancy

lattice. There are four cases we will discuss. First, we start with

125 inclusions on a simple cubic lattice and randomly delete inclusions

until there are the number remaining indicated on the figures. The

remaining inclusions in the cubic box are expanded to obtain the

original O. A second run starts with 343 inclusions with 63 remaining.

As the system becomes more dilute in terms of the number of inclusions,

the spectra develop a bimodal distribution, with the weight of the

higher frequency part growing at the expense of the lower frequency

part.

In principle, at high O the Clausius-Mossotti formula for the

effective dielectric constant of composite material predicts a redshift

of the resonant peak. In other words, the lower (a peak corresponds to

more dense regions. Hence, it appears that such systems consist of low

and high density regions, and this is responsible for the development

of the bimodal distribution. The notation in the Figure, 40/125,

indicates that 125 inclusions were present initially in a cubic box and

then inclusions were randomly removed until 40 were left. All results

have been compared with the Clausius-Mossotti formula with the same

parameters. Each curve corresponds to an average over 200

configurations.
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5.2.3 RANDOM SIZE-DISTRIBUTED EFFECT

. 53 . . . . . .
Experimental results on the Size-distribution of inclusmns has

been fitted to a log normal distribution

2

1 [ In, _x_

f(x) = exp - (5-2)

{21:}:an 2(1n0)2

 

where f(x) is a normalized distribution in the inclusion radius, a(x) ::

xa, u is the mean inclusion size, and o is the standard deviation of

the distribution. The expression for the volume fraction due to the

size-distribution of inclusions is given as

_9_
4). ) (5.3)¢:(£3!-)na3u3exp(

where n is the number density of the inclusions and 1 is defined as

.1.2 ( In a )2. (5.4)l ::

The log normal distributions with different standard deviation values a

and with u = 3.3 have been plotted in Figure 5.8. The a = 0

corresponds to equal size inclusions. We consider fluid configurations

which are generated by throwing inclusions into a cubic box, while

avoiding overlap, and choosing each new inclusion’s size from the log

normal distribution until the desired volume fraction (b is obtained by

adjusting the parameter, fac, defined as
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LOG-NORMAL DISTRIBUTION
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Figure 5.8 The log-normal distribution for different standard

deviation values a.
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In practice, it is difficult to generate fluid configurations

with large 0, because overlap occurs frequently with increasing a. The

maximum 0 in our present work is 2.72. In Figure 5.9 the results for

equal size and three sets of the different size distributions of

inclusions are compared. For the equal size and the a = 1.4 fluids,

the results are not significantly different. This a is chosen because

the size distributed data were fitted with this a in the experimental

work”. If we increase the width to a = 2.02, there occurs a low

frequency shoulder relative to the equal size case. It appears that

high density regions occur because of large size inclusions. All the

results correspond to an average over 200 configurations.

In order to investigate the effects of the spatial distribution

of these inclusions, we exhibit two different runs at a = 2.02 in

Figure 5.10. Each run has 200 configurations averaged. The difference

between the random-size distributed and equal-size results is not an

artifact of the choice of configurations. There is no background

contribution to the imaginary part of 88(0) from the matrix absorption.

There are several mechanisms which will lead to such additional

lineshift and line broadening provided by the size distribution: (1)

The local density fluctuates and results in line-broadening. (2) The
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large size of inclusions causes local high density compared with the

average density and a red lineshift occurs. Under the condition of

such a low volume fraction as we have chosen, the red lineshift is not

obvious.

5.2.4 SILVER IN GLASS

Now, let us consider a system with a suspension of silver spheres

in glass, which is a more realistic model for a experimental

investigation”’“. Because bulk silver has a low damping constant, it

is used for studying optical spectra. According to the values used in

Felderhof’s work”, we choose the plasma frequency for silver as up :

1.46x10163-1, the bulk damping constant as 1“, = 0.24x1014s-1, the

interband contribution as rib = 0.87x1014s-1, the Fermi velocity as V
F

= 1.44x108cm/s, E' = 4.5, and the dielectric constant of glass as 52 :
100

2.25. Then the damping constant 7a of Drude form for a sphere of

° 14 -1 14 -1
radius, 100A, is equal to 1.68x10 8 , the width is I‘ = 2.55x10 8 ,

the resonance frequency is (as : 4.87310158-1, and dim : 0.16. The

results are presented in Figure 5.11. The width parameter of the Drude

form we use is larger relative to us than in the preceding hypothetical

case (section 5.2). Thus, the peak of the Clausius-Mossotti formula is

sharper. Even at 0 = 0.1, the broadening is less than in a

hypothetical case at 0 = 0.03. In such a circumstance when the spheres

are size distributed with the narrower distribution, a : 1.40, the

results are indistinguishable from those with equal size. Even for the

wider distribution, a : 2.02, the results are not resolved.
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We found that for the volume fractions considered here the dipole

approximation is accurate. We have probed this in send) by including

the quadrupolar effects, where they are expected to be greatest, and

have found minimal changes with respect to the dipole simulations.

5.2.5 COMPARISON OF MINIMUM IMAGE AND LATTICE SUM METHODS

In this section we compare €8le evaluated by using the minimum

image and lattice sum approaches. Our computational technique used in

the previous calculations of the effective dielectric constant 68(0)) is

based on the minimum image method. In addition, we have extended the

calculation of the frequency dependent effective dielectric constant by

using the lattice sum approach.

It is worthwhile to note that the speed of calculation using the

minimum image method is considerably faster than a lattice sum

approach. We have performed our calculations of 66(0) for silver in

glass case at volume fraction 0 = 0.2 using both techniques, shown in

Figure 5.12, in the dipole approximation. Here we exclude the

interband contribution to the width parameter. Because we want to

compare with the simulation results by Felderhof and Cichocki“, we

choose the same parameters as their values. Felderhof and Cichocki

used the lattice sum approach with 500 inclusions in the primary box,

but we use only 75 inclusions. The Cole-Cole plot of the imaginary

part of 58(0), Im(€e(u)), versus the real part Re(€e(u)) clearly shows

differences between the results from the Clausius—Mossotti expression
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and those of the various simulations. In Figure 5.12 the large circle

follows from the Clausius-Mosstti expression. The small solid curve is

a result of the analytic-simulation technique using 75 inclusions;

solid dots resulted from the lattice sum approach using 75 inclusions;

pluses are points excerpted from Figure 5 in reference 48.

The Cole-Cole plot shows that the results from both techniques

nearly agree with each other. The spectral shape of the imaginary part

[m(£e(w)) using both techniques has also been plotted in Figure 5.13.

We find that the analytic-simulation technique yields results that

agree quantitatively with those of the lattice sum calculations.

Hence, we have demonstrated that the effective dielectric constant can

be accurately, directly, and quickly obtained by using the

analytic-simulation technique. Similar conclusions have been reached,

in a somewhat different context; by Gales et al.5‘, who studied Coulomb

and dipole effects in disordered solids.

Finally, we note that at 0 = 0.2, dipole level approximations are

not sufficient to describe correctly 66(0), or ce' However, the sums

of higher multipole terms do not exhibit conditional convergence due to

their much shorter range interaction. Hence the special techniques

associated with the analytic-simulation method or lattice sum approach

need not be used to obtain accurate results for higher multipole

interactions.
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Figure 5.12 Cole-Cole plot of the dielectric constant of silver

spheres in glass (neglecting interband transitions), at volume fraction

“0.2, in the dipole approximation. The large circle follows from the

Clausius-Mossotti expression. The small solid curve is a result of the

analytic-simulation technique using 75 inclusions; solid dots result

from the lattice-sum approach using 75 inclusions; pluses are points

excerpted from Figure 5 of Ref. 48.
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expression; dashed curve, analytic-simulation technique, 75 inclusions;

dots, lattice-sum approach, 75 inclusions.



6. CONCLUSION

The use of computer simulations provides the ability to look at

detailed microscopic properties which are difficult to probe

theoretically and experimentally, and permits the use of more realistic

models in order to make comparison with experiments. Therefore, as

long as the analytic formalism is known, then the computer simulation

can give practical results.

In the present study we have shown that the effective dielectric

and optical properties of composite materials or nonpolar polarizable

systems can be obtained by the analytic-simulation method. As long as

the multipolar polarizabilities at of the inclusions are known, the

analytic-simulation method can be employed routinely to obtain the

effective dielectric constant and optical properties of a macroscopic

sample. In the static case, we were able to deal with any ratio of

51/62, as well as composite-composites. The drawbacks of the

analytic-simulation method are the difficulty of convergence at high

volume fraction 0, and the requirement of obtaining c:c analytically.

For the most difficult case of infinitely conductive inclusions in an

insulating matrix, higher-order multipoles than we have used are

required for convergence at volume fractions beyond $0.45. In other

words, when the average electric field varies rapidly in space it

becomes necessary to include more multipoles to describe this rapid
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spatial variation.

For the frequency-dependent dielectric constant, the interactions

among the inclusions lead to the following strong deviations from the

Clausius-Mossotti result. The lineshape broadens and shifts to lower

frequency. The broadening arises from the distribution of peak

frequencies in the slightly different local environments.

In our work, the applied field is limited to long wavelengths

relative to the size of inclusions, so the electromagnetic interactions

among the inclusions can be replaced by electrostatic interactions. It

is important to investigate systems with the wavelength of the applied

field comparable to the size of inclusions, as this is a common

experimental situation. Therefore, in addition to electric effects,

magnetic effects should be consideredZ—I’ZS’“. About the calculation

of optical properties under this circumstance, one may go back to

Mieas. He first found the color variation of colloidal metal

inclusions and he derived a theory to calculate the optical properties

when the inclusion size is comparable to the wavelength of the applied

field. Mie provided the solution to the problem of the interaction of

a plane electromagnetic wave with a sphere of arbitrary size. A

depolarization effect associated with the inclusion boundary usually

causes an apparent size-dependent optical constant because electrons

are confined by the surfaces of inclusion and produce large

depolarization effects; these effects cause the electron cloud to

resonate at a quite different frequency than in the bulk.
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The problem of the conditional convergence of the dipolar tensors

for an infinite system was handled via the Ewald summation method. In

our work, the long-ranged interaction of the dipolar field has been

overcome by using a minimum image method to evaluate the induced

multipole moments on each inclusion. We found that this latter method

gave the same results as the former, and it is much faster

computationally.

Another application of simulation methods is to non-spherical

inclusions, which could be shaped like ellipsoids, slabs, needles, etc.

For ellipsoids the generation of Metropolis configurations can be

developed via a contact functionss. Although the generation of any

geometrical distribution of inclusions is not hard, the problem is the

difficulty in deriving the multipolar (polarizabilities for these

non-spherically shaped inclusions. In these cases, the random walk

simulation method is more powerful because it does .not require simple

inclusion geometries.

We have evaluated the static and frequency-dependent dielectric

constant in our present work. For wavevector dependent applied fields

and the resulting wavevector dependent dielectric constant, Felderhof

.56’57'58 used a diagrammatic expansion to analyze the opticalet a1

properties of a random medium. The direct use of the analytic

simulation method to study this problem is quite promising. A similar

problem is to investigate the localization of an electromagnetic wave

in a dielectric medium. Arya et al.59 have discussed the localization

of classical waves in a dielectric medium of randomly distributed metal
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particles. The localization of one electron in a random medium can

also be addressed.

Finally, chemical reaction problems60 can be equally well solved

by the analytic-simulation method.
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APPENDIX A

A. DERIVATION OF THE LATTICE SUM FOR INDUCED DIPOLAR SYSTEMS

3(r+n)(r+n)

_:2 - ~ ~ 'SInIZ (Al)I 5 e .
|r+n|3 |r+n|

  

where the prime on the sum indicates that if r = 0, the term with n = 0

should be omitted. Let us separate 1‘ into two parts, A and B.
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Applying Eq. (3.30), the integral representation, gives
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There are two situations considered: (1) If r at Q, then the sum over n

includes 0 and the prime is removed. (2) If r = 0, then n = Q is
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excluded. (Here n = (n , n , n I with n , n , n from -00 to 00 in
x z x y z

3-dimensions).

 

IN CASE (1) :

m

2 2 2

(A1) :21 {J dt t“2 e-|r+n| t } e-SInl (AA)

’ {n 2

n a

. . 112
We substitute u = t lr+nl,

 

2 '9 uz _ 2 -| '2

(A1):21 J du2-———3-eu e8n (A.5)

n ' {n |r+n|
g|r+n|

and then integrate by parts, subsequently taking the limit 3 -+ 0,

 

 

 

2 l 2

(A1) :21 ___3_ “IE‘I'DI e-(dIB-nl)

' 4' u |r+nl
n ~

I n

+ erfc(a|r+n|) . (A.6)

a

2 2 2

(13(2):.21 {J dt t‘” e-lgml ‘ } e‘sllrll (A.7)

' {T
n 0

We combine the exponential terms and rearrange as shown

tr stlgl2

 - r+n2t-sln|2=-(s+t)|n+ . (A.8)
s+t|- s+t
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We can directly apply Jacobi’s transformation (in k space) because 0 is

included in 2 . Thus, we obtain

 

  

n

2

2 a 3/2

(A2):Z 1 JdttUZI “ )
- n s + t

n 0

n2 2 i2n(n-r)t stlrl2
n ~ -

e(-s+t s+t )e(-s+t ).

(A.9)

For n = 0 and s —) 0, there is divergence in part (82). We extract n =

0 from 2 (in k space) and add it on again.

n

Now, (A2) : (A2.l) + (82.2)
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We substitute u = t.1 to get
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Setting t = s tanG and usmg the trigonometric method leads to
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Now, we pull out the divergent part, ln(s/2a2), and keep it separate.

IN CASE (2) :

The term (A1) is equal to (A1) from case (1), evaluated with r = 0.

Due to the application of Jacobi's transformation, we need to

include the n = 0 term in the summation over n ( in r space ) and then

subtract it separately.

(A2) : (112.1”r : o + (A2.2)|r : o - (112.3) (A.15)
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We follow an analogous derivation for B :
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Applying the identity,

R R : - V6 v5 618-5 5:0, (A.18)

let us write
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Rearranging the exponential parts gives :

-IE+nI2t-sInI2-iE-(r+n)

tr i5 2

"‘“t” I“ s+t)+-2—(s+—t)——I

52 stIrI2 isE-r

4mm * s + t + s . t
(3.22)

 

Taking Jacobi's transformation for (82) yields



 

 

  

 

 

 
 

 

 

 

 

 

 

 

 

O(2

4 3/2 1: 3/2

(82):- ZYEYEIdtt (5+t)
I 1:

n 0

Iran2 i211 n-rt ng-n -P

e(-s+t+s+t - s+t)e

5 =9

(A.23)

(82) : (82.1) + (82.2)

(12

‘ 4 3/2 x 3/2

(82.1)=- EVEVEIdtt (t)

s —> O :I n n¢9 0

Hana nE-n E2

8‘ “2“"? t ’eI‘Tt—l

5 =9

2 2

n n

2 “n" ( ) (12:: n-r)
- - -— e 2 e ~

2 a

n¢0 InI

«2 nznz

+ 2 n; 2 I dt t“ e" t "2" “'5’ (A.24)

mtg 0

a2

4 n

(82.2) : _ v5 VEJ dt t3/2 ( a“ )3/2 -P

1! ~ ~ 0 E : g, n :9

a2 1 stIrI2

_ 3/2 5/2 (- I
-21($Idtt (3+t) e s+t

0

a2 1 StIEIZ

2 3/2 7/2 (- )

+4nsr£Idtt (st-t) e s+t

0

s -’ 0

4 l 1 2

=4n1[-—+—ln(2)-—ln(s/a)] (A.25)

- 3 2 2



IN CASE(2):

(81) : (81) from case (1), evaluated at r = 0. (A.26)

(82.1) = (82.1) from case (1), evaluated at r = g. (A.27)

(182.2) : (82.2) from case (1), evaluated at r = 0. (A.28)

(82)|£:g,n:9 = 0 (1129)

Summarizing,

T ( case (1) )

: A - B

2 1 In

1

til- I 1: Irft'nI:3

(r+n)(r+n){ 4G3

_ 2 z

n - ~

  

I Z

{aIr+nI 940:)an) +

2

erfc(aI r+n|) }

e-(o:I1:1-n|)2
 

 

 
  

 
 

 

6a -(aI'g+nI) erfc( aIan )

+ 2 + 3 - 3

I It I r + n I I g + n I

nznz

«lunn (- ) . - . 4n

+ ___3_ e “2 e(121! n r) + __ 2 . (A.30)

n¢0 Inl 3

T ( case (2) )

: A - B

2 1 .2 n

: 1 {aInI e—(aInI) + erfc(aInI) }
- [—— 3

n¢0 1: Ir”



96

   

 

  

2
3 -(a|nI)

_ _2.’i_{ 4“ g(«lnhz. 6“ e .3 "“‘“'“"I
2 2 3

MO Inl (T (T Inl InI

~ 2 2
nn 3

4nnn (- 2 I 41! 40:

+ 2 ———e a +( - )é. (131.31)

I2 3 3In
mtg In

The divergent terms in (82) and (Q) cancel each other; thus, the

divergence is removed.



APPENDIX B

B. IRREDUCIBLE CARTESIAN TENSORS

The study of tensors is important in electrostatics,

electromagnetics, and hydrodynamics. The analysis and properties of

tensors are detailes in textbooks61 and the literature”. Here, in

order to determine gadr) defined in. Eq. (3.20), we use a

potential-theory approach‘sz3 to the construction of irreducible

cartesian tensors and focus on the technical development of these

tensors.

The definition of an irreducible tensor I n I , of rank n , is

2n+1

r
r—n

r“ =(-1)n ( ) <—). (3.1)

(Zn-1) !! 6r r

 

The I I means irreducible. An irreducible tensor of rank n is

characterized by being: (1) traceless and (2) symmetric. A tensor is

traceless if it vanishes on contraction on any pair of indices, i.e. Z

1

VW- --( V2 T ) = 0, r ¢ 0. For a symmetric tensor it is arbitrary as
~~~

to which indices are used to make the contraction.

As we differentiate in Eq. (8.1) to order n, we can represent the
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. I n I .

expanswn of r in terms of the sum of Irr(n-2m)...1_;(m)I factors.

 

~

Here n is the rank of the tensor, and m is the number of unit tensors,

 

_1_. The definition of Irr(n-2m)...,_L.;(m)j is, for example, for n = 1, 2

andm:1,2

I—fi -
r; — raafiy + r3507 +r7503

I—'_I -
r5; - r0385“, + rarychb + rar¢581 + r

Iii-I : 5a351¢ +

31.75041 + r8r¢5a7+ r1r¢5a8

50:15” I 5375a¢

and so on.

Where 60:3 : Va r8 — . a, 8, 1, 4) each run on the cartesmn

indices x, y, z.

 

Due to permutations of indices, Irr(n-2m)..u(m)I has

n n(n-l)....(n—2m+1)

02m (2m-l)!! = (2m-1)!! terms.

(2m) !

 

The coefficient of each term is determined by the condition that

I n I . .
r must be traceless. For example, the coeff1c1ent for

~ m 2m

(-1) r

Irr(n-—2m)..11(mW is .

~~ -- (211-1) (2D‘3).....(2n-2m+1)
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A formal expression then is:

 

2

("“1 “ r————1
rn : r r r....r --——— rr(n-2)l +

. ~l -2 .3 ~n w -

(Zn-l)

J.

r

[FFIU-4ILL] _ ............ + 

IZn-l)(2n-3) H

(_1)m I.2m

 

 'rr(n-2m)...11(6')" (8.2)

(2n-l)(2n-3)....(2n-2m+1) ”7 -- .

' I

. CC . . . .

Since C. (r) 18 3 {+15 +2 rank tensor, for convenience, we let

C+C'+2 : n, and thus:

 
 

. l (2n-1)!! [—1
CC

9 (g) = ( ) I-l)n 2n+1 rn . (8.3)

- 41:8 r "

2

. I n I. . . CC' . . . .
Since r 18 an irreduc1ble tensor, G (r) is symmetric in all pairs

~

of its indices. For instance, for the 3-rank tensor, Q01“), there are

the equalities: GMBIEI = 'GBaaII-‘I = GaBaIEI' Generally speaking, for

the tensor of rank n, G (1:), there are 3n ( n 2 1 ) components. By

using this symmetric point of view, we can reduce the 3n components to

a smaller number. In the following table, we have reduced the first

five n. Here, No is the reduced number.



100

 

 

3“.) 9 2781243’

 

Nc 3 6 10 15 21     

Each reduced set of components must be accompanied by a suitable

coefficient indicating the number of times it occurs in the its

expression. This coefficient is determined by the number of

permutations. For example, with n = 5, there are the equalities:

GaaBnIEI 3 GaBanIEI = GnfldaIEI = --------- . The total number of

permutations for indices as, B, and 17 is 30. Also, we can reduce the

dimension of the (£+1)th rank tensor, 156(5), by using the same reduced

numbers.

The dimension of the (366 (r) matrix array not only depends on the

number of components, it also depends on the number of inclusions in

the primary cell. The use of the above described reduction method

permits us to incorporate a relatively large number of multipole

moments in the simulation.



APPENDIX C

C. LIST OF COMPUTER PROGRAMS

This section presents the programs used for the calculation of

the static and frequency-dependent effective dielectric constants in

the simulations of Chapter 5.
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Ct8*831*¥*¥*¥¥¥¥t**¥¥*¥¥¥*¥*¥¥t**¥**¥¥¥¥¥*¥**iiittttltittttt

PROGRAM TITLE : STDIEL x

PURPOSE : THE MULTIPOLE MOMENTS EFFECTS ON THE *

STATIC DIELECTRIC CONSTANT OF COMPOSITE *

MATERIALS FOR UNIFORM OR COATED INCLUSIONS.:

THE CONTRIBUTIONS OF MULTIPOLES ARE UP TO x

L=5. 1

METHOD : BY THE MINIMUM IMAGE METHOD 1

CONTAINS : ONE MAIN PROGRAM, THREE SUBROUTINES, AND *

ONE CALLING MATH-LIBILINPACK OR FPS-164) *

FOR SOLVING LINEAR EQUATIONS. t

DATE : 1989 x

xxxxxxxthtxxx:txxxxxtxxxxxxxttxtxitxxxtxtxxxxxxxthxxxxxxx

DEFINITION : 3

DI : DIELECTRIC CONSTANT CF INCLUSION 1:

D2 : DIELECTRIC CONSTANT OF MEDIUM 1

E1 : III-COMPONENT OF APPLIED FIELD 1:

E2 : Y-COMPONENT OF APPLIED FIELD t

E3 : Z-COMPONENT OF APPLIED FIELD t

NA(MAX) AND NS : NUMBER OF INCLUSIONS x

NCELL : INTEGER NUMBER FOR IMAGE CELL t

NOON : NUMBER OF CONFIGURATIONS *

NIVL : FINAL VOLUME FRACTION TO REACH *

NPIMAX) AND NPOLE : DIMENSIONS OF MULTIPOLES *

NPL : FINAL NPOLE TO REACH *

NSINK : NUMBER OF INCLUSIONS *

RADSINK : RADIUS OF INCLUSION x

RADSYS : RADIUS OF SYSTEM *

- VFRAC : VOLUME FRACTION t

txtxtxxttxtxtxtxxttxxxxxxxxxxxxxxxtxxxxxxtxxtxtxxttxxxxxxxx

INPUT : TININP,TININ2 ¥

OUTPUT : TINOUT *

cxxxxxXtttxtxxxt*txt*xxttxxtxxxxxxxxxtxxxxxxxxxxxxxtxxtxxtxx

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
0
0
0
0
0
0
0
0
0
0
0
0
0
0

PROGRAM STDIEL

IMPLICIT REAL*4 (A-H,O-Z)

IMPLICIT INTEGER¥4 (I-N)

PARAMETER (NA = 75, NP = 3)

REAL PX(NA).PY(NA).PZ(NA)

REAL OC(NP*NA),DP(NP*NAJ,TTWNP*NA,NP*NA),B(NP*NA)

REAL WV(NP*NA+1),AINV(NP*NA,NP*NA)

INTEGER IPVT(NA¥NP)

(XXQIEI/ST/ TIIO)

(Irtffil/SPV NCELL,PRD,PRD2,RADCUT2

OG‘TDN /MAIN/ A7,A9,A11,A13,A15,A17,A19

OPEN(1,FILE = ’TININP’)

OPEN(2,FILE = ’TININZ')

OPEN(7,FILE = ’TINOUT’)
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PT : 4.03 ATANI1.0)

P12 = 2.0*PI

ANCUT=1.0

A7=105.

A9=-A7¥9.

A11=-A9t11.

A13z-Alltl3.

A15z-A13‘15.

Al7=-A15*17.

A19=-A17!l9.

GET INFORMATION FROM CONFIGURATION DATA SET

READ(1,*) NSINK, NCONG, VFRAC, RADSYS, RADSINK

GET VARIABLES FROM INPUT DATA

READIZ,” NSINK, NOON, RADSYS, NPL, NIVL

READIZ,‘) D2, D1, El, E2, E3, NCELL

SCAN N-POLE; FROM 3,9,19,34,55

DO 200 IPL = l, NPL

IF(IPL.EQ.1) NPOLE:3

IF(IPL.EQ.2) NPOLE=9

IF(IPL.EQ.3) NPOLE=19

IF(IPL.EQ.4) NPOLE:34

IF(IPL.EQ.5) NPOLE=55

SCAN VOLUME FRACTION

DO 100 IVOL = l, NIVL

GET VOLUME FRACTION FROMCINPUT DATA

READ(2,¥) VFRAC

RADSINK=(3.0*VFRAC/(4.0¥PI¥NSINK))‘*(1.0/3.0)

RADCUT = ANCUT t RADSYS

RADCUT2 = RADCUT t RADCUT

TDIST = RADCUT + RADSYS

PRD : 2.08RADSYS

PRD2 = PRD*PRD

RADSYSZ = RADSYStRADSYS

FACT = 4.03PItD2

CREATE T(MP) VECTOR

0102:01-02

MP=7

DO 30 L=0,MP-1

A=1.

88:1.

DO 35 I=1,L

BB=FLCAT(I)*BB

CONTINUE

IF(BB.EQ.0.) 88:1.
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3O

20

888

DC 33 I:1,L
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A=FLOATIZFI+1I*A

CONTINUE

T(L+1)= (D1D2)*(RADSINKt¥(2*L+3I)/(A*BB*((L+l)*Dl+(L+2)*D2))

CONTINUE

WRITEI6,20)

FORMAT(2X.//,4OX,’ RANDOM SINK CONFIGURATION ’,//)

WRITE(6,t)

WRITE(6,*)

WRITEI6,*)

WRITE(6,t)

WRITE(6,#)

WRITEI6,¥)

WRITE(6,¥)

WRITE(6,¥)

WRITE(6,:)

WRITE(6,x)

WRITE(6,1)

WRITE(6,3)

U
.
”

U
‘
h
-
‘
-
-

NUMBER OF SINKS = ’,NSINK

RADIUS OF SINK = ’,RADSINK

RADIUS OF SYSTEM 2 ’,RADSYS

VOLUME FRACTION = ',VFRAC

NUMBER OF CONFIGURATIONS : ’,NCON

NPCLE=’,NPCLE

DIELECTRIC CONSTANT OF SINK: D1 : ’,Dl

DIELECTRIC CONSTANT OF BACKGROUND: D2 = ’,D2

T-OPERATOR FOR SINK: TZZ&t11&T22 = ',TZZ,T11,T22

X-COMPONENT OF APPLIED FIELD = ’,El

Y-COMPONENT OF APPLIED FIELD : ',E2

Z-COMPONENT OF APPLIED FIELD = ',E3

SET INITIAL VALUE

SSMPX : 0.0

SSMPXZ = 0.0

BEGINNING CONFIGURATION AVERAGE

DO 1000 ICON = l, NOON

GET NEW CONFIGURATION

READ(1,¥) ICI

NS = 0

DO 888 I = l, NSINK

NS = N8 + 1

READ(1,*) PX(I), PYII), PZ(I)

CONTINUE

NDIM=NS*NPOLE

CREATE B VECTOR (CONSTANT PARTS)

DO 51 I = 1, NS

IPl =(I-1)tNPOLE+ 1

IP2 :(I-1)tNPOLE+ 2

DO 52 LA = 1, NPOLE

ID = (I-1)tNPOLE+ LA

IF(ID. EQ. 1P1) THEN

B(ID) = FACTxEl

ELSE IF(ID.EQ.IP2) THEN

B(ID) = FACTIEZ

ELSE

B(ID) = FACT3E3

ENDIF



0
0

333

1000

105

CONTINUE

CONTINUE

FOLLOWING CALL FOR CREATING THE MATRIX ELEMENTS

CALL POLEALL(PX,PY,PZ,NS,NDIM,'IT,NPOLE)

FOLLOWING CALL FOR SOLVING THE LINEAR EQUATIONS

FROM FPS-164 MATH-LIB

CALL PFINVINDIM,’I'T,WV,AINV,IERR)

DO 81 I=l,NDIM

SUM=0.

DO 82 J=1,NDIM

SLM:SLM+AINV(I,J)*B(J)

CONTINLE

DP(I):SUM

CONTINUE

FOLLOWING CALL FOR SOLVING THE LINEAR EQUATIONS

FRCM LINPACK MATH-LIB

CALL SGEFA('I'I‘,NDIM,NDIM,IPVT,IERR)

CALL SGESL(I'T,NDIM,NDIM,IPVT,B,O)

DO 81 I=l,NDIM

DP(I)=B(I)

CONTINUE

THIS SECTION EVALUATES THE EFFECTIVE DIELECTRIC CONSTANT

NR = 0

II) 333 I =1, NDIM, NPOLE

NK : NK + 1

CC(NK) = DP(I)/D2

CONTINUE

SMPX

D015 1, ns

SMPX - SMPX + CC(I)

CONTINUE

0.0

I :

I
H
H

SSMPX=SSMPX+SMPX

SSMPX2=SSMPX2+SMPX*SMPX'

CONTINUE

SSMPX = SSMPX/FLOATINCDN)

IF(NCXDN.GT.1) THEN

TEMP = ABS((SSMPX2 - FLOATING)N)*(SSMPX**2)I/

FLOATINCDNHNCDN-IHI

SDSMPX = SQR'I‘ITFMP)
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WRITE(6,501) SSMPX, SDSMPx

ENDIF

501 FORMAT(2X,’ X-COMPONENT OF DIPOLE MOMENT = '

*.F14.8.' ( ’.F14-8.’ )'./)

c P'TSH = SSMPX/I(4.D0¥PI/3.DO)*RADSYS**3)

P'TSH:SS§’1PX/l.0

'IOPDE : 1.0 + 2.0XPTSH/(3.0¥E1)

BOTDE = 1.0 - FISH/(3.0tE1)

DEDZ = TOPDE/BOI'DE

BO'TZ = BOTDEHZ

SDDE : ABSI (SDSMPX/I (2.0*PI*El)*RADSYS¥*3))

t t (BO'I'DE+O.503’IOPDE)/BOT2)

WRITE(6,66)DED2,SDDE

c WRITE(7,43)VFRAC,DED2

66 FORMAT(2X,/,3X,’ EFFECTIVE DIELECTRIC CONSTANT: DE = ’,

tF20.13,’ ( ’,F20.13,’ ) ’,/)

043 format(2x,2f15.8)

100 CONTINUE

200 CONTINUE

STOP

END

C3ttt38333888838833881883883183833833$3888383333383883888888

c THIS SUBROUTINE CREATE THE MATRIX ELEMENTS x

C¥titt83*3838888838881888388883381838888888¥8338838383833388

SUBRCUTINE POLEALL(PX,PY,PZ,NS,NDIM,TT,NN)

IMPLICIT REALx4 (AFH,o-2)

IMPLICIT INTEGERt4(I-N)

DIMENSION AK(55),G(55,55)

DIMENSION PX(NS),PY(NS),PZ(NS),TT(NDIM,NDIM)

Demon /ST/ T110)

Damon /sp/ NCELL,PRD,PRDZ,RADCUT2

m /MR/ RIlI)

DATA (AK(I),I=1,55)/ 1.,1.,1.,-1.,-1.,-1.

,-2.,-2.,-2.,1.,1.,1.,3.,3.,3.,3.,3.,3.

,6.,-1.,-1.,-1.,-4.,-4.,-4.,-4.,-4.,-4.

,-6.,-6.,-6.,-12.,-12.,-12.,1.,1.,1.,5.

,5.,5.,5.,5.,5.,1o.,10.,1o.,1o.,1o.,1o.

,2o.,20.,20.,3o..30.,3o./”
0
6
*
.
“

C ROWING CALL FOR CREATING t COEFFICIENTS

CALL CREATETINDlMgNNMS/I'T)

0061 =1,NS

DO3J =1,NS

00100K=-NCELL,NCELL

00110L=-NCELL,NCELL

m120Mz-NCELI..NCELL
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13

16

130

120

110

100

107

DISTZ = (K*K+L*L+M*M)*PRD*PRD

IF(I.EQ.J.AND.DIST2.EQ.0.DO) GO TO 130

XJ : PX(J)+K*PRD

YJ = PY(J)+L*PRD

ZJ : PZ(J)+M*PRD

R2 : (PX(I)-XJ)xx2+(PY(I)-YJ)**2+(PZ(I)-ZJ)¥*2

IF(R2.EQ.0.) GO TO 130

IF(R2.GT.RADCU'I'2) GO TO 130

R1 = SQRT(R2)

R(1)=R1

R(2)=R2

DO 21 II = 3,11

R(II) = 1.0/(R(1)**II)

CONTINUE

RX = (PX(I) - XJ)/R(1)

RY : (PHI) - YJ)/R(1)

R2 = (PZ(I) - ZJ)/R(1)

DO 16 ID=1,NN

DO 13 JD=1,NN

KN=NN*(I-1)+ID

JN=NN*(J-l)+JD

IF(ID.LE.JD) THEN

CALL ELEMENT(ID,JD,H,RX,RY,RZ)

C(ID,JD)=H

ENDIF

IF(ID.GT.JD) THEN

G(ID,JD)=G(JD,ID)

ENDIF

TI‘(IQJ,JN)=’IT(IQJ,JN)-ABS(AK(ID) )tG( ID,JD)*AK(JD)

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

RETURN

END

Ctttitttttitttttttxtttittttittitttttttttttittitttttltxttlt

C THIS SUBIDUTINE CREATE THE t mEFFICIENTS *

C***3*¥ittttttitttittttttitttitttt¥#¥**¥‘*¥*t8¥t¥¥¥¥¥¥¥t¥t

SUBROUTINE CREATET(NDIM,NN,NS{TT)

IMPLICIT REAL*4(A2H,O-Z)

IMPLICIT INTEGER*4(I-N)
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DIMENSION IT(NDIM,NDIM)

CG‘Q'DN /ST/ THO)

I = 1,NS

IS = 1,NN

(I-1)*NN+IS

J = 1,NS

JS = 1,NN

(J-1)*N'N+JS

IF(ID.EQ.JD) THEN

IF(IS.LE.3) IT(ID,JD) = 1./T(1)

8
8
8
8
8
8

IF(IS.GT.3.A1\D.IS.LE.6) 'I'I‘(ID,.JD) = 1. /T(2)

IF(IS.GT.6.AND.IS.LE.9) TT(ID,JD) = 2. /T(2)

IF(IS.GT.9.AND. IS. LE. 12) T'NID, JD) = 1. /T(3)

IF(IS.GT.12.AND. IS. LE. 18) 'I'I‘(ID, JD) : 3. /T(3)

IF(IS.EQ.19) 'I'I‘(ID,JD)= 6. /T(3)

IF(IS.GT.19.AND.IS.LE.22) 'I'I'(ID,JD) = l. /T(4)

IF(IS.GT.22.AND.IS. LE. 28) 'I'I'(ID,.TD) : 4. /T(4)

IF(IS.GT.28.AND.IS.LE.31) TT(ID,JD) = 6. /T(4)

IF(IS.C}T.31.AND. IS.LE.34) T'I‘(ID,JD) : 12./T(4)

IF(IS.GT.34.AND.IS. LE. 37) 'I'I‘(ID,JD) : 1. /T(5)

IF(IS.GT.37.AND.IS. LE. 43) T'I‘(ID,JD) : 5. /T(5)

IF(IS.GP.43.AM).IS.LE.49) I'I'(ID,JD) = 10./T(5)

IF(IS.GT.49.AND.IS.LE.52) 'IT(ID,JD) = 20./T(5)

IF(IS.GT.52.AND.IS. LE.55) '1'1‘_(ID,JD) = 30./T(5)

ELSE

TT(ID,JD):0.

ENDIF

4 (DNTINUE

2 CDNTINUE

3 mNTINUE

1 CDNTINUE

RETURN

END

Ctttiti333*13331**¥**¥**3¥¥t**!#titttitttttittitltttttttttt

0 THIS SUEmUTINE CREATE THE MATRIXW t

C***i¥¥33$333"It*ttiiittittttittittittiitttx3t3¥3¥3¥*****i

SUEROUTINE W(I,J,H,RX,RY,RZ)

IMPLICIT REALM (A-H,O-Z)

IMPLICIT INTEGER“ (I-N)

comm Mil Rm)

comm /MA.IN/ A7,A9,A11,A13,A15,A17,A19

KCX,KCY,KCZ REFER TO (XXJNT THE NUMBER OF X,Y,Z

RX,RY,RZ ARE THE DISTANCE BETWEEN INCLUSIONS

IN X,Y,Z DIRECTIONSC
O
O

KCX=0

KCY=0

KCZ=0



N3Hl(II'BH'N)3I3813

203:233

AOX=ADX

-€+XDX=XDH

N3Hl(01'03'N)313813

I+ZOX=ZOX

I+AOX=AOX

XDX=XDX

N331(6'83'N)3I3813

I+ZDX=ZOH

AGX=ADX

I+XDX=XSX

N3Hl(8'03'N)3I3813

203:233

I+ADH=LSX

I+XDX=XOX

N3Hl(L'OB'N)3I3813

Z+ZOX=ZOX

ADX=ADX

XDH=XSX

N3Hl(9'63'N)3I3813

ZOX=ZOH

Z+AOX=ADH

XDX=XOX

N3Hl(S'CG‘N)3I3813

ZOX=ZOX

AOX=ADX

Z+XOX=XDH

N3Hl(E'CG'N)313813

I+ZOH=ZOH

ADX=AOH

X33=XDH

N3Hl(E'BH'N)3I3813

233:233

I+AOH=ADX

XDX=XDH

N3Hl(Z'CG'N)JI3813

203:203

ADX=ADH

I+XDX=XDH

NHHI(I'DH'N)3I

JIGNH

P=N

3813

I=N

NHHI(1°03°11)3I

Z‘I=III00

601



KCX=KCX

KCY=KCY+3

KCZ=KCZ

ELSE IF(N.EQ.12)

KCX=KCX

KCYzKCY

KCZ:KCZ+3

ELSE IF(N.EQ.13)

KCX=KCX+2

KCY:KCY+1

KCZ:KCZ

ELSE IF(N.EQo14)

KCX=KCX+2

KCYzKCY

KCZ:KCZ+1

ELSE IF(N.EQ.15)

KCX=KCX+1

KCY=KCY+2

KCZ:KCZ

ELSE IF(N.EQ.16)

KCX=KCX

KCY=KCY+2

KCZ=KCZ+1

EISE IF(N.EQ.17)

KCX=KCX+1

KCY=KCY

KCZ=KCZ+Z

ELSE IF(N.EQ.18)

KCX=KCX

KCY:KCY+1

KCZ=KCZ+2

ELSE IF(N.EQ.19)

KCX=KCX+1

KCY=KCY+1

KCZ=KCZ+1

EISE IF(N.EQ.20)

KCX=KCX+4

KCY=KCY

KCZ=KCZ

ELSE IF(N.EQ.21)

KCXzKCX

KCY=KCY+4

KCZ=KCZ

ELSE IF(N.EQ.22)

=KCX

KCY=KCY

KCZ=KCZ+4

ELSE IF(N.EQ.23)

KCX:KCX+3
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KCY=KCY+1

KCZzKCZ

ELSE IF(N.EQ.24)

KCX:KCX+3

KCY:KCY

KCZ=KCZ+1

ELSE IF(N.EQ.25)

KCX=KCX+1

KCY=KCY+3

KCZ:KCZ

ELSE IF(N.EQ.26)

KCX:KCX

KCY:KCY+3

KCZ=KCZ+1

ElSE IF(N.EQ.27)

KCX:KCX+ 1

KCYzKCY

KCZ=KCZ+3

ELSE IF(N.EQ.28)

KCX=KCX

KCY=KCY+1

KCZ=KCZ+3

ELSE IF(N.EQ.29)

KCX=KCX+2

KCY=KCY+2

KCZzKCZ

ELSE IF(N.EQ.30)

KCX=KCX+2

=KCY

KCZ=KCZ+2

ELSE IF(N.EQ.31)

chzKCX

KCY:KCY+2

KCZ=KCZ+2

ELSE IF(N.EQ.32)

KCX=KCX+2

KCY=KCY+1

KCZ:KCZ+l

ELSE IF(N.EQ.33)

KCX=KCX+1

=KCY+2

KCZ:KCZ+1

EISE IF(N.EQ.34)

' KCX=KCX+1

KCY=KCY+1

KCZ=KCZ+2

ELSE IF(N.EQ.35)

KCX=KCX+5

=KCY
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KCZ=KCZ

ELSE IF(N.EQ.36)

KCX:KCX

KCY:KCY+5

KCZ=KCZ

ELSE IF(N.EQ.37)

KCX=KCX

KCYzKCY

KCZ=KCZ+5

ELSE IF(N.EQ.38)

KCX=KCX+4

KCY=KCY+1

KCZ=KCZ

ELSE IF(N.EQ.39)

KCX=KCX+4

KCY=KCY

KCZzKCZ+l

ELSE IF(N.EIQ.40)

KCX=KCX+1

KCY=KCY+4

KCZ=KCZ

ELSE IF(N.EQ.41)

KCX=KCX

KCY=KCY+4

KCZ=KCZ+1

ELSE IF(NJ'HAZ)

KCX=KCX+1

KCY=KCY

KCZ=KCZ+4

ELSE IF(N.ED.43)

KCX=KCX

KCY=KCY+1

KCZ=KCZ+4

ELSE IF(N.m.44)

=KCX+3

KCYzKCY+2

KCZ=KCZ

ELSE IF(N.m.45)

KCX=KCX+3

KCY=KCY

KCZ:KCZ+2

ELSE IF(N.m.46)

:KCX+2

KCY=KCY+3

KCZ=KCZ

ELSE IF(N.EQ.47)

KCX=KCX

KCY:KCY+3

KCZ=KCZ+2

ELSE IF(N.ED.48)
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13:1

23=X

N331(XE'OG'ZOX'GNV°KX'03'ADX‘GNV'ZX'CH'XDX)SI3813

23:2

XH=A

LH=X

N331(23'03°ZSX'GNV'XX'OG'ADX'GNV'LH'OE'XDX)JI3813

23:2

=1

XH=X

N331(23'63'ZOE'GNV'AX‘OQ‘ADX°GNV'XX'CB'XDX)31

ZX-XX-1N=AX

(ZOX‘LDX‘XUX)NIN=ZX

(ZSX‘AOX‘XDH)XVN=XX

ZSH+ADX+XDH=1N

3DNI1NCO

3IGN3

Z+ZSX=ZOX

Z+AOX=ADX

I+XDX=XDX

N331(99'03'N)3I3813

Z+ZSX=ZOX

I+ADH=ADX

Z+XDE=X33

N331(VS'OG'N)3I3813

I+ZOH=ZOH

Z+AOX=ADX

Z+XDX=XSH

N331(89’63'N)313813

8+ZOX=ZDX

I+AOH=ADX

I+XDX=XDX

N331(89°03'N)3I3813

I+ZSX=ZOX

€+ADX=ADH

I+XDH=X33

N331(IS'O3°N)313813

I+ZOX=ZDX

I+ADX=ADX

€+XOX=X33

N331(OQ'OE'N)JI3813

€+ZDH=ZOH

Z+ADX=ADH

XDH=XDX

N331(ST'OE'N)3I3813

C+ZOX=ZDX

1033133

Z+XDX=XDH

SII
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Z=RX

ELSE IF(KCX.EQ.KX.AND.KCY.EQ.KZ.AND.KCZ.EQ.KY) THEN

X=RX

Y=RZ

Z=RY

ELSE IF(KCX.EQ.KY.AND.KCY.EQ.KZ.AND.KCZ.EQ.KX) THEN

X=RY

Y=RZ

Z=RX

ELSE IF(KCX.EQ.KZ.AND.KCY.EQ.KX.AND.KCZ.EQ.KY) THEN

XzRZ

=RX

Z=RY

ENDIF

IF(NT.EQ.2) GO TO 2

1F(NT.EQ.3) GO TO 3

IF(NT.EQ.4) GO TO 4

IF(NT.EQ.5) GO TO 5

IF(NT.EQ.6) GO TO 6

IF(NT.EQ.7) GO TO 7

IF(NT.EQ.8) GO TO 8

IF(NT.EQ.9) GO TO 9

IF(NT.EQ.10) GO TO 10

IF(KX.EQ.2) THEN

H = R(3)*(3.0*X¥*2 - 1.0)

ELSE IF(KX.EQ.1) THEN

H = R(3)*(3.03X*Y)

ENDIF

GO TO 999

IF(KX.EQ.3) THEN

H = -R(4)*(15.0*X*‘3 -9.0*X)

ELSE IF(KX.EQ.2) THEN

3 = -R(4)*(15.0tY¥X**2-3.0¥Y)

ELSE IF(KX.EQ.1) THEN

3 = -R(4)¥(15.0*X*Y*Z)

ENDIF .

GO TO 999

IF(KX.EQ.4) THEN

H = —R(5)t(90.08Xtt2-105108Xtt4-9.0)

ELSE IF(KX.EQ.3) THEN

H = -R(5)*(45.o*x*Y-105.*thtta)

ELSE IF(KX.EQ.2.AND.KY.EQ.2) THEN

H = -R(5)*(15.0¥(X**2+Y**2)-105.0#(X*Y)**2-3.0)

ELSE IF(KX.EQ.2.AND.KY.EQ.1) THEN

H = -R(5)*(15.0*Y*Z-105.0¥Y*Z*X**2)

ENDIF
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GO TO 999

IF(KX.EQ.5) THEN

H:

ELSE

ELSE

ELSE

H:

R(6)¥(-225.¥X+ 1050.*X**3 —945.¥X¥*5)

IF(KX.EQ.4) THEN

R(6)*(-45.tY+630.*(X**2)*Y-945.*(X**4)*Y)

IF(KX.EQ.3.AND.KY.EQ.2) THEN

R(6)*(-45.*X+315.*X*Y*¥2

-945.¥(X¥¥3)*(Y*¥2)+105.¥X¥*3)

IF(KX.EQ.3.AND.KY.EQ.1) THEN

R(6)*(315.*X*Y*Z-945.¥(X*‘3)*Y*Z)

IF(KX.EQ.2.AND.KY.EQ.2) THEN

R(6)*(-15.*Z+105.‘(X**2)*Z+105.*(Y**2)*Z

-945.*(X**2)‘(Y‘*2)*Z)

ENDIF

GO TO 999

IF(KX.EQ.6) THEN

H = R(7)*(-225.+ 4725.*Xt*2 -14175.*X**4+

10395.tX**6)

ELSE IF(KX.EQ.5) THEN

H = R(7)‘(1575.*X*Y -9450.¥X*¥3¥Y+

10395.*X*¥5#Y)

ELSE IF(KX.EQ.4.AND.KY.EQ.2) THEN

H = R(7)t(-45.-5670.¥X**2‘Y‘*2+10395.*X*¥4tY*‘2

+ 630.*X‘¥2 -945.¥X¥*4+ 315.*Y**2)

ELSE IF(KX.EQ.4.AND.KY.EQ.1) THEN

H = R(7)*(315.*Y*Z -5670.‘Xt*2‘YtZ+

10395.‘X*¥4*Y*Z)

ELSE IF(KX.EQ.3.AND.KY.EQ.3) THEN

H = R(7)*(945.‘X‘Y -2835.3X¥Y¥‘3-2835.*X¥t3*Y

+ 10395.¥X**3¥Yt33)

ELSE IF(KX.EQ.3.AND.KY.EQ.2) THEN

H = R(7)*(315.*XtZ-945.*X*33*Z-2835.¥

XtY‘*2‘Z+ 10395.¥X**3*Y**2*Z)

ELSE IF(KX.EQ.2.AND.KY.EQ.2) THEN

H = R(7)*(-15. -945.¥Xt¥2¥Y*t2 -945.1X332*Z¥t2

-945.*Y*¥2*ZX*2+ 10395.*X**2*Y**2*Z**2

+ 105.*X**2+ 105.¥Y**2+ 105.*Z**2)

ENDIF

GO TO 999

IF(KX.EQ.7) THEN

H = R(8)¥(A13*X¥*7+A11321.*X**5+A9*105.*Xt33+A7*105.*X)

ELSE IF(KX.EQ.6) THEN

H = R(8)*(A13*X¥‘6*Y+A11*15.*X*¥4*Y+A9$45.*X**2*Y

ELSE

H:

+A7¥15.¥Y)

IF(KX.EQ.5.AND.KY.EQ.2) THEN

R(8)¥(A13*X¥*53Y¥*2+A11*(10.*X*¥3*Y*t2+xt¥5)+

A9*(15.¥X¥Y**2+10.*X*¥3)+A7*15.*X)
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ELSE IF(KX.EQ.5.AND.KY.EQ.1) THEN

H : R(8)*(A13*X**5*Y*Z+A11*10.*X**3*Y*Z+A9*15.¥XtY*Z)

ELSE IF(KX.EQ.4.AND.KY.EQ.3) THEN

H = R(8)t(A13tX**4*Ytt3+A11t(6.*X**2*Y**3+3.*X**4¥Y)+

* A9*(3.*Yt*3+18.*Xttth)+A7*9.*Y)

ELSE IF(H.EQ.4.AND.KY.EQ.2) THEN

H = R(8)t(A13*X**4*Y**2tZ+A11*(6.tx**2*Y**2*Z+x**4*Z)+

x A9*(3.*Yt*2*Z+6.*Xtt2*Z)+A7*3.*Z)

ELSE IF(KX.EQ.3.AND.KY.BQ.3) THEN

H = R(8)¥(A13¥X¥*3*Y**3¥Z+A11*(3.tX¥Y*¥3*Z+3.*X**3*Y*Z)+

* A9*9.*XtY*Z)

ELSE IF(KX.EQ.3.AND.KY.EQ.2) THEN

H : R(8)3(A13¥X¥*3¥Y*¥2t2*¥2+A11t(3.*X¥Y**2*Z*¥2+

: thatth2+th3th32)+A9t(3.tXtZt32+3.EX¥Y¥*2+

x xxt3)+A7t3.tx) .

ENDIF

GO TO 999

8 IF(KX.EQ.8) THEN

H = R(9)*(A15*X**8+A13*28.¥X*¥6+A11*210.*Xtt4+

t A93420.*X**2+A7*A7)

ELSE IF(KX.EQ.7) THEN

H = R(9)t(A15*X*¥7tY+A13t21.*X**5*Y+A11*105.*X¥*3*Y+

t A93105.tX¥Y)

ELSE IF(KX.EQ.6.AND.KY.EQ.2) THEN

H = R(9)3(A15tX336tht2+A133(15.*X**41Y**2+X*16)+

* A11¥(45.xxtt2*Y*12+15.¥X**4)+A9*(Y**2+45.tXtt2)+

* A7t15.)

ELSE IF(KX.EQ.6.AND.KY.EQ.1) THEN

H = R(9)‘(A15¥X¥*6*Y¥Z+A13*15.txtt4tY¥Z+Allt45.xxxx23Ytz+

* A9*15.thZ)

ELSE IF(KX.EQ.5.AND.KY.EQ.3) THEN

H = R(9)¥(A15*X**5tY333+A13¥(10.¥X**3*Y*¥3+3.tx*t5tY)+

* A11*(15.tXtht3+30.tx**3*Y)+A9¥45.*X*Y)

ELSE IF(KX.EQ.5.AND.KY.EQ.2) THEN

H = 8(9)¥(A15*X**5*Y**2*Z+A13t(10.¥X**3*Yt*2*Z+X¥*5*Z)+

* A11t(15.xX*Y*¥2*Z+10.*X¥*3*Z)+A9tl5.*X*Z)

ELSE IF(KX.EQ.4.AND.KY.EQ.3) THEN

H = 8(9):(A15xX*t4*Y**3tZ+A13X(6.¥X¥*21Y3t3*z+3.*X**4*Y*Z)

* +A11t(3*Y*¥3*Z+18.*X**2¥Y*Z)+A9*9.¥Y*Z)

ELSE IF(KX.EQ.4.AND.KY.EQ.2) THEN

H = R(9)i(Alstxtt4thtthtt2+A13t(6.*X**2*Y**2¥Z*t2+

t xxx4tzxt2+xtt4thxz)+A11t(3.thxzxztxz+

t 6.xxtxzxztt2+6.*XthxYxtz+xtx4)+A9*(3.xzxxz+

t 3. ¥Yt¥2+6. tX132)+A7*3. )

ELSE IF(KX.EQ.4.AND.KY.EQ.4) THEN

H = R(9)*(A15tXt*4¥Y**4+A13*(6.*X**2*Y*t4+6.¥X¥*4*Y**2)+

* A11*(3.*Y**4+3.txtt4+36.*th2*Y**2)+

* A9¥(18.*Y**2+18.*X**2)+A7*9.)

ELSE IF(KX.EQ.3.AND.KY.EQ.3) THEN
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R(9)t(A15txxx3xyxx3t2tx2+A13x(3.xxxYxx3xzxt2

+3.:x:x3xszxt2

+th3tht3)+A11x(9.xx*Yx2tx2+3.xXthx3+3.*xxx3xY)+

A9*9.*X*Y)

ENDIF

GO TO 999

IF(KX.EQ.9) THEN

H :

ELSE

R(10)¥(A17*Xt*9+A15*36.¥X**7+A13*378.*X**5+

A11¥1260.¥X*‘3+A9*9.*A7*X)

IF(KX.EQ.8) THEN

R(10)¥(A17*X**8tY+A15*28.*X**6*Y+A13*210.*X¥*4*Y+

A11*420.*X*¥2¥Y+A9*A7*Y)

IF(KX.EQ.7.AND.KY.EQ.2) THEN

R(10)*(A17tX**7*Y**2+A15*(21.*X‘*5*Y**2+X**7)+

A13*(105.*X**3*Y*¥2+21.*X*¥5)+

A11*(105.*X*Y*¥2+105.‘X**3)+A9*105.*X)

IF(KX.EQ.7.AND.KY.EQ.1) THEN

R(10)‘(A17*X*¥7*Y‘Z+A15*21.*X**5*Y*Z+ u

A13*105.*X**3¥Y*Z+A11*105.*X*Y¥Z)

IF(KX.EQ.6.AND.KY.EQ.3) THEN

R(10)*(A17¥X**6*Y*33+A15*(15.*X**4*Yt*3+3.*X**6*Y)+

A133(45.*X**2*Y*¥3+45.*X**4*Y)+A11¥(15.*Y**3+

135.3Xt*2*Y)+A9*45.*Y)

IF(KX.EQ.6.AND.KY.EQ.2) THEN

R(10)$(A17*X**6‘Y‘*2*Z+A15‘(15.¥X¥*4*Y**2*Z+X**6*Z)+

A13¥(45.*X**2*Y**2*Z+15.*X**4*Z)+

A11*(15.*YI*Z*Z+45.*X**2*Z)+A9*15.*Z)

IF(KX.EQ.5.AND.KY.EQ.3) THEN

R(10)*(A17¥X‘t53Y**3*Z+A15*(10.*X**3*Y3*3*Z+3.*Xtt53Y32)

+A13*(15.*XtY*E3¥Z+30.‘X**3*Y*Z)+A11*45.*X*Y‘Z)

IF(KX.EQ.5.AND.KY.EQ.2) THEN

R(10)‘(A17‘X*¥5‘Y**2*Z*EZ+A15t(10.*X**3*Y**2*Z**2+

X33532132+Xt15¥Y¥32)+A13*(15.¥X*Y*¥2XZ**2+

10.tx*‘332**2+10.¥X**3iY*32+X**5)+

A11*(15.*X*Z*32+15.*XiYi*2+10.*X¥¥3)+A9*15.*X)

IF(KX.EQ.5.AND.KY.EQ.4) THEN

R(10)*(A17*X**5‘Y**4+A15*(10.*X**3*Y‘*4+6.*X**5*Y*i2)+

A133(15.*X¥Y**4+3.¥X335+60.*X*t3*Y¥*2)+

A11*(90.*X*Y**2+30.*X¥*3)+A9*45.*X)

IF(KX.EQ.4.AND.KY.EQ.3) THEN

R(10)¥(A17¥X3*4$Y*#3*Z*#2+

A15*(6.*X¥¥2*Y**3*Z**2+3.*X**4*Y*Z**2+

X134¥Y*¥3)+A13*(3.*Y**3323*2+18.¥X**2*Y*Z**2+

6.*X¥*2*Y**3+3.*X**4¥Y)+A113(9.*Y*Zt*2+

3.‘Y**3+18.¥X**2¥Y)+A9*9.*Y)

IF(KX.EQ.4.AND.KY.EQ.4) THEN

R(10)*(A173X334¥Y¥¥4¥Z+A15¥(6.*X*¥2*Y**4*Z+

6.¥X*¥4*Y**2¥Z)+A13*(3.¥Y**4*Z+3.*X**4*Z+

36.*X**2*Y**2*Z)+A11*(18.¥Y**2*Z+18.*X**2*Z)+
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A9¥9.‘Z)

IF(KX.EQ.3.AND.KY.EQ.3) THEN

R(10)*(A17*X**3*Y**3*Z**3+A15*(3.*X*Y**3*Z**3+

3.*X**3*Yt*3¥2+3.*X‘*3*Y*Z**3)+A13*(9.¥X*Y*Z**3

+9.¥X*Z*Y**3+9.*X**3*Y*Z)+A11*27.*X*Y*Z)

ENDIF

GO TO 999

IF(KX.EQ.10) THEN

H:

ElSE

R(11)*(A19*X**10+A17*45.*Xtt8+A15*630.*X**6+

A13t3150.*xtt4+A11t45.¥A7*X**2-A9*A9)

IF(KX.EQ.9) THEN

R(11)*(A19*X**9¥Y+A17*36.*X**7*Y+A15*378.*X**5*Y+

A13*1260.*X**3*Y+A11*9.*A7*X*Y)

IF(KX.EQ.8.AND.KY.EQ.2)ITHEN

R(11)*(A19¥X*¥8*Y#*Z+A17*(28.¥X**6*Y**2+X**8)+

A15*(210.*X**4*Y**2+28.*X**6)+

A13*(420.tX¥t2¥Yttz+210.*Xtt4)+

A11¥(A7¥Yt¥2+420.tX**2)+A9¥A7)

IF(KX.EQ.8.AND.KY.EQ.1) THEN

R(11)t(A19txtt8tY*Z+A17*28.¥X**6*Y*Z+

A151210.¥X**4*Y*Z+A13*420.txx*2*Y*Z+All*A7*Y*Z)

IF(KX.EQ.7.AND.KY.EQ.3) THEN

R(11)¥(A19txt*7tY¥*3+A17*(21.*X**5*Y**3+3.tXtt7tY)+

A153(105.*Xt*3¥Y**3+63.*X¥*5*Y)+A13*(105.*X*Y**3+

315.*X**3¥Y)+A11*315.*XtY)

IF(KX.EQ.7.AND.KY.EQ.2) THEN

R(11)t(A19*X*¥7tY*32*Z+A17*(21.*X¥*5*Yt*2*Z+X**7*Z)+

A15*(105.*Xt*3*Y¥*2*Z+21.*X*¥5*Z)+

A13¥(105.:xtht232+105.*X**3*Z)+A11*105.*X*Z)

IF(KX.EQ.6.AND.KY.EQ.4) THEN

R(11)*(A19*X¥*6*Y$*4+A17*(15.*X**4*Y**4+6.*X**6*Y**2)

+A15¥(45.tx**2*Y**4+3.*X**6+90*X*t4*Y**2)+

A13*(15.tY**4+45.*X**4+270.*X**2*Y*t2)+

A11*(90.tht2+135.*X¥*2)+A9*45.)

IF(KX.EQ.6.AND.KY.EQ.3) THEN

R(11)t(A193X*:6tY*¥3*Z+A17*(15.*X**4tY**3*Z+

3.*Xt*6¥Y*Z)+A153(45.*X**2*Y**3*Z

+45.*X¥*4¥Y*Z)+A13*(15.*Y**3*Z+135.*X*t2*Y*Z)+

A11t45.*Y*Z)

IF(KX.EQ.6.AND.KY.EQ.2) THEN

R(11)t(A19¥th63Y**2tZ**2+A17*(15.*X**4*Y**2¥Z**2+

xxxexzxx2+xtxstxxz)+A158(45.xxttzxvxtztzxxz+

15.*Xtt4tzt*2+15.*xtt4th*2+X**6)+

A13¥(45.*X**2¥Z**2+45.*Xt82*Y**2+15.*X**4+

15.xyxx2:zx:2)+A11x(15.xzxx2+15.xyxtz+45.xxxx2)

+A9¥15.)

IF(KX.EQ.5.AND.KY.EQ.5) THEN

R(11)*(A19tX**5*Y**5+A17*(10.*X*¥3*Y*15+10.*xtt5*Y**3)+

A15*(15.*Xth*5+15.*x**5*Y+100.*X**3*Y*¥3)+
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A13¥(150.*X*Y**3+150.*X**3*Y)+A11*225.*X*Y)

ELSE IF(KX.EQ.5.AND.KY.EQ.3) THEN

H = R(11)*(A19*X**5*Y*‘3*Z$*2+

A17*(10.*X¥*3*Y**3*Z**2+3.*X**5*Y*Z**2+

X**5*Y**3)+A15#(15.*X*Y**3*Z**2+30.*X¥:3*Y*Zt¥2+

10.¥X**3*Y**3+3.*X**5*Y)+A13*(45.¥X¥Y*Z¥*2+

15.*X‘Yt‘3+30.*X**3*Y)+A11*45.*X*Y)

ELSE IF(KX.EQ.5.AND.KY.EQ.4) THEN

H = R(11)*(A19*X**5*Y**4*Z+A17*(10.*X**3*Y**4*Z+

6.*X¥*5*Yt*2*2)+A15*(15.*X*Y**4*Z+3.*X‘*5*Z+

60.¥X**3*Y**2*Z)+A13*(90.*X*Y**2*Z+30.¥X**3*Z)+

A11*45.‘X¥Z)

ELSE IF(KX.EQ.4.AND.KY.EQ.3) THEN

H = R(11)3(A19*X**4*Y**3*Z**3+A17‘(6.*X**2*Y**3*Z**3+

3.‘X**4iY*Z**3+3.tX*¥4*Y**3*Z)+A15*(3.*Y**3

tZ¥¥3+18. tx3t2¥YtZ¥¥3+18. ¥X¥¥2*Y¥*3*Z+

9.*X**4*Y*Z)+A13¥(9.*Y*Z**3+9.*Y**3*Z+

54.tX¥*2¥Y‘Z)+A11*27.‘Y‘Z)

ELSE IF(KX.EQ.4.AND.KY.EQ.4) THEN

H = R(11)*(A19*X‘*4tY**4¥Z*‘2+A17*(6.¥X*¥2*Y**4*Z**2

+6 . ¥X¥¥4¥Yt3232¥¥2+X1343Y3#4 ) +A15t ( 3 . tY‘X4tZit2'}

3.*X**4*Z‘*2+6.*X**2*Y“4+6.*X**4*Y**2+36.t

X¥¥23Y¥¥212332 ) +A13*( 18 . ‘Y*¥2¥Z*¥2+3 . *Y**4+

3.*X**4+36.*X*‘2‘Y**2+18.‘X**2*Z*32)+

A11*(9.*Z¥*2+18.*Y*‘2+18.¥X**2)+A9¥9.)

ENDIF

CONTINUE

RETURN
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PW TITLE : FmDIEL

PURPOSE : SIMULATION OF THE FREQUENCY-DEPENDENT

DIELECTRIC CONSTANT OF OCMPOSITE MATERIALS

FOR UNIFORM 0R COATED INCLUSION.

METHOD : CHOOSE ONE (1) THE MINIMUM IMAGE METHOD

OR (2) THE LATTICE SUM METHOD

CONTAINS : ONE MAIN PROGRAM ,THREE SUBROUTINES,

AND ONE CALLING MATH-LIB FOR SOLVING

THE COMPLEX LINEAR EQUATIONS

DATE : 1989

**************¥¥*****¥*##3##ttitt1**********t**¥tt*****¥t*

DEFINITION :

ANCUT = RADCUT/RADSYS

APHA : CONVERGE PARAMETER

BF : BEGINNING FREQUENCY: 0.2D0

CD : THE CONDUCTIVITY

D1 : DIELECTRIC CONSTANT OF PARTICLE

D2 : DIELECTRIC CONSTANT OF MEDIUM

DE : THE EFFECTIVE DIELECTRIC CONSTANT

DREl : RE(BULK DIELECTRIC CONSTANT FOR INCLUSION)

DIMI : IM(BULK DIELECTRIC CONSTANT FOR INCLUSION)

E1 : X-CG‘IPONENT OF APPLIED FIELD

E2 : Y-COMPONENT OF APPLIED FIELD

E3 : Z-COMPONENT OF APPLIED FIELD

EF : ENDING FRmUENCY: 0.55D0

II(MAX) AND NUMW : THE NUMBER OF FREQUENCY POINTS

N2(MAX) : THE NUMBER OF INCLUSIONS IN PRIMARY CELL

NCELL : INTEGER IN k-SPACE

NCONG : NUMBER OF CONFIGURATIONS

NN : THE DIMENSIONS OF DIPOLES; NN=3 FOR L=1

NSINK : NUMBER OF INCLUSIONS

MCELL : INTEGER IN r-SPACE

PRD : UNIT LENGTH OF CELL

RADSYS : RADIUS OF SYSTEM

RADSINK : RADIUS OF INCLUSION

TAOINV : DAMPING CONSTANT

VFRAC : VOLUME FRACTION

VF : ELECTRON FERMI VELOCITY

W(I) : FREQUENCY

WP : PLASMA EREQUENCY

WS : RESONANCE FREQUENCY

INPUT : TININP,TININ2

OUTPUT : TINQJT , TININ2

*
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fi
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fi
fi
fi
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fi
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fi
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Cit****¥***¥**¥*¥i¥t*¥*¥¥¥t¥*********¥***t**tt*¥¥***¥*3*¥t¥¥

PROGRAM FRQDIEL

IMPLICIT REAL*8 (A-H,O—Z)

IMPLICIT INTEGER34 (I-N)
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PARAMETER (N2 = 25,II : 100,NN : 3)

REAL PX(N2),PY(N2),PZ(N2),XC(N2),YC(NZ),ZC(N2),R(N2)

REAL W(II),SSREAL(II),SSIMAG(II),SSRE2(II),SSIM2(II)

REAL SSREIM(II),SMPXRE(II),SMPXIM(II)

COMPLEX*16 TMAT(NN*N2,NN*N2),B(NN*N2),C(NN*N2),CC(NN*N2)

COMPLEX*16'TDHAT(N2¥NN,N2*NN){PMT(NN*N2,NN*N2),SSMPX(II)

COMPLEX*16 SMPX(II),Dl,DIN1,DDINO,SSMPXT,TOPDE,BOTDE

CQPLEX*16 DE,TZZ,T(10),U,V,UV,D1D2,'I‘OPI‘,BO'IT,V1

INTEGER IP'I'I‘(NN¥N2)

WN /PP/ NCEL,."CELL,PRD,APHA,RADCU’I‘2,PI,PI2

OPEN(1,FILE = ’TININP’)

OPEN(2,FILE = ’TININZ’)

OPEN(7,FILE = ’TINOUI")

OPEN(8,FILE = ’TINOUl’)

PI = 4.DO* DATAN(1.DO)

PIZ = 2.DO*PI

ANCUT = 1.DO

(DNPIGURATION DATA INPUT m TININP

READ(1,¥)NSIM{,NOONG,VFRAC,RADSYS,RADSINK

GET VARIABLES FRO! TININZ

READ(2,*)NSINK,N(I)N,VFRAC,RADSYS

READ(2,¥)D2,m,El,E2,E3,NLW,NCELL,PCELL,APHA,BF,EF

RADSINK : (3.DO*VFRAC/(4.DO*PI*NSINK))t¥(1.D0/3.DO)

RAD=(3.¥PHI/(4.*PI¥NSINK)NHL/3.)

AR=RADSINIURAD

RAIXZ‘UT : ANCUT t RAIBYS

RAIX'JU'I‘Z : RAWI‘ t RADCUT

PRD = 2.D0*RADSYS

FACT = 4.DO*PIilh

WRITE(6,20)

EDWANZXJ/AOX,’ RANIXM SINK CDNFIGURATION ' ,//)

WRITE(6,¥) ’ NUMBER OF SINKS " ',NSINK

WRITE(6,*) ’ RADIUS OF SINK = ' ,RADSINK

WRITE(6,*) ' RADIUS OF SINK = ’,RAD

WRITE(6,*) ’ RADIUS OF SYSTEM = ’,RADSYS

WRITE(6,*) ’ VOILME FRACTION = ’,VFRAC

WRITE(6,t) ’ VOLUME FRACTION = ',PHI

WRITE(6,*) ' NUMBER OF WEIGURATIONS = ’,NmN

WRITE(6,121)

WT(2X,//,4OX,’ PARAMETERS OF THE SYSTEM ’,//)

WRITE(6,H ’ DIELECTRIC mNSTANT OF MEDIUM:D2 = ’,DZ

WRITE(6,*) ’ X-CG'IPONENT OF APPLIED FIELD = ’,El
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WRITE(6,¥) ’ Y-COMPONENT OF APPLIED FIELD

WRITE(6,¥) ’ Z-COMPONENT OF APPLIED FIELD

’,E2

’,E3

SET INITIAL VALUES FOR EACH FREQUENCY POINT

DO 49 I = 1, NUMW

SSMPX(I) = CMPLX(0.D0,0.D0)

SSRE2(I) : 0.00

SSIM2(I) = 0.D0

SSREIM(I) : O.D0

CONTINUE

FOLLOWING IS CONFIGURATION AVERAGE

DO 1000 ICON : 1, NOON

GET NEW CONFIGURATION; RANDOMLY GENERATE THE CENTER

OF NON-OVERLAPPING INCLUSIONS, XC,YC,ZC BETWEEN 0 AND 1.

PERIODIC BOUNDARY CONDITION USED

READ(1,*) ICI

DO 888 I : 1,NSINK

READ(1,¥) XC(I),YC(I),ZC(I)

CONTINUE

CHECK PARTICLES ONLY INSIDE THE SPHERE(RADCUT)

OR PRIMARY CELL

WRITE(6,¥)’ICON=',ICON

PRDH = FED/2.00

NS = 0 _

DO 555 M = 1, NSINK

IF( ABS(XC(M)-RADSYS) .GT. PRDH ) GO TO 555

IF( ABS(YC(M)-RADSYS) .GT. PRDH ) GO TO 555

IF( ABS(ZC(M)-RADSYS) .GT. PRDH ) GO TO 555

NS = NS + 1

PX(NS) XC(M)

PY(NS) YC(M)

PZ(NS) ZC(M)

CONTINUE

NDIM IS TOTAL DIMENSION OF MATRIX

NDIM : NNSNS

CONSTRUCTION OF B VECTOR(OONSTANT PARTS)

DO 51 I = 1, NS

IPl = (I-1)*NN+1

1P2 = (I-1)tNN+2

DO 52 IA = 1, NN

ID = (I-1)*NN+IA

IF(ID .EQ. 1P1) THEN

B(ID) = FACT t E1

ELSE IF(ID .EQ. IP2) THEN
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B(ID) FACT ¥ E2

ELSE

B(ID)

END IF

CONTINUE

CONTINUE

FACT # E3

MIMATRIX AND LSMATRIX ONLY DEPEND UPON THE POSITIONS

OF INCLUSIONS.

IF USE LATTICE SUM METHOD, CALL ISMATRIX

CALL LSMATRIX(TMAT,PX,PY,PZ,NN,NS,NDIM)

IF USE MINIMUM IMAGE METHOD, CALL MIMATRIX

CALL MIMATRIX(TMAT,PX,PY,PZ,NN,NS,NDIM)

SCAN FREQUENCY

DO 50 IN = 1, NUMW

FWP : FLOAT(IN)*(EF-BF)/FLOAT(NUMW)+BF

WP=1.46D+16

GAMAI=O.24E+14

TAOIB=0.87E+14

VF:1.44E+14

GAMAAzGAMAI+VF/(RADSINK*(10.E-5))

TAO=GAMAA+TAOIB

WS=WP/SG?I‘(DRE1+2.3D2)

WSWP=WS**3/(WP**2)

DIM1=(TAO-GAMAA)/WSWP

TAOINV: 1 . 68D+ 1 4

DRE1:4.5DO

DIMI=0.16DO

W(IN) = FWP*WP

WWP : W(IN)/WP

TAOWP =TAOINV/WP

DINl = CMPLX(DRE1,DIM1)

DDINO = CMPLX(WWP,TAOWP)

D1 = DINl - I.D0/(WWP*DDINO)

=D2/Dm

V:Dl/Dm

V1=V—1.

=UPV

D1D2=D1~D2

NP=2

IX) 30 L=O,NP-1

A=1.

83:1.

DO 35 I=1,L

BB=FLOAT(I+1)*BB

CONTINUE

IF(BB.EQ.0.) BB=1.

D0 33 I=1,L
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A=FDOAT(2*I+1)*A

CONTINUE

L1:L+1

L2:L+2

L23=23L+3

TOPT: L1*V1*(V*L2+U*L1)*RAD**L23+L1*UV*(L1+V*L2)*RADSINK**L23

BOTT ((V*L2+U*L1)‘(L2+V*L1)+L1¥L2*UV*V1*AR**L23)*A*BB

T(L1)=TOPT/K7IT

CONTINUE

TZZ=T(1)

MATRIX ADDS DIACONAL PARTS(SELF TERM IN PRIMARY CELL)

ELECTRIC

DO 47 I=l,NDIM

IX) 47 J:1,NDIM

IF(I.EQ.J) TTMAT(I,J)=TMAT(I,J)+1.DO/TZZ

IF(I.NE.J)'PHHAT(I,J)=TMAT(I,J)

CONTINUE

SOLVING LINEAR EQUATION (TTMATXC:B )

CALL SOLVEC(TTMAT,C,B,NN,NDIM,NS,TZZ,IPTTfHflT)

ONLY PICK DIPOLE MOMENTS AT X-COMPONENT

NK = 0

DO 333 I = 1, NDIM, NN

NK = NK + I

COME) = C(I)/Dm

CONTINUE

SUM ALL DIPOLE MOMENTS

SMPX(IN) = CMPLX(O.D0,0.DO)

DO 151 I = 1, NS

SMPX(IN) = SMPX(IN) + CC(I)

CONTINUE

SMPXRE(IN) = REAL(SMPX(IN))

SMPXIM(IN) = AIMAG(SMPX(IN))

SSMPX(IN) : SSMPX(IN) + SMPX(IN)

SSRE2(IN) = SSRE2(IN) + SMPXRE(IN)*SMPXRE(IN)

SSIMB(IN) = SSIM2(IN) + SMPXIM(IN)*SMPXIM(IN)

SSREIM(IN) = SSREIM(IN) + SMPXRE(IN)*SMPXIM(IN)

CONTINUE

CONTINUE

RADNE3 (3.D0/(4.DOiPI))*(2.D0*RADSYS)¥t3

RADNEW RADNE3**(1.DO/3.D0)
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AL = 1.DO/(4.DO*PI*E1*RADNEW**3)

ALZ = AL¥AL

ANALYZE FREQUENCY

IX) 60 I = 1, NUMW

SSMPXT : SSMPX(I)/N(X)N

TOPDE = 1.D0 + 2.D0*AL*SSMPXT

BOTDE = 1.D0 - AL*SSMPXT

DE DmHTOPDE/WTDE)

CD W(I)*AIMAG(DE)/(4.DO*PI)

SECTION FOR ERROR ANALYSIS

IF(NOON.GT.1) THEN

SRE’I‘ = REAL(SSMPXT)

SIMI‘ = AIMANSSMPXT)

SREIMI‘ = SREI'XSIMI‘

SIGA ABS(SSRE2(I) - N®N*SRET*SRET)/(NCON-1)

SIGB ABS(SSIM2(I) - NmN*SIMT*SIMI')/(NCON-1)

SIGAB = ABS(SSREIMU) - NOON*SRET*SIMI‘)/(N(I)N-l)

TOP = 1.DO+ AL*SRET- 2.D0*AL2HSRE'I‘*SRET+ SIMI'*SIMT)

BOT = 1.DO- 2.DO*AL*SRE'1‘+ ALZHSRE’NSREN SIMI‘IISIMI‘)

8012 = 30er

DlDA (Bort(AL-4.DoxAszSREr)-mpt(4.DOtAL2xSREr

t -2.DO*AL))/Kfl‘2 '

DlDB = (BOT*(-4.DO*ALZtSIMI‘)- 'IOP*(2.DO*AL2*SM))

* IBO'I‘2

T20P : 3.DO¥AL*SIMI‘

DZDA = T20P*(-2.DO*ALZtSRET + 2.*AL)/BOI‘2

DZDB = (wr*(3.D0*AL) - T20P*(2.xAL2*SIMl‘))/BUI’2

SD11 = SIGAtDlDAtDIDA

SD12 = SIGBxDlDBtDlDB

8013 = SIGABtDlDAxDlDB

SD21 = SIGAtDZDAtDZDA

SD22 = SIGBxDZDBxDZDB

3023 = SIGAB*D2DA*D2DB

SIGDl : SGZTHSDll + SD12 + SD13)/NCDN)

SICEZ = SQQTHSDZI + SD22 + SD23)/NCX)N)

ENDIF

PRINT OUI‘ DATA

WRITE(7,43) W(I)/WP,REAL(DE),SIGD1

WRITE(8,43) W(I)/WP.AIMAG(DE),SIGD2

MAT(ZX,f10.6,1X,F10.6,1X,F10.6)

CDNTINUE

STOP

END

C133*!*¥******¥***itttlttttiittittit333*31‘33**¥**¥***¥¥*t*****

C THIS SUBFDUTINE CREATEB A WEEK-MATRIX BY LATTICE SUM *

Cit3333*!¥¥‘¥¥**¥¥***¥**¥*¥****t*¥*¥t*¥******¥¥¥¥¥¥33113338*ttt
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SUBWTINE LSMATRIX(WAT,PX,PY,PZ,NN,NS,NDIM)

IMPLICIT REAL*8 (a-h,o-z)

IMPLICIT INTEGER‘4(I-N)

C(I'IPLEX‘IS IMAT(NDIM,NDIM)

REAL PX(NS),PY(NS),PZ(NS)

COWION /PP/ NCEL,1‘CELL,PRD,APHA,RADCUI2,PI,PIZ

EXTERNAL ERIC

SPI = DSQR'HPI)

TREL = 4.D0¥PI/3.D0-4.DO¥APHAt*3/(3.DO*SPI)

CREATES THE INITIAL ELH‘IEN'TS OF THE MATRIX

DO 777 I = 1, NDIM

DO 777 J : 1, NDIM

IF(I.EQ.J) TMAT(I,J)=CMPI..X(TRH,0.DO)

IF(I.NE.J) 'IMAT(I,J)=CMPLX(0.D0,0.DO)

CONTINUE

START TO CREATE THE ELEMENTS OF MATRIX

THEW IS THE SUM OF k-SPACE AND r-SPACE

1, NS

1,NN

)*NN + IS

1, NS

1,NN

)tNN + J3

H
U
J

H
I
I
I
I
H
I
I
H

8
8
8
8
8
8

THIS CHECKS A SYWIE'TRIC MATRIX.

IF(ID.LT.JD) GO TO 3

THIS PART IDES THE k-SPACE SUM

m100K=-NCELL,NCELL

m110L=-NCELL,NCELL

m120M=-NCELL,NCELL

DIST2 = (K3K + L‘L + MEMHPRDHRD

IF(DIST2.LE.REAL(NCELL¥NCELL).AND.DIST2.NE.0.) THEN

XX 2 REAL(K)

YK : REAL(L)

ZK =. REAL(M)

m : (PX(I) - PX(J))

m = (PY(I) - PY(J))

m ‘-' (PZUZ) - PZ(J))

RDK = (RRX*REAL(K)+RRY*REAL(L)+RRZ*REAL(M))¥PRD

THE'TA = 2.D0tPI$RDK

D = 4 .DO‘PI3EXP( -PI*PI*DIST2/(APHA¥APHA) )‘(XBVI'I-E'TA)

x /DIST2

IF(IS.EH.1) THEN

IF(JS .m. 1) THEN

'IMAT(ID,JD) = 'IMAT(ID,JD) + D*XK3XK

ELSE IF(JS .m. 2) THEN
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'IMAT(ID,J'D) = IMAT(ID,JD)

ELSE IF(JS .EQ. 3) THEN

"IMAT(ID,JD) = TMAT(ID,JD)

ENDIF

ELSE IF(IS .EQ. 2) THEN

IF(JS .EQ. 1) TTEN

"IMAT(ID,JD) = 'IMAT(ID,JD)

ELSE IF(JS .EQ. 2) THEN

TMAT(ID,JD) = 'IMAT(ID,JD)

ELSE IF(JS .EQ. 3) THEN

'IMAT(ID,JD) = TMAT(ID,JD)

ENDIF

ELSE IF(IS .EH. 3) THEN

IF(JS .m. 1) THEN

IMAT(ID,JD) : IMAT(ID,JD)

ELSE IF(JS .EQ. 2) THEN

IMAT(ID,JD) = 'IMAT(ID,JD)

ELSE IF(JS .m. 3) THEN

'IMAT(ID,JD) = 'IMAT(ID,JD)

ENDIF

ENDIF

ENDIF

CDNTINUE

CDNTINUE

WINUE

THIS PART II)- THE r-SPACE SUM

II) 140 K

II) 150 L

TX) 160 M

m,m

m,m

-MZELL,MIELL

D*XK*YK

D3XK1‘ZK

D*YK*XK

D‘YIUYK

D¥YK*ZK

D*ZK*XK

DtZK*YK

DXZIGZK

DIST2 = REAL ( K¥K+L$L+M¥M) *PRDiPRD

IF(DIS'T2.GT.REAL(PCELL»CELL)) (I) TO 130

XJ

YJ

ZJ

mu

RRY

m

R2 = RRX3RRX+RRYiRRY+RRZIIRRZ

PX(J)+KtI=RD

PY(J)+L¥PRD

PZ(J)+M:PM)

(PX(I) - XJ)

(PY(I) - Y3)

(P'Z(I) - ZJ')

IF(R2.m.0.DO) (I) TO 130

IF(RZ.GT.RAIXDUT2) CD '10 130

R1 = DSQI'NRZ)

R3 = 1.DO/(Rlfl3)

RX = REIT/RI

RY : FRY/RI

R2 = RRZ/Rl

ARl = APHAle
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EARL = ERFC(AR1)

EARZ = ECP(-APHA’APHA*R2)

B EAR1¥R3+2 .DOtAPEIA*EAR2/(R2*SPI)

C 4 .DOtAmAn3tEAR2/SPH6 . DOtAPHAtEARZ/ ( R2*SPI)

* +3.DO¥EAR1tR3

IF(IS.EQ.1) THEN

IF(JS .EQ. 1) then

IF(I.EH.J) THEN

MAT(ID,JD) = 'IMAT(ID,JD) - CtRxxRX+B

ESE IF(I.NE.J) THEN

IF(DIST2.NE.O.) THEN

'IMAT(ID,JD) = TMAT(ID,JD) - CtRXIKRX+B

ELSE

"IMAT(ID,JD) = 'I‘MAT(ID,JD) — CtRXtRX+B+4.DO*PI/3.DO

ENDIF

ENDIF

ELSE IF(JS .m. 2) THEN

'IMAT(ID,JD) = 'IMAT(ID,JD) - C*RX*RY

ESE IF(JS .m. 3) THEN

'I‘MAT(ID,JD) = 'IMAT(ID,JD) - CtRIURZ

ENDIF

ENDIF

IF(IS .FR. 2) THEN

IF(JS .m. 1) THEN

TMAT(ID,JD) = 'IMAT(ID,JD) - CtRY3RX

ESE IF(JS .m. 2) then

IF(IJ‘DJ) THEN

TMAT(ID,JD) = 'IMAT(ID,JD) — CtRYtRY+B

ESE IF(I.NE.J) mm

IF(DIS’I‘2.NE.O.) THEN

'IMAT(ID,JD) = 'IMAT(ID,JD) - CXRYtRY+B

ESE

'IMAT(ID,JD) = TMAT(ID,JD) - CtRYtRY+B+4.D0*PI/3.DO

ENDIF

ENDIF

ESE IF(JS .m. 3) THEN

'IMAT(ID,JD) : 'IMAT(ID,JD) - CXRth

ENDIF

ENDIF

IF(IS .133. 3) THEN

IF(JS .m. 1) then

'IMAT(ID,JD) = TMAT(ID,JD) - CtRZflUI

ESE IF(JS .m. 2) then

TMAT(ID,JD) = 'I‘MAT(ID,JD) - C*RZ*RY

ESE IF(JS .m. 3) THEN

IF(IJHJ) THEN

TMAT(ID,JD) = TMAT<ID,JD) - C*RZ*RZ+B
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ESE IF(I.NE.J) TEEN

IF(DIST2.NE.O.) TEEN

IMAT(ID,JD) = TMAT(ID,JD) - CtRZ*RZ+B

ESE

'IMAT(ID,JD) = IMAT(ID,JD) -— CtRZ*RZ+B+4.DO*PI/3.D0

ENDIF

ENDIF

ENDIF

ENDIF

130 CONTINUE

160 CDNTINUE

150 CONTINUE

140 CONTINUE

C CREATES TEE REST PARTS OF MATRIX

’I‘MAT(JD,ID)='IMAT(ID,JD)

WNTINUE

CONTINUE

CDNTINUE

CDN’I‘INUEO
i
n
-
F
-

C ENDTEIESLM

RETURN

END

C1331¥3**‘“*¥3*‘*‘tt333‘t3‘t“t‘t¥“3¥**¥¥¥*‘¥******‘

C THIS IS THEWW ERROR FUNCTIW i

C‘t33‘E¥33‘$3*‘¥3*‘***3‘¥“33¥:*¥*“*¥¥$3¥t3¥¥¥E¥tE¥E¥

FUNCTION EREC(X)

IMPLICIT REAL*8(A-H,0-Z)

IMPLICIT INTEGER¥4( I-N)

PARAME'I'ER(A1=0 . 254829592D0 ,A2=-0 . 284496736D0

t ,A3zl.421413741D0,A4=-1.453152027D0

t ,A5=1.061405429D0,P=0.3275911D0)

T:1 .D0/( 1 .DO+PtX)

XSQ=X3X

TP=T* (A1+T¥ (A2+T* (A3+T* (A4+T*A5) ) ) )

ERFC=TPEEXP( -XSQ)

m

END

Cititttttttttiittttlttittttiti¥33333¥¥¥33*8tittt3¥¥ttt¥¥

0 THIS mm: IsmCREATEAomPLEx-MAmm BY:

0 mum IMAGE METHOD 3

C**tttitttttltittttttttttttttttttitttttt¥¥¥ttttttttttttt

SUBEDUTINE MIMA'IRIX('IMAT,PX,PY,PZ,NN,NS,NDIM)

IMPLICIT mus (A-H,O—Z)

IMPLICIT INI‘EGERMu-N)

mus mAT(NDm,NDm)
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REAL PX‘(NS),PY(NS),PZ(NS)

MN /PP/ NCEL.L,?’CE.L,PRD,APHA,RADCUT2,PI,PI2

CREATE THE INITIAL ELEMENTS OF MATRIX

DO 777 I = 1, NDIM

DO 777 J : 1, NDIM

'DEXT(I,J)=CMPLX(O.,O.)

CONTINUE

STARTS TO CREATE TEE ELEMENTS OF MATRIX

DO 6 I = 1, NS

DO 2 IS = 1,NN

ID =(I-1)*NN + IS

IX) 3 J = 1, NS

DO 4 JS : 1,NN

JD : (J-1)*NN + JS

USE THE PERIODIC BOUNDARY CXDNDI'TION

II) 100 K = -NCE..L, NCELL

DO 110 L = -NCE.L, NCEL

DO 120 M = -NCELL, NCELL

DIST2 = (K*K + L*L + M*M)*PRD*PRD

CHECKS THE SEE-INTERACTION ’IN THE PRIMARY CE..L

IF(I .m. J .AND. DIST2 .EQ. O.D0) go to 120

XJ =.PX(J) + KtPRD

YJ = PY(J) + L*PRD

ZJ = PZ(J) + MtPRD

R2 = (PX(I)-XJ)*:2 + (PY(I)-YJ)xt2 + (PZ(I)-ZJ)*t2

IF(R2.EQ.0.DO) (I) TO 120

CH<BEN PARTICLE AS CENTER TAKES THE FINITE SIZE

OF THE SYSTEM, WHICH IS MINIMJM IMAGE METHOD

IF(R2.G'T.RAIEUT2) GO TO 120

R1 : R2*t(0.50)

R3 = 1.D0/(R1¥*3)

XX = (PX(I)-XJ)/R1

YY = (PY(I)-YJ)/R1

22 = (PZ(I)-ZJ)/R1

THIS PART IS '10 CREATE THE EEMENTS OF MATRIX

IF(IS.EQ.1) TEEN

IF(JS .m. 1) TEEN

'IMAT(ID,JD) = 'IMAT(ID,JD) - R3¥(3.D0¥XX*¥2-1.DO)

ESE IF(JS .ER. 2) TEEN

TMAT(ID,JD) = 'IMAT(ID,JD) - R3‘(3.DO*XX*YY)

ESE IF(JS .m. 3) TEEN

'IMAT(ID,JD) = 'IMAT(ID,JD) - R3¥(3.DO*XX*ZZ)
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ENDIF

ENDIF

IF(IS .EQ. 2) THEN

IF(JS .EQ. 1) THEN

'DWKT(ID,JD) = TMAT(ID,JD)

ELSE IF(JS .EQ. 2) THEN

TMAT(ID,JD) = TMAT(ID,JD)

ELSE IF(JS .EQ. 3) THEN

TMAT(ID,JD) = TMAT(ID,JD)

ENDIF

ENDIF

IF(IS .EQ. 3) THEN

IF(JS .EQ. 1) THEN

'UWNT(ID,JD) : TMAT(ID,JD)

ELSE IF(JS .EQ. 2) THEN

TMAT(ID,JD) = TMAT(ID,JD)

ELSE IF(JS .EQ. 3) THEN

TMAT(ID,JD) = TMAT(ID,JD)

ENDIF

ENDIF

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

RETURN

END

R3*(3.DO*YY*XX)

R3*(3.DO*YY**2 - 1.DO)

R3¥(3.D0¥YY*ZZ)

R3*(3.0*ZZ*XX)

R3*(3.0*ZZ¥YY)

R3*(3.0*ZZ¥*2 - 1.0)

Cittttititttttttxittittttttitttittittttttttitttttttiltxttt

THIS SUBRCUTINE SOLVE THE COMPLEX LINEAR EQUATION #

C***3t*t3**¥¥*¥¥*¥**8**¥*ttt*3ti81333t3t3*¥t¥*****iitiitit

SUBROUTINE SOLVEC(TMAT,C,B,NN,NDIM,NS,TZZ,IPTTfHKT)

C

IMPLICIT REAL*8(ArH,O-Z)

IMPLICIT INTEGERt4 (I-N)

WHS C(NDIM) ,'1MAT(NDIM,NDIM) ,B(NDIM)

MEXHS 'IMNNDIMMDIM) ,TZZ

INTEGER IPTT(NDIM)

RENAME MATRIX FOR SAVING THE ORIGINAL MATRIX

DO 20 I = 1, NS

IN:(I-1)*NN

DO 3 ID=1,NN

DO 21 J = 1, NS

JN=(J-l)¥NN

DO 4 JD=1,NN
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'IMT(IN+ID,JN+JD) = IMAT(IN+ID,JN+JD)

CONTINUE

CONTINUE

CONTINUE

mNTINUE

FOLLOWING CALL FRO"! FPS-164 MATH-LIB

CALL CSOLVQ('IMI’,NDIM,B,NDIM,C,NDIM,NDIM,1,

* (10.)¥*(-100),IPI'1‘,IERR)

RETURN

END
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PART II

ELECTRON LOCALIZATION : QUANTUM MOLECULAR DYNAMICS



1. INTRODUCTION

Electron localization is one of the most fundamental quantum

mechanical phenomena related to condensed matterI’Z. The electron

dynamics is governed by the electron-molecule interaction, the

molecular distribution, and the mean free path of the electron.

According to Anderson‘, electron localization is caused by fluctuations

in the electrons’s potential due to configurational fluctuations in the

medium. This is a density effect. In low density media, the electron

z
811

mean free path is larger than the thermal wavelength, x“: («Inn—)u2

0

(where B is 1/kBT, k8 is the Boltzmann constant, and me is the electron

mass), and the electron is quite free before scattering occurs. As the

density is increased, the electron will undergo multiple scattering

with backward and forward bounces off molecules and electron

localization may occur.

For a well localized electron, the electronic wavefunction

becomes concentrated in a finite local region typically characterized

by the order of a few molecular diameters (1.50 to 3.0), where a is a

molecular diameter. The envelope of the electronic wavefunction decays

exponentially to zero at points which are far away from the center of

mass of the electron.
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In a microscopic description, the electron’s mean free path is

the basic length scale before diffusion occurs for a localized

electron. When the interaction between the electron and molecules is

small or the density is low, the electronic wavefunction is extended.

The mean free path of the electron is large compared to the separation

between a pair of molecules and the thermal de Broglie wavelength. In

terms of time evolution, the localized state is defined as a finite

probability of finding the electron at its initial position after an

. . . . 1

infinite time .

Based on the model of a particle in spherical boxa, as the

electron evolves from an extended state to localized state there is

increasing kinetic energy and decreasing potential energy, since the

electron localizes in a small cage. As the cage becomes smaller, the

more confined electronic state must have a higher kinetic energy.

A variety of mechanisms, based on the electron-molecule

interaction, can cause the electron to localize as .the density is

increased. If the electron-molecule interaction is mainly attractive,

the electron can become localized via the configurational fluctuations

in the system, e.g. in xenonau. In contrast, if the interaction is

mainly replusive, the electron may be trapped in the cage created by

the strong local potential fluctuation, for example, a helium system“.

If the electron energy is near the potential barrier, it will jump over

the barrier from one trap to another trap, resulting in an activated

electron transition. If the electron energy is less than the potential

barrier, the electron will sit in the potential well and move very
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slowly through the system, because it must wait for the nuclear

configuration to gradually open a path. If the configurational

fluctuations create another hole with equal energy near the place where

the electron is sitting, then the electron can tunnel through the

barrier. The actual mechanism whether the electron tunnels or diffuses

by activated jumping is still not understood.

Recently, a body of theoretical and experimental work has focused

on the investigation of the properties of an excess electron in ionic

fluids“, molten saltssq, polar clustersads, polar fluids16-27, and

inert fluidszeds. Most recent theoretical work has been done by

computer simulation methods. These methods include the quantum Monte

Carlo method“, quantum path-integral 'Monte Carlo method 37 and quantum

5.9-10,37-39

. Thepath-integral molecular dynamics simulation method

quantum path-integral method is based on an isomorphism38 between the

Feynman path-integral39 in quantum statistical mechanics and a

classical system. The quantum electron is represented by a cyclic

necklace of pseudo-points located on the discretized path”. A

generalized molecular dynamics was developed in accord with the density

functional formalism“). Theoretical investigations employed the

quantum path-integral molecular dynamics method to study electron

localization in polar molecular clusterss’m, and yielded agreement

with experimental results. These methods provide information about the

ground state, thermal equilibrium energies, structure, stability, and

excess electron localization in small cluster and bulk liquid systems.

5,9-10,37-38

The numerical path-integral method cannot provide
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information on the dynamics of the quantum electron. A Molecular

6-7, 11-12

Dynamics Adiabatic Simulation Method (MDAS) has been developed

for the study of the dynamics of a quantum electron in a medium of

classical molecules.

For the use of MDASM the quantum-classical conceptfi’n’41

considered such that the electron is represented by its electronic

wavefunction and the molecules by their positions. The motion of

electron and molecules are described by the integration of the

time-dependent Schrodinger equation and the classical equations of

motion, respectively. A time-dependent self-consistent-field

procedure42 is used so that the time evolution of the wavefunction is

determined and the classical equations of motion are treated by

classical molecular dynamicse'u'“. With this approach we can

directly obtain information on the dynamic and equilibrium properties

of electrons in fluids.

The electron dynamics is analyzed by directly solving the

time-dependent Schrodinger equation of the excess electron

 

aw D V (P,{R..})
. _ _ 2 ep ~ ~1J

i—at .. 2m Vw+ h w (1.1) 

to obtain the time evolution of W(£,t) by using the fast Fourier

transform technique“. Here me is the mass of electron, h is Planck’s

constant, and Ve p( 5'18”} ) is the quantum-classical interaction

potential.
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The molecular dynamics simulation follows the motion of molecules

via the coupling to the electron and their mutual interactions. Each

molecule moves along its classical trajectory. The dynamics of the

system is governed by the inter-molecular interactions and

quantum-classical interaction, and requires the numerical integration

of the classical equations of motion. Each molecule obeys the equation

of motion

dgi I31

'3' = T..— ”‘3’

and

dP. avm O I)

~l _ _ ~1 _ 3 2 ep

dt - TLR. J d g |ip(r,t)| 6 R1 . (1.3)

l

  

where Ri and Pi are, respectively, the position and the momentum of the

ith molecule, in is the mass of the molecule, and V(Rij) is the

molecular interaction potential. The motion. of molecules is coupled

with the electron by the quantum force in the second term of Eq.(1.3).

Electron localization in dense helium31b has been the subject of

investigation by solving the Schrodinger equation for the electron.

However, the nuclear configurations were generated from an equilibrium

path-integral simulation37. The molecular dynamics effects on the

electron localization and the electron dynamics cannot be obtained from

this work. Electron localization in water clusters and NaClu’12 were

investigated via MDAS, and the results provided the ground state,

excited state and resonance state with the various cluster sizes. The

dynamics following the electronic transition of an excess electron in
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clusters and in bulk water has been studied by an adiabatic simulation

method”, too. The diffusion coefficient of the electron has been

. ,7 . . ,

simulated in a molten salt6 , and in polar fluids20 2‘.

This study focuses on the localization, dynamics, and mode of

transport of an excess electron in condensed helium via MDAS. The

system consists of an excess quantum electron and several hundred

helium atoms. We neglect the quantum effect of helium atoms and treat

them classically. The adiabatic approximation is valid, since the

electron mass is much smaller than the helium mass. Molecules are

distributed by the probability distribution P{R1,RZ,~--RJ), where Rj is

the center of the ith molecule and j = 1, 2, ---N. N is the number of

molecules. The molecule-molecule and electron-molecule interactions

are given by the Lennard-Jones potential“5 and a pseudopotential“,

respectively.

To do a molecular dynamics simulation we must know the equations

of motion, the molecular-molecular and electron-molecular interaction,

and consider a sufficiently large system. In our application, in order

to simulate an infinite system with a finite system, we apply periodic

boundary conditions“.

Much of the computation time is used for handling the sums over

particles in the energy and force calculations. If we summed over all

the N particles, the computational time would be proportional to NZ.

There are two efficient algorithms which have developed to limit the

number of particles summed over the system: 1) the minimum image
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8 47,49

method"’4 and 2) the nearest neighbor list method — the neighbor

lists with infrequent update.

In Chapter 2, we will outline the computational simulation method

used to generate nuclear configurations via molecular dynamics (Section

2.1) and obtain the time evolution of the electronic wavefunction

w(r,t) of the excess electron in the given nuclear configuration

(Section 2.2). The methods used to obtain the ground state, excited

states, the kinetic and potential energy, the spectral analysis, and

transport properties of the electron are described. A more detailed

account of the adiabatic simulation method is given in Section 2.3.

The effective moving grid technique12 used to monitor the migration of

the electron is described in Section.2.4. The results are presented

and discussed in Chapter 3. The conclusion is given in Chapter 4.



2. COMPUTATIONAL METHOD

We describe the computational algorithms which we have been

developing to explore electron localization in liquids. These programs

are sufficiently flexible to be linked and allow various applications.

2.1 MOLECULAR DYNAMICS

Each atom is treated as a point mass with motion which is

controlled by the forces imposed on it by all the other atoms, as

described by the equations of motion of classical mechanics. The

numerical solution of the equations of motion is repeated iteratively

to produce the total trajectory. Rahmanso in 1964 was the first to use

computer simulation to study molecular dynamics in liquid argon with a

Lennard-Jones potential. There is extrusive literature giving a

detailed description of molecular dynamics“. In the following we

summarize the Verlet-velocity algorithm“, (see program MD).

VERLET-VELOCITY ALGORITHM:

1). The initial positions, 13:, of the classical molecules are given by

the face-centered cubic lattice points.

2). The initial velocities, 43;, of the classical molecules are

determined by the Maxwellian distribution function.
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3). The positions at the (n+1)th time step are determined by those of

the nth time step according to

 

1

(1+1 _ n ~ri 2 n .

~i ‘ Bi + At” 3i + 2 m min) Ei (2'1)

where

n+1 n . . . .

R. , Ri : The pOSitions of ith molecule at the (n+1)th time step and

the nth time step.

)3. : The velocities of ith molecule at the nth time step.

AtM : The molecular dynamics time increment.

in : The mass of the classical molecule.

: The force produced by the classical molecules acting on the ith

molecule at the nth time step.

4). The velocities for the ith molecule at the (n+1)th time step are

given as

+At (F. +E‘?)/2m (2.2)

5). Force can be calculated either by the minimum image convention

method or by the nearest neighbor list method. The program we used is

written in the latter method”.

The molecule—molecule potential is chosen to be a Lennard-Jones

type45

0 ‘12 O 6

vu<13)=4e{(—) -<—)}. (2.3)
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where a is the diameter of molecule and e is the well depth of VU(R),

with values of e and 0 selected to represent helium, argon, and xenon

 

 

He Ar Xe

0(3) 2.556 3.4 4.055

E(K) 10.22 120. 229.

 

Hence, the x component of the force is given by

 

Fx : - Vx VLJ(R)

486 o 14 1 a e Rx

:0 {(7) -—2-(-§-)}—a
(2'4)

where Rx is the x-component of the vector 13. The molecular equation of

motion is

dZRi N -

m ——-—-—2 : '2. E(Rij). (2.5)

dtIIID j¢i

To facilitate the calculation, the lengths are in units of a, the

energies are in units of 6, and the time is in units of CHD defined

belowso. In order to make Eq.(2.5) dimensionless, we use the relation,

(2.6) 
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Thus, C“D is defined by

m 0 1/2

CH0 2 ( -15
(2.!)

The scale factor is C 2.54x10.13 (sec) for helium and the
HD

dimenSionless length and time are R0 = R/0 and trio : tun/Cno’

respectively.

in N 2

The system temperature T is defined by T = -.---- Z 4).. The

3 N kB 181 ~1

atomic velocities are renormalized when the temperature is far away

from the desired value so that the mean kinetic energy corresponds to

the desired temperature.

Therefore, we can rewrite a dimensionless Eq.(2.1)

“*1 - + At 76“ + —1- At 2 i?“ (2 8)
~10 ' ~10 no ~i 2 no ~i '

. -n _ n
where ’31 CHI) iii/0 (2.9)

-n _ 2 n

The scaled kinetic energy and the potential energy of the classical

N N

molecules are, respectively, 2 m @f/Z = 24 2 43: (in unit of e), and

i=1 1:1

-12

VU(R) = 4 ( R - R's } (in unit of e).

The classical molecules were placed on the face-centered cubic
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(fcc) lattice points. For each unit fcc cell, there are four molecules

in each cell. For a cubic simulated box the number of fcc cells in

each direction is ncell and the total number of molecules in the

simulated box is N. The relation is N : 4 x ncella. The results

presented here represent N corresponding to 108 and 864, namely,

the ncell values are 3 and 6.

In all calculations the number of classical molecules is between

108 to 864. The density was fixed and periodic boundary conditions“5

were used. The effect of the long-range potential interaction has to

be neglected by taking a cut-off at rc = 2.50, and the nearest neighbor

list is cut at rC = 2.70‘9 in order to prevent multiple interactions

between molecules. In all the generated configurations, the first 105

molecular dynamic steps were thrown away and the calculations were

carried out by running for 5000 more molecular dynamics steps.

The computation time (CPU) for one molecular dynamics step with

different numbers of particles on the Titan system is, respectively,

0.2, 0.68, 6.8, 210 sec. for N = 108, 256, 864, 2916.

It is important to choose an optimal time step for the molecular

dynamics. The optimal At” should make particles move toward each

other slowly when they are within a distance less than rmin = 2 0,

the separation between a pair with the minimum potential energy. This

can prevent them from bouncing back too quickly; otherwise, if the time

step is chosen too large molecules will be bounced out of the

simulation volume. A big time step results in numerical integration
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error of the equations of motion, too. On the other hand, we can not

choose too small a time step; otherwise the computation time is too

long. At T‘I = kBT/e : 30.23 (k8 is the Boltzmann constant) for helium

atoms the time steps, A-t-HD, we used are 4.721(10'3 (1.198x10-Issec) and

2.361(10'3 (5.994x10'163ec). At T‘: : 0.75 the time step is chosen to be

0.032“.

Figure 2.1 shows the molecular dynamics radial distribution

function g(r) of the classical molecules at reduced number density p‘ =

N03/V : 0.9 and reduced temperature T‘: = 30.23 calculated at a given 1..

configuration after 10‘:5 MDR. The result shows the configuration has

a typical liquid structure.

The mean square displacement (RZ> of the atoms is defined as

l (2.11)

The following algorithm was written to facilitate obtaining (R3 in a

system when periodic boundary conditions are used. For example, let us

consider only the x direction.

rx(i) = O.

D050i:1,N

rx(i) = rx(i) + ( x(i)-xp(i) )
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Figure 2.1 The helium-helium radial distribution function at reduced

number density p‘:0.9 with T‘:30.23. The number of helium atoms is

107.



50 continue

Then <R§(i)> : rx(i)z + ry(i)2 + rz(i)2

where x(i) is the forward position of the ith molecule after one

molecular dynamics step, and xp(i) is the previous position of the ith

molecule located inside the simulation box. By using the algorithm we

cumulated the difference of displacement between every step to obtain

<R2>. After we check the boundary condition of the molecules, we then

renamed

xPU) = 3(0)

The diffusion coefficient is given in terms of the dimensionless

2 -

(Ra ) and tan as

  

(122) 02 at: >

D 2 am —— : ftm ( ) (2.12)
t 6t km 6 cum“ 1) of MDR

Figure 2.2 shows a plot of the mean square displacement (RD of

helium versus time calculated at pt = 0.9 and T‘ = 30.23. The number

4

of particles is 864, A? is 9.441110- (2.397x10-1ssec), the side
MD
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Figure 2.2 Plot of the mean square displacement (R2) of helium versus

time at 920.901 and T‘:30.23. The estimated diffusion constant is

4.86xi0".
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Table 2.1 The list of the diffusion coefficient of helium at given

reduced number density and reduced temperature.

 

p‘ i“ D

0.5 30.23 1.09:10' 2

0.701 30.23 7.27x10"

0.901 30.23 4.861110“

0.5 - 0.75 4.65x10‘5

0.7 0.75 2.70xio'5

0.3 0.75 1.55x10‘5

0.9 0.75 —
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length of the box, L, is 9.840, and the total number of steps is 10 ‘,

2.397 picoseconds (ps). Table 2.1 lists the simulation results of the

diffusion coefficients with different reduced number density for

helium.

In the argon case, at T* = 0.75 and p‘ :: 0.805, the number of

particles is 864, A?” is 0.032 (10"‘sec), the side length of box is

10.230, and the number of steps is 5000 (50 picoseconds). The slope of

(R2) versus time yields a diffusion coefficient 2.35x10n‘5 cmz/sec,

which has 3% relative error compared with the data obtained by Rahmanso

52,53

and the experimental value , 2.431(10.5 cmZ/sec.

2.2 THE scaao'nmcsa EQUATION

The method we use to study the localization of an excess electron

in fluids is based on the symmetrically split operator technique

presented by Feit, Fleck, and Steiger‘:3 for solving the one-electron

Schrodinger equation. The time-dependent Schrodinger equation is

. 6w h 2 V.p(§)

1 6t 2 -- 71-11: V (P + ——I\_— ID (2.13)
 

The split operator Fast Fourier Transform (FFT) method43 provides

a very efficient technique for propagating the solution. At each small

time step At the propagator is split into kinetic and potential parts.

According to the second-order accuracy of the symmetrically split
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operator solution to the propagation equation, we write the electronic

wavefunction as

iAth V (r) iAth

2 . ep ~ 2
—-— v - —_ —-—

lp([“,t+At) - exp( I ) exp( 1At h ) exp( '1 V ) (“5,0

+0013) (2.14)

w(r,t) is a given initial electronic wavefunction. An error

proportional to (At ) is due to the noncommutativ1ty of the kinetic and

. 3 . .

potential energy operators. The symbol 0(At ) means the solution is

3 54

accurate to order (At ) .

The FFT method yields the electronic wavefunction on a grid

defined by integers N1, N2, and N3 which span on the simulation box

with side lengths Lx, Ly, L2. The grid spacing in the direction of x,

y, z is szLx/Nl, AyzLy/NZ, and Az=Lz/N3. The grid representation for

the wavefunction implies a spatial periodicity. The split operator

method involves performing the kinetic part of propagation in momentum

space where the kinetic energy is diagonal and the potential part of

propagation in coordinate space. The coordinate space Mgt) = Willi“)

and the momentum space WWU) are related by

 

iii/z 112/2 N312 (ix my

0,, (t) : Z 2 2 (p (t) exp[ 2m ( -— + _—

"" Cali/2+1,mz-uz/zn,n:-u3/2+1 Om L" 1"

nz

+ L2 ) ] (2.15)

When the wavefunction propagates for a half time step At/2, the



iAth

solution of exp(-4—a— V ) w(_r,t) can be obtained by the use of the

9

. . . . . 43

band-limited Fourier series representation ,

   

iAth 2 c 2 .71 2 '1. 2

wémn(t+m/2) : wt‘mn‘“ exp - (7T) (21!) [( Lx ) +( Ly ) +( L2 ) ]

(2.16)

Eq. (2.13) can be rewritten as the dimensionless Schrodinger

  

equation,

1 all) h 1 2 Vepuz)

1 ~ - = ' V (Pi ---—-w. (2J7)
CF at 2m‘a 02 0 h

where

T : t/CF, (2.18)

){(J : x/O, (2.19)

2

2me0

and CF 3 —'h—. (2.20)

1.1286x104s (sec) for the electron in theThe scale factor is CF

helium system.

The algorithm we use in our calculation is summarized in the

following flow chart (see program Feit),
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A general flow chart of Feit’s Algorithm:

Input initial wavefunction, wijk”) (Normalized)

(1) ‘- FFT ‘v 

Wnrmlt)

(2) * Factorl

ownlt-TAt/Z)

J .- IFFT(3)

W. . (t+At/2)
1111

(4) l * Factor2

wUk(t+At/2) Factor2

(5) «- FFT

own’ (HM/2)

(6) t Factorl

wfmn' (t+At)

(7) .- IFFT

wUkm-At)

(8)

Normalization

DO LOOP,

T = ntime * At
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wijk(t+T)

At 5). Time correlation function,

. Spectral analysis,

Eigenvalues.

iAt

J» 
l). The Hamiltonian operator: kinetic and potential energies

2). Ground state: eigenfunction and eigenvalue

3). Projection operator method: excited states

4). Physical quantities: diffusion coefficients

In this flow chart, the following symbols and abbreviations are used :

FFT : Fast Fourier Transform.

IFFT : Inverse Fast Fourier Transform.

«- : Perform

1:»: Multiply

iAth 2 f 2 m 2 n 2

Factorl 7- exp - (TI-D...) (27!) [(v) +(TT) HT) ] (2.21)

V (g)

Factor2 :: exp(-iAt —3-%— ) (2.22)

A full-step propagation, At, is from step (1) to step (8). The

computation proceeds as a succession ntime full-step propagations.

This flow chart is suitable for both real and imaginary time

computation. In the 3-dimensional case, for the initial wavefunction

we choose a Gaussian distribution function by adjusting the half-width
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C according to the boundary where the wavefunction must go to zero. In

our calculation, we place the central peak of the Gaussian distribution

function on the position (xnpick, ynpick, znpick), which is the

position of the removed molecule from the system with position nearest

to the center point of the simulation box. The non-normalized initial

wavefunction is

. 2 . 2 . 2 2

wijku) = exp { -[ (x-xnpick) +(y-ynp1ck) +(z-znpick) ]/ 2C } (2.23)

where (x,y,z) is the position of grid point (i,j,k). The boundary

condition W(O,t) = w(L,t) -—9 0 must be obeyed. Here L is the side

length of the simulation box in units of 0 and C is the standard

deviation of Gaussian distribution in. units of 0. We renormalize the

wavefunction 1p” i‘(t+At) for every full-step propagation. Most of the

computing time is taken in doing the FFT and IFFT. One quench step is

defined as a full-step propagation with iAt. In the following we are

going to summarize the applications of Feit’s algorithm:

1). The Hamiltonian operator 2:

The Hamiltonian operator 7! of the electron is

3.2

where the first term on the right hand side is the kinetic energy

operator and the second term on the right hand side is the potential

energy operator. For a given Mr) the eigenvalues can be obtained from
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2 0(5) 2 E w(g)“'55.

Since the wavefunction is represented on a set of discrete grid

points, the expectation value (V) of the potential energy 7(r) is

evaluated by multiplying the electron density p = win at grid point

(i,j,k) in coordinate space by 7(r) at grid point (1.1.1:) and summing

over (i,j,k). The expectation values (K) of the kinetic energy is

evaluated by Fourier transforming to momentum space, and multiplying

the electron density at grid point (£,m,n.) by T2/2me and summing over

(é,m,n.). The momentum 3" is equal to (ZRC/Lx, Zara/Ly, 21m/Lz).

2). Ground state: eigenfunction and eigenvalue

The procedure involves following 'the evolution of the

wavefunction in imaginary time t = “391.12.21.55. Therefore, the

solution of Schrodinger equation is given in terms of a sum of

exponentially decaying terms

w(r,t) :ngoa.n ¢n(r) exp(-Enr/h) (2.25)

where 0.n is the amplitude, ¢n(r) is the eigenfunction and En is the

eigenvalue for the nth state. The principle is that as t is

sufficiently large (low temperature), Feit’s algorithm quenches the

electronic state down to minimum E 0’ the lowest eigenvalue (ground

state). Meanwhile, the component of the nth state eigenfunction is

reduced relative to the ground state by exp(oAEt), AE : En-Eo. If AE I

>> 1 is true, then the propagation time 1: is enough. On the other
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hand, we do procedure 1). until the energy converges within some

tolerance value, and then E0 and wohz) are the ground state energy and

the ground state wavefunction, respectively.

3). Projection operator method:

. . 21,55 . .

The pr0jection operator method permits us to obtain the

excited states of the electron. The operation of the projection

operator, 7’, on an arbitrary wavefunction (ptr(r) is defined as

flip”) : eXp(-t4€)|wtr> (2.26)

As 2’ can be represented by a spectral series, the above equation can be

rewritten as

letr> =ngoexp(-rEn> lwn><wnlwtr> (2.2.)

From the above procedures 1) and 2), we can obtain- the ground state.

Then, we use this projection operator method to project out the ground

state to obtain the next excited state. When a new wavefunction is

produced after one quench step, we project out those known eigenstates

with lower eigenvalues during quenching in order to obtain the excited

state correctly. In our calculation, we reorthogonalized ’4’ after every

quench step. In order to decrease the computation time, we can

reorthogonalize after every two or more quench steps. The formal

expression for reorthogonalization at nth eigenstate is
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n-l

w = wn -lgowliwllwn > (2.28)
n

Every step produces a new wn', which is to be used as the initial

wavefunction of the next quench step. If quenched enough, the final

wavefunction will be the nth eigenstate. The new trial function is

€

I
I

n

In our test, it is efficient to use a decreasing At during quenching.

z 1 for theA trial test shows that we can use a large step At- (0.2)

initial few quench steps until the energy converges within tolerance

(0.001). Then, we out At in half and run the same procedure of

quenching and energy-convergent testing to obtain the ground state.

The procedure is iterated until At is less than 0.01. For the excited

state we could not use such a large initial At; for the first excited

state we used At = 0.01 as the initial value. (See program Projector)

4). The spectral analysis:

For a real time evolution the wavefunction (pi |‘(t+T) consists of

J

a superposition of oscillating wavefunctions, which is useful for the

spectral analysis of eigen-energiesn'12’43’54. During a real time

evolution we can calculate the time correlation function C(t+At) =

<w(t+At)|ip(t)> at every full-step time propagation, and after ntime

iterations we Fourier transform C(t), (I(E)=IC(t)exp(-itEn/h)dt), to

obtain the spectrum corresponding to the eigen-energies. The time step

size At determines the maximum absolute spectral energy that can be
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obtained. The relation is fmax: l/2At, where fmx is the maximum

56 . . .

frequency . The number of the t1me increments, ntime, controls the

resolution of the spectrum,

1 l

Af : ntime At : —1-_-. (2.30)
 

A large ntime permits the resolution of fine spectral structure.

2.3 THE ADIABATIC SIMULATION METHOD:

The procedure12 used to study the localization of an excess

electron in classical fluids is discussed in this section. Let us

consider a system consisting of an electron and several hundred

classical molecules. The dynamics of the electron and molecules are

characterized by widely different time scales, with the motion of the

quantum electron much faster than the motion of the molecules. The

motion of molecules can be treated classically. Therefore, the

adiabatic or Born-Oppenheimer approximation is valid, and its use leads

to the terminology adiabatic simulation method. For a given nuclear

configuration we obtain the ground state of the electron by performing

an imaginary time evolution. with Feit’s algorithm. The adiabatic

simulation method is summarized as follows:

1). We freeze the electronic wavefunction and integrate the classical

equations of motion for a time step Atuu.

2). A new potential is produced after the molecular motion. The
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electronic wavefunction certainly will be no longer in the ground state

with the new potential. Therefore, we freeze the molecular

configuration and quench the electron to the new ground state by use of

the imaginary time evolution method. We repeat the procedures: step 1)

and step 2).

The interaction of the electron and molecules is given by a

psuedopotential“

A B

V (r) : —- ( -—-— - 1 ) ( in a.u.) (2.31)

ep ~ 4 a 6

r c + r

where for electron-helium case A = 0.655, B = 89099, and C = 12608 (in

a.u.).

5 A B

V (1:) : 3.157x10 -: ( -——-—6-— - 1 ) ( in K ) _ (2.32)

ep r C + r

o (A)
 

here r = r00“, and 0“ : .

0.529 (A/a.u.)

The units of V.p(r) and distance r between electron and molecules are

in K and in a.u..

Every one or several molecular dynamics steps is followed by

ntime quench steps in order to quench the electronic quantum state to

the ground state or excited-state for a given frozen nuclear

configuration. The number of quenching steps is determined by the
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21

energy convergence test .

6-7,1i-12 .

, we must includeWhen we consider the molecular motion

the contribution of the quantum force arising from the interaction

between the electron and the molecules. The classical equations of

motion are then written as

2

 

 

d R. N 6V (R..) EV (r,(R..})

m--———”1 : - ————-M1 - d3r )tp(r,t)|2 ep Q (2.33)
2 . . a R. ~ ~ 5 R.

dt jati i i

2
m0

The factor -- is extracted from the above equation in order to

C
MD

produce the dimensionless equation,

 

 

 

z 2

dR . N_ C 6V (r,(R..})

-—:£L‘— : X F(R..) - --1°— d3r lw(r,t))2 “P ‘1 (2.34)
-2 . .~ ~ij 2 ~ ~ 6 R.

dt J¢1 m0 1

- 0,02 avuml )
where, F(R..) : - 4 (2.35)

~ ~ij m02 6 R1

The second term on the right hand side is the quantum force

2 .—

IIID 3 2 ~ ~1 3 2 OP

' "7) d E ““5"" '3 a. J = ' J d 2.. W584" TE"?
m0 1 0,1

(2.36)

- 01402
where V9p : ---—2- V.p(ro,(130’ij}). (2.37)

m0
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There are two places we need to include this quantum force: 1) In

 

 

1

the molecular equation of motion, V : Vep, and 2) In the
C ep 48E

.. . . —- - F

Schrodinger equation, Vep - h Vep.

— 3 2 6 Van

The Vep and [— d 50 [MEGAN WI] terms are calculated by

!

47,48

the minimum image convention method .

Since we quench the electron to the ground state with the lowest

energy in a closed system, the decreasing energy will lower the

temperature of the classical system and result in a deviation of

temperature of the system from the original value. Therefore, the

temperature fluctuations of 15% were allowed during the simulation.

Otherwise, we renormalized velocities of molecules to restore the

original temperature.

2.4 THE MOVING GRID TECHNIQUE: (SEE PROGRAM MGT)

This technique12 was developed to monitor the behavior of the

electron in a finite system extended to an infinite system via the

application of periodic boundary conditionsn’m. The ground-state

electronic wavefunction produced after a quench has very small values

on the boundary of a grid box which is small compared to the simulation

box. Therefore, a smaller grid box can be used relative to the

simulation box. The advantage of this technique is that it allows us

to use a smaller grid spacing and number of grid points which decreases
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the computation time and increases the spatial resolution. The grid

box is moved to follow the center of mass of the electronic

wavefunction density distribution,

- X m" (t) (2 38)
r ' j {ljk wijk wijk '

where {in denotes the position of the grid point (1.1.1:), and wUku)

is the electronic wavefunction on the grid point (i,j,k). For a given

frozen nuclear configuration and a fixed grid box we quench the

electronic state to the ground state and calculate the center of mass

of the electron. Whenever we obtain the center of mass of the

electron, we move the center point of the grid box close to the new

center of mass of the electron and re-express the electronic

wavefunction relative to this new origin of the grid box. When the

center of mass of the electron doesn’t move, the grid box won’t move.

 



3. RESULTS AND DISCUSSIONS

In this Chapter, the various equilibrium and dynamical properties

for both the electron and the helium, obtained by using the molecular

dynamics adiabatic simulation method described in Section 2.2, will be

presented and discussed.

Figure 3.1 shows that information concerning the spatial extent

of the electron can be obtained from a correlation function such as the

radial distribution function of the electronic probability density

measured from the mean position of the electron, 1;” = I 1: M11) IZ d1:

— the center of mass of the electron. The results reported here are

indicative of the various sizes of the localized electron versus the

0.1, 0.5, 0.7, and 0.9 in a helium systemreduced number density p‘

at reduced temperature "I“ = 30.23. In the present calculation, the

electronic wavefunction was represented on 163 grid points and the

number of the helium atoms is 107. Atypical imaginary time step used

in this process was At}, = 0.01063. We have used 200 quench steps to

obtain the ground state of electron for each different p‘. At p‘=0.1

the electron is not localizedaib, because the probability does not go

to zero of large distance from the electron center of mass. Comparison

of the results as the molecular density 9* is increased shows that the

size of the localized electron decreases and that it is well localized

in a given equilibrated helium configuration.

169
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Figure 3.1 Plots of the radial distribution function. of the

electron’s probability density vs. the distance from the electron

center of mass at various densities in helium at T‘=30.23.
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Figure 3.2 Contours of the excess electron density corresponding to

the localized state wavefunction in the x-y plane.
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More details of the probability density distribution, l¢(r))2, of

the localized electron can be obtained from the contour plot. Figure

3.2 shows p(x,y), a contour plot on the x-y plane, corresponding to the

simulation of Figure 3.1, at the reduced density 0.9. Here

p(x,y):f|¢(r))2dz. The values indicated on the contour plot are in

arbitrary units. As can be seen, the ground state of the localized

electron is quite symmetrical and has an s-like structure. (For data

contour plotting, see subroutine CONTOUR).

Information about the local fluid environment around the electron

was obtained from the helium radial distribution measured from the

center of mass of the electron. In Figure 3.3, the number of the

helium atoms is 107, the reduced number density is 0.7, and the

temperature is 309 K. In this run, the first 1.1x10"s molecular

dynamics steps were used to equilibrate the helium and the radial

distribution function was calculated in the following 10‘ steps. For

the ground state quenches we have used 20 quench steps after each

molecular dynamics step. The imaginary time step and the molecular

dynamics time step are, respectively, 0.01063 and 9.4x10'4. In this

run, the total real evolution time is 2.3 ps. The results show that

there is zero probability of finding .the helium atoms in the region of

the localized electron. As mentioned in Chapter 1, as the helium

density is increased to liquid density, the electron becomes localized

in a small region. A bubble-like structure occurs because the

repulsive electron-helium interaction produces a cage effect which

excludes the helium atoms from the region of the electron.
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Figure 3.3 The radial distribution function of helium measured from

the center of mass of the electron.
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In Figure 3.4 we show that the energy convergence of the ground

state electron varies with the number of quench steps and the quench

time step from 0.2 to 0.01. From this plot we know that, in this case,

150 quench steps are enough to obtain the lowest energy state.

We show the typical electronic configurations in Figure 3.5,

which exhibits the localized ground state (to and first excited state (1)1

obtained via the projection operator method, as mentioned in Section

2.2. Here, the number of helium atoms was 107, the reduced density was

0.9 and temperature was 309 K. In order to obtain the ground state,

the initial th was chosen to be 0.5 and the tolerance value of the

energy convergence was 0.001. The total number of quench steps was '155

when the final th was less than 0.01. The corresponding kinetic,

potential, and total energy of the ground state electron are,

respectively, 3.79, 1.78, and 5.57 (3.25 eV) in rescaled units (one

rescaled unit is equal to 6,768 K). The parameters used to obtain the

first excited state by projecting out the ground state were the initial

dt}: 0.5, energy convergence tolerance 0.01, and final dt}. 5 0.001.

The total number of quench steps was 550. The corresponding kinetic,

potential, and total energy of the first excited state are,

respectively, 5.44, 2.87, and 8.31 (4.85 eV). Figure 3.5 shows that

the ground and first excited state have, respectively, s-like and

p-like structure. During the simulation process, ¢0 and 41 fluctuate

leading to electronic configurations with considerable occasional

distortion from s-like and p—like structure.

It is worth comparing the present results for the ratio of the
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total energies of the ground and first excited states with those

, 315 . .
obtained by Coker and Berne for an electron in a helium

configuration taken from the path-integral Monte Carlo simulationau.

The ratio is 1.66 in their result and our ratio is 1.49 at 920.9. In

addition, our results for the energy are roughly 1.7 times larger than

theirs. Our electron is systematically smaller and, as a result, our

kinetic and potential energies are larger. These differences arise

because Coker and Bernemb quenched the electron without allowing the

solvent configuration to relax. Since the Path—Integral Monte Carlo

produces a thermally distributed electron, which is larger than the

ground state electron we create, our solvent equilibrated electron will

be smaller than their, leading to a higher kinetic energy. Also, our

solvent molecules will be closer to the electron leading to a higher

potential energy.

Figure 3.6 shows that the excess electron’s ground state energy

E, kinetic energy K, and potential energy V fluctuate as the helium

system evolves in time. In this run, the number of particles and

reduced density are, respectively, 255 and 0.9 at T = 309. The

molecular dynamics time step is 2.632510"3 and the quench time step is

chosen from 0.2 down to 0.01 followed by the energy convergence.

Quenching to the ground state followed after every 10 molecular

dynamics steps. The real time span is 3000 steps (2ps). The

computation time on the Titan was 32 hours. In this context we note

that the time variation of the electronic potential energy exhibits a

stronger fluctuation compared with that of the kinetic energy. In

other words, the electron is very sensitive to the local fluid
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environment. The confined electron usually has higher kinetic energy

than the potential energy. In accord with the model of a particle in a

spherical boxa, the simulation demonstrates a high kinetic energy for a

well localized electron, which agrees with expectations. The averages

of the electron kinetic and potential energy over the 3000 steps are,

respectively, 3.49 and 3.45. Examination of the ground state energies

shown in Figure 3.6, shows that the kinetic energy does not change

significantly, but the potential energy does. It appears that the

electron must go over a potential barrier during the electron

transition from one localized state to another localized state. There

is an intermediate state of high potential.

The diffusion constants of an excess electron in molten salt6’7,

polar water20 and ammonia“ have been obtained by simulation, and the

results are in agreement with experiment57'59. The diffusion constants

of the electron simulated in water‘20 and in KCl6 are 3.3X10'5 and

2.0x10'3 cm2 sec“, respectively. It is of great interest to simulate

the diffusion constant of the excess electron in dense helium and we

hope to understand the electron diffusion mechanism. We assume that

the electron is well localized at all times. We monitored the electron

dynamics by following the motion of the center of 'mass of the electron,

as if it were a classical particle. Figure 3.7 shows the mean-square

displacement of the center of mass of the electron as a function of

time for an electron in helium. The number of helium atoms is 255 in

the simulation box at p‘: 0.9 and T‘: 30.23. The length of the grid

box was chosen to be about 75% of the simulation box in order to obtain

the same resolution as in the system of 107 particles. The grid points
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electron

i.i8><10‘3

. .6

Selloni ,

in water,
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in number, at 163. The result given is an average over 12

trajectories. The diffusion constant obtained is about

cm2 sec'I. Based on the results obtained by Rosskyzo and

the diffusion of the electron in helium is faster than that

and it is the same order as in KCl. The mechanism is not

clear. More numerical experiments are essential.
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4. CONCLUSIONS

We have described and programmed computational algorithms for a

time—dependent quantum molecular dynamics simulation with application

to both the molecular and electronic configurations in fluids. it is

evident that the technique combines the quantum and classical aspects,

and efficiently and quickly solves the problem. In the present

context, we applied the method to the particular system, an excess

electron in helium. We were able to obtain the ground state, the

excited state, the corresponding energies of the electron, and the

correlation functions of the electron and the local environment

molecules. We have studied the diffusive behavior of an excess ground

state electron in helium.

In order to progress further, there is the essential need for

electron-molecular pseudopotentials, which are difficult to determine,

and molecule-molecular interaction potentials, which are better known.

An optimal molecular dynamics time step is necessary. With the

electron dynamics process, in order to decrease the integration error,

the final quench time step must be small enough and there must be a

sufficient number of quench steps.

This technique will play an important role in future simulations

because of its accuracy, flexibility, and efficiency, leading to
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greater insight into dynamical molecular processes. The problems for

future investigation include electron transfer dynamics in solution and

in biological systems, and the electron transport rate. The transition

from an excited state to the ground state, and the resulting optical

absorption spectra can also be obtained by this approach.
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APPENDIX A

Reference Table A.l lists the information on the simulation

 parameters to facilitate comparison.

 

 

Table A.1 The list of the reference parameters:

p‘ 0.1 0.3 0.5 0.7 0.9

N 107 107 107 107 107

,; 10.23 7.09 5.98 5.35 4.92 (0)

L 26.14 18.13 15.29 13.67 12.56 (91), He

0N 5.9911021 1.8x10922 3.011022 4.2x1022 5.39111032 (cm'a)

pm 0.04 0.12 0.20 0.28 0.36 (g cm'3)

0 0.05 0.16 0.26 0.37 0.47

 

 
The simulation box side length is L = C 0.

p‘K : The reduced number of density, N/fa.

N : The number of particles.

C : The box side length in units of the diameter of the particle, 0.

9N : The number density of particles, N/La.

pm : The mass density, x m.

9N

m : The mass of particles, mm: 4.0026xl.6747x10'2‘gram.

(b : The volume fraction, DIN/6.
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APPENDIXB

LIST OF C‘Q‘IPUTERW

Ct*ttt!¥¥¥¥*¥****tt*¥****¥¥¥¥t¥tt¥t¥¥¥¥¥¥¥t¥t¥t¥$¥¥t¥titi‘tt!

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
(
3
0
0
0
0
0
0
0
0

LIST OF NOIATIONS

ABC : BEGY CONVERGENCE TOLERANCE, 0.001

ABCD : MINIMUN QUENCH TIME STEP, 0.01

Ci‘lD : THE RESCALE FACTOR FOR FDLECULAR DYNAMICS

CMX,CMY,CMZ,C}DCP,CMYP,CMZP : THE CENTER OF MASS OF

ELECTRON

CX(N),CY(N),CZ(N) : THE CUMULATED DISPLACEMENT OF

PARTICLES

CXE,CYE,CZE : THE CLMUIATED DISPLACEMENT OF ELECTRON

DIS : MEAN SQUARE DISPLACEMENT OF PARTICLES

DIFF : DIFFUSION CONSTANT OF PARTICLES

DISPMX : LARGEST DISPLACEMENT

DX : THE GRID SPACING IN x DIRECTION

DY : THE GRID SPACING IN Y DIRECTION

DZ : THE GRID SPACING IN 2 DIRECTION

DMD, H : THETIMESTEPFORMOLECUIARDYNAMICS

DT, DTFI‘ : THE TIME STEP FOR QLENCH

DIAM : THE DIAMETER OF PARI‘ICIE IN ANGS'I‘MM

’ N : KINETIC ENEMY OF PARTICLES

F : FORCE

FX(N),FY(N),FZ(N) : THE FORCES OF PARTICLES

C(IE) : RADIAL DIS. FUNC OF EIECI‘MN

GN(IH) : RADIAL DIS. FUNC. OF PARTICLES

IE : THE POINTS WHEN EVALUATES ELECI'MN DENSITY

DISTRIBUTION

IH : THE POINTS WHEN EVALUATES PARTICLES PAIR

DISTRIBUI‘ION FUNCTION

ITXS, ITYS, ITZS : CUMUIATE THE DISPLACEMENT OF THE

CENTER OF (RID BOX

LIST(MAXNAB) : VERLEI NEIGHBOR LIST

N : THE NUMBER OF THE PARTICLES

N1 : THE NUMBER OF GRID POINTS IN X DIRECTION

N2 : THE NUMBER OF GRID POINTS IN Y DIRECTION

N3 : THE NUMBER OF GRID POINTS IN 2 DIRECTION

NDIM : THE 'IOIAL DIMENSIONS

NFMD, NTIME : THENLMBEROFQUBICHSTEPS

NT:TI~1ETOI‘ALNUMBEROFTHECRIDPOINTS

NSTEP : NO. OF MD BETWEEN QUENCHES

POINT(N) : INDEX IO THE NEIGHBOR LIST

POI‘(N1,N2,N3) : POTENTIAL ENEMY OF ELECI‘MN

QISUM : TOTAL EIECI'MNIC ENEMY

RAD(IE), RADS(IH) : RADIUS OF G—GVi-E AND G—CM—HE

ROOFF : THE CUT OFF INTERACTION RANGE

RCLT : CUI‘OFF DISTANCE FOR FORCE
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RDEN : REDUCED DENSITY

REF : FLUCTUATION OF TEMPERATURE, DTEMP=0.15

RLIST : THE NEAREST-NEIGHBOR LIST CUT OFF RANGE

RSQ(N) : SQUARE DISPLACEMENT FOR PARTICLES

RSIDE : UNIT SIDE

RX(N),RY(N),RZ(N) : THE POSITIONS OF PARTICLES

RXO(N),RYO(N),RZO(N) : THE POSITIONS OF PARTICLES

SIDE : THE LENGTH OF THE SIMULATION BOX

SIDEH : THE HALF LENGTH OF SIDE

SIGMA : THE DIAMETER OF THE CLASSICAL PARTICLES IN

REDUCED UNIT, 1

TE(N1,N2,N3) : KINETIC ENERGY OF ELECTRON

TOT(N1,N2,N3) : TOTAL ENERGY OF ELECTRON

TREF : DEFINED THE SYSTEM’S TEMPERATURE DEVIDED BY

THE WELL DEPTH OF MOLECULAR POTENTIAL

TEIMD : THE COEFFICIENT OF QUANTUM FORCE

TEI : THE COEFFICIENT OF PSEUDOPOTENTIAL BETWEEN

PARTICLES AND ELECTRON

TIMEMX : THE MAX NUMBER OF MOLECULAR DYNAMIC STEPS

TIMEI : THE INITIAL NO. OF MD STEPS

UPDATE : IF TRUE THE LIST IS UPDATED

V': FCHENTIAL ENERGY OF PARTICLES

VX(N),VY(N),VZ(N) : THE VELOCITIES OF PARTICLES

VEIX(N),VEIY(N),VEIZ(N) : THE QUANTUM FORCES INDUCED

BY ELECTRON ON PARTICLES

W(N1,N2,N3) : THE WAVEFUNCTION OF ELECTRON ON THE GRID!

POINT (N1,N2,N3) *

WO(N1,N2,N3) : THE INITIAL WAVEFUNCTION *

WTR(N1,N2,N3) : THE TRIAL WAVEFUNCTION *

XP(N),YP(N),ZP(N) : THE POSITIONS OF PARTICLES *

t

x

*

*
“
fi
’
k
fi
fi
fi
’
t
fl
’
fl
'
fl
fl
'
fi
*
*
*
*
*
*
*
*
*
*
*
*

XNPICK,YNPICK,ZNPICK : THE POSITION OF THE TAKEN OUT

PARTICLE, NPICK
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¥¥*X¥¥F******¥****it*t*******t*********¥¥**¥¥t*********¥**¥1

PROGRAM TITLE : MD *

PURPOSE : GENERATE NUCLEAR CONFIGURATIONS BY x

MOLECULAR DYNAMICS x

METHOD : USE VERLET-VELOCITY ALGORITHM *

CONTAIN : CALL FORCE, CHECK, EEIT *

DOUBLE PRECISION x

DATE : MAY, 1990 *

PROCEDURE : (1) SET PARAMETERS (FIXED) BEFORE COMPILE x

(2) READ INPUT PARAMETERS (VARIABLE) *

xtxx*xxxtxxxxxtxxxxxx*x*xxxxxxtxxxxxxxxxxxxt*xxxxxx***xtxxxx0
0
0
0
0
0
0
0
0
0
0

PROGRAM MD

IMPLICIT INTEGER*4(I-N)

IMPLICIT REAL*8(A-H,Oh2)

c ---- SET PARAMETERS --------

pARAMErEm szss, RDEN=O.7 )

c --- MD VERIEI‘ FOR LENNARD—JONES POTENTIAL----

DIMENSION RX(N),RY(N),RZ(N)

.XP(N).YP(N).ZP(N)

,RXO(N),RYO(N),RZO(N)

.CX(N).CY(N).CZ(N).RSQ(N)

.FX(N).FY(N).FZ(N)

.VX(N).VY(N).VZ(N)

,VED((N),VEIY(N),VEIZ(N)

LOGICAL UPDATE

INTEGER CIDCK,TIMEI’D(,TD1EI,POINI‘(N),LIST(N*N)

W /B/ sxnamsmmsxmmmcmqrsm

comou /Bl/ XNPICK,YNPICK,ZNPICK

oomoN /BI.DCK1/ RX,RY,RZ,FX,FY,FZ

oomou /BLOCK2/ POINT,LIST

comm /BIDCK3/ Rxo,RYo,Rzo

oomoN /Cl/ DX,DY,DZ,CXE,CYE,CZE

comm /CZ/ Isz,I'rYs,ITzs,cch,mYP,mzp,PREF

comm /03/ ABC,ABCD,IE,I.II,DIAM,NW,TD1EI

*
*
*
*
*
*

C ---DEFINITION OF THE SIMULATION PARAMETERS---

OPEN(1,FILE=’CO7256TTT”)

OPEN(8,FILE=’TINP’)

READ(8,t)ABC,ABCD,DTFT,TIMEMX,TIMEI,NFMD,NW,NSTEP

C —-—SET PARAMETERS-----

CXE=O.

CYE=0.

CZE=0.

ITXS=O

ITYS:0

ITZS=0

CMXP=O.

CMYP=0.
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CMZP=0.

DIAM=2.556

IE=5

IH=6

RSIDE:1.

SIGMAzRSIDE

SIDE=(FLOAT(N)/RDEN)**(l./3.)

SIDEH=SIDE*0 . 5

TREF:309./10.22

ISEED =4759

CMD:2. 54

ROOFF22 . SISIQ‘IA

RCUT=RCOFF

RLIST:2.7tSIGMA

UPDATE=.TRUE.

READ(l,t)NS,RRDEN,MAXS,DTMD,TREF

HzUIMD/Z.

PREF=(DIAM**2)/(6.tCMD*1000*H)

HSQ=H*H

HSQ2=HSQ*O.5

RCOFFS=ROOFFtRCOFF

TSCALE:16.¥RSIDE*RSIDE/(1.:N-1.)

VAVER=1.13*SQ?I‘(TREF/24. )/RSIDE

---WRITE OUT INFORMATION ----~

WRITE(6,¥)’NUMBER OF PARTICLES IS ’,N

WRITE(6,¥)'SIDE LENGTH OF THE BOX IS ’,SIDE

WRITE(6,¥)’CUT OFF IS ',FIXDFF

WRITE(6,t)’REDUCED TEMPERATURE IS ’,TREF

WRITE(6,*)’BASIC TIME STEP IS ',H

WRITE(6,*)’NO OF QUENCH STEPS ’,NFMD

WRITE(6,*)’QUENCH TIME STEP IS ',DTFT

WRITE(6,¥)’REDUCE DENSITY',RDEN

WRITE(6,¥)’PREFACIOR IS ’ ,PREF

 

---INPUT EQUILIBRATED NUCLEAR CONFIGURATION ----

---TAKE PARTICLE OUT, REPLACED BY ELECTRON ----

---READ POSITION OF ELECTRON SHOULD BE ----

READ(l,t)NPICK,XNPICK,YNPICK,ZNPICK

NP=O

D0 74 I=l,N+l

IF(I.EO.NPICK) mm

READ(1,¥)NUMB,XC,YC,ZC

READ(1,‘)FFX,FFY,FFZ

READ(1,*)VVX,VVY,VVZ

GO TO 74

ENDIF

NP=NP+1

---POSITIONS, FORCES, VELOCITIES OF PARTICLES ----

READ(1,*)NUMB,RX(NP),RY(NP),RZ(NP)

READ(1.*)FX(NP).FY(NP).FZ(NP)

READ(1,¥)VX(NP),VY(NP),VZ(NP)
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74 CONTINUE

---SET INITIAL DISPLACEMENT TO BE ZERO ----

CALL MXWELL(VX,VY,VZ,N,H,TREF,RSIDE,TSCALE)

DO 20 I=l,N

CX(I):0.0

CY(I):0.0

CZ(I):0.0

---SET PREVIOUS POSITIONS OF PARTICLES TO XP(I) ---

ICP(I)=RX(I)

YP(I)=RY(I)

ZP(I)=RZ(I)

20 CONTINUE0
0
0
0
0
0
0
0
0
0
0

---START OF THE ACTUAL MOLECULAR DYNAMICS ---

DO 200 CLOCK:1,TIMEMX

0

C ---ADVANCE POSITIONS ONE BASIC TIME STEP---

DO 210 I=1,N

RX(I)=RX(I)+VX(I)+FX(I)

RY(I):RY(I)+VY(I)+FY(I)

RZ(I)=RZ(I)+VZ(I)+FZ(I)

---CUMULATE DISPLACEMENT FOR EACH PARTICLE ---

CX(I)=CX(I)+(RX(I)-XP(I))

CY(I):CY(I)+(RY(I)-YP(I))

CZ(I)=CZ(I)+(RZ(I)-ZP(I))

10 CONTINUEN
0
0
0
0

---CALCULATE MEAN SQUARE DISPLACEMENT ---

---DIFFUSION CONSTANT ---

IF((CLOCK/NW)*NW.EQ.CLOCK) THEN

SUM=O.

DO 118 I:1,N

RSQ(I)=CX(I)‘*2+CY(I)*¥2+CZ(I)**2

SUM:SUM+RSQ(I)

118 CONTINUE

DIS=SUM/FIOAT(N)

DIFFzPREFtDIS/FIOANCUXIK)

WRITE(515,3)CLOCK,DIS,DIFF

ENDIF0
0
0
0
0
0
0
0
0
0
0
0

---APPLY PERIODIC EDUNDARY CONDITION «-

II) 215 I=1,N

IF(RX(I).LT.O.) RX(I):RX(I)+SIDE

IF(RX(I).GT.SIDE) RX(I)=RX(I)-SIDE

IF(RY(I).LT.0.) RY(I)=RY(I)+SIDE

IF(RY(I).GT.SIDE) RY(I)=RY(I)-SIDE

IF(RZ(I).LT.0.) RZ(I)=RZ(I)+SIDE

IF(RZ(I).GT.SIDE) RZ(I)=RZ(I)-SIDE

0

IF(RX(I).LT.0.) PRINT *, ’oops!!!! X(’,I,’)’, RX(I),CLOCK

IF(RX(I).GT.SIDE) PRINT 3, ’oopa!!!! X(’,I,’)’, RX(I),CLOCK

IF(RY(I).LT.0.) PRINT t, ’oops!!!! Y(’,I,’)', RY(I),CLOCK

IF(RY(I).GT.SIDE) PRINT 3, 'oops!!!! Y(’,I,’)’,RY(I),CLOCK
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IF(RZ(I).LT.O.) PRINT *, ’oops!!!! Z(’,I,')’, RZ(I),CLOCK

IF(RZ(I).GT.SIDE) PRINT *, ’oops!!!! Z(’,I,’)', RZ(I),CLOCK

---RESET PREVIOUS POSITIONS ---

XP(I)=RX(I)

YP(I)=RY(I)

ZP(I)=RZ(I)

CONTINUE

—--(X)VIPUTE THE PARTIAL VHDCITIES---

DO 220 I=1,N

VX<I)=VX<I)+FX(I)

VY(I):VY(I)+FY(I)

VZ(I)=VZ(I)+FZ(I)

CONTINUE

---SET INITIAL QUANTUM FORCE---

DO 400 I=1,N

VEIX(I)=0.0

VEIY(I):0.0

VEIZ(I)=0.0

CONTINUE

---START TO QUENCH ---

--—SET NSTEP MD T0 QUENCH ---

IFTCIOCK.GE.TIMEI) THEN

IF( (CIDCK/NSTEP)¥NSTEP.m.CIDCK) THEN

DT=DTFT

NTIMEzNFMD

CALL FEIT(N,RX,RY,RZ,VEIX,VEIY,VEIZ,DT,NTIME)

ENDIF

ENDIF

---COMPUTE CLASSICAL FORCE --

CALL CHECK (RCUT,RLIST,UPDATE)

CALL FORCE (RCUT,RLIST,SIGMA,UPDATE,V,F,CLOCK)

DO 275 I=1,N

FX(I)=(FX(I)+VEIX(I))*HSQ2

FY(I)=(FY(I)+VEIY(I))tHSQZ

FZ(I)=(FZ(I)+VEIZ(I))tHSQZ

CONTINUE

---COMPUTE THE VELOCITIES---

DO 300 I=1,N

VX(I)=VX(I)+FX(I)

VY(I)=VY(I)+FY(I)

VZ(I)=VZ(I)+FZ(I)

CONTINUE

---COMPUTE THE KINETIC ENERGY—--

EKIN=0.0

DO 305 I:1,N

EKIN=EKIN+VX(I)xVX(I)+VY(I)tVY(I)+VZ(I)*VZ(I)

CONTINUE

EKINzEKIN/HSQ
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---COMPUTE THE AVERAGE VELOCITY---

VEL=0.0

DO 306 I:1,N

SQ=SQRT(VX(I)*VX(I)+VY(I)*VY(I)+VZ(I)*VZ(I))

SQT=SQ/H

VEL=VEL+SQ

CONTINUE

VEL=VEL/H

TEMPzTSCALEtEKIN

REF:ABS(TEMP-TREF)/TREF

---NORMALIZE THE VELOCITIES TO OBTAIN THE SPECIFIED--

---REFERENCED TEMPERATURE-—-

IF(REF.GT.O.15) THEN

TS=TSCALEtEKIN

SC=TREF/TS

SC:SQRT(SC)

DO 310 I=1,N

VX(I)=VX(I)*SC

VY(I):VY(I)¥SC

VZ(I):VZ(I)*SC

CONTINUE

EKIN=TREF/TSCALE

ENDIF

---COMPUTE VARIOUS QUANTITIES---

EK=24.*EKIN/(SIGMA*SIGMA)

m:4 . *V

ETCTzEK+EPOT

TEMP=TSCALE8EKIN

IF((CLOCK/10)*10.EQ.CLOCK) THEN

WRITE(6,6000)CLOCK,EK,EPOT,ETOT*10.22

STEzETOTXIO.22+QWSUMt6768.

WRITE(6,6001)STE,TEMP

IF((CLOCK/1000)*1000.EQ.CDOCK) THEN

NFILE=89

OPEN(NFILE)

DO 787 I=1,N

WRITE(NFILE,*)RX(I),RY(I),RZ(I)

CONTINUE

CLOSE(NFILE)

ENDIF

CONTINUE

FORMAT(116,3F15.6)

FORMAT(ZX,2F15.6)

STOP

END
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Cttttttit!!!tittttttitttttttttit!*ttit*tt***¥***¥¥tt*¥***¥*¥¥¥

C

C

SLerrINE mm“ : GENERATE VELOCITIES OF PARTICLES *

ACCORDING TO MAXWELL DISTRIBUTION i

Ctttittttttittttttttttttttti*¥*****¥******¥X*¥***¥*******¥*#**

10

20

21

22

23

SUBROUTINE MXWELL(VX,VY,VZ,N,H,TREF,RSIDE,TSCALE)

IMPLICIT INTEGER*4(I-N)

IMPLICIT REALt8(A-H,O—Z)

DIMENSION VX(N),VY(N),VZ(N)

ISEED212349

N3:N*3

DO 10 I=l,N3,2

U1=RAN(ISEED)

U2:RAN(ISEED)

V1:2.0*U1-1.0

V2:2.0*U2-1.0

S:V1¥V1+V2¥V2

IF(S.GE.1.0) GO TO 1

R:—2.0*I.LX}(S)/S

V1=V1*SQRT(R)

V2:V2tSQRT(R)

IF(I.LT.N) THEN.

VX(I)=V1

VX(I+1):V2

ENDIF

IF(I.GE.N+1.AND.I.LT.2*N) THEN

VY(I-N)=Vl

VY(I+1-N)=V2

ENDIF

IF(I.GE.2*N+1) THEN

VZ(I-2¥N)=V1

VZ(I+1-2*N)=V2

ENDIF

CONTINUE

EKIN=0.0

SP=0.0

DO 20 I=1,N

SP=SP+VX(I)

CONTINUE

SP=SP/FDOAT(N)

DO 21 I=1,N

VX(I)=VX(I)-SP

EKIN=EKIN+VX(I)*VX(I)

CONTINUE

SP=0.0

DO 22 I=1,N

SP=SP+VY(I)

CONTINUE

SP=SP/FLOAT(N)

DO 23 I=1,N

VY(I):VY(I)-SP

EKIN=EKIN+VY(I)*VY(I)

CONTINUE

SP:0.0
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D0 24 I=1,N

SP=SP+VZ(I)

CONTINUE

SP=SP/FDOAT(N)

DO 25 I=1,N

VZ(I)=VZ(I)-SP

B(INzEIIN+\/Z( I) tV'Z( I)

QDNTINUE

TS=TSCALE*EKIN

SC=TREF/TS

SC=SQRT(SC)

SC=SCtH

DO 30 1:1,N

VX(I)=VX(I)*SC

W'(I)=VY(I)*SC

VZ(I)=VZ(I)*SC

CONTINUE

REILRN’

END

1¥Sittt¥¥¥t$33¥*t¥$¥¥i¥¥¥¥¥tit*¥*¥t¥**$*¥******t*¥¥¥**‘*****¥¥¥¥¥

FORCE ROUTINE USING A VERIET NEIGHBOR LIST”

SLBROUI‘INE FORCE ( RCLT, RLIST, SIQ'IA, UPDATE, v, w)

CAICLIATE FORCES USING THE VERIET LIST, UPDATES THE LIST

SLBROUI‘INE CHECK (RCUI‘, PLIST, UPDATE)

SETS UPDATE TO TRUE WHNE THE LIST NEEDS To BE UPDATED

STEROU'TINE SAVE ‘

SAVES CLRRENT CONFIGURATION FOR FUTURE CHECKING.

TRUE. THIS SETS UP THE INITIAL VERLET LIST AND SAVES THE

HBITIONS THEREAFI’ER CHECK IS CALLED JUST BEFORE EACH CALL OF

FORCE TO DECIDE WHEIHER OR NOT A LIST UPDATE IS NECESSARY.

THESE ROUTINES CAN BE USED IN A CDNVENTIONAL MDW AND

CAN BE EASILY ADAPTED FOR USE IN AN NE W. FORCES IS

SPECIFIC TO A FLUID OF LENNARD JONES Am.

tttitttitItitttt3‘3$38ttttttttttttitttttttt¥*¥¥****¥¥i***¥¥¥¥**t

t

t

t

x

t

x

x

x

USAGE : AT THE START OF A RUN, ROWE IS CALLED WITH UPDATE SET *

x

t

x

*

t

t

x

SUBRQJ’TINE FORCE (RCUT, RLIST, SIG’IA, UPDATE, V, F, CLOCK)

IMPLICIT REAL¥8(A-H,O-Z)

IMPLICIT INTEGER’MI-N)

PARAMETER ( N=255, MAXNAB ‘2 NtN )

DDIENSION RX(N),RY(N),RZ(N),FX(N),FY(N),FZ(N)

INTEGER POIN'NN), LIST(N*N),CI£XIK

WICAL UPDATE ‘

W /BIUZK1/ PK,RY,RZ,FX,FY,FZ

W [BLIXIKZ/ POINT,LIST

m /B/ SIDE

RISTSQ = RLIST 1! RLIST

SIGSQ = SIGMA x SIGMA

RCUTSQ = RCUI‘ t RCUT

---ZERO FORCEs---

DOIOI=1,N
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FX(I) : 0.0

FY(I) : 0.0

FZ(I) : 0.0

10 CONTINUE

V 0.0

F 0.0

IF ( UPDATE ) THEN

C --- SAVE CURRENT CONFIGURATION CONSTRUCT ---

C --- NEIGHBOR LIST AND CALCULATE FORCES ---

CALL SAVE

NLIST : 0

DO 100 I = 1, N - 1

POINT(I) = NLIST + 1

RXI = RX(I)

RYI = RY(I)

RZI = RZ(I)

FXI : FX(I)

FYI = FY(I)

FZI = FZ(I)

DO 99 J = I + l, N

RXIJ = RXI - RX(J)

RYIJ = RYI - RY(J)

RZIJ = RZI - RZ(J)

RXIJ = RXIJ -SIDE* ANINT (RXIJ/SIDE)

RYIJ = RYIJ -SIDE‘ ANINT (RYIJ/SIDE)

RZIJ = RZIJ -SIDE* ANINT (RZIJ/SIDE)

RIJSQ = RXIJ * RXIJ + RYIJ * RYTJ + RZIJ * RZIJ

IF (RIJSQ.LT.RLSTSQ) THEN

NLIST : NLIST + 1

LIST(NLIST) : J

C --- RB‘DVE THIS CHECK IF NAXNAB IS APPROHQIATE ---

IF (NLIST .FQ. MAXNAB) STOP 'LIST Tm SMALL’

IF (RIJSQ .LT. MIU'ISQ) THEN

SR2 = SIGSQ / RIJSQ

SR6 =SR2*SR2tSR2

VIJ : SR6 t (SR6 - 1.0)

WIJ =SR6¥(SR6-0.5)

V :V+VIJ

F :F+WIJ

FIJ = WIJ / (RIJSQ/(SIGMA*SIGMA))

FXIJ = RXIJ ! FIJ

FYIJ = RYIJ t FIJ

FZIJ : RZIJ * FIJ

FXI : FXI + FXIJ

FYI :FYI+FYIJ

FZI : FZI + FZIJ

FX(J) = FX(J) - FXIJ

FY(J)=FY(J)-FYIJ

FZ(J) = FZ(J) - FZIJ

ENDIF

ENDIF

99 CONTINUE

FX(I) : FXI
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FY(I) = FYI

FZ(I) = FZI

100 CONTINUE

POINT(N) = NLIST + 1

ELSE

C --- USE THE LIST to FIND THE NEIGHBOURS ---

DO 200 I = 1, N—l

JBEG = POINT(I)

JEND : POINT(I+1) -1

C --- CHECK THAT ATOM I HAS NEIGHBOURS ---

IF (JBEG .LE. JEND ) THEN

RXI = RX(I)

RYI = RY(I)

RZI = RZ(I)

FXI = FX(I)

FYI = FY(I)

FZI : FZ(I)

DO 199 JNAB = JBEG, JEND

J : LIST(JNAB)

RXIJ = RXI - RX(J)

RYIJ = RYI - RY(J)

RZIJ = RZI - RZ(J)

RXIJ = RXIJ -SIDE* ANINT (RXIJ/SIDE)

RYIJ = RYIJ -SIDE* ANINT (RYIJ/SIDE)

RZIJ = RZIJ -SIDE* ANINT (RZIJ/SIDE)

RIJSQ = RXIJ * RXIJ + RYIJ * RYIJ + RZIJ * RZIJ

IF (RIJSQ .LT. RCUTSQ) THEN

SR2 = SIGSQ / RIJSQ

SR6 = SR2 * SR2 * SR2

VIJ : SR6 * (SR6 - 1.0)

WIJ = SR6 * (SR6 -0.5)

V = V + VIJ

F = F + WIJ

FIJ = WIJ /( RIJSQ/(SIGMA*SIGMA))

FXIJ = RXIJ t FIJ

FYIJ : RYIJ 3 FIJ

FZIJ = RZIJ * FIJ

FXI = FXI + FXIJ

FYI = FYI + FYIJ

FZI = FZI + FZIJ

FX(J) = FX(J) - FXIJ

FY(J) = FY(J) - FYIJ

FZ(J) = FZ(J) - FZIJ

ENDIF

199 CONTINUE

FX(I) : FXI

FY(I) = FYI

FZ(I) : FZI

ENDIF

200 CONTINUE

ENDIF

RETURN

END
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Ctittitttttttttitttittttitt1*!ittXitittt*****t****¥¥¥¥**¥****¥**¥¥*

c SUBROUTINE CHECK : DECIDES WHETHER THE LIST NEEDS TO BE x

C RECONSTRUCTED x

C USAGE : CHECK IS CALLED TO SET UPDATE BEFORE EVERY CALL TO FORCE:

C¥¥¥¥¥t*t*¥¥###¥*¥*¥t¥¥¥¥t¥¥¥¥¥¥t¥¥tt¥¥t********¥*¥*t*******t¥¥iit!

SUBROUTINE CHECK (RCUT, RLIST, UPDATE)

implicit integer*4(i-n)

implicit real*8(a-h,o-z)

CI»®[»I/ BLOCKI / RX,RY,RZ,FX, FY, FZ

COMMON / BLOCKB / RXO, RYO, RZO

PARAMETER (N = 255)

DIMENSION RX(N), RY(N), RZ(N), FX(N), FY(N), FZ(N)

DIMENSION RXO(N), RYO(N), RZO(N)

LOGICAL UPDATE

C ---CALCULATE MAXIMUM DISPLACEMENT SINCE LAST UPDATE ---

DISPMX = 0.0

DC 30 I = 1,N

DISPMX 2 MAX (ABS (RX(I) - RXO(I)). DISPMX)

DISPMX = MAX (ABS (RY(I) - RYO(I)). DISPMX)

DISPMX = MAX (ABS (RZ(I) - RZO(I)). DISPMK)

30 CONTINUE

C -—-A CONSERVATIVE TEST OF THE LIST SKIN CROSSING ---

DISPMX = 2.0 x SQRT (3.0 t pISPMX xx 2)

UPDATE = (DISPMX .GT. (RLIST-RCUT))

RETURN

END

Ct!‘xtttttittttttttttttiitttitttttttttttitt*¥***X*****X¥¥*¥*¥**tttt

C SUBROUTINE SAVE : SAVES CURRENT CONFIGURATION FOR FUTURE *

C CHECKING *

C USAGE : SAVE IS CALLED WHENEVER THE NEW *

C VERLET LIST IS CONSTRUCTED *

Ct1t!ititiit3ttttttttttttttittttititttt¥*¥3¥**#*¥¥***********#*****

SUBROUTINE SAVE

IMPLICIT INTEGER¥4(I-N)

IMPLICIT REALt8(A-H,O-Z)

(X)%I»l/'BLOCK1 / RX, RY, RZ, FX, FY, FZ

(IIQ[»1/'BLOCK3 / RXO, RYO, RZO

PARAMETER ( N : 255 )

DIMENSION RX(N), RY(N), RZ(N), FX(N), FY(N), FZ(N)

DIMENSION RXO(N), RYO(N), RZO(N)

DO 100 I : 1,N

RXO(I) : RX(I)

RYO(I) = RY(I)

RZO(I) = RZ(I)

100 CONTINUE

RETURN

END
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CttxttxttttXttxttittttttttttttttttttittt*ttxttttitttittt833*Xtttx

C SCBROCTINE FOCRN : FAST FOURIER TRANSFORM FOR N-DIMENSION x

C REFERENCE : ’NCMERICAL RECIPE’ x

cxxtxtttttxxxxxxxxtxttxxxxtxtxxxxxxttxx:x*x:xTTxxxxxxxtxxxtxxtxtx

SUBROUTINE FOURN(NN,NDIM,NT2,ISIGN)

IMPLICIT INTEGER*4(I-N)

IMPLICIT REAL*8 (A-H,O—Z)

DIMENSION NN(NDIM),DATA(2*16*16*16)

CITDKDI/A/ DATA

NTOT=1

DO 11 IDIM=1,NDIM

N’IUI‘zN‘IOI‘tNM IDIM)

11 CONTINUE

NPREV=1

DO 18 IDIM=1,NDIM

N:NN(IDIM)

NREMzNTOT/(NtNPREV)

IP1=2*NPREV

IP2=IP1*N

IP3:IP2*NREM

IZREV=1

DO 14 IZ=1,IP2,IP1

IF(12.LT.I2REV) THEN

DO 13 I1=12,12+IP1-2,2

DO 12 IB=Il,IP3,IP2

IBREV:12REV+13-12

TEMPR=DATA(I3)

TEMPI:DATA(13+1)

DATA(13)=DATA(13REV)

DATA(I3+1)=DATA(13REV+1)

DATA(I3REV)=TEMPR

DATA( I3REV+1)=TEMPI

12 CONTINUE

13 CONTINUE

ENDIF

IBIT=IP2/2

1 IF(IBIT.GE.IP1.AND.I2REV.GT.IBIT) THEN

IZREV=12REV-IBIT

IBIT=IBITI2

GO TO 1

ENDIF

IZREV=IZREV+IBIT

14 CONTINUE

IFP1=IP1

2 IF(IFP1.LT.IP2) THEN

IFP2=2*IFP1

THETA:ISIGN¥6.28318530717959/FDOAT(IFP2/IP1)

WPR=-2.*SIN(0.5*THETA)¥t2

WPI=SIN(THETA)

WR=1.

WI:0.

DO 17 IB:1,IFP1,IP1

DO 16 I1=13,I3+IP1-2,2
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DO 15 IZ=Il,IP3,IFP2

K1=I2

K2=K1+IFP1

TEMPR:(WR)¥DATA(K2)-(WI)tDATA(K2+1)

TEMPI:(WR)*DATA(K2+1)+(WI)*DATA(K2)

DATA(K2):DATA(K1)-TEMPR

DATA(K2+1):DATA(K1+1)-TEMPI

DATA(K1)=DATA(K1)+TEMPR

DATA(K1+1)=DATA(K1+1)+TEMPI

CONTINUE

CONTINUE

WTEMP:WR

WR:WR¥WPR-WI*WPI+WR

WI:WI*WPR+WTEMP*WPI+WI

CONTINUE

IFP1=IFP2

GO TO 2

ENDIF

NPREV=N*NPREV

CONTINUE

IF(ISIGN.EQ.-1) THEN

DO 19 I:1,NT2

DATA(I)=DATA(I)/NTOT

CONTINUE

ENDIF

RETURN

END

CX******************¥*******tt**************¥X*************¥***

C

C

SUBROUTINE NORM 2 NOWALIZATION OF INTEGRATION t

USAGE : INPUT W1 AND W2, CSUM=<W1W2> *

Cit!t***t*1t********¥**************¥***¥¥*¥*******************¥

21

SUBROUTINE NORM(W1,W2,CSUMJ

IMPLICIT INTEGER¥4(I-N)

IMPLICIT REAL*8(A-H,O-Z)

PARAMETER ( N1=16, N2:16, N3=16 )

COMPLEX316 W1(N1,N2,N3)

* ,W2(N1,N2,N3)

’ ,CP(N1,N2),CH(N1),CSUM

MN /Cl/ DX,DY,DZ

DO 21 IX=1,N1

DO 21 IY:1,N2

CP(IX,IY)=(0.0,0.0)

DO 21 IZ=1,N3-1

CP(IX,IY)=CP(IX,IY)+DZ*(CONJG(W1(IX,IY,IZ))*W2(IX,IY,IZ)+

* OONJG(W1(IX,IY,IZ+1))*W2(IX,IY,IZ+1))*0;5

CONTINUE

DO 31 IX=1,N1

CH(IX)=(0.0,0.0)

DO 31 IY=1,N2-1 -

CH(IX)=CH(IX)+DY*(CP(IX,IY)+CP(IX,IY+1))*O.5
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31 CONTINUE

CSUM:(0.0,0.0)

DO 41 I=l,N1-1

CSCM=CSUM+(CH(I)+CH(I+1))*DX*O.5

41 CONTINUE

RETURN

END

cx:xxt:xttxtttxxtxtxtxxttxxxtxtxxxxtxxxtxxxxttxxx:x:xxxxxxx:xtx

C SCEROUTINE INTEGRAL : INTEGRATION IN 3-DIMENSION *

C USAGE : wz CORRESPONDS TO POT, KIN AND TOTAL ENERGY *

Ctittxtttttttxtttttttt*ttttttttxxttxttt¥¥***¥t*¥*¥***tttxttxttx

SUBROUTINE INTEGRAL(W2,CSUM)

IMPLICIT INTEGER¥4(I-N)

IMPLICIT REAL*8(A-H,O-Z)

PARAMETER ( N1=16, N2=16, N3=16 )

COMPLEX*16 W2(N1,N2,N3)

* ,CP(N1,N2),CH(N1),CSUM

comm /C1/ DX,DY,DZ

DO 21 IX=1,N1

DO 21 IY=1,N2

CP(IX,IY)=(0.0,0.0)

DO 21 IZ=1,N3-1

CP(IX,IY)=CP(IX,IY)+DZ*(W2(IX,IY,IZ)+

t W2(IX,IY,IZ+1))‘0.5

21 CONTINUE

DO 31 IX=1,N1

CH(IX):(0.0,0.0)

DO 31 IY=1,N2-1

, CH(IX)=CH(IX)+DY‘(CP(IX,IY)+CP(IX,IY+1))*O.5

31 CONTINUE

CSUM:(0.0,0.0)

DO 41 I=l,N1-1

CSUM=CSUM+(CH(I)+CH(I+1))tDXtO.5

41 CONTINUE

RETURN

END

Ctttiitttittittttititt¥!¥¥t*¥**tittttttttttttittXttttttttttt

C SUEROUTINE OONTIUR : PLOT OF CONTOURS *

C USAGE : ISIGN DECIDEE ON THE X-Y OR Y-Z OR X-Z PLANES¥

C ISIGNzl INTEGRATE IN X DIRECTION *

C ISICN=2 INTEGRATE IN Y DIRECTION *

C ISIGN=3 INTEGRATE IN 2 DIRECTION *

Ct*¥**1*tttt*tt!3it¥33*3tit!Iittittttttttttttt¥¥***¥¥tt¥¥**t

SUBROUTINE CONTOUR(ISIGN)

IMPLICIT INTEGER34(I-N)

IMPLICIT REAL*8(A-H,O-Z)

PARAMETER(N1=16,N2=16,N3=16)

COMPLEthS W(N1,N2,N3)

 

"
L
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COMMON /A/ W

COMMON /C1/ DX,DY,DZ

———WRITE OUT DATA IN UNIT:NFILE-—-

IF(ISIGN.EQ.1) NFILE=51

IF(ISIGN.EQ.2) NFILEz52

IF(ISIGN.EQ.3) NFILE=53

DO 42 I=l,N1+1

DO 42 J=1,N2+1

IX=I

IY=J

IF(IX.EQ.N1+1) IX=1

IF(IY.EQ.N2+1) IY=1

SUM=0.

DO 56 K=1,N3

IZ:K+1

IF(IZ.EQ.N3+1) IZ=1

IF(ISIGN.EQ.1) THEN

SUM:SUM+(CONJG(W(K,IX,IY))xW(K,IX.IY)+

¥ CONJG(W(IZ,IX,IY))*W(IZ,IX,IY))*DX*0.5

ELSE IF(ISIGN.EQ.2) THEN

SUM=SUM+(CONJG(W(IX,K,IY))¥W(IX,K,IY)+

* CONJG(W(IX,IZ,IY))*W(IX,IZ,IY))*DX¥O.5

ElSE IF(ISIGN.EQ.3) THEN

SUM=SUM+(OONJG(W(IX,IY,K))IWKIX,IY5K)+

t CONJG(W(IX,IY,IZ))*W(IX,IY,IZ))tDX*0.5

ENDIF

CONTINUE

NNN=MOD(IX,2)

PT!k¢KEHIY,2)

IF(NNNLEQ.1MMELQQELEQ.1)THfifld

IF(SUM.LT.1OE-6) SUM=0.

WRITE(NFILE,¥)REAL((I—1)¥DX),REAL((J-1)*DY),REAL(SUM)

ENDIF

CONTINUE

RETURN

END
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ext:xxxtx::xxxxxtxtxxxxxxxtxxxxxttxxxxxxxxxxtxtxxxxxxxxttxxx

C SLEROUI‘INE : PEIT, PROJECT, HGT t

C USAGE : SOLVE THE SCHRODINGER EQUATION *

C PROJECT OUT THE GROUND STATE t

C BY MOVING GRID TECHNIQUE . x

cxx::xzxxxxxt:xt:xxtxxxxxxtxxxxxxxxxxx:xx*xxxxtxxxxx:xtxxxtx

SUBROUTINE FEIT1N,RX,RY,RZ,VEIX,VEIY,VEIZ,DT,NTIME)

IMPLICIT INTEGER*4(I-N)

IMPLICIT REAL*8(A-H,O-Z)

PARAMETER ( NDIM=3, N1=16, N2=16 ,N3=16,

4 TEI=46.625,TEIMD=643.55)

DIMENSION NN(NDIM),VEI(N1,N2,N3)

.RX1N).RY(N),RZ(N)

,VEIX(N),VEIY(N),VEIZ(N)

yH(N1).P(N1.N2)

,G(50),RAD(50+1),GN(50),RADS(50+1)

COMPLEthS W(N1,N2,N3),W0(N1,N2,N3)

,THETA1(N1,N2,N3)

,FACT2(N1,N2,N3),FACT1(N1,N2,N3)

,CP(N1,N2),CH(N1),CSUM,TSUM,PSUM

,POT(N1,N2,N3),SW(N1,N2,N3)

,CW(N1,N2,N3),TW(N1,N2,N3)

,TOT(N1,N2,N3),TE(N1,N2,N3)

,PP(N1,N2,N3),WN(N1,N2,N3)

 

”
*
‘
I
’
fi

 

*
fl
fl
fi
fi
fl
fl

INTEGER CLOCK, TIMEI

COMMON /A/ w

W /B/ SIDE, RSIDE, SICMA, CLOCK, QISUM

COMMON lBI/ XNPICK, YNPICK, ZNPICK

COMMON /C1/ DX,DY,DZ,CXE,CYE,CZE

COMMON /C2/ ITXS,ITYS,ITZS,CMXP,CMYP,CMZP,PREF

MN /C3/ ABC,ABCD,IE,IH,DIAM,NW,TIMEI

NN(1):N1

NN(2):N2

NN(3)=N3

NT=N1*N2*N3

NT2=2*NT

SIDEH=SIDE/2.

GSIDE=(107./0.7)*¥(1./3.)

GSIDEH=GSIDE/2.

XL=GSIDE

SIDE4=(SIDE-GSIDE)/2.

SIDEF=SIDE4+GSIDE

DX=XL/FLOAT(N1)

DY=XL/FDOAT(N2)

DZ=XL/FDOAT(N3)

PI=4.*ATAN(1.)

PIZ:2.*PI

CSUMP=0.

 

C ---SET INITIAL WAVE FUNCTION S POTENTIAL ---

RR=4.83DO
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AA:O.655DO

BB=89OQQ.DO

CC=12608.DO

STANDV:SIGMA*0.5DO

----CLOCK COND MUST AGREE WITH PSL2.F---

IF(CLOCK.EQ.TIMEI) THEN

O

\"IMGzo .

DO 71 IX=1,N1

DO 71 IY=1,N2

DO 71 IZ=1,N3

C --- SHIFT POINTS TO SYMMETRIC INTERVAL FOR FFT---

C --- INITAL GRID BOX IN CENTER OF SIMULATION BOX---

SX:SIDE4+FDOAT(IX-1)¥DX

SY=SIDE4+FLOAT(IY-l)*DY

SZ=SIDE4+FLOAT(IZ-l)*DZ

VREAL=((EXP(-((SX-XNPICK)*(SX-XNPICK)+

x (SY-YNPICK) T: (SY-YNPICK) +

x . (SZ-ZNPICK)*(SZ-ZNPICK))

I /(2. *STANDVIISTANDV) ) ))

W0(IX,IY,IZ)=CMPLX(VREAL,VIMG)

71 CONTINUE

C --- NORMALIZE INITIAL WAVEFUNCTIO ----I

CALL NORM(WO,WO,SUM)

RSQRTSUM=1./SQRT(SUM)

DO 232 IX=1,N1

DO 232 IY=1,N2

DO 232 IZ=1,N3

WO(IX,IY,IZ)=WO(IX,IY,IZ)*RSQRTSUM

W(IX,IY,IZ)=WO(IX,IY,IZ)

232 CONTINUE

ENDIF

--- POTENTIAL MEASURED AT GRID POINT---

----- SET UP SIDES OF GRID BO ---

—---FIRST TIME THRU ITXS=0 FROM MAIN, THEN OUTPUT OF FEIT---

---FIRST TIME cmcp=o FROM MAIN, THEN OUTPUT OF FEET-~-

-----DECIDE WHICH BOXES TO USE-----

NXP=ANIN'I‘(CMXP/SIDE)

NYP=ANINT(G‘1YP/SIDE)

NZP=ANINI‘(CMZP/SIDE)

0
0
0
0
0

C ------LOOP 1 OVER GRID----

DO 1 IX=1,N1

DO 1 IY=1,N2

DO 1 IZ=1,N3

SX=SIDE4+FLOAT(IX-1+ITXS)¥DX

SY:SIDE4+FLOAT(IY-1+ITYS)*DY

SZ=SIDE4+FIDAT( IZ-1+ITZS ) *DZ

VEI(IX,IY,IZ):0.0

C -----IF PARTICLE FROM ONE BOX IS IN GRID KEEP IT, OTHERWISE-—



0
0
0
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203

---CHECK IF IMAGE PARTICLE IS IN GRID --------

---FOR PARTICLE IN GRID EVALUATE XX, PARTICLE -GRID DISTANCE--

-------LOOP 21 OVER PARTICLES ——— -—

DO 21 I:1,N

XP=RX(I)+SIDE*NXP

XX=SX-XP

IF(ABS(XX).GT.GSIDEH.AND.ABS(XX+SIDE).GT.GSIDEH) GO TO 21

IF(XX.LT.-SIDEH) XX=XX+SIDE

IF(XX.GT. SIDEH) XX=XX-SIDE

 

YP=RY(I)+SIDE¥NYP

YY=SY-YP

IF(ABS(YY).GT.GSIDEH.AND.ABS(YY+SIDE).GT.GSIDEH) GO TO 21

IF(YY.LT.-SIDEH) YY=YY+SIDE

IF(YY.GT. SIDEH) YY=YY~SIDE

ZP=RZ( I ) +SIDE¥NZP

ZZ=SZ—ZP

IF(ABS(ZZ).GT.GSIDEH.AND.ABS(ZZ+SIDE).GT.GSIDEH) GO TO 21

IF(ZZ. LT. -SIDEH) ZZ=ZZ+SIDE

IF(ZZ.GT. SIDEH) ZZ=ZZ-SIDE

RIJSQ=1XX¥XXH (YYtYYH (221122)

VEI(IX,IY,IZ)=VEI(IX,IY,IZ)+TEI*AA/((RRtRSIDEHIMH

(BB/(CC+RIJSQ*RIJSQ*RIJSQ*(RSIDExRRHtS)-1. )

/ (RIJSQtRIJSQ)

----- CLCBE ILDP OVER PARTICLES-------

mNTINUE

CIDNTINUE

------ BEGIN PEIT STEP --------

DO 2 IT=1,NTIME

------ CALCULATE ENEHIY --------

-------POTENTIAL ENERGY---------

m 133 LY:1,N1

DO 133 IY=1,N2

IX) 133 IZ=1,N3

CW(IX,IY,IZ)=(X)NJG(W(IX,IY,IZ))

PUT(IX,IY,IZ)=CDNJG(W(D(,IY,IZ))#W(IX,IY,IZ)*VEI(IX,IY,IZ)

wNTINUE

--IN USING FFI‘ ONLY W IS TRANSFORMED PASSED IN DMDN A---

----- FFI‘ «47R!!! R SPACE TO K SPACE--

CALL FUJRN<NN,NDIM,NT2,1)

DO 3 IX:1,NI

DO 3 IY=1,N2

DO 3 IZ=1,N3

IIX:N1/2-ABS(IX-1-N1/2)

IIY=N2/2-ABS(IY-1-N2/2)

IIZ=N3/2-ABS(IZ—l-N3/2)

THEI‘A1(IX,IY,IZ)=UI‘*4JPItPI

*FLOAT(IIXtIDIE+IIYtIIY+IIZIIIZ)/(2.*XLIIXL)

FAC'I'1(IX,IY,IZ)=EXP(-'IHEI‘A1(IX,IY,IZ))

I‘W(D(,IY,IZ)=W(IX,IY,IZ)*THETA1(IX,IY,IZ)*2./DT
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W IX,IY,IZ)=W( BK,IY,IZ)‘FACI‘1(IX,IY,IZ)

CONTINUE

---- IFPT ---FROM K SPACE IO R SPACE--

CALL FOLRN(NN,N'DIM,NT2,-1)

DO 4 IX=1,N1

DO 4 IY=1,N2

DO 4 IZ=1,N3

FACT2(IX,IY,IZ)=EXP(-UI‘*VEI(IX,IY,IZ))

SMIX,IY,IZ):W(LY,IY,IZ)*FACT2(IX,IY,IZ)

W(IX,IY,IZ)='IW(IX,IY,IZ)

CONTINUE

--- CALCULATE KINETIC ENERGY ---

CALL FOURN(NN,NDIM,NT2,-1)

DO 4 IX=1,N1

DO 4 IY=1,N2

DO 4 IZ=1,N3

’I‘W(IX,IY,IZ)=W(IX,IY,IZ)

TE(IX,IY,IZ)=CW(IX,IY,IZ)t'IW(LY,IY,IZ)

W(IX,IY,IZ)=SW(IX,IY,IZ)

CONTINUE

0
|

0
|

0
|

---- FEI‘ «mm R SPACE TO K SPACE ---

CALL FOURN(W,NDIM,N'I‘2,1)

DO 5 IX=1,N1

DO 5 IY=1,N2

II) 5 IZ=1,N3

IIX:N1/2-ABS(IX-l-N1/2)

IIY=N2/2-ABS(IY-1-N2/2)

IIZ=N3/2-ABS(IZ-1-N3/2)

TI-E'TA1(D(,IY,IZ)=DT*4.*PI*PI

*FIDAT(IIX¥IIX+IIY*IIY+IIZ*IIZ)/(2.*XLtXL)

FACT“IX,IY,IZ)=BEP(—'IHEI‘A1(IX,IY,IZ))

W(IX,IY,IZ)=W(IX,IY,IZ)*FACI‘1(IX,IY,IZ)

CONTINUE ‘

---- IFFT ---m K SPACE '10 R SPACE ---

---- NOMALIZE WAVEFUNCI‘ION W(T) -----

CALL NOIM(W,W,CSUM)

W=IJSWNCSWY

IX) 12 IX=1,N1

IX) 12 IY=1,N2

IX) 12 IZ=1,N3

W(IX,IY,IZ)=W(D(,IY,IZ)*IEQ?TSUM

CONTINUE

------ CA1£1IIATE ENERGY --------

--- ENERGY CONVERGENCE TEST ----

CALL INTEIEIAMPOTmSUM)

CALL INTEGRAL(TE,TSUM)
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CSUM=REAL( PSUM) +REAL ( TSLM)

QI‘SUM:CSUM

IF(ABS(REAL(CSLM)-CSLMP).LT.ABC) DT:DT/2.

CSIMP:REAL(CSUM)

IF(DT.LT.ABCD) GO TO 999

CONTINUE

--- END OF FEIT--
 

CONTINUE

----DECIDE IF (RID IS TO BE mVED---------

-----EVALUATE MAX PRCB

-------EVALUATE (24 OF ELECTRON--—---

SUI/IP20.

DO 772 IX:1,N1

DO 772 IY=1,N2

D0 772 IZ=1,N3

PPP=CONJG(W(IX,IY,IZ))tW(IX,IY,IZ)

SUMP=SUMP+PPP

CONTINUE

CMX=O.

CMY=O.

CMZ=O.

DO 712 IX:1,N1

DO 712 IY=1,N2

DO 712 IZ=1,N3

SX:SIDE4+FLCAT( D(-1+ITXS) tDX

SY=SIDE4+FIDAT(IY-1+ITYS)*DY

SZ:SIDE4+FLOAT( IZ-1+I'I'ZS ) tDZ

PPP=CDNJG(W(IX,IY,IZ))¥W(IX,IY,IZ)/SUMP

CMX=CMX+PPP*SX

CMY:CMY+PPP¥SY

CMZ:QQ+PPPtSZ

CONTINUE

IF(Cm.m.TIMEI) 'I'HEN

CMXP=CMX

CMYP=CMY

OER-'02

ENDIF

 

--- ROWING IS THE LOVING (RID TECHNIQUE---

SIMP=0.

DISO=(3.*(DX/2. )t32)

PP1=CDNJG(W(1,1,1))¥W(1,1,1)

IX) 1450 D(=1,N1

IX) 1450 IY=1,N2

m 1450 IZ=1,N3

SX=SIDE4+FLOAT( IX-1+ITXS ) tDX

SY=SIDE4+FIDAT( IY-l+ITYS ) *DY

SZ=SIDE4+FIDAT( IZ-1+ITZS ) *DZ

DIS=((SK-01X)‘t2+(SY-Q‘1Y)**2+(SZ-QQ)*42)

PPP:CX)NJG(W(IX,IY,IZ))¥W(IX,IY,IZ)

SUMP=SUMP+PPP

IF(DIS.LT.DISO) THEN

IF(PPP.LT.PP1) THEN
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DISOzDIS

PP1=PPP

IXX=IX '

IYY=IY

IZZ=IZ

ENDIF

CONTINUE

--NOW HAVE SET IXX,.. AS GRID POINT CLOSEST TO CM---

------EXPRESS THIS POINT RELATIVE TO BOX CENTER-----

ITX=IXX-(N1/2+1)

ITY=IYY-(N2/2+1)

ITZ=IZZ-(N3/2+1)

-—-- NEW GRID BOX CENTER -----

Isz=Isz+ITx

ITYS:ITYS+ITY

ITZS=ITZS+ITZ

DO 910 IX=1,N1

DO 910 IY=1,N2

DO 910 IZ=1,N3

----GRID RELATIVE TO GRID BOX CENTER------

II=IX+ITX

JJ:IY+ITY

EK=IZ+ITZ

IF(II.LE.O) II=II+N1

IF(II.GT.N1) II=II-N1

IF(JJ.LE.0) JJ=JJ+N2

IF(JJ.GT.N2) JJ:JJ-N2

IF(KK.LE.0) KK=KK+N3

IF(KK.GT.N3) KK:KK-N3

-----RENAME WAVEFUNCTION -----

WN(IX,IY,IZ)=W(II,JJ,KK)

CONTINUE

---RENAME WN BACK TO W---

-RELABEL WAVEFUNCTION TO USE IN EVALUATING---

--- PARTICLE-BLED FORCE---

DO 212 IX=1,N1

DO 212 IY=1,N2

DO 212 IZ=1,N3

W(IX,IY,IZ)=WN(IX,IY,IZ)

CONTINUE

-- END THE MOVING GRID TECHNIQUE---

--- CUMULATE ELECTRON DISPLACEMENT-~-

--- CALCULATE DIPEUSION COEFFICIENT OF ELECTRON--

CXE:CXE+(CME-CMEP)

CYE=CYE+(CMY;CMYP)

C2E=C2E+(CME~OMZP)

RSQ=CXE¥82+CYE**2+CZE**2

IF((CLOCK/NW)*NW.EQ.CLOCK) THEN
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--- WRITE OUI‘ CM OF EIECIRON IN LNIT:66--

wRITE OUT NO. OF QUENCH IN UNITze---

--- WRITE OUT POT, KIN, TOT ENERGY IN LNIT=44--

WRITE 0LT <R¥¥2> AND DIFF. CONSTANT IN UNIT=330--

WRITE(66,*)CIDCK~TLVIEI,C§D(,CMY,CMZ

WRITE(6,¥) ’NO OF QUENCH’ ,IT-l

kRITE(44,*)CImK,REAL(PSUM),REAL(TSUM) ,REAL(CSLM)

DIFFzFREFtRSQ/FLDANCIQIK)

kRITE(330,¥)CILXIK,RSQ,DIFF

ENDIF

----RELABEL CM TO ’PREVIOUS' CM------

CMXP:CMX ‘

CMY'P=CMY

CMZP=CMZ

IF( (CLOCK/NW)*NW.m.CLOCK) THEN

---PAIR DISTRIBUTION FL’NCI'ION---

RAD(l):0.0

DR:GSIDEH/FIDAT( IE-l )

CONST:4.0*3.141590/3.0

DO 13 I=1,IE

G(I):0.

MD(I+1):RAD(I)+DR

CONTINUE

--------G(R) - CM - E----

SUMPon.

DO 84 I=l,N1

DO 84 J:1,N2

DO 84 K:1,N3

SX=SIDE4+FLOAT( I-1+ITXS ) #DX-CMXP

SY:SIDE4+FLOAT( J- 1+ITYS ) tDY-Q‘IYP

SZ=SIDE4+FLOAT(K-1+ITZS) *DZ-QWZP

DIS=SG?I‘( SX**2+SY"2+SZ"2)

PPP=OONJG(W(I,J,K))¥W(I,J,K)

DO 51 IR=1,IE

IF(DIS.GI‘.RAD(IR).AND.DIS.LE.RAD(IR+1)) THEN

G(IR)=G(IR)+PPP*(1.0/((RAD(IR+1)H3-RAD(IR)H3)¥CX)NST))

SLMPP=SUMPP+PPP

GO TO 84

ELSE

ENDIF

MIME

CONTINUE

RHOW=SUMP/(GSIDEH3)

WRI'I'E(10,*)CI£XZK

DO 7 K=1,IE

r:(ra.d(k)+rad(k+1))*DIAM/2.

write(10,*) r,G(K)/RHOW

continue

WRITE(51,¥)CIOCK

CALL WU)

ENDIF
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---- CALCULATE PARTICLE-ELECTRON FORCE -------

---LOOP 169 OVER PARTICLES, 170 OVER GRID-------

----FOR FIXED PARTICLE SUM OVER GRID
 

------FIND PARTICLE LOCATIONS IN GRID BOX----

---IF PARTICLE NOT IN GRID BOX, SET VEIX,..=O----

IF((CLOCK/NW)¥NW.EQ.CLOCK) THEN

RAA=GSIDEH

RADS(1):0.0

DRS:RAA/FIDAT( IH-l )

CONST=4.0*3.141590/3.0

DO 33 I:1,IH

RADS(I+1):RADS(I)+DRS

GN(I):O.

CONTINUE

ENDIF

—-SET THE RANGE OF GRID BOX--—

DISI=SIDEF+ITXS*DX

DISZ:SIDE4+ITXS*DX

DISB=SIDEF+ITYS*DY

DIS4=SIDE4+ITYS*DY

DISS=SIDEF+ITZS*DZ

DI86=SIDE4+ITZS*DZ

NXP=NINT(CMXP/SIDE)

NXM=NINT(CMXP/SIDE)-1

NYP=NINT(CMYP/SIDE)

NYM=NINT(CMYP/SIDE)-l

NZP=NINT (M/SIDE )

NZM:NINT(CMZP/SIDE)-1

DO 169 J=1,N

XM:RX(I)+SIDEtNXM

XP=RX(I)+SIDEtNXP

IF(XM.LT.DISI.AND.XM.GT.DISZ) THEN

XX=XM

ELSE IF(XP.LT.DISl.AND.XP.GT.DISZ) THEN

XX=XP

ELSE

GO TO 666

ENDIF

IF(XX.LT.-SIDEH) XX=XX+SIDE

IF(XX.GT. SIDEH) XX=XX-SIDE

YP=RY(I)+SIDEtNYP

YM:RY(I)+SIDE*NYM

IF(YM.LT.DIS3.AND.YM.GT.DIS4) THEN

YY=YM

ELSE IF(YP.LT.DIS3.AND.YP.GT.DIS4) THEN

YY=YP

ELSE

GO TO 666

ENDIF

IF(YY.LT.-SIDEH) YY=YY+SIDE
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IF(YY.GT. SIDEH) YYzYY-SIDE

ZP=RZ(I)+SIDE*NZP

ZM=R2(I)+SIDE*NZM

IF(ZM.LT.DISS.AND.ZM.GT.DISS) THEN

ZZ=ZM

ELSE IF(ZP.LT.DISS.AND.ZP.GT.DISS) THEN

ZZ=ZP

ELSE

GO TO 666

ENDIF

' IF(ZZ.LT.-SIDEH) ZZ=ZZ+SIDE

IF(ZZ.GT. SIDEH) ZZ=ZZ-SIDE

-----—CALCULATE RADIAL DISTRIBUTION OF PARTICLES---

IF( (CIDCK/NWHNW.EQ.CLOCK) THEN

---G(R) - CM — PARTICLES----

DO 112 IR:1,IH

XX:RX(J)+SIDE*NXP-CMXP

IF(XX.LT.-SIDEH) XX=XX+SIDE

IF(XX.GT. SIDEH) XX=XX-SIDE

YY:RY(J)+SIDE*NYP-CMYP

IF(YY.LT.-SIDEH) YY=YY+SIDE

IF(YY.GT. SIDEH) YY=YY-SIDE

ZZ:RZ(J)+SIDE*NZP-CMZP

IF(ZZ.LT.-SIDEH) ZZ=ZZ+SIDE

IF(ZZ.GT. SIDEH) ZZ:ZZ-SIDE

------CALCULATE RADIAL DISTRIBUTION OF PARTICLES—--

DIS=sqrt((XX)¥¥2+(YY)**2+(ZZ)¥*2)

IF(DIS.GT.RADS(IR).AND.DIS.LE.RADS(IR+1)) THEN

GN(IR)=GN(IR)+1./((RADS(IR+1)“3-RADS(IR)¥¥3)*CONST)

ENDIF

CONTINUE

ENDIF

 

-----EVALUATE FORCE COMPONENTS

----SUM’OVER GRID POINTS, TO DO INTEGRAL-------

DO 170 I:1,3

DO 1172 IX=1,N1

DO 1172 IY=1,N2

P(IX,IY):0.0

DO 1172 IZ=1,N3-1

SX=SIDE4+FIDAT( IX- 1 +ITXS ) *DX

SY:SIDE4+FDOAT(IY-1+ITYS)¥DY

SZ=SIDE4+FLDAT( IZ-1+ITZS ) *DZ

SZl=SIDE4+FIOAT(IZ+ITZS)*DZ

-----PARTICLE-CRIB DISTANCES--------

--- EVALUATE FORCES BY MINIMJN IMAGE METHOD--

XP=RX(J)+SIDE*NXP

XXX=SX-XP

IF(XXX.LT.-SIDEH) XXX=XXX+SIDE
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IF(XXX.GT. SIDEH) XXX=XXX-SIDE

YP=RY(J)+SIDE*NYP

YYY=SY-YP

IE(YYY.LT.-SIDEH) YYY=YYY+SIDE

IF(YYY.GT. SIDEH) YYY=YYY-SIDE

ZP=RZ(J)+SIDE*NZP

ZZZ=SZ-ZP

IF(ZZZ.LT.-SIDEH) ZZZ:ZZZ+SIDE

IF(ZZZ.GT. SIDEH) ZZZ:ZZZ-SIDE

ZZl=SZl-ZP

IF(ZZl.LT.-SIDEH) ZZl=ZZl+SIDE

IE(ZZl.GT. SIDEH) ZZl=ZZl-SIDE

RIJSQ: (XXX*XXX+ YYY*YYY+ ZZZ*ZZZ)*RR*RR

RIJ6=RIJSQ*RIJSQ*RIJSQ

WIJzTEIMDtAA¥((4.*(1./RIJ6))¥(BB*(1./(CC+RIJ6))-1.)

* +6.*BB*(1./((CC+RIJ6)*(CC+RIJ6))))

RIJSQ1= (XXX*XXX+ YYY*YYY+ ZZl*ZZl)*RR*RR

RIJ61=RIJSQ1*RIJSQ1*RIJSQ1

WIJ1=TEIMD*AA*((4./RIJSI)*(BB/(CC+RIJ61)-1.)

* +6.*BB/((CC+RIJ61)*(CC+RIJ61)))

----EVALUATE THE DIFFERENT FORCE COMPONENTS----

IF(I.EQ.1) GO TO 61

IF(I.ER.2) GO TO 31

IF(I.EQ.3) GO TO 41

P(IX,IY)=P(IX,IY)+DZ*(XXXtRR*WIJ*CONJG(W(IX,IY,IZ))*W(IX,IY,IZ)

¥ +XXX*RR*WIJ1*CONJG(W(IX,IY,IZ+1))*W(IX,IY,IZ+1))*0.5

GO TO 1172

P(IX,IY)=P(IX,IY)+DZ*(YYY*RR*WIJ*CONJG(W(IX,IY,IZ))*W(IX,IY,IZ)

* +YYY*RR*WIJ1*CONJG(W(IX,IY,IZ+1))*W(IX,IY,IZ+1))*0.5

GO TO 1172

P(IX,IY)=P(IX,IY)+DZ*(ZZZ*RR*WIJ*CONJG(W(IX,IY,IZ))*W(IX,IY,IZ)

t +ZZl*RR*WIJ1*CONJG(W(IX,IY,IZ+1))*W(IX,IY,IZ+1))*O.5

GO TO 1172

CONTINUE

DO 1173 IX=1,N1

H(IX):0.0

D0 1173 IY=1,N2-1

H(IX)=H(IX)+DY*(P(IX,IY)+P(IX,IY+1))tO.5

CONTINUE

SUM=0.0

D0 1174 K=1,N1-1

SUM=SUM+(H(K)+H(K+1) )xDXx0.5

CONTINUE

IF(I.EQ.1) VEIX(J)=-SUM

IF(I.EQ.2) VEIY(J):-SUM

IF(I.EQ.3) VEIZ(J)=-SUM

CONTINUE
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CONTINUE

IF((CIDCK/NW)*NW.EH.CIDCK) THEN

RHO=FIDAT(N)/(SIDE**3)

WRITE(11,*)CLOCK

DO 17 K:1,IH

R:(RADS(K)+RADS(K+1))tDIAM/(Z.)

WRITE(11,*) R, G(K)/RHOW, GN(K)/RHO

CONTINUE

ENDIF

RETURN

END
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PROGRAM TITLE : PROJ3D x

PURPOSE : OBTAIN THE EIGENSTATES *

METHOD : USE THE PROJECTION OPERATOR METHOD t

.CONTAIN : CALL FOURN, CONTOUR *

DOUBLE PRECISION 3

DATE : MAY, 1990 *

INPUT : W(N1,N2.N3), VEI(N1,N2,N3), TINP *

ttxxxxttittxttttttt¥*t***¥¥¥¥***¥t***¥**t**¥¥******ttttxittx0
0
0
0
0
0
0
0

SUBROUTINE PROJ3D(W,VEI)

IMPLICIT INTEGER*4(I-N)

EKPLICIT REAL*8(A-H,O-Z)

PARAMETER (NDIM=3, N1=16, N2=16, N3=16)

DIMENSION NN(NDIM),VEI(N1,N2,N3),THETA1(N1,N2,N3)

COMPLEXtIG W(N1,N2,N3),WO(N1,N2,N3),WNO(N1,N2,N3)

,WN1(N1,N2,N3),WTR(N1,N2,N3)

,FACT2(N1,N2,N3),EACT1(N1,N2,N3)

,CSUM,CSUM1

,POT(N1,N2,N3),SW(N1,N2,N3)

,CW(N1,N2,N3),TW(N1,N2,N3)

,‘I‘O'I‘(N1,N2,N3) ,TE(N1 ,N2,N3)

COMMON /A/ W '

COMMON /B/ SIDE,SIDEH,SIGMA,NCLOCK

COMDN /C1/ DX,DY,DZ

*
*
*
*
*
*

OPEN(1,FILE = ’TINP’)

READ(1,#)UI‘,NTIME,NCUX?K,NSTATE

NN(1)=N1

NN(2)=N2

NN(3)=N3

NT=N1*N2*N3

NT2=2*NT

XL=SIDE

DX=SIDE/FDOAT( N 1 )

DY=SIDE/FLOAT ( N2 )

DZ=SIDE/FDOAT(N3)

PI:4.*DATAN(1.DO)

 

PIZ=2.*PI

DTH:DT/2.0

C ————— NORMALIZE INITIAL WAVEFUNCTION W(O)----

C ----- CREATE FACTI AND FACTZ

CALL NORM(W,W,CSUM)

DO 232 I=l,N1

DO 232 J=1,N2

DO 232 K=1,N3

W(I,J,K)=W(I,J,K)/SQRT(CSUM)

WO(I,J,K)=W(I,J,K)

 

 



 

 

HDNILNOO

(X‘P‘I)MS=(H‘F‘I)M

(X‘P‘I)ML*(X‘F'I)MD=(X‘F‘I)EI

(H‘F‘I)M=(X‘P‘I)M.L

CN‘I=Xf900

ZN‘I=F#900

‘IN‘I=IV900

SIGNS

(1"ZLN‘NHGN‘NN)NHDOJTTVO

--------EDVdS8(11.33:18)1mom-m1-'--

NEHL(WN’M'XZUIDNHMN/JJHSI

ADHENESILENIHELVTDSTVO-----
 

EnNIINOO

(X‘P‘I)MI=(H‘P‘I)M

(x‘r‘I)zI3va:(E‘r‘I)M=(R‘r‘1)As

(ZVlEHI-)dX3=(H‘P‘I)ZLDVd

(X‘P‘I)IRAtm=ZV.I£Iu

CN‘I=Xv00

ZN‘I=Ff00

IN‘I=It00

(I-‘ZLN‘KIGN‘NN)NHDOJTTVO

--------EOVdsHOEHDdSxNOHd-.LiflI-—--

HDNILNOO

(X‘F‘I)IlDde(H‘F‘I)M=(H‘F‘I)M

HLfl/(H‘f‘I)IVl3Hlt(X‘P‘I)M=(H‘P‘I)Ml

((H‘F‘I)IVlEHl’)dX3=(X‘P‘I)ILGVJ

(TXXTXX’Z)/x

(ZItZIHLIxAI+XIxXI)Ivmatldtldt'“111:0?I”I)IVIEIHI

(Z/EN-I-H)SHV-Z/€N=ZI

(Z/ZN-I-P)SHV-Z/ZN=AI

(Z/IN'I-I)SEV'Z/IN=XI

8N‘I=X8OG

ZN‘I=F800

IN‘I=I800

(I‘ZLN‘WIGN‘NN)NHJOSTTVD

---------EDVdSHOIEDVdSHROSS-T133---

HHNIINOO

(H‘F‘I)IHA*(H‘F‘I)MX((H‘P‘I)M)DFNOO=(H‘F‘I)LOd

((X‘F‘I)M)OFNOO=(X‘P‘I)MD

€N‘I=HEST00

ZN‘I3FSCI00

IN‘I=I88100

--------ADHENBELVTDDTVD---

SKIIN‘I=II3OO
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------ EFT --FROM R SPACE TO K SPACE--------

CALL FOURN<NN,NDIM,NT2,1)

DO I:1,N1

DO J=1,N2

DO 5 K=1,N3

IX:N1/2-ABS(I-1-N1/2)

IY=N2/2-ABS(J-1-N2/2)

IZ=N3/2-ABS(K-1-N3/2)

THETA1(I,J,K)=DT*4.*PI*PI*FLOAT(IX*IX+IY*IY+IZ*IZ)

/(2.*XL*XL)

0
|

0
]

FACT1(I,J,K)=EXP(-THETA1(I,J,K))

W(I,J,K)=W(I,J,K)*FACT1(I,J,K)

CONTINUE

----- IFFT «FRCM K SPACE TO R SPACE--—-----

CALL FOURN(NN,NDIM,NT2,-1)

----- NORMALIZE WAVEFUNCTION W(T)----~

CALL NORM(W,W,CSUM)

DO 12 I=l,N1

DO 12 J=1,N2

DO 12 K=1,N3

W(I,J,K)=W(I,J,K)/SQRT(CSUM)

'H3T(I,J,K)=POT(I,J,K)+TE(I,J,K)

CONTINUE

------ ENERGY CONVERGENCE TESTING ------

------ CALCULATE ENERGY --------

------ WRITE OUT POTENTIAL E TO UNIT 40---

------ WRITE OUT KINETIC E TO UNIT 42—--

------ WRITE OUT TOTAL E TO UNIT 44-"-

IF((IT/NCLOCK).BQ.NCLOCK) THEN

CALL INTEGRAL(POT,CSUM)

WRITE(40,*)IT,REAL(CSUM)

CALL INTEGRAL(TE,CSUM)

WRITE(42,*)IT,REAL(CSUM)

CALL INTEGRAL(TOT,CSUM)

WRITE(44,*)IT,REAL(CSUM)

----- ENERGY CONVERGENCE TEST----

IF(ABS(REAL(CSUM)-CSUMP).LT.0.001) DT=DT/2.

CSUMP=REAL(CSUM)

ENDIF

------ REORTHOGONALIZATION WITH THE KNOWN LOWER STATES --

IF(NSTATE.NE.O) THEN

IF((IT/NCLOCK)*NCLOCK.EQ.NCLOCK) THEN

IF(NSTATE.EQ.1) THEN '

CALL NORM(W,WNO,CSUM)

DO 311 I=l,N1

DO 311 J=1,N2

DO 311 K=1,N3

W(I,J,K)=W(I,J,K)—WNO(I,J,K)*CSUM
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CONTINLE

ELSE IF(NSTATE.EQ.2) THEN

CALL NORW(W,¥~'NO,CSLN)

CALL NOR~I(W,WN1,CSLM1)

IX) 312 I=l,N1

II) 312 J=I,N2

DO 312 K=I,N3

W(I,J,K)=W(I,J,1{)-k.\'0(I,J,K)*CSLM-WN1(I,J,K)*CSUMl

CONTINLE

ENDIF

ENDIF

ENDIF

IF(DT.LT.0.01) GO TO 999

CONTINUE

CONTINLE

----- END QCENCRING STEPS=NTIME --------

IF ENERGY TESTING IS CONVERGENT, THEN W(T) MUST BE

WITH THE LOWEST EIGENENERGY AND EIGENSTATE

WE USE THIS W(T) TO PRODUCE A NEW TRIAL WAVEFUNCTION

------ TRIAL FUNCTION ------

------ CALCULATE OVERLAP=<W(T)W(O))

CALL NORM(W,WO,CSLM)

II) 441 I=l,N1

DO 441 J=1,N2

DO 441 K=1,N3

---- SAVE THE LOWEST EIGENSTATE IN UNIT 10 ---

WRITE(10,3)W(I,J,K)

WTR(I,J,K)=WO(I,J,K)-W(I,J,K)*CSUM

---- SAVE TRIAL WAVEFUNCTION IN UNIT 90----

WRITE(100,¥)WTR(I,J,K)

CDNTINUE

WRI'I’E(6,*)’OVERLAP’,CSUM

---- PLOT THE PHDBABILITY DENSITY -------

CALL GDN’IOURU)

CALL CONTOUR”)

CALL CONDOURH)

STOP

END
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Ctttttttxxttxtttttttttt¥ttttttttttttttxtxtxt*tttttxtt

C PROGRAM TITLE : FT x

C THE PROCEDURES: 1

C DATA READ IN ---- CORRELATION FUNCTION C(T) x

C DATA WINDOWING ----C(T)*WINDOW(T) *

C FOURIER TRNSFORM ---- C(F) x

cxxxxtxxxxxxxxxtxxtxtxxxtx:x:txxxttxxxx**t*xtxxxxxxt:

PROGRAM FT

 

IMPLICIT INTEGER¥4(I-N)

IMPLICIT DOUBLE PRECISION(a-h,o-z)

 

C INPUT PARAMETERS

PARAMETER (NDIM=1, NTIME=8192 ,DT=0.015DO)

 

COMPLEX¥16 C(NTIME)

DIMENSION NN(NDIM)

COMMON/A/C

OPEN(7,FILE=’CE')

OPEN(8,FILE=’FT’)

 

NN(1)=NTIME

PI=4.DO*DATAN(1.DO)

P12=2.DO*PI

DO 88 I=l,NTIME/2

READ(7,*)C(I)

88 CONTINUE

SWINDOW=0.DO

DO 81 IT=0,NTIME-1

IF(IT.LT.NTIME/2) THEN

T=DT¥DFLOAT(IT)

C(NTIME-IT)=CONJG(C(IT+2))

ElSE

T=-(DT*NTIME/2)+DT*DFLOAT(IT-NTIME/Z)

ENDIF

C READ(7,*)C(IT+1)

WINDOW=(1.DO-DOOS(PI‘2.DO*T/(NTIMEtDT))1

SWINDOW=SWINDOW+WINDOW

C(IT+1)=WINDOW*C(IT+1)

81 CONTINUE

CALL FOURN(NN,NDIM,NTIME,1)

DO 83 I=l,NTIME

WW:OONJG(C(I))¥C(I)

IF(WW.GT.10E-10) THEN

IF(I.LT.NTIME/2) THEN

FREQ=2.DO¥PI*DFLOAT(I-l)/(NTLME¥DT)

ELSE

FREQz-Z .DO*PI¥DFI_OAT(NTIME-I+1)/(NTIME*DT)
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ENDIF

WRITE( 8 , * )FREQMW/SWINIDW

ENDIF

CONTINUE

STOP

END
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