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ABSTRACT

PART 1

THE SIMULATION OF EFFECTIVE TRANSPORT COEFFICIENTS
IN COMPOSITE MATERIALS

PART II
ELECTRON LOCALIZATION : QUANTUM MOLECULAR DYNAMICS

BY

SHEH-YI SHEU

PART 1

Simulation methods for the investigation of effective transport
coefficients in composite materials are an extremely important
technique in science. We study composite materials consisting of
spherical impenetrable inclusions embedded in a homogeneous matrix.
The method is referred to as an analytic-simulation method. The
effective transport properties can be: diffusion, dielectric behavior,
elastic and viscous constants, electric and thermal conductivity, and
magnetic susceptibility. For a given configuration of inclusions, a
set of coupled algebraic linear equations written in terms of the
t-operators and the propagators between inclusions is solved to obtain
the multipole moments of the inclusions. The minimum image convention,
a spherical interaction cutoff, is used to evaluate the multipole
moments for each inclusion. The resulting total sample polarization is
related by macroscopic electrostatics to the sample’s effective
dielectric constant. We simulate two classes of properties of a

composite material: the static and frequency dependent dielectric



constant. For the static dielectric constant, we investigate how the
effective dielectric constant, ee, is controlled by multipolar effects.
The investigated systems are conducting inclusions in an insulating
matrix, the inverse case, and coated inclusions (composite-composites).
Due to the difficulty of obtaining converged results for ee, for
conducting inclusions in an insulating matrix, at volume fractions
above 0.5, we evaluate ee by a random walk method. The random walk
method permits an accurate evalution of €y UP to volume fractions
corresponding to near to close packing of the inclusions. We also
consider the frequency dependent effective dielectric constant, ee(w),
of composites with metallic inclusions, modelled as Drude oscillators,
in an insulating matrix such as a glass. The optical properties such
as line-broadening and line-shift of the dielectric constant lineshape
of these composites have been studied. We find that the lineshape of
ee(u) is greatly broadened by the allowance for the electrostatic
interactions among the inclusions in comparison wit‘h the
Maxwell-Garnett results. We consider different types of disordered
configurations for this problem. Comparison is made between results
based on the minimum image convention and the lattice-sum approach.
The former method is more efficient than the customary lattice sum
approach, which employs Ewald sums, and yields results in good

agreement with the latter method.

PART 11
Quantum molecular dynamics (an Adiabatic Simulation Method) has

been used to discuss an excess quantum electron which interacts through



 pseudopotentials with a fluid of classical molecules. A detailed
algorithm for the investigation of the equilibrium and dynamical
properties of this coupled quantum-classical system is described. This
study focuses on the localization, dynamics, and mode of transport of
an excess electron in condensed helium. Properties investigated
include the correlation functions and electronic energy of the ground
and lowest excited states, and the diffusion coefficient of the ground

state electron.
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PART 1
THE SIMULATION OF EFFECTIVE TRANSPORT COEFFICIENTS

IN COMPOSITE MATERIALS



1. INTRODUCTION

Many composite materials are of great scientific and
technological interest. The concept of the dielectric constant is of
considerable importance in the description of the macroscopic electric
behavior of composite materials. Based on the electrostatic point of
view, when an electric field is imposed on a perfect conductor, there
is no difference between microscopic and macroscopic fields. In
contrast, when we apply the same field on a dielectric system, the
dielectric will respond to the field and a polarization will develop at
a molecular level, and dipoles will z;eorient in response to the field.
If the constituents of the composite are sufficiently large that they
can be assigned a spatially-dependent dielectric constant 6(1:_)1, then

the electric displacement D(r) in the system is related to the electric

field E(r) as

D(r) = €(r) E(r). (1.1)

~ ~

The electric field E(r) is given in terms of the potential field as

E(r) = - f w(g)- (1.2)

~ ~

Let us combine Eqs. (1.1) and (1.2) to obtain a first order



2
differential equation, which can be applied equally well to similar
phenomenologies such as diffusion, electric and thermal conduction,
elasticity, viscosity and magnetizationz. In order to calculate the
dielectric constant of a composite material, we must solve Maxwell's

equation

v - D(r) = S(r). (1.3)

~ o~

where S(r) is the source term.

Many composite materials are heterogeneous on a scale such that
at each space point the material properties obey the macroscopic
constitutive equations. Thus, for a macroscopic sample of the material

the ensemble average obeys

<D>(r) = ee(E>(r) (1.4)

which gives a definition for the effective dielectric constant ee of
the composite. The concept for this description of phenomena must be
on a length scale that is large compared to the typical scale of the
inhomogeneities, or the microscopic correlation lengths. The average
means a configuration average over many realizations of the material

distribution functions, a so-called statistically ensemble average.

In order to evaluate the effective dielectric constant ee, the

composite material’s structure must be prescribed; this is done
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statistically. Then an averaging procedure must be carried out over

the prescribed distribution of configurations.

We study materials consisting of spherical non-overlapping
inclusions, which are assumed to be statistically distributed with a
probability distribution independent of the position of the external

applied field, embedded in a homogeneous matrix.

Simulations for the investigation of effective transport
coefficients in composite materials have become an extremely powerful
technique in science. The properties of diffusion, dielectric,
elastic, and viscous constants, electric and thermal conductivity, and
magnetic susceptibility can be studied by analogous methods. There are
two steps in the study of effective transport properties by this
technique: First, an expression for the transport property must be
given in terms of some microscopic quantities, which can be obtained
from the simulation method. For example, the effective dielectric
constant €o of a composite material is obtained via the polarization of
sample and the electric field. The polari.zation is defined as the
total dipole moment per unit volume. Here the microscopic quantity is
the dipole moment on each inclusion. Second, a simulation method must

be developed to evaluate these microscopic quantities.

The method we present is a combination of an analytic calculation
and a numerical simulation, which we will refer to as an
analytic-simulation method. It is exact in principle. For the given

dielectric constants of the inclusion and matrix, the sizes, shapes,
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volume fraction ¢ and distribution in space of the inclusions it will
yield €q to the accuracy implied by a finite size simulation of an

infinite material.

In order to evaluate an accurate Ee’ we employ a technique
similar to the method used by Lebenhaft and Kapral in their study of
diffusion-controlled reactionsa. For a given configuration of
inclusions, a set of coupled linear equations for the multipole moments
of the polarization of the inclusions can be written in terms of the
t-operators of each inclusion and the propagator between pairs of the
inclusions. The total polarization of the sample is obtained by matrix
algebra. The multipole expansion for the polarization is required to
convert the coupled integral equations for the inclusion polarizations
to linear algebraic equations. The t-operator gives the response of
the ith inclusion to an "arbitrary field", which arises from the
external field and all the inclusions excluding the ith inclusion.
Correlations among the inclusions are exactly accounted for with this
method. For high volume fractions of the inclusions it is necessary to
be concerned with the higher multipole contributions for the
calculation of an accurate effective dielectric constant. A systematic
and direct method is used to solve these linear coupled equations, Eq.
(3.19). In the following, numerical results for some special models
will illustrate the importance of multipole contributions to the

effective dielectric constant.

The simulations will be carried out by generating the inclusions

in a primary cell (typically using a Monte Carlo method) and
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periodically imaging the cell. We use a minimum image method to
evaluate the dipole moment and higher order multipoles of a given

inclusion inside the primary cell.

As the multipole moments are defined in terms of the propagator
1
tensors, the dipole field involves the dipole tensor W(—r—). This is

a long-ranged interaction and leads to conditional convergence of
dipole sums. Due to the long-ranged behavior of the dipole tensor, the
dielectric constant is not well-defined i.e. it is sample
shape-dependent in the thermodynamic limit. The lattice sum appr‘oach,
which employs a large number of periodic images of the primary cell and
involves an Ewald-summation method‘, has been used to represent the
dipole propagator in an efficient and rapidly convergent form.
Comparison is made between results based on the minimum image method

and the lattice-sum approach.

In the investigation of the optical properties of composite
materials, it is the frequency dependent effective dielectric constant
ee(u) that is experimentally probed. The absorption
lineshape-broadening and line-shift of the frequency dependent
dielectrié constant for composite ’materiala can also be studied by the
analytic-simulation method. The types of the configurations we
investigate include: randomized lattice, vacancy lattice, and mono- and

poly-disperse liquid-like structure.

The frequency dependent dielectric constant of the inclusions is

given by a Drude model, as appropriate to metallic inclusions. We find
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that the lineshape of the imaginary part of the effective dielectric

constant is greatly broadened by the allowance for the electrostatic
interactions among the inclusions in comparison with the

Maxwell-Garnett results.

The rest of our work is outlined as follows. In Chapter 2 we
review some methods for calculating the effective dielectric constant
of composite materials. The first section discusses the historical
development of the methods of calculation of the static dielectric
constant in random media. The second section contains an introduction
of the concept of the Drude model for a metallic inclusion and the
development of the frequency dependent dielectric constant in composite
materials. We also discuss the Quantum size effect that becomes
important for small particles. In C}iapter 3 the analytic development
of analytic-simulation method is presented in terms of the t-operator

’

or the polarizability of the inclusion and the propagator tensor g{% .
The relation between the microscopic dipole moments and the macroscopic
averaged polarization is discussed. The other part in this Chapter
discusses the properties of the dipolar tensors including the basic
idea of the lattice sum approach. In Chapter 4 we describe the
numerical simulation methods and introduce the different methods to
generate the different types of configurations. We extend the minimum
image method to calculate the dipole moments and higher order
multipoles for each inclusion. The rest of this Chapter demonstrates
the intent of the computer programs and lists the algorithm for

computations. In Chapter 5 we present the results for the different

physical models. First, in the static dielectric problem we use the
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analytic-simulation method to discuss the conducting case, the inverse
case and a composite-composite case. Then, the results from the random
walk method are compared with those of the analytic-simulation method
for the conducting case. The second section contains the calculation
of the frequency dependent dielectric constant for the different types
of configurations for a hypothetical and more realistic mode! of silver
in glass. Finally, we compare the results of the analytic-simulation
method using the minimum image method with the results of the
lattice-sum approach. Chapter 6 contains the conclusions and outlines
future applications of the method to composites with non-spherical
inclusions, electromagnetic . versus electrostatic effects and

wavevector-dependent effective transport coefficients.



2. HISTORY

2.1 DEVELOPMENT OF THE STATIC €o

Theories about the static dielectric constants of composite
materials have a long history. For this field there is a great deal of
literature reviewed by Landauer‘. In the following we will briefly

summarize some approaches to these problems.

A general expression fo.r the. dielectric virial coefficient for
the one inclusion problem was derived by Maxwell> in 1873. He
considered a spherical inclusion of dielectric constant 61 embedded in
a matrix of dielectric constant Eqe The dielectric constant €o of a
macroscopic sample of the material depends on the ratio €1/€2 and the
volume fraction of inclusions, & His formula takes into account the
induced dipole moments of the inclusions, and the ee is calculated by
taking the result from one inclusion and multiplying by the number
density of inclusions. This can be applied to obtain an accurate ee
for small volume fractions. For the dilute inclusion problem €q is
given by

ee/e =1+3a¢ (2.1)



‘1 - 52 4n 3
where @« = ——————— and ¢ = —s=— a” N. V is the volume of the system,
81 + 252 3v

a is the radius of inclusion, and N is the number of inclusions.

Maxwell-Garnett® presented an effective medium theory for the
calculation of ee. The € evaluated by this theory is identical to a
result from the Clausius-Mossotti formula’’®, In effective medium
theory the effective field applied on a given inclusion is defined as
the sum of an applied field and a field due to the polarizations
induced on the other inclusions. The matrix is thought of as a
homogeneous polarized medium surrounding the inclusions. This leads to

an expression

(€g-€5) (€ -¢€)

"
b

(2.2)

(ee+2e2)

called the Maxwell-Garnett or Clausius-Mossotti formula.

A similar expression was also obtained by Bruggeman 9. He
iterated the polarization of the inclusions and the matrix until the
average net polarization vanishes. It is a self-consistent field
calculation. He employed this method to improve the Clausius-Mossotti

result. The formal expression is

(e, -€ ) (e, -€ )
[ ) ) ]¢+[ 2 e ](1-4.):0 (2.3)
(e1+2£e) (ez+2£e)
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This treats the two phases in a symmetric fashion.

These mean field theories neglect the correlations among the
inclusions, which become important at high volume fractions of
inclusions. Certainly, these theories have the virture of simplicity
and give physically meaningful results over the entire range pf volume
fractions. However, it is necessary to ascertain whether ee can be

calculated accurately by these theories.

€q can be expressed as an expansion in the volume fractions of

inclusions. It is a virial series :

/€, = 1+AG+ AN 4 . (2.4)

Batchelor '° discussed the calculation of the second virial coefficient.
The second virial coefficient involves the two-body distribution
function and reflects the local structure of the system. In 1968,
Levine and McQuarrie“ obtained the polarizability of metallic spheres
embedded in insulating medium by solving Laplace’s equation in
bispherical coordinates to get an exact second dielectric virial
coefficient. In 1973 Jeffrey12 expanded‘ the work of Maxwell to second
order by using Batchelor’s *° method, which reduced the problem to a
consideration of interactions between pairs of spheres, in order to
avoid the cc;nvergence difficulties. He used a twin spherical harmonics
expansion due to Raosa‘13 to solve the two-spheres Laplace problem. In

Jeffrey’s work the second dielectric virial qoefficient A 2

corresponding to thermal conduction, is evaluated explicitly for all
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values of the ratio of conductivities of the two phases.

Subsequently, Felderhof, Ford and Cohen'* developed a multiple
scattering expansion in order to obtain a formal expression for the
virial coefficients. They formulated an infinite system as an
expansion in cluster terms, each of which is absolutely convergent. By
rearrangement of the terms, corresponding to removing ‘the
depolarization effects, problems of conditional convergence never arise

in their problem.

Sridharan and Cukier:15 developed a t-operator multiple scattering
(e -¢€

theory for the Clausius-Mossotti function as a virial

expansion in terms of a reference medium dielectric constant € There
are several results obtained from their expressions. When they neglect
the correlations among the inclusions and €n is set to be equal to the
medium dielectric constant 62, they get the Clausius-Mossotti formula.
When em is set to the effective dielectric constant ee, the Bruggeman
result is established. As the correlations among inclusions are
considered, the qocond virial coefficient is able to be calculated
exactly when we set emzez. Another result also can be obtained with
emzee called pair order effective medium theory. It is not possible to
get results without an approximate evaluation of the formal expression.
This theory generalizes Bruggeman’s self-consistent lowest order
theory. However, the shortcoming of this theory is the difficulty of

evaluating the results even at pair order.
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Because the virial diagrammatic expansion has not been carried
out beyond the second virial coefficient, it is restricted to low
volume fractions. Meanwhile, the self-consistent expansion is not well
controlled. This theory is limited to spherical inclusions and to
static material properties. The evaluation of this theory for
arbitrarily shaped inclusions and frequency dependent material

properties has not been carried out.

A variational approach leading to upper and lower bounds for the
effective material properties was developed by Hashin and Shtrikman'®.
For a two-phase problem the bounds for €, are in terms of the ratio
el/t:2 and ¢ When the ratio, 81/82, is extremely large or small, the
bounds are far apart for moderate volume fractions. The variational

approach is summarized in the literature ' .

In 1892 Rayleizh18 solved the partial differential equation to
second order for periodically arranged conductors and provided results
for a wide range of conductivity and the entire range of volume
fraction. McPhedran and McKenzie'® extended his method to calculate
the conductivity of periodic lattices consisting of conducting spheres
in an insulating matrix. They solved the problem by a potential and
. field expansion on each sphere and obtained the expansion coefficients
of the fields. They were able to include multipolar effects to very
high order. Their results for the conductivity of a regular array of
spheres yield good agreement between theory and experimental
measurementszo, even when the volume fraction approaches a lattice

close packed value.
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2.2 DEVELOPMENT OF THE FREQUENCY DEPENDENT Ee((o)
2.2.1 DRUDE FUNCTION FOR METALLIC INCLUSION

The development of frequency dependenf dielectric properties
starts from the assumption of the Drude?' model for the dielectric
constant of metallic inclusions. If the inclusions are so small that
the quantum size effect comes out, then Drude model can no longer be
used. Let us consider a system consisting of spherical inclusions of
radius "a" embedded in a homogeneous medium with dielectric constant
el(o). If the absorption of the medium can be neglected €, is
frequency independent and therefore real. For example, the medium

22,25 23,24

could be a ceramic y glass ’ KClzs, gelatinzs and so on. The

definition of the Drude model for the dielectric constant of metallic

inclusions is

02

(W) = €, - P_ (2.5)
1 1o w(w+il)

where ela° is the (complex) high-frequency dielectric constant, (elc =
el‘; + i elg), up is the plasma frequency, which is the natural

frequency of the density fluctuation for the free electron in bulk

metal, and I is the damping constant or width, defined as
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- " .
= L I‘ib 2 ¥t € . (2.6)

where W is the resonant frequency and L is the damping constant for a

. " . . . 26
radius "a" of inclusion given by

LR P VF/a. (2.7)
where 1 is the bulk damping constant, VF is the Fermi velocity, and
rib is the interband contribution. The Drude model provides that the
dielectric constant of metal inclusion is a function of the frequency
and the damping constant T. The dielectric constant can also be
written in terms of the frequency dependent conductivity o(w)

i o(w)
€. (W) = €, - —m—— (2.8)
1 1o ©
For one inclusion effect, the frequency independent €q is replaced by
ee(u) in Eq. (2.1). By combining Eqs. (2.1) and (2.5), the effective
dielectric constant ee(w) has an absorption peak of width I' centered at

the approximate resonant frequency

[0
o = P (2.9)

' 1/2
( €1Q+ 2 €y )

When the Clausius-Mossotti (CM) or Maxwell-Garnett (MG) expression is

applied for ¢ e(u), we can write the CM formula as
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(€ (w) -€,) (e (w) -€,)
e 2 - 1 2 ® (2.10)
( ee(m) + 252 ) ( el(u) + 252 )

Eqs. (2.5) and (2.10) show that the lineshape is similar to a

Lorentzian distribution with its absorption peak centered around

1/2
(1-9)
(2.11)

W=

P © (1=
€io (170 ) + ((240) ¢,

The width is independent of the volume fraction of inclusions. These
approximate expressions result from the conditions I' << wp and Wy >
—lz‘—. The CM results predict that there is a shift of the line to lower

frequency due to increasing ¢ and no line broadening since the width

does not change.

The description of electromagnetic propagation and the
investigation of the optical properties of composite materials in terms
of the properties of the dielectric constants of the components and the
volume fraction of the inclusions have been done both experimentally

1,27

and theoretically . One of the key issues involves the broadening

of the spectrum due to the effect of interactions among the inclusions.

Kreibig28 calculated ee(u) for silver in gelatin by using the
average-t-matrix approximation (ATA)G. The ATA is also a
Maxwell-Garnett approximation, corresponding to obtaining an accurate

result at low & Another approach is the Coherent Potential
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Approximation (CPA). The CPA corresponds to Bruggeman’s effective
medium theoryg. These approximations have the common properties : 1)
They are long-wavelength approximations. 2) The scattering process is
only dipole, because this is one sphere problem and the response is to
a constant applied field. 3) The structural information is only the

volume fraction of inclusions.

The interesting problems are related to the strong scattering
properties and the higher volume fractions of inclusions. Davis and
Schwartz?°* employed multiple scattering theory to evaluate ee(w) for a
disordered system with spherical inclusions at quite high ¢. They used
Lax’'s quasicrystalline approximation (QCA)ZS, which is known as
the Maxwell-Garnett approximation, and compared with the application of

Roth’s effective medium approximation (EMA)ao':”. The EMA provides a

complete description of the spatial correlations of the inclusions but
not the electromagnetic correlations, and an accurate description of

the plasma resonance in composite problems. They found that the EMA is

better than the QCA.

Felderhof and Jorxesz3 calculated ee(w) for silver in glass or
water by a cluster expansion technique, which is combined with a
spectral representation analysis based on the work by Bergmanaz. The
ee(u) in Bergman representation is an integral of Hilbert type with a
spectral density determined by the statistical geometry of the
configurations, and is accurate to second order in ¢. The results
obtained by them assume dipolar .intersphere interactions, and neglect

higher multipolar interactions. From section 2.1, note that it is
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necessary to include the higher order multipolar effects during the
calculation of the static dielectric quantities at high ¢. For
example, the contributions from all multipoles to the second dielectric
virial coefficient are roughly double that of the dipole contributions.
Meanwhile, theyza found that around the resonance peak the dipolar
interaction term dominates the multipolar contributions. They predict
that when the distance between the pairs of inclusions is roughly equal

-1/3

1/3
a¢

to the mean pair separation, d = (1-¢) , (a is the radius of
inclusions) only pairs of inclusions dominate the line-broadening and
line-shift of resonance. The dipolar approximation is quite accurate
for ee(u) at large pair separation or at low & At high ¢ due to the

contributions of the electrostatic interactions between inclusions the

absorption peak differs from that at low ¢.

Kantor and Bergman2 also used Bergman’s spectral representation
and an expansion in spherical harmonics in order to describe the
interactions among the inclusions. They derived an exact theory for
calculating ee(w) for composites. Their theory is not restricted to

lower order interactions between inclusions.

2.2.2 THE QUANTUM SIZE EFFECT OF ee(u)

33,34 (QSE)

What is the quantum size effect? Quantum size effects
occur when the inclusion size is so small that the material properties
( e.g. el(u) ) do depend on size because of the discreteness of the

energy levels, yet it is still useful to describe the inclusion in
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terms of a macroscopic material property.

From the expression Eq. (2.6), L is larger than Yo due to the

\"
finite size of inclusion or the term —aE. The size of inclusion

controls the value of Vg Consequently, the width I' is dominated by
ra. Therefore, the Drude model of el(w) is size dependent and ee(w) is
too. The interesting problem is how ee(o)) is affected as the inclusion

size decreases.

"As the particle size continues to decrease to the tens of
angstrom range, new phenomena involving quantum physics,
electromagnetics, and hydrodynamics are still to be explored." 38 For
very small inclusions of equal size and shape, the plasma resonance
absorption shifts and broadens, and shows fine structure corresponding
to transitions between discrete conduction band energy levels. Two
main effects on optical properties may occur as a function of size: a
shift of the peak and a change in the width. There are two expressions
for the dielectric constant: the classical Drude model used with a size
limited mean free path and the quantum mechanical theory of Kawabata
and Kubo > accounting for quantum size effects. If the inclusions are

so small that the Drude model can no longer be used, the dielectric

constant should take quantum size effects into account.

Frohlich®’ pointed out in 1937 that the continuous electronic
conduction band of a metal should break up into observable discrete

states when the dimension of the metal become small enough. Kubo 3s
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formulated this problem quantitatively in 1962 and observed these
quantum size effects. Both theoretical and experimental results on
these problems have been reviewed by Kreibig and Genzelas. There are
quantum mechanical and classical models used to explain the changes in
the optical properties as the size of particle decreases. In the
clasgical model, the damping constant in the Drude free electron
theory, which is the inverse of the collision time for conduction
electrons, is increased due to increasing collisions with the boundary
of the particles. In quantum mechanical model, Kawabata and Kubo 39
have argued that the optical spectrum should be discrete with the
spacing increasing as the particle size decreases. The width of the
resonance should be described as due to the plasma mode damping which
resultes from the excitation of one-particle modes. The peak width
predicted by the quantum mechanical model is in better agreement with
experiment33 than that predicted from the size-dependent Drude model,

where the size dependence arises from the classical limitation of the

electrons’ mean free paths.



3. ANALYTIC DEVELOPMENT

We study the problem of the effective transport properties of
small material inclusions dispersed in a dielectric host. We use a
method similar to that used by Lebenhaft and Kapral in a
reaction-diffusion problema. Let us consider a system consisting of N
non-overlapping spherical inclusions of .dielectric constant € and

radius "a" embedded in a composite medium of the dielectric constant €

all within a volume V.

If one attempts to impose an external electric field on such a
heterogeneous material, it is important to understand the response of
the system and that of the inclusions due to an external field. For
instance, in rather dilute media, since the inclusion separation is
quite large, there is little difference between the macroscopic
electric field of the system and that incident on every inclusion. But
in dense media due to the closeness of the inclusions, the polarization

of neighboring inclusions induces an internal field Ei at any given

inclusion in addition to the average macroscopic electric field of the
systen;. The induced dipole moment is proportional to the electric
field acting on the inclusions. The polarizability of an inclusion, «,
is defined as the ratio of the average polarization to the total

applied field on the inclusions. Thus, the inclusion’s polarizability

20
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characterizes the capacities of the response to an applied field for

inclusionas.

The approach is: First, the microscopic induced dipole moments of
the inclusions must be addressed by an analytic method. Then, the
effective dielectric constant has to be obtained by relating the
ensemble average of the total polarization and the macroscopic electric

field.

3.1 THE PRINCIPAL EQUATION

According to the electrostatic broblem, the material equation for

the electric potential, y(r), is
v - (elr) Y9(r)) = S(r) (3.1)

where e(n:) = el ( ez ) for r inside ( outside ) any of inclusions, and
S(x‘:) is a source term, which is independent of the positions of the
inclusions. For convenience, let 55(5) = e(x:')-ez. It :; is inside an
inclusion, 56(5) equals ¢

1-62; otherwise it is zero. Rewriting Eq.

(3.1) by using the defiﬁition Se(r) yields

e V2 W(r) = - 9 - [ Se(r) Y w(r) ] + S(r) (3.2)
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This alternative permits us to introduce the medium propagator,
corresponding to the inverse of the operator 8272. Let us take the
gradient of Eq. (3.2) and solve it formally to get
E(r) = j dr'g(|r-r'|) V'V - [8e(r’) E(r’)] + E_(r) (3.3)

The electric field in Eq. (3.3) has been defined as

E(r) = - ¥ w(r), (3.4)

the propagator in the medium is

g(r) = (4m:2r)'1, (3.5)
and the external source field E:o(f) is

Etr) = ¥ [ ar'allz-r' D) st (3.6
Then, integrating Eq. (3.3) by parts, we have

E(r) = I dr'G(|r-r’[) - Se(r’) E(r’) + .Po(f) (3.7

where
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1
G(lr]) = 99 g(r) = B(r) - 5~ 1 8(r) (3.8)
r M gir A R
1 ~ -
Br) = -————5(1-3rr) (3.9)
~ 41(52 r

-

B(r) is a dipole propagator for r # 0. r is a unit vector of r. = We
only need (_}(Irl) for r # 0, so that the &-function in Eq. (3.8) is

dropped. Therefore, the electric field is given in terms of dipole

propagators and Se(r), the response of the inclusion due to Eo(r).

In order to get an expression for the effective dielectric
constant, ee or ee(u), we define a polarization related to the electric

field by 8€(r)
N
P = 8e(r) E(r) = T W(r), (3.10)

where we anticipate that in isotropic media the polarization and field
are parallel. The last equality is the sum of the polarization of the

inclusions over the N inclusions. Because &¢(r) is zero outside the

inclusion, the ui(r) is non-zero only inside the ith inclusion.

We review the theory developed by Sridharan and Cukier 15. It is
an application of the t-operator method expressed as a multipole

expansion. First, we express the { ui(r) } in terms of the

“~ht ~
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one-inclusion scattering operator :_,i(r,r'), then we write ui(r) to be

o) = [ e e - By pete) (3.11)

~l o ~

"

Here E:i,eff(f) is the effective

field at r that arises from the
presence of all the inclusions excluding the ith. From the perspective
of the ith inclusion, all the other inclusions serve to produce a field

?i,eff(f)’ which acts on the ith inclusion. Hence, the field E:i,eff(f)

is given by
N .
Bt = Bl + L [ art gz D) - ayien (3.12)

We use the solution of the electrostatic problem of one inclusion’s

response to an external field Eo(r) to obtain an expression for

t.(r,r’) as a multipole expansion and we haveis'*

=1 &'

8

e (v sr-r) 0 (v)% 50’ -Ry (3.13)

P

~ ~ _0

¥ The multipole expansion for the t-operator is defined as:

B ond 4 . ’ ’ .
i £ = 3 0 @™ (o tvae-mie) e -ry),

’

where j,u is a tensor of rank (£+£’'+2). As 26(. is constructed as:

L’ _ L
taﬂ.uu---uvv--'v,‘t 6 "suv ‘Suv‘saﬁ
172 271 2 £ 11 272

this yields Eq. (3.13).
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where Ri is the center of the ith inclusion relative to an arbitrary
. . £ "L, .

origin. The term ( ¥V ) G(r-Ri)O( v ) 78(r -Ri) involves the £th order

gradient with respect to r of a &-function centered at Ri fully

contracted with the corresponding {th order gradient with respect to r’

to give a scalar. The operator © means the contraction of two tensors.

For a spherical inclusion, tf’c is given in terms of the

polarizability of inclusion, xpy to be

[+ 4

2+1
&£ - (3.14)
! [ (£+41)! (2€+1)!! ]
and

L (€, -¢€,)

2~ &

a, = a(2t+1) (3.15)

51£+ez(€+1)

Qi(r,r') is proportional to the unit tensor ,L and only the terms tfc

exist in Eq. (3.13), as tg'(' = 0 for £ # &'. This simplification is
only obtained for the spherical inclusion problem and since the Egq.

(3.1) is a scalar Maxwell equation.

By combining Eqs. (3.11) and (3.12), an important equation can be

produced as
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(g
—

(r,r’)

(e}
[ e ]

- -~ ~

N
te = [ geen e o3 [oar [ oar

(_j(lf’-r"l) . uJ.(r"). (3.16)

~ ~ ~

The first term of the right hand side in Eq. (3.16) describes the

single inclusion’s polarization induced by the applied field Eo(r).
The second terms imply that the modification of the { ui(r) } arises

from the interaction among the inclusions. As an important issue, let
us consider the effects on the ith inclusion, as arising from an
external field due to the other inclusion. In other words, the
inclusions j # i set up some field that the ith inclusion feels. The

;i(r,r') operator gives the response of the ith inclusion to this

field.

Eq. (3.16) is an integral representation for the { ui(r) }; given

in terms of the one-inclusion t operator, the dipole propagator CE and

the external applied field. In order to obtain ( ui(r) }, if we assume
Li(r,r') is known as a multipole expansion such as Eq. (3.13) and if we

express ui(r) as a multipole expansion,

®
p(r) = Y (-1)c @n! ;f o ¥ 5(r-R,), (3.17)
£=0 ~1 ~ ~ ~1

~1l o

then we might be able to obtain a set of coupled algebraic equations

for the multipole moments of the ui(r). Here the multipole moment ’uf'
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is an (£+1)th rank tensor for each Cartesian component (“i)u (v = x, vy,

z) of the vector ui(r). It is defined by

~d

4

u. = dr y.(r) v . sccv-- r (3.18)
“I’DI'UZ'UB' Wy N L v2 Ve

Where v - - Ve each run on the cartesian indices x, y, z and we have

1
set Ri= 0. Note that u{;’ is independent of r and it is a constant.

~

Substituting the multipole expansion of Eqs. (3.13) and (3.18) in

Eq. (3.16), and equating terms of equal orders in ( V )€5(r-Ri) yields

the main analytic equation

® N
E + tuz

4
M. = ine
~1 (-0 ~0 CI =0 1

00 2N e’
2 [ci 5 L G (|§ij|) ° u; ] (3.19)

The first term on the right hand side involves the assumption that

Eo(r) is a constant external field, Eo' This is to correspond to the
standard experimental situation. The quantity Gu( IRijI) depends only
on the center to center distance lRijI = | R, - le between the ith and

jth inclusions and is defined as

e Lo
=V v -r’ , . .
¢ By =TT TG | jrep gz m (3.20)

It is a rank ( ¢+{’'+2) propagator tensor.
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The reason that we use the multipole expansion in this problem is
to reduce the coupled integral equations to coupled algebraic equations
which can be solved easily. In practice, the problem becomes
numerically large, since for N inclusions, we have to solve the linear
algebraic equations, and to get convergence { may have to be quite

large.

In order to relate { uio } to the ee’ we need to define a

macroscopic parameter, Q, called the average polarizability tensor,

which- connects the mean polarization to the external electric field.

The mean polarization is written as

1 N o
< Loy > = @ Ej (3.21)
e,V i=1
2
1
Due to the dipole propagator’s 3~ range, the polarization depends on
r

the macroscopic system’s shape. @ is a shape-dependent polarizability
tensor, but ee cannot be shape dependentw. Macroscopic electrostatics
provides the connection between @ and eew. I-‘immm“1 has provided a

clear discussion of this connection. For a spherical macroscopic

system, the relation is given as

e 2 ) Q
T 2 = 5 (3.22)
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1
where Q = 3 Tr( Q@ ).

Other macroscopic geometries lead to other functional dependences
of Ce on 9, but @ also changes and the result will always be that Ee is
independent of the shape of the macroscopic sample. The value of €q is

determined as well by this relation, since we can evaluate @ from Egs.

(3.17), (3.19) and (3.21).

3.2 DIPOLE TENSOR W (r )

When we attempt to calculate the effective dielectric constant of
a system, we must solve the set of equations Eq. (3.19), which includes
the dipole propagator C_ioo acting between the inclusions. A source of
difficulty is the long-ranged nature of the dipole field. Since these
equations involve the long-ranged dipole-dipole ir;teraction operator,

1
w (—r'), summation over the inclusion separations leads to a

~

conditionally convergent, sample shape-dependent sum. Qualitatively,
if a divergence can be subtracted from the given conditionally
convergent integral to get another conditionally convergent integral
whose integrand has the same asymptotic behavior as the integrand of
the original integral, then the ensemble average of the given integral
i8 unchanged, but the divergent behavior of the integrand is removed.

The result is well-defined.

For a finite system the dipole tensor is well defined. However,
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in order to coincide with the thermodynamic limit, N — ® V — ® and
N/V = constant, the present consideration must apply to an infinite
system. To include the long range interactions, we calculate the
interactions of the dipoles and higher-order multipoles under periodic
boundary conditions, where a primary cell is periodically imaged to
form a large spherical (or ellipsoidal) supercell surrounded by wvacuum
(see Figure 3.1). Macroscopic electrostatics can be applied to the
supercell. We proceed to sum the interactions by the Ewald method ‘,
and to obtain the effective dipole propagators by the lattice sum

approach‘z.

The dipole propagator evaluated at the positions i and j is

1
r:-vv{———] (0.29
~ ~ lr‘ijl
with | Eijl = | Ej-fil .

As we develop the dipole propagator over all the images, we can

express the dipole propagator as the following

g 1
I=2{'Yf[—]} (3.24)
n | Ry; |

A -~

.+n|,andn:nx1+nyJ+nzk. Herenx,ny,

Here, | Ry; |=] rj - r;

n  are arbitary integers, and n = 0 corresponds to the primary cell.
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Figure 3.1 Spheroidal macroscopic sample consists of supercells and

the center heavy line is the primary cell.
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The prime on the sum indicates that if i = j, the n = 0 should be

omitted.
1
By applying the two grads on =——— in Eq. (3.24), we obtain
Rij
. l 3(Eij+n)(5i,j+n)
T = 2 - (3.25)
- lr..,+n |3 | .. +n |°
n o1 i

In such circumstances, there are two isgues: (1) The existence of
the sum and (2) The shape-dependent effects of the thermodynamic limit.

1

As we can see, T has a singularity at RiJ: 0 and the integrand | 3
- - IR, .
~ij

is shgpe-dependent at Rij — the boundary.

The lattice sum of the dipole propagator in Eq. (3.25) is
conditionally convergent. Both sums in Eq. (3.25) diverge
independently. So it is important to use a summation method to adjust

the cancellation of the divergences"‘z.

Let us multiply the terms of the conditionally convergent series

by a convergence factor exp(-slnlz). We may write Eq. (3.25) as

' 1 3yl y+n) —afn|?
T = 2 = - - e (3.26)
- | r.. +n | | r.. +n | :
n ~ij ~ij
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Then we expand these sums as power series in s and subsequently take

the limit s — 0 to obtain convergent results.

We start with a general form

Then Eq. (3.27) multiplied by exp(-s|n|? is

-2x _-s|n|?
+n | e .

o (rpx) =L |ry

n

Henceforth, lim ¢ ( L.oony X ) = & !:i" n, x ).
s=20 ~H ~H

We introduce the identities”' :

1 ®

: 2

-2Z _ Z-1 -R"t

R = —I'(Z) J dt t e .
0

By wusing Eq. (3.30), we -express Eq. (3.28) as

representation

®»
2 2
J at *°1 o~Irgynl”t g-sin]

0

. ’ 1
¢(fij'x):§ T(x)

(3.27)

(3.28)

(3.29)

(3.30)

the integral

(3.31)

Another important identity is the Jacobi transformation *>®, This
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transformation serves to invert the lattice space sum from the
coordinate space to the reciprocal space, wherein the lattice vectors

are k = 2t n .

® 2 n ® 2 2 .
Y e_ll:"'nl oy < )32 ) el TR/ttiZnanr) (3.32)

n=-o n=-o®

Applying the Jacobi transformation, we rewrite the integral of Eq.

(3.31) (assuming rij* 0) as

»
’ 1 n
- x-1 3/2
¢(Eu.n.x)-§ F(x)Jdtt [(—)

2 2 : 2
NS W n-l:ij)] o~8Inl (3.33)

In Eq. (3.33) the integral of t* °’/2

is an analytic function for x >
3/2. For x £ 3/2, there is a singularity as t — 0. We split the
integral in Eq. (3.33) into two parts. The integral of the first part

is from o® to ® , with az an arbitrary value. The second one is over

the range (0 , Gz)-

Now, we are able to integrate Eq. (3.33) over (az, ®) and take
the limit 8 — 0 without difficulty. The divergence is due to the
second integral at t = 0 so that in k space we subtract this term at k

=0 (n = 0) from the integrand and add it on again as a separate term.



35
In other words, the divergent behavior is due to the lattice sum over

the whole r space at large r, k — 0 in reciprocal space, which causes

the shape-dependent effect of the problem. At n = 0 (k = 0) the

~

transformed sum yields the shape-dependent term. For instance, for a

spherical supercell, the shape-dependent term is 4’; l,asr — o,

For rij: 0 , then n must have a nonzero value. But it is

necessary to include n = 0 term during a Jacobi transformation, and to

do that we add a contribution from n = 0 in r space in the second part,

and subtract again the same term , which can been evaluated to produce
3
4 a

the self-term operator of the inclusion, l,atr =0,

3{n ~ ~ -

From Appendix A we obtain the two different dipole propagators:

(1) T dift is the dipole propagator for the different dipoles, T # 0.

and (2) T self is the self-dipole propagator for the dipole and the

image dipole, rij: 0.

Idiffzz { '

n ~1J

3(r..+n)(r..+n)
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2 2
nn
4nnn (- ) . . in
+ — o2 lEmmer) 1. (3.34)
n#0 |n| 3
and
1 3 nn
T self = | |3 B(x|n|) - TIT;- C(a|n})
n#0 n
nznz \
4ntnn (- 2 ) 4n {a
+ ———— e a + ( - ) ; . (3.35)

Here, B(x) erfc(x) +

C(x)

B(x) +
34] n

where erfc(x) is the complementary error function.

The Jacobi transformations of the calculations have exponentials
which decay as fast as exp(-nzu) to produce rapid convergence compared
with that in r space. By means of the integrand splitting and the
transformation, it has been shown that the integrals are quickly

convergent as erfc(x) in r space and exp(-nzn) in k space.

In practice, the rate of com?ergence of the sum depends upon the
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choice of the « value. We choose « to be 5 or =.

When we increase the number of supercells in r space, the
dielectric constant does not change significantly, because erfc(x)
decays quickly in the primary cell. Relatively, erfc(x) decays faster
than exp(-nzn). such that it is important to add enough supercells in k
space to get an accurate result. When the n value in k space is

increased to 4 the results are quite stable and convergent.



4. NUMERICAL METHOD

We summarize the techniques of the simulations in the following.
The different methods of generating the configurations and the boundary

conditions on the system will be discussed.

4.1 METHODS OF GENERATING CONFIGURATIONS

Conventionally, there are several ways to generate the relevant
fluid-like configurations for these calculations. In this section, the
methods which we use are listed as follows. Generally speaking, when
the volume fraction of the system islless than 0.1, the immediate
method (see below) is more efficient; when the volume fraction is
greater than 0.1, the Metropolis method" is a good candidate. Some
methods for generating configurations with other types of disorders

also are developed.

4.1.1 IMMEDIATE METHOD

3

Let us consider either a spherical system with volume gn R
where R is the radius of system, and the center point of the spherical

system is at (R, R, R), or a cubic system with the side of length 2R.
38
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A sequence of random numbers between one and zero have to be assigned
as the coordinates of the centers for N inclusions of radius "a" inside
the given system. The configurations must satisfy the conditions: (1)
no inclusion is outside the system. That is, if the minimum distance,
D, between the center of spherical system and the center of the
generated inclusion is equal or less than the radius of spherical
system, R, we accept it. Otherwise, we reject it and generate a new
inclusion repeatly until D < R. (2) inclusions cannot overlap with
each other. A new inclusion can not overlap with any other inclusions
which are already in the system; otherwise we will reject it and try a

new one.

An important feature of this method is that a boundary effect
appears when the volume fraction increases. Because the excluded
volume effects have most of the inclusions generated on the edge of
system, about 50% of the inclusions gather on the surface. This is due
to a small finite volume system. When we employ these configurations
to evaluate any quantities, the statistical error becomes large. This
is not true for a real system, because for a real system the inclusions

do not gather on the edge of the system at low ¢.

At lower volume fractions ¢ < 0.1 we can directly generate the
inclusions in an empty spherical or cubic system without difficulties.

This immediate method is efficient.
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4.1.2 METROPOLIS METHOD

In contrast, for a higher volume fraction configuration, it
becomes gradually more difficult to throw these inclusions one by one
into a system, because the rate of overlapping is rising. In addition,
at higher volume fractions ¢ > 0.1, periodic boundary condition must be
used to minimize boundary effects. We must: (1) set up a cell with
length, L, containing N inclusions. (2) duplicate such a cell —
called the primary cell — in all directions to provide the
conventional periodic boundary conditions. The initial configuration
is established by placing the inclusions randomly inside the primary
cell or choosing a lattice structure, i.e. simple cubic or
face-centered cubic, and then equilibrating such a configuration by

using the Metropolis algorithm“ to correspond to a hard sphere fluid.

The Metropolis procedure consists of moving an inclusion to a new
position at random. The new position is accepted only if the ith
inclusion does not overlap with any other inclusions already placed in
the primary cell and its periodic images. The density is conserved
because when an inclusion moves out across the surface o_f the cell,
then another will move into the cell from the opposite surface. Thus
if the position of an inclusion’s center is outside the primary cell,
it is brought inside the primary cell by translating it by £ L, where L
is the length of the cell. This procedure of randomly moving, checking
overlap and translating into the primary cell is repeated for each
inclusion inside the primary cell. One attempt to move each inclusion

is called one Monte Carlo step (MCS).
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In order to provide equilibration, the acceptance rate for the
Monte Carlo moves is chosen to be about 50% and the maximum step size
for one Monte Carlo step is determined. If after such a move an
inclusion happens to overlap with another inclusion, we place it in its

original position.

For higher volume fractions ¢ 2 0.3 the configurations are
started from a lattice structure, and run for several million
configurations (typically 106 x N MCS) to equilibrate. For the volume
fractions between 0.1 and 0.2 the configurations are started as
generated from the immediate method, and equilibrated for 103 x N MCS
initially. After such an initial eqﬁilibration, these configurations
have been selected at intervals of 102 x N MCS apart. This is in order
to establish a Markov chain of configurations, thereby eliminating

correlations among the configurations.

To check that these configurations correspond to a fluid,
the pair distribution functions for these configurations have been
calculated. A similar case, the pair distribution function for a hard
sphere fluid has been evaluated by Alder et al.“’ in 1954, and by

Henderson46 to higher precision.

The following outline describes how to measure the pair

distribution function by the Monte Carlo method:

(1) In a generated configuration we choose each inclusion as

the central inclusion and evaluate, ni(r,dr), the density



(2)

(3)

(4)

12
of the inclusions in the ith shell of radius r and r+dr
centered around the central inclusion, normalized by the
total number of inclusions in the bulk.

The pair distribution function is defined as

1 m
g(r) = —=— _Zlni(r,dr) (4.1)
1=

where m is the number of configurations.

The number of configurations must be rather large in
order to reduce the statistical error. Repeat step (1) m
times, and sum ni(r,dr).

Average the sums over m to obtain g(r).

The comparison of our configurations with Henderson’s resi,\lt"i is

shown in Figure 4.1. This shows that our configurations are correct.

4.1.3 THE DISORDER OF CONFIGURATIONS

The effects on ee of other types of disordered configurations

have been investigated (see section 5.2). We will consider:

a) RANDOMIZED LATTICE

At volume fractions below ¢c: 0.524 (simple cubic lattice close

packed volume fraction), the inclusions are initially placed on a
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Figure 4.1 Comparison of the hard-sphere radial distribution

functions between our liquid-like structure and Henderson’s results.
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simple cubic lattice and are then displaced randomly within the
Wigner-Seitz primitive cell'’” centered on their respective lattice
cells. Here, a DS parameter is defined to control the degree of
randomness of a configuration. In a unit cell of side 1 let max = 0.5
- a, where a is the radius of inclusion. DS is the actual displacement
allowed in the randomization around the lattice position divided by
max. DS = O corresponds to the periodic lattice and DS = 1 the maximum

randomness.

When the volume fraction is above 0.524, we replace the simple
cubic lattice by a face-centered cubic lattice (fcc) and use the same
procedures. Note that the Wigner-Seitz primitive cell of the fcc
lattice is a rhombohedron. For convenience, we choose the biggest
sphere with ¢c= 0.74 (fcc close-packed volume fraction) instead of the

rhombohedral cell.

b) VACANCY LATTICE

Here we start with a lattice structure as in a). The inclusions
are deleted randomly and the size of the remaining inclusions is
expanded to regain the original volume fraction. The original volume
fractions must be smaller than the close packed volume fractions of the

lattice structures.
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4.1.4 MINIMUM IMAGE METHOD

In the previous sections, the system has either a spherical
boundary condition or a periodic boundary condition. In our
calculations, we have extended the periodic boundary condition by using
a minimum image method to evaluate the induced multipole moments for

each inclusion in the primary cell.

This method is to generate the inclusions in a primary cell and
duplicate its identical replicas throughout space. Then, the mutual
interaction between ith inclusion and jth is not restricted to be
within the primary cell. The ith inclusion is only allowed to interact
with those inclusions in the primary cell or the periodic replicas,
which are inside a radius R 2 L/2 of a sphere centered on the ith
inclugsion — image sphere. This method corresponds to setting a
spherical cutoff, R, for the pair interaction range. We have measured
the effective dielectric constant followed by changing the size of this
image sphere: 0.5L, L, and 1.5L. The results show that the effective
dielectric constants seem very stable with any size of image sphere.

This method provides accurate values for the induced multipole moments.

4.2 COMPUTATIONAL ALGORITHM

Now, we have to evaluate the induced’ dipole moment and higher
multipole moments for each inclusion in the primary cell by using the

minimum image method. We repeat this method for each inclusion inside
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the primary cell to yield a set of 3% N linear algebraic equations for

the induced multipole moments “f on each inclusion. Here n = ¢ +1 is

the nth multipole moment, and N is the number of inclusions inside the

primary cell.

The solution of the linear equations, Eq. (3.19), for the
multipole moments depends on the shape of the system, due to the
dipole-dipole interactions. That is, the second term on the right hand
side of Eq. (3.19) is conditionally convergent when the summation is
extended to an infinite system, for example, by using periodic boundary

condition. We have discused this problem in Chapter 3 and Appendix A.

We have evaluated the dielectric constants of a composite
material at the dipole level approximation using our minimum image
method and compared the results with those of Cichocki and Felderhof 49’
who used a version of the lattice sum method, and found that the
results afe in excellent agreement. We will show this comparison of
our results with those of Felderhof and Cichocki‘® for the frequency
dependent dielectric constants of a composite composed of metallic
inclugions in an insulating matrix evaluated at the dipole
approximation level in Chapter 5. The minimum image method is
considerably faster than lattice sum method; results for the system in
Chapter 5 are in accord with the minimum image method. We use it for

the simulations presented in our work.

In order to get dipole moments and higher multipoles, the
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propagators, gbﬁ (|r]), must be determined. We discuss the

construction of these tensors in Appendix B.

Now we must relate the microscopic dipole moments to the
macroscopic polarization of the sample. To do so we inscribe a sphere
of radius L/2 in the primary cell. The polarization of this sphere is
defined by the volume average of the sum of the dipole moments of the
inclusions inside the sphere. The macroscopic polarization is then
obtained by averaging the polarization over a suitable number of
configurations. Then, the ‘effective dielectric constant can be

evaluated with the use of Eqs. (3.21) and (3.22).

We have tested the convergence of the simulationa by changing the
number of inclusions in the primary cell. The dielectric constants
from three sets of numbers of inclusions: 25, 125 and 256 are nearly
independent of the number of inclusions. The spatial distribution of
the polarization was also monitored. The fluctuation of the
polarization is quite small throughout the space, even up to the edge

of the cell, indicating that the boundary effects are under control.

Computer programs have been written for the numerical
simulations. A listing of the programs is in Appendix C. These

programs are written in FORTRAN.

The program STDIEL is used to compute the static effective

dielectric constants (used in section 5.1). This program is written at
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the multipole level, expanding n up to 5. The multipole moments on the
inclusions are evaluated by the minimum image method. The matrix
equations are solved by using the LINPACK facilities. It is essential
to have sufficient memory space for storing the large matrices

generated by the multipolar expansion method.

The program FRQDIEL was written for the calculations of the
frequency dependent effective dielectric constants (used in section
5.2). This program is constructed at the dipole level. There are two
subroutines called LSMATRIX and MIMATRIX. LSMATRIX is used to compute
the dipole moments by the lattice sum approach. MIMATRIX uses the
minimum image method to compute the dipole moments. In the program
FRQDIEL complex matrices are created. Therefore, we solve these linear
complex equations by calling CSOLVQ, which is one of the routines in
the mathematical library (IMSL) of the FPS-164 Floating Point Systems

Attached Processor.

The statistical error analysis is addressed in both of programs.
The principle of the error analysis is the application of the
statistical standard deviation. For instance, if the measured quantity
and the number of measurements are respectively vx and m, the
statistical error is defined by64

m 2 1/2
ABS( ¥ x° -m <x>°)

5x izl (4.2)
m(m-1)
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m
Here <x> = Z x; /m. The larger the m value the smaller the error. In
i=1

our calculations m is chosen between 100 and 200, and our results are

quite stable.
The algorithm of the simulation procedures is summarized below:

(1) The configurations must be generated with the
information on the number of inclusions, the number of
configurations, the volume fraction, the radius of the
system, the radius of the inclusions and the positions of
the inclusions in x, y, z stored in "TININP".

(2) The parameters must be set: the number of ihclusiona, the
number of configurations, the radius of the inclusions,
the radius of the system, the volume fraction, the

dielectric constants : € ez and em, the magnitude of

1
the applied electric field, the convergence factor « the
frequency scanning range ( from BF to EF ), :---- and so
on stored in "TININ2".

(3) Data from (1) and (2) is read.

(4) The (_3 matrix and the constant parts, B, are created, i.e.
(,_} - 4 = B and the matrix equations are solved to obtain

all the multipole moments on the inclusions.

(5) For each run all of the dipole moments of the inclusions
are summed. The above steps from (3) to (5) are repeated
m times to accumulate the total dipole moments, then the

average of the total dipole moments for each run is



taken.

(6) €q is calculated according to Eqgs. (3.21) and (3.22),

then the error analysis is performed.

For convenience, we set the side of the system to be unity, and
fix the number of inclusions to vary the radius of inclusion in accord
with the desired volume fractions. In these programs the radius of
image sphere is set to be half of the side length. The x-component of
applied field is a constant, and the others are 0. The parameters have

been set in Chapter 5 according to these considerations.



5. RESULTS AND DISCUSSION

In this chapter, we will present results on the effective
dielectric constant of a composite material that are obtained by use of

the analytic-simulation method.

We simulate two properties of a composite material, the static
and frequency dependent dielectric constant. To address the former
problem, a multipole simulation of the static effective dielectric
constant ce is carried out. We study the effects of multipole moments
on the effective dielectric constant for a uniformly-conducting
inclusion case, the inverse case of insulating inclusions, and for
coated inclusions. Then we compare the results obtained from the
analytic-simulation of the uniformly conducting case with a random walk

method‘s' 50.

Another problem‘ is the calculation of the frequency dependent
effective dielectric cohstant, ee(u). Here, we will investigate the
effect of disordered configurations on the frequency dependent
effective dielectric constant. Thus, we consider systems, including a
randomized lattice, a vacancy lattice, random size-distributed fluids,
and real silver in glass. Finally we will compare the effective

dielectric constants, Ee(u) which result from both of the methods,

51
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the minimum image method and the lattice sum approach, discussed in
gection 3.2. The results presented below demonstrate the use of these

different models.

5.1 THE STATIC DIELECTRIC CONSTANT

We consider a system of N non-overlapping, spherical inclusions
of radius "a" and dielectric constant € embedded in a matrix phase of
dielectric constant € all within a volume V. In the current problem,
we attempt to calculate the effective vdielectric constants of composite
materials accurately, discuss the effects of multipoles on the ee' and
determine how the convergence of ‘the effective dielectric constant

depends upon the various physical models.

5.1.1 CONDUCTING INCLUSIONS

We first study perfectly conducting inclusions embedded in an
insulating matrix. In other words, the dielectric constant of the
inclusions is much larger than that of the matrix. A typical case, for
example, i8 a cermet, a ceramic matrix with metallic inclusions.
Analytic results of a similar multipole expansion method for € have
been obtained by Dukhin51 and M(:Phe,drtm19 for lattices. The computer
simulation of the conductivity of the simple cubic lattice by
McPhedranwb has a good convergence. Their calculation is restricted

for m = 0 component among the ( 2¢+1 ) moments for order £. McPhedran
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shows by direct comparision that the m#0 components do not contribute
to the dielectric constant for cubic lattices, though no proof of this
observation is available. For a random structure we find that the m #
0 components must be included. Since our interests are focused on
random systems with liquid-like volume fractions we must consider many
multipoles with all the m values included.

We choose the dielectric constant of the inclusions, € to be

1
108 and set the dielectric constant of the insulating matrix, 62’ equal
to 1. The volume fractions are chosen to produce fluid structure. The
range of the fluid structure is defined from a extremely dilute gas to
a liquid-solid compatible state, wher§ the volume fraction is about
0.45. We have implemented the calculations for multipole moments £

from 0 up to 4. For convenience, we set £ + 1 = n so that, for

example, n = 1 corresponds to the dipole term.

We carried out the simulations at seven volume fractions: ¢ =
0.001, o0.01, oO.1, 0.2, 0.3, 0.4, and 0.45. The results for ee as a
function of the number, n, of multipole moments versus the volume
fraction ¢ are shown in Figure 5.1. These have been compared with the
convergent results, corresponding to n — ® for a simple cubic lattice,
calculated by McPhedran and McKenziewb, which are indicated by the

solid curve in Figure 5.1.

As can be seen from Figure 5.1, for ¢ below 0.3, the interaction
among inclusions can be treated with dipole-dipole interactions only.

Thus, the calculation at the dipole level is enough to obtain an
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Figure 5.1 The effective dielectric constant eelez for conducting
inclusions (e1=103) embedded in an insulating matrix (e2=1) as a
function of the volume fraction ¢ for n=1(o), n=2(4), n=3(0), n=4(0),
and nz=5(V). The error bar is indicated. These results have been
compared with the exact results, indicated by the solid curve, for the

simple cubic lattice (n=®) calculated by McKenzie and McPhedran'“.
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accurate effective dielectric constant. As ¢ increases above 0.3, the
higher order interactions must be included. The results show that
multipole effects are important at high volume fractions. At ¢ higher
than 0.45, the n = 5 results do not converge. This conductor in
insulator case is the most difficult to converge as the electric field
in the gap between a pair of nearly touching inclusions has a very

rapid spatial variation.

5.1.2 AN INVERSE CASE

Figure 5.2 shows the inverse case of the previous uniform case,
where the system consists of poorly conducting inclusions in a

conducting medium.

The ratio of the effective dielectric constant to the dielectric
constant of metallic matrix, ee/ €, versus the volume fraction ¢ from
0.05 to 0.7 has been presented. The reason we can calculate the €q at
higher volume fractions in this case is that these insulating
inclusions avoid a divergence of ee. Physical models include

impurities in metals.

Comparison of the variation of t:e/e2 with increasing n indicates
that for n = 5, even when ezlel — ® , quite good convergence is
obtained even for ¢ near to the hexagonal close packed volume fraction
¢c = 0.74. In our calculation the highest ¢ is chosen to be 0.7, which

is between the random close packed ¢c = 0.63 and the hexagonal close
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Figure 5.2 The effective dielectric constant ee/f:2 of a system with
poorly-conducting inclusions (el=l) surrounded by conducting medium
(62=108) as a function of the volume fraction ¢ from 0.05 to 0.7 for

n=1(o), n=2(4), n=3(0), n=4(0), and n=5(9).
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packed ¢c = 0.74. The difference between the results with n = 4 and n
= 5 is very small, and cannot be resolved in Figure 5.2. From Figure
5.1 and Figure 5.2, explicitly, the effective dielectric constants of

the inverse case converge faster than those of the conducting case.

The rate of convergence of €q with n exhibits an even-odd pattern
at high ¢. It is important to realize that, in principle, the high
. density liquid structure is quite symmetric, and therefore most of the
contribution to the polarization is from the odd n multipoles. For
example, in a simple cubic lattice, due to the symmetrical structure,
the dipole moment at a given inclusion will have equal in magnitude but
opposite in sign contributions from symmetrically located pairs of

inclusions when n is even.

5.1.3 A SPECIAL CASE

From the results of the uniform case, when t:l/e2 — ®, the
effective dielectric constant will diverge at high ¢. It is
interesting to study how the closeness of the inclusions affects the
effective dielectric constant. We generate two sets of configurations:
one set at volume fraction ¢ = 0.4 and 0.6, and the other initially at
¢ = 0.5 and 0.7, but then the inclusions are shrunk sufficiently to
adjust the volume fraction to be ¢ = 0.4 and 0.6. A characteristic
feature of these two sets of configurations is the different value of

the closest distance between inclusions.
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We compare the results from these two different sets of
configuratio_ns in Table 1 with € = 100 and €, = 1. Clearly, by
directly generating configurations (the former method), the inclusions
can get closer than in the latter method. Thus, the effective
dielectric constant ee evaluated from the former configurations should
be higher than that from the latter configurations, as is borne out by
the data. Also, note that at the higher ¢ value, the difference
between n and n+l is much larger than low ¢ illustrating the
non-convergence of the multipole method at very high volume fractions.
This is similar to the case of oxide-coated metallic inclusion in
insulating matrix which we consider in the next section. The
conclusion there is that a thin layef (i.e. oxide-coated or insulating

material) is capable of preventing the divergence of the effective

dielectric constant arising from touching inclusions.

5.1.4 COATED INCLUSIONS

An interesting extension of our methodology is to consider a
problem of composite composites. In this section, we investigate the
effect on the ee of a coated-metal inclusion with an arbitrary

thickness of coating material.

That is, we consider spherical inclusions which are composed of
spherical layers. For example we consider the modification of the
effective dielectric constant by coating an inclusion with a thin layer

of material. The conductivity of the coating material is relatively



Table 1 ee/s2 for two sets of configurations: The 0.4/0.4 and
0.6/0.6 set is generated as for Figure 3.1. The 0.4/0.5 and 0.6/0.7
sets are generated at ¢ = 0.5 and 0.7 and the inclusions are then

shrunk to correspond to ¢ = 0.4 and 0.6, respectively.

n=1 n=2 n=3 n=4 n=>
0.4/0.4 2.9848 3.0705 3.1527 3.2069 3.2333
0.4/0.5 2.9562 3.0107 3.0631 3.0969 3.1121
0.6/0.6 5.4109 5.4764 5.6676 35.7692 6.1042

0.6/0.7 5.4121 5.4350 5.5822 3.5899 5.8884
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small compared with that of the medium, and the interior of the

inclusion is a good conductor. For parameter values we choose € =
108, €, = 1, and Em = 103, where 61, € refer, respectively, to the

2 2’ “m
dielectric constant of the metal inclusion, coating and medium. Now,
if the multipole polarizability for this composite inclusion is known,
then we can solve the problem. Let us define that the inner radius of
the composite as a, corresponding to a metal inclusion, and the outer
is R, for the metal inclusion and coating. The expression for the

multipolar polarizabilities of a composite inclusion has been given by

Maxwell5 as

28+1 2¢+1

£( v-1 Y{v( €+1 ) + W}R + Y pv){(L+ A &1 )})a

) (W L+l ) + pli{v( &+41 ) + &} + Y &1 )( v-p)( 1-v)(a/R)

% 22+1

(5.1)
Here u = el/em and v = ez/em. In Table 2 we list the data from the
simulations, the parameter values, and the volume fraction ¢i and ¢o
corresponding to the inner and outer sphere volume fractions. The
first three data sets are for a/R ~ 0.9999, a thin coating. Comparison
of Figure 5.1 (uniformly-conducting inclusion) and Figure 5.3 (this
case) shows that a thin, protective layer rapidly reduces the
dielectric constant relative to the uniform inclusion case. These
simulations also describe the effective thermal conductivity of
composites. This simulation method can be used to predict the
degeneration by oxidative coating of metal-insulating matrix
composites. Meanwhile, note that the multipole expansion for the
composite-composites converges at much higher volume fraction than

those for the uniform composite.
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Table 2 Ce/em for composite-composites. The first three data sets

are for a thin insulating coating; the final two are for a thick

insulating coating, as discussed in the text (u = 105, v = 10-3).

o./9 n=1 n= n=3 n=4 n=5

i’ "o
0.3999/0.4 2.4004 2.4263 2.4446 2.4538 2.4569
0.4499/0.45 2.7490 2.7838 2.8138 2.8315 2.8384
0.4999/0.5 3.1615 3.2067 3.2531 3.2844 3.2998
0.3/0.45 0.4567 0.4545 0.4510 0.4487 0.4475

0.4/0.45 0.4695 0.4666 0.4633 0.4611 0.4602
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Figure 5.3 The effective dielectric constant f:e/c‘:2 of metal

inclusions coated with an insulator as a function of the volume
fraction ¢ for n=1(o), n=2(A), n=3(0), n=4(®), and n=5(V). See Table 2

for the chosen parameters.
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The last two data sets in Table 2 correspond to thicker coatings
a/R = 0.9615 and 0.8735, respectively, where the composite-composites
are now clearly acting as insulators in the sense that t-:e/t»:m < 1.
Conditions on the values of u, v, and a/R were previously obtained by
Sridharan and Cukier15 which indicate which regime (ee/e:ln <1lor>1)
composite-composites would fall in for the second virial coefficient.
The results presented here obey those conditions. The results
displayed in Figure 5.3 show that a thinly coated inclusion permits the
multipole expansion to converge quickly in comparison with a uniform
inclusion. The thickness of the coating controls the

composite-composites behavior as insulator or conductor-like.

5.1.5 CONCLUSION

For the static case, if we know the expression of the n rank
tensor and the analytic form of the multipole polarizabilities, then
the analytic simulation of the higher order multipole contributions to
the effective dielectric constants of a composite material can be
carried out straightforwardly. By adding as many multipoles as we can,
we can obtain more accurate results for the effective dielectric
constant. However, the application of the multipole simulation method

runs into the following problem.

In Appendix B we have represented an n rank tensor as a power
series in the reciprocal distance between inclusion pairs and

summarized it into a general expression to arbitrary n value (n 2 0).
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Figure 5.5 The effective dielectric constant eelez versus a function
of the volume fraction ¢ for the different types of configurations.
The solid line is generated by the multipole method of Ref. 19b for the
simple cubic lattice. For the Metropolis (randomized lattice)
configurations the random walk method is denoted by A (x). For the
face-centered cubic lattice the random walk method is denoted by a

The o’s are generated for the Metropolis configurations by the

multipole simulation method (see section 5.1.1) for a conducting case.
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Thus, it is not difficult to figure out. But, because the computation
involves complicated matrix algebra, the comp}ating time and computing
space of the computer system must be of concern. Figure 5.4 shows the
total CPU (Central Proceding Unit) time versus the dimension of the
matrix of these calculations with 25 inclusions and 100 configurations.
It demonstrates that if the higher multipoles are included, the CPU

time increases parabolically.

Due to the non-convergence of ee for the conducting case, the
comparison of Figure 5.1 and the Ee resulting from a random walk
method52 has been shown in Figure 5.5. The benefit of the random walk
method is that it can be applied to higher ¢ than a multipole
simulation. As can be seen from the above, the multipole simulation of
the conducting case is difficult to converge at ¢ higher than 0.45.
From Figure 5.5, at low ¢ (~ 0.3) the multipole simulation (n = 5) and
random walk method results are in quite good agreement with each other.
It also shows that a multipole simulation is sufficient to obtain an
accurate result. Thus, at high ¢ the use of the random walk can supply

the data not available from the multipole simulation.

5.2 THE FREQUENCY DEPENDENT ee(u)

We have studied ee(u) of a composite material consisting of
inclusions of dielectric constant el(u), which have a Drude model
resonant form, embedded in a background medium of frequency-independent

dielectric constant 62.
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Our interest is to find how the optical properties of such
materials are affected due to the electrostatic interactions among the
inclusions. The frequency dependence of the effective dielectric
constant as a function of the inclusions’' geometry, size-distribution,
spatial distribution and concentration is explored. Our method is the

analytic simulation method described in Chapter 4.

We assume that the quasi-static Maxwell equations are valid.
Because the wavelength of the applied field ( ~ 3600 Z ) that we choose
i8 long compared with the inclusions’ size ( -~ 100 : ) and the mean
distance befween inclusions, the electrostatic approximation with el(m)
can be used here. The multipolar effects on ee(w) at high volume
fractions of inclusions have been in;restigated in several hypothetical
cases. From the previous static multipole simulation, at low volume
fraction the dipole approximation is enough to obtain ee quite

accurately. Thus, a comparision with the Clausius-Mossotti formula,

which applies to dilute inclusions, is shown in the Figures.

In the following, we have set the plasma frequency w_ =

P
9.4x10153-1, the damping constant T = 10148-1, €o° 1 and €3 1 for a

hypothetical case. Only the resonant, imaginary part of ee(u) is

displayed in the Figures. All of the parameters are defined in Chapter

2.
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5.2.1 RANDOMIZED LATTICE

In Figure 5.6, ee(m) of the randomized lattice is compared with
ee(w) of the fluid structure at volume fraction ¢ = 0.03. The
parameter DS is chosen to be 1 or 3/4. DS = 1 corresponds to the
maximum randomness for this method of randomization. Each curve
corresponds to an average over 200 configurations. They demonstrate
that the fluid structure broadens the spectrum. That is, each
inclusion is presented with a different local environment. Since the
Clausius-Mossotti theory predicts that the plasma resonant peak
position © depends on ¢ (see Chapter 2), the local environments
associated with slightly different local densities lead to a broadening

of the resonance.

An important feature of the definition of © is that as ¢
increases, the resonant peak has a redshift. Similarly, this .is the
case for a randomized lattice. DS = O for the randomized lattice
corresponds to the periodic case. We then certainly obtain the
Clausius-Mossotti result. With some randomization of the
configurations the resonant absorption peak is broadened. The reason
has been explained previously. The broadening increases with
increasing randomization, i.e., increasing DS value of the
configurations. From Figure 5.6, for the maximum possible excursion,
DS = 1, the broadening is still considerably less than that of the
fluid. The broadening for the randomized lattice is very symmetric,
which indicates that on average the local fluctuations in ® are

themselves symmetric.
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Figure 5.6 Im ee(u) for fluid (A) and randomized lattice (o,m). The
solid line is the Clausius-Mossotti expression. See text for the

definition of DS.



5.2.2 VACANCY LATTICE

In the following, we apply the same parameters to a vacancy
lattice. Figure 5.7a and 5.7b presents the ee(m) for a vacancy
lattice. There are four cases we will discuss. First, we start with
125 inclusions on a simple cubic lattice and randomly delete inclusions
until there are the number remaining indicated on the figures. The
remaining inclusions in the cubic box are expanded to obtain the
original ¢. A second run starts with 343 inclusions with 63 remaining.
As the system becomes more dilute in terms of the number of inclusions,
the spectra develop a bimodal distribution, with the weight of the
higher frequency part growing at the expense of the lower frequency

part.

In principle, at high ¢ the Clausius-Mossotti formula for the
effective dielectric constant of composite material predicts a redshift
of the resonant peak. In other words, the lower w peak corresponds to
more dense regions. Hence, it appears that such systems consist of low
and high density regions, and this is responsible for the development
of the bimodal distribution. The notation in the Figure, 40/125,
indicates that 125 inclusions were present initially in a cubic box and
then inclusions were randomly removed until 40 were left. All results
have been compared with the Clausius-Mossotti formula with the same
parameters. Each curve corresponds to an average over 200

configurations.
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Figure 5.7a Im ee((o) for vacancy lattices. The notation 75/125
indicates that of 125 inclusions on a cubic lattice, all but 75 were

randomly removed.
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Figure 5.7b Im ee(u) for vacancy lattices.
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5.2.3 RANDOM SIZE-DISTRIBUTED EFFECT

. 53 . . . . .
Experimental results on the size-distribution of inclusions has

been fitted to a log normal distribution

2
1 [ In ——
f(x) = exp - (5.2)

{Zn xIno 2 (1ln o)

where f(x) is a normalized distribution in the inclusion radius, a(x) =
xa, u is the mean inclusion size, and 0 is the standard deviation of
the distribution. The expression for the volume fraction due to the
size-distribution of inclusions is given as

3

¢=(3-g-)na u3exp(4%) (5.3)

where n is the number density of the inclusions and A is defined as

1

3 (lno )2. (5.4)

A=
The log normal distributions with different standard deviation values ¢
and with u = 3.3 have been plotted in Figure 5.8. The o0 = 0
corresponds to equal size inclusions. We consider fluid configurations
which are g‘enerated by throwing inclusions into a cubic box, while
avoidin; overlap, and choosing each new inclusion’s size from the log
normal distribution until the desired volume fraction ¢ is obtained by

adjusting the parameter, fac, defined as
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Figure 5.8 The log-normal distribution for different standard

deviation values o.
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In practice, it is difficult to generate fluid configurations
with large o, because overlap occurs frequently with increasing 0. The
maximum 0 in our present work is 2.72. In Figure 5.9 the results for
equal size and three sets of the different size distributions of
inclusions are compared. For the equal size and the ¢ = 1.4 fluids,
the results are not significantly different. This 0 is chosen because
the size distributed data were fitted with this 0 in the experimental
worksa. If we increase the width to ¢ = 2.02, there occurs a iow
frequency shoulder relative to the equal size case. It appears that
high density regions occur because of large size inclusions. All the

results correspond to an average over 200 configurations.

In order to investigate the effects of the spatial distribution
of these inclusions, we exhibit two different runs at o = 2.02 in
Figure 5.10. Each run has 200 configurations averaged. The difference
between the random-size distributed and equal-size results is not an
artifact of the choice of configurations. There is no background

contribution to the imaginary part of ee(w) from the matrix absorption.

There are several mechanisms which will lead to such additional
lineshift and line broadening provided by the size distribution: (1)

The local density fluctuates and results in line-broadening. (2) The
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Figure 5.9 Im ee(u) for equal-sized (0=0.00) and size-distributed
fluids.
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large size of inclusions causes local high density compared with the
average density and a red lineshift occurs. Under the condition of
such a low volume fraction as we have chosen, the red lineshift is not

obvious.

5.2.4 SILVER IN GLASS

Now, let us consider a system with a suspension of silver spheres

in glass, which 1is a more realistic model for a experimental

investigationzs’a. Because bulk silver has a low damping constant, it

is used for studying optical spectra. According to the values used in

Felderhof’s workza, we choose the plasma frequency for silver as up =

6 1, the bulk damping constant as 7y = 0.24x1014s-1, the

interband contribution as rib = 0.87x1014s-1, the Fermi velocity as VF

1.46x10165"

= 1.44x1080m/s, E'IO = 4.5, and the dielectric constant of glass as 52 =

2.25. Then the damping constant Ta of Drude form for a sphere of

o 14 -1 14 -1
radius, 100A, is equal to 1.68x10 , the width is T = 2.55x10" s °,

the resonance frequency is us = 4.87x10153_1, and e'iw = 0.16. The

results are presented in Figure 5.11. The width parameter of the Drude
form we use i8s larger relative to us than in the preceding hypothetical
case (section 5.2). Thus, the peak of the Clausius-Mossotti formula is
sharper. Even at ¢ = 0.1, the broadening is less than in a
hypothetical case at ¢ = 0.03. In such a circumstance when the spheres
are size distributed with the narrower distribution, o = 1.40, the
results are indistinguishable from those with equal size. Even for the

wider distribution, ¢ = 2.02, the results are not resolved.
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Figure 5.11 Im ce(u) for parameters chosen to represent Ag in a glass
matrix. Equal-sized and two size-distributed configurations are

compared. Note that I' depends on the inclusion’s size.
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We found that for the volume fractions considered here the dipole
approximation is accurate. We have probed this in ce(w) by including
the quadrupolar effects, where they are expected to be greatest, and

have found minimal changes with respect to the dipole simulations.

5.2.5 COMPARISON OF MINIMUM IMAGE AND LATTICE SUM METHODS

In this section we compare ee(m) evaluated by using the minimum
image and lattice sum approaches. Our computational technique used in
the previous calculations of the effective dielectric constant ee(u) is
based on the minimum image method. In addition, we have extended the
calculation of the frequency dependent effective dielectric constant by

using the lattice sum approach.

It is worthwhile to note that the speed of calculation using the
minimum image method is considerably faster than a lattice sum
approach. We have performed our calculations of ee(u) for silver in
glass case at volume fraction ¢ = 0.2 using both techniques, shown in
Figure 35.12, in the dipole approximation. Here we exclude the
interband contribution to the width parameter. Because we want to
compare with the simulation results by Felderhof and Cichockiw, we
choose the same parameters as their values. Felderhof and Cichocki
used the lattice sum approach with 500 inclusions in the primary box,
but we use only 75 inclusions. The Cole-Cole plot of the imaginary
part of ee(u), Im(ee(u)), versus the real part Re(ee((o)) clearly shows

differences between the results from the Clausius-Mossotti expression
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and those of the various simulations. In Figure 3.12 the large circle
follows from the Clausius-Mosstti expression. The small solid curve is
a result of the analytic-simulation technique using 75 inclusions;
solid dots resulted from the lattice sum approach using 75 inclusions;

pluses are points excerpted from Figure 5 in reference 48.

The Cole-Cole plot shows that the results from both techniques
nearly agree with each other. The spectral shape of the imaginary part
[m(ee(u)) using both techniques has also been plotted in Figure 35.13.
We find that the analytic-simulation technique yields results that
agree quantitatively with those of the lattice sum calculations.
Hence, we have demonstrated that the effective dielectric constant can
be accurately, directly, and quickly obtained by wusing the
analytic-simulation technique. Similar conclusions have been reached,
in a somewhat different context, by Gales et al.s‘, who studied Coulomb

and dipole effects in disordered solids.

Finally, we note that at ¢ = 0.2, dipole level approximations are
not sufficient to describe correctly ee(u), or ce. However, the sums
of higher multipole terms do not exhibit conditional convergence due to
their much shorter range interaction. Hence the special techniques
associated with the analytic-simulation method or lattice sum approach
need not be used to obtain accurate results for higher multipole

interactions.
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Figure 5.12 Cole-Cole plot of the dielectric constant of silver
spheres in glass (neglecting interband transitions), at volume fraction
¢=0.2, in the dipole approximation. The large circle follows from the
Clausius-Mossotti expression. The small solid curve is a result of the
analytic-simulation technique using 75 inclusions; solid dots result
from the lattice-sum approach using 75 inclusions; pluses are points

excerpted from Figure 5 of Ref, 48.
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Figure 5.13 Im cg(u) for monodisperse silver spheres in glass
(neglecting interband transitions). Solid curve, Clausius-Mossotti
expression; dashed curve, analytic-simulation technique, 75 inclusions;

dots, lattice-sum approach, 75 inclusions.



6. CONCLUSION

The use of computer simulations provides the ability to look at
detailed microscopic properties which are difficult to probe
theoretically and experimentally, and permits the use of more realistic
models in order to make comparison with experiments. Therefore, as
long as the analytic formalism is known, then the computer simulation

can give practical results.

In the present study we have shown that the effective dielectric
and optical properties of composite materials or nonpolar polarizable
systems can be obtained by the analytic-simulation method. As long as
the multipolar polarizabilities xp of the inclusions are known, the
analytic-simulation method can be employed routinely to obtain the
effective dielectric constﬁnt and optical properties of a macroscopic
sample. In the static case, we were able to deal with any ratio of
81/62, as well as composite-composites. The drawbacks of the
analytic-simulation method are the difficulty of convergence at high
volume fraction ¢, and the requirement of obtaining ap analytically.
For the most difficult case of infinitely conductive inclusions in an
insulating matrix, higher-order multipoles than we have used are
required for convergence at volume fractions beyond ¢=0.45. In other
words, when the average electric field varies rapidly in space it

becomes necessary to include more multipoles to describe this rapid
84



spatial variation.

For the frequency-dependent dielectric constant, the interactions
among the inclusions lead to the following strong deviations from the
Clausius-Mossotti result. The lineshape broadens and shifts to lower
frequency. The broadening arises from the distribution of peak

frequencies in the slightly different local environments.

In our work, the applied field is limited to long wavelengths
relative to the size of inclusions, so the electromagnetic interactions
among the inclusions can be replaced by electrostatic interactions. It
is important to investigate systems with the wavelength of the applied
field comparable to the size of inclusions, as this is a common
experimental situation. Therefore, in addition to electric effects,
magnetic -effects should be consideredu'zs'“. About the calculation
of optical properties under this circumstance, one may go back to
Mie®. He first found the color variation of colloidal metal
inclusions and he derived a theory to calculate the optical properties
when the inclusion size is comparable to the wavelength of the applied
field. Mie provided the solution to the problem of the interaction of
a plane electromagnetic wave with a sphere of arbitrary size. A
depolarization effect associated with the inclusion boundary usually
causes an apparent size-dependent optical constant because electrons
are confined by the surfaces of inclusion and produce large

depolarization effects; these effects cause -‘the electron cloud to

resonate at a quite different frequency than in the bulk.
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The problem of the conditional convergence of the dipolar tensors
for an infinite system was handled via the Ewald summation method. In
our work, the long-ranged interaction of the dipolar field has been
overcome by using a minimum image method to evaluate the induced
multipole moments on each inclusion. We found that this latter method
gave the same results as the former, and it is much faster

computationally.

Another application of simulation methods is to non-spherical
inclusions, which could be shaped like ellipsoids, slabs, needles, etc.
For ellipsoids the generation of Metropolis configurations can be
developed via a contact t’unctionss. Although the generation of any
geometrical distribution of inclusions is not hard, the problem is the
difficulty in deriving the multipolar polarizabilities for these
non-spherically shaped inclusions. In these cases, the random walk
simulation method is more powerful because it does 'not require simple

inclusion geometries.

We have evaluated the static and frequency-dependent dielectric
constant in our present work. For wavevector dependent applied fields
and the resulting wavevector dependent dielectric constant, Felderhof

56,57,58
et al.” """’

used a diagrammatic expansion to analyze the optical
properties of a random medium. The direct use of the analytic
simulation method to study this problem is quite promising. A similar
problem is to investigate the localization of an electromagnetic wave

in a dielectric medium. Arya et al.ss have discussed the localization

of classical waves in a dielectric medium of randomly distributed metal
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particles. The localization of one electron in a random medium can

also be addressed.

Finally, chemical reaction pz-oblema60 can be equally well solved

by the analytic-simulation method.
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APPENDIX A

A. DERIVATION OF THE LATTICE SUM FOR INDUCED DIPOLAR SYSTEMS

3 (r+n)(r+n)

2 - _ _ -s|n|® (A.1)
{ - e .

|r+n| | r + n |

where the prime on the sum indicates that if r = 0, the term with n = 0

should be omitted. Let us separate T into two parts, A and B,

-s|n|®

2 e (A.2)
| r+n |

n

Applying Eq. (3.30), the integral representation, gives

, o

2 2 2
A=21 J dtt“ze"5+n| t g-sln|
n ' % 0
2
B o (%4

51— { ([ o] ] e sl } solol?

n % o Yo
= (A1) + (A2) (A.3)

There are two situations considered: (1) If r # 0, then the sum over n

includes 0 and the prime is removed. (2) If r = 0, then n = O is
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excluded. (Here n = (nx, ny, nz) with ., ny, n, from -® to ® iIn

3-dimensions).

IN CASE (1) :
-0
2 2 2
(Al) = z l { J at 172 o-lon|%t } e-sinl (A.d)
n n (Xz

. . /
We substitute u = t' 2]g+n|,

2 ® uz -uz "SII'I'Z
(A1) = 2 1 J du 2 — 5 € e (A.5)
o {= |c+n|

g|r+n|

and then integrate by parts, subsequently taking the limit s — 0,

2 1 2
(Al) = 2 1 . a|r+n| e-(dl{ﬂx')
o {n |r+n|
{n
+ erfc(a|§+n|) . (A.6)
2 x 2 2
(A2) = 2 1 {J at t1/2 o-lz+nlt } e-sinl (A.7)
n l ® 0

We combine the exponential terms and rearrange as shown

tr stlr:l2

2 2 _ _
-l rc+n|-3s|n|®= (s+t)|n+s+t| e

. (Aa8)
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We can directly apply Jacobi’s transformation (in k space) because 0 is

included in z . Thus, we obtain

2 3/2
5y - 1/2
(A2) = 2 é J dt t ( Y )
n
n 0 2
2 2 i2n(n-r)t st|r |
( - nn i ) (- _)
e s+t s + t e s + t .

(A.9)
For n = Q and s — 0, there is divergence in part (A2). We extract n =

0 from 2 (in k space) and add it on again.
n
Now, (A2) = (A2.1) + (A2.2)

2 a w2n?
(A2.1) = z 1 [ dt t™ 32 el - +i2w n-r)
s =0 n#Q .| n 0
(A.10)
We substitute u = t*' to get
O
i2K n°r -1 -nznzu
A2.1) = E 12ne r duule . (A.11)
n#0 1/a®
o
2 12 3/2
(A2.2) = l - J dt t ( 5+ L )
I 0
wZn? i2n(n-r)t st|x:|2
el " srt T et ) el - 57t )



2 * 1/2 n 3re (-__stlr| )
:‘l dt t (?ﬁ'—t—)e s +t (A.12)
4] n
0
Expanding in powers of s yields
o?
2 1/2 3/2
(A2.2) = ; dt t ( s ) + O(s) (A.13)
{n
0

1/2

. / ‘ . .
Setting ¢! 22 s tan@ and using the trigonometric method leads to

2«2 8 s
(A2.2) = 1 21 { In( )+ln[ +1+ 1+ ]
- s 22 2a’
«? 1/2
-2 > ) + O(s)
s + &
s— 0 .
= (-2nln(s/2a°) + 2 1 In(2) - 4 1) L (A.14)

Now, we pull out the divergent part, ln(s/ZaZ), and keep it separate.

IN CASE (2) :

The term (Al) is equal to (Al) from case (1), evaluated with r = 0.

Due to the application of Jacobi's transformation, we need to
include the n = 0 term in the summation over n ( in r space ) and then

subtract it separately.

(A2) = (A2.1)|  _ o + (A2.2)|  _ - (A2.3) (A.15)

~ ~
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(6 4
2 2 2
2.3 = 1 j ar 1172 o-lenl®e | =il
BRI 0 r=0,n=0
4 a3
= — (A.16)
pd 3(1()1/2

We follow an analogous derivation for B :

,3(r+n)(r+n) 2
~ -~ e_s'nl

..}
1)
5 N1

| r+n|®

(]
4 2 2
3(r+n)(r+n) J dt tslz e-ll:”ll t e-slnl

’

n
=5 N1

0
(A.17)

Applying the identity,
RR = - vE vE el&-g £=0’ (A.18)
let us write

4 ! ® 2 2
B - - 2 vE vE o-iE" (r+n) J dt 372 e-|5+n| t e--s|n|

E n 0 £=0
B = (Bl1) + (B2) (A.19)

IN CASE (1) :
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2y
4 , ]
®B1) = 2 (r+n)ir+n) J dt 372 o lrm|"t -s|n|
{n o 2
s >0 12 e'(“|§+n|)2
= 2([‘ + n )( r+n) -
{ n ) | r+n|
6a e-(a|1:+n|)2
*I_E(r+n>(r+n) -
" o n i ~ | £+ n |
erfc( «|r+n| )
+32“""“)(:‘4-1'1) =
n ” | r+n|
2
4 a )
o ~ .
2
o-8in|

£ =0

Rearranging the exponential parts gives :

-|5+n|2t-s|n|2-i5-(5+n)
tr ig
s+t )t 2Ewn

stlglz isé-r

=-(s+t) (n+ |2

13

Iatt) T s+ttt st

2
-

P

Taking Jacobi’s transformation for (B2) yields

(A.20)

(A.21)

(A.22)



i
+ as2 T a2
(B2) = - —— 2 Y&YE[ dt 2% (—)
T
n 0
n’n®  i2m n-rt nE-n -P
A A stt e
£=0
(A.23)
(B2) = (B2.1) + (B2.2)
o2
. 4 T
(B2.1) = - — 2 7 VEJ dt %% (——)7?
g — 0 { n n#) 0
nznz RE-n . Ez
of - vi2mnr - =) (- )
£§=0
2 2
n
) iron ) ol i2% nor )
- 2 o
nz0 0l
ol n’n’
+2m] z J dt 1 o~ g —tHi2r np) (A.24)
n#0 "0
o2
4 n
(B2.2) = - Ve VEJ dt 372 — )3/2 o°P
~ ~8 - 0 E = Q, n = Q
o? ) stlglz
- 3/2 s/2 (- )
-Zu;‘l(dtt (s+t) e s+t
0
o? 1 stlg|2
2 3/2 772 ( - )
+4nessjdtt (_si-t) e s+t
0
s —0
4 1 1 2
:4n1[-—+—ln(2)-—ln(s/a)] (A.25)
- 3 2 2



IN CASE (2) :
(B1) = (Bl) from case (1), evaluated at r = Q. (A.26)
(B2.1) = (B2.1) from case (1), evaluated at r = 0. (A.27)
(B2.2) = (B2.2) from case (1), evaluated at r = 0. (A.28)
(BZ)IE:Q'MQ =0 (A.29)
Summarizing,

T ( case (1) )

A-B

i~

2
a|r+n| otz %,

z 2 1 {
1
o {= |g<m|3 ) 2

3
) 2 (£+n)(g+n){ 4a e-(alsml)z
n

erfc(a|r+n|) }

| r +n |2 {~
. 2
6a o~(xlztn]) erfc( a|r+n| )
+ 2 + 3 3
{~n | r+n| | £ +n |
2 2
n“n
4tnn (- ) o . 4n
+ —-e o eligh nr) 1. (A.30)
n#0 lnl 3
;‘ ( case (2) )
=A-8B
2 1 ‘(“l | 2 T
- 1 a|n| e nj + erfc(alnl)
= {7 In)’
n#0
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2
3 -(«|n])
4 2 6a f
) z nn { @ ~taln])?, e 3 er c(alnl)}

LomE| T ™ In’ IS
nZnZ
innn (- > ) 4n 40:3
+ z —_— e a + | - ) é . (A.31)
20 [n| 3 Y n

The divergent terms in (A2) and (B2) cancel each other; thus, the

divergence is removed.



APPENDIX B

B. IRREDUCIBLE CARTESIAN TENSORS

The study of tensors s important in  electrostatics,
electromagnetics, and hydrodynamics. The analysis and properties of

tensors are detailes in text,bookst"l and the literaturesz. Here, in

order to determine Q“ (r) defined in. Eq. (3.20), we wuse a

potential-theory approachsa to the construction of irreducible
cartesian tensors and focus on the technical development of these

tensors.

The definition of an irreducible tensor 'rn 1 , of rank n , i8

~

r2n+1 3

- 1
S P P L (=) (—). (B.1)

(2n-1) '!' dr r

The ™ ' means irreducible. An irreducible tensor of rank n is
characterized by being: (1) traceless and (2) symmetric. A tensor is
traceless if it vanishes on contraction on any pair of indices, i.e. Z

1
A ARR v - ) =0, r #0. For a symmetric tensor it is arbitrary as

~ e~

to which indices are used to make the contraction.

As we differentiate in Eq. (B.1) to order n, we can represent the

97
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. I n ' -
expansion of r in terms of the sum of 'rr(n-2m)...ll(m)' factors.

~

Here n is the rank of the tensor, and m is the number of unit tensors,

—

. The definition of 'x'r(n-Zm)...é]_‘(m)j is, for example, for n = 1, 2

and m = 1, 2

1 =
rll = rydgy * Ty *ry0p
eyl -
rrll = roTgdye * ToTyO8e * Tafe%8y t T8 y%as * BT oPayt Ty e%up
mil -
117 = 5,8%00 * %uy%80 * Oy%as
and so on.
dr
Where 60‘5 = Va rB = —L . o B, ¥, ® ---+ each run on the cartesian
dr
o

indices x, y, z.

Due to permutations of indices, 'rr(n-2m)..ll(m)' has

n n(n-l)o ooo(n-2m+1) :
CZm (2m-1)!"! = (2m-1)!' terms.
(2m) !

The coefficient of each term is determined by the condition that
Ml .
r must be traceless. For example, the coefficient for

-~

(_l)m r2m

'rr(n-2m)..1ll(m) "' is .
s == (2n-1) (2n-3).....(2n-2m+1)
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A formal expression then is:

2
rn S r, I, Chpeeel = ———— 'rr(n-Z)],,' +
~ 12 377 n .~ 2
(2n-1)
4
r
m et +

(2n-1)(2n-3) ~~

(_“m r2m

rr(n-2m)...11(m)" (B.2)
(2n-1)(2n=-3).. . .(2n-2m+1) v - .

P

Since (;:(ic (r) is a ¢+{’+2 rank tensor, for convenience, we let

{+{°+2 = n, and thus:

, 1 (2n-1)!! —
Q“ (r) = ( ) (-n° TS o (B.3)
- ime r ~

2

. Ma 1, . . e , L. .
Since r is an irreducible tensor, G (r) is symmetric in all pairs

of its indices. For instance, for the 3-rank tensor, QOI(E), there are
the equalities: Gmﬂ(g) = 'Gﬂm(f) = Gaﬂa(g). Generally speaking, for
the tensor of rank n, th (r), there are 3" (n 21 ) components. By
using this symmetric point of view, we can reduce the 3" components to
a smaller number. In the following table, we have reduced the first

five n. Here, Nc is the reduced number.
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3 9 27 81 243

Nel 3 6 10 15 21

Each reduced set of components must be accompanied by a suitable

coefficient indicating the number of times it occurs in the its

expression. This coefficient is determined by the number of
permutations. For example, with n = 5, there are the -equalities:
chaﬁn(g) = GaBan“:) = G”m(g) S LARERE . The total number of

permutations for indices aa, B, and yy is 30. Also, we can reduce the

dimension of the (£+1)th rank tensor, uj('(g), by using the same reduced

numbers.

.

The dimension of the 966 (r) matrix array not only depends on the
number of components, it also depends on the number of inclusions in
the primary cell. The use of the above described reduction method

permits us to incorporate a relatively large number of multipole

moments in the simulation.



APPENDIX C

C. LIST OF COMPUTER PROGRAMS

This section presents the programs used for the calculation of

the static and frequency-dependent effective dielectric constants in

the simulations of Chapter 5.
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CEEXERERLX XK EKERX KKK KRR R KRR KKK KRR KRR KKK R KR KRR KKK KKK

PROGRAM TITLE : STDIEL

PURPOSE : THE MULTIPOLE MOMENTS EFFECTS ON THE
STATIC DIELECTRIC CONSTANT OF COMPOSITE
MATERIALS FOR UNIFORM OR COATED INCLUSIONS.
THE CONTRIBUTIONS OF MULTIPOLES ARE UP TO
L=5.

METHOD : BY THE MINIMUM IMAGE METHOD

CONTAINS : ONE MAIN PROGRAM, THREE SUBROUTINES, AND
ONE CALLING MATH-LIB(LINPACK OR FPS-164)
FOR SOLVING LINEAR EQUATIONS.

DATE : 1989

KX KKK KR KRR KRR KRR KKK KK XX

DEFINITION :

D1 : DIELECTRIC CONSTANT OF INCLUSION

D2 : DIELECTRIC CONSTANT OF MEDIUM

El : X-COMPONENT OF APPLIED FIELD

E2 . Y-COMPONENT OF APPLIED FIELD

E3 : Z-COMPONENT OF APPLIED FIELD

NA(MAX) AND NS : NUMBER OF INCLUSIONS

NCELL : INTEGER NUMBER FOR IMAGE CELL

NCON : NUMBER OF CONFIGURATIONS

NIVL : FINAL VOLUME FRACTION TO REACH

NP(MAX) AND NPOLE : DIMENSIONS OF MULTIPOLES

NPL : FINAL NPOLE TO REACH

NSINK : NUMBER OF INCLUSIONS

RADSINK : RADIUS OF INCLUSION

RADSYS : RADIUS OF SYSTEM

VFRAC : VOLUME FRACTION

EEEEEEK KRR KRR KKK KKK KRR KR KKK KKK

INPUT : TININP,TININ2 X

OUTPUT : TINOUT X

CEEARXREEKREERXRKKRERRKERK R KRR XK K KK KR KRR KK ERERAXKKKKRX KKK X

P I W M S M M M A M M W e W M M W M M K M e e M M N

aaoaggoaoaoaoacaoaaoaoaoaaooaoaacacaoaaaoaoaacaaoaaocaoaoaaa

PROGRAM STDIEL
IMPLICIT REAL*4 (A-H,0-Z)
IMPLICIT INTEGER*4 (I-N)

PARAMETER (NA = 75, NP = 3)

REAL PX(NA),PY(NA),PZ(NA)

REAL CC(NP*NA),DP(NP*NA),TT(NP*NA,NP*NA) ,B(NP*NA)
REAL WV(NP*NA+1),AINV(NP*NA,NP*NA)

INTEGER IPVT(NA*NP)

COMMON /ST/ T(10)

COMMON /SP/ NCELL,PRD,PRD2,RADCUT2

COMMON /MAIN/ AT7,A9,A11,A13,A15,A17,A19

OPEN(1,FILE = 'TININP’)
OPEN(2,FILE = 'TININ2’)
OPEN(7,FILE = 'TINOUT’)
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PI = 4.0%x ATAN(1.0)
PI2 = 2.0%PI
ANCUT=1.0

A7=105.

A9=-AT7%9,
All=-A9%11.
Al3=-Al11%13.
Al5=-A13%135.
Al7=-A15%17.
Al9=-A17%19.

GET INFORMATION FROM CONFIGURATION DATA SET
READ(1,%) NSINK, NCONG, VFRAC, RADSYS, RADSINK

GET VARIABLES FROM INPUT DATA
READ(2,%) NSINK, NCON, RADSYS, NPL, NIVL
READ(2,%) D2, D1, El1, E2, E3, NCELL

SCAN N-POLE; FROM 3,9,19,34,55
DO 200 IPL = 1, NPL
IF(IPL.EQ.1) NPOLE=3
IF(IPL.EQ.2) NPOLE=9
IF(IPL.EQ.3) NPOLE=19
IF(IPL.EQ.4) NPOLE=34
IF(IPL.EQ.5) NPOLE=55

SCAN VOLUME FRACTION

DO 100 IVOL = 1, NIVL

GET VOLUME FRACTION FROM INPUT DATA
READ(2,%) VFRAC
RADSINK=(3.0%xVFRAC/(4.0%PI*NSINK) ) *%%(1.0/3.0)

RADCUT = ANCUT % RADSYS
RADCUT2 = RADCUT * RADCUT
TDIST = RADCUT + RADSYS
PRD = 2.0%*RADSYS

PRD2 = PRD*PRD

RADSYSZ = RADSYS#*RADSYS
FACT = 4.0%PI%D2

CREATE T(MP) VECTOR
D1D2=D1-D2

MP=7

DO 30 L=0,MP-1

A=1.

BB=1.

Do 35 I=1,L
BB=FLOAT(I)*BB
CONTINUE
IF(BB.EQ.0.) BB=1.
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DO 33 I=1,L

ASFLOAT(2%I+1)%A
33 CONTINUE

T(L+1)= (D1D2)*(RADSINK**(2*L+3))/(A*BB*((L+1)*D1+(L+2)*D2))
30 CONTINLE

WRITE(6,20)

20 FORMAT(2X,//,40X,’ RANDOM SINK CONFIGURATION ',//)
WRITE(6,%) ' NUMBER OF SINKS = ’',NSINK
WRITE(6,%) ' RADIUS OF SINK = ’,RADSINK
WRITE(6,%) ' RADIUS OF SYSTEM = ’,RADSYS

WRITE(6,%) ' VOLUME FRACTION = ’,VFRAC
WRITE(6,%) ' NUMBER OF CONFIGURATIONS = ' ,NCON
WRITE(6,%) ' NPOLE=',NPOLE
WRITE(6,#%#) ’' DIELECTRIC CONSTANT OF SINK: D1 = ',D1
WRITE(6,%) ' DIELECTRIC CONSTANT OF BACKGROUND: D2 = ’,D2
WRITE(6,%) ’ T-OPERATOR FOR SINK: TZZ&t11&T22 = ',TZZ,T11,T22
WRITE(6,#%) ' X-COMPONENT OF APPLIED FIELD = ’,El
WRITE(6,%) ’ Y-COMPONENT OF APPLIED FIELD = ’,E2
WRITE(6,%) ' Z-COMPONENT OF APPLIED FIELD = ',E3

C SET INITIAL VALUE
SSMPX = 0.0
SSMPX2 = 0.0

C BEGINNING CONFIGURATION AVERAGE
DO 1000 ICON = 1, NCON

C GET NEW CONFIGURATION

READ(1,%x) ICI

NS =0

DO 888 I = 1, NSINK

NS = NS +1

READ(1,%) PX(I), PY(I), PZ(I)
388  CONTINUE

NDIM=NS*NPOLE

C CREATE B VECTOR (CONSTANT PARTS)
DO 51 I=1, NS
IP1 =(I-1)%NPOLE+ 1
IP2 =(I-1)%NPOLE+ 2
DO 52 IA = 1, NPOLE
ID = (I-1)sNPOLE+ IA
IF(ID. EQ. IP1) THEN
B(ID) = FACT%*El
ELSE IF(ID.EQ.IP2) THEN
B(ID) = FACT*E2
ELSE
B(ID) = FACT#*E3
ENDIF
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32 CONTINUE
3l CONTINUE

C FOLLOWING CALL FOR CREATING THE MATRIX ELEMENTS
CALL POLEALL(PX,PY,PZ,NS,NDIM,TT,NPOLE)

FOLLOWING CALL FOR SOLVING THE LINEAR EQUATIONS
FROM FPS-164 MATH-LIB
CALL PFINV(NDIM,TT,WV,AINV,IERR)

a0

DO 81 I=1,NDIM
SUM=0.
DO 82 J=1,NDIM
SUM=SUM+AINV(I,J)*B(J)
82 CONTINUE
DP(I)=StM
81 CONTINUE

C FOLLOWING CALL FOR SOLVING THE LINEAR EQUATIONS
C FROM LINPACK MATH-LIB
C CALL SGEFA(TT,NDIM,NDIM, IPVT,IERR)
C CALL SGESL(TT,NDIM,NDIM,IPVT,B,0)
C DO 81 I=1,NDIM
C DP(I)=B(I)
Cc81 CONTINUE
C THIS SECTION EVALUATES THE EFFECTIVE DIELECTRIC CONSTANT
NK =0
DO 333 I = 1, NDIM, NPOLE
NK = NK + 1

CC(NK) = DP(I)/D2
333  CONTINUE

SMPX

DO 15 1, ns

SMPX = SMPX + CC(I)
151 CONTINUE

0.0
I-=

[ ]}

SSMPX = SSMPX + SMPX
SSMPX2 = SSMPX2 + SMPX*SMFX

1000 CONTINUE
SSMPX = SSMPX/FLOAT(NCON)
IF(NCON.GT.1) THEN
TEMP = ABS((SSMPX2 - FLOAT(NCON)*(SSMPX*%2))/

X FLOAT (NCON* (NOCON-1) ) )
SDSMPX = SQRT(TEMP)
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WRITE(6,501) SSMPX, SDSMPX
ENDIF

501  FORMAT(2X,’ X-COMPONENT OF DIPOLE MOMENT = '’
,F14.8,' ( ',F14.8,' )’,/)

c PTSH = SSMPX/((4.DO%PI/3.D0)*RADSYS*%3)
PTSH=SSMPX/1.0
TOPDE = 1.0 + 2.0%PTSH/(3.0%E1l)
BOTDE = 1.0 - PTSH/(3.0%E1l)

DEDZ = TOPDE/BOTDE
BOT2 = BOTDE%%*2
SDDE = ABS((SDSMPX/((2.0%PIXE1l)*RADSYS*%3))
x % (BOTDE+0.50%TOPDE) /BOT2)
WRITE(6,66)DED2,SDDE

c WRITE(7,43)VFRAC,DED2

66 FORMAT(2X,/,3X,’ EFFECTIVE DIELECTRIC CONSTANT: DE = ',
%F20.13,’ ( ’,F20.13,’ ) ',/)

c43 format(2x,2f15.8)

100  CONTINUE

200  CONTINUE
STOP
END

CEXEEERRRERRRRARRABAREABEREXX KR XABEXRKRXRXXEERXRLRRXRXKRKRKK

C THIS SUBROUTINE CREATE THE MATRIX ELEMENTS ]

CEREEEEERXRERERRRRXEEARERRRREEREEXXXEXEERKEXRKRELXREEXXKRRK K

SUBROUTINE POLEALL(PX,PY,PZ,NS,NDIM, TT,NN)

IMPLICIT REAL*4 (A-H,0-2)

IMPLICIT INTEGER#¥4(I-N)

DIMENSION AK(55),G(55,55)

DIMENSION PX(NS),PY(NS),PZ(NS),TT(NDIM,NDIM)

COMMON /ST/ T(10)

COMMON /SP/ NCELL, PRD, PRD2,RADCUT2

COMMON /MR/ R(11)

DATA (AK(I),I=1,55)/ 1l.,1.,1.,-1.,-1.,-1.
1=249-2.,-2.,1.,1.,1.,3.,3.,3.,3.,3.,3.
16ey-1.y-1.,-1.,-4.,-4.,-4.,-4.,-4.,-4.
y=6.,-6.,-6.,-12.,-12.,-12.,1.,1.,1.,5.
19445.,5.,5.,5.,10.,10.,10.,10.,10.,10.
,20.,20.,20.,30.,30.,30./

* W  ®

C FOLLOWING CALL FOR CREATING t COEFFICIENTS
CALL CREATET(NDIM,NN,NS,TT)

DO6I =1, NS
DO3J =1, NS
DO 100 K = -NCELL,NCELL
DO 110 L = -NCELL,NCELL
DO 120 M = -NCELL,NCELL
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13
16

130
120
110
100
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DISTZ = (K*K+L*L+M*M)*PRD*PRD
IF(I.EQ.J.AND.DIST2.EQ.0.DO) GO TO 130

XJ = PX(J)+K*PRD
YJ = PY(J)+L*PRD
ZJ = PZ(J)+M*PRD
R2 = (PX(I)-XJ)*%2+(PY(I)-YJ)**2+(PZ(I)-2J)%%2

IF(R2.EQ.0.) GO TO 130
IF(R2.GT.RADCUT2) GO TO 130
Rl = SQRT(R2)

R(1)=R1

R(2)=R2

DO 21 II = 3,11

R(II) = 1.0/(R(1)*xII)

CONTINUE

RX = (PX(I) - XJ)/R(1)
RY = (PY(I) - YJ)/R(1)
RZ = (PZ(I) - ZJ)/R(1)

DO 16 ID=1,NN
DO 13 JD=1,NN
KN=NN%x(I-1)+ID
=NN*(J-1)+JD
IF(ID.LE.JD) THEN
CALL ELEMENT(ID,JD,H,RX,RY,RZ)
G(ID,JD)=H
ENDIF
IF(ID.GT.JD) THEN
G(ID,JD)=G(JD,ID)
ENDIF
TT(KN,JN) =TT (KN, JN)-ABS(AK(ID) ) *G( ID,JD) *AK(JD)
CONTINUE
CONTINUE

CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
RETURN
END

(002222322322 23 222322302332 23 33332333333 033208333 333333323282

C

THIS SUBROUTINE CREATE THE t COEFFICIENTS x

2232322222232 20322383333 033 302333330223 033 33332333223 232%4

SUBROUTINE CREATET(NDIM,NN,NS,TT)
IMPLICIT REAL*4(A-H,0-2)
IMPLICIT INTEGER#*4(I-N)



DIMENSION TT(NDIM,NDIM)
COMMON /ST/ T(10)

DO1I=1,NS
DO 3 IS = 1,NN
ID = (I-1)*NN+IS
DO 2 J = 1,NS
DO 4 JS = 1,NN
JD = (J-1)*NN+JS

IF(ID.EQ.JD) THEN

108

IF(IS.LE.3) TT(ID,JD) = 1./T(1)

IF(IS.GT.3.AND.IS.LE.6) TT(ID,JD) = 1. /T(2)
IF(IS.GT.6.AND.IS.LE.9) TT(ID,JD) = 2. /T(2)
IF(IS.GT.9.AND.IS.LE.12) TT(ID,JD) = 1. /T(3)
IF(IS.GT.12.AND.IS.LE.18) TT(ID,JD) = 3. /T(3)
IF(IS.EQ.19) TT(ID,JD) = 6./T(3)
IF(IS.GT.19.AND.IS.LE.22) TT(ID,JD) = 1. /T(4)
IF(IS.GT.22.AND.IS.LE.28) TT(ID,JD) = 4. /T(4)
IF(IS.GT.28.AND.IS.LE.31) TT(ID,JD) = 6. /T(4)
IF(IS.GT.31.AND.IS.LE.34) TT(ID,JD) = 12./T(4)
IF(IS.GT.34.AND.IS.LE.37) TT(ID,JD) = 1. /T(5)
IF(IS.GT.37.AND.IS.LE.43) TT(ID,JD) = 5. /T(S)
IF(IS.GT.43.AND.IS.LE.49) TT(ID,JD) = 10./T(S)
IF(IS.GT.49.AND.IS.LE.52) TT(ID,JD) = 20./T(5)
IF(1IS.GT.52.AND.IS.LE.55) TT(ID,JD) = 30./T(5)
ELSE
TT(1D,JD)=0.
ENDIF

4 CONTINUE

2 CONTINUE

3 CONTINUE

1 CONTINUE
RETURN
END

CEEXXXXAEXREXRXELXXEEEEXRXERERXEKRXXRXRERXEXXRERKRAERXR LR KR
C THIS SUBROUTINE CREATE THE MATRIX ELEMENTS %
CEEXXRXXEEXLERXEXEEXEXRKEXRRXXEBXREXRRRKXKEXXRXRXRAER KRR KR

SUBROUTINE ELEMENT(I,J,H,RX,RY,RZ)

IMPLICIT REAL*4 (A-H,0-2Z)

IMPLICIT INTEGER*4 (I-N)

COMMON /MR/ R(11)

COMMON /MAIN/ A7,A9,Al11,Al13,A15,A17,A19

KCX,KCY,KCZ REFER TO COUNT THE NUMBER OF X,Y,Z
RX,RY,RZ ARE THE DISTANCE BETWEEN INCLUSIONS
IN X,Y,Z DIRECTIONS

aaQa

KCX=0
KCY=0
KCz=0
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DO 1 II=1,2
IF(II.EQ.1) THEN
N=I

ELSE

N=J

ENDIF

IF(N.EQ.1) THEN
KCX=KCX+1
KCY=KCY
KCZ=KCZ

ELSE IF(N.EQ.2) THEN
KCX=KCX
KCY=KCY+1
KCZ=KCZ

ELSE IF(N.EQ.3) THEN
KCX=KCX
KCY=KCY
KCZ=KCZ+1

EILSE IF(N.EQ.4) THEN
KCX=KCX+2
KCY=KCY
KCZ=KCZ
ELSE IF(N.EQ.5) THEN
KCX=KCX
KCY=KCY+2
KCZ=KC2Z
ELSE IF(N.EQ.6) THEN
KCX=KCX
KCY=KCY
KCZ=KCZ+2
ELSE IF(N.EQ.7) THEN
=KCX+1
KCY=KCY+1
KCZ=KCZ
ELSE IF(N.EQ.8) THEN
KCX=KCX+1
KCY=KCY
KCZ=KCZ+1
ELSE IF(N.EQ.9) THEN
KCX=KCX
KCY=KCY+1
KCZ=KCZ+1

ELSE IF(N.EQ.10) THEN
KCX=KCX+3 ‘
KCY=KCY
KCZ=KCZ

ELSE IF(N.EQ.11) THEN



KCX=KCX
KCY=KCY+3
KCZ=KCZ
ELSE IF(N.EQ.12)
KCX=KCX
KCY=KCY
KCZ=KCZ+3
ELSE IF(N.EQ.13)
KCX=KCX+2
KCY=KCY+1
KCZ=KCZ
ELSE IF(N.EQ.14)
KCX=KCX+2
KCY=KCY
KCZ=KCZ+1
ELSE IF(N.EQ.15)
KCX=KCX+1
KCY=KCY+2
KCZ=KC2
ELSE IF(N.EQ.16)
KCX=KCX
KCY=KCY+2
KCZ=KCZ+1
ELSE IF(N.EQ.17)
KCX=KCX+1
KCY=KCY
KCZ=KCZ+2
ELSE IF(N.EQ.18)
KCX=KCX
KCY=KCY+1
KCZ=KCZ+2
ELSE IF(N.EQ.19)
KCX=KCX+1
=KCY+1
KCZ=KCZ+1

ELSE IF(N.EQ.20)
KCX=KCX+4
KCY=KCY
KCZ=KCzZ

ELSE IF(N.EQ.21)
KCX=KCX
KCY=KCY+4
KCZ=KCZ

ELSE IF(N.EQ.22)
KCX=KCX
KCY=KCY
KCZ=KCZ+4

ELSE IF(N.EQ.23)
KCX=KCX+3
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KCY=KCY+1
KCZ=KCZ
ELSE IF(N.EQ.24)
KCX=KCX+3
KCY=KCY
KCZ=KCZ+1
ELSE IF(N.EQ.25)
KCX=KCX+1
KCY=KCY+3
KCZ=KCZ
ELSE IF(N.EQ.26)
KCX=KCX
KCY=KCY+3
KCZ=KCZ+1
ELSE IF(N.EQ.27)
KCX=KCX+1
KCY=KCY
KCZ=KCZ+3
ELSE IF(N.EQ.28)
KCX=KCX
KCY=KCY+1
KCZ=KCZ+3
ELSE IF(N.EQ.29)
KCX=KCX+2
KCY=KCY+2
KCZ=KC2Z
ELSE IF(N.EQ.30)
KCX=KCX+2
KCY=KCY
KCZ=KCZ+2
ELSE IF(N.BEQ.31)
KCX=KCX
KCY=KCY+2
KCZ=KCZ+2
ELSE IF(N.EQ.32)
KCX=KCX+2
KCY=KCY+1
KCZ=KCZ+1
ELSE IF(N.EQ.33)
KCX=KCX+1
KCY=KCY+2
KCZ=KCZ+1
ELSE IF(N.EQ.34)
- KCX=KCX+1
KCY=KCY+1
KCZ=KCZ+2

ELSE IF(N.EQ.35)
KCX=KCX+5
=KCY
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KCZ=KCZ
ELSE IF(N.EQ.36)
KCX=KCX
KCY=KCY+5
KCZ=KCZ
ELSE IF(N.EQ.37)
KCX=KCX
KCY=KCY
KCZ=KCZ+5
ELSE IF(N.EQ.38)
KCX=KCX+4
KCY=KCY+1
KCZ=KCZ
ELSE IF(N.EQ.39)
KCX=KCX+4
KCY=KCY
KCZ=KCZ+1
ELSE IF(N.EQ.40)
KCX=KCX+1
KCY=KCY+4
KCZ=KCZ
ELSE IF(N.EQ.41)
KCX=KCX
KCY=KCY+4
KCZ=KCZ+1
ELSE IF(N.BEQ.42)
KCX=KCX+1
KCY=KCY
KCZ=KCZ+4
ELSE IF(N.EQ.43)
KCX=KCX
KCY=KCY+1
KCZ=KCZ+4
ELSE IF(N.EQ.44)
KCX=KCX+3
KCY=KCY+2
KCZ=KCZ
ELSE IF(N.BEQ.45)
KCX=KCX+3
KCY=KCY
KCZ=KCZ+2
ELSE IF(N.BEQ.46)
KCX=KCX+2
KCY=KCY+3
=KCZ
ELSE IF(N.EQ.47)
KCX=KCX
KCY=KCY+3
KCZ=KCZ+2
ELSE IF(N.EQ.48)
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KCX=KCX+2
KCY=KCY
KCZ=KCZ+3
ELSE IF(N.EQ.49) THEN
KCX=KCX
KCY=KCY+2
KCZ=KCZ+3
ELSE IF(N.EQ.50) THEN
KCX=KCX+3
KCY=KCY+1
KCZ=KCZ+1
ELSE IF(N.EQ.51) THEN
KCX=KCX+1
KCY=KCY+3
KCZ=KCZ+1
ELSE IF(N.EQ.52) THEN
KCX=KCX+1
KCY=KCY+1
KCZ=KCZ+3
ELSE IF(N.EQ.53) THEN
KCX=KCX+2
KCY=KCY+2
KCZ=KCZ+1
ELSE IF(N.EQ.54) THEN
KCX=KCX+2
KCY=KCY+1
KCZ=KCZ+2
ELSE IF(N.EQ.55) THEN
KCX=KCX+1
KCY=KCY+2
KCZ=KCZ+2
ENDIF
CONTINUE

NT=KCX+KCY+KCZ
KX=MAX (kCX,KCY,KCZ)
KZ=MIN (KCX,KCY,KCZ)
KY=NT-KX-KZ

IF(KCX.BQ.KX.AND.KCY.EQ.KY.AND.KCZ.EQ.KZ) THEN
X=RX
Y=RY
2=RZ

ELSE IF(KCX.EQ.KY.AND.KCY.EQ.KX.AND.KCZ.BEQ.KZ) THEN
X=RY
Y=RX
Z=R2

ELSE IF(KCX.EQ.KZ.AND.KCY.EQ.KY.AND.KCZ.EQ.KX) THEN
X=RZ
Y=RY



114

Z=RX

ELSE IF(KCX.EQ.KX.AND.KCY.EQ.KZ.AND.KCZ.EQ.KY) THEN
X=RX
Y=RZ
Z=RY

ELSE IF(KCX.EQ.KY.AND.KCY.EQ.KZ.AND.KCZ.EQ.KX) THEN
X=RY
Y=RZ
Z=RX

ELSE IF(KCX.EQ.KZ.AND.KCY.EQ.KX.AND.KCZ.EQ.KY) THEN
X=RZ

Y=RX

Z=RY
ENDIF
IF(NT.EQ.2) GO TO 2
IF(NT.EQ.3) GO TO 3
IF(NT.EQ.4) GO TO 4
IF(NT.EQ.5) GO TO 5
IF(NT.EQ.6) GO TO 6
IF(NT.EQ.7) GO TO 7
IF(NT.EQ.8) GO TO 8
IF(NT.EQ.9) GO TO 9
IF(NT.EQ.10) GO TO 10

IF(KX.EQ.2) THEN

H = R(3)%(3.0%X*%2 - 1.0)
ELSE IF(KX.EQ.1) THEN

H = R(3)*(3.0%XxY)

ENDIF

GO TO 999

IF(KX.EQ.3) THEN

H = -R(4)%(15.0%Xxx3 -9.0%X)
ELSE IF(KX.EQ.2) THEN

H = -R(4)%*(15.0%Y*X%%2-3.0%xY)
ELSE IF(KX.EQ.1) THEN

H = -R(4)%(15.0%X%Y%2)

ENDIF :

GO TO 999

IF(KX.BPQ.4) THEN

H = -R(5)%(90.0%X%%2-105.0%X%%4-9.0)

ELSE IF(KX.FQ.3) THEN

H = -R(5)%(45.0%X%Y-105.xYxX*%x3)

ELSE IF(KX.EQ.2.AND.KY.EQ.2) THEN

H = -R(5)%(15.0%(X*%24Y%%2)-105.0%(X*Y)**2-3.0)
ELSE IF(KX.EQ.2.AND.KY.EQ.1) THEN

H = -R(5)%(15.0%xY%*Z-105.0%YxZxXx%2)

ENDIF
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GO TO 999

) IF(KX.EQ.5) THEN

H = R(6)%(-225.%X+ 1050.%X%%3 -945.¢X%x*35)
EISE IF(KX.EQ.4) THEN

H = R(6)%(-45.%Y+630. % (X*%2)%xY-945. ¥ (X*¥*4)xY)
ELSE IF(KX.EQ.3.AND.KY.EQ.2) THEN

H = R(6)%(-45.%¥X+315.xX¥Y*%x2
x -945. % (X*%3) X (Y¥%2)+105.#X%%3)
ELSE IF(KX.EQ.3.AND.KY.EQ.1) THEN

H = R(6)%(315.%X*%Y*¥Z-945.%(X*%3)xY*2Z)

ELSE IF(KX.EQ.2.AND.KY.EQ.2) THEN

H = R(6)%(=15.4Z+105.%(X%%2)%Z+105.%(Y**2)*Z

X -945. % (X*%2) % (Y%%2)%x2Z)
ENDIF
GO TO 999
6 IF(KX.EQ.6) THEN
H = R(7)%(-225.4 4725.%X%%2 -14175.%X*%%4+
X 10395. xX%%6)

ELSE IF(KX.EQ.5) THEN
H = R(7)%(1575.5X*Y -9450.3X*%3%Y+
x 10395. X*%5%Y)
ELSE IF(KX.EQ.4.AND.KY.EQ.2) THEN
H = R(7)%(-45.-5670.sXx%25Y%%2+10395. xX*x4xY%%2
L4 + 630.%X%%2 -945.%Xx%4+ 315.xY%%2)
ELSE IF(KX.EQ.4.AND.KY.EQ.1) THEN
H = R(7)%(315.%Y%Z -5670.%X%%2%Y%Z+
x 10395. *X%x%4%Y%Z)
ELSE IF(KX.EQ.3.AND.KY.EQ.3) THEN
H = R(7)%(945.%XsY -2835.*X*Y*%3-2835.xX4%3*Y
L + 10395.%Xx*3%xY%%3)
ELSE IF(KX.EQ.3.AND.KY.EQ.2) THEN
H = R(7)%(315.%X%Z-945.%X%%3%2-2835.%
X X*Y$%2%Z+ 10395.xXx%3%Y%%2%7)
ELSE IF(KX.EQ.2.AND.KY.EQ.2) THEN
H = R(7)%(-15. -945.%X*%2%Y%%2 -945. ¥X*¥%2%Zx%2
x =945, xYX%2%Z5%2+ 10395.%X*%2%xY$%2%Z%*2
x + 105.%X%%2+ 105.*Y*%2+ 105.%Z%*2)
ENDIF
GO TO 999

7 IF(KX.BEQ.7) THEN

H = R(8)%(A133X*x7+A11%21.*X%%x5+A9%105.xX%*3+A7%105.*X)

ELSE IF(KX.BEQ.6) THEN
H = R(8)%(A13%X*X6XY+A11%15. xX%¥43Y+A9%45 . xXx¥22Y

X +AT%15.%Y)

ELSE IF(KX.EQ.5.AND.KY.EQ.2) THEN

H = R(8)%(A13%X*x5xYX%2+A11%(10. XXxX3%YX%2+X%%5)+

% A% (15.xXxY%x%2+410.xX*%3)+AT*x15.%X)
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IF(KX.EQ.5.AND.KY.EQ.1) THEN
R(8)%(A13%X*x5%Y%Z+A11%10. ¥X**34YXZ+A9% 15, xX*Y*Z)
IF(KX.EQ.4.AND.KY.EQ.3) THEN

H = R(8)*(A13*%X*Xx4XYXX3+A11% (6. ¥ X£X2XY¥%3+3, XX K%4%Y)+
AQ%(3.xY%x3+18. *X¥¥2XY) +AT*9. %xY)
ELSE IF(KX.EQ.4.AND.KY.EQ.Z2) THEN
H = R(8)*%(A133X*¥*4xYXX2%xZ+A11% (6. ¥X¥¥2XY¥X2%Z+X¥X4%Z) +
A9X (3. XYXX2xZ+6 . XX¥X2XZ ) +ATX3.%2)
ELSE IF(KX.EQ.3.AND.KY.EQ.3) THEN
H = R(8)*%(A13%X*$*3XY*¥%3%Z+A11% (3. xXKYXX3%Z+3. *X*X3XY*Z) +
A9%9 . *X*Y%2Z)
ELSE IF(KX.EQ.3.AND.KY.EQ.2) THEN
H = R(8)*%(A133X%¥x3XYXX2%ZXX2+A11% (3. ¥ XXYXX2%Z%%2+
XXx32Z8%2+XXX38YVE%2 ) +A0% (3. ¥ X*Z%%2+3, kXKY¥%2+
X¥%x3)+AT%3.%X) .
ENDIF
GO TO 999

IF(KX.EQ.8) THEN

H =

ELSE
H =

ELSE

ELSE

R(9)*(A158X*%28+A13%28 . *X*x6+A11%210. ¥X* x4+
A9%420. xXxx2+ATXAT)
IF(KX.EQ.7) THEN
R(9)*(A15xX*%TxY+A13%21 . xX*x5%Y+A11%105. sXxx3xY+
A9%105.xX2Y)
IF(KX.EQ.6.AND.KY.FQ.2) THEN
R(9)#(A158X%x6xYE22+A13%( 15. s X*%4XYXX2+X%%6 ) +
Al1%(45.xX2%25Y%%22+15, xXxx4 ) +A9% (YXX2+45 ., xX%%2) +
A7x15.)
IF(KX.EQ.6.AND.KY.FQ.1) THEN
R(9)*(A158X%%68Y%Z+A13%15. xXX24XYXZ+A11%45, sXx%2XY%Z+
A9%15.8Y%2)
IF(KX.EQ.5.AND.KY.EQ.3) THEN
R(9)%(A158X2258YX23+A13%(10. sXX%3XY%X%3+3 . XXXX5%Y) +
Al1%(15.xX2Y%x3+30. tX%x3%Y) +A9%45., £XxY)
IF(KX.EQ.5.AND.KY.EQ.2) THEN
R(9)%(A158Xs355Y2%25Z+A13%( 10, XXX X3XYXX2XZ+X%%5%Z) +
Al1%(15.3XXY*x2%Z+10.xXx%3%Z)+A9%15.%X%xZ)
IF(KX.EQ.4.AND.KY.EQ.3) THEN
R(9)3(A15%X2243YX232Z+A13% (6. XX XX2XYXX3XZ+3, $XXX4XYXZ)
+A11%(32xY*%3%Z+18. XxX2%YXZ) +A9%9, xY*Z)
IF(KX.FQ.4.AND.KY.EQ.2) THEN
R(9)%(A152X243YX22XZX%x2+A13% (6. XX 228V XX2%Z%X X2+
XEX42Z2224 X224 2YX22) +A11% (3. XYXX227% %2+
6. XXXX2%Z%%2246 , XXXX2KY£X2+XX%4 ) +A0% (3. %xZ%%2+
3.5Y%%2+46 . xX%%2) +A7%3.)
IF(KX.EQ.4.AND.KY.EQ.4) THEN
R(9)*(A153Xxx42Y*24+A13% (6. sX%%2%YXX4+6 . s X224 XY%X%X2) +
Al1%(3.%Y%%4+43,.2X224+36. XXX £2XYX%X2) +
A9%(18.%Y%%2+18.xXx%2)+AT%9,)
IF(KX.EQ.3.AND.KY.EQ.3) THEN
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R(9) ¥ (ALSsX*¥X3YXX3KZXX2+A13% (3, kXKY¥X3XZ%X2
+3. ¥X¥235Y%Z%%2
+XKX3XY X3 ) +AL11% (9. kXKY*Z2%%2+3 . ¥ XkYXx3+3, XxX¥%3xY) +
A9*9. $X*Y)

ENDIF
GO TO 999

IF(KX.EQ.9) THEN

H =

ELSE

R(10)*#(A17%X*%%x9+A15%36. ¥X**7+A13%378. xX**5+
Al1%1260.*Xx%x3+A9%9, ¥ATXxX)
IF(KX.EQ.8) THEN
R(10)*(A17%X*x8%Y+A15%28 . xX*¥*6¥Y+A13%210. xX*%4%Y+
Al11%420.3X¥%2XY+A9XATXY)
IF(KX.EQ.7.AND.KY.EQ.2) THEN
R(10) % (A1 T*X%¥TxYX%2+A15% (21 . ¥X¥K5XYXX2+X*%7 ) +
Al3%(105.%X*x3%Y¥%2+21. #X*%5)+
Al11%(105.%X*Y%%2+105.#X*%3)+A9%105. *X)
IF(KX.EQ.7.AND.KY.EQ.1) THEN
R(10) % (A1T*X*xT2YXZ+A15%21 . ¥X¥£5%Y¥Z+ \
A13%105.*X**3xY*Z+A11%105. ¥XxY*Z)
IF(KX.EQ.6.AND.KY.EQ.3) THEN
R(10) % (A17#X%%6XYX%3+A15%(15. ¥X*x4XY%%3+3 . KX¥%6%Y)+
Al13%(45.3XxX25Y%%23445. xX*%4%Y) +A11%(15. xY*%3+
135.#X%%22Y) +A9%45. 1Y)
IF(KX.EQ.6.AND.KY.EQ.2) THEN
R(10) X (A172X%%68YXX2%Z+A15% (15 kXX X4 XV XX2XZ+XXX6%Z ) +
Al3%(45.3XX22%YX*%2%Z+15. $X%%4%Z)+
A11%(15.%Y*%2%Z+45. xX¥%2%Z) +A9%15.%Z)
IF(KX.EQ.5.AND.KY.EQ.3) THEN
R(10)%(A17xX*#X55YX%3%Z+A15% (10. XXX X3XYK%3%Z+3 . xXX¥5%Y*Z)
+A13%(15.*X*Y*%23%Z+30. ¥X$£3%Y*Z) +A11%45. ¢ X¥Y%Z)
IF(KX.EQ.5.AND.KY.EQ.2) THEN
R(10) % (A173X%25XYX%2%Z%%2+A15% (10 ¥X¥XIXYX42%Z% %2+
XE25XZXX24+X2258YX%2) +A13% (15, s X2YXX2XZ%%2+
10, #X%%23%Z%2%2+10. ¥ XXX 3KYRX24X¥%5) +
A11%(15.%XxZ%%2+15. XxY*%2+10.*X%%3)+A9%15. ¥X)
IF(KX.FQ.5.AND.KY.EQ.4) THEN
R(10)%(A173X*25%Y%%4+A15%(10. ¥ X¥X3¥Y¥%x446 . XX X5%YX%2) +
Al13%(15.3XxY%%4+43.xX%%x5+460. ¥ XX 23%Y%%2)+
Al11%(90.3XxY*%2+30.*X%%3)+A9%45, *X)
IF(KX.BEQ.4.AND.KY.BQ.3) THEN
R(10)*(A17sX2%42YX23%Z2%%2+
Al5%(6.XEX22YXX3XZX X243, $XXX4XYXZX %2+
X224%Y5%3)+A13% (3. XYXX3ISZX%2+18 ., XXX X2KYXZX %2+
6. EXXX25YEX3+3. XX X4XY) +A11% (9. XYXZ%%2+
3.5Y%$%3+18. xX%%2%Y) +A9%9. ¥Y)
IF(KX.BFQ.4.AND.KY.BEQ.4) THEN
R(10) %X (A17XX%%4XYX%4XZ+A15% (6. ¥ XX X2XYXX4%Z+
6. SXXX4XYXX2%Z) +A13% (3. 3Y*¥X4%Z+3 . XX¥¥4%Z+
36. XXX%2XYX%2%XZ) +A11% (18, XYX%2%Z+18. *xX¥%2%Z) +
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% A9%9.%2)
ELSE IF(KX.EQ.3.AND.KY.EQ.3) THEN
H = R(10)%(A1T*X¥*3xYXx3xZx%3+A15% (3. XX¥Y*x3%Zx %3+
X 3. 8Xxx3xY%x3xZ2+3, Xk x3xYxZx%3) +A13% (9. xX*YXZ%%x3
X +9. s XAZXYXX3+9. kXXX 3XYXZ)+A11%27 . ¥XkV%Z)
ENDIF
GO TO 999

10 IF(KX.EQ.10) THEN
H = R(11)%(A19%X*%10+A17%45. *X**¥8+A15%630. ¥X*x6+
x Al13%3150.%¥X*%¥4+4A11%45. *AT*X**%2-A9%A9)
ELSE IF(KX.EQ.9) THEN
H = R(11)%(A19%¥X%*9%Y+A17%36 . ¥ XXX TXY+A15%378, xXxx5%Y+
% Al3%1260.*X¥*¥3%Y+A11%9. KAT*X*Y)
ELSE IF(KX.EQ.8.AND.KY.EQ.2) THEN
H = R(11)%(A19%X**8XY**¥2+A17%(28. X% X6XYX%2+X*%8)+

% A15%(210. ¥X¥¥4XY%%2+28. xX*%6) +
% A13%(420.¥XX225Y%%2+210. ¥X%%4)+ :
x Al1X(ATEY$%2+4420. xX%%2) +A9%A7) ‘

ELSE IF(KX.EQ.8.AND.KY.EQ.1) THEN

H = R(11)%(A19%X*288YXZ+A17%28. xX*X6XY%XZ+
x Al15%210.$X¥%4xY*Z+A13%420. ¥ X¥X2XYXZ+A1 1 ¥ATXY*2Z)
ELSE IF(KX.FQ.7.AND.KY.EQ.3) THEN

H = R(11)%(A19%X%%7XY*X3+A17%(21. $X*¥555Y*x3+3. £XxX74Y) +
X Al5%(105.#X%%3xY*%3+463. ¥X%%5%Y) +A13%(105. xX*¥Y*%3+
% 315.5X*%%3%Y)+A11%315, *XxY)

ELSE IF(KX.EQ.7.AND.KY.EQ.2) THEN

H = R(11)%(A195X$X7aY*X2%Z+A17% (21 . XXXX5XYXX2%Z+XXXTXZ) +
x A15%(105. sX*%3xY%X2%Z+21. XX*%5%Z) +
x Al13%(105.*X5Y%%2%Z+105. *X*%%3%Z) +A11%105. *X*Z)
ELSE IF(KX.EQ.6.AND.KY.EQ.4) THEN

H = R(11)%(A19%X%%6XY*X4+A1T%(15. $X*X4XY%%4+46. XXX X6XYX%2)

x +A15%(45. X% 223Y%%443, *X$X64+90%X2X45Y%%2) +
x Al3%(15.3Y%%4+445.xX%%4+270. ¥X¥%2%Y%%2) +
x Al11%(90.3Y%%2+135.%X%%2)+A9%45.)

ELSE IF(KX.FQ.6.AND.KY.EQ.3) THEN
H = R(11)%(A19%X*%63Y*X3%Z+A1T%(15. $X¥X45YX%3%Z+

X 3. 3X%%6XYXZ) +A15% (45 XXX X2XYX%3%2Z
X +45 . 3X%%43Y%XZ) +A13% (15. XY*%3%Z+135. $X*%2%Y%Z) +
x Al11%45.%Y3%2Z)

ELSE IF(KX.BEQ.6.AND.KY.EQ.2) THEN

H = R(11)%(A19%X*x6%YX22%ZXXx2+A17%(15. s XXX4XY2X2XZ%%2+
X*X6%ZX %2+ XXX6XYE%2) +A15% (45, 3XXK2XYXX2%ZX %2+
15.£XX%x42Z%%2+15 . XXX24XYX224+X%%6 ) +
Al3%(45.¥Xxx2%Z%2%2+45 . sXx22XYXx2+15. xX*¥%4+
15.KYX%22Z%%2) +A11%(15.22%%2+15. xY%%x2+45, kX*%2)
+A9%15.)

EISE IF(KX.BFQ.5.AND.KY.EQ.5) THEN

H = R(11)%(A19#XxX5xYxx5+A17% (10, xX*£3xY%¥x5+10, £ X*%5%xY*%3) +

x Al15%(15.2X2Yx%25+15, £Xxx5xY+100. *X*x3%Y%x%3)+

”* M I W
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¥ Al13%(150.sX¥Y*%3+150. ¥X*¥3*Y) +A11%225. *XxY)

ELSE IF(KX.EQ.5.AND.KY.EQ.3) THEN

H = R(11)*%(A19%X*$x5%YX%3%xZ%*2+
ALT®(10. xX¥%3XYXX3%kZx%2+3 . kX¥K5XY*Z%%2+
X2x5%Y*%3)+A15% (15 xXAYXX3xZ%%2+30 . x XXk JXYVXZX%2+
10, *X¥%3xY%%3+3. ¥ X¥x5%Y) +A13% (45. xX*Y*Z%xX2+
15.¥XxY%%3+30. ¥X¥%3%Y) +A11%45., *¥XxY)

ELSE IF(KX.EQ.5.AND.KY.EQ.4) THEN

H = R(11)*%(A19%X*x5xYXx4%2Z+A17% (10, 3XX*3XYX%4%Z+

”® & N

% 6. ¥XXX5XY$22%Z ) +A15% (15. xX¥Y%%x4%Z+3 . ¥xX*X5%Z+
X 60.xX%%32YX%2%Z) +A13%(90. ¥ X*Yx%x2%Z+30. xX*x%x3%Z) +
% A11%45.1%X%2)

ELSE IF(KX.EQ.4.AND.KY.EQ.3) THEN

H = R(11)*%(A19%X*x4XY**3¥ZXX3+A1TX (6. KX¥X2XYXXIXZX¥ %3+
3. RXEX4XYXZX%34 3. kX2 K42YXX3XZ) +A15% (3. ¥Y**3
$ZXX3+18. AAXX2XYXZ5X3+18. $XXX2XYXX3%Z+
9. xX%X43YXZ)+A13% (9. XYXZXxXx349 . XY¥X3%Z+
54.%X$x25Y%Z) +A11%27 . ¥Y%2Z)

ELSE IF(KX.EQ.4.AND.KY.EQ.4) THEN

H = R(11)*%(A19%X$%4XYXX4XZXX2+A1T% (6. XXKX2XY K X4 KZX%2
+6 . KXXX4XYRX25ZE X2+ XX 242V XX4 ) +A15K (3. XY XX4%Z%%2+
3 RXXX4RZKX246  KXXX2KVEX4+6 . XXX X4XYX %2436 . %
XEX28Y$222Z%%2) +A13% (18. XY X2%Z%%2+3 . XY* %4+
3. ¥X%$%4436 . AX¥X28Y¥%2+18. kXX %2%Z%%2) +
Al1%(9.%Z%%2+18.%Y%%2+18, $X%%2)+A9%9.)

W P M

”® W N N

ENDIF

999  CONTINUE
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PROGRAM TITLE : FRQDIEL
PURPOSE : SIMULATION OF THE FREQUENCY-DEPENDENT

DIELECTRIC CONSTANT OF COMPOSITE MATERIALS

FOR UNIFORM OR COATED INCLUSION.
METHOD : CHOOSE ONE (1) THE MINIMUM IMAGE METHOD
OR (2) THE LATTICE SUM METHOD
CONTAINS : ONE MAIN PROGRAM ,THREE SUBROUTINES,
AND ONE CALLING MATH-LIB FOR SOLVING
THE COMPLEX LINEAR EQUATIONS
DATE : 1989

1332223323323 3332323230332 023233233320 332023223033323223222 93

DEFINITION :

ANCUT = RADCUT/RADSYS

APHA : CONVERGE PARAMETER

BF : BEGINNING FREQUENCY: 0.2DO0

CD : THE CONDUCTIVITY

D1 : DIELECTRIC CONSTANT OF PARTICLE

D2 : DIELECTRIC CONSTANT OF MEDIUM

DE : THE EFFECTIVE DIELECTRIC CONSTANT

DRE1 : RE(BULK DIELECTRIC CONSTANT FOR INCLUSION)
DIM1 : IM(BULK DIELECTRIC CONSTANT FOR INCLUSION)
El : X-COMPONENT OF APPLIED FIELD

E2 : Y-COMPONENT OF APPLIED FIELD

E3 : Z-COMPONENT OF APPLIED FIELD

EF : ENDING FREQUENCY: 0.55D0

II(MAX) AND NUMW : THE NUMBER OF FREQUENCY POINTS
N2(MAX) : THE NUMBER OF INCLUSIONS IN PRIMARY CELL
NCELL : INTEGER IN k-SPACE

NCONG : NUMBER OF CONFIGURATIONS

NN : THE DIMENSIONS OF DIPOLES; NN=3 FOR L=1
NSINK : NUMBER OF INCLUSIONS

MCELL : INTEGER IN r-SPACE

PRD : UNIT LENGTH OF CELL

RADSYS : RADIUS OF SYSTEM

RADSINK : RADIUS OF INCLUSION

TAOINV : DAMPING CONSTANT

VFRAC : VOLUME FRACTION

VF : ELECTRON FERMI VELOCITY

W(I) : FREQUENCY

WP : PLASMA FREQUENCY

WS : RESONANCE FREQUENCY

INPUT : TININP,TININ2
OUTPUT : TINOUT,TININ2

W M W W I W W W F W I I M I M I I W I M I I e M I M I I I W M M e I R I M I M W

0333223322333 223 2322323223223 2332332333832 22 2220332320322
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X

3232323332333 223 2232322322323 222 2222222203232 83332223

PROGRAM FRQDIEL
IMPLICIT REAL*8 (A-H,0-2)
IMPLICIT INTEGER*4 (I-N)
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PARAMETER (N2 = 25,II = 100,MNN = 3)

REAL PX(N2),PY(N2),PZ(N2),XC(N2),YC(N2),ZC(N2),R(N2)
REAL W(II),SSREAL(II),SSIMAG(II),SSRE2(II),SSIM2(II)
REAL SSREIM(II),SMPXRE(II),SMPXIM(II)

COMPLEX*16 TMAT (NN*NZ2,NN#N2),B(NN¥N2),C(NN¥N2),CC(NN*N2)
COMPLEX*16 TTMAT (NZ2*NN,N2%¥NN), TMT (NN*¥N2,NN*N2) ,SSMPX(II)
COMPLEX*16 SMPX(II),D1,DIN1,DDINO,SSMPXT, TOPDE, BOTDE
CorPLEX*16 DE,TZZ,T(10),U,V,UV,D1D2,TOPT,BOTT,V1
INTEGER IPTT(NN%*N2)

COMMON /PP/ NCELL,MCELL, PRD,APHA,RADCUT2,PI,PI2

OPEN(1,FILE = 'TININP’)
OPEN(Z2,FILE = 'TININ2')
OPEN(7,FILE = 'TINOUT’)
OPEN(8,FILE = 'TINOU1’)
PI = 4.DO* DATAN(1.DO)
PI2 = 2.DO*PI

ANCUT = 1.DO

C CONFIGURATION DATA INPUT FROM TININP
READ(1, ¥ )NSINK, NCONG, VFRAC, RADSYS , RADSINK

C GET VARIABLES FROM TININ2
READ( 2, ¥ )NSINK,NCON, VFRAC, RADSYS
READ(2,*)D2,Dm,E1,E2,E3,NUMW,NCELL ,MCELL, APHA, BF , EF

RADSINK = (3.DO*VFRAC/(4.DO*PI*NSINK))*%x(1.D0/3.DO)
RAD=(3.%PHI/(4.*PI*NSINK))%%(1./3.)

AR=RADSINK/RAD

RADCUT = ANCUT % RADSYS

RADCUT2 = RADCUT * RADCUT

RADSYS2 = RADSYS % RADSYS

TDIST = RADCUT + RADSYS

PRD = 2.DO*RADSYS

FACT = 4.DO*PI*Dm

WRITE(6,20)
20 FORMAT(2X,//,40X,’ RANDOM SINK CONFIGURATION ’,//)

WRITE(6,%) ' NUMBER OF SINKS = ',NSINK
WRITE(6,%) ’' RADIUS OF SINK = ’',RADSINK
WRITE(6,%) ' RADIUS OF SINK = ’,RAD
WRITE(6,%) ’ RADIUS OF SYSTEM = ’',RADSYS
WRITE(6,%) ' VOLUME FRACTION = ’,VFRAC
WRITE(6,%) ' VOLUME FRACTION = ’,PHI

WRITE(6,%) ' NUMBER OF CONFIGURATIONS = ’,NCON
WRITE(6,121)

121 FORMAT(2X,//,40X,’ PARAMETERS OF THE SYSTEM ',//)
WRITE(6,%) ' DIELECTRIC CONSTANT OF MEDIUM:D2 = ',D2
WRITE(6,%) ’ X-COMPONENT OF APPLIED FIELD = ',El
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WRITE(6,%) ' Y-COMPONENT OF APPLIED FIELD
WRITE(6,%) ' Z-COMPONENT OF APPLIED FIELD

na
3]
w

SET INITIAL VALUES FOR EACH FREQUENCY POINT
DO 49 I = 1, NUMW

SSMPX(I) = CMPLX(0.D0,0.DO)
SSREZ2(I) = 0.DO

SSIM2(I) = 0.DO

SSREIM(I) = 0.DO

CONTINLE

FOLLOWING IS CONFIGURATION AVERAGE
DO 1000 ICON = 1, NCON

GET NEW CONFIGURATION; RANDOMLY GENERATE THE CENTER
OF NON-OVERLAPPING INCLUSIONS, XC,YC,ZC BETWEEN O AND 1.
PERIODIC BOUNDARY CONDITION USED

READ(1,%) ICI

DO 888 I = 1,NSINK
READ(1,#*) XC(I),YC(I),2C(I)
CONTINUE

CHECK PARTICLES ONLY INSIDE THE SPHERE(RADCUT)
OR PRIMARY CELL

WRITE(6,%)’ ICON=',ICON

m{ - FRD/Z.DO

NS =0 .

DO 555 M = 1, NSINK

IF( ABS(XC(M)-RADSYS) .GT. PRDH ) GO TO 555
IF( ABS(YC(M)-RADSYS) .GT. PRDH ) GO TO 555
IF( ABS(ZC(M)-RADSYS) .GT. PRDH ) GO TO 555
NS =NS +1

PX(NS) = XC(M)

PY(NS) = YC(M)

PZ(NS) = ZC(M)

CONTINUE

NDIM IS TOTAL DIMENSION OF MATRIX
NDIM = NN2NS

CONSTRUCTION OF B VECTOR(CONSTANT PARTS)
DO 51 I =1, NS

IP1 = (I-1)*NN+1

IP2 = (I-1)*NN+2

DO 52 TA = 1, NN

ID = (I-1)%NN+IA

IF(ID .EQ. IP1) THEN

B(ID) = FACT * El

ELSE IF(ID .BEQ. IP2) THEN



123

FACT * E2

B(ID)
ELSE
B(ID)
END IF
CONTINUE
CONTINUE

FACT % E3

Ur O
- N

MIMATRIX AND LSMATRIX ONLY DEPEND UPON THE POSITIONS
OF INCLUSIONS.

IF USE LATTICE SUM METHOD, CALL LSMATRIX

CALL LSMATRIX(TMAT,PX,PY,PZ,NN,NS,NDIM)

oNoNoNe!

Q

IF USE MINIMUM IMAGE METHOD, CALL MIMATRIX
CALL MIMATRIX(TMAT,PX,PY,PZ,NN,NS,NDIM)

C SCAN FREQUENCY
DO 50 IN = 1, NUMW
FWP = FLOAT(IN)*(EF-BF)/FLOAT(NUMW)+BF
WP=1.46D+16
GAMAI=0.24E+14
TAOIB=0.87E+14
VF=1.44E+14
GAMAA=GAMAI+VF/(RADSINK*(10.E-5))
TAO=GAMAA+TAOIB
WS=WP/SQRT (DRE1+2.%D2)
WSWP=WS*%x3/ (WP%%x2)
DIM1=(TAO-GAMAA) /WSWP
TAOINV=1.68D+14
DRE1=4.5D0
DIM1=0.16D0
W(IN) = FWP*WP
WWP = W(IN)/WP
TAOWP =TAOINV/WP
DIN1 = CMPLX(DRE1,DIM1)
DDINO = CMPLX(WWP,TAOWP)
D1 = DIN1 - 1.DO/(WWP*DDINO)
U=D2/Dm
V=D1/Dm
vi=V-1,
uv=U-v
D1D2=D1-D2
NP=2
DO 30 L=0,NP-1
A=1,
BB=1.
DO 35 I=1,L
BB=FLOAT(I+1)*BB
35 CONTINUE

IF(BB.EQ.0.) BB=1.

DO 33 I=1,L

oNoNoNoNoNeoNoNe®!
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A=FLOAT(2%I+1)*A

CONTINUE

L1=L+1

L2=L+2

L23=2%L+3

TOPT= L1*V1%(VxL2+UxL1)*RAD¥*L23+L1*%UV¥(L1+V*L2)*RADSINK%*L23
BOTT=( (V*L2+UxL1)*x(L2+VxL1)+L1xL2*xUVXV1*ARXxL23) *A*BB
T(L1)=TOPT/BOTT

CONTINUE

TZZ=T(1)

MATRIX ADDS DIAGONAL PARTS(SELF TERM IN PRIMARY CELL)
ELECTRIC

DO 47 I=1,NDIM

DO 47 J=1,NDIM

IF(I.EQ.J) TIMAT(I,J)=TMAT(I,J)+1.D0/T2Z

IF(I.NE.J) TMMAT(I,J)=TMAT(I,J)

CONTINUE

SOLVING LINEAR EQUATION (TTMAT*C=B )
CALL SOLVEC(TTMAT,C,B,NN,NDIM,NS,TZ2Z, IPTT,T™T)

ONLY PICK DIPOLE MOMENTS AT X-COMPONENT

NK =0

DO 333 I = 1, NDIM, NN

NK = NK + 1

CC(NK) = C(I)/Dm

CONTINUE

SUM ALL DIPOLE MOMENTS
SMPX(IN) = CMPLX(0.D0,0.D0)
DO 151 I =1, NS

SMPX(IN) = SMPX(IN) + CC(I)
CONTINUE

SMPXRE(IN) = REAL(SMPX(IN))
SMPXIM(IN) = AIMAG(SMPX(IN))

SSMPX(IN) = SSMPX(IN) + SMPX(IN)

SSRE2(IN) = SSRE2(IN) + SMPXRE(IN)*SMPXRE(IN)
SSIM2(IN) = SSIM2(IN) + SMPXIM(IN)*SMPXIM(IN)
SSREIM(IN) = SSREIM(IN) + SMPXRE(IN)*SMPXIM(IN)
CONTINUE

CONTINUE

RADNE3 = (3.D0/(4.DO%PI))*(2.DO*RADSYS)*%3

RADNEW = RADNE3#%(1.D0/3.DO0)
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AL = 1.DO/(4.DO*PI*E1*RADNEWX*3)
AL2 = AL#AL

C ANALYZE FREQUENCY
DO 60 I = 1, NUMW
SSMPXT = SSMPX(I)/NCON
TOPDE = 1.DO + 2.DOXAL*SSMPXT
BOTDE = 1.D0 - ALXSSMPXT
DE = Dm*(TOPDE/BOTDE)
CD = W(I)*AIMAG(DE)/(4.DO%PI)

Cc SECTION FOR ERROR ANALYSIS
IF(NCON.GT.1) THEN
SRET = REAL(SSMPXT)
SIMT = AIMAG(SSMPXT)
SREIMT = SRET*SIMT
SIGA = ABS(SSRE2(I) - NCONXSRET#*SRET)/(NCON-1)
SIGB = ABS(SSIM2(I) - NCON*SIMT*SIMT)/(NCON-1)
SIGAB = ABS(SSREIM(I) - NCON*SRET*SIMT)/(NCON-1)
TOP = 1.DO+ ALXSRET- 2.DO*AL2%(SRET*SRET+ SIMT*SIMT)
BOT = 1.DO- 2.DO*ALXSRET+ AL2*(SRET*SRET+ SIMT*SIMT)
BOT2 = BOT*BOT

D1DA = (BOT*(AL-4.DOXAL2%SRET)-TOP% (4 .DOXAL2%SRET
X -2.D0O%AL) ) /BOT2 ’

D1DB = (BOT*(-4.DO*AL2*SIMT)- TOP*(2.DO*AL2*SIMT))
X /BOT2

T20P = 3.DO*AL*SIMT

D2DA = T20P*(-2.DO*AL2xSRET + 2.%AL)/BOT2

D2DB = (BOT*(3.DO*AL) - T20P*(2.*AL2*SIMT))/BOT2
SD11 = SIGA*D1DA*D1DA

SD12 = SIGB*D1DB*D1DB

SD13 = SIGAB*D1DA*D1DB

SD21 = SIGA*D2DA*D2DA

SD22 = SIGB*D2DB*D2DB

SD23 = SIGAB*D2DA*D2DB

SIGD1 = SQRT((SD11 + SD12 + SD13)/NCON)
SIGD2 = SQRT((SD21 + SD22 + SD23)/NCON)
ENDIF

C PRINT OUT DATA

WRITE(7,43) W(I)/WP,REAL(DE),SIGD1

WRITE(8,43) W(I)/WP,AIMAG(DE),SIGD2
43 FORMAT(2X,f10.6,1X,F10.6,1X,F10.6)
60 CONTINUE

STOP

END
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C THIS SUBROUTINE CREATES A COMPLEX-MATRIX BY LATTICE SUM #
CEEAEEXARXXRKARRXREXRERXEXXREXBEXRRXKRXRRXKRXXRXXRKERKKKXXRR KK XK
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SUBROUTINE LSMATRIX(TMAT,PX,PY,PZ,NN,NS,NDIM)
IMPLICIT REAL#*8 (a-h,0-2)

IMPLICIT INTEGER%*4(I-N)

COMPLEX%16 TMAT(NDIM,NDIM)

REAL PX(NS),PY(NS),PZ(NS)

COMMON /PP/ NCELL,MCELL, PRD,APHA,RADCUTZ,PI,PI2
EXTERNAL ERFC

SPI = DSQRT(PI)

TREL = 4.DO%*PI/3.D0-4.DO*APHA%**3/(3.DO*SPI)

CREATES THE INITIAL ELEMENTS OF THE MATRIX
DO 777 I = 1, NDIM

DO 777 J = 1, NDIM

IF(I.EQ.J) T™AT(I,J)=CMPLX(TREL,0.DO)
IF(I.NE.J) T™AT(I,J)=CMPLX(0.D0,0.DO)
CONTINUE

START TO CREATE THE ELEMENTS OF MATRIX
THE ELEMENT IS THE SUM OF k-SPACE AND r-SPACE
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THIS CHECKS A SYMMETRIC MATRIX
IF(ID.LT.JD) GO TO 3

THIS PART DOES THE k-SPACE SUM

DO 100 K = -NCELL, NCELL
DO 110 L = -NCELL, NCELL
DO 120 M = -NCELL, NCELL

DIST2 = (K%K + L3L + M#M)*PRD*PRD
IF(DIST2.LE.REAL(NCELL*NCELL) .AND.DIST2.NE.O.) THEN

XK = REAL(K)
YK = REAL(L)

ZK = REAL(M)

RRX = (PX(I) - PX(J))

RRY = (PY(I) - PY(J))

RRZ = (PZ(I) - PZ(J))

RDK = (RRXREAL(K)+RRY*REAL(L)+RRZ*REAL(M))*PRD

THETA = 2.DO*PIstRDK
D = 4.DOs*PIX*EXP(-PI*PI*DIST2/(APHA*APHA) ) *COS(THETA)
% /DIST2

IF(1IS.BEQ.1) THEN
IF(JS .BEQ. 1) THEN
T™AT(ID,JD) = ™AT(ID,JD) + D¥XK*XK
ELSE IF(JS .BEQ. 2) THEN
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T™AT(ID,JD) = TMAT(ID,JD) + D¥XK*YK
ELSE IF(JS .EQ. 3) THEN

T™AT(ID,JD) = ™AT(ID,JD) + D¥XK*ZK
ENDIF

ELSE IF(IS .EQ. 2) THEN
IF(JS .EQ. 1) THEN
™AT(<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>