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ABSTRACT
AN INVERSE APPROACH TO THE ESTIMATION OF THE TISSUE
THERMAL PROPERTIES AND THE DETERMINATION OF THE OPTIMAL
TREATMENT TIME IN CRYOSURGICAL APPLICATIONS
By

Leslie Ann Scott

Cryosurgery is a method of destroying undesirable biological tissue, particularly cancerous
tumors, by freezing. Accurate estimation of the thermal properties of the tissue being frozen is
often difficult due to its complex structure. Optimal duration of treatment is of extreme
importance, not only to ensure destruction of the diseased tissue, but also to minimize loss of the
surrounding healthy tissue. Methodologies are presented for the estimation of the thermal
properties of the tissue and the determination of the optimal treatment time. An infinite
homogencous medium with constant thermal properties subject to a point heat sink was
considered. One-dimensional analytical solutions for dimensionless temperature in the frozen and
unfrozen regions were obtained. Using these solutions, simulated data with added random errors
were used to evaluate the procedures. The estimated thermal properties using simulated data were
found to be in excellent agreement with the properties used to generate the data. In the
determination of the optimal treatment time, there was also excellent agreement between the

determined treatment time and the time used to generate the simulated data.
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CHAPTER 1

INTRODUCTION

Cryosurgery is a medical technique of destroying undesirable biological tissue, particularly
cancerous tumors, by freezing to very low temperatures (typically around -S0°C). The use of
freezing in the treatment of malignancy dates back to the 1850s when iced saline solutions were
used to treat advanced cases of breast and uterine cervical cancer (Gage, 1992). It was found that
the freezing treatment provided a relief of pain, a reduction in tumor size, and a decrease in
bleeding and discharge. The availability of liquified gases in the late 1800s further developed the
field of freezing therapy. Liquid air was often used to treat a variety of skin disorders, including
skin cancer, with favorable results reported.

Pioneering work in this area continued during the years 1936 to 1940 (Gage, 1992).
Patients with large incurable cancers of the breast and uterine cervix were treated with irrigations
of iced saline solution through hollow instruments in contact with the tumor. The benefits again
included a relief of pain and a reduction of tumor size, just as reported nearly a century earlier.
Medical research in this area was interrupted by World War II and did not continue for several
years after due to the association in scientists’ minds with the Nazi’s infamous hypothermia
experiments in concentration camps (Rubinsky, 1986b).

Research resumed in the 1950s with impressive results reported, but it wasn’t until 1961
that modem cryosurgery was bom. This was due to the development of a new cryosurgical
apparatus by Irving Cooper and A.S. Lee. This device, the cryoprobe, is a small hollow cylinder
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that is vacuum insulated everywhere except the tip. A cryogen, usually liquid nitrogen, is
circulated through the cryoprobe. Freezing of the undesirable tissue is achieved through the
placement of the cryoprobe either in contact with the surface of the tumor or directly into the
tumor by puncture, resulting in the removal of heat from the surrounding tissue. As this heat is
removed, a freezing front propagates outward from the probe resulting in destruction of the tissue.

Cryosurgery offers many advantages over traditional forms of treatment of cancer. It
does not require the resection of large volumes of surrounding healthy tissue. Often, anesthesia
and surgery are not necessary. Also, because freezing can be localized, multiple lesions within
an organ can be treated individually. However, for a cryosurgical procedure to be successful, it
is extremely important to be able to predict the area of tissue necrosis. To do so requires that the
thermal conditions that promote the destruction of the tissue, as well as the thermal history and
extent of freezing during the procedure, are well understood (Rubinsky, 1986b). It is essential that
destruction of the entire tumor is achieved while damage to the surrounding healthy tissue is
minimized. Therefore, the propagation of the freezing front must be precisely determined during
the freezing process.

The most prominent use of cryosurgery is in the treatment of skin cancer. In this case,
the location of the freezing front is easily seen by the surgeon. Other applications include the
treatment of prostatic and uterine cervical cancers, the treatment of Parkinson's disease by
destroying lesions within the brain, and the destruction of tumors within the liver. These deep
body locations do not permit the visualization of the freezing front by the surgeon. The
heterogeneous nature and large blood supply (typical of malignant tissue) of the tumor further
complicate the freezing process. In many cases, the duration of treatment and amount of tissue
destroyed has become almost an art form for the surgeon, with experience gained through
previously performed procedures.

To accurately determine the optimal duration of cryosurgical treatment, specific for each
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size and type of tissue to be destroyed, appropriate mathematical models are needed to describe

the heat transfer within the tissue. The use of mathematical models also requires the accurate
knowledge of the thermal properties of the tissue to be frozen, however, the values of these tissue
thermal properties are often unavailable. Therefore, the development of methods that allow for
the accurate estimation of the tissue thermal properties and optimal duration of treatment is
essential.

In this investigation, mathematical models were chosen to describe the heat transfer within
the tissue undergoing cryosurgical freezing. Simplifying assumptions were made to allow for the
attainment of analytical solutions to these describing differential equations. A minimization
procedure, the Box-Kanemasu Interpolation Method, was used to estimate the thermal properties
and to determine the optimal duration of treatment. Although the problem was simplified, the
primary goal of this study was to test the methodologies for accuracy and reliance.

1.1 Objectives

The objective of this investigation was two fold. First, the minimization procedure was
used to estimate the tissue thermal properties. Specifically, the properties to be estimated were
the latent heat of fusion, thermal conductivity, and thermal diffusivity. Second, the minimization
procedure was used to determine the optimal treatment time required to achieve a desired
minimum temperature at a specified radius location of the tumor. In both cases, simulated
measurement data were required as input for the procedure. This allowed for the comparison
between the estimated values and the actual values used to generate the simulated data.

In the sections that follow, a literature review is presented in Chapter 2. In Chapter 3,
Theoretical Methods, the Box-Kanemasu Interpolation Method is described, with all necessary
mathematical expressions introduced. The methods used to estimate the thermal properties and
to determine the optimal treatment time are presented in Chapter 4, Analytical Procedures. The

results of this investigation are presented and discussed in Chapter S, with the conclusions given
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in Chapter 6, Summary and Conclusions. Finally, Chapter 7 provides recommendations for future

work in this area. All computer programs required for this study are located in the Appendices.



CHAPTER 2

LITERATURE REVIEW

Cryosurgery is a medical treatment in which malignant and other biological tissue is
destroyed by freezing to very low temperatures. It is essential that the diseased tissue is destroyed
while maintaining as much healthy tissue as possible. The outcome of the cryosurgical treatment

is dependent upon the cooling and warming rates imposed at the freezing/thawing front.

2.1 Mechanisms of Cell Destruction

The cells that comprise the undesirable tissue are destroyed by two distinctly different
methods, depending upon the rate of cooling/warming. When cells are subject to a slow rate of
cooling (10°C/min), they often remain unfrozen, yet supercooled (Savic, 1984). Ice forms in the
vasculature system first while the cells adjacent to the blood vessels remain unfrozen (Rubinsky
and Eto, 1989). Since the supercooled water has a higher vapor pressure than the ice crystals, the
cell equilibrates by losing water, resulting in dehydration of the cell. There is a subsequent
concentration of the solutes within the cell that, when high enough, leads to the death of the cell.
In addition, when the rate of cooling is slow, the formation of ice in the vasculature results in
expansion of the vessels. This causes a loss of structural integrity of the vessel, which may not
be functional when thawed.

When rapid cooling occurs (100°C/min), the cell is unable to equilibrate quickly enough
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through dehydration. Therefore, equilibrium is achieved by the formation of intracellular ice. The

small ice crystals produced through rapid cooling are likely to fuse with other small crystals
within the cell. This results in the rupture of the cell membrane and the death of the cell. While
a slow rate of cooling may not always result in the death of cells, as in frostbite injuries,
intracellular ice formation is almost invariably lethal to cells (Comini and Del Guidice, 1976).
Small crystals produced by rapid cooling have a tendency to recrystallize during the
thawing process, especially if the warming is slow. This results in the breaking of more cell
membranes, killing more cells. Therefore, more cells are killed during a slow thawing process.
In cryosurgical applications, the ideal case is rapid freezing and slow thawing to achieve the

maximum percentage of cell death.

2.2 Modeling the Heat Transfer in Living Tissues

The complicated and only partially understood mechanisms involved in cell freezing and
destruction make the modeling of the heat transfer within the tissue quite difficult. Another
obstacle is the nonhomogeneous nature of the tissue and the temperature dependent, relatively
unknown, thermal properties. Many attempts have been made to predict the temperature profiles
within the tissue undergoing freezing.

2.2.1 Analytical Solutions to the Describing Differential Equations

One of the traditional ways to determine the temperature profiles during cryosurgery is
to solve the heat conduction problem for a two-phase system with a moving boundary between
the frozen and unfrozen regions. A major obstacle is the lack of accurate published data regarding
the tissue thermal properties. Also, factors peculiar to biological systems must be incorporated
into the describing equations, such as the blood perfusion and metabolic heat generation rates

(Filippov and Vasil'kov, 1979).



7
In work presented by Rubinsky and Shitzer (1976) the bio-heat equation was used to
describe the heat transfer in the unfrozen region of the tissue. In the frozen region the diffusion
of heat was described by the heat equation. The assumptions of homogeneity and constant
thermal properties were made. Another assumption was that the blood perfusion and volumetric
metabolic rates were considered to remain constant throughout the cooling process prior to
freezing. Upon freezing, these quantities go to zero. The bio-heat equation describing the heat

transfer in the unfrozen region is

or _ o1  wC, q
- T - s
o %t pc,( D+ 5C. @1)

where
w, = blood perfusion rate
C, = specific heat of blood
T, = systemic arterial blood temperature
4 = metabolic heat generation rate
Simplifying assumptions were made that allowed for the attainment of analytical solutions
to both the bio-heat and heat transfer equations. The results of this investigation showed that the
temperature gradient at the freezing front becomes larger as the volumetric metabolic and the
blood perfusion rates are increased, thereby decreasing the velocity of the freezing front
propagation. The effect of the blood perfusion rate was found to be much stronger than the
volumetric metabolic rate. It was concluded that ¢, could be neglected without causing
significant errors in the results. However, the blood perfusion effects were significant and could
not be ignored.
To predict the maximum size of the cryolesion (frozen portion of the tissue), a steady state
version of the bio-heat transfer equation was presented by Cooper and Trezek (1972) to describe

the temperature fields in both the frozen and unfrozen regions of the tissue, subject to the
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appropriate boundary conditions for each region. Analytical solutions were obtained and used
predict the steady state or maximum cryolesion size for different shapes of cryoprobes: planar,
cylindrical, and spherical. From previous work (Cooper and Trezek, 1970) they had also found
that the effects of the heat capacity of the tissue were negligible in both the frozen and unfrozen
regions. However, the latent heat of fusion effects resulting from the phase change were
significant.

A semi-infinite slab, initially at a uniform temperature, was the considered geometry in
a freezing simulation performed by Warren et al. (1974). This flat geometry was formed by an
elastic bladder pressed against the tissue. The bladder was then cooled internally by a cryogen,
either liquid nitrogen or freon. Integral equations were used to describe the heat transfer in the
frozen and unfrozen regions. The temperature profiles were approximated by polynomials subject
to either a temperature or convective boundary condition. This allowed for the attainment of
simple closed form expressions for both the tissue temperature and the frozen/unfrozen interface
position. They found that this technique was particularly valuable for demonstrating the
effectiveness of coolants.

Hrycak et al. (1975) used the cylindrical form of the heat transfer equation to describe the
freezing process during cryosurgery. Analytical solutions of the temperature distribution were
obtained and used in the Neumann'’s solution to the frost penetration problem in a semi-infinite
slab. From this solution, the time required to achieve freezing at a given depth was obtained and
could be used as an estimate of the cryosurgical treatment time.

222 Numerical Methods for Solving the Describing Differential Equations

In an investigation performed by Hayes and Diller (1982), the bio-heat transfer equation
was used to describe the heat conduction process in the human body subjected to extreme cold.
It was felt that this type of analysis could be used as a predictive tool in many applications,

including cryosurgery. A finite element model for a composite human was used to solve for the
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temperature profile within the body. To avoid the complexity of a three-dimensional model of

a human, the model was simplified by using a two-dimensional, axially symmetric model. The
results of this study showed that the effects of latent heat release and blood perfusion keep the
tissue warmer than if they were neglected. Also, as the tissue is undergoing a phase change, the
effects of latent heat greatly influence the predicted temperature field. It was concluded that the
latent heat had much more effect on the temperature field than the blood perfusion rate.

The finite element method was also used by Comini and Del Guidice (1976) to solve a
two-dimensional bio-heat transfer equation coupled with distributed convection at the exposed
surface of the tissue. Temperature profiles were determined for various applications, such as the
treatment of large angiomas in infants. In this case, the thermal properties of the brain and skull
had to be estimated, thereby re-affirning the need for accurate determination of the
thermophysical properties.

In work done by Budman et al. (1990), the heat transfer equation was used to describe
the conductive heat transfer in the frozen and unfrozen regions. Also, they assumed the presence
of an intermediate range of frozen plus unfrozen phases, resulting in a modified heat equation to
include the effects of latent heat release. Solutions to the three describing differential equations

were obtained through the use of the Runge-Kutta Method.

2.3 Experimental Investigations

In experimental work done by Cooper and Petrovic (1974) a solution of 1.5% gelatin,
98.5% water was used as a test medium to simulate tissue. Also included in this medium was a
liquid crystal sheet. This crystal sheet had the feature of displaying brilliant changes in color over
discrete temperature bands. Using liquid nitrogen as the cryogen and a cryoprobe to provide
freezing, photographs were taken of the frozen region and the various isotherms displayed on the
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crystal sheet at different time intervals. Using an analytical model proposed by Cooper and
Trezek that neglects heat capacity in both the frozen and unfrozen regions, Cooper and Petrovic
found that the rate of growth of the frozen region, determined experimentally, compared within
+ 9% of those predicted using the theoretical model.

The process of freezing in tissue is affected by the transport of water from the cells into
the surrounding vasculature. Therefore, this mass transport of water must be considered in the
formulation of the energy equation. This mass transport process was experimentally studied by
Rubinsky and Eto (1989) with the use of a "Krogh Cylinder”. This unit consists of a cylindrical
blood vessel surrounded by tissue. The tissue is represented by a solution of electrolytes in water.

From this work an expression for the change in the radius of the blood vessel was determined.

2.4 Monitoring the Freezing Process

From experiments performed by Augustynowicz and Gage (1985) it was determined that
the temperature at a depth within the tissue was always lower than that at an equidistant site on
the surface. In general, clinicians have based their judgement on the depth of freezing to be
approximately equal to the lateral spread of frost from the probe. This emphasizes the need for
accurate monitoring of the freezing process, or accurate methods of determining the optimal
duration of treatment for a given tumor size, in cryosurgical procedures.

2.4.1 Ultrasound Imaging in Cryosurgery

It is absolutely crucial to produce a predictable area of necrosis in the cryosurgical
treatment of cancer. Insufficient freezing leaves viable cancer cells while over freezing can have
disastrous consequences (Gilbert et al., 1984). Therefore, the growth of the freezing front must
be accurately determined during freezing. Previously, thermocouples inserted near the margins

of the tumor have been used to monitor the freezing process. This allows only a limited number
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of points to be monitored and is difficult when the tumor is heterogeneous or large blood vessels

are in the vicinity. Also, needles containing thermocouples cannot be easily inserted into tumors
located deep in the body, such as the brain or liver.

Ultrasound, an imaging method which uses sound waves, has recently been used to
continuously monitor the position of the phase change interface during cryosurgery. Ultrasound
devices produce images by analyzing the acoustic energy reflected from tissue through which an
acoustic pulse has been transmitted. Gilbert et al. (1984) performed experiments on simulated
organ tissue (transparent bovine gelatin). They found that the frozen region produced during
cryosurgery is clearly visible under ultrasonic imaging. Therefore, while thermocouples only
permit a limited number of points to be monitored, which is inadequate for accurately predicting
the freezing process, ultrasound allows for continuous monitoring of the position of the phase
change interface.

Experiments performed on laboratory animals have shown that the frozen/unfrozen
interface is a strong reflector of acoustic energy (Rubinsky, 1986a). Experiments performed on
gelatin samples in both planar and hemispherical freezing processes have also shown that the
change of phase interface is easily identifiable by ultrasonic monitoring (Gilbert et al., 1985). It
has been determined that ultrasound can be used to continuously monitor the transient position
of the frozen/unfrozen interface during cryosurgery.

2.42 An Alternative Method for Determining the Interface Location

Visualization techniques, particularly ultrasonic monitoring, allow relatively accurate
control of freezing. However, this monitoring technique provides only two-dimensional
information of a three-dimensional process. As an alternative, a microprocessor data collection
system was presented by Savic (1984). Since the exact mechanism of cryosurgery is very
complicated and not fully understood, it was decided to experimentally collect data on the

changing physical environment during freezing. This data was then compared with the results of
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the biopsy of the tissue to find a relationship between the percentage of cells killed and the

parameters describing the physical environment of the tissue, thereby determining which
combinations of parameters accurately predict cell death. The phenomena being simultaneously
monitored were the tissue temperature using thermocouples and the tissue resistance using a needle
probe, which measured the increase in resistance with a decrease in temperature. While this
method shows promise, considerable work is needed in this area.
2.5 Optimization of the Freezing Process

Keanini and Rubinsky (1992) presented a technique that minimizes unnecessary freezing
by optimizing the number and size of cryoprobes used in the procedure. This technique used the
Simplex algorithm, a minimization technique used to determine function minima. In this case the
function to be minimized was the volume of healthy tissue destroyed during the freezing process.
This function was assumed to depend on three independent variables: the number of probes, the
probe diameter, and the probe active length. Although this method shows promise, considerable
work is yet to be done. For instance, defining the function to be minimized is problem specific,
depending upon the type of tissue to be frozen. Therefore, accurate biophysical and bio-heat

transfer models are needed, as are efficient minimization algorithms.



CHAPTER 3

THEORETICAL METHODS

There are two major aspects in this study of the cryosurgical freezing of undesirable
tissue. The first is the estimation of the thermal properties of the tissue, namely the latent heat
of fusion, thermal conductivity, and thermal diffusivity. From the Literature Review presented
in Chapter 2 it was found that the effects of the latent heat of fusion were quite significant in the
freezing process. The second aspect involves the determination of the optimal cryosurgical
treatment time required to achieve a desired minimum temperature at a specified location.

The actual problem of determining the thermal properties and optimal treatment time has
been simplified to test the estimation procedure for accuracy and reliance. In both analyses, the
tissue to be frozen was treated as an infinite homogeneous medium, initially at a uniform
temperature. Also, the effects of blood perfusion and metabolic heat generation were ignored.
Due to the assumption of a homogeneous medium, the cryosurgical probe was considered to be
located at the geometric ceater of the tissue and was modeled as a point heat sink that freezes the
surrounding tissue. This results in two phases within the medium: a frozen region and an
unfrozen region separated by an interface, which is known as the freezing front. The thermal
properties of the frozen and unfrozen regions were assumed to be constant within each phase but
different between phases. Therefore, the freezing front, s(f), propagates spherically outward from

the probe in a one-dimensional fashion as a function of time and radius as shown in Figure 3.1.

13
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The determination of the temperature profiles of the frozen and unfrozen regions from the

initial, boundary, and interface conditions is considered to be mathematically well-posed and is
called a direct problem. The estimation of the thermal properties from internal temperature
measurement data is commonly referred to as parameter estimation, while the determination of
the optimal treatment time from internal temperature measurement data is called an inverse
problem. These problems are considered to be mathematically ill-posed. The one-dimensional
temperature profiles for the frozen and unfrozen regions, obtained from the direct problem, are
required for the estimation of the thermal properties and the determination of the optimal treatment
time. The assumptions of constant thermal properties and homogeneity of the tissue allowed for

the attainment of exact solutions to the describing differential equations.
3.1 The Parameter Estimation and Inverse Problem Solution Techniques

The estimation of the thermal properties of the tissue and the determination of the optimal
treatment time involved the use of the same minimization procedure in both analyses. This
involves minimizing an objective function, such as the sum of squares function, with respect to

a particular parameter of interest. The sum of squares function is

S =¥ - Q)" [¥ - T@)] @1
whereYisavecmrofwmperamremeasutﬁnundm.andTisavectorofcalculatedtempemmm
values from the describing model and is a function of the unknown parameters contained in the
parameter vector B. In the parameter estimation problem, P contains the unknown thermal
properties, and in the inverse problem, B contains the optimal treatment time. To minimize the
sum of squares function, equation (3.1) is differentiated with respect to the unknown parameters

and set equal to zero. The resulting expression is
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VS =2[-X"@)IlY - TB) =0 (G2
The vector B contains the true parameter values, and X(B) is the sensitivity coefficient matrix,
defined as

X(B) = [V,77®)" (3.3)

Many times there exists prior information of the parameter to be estimated. To include

this prior information, the sum of squares function is modified as follows:

S=I¥-TEN Y -T@®)] + (B - 8] (B - B] G4
where B is a vector of the actual values of the parameters being estimated, obtained from prior
information, and b is a vector of the estimated values of the parameters.

3.1.1 The Box-Kanemasu Interpolation Method

A problem arises in the least squares method when the mathematical model is nonlinear
in terms of the parameters. In this case, it is not possible to explicitly solve equation (3.2) for the
parameter vector B. The Gauss Method of Minimization (Beck and Amold, 1977) is a simple and
effective method that provides a linear approximation to the nonlinear model. To transform
equation (3.2) into an iterative form, two approximations are used: 1) the sensitivity coefficient
matrix, X(B), is replaced with X(b), where b is an estimate of B and 2) the vector of calculated

values, T(P), is approximated by using a Taylor expansion of T(P) about b as follows:
T@) =TM) + (VIO B -0) +. . .. @33)
Neglecting the higher order terms of the Taylor series results in the following expression for V,S:
V,S = XTQ)Y - T®) - X®)B - b)] =0 (36)
which in now linear in terms of the parameter vector .
Because the Gauss Method uses a linear approximation of T(B), oscillations and

nonconvergence can sometimes occur in the iterative process. The Box-Kanemasu Interpolation
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Method, also presented by Beck and Amold (1977), is a modification of the Gauss Method that

eliminates this problem of nonconvergence. The Box-Kanemasu Method provides an iterative

procedure for the estimation of B with b as follows:

HEY = pib o h(‘“"A‘b‘" 3.7
where

AY® = [XTOX®)'X™@BXY - T*()] 38
The iteration number is k, and A**" is a scalar interpolation factor.

In the Box-Kanemasu Method, the sum of squares function is approximated at each

iteration using

S =a,+ah +ah? (39
The constants a,, a,, and a, are characteristic of each iteration and are equal to

g, =5" a=-26% g =[P -85 +26%)a? (.10ah)
where

G® = [A D] '[X'(b)X(b)]“"A.b‘" (3.11)
Initially @ = 1, and S, and S, ., are the values of S with 4 = 0 and A = 1 respectively. This
approximate form of S is then minimized to calculate h**

At = G B[S ‘:lt) -S o(t) . ZG“’a]'l (3.12)

The calculated A**" is then used in equation (3.7) for the (k+1)st iteration of b.

A check is made after each iteration to confirm that S is indeed decreasing by ensuring

SP < ¥ (3.13)

with a being made sufficiently small for this to occur. Iteration proceeds until there is little
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difference between b**" and b®.

In this investigation, the use of the Box-Kanemasu Interpolation Method required solutions
to the mathematical models describing the temperature profiles within the frozen and unfrozen
regions of the tissue being frozen. Also required were the sensitivity coefficients with respect to
the thermal properties to be estimated and the optimal cryosurgical treatment time to be

determined, as well as simulated experimental measurement data to be used as input.
3.2 Mathematical Description of The Direct Problem

The mathematical model used in the Box-Kanemasu Method is the same for both the
estimation of the thermal properties and the determination of the optimal treatment time. Since
the freezing process results in the presence of two phases within the medium, the problem must
be described with two equations: one for the frozen (solid) region and one for the unfrozen
(liquid) region. The one-dimensional mathematical description of the problem in the frozen
region is

T, 23T, 10T, 0<r<s(t>0 (3.14)
w7 TE e

and in the unfrozen region is

o1, 20T, 197, SO <r<e,t>0 (3.15)
ol Tor a ot

where s(#), the freezing front, is the location of the interface separating the frozen and unfrozen

regions. The temperature is finite as 7 — oo
T(rs) =T, r—oo,t>0 (3.16)

and, for convenience, the point heat sink is assumed to increase with the square root of time
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u:.({“ 2""337‘ ] - 20(a r—=0,1>0 (3.17)

The uniform temperature initial condition is

T(ra) =T, 0<r<es,t=0 (3.18)
Due to the phase change occurring during the freezing process, interface conditions are also
required. A continuity of temperature at the interface requires that

T(r) =T(rg) =T, r=sn,t>0  (3.19)

and, from the conservation of energy at the interface

aT daT, ds(s) = 20
£ 2 = pL BV r=s50),t>0 (3.20)
> b

To obtain analytical solutions to the describing differential equations, a variable

transformation is introduced. The dimensionless similarity variable 1 is chosen to be

r
= 2(0._")1” 3.21)

The location of the freezing front, s(), as a dimensionless variable A, is assumed to be (Ozisik,

1980)

5(0)
A= 32
o (22)

Also necessary is the transformation to dimensionless temperature variables as follows:

T. "T.‘ (323)

=4; (324
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The mathematical description of the direct problem, in dimensionless form, is obtained from the

substitution of equations (3.21), (3.23), and (3.24) into equations (3.14) and (3.15). The

dimensionless temperature profile in the frozen region is described by

dd;a; +(% +2ﬂ}% =0 O<11<l, (3.25)
and in the unfrozen region by
j;‘:, . (% . 21,%];% -0 n>A (3.26)

where o, the dimensionless thermal diffusivity, is defined to be
@, = = @3.27)
"]
The dimensionless temperature as 1| — o, obtained from the substitution of equation (3.16) into
equation (3.24), leads to the boundary condition
8 M=) =0 N (3.28)

The second boundary condition is obtained by differentiating equation (3.23) with respect to 1,

and substituting the resulting derivative into equation (3.17). It is expressed as

lim 9, . n—-0 (3.29)
vy ’?-n-] =0
where k,, the dimensionless thermal conductivity, is defined as
k
k, =1 (3.30)
"%

I

and Q', the dimensionless heat sink coefficient, is defined as
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I 3.31
2 IxE(T.T) ©30

The dimensionless interface condition at n = A is obtained from equations (3.19), (3.23) and

(3.24), and is given by

0,M=A) = 6 M=) = 1 n=>X (3.32)

The dimensionless temperature variables, equations (3.23) and (3.24), are used with equation
(3.20), resulting in the following dimensionless expression for the conservation of energy at the

interface:

a9 a9 =A (3.33)
k—| - _'} =L n
[ dﬂ ]q-& [dn n=

where L', the dimensionless latent heat of fusion term, is defined as

o= bk (334
C,T.T)

The solutions to the final forms of the differential equations describing the temperature

profiles of the frozen and unfrozen regions are assumed to be of the form (Paterson, 1952)

N I R _ 0<n<A (3.35)

8m) = A [ﬁ-e " Te'fc(n)J B

om) = C [ e ™ - ﬁerfc(na.,"‘)] -D n>A (3.36)
2o, 2

The statements for the dimensionless boundary and interface conditions, equations (3.28), (3.29),

(3.32), and (3.33), are used to solve for the four unknown coefficients
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A=-Q° (337

B=-1-0° [—27 - -'/2£erfc(x)] (3-38)
o™ _E " (3.39)

Cc [ZM:,” Terfc(la,',”)]

D=0 (3'40)

The final form of the solution for the dimensionless temperature profile for the frozen region is

expressed as

o Jx ) 0<n<A (341)
8m) =1 [71‘_ .ﬁ. T(e'fc(n) erfe))
and for the unfrozen region as
e™ _vx || e™™ _ & B n>A (342)
8,m) [2““:‘,, Terfcmaf)J [m- Terfdka.'l")

The derivatives of these dimensionless temperature profile expressions with respect to 7
are used in the dimensionless interface condition, equation (3.33), to obtain the following

transcendental equation for the dimensionless freezing front location:

[ e-m‘ ]
. Ty}
k0 e -, Wou =LA n=>A (343)
22 e Jx m)
- Y erfc(\a,
220 Eﬁ 2 “
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resulting in the function AA), which equals zero

2
f3) =0 =kQ {QJ ] e =L n=> (3.44)
2 [’“' - -'/f-erfc(hb")J
D’

3.3 Estimation of the Thermal Properties

Estimation of the thermal properties of the tissue to be frozen, using parameter estimation
techniques, requires the calculation of the sensitivity coefficients for each property for use in the
Box-Kanemasu Method, see equations (3.7) and (3.8). A sensitivity coefficient is defined as the
change in a given variable due to a change in a specific parameter, with all other parameters held
constant. Mathematically, it is defined as

) &

X',y B (?B‘) o

(3.495)

where X%,y is the dimensionless sensitivity coefficient, Y is the process variable (i.e. the
dimensionless temperature 6), B the specified parameter of interest, and &; # P are all the other
parameters other than p.
3.3.1 Determination of the Sensitivity Coefficients

The thermal properties estimated in this investigation are the dimensionless latent heat of
fusion, L', the dimensioniess thermal conductivity, k,, and the dimensionless thermal diffusivity,
o, The sensitivity coefficients are obtained by differentiating the dimensionless temperature
profile expressions, equations (3.41) and (3.42), with respect to each parameter (L', k,, and o).
In the frozen region the sensitivity coefficients are determined from the following expressions:



ae: - wl oA 0« n< A (3.46)
oL* OAOoL*
29 30, I 0<

s . (] n< A (3.47)
Ok, OA Ok,
20 30,

s o 9Y% O<n<A (3.48)
do,, o da,,

where

*. - _Q 'C A? (3' 49)
)N 202

In the unfrozen region the following expressions are obtained:

9%, _ 38 a n>A (3.50)
aL* OAL®
99, _ 38, g\ n>A (3.51)
¥, W,
09, || e _fx n e™ _yx
. - ¥ erfe(hal?) - L efetnoy)
oa, {[41](1,’,”][22\(1,‘,” 2 " o 2 "
e v g e & EETYY (352)
X - - c(xalﬂ)
[41.0:,’,&- 2 o, :IHZMLT T ]
where
8, | "™ Jx wny || e || e™™ _Vx ? (353)
[ 5m - foned [55]55 - oo

The partial derivative of A with respect to each parameter is determined as follows (Scott,
1993): since the transcendental equation, equation (3.44), is equal to zero, the total derivative of
f\) is also equal to zero
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=0=|9
4B L ph) = 0 (55) g,‘,,;-a-—aﬂ
K> {&J & | (bf) o (354)
trs x, B Aeconmans L Srxr P moomman

Dividing equation (3.54) by dp and solving for dA/dP yields

A __ (%) Sn oo +§ [;Ef-] umggi (359)
¥ ) o

Neglecting the higher order terms, the partial derivative of A with respect to B can be

approximated from equation (3.55) as

a .- (%) B o hconmem (3.56)
P &

where B = L', k,, and o,
The partial derivative of {A) with respect to A is determined using equation (3.44), and is found

to be

aﬂl) - . A2 A, e-a.: _ A2 e, _ -, A, ) ﬁ
S e [ ad ] {[ it ][e . fddm%]

A A% 2
3 , . (3.57)
o - e

| S— ]

e Aa,
n’a},ﬁ



26
Differentiating AA) with respect to L', k,, and a,,, leads to the following expressions respectively:

%’g - (3.58)
¥ _ Qe (359)
%, T
I | | Hale M - ot ™ e
da, 412(1,, ,1,5 2 y
e |[ o e Jx 2 (3.60)
- - XX erfoMa®)
[wa:,” ooy || |2 2 g

The sensitivity coefficients required for use in the Box-Kanemasu Interpolation Method for the
estimation of the thermal properties are completely defined by equations (3.46) - (3.53), and (3.57)
- (3.60).

In summary, the partial differential equations govemning the temperature profiles of the
frozen and unfrozen regions were made dimensionless through the use of a similarity variable
transformation and dimensionless temperature expressions. Analytical solutions were then found
for these dimensionless differential equations. These analytical solutions describe the
dimensionless temperature profiles of the frozen and unfrozen regions of the tissue that is
cryosurgically frozen. From the dimensionless temperature expressions, sensitivity coefficients
for the thermal properties were obtained for use with the Box-Kanemasu Interpolation Method,

used to estimate these material properties.
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3.4 The Inverse Problem of Determining the Optimal Cryosurgical Treatment Time

The objective in this portion of the investigation was to determine the optimal
cryosurgical treatment time required to achieve a desired minimum temperature at a specified
radius location of the tumor. This desired minimum temperature will occur at a time that is
greater than the actual treatment time due to the diffusion of energy that continues after the
treatment has stopped. To account for this continued cooling after the cessation of treatment, the
principle of superposition is used to describe the dimensionless temperature profiles after the

cryosurgical treatment time, #,, as follows:

ém) = 6(m) - 6(n") n<n (3.61)

where 1 is defined in equation (3.21), and

. T 3.62
n PICTORE) ©.62)

The Box-Kanemasu Interpolation Method is again utilized for the determination of the
optimal treatment time. Therefore, the analytical solutions to the describing differential equations,
determined in Section 3.2, are once again used. Applying the principle of superposition, the
dimensionless temperature profile in the frozen region is expressed as

e™

1 e _e¥ _fx _
em =1-0 [-5“- > _2-(eu'cm) erfcm)]

1i_ple™ e _yx _ 0O<n<Ain<n’ (3.63)
1-0 [F S - e erfco.))]

and in the unfrozen region as
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1

N, -l -
8, =€ ° - Jt e ™ _ Jt 2

e™ x|l V& B n>hn<n’ (364

As with the estimation of the thermal properties, the determination of the optimal
treatment time, ¢, also requires the calculation of the sensitivity coefficients for 7, from the frozen
and unfrozen region dimensionless temperature profile expressions. The sensitivity coefficient for

the frozen region is obtained by differentiating equation (3.63) with respect to ¢, resulting in the

following expression:
a®,m) _30Mm gy O<n<An<n’ (3.65)
o, an° o,
where
*BM) _ Qg 0<n<A.n<n (3.66)
o’ m*

Differentiation of the expression for n°, equation (3.62), with respect ¢, yields

Cul r
- (3.67
Wc.' 4a:n (‘ = f‘_)’ﬂ

The sensitivity coefficient for the unfrozen region is obtained by differentiating equation (3.64)
with respect to ¢, it is determined to be

a®m) _ 987 3y n>An<n’  (3.68)
ot on® o

(4

where
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1

9" | e e*  Jx 1 ) sAn<n”  (3.69)
om [Zn aa.lFJ[ :? TﬂfC(M,,n) n n<n

Due to the diffusion of energy that continues after the treatment has stopped, the desired
minimum temperature at the specified location will actually occur at a time, ¢, that is greater
than the treatment time, ¢.. Therefore, in the determination of the optimal treatment time it is also
necessary to calculate the actual time that the specified location reaches the desired minimum
temperature. This is accomplished by minimizing the expressions for the temperature profiles in
the frozen and unfrozen regions and solving for this actual time, 7, i.c., by setting the partial
derivatives of the temperature expressions with respect to ¢ equal to zero. Differentiation of the
dimensionless temperature profile for the frozen region, equation (3.63), with respect to ¢ yields

the following expression:

90,n) -0 = a,m) gn , 9,7 an" 0<n<A,n<n (3.70)
ot |, am ot om* ot
where
®BMm) Qe 0<n<A (3.71)
on 2’

and %M s given by equation (3.66). Differentiating the expression for 1, equation (3.21),
an )
with respect to ¢ yields

m _  -r

while differentiating the expression for 1°, equation (3.62), with respect to ¢ results in the

following expression:



m° - (.73)
a4 - 1)*

For the unfrozen region, the partial derivative of equation (3.64) with respect to ¢ yields

96(n) -0 = %M an , 9™ an* n>an<n’  (3.74)
ot |, an ot  oan° ot
where
B [ le* V&, ool n>A (375)
on [zma:,’*][m?'" Terfc(ka,,)

and 9,m") is given by equation (3.69).
an .

In summary, the Box-Kanemasu Interpolation Method, used in the determination of the
optimal cryosurgical treatment time, required the determination of the temperature profiles and
sensitivity coefficients for the frozen and unfrozen regions. The dimensionless temperature
expressions used to estimate the thermal properties of the tissue were again used, with the
principle of superposition applied to describe the dimensionless temperature profiles of the tissue
after the cryosurgical treatment time. The required sensitivity coefficients for ¢, for both the
frozen and unfrozen regions were calculated. Also necessary was the calculation of the actual
time, ¢,.,, in which the desired minimum temperature is achieved at the specified location due to

the diffusion of energy that continues after the cessation of the treatment.



CHAPTER 4

ANALYTICAL PROCEDURE

In this chapter the procedures used to estimate the thermal properties of the tissue to be
cryosurgically frozen and to determine the optimal treatment time required to achieve a desired
minimum temperature at a specified location are described. The results obtained from this

investigation are presented in Chapter §.

4.1 The Sensitivity Coefficient Analysis for the Thermal Properties

Prior to the use of the Box-Kanemasu Interpolation Method to estimate the thermal
properties of the tissue to be destroyed by cryosurgically freezing it was important to examine the
sensitivity coefficients for magnitude and linear dependence. A sensitivity coefficient with a
small magnitude (<10°) indicates that the dimensionless temperature profile is relatively
insensitive to changes in a given parameter, while a large magnitude (21) indicates extreme
sensitivity to a change in a specified parameter. A sensitivity coefficient with a small magnitude
indicates that there is very little information about the value of the parameter available from the
temperature measurement data, making estimation of that parameter difficult or impossible.

Another important consideration when using the Box-Kanemasu Interpolation Method is
the possibility of correlation existing between the parameters to be estimated. To simultaneously

estimate two or more parameters, it is necessary that their respective sensitivity coefficients not

31
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be linearly dependent. If the sensitivity coefficients are found to be linearly dependent, the
parameters are correlated and cannot be estimated simultaneously.

To conduct the analysis of the sensitivity coefficients for the thermal properties to be
estimated, a Fortran program, SENSE.FOR, was written. The sensitivity coefficients were
determined using equations (3.46) - (3.53) and (3.57) - (3.60) for each property under
consideration. To calculate the sensitivity coefficients, it was necessary to assign values to the
dimensionless heat sink coefficient and thermal properties. The dimensionless heat sink
coefficient was kept constant at a value of

Q" = -10
The thermal properties to be estimated, the dimensionless latent heat of fusion, L', the
dimensionless thermal conductivity, k, and the dimensionless thermal diffusivity, a,, were
assigned values of:

L -100.0

k, = 1.0

a, = 1.0
which remained unchanged throughout the entire investigation.

The sensitivity coefficients for the thermal properties were calculated as functions of the
independent variable n. The independent variable was varied over a range of 0.01 to 2.0 in steps
of 0.01. For the above values of the dimensionless heat sink coefficient and thermal properties,
the location of the dimensionless freezing front A was determined by solving the transcendental
equation, equation (3.44), and found to be 0.17302 (using the root-finding subroutine ZBRENT,
Press et al., 1986). Therefore, the range of | sufficiently covered both the frozen and unfrozen
regions. The program provided an output of 1| and the sensitivity coefficients for the thermal

properties in a nondimensional form, expressed as
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4.1)

@2

4.3)

These dimensionless forms of the sensitivity coefficients are plotted versus 1 in Figure 4.1. A

copy of this program and a sample output file may be found in Appendix A.
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Figure 4.1. Dimensionless Sensitivity Coefficients versus 7
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Figure 4.1 demonstrates the magnitudes of the sensitivity coefficients in the frozen and

unfrozen regions and how they change at the interface. The magnitudes of the dimensionless
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sensitivity coefficients X,. and X,‘ are the largest within the frozen region. They decrease at
the interface between the frozen and unfrozen regions and approach zero as 7 increases within
the unfrozen region. This indicates that the most available information about the values of L’ and
k,, is contained in the simulated temperature measurement data obtained from the frozen region,
with very little information available from the unfrozen region data.

In contrast, the magnitude of the dimensionless sensitivity coefficient X, is quite small
in the frozen region. It changes sign at the interface and increases slightly in the unfrozen region
before approaching zero as 1) increases. Therefore, the most available information about the value
o, is contained in the simulated temperature measurement data obtained from the portion of the
unfrozen region adjacent to the interface.

Of the three dimensionless sensitivity coefficients plotted in Figure 4.1, x . has the
largest magnitude, followed by Xk‘ and Xn..‘ This indicates that the temperature measurement
data provides more information about the value of L’ than it does of k, and o, Therefore, of the
three thermal properties being estimated, the estimate of L’ should be the most accurate, followed
by k, and o,

4.12 Linear Dependence Between Sensitivity Coefficients

The issue of correlation existing between parameters was addressed by plotting one
dimensionless sensitivity coefficient versus another to observe any linearity between them. The
following graphs were generated: x“ versus x ., x¢‘ versus x , and xﬂd Versus 3{..,
These graphs are presented in Figures 4.2, 4.3, and 4.4 respectively.

The thermal properties L” and k,, are correlated throughout the frozen and unfrozen regions
of the tissue, as demonstrated by the linear relationship between their sensitivity coefficients in
Figure 4.2. The dashed line in this figure represents a discontinuity at the interface. Therefore,

these parameters could not be estimated simultaneously using the Box-Kanemasu Method.
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The thermal properties L’ and @, are correlated within the frozen region of the tissue, as
shown by the single point in Figure 4.3. Again there is a discontinuity at the interface,
represented by the dashed line. In the unfrozen region the thermal properties are not correlated,
as indicated by the curved portion of this figure. However, as 1 increases and the sensitivity

coefficients approach zero, the properties becomes correlated again.
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Figure 4.4. Dimensionless Sensitivity Coefficients X, versus X,

Figure 4.4 demonstrates that the parameters &, and o, exhibit the same behavior as L” and
a,. Therefore, it was determined that L and o, could be estimated simultaneously, as could &,
and o, provided that sufficient temperature measurement data from the unfrozen region was used.
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4.2 The Sum of Squares Function for the Thermal Properties

Prior to the estimation of the thermal properties using the Box-Kanemasu Interpolation
Method, it was of interest to examine the sum of squares function for each of these thermal
properties. Since the sum of squares function is to be minimized in this method, a flat minimum
would indicate that the particular parameter would be more difficult to estimate than a steep
minimum, requiring more iterations for convergence. A Fortran program, SQUARES.FOR, was
written using the dimensionless temperature profile expressions for the frozen and unfrozen
regions, equations (3.41) and (3.42) respectively. A copy of this program is provided in Appendix
B. Using the assigned values for the thermal properties this program calculated the dimensionless
temperature values as 1| was varied from 0.01 to 1.5 in steps of 0.01. These values represent the
temperature measurement data vector Y in the sum of squares function, equation (3.1). The value
of one thermal property was then varied in small increments, with the dimensionless temperature
values calculated as | was again varied from 0.01 to 1.5. These values represent the calculated
temperature data vector T in the sum of squares function. The sum of squares function was then
calculated for each increment of the thermal property, and is plotted versus the varying thermal
property for L' in Figure 4.5, and for k, and o, in Figure 4.6.

As demonstrated by these figures, the sum of squares function for o, has the steepest
minimum. This indicates that the estimation of o, should require the fewest number of iterations
for convergence in the Box-Kanemasu Interpolation Method. The minima of the sum of squares
functions for L" and k, are considerably less steep, indicating that the estimation of these thermal

properties would require more iterations for convergence.
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43 Estimation of the Thermal Properties

A Fortran program of the Box-Kanemasu Interpolation Method was used for the
estimation of the thermal properties. This program, NLINALFOR (Beck, 1991), required
modification prior to use. The first modification involved the use of the dimensionless
temperature profiles for the frozen and unfrozen regions, equations (3.41) and (3.42) respectively,
in the subroutine MODEL. These expressions provide the calculated temperature data necessary
for use in the Box-Kanemasu Interpolation Method, as required in equation (3.8).

The second modification involved the placement of the expressions for the sensitivity
coefficients for the thermal properties, equations (3.46) - (3.53) and (3.57) - (3.60), into the
subroutine SENSE. This subroutine calculates the sensitivity coefficients for each parameter under
consideration to be used in the Box-Kanemasu method for the estimation of the thermal properties
as required in equations (3.7), (3.8), and (3.11). A copy of this program can be found in
Appendix C.

43.1 Input for the Box-Kanemasu Interpolation Method

The use of the Box-Kanemasu Interpolation Method for the estimation of the thermal
properties required an input of internal temperature measurement data. To simulate this data, a
Fortran program was written. This program, MOD.FOR, uses the dimensionless temperature
profile expressions, equations (3.41) and (3.42), and the assigned values of the dimensionless heat
sink coefficient and thermal properties to calculate the values of temperature as a function of the
independent variable n, with 1| varying from 0.01 to 1.5 in steps of 0.01. These calculated
temperature values were used to simulate the intemal temperature measurement data from the
frozen and unfrozen regions as required in equation (3.8). Also included in this program was the
subroutine RANDOM (Press et al., 1986), a random number generator used to simulate random

measurement errors. A user input of the standard deviation of the random numbers is required,
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thereby allowing the standard deviation of the measurement errors to be varied. Another required

user input is the seed or initialization number, each different negative number produces a different
set of random numbers. These simulated measurement errors could be added to the simulated
measurement data. A copy of this program and a sample output file are found in Appendix D.
432 Individual Estimation of the Thermal Properties

Initially, the estimation of the thermal properties was conducted on an individual basis.
Using the simulated temperature measurement data provided by MOD.FOR as input for the
modified version of NLINA.FOR, the first property to be estimated was the dimensionless latent
heat of fusion, L". This property was estimated using exact temperature measurement data, i.e.,
without measurement errors. To estimate L* with measurement data that contained errors three
measurement error standard deviations were used: 0.1, 1.0 and 10.0. For each standard deviation,
twelve different sets of random measurement errors were added to the simulated temperature
measurement data and twelve estimations of L’ were conducted. Since the actual value of L was
-100.0, an initial estimate of -50.0 was used for the first six estimations; and an initial estimate
of -150.0 was used for the remaining six estimations.

To include prior information of the value of L’, the sum of squares function was modified
as in equation (3.4). This required slight revision of the subroutines MODEL and SENSE in the
NLINA.FOR program. Copies of these subroutines may be found in Appendix C. The input file
of simulated internal temperature measurement data was also modified slightly, a copy of this file
is located in Appendix D. Using a standard deviation of 0.1 for the prior information, L* was
estimated using exact temperature measurement data. Twelve estimations were performed at each
of the three measurement error standard deviations. Initial estimates of -50.0 and -150.0 were
again used. This approach was repeated using prior information standard deviations of 1.0 and
10.0.

The method used for the individual estimation of the dimensionless thermal conductivity,
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k,» and the dimensionless thermal diffusivity, c,, was the same as the one described for L* with

the following exceptions: 1) the standard deviations used for the measurement errors were 0.001,
0.01, and 0.1; 2) the prior information standard deviations were also 0.001, 0.01, and 0.1; 3)
because the actual values of both k, and o, were 1.0, initial estimates of 0.5 and 1.5 were used.
433 Simultaneous Estimation of the Thermal Properties

As demonstrated in Figure 4.2, the thermal properties L and £, are correlated, thereby
eliminating the possibility of simultaneous estimation of these two parameters. However, as
shown in Figure 4.3, the parameters L' and o, are uncorrelated in the unfrozen region and could
be estimated simultaneously. From Figure 4.4, it was determined that k,, and o, are not correlated
in the unfrozen region and could also be simultaneously estimated.

The simultaneous estimation of L" and o, began without the use of prior information. The
properties were estimated using exact temperature measurement data. To estimate the thermal
properties using measurement data that contained errors, three standard deviations of measurement
errors were used: 0.001, 0.01 and 0.1. For each standard deviation, twelve different sets of
random measurement errors were added to the simulated temperature measurement data and twelve
simultaneous estimations of L' and a,, were conducted. Initial estimates for L" and a, of -50.0
and 0.5 respectively were used for the first six estimations, and -150.0 and 1.5 respectively were
used for the remaining six estimations.

To include prior information of the values of this pair of thermal properties, the modified
sum of squares function, equation (3.4), was again used. Using prior information standard
deviations of 0.1 for L" and 0.001 for a, the thermal properties were estimated using exact
temperature measurement data. Twelve estimations were then performed at each measurement
error standard deviation: 0.001, 0.01, and 0.1. Again, initial estimates of -50.0 and 0.5 were used
for the first six estimations, and -150.0 and 1.5 were used for the remaining six estimations. This

approach was repeated using prior information standard deviations of 1.0 and 10.0 for L', 0.01 and
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0.1 for o,

The simultaneous estimation of &, and @, followed the same procedure as L’ and o,
with the following exceptions: 1) prior information standard deviations were 0.001, 0.01, and 0.1;
2) because the actual values of k, and o, were 1.0, initial estimates of 0.5 and 1.5 were used.

For each set of twelve estimations, the estimated thermal property values were averaged,
with the standard deviation and a 95% confidence interval calculated. A comparison could then
be made between the estimated thermal property values provided by NLINA.FOR and the actual
property values used to generate the simulated temperature measurement data. The number of
iterations required for convergence was also averaged for each set of twelve estimations, with the

standard deviation calculated.

4.4 The Determination Procedure for the Optimal Cryosurgical Treatment Time

To destroy undesirable biological tissue by cryosurgically freezing it is of extreme
importance to be able to accurately determine the optimal cryosurgical treatment time required to
provide a desired minimum temperature at a specified location, not only to ensure destruction of
the diseased tissue, but also to minimize loss of the surrounding healthy tissue. In this section,
the procedure used to determine this optimal treatment time is presented.

4.4.1 Sensitivity Coefficient Analysis for the Optimal Cryosurgical Treatment Time

Because the optimal treatment time was to be determined individually, linear dependence
between sensitivity coefficients was not a concem in this portion of the investigation. However,
it was of interest to examine the magnitude of the treatment time sensitivity coefficients
determined from the frozen and unfrozen regions. To accomplish this, the program SENSE.FOR
was modified by replacing the thermal property sensitivity coefficients with the expressions

formulated in Chapter 3 for the treatment time sensitivity coefficients, equations (3.65) - (3.69).
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The treatment time was assigned a value of

t, = 0.1850 seconds
Although the value of the treatment time may not be a reasonable duration of treatment, the
objective of this investigation was to assess the minimization procedure rather than to simulate
an actual cryosurgical procedure.

The actual time at which the desired minimum temperature is achieved at a specified
location due to the diffusion of energy after the cessation of treatment (determined from the
program MODC.FOR, discussed below) was

1., = 0.1865 seconds
This continued cooling of the tissue after the end of the cryosurgical treatment is demonstrated
in Figure 4.7. A dimensionless temperature greater than 1 indicates that the tissue is frozen, while
a temperature less than 1 means that the tissue is unfrozen.

To calculate the sensitivity coefficients for 1., the independent variables 1) and 0" were
varied by varying the value of the radius from 0.01 to 0.5 in steps of 0.01. The program provided

an output of N and the dimensionless form of the sensitivity coefficients for ¢, expressed as

2 @.4)

To observe the magnitude, the dimensionless sensitivity coefficient values for 7, were
plotted versus 1; this graph is presented in Figure 4.8. As demonstrated by this figure, the
magnitude of the dimensionless sensitivity coefficient for the optimal treatment
time, X,.. becomes very large as N approaches zero. Therefore, the most available information
of the value of ¢, is contained in the dimensionless temperature measurement data obtained from

the frozen region.
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4.42 The Sum of Squares Function for the Optimal Cryosurgical Treatment Time

Prior to the determination of the optimal treatment time, it was again of interest to
examine the sum of squares function for the treatment time, 7., to determine if the minimum of
this function was flat or steep. The program SQUARES.FOR was again used after slight
modification by using the expressions for the dimensionless temperature profiles for the frozen
and unfrozen regions after the treatment time, given by equations (3.63) and (3.64) respectively.
The sum of squares function was calculated following the same procedure described in Section
4.2 with ¢, varied in small increments. The sum of squares function is plotted versus 7, in Figure
4.9. This figure demonstrates that the sum of squares function has a very steep minimum,
especially when compared to the sum of squares functions for the thermal properties, indicating

that convergence in the Box-Kanemasu Interpolation Method should require a small number of
iterations.
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4.43 Modification of the Box-Kanemasu Interpolation Method Program

The Fortran program NLINA.FOR was also used to determine the optimal treatment time
with the following modifications: the dimensionless temperature profiles for the frozen and
unfrozen regions after the treatment time, equations (3.63) and (3.64) respectively, were used in
the subroutine MODEL. In the SENSE subroutine, the sensitivity coefficient expressions for ¢,
equations (3.65) - (3.69), were used. Samples of these subroutines are located in Appendix E.
4.4.4 Input for the Box-Kanemasu Interpolation Method

Using a cryosurgical treatment time of ¢, = 0.185 seconds, it was necessary to determine
the radius locations at which the desired minimum temperatures were achieved to be used as input
for NLINA.FOR. At the boundary of the tumor the desired minimum temperature was chosen to
be 2.39414, this corresponds to a treatment temperature of approximately -50°C and an initial
temperature of 37°C. Since it is not desired to freeze the surrounding healthy tissue, a second
desired minimum temperature of 0.99467 (approximately 0.15°C) was chosen to be achieved at
a small distance beyond the tumor boundary. To determine the radius locations at which these
desired minimum temperature were achieved the program MODC.FOR was written. In this
program time was varied in small increments. When time was less than the treatment time
equations (3.41) and (3.42) were used to describe the temperature profiles in the frozen and
unfrozen regions respectively. When time was greater than the treatment time equations (3.63)
and (3.64) wereusedtodesctibethetempémmmpmﬁles. Also varied in this program, in small
increments, was the radius. The output of this program was dimensionless temperature values at
corresponding radii for given times. This allowed for the determination of the actual time the
minimum temperature occurs at a given radius to be 7, = 0.1865 seconds for a treatment time
of 0.1850 seconds. From this output, the desired minimum dimensionless temperature of 2.39414

was achieved at a radius of 0.100 meters. This represents the boundary of the tumor. The second
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desired minimum temperature of 0.99467 was determined to be achieved at a radius location of

0.1500 meters. Although the size of the radii are large, due to the chosen values of the thermal
properties, it was not of importance since the objective of this investigation was to test the
estimation procedure for reliance and accuracy rather than to predict the treatment time for an
actual situation. A copy of this program and a sample output file are located in Appendix F.

In the determination of the optimal treatment time the Y vector in the sum of squares
function, equation (3.1), contains the desired minimum temperatures to be achieved at specified
radius locations rather than measured temperature values. The measurement data is now
considered to be the location or radius of the tissue at which the desired minimum temperature
is to be achieved. In the medical setting this information is most commonly obtained by
ultrasonic measurement, and therefore contains measurement errors. Using the desired minimum
dimensionless temperatures and corresponding radius values determined above, an input file of
exact measurement data was generated for use in the NLINA.FOR program. A sample of this
input file, TEMP.DAT, is located in Appendix G.

To add random errors to the simulated measurement data, i.e., the radii, the Fortran
program RAD.FOR was written. This program was designed to read the input file of exact data
and, again using the random number generator RANDOM, produce an output file with simulated
random measurement errors added to the radius values. This file was also used as input for the
NLINA.FOR program. Copies of this program and output file are also located in Appendix G.
4.45 Determination of the Optimal Cryosurgical Treatment Time

The objective of this portion of the investigation was to determine the optimal treatment
time required to achieve a desired minimum temperature at a given radius of diseased tissue to
be destroyed by freezing, while resulting in the least possible amount of damage to the
surrounding healthy tissue. Using data obtained from both the frozen and unfrozen regions as

input the program NLINA.FOR was used to determine the optimal treatment time, .. The desired
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minimum dimensionless temperature for the frozen region was 2.39414 at a specified radius

location of 0.100 meters. The desired unfrozen region temperature was 0.99467 at a specified
radius location 0.1500 meters. Without the use of prior information z, was first determined using
exact data, i.c., without measurement errors added to the radius locations. To estimate ¢, using
radius measurement data that contained errors, three measurement error standard deviations were
used: 0.0001, 0.001, and 0.01. For each standard deviation, twelve different sets of random
measurement errors were added to the radius measurement data and twelve estimations of ¢, were
conducted. Since the actual value of z, was 0.185 seconds, an initial estimate of 0.125 was used
for the first six estimations; an initial estimate of 0.245 was used for the remaining six
estimations.

To include the use of prior information of the treatment time, obtained from a previously
performed procedure with the same tumor radius, the sum of squares function was modified as
in equation (3.4). Using prior information with a standard deviation of 0.0001, the determination
of ¢, was performed using exact data. Twelve estimations were conducted at each radius
measurement error standard deviation of 0.0001, 0.001, and 0.01, with initial estimates of 0.125
and 0.245 seconds again used. This approach was repeated using prior information standard
deviations of 0.001 and 0.01.

From the sensitivity coefficient analysis, it was determined that data obtained from the
frozen region contained the most information about the actual value of 7., while data obtained from
the unfrozen region provided less. Therefore, determination of ¢, was performed using input data
obtained entirely from the frozen region to see of the accuracy of the estimates could be improved.
The program MODC.FOR was again used to determine comesponding desired minimum
temperatures and radius locations within the frozen region. The desired minimum dimensionless
temperatures were chosen to be 2.00999 and 1.41992, corresponding to radius locations of 0.1100
and 0.1300 meters respectively. The estimation procedure, both with and without prior
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information, was repeated. To determine how accurately ¢, could be estimated from unfrozen

region data, the estimation procedure was repeated using input data obtained entirely within the
unfrozen region. The desired minimum dimensionless temperatures were chosen to be 0.99467
and 0.83825, corresponding to radius locations of 0.1500 and 0.1700 meters respectively.

4.4.6 Use of Prior Information Obtained from a Different Radius

In the determination of the optimal treatment time, a more feasible source of prior
information is obtained from a previously performed procedure with a different tumor size. In
the previous procedure, the desired minimum temperature is considered to be unchanged, but the
radius location and the treatment time necessary to achieve that temperature are different. Using
a treatment time of 0.165 seconds the desired minimum dimensionless temperature of 2.39414 was
determined to be achieved at a radius location of 0.0944 meters. To incorporate this prior
information into the procedure used to determine the optimal treatment time, several modifications
of the subroutines MODEL and SENSE of the NLINA.FOR program and input file were required.
A copy of these modified subroutines and input file may be found in Appendix H.

Using the prior information obtained from a different radius the treatment time required
to provide a minimum dimensionless temperature of 2.39414 at 0.100 meters and 0.99467 at
0.1500 meters was determined. Using a prior information standard deviation of 0.0001, 7, was
first determined using exact radius measurement data. Radius measurement errors with standard
deviations of 0.0001, 0.001, and 0.01 were used. For each measurement error standard deviation,
twelve different sets of random measurement errors were added to the radius values, with twelve
estimations of ¢, conducted. Initial estimates of 0.125 and 0.245 were again used for ¢.. This
approach was repeated using prior information standard deviations of 0.001 and 0.01.

4.4.7 Use of Prior Information Obtained from Two Different Radii
Information obtained from two previously performed procedures was used to determine

if the accuracy of the treatment time estimates could be improved. The desired minimum
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temperature remained unchanged at 2.39414. The first prior treatment time was chosen to be

0.165 seconds. The minimum temperature was achieved at a radius of 0.0944 meters. The second
prior treatment time was chosen to be 0.225 seconds with the minimum temperature achieved at
a radius of 0.1103 meters.

Using the prior information obtained from the two different radii, the treatment time
required to provide a minimum dimensionless temperature of 2.39414 at 0.100 meters and 0.99467
at 0.1500 meters was again determined. Using a prior information standard deviation of 0.0001
¢, was first determined using exact radius measurement data. Random measurement errors were
then added to the radius values using standard deviations of 0.0001, 0.001, and 0.01, with twelve
estimations of ¢, conducted at each measurement error standard deviation. Initial estimates of
0.125 and 0.245 were again used for ¢, This approach was repeated using prior information
standard deviations of 0.001 and 0.01.

For each set of twelve runs, the determined values of the optimal cryosurgical treatment
time, ¢, were averaged, with the standard deviation and a 95% confidence interval calculated. The
number of iterations required for convergence was also averaged with the standard deviation
calculated. Comparison could then be made between the optimal treatment time determined using
NLINAFOR and the actual value of the treatment time used to generate the simulated

measurement data.



CHAPTER §

RESULTS AND DISCUSSION

In this chapter the results obtained for the estimated thermal properties and optimal

treatment time are presented and discussed. The conclusions drawn from these results are

presented in Chapter 6.

5.1 Estimation of the Thermal Properties

In the first portion of this investigation, the dimensionless latent heat of fusion, L', the
dimensionless thermal conductivity, k,, and the dimensionless thermal diffusivity, o, were
estimated both individually and simultaneously.

§.1.1 Individual Estimation of the Thermal Properties

Without the use of prior information, the thermal properties L', k,,, and o, were estimated
using exact temperature measurement data obtained from both the frozen and unfrozen regions and
with measurement data containing random errors. Prior information of the actual values of these
parameters was then included in the estimation procedure, and the properties were again estimated
using exact data and data containing measurement errors. Three different standard deviations for
both the measurement errors and the prior information were used. The results are presented in

Tables 5.1, 5.2, and 5.3 for L', k,, and o, respectively.

51
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Table 5.1. Estimation of the Dimensionless Latent Heat of Fusion, L’

Standard Deviation of Measurement Errors

0.1

L’ = -99.990
£ 0.014
%error = 0.010

1.0

L’ = -100.024
+0.184
%error = 0.024

100

L’ = -100.812
+ 1.075
%error = 0.812

L = -99.993
% 0.012
%error = 0.007

L’ = -100.001
£ 0.013
%error = 0.001

L’ = -100.001
% 0.001
%error = 0.001

L = -99.990
% 0.014
%error = 0.010

L’ = -100.019
+ 0.160
%error = 0.019

L® = -100.058
£ 0.078
%error = 0.058

L’ = -99.990
+ 0.014
%error = 0.010

L’ = -100.023
+0.183
%error = 0.023

L’ = -100.713
+ 0.948
%error = 0.713

Table 5.2. Estimation of the Dimensionless Thermal Conductivity, &,

k, = 1.00021
+ 0.00126
%error = 0.021

k, = 099782
+ 0.01541
%error = 0.218

k, = 1.00001
+ 0.00008
%error = 0.001

k, = 0.99999
+ 0.00001
%error = 0.001

k, = 1.00017
% 0.00108
%error = 0.017

k, = 0.99983
+ 0,00100

%error = 0.017

k, = 1.00022
1 0.00124
%error = 0.022

k, = 099799
+ 0.01345
%error = 0.201
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Table 5.3. Estimation of the Dimensionless Thermal Diffusivity, o,

Standard Deviation of Measurement Errors

0.001

a, = 1.00035
+ 0.00115
%error = 0.035

0.01

a, = 0.99920
+0.01120
%error = 0.080

0.1

a, = 1.06361
£ 0.05186
%error = 6.361

o, = 1.00008
% 0.00027
%error = 0.008

o, = 1.00000

+ 0.00003
%error = 0.000

o, = 1,00000
£ 0.00000
%error = 0.000

o, = 1.00034
+ 0.00112
%error = 0.034

a, = 0.99976
+ 0.00267
%error = 0.024

a, = 1.00017
+ 0.00014
%error = 0.017

a, = 1.00035
+ 0.00116
%error = (0.035

a, = 0.99920
+ 0.01085
%error = (0.080

a, = 1.01299
% 0.01085
%error = 1.299

As shown in Table 5.1, estimation of L* using exact measurement data without the use of
prior information resulted in a highly accurate estimate containing only 0.001% error, as expected.
With the addition of random measurement errors with standard deviations of 0.1, 1.0, and 10.0,
there was an overall decrease in the accuracy of the estimates, with an associated increase in the
comresponding 95% confidence intervals. The maximum amount of error was contained in the
estimate obtained using measurement errors with a standard deviation, o, of 10.0 and was
determined to be 0.812%. With t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>