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ABSTRACT

AN INVERSE APPROACH TO THE ESTIMATION OF THE TISSUE

THERMAL PROPERTIES AND THE DETERMINATION OF THE OPTIMAL

TREATMENT TIME IN CRYOSURGICAL APPLICATIONS

By

Leslie Ann Scott

Cryosurgery is a method Of destroying undesirable biological tissue, particularly cancerous

tumors, by freezing. Accurate estimation Of the thermal properties Of the tissue being frozen is

Often difficult due to its complex structure. Optimal duration Of treatment is Of extreme

importance, not only to ensure destruction Of the diseased tissue, but also to minimize loss Of the

surrounding healthy tissue. Methodologies are presented for the estimation Of the thermal

properties Of the tissue and the determination Of the Optimal treatment time. An infinite

homogeneous medium with constant thermal properties subject to a point heat sink was

considered. One-dimensional analytical solutions for dimensionless temperature in the frozen and

unfrozen regions were Obtained. Using these solutions, simulated data with added random errors

were used to evaluate me procedures. The estimated thermal properties using simulated data were

foundtobeinexeeflemagreememwimmepmperdesusedtogeneratethedata. Inthe

determination Of the Optimal treatment time, there was also excellent agreement between the

detenninedueannemtimeandmetimeusedtogeneratemesimulateddata
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CHAPTER 1

INTRODUCTION

Cryosurgery is a medical technique Ofdestroying undesirable biological tissue, particularly

cancerous tumors, by freezing tO very low temperatures (typically around -50°C). The use Of

freezing in the treatment of malignancy dates back to the 1850s when iced saline solutions were

used to treat advanced cases Of breast and uterine cervical cancer (Gage, 1992). It was found that

the freezing treatment provided a relief Of pain, a reduction in tumor size, and a decrease in

bleeding and discharge. The availability Of liquified gases in the late 18005 further developed the

field Of freezing therapy. Liquid air was often used to treat a variety Of skin disorders, including

skin cancer, with favorable results reported.

Pioneering work in this area continued during the years 1936 to 1940 (Gage, 1992).

Patients with large incurable cancers of the breast and uterine cervix were treated with irrigations

of iced saline solution through hollow instruments ill contact with the tumor. The benefits again

included a relief Of pain and a reduction Of tumor size, just as reported nearly a century earlier.

Medicalresearchinthisaleawas interruptedby World WarIIanddiantcontinue forseveral

years after due to the association in scientists’ minds with the Nazi’s infamous hypothermia

experiments in concentration camps (Rubinsky, 1986b).

Research resumed in the 1950s with impressive results reported, but it wasn’t until 1961

that modern cryosurgery was born. This was due to the development Of a new cryosurgical

apparatus by Irving Cooper and AS. Lee. This device, the cryoprobe, is a small hollow cylinder
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that is vacuum insulated everywhere except the tip. A cryogen, usually liquid nitrogen. is

circulated through the cryoprobe. Freezing of the undesirable tissue is achieved through the

placement Of the cryoprobe either in contact with the surface Of the tumor or directly into the

mmorbyplmcmm,resulfingindreremovalofheatfiommesunoundingfissue. Asthisheatis

removed, afieezing front propagates outward fiom theprobe resulting indestruction Ofthe tissue.

Cryosurgery Offers many advantages over traditional forms Of treatment Of cancer. It

does not require the resection of large volumes Of sunounding healthy tissue. Often, anesthesia

and surgery are not necessary. Also, because fieezing can be localized, multiple lesions within

an organ can be heated individually. However, for a cryosurgical procedure to be successful, it

isextremely importanttobeabletopredicttheareaoftissuenecrosis. TOdO so requiresthatthe

thermalconditionsthatpromotethedestructionofthetissue,aswellasthethumalhistoryand

extent Of fieezing during the procedure, are well understood (Rubinsky, 1986b). It is essential that

destruction of the entire tumor is achieved while damage to the sunounding healthy tissue is

minimized. Therefore, the propagation Of the freezing fiont must be precisely determined during

the freezing process.

Themostprominentuseofcryosmgeryisinthetreannentofskincancer. Inthiscase,

the location Of the freezing front is easily seen by the surgeon. Other applications include the

treatment Of prostatic and uterine cervical cancers, the ueatment Of Parkinson’s disease by

destroyinglesionswitbintbebrain.andthedestructionoftumorswithintheliver. Thesedeep

bodylocafionsdonotpermhmevisualizafionofurefieezingfiombymesurgeon The

heterogeneous nature and large blood supply (typical of malignant tissue) of the tumor further

complicatethefreezingprocess. Inmanycases,thedurationoftreatmentandamormtoftissue

destroyed has become almost an art form for the surgeon. with experience gained through

previously performed procedures.

TO accurately determine the optimal duration of cryosurgical treatment, specific for each
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size and type Of tissue to be destroyed, appropriate mathematical models are needed to describe

the heat transfer within the tissue. The use of mathematical models also requires the accurate

knowledge Of the thermal properties of the tissue to be frozen. however, the values Of these tissue

thermal properties are Often unavailable. Therefore, the development Of methods that allow for

fluaccurateesfimafionofdwfissuednrmflpmperfiesandopfimalmrmfimofueamemis

essential.

In this investigation, mathematical models were chosen to describe the heat transfer within

the tissue undergoing cryosurgical freezing. Simplifying assumptions were made to allow for the

attainment Of analytical solutions to these describing differential equations. A minimization

procedure, the Box-Kanemasu Interpolation Method, was used to estimate the thermal properties

and to determine the Optimal duration Of treatment. Although the problem was simplified. the

primary goal Of this study was to test the methodologies for accuracy and reliance.

1.1 Objectives

The Objective of this investigation was two fold. First, the minimization prowdure was

used to estimate the tissue thermal properties. Specifically, the properties to be estimated were

the latent heat Of fusion, thermal conductivity, and thermal diffusivity. Second, the minimization

pmcedumwasusedmdeterminedreopfimalueaunemfimemquimdmachieveadesimd

minimum temperature at a specified radius location of the tumor. In both cases, simulated

measurement data were required as input-for the procedure. This allowed for the comparison

betweentheestimatedvaluesandtheactualvaluesusedtogeneratethesimulamddata.

In the sections that follow, a literature review is presented in Chapter 2. In Orapter 3.

Theoretical Methods, the Box-Kanemasu Interpolation Method is described. with all necessary

mathematical expressions introduced. The methods used to estimate the thennal properties and

todeterminetheoptimaltreatmenttimearepresentedinalapter4, AnalyticalProcedureS. The

results ofthisinvestigationarepresentedanddiscussedinalapter5,withtheconclusionsgiven
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in Chapter 6, Summary and Conclusiom. Flnally, Chapter 7 provides recommendations for future

work in this area. All computer programs required for this study are located in the Appendices.



CHAPTER 2

LITERATURE REVIEW

Cryosurgery is a medical treatment in which malignant and other biological tissue is

destroyed by freezing to very low temperatures. It is essential that the diseased tissue is destroyed

while maintaining as much healthy tissue as possible. The outcome Of the cryosurgical treatment

is dependent upon the cooling and warming rates imposed at the freezing/thawing fiont.

2.1 Mechanisms of Cell Destruction

The cells that comprise the undesirable tissue are destroyed by two distinctly different

methods, depending upon the rate of cooling/warming. When cells are subject to a slow rate of

cooling (10°C/min). they often remain unfrozen. yet supercooled (Savic, 1984). Ice forms in the

vasculature system first while the cells adjacent to the blood vessels remain unfrozen (Rubinsky

and Eto, 1989). Since the supercooled water has a higher vapor pressure than the ice crystals, the

cell equilibrates by losing water, resulting in dehydration Of the cell. There is a subsequent

concentration ofthe solutes within the cell that. when high enough, leads to the death ofthe cell.

Inaddifiomwbentherateofcoolingissiow,theformationoficeinthevasculaulre realltsin

expansionofthevessels. Thiscausesalossofstrucurraiintegrityofthevessel,whichmaynot

be functional when thawed.

When rapid cooling occurs (100°Clmin), the cell is unable to equilibrate quickly enough
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through dehydration. Therefore, equilibrium is achieved by the formation of intracellular ice. The

small ice crystals produced through rapid cooling are likely to fuse with other small crystals

withinthecell. Thisresultsindrenrphueofthecehmembraneandthedeathofthecell. While

a slow rate of cooling may not always result in the death of cells, as in fiostbite injuries.

intracellular ice formation is almost invariably lethal to cells (Comini and Del Guidice, 1976).

Smaflaystalspmducedbympidcoolhghaveatendencymrecrystalfizedunnguc

thawing process, especially if the warming is slow. This results in the breaking of more cell

membranes, killing more cells. Therefore, more cells are killed during a slow thawing process.

In cryosurgical applications, the ideal case is rapid freezing and slow drawing to achieve the

maximum percentage of cell death.

2.2 Modeling the Heat Transfer in Living Tissues

The complicated and only partially understood mechanisms involved in cell freezing and

destnlction make the modeling of the heat transfer within the tisme quite difficult. Another

obstacle is the nonhomogeneous nature of the tissue and the temperature dependent, relatively

unknown. thermal properties. Many attempts have been made to predict the temperature profiles

within the tissue undergoing fieezing.

2.2.1 Analytical Solutions to the Describing Differential Equations

Oneofthetraditional waystodeterminethetemperatureprofilesduringcryosurgeryis

to solve the treat conduction problem for a two-phase system with a moving boundary between

the frozen and unfrozen regiom. A major obstacle is the lack of accurate published data regarding

the tissue thermal properties. Also, factors petalliar to biological systems must be incorporated

huodedescfibingequaflomnwhasmemoodpefiusionandmembohcheagaerafimmes

(Filippov and Vasil’kov, 1979).
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In work presented by Rubinsky and Shitzer (1976) the bio-heat eqration was used to

describe the heat transfer in the unfrozen region of the tissue. In the frozen region the diffusion

of heat was described by the heat equation. The assumptions of homogeneity and constant

thermal properties were made. Another assumption was that the blood perfusion and volumetric

metabolic rates were considered to remain constant throughout the cooling process prior to

freezing. Upon freezing, these quantities go to zero. The bio-heat equation describing the heat

transfer in the unfrozen region is

31 air MC. 4
= __ T - ——n.37 0—2 + PC,( . T) + pCP

(2.1)

where

w, = blood perfusion rate

C, = specific heat of blood

7', = systemic arterial blood temperanue

q.‘ = metabolic heat generation rate

Simplifying assumptions were made that allowed for the attainment of analytical solutiom

to both the bio-heat and treat transfer equations. The results of this investigation showed that the

temperature gradient at the freezing fiont becomes larger as the volumetric metabolic and the

blood perfusion rates are increased. thereby decreasing the velocity of the freezing front

propagation. Theeffectofthebioodperfusionratewas found tobemuch strongerthanthe

volumetric metabolic rate. It was concluded that q... could be neglected without causing

significant errors in the results. However. the blood perfusion effects were significant and could

not be ignored.

To predict the maximum size of the cryolesion (fiozen portion of the tissue), a steady state

version of the bio-heat transfer equation was presented by Cooper and Trezek (1972) to describe

thetemperaturefieldsirlbothmefiozenandunfiozenregionsofthetissm.subjecttodre
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appropriateboundary conditions foreachregion. Analytical solutionswereobtainedandusedm

predict the steady state or maximum cryolesion size for different shapes of cryoprobes: planar.

cylindrical. and spherical. From previous work (Cooper and Trezek. 1970) they had also formd

thattheeffectsoftheheatcapacityofthetismewerenegligibleinboththefrozenandunfrozen

regions. However.thelatemheatoffusioneffectsresrufingfiomflrephasechmgewere

significant.

A semi-infinite slab. initially at a uniform temperature, was the considered geometry in

a freezing simulation performed by Warren et al. (1974). This flat geometry was formed by an

elastic bladderpressed againstthetissue. Thebladderwasthencooled intemallybyacryogen.

eitherliquid nitrogenorfreon. Integral equationswereusedtodescribetheheattransferinthe

frozen and unfrozen regions. The temperature profiles were approximated by polynomials subject

to either a temperature or convective boundary condition. This allowed for the attainment of

simple closed form expressions for both the tissue temperature and the frozen/unfrozen interface

position. They found that this technique was particularly valuable for demonstrating the

effectiveness of coolants.

Hrycaltet al. (1975) used the cylindrical form ofthe heattransferequationto describethe

freezing process during cryosurgery. Analytical solutions of the temperature distribution were

obtained and used in the Neumann’s solution to the frost penetration problem in a semi-infinite

slab. Fromthissolutimthetimerequiredtoachievefieezingatagivendepthwasobtainedand

couldbeusedasanestimateofthecryosurgicaltreatmenttime.

2.2.2 Numerical Methods for Solving the Describing Differential Equations

In an investigation performed by Hayes and Diller (1982), the bio-heat transfer equation

wasusedmdesaibemeheatwnducnonprocessmdnhummbodysubjeaedmexheme cold.

It was felt that this type of analysis could be used as a predictive tool in many applications.

including cryosurgery. A finite element model for a composite human was used to solve for the
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temperature profile within the body. To avoid the complexity of a three-dimensional model of

a human. the model was simplified by using a two-dimensional. axially symmetric model. The

resultsofthis study showedthatmeeffectsoflatanheatreleaseandbloodperfiisionkeepthe

tissuewannerthaniftheywerenegleeted. Also.asthetissueisundergoingaphasechange,the

effects of latent heat greatly influence the predicted temperature field. It was concluded that the

latent heat had much more effect on the temperature field than the blood perfusion rate.

The finite element method was also uwd by Comini and Del Guidice (1976) to solve a

two-dimensional bio-heat transfer equation coupled with distributed convection at the exposed

surface of the tissue. Temperature profiles were determined for various applications. such as the

treatrnentoflarge angiomasininfants. Inthiscasethethermalpropertiesofthebrainandskull

had to be estimated. thereby re-affirming the need for accurate determination of the

thermophysical properties.

In work done by Budman et al. (1990), the heat transfer equation was used to describe

the conductive heat transfer in the frozen and unfrozen regions. Also. they assumed the presence

of an intermediate range of frozen plus unfrozen phases. resulting in a modified heat equation to

include the effects of latent heat release. Solutions to the three describing differential equations

were obtained through the use of the Runge-Kutta Method.

2.3 Experimental Investigations

In experimental work done by Cooper and Petrovic (1974) a solution of 1.5% gelatin.

98.5% waterwasusedasatestmediumtosimulatetissue. Alsoincludedinthismedium wasa

liquid crystal sheet. Thiscrystal sheethadthefeatmeofdisplayingbrilliantchanges incolorover

discrete temperature bands. Using liquid nitrogen as the cryogen and a cryoprobe to provide

fieezing. photographs were taken of the frozen region and the various isotherms displayed on the
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crystalsheetatdifferenttimeintervals UsingananalyticalmodelproposedbyCooperand

Trezek that neglects heat capacity in both the frozen and unfrozen regions, Cooper and Petrovic

found that the rate of growth of the frozen region. determined experimentally. compared within

19%ofthosepredictedusingthetheoreticalmodel.

Thepmcessoffieezinginflssueisaffeaedbyflreuansponofwaterfiommeceusinto

the surrounding vasculature. Therefore, this mass transport of water must be considered in the

formulation of the energy equation. This mass transport process was experimentally studied by

Rubinsky and Etc (1989) with the use of a "Krogh Cylinder". This tmit consists of a cylindrical

blood vessel surrounded by tissue. The tissue is represented by a solution of electrolytes in water.

From this work an expression for the change in the radius of the blood vessel was determined.

2.4 Monitoring the Freezing Process

From experiments performed by Augustynowicz and Gage (1985) it was determined that

thetemperamreatadepthwithinthetissuewas always lowerthanthatatanequidistantsiteon

the surface. In general. clinicians have based their judgement on the depth of freezing to be

approximatelyequaltothelateralspreadoffiostfromtheprobe. Thisemphasizestheneedfor

wcumtemefingofflefieezingprocessmracwmmmemodsofdetemmingmeopfimal

duration of treatment for a given tumor size, in cryosurgical procedures.

2.4.1 Ultrasound Imaging in Cryosurgery

ItisabsolumlycmcialmproduceapredicmMemeaofmcmsismdwcryosurgical

treatment of cancer. Insufficient freezing leaves viable cancer cells while over freezing can have

disastrous consequences (Gilbert et al., 1984). Therefore. the growth of the freezing front must

be accurately determined during freezing. Previously. thermocouples inserted near the margins

ofthemmorhavebeenusedtomonitorthefreezingprocess. Thisallows onlyalimiwdnumber
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of points to be monitored and is difficult when the tumor is heterogeneous or large blood vessels

are in the vicinity. Also. needles containing thermocouples cannot be easily imerted into tumors

locateddeepinthebody.suchasthebrainorliver.

Ultrasound, an imaging method which uses sound waves. has recently been used to

continuously monitor the position of the phase change interface during cryosurgery. Ultrasound

devices produce images by analyzing the acoustic energy reflected from tissue through which an

acoustic pulse has been transmitted. Gilbert et al. (1984) performed experiments on simulated

organ tissue (transparent bovine gelatin). They found that the frozen region produced during

cryosurgery is clearly visible under ultrasonic imaging. Therefore, while thermocouples only

permit a limited number of points to be monitored, which is inadequate for accurately predicting

the freezing process. ultrasound allows for continuous monitoring of the position of the phase

change interface.

Experiments performed on laboratory animals have shown that the frozen/unfrozen

interface is a strong reflector of acoustic energy (Rubinsky, 1986a). Experiments performed on

gelatin samples in both planar and hemispherical freezing processes have also shown that the

change of phase interface is easily identifiable by ultrasonic monitoring (Gilbert et al., 1985). It

has been determined that ultrasound can be used to continuously monitor the transiait position

of the frozen/unfrozen interface during cryosurgery.

2.4.2 An Alternative Method for Determining the Interface Location

Visualization techniques. particularly ultrasonic monitoring, allow relatively accurate

control of freezing. However, this monitoring technique provides only two-dimensional

information of a three-dirnennonal process. As an alternative. a microprocessor data collection

system was presented by Savic (1984). Since the exact mechanism of cryosurgery is very

complicated and not fully understood. it was decided to experimentally collect data on the

changing physical environment during freezing. This data was then compared with the results of
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the biopsy of the tissue to find a relationship between the percentage of cells killed and the

parameters describing the physical environment of the tissue. thereby determining which

combinations of parameters accurately predict cell death. The phenomena being simultaneously

momwmdwemmefismetanpemmwusmgmemomuplesmdflmfismemsistmusmgamedle

probe. which measured the increase in resistance with a decrease in temperature. While this

method shows promise. considerable work is needed in this area

2.5 Optimization of the fleecing Process

Keanini andRubinsky (1992)presentedatechniquethatminimizesumrecessaryfreezing

byoptimizingtlrenumberandsizeofcryoprobesusedintheprocedure. Thistechniqueusedthe

Simplex algorithm, a minimization technique used to determine function minima. In this case the

functiontobeminimized wasthevolumeofhealthytissuedestroyedduringthefieezingprocess.

This function was assumed to depend on three independent variables: the number of probes, the

probe diameter. and the probe active length. Although this method shows promise. considerable

work is yettobedone. Forinstance,definingthe functiontobeminimizedisproblem specific.

depending upon the type of tissue to be frozen. Therefore. accurate biophysical and bio-heat

transfer models are needed, as are efficient minimization algorithms.



CHAPTER 3

THEORETICAL METHODS

There are two major aspects in this study of the cryosurgical freezing of undesirable

tissue. The first is the estimation of the thermal pr'Operties of the tissue. namely the latent heat

of fusion. thermal conductivity, and thermal diffusivity. From the Literature Review presented

in Chapter 2 it was found that the effects of the latent heat of fusion were quite significant in the

freezing process. The second aspect involves the determination of the optimal cryosurgical

treatment time required to achieve a desired minimum temperature at a specified location.

The actual problem of determining the thermal properties and optimal treatment time has

been simplified to test the estimation procedure for accuracy and reliance. In both analyses. the

tissue to be frozen was heated as an infinite homogeneous medium. initially at a uniform

temperature. Also. the effects of blood perfusion and metabolic heat generation were ignored.

Due to the assumption of a homogeneous medium. the cryosurgical probe was considered to be

located atthegeometric centerofthetissue and wasmodeled as apointheatsinkthatfreezesthe

surrormdingtissue. Thisresultsintwophaseswithinthemediumzafrozenregionandan

unfiozenregionsepmatedbyminterface,whichisknownasflrefieezingfiom. Thethermal

propertiesofthefiozenandtmfrozenregiom were assumedtobeconstantwithineachphasebut

different between phases. Therefore. the freezing front. so). propagates spherically outward from

the probe in a one-dimensional fashion as a fimction of time and radius as shown in Frgure 3.1.
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The determination of the temperature profiles of the frozen and unfrozen regions from the

initial. boundary. and interface conditions is considered to be mathematically well-posed and is

called a direct problem. The estimation of the thermal properties from internal temperature

measurement data is commonly referred to as parameter estimation. while the determination of

the optimal treatment time from internal temperature measurement data is called an inverse

problem. These problems are considered to be mathematically ill-posed. The one-dimensional

temperature profiles for the frozen and unfrozen regions. obtained from the direct problem. are

required for the estimation of the thermal properties and the determination ofthe optimal treatment

time. The assumptions of constant thermal properties and homogeneity of the tissue allowed for

the attainment of exact solutions to the describing differential equations.

3.1 The Parameter Estimation and Inverse Problem Solution Techniques

The estimation of the thermal properties of the tissue and the determination of the optimal

treatment time involved the use of the same minimization procedure in both analyses. This

involves minimizing an objective function, such as the sum of squares function. with respect to

a particular parameter of interest. The sum of squares function is

s = [Y - T(B)l’ [Y - 7(3)] (11)

where Yis avectoroftemperature measurementdata. and Tisavectorofcalculated temperature

values from the describing model and is a function ofthe unknown parameters contained in the

parameter vector B. In the parameter estimation problem, B contains the unknown thermal

properties.andintheinverseproblem. Bcontainstheoptimal treatrnenttime. Tominimizethe

sum of squares function. equation (3.1) is differentiated with respect to the unknown parameters

andsetequaltozero. Theresultingexpressionis



16

V55 = ZI-X'(B)][Y ' 7(3)] = 0 (33)

The vector B contains the true parameter values. and X03) is the sensitivity coefficient matrix.

defined as

X(B) - [tartan]T
(3.3)

Many times there exists prior information of the parameter to be estimated. To include

this prior information. the sum of squares ftmction is modified as follows:

s = [Y - row [Y - 7(3)] + [B - 01' [B -b1 (3")

where B is a vector of the actual values of the parameters being estimated. obtained from prior

information. and b is a vector of the estimated values of the parameters.

3.1.1 The Box-Kanemasu Interpolation Method

Aprobls- afisesintheleastsquaresmethodwhenflremathemaficalmodelisnonlinear

in terms of the parameters. In this case. it is not possible to explicitly solve equation (3.2) for the

parameter vector B. The Gauss Method of Minimization (Beck and Arnold. 1977) is a simple and

effective method that provides a linear approximation to the nonlinear model. To transform

equation (3.2) into an iterative form. two approximations are used: 1) the sensitivity coefficient

matrix. X05). is replaced with X(b). where b is an estimate of B and 2) the vector of calculated

valueS. 7(5). is approximated by using a Taylor expansion of Tm) about 0 as follows:

1(a) - m) + [warm]T (B - b) + . . . . (35)

Neglecting the higher order terms of the Taylor series results in the following expression for v.5:

VnS 5 X'(b)[Y - 1'0) - X(b)(B - b)] E 0 (3.6)

whichinnowlinearintermsoftheparametervectorfl.

Because the Gauss Method uses a linear approximation of Ni). oscillations and

nonconvergence can sometimes occur in the iterative process. The Box-Kanemasu Interpolation
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Method. also presented by Beck and Arnold (1977). is a modification of the Gauss Method that

eliminates this problem of nonconvergence. The Box-Kanemasu Method provides an iterative

procedure for the estimation of B with b as follows:

W) = rm + a “may” <17)

where

A,” = [X’(b)X(b)]"[X""(b)(Y - 1%)» (33)

The iteration number is k. and It“) is a scalar interpolation factor.

In the Box-Kanemasu Method. the sum of squares function is approximated at each

iteration using

S = a0 + alh + azh2 (3.9)

Theconstants ao.a,.anda2arecharacteristicofeachiterationandareequalto

a0 = 50‘". a1 = -20 ('0, a2 = is!” - s3" + 26 mania-2 (3-10 “-99

where

G“) = [A,W’]T[Xr(b)x(b)]wA,bm (3.11)

Initiallya=1.andSoandS¢_,arethevaluesofSwithh=Oandh=1respectively. This

approximate form of s is then minimized to calculate am

W” = G“’a’lS.“’ - 8.5" + 26%)" (3.12)

The calculated ha“) is then used in equation (3.7) for the (k+1)st iteration of b.

AcheckismadeaftereachiterationtoeonfirmthatSisindeeddecreasingbyensuring

Sa?) < Son) (3.13)

with a being made sufficiently small for this to occur. Iteration proceeds until there is little
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difference between D“) and b“).

In this investigation. the use ofthe Box-Kanemasu Interpolation Method required solutions

to the mathematical models describing the temperature profiles within the frozen and unfiozen

regions of the tissue being frozen. Also required were the sensitivity coefficients with respect to

thethermalpropertiestobeestimatedandtheoptimalcryosurgicaltreatrnenttimetobe

determined. as well as simulated experimental measurement data to be used as input.

3.2 Mathematical Description of The Direct Problem

The mathematical model used in the Box-Kanemasu Method is the same for both the

estimation of the thermal properties and the determination of the optimal treatment time. Since

the freezing process results in the presence of two phases within the medium, the problem must

be described with two equatiom: one for the frozen (solid) region and one for the unfrozen

(liquid) region. The one—dimensional mathematical description of the problem in the frozen

regionis

3’1" 2 3T, 1 3T. 0<r<s(t),t>0 (3.14)

— '0' _ = _

3r2 r37 (1,7

and in the unfrozen region is

3’T. + 2371 g 1 37: s(t)<r<oo.t>0 (3.15)

57 7‘37 as;

where 3(1). the freezing front. is the location of the interface separating the frozen and unfrozen

regions. Thetemperatureisfiniteasr-ioo

7'04) 3 1", r-)°°,t>0 (3.16)

and.forconvenience,thepointheatsinkisassumedtoincreasewiththesquarerootoftime
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lim 2 3T, . m r—)0,t>0 (3.17)
r441" k’??] 2Q(a,t)

The uniform temperature initial condition is

1,03,) 3 1i 0<r<oo,t=0 (3.18)

Diamdnpmsednngeoccmgdunngmefieezingpmcess.mrfacewndifiomueflso

required. A continuity of temperature at the interface requires that

T,(r.t) = T,(r.t) = T. r=s(t). t) O (3.19)

and. from the conservation of energy at the interface

I"??? - 19.335 -.- pL$12 r = 3(1). r> 0 (3.20)

,

To obtain analytical solutions to the describing differential equations. a variable

transformation is introduced. The dimensionless similarity variable 11 is chosen to be

r
=W (3.21)

The location of the freezing front. 3(1). as a dimensionless variable 1.. is assumed to be (Ozisik.

1980)

so)i. . noflow ( )

Also necessary is the transformation to dimensionless temperature variables as follows:

1,4,.
9 . (3.23)

' n-Tr'

e, = if; (324)
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The mathematical description of the direct problem. in dimensionless form. is obtained from the

substitution of equations (3.21). (3.23). and (3.24) into equations (3.14) and (3.15). The

dimensionless temperature profile in the frozen region is described by

 

 

:19; +[%+2fl}:%'0 0<r|<2t (3.25)

and in the unfrozen region by

:31 + [7? + mad}? . 0 11>). (3.26)

where or,” the dimensionless thermal diffusivity. is defimd to be

or“ . 3.1 (3.27)

at

The dimensionless temperature as n -) co. obtained from the substitution of equation (3.16) into

equation (3.24). leads to the boundary condition

elm—i...) 3 o 11 —i on (3.28)

The second boundary condition is obtained by differentiating equation (3.23) with respect to 11.

and substituting the resulting derivative into equation (3.17). It is expressed as

lim 209’ . . n -) 0 (3.29)

n-i 2““ at] Q

where k... the dimensionless thermal conductivity. is defined as

k“ = 51 (3.30)

*1

and Q‘. the dimensionless heat sink coeflicient. is defined as
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° = __Q 3.31
Q 2xk,(T.-T..) ( )

The dimensionless interface condition at n = 7t is obtained from equations (3.19). (3.23) and

(3.24). and is given by

e,(n =2.) = em =1) = 1 n = 1 (3.32)

The dimensionless temperature variables. equations (3.23) and (3.24). are used with equation

(3.20). resulting in the following dimensionless expression for the conservation of energy at the

interface:

09 d9 = it (3.33)
k ,_' - _'] = L a n

[ d" Jud. [d7] not

where L'. the dimensionless latent heat of fusion term. is defined as

u .. .11"— (3.34)
c~(r_-r,.)

The solutions to the final forms of the differential equations describing the temperature

profiles ofthe frozen and unfrozen regions are assumed to be ofthe form (Paterson. 1952)

. 1 «1*- J17 , 0<n<x (3.35)
9,01) A [2'11" 70mm] 8

1 «1'3. - (’7 - >7. (3 36
9.01) = C -—-T,,-e —erfc(naa"‘) D '1 ~ )

211a,, 2

The statements for the dimensionless boundary and interface conditions. equations (3.28). (3.29).

(3.32). and (3.33). are used to solve for the four unknown coefficients
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A = _Q . (3.37)

. e 4"" - J; 4 (3.39)C [231132 Tejmfi]

D = 0 (3040)

The final form of the solution for the dimensionless temperature profile for the frozen region is

expressed as

  

g - -tl; _ 0 < n < A (3.41)
6,01) 1 Q‘[-ef:‘-1---M‘2}?- T—(¢IfC(n) arm»)

and for the unfrozen region as

’01.. 41a, '1

6.01) g e a m _ flew.a?) e m - Emmy) n > i (3.42)

2113.1 2 2M“ 2

The derivatives of these dimensionless temperature profile expressions with respect to 11

are used in the dimensionless interface condition. equation (3.33). to obtain the following

transcendental equation for the dimensionless freezing from location:

11 = 1. (3.43)
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resulting in the functionM). which equals zero

fl1)'0'k,,Q{%;-]' 11:). (3.44)

 

3.3 Estimation of the Thermal Properties

Estimation of the thermal properties of the tissue to be frozen. using parameter estimation

techniques. requires the calculation of the sensitivity coefficients for each property for use in the

Box-Kanemasu Method. see equations (3.7) and (3.8). A sensitivity coefficient is defined as the

change in a given variable due to a change in a specific parameter, with all other parameters held

constant. Mathematically. it is defined as

X ‘u- ' l3 [-32-] w
(3.45)

where X o”. is the dimensionless sensitivity coefficient. 1" is the process variable (i.e. the

dimensionless temperature 6). B the specified parameter of interest. and E,- ¢ B are all the other

parameters other than B.

3.3.1 Determination of the Sensitivity Coefficients

The thermal properties estimated in this investigation are the dimensionless latent heat of

fusion. L'. the dimensionless thermal conductivity. k... and the dimensionless thermal difiusivity.

on, The sensitivity coefiicients are obtained by differentiating the dimensionless temperature

profile expressions, equations (3.41) and (3.42). with respect to each parameter (1:. It... and (1,).

In the frozen region the sensitivity coefficients are determined fiom the following expressions:



3°: . £90,3—; 0<11<lt (3.46)

av War:

30 39 a), 0 <. g . n < A (3.47)

it: an:

30 39 a; 0 <
s . a

n < A. (3.48)

36: 31'3on

where

39- . '9 ’e 4' (3.49)

3T 215

In the unfrozen region the following expressions are obtained:

33; . 39:31; mi (330)

BL‘ 35531.:

39: g 39:31 11>). (3.51)

37.. 3535

 

1/2

.., {[mfl; geese] - [,... new]

 

 

E 41106," 21a}? 21101,,

‘C 4'11, C 4%., ax e 4%.: fu- 1 .2 n > x (3.52)

x - - rfc0~a ")

Lita? mafia—I; H [2341}? TC " ]

where

39, .9 ‘1’“: J; m '6 4"" C 4“ __ J; .2 (3.53)
at [ 21px;" + 707.001“: ) ][W m 762000;”)

The partial derivative of l. with respect to each parameter is determined as follows (Scott.

1993): since the tramcendental equation. equation (3.44). is equal to zero. the total derivative of

10.) is also equal to zero
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3f
. p .1) = 0 =

m g ”a [w] {Mlmw

,2’: [3f] 4‘ , [3f] a (354)

a; 3: MW '3: ‘M’m

  

Dividing equation (3.54) by dB and solving for deB yields

  

 

%__[%J.-.m*§[i€]mii

(3%) ...,.........

Neglecting the higher order terms. the partial derivative of A with respect to B can be

approximated from equation (3.55) as

 

ar g _ 8g) rem—- (3.56)

”‘2'“ [iii ..........

The partial derivative of10.) with respect to 1. is determined using equation (3.44). and is found

tobe

  

2 4s + 4: _ 2 4h, _ 4%. 4%.,

#“*‘Q'[“ 21’ . ]'H——MeareHits? 'éflfmfij

e an, _e an, e are, JI— ‘ '2 (357)

- __ __ __ - _erfc(3.a a) - L '

[Warilzw i} [2103” 2 .. i
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Differentiating1'0.) with respect to L', k... and (1,. leads to the following expressions respectively:

  

LU“) - -)t (3.58)

31. '

31m , Q 'e ""

'37:": T (359)

- are,

aflx) . - 'flzahne 4%“ " Game 4%., e - fle’f ; Ln)

Bad 4120’, 2111:,” T

e are, -e are, e 4%., J; '2 (3.60)

- - —erfc(ka‘”)

[ii—rum] [We 2 "

The sensitivity coefficierrts required for use in the Box-Kanemasu Interpolation Method for the

estimation of the thermal properties are completely defined by equations (3.46) - (3.53), and (3.57)

- (3.60).

In summary, the partial differential equations governing the temperature profiles of the

frozen and unfiozen regiorn were made dimensionless through the use of a similarity variable

transformation and dimensionless temperature expressions. Analytical solutions were then found

for these dimensionless differential equations. These analytical solutions describe the

dimensionless temperature profiles of the frozen and unfrozen regions of the tissue that is

cryosurgically frozen. From the dimensionless temperature expressions. sensitivity coeflicients

for the thermal properties were obtained for use with the Box-Kanemasu Interpolation Method.

used to estimate these material properties.
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3.4 The Inverse Problem of Deternrining the Optimal Cryosurgical Treatment Time

The objective in this portion of the investigation was to determine the optimal

cryosurgical treatment time required to achieve a desired minimum temperature at a specified

radius locationofthetumor. Thisdesiredminimum temperaturewilloccuratatimethatis

gremermmmeacmdheaunanfimeduemmedifflnionofanrgymatconfinuesaflerme

treatment has stopped. To account for this continued cooling after the cessation of treatment. the

principle of superposition is used to describe the dimensionless temperature profiles after the

cryosurgical treatment time. 1,. as follows:

em) = em) - om) ‘1 <n' (161)

where 11 is defined in equation (3.21), and

f. . _ (3.62)

Tl 2(a,(r - :9)“

The Box-Kanemasu Interpolation Method is again utilized for the determination of the

optimal treatment time. Therefore. the analytical solutions to the describing differential equations.

determined in Section 3.2. are once again used. Applying the principle of niperposition. the

dimensionless temperature profile in the fiozen region is expressed as

e ""
a — ' - C 4’ .3 fi- —

6,01) 1 Q [—211— ‘27 —2-(erfc(n) amt]

.. - - 8",!“ -5 -1 Q [3?- 7X 7-(erfo(n ‘) crawl]

0<n<Ln<n° (3.63)

and in the unfrozen region as
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in, 4b, '1

om) - [2“: m - 15.20%]nth] [5251.” - gefimfi]

as!

_ 94”" _ J; . in in" _ J; IR -1 11>AJI<TI. (3-64)
“2“m Te'fcm a.) )J[m Tasman )] }

Aswidldleesfimanonofmemermalpmperties,medeterminanonofmeopfimal

treatment time. a. also requires the calculation of the sensitivity coefficients for r, from the frozen

and unfrozen region dimensionless temperature profile expressions. The sensitivity coemcient for

the frozen region is obtained by differentiating equation (3.63) with respect to 1,. resulting in the

followingexpression:

39m) aeinoan- 0< -. _ . n<Ln<11 (3.65)

5!. an' '3?

where

3991') _ -Q'e"‘°a O<n<Ln<n° (3.66)

an ‘ 21)5

Differentiation of the expression for '0‘. equation (3.62). with respect rc yields

311' r.
(3.67)

7‘: 4af”(r - if”

The sensitivity coefficient for the rmfrozen region is obtained by differentiating equation (3.64)

withrespecttorgitisdeterminedtobe

39m) _ 39.01? an‘ n>Ln<rf (3.68)

T. Tr"a:

where



39,01.) a e‘“‘ e'm“ _ ft— 1 ‘1 >1, (11° (3.69)
T [W][—115 Teddmufl) '1 fl

Duemdediifusionofmergymatwndmwsafiertheueannenthassmpped.medenmd

minimumternperatureatthespecifiedlocationwillacmallyoccuratatime.r_,-,.thatisgreater

than the treatment time. r.. Therefore. in the determination of the optimal treatment time it is also

mcessarymcdcmmedeaaualfimemmmespecifiedbcafionmachesmedesimdmmimum

temperature. This is accomplished by minimizing the expressions for the temperature profiles in

the frozen and unfrozen regions and solving for this actual time. t“... i.e.. by setting the partial

derivatives of the temperature expressions with respect to t equal to zero. Differentiation of the

dimensionless temperature profile for the fiozen region. equation (3.63). with respect to 1 yields

the following expression:

 

39,00 20:39(11)an 39,'(1‘|')an 0<n<Ln<n° (3.70)

T: m E T an—T

where

39.01) , 9'8 "V 0<n<x (3.71)

317. 2112

and 80,01‘) is given by equation (3.66). Differentiating the expression for ’0, equation (3.21),

an o

with respect to t yields

an . -r
.5}. W (3.72)

while differentiating the expression for n’. equation (3.62). with respect to t results in the

following expression:



3‘" . ___’_'_ (3.73)

7’- 4a}”(r - t)”

For the unfiozen region. the partial derivative of equation (3.64) with respect to 1 yields

39,01) _0 . 30mm + 3011)) air n>Ln<n‘ (3.74)

T: u 5i '3:- atr '3:—

where

aern) _ -e*" a“ _ (It? in '1 >2 (3.75)
T [WNW T‘”“‘““’] "

and 39,01‘) is given by equation (3.69).
an.

In summary. the Box-Kanemasu Interpolation Method, used in the determination of the

Optimal cryosurgical treatment time. required the determination of the temperature profiles and

sensitivity coefficients for the frozen and unfrozen regions. The dimensionless temperature

expressions used to estimate the thermal properties of the tissue were again used. with the

principle of superposition applied to describe the dimensionless temperature profiles of the tissue

after the cryosurgical treatment time. The required sensitivity coefficients for t, for both the

frozen and unfrozen regions were calculated Also necessary was the calculation ofthe actual

time. r...mwhichdredesimdmmimumtanperammisachievedatmespecifiedlocafionduem

mediffusionofenergydratcontimresafiermecessafionoftheueaunem.



CHAPTER 4

ANALYTICAL PROCEDURE

Inthischaptertheproceduresusedtoestimatethethermalpropertiesofthetissuetobe

cryosurgically frozen and to determine the optimal treatment time required to achieve a desired

mhimum¢mperatumflaspedfiedbcafionuedescfibed1hresdtsobminedfiommis

investigation are presented in Chapter 5.

4.1 The Sensitivity Coefficient Analysis for the Thermal Properties

Prior to the use of the Box-Kanemasu Interpolation Method to estimate the thermal

propertiesofthetissuetobedestroyedbycryosurgicallyfreezingitwasimportanttoexaminethe

sensitivity coefficients for magnitude and linear dependence. A sensitivity coefficient with a

-all magnitude (<10’) indicates that the dimensionless temperature profile is relatively

insensitive to changes in a given parameter. while a large magnitude (21) indicates extreme

sensitivity to a change in a specified parameter. A sensitivity coefiicient with a small magm'tude

indicates that there is very little information about the value of the parameter available hour the

temperature measurement data. making estimation of that parameter dificult or impossible.

Another important consideration when using the Box-Kanemasu Interpolation Method is

the possibility of correlation existing between the parameters to be estimated. To simultaneously

estimate two or more parameters. it is necessary that their respective sensitivity coefficients not

31
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be linearly dependent. If the sensitivity coefficients are found to be linearly dependent. the

parameters are correlated and cannot be estimated simultaneously.

To conduct the analysis of the sensitivity coeflicients for the thermal properties to be

estimated, a Fortran program. SENSEFOR. was written. The sensitivity coefficients were

determined using equations (3.46) - (3.53) and (3.57) - (3.60) for each property under

consideration. To calculate the sensitivity coefficients. it was necessary to assign values to the

dimensionless heat sink coefficient and thermal properties. The dimensionless heat sink

coefficient was kept constant at a value of

Q‘ = -1.0

The thermal properties to be estimated. the dimensionless latent heat of fusion. L'. the

dimensionless thermal conductivity. k”, and the dimensionless thermal diffusivity. or“, were

assigned values of:

L' -100.0

k“ = 1.0

(1,, = 1.0

which remained unchanged throughout the entire investigation.

The sensitivity coefficients for the thermal properties were calculated as functiorn of the

independent variable 11. The independent variable was varied over a range of 0.01 to 2.0 in steps

of 0.01. For the above values of the dimensionless heat sink coefficient and thermal properties.

the location of the dimensionless freezing front 3. was determined by solving the transcendental

equation. equation (3.44). and found to be 0.17302 (using the root-finding subroutine ZBRENT‘.

Press et al.. 1986). Therefore. the range of 1| sufficiently covered both the frozen and unfrozen

regions. The program provided an output of n and the sensitivity coefficients for the thermal

properties in a nondimensional form. expressed as
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XI.‘ . L._ (4.1)

3L '

w Jc ‘ (4.2)x,‘ sq]:

Xa‘ s (1% (4.3)

I

These dimemionless forms of the sensitivity coefficients are plotted versus 11 in Figure 4.1. A

copyofthisprogramandasampleoutputfilemaybefoundinAppendixA.
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Figure 4.1. Dimensionless Sensitivity Coemcients versus 11

4.1.1 Magnitudes of the Sendtivity Coefficients

Figure 4.1 demonstrates the magnitudes of the sensitivity coefficients in the frozen and

unfrozenregionsandhowtheychangeattheinterface. Themagninrdesofthedimensionless
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sensitivity coefficients XL, and x“ are the largest within the frozen region. They decrease at

theinterfacebenveendrefrozenandimfiozenregionsandapproachzeroasnincreaseswithin

the unfrozen region. This indicates that the most available information about the values of L' and

kdiscontainedinthesimulatedtemperanrre measurementdataobtainedfromthefrozenregion.

with very little information available from the unfiozen legion data

Incontrast.themagnitudeofthedimensionless sensitivitycoefficient xa‘ isquitesrnall

in the frozen region. It changes sign at the interface and increases slightly in the unfrozen region

before approaching zero as 11 increases. Therefore. the most available information about the value

adiscontainedinthesimulatedtemperamremeasurememdataobtainedfiommeporfionofme

unfrozen region adjacent to the interface.

0f the three dimensionless sensitivity coefficients plotted in Figure 4.1. XL. has the

largest magnitude. followed by KL and x“; This indicates that the temperature measurement

data provides more information about the value of L' than it does of k,‘ and 0... Therefore. of the

three thermal properties being estimated. the estimate of L‘ should be the most accurate. followed

by k, and a“.

4.1.2 Linear Dependence Between Sensitivity Coefficients

The issue of correlation existing between parameters was addressed by plotting one

dimensionless sensitivity coefficient versus another to observe any linearity between them. The

following graphs were generated: X,‘ versus XL” x9. versus XL” and xc‘ versus ix“,

These graphs are presented in Figures 4.2. 4.3. and 4.4 respectively.

The thermal properties L‘ and I:.' are correlated throughout the frozen and unfrozen regions

of the tissue. as demonstrated by the linear relationship between their sensitivity coefficients in

Figure 4.2. Thedashedlineinthisfigurerepresents adiscontinuityattheinterface. Therefore.

these parameters could not be estimated simultaneously using the Box-Kanemasu Method.
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The thermal propertiesL'andadare correlated withintlnefrozen region ofthe tissue. as

shownbythesinglepointinFigure4.3. Againtlnereisadiscontinuityattheinterface.

represerntedbythedaslnedline. Intlreunfrozenregionthethermalpropertiesarenotcorrelated.

asindicatedbythenlrvedportionofthisfigure. However.asnincreasesandthesemitivity

coefficients approach zero. the properties becomes correlated again.
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myprovidedmumfiiciemtanpmmmmeasuremandnafiommemfiozmmgimwasmed.
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4.2 The Sum of Squares Function for the Thermal Properties

Prior to the estimation of the thermal properties using the Box-Kanemasu Interpolation

Method.itwasofinteresttoexaminethesmnofsquaresftmctionforeachofthesethermal

properties. ShrcemesumofsquaresfuncfionismbemhfimizedinthismeMaflatminimum

would indicatethattheparticularparameterwouldbemore difficulttoestimatethanasteep

minimum, requiring more iterations for convergence. A Fortran program, SQUARESPOR, was

written using the dimensionless temperature profile expressions for the frozen and lmfrozen

regions, equations (3.41) and (3.42) respectively. A copy of this program is provided in Appendix

B. Using the assigned values for the thermal properties this program calculated the dimensionless

temperature values as r] was varied from 0.01 to 1.5 in steps of 0.01. These values represent the

temperature measurement data vector Y in the sum of squares function, equation (3.1). The value

of one thermal property was then varied in -all increments, with the dimensionless temperature

values calculated as n was again varied from 0.01 to 1.5. These values represent the calculated

temperamredatavectorTinthesumofsquares function. 'Ihesumofsquaresfunctionwasthen

calculated for each increment of the thermal property. and is plotted versus the varying thermal

property for L' ill Figure 4.5, and for ltd and adin Figure 4.6.

Asdemonstratedbythesefigures,thesumofsquales functionforadhasthesteepest

minimum. This indicates that the estimation of a... should require the fewest number of iterations

for convergence in the Box-Kanemasu Interpolation Method. The minima of the sum of squares

functions for L‘ and ks are considerably less steep, indicating that the estimation of these thermal

properties would require more iterations for convergence.
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4.3 Estimation of the Thermal Properties

A Fortran program of the Box-Kanemasu Interpolation Method was used for the

estimation of the thermal properties. This program. NLINAFOR (Beck. 1991), required

modification prior to use. The first modification involved the use of the dimensionless

temperature profiles for the frozen and unfrozen regions, equations (3.41) and (3.42) respectively.

in the subroutine MODEL. These expessions provide the calculated temperature data necessary

for use in the Box-Kanemasu Interpolation Method. as required in equation (3.8).

The second modification involved the placement of the expressions for the sensitivity

coefficients for the thermal properties. equations (3.46) - (3.53) and (3.57) - (3.60). into the

subroutine SENSE. This subroutine calculates the sensitivity coefficients for each parameter under

consideration to be used in the Box-Kanemasu method for the estimation of the thermal properties

as required in equations (3.7). (3.8), and (3.11). A capy of this program can be found in

Appendix C.

4.3.1 Input for the Box-Kanemasu Interpolation Method

The use of the Box-Kanemasu Interpolation Method for the estimation of the thermal

properties required an input of internal temperature measurement data. To simulate this data, a

Fortran program was written. This program, MODFOR. uses the dimensionless temperature

profile expressions. equations (3.41) and (3.42), and the assigned values of the dimensionless heat

sink coefficient and thermal properties to calculate the values of temperature as a function of the

independent variable 1]. with n varying from 0.01 to 1.5 in steps of 0.01. These calculated

temperature values were used to simulate the internal temperature measurement data from the

frozen and unfrozen regions as required in equation (3.8). Also included in this program was the

subroutine RANDOM (Press et al., 1986). a random number generator used to simulate random

measurementenors. Auserinputofthestandarddeviationoftherandomnumbersisrequired.
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thereby allowing the standard deviation of the measurement errors to be varied. Another required

user input is the seed or initialization number, each different negative number produces a different

setofrandomnumbers. Thesesimulatedmeasurementerlorscouldbeaddedtothesimulated

measurementdata. AcopyofthisprogramandasampleoutputfilearefoundinAppendix D.

4.3.2 Individual Estimation of the Thermal Properties

Initially. the estimation of the thermal properties was conducted on an individual basis.

Using the simulated temperature measurement data provided by MODFOR as input for the

modified version of NLINA.FOR, the first property to be estimated was the dimensionless latent

heat of fusion. L’. This property was estimated using exact temperature measurement data. i.e..

without measurement errors. To estimate L‘ with measurement data that contained errors three

measurement error standard deviations were used: 0.1. 1.0 and 10.0. For each standard deviation,

twelve different sets of random measurement errors were added to the simulated temperature

measurement data and twelve estimations of L' were conducted. Since the actual value of L‘ was

-100.0. an initial estimate of -50.0 was used for the first six estimations; and an initial estimate

of -150.0 was used for the remaining six estimations.

To include prior information of the value of L’. the sum of squares flmction was modified

as in equation (3.4). This required slight revision of the subroutines MODEL and SENSE in the

NLINAFOR program. Copies of these subroutines may be found in Appendix C. The inprrt file

of simulated internal temperature measurement data was also modified slightly, a c0py of this file

is located ill Appendix D. Using a standard deviation of 0.1 forthe prior information, L‘ was

estimated using exact temperature measurement data. Twelve estimations were performed at each

of the three measurement error standard deviatiom. Initial estimates of -50.0 and 450.0 were

again used. This approach was repeamd using prior information standard deviations of 1.0 and

10.0.

Themethodusedfortheindividual estimationofthedimensionlessthermal conductivity.
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lg, and the dimensionless thermal diffusivity. or“. was the same as the one described for L’ with

the following exceptions: I) the standard deviations used for the measurement errors were 0.001.

0.01. and 0.1: 2) the prior information standard deviations were also 0.001, 0.01, and 0.1; 3)

because the actual values ofbothlt,I and an were 1.0. initial estimates of 0.5 and 1.5 were used.

4.3.3 Simultaneous Estimation of the Thermal Properties

As demonstrated in Figure 4.2. the thermal properties L‘ and It, are conelated. thereby

eliminating the possibility of simultaneous estimation of these two parameters. However. as

shown in Figure 4.3. the parameters L' and agate uncorrelated in the unfrozen region and could

be estimated simultaneously. From Figure 4.4, it was determined that lg, and cg, are not correlated

in the unfrozen region and could also be simultaneously estimated.

The simultaneous estimation ofL‘ and a“ began without the use of prior information. The

properties were estimated using exact temperature measurement data. To estimate the thermal

properties using measurement data that contained errors, three standard deviations ofmeasurement

errors were used: 0.0)]. 0.01 and 0.1. For each standard deviation. twelve different sets of

random measurement errors were added to the simulated temperature measurement data and twelve

simultaneous estimations of L‘ and a... were conducted. Initial estimates for L' and (1,, of -50.0

and 0.5 respectively were used for the first six estimations, and -150.0 and 1.5 respectively were

used for the remaining six estimations.

To include prior information of the values of this pair of thermal properties, the modified

sum of squares function. equation (3.4), was again used. Using prior information standard

deviations of 0.1 for L‘ and 0.001 for a... the thermal properties were estimated using exact

temperature measurement data. Twelve estimations were then performed at each measurement

error standard deviation: 0.001, 0.01, and 0.1. Again. initial estimates of -50.0 and 0.5 were used

for the first six estimations. and -150.0 and 1.5 were used for the remaining six estimations. This

approach was repeated using prior information standard deviations of 1.0 and 10.0 for L‘. 0.01 and
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0.1 for a“.

The simultaneous estimation of ha and (1,, followed the same procedure as L‘ and or...

with the following exceptions: 1) prior information standard deviations were 0.001, 0.01. and 0.1:

2) because the actual values ofk,, and a, were 1.0, initial estimates of 0.5 and 1.5 were used.

For each set of twelve estimations, the estimated thermal property values were averaged.

with the standard deviation and a 95% confidence interval calculated. A comparison could then

be made between the estimated thermal property values provided by NLINAJ-‘OR and the actual

property values used to generate the simulated temperature measurement data. The number of

iterations required for convergence was also averaged for each set of twelve estimations. with the

standard deviation calculated.

4.4 The Determination Procedure for the Optimal Cryosurgical Treatment Time

To destroy undesirable biological tissue by cryosurgically freezing it is of extreme

importance to be able to accurately determine the optimal cryosurgical treatment time required to

provide a desired minimum temperature at a specified location. not only to ensure destruction of

thediseased tissue.butalsotominimizelossofmesurroundinghea1thytissue. lnthissection.

theprocedureusedtodetermine thisoptimaltreatrnenttimeispresented.

4.4.1 Sensitivity Coefficient Analysis for the Optimal Cryosurgical Treatment Time

Because the optimal treatment time was to be determined individually, linear dependence

between sensitivity coefficients was not a concern in this portion of the investigation. However.

it was of interest to examine the magnitude of the treatment time sensitivity coeflicients

determined from the frozen and unfrozen regions. To accomplish this, the program SENSEFOR

was modified by replacing the thermal property sensitivity coefficients with the expressions

formulated in Chapter 3 for the treatment time sensitivity coefi'rcients. equations (3.65) - (3.69).
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Thetreatmenttimewasassignedavalueof

rc = 0.1850 seconds

Although the value of the treatment time may not be a reasonable duration of treaunent. the

objective of this investigation was to assess the minimization procedure rather than to simulate

an actual cryosurgical procedure.

Theacmalfimeatwhichdledesimdmmumtanpemmreisachievedataspecified

location due to the diffusion of energy after the cessation of treatment (determined from the

program MODC.FOR. discussed below) was

r... = 0.1865 seconds

Thiswndnuedwofingofflnfismafierdnardofdwayomrgicflneammtisdemonmw

in Figure 4.7. A dimensionless temperature greater than 1 indicates that the tissue is frozen. while

atemperanlrelessthanlmeansthatthetissueisunfrozen.

To calculate the sensitivity coefficients for re. the independent variables 11 and n‘ were

varied by varying the value of the radius from 0.01 to 0.5 in steps of 0.01. The program provided

an output of n and the dimensionless form of the sensitivity coefficients for re. expreswd as

x .. t 3°" (4.4)

To observe the magnitude, the dimensionless sensitivity coefficient values for t. were

plottedversusmthisgrafllispresentedinl-‘igure43. Asdemonstratedbythisfigumthe

magnitude of the dimensionless sernitivity coefficient for the optimal treatment

time. X”, becomes very large as it approaches zero. Therefore. the most available information

ofthe value of r. is contained in the dimensionless temperature measurement data obtained from

the frozen region.
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4.4.2 The Sum of Squares Function for the Optimal Cryosurgical Treatment Time

Pliortothedeterminationoftheoptimaltreatmenttime,itwasagainofinterestto

examhndnmofsquaresfimcdmfortheueamemfime.r,mdaemineifdnminhnumof

thisfunction was fiatorsteep. TheprogramSQUARESFORwasagainuaedafterslight

modificafimbyusingmeexpresdomfmmedimmsioMesswmpaaumpromesfordnfiown

and unfiozen regions after the treatment time, given by equations (3.63) and (3.64) respectively.

Themmofsquamsfiuwdonwascakuhtedfolbwmgmenmeprocedundesuibedeecfim

4.2withr,variedinsmallincrements. Thesumofsquaresfunctionisplottedversusrfinfigule

4.9. Thisfigure demomtratesthatthesumofsquares flmctionhasaverysteepminimum.

especifllywhenmmpmedmdumofsquuesfimfiomfordndmmflpropemes,mdicafing

that convergence in the Box-Kanemasu Interpolation Method should require a mall mlmber of

iterations.
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4.4.3 Modification of the Box-Kanernasu Interpolation Method Program

TheFomanpmgmmNLmAFORwasalsousedmdeterminedleopdmalueannaufime

with the following modifications: the dimensionless temperature profiles for the frozen and

unfrozen regions after the treatment time, equations (3.63) and (3.64) respectively, were used in

the subroutine MODEL. In the SENSE subroutine, the sensitivity coefficient expressions for r,,

equations (3.65) - (3.69). were used. Samples of these subroutines are located in Appendix E.

4.4.4 Input for the Box-Kanemasu Interpolation Method

Using a cryosurgical treatment time of r‘ = 0.185 seconds. it was necessary to determine

the radius locations at which the desired minimum temperatures were achieved to be used as input

for NLINA.FOR. At the boundary of the tumor the desired minimum temperature was chosen to

be 2.39414, this corresponds to a treatment temperature of approximately -50°C and an initial

temperature of 37°C. Since it is not desired to freeze the sunounding healthy tissue. a second

desired minimum temperature of 0.99467 (approximately 0.15°C) was chosen to be achieved at

amalldistancebeyondthe tumorboundary. Todeterminetheladius locationsatwhichthese

desired minimum temperature were achieved the program MODCFOR was written. In this

programtimewasvariedinsrnall increments. Whentimewaslessthanthetreatmenttime

equations (3.41) and (3.42) were used to describe the temperature profiles in the frozen and

tmfrozen regions respectively. When time was greater than the treatment time equations (3.63)

and(3.64)wereusedtodescribethetemperature profiles. Alsovariedinthisprograrn.insmall

increments. was the radius. The output of this program was dimensionless temperature values at

corresponding radii for given times. This allowed for the determination of the actual time the

minimum temperatureoccursatagivenradiustobet...=0.l865secondsforatreatrnenttime

of 0.1850 seconds. From this output, the desired minimum dimensionless temperature of 2.39414

wasachievedataradiusofOJOOmeters. 'I‘hisreplesentstheboundaryofthenlmor. Thesecond
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desired minimum temperature of 0.99467 was determined to be achieved at a radius location of

0.1500 meters. Although the size ofthe radii are large, due to the chosen values ofthe thermal

properties, it was not of importance since the objective of this investigation was to test the

estimationprocedure forreIianceand accuracyratherthantopredictthetreatmenttimeforan

acmalsituation. AcopyofthisproglamandasampleoutputfilealelocatedinAppendixF.

lnthedeterminationoftheoptimaltreatmenttimetheYvectorinthesumofsquares

flmction. equation (3.1), contains the desired minimum temperatures to be achieved at specified

radius locations rather than measured temperature values. The measurement data is now

consideredtobethelocationorradiusofthetissueatwhichthedesiredminimumtemperatme

is to be achieved. In the medical setting this information is most commonly obtained by

ultrasonic measurement. and therefore contains measurement errors. Using the desired minimum

dimensionless temperatures and corresponding radius values determined above. an input file of

exact measurement data was generated for use in the NLINAFOR program. A sample of this

input file, TEMP.DAT. is located in Appendix G.

To add random errors to the simulated measurement data. i.e.. the radii. the Fortran

program RADFORwas written. Thisprogram wasdesignedtoreadtheinputfileofexactdata

and, again using the random number generator RANDOM, produce an output file with -ulated

random measurementerrors addedtotheradius values. Thisfile was alsousedasinput forthe

NLlNAFORprogram. CopiesofthisplograrnandouqartfilearealsolminAppendixG.

4.4.5 Determination of the Optimal Cryosurgical Treatment Time

The objective of this portion of the investigation was to determine the optimal treatment

timemmndwachieveadesimdminimumtempemmmatagivmmdiusofdiseasedfismem

bedestroyedbyfreezing. whileresultingintheleastpossibleamountofdamagetothe

sunoundinghealthytissue. Usingdataobtainedfromboththefrozenandunfrozenregionsas

irlputtlleprogramNLmAmeasusedtodeterminetheoptimal treatmenttimenc. 'Ihedesired
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minimum dimensionless temperature for the frozen region was 2.39414 at a specified radius

location of 0.100 meters. The desired unfrozen region temperature was 0.99467 at a specified

radius location 0.1500 meters. Without the use of prior information 1. was first determined using

exact data. i.e.. without measurement errors added to the radius locations. To estimate rc using

radius measurement data that contained errors, three measurement error standard deviations were

used: 0.0001. 0.001. and 0.01. For each standard deviation. twelve different sets of random

measurement errors were added to the radius measurement data and twelve estimations of r, were

conducted. Since the actual value of rewas 0.185 seconds. an initial estimate of 0.125 was used

forthefirstsixestimations:aninitialestimateof0.2.45 wasusedfortheremainingsix

estimations.

To include the use of prior information of the treatment time. obtained from a previously

performed procedure with the same tumor radius. the sum of squares flmction was modified as

in equation (3.4). Using prior information with a standard deviation of 0.0001, the determination

of r, was performed using exact data. Twelve estimations were conducted at each radius

measurement error standard deviation of 0.0001. 0.001. and 0.01, with initial estimates of 0.125

and 0.245 seconds again used. This approach was repeated using prior information standard

deviations of 0.001 and 0.01.

From the sensitivity coefiicient analysis. it was determined that data obtained from the

frozen regioncontainedthemostinfonnationabouttheactualvalue oft... while dataobtainedfrom

the unfrozen region provided less. Therefore. determination of r, was performed using input data

obtainedentirelyfromthefrozenregiontoseeofthe accuracyofthe estimates couldbeimproved.

The program MODC.FOR was again used to determine corresponding desired minimum

temperatures and radius locations within the frozen region. The desired minimum dimensionless

temperatures were chosen to be 2.00999 and 1.41992. corresponding to radius locations of 0.1100

and 0.1300 meters respectively. The estimation procedure. both with and without prior
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information. was repeated. To determine how accurately rc could be estimated from lmfrozen

region data. the estimation procedure was repeated using input data obtaimd entirely within the

unfrozen region. The desired minimum dimensionless temperatures were chosen to be 0.99467

and 0.83825. corresponding to radius locations of 0.1500 and 0.1700 meters respectively.

4.4.6 Use of Prior Information Obtained from a Different Radius

In the determination of the optimal treatment time. a more feasible source of prior

information is obtained from a previously performed prowdure with a different tumor size. In

the previous procedure. the desired minimum temperature is considered to be unchanged. but the

radius location and the treatment time necessary to achieve that temperature are different. Using

a treatment time of0.165 seconds the desired minimum dimensionless temperature of 2.39414 was

determined to be achieved at a radius location of 0.0944 meters. To incorporate this prior

information into the procedure used to determine the optimal treatment time, several modifications

of the subroutines MODEL and SENSE ofthe NLINAFOR program and input file were required.

AcOpy ofthese modified subroutinesandintxrtfilemaybefoundinAppendixH.

Using the prior information obtained from a different radius the treatment time required

to provide a minimum dimensionless temperature of 2.39414 at 0.100 meters and 0.99467 at

0.1500 meters was determined. Using a prior information standard deviation of 0.0001. rc was

firstdeterminedusingexactradiusmeasurememdata. Radiusmeasurementerrorswithstandald

deviations of 0.0001 . 0.001. and 0.01 were used. For each measurement error standard deviation.

twelve different sets of random measurement errors were added to the radius values. with twelve

estimations of I. conducted. Initial estimates of 0.125 and 0.245 were again used for t, This

approach was repeated using prior information standard deviations of 0.001 and 0.01.

4.4.7 Use of Prior Information Obtained from Two Different Radii

Information obtaimd from two previously performed procedures was used to determine

iftheaccuracyofthetreatmenttimeestimatescouldbeimproved. Thedesiredminimum
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temperature remained unchanged at 2.39414. The first prior treatment time was chosen to be

0.165 seconds. The minimum temperature was achieved at a radius of 0.0944 meters. The second

prior treatment time was chosen to be 0.225 seconds with the minimum temperature achieved at

a radius of 0.1103 meters.

Usingmepnormformadonobtainedfiomthetwodifl’erunraditdreneaunemfime

required to provide a minimum dimensionless temperature of 2.39414 at 0.100 meters and 0.99467

at 0.1500 meters was again determined. Using a prior information standard deviation of 00101

t, was first determined using exact radius measurement data. Random measurement errors were

then added to the radius values using standard deviations of 0.0001, 0.001, and 0.01, with twelve

estimations of r. conducted at each measurement error standard deviation. Initial estimates of

0.125 and 0.245 were again used for t, This approach was repeated using prior information

standard deviations of 0.001 and 0.01.

For each set of twelve runs. the determined values of the optimal cryosurgical treatment

time. re. were averaged, with the standard deviation and a 95% confidence interval calculated. The

number of iterations required for convergence was also averaged with the standard deviation

calculated. Comparison could then be made between the optimal treatment time determined using

NLINAFOR and the actual value of the treatment time used to generate the simulated

measurement data.



CHAPTER 5

RESULTS AND DISCUSSION

In this chapter the results obtained for the estimated thermal properties and optimal

treatment time are presented and discussed. The conclusions drawn from these results are

presented in Chapter 6.

5.1 Estimation of the Thermal Properties

In the first portion of this investigation. the dimensionless latent heat of fusion, L‘. the

dimensionless thermal conductivity, k“, and the dimensionless thermal diffusivity. or“. were

estimated both individually and simultaneously.

5.1.1 Individual Estimation of the Thermal Properties

Without the use of prior information. the thermal properties L', k“, and (1,, were estimated

using exact temperature measurement data obtained from both the frozen and unfrozen regions and

with measurement data containing random errors. Prior information of the actual values of these

parameters was then included in the estimation procedure. and the properties were again estimated

using exact data and data containing measurement errors. Three different standard deviations for

both the measurement errors and the prior information were used. The remlts are presented in

Tables 5.1, 5.2. and 5.3 for L'. k,” and (1,, respectively.

51
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Table 5.1. Estimation of the Dimensionless Latent Heat of Fusion. L'

Stmdard Deviation ofMeasllement Errors
 

0.1

L. I 89.9”

t 0.014

‘buror . 0.010

1.0

L. I JULW

:1: 0.184

fierror - 0.024

10.0

L. 8 ~1m.812

:1: 1.075

iterrcr . 0.812
 

L' 8 -99.993

: 0.012

‘baror a 0.1117

L. 8 400.001

5: 0.013

‘Ierror 8 01”]

L. 8 400.001

:1: 0N1

‘berror I: 0.001
 

L' a- -99.990

:1: 0.014

‘baror a 0.010

U s 400.019

:1: 0.160

‘lzerror - 0.019

U - -100.058

:1: 0.078

%error a 0.058

 

 
L’ a -99.990

:1: 0.014

%error a 0.010  
L. I 400.023

3 0.183

iterror a 0.023  
L‘ . -100.713

1 0.948

“terror = 0.713 

Table 5.2. Estimation of the Dimensionless Thermal Conductivity. It,

 

kd 3 LIMI

:1: 0.(X)126

%aror = 0.021

r, .. 0.99782

s 0.01541

m as cars
 

k‘ ' LMI

1 0.00008

$610! 8 0.11)]

k, :- 0.99999

1 0.001111

%error = 0.001
 

k, - 1.00017

:1: 0.111108

‘berror :- 0.017

k‘ 3 0.99983

:1: 0.00100

‘baror a 0.017
 

  
k. :- 1.00022

1 0.00124

‘laror = 0.022  
k. 8 0.99799

:1: 0.01345

m= 0le 
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Table 5.3. Estimation of the Dimensionless Thermal Diffusivity. a,

Standard Deviation of Measurement Errors

 

0.(X)I

a, I MIXES

t 0.00115

‘11” = 0.035

0.01

a, - 0.99920

t 0.01120

%error a 0.080

0.1

a, = 1.06361

3: 0.05186

%errcr = 6.361

 

ads LW

1 0.00027

%error = 0.1118

(1,‘ I 1.00000

:1: 0.001113

%error = 0.1110

a, - 1.001110

1: 0.001110

%error a 0.(X)0
 

a, =- LW

:1: 0.00112

%error a 0.034

a, = 0.99976

:1: 0.00267

%error = 0.024

:1: 0.00014

%aror = 0.017

 

(1,, 2 1.00035

:1: 0.00116

%error = 0.035

(1,, 2 0.99920

1 0.01085

%error a: 0.080

a, 8 1.01299

:1: 0.01085

%error a 1.299     

As shown inTable 5.1, estimationofL' using exact measuremerrtdatawithoutthe use of

prior information resulted in a highly accurate estimate containing only 0.001% error, as expected.

With the addition of random measurement errors with standard deviations of 0.1. 1.0. and 10.0.

therewasanoverall decreaseintheaccuracyofdleesfimates.withanassociatedhueaseindle

corresponding 95% confidence intervals. The maximum amount of error was contained in the

estimate obtained using measurement errors with a standard deviation. 0. of 10.0 and was

determined to be 0.812%. With the use of prior information with a standard deviation of 0.1. the

inaccuracy ofthe estimates decreased, as did the corresponding 95% confidence intervals. The

estimate obtained using measurement errors with a standard deviation of 10.0 contained only

0.001% error. As the standard deviation of the prior information was increased to 1.0 and 10.0

therewasanoveralldecreaseintheaccuracyoftheestimatedvaluesofL'. Withastandard

deviation of 10.0 for both the prior information and measurement errors. the estimate contained

0.713% error, slightly less than the value obtained without the use of prior information.
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Without prior information. the estimation of k“ with exact data provided a very accurate

estimate. containing only 0.006% error. as shown in Table 5.2. With the addition of random

measurement errors with standard deviations of 0.001. 0.01, and 0.1 there was an overall increase

inboththeinaccuracyoftheestimatesandthe95% confidenceintervals. Theestimateobtained

using measurement errors with a standard deviation of 0.1 provided an estimate of k“ containing

0.228% error. The use of prior information with a standard deviation of 0.001 resulted in an

hwreasemduaccumcyofmeesfimateswimadecnasemflnassociated95%wnfideme

intervals. As the standard deviation of the prior information was increased to 0.01 and 0.1. there

was an overall decrease in the accuracy of the estimates. When measurement errors and prior

information with standard deviations of 0.1 were used, the estimate was slightly better than the

one obtained without prior information. containing 0.201% error.

As demonstrated in Table 5.3, the estimation of 0,, followed the same trend as the

previous parameters. The estimated value obtained with exact data and without prior information

was highly accurate. containing only 0.002% error. as expected. The inclusion of random

measurement errors with standard deviations of 0.001, 0.01. and 0.1 in the estimation procedure

resultedinanoveralldecreaseintheaccuracyoftheestimates. Thevalue obtainedusing

measurement errors with a standard deviation of0.1 provided a very inaccurate estimate containing

6.361% error. The use of prior information with a standard deviation of 0.001 provided a decrease

in the amount of error present in the estimated values of 01,, especially when large measurement

errors (a = 0.1) were present. As the standard deviation of the prior information increased. the

accuracyoftheestimatesdecreased. Theuseofmeasurementerrorsandpriorinformationwitlr

standard deviations of 0.1 provided an estimate of or. comaining only 1.299% error, considerably

less than the value obtained without the use of prior information.

As expected from the sensitivity coefficient analysis, the estimate of L‘ was the most

accuratewhenexactdatawasusedwithoutpriorinformation. Inthiscasetheestimateofog,
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contained the next level of accuracy. followed by k, When large measurement errors were

present. the estimate of I, was the most accurate. followed by L‘. The estimate obtained for a.

when large measurement errors (a = 0.1) were present was highly inaccurate. The inclusion of

prior information in the estimation procedure provided an overall improvement in the accuracy of

the measurements. When the standard deviations of the prior information and measurement enors

were large (a = 10.0 for L‘. 0.1 for k“ and 11,.) the estimates of L' and I, were only slightly

improved: however. the estimate of 0,, was considerably more accurate. This would indicate that

the use of prior information had the greatest benefit on the estimation of (1,. especially when large

measurement errors were present. In all cases except the estimation of 11,, with measurement

errors with a large standard deviation and no prior information. the estimates of the thermal

properties were deemed acceptable. containing 1.3% error or less.

FromthesumofsquaresanalysisdescribedinChapter4itwasexpectedthatthe

estimation of 0,, would require the fewest number of iterations for convergence. since its sum of

squares functionhadthe steepestminimum. Thesum ofsquares functions forL‘ and kdwere

much flatter. with the function for kd being slightly more steep than H. Therefore, it was

expected that the estimation of these properties would require more iterations. As shown in Tables

5.4, 5.5. and 5.6 for L'. k,,. and a, respectively the estimation of addid require the least mlmber

ofiterafionswlurexactmeasurunahdatawasusedfouowedbykuandL'. Theadditionof

randomenorsmthemeasurememdatadidnotalwaysresultinanimreasemdlerequiredmnnber

of iterations. The inclusion of prior information with a nail standard deviation did result in a

decreaseinthe requirednumberofiteraticns forallthreeproperties,especiallywhenthe standard

deviation of the measurement errors was large. As the standard deviation of the prior information

wasincreased.merequirednumberofiterafionshadatendencytoincrease. Thecaseoflalge

standard deviations for both the measurement errors and the prior information resulted in the

largest number of iterations required for convergence for all three thermal properties.
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Table 5.4. Number of Iterations Required for Convergence in the Estimation of L‘

Standard Deviation of Measurement Errors
 

 

 

 

     

Table 5.5. Number of Iterations Required for Convergence in the Estimation of lg,

Standard Deviation of Measurement Errors

0.001 0.01 0.1
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Table 5.6. Number of Iterations Required for Convergence in the Estimation of 01,,

Standard Deviation of Measurement Errors

0.001 0.01 0.1

 

 

 

 

     

5.1.2 Simultaneous Estimation of the Thermal Properties

Without the use of prior information the thermal properties L' and 01,, were simultaneously

estimated using exact temperature measurement data obtaimd from both t1: frozen and unfrozen

regions and with data containing random measurement errors. Prior information of the actual

valuesoftheseparameters wasthenincludedintheestimationproceduleandtheproperties were

again simultaneously estimated using exact data and data containing measurement errors. Three

different standard deviations for both the measurement errors and the prior information were used.

The results are presented in Table 5.7. Following the same procedure. the properties k. and 11,,

were also estimated simultaneously. with the results shown in Table 5.8.
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Table 5.7. Simultaneous Estimation of the Dimensionless Latent Heat of Fusion. L‘

and the Dimensionless Thermal Diffusivity, a,

Standard Deviation of Measurement Errors
 

0.001

L’ 8 -99.998

:1: 0.013

%err0r 8 0.1112

0.01

L’ 8 -99.855

:1: 0.149

%error = 0.145

0.1

L. 8 -99.727

t 1.014

%error 8 0.273

U 8 400.001

%error 8 0.(I)1

 

a, 8 1.00009

:1: 0.00144

%error = 0.1119

n, 8 1.00053

:1: 0.00979

%aror = 0.053

a, 8 1.09572

t 0.12598

%aror .-.- 9.572

11,8 1.001110

%error=0.m0

 

L. 8 -99.999

1 0.010

%aror 8 0.1111

L' 8 -99.989

:t 0.011

%error 8 0.011

U 8 -99.999

1: 0.000

%error 8 0.001

I: 8 -100.000

%error=0.(DO

 

a. = 0.99952

:I: 0.00115

‘56!!! 8 0.048

ad 3 1.111110

1 0.00003

%aror = 0.1110

(1,, = LIXXIX)

rt 0.00000

%error = 0010

0,: 1.00000

%error=0.m0
 

L' 8 -99.999

:1: 0.013

%error 8 0.1111

L. 8 -99.872

:1: 0.130

%error 8 0.128

U 8 -99.992

:t 0.082

%error 8 0018

L. 8 400.001

W= 0.001

 

a, 8 LW

:1: 0.00139

%error = 0019

a, 8 1.00(Xl8

:1: 0.00230

%error = 0018

a, 8 1.00023

:1: 0.00039

%errcr = 0.023

(1,8 1.00000

meoooo
 

L. 8 -99.999

:1: 0.014

‘ %error 8 0.001

U 8 -99.855

:1: 0.150

' %error .. 0.14s

L. 8 39.878

:1: 0.963

m8 0.122

U 8 -99.998

%err0r8 0.1112
 

 a, 8 1.00009

:1: 0.00144

%error = 01119  a, 8 l.(XX)49

5: 0.00948

%error 8 0.049  tr,' 8 1.01652

:1: 0.02891

%error 8 1.652  a, 8 ”XXX”

%error 8 0.001 
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Table 5.8. Simultamous Estimation of the Dimensionless Thermal Conductivity. lg,

and the Dimensionless Thermal Diffusivity. (1,,

Standard Deviation ofMeasurement Errors

 

0.1!)!

k, 8 LW

3: 0.00015

%error 8 0.1116

0.01

k, 8 0.99953

:1: 0.00173

%error 8 0.047

0.1

k, 8 1.01114

1 0.01459

%error 8 1.114

 

(1,, 3 0.99988

:1: 0.(Xl101

%error 8 0.012

or, = 0.99365

:t 0.00859

%errcr = 0.635

a, 8 1.02600

:1: 0.08109

%error 8 2.600
 

kl a LW

:1: 0.00013

%aror 8 0.1114

k, 8 0.99998

1: 0.00010

%error 8 0012

k‘ 3 Lam1

:1: 0.00010

%error 8 0011

 

11,8 0.99997

:1: 0.00024

%error 8 0.(X)3

a. 8 0.99998

1 0.00003

%error 8 0012

11,8 1.001110

:1: 0.001110

%error 8 0.1110
 

k‘ 8 ”XXIX

1 0.00015

%error 8 0014

k, 8 0.99970

1: 0.00144

%err0r 8 0.030

I, 8 1.00066

1 0.00090

%error 8 0.1117
 

a, 8 0.99988

:1: 0.00098

%error 8 0.012

a, 8 0.99847

:t 0.00204

%uror 8 0.153

(1,, 8 LW

:1: 0.00024

%error 8 0014
 

k, 8 ”KIDS

:1: 0.1XX115

m8 0.1X15

k, 8 0.99953

1: 0.00172

%error 8 0.047

k, 8 101926

:1: 0.01233

m8 0.926
 

 a, 8 0.99988

:1: 0.00101

%error 8 0.012  a. 8 0.99384

:1: 0.00832

%error 8 0.616  a, 8 1.00341

:1: 0.01863

%error 8 0.341  
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As shown in Table 5.7. the simultaneous estimation ofL‘ and 01,, using exact measurement

data provided estimates that were highly accurate. containing only 0.001% and 0.000% error for

L‘ and a... respectively. The addition of measurement errors with standard deviations of 0.001,

0.01, and 0.1 to the estimation procedure resulted ill estimates that became less accurate as the

standard deviation increased. The presence oflarge measurement errors (a 8 0.1) provided an

estimate of L‘ containing only 0.273% error. but the estimate of (1,, was highly inaccurate.

comaining 9.572% error. The use of prior information with standard deviations of 0.1 and 0.001

for L' and 11,, respectively provided an overall increase in the accuracy of both estimates. In this

case. the simultaneous estimates obtained when large measurement enors (o 8 0.1) were present

were corniderably more accurate than those obtained without the use of prior information.

containing only 0.001% and 0.000% error for L’ and (1,, respectively. As the standard deviation

of the prior information was increased. the inaccuracy of the simultaneous estimates and their

corresponding 95% confidence linervals also increased. Using prior information with standard

deviations of 10.0 and 0.1 for L’ and 01,. respectively provided results that were more accurate than

those obtained without the use of prior information only when large measurement errors were

present. In this case, the estimates were considerably more accurate. containing 0.122% and

1.652% error for L' and 01,, respectively.

The accuracy inthe simultaneous estimates oflcdand ctdfollowed the same trend as

described above. as demonstrated in Table 5.8. Using exact measurement data in the estimation

procedure provided highly accurate estimates. containing only 0.001% and 0.000% error for kdand

a, respectively. The addition of random measurement errors with standard deviations of 0.001.

0.01,and0.1providedanoverallincleaseinboththeinacculacyoftheesfimatesandthe

corresponding 95% confidence intervals. Wlth large measurement errors (a 8 0.1) present. the

estimates of k“ and adcontain 1.114% and 2% error respectively. The addition of prior

information with a standard deviation of 0.001 for both parameters in the estimation procedure
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resultedinanoveralldecreaseintheamountoferrorpresentinthesimultaneousestimates. As

the standard deviation of the prior information was increased to 0.01 and 0.1 for both parameters.

the inaccuracy ofthe estimates increased. The use ofprior information with a standard deviation

of0.l providedesfimatesthatwuembederthandroseobtainedwidnddreuseofpfior

information. exceptwhenlargemeasurementerrorswerepresent. Inthiscase,theestimatesof

k“ and 0,, were improved. containing 0.926% and 0.341% error respectively.

lnthesimultaneousestimationofL‘andctp.itwasdeterminedthattheuseofprior

information with small standard deviations resulted in simultaneous estimates of significantly

higher accuracy than those obtained without prior information. especially when large measurement

enors are present. However, the use of prior information with large standard deviations had little

effect on the accuracy of the estimates, except when large measurement errors are present. In this

case. the estimate of L' was only slightly improved. but the estimate of a, was significantly

improved. When k,,and 12,, were simultaneously estimated. similar findings were obtained. Once

again, it was found that the use of prior information. even with a large standard deviation. had the

greatest benefitonthe accuracy ofthe estimateofct“ when large measurement enors were present.

With the exception of the estimate obtained for 01,, when the standard deviation of the

measurement enors was large and no prior information was used. all simultaneous estimates were

deemed acceptable with a maximum error of less than 1.7%.

mbodlcases.dlemmberofitemdonsmquimdforconvergenceincreasedwimthe

addition of random measurement errors. as shown in Tables 5.9 and 5.10. The use of prior

information with small standard deviations resulted in an overall decrease in the required number

of iterations. especially when large measurement errors were present. As the standard deviation

of the prior information increased, so too did the number of iterations required for convergence.

The maximum required number of iterations occurred when both the prior information rmd

measurement error standard deviations were large.
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Table 5.9. Number of Iterations Required for Convergence in the Simultaneous

Estimation of L’ and a,

Standard Deviation of Measurement Errors

0.001 0.01 0.1

 

 

 

 

     

Table 5.10. Number of Iterations Required for Convergence in the Simultaneous

Estimation of It, and 01,,

Standard Deviation of Measurement Errors

0.001 0.01 0.1
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5.1.3 Comparison of Individual and Simultaneous Estimates

Both the individual and simultaneous estimates of the thermal properties. obtained with

the use of the Box-Kanemasu Interpolation Method, were extremely accurate with the exception

ofdnesfimatesobtairedforauusingtanmmeasuremaudamwnmimnghrge

measurement errors (a 8 0.1) and no prior information. In this case the estimates were highly

inaccurate. containing as much as 9.6% error. 111 all other cases the estimates were highly

accurate. containing less than 1.3% when estimated individually and 1.7% when estimated

simultaneously.

5.2 The Optimal Cryosurgical Treatment Time

As previously discussed. the accurate determination of the optimal cryosurgical treatment

time is of extreme importance to ensure adequate destruction of the cancerous tumor of a given

radius. while maintaining as much of the surrounding healthy tissue as possible.

5.2.1 Deterrrrination of the Optimal Cryosurgical Treatment Time using Prior Information

from the Same Radius

Without the use of prior information the optimal treannent time. 1,, was determined using

temperatureandexactradiusmeasurementdataobtaimdfrom boththefrozenandunfrozen

regions and with radius measurement data containing random measurement errors. Prior

information of the actual value of re. obtained from a previously performed procedure with the

sametumorradius, wasthenincludedintlleestimationprocedure;dletreatrnenttimewas again

determinedusingexaamdiusmeasrlremandamanddamconmimngrandomenors. Three

different standard deviations for both the radius measurement enors and the prior information were

used. The results are presented in Table 5.11.
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Table 5.11. Estimation of the Optimal Treatment Time. 1.. using Simulated

Data from both the Frozen and Unfrozen Regions

Standard Deviation of Memrrernent Errors

0.0001 0.001 0.01

 

I, 8 0.18394 1‘ 8 0.17115

:1: 0.00074 :1: 0.00760

%error 8 0.573 %error 8 7.486
 

r. - 0.18416 r, - 0.17373 1. - 0.18497

:1: 0.00058 1 0.00601

%error 8 0.454 %error 8 6.092 %error 8 0.016

r. 8 0.18406 1‘ 8 0.17259 t‘ 8 0.18496

:1: 0.00065 :1: 0.00662

%error80.508 %errcr86.708 %aror80.022

r, 8 0.18406 1, 8 0.17258 1, 8 0.18496

1 0.00065 3: 0.00663

%error 8 0.508 %ar0r 8 6.714 %error 8 0.022

 

 

     
The determination of 10 without prior information and with exact radius measurement data

resulted in an accurate estimated value. containing 0.022% error. as shown in Table 5.11. The

addition of random measurement errors with standard deviations of 0.0001. 0.001. and 0.01 to the

radius valuesresultedinanoveralldecreaseintheaccuracyoftheestimates,withanincreasein

the corresponding 95% confidence intervals. The estimate of 1, obtained using large measurement

errors (a 8 0.01) was highly inaccurate. comaining 7.486% error. The addition of prior

information with a standard deviation of 0.0001 provided only a slight increase in the accuracy

of the determined values of 1,. As the standard deviation of the prior information was increased

to 0.1111 and 0.01. there was very little change in the accuracy of the estimates. The value of 1,.

obtainedbyusingpriorinformationandradiusmeasurementerrors withstandalddeviationsof

0.01. contained 6.714% error. only slightly better than the value obtained without the use of prior

information. Except when large radius measurement errors were present. the determined values
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for I, were deemed acceptable. containing less than 0.6% enor.

From the sensitivity coefficient study conducted prior to the estimation procedure. it was

determined that the most available information about the actual value of r, is contained in the data

obtained from the frozen region. Therefore, the optimal treatment time was again determined by

using temperature and radius meamrement data obtained from the frozen region only. with results

presented in Table 5.12.

Table 5.12. Estimation of the Optimal Treatment Time. tc. using Simulated

Data from the Frozen Region Only

       

 

 

Stmdard Deviation of Measurement Errors

0.0001 0.001 0.01

   
    

rt 8 0.18473

1 0.00004

%error 8 0.146

r, 8 0.18478

1, 8 0.18419

1 0.00063

%errcr 8 0.438

r, 8 0.18447

1 0.001113 1 0.00054 1 0.00428

%error80.ll9 %error80.236 %error8 3.865 %err0r80.114

r, 8 0.18476 tc 8 0.18442 1, 8 0.17716 tc 8 0.18477

1 0.001113 1 0.00059 1 0.00471

%error 8 0.130 %error 8 0.314 %error 8 4.238

t, 8 0.18476 re 8 0.18442 1, 8 0.17715

1 0.001113 1 0.00059 1 0.00471

W8 0.130 %aror 8 0.314 %error 8 4.243

r, 8 0.17571

1 0.00554

%error 8 5.022

r. 8 0.17785

r. . 0.18477
   

    

   

    

  

%errcr 8 0.124

r. 8 0.18479

 

 

     
   

    

   
  

     
   

%error 8 0.124

re 8 0.18477

      

  

  
 

      

   

   

   
%error8 0.124      

Thistableshowsmatdreacalracyofmeesdmatesofrcexhibitsdlesamenendasthose

obtainedusinga-ulated measurementdatafromboththefrozenandrmfrozenregions. Itwas

expected fromthesensitivity coefficientanalysisthattheestimatesobtainedusingdatafromthe

frozen region only would be more accurate. However. when exact data was used without prior

information. the determined value of r, was less accurate. containing 0.124% enor. Also. the
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estimates obtained using measurement errors with a standard deviation of 0.0001 and prior

mformafionwerelessaccumtethandroseobtahledusingdatafiombomregions Asthestandard

deviation ofthe measurement errors was increased. the resulting estimates were more accurate than

those obtained using data from both regions. Except when large measurement enors (o 8 0.01)

were present. the estimates contain less than 0.4% error. With the presence of large measurement

errorstheestimatescontainasmuchas5%error.

It was also determined from the sensitivity coefficient analysis that very little information

aboutthe value oft. is contained intheunfrozen regiondata. However. theestimationprocedure

was repeated using temperature and radius measurement data obtained entirely within the unfrozen

region to determine if I, could be accurately estimated. The results are presented in Table 5.13.

Table 5.13. Estimation of the Optimal Treatment Time. 1,. using Simulated

Data from the Unfrozen Region Only

  
    

Standard Deviation of Measurement Errors

0.0001 0.001 0.01

   

    
       

  

I. 8 0.18432

1 0.00003

%error 8 0.368

t. 8 0.18310

1 0.00064 1 0.00619

%error 8 1.027 %error 8 8.438 %error 8 0.351

r, 8 0.18460 1‘ 8 0.18385 1, 8 0.17405 1‘ 8 0.18466

1 0.00004 1 0.00036 1 0.00344

%error 8 0.216 %error 8 0.622 %error 8 5.919 %error 8 0.184

r‘ 8 0.18435 1. 8 0.18321 1‘ 8 0.16994 re 8 0.18436

1 0.00032 1 0.00059 1 0.00471

%error 8 0.351 %errcr 8 0.968 %error 8 8.141 %error 8 0.346

r, 8 0.18434 1. 8 0.18320 1, 8 0.16988 1‘ 8 0.18435

1 0.00002 1 0.00059 1 0.00473

%error 8 0.357 %error 8 0.973 %aror 8 8.173

I, 8 0.16939 1. 8 0.18435

    

  

   

      

         
 

               
       

  

   

     
    

              

   

   

   

   

       

    %error 8 0.351       

As demonstrated in this table. the estimates of 1. exhibit the same tendencies as those

obtained using information from the frozen region only. However. there was an overall decrease
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in the accuracy of the estimated values, as predicted by the sensitivity coefficient analysis. The

estimates contain less than 1.03% error except when large measurement errors (a 8 0.01) were

present. In this case. the estimates contain as much as 8.5% error.

Inmedetermmadonofdleopfimalneannaudmemqmredmachieveadesiredmmimum

temperatureataspecified location. itisconcluded thatthe use ofpriorinformation from the same

radius. regardless of the standard deviation. only slightly improved the accuracy of the estimates

of 1.. As expected from the sensitivity coefficient analysis. the estimates of r. obtained by using

data entirely within the frozen region provided the highest degree of accuracy. except when exact

dataordatacontainingmeasurernenterrors withasrnall standarddeviationwereused. Inallcases

except when the large measurement errors (a 8 0.01) were present. the estimation prowdure

provided acceptable results. with estimated values of 1, containing 1.03% or less.

mememofsquamsmalysispresenmdmfllapter4.itwasexpeaeddmmenumber

of iterations required for convergence would be small due to the extremely steep minimum of the

sum of squares flulction. As demonstrated in Tables 5.14, 5.15, and 5.16. the number of iterations

remained mall and fairly constant.

Table 5.14. Number of Iterations Required for Convergence in the Estimation of re

using Simulated Data from both the Frozen and Unfrozen Regions

Standard Deviation of Measmement Errors

01111 0.01
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Table 5.15. Number of Iterations Required for Convergence in the Estimation of t,

usingSimulatedDatafromdreFlozenRegionOnly

Standard Dev'ntion of Measurement Errors

0.0001 0.1111 0.01

 

 

 

     

Table 5.16. Number of Iterations Required for Convergence in the Estimation of 1,

using Simulated Data from the Unfrozen Region Only

Standard Deviation of Measurement Errors

0.0001 0.001 0.01

 

 

 

 

     

5.2.2 Determination of the Optimal Cryosurgical Treatment Time Using Prior Information

from a Different Radius

A more feasible source of prior information is obtained from a previously performed

procedure with a different tumor radius: therefore. the determination of the optimal treatment time
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was repeated using prior information obtained from a single different radius location.

Measurement error and prior information standard deviations remained at 0.0001, 0.001. and 0.01.

The results are presented in Table 5.17.

Table 5.17. Estimation of the Optimal Treatment Time. 1,. using Prior

Information Obtained from a Different Radius

Standard Deviation of Measurement Errors

0.0001 0.001 0.01

1c 8 0.18394

1 0.00074

%error 8 0.573

1c 8 0.17115

1 0.00760

%mor 8 7.486

t, 8 0.17590

:1: 0.00745

 

t‘ 8 0.18404

1 011153

%error 8 0.519 %error 8 4.919

 

re 8 0.18402

1 0.00065

%error 8 0.530

r‘ 8 0.17579

1 0.00721

%error 8 4.978

 

  
I, 8 0.18401

1 0.00065

%error 8 0.535  
tc 8 0.17577

1 0.00720

%error 8 4.989   
As showninthistable.theuseofpriorinformationfrom adifferentradiuslocationwith

a standard deviation of 0.0001 provided a slight increase ill the accuracy of the estimates for

measurement error standard deviations of 0.0001 and 0.001 when compared to the values obtained

without prior information. The estimate obtained using large measurement errors (a 8 0.01) was

considerably improved. containing 4.919% error. compared to an error of 7.486% without the use

of prior information. An increase in the standard deviation of the prior information only slightly

decreasedtheaccuracyoftheestimates. Withthepresenceoflargemeasurementenomthe

estimates were again found to be highly inaccurate. containing as much as 5% enor.

To determine iftlreaccuracyoftheestimates ofrccouldbeimproved.theestimation

procedure was repeated using prior information obtained from two previously performed
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procedures with two different tumor radius locations. The results are shown in Table 5.18.

Table 5.18. Estimation of the Optimal Treatment Time, I... using Prior

Information Obtained from Two Different Radii

  
    

  
Standard Deviation of Mount Errors

0.0001 0.001 0.01

 

   

     

      

    

     

  

t, 8 0.18486

1 0.00018

%error 8 0.076

r. 8 0.18483

1 0.00107

m8 0.092

I, 8 0.18497

1 0.01118

%error 8 0.016

r, 8 0.18486

1 0.00017

%error 8 0.076

r‘ 8 0.18394

1 0.00074

%error 8 0.573

r, 8 0.18458

1 0.00050

%error 8 0.227

r‘ 8 0.18436

1 0.00057

%aror 8 0.346

r. 8 0.18432

1 0.00056

%error 8 0.368

t‘ 8 0.17115

1 0.113760

%error 8 7.486

r‘ 8 0.17279

1 0.00962

%error 8 6.600

t, 8 0.17243

1 0.00877

%error 8 6.795

t‘ 8 0.17123

1 0.01052

%error 8 7.443

r. 8 0.18496

  

   

 

   

 

%aror 8 0.022

r. 8 0.18495

 

     

    

  

 

  
%error 8 0.1D7

r. 8 0.18496

   

  

 

     

  

  

    

        
m8 0.022

1‘ 8 0.18496

 

    

   

     

   

  
%errcr80.022    

 

As demonstrated in this table. it was found that a small standard deviation (0 8 0.0001)

ofthepriorinformationresultedinanincreaseintheaccuracyoftheestimatesoft..exceptwhen

thestandarddeviationofthemeasurementerrorswassmall. Inthiscase.theuseofprior

information from two different radii actually resulted in a slight decrease in the accuracy of the

estimated value of 1.. As the standard deviation ofthe prior information increased. the accuracy

oftheestimatesdecreasedslightly. Withitllepresenceoflargemeasurementerrors(o80.01),

theestimateswerefoundtocomainasmuchas75%error. Inallothercases.theestimateswere

formd to be highly accurate. containing less than 0.4% enor.

Indledetermmadonofmeopdmalueamentdmeusingpmrmfomafionobtainedfiom

a single different radius location, the number of iterations required for convergence was again

foundtobesrnanandfainyconstantasshowninTable519. Thenumberofiterationsrequired

for convergence when prior information from two different radius locations was used was also
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found to be small and fairly constant. with the exception ofthe case of large standard deviations

of both the radius measurement errors and the prior information. These results are shown in Table

5.20.

Table 5.19. Number of Iteratiom Required for Convergence in the Estimation of it

using Prior Information Obtained from a Different Radius

Standard Dev'nticn of Measuement Errors

 

 

 

     

Table 5.20. Number of Iterations Required for Convergence in the Estimation of re

using Prior Information Obtained from Two Difierent Radii

    

Standard Deviation of Measurement Errors

0.11101 0.001 0.01

   
   

 

 

 

    



72

From this portion of the investigation, it was found that the use of prior information

obtained from a previously performed procedure with a single difierent radius provided estimates

of t. that are only slightly more accurate than those obtained without prior information. The

exception to this is when large measurement errors were present in the estimation prowdure. In

this case, the use of prior information from a different radius location provided considerable

improvementintheaccuracyoftheestimate. museofpriorinformationfromtwodifl’erent

radiuslocationsdidnotprovideasignificantincreaseintheaccuracyoftheestimates. Iris

comludedthatmeuseofpnorinformationobtainedfromasingleradius locationisquite

beneficial when large radius measurement errors are present.



CHAPTER 6

SUMMARY AND CONCLUSIONS

The primary goal of this inveaigation of the cryosurgical freezing of undesirable tissue

was to test the minimization procedure. the Box-Kanemasu Interpolation Method. for accuracy and

reliance in the estimation of the tissue thermal properties and the determination of the optimal

treatment time required to achieve a desired minimum temperature at a specified radius location.

Tire estimated values provided by this procedure were compared with the actual values used to

generate the simulated meawrement data required as input for the Box-Kanemasu Method. It was

found that the methodologies presented in this study provided very accurate estimates of the

thermal properties and optimal cryosurgical treatment time.

6.1 Estimation of the Thermal Properties

The estimation of the thermal properties. namely the dimensionless latent heat of fusion.

L‘, the dimensionless thermal conductivity. It, and the dimensionless thermal diffusivity, a... was

wnductedusmgexaatempemnuemeamrunaudaamddmawmainmgmndanmeasummem

enors. both with and without prior information. The results of this portion of the investigation

support the following conclusions:

1. Both with and without the use ofprior information the Box-Kanemasu Interpolation Method

provided extremely accurate estimates of the thermal properties with errors of less than

73
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1.3% when estimated individually and 1.7% when estimated simultaneously. The only

excepfionwasflnesfimatesobtainedfora,whenmeasurem&enom%astmdard

deviation. 0. of 0.1 (~ 1%) were present. In this case. enors as large as 9.6% were prwent.

The use of prior information provided an overall increase in the accuracy ofthe estimated

thermalproperties. Pdorinformafionhaddregreatesteffectontheesfimafionofmwhen

large measurement errors were present by considerably reducing the amount of error in the

estimated values. Therefore. prior information. if available, should be included in the

estimation procedure. particularly in the estimation of ad with large measurement enors.

6.2 Determination of the Optimal Cryosurgical Treatment Time

The determination of the optimal treatment time was performed using exact radius

measurement data and with data containing random measurement enors, both with and without

prior information obtained from a previously performed procedure with the same tumor radius.

The estimation procedure was repeated using prior information obtained from a previously

performed procedure with both one and two different tumor radii. The following conclusions are

supported by this portion of the investigation:

1. Without the use of prior information, the Box-Kanemasu Interpolation Method provided

highly accurate estimates of the optimal treatment time, except when large measurement

errors (a 8 0.01. or ~10% ) were present. In this case, enors as high as 7.5% were present.

The use of prior information obtained from the same radius location offered little

improvement in the accuracy of the estimated values of t., for all standard deviations of

meamrement enors.

When large measurement enors were present. the use of prior information obtained from

asingledifferanmdiuspmvideddgnifiwumcmasemthewcuracyofdwesfimated
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values. while the use of prior information from two radius locations resulted in only slight

improvement. Therefore. the use ofprior information from a single different radius location

shouldbeusedinmedeterminationoftc. especially withthepresenceoflarge radius

measurement CH'OI'S.



CHAPTER 7

RECOMMENDATIONS FOR FUTURE WORK

The methodologies presented in this investigation were found to provide very accurate

estimates of the thermal properties and optimal cryosurgical treatment time. However, because

the problem had been simplified, such as assuming the tissue to be homogeneous with constant

thermal properties. the actual freezing process of the tissue subject to cryosurgical freezing is not

accurately described. It is suggested that non-constant thermal properties be incorporated into the

procedure. These properties would be both temperature and spatially dependent to account for

thetruenatureofthetissue. Also.inegularshapedgeometriesneedtobeconsidcred.since

malignant tissue is rarely spherical in shape. These changes would require the use of a numerical

method to solve the describing differential equations, such as a finite element analysis.

It is also felt that the heat transfer equations do not adequately describe the heat transfer

process of the tissue before and during freezing. From the Literature Review presented in Chapter

2.itwasfoundthatmeefi’ectsofmebloodperfusionmteonthefieezingpmcesswere quite

significant. Also, the effects of the metabolic heat generation rate, while not as great. would need

to be investigated further. Therefore. it is recommended that the biehcat equation. equation (2.1),

beusedtodescrihetheheatuansferinthetmfiozenregionofthetissue,withtheheatequation

used for the frozen region.

Experimental work is also required to further test the estimation procedures for accuracy.

Thisworkcouldbeconductedonsimulatedtissue.suchasthegelatinsolutionpresentedin
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Chapter 2. or on laboratory animals. In both cases. the temperature history of the tissue being

frozen would be recorded and used as input for the Box-Kanemasu Interpolation Method in lieu

of the simulated measurement data. Another source of measurement data could be obtained from

a previously performed procedure in which thermocouples were used as the monitoring device.

This procedure could be extended to include the determination of the optimal location of

thecryoprobe withinthetissuetobefrozen. Asthetumorisnolongerconsideredtobe

homogeneous and is considered to be irregular in shape, the location of the probe will not be at

the geometric center. The radius of the tumor would be given as

r -- [(x-x’)’ + o-y’)’ + (z—z’fl‘” (7.1)

In this case. the objective function would be minimized with respect to the probe location.

(x’.y’.z').

In this investigation. the presented methodologies have proven to be accurate and reliable

in the estimation of the thermal properties and the determination of the optimal cryosurgical

treatment time. Therefore. this work is a solid foundation upon which to build and expand the

aforementioned recommendations.
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APPENDIX A

THE FORTRAN PROGRAM SENSE.FOR

This program. SENSE.FOR. is used to calculate the sensitivity coefficients for the thermal

properties to be estimated.

PROGRAM SENSE

THIS PROGRAM IS DESIGNED TO CALCULATE THE SENSITIVITY

COEFFICIENTS OF THE TEMPERATURES,WITH RESPECI‘ TO L.

KSL, AND ALPHASL. FOR BOTH THE FROZEN AND UNFROZEN

REGIONS SURROUNDING A POINT SOURCE HEAT SINK.

WRITTEN BY LESLIE SCOTT

0
0
0
0
0
0
0

DOUBLE PRECISION KSL, Q. ALPHSL. L. PI

DOUBLE PRECISION ERFC. ZBRENT

DOUBLE PRECISION DETA. ALPHSR. PISR. X. XX. X2. X2ALPH.

+ XALPH, XXALPH, ETA, ETAS. ETA2, BOTTOM, TOP.

4» TOP2, DER]. DERZA, DER2, DER3, DER4, DERS,

+ DER6. DER7, DER8. SENSE], SENSEZ. SENSE3.

+ SENSEA, DSENSEI, DSENSEZ. DSENSE3, DSENSE4

C

COMMON/PROP/KSL. Q. ALPHSL. L. PI

C

EXTERNAL ERFC. ZBRENT

C

OPEN(UNIT810, FILE8"SENSE.DAT". STATUS8"UNKNOWN")

L 8 -I(X).D0

Q 8 -1.DO

KSL 8 l.D0

ALPHSL 8 1.D0

PI 8 DACOS(-1.DO)

NT 8 2(1) '

INCR 8 l

DETA 8 1.0D—2
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0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

VARIABLES DECLARED

ALPHSR 8 A1.PHSL*"'O.5DO

PISR 8 (PI“0.5D0)/2.D0

X IS THE CALCULATED VALUE FOR LAMBDA

ZBRENTisamotfindingsubmufineusedmsolvetheuanscmdentalequafionforme

freezing front location. See Numerical Recipes by Press et al., Cambridge University

Press, New York. New York. 1986.

X 8 ZBRENT(1.0D4.2.D0.0.00IDO)

WRITE(10.*)”X8",X

XX 8 X‘X

X2 8 2.D0*X

X2ALPH 8 X2*ALPI-ISR

XALPII 8 X‘AIPHSR

XXALPH 8 XX'ALPHSL

DO I 8 2.NT.INCR

ETA 8 (I-l)‘DETA

ETAS 8 ETA*ETA

ETA2 8 2.0DO*ETA

BOTTOM 8 (EXP(-XXALPH))/X2ALPH - PISR'ERFC(XALPH)

TOP 8 (EXP(-XXALPH))/(2.0D0*XX*ALPHSR)

TOP2 8 (EXP(-ALPHSL*ETAS)/(ETA2*ALPIISR)) - PISR

+ *ERFC(ETA*ALPHSR)

DER] 8 THE DERIVATIVE OF THE TEMPERATURE FUNCTION. IN THE

SOLID REGION. WITH RESPECT TO LAMBDA

DERZA 8 THE DERIVATIVE OF TIE FUNCTION USED TO SOLVE FOR

LAMBDA WITH RESPECT TO LAMBDA

DER2 8 TIE INVERSE OF DERZA

DER3 8 TIE DERIVATIVE OF TIE FUNCTION USED TO SOLVE FOR

LAMBDA WITH REPECT TO L

DER4 8 TIE DERIVATIVE OF TIE FUNCTION USED TO SOLVE FOR

LAMBDA WITH RESPECT TO Q. NOT USED

DERS 8 TIE DERIVATIVE OF TIE FUNCTION USED TO SOLVE FOR

LAMBDA WITH RESPECT TO KSL

DER6 8 TIE DERIVATIVE OF TIE FUNCTION USED TO SOLVE FOR

LAMBDA WITH RESPECT TO ALPHASL

DER7 8 TIE DERIVATIVE OF TIE TEMPERATURE FUNCTION. IN TIE

LIQUID REGION, WITH RESPECT TO LAMBDA

DER8 8 TIE DERIVATIVE OF TIE TEMPERATURE FUNCTION. IN TIE

LIQUID REGION. WTTII RESPECT TO ALPHASL

SENSEI 8 TIE SENSITIVITY COEFFICENT FOR TIE TEMPERATURE

WITH RESPECT TO L

SENSE2 8 TIE SENSITIVITY COEFFICENT FOR TIE TEMPERATURE

WITH RESPECT TO Q. NOT USED

SENSE3 8 TIE SENSITIVITY COEFFICENT FOR TIE TEMPERATURE



0
0
0
0
0
0
0

C

C
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WITH RESPECT TO KSL

SENSE4 8 TIE SENSITIVITY COEFFICENT FOR TIE TEMPERATURE

WITH RESPECT TO ALPHASL

CALCULATION OF TIE SENSITIVITY COEFFICENTS

DERI 8 Q‘(—EXP(-XX)/(2.0D0"XX))

DERZA = KSL*Q*((-XX*EXP(-XX) - EXH-XX))/(X*X‘X)) -

+ (((-XX*EXP(-XXALPH) - EXP(-XXALPII))/(X"‘X"'X"l

+ ALPHSR))*BO’TTOM - TOP‘(((-2.0D0*XX"ALPHSL“

+ (3.0DOIZ.OD0)*EXP(-XXALPH) - ALPHSR‘EXP

+ (~XXALPH))/(2.0DO"XX*ALPHSL)) + ALPHSR*EXP

+ (-XXALPH))/(BOTTOM*BOTTOM)) - L

DER2 8 -DER2A‘""(-l.0DO)

DER3 8 -X

DER4 8 KSL‘EXPGXXMZDDO‘XX»

DER-5 = Q*(EXP(-XX)/(2.0DO*XX))

DER6 8 o(((-2.0DO*XX*ALPHSR*EXP(-XXALPH) - ALPHSL

"'*(-0.5D0)‘EXP(-XXALPH))/(4.0U)*XX*ALPHSL))

‘BOTTOM - TOP*((-2.0D0*XX*ALPHSR*

EXP(-XXALPH) - ALPHSL“(-O.5D0)*EXP

(-XXALPH))/(4.0D0*X*ALPHSL) + 0.5D0*ALPHSL

""(-0.5D0)*X"EXP(-XXALPH)))/(BO‘TTOM*BOTTOM)

7 8 -TOP2*((-2.0DO*XX*(ALPHSL**(3.0D0/2.0D0))*EXP

(-XXALPH)) - (ALPHSR‘EXP(-XXALPH))/(2.0DO*XX*ALPHSL)

+ ALPHSR*EXP(-XXALPH))/(BOTTOM*BOTTOM)

DER8 8 ((((-2.0D0*(ETA“3.0D0)"ALPHSR*EXP(-ETAS*ALPHSL))

-(EXP(-ETAS"ALPHSL)‘ETA*(ALPIISL“(—O.5D0))))

l((2.0DO*ETA*ALPHSR)“2.0DO) + (0.5DO*ALPHSL

“(-O.5DO)"'ETA*EXP(-ETAS*ALPHSL)))“BOTTOM

- P2*((-EXP(-XXALPH))*(XX + (2.0D0‘X‘ALPHSL

*DER2‘DER6))*(2.0D0*XALPH) - ((EXP(-XXALPH))*

((2.0D0‘ALPHSR*DER2*DER6) + (X‘ALPHSL“(-O.5D0))))/

((2.0DO‘XALPH)"2.0D0) + (EXP(-XXALPH)*(O.5D0“‘

ALPHSL“(-0.5D0)"X + AIPHSR‘DERZ‘DER6))))

I(BOTT'OM*BOTTOM)

+
+
E
+
+
+
+
+

+
+
+
+
+
+
+
+
+

CALCULATION OF FROZEN PORTION SENSITIVITY COEFFICENTS

IF(E'TA .LT. X) TIEN

SENSEI 8 DERI‘DERZ‘DER3

DSENSE18 L‘SENSEI

SENSE2 8 -(EXP(-ETAS)/ETA2 -- EXP(-XX)/X2 - PISR

+ *(ERFCGETA) - ERFCOO» - Q“(DER1"

+ DER2‘DER4)

DSENSE2=Q*SENSE2

SENSE3 8 DERI‘DER2*DER5

DSENSE38KSL'SENSE3

SENSE4 8 DERI‘DERZ‘DER6



81

DSENSE48ALPHSL*SENSE4

ELSE

CALCULATION OF UNFROZEN PORTION SENSITIVTTY

COEFFICENTS

IF(ETA .GT. X) TIEN

SENSE] 8 DER7‘DER2‘DER3

DSENSE18L‘SENSE1

SENSE2 8 DER7‘DER2‘DER4

DSENSEL-Q‘SENSE2

SENSE3 8 DER7‘DER2‘DER5

DSENSE38KSL‘SENSE3

SENSE4 8 DERS

DSENSFA8ALPHSL*SENSE4

ELSE

SENSTTIVITY COEFFICENTS AT THE INTERFACE

SENSE] 8 0.0D0

SENSE2 8 0.0D0

SENSE3 8 0.0D0

SENSE4 8 0.0D0

ENDIF

ENDIF

WRITE(IO.5)ETA. DSENSEI

5 FORMAT(E]2.5,E]2.5)

ENDDO

STOP

END

CALCULATION OF LAMBDA FROM FUNCTION ZBRENT

DOUBLE PRECISION FUNCTI ON ZBRENT(X] , X2, TOL)

PARALET'ER(TTMAX81(D. EPS8 3.]E-8)

DOUBLE PRECISION A, B, C. D, E, FA, FB. FC

DOUBLE PRECISION TOLI, TOL, X1, X2, XM

DOUBLE PRECISION P. Q. R. S. FUNCL

EXTERNAL FUNCL

A8X1

B8X2

FA8FUN(1(A)

FB8FUNCL(B)

IF(FB"FA .GT. 0.0D0) PAUSE ’ROOT MUST BE BRACKETED FOR

+ ZBRENT.’

FC8FB

DO 15 IT'FR81JTMAX

IF(FB*FC .GT. 0.000) THEN

C8A

FC8FA

D83-A

E8D



ENDIF
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IF(ABS(FC) .LT. ABS(FB)) TIEN

8B

B=C

C8A

FA8FB

FB8FC

FC8FA

ENDIF

TOL]82.ODO*EPS*ABS(B)+0.5DO‘TOL

XM=0.5DO‘(C-B)

IF(ABS(XM) .LE. TOL] .OR. FB .EQ. 0.0D0)TIEN

ZBRENT8B

RETURN

ENDIF

IF(ABS(E) .GE. TOL] .AND. ABS(FA) .GT. ABS(FB)) TIEN

S8FB/FA

IF(A .EQ. 0mm

P=2.ooo*st

Q=1.ooo - s

ELSE

Q=FAIFC

R8FB/FC

P88"'(2.OD0"XM*Q*(Q-R) - (B-A)*(R-I.OD0))

Q=(Q-1.0DO)*(R-I.ODO)*(S- 1.0D0)

ENDIF

IF(P .GT. 0) Q 8 -Q

P=ABS(P)

IF(2.0D0*P .LT. MIN(3.0D0'*XM*Q-ABS(TOL1‘Q),ABS(E*Q)))TIEN

E8D

D8P/Q

ELSE

D8XM

E8D

ENDIF

ELSE

D8XM

E8D

ENDIF

A88

FA8FB

IF(ABS(D) .GT.TOL1)TI-IEN

B88+D

ELSE

B88+SIGN(TOL1.XM)

ENDIF

FB8FUNCL(B)
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15 CONTINUE

C

PAUSE ’ZBRENT EXCEEDING MAXIMUM TTERATIONS.’

ZBRENT8B

RETURN

END

DOUBLE PRECISION FUNCTION ERFC(X)

DOUBLE PRECISION A1, A2, A3, A4, A5, P, T, X

Al=0.254829592D0

A28-0.284496736D0

A381.42]4l3741D0

A48- 1 .453152027D0

A58].061405429D0

P80327591 IDO

T81 .0D0/(l .0D0+P"X)

ERFC8(A1*T+A2*T“2.0D0+A3"T"3.ODO+A4‘T“4.0D0+A5*T“5.0D0)

+ ‘EXP(-X“2.0D0)

RETURN

END

DOUBLE PRECISION FUNCTION FUNCL(X)

DOUBLE PRECISION KSL. Q, ALPHSL, L, X, P], ERFC

DOUBLE PRECISION EXPX. EXPXASL. XX2. RATIO

COMMON/PROP/KSL, Q. ALPHSL. L. P]

EXTERNAL ERFC

EXPX8EXP(-X*X)

EXPXASL8EXP(-X*X*ALPHSL)

XX28X‘X‘2.0D0

RATIO=EXPXASIJ(XX2‘ALPHSL“0.5D0)

FUNCL8KSL‘Q‘EXPX/XX2 - RATIO/(RATIO—(PI“0.5D0/2)

+ *ERFC(ALPHSL”0.5DO*X)) -L"'X

RETURN

END
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This file represents the output file from the program SENSEFOR. The first column is

the dimensionless similarity variable t]. the second column contains the dimensionless sensitivity

coefficient values for L'.

.ICXXDEcOI -.44089E+m

.ZIXDOE-Ol -.44089E+(X)

.3ooooe-or -.44089E+(X)

.WE-O] -.44089E+(X)

WED] -.44089E+(X)

.soooora-or -.44089E+(X)

.7(Xl)0E-01 -.44089E+(X)

.sooooe-or -.44089E+(X)

900005-01 -.44089E+(X)

. ](X)00E+00

.1 1000E+00

.]2(X)0E+00

. ]NEW

.“(HEAD

.ISWEAXI

.rsoooe+oo

. 17000E+00

.18000E+00

. r9ooor=.+oo

.20000E+00

.2 1(XX)E+(X)

flmOE-t-(X)

23030511!)

.2410me

WEI-00

26WE+W

.27000E-t-(X)

28(0054-00

29000E+00

.WEH'D

.31(XX)E+(X)

.32(IX)E+(X)

.33(IX)E+(X)

.3aooor=.+oo

.35000E-t-(X)

.36(XX)E+(X)

.371XX1E-t-(X)

SW

.39IXXIE-l-(X)

.W

.4](XX)E+(D

421110514X)

.4aooor=.+oo

-.44089E+00

-.44089E+00

-.44089E+(X)

-.44089E+(X)

-.44089E+(X)

-.44089E+(X)

-.44089E+(X)

-.44089E+(X)

-. 18875510)

-.17529510)

-.16322E+CD

-.]5234E+00

-.14ZSOE+(X)

-.1335551“)

-.12538E+(X)

-.] r79015+oo

-.]1 104E411”

-.10471E+00

-.98867E—01

-.93458E-0]

-.88439E-01

-.83771E-0]

-.79422E-01

-.75363E-0]

-.71568E-01

-.68014E-01

-.64681E-0]

-.6]550E-0]

-.58606E-0]

-.55835E-01

-.53222E-01

-.50757E-0]

-.48428E-01

-.46226E-01



.44(XX)E+(X)

.450(X)E+(X)

.46000E+00

.47(X)0E+(X)

.48(X)0E+(X)

.49000E+00

SUEDE-RX)

.5 ](X)0E+(X)

52(X10E-t-(X)

53WE+1X1

.54000E+00

55WE+W

560111511X)

.57000E+00

JME+OO

.59000E+00

.6(XX)0E+(X)

010me

.62000E+(X)

.63m0E-i-(X)

.64000E+00

.6SOOOE+00

.66(X)0E+(X)

.67000E+(X)

.68000E+00

.69000E+00

.7(X)00E+00

.71(X)0E+(X)

.72(X)OE+(X)

.73(X)OE+(X)

.74000E+00

.75(X)0E+00

.76(X)0E+00

170009.00

.7sooor=.+oo

.79000E+00

.SGXDEHX)

.810005+oo

.82(XX)E+(X)

.83(XX)E+(X)

.84000E4-CX)

£50me

.86CXJOE+CD

.87(X)0E+(X)

.88(XX)E+(X)

.8901X1EHX)

.9oooor=.+oo

.9rooor-:+oo

.9200054-00

-.44142E-Ol

-.42168E-01

-.40297E-01

-.38522E-01

-.36837E-01

-.35236E-01

-.337l4E-Ol

-.32266E-01

-.30889E-01

~29576E-01

-.28326E-01

-.271MED]

-.25998E-01

-.24913E-01

-.23878E-01

-.22889E-0]

-.21944E-01

-.21042E-01

-.20179E-01

-. 19354E-01

-.18564E-01

-. 17809E-0]

-. 17086E-01

-.16393E-Ol

-.15730E-01

-. 150955-01

-.14487E-0]

-. ] 3904E-0]

-.13345E—01

-.12809E-0]

-.12295E-01

-.1 1802E-01

-.1 1330E-01

-.10876E-01

-.10441E-01

-.1(X)24E-Ol

-.96230E-02

-.92384E-02

-.88693E-02

-.85149E-02

-.81746E-02

-.78479E-02

-.75342E-02

-.72329E-02

-.69435E-02

-.66655E-02

-.63986E-02

-.61421E-02

-.58958E-02
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APPENDIX B

THE FORTRAN PROGRAM SQUARESFOR

This program. SQUARESFOR. is used to calculate the sum of squares function for each

thermal property to be estimated.

PROGRAM SQUARES

C

C THIS PROGRAM IS WRITTEN TO CALCULATED THE SUM OF SQUARES

C FUNCTION USING EXACT DATA FOR Ya) AND DATA WITH A SINGLE

C PARAMETER VARIED FOR T(I)

C WRITTEN BY LESLIE A. SCOTT

DOUBLE PRECISION KSL. Q. ALPHSL. L. PI, DALPHSL

DOUBLE PRECISION DETA. BETA. TIETA

DIMENSION Y(5(X)), T(5(X))

COMMON/PROP/KSL. Q. ALPHSL. L, PI

COMMON TIETA. BETA. I

OPEN(UNIT8]0, FILE8”SQUAR.DAT". STATUS8"UNKNOWN")

KSL 8 1.0130

Q 8 -1.0D0

ALPHSL 8 1.000

L 8 -1(X).0D0

PI 8 DACOS(-].0m)

NT 8 150

INCR 8 1

DETA 8 1.0D-2

DOI82.NT.INCR

CALL MODEL

Y(I) 8 TIETA
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0
0

0
0
0
0
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ENDDO

ALPHSL 8 0.50D0

DALPHSL 8 0.050D0

N 8 2]

DO I 8 IN

DO I 8 2,NT.INCR

CALL MODEL

T0) 8 TIETA

ENDDO

SUM 8 0.0D0

DO I 8 2.NT.INCR

SUM = (Y(I) - T0))“(Y(I) - TO»

ENDDO

WRITE(10.5)ALPIISL, SUM

5 FORMAT(EIZ.5.I'312.5)

SUM 8 0.0D0

ALPHSL 8 ALPHSL + DALPHSL

ENDDO

STOP

END

SUBROUTINE MODEL

DOUBLE PRECISION KSL, Q, ALPHSL, L, P]

DOUBLE PRECISION ERFC. ZBRENT

DOUBLE PRECISION DETA, ALPHSR. PISR. X, XX, X2, X2ALPI'I.

+ XALPH, XXALPH, BETA, BETAS, BETA2, TIIETA

COMMON/PROP/KSL. Q. ALPHSL. L. PI

COMMON TIETA. BETA. I

EXTERNAL ERFC, ZBRENT

NT 8 150

INCR 8 1

DETA 81.0D-2

ALPHSR 8 ALPHSL“0.SDO

PISR 8 (PI“0.SDO)/2.D0

X rs THE CALCULATED VALUE FOR LAMBDA

ZBRENTisamotfindingsubmufineusedwsolveflreuanscendemalequafionforme

freezing from location. See Numerical Recipes by Press et al., Cambridge University

Press. New York. New York, 1986.

X 8 ZBRENT(1.0D4.2.D0.0.(X)1D0)

WRITE(10,*)”X8".X

XX 8 X‘X

X2 8 2.DO*X

X2ALPH 8 X2*ALPHSR



+

XALPH 8 X‘ALPHSR

XXALPH 8 XX‘ALPHSL

CALCULATION OF DIMENSIONLESS TEMPERATURES

BETA 8 (1-1)"DETA

BETAS 8 BETA‘BETA

BETA2 8 2.D0*BETA

CALCULATION OF FROZEN PORTION TEMPERATURE

IF(BETA .LT. X) TIEN

TIETA 8 1-Q*(EXP(-BETAS)/BETA2 - EXP(-XX)/X2

-PISR*(ERFC(BETA) - ERFC(X)))

ELSE

CALCULATION OF UNFROZEN PORTION TEMPERATURE

IF(BETA .GT. X) TIEN

TIETA 8 (EXP(-ALPHSL"BETAS)/(BETA2*ALPHSR)

- PISR‘ERFC(ALPHSR*BETA))/(EXP(-XXALPH)/X2ALPH

-PISR*ERFC(XALPII))

ELSE

TEMPERATURE AT TIE INTERFACE, DETERMINED FROM B.C.

TIIETA 8 ].D0

ENDIF

ENDIF

WRITE(10,’(110,7F10.5)’)I-1,IIETA,STDDV.BETA

RETURN

END

CALCULATION OF LAMBDA FROM FUNCTION ZBRENT

DOUBLE PRECISION FUNCTION ZBRENT(X1, X2. TOL)

PARAMETER(ITMAX81(X), EPS8 3.0E-8)

DOUBLE PRECISION A, B, C, D, E, FA, FB, FC

DOUBLE PRECISION TOL], TOL, X1, X2, XM

DOUBLE PRECISION P, Q, R, S, FUNCL

EXTERNAL FUNCL

A8X1

B8X2

FA8FUNCL(A)

FB8FUNCL(B)

IF(FB*FA .GT. 0.0D0) PAUSE ’ROOT MUST BE BRACKETED FOR

ZBRENT.’

FC8FB

DO 15 ITER8].ITMAX

IF(FB*FC .GT. 0.0D0) TIEN

C8A

FC8FA

D8BoA

E8D

ENDIF

IF(ABS(FC) .LT. ABS(FB)) TIEN

8B

B8C

@A
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FA8FB

FB8FC

FC8FA

ENDIF

TOL182.OD0"EPS"ABS(B)+0.5DO"TOL

XM80.5D0“'(C-B)

IF(ABS(XM) .LE. TOL] .OR. FB .EQ. 0.0D0)TIEN

ZBRENT8B

RETURN

ENDIF

IF(ABS(E) .GE. TOL] .AND. ABS(FA) .GT. ABS(FB)) TIEN

S8FB/FA

IF(A .EQ. C)THEN

P82.0D0*XM*S

Q81.0D0 - S

ELSE

Q=FAIFC

R8FB/FC

PBS*(2.0D0"XM‘Q*(Q-R) - (B-A)‘(R-I.OD0))

Q8(Q-1.0D0)*(R-].0D0)“(S-1.0TX))

ENDIF

IF(P .GT. 0) Q 8 -Q

P8ABS(P)

IF(2.0D0"'P .LT. WN(3.0D0"XM*Q~ABS(TOL]*Q),ABS(E*Q)))TIEN

E8D

D8P/Q

ELSE

D8XM

ED

ENDIF

ELSE

D8XM

ED

ENDIF

A83

FA8FB

IF(ABS(D) .GT. TOL1)THEN

8B+D

ESE

B8B+SIGN(TOL].XM)

ENDIF

FB8FUNCL(B)

CONTINUE

PAUSE ’ZBRENT EXCEEDING MAXIMUM ITERA'IIONS.’

ZBRENT8B

RETURN

END
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C

DOUBLE PRECISION FUNCTION ERFC(X)

C

DOUBLE PRECISION Al, A2, A3, A4, A5, P, T, X

A180.254829592D0

A28-0.284496736D0

A38].421413741D0

A4=.r.453152027oo

A581.06]405429D0

P80.327591 IDO

T81.0D0/(1 .0DO+P"'X)

ERFC8(A1*T+A2*T"*2.0D0+A3"T“3.0D0+A4*T“4.0D0+A5'T**5.0D0)

+ ‘EXP(-X“2.0D0)

RETURN

END

C

DOUBLE PRECISION FUNCTION FUNCL(X)

C

DOUBLE PRECISION KSL. Q, ALPHSL, L, X, PI, ERFC

DOUBLE PRECISION EXPX, EXPXASL. XX2. RATIO

COMMON/PROP/KSL. Q. ALPHSL, L, PI

EXTERNAL ERFC

EXPX8EXP(-X*X)

EXPXASL8EXP(-X*X*ALPHSL)

XX28X*X*2.0D0

RATIO8EXPXASU(XX2*ALPHSL“O.5D0)

FUNCTfiKSL‘Q‘EXPX/XXZ - RATIO/(RATIO-(PI**0.5D0/Z)

+ *ERFC(ALPHSL“0.5D0*X)) -L*X

RETURN

END



APPENDIX C

THE FORTRAN PROGRAM NLINA.FOR

This program, NLINA.FOR, uses the Box-Kanemasu Interpolation Method to estimate the

thermal properties without prior information.

PROGRAM NLINA

CCCCCCCCC PROGRAM DESCRIPTION CCCCC

C C

C PROGRAM NLINC

C WRITTEN BY JAMES V. BECK . C

C LAST REVISED MAY 1. 1991

C REVISED BY LESLE A. SCOTT

C

C888888888888888888u888888888e88888888888888888aaueuuueuuuc

C C

CVCCCCCCCC VARIABLE IDENTIFICATION CCCCCCCC

C C

C C

centers-truer-888anau88888err-88888888888888888888euneuuuuuuc

C C

CDCCCCCCCC DIMENSION BLOCK BLOCK (XXX)

C C

C C

IMPLICIT REAL‘8 (A-H,O-Z)

DIMENSION T(35(X).5),Y(35W),SIGZ(35(X)),B(5),Z(5),A(5),BS(5),

1VINV(5.5).BSS(5),m(5),BSV(5).R(5,5).EXTRA(20),ERR(35(X))

1. PS(5.5).P(5.5).PSV(5.5).

1 XTX(5.5).XTY(5)

CHARACTERMO DFILE,OUTFIL

C C

(388888888888u88888888out8888888888888888888aeeeaeeeaeuuaauauc

C C

COCCCCCCCC COMMON BLOCK BLOCK 0100

C C

COMMON SIG2.TLBSJETAPSTBA.Y.MODL.VINV.NP.EXTRA
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COMMON/ERROR/ERR

C C

C C

Cu8anu8u8ua«a8888unannounced-«88888«aeeeeaeaaeeeaeeuc

C C

CACCCCCCCC DATA BLOCK BLOCK 0200

C C

DATA EPSEPSSJINJOUT/I.0D-30.0.(XX11D+0.5.7/

C C

C888«auu8888aan888888888888eater-«8888888888888euuuuuuuc

C C

CICCCCCCCC INTTIALIZATION BLOCK BLOCK 0400

C C

WRI'I'E(*,")’ENTER TIE NAME OF TIE DATA FILE’

READ(*,’(A40)’) DFILE

OPEN(8.FILE8DFILE)

WRTT'E("',"')’ENTER TIE NAME OF TIE OUTPUT FILE’

C

READ(*,’(A40)’) OUTFIL

OPEN(7.FILE80UTFIL)

C C

Cilia-888888888888888888t88#8888888888888888888888888888*8tittttttttc

C C

CPCCCCCCCC PROCESS BLOCK BLOCK 0500

C C

C -- START INPUT

C BLOCK 1

WRITE(7,*)’BEGIN LISTING INPUT QUANTITIES’

200 READ(8,") N.NP.NT.ITMAX.MODL,IPRINT

WRITE(7,*)

WRITE(7.*)’BLOCK 1’

WRITE(7,")’N 8 NO. DATA POINTS, NP 8 NO. PARAMETERS’

WRITE(7,*)’NT 8 NO. OF INDEPENDENT VARIABLES’

WRITE(7,")’ITMAX 8 MAXIMUM NO. OF I'I'ERATIONS’

WRITE(7.*)’MODEL 8 MODEL NUMBER, IF SEVERAL MODELS IN SUBROUTINES:

] MODEL AND SENS’

WRITE(7,")’IPRINT 8 1 FOR USUAL PRINTOUTS. 0 FOR LESS’

WRTTE(7,*)

IF(NLE.0) TIEN

STOP

END IF

*,’(/,9X,”N",8X,”NP”,8X,"N'T”.5X,”ITMAX”,5X,

+”MODEL”,4X,”IPRINT”)’)

WRITE(*,’(7110)’) N,NP,NT.ITMAX,MODL,IPRINT

WRITE(7,’(/,9X,”N",8X,”NP”.8X."NT”,5X,”ITMAX”,5X,

+”MODEL”,4X,”IPRINT")’)

WRITE(7,’(7I]O)’) N.NP.NT.TTMAX,MODL.IPRINT

IOPT80

C -- IF IOPT80 TIEN ON TIE 2ND AND SUCCEEDING STACKED CASES, TIE DATA
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IS

C .. NOT REPRINTED.

C -- E IPRINT81, EXTRA PRINT OUT OF ETA, RESIDUALS B(]),... ARE GIVEN.

C BLOCK 2

WRITE(7,"')

WRITE(7,"')’BLOCK 2’

WRITE(7,")’B(1).B(2),...B(NP) ARE INITIAL PARAMETER ESTIMATES’

WRIT'E(7,")

READ(8,*)(B(I).I8],NP)

WW7.'(10X."B(".I1.") = ”.FlG.5)') (1.3(DJ=1.NP)

DO 150 J182.5

BSUI) = 0

150 CONTINUE

C

IF(IOPT1.5.0) THEN

C BLOCK 3

WRTTEUJ')

WRITE(7,*)’BLOCK 3'

WRTTE(7,“)’I = DATA POINT INDEX, Y0) = MEASURED VALUE’

WRITE(7,*)’SIGMA(I) = STANDARD DEVIATION OF YO)’

WRITE(7,*)”T’(J,1) 8 FIRST INDEPENDENT VARIABLE’

WRITE(7.")

WRITE(7,’(/,9X."J",6X,"Y(.I)”,3X."SIGMAU)",6X,"T(.I,1)"

+.6X."T(J.2)")')

D0 10 IZ=1.N

READ(8,")J,Y(J),SIGZ(J), (1.1mm=LNT)

WIVIOJFIOJY) J.Y(J).SIG2(J).(T(J.KT).KT=1.NT)

8162(1) 8 SIGZ(J)*SIGZ(I)

10 CONTINUE

END IF

C

313 D0 2 IP81”

DO 2 KP=1.NP

P5008?) ‘-" 0

B(KPJP) = 0

CONTINUE

W7.'(/.SX."P(1.KP)".9X."P(2.KP)".9X."P(3.KP)”.9X.

+"P(4.KP)".9X."P(5.KP)")')

DO 6 IP8LNP

READ(8.")(PS(1P.KP).KP=1.NP)

WRITE(7.’(5D16.5)’) (PS(IP.KP).KP=],NP)

CONTINUE

BLOCK 4

DO 88 IP81.NP

88 PS(IP,IP)8B(IP)“B(IP)*].0D+6

READ(8.*)EXTRA

C EXTRA80 FOR NO EXTRA INPUT WHICH COULD BE FOR CONSTANTS

0
€
"
0
0
0
0
0
0
N
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C IN MODELS

C 81 FOR ONE INPUT, NAMELY: EX'TRA(]), ETC.

WRITE(7,")

WRIT'E(7,*)’BLOCK 4’

WRIT'E(7."‘)’EXTRA 8 NO. OF EXT'RA(I) PARAMETERS. 0 IF NONE’

WRTTE(7,"')

WRITE(7,’(]0X,”EXTRA 8 ”,IlO)’)EXTRA

ETEXTRA .LT. 1) GOTO 21

WRITE(7,"')

WRITE(7.*)’BLOCK 5’

WRITE(7,*)’EXTRA(]),... ARE EXTRA CONSTANTS USED AS DESIRED’

WRITE(7,*)

READ(8,")(EXTRA(E),IE8].IEXTRA)

W7.’("EXTRA(".IZ.") = ”.Fl6.5)’) (EEXIRAW).E=1

1.EXTRA)

21 CONTINUE

C

Cu-ADDBLANKCARDAFTERLASTINPUTCARD

C mEND INPUT

WRITE(7,*)’END INPUT QUANTIT'ES - - BEGIN OUTPUT CALCULATIONS’

WRITE(7.")

WRITE(7,*)’SY 8 SUM OF SQUARES FOR PRESENT PARAMETER VALUES’

WRITE(7,*)’SYP 8 SUM OF SQUARES FOR GAUSS PARAMETER VALUES.

SHOULD

] BE SMALLER THAN SY’

WRITE(7,"')’ SYP DECREASES TOWARD A POSITIVE CONSTANT’

WRIT'E(7,*)’G 8 MEASURE OF TIE SLOPE. SHOULD BECOME SMALLER AS

IIT'ERATIONS PROCEED’

WRITE(7,")’ G SHOULD APPROACH ZERO AT CONVERGENCE’

WRITE(7.")’H 8 FRACTION OF TIE GAUSS STEP. AS GIVEN BY TIE

IBOX-KANEMASU METHOD’

WRITE(7,*)

WRITE(7."')

DO 18 1L8],NP

BSGLFBGL)

CG(IL) 8 0

18 CONTINUE

DO 19 IP81.NP

XTY(IP)8O.0D+0

DO 19 KP8].NP

HKPJP) = PS(KP.IP)

X'TX(IP,KP)=0.0D+0

l9 CONTINUE

I 8 0

MAX 8 0

C

99 MAX8MAX+1

C -- START BASIC LOOP GIVES B(I) AND SY

C



20

29

30

50

41
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SY 8 0.0D+0

DO 1m 1381.N

I 8 13

CALL SENS

CALL MODEL

RISD 8 Y(I)-ETA

SY 8 SY + RISD‘RISD/SIGZG)

SUM 8 0.0D+0

DO 20 K81.NP

XTY(K)8XTY(K)+Z(K)*RISD/SIG2(I)

DO 20 L81.NP

SUM = SUM + Z(L)"P(K.L)"'Z(K)

XTX(K.L)= XTX(K.L) + Z(L)"Z(K)/SIGZ(D

CONTINUE

DELTA 8 8102(1) + SUM

DO 29 JJ8I.NP

A01) 8 0.0D+O

CONTINUE

DO 30 JA81,NP

DO 30 KA8],NP

A(JA) 8 A(JA) + Z(KA)"'P(JA,KA)

CONTINUE

CS 8 0.0D+0

DO 40 IC81.NP

CS 8 C8 + Z(JC)*(B(JC)—BS(JC))

(1301C) 8 CG(JC) + Z(IC)*RISD/SIGZ(I)

CONTINUE

C 8 Y(I) - CS - ETA

DO 50 IB81.NP

B(IB) 8 B(IB) + (ACIB)*C)/DELTA

CONTINUE

DO 41 ISV81,NP

DO 41 ISV81,NP

PSV(JSV.ISV) 8 P(JSV,ISV)

CONTINUE

DO 52 1V8].NP

DO 52 IU81V.NP

SUMP 8 0.0D+0

DO 51 KP81,NP

DO 51 IP81,NP

E(KP-IV.EQ.0.0R.JP-IU.EQ.0) GOTO 51

PSQ] 8 PSV(KPJP)*PSV(IU,IV)

PSQ2 8 PSV(IU,KP)"PSV(IV,JP)

PSQ 8 PSQ] - PSQ2

IF(DABS(PSQI)+DABS(PSQ2).LT.1.D-15) TIEN

RP 8 PSQ "' 1.D15

ELSE

RP = PSQ / (DABS(PSQ1)+DABS(PSQ2))

END E



RP 8 ABS(RP)

RPP 8 RP - 1.0D-12

IF(RPPLE.0.0D+O) TIEN

PSQ 8 0.0D+0

END E

SUMP 8 SUMP + Z(JP)"Z(KP)“PSQ

51 CONTINUE

P(IU,IV) 8 (PSV(IU.IV)“SIG2(I)+SUMP)/DELTA

52 CONTINUE

DO 53 IV82.NP

NM 8 IV - 1

DO 53 IU 8 MW

P(IUJV)= P(IVJU)

53 CONTINUE

IF(IPRINT.GT.0) TIEN

E(I.EQ.I) THEN

WRITE(7,*)

WRITE(7,*)’SEQUENTIAL ESTIMATES OF TIE PARAMETERS GIVEN BELOW’

WRITE(7,’(/I,3X,”I",6X,”ET’A".5X.”RESIDUALS”,7X.

1"B(1)”.8X."B(2)".8X."B(3)”.8X.”B(4)”)’)

END E

WRITE(7,’(14,6E12.5)’)I.ETA.RISD.(B(JC)JC81.NP)

END E

100 CONTINUE

C -- END BASIC LOOP. GIVES B(I) AND SY

C -- START BOX-KANEMASU MODIFICATION

C

C START BOX-KANEMASU MODIFICATION

E(MAX-1)104,104,103

103 SS88Y/2.0D+0

E(SS~SYP)104,104,105

105 D0 210 1BS8].NP

B(IBS)8 BSV(IBS)

210 CONTINUE

WRITE(IOUT,212)

212 FORMAT(7X.’USE BSV(IBS)’)

GOTO 211

104 CONTINUE

DO 102 E&I,NP

BSS(IBS)8 BS(IBS)

102 CONTINUE

ALPHA8 2.0D+0

AA8 ].ID+0

110 ALPHA8 ALPHA/2.0M

DO 116 1BS8].NP

BS(IBS)8 BSS(IBS) + ALPHA“( B(IBS)-BSS(IBS) )

BSV(IBS)8 BS(IBS)

116 CONTINUE

INDEX80



V

G8 0.0D+0

DO 115 RIM

DELB8 BS(IP)—BSS(TP)

G8 G + DELB’CGCTP)

RATIO8 DELB/( BSS(IP)+EPS )

RATIO= ABS(RATIO)

E(RATIO-EPSS)1 13,113,114

113 INDEX8 INDEX-H

WRITE(IOUT.314)

314 FORMAT(7X.’MAX’,8X,’NP’.5X,’INDEX’.8X.’IP’)

WRITE(7.’(7I]0)’) MAX.NP.INDEX,IP

114 CONTINUE

C WRITE(7,122) I.Y(I).ETA.RISD.Z(IP),XYP.DELB,SIG2(I)

115 CONTINUE

SYP-8 0.0D-I-O

DO 117 1381,N

1813

CALL MODEL

RISD8 Y(I)-ETA

SYP8 SYP + RISD*RISD/SIG2(I)

117 CONTINUE

E(NP-1NDEX)106.106,107

106 H81.0D+O

GOTO 132

107 CONTINUE

SYN8 SYP*0.999D+0

E(SYN-SY)]12,112.111

111 E(ALPHA-0.01D+0)109,109,110

109 WRITE(7,108) ALPHA,SYP,SY

108 FORMAT(BX,’ALPHA TOO SMALLAU’HA8’.F12.6.2X,’SYE’EISEZX.

1’SY’,E]5.6)

WRITE(7,1001)

1(X)1 FORMAT(SX.’fl1)’,10X,’Z(2)’,10X,’Z(3)’,10X,’Z(4)’,10X,’Z(5)’)

1W FORMAT(6E13.4)

DO 1W3 181,N

CALL SENS

WRITE(7,1(X12) (Z(IBB),IBB81,NP)

1W3 CONTINUE

GOTO 1000

112 CONTINUE

SKSUM8 SY - ALPHA*G*( 2.0D+0-l.0D+0/AA )

E(SYP-SKSUM)131,131,130

130 H8 ALPHA “ ALPHA‘GK SYP-SY+2.0D+0*ALPHA“G )

GOTO 132

131 CONTINUE

H8 ALPHA*AA

132 CONTINUE

DO 118 IBN8 LN?

B(IBN)g BSS(IBN) + H " ( 30350-333031“) )

 

 



98

118 CONTINUE

211 CONTINUE

WRITE(IOUTJ21)

WRITE(*,121)

121 FORMAT(SX,’MAX’,10X,’I‘I’,13X.’G’,12X.

I’SY’,11X.’SYP’)

WRITE(7,122) MAXJ'I,G,SY,SYP

WRTT'E(*,122) MAXJ‘I.G.SY.SYP

122 FORMAT(I8,IF13.6,4E14.6)

WRITE(7.’(10X,”B(”,11,”) = ”.F16.6)') (13(0J=1.NP)

W'.'(10x."3(".11.") '3 H.1316.6)’) 03(0J31.NP)

C END BOX-KANEMASU MODIFICATION

WRITE(7,’(/.5X,”P(1,KP)”,9X,”P(2,KP)",9X,”P(3,KP)",9X,

1' 'P(4.KP)’ ’,9X,’ 'P(5.KP)' 5’)

DO 206 IP81”

WRITE(7207) (P(IPJCP),KP=I,NP)

206 CONTINUE

207 FORMAT(5D15.7)

WRITE(7,135)

135 FORMAT(SX,’CORRELATION MATRIX’)

DO 136 IR=1.NP

DO 136 IR2=1.IR

AR: P(IRJR) " P(IR2JR2)

RURJRZF P(IRJRZVSQRTIAR)

136 CONTINUE

DO 137 IR=1.NP

WRITE(7.’(5E15.7)’) (R(IR,III),III=1,IR)

137 CONTINUE

DO 126 IPS=1.NP

PSUPSJPSF (1-054'7) "' WM)

126 CONTINUE

WRITE(7,*)’XTX(I.K).K=1.NP’

DO 220 K=1.NP

220 WRTTE(7.’(5E15.7)’XXTX(K.III).III=I,NP)

' WRITE(7,*)’XTY(I).I=1,NP’

WRITE(7,’(5E15.7)’XXTY(I),I=1 ,NP)

127 FORMAT(3X,’IPS='.I4.3X.’PS(IPS.IPS)=’,D15.8)

DO 119 IP81”

XTY(IP)=0.0D+0

DO 119 KP81.NP

“11’.ka PSUPKP)

XTX(IP.KP)=0.0D+O

119 CONTINUE

DO 120 E81”

BS(IP)= B(IP)

CG(IP)8 0.0D+0

120 CONTINUE

WRITE(7,314)

WRITE(7,’(7110,4F10.4)’) MAX,NP.INDEX,IP



E(NP-INDEX)101,101,123

123 CONTINUE

M81'TMAX

IF(MAX-M)99,99,101

101 CONTINUE

IF(IPRINT)133,133,134

133 IPRINT8IPRINT+1

GOTO 99

134 CONTINUE

C

IIXX) CONTINUE

CLOSE(IIN)

CLOSEOOUT)

C

Ctttttttttttttttttttttt##8##titttttttttttfittitttttttttttttttttttttc

CECCCCCCCC ERROR MESSAGES

E
caucus-unucountenance-888888teeeaueuuuueue8888888888C

CFCCCCCCCC FORMAT STATEMENTS

S
CtttttttIIttitttttttttttfittttitttlfitttitttit*tttttitttttittttitttttc

C

0

BLOCKOWO

0
0
0

BLOCK 9000

0
0
0

STOP

END

SUBROUTINE MODEL

C THIS SUBROUTINE IS FOR CALCULATING ETA, TIE MODEL VALUE

IMPLICIT REAL‘S (A-H,O-Z)

DINENSION T(3500.5).Y(35(X)),SIG2(35(X1),B(5)Z(5).

+A(5).BS(5),VINV(5.5).EXTRA(20)

DIMENSION P(5.5).PS(5,5)

C 1NTIIISPROGRAM,TIETA8ETA ANDETA8BETA

DOUBLE PRECISION KSL. Q. L. PI, ALPHSL

DOUBLE PRECISION ERFC, ZBRENT

DOUBLE PRECISION ALPHSR. PISR, X. XX. X2, X2ALPH.

+ XALPH, XXALPH, BETA. BETAS. BETA2. TIETA. ETA

COMMON SIG2.T.Z.BS,I,ETA.PS.P.B.A.Y.MODL.VINV.NP

+.EXTRA

COMMON/MOD/AAJ‘L

COMMON/PROP/KSL. Q, ALPHSL. 1... PI

C

EXTERNAL ERFC. ZBRENT

C

KSL 8 1.000



0
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ALPHSL 8 1.0D0

L 8 BS(])

Q 8 -1.0D0

BETA 8 T(I,1)

PI 8 DACOS(-1.DO)

ALPHSR 8 ALPHSL“0.5DO

PISR 8 (PI“0.5D0)/2.D0

X 18 THE CALCULATED VALUE FOR LAMBDA

ZBRENTisamotfirrdmgsubmufineusedmsolvemenanscardentalequafionforthe

freezing fiont location. See Numerical Recipes by Press et al., Cambridge University

Press. New York. New York. 1986.

X 8 ZBRENT(1.0D-4.2.D0,0.001D0)

XX 8 X*X

X2 8 2.DO*X

X2ALPH 8 X2‘ALPI-ISR

XALPH 8 X‘ALPHSR

XXALPH 8 XX*ALPHSL

CALCULATION OF DIMENSIONLESS TEMPERATURES

BETAS 8 BETA‘BETA

BETA2 8 2.D0*BETA

CALCULATION OF FROZEN PORTION TEMPERATURE

IF(BETA .LT. X) THEN

THETA 8 1-Q*(EXP(-BETAS)/BETA2 - EXP(-XX)/X2

-PTSR‘(ERFC(BETA) - ERFC(X)»

ELSE

CALCULATION OF UNFROZEN PORTION TEMPERATURE

IF(BETA .GT. X) TI-IEN

TITETA 8 (EXP(-ALPHSL*BETAS)/(BETA2*ALPHSR)

- PlSR‘ERFC(ALPHSR*BETA))/(EXP(-XXALPH)/X2ALPH

-PISR*ERFC(XALPH))

ELSE

TEMPERATURE AT THE INTERFACE, DETERMINED FROM B.C.

Tl-IETA 8 l.D0

ENDIF

ENDIF

ETA 8 TIIETA

RETURN

END

CALCULATION OF LAMBDA FROM FUNCTION ZBRENT

DOUBLE PRECISION FUNCTION ZBRENT(X1, X2, TOL)

PARAMETER(1TMAX81(X), EPS8 3.0E-8)

DOUBLE PRECISION A, B, C. D. E, FA. FB, FC

DOUBLE PRECISION TOL], TOL, X1, X2, XM

DOUBLE PRECISION P, Q, R. S, FUNCL

EXTERNAL FUNCL



+
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8X]

B8X2

FA8FUNCL(A)

FB8FUNCL(B)

IF(FB*FA .GT. 0.0D0) PAUSE ’ROOT MUST BE BRACKETED FOR

ZBRENT.’

FC8FB

DO 15 ITER81,1'TMAX

E(FB‘FC .GT. 0.0D0) TIEN

GA

FCkFA

D8B-A

E8D

ENDE

E(ABS(FC) .LT. ABS(FB)) TIEN

A8B

B8C

C8A

FA8FB

FB8FC

FC8FA

ENDE

TOL182.0D0"EPS*ABS(B)+0.5D0*TOL

XM80.5D0"(C-B)

E(ABS(XM) .LE. TOL] .OR. FB .EQ. 0.0D0)TIEN

ZBRENT8B

RETURN

ENDIF

E(ABS(E) .GE. TOL] .AND. ABS(FA) .GT. ABS(FB)) TIEN

S8FB/FA

IF(A .EQ. C)TIEN

P82.OD0"XM"'S

Q81.0D0 - S

ELSE

Q=FAIFC

R8FB/FC

P88*(2.0D0"XM*Q*(Q-R) - (B-A)*(R-1.0DO))

Q8(Q-1.Om)*(R-1.0D0)*(S-1.0D0)

ENDE

IF(P .GT. 0) Q 8 —Q

P8ABS(P)

E(2.0D0*P .LT. MIN(3.0D0*XM*Q-ABS(TOL1"Q),ABS(E*Q)))TIEN

ED

D=PIQ

ELSE

D8XM
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E8D

ENDIF

ELSE

D8XM

E8D

ENDIF

A8B

FA8FB

E(ABS(D) .GT. TOL1)TIEN

B8B+D

ELSE

8B+SIGN(TOL1,XM)

ENDE

FB8FUNCL(B)

(DNTINUE

PAUSE ’ZBRENT EXCEEDING MAXIMUM ITERATIONS.’

ZBRENT8B

RETURN

END

DOUBLE PRECISION FUNCTION ERFC(X)

DOUBLE PRECISION A], A2, A3, A4, A5, P. T. X

A180.254829592D0

A28-O.284496736D0

A381.421413741D0

A48-1.453152027D0

A58l.061405429D0

P80.3275911D0

T81.0D0/(1 .0D0+P*X)

ERFC8(A1*T+A2"'T“2.0D0+A3"T"*3.0D0+A4*T*"'4.0D0+A5*T“5.0D0)

*EXP(-X**2.0D0)

RETURN

END

DOUBLE PRECISION FUNCTION FUNCL(X)

DOUBLE PRECISION KSL. Q. ALPHSL, L. X, PI, ERFC

DOUBLE PRECISION EXPX. EXPXASL. XX2. RATIO

COMMON/PROP/KSL. Q. ALPIISL. L. PI

EXTERNAL ERFC

EXPX8EXP(-X"X)

EXPXASL8EXP(-X"X"ALPHSL)

XX28X*X*2.0D0

RATIO8EXPXASL/(XX2‘ALPHSL“0.5D0)
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FUNCL-"KSL‘Q‘EXPX/XX2 - RATIO/(RATIO—(P1”0.SDOIZ)

l"ERFC(ALPHSL"‘"'0.5D0"'X)) -L"X

RETURN

END

SUBROUTINE SENS

C THIS SUBROUTINE IS FOR CALCULATING TIE SENSITIVITY COEFFICENTS

C

0
0
0
0
0
0

IMPLICIT REAL‘B (A-H.O-Z)

DIMENSION T(3500,5),Y(35(1)),SIGZ(35(X)).B(5).

+Z(5).A(5).BS(5).V1NV(5.5).EXTRA(20)

DIMENSION P(5.5).PS(5.5)

DOUBLE PRECISION KSL, Q, ALPHSL, L. PI

DOUBLE PRECISION ERFC, ZBRENT

DOUBLE PRECISION ALPHSR. PISR, X, XX, X2, X2ALPH.

XALPH, XXALPH, BETA, BETAS, BETA2, BOTTOM, TOP.

TOP2, DER], DER2A, DER2, DER3. DER4. DER5.

DER6, DER7, DER8. SENSE]

COMMON SIGZ.T.Z.BSJETAPSP.B.A.Y.MODL,VINV.NP

+.EXTRA

COMMON/MOD/AA.TL

COMMON/PROP/KSL. Q. ALPHSL. L. PI

EXTERNAL ERFC, ZBRENT

KSL 8 1.0D0

ALPHSL 8 1.0D0

L 8 B80)

Q 8 -].0D0

P1 8 DACOS(-I.D0)

BETA 8 T(I,1)

VARIABLES DECLARED

ALPHSR 8 ALPHSL”O.5D0

PISR 8 (PI“0.5D0)/2.D0.

X 18 THE CALCULATED VALUE FOR LAMBDA

ZBRENTisamotfindingsubroufimusedmsolvetheuanscendemalequafionforthe

freezing front location. See Numerical Recipes by Press et al., Cambridge University

Press, New York. New York. 1986.

X 8 ZBRENT(1.0D-4,2.D0,0.001D0)

XX 8 X‘X

X2 8 2.D0*X

X2ALPH 8 X2*ALPHSR

XALPH 8 X‘ALPHSR

XXALPH 8 XX*ALPHSL

BETAS 8 BETA*BETA

BETA2 8 2.0DO*BETA

BOTTOM 8 (EXP(-XXALPH))/X2ALPH - PISR*ERFC(XALPH)

TOP 8 (EXP(-XXALPH))/(2.0D0*XX"ALPHSR)

TOP2 8 (EXP(-ALPHSL*BETAS)I(BETA2*ALPHSR)) - PISR
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‘ERFC(BETA’ALPHSR)

SENSE] 8 TIE SENSITIVITY COEFFICENT FOR TIE TEMPERATURE

WITH RESPECT TO L

SENSE2 8 TIE SENSITIVITY COEFFICENT FOR TIE TEMPERATURE

WITH RESPECT TO Q, NOT USED

SENSE3 8 TIE SENSITIVITY COEFFICENT FOR TIE TEMPERATURE

WITII RESPECT TO KSL

SENSE4 8 TIE SENSITIVITY COEFFICENT FOR TIE TEMPERATURE

WITH RESPECT TO ALPHASL

CALCULATION OF TIE SENSITIVITY COEFFICENTS

DER] 8 Q*(-EXP(-XX)/(2.0D0“XX))

DERZA = KSL*Q*((-XX‘EXP(-XX) - EXP(-XX))/(X*X*X)) -

(((-XX*EXP(-XXALPH) - EXP(-XXALPH))/(X*X*X*

ALPHSR))*BOTTOM - TOP‘(((-2.0D0*XX*ALPHSL**

(3.0D0/2.0D0)*EXP(-XXALPH) - ALPHSR'EXP

(-XXALPH))/(2.0DO"XX*ALPHSL)) + ALPHSR‘EXP

(-XXALPH))/(BOTTOM*BOTTOM)) - L

DER2 8 -DER2A“""(-l.0D0)

DER3 8 -

DER4 8 KSL“(EXP(-XX)I(2.0D0")O())

DEF-5 = Q*(EXP(-XX)/(2.0D0*XX))

DER6 8 -(((-2.0DO*XX*ALPHSR*EXP(-XXALPH) - ALPHSL

""(—0.5D0)*EXP(-XXALPH))/(4.0D0"XX*ALPHSL))

‘BOTTOM - TOP“((-2.0D0*XX*ALPHSR*

EXP(-XXA.LPH) - ALPHSL**(-0.5D0)*EXP

(-XXALPH))/(4.0D0"X*ALPHSL) + 0.5D0*ALPHSL

“(-0.5D0)*X*EXP(-XXALPH)))/(BOTTOM*BOITOM)

DER7 8 -TOP2*((-2.0D0“XX*(ALPHSL"'*(3.0D0/2.0D0))*EXP

(-XXALPH)) - (ALPHSR‘EXP(-XXALPH))/(2.0D0*XX*ALPHSL)

+ ALPHSR*EXP(-XXALPH))/(BOTTOM*BOTTOM)

DER8 8-(((-2.0D0*BETAS*ALPHSR‘EXP(-ALPHSL*BETAS) -

((ALPHSL“*(—O.5D0))"EXP(-ALPHSL‘BETAS)))/(4.0D0

*BETA*ALPHSL) + (0.5D0‘(ALPHSL“(—0.5D0))"‘BETA*

EXP(-ALPHSL"BETAS)))"BOTTOM - TOP2“‘(((-2.0D0"XX"I

ALPHSR*EXP(-XXALPH)) - ((ALPHSL“(-0.5D0))*EXP

(-XXALPH)))/(4.0D0*X*ALPHSL) + (0.5D0*"'ALPHSL"

(-0.SDO))*X*EXP(-XXALPH)))/(BOTTOM‘BOTTOM)

CALCULATION OF FROZEN PORTION SENSTTIVITY COEFFICENTS

IF(BETA .LT. X) TIEN

SENSE] 8 DER1*DER2*DER3

SENSE2 8 -(EXP(-BETAS)IBETA2 - EXP(-XX)/X2 - PISR

+ *(ERPQBETA) - ERFC(X)» - Q‘(DER1*

+ oranroeru)

SENSE] 8 DER1*DER2"DER5

SENSE2 8 DER]"DER2"DER6

ELSE
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CALCULATION OF UNFROZEN PORTION SENSTTIVITY

COEFFICENT‘S

IF(BETA .GT. X) TIEN

SENSE] 8 DER7‘DER2‘DERB

SENSE2 8 DER7‘DER2‘DER4

SENSE] 8 DER7‘DER2‘DER5

SENSE2 8 DER8 + (DER7‘DER2‘DER6)

ELSE

SENSITIVTTY COEFFICIENTS AT TIE INTERFACE

SENSE] 8 0.000

SENSE2 8 0.0D0

SENSE3 8 0.0D0

SENSE4 8 0.000

ENDIF

ENDIF

2(1) 8 SENSE]

2(2) 8 SENSE2

RETURN

END

SUBROUTINES MODEL AND SENSE MODIFIED TO

INCLUDE PRIOR INFORMATION

To include prior information in the subroutine MODEL: when the index equals 1, the

calculated value of theta is set equal to the estimated value of the parameter. The measured value

is set equal to the actual value of the parameter, obtained from prior information

To include prior information in the subroutine SENSE: when the index equals 1, the

sensitivity coefficient is set equal to 1.0.

SUBROUTINE MODEL

C THIS SUBROUTINE IS FOR CALCULATING ETA. TIE MODEL VALUE

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION T(35m.5).Y(35W).SIGZ(35(X)).B(5),Z(5),

+A(5).BS(5).VINV(5.5).EXTRA(20)

DINENSION P(5.5M’5(5.5)

C WRITTEN BY JAMES V. BECK

C REVISED BY LESLE A. SCOTT

DOUBLE PRECISION KSL. Q. L. PI. ALPHSL
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DOUBLE PRECISION ERFC. ZBRENT

DOUBLE PRECISION ALPHSR. PISR. X. XX. X2. X2ALPH.

+ XALPH. XXALPH. BETA. BETAS. BETA2. TIETA. ETA

COMMON 8162,1223SJETAPSPBAXMODLNINVNP

+.EX'I'RA

COMMON/MOD/AAJ'L

COMMON/PROP/KSL, Q, ALPHSL, L, PI

EXTERNAL ERFC. ZBRENT

KSL 8 1.0D0

ALPHSL 8 1.000

L 8 BS(])

Q 8 -].0D0

BETA 8 T(I,])

PI 8 DACOS(-].DO)

ALPHSR 8 ALPHSL“0.5D0

PISR 8 (PI“O.5D0)/2.D0

X IS THE CALCULATED VALUE FOR LAMBDA

ZBRENT is a root finding subroutine used to solve the transcendental equation for the

freezing front location. See Numerical Recipes by Press et al., Cambridge University

Press. New York, New York. 1986.

X = ZBRENT(1.0D-4,2.D0,0.00IDO)

XX 8 X*X

X2 = 2.DO*X

X2ALPI-I = X2*ALPIISR

XALPII = X*ALPIISR

XXALPH 8 XX*ALPIISL

CALCULATION OF DIMENSIONLESS TEMPERATURES

BETAS a BETA'BETA

BETA2 = 2.D0*BE‘I‘A

IF(I .EQ. 1)TIIEN

THETA 8 88(1)

ELSE

CALCULATION OF FROZEN PORTION TEMPERATURE

IF(BETA .LT. X) THEN

TI-IETA = l-Q*(EXP(-BETAS)/BETA2 - EXP(-XX)/X2

+ -PISR'(ERPC(BETA) - ERFC(X)»

ELSE

CALCULATION OF UNFROEN PORTION TEMPERATURE

IF(BETA .GT. X) THEN

THETA 8 (EXP(-ALPI-lSL'BETAS)/(BETA2'ALPHSR)

+ - PISR'ERFC(ALPHSR‘BETA))I(EXP(-XXALPH)/X2ALPH

+ -PISR*ERFC(XALPH))

ELSE

TEMPERATURE AT THE INTERFACE, DETERMINED FROM B.C.
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TIETA 8 ].DO

ENDIF

ENDIF

ENDIF

ETA 8 TIETA

RETURN

END

CALCULATION OF LAMBDA FROM FUNCTION ZBRENT

DOUBLE PRECISION FUNCTION ZBRENT(X], X2, TOL)

PARAME‘TEROTMAX8HX), EPS8 3.0E-8)

DOUBLE PRECISION A, B. C. D. E. FA. FB, FC

DOUBLE PRECISION TOL], TOL, X1, X2, XM

DOUBLE PRECISION P, Q, R, S. FUNCL

EXTERNAL FUNCL

A8X]

B8X2

FA8FUNCL(A)

FB8FUNCL(B)

IF(FB’FA .GT. 0.0D0) PAUSE 'ROOT' MUST BE BRACKETED FOR

ZBRENT.’

FC8FB

DO 15 IT'ER81JTMAX

IF(FB‘FC .GT. 0.0D0) TIEN

@A

FC8FA

D8B-A

E8D

ENDIF

E(ABS(FC) .LT. ABS(FB)) TIEN

A8B

B8C

C8A

FA8FB

FB8FC

FC8FA

ENDIF

TOLI82.ODO*EPS*ABS(B)+O.SD0‘TOL

XM=0.5D0*(C-B)

E(ABS(XM) .LE. TOL] .OR. FB .EQ. 0.0D0)TIEN

ZBRENT8B

RETURN

ENDIF

E(ABS(E) .GE. TOL] .AND. ABS(FA) .GT. ABS(FB)) TIEN

S8FB/FA
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IF(A .EQ. C)TI-EN

P82.0D0"XM"S

Q8].ODO - S

ELSE

Q=FA/FC

R8FB/FC

P8$*(2.0D0*XM*Q*(Q-R) - (B-A)*(R-I.OD0))

Q8(Q-].ODO)*(R-1.OD0)*(S-].OD0)

ENDIF

IF(P .GT. 0) Q 8 -Q

kABS(P)

IF(2.0DO"P .LT. MIN(3.0DO“XM"Q-ABS(TOL]*Q),ABS(E*Q)))TIEN

E8D

D8P/Q

ELSE

D8XM

E8D

ENDIF

ELSE

D8XM

E8D

ENDIF

A8B

FA8FB

E(ABS(D) .GT. TOL])TIEN

B8B+D

ELSE

B8B+SIGNCTOL1,XM)

ENDIF

FB8FUNCL(B)

CONTINUE

PAUSE ’ZBRENT EXCEEDING MAXIMUM ITERATIONS.’

ZBRENT8B

RETURN

END

DOUBLE PRECISION FUNCTION ERFC(X)

DOUBLE PRECISION A], A2, A3. A4, A5, P. T, X

A]80.25482959ZDO

A28-0.284496736DO

A38].42]4]3741D0

Ah-l.453]52027D0

A581.06]405429D0

P8032759] lDO

T8].OD0/(].ODO+P*X)

ERFC8(A1‘T+A2"T**2.0D0+A3‘T“3.0D0+A4*T“4.0D0+A5‘T"*5.0D0)

*EXP(-X“2.0D0)
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RETURN

END

DOUBLE PRECISION FUNCTION FUNCL(X)

DOUBLE PRECISION KSL. Q. ALPHSL. L. X. PI. ERFC

DOUBLE PRECISION EXPX. EXPXASL. XX2. RATIO

COMMON/PROP/KSL. Q. ALPHSL. L. PI

EXIERNALERFC

EXPX8EXP(-X*X)

EXPXASLzEXP(-X*X*ALPHSL)

XX2=X*X*2.0DO

RATIO8EXPXASU(XX2*AU’HSL“0.SDO)

FUNCL-=KSL‘Q‘EXPX/XX2 - RATIO/(RATIO-(PI“O.5D0/2)

+ ‘ERFC(ALPHSL**O.SDO*X)) -L"'X

RETURN

END

SUBROUTINE SENS

TIIIS SUBROUTINE IS FOR CALCULATING TIE SENSITIVTTY COEFFICENTS

IMPLICIT REAL'S (A-H,O-Z)

DIMENSION T(35(X),5),Y(35M),SIGZ(35(X)).B(5).

+Z(5).A(5).BS(5).VINV(5.5),EXTRA(20)

DIMENSION P(5.5).PS(5,5)

DOUBLE PRECISION KSL. Q, ALPHSL. L. PI

DOUBLE PRECISION ERFC, ZBRENT

DOUBLE PRECISION ALPHSR. PISR, X. XX. X2, X2ALPH.

+ XALPH, XXALPH, BETA, BETAS, BETA2, BOTTOM, TOP.

+ TOP2, DER], DER2A, DER2, DER3. DER4, DER5.

+ DER6, DER7, DER8. SENSE]

COMMON $102,122.38.LB'I‘AJ’SJ’B.A.Y.MODL,VII\IV.I‘II>

+.EX'I'RA

COMMON/MOD/AAJ‘L

COMMON/PROP/KSL, Q, ALPHSL. L. PI

EXTERNAL ERFC. ZBRENT

KSL 8 1.0130

ALPHSL 8 1.000

L 8 330)

Q 8 -].ODO

PI 8 DACOS(-I.D0)

BETA 8 T(I,])

VARIABLES DECLARED

ALPHSR 8 ALPHSL“‘0.5w

PISR 8 (PI“0.SDO)/Z.DO
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X IS THE CALCULATED VALUE FOR LAMBDA

ZBRENTisamotfindingsubmufineusedmsolvemenanscendemmequafionforme

freezing from location. See Numerical Recipes by Press et al., Cambridge University

Press, New York. New York. 1986.

X 8 ZBRENT(1.0D4,2.D0.0.00IDO)

XX 8 X‘X

X2 8 2.D0*X

X2ALPH 8 X2‘ALPI-ISR

XALPII 8 X‘ALPHSR

XXALPH 8 XX‘ALPI-ISL

BETAS 8 BET‘A‘TBETA

BETA2 8 2.0DO*BET'A

BOTTOM 8 (EXP(-XXALPH))/X2ALPII - PlSR‘ERFC(XALPH)

TOP 8 (EXH-XXALPH))/(2.0D0*XX*ALPIISR)

TOP2 8 (EXP(-ALPIISL*BETAS)/(BETA2*ALPHSR)) - PISR

*ERFQBETA‘ALPHSR)

SENSE] 8 TIE SENSITIVITY COEFFICENT FOR TIE TEMPERATURE

WITH RESPECT TO L

SENSE2 8 TIE SENSTTIVITY COEFFICENT FOR TIE TEMPERATURE

WITH RESPECT TO Q, NOT USED

SENSE3 8 TIE SENSITIVITY COEFFICENT FOR TIE TEMPERATURE

WITII RESPECT TO KSL

SENSE4 8 TIE SENSITIVITY COEFFICENT FOR TIE TEMPERATURE

WITII RESPECT TO ALPHASL

CALCULATION OF TIE SENSITIVITY COEFFICENTS

DERI = Q‘(-EXP(-XX)/(2.0D0*XX))

DERZA = KSL‘Q*((-XX*BXP(-XX) - EXP(-XX))/(X*X"X)) -

(((-XX"EXP(-XXALPH) - EXP(-XXALPH))/(X*X*X*

ALPHSR))*BO’T'TOM - TOP*(((-2.0D0*XX*ALPHSL**

(3.0D0/2.0D0)*EXP(-XXALPH) - ALPHSR*EXP

(~XXALPH))/(2.0D0"XX*ALPHSL)) + ALPHSR‘EXP

(~XXALPH))/(BOT'TOM"BOTTOM)) - L

DER2 8 -DER2A“(-].OD0)

DER3 8 -X

DER4 8 KSL'EXP(-XX)/(2.0DO"XX))

DERS = Q‘(EXP(-XX)I(2.0D0*XX))

DER6 8 -(((-2.0D0*XX*ALPHSR"EXP(-XXALPH) - ALPHSL

I""(-0.5D0)"’EXP(-XXAI.J’I-I))/(4.0D0“'XX"ALPI‘ISL))

*BOT'TOM - TOP*((-2.0D0*XX*ALPHSR*

EXP(-XXALPH) - ALPHSL“(-0.5D0)"EXP

(-XXALPH))/(4.0DO*X*ALPHSL) + 0.5D0'ALPHSL

“(-0.5D0)"'X*EXP(-XXALPH)))/(BOT'TOM‘BOTTOM)

DER7 8 -T'OP2"((-2.0DO"XX*(ALPHSL“(3.0DO/Z.ODO))"EXP

(-XXALPH)) - (ALPHSR‘EXP(-XXALPH))/(2.0DO*XX*ALPHSL)

+ ALPHSR’EXPGXXALPIDWBOTTOM‘BOT'TOM)

DER8 8-(((-2.ODO"'BETAS*ALPHSR‘EXP(-ALPHSL*BE‘TAS) -

((ALPHSL“‘(-0.5D0))"‘EXP(-ALPHSL"BETAS)))/(4.0D0
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‘BE’TA‘ALPIISD + (0.5D0"'(ALPHSL""(-0.5D0))"'BE'TA"I

EXP(-ALPHSL‘BETAS)))*BOTTOM - TOP2‘(((-2.0D0‘XX“

ALPHSR‘EXP(-XXALPII)) - ((ALPHSL“(-0.5D0))"EXP

(-XXALPH)))I(4.0D0*X*ALPHSL) + (0.5D0"“"ALPHSL""‘l

(-O.5D0))"X*EXP(-XXALPII)))/(BO'I'TOM*BOTTOM)

IF (I .EQ. 1) TIEN

SENSE] 8 1.0D0

ELSE

CALCULATION OF FROZEN PORTION SENSITIVITY COEFFICENTS

IF(BETA .LT. X) TIEN

SENSE] 8 DERI‘DERZ‘DER3

SENSE2 8 -(EXP(-BETAS)/BETA2 - EXP(-XX)/X2 - PISR

+ ‘(ERFC(BETA) - ERFC(X)» - Q‘(DER1*

+ DER2‘DER4)

SENSE] 8 DER]*DER2"'DERS

SENSE2 8 DER]"'DER2"DER6

ELSE

CALCULATION OF UNT‘ROZEN PORTION SENSITIVITY

COEFFICENTS

IF(BETA .GT. X) TIEN

SENSE] 8 DER7‘DER2‘DER3

SENSE2 8 DER7‘DER2‘DER4

SENSE] 8 DER7‘DER2‘DER5

SENSE2 8 DER8 + (DER7‘DER2‘DER6)

ELSE

SENSTTIVITY COEFFICIENTS AT TIE INTERFACE

SENSE] 8 0.0D0

SENSE2 8 0.000

SENSE3 8 0.0D0

SENSE4 8 0.0D0

ENDIF

ENDIF

ENDIF

2(1) 8 SENSE]

2(2) 8 SENSE2

RETURN

END



APPENDIX D

THE FORTRAN PROGRAM MODFOR

This program. MODFOR. is used to provide an input file for use with NLINA.FOR either

with or without random measurement enors.

PROGRAM MODEL

THIS PROGRAM IS DESIGNED TO DETERMINE TIE DIMENSIONLESS

TEMPERATURESAS FUNCTIONS OF POSITION AND TIME. OF BOTII

TIE FROZEN AND UNFROZEN REGIONS SURROUNDING A POINT

SOURCE IEAT SINK. WITII RANDOM ERRORS

WRITTEN BY LESLE SCOTT

0
0
0
0
0
0
0

DOUBLE PRECISION KSL. Q, ALPHSL. L, PI

DOUBLE PRECISION ERFC, BRENT

DOUBLE PRECISION DETA, ALPHSR, PISR, X, XX. X2. X2ALPH.

+ XALPH, XXALPH. BETA. BETAS. BETA2. TIETA

DIMENSION DATA(2(XX)0)

COMMON/PROP/KSL. Q. ALPHSL. L. P]

COMMON/RAND/NT. STDDV

EXTERNAL ERFC. BRENT

OPEN(UNIT810, FILE8"TEMPS.DAT". STATUS8"UNKNOWN")

KSL 8 ].D0

Q 8 -1.0DO

ALPHSL 8 1.000

L 8 -](X).DO

PI 8 DACOS(-].D0)

NT 8 150

INCR 8 1

DETA 8 1.0D-2

ALPHSR 8 ALPHSL“0.5D0

112
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PISR 8 (PI“0.SDO)/2.DO

C X 18 THE CALCULATED VALUE FOR LAMBDA

C ZBRENTisamotfindingsubmuflneusedmsolvemeuanscaidemalequafionforme

C freezing from location. See Numerical Recipes by Press et al.. Cambridge University

C Press, New York. New York. 1986.

X = ZBRENT(1.0D-4.2.D0,0.001D0)

WRITE(IO,‘)"X=”,X

XX 8 X‘X

X2 8 2.D0*X

X2ALPH 8 XZ‘ALPHSR

XALPH 8 X‘ALPHSR

XXALPH 8 XX‘ALPHSL

C CALCULATTON OF DIMENSIONLESS TEMPERATURES

C BETAISTHESAMEASETA

CALL RANDOM (DATA)

DO I 8 2.NT.INCR

BETA 8 (I-l)‘DETA

BETAS 8 BETA'BETA

BETA2 8 2.DO*BETA

C CALCULATTON OF FROZEN PORTTON TEMPERATURE

IF(BETA .LT. X) THEN

THETA 8 l-Q*(EXP(-BETAS)IBETA2 - EXP(-XX)/X2

+ -PISR‘(ERFC(BETA) - ERFC(X)»

ELSE

C CALCULATTON OF UNPROZEN PORTION TEMPERATURE

IF(BETA .GT. X) THEN

THETA 8 (EXP(-ALPHSL*BETAS)/(BETA2"ALPHSR)

+ - PISR‘ERFC(ALPHSR*BETA))/(EXP(-XXALPH)/X2ALPH

+ -PISR‘ERFC(XALPH))

ELSE

C TEMPERATURE AT TIE INTERFACE, DETERMINED FROM B.C.

TIETA 8 ].D0

ENDIF

ENDIF

C ADDITION OF RANDOM ERRORS TO MEASUREMENT DATA

TIETA 8 TIETA + DATA(I-])

WRIIE(10,’(I10.7F10.5)')I-1,TIETA.STDDV.BETA

ENDDO

STOP

END

C CALCULATION OF LAMBDA FROM FUNCTION BRENT

DOUBLE PRECISION FUNCTION ZBRENT(X], X2, TOL)

C

PARAMETERGTMAX81m. EPS8 3.0E-8)

DOUBLE PRECISION A, B, C. D, E, FA, FB, FC

DOUBLE PRECISION TOL], TOL, X1, X2, XM

DOUBLE PRECISION P. Q, R, S, FUNCL

C

EXTERNAL FUNCL



+

114

A8X]

B8X2

FA8FUNCL(A)

FB8FUNCL(B)

IF(FB‘FA .GT. 0.0D0) PAUSE 'ROO'T MUST BE BRACKETED FOR

BRENT.' ,

FGFB

DO 15 ITER81.ITMAX

IF(FB‘FC .GT. 0.0130) TIEN

C8A

FC8FA

D=B-A

E8D

ENDIF

E(ABS(FC) .LT. ABS(FB)) TIEN

A8B

B8C

C8A

FA8FB

FB8FC

FC8FA

ENDIF

TOL]82.0D0‘EPS*ABS(B)+0.5D0*TOL

XM80.5DO*(C-B)

E(ABS(XM) .LE. TOL] .OR. FB .EQ. 0.0D0)TIEN

BRENT8B

RETURN

ENDIF

E(ABS(E) .GE. TOL] .AND. ABS(FA) .GT. ABS(FB)) THEN

S8FB/FA

IF(A .EQ. QTIIEN

P82.ODO"XM*S

Q81.0D0 - S

ELSE

Q=FAIFC

R8FB/FC

P8-S’(2.0D0*XM*Q"'(Q-R) - (B-A)*(R-].0D0))

Q8(Q-I.ODO)*(R-].0D0)"(S-].0D0)

ENDIF

IF(P .GT. 0) Q 8 -Q

P8ABS(P)

IF(2.0D0‘P .LT. MIN(3.0D0"XM*Q-ABS(TOL1*Q),ABS(E*Q)))TIEN

E8D

D8P/Q

ELSE

D8XM
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E8D

ENDIF

ELSE

D8XM

E8D

ENDIF

A8B

FA8FB

E(ABS(D) .GT. TOL])TIEN

B8B+D

ELSE

B8B+SIGNCTOL1.XM)

ENDIF

FB8FUNCL(B)

CONTINUE

PAUSE ’ZBRENT EXGEDING MAXIMUM IIERATIONS.’

ZBRENT8B

RETURN

END

DOUBLE PRECISION FUNCTION ERFC(X)

DOUBLE PRECISION A1, A2, A3, A4, A5. P, T, X

A180.254829592m

A28-0.284496736D0 '

A381.42141374]D0

A48-1.453]52027DO

A581.061405429D0

P80.32759] 1D0

T8] .0D0/( 1 .0D0+P"X)

ERFC8(A1*T+A2"T"*2.0D0-I-A3"T“3.0D0+A4‘T"4.0D0-t-A5*T“5.0D0)

*EXP(-X“2.0D0)

RETURN

END

DOUBLE PRECISION FUNCTION FUNCL(X)

DOUBLE PRECISION KSL. Q. ALPHSL. L. X, P], ERFC

DOUBLE PRECISION EXPX. EXPXASL. XX2. RATIO

COMMON/PROP/KSL. Q. ALPHSL. L. P]

EXTERNALERFC

EXPX8EXP(-X"X)

EXPXASL8EXP(-X*X*ALPHSL)

XX28X*X*2.ODO

RATIO8EXPXASIJ(XX2"ALPHSL“O.5DO)

FUNCL8KSL‘Q‘EXPX/XX2 - RATIO/(RATIO-(PI“0.5D0/2)
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+ *ERFC(ALPHSL“0.5D0*X)) -L"X

RETURN

END

SUBROUTTNE RANDOM (DATA)

COMMON/RAND/NT‘. STDDV

COMMON NDATNPIS

PARAMETER(PI=3.14159265.NPIS84.NBm81000.NDAT=NPTS+NBm)

PARAMETER(P183. 14159265.NBIN81000)

SEE Numerical Recipes by Press. Flannery, Teukolsky and Vetterling.

Cambridge Press. 1986 about page 192

Modified by J.V. Beck. Michigan State University,

E-mail address: 22427jvb@itm.cl.msu.edu

DIMENSION DATA(2(D00)

CHARACI'ER*80 FOUT‘

ms 8 NT

IDUM IS SEED. SET TO ANY NEGATIVE NUMBER TO INITIALIZE OR

REINITIALIZE.

IDUM8-5

WRITE('*,*)’ Enter the number of points ’

READ(*,")NPTS

WRITE(*,*)'ENTER THE SEED NUMBER (-)’

READ(*.*)IDUM

NDAT8NPTS+NBIN

WRITE(*,*)’ GIVE TIIE STANDARD DEVIATION’

READ(*,*)STDDV

WRITE(*,*)'Give the name of the output file'

READ(*.‘(A80)’)FOUT

OPEN(13. FILBFOUT‘)

RHON=0.0

RHOD=0.0

WRITE(*.*)' I RAND. NO.’

DO 500 IDUMI8],1

DATA(1)86ASDEV(IDUM)"STDDV

WRITE(*,1(I))].DATA(])

WRITE(13.1(X))].DATA(1)

DO I] I82.NP'TS

DATA(I)86ASDEV(IDUM)‘STDDV

RHON8RHON+DATA(I-])*DATA(I)

RHOD8RHOD+DATA(I)*DATA(I)

WRITE(*,]00)I,DATA(I)

WRITE(l 3,1(0)].DATA(I)

CONTINUE

CONTINUE

RHO8RHON/RHOD

CCC WRITE(‘,’(1X.A/)’) ’Descriptors of a gaussian distribution’

CALL MOMENT(DATA.I-LAVE.ADEV.SDEV.VAR.RHO)

SIDCONTINUE
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WRITE(*.’(IX.T29.A.T42.A/)’) ’ Values of mantities’.’ ’

WRHE(*,*)’ Values of quantities’

WRII'E(*,’(1X,T‘29.A.T42.A/)')’ Sample ’.’Expected’

WRITE(*.’(1X.A,T25.2P12.4)’) ’Mean :’.AVE.0.0

WRITE(*,‘(1X.A.T25.2F12.4)’) ’Average Deviation :'.ADEV.STDDV

WRITE(*.’(1X.A.T25.2F12.4)’) ’Standard Deviation :’.SDEV.STDDV

VARTII=STDDV*STDDV

WRITE(*.’(1X.A.T25.2F12.4)’) ’Variance :’,VAR.VARTH

WRITE(*.‘(1X.A.T25.F12.4)’)‘Est. Correlation Coef.'.RHO

WRI'I‘E(*,")’Average deviation comes from use of absolute values’

100 FORMAT(I]0.F10.6)

11

12

END

SUBROUTINE MOMENT(DATA.N.AVE.ADEV,SDEV,VAR,RIIO)

DIMENSION DATA(2(X)00)

IF(NLE.1)PAUSE 'N must be at least 2’

S80.

SD80.

SN80.

DO 11 J81.N

S8S+DATA(J)

IF(J .EQ. 1)GOTO ll

SN8SN+DATA(J)*DATA(J-l)

SD=SD+DATA(J)*DATA(J)

CONTINUE

AVE=S/N

ADEV80.

VAR80.

DO 12 J81.N

S8DATA(J)-AVE

ADEV=ADEV+ABS(S)

P8$*S

VAR8VAR+P

CONTINUE

ADEV=ADEVIN

VAR8VAR/(N-l)

SDEV8SQRT(VAR)

RIIO=SNISD

WRHE(*.*)‘SN SD RHO’.SN.SD.RHO

RETURN

END

FUNCTION RANl(IDUM)

DIMENSION R(97)

RETURNS UNIFORMLY DISTRIBUTED NUMBERS BETWEEN 0 AND 1

PARAMETER (M182592(X)JA187]4],IC]854773.RM183.8580247E-6)

PARAMETER (M28134456JA288121JQ828411.RM287.4373773E-6)

PARAMETER (M38243CXDJA384561JC3851349)

DATA IFF DI

IF (IDUM.LT.0.0R.IPF.EQ.0) TIEN

IFF81
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IX18MOD(IC]~IDUM.M])

IX]8MOD(IA1"IX1+IC1.M])

IX28MOD(IX].M2)

IX]8MOD(IA1*IX1+IC1.M])

IX38MOD(IX].M3)

DO I 1 181,97

IX]8MOD(IA]"‘IX1+IC].M])

IX28MOD(IA2*IX2+IC2.M2)

R(J)8(FLOAT(IX1)+FLOAT(IX2)‘RM2)‘RM1

1 1 CONTINUE

IDUM81

ENDIF

IX]8MOD(IA]"IX]+IC1,M1)

IX28MOD(IA2"IX2+IC2,M2)

IX38MOD(IA3‘IX3+IC3.M3)

J8]+(97*IX3)/M3

IF(J.GT'.97.0R.J.LT. ])PAUSE

RAN l8R(J)

R(I)8(FLOAT(IX1)+FLOAT(IX2)*RM2)"RM1

C WRITE(*.‘)’J.R(J).RAN1’J.R(D.RAN1

RETURN

END

FUNCTION GASDEVCIDUM)

USES BOX-MULLER TRANSFORMATION FROM UNIFORM DISTRIBUTION TO

NORMAL DISTRIBUTION WITII UNIT STANDARD DEVIATION

DATA ISET/O/

IF (ISETEQD) TIEN

1 V182.*RAN1(IDUM)-].

V282."RAN](IDUM)-1.

R8V1“2+V2“2

IF(R.GE.]..OR.R.EQ.0.)GO TO 1

FAC88QRT(-2.’LOG(R)/R)

GSET8V1‘FAC

GASDEV8V2‘FAC

ISET8]

ELSE

GASDEV8GSET

ISET80

ENDIF

C WRITE(‘,‘)’IDUM.GASDEV’.IDUM.GASDEV

RETURN

END

0
0
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This file represents a sample output file from MOD.FOR. without prior information. to

be used as input for NLINA.FOR for estimation of dimensionless latentheat of fusion. L'. The

firstrowofnmnbersrepresentthemnnberofdatapoints,themrmberofparameterstobe

estimated, the number of independent variables. the maximum mnnber of iterations to be

performed, the model number, and the usual printouts respectively. The second row represents

theinitialguessofL’.whichistobeestimated. T‘hefirstcolumnistheindex,theseoondoolumn

isthevaluesofthedimensionlesstemperanues.thethirdisthestandarddeviationofthe

meamrement enors. and the fourth column is the independent variable 11.

126.1.1.](X).1.1

-]50 0:10

1 48.02077 .orooo .OICXX)

2 23.04473 .0101!) .02000

3 14.69203 .01000 .03000

4 10.52862 .OICXX) .04(XX)

5 8.03962 .01(XX) .O5CXX)

6 6.38015 .01(XX) .06(XX)

7 5.21252 .orooo 07(0)

8 4.29658 .OIOIX) .08000

9 3.63488 .01000 .0911!)

10 3.07533 .01000 .10000

11 2.60642 .01000 .11000

12 2.22666 .01000 .12000

13 1.9349] .01000 .13000

14 1.66083 .OIIXX) .14000

15 1.42710 .01(XX) .15(XX)

16 1.21884 .010“) .16(XX)

17 1.0550] .01” .1701)

18 .9666] .OIIXX) .]8(XX)

19 .88892 .01000 .190“) .

20 .82373 .OIIXX) .20000

21 .7591] .OIGX) 21“!)

22 .69562 .0111!) 22(0)

23 .67533 .OIIXX) .23IXX)

24 .63256 .01“ .2411)

25 .58378 .Olill) .2511!)

26 .55002 .0101) .260!)

27 .52519 .OIIXX) 27000

28 .49508 .OIIXX) 28(0)

29 .48083 .0101) .291XX)

30 .4497] .01(XX) .30000

3] .41243 .0111!) 31m



32

33

35

37

38

39

40

41

42

43

45

47

49

51

52

53

55

56

57

58

59

61

62

63

65

67

68

70

71

73

74

75

76

78

.39110

.38648

.35509

.3174]

.30356

.29075

.27858

.26758

.23265

.22042

.21148

.20164

.18726

.19548

.16875

.15592

.16928

.14798

.1487]

.13669

.14019

.14412

.12903

.12897

.11703

.09989

.11688

.10896

.09443

.08428

.09883

.08838

.00045

.08647

.08845

.07538

.00927

.04960

.05827

.04116

.07273

.05815

.03799

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.01000

.32000

.33000

.35000

:37000

.38000

.39000

:4rooo

:57000

58000

.59000

.61000

120



8]

82

83

84

85

86

87

88

89

90

9]

93

94

98

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

12]

122

123

124

125

126

02042

.05090

.05272

.04330

.02789

.03682

.04152

.05046

.03143

.0479]

.02869

.04304

.03614

.031 38

02306

.m666

.04897

.01989

.02609

.02754

11568

.01499

.01834

.01425

.01647

.02279

03334

.02032

.01718

.01142

.02530

.01360

.02494

.01605

-.(I)265

01633

-£0558

.(XXISO

.02777

-.00227

.00571

.02586

.w265

.0325]

.m160

.OIGX)

.0](XX)

.OIW

.OIIXX)

.011XX)

.01(XX)

.OIIXX)

.01IXX)

.OICXJO

.010“)

.OIW

.01(XX)

.01(XX)

.OICXX)

.orooo

.01(X)0

.010CX)

.OIGD

.01(XX)

.OIOIX)

.0111”

.01000

.01000

.01000

.OICXX)

.01000

.OICDO

.OICXX)

.01W

.01”

.01(XX)

.0](XX)

.0100)

.01000

01“!)

.OliXX)

.01(XX)

.01CXX)

.01(XX)

.01(XX)

.01IXX)

.OIIXX)

.01(XX)

.Olill)

.0111!)

.OIIXX)

.81(XX)

.82(XX)

.83CXX)

.85(X)O

.8611!)

.87CXX)

.88IXD

.91000

.9301)

.95(XX)

.9711!)

.98(XX)

100000

1.01000

1.02000

1.03000

1.040(1)

1.05(X)0

1.06000

1.07000

1.08020

109000

1.10000

1.1](XJO

1.12000

1.13“!)

1.14(X)0

1.15111)

1.16m0

1.17000

1.18“!)

1.19000

120000

1.2](XX)

122000

1.23000

124000

125000

1.26“!)

12]
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This file represents a sample output file from MODPOR. with prior information. to be

used as input for NLINA.FOR for the estimation of L’.

138.1.1.1(X).1.]

- 1(1)!!!)

48.02888

23.03408

14.70647

10.54467

8.04848

6.38618

5.20235

4.314] 3

3.62446

3.07378

2.625 17

2.25082

1.93376

1.66656

1.43220

1.22878

1.04916

.94665

.8810]

.81855

.76560

.71388

.67053

.631 30

.593“)

.55770

.52673

.49654

.47143

.44409

.42016

.40100

.3787]

.36145

.34176

.32408

.30975

.29423

.27993

.26833

.25474

.2418]

10000

.001“)

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.(DIOO

.(DICX)

.00100

.00100

.00100

.00100

.(DIOO

.001“)

.00100

.00100

.00100

.(XIIOO

.00100

031(1)

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.(XIIIX)

.00100

.00100

.00100

.00100

.00100

.00100

(1)100

.00100

.01”

.OIGX)

.IIW

.12CXX)

.13CXX)

.14IXX)

.15IXX)

.160“)

.17(XX)

.18(XX)

.19000

.21(X)O

.2311”

25“!)

.27000

28(0)

29(0)

.3111!)

.32”

.33”

.35000

.3711”

.38IXX)

.39(XX)

241000

.42000

This row contains the prior information of L’
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45

47

49

51

52

53

55

56

57

58

59

61

62

63

67

68

70

71

73

74

75

76

78

81

82

83

85

86

87

88

89

91

.23268

.22039

.21143

.20258

.19306

.18498

.17679

.16896

.16261

.15612

.14767

.14094

.13752

.13066

.12485

.11998

.11542

.10902

.10470

.10088

.09539

.09362

.09105

.08638

.08225

.07622

.07025

.06875

.06756

.06454

.06078

.06070

.06545

.06594

.05091

.05016

.04839

.04579

.04621

.04498

.03907

.03775

.03679

.03375

.03275

.03066

.02928

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.57000

.58000

.59000

.61000

.62000

.63000

.65000

.67000

.70000

.71000

.72000

.73000

.74000

.75000

.76000

.77000

.78000

.81000

.82000

.83000

.85000

.87000

.88000

.91000

123



93

95

98

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

.03027

.02793

.02685

.02686

.02356

.02230

.02370

.02255

.01957

.0204]

.01740

.01820

.01962

.01691

.01413

.01500

.01569

.01544

.01405

.01261

.01318

.01175

.01292

.01021

.01032

.01019

.00862

.01052

.00970

.00939

.00699

.00638

.00719

.00651

.00632

.00662

.00624

.00516

.00471

.00319

.00419

.00503

.00581

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.00100

.92000

.93000

.97000

.98000

1.00000

21.01000

1.02000

1.08000

11¥KXX)

L06000

1.06000

1.07000

IJNMXX)

1.09000

1.10000

1.11000

L12000

L13000

1J4000

L15000

L16000

1J7000

138000

L19000

L20000

L21000

L22000

L23000

L24000

L25000

L26000

L27000

L28000

L29000

L30000

1.31000

L32000

1.33000

11.34000

1.35000

136000

1.37000

124



APPENDIX E

THE SUBROUTINES MODEL AND SENSE FROM NLINA.FOR

MODIFIED FOR THE DETERMINATION OF THE

OPTIMAL TREATMENT TIME

These subroutines povide the option of using prior information obtained from a

previously performed procedure with the same tumor radius. A second root-finding subroutine

(ZBRENTZ) is included to solve equations (3.70) and (3.74) for the value of t”. which is a

function of the estimated value of r, at each iteration.

SUBROUTINE MODEL

C THIS SUBROUTINE IS FOR CALCULATING ETA. THE MODEL VALUE

IMPLICIT REAL‘8 (A-I'I.O-Z)

DIMENSION T(35m,5),Y(35(X)),SIGZ(35CD).B(5).Z(5),

+A(5).BS(5),VINV(5.5).EXTRA(20)

DIMENSION P(5.5).PS(5,5)

C WRITTEN BY JAMES V. BECK

C MODIFIED BY LESLIE A. SCOTT

C INTHIS PROGRAM, THETA=ETA ANDETA=BETA

DOUBLE PRECISION KSL, Q, L, PI, ALPHSL. ALPHS

DOUBLE PRECISION ERFC, ZBRENT]

DOUBLE PRECISION ALPHSR. PISR. X. XX. X2. X2ALPH.

+ XALPH. XXALPH. BETA. BETAS. BETA2, ETA, NEWBETA.

+ NEWBETS, NEWBETZ, TIME, TIMEC. RAD,ETA1, ETAZ

COMMON SIGZ.T.Z.BS.I.ETA.PS.P.B.A.Y.MODL.VII~IV.NP

+.EXTRA

COMMON/MOD/AAJ‘L

COMMON/PROP/KSL. Q. ALPHSL, 1., PI. ALPHS

COMMON/1M TIME

COWON/I‘C/I'IMEC

C

EXTERNAL ERFC. ZBRENTI

125
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KSL = 1.000

ALPHSL = 1.000

L = -1(X).0D0

Q = -1.0D0

ALPHS = 1.000

RAD = T(1,l)

P1 = DACOS(-1.DO)

TIMEC = B80)

0

ALPHSR = ALPHSL“0.5D0

PISR = (Pl**0.5D0)/2.D0

X IS THE CALCULATED VALUE FOR LAMBDA

ZBRENT is a root finding subroutine used to solve the transcendental equation for the

freezing from location. See Numerical Recipes by Press et al.. Cambridge University

Press. New York. New York, 1986.

X = ZBRENT1(1.0D-4,2.D0.0.001D0)

XX = X*X

X2 = 2.DO*X

X2ALPH = X2*ALPHSR

XALPH = X'ALPHSR

XXALPH = XX*ALPHSL

C TIME = rm

TIME = ZBREN'I‘ZCI'IMEC+1.0D-9.TIMEC + 0.0lOD0,0.001D0)

0
0
0
0

BETA = RAD/((4.0DO*A1..PHS*TIME)“0.5D0)

NEWBETA = RAD/((4.0D0*ALPHS*(TIME - TIMEC))**0.50D0)

C

BETAS = BETA‘BETA

BETA2 = 2.D0"'BETA

NEWBETS = NEWBETA‘NEWBETA

NEWBETZ = 2.0D0‘NEWBETA

C TO INCLUDE PRIOR INFORMATION FROM THE SAME RADIUS

IF (I .EQ. 1)THEN

ETA1 = BS(l)

ELSE

IF (BETA.LT.X)TI-IEN

ETAI = 1.0D0 - Q*(EXP(-BETAS)/BETA2 - EXP(-XX)IX2 -

+ PISR*(ERFC(BETA) - ERFC(X)»

ELSE

IF(BETA.GT.X)THEN

ETAl = (EXP(-ALPHSL*BETAS)/(BETA2*ALPHSR) -PISR*

ERFC(AIJHSR‘BETA))I(EXP(—XXALPH)/X2ALPH4
.

+ -PISR*ERFC(XALPH))

ELSE

ETAl = 1.0D0

ENDIF

ENDIF

ENDIF
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IF (I .EQ. 1) THEN

ETA2 = 0.000

ELSE

IF (NEWBETA .LT. X) THEN

ETA3 = EXP(-NEWBETS)/NEWBET2

ETA4 = EXH-XXYXZ

ETA5 = ERFC(NEWBETA)

ETA6 = ERFC(X)

ETA7 =1 - Q‘(ETA3 - ETA4 - PISR"(ETA5 - ETA6))

ETA2 = ETA7

ELSE

IF (NEWBETA .GT. X) THEN

ETA2 = (EXH-AIPIISL‘NEWBETSMNEWBETZ‘ALPHSR)

+ -PISR*ERFC(ALPHSR“NEWBETA))/

+ (Em-XXALPHVXZALPH -PISR"ERFC(XALPH))

ELSE

ETA2 = 1.000

ENDIF

ENDIF

ENDIF

ETA = ETAl-ETAZ

RETURN

END

C CALCULATION OF LAMBDA FROM FUNCTION ZBRENT

DOUBLE PRECISION FUNCTION ZBRENT1(X1, X2, TOL)

PARAMETEROT'MAX=1(X), EPS= 3.0E-8)

DOUBLE PRECISION A, B. C. 0, E, FA. FB, FC

DOUBLE PRECISION TOLL TOL, X1. X2, XM

DOUBLE PRECISION P, Q, R. S. FUNCLI

EXTERNAL FUNCLl

A=X1

=X2

FA=FUNCL1(A)

FB=FUNCL1(B)

IF(FB‘FA .GT. 0.000) PAUSE ’ROOT MUST BE BRACKETED FOR

+ ZBRENT1.‘

FfiFB

DO 15 ITER=LITMAX

IF(FB‘FC .GT. 0.000) THEN

C=A

FG-FA

D=B-A

E=0

ENDIF

E(ABS(FC) .LT. ABS(FB)) THEN
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A=B

B=C

C=A

FA=FB

FB=FC

FC=FA

ENDIF

128

TOL1=2.000*EPS*ABS(B)+0.500*TOL

XM=0.500*(C-B)

[E(ABS(XM) .LE. TOLl .OR. FB .EQ. 0.000)THEN

ZBRENT1=B

RETURN

ENDIF

IF(ABS(E) .GE. TOLl .AND. ABS(FA) .GT. ABS(FB)) THEN

S=FBIFA

IF(A .EQ. OTHEN

P=2.000*XM*S

$1.000 - S

ELSE

Q=FAIFC

R=FBIFC

Pr—S*(2.ODO*XM*Q"'(Q-R) - (B-A)‘(R-1-ODO))

Q=(Q-l.ODO)*(R-1.000)"(S-l.000)

ENDIF

IF(P .GT. 0) Q = -Q

P=ABS(P)

IF(2.000‘P .LT. MIN(3.000‘XM*Q-ABS(TOL1*Q).ABS(E*Q)))THEN

E=0

0=PIQ

ELSE

0=XM

E=0

ENDIF

ELSE

0=XM

B0

ENDIF

A=B

FA=FB

IF(ABS(0) .GT. TOL1)THEN

B=B+0

ELSE

B=B+SIGN(TOLI.XM)

ENDIF

FB=FUNCL1(B)

CONTINUE
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PAUSE ’ZBRENTI EXCEEDING MAXIMUM ITERATIONS.’

ZBRENT1=B

RETURN

END

DOUBLE PRECISION FUNCTION ERFC(X)

DOUBLE PRECISION A1. A2. A3. A4. A5. P. T. X

A1=0.25482959200

A2=-0.28449673600

A3=L42141374100

A4=-L45315202700

A5=L06140542900

P=0.327591 100

T=1.000/(1 .000+P"X)

ERFC=(A1*T+A2*T“2.000+A3‘T“3.000+A4*T"*4.000+A5*I‘“5.000)

I"EXP(-X"""2.000)

RETURN

END

DOUBLE PRECISION FUNCIION FUNCL1(X)

DOUBLE PRECISION KSL. Q. ALPHSL. L. X. PI. ERFC. ALPHS

DOUBLE PRECISION EXPX. EXPXASL. XX2. RATIO

COMMON/PROP/KSL, Q. ALPHSL. L. PI. ALPHS

EXTERNAL ERFC

EXPX=EXP(-X*X)

EXPXASL.-=EXP(-X"X*ALPHSL)

XX2=X*X*2.000

RATIO=EXPXASLI(XX2*ALPHSL“0.500)

FUNCLl=KSL"'Q*EXPX/XX2 - RATIO/(RATIO-(PI”0.500/2)

*ERFC(ALPHSL“‘0.500*X)) -L"'X

RETURN

END

SUBROUTINE SENS

THIS SUBROUTINE IS FOR CALCULATING THE SENSITIVITY COEFFICIENTS

IMPLICIT REAL‘8 (A-H,O-Z)

DIMENSION T(35m.5).Y(35(D),SIGZ(35m).B(5).

+Z(5).A(5).BS(5).V1NV(5.5).EXTRA(20)

DIMENSION P(5.5).PS(5.5)

+

4.

DOUBLE PRECISION KSL. Q. ALPHSL, L. PI, ALPHS

DOUBLE PRECISION ERFC, ZBRENTL ZBRENTZ

DOUBLE PRECISION ALPHSR. PISR. X, XX. X2. X2ALPH.

XALPH, XXALPH. BETA. BETAS. BETA2. NEWBETA.

NEWBETS. NEWBETZ. DER7. SENSEL TIME. TIMEC.
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DER3. DER6. RAD

COMMON SIGZ.T.Z.BS.I.ETA.PS.P.B.A,Y.MODL.VINV.NP

+.EXTRA

COMMON/MOD/AAJ'L

COMMON/PROP/KSL. Q, ALPHSL. L, P1. ALPI-IS

COMMON/1‘C/I'IMEC

COMMON/TIMI TIME

COMMON/EQ/X, RAD

+

+

+

+

+

EXTERNAL ERFC, ZBRENT], ZBREN'I‘Z

KSL = 1.000

ALPHSL = 1.0D0

L = -100.0D0

Q = -l.0D0

ALPl-lS = 1.000

P1 = DACOS(-1.D0)

RAD = 'I‘(l.1)

TIMEC = 880)

VARIABLES DECLARED

ALPHSR = ALPHSL**0.SDO

PISR = (PI**0.5D0)/2.D0

X IS THE CALCULATED VALUE FOR LAMBDA

ZBRENTisamotfindingsubmutineusedtosolvememnscendentalequation forthe

freezing from location. See Numerical Recipes by Press et al.. Cambridge University

Press. New York. New York. 1986.

X = ZBRENTl(l.0D-4.2.D0,0.001D0)

WRITE(*.")'X = ‘.X

XX = X‘X

X2 = 2.0D0‘X

X2ALPH = X2‘ALPHSR

XALPH = X'ALPHSR

XXALPH = XX*ALPHSL

TIME = ZBRENT2(TIMEC+L00-9.TIMEC + 0.01000,L00-6)

BETA = RAD/((4.000‘ALPHS‘TIME)“0.500)

NEWBETA = RAD/((4.000*ALPHS"(TIME - TIMEC))**0.5000)

BETAS = BE'I'A‘BETA

BETA2 = 2.000‘BETA

NEWBETS = NEWBETA‘NEWBETA

NEWBETZ = 2.000‘NEWBETA

DER3 = Q’EXP(-NEWBETS)/(2.0DO‘NEWBETS)

DER6 8 ((--2.000“NEWBETS’ALPHSL“ELK-ALPHSL"l

NEWBETS) - EXP(-ALPHSL"NEWBET8»/

(2.000‘NEWBETS‘ALPHSR) + ALPHSR

*EXP(-ALPHSL*NEWBETS))/((EXP(-ALPHSL*XX))

l(2.000"X*ALPHSR) - PISR’ERFCMLPHSR‘X»

DER7 = RAD/(4.000*(ALPHS“0.500)*((TIME - TIMEC)"

0.000/2.011))»
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IF (I .EQ. 1) THEN

SENSEl = 1.000

ELSE

IF (NEWBETA .LT. X) THEN

SENSE] = -DER3*DER7

ELSE

IF (NEWBETA .GT. X) THEN

SENSEl = -DER6"'DER7

ELSE

SENSEl = 0.000

ENDIF

ENDIF

ENDIF

20) = SENSEl

RETURN

END

DOUBLE PRECISION FUNCIION ZBRENT2(XL X2, TOL)

PARAME‘I‘ERGTMAX=1(X). EPS= 3.0E-8)

DOUBLE PRECISION A. B. C. D. E. FA. FB. FC

DOUBLE PRECISION TOLL TOL, X1, X2. XM

DOUBLE PRECISION P, Q, R, S, FUNCLZ. X. TIMEC, RAD

COMMON/TC/IIMEC

COMMON/EQ/X. RAD

EXTERNAL FUNCL2

A=X1

B=X2

FA=FUNCL2(A)

FB=FUNCL2(B)

IF(FB‘FA .GT. 0.000) PAUSE ’ROOT MUST BE BRACKETED FOR

ZBRENT‘Z.’

FC=FB

DO 15 1TER=LITMAX .

IF(FB‘FC .GT. 0.000) THEN

C=A

FOBFA

DEB-A

E20

ENDIF

E(ABS(FC) .LT. ABS(FB)) THEN

A8B

B=C

C=A

FA=FB

FB=FC
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PCs-FA

ENDIF

TOLl=2.0D0*EPS*ABS(B)I-0.SDO'TOL

XM=0.5D0*(C-B)

[E(ABS(XM) .LE.TOL1 .OR. FE .EQ. 0.0DO)TI{EN

ZBRENT2=B

RETURN

ENDIF

IF(ABS(E) .GE.TOL1 .AND. ABS(FA) .GT. ABS(FB)) THEN

S=FB/FA

IF(A .EQ. C)THEN

P=2.0D0“XM"S

Q=LOD0 - s

ELSE

Q=FAIFC

R=FBIFC

P=S*(2.0DO*XM*Q*(Q-R) - (B-A)"(R-l.0D0))

Q=(Q-1.0D0)*(R-I.0D0)*(s-1.0D0)

ENDIF

IF(P .GT. 0) Q .. -Q

P=ABS(P)

n=(2.0D0*P .LT. hflN(3.0D0*XM*Q—ABS(1‘OL1*Q).ABS(E*Q)))’I‘HEN

E=D

D=P/Q

ELSE

D=XM

E=D

ENDIF

ELSE

D=XM

E=D

ENDIF

A=B

FA=FB

[E(ABS(D) .GT. TOL1)TI-IEN

B=B+D

ELSE

=B+SIGN(TOL1,XM)

ENDIF

FB=FUNCLZ(B)

CONTINUE

PAUSE 'ZBRENTZ EXCEEDING MAXIMUM ITERATIONS.’

ZBRENT2=B

RETURN

END

DOUBLE PRECISION FUNCIION FUNCLZCI'IME)

DOUBLE PRECISION KSL. Q. ALPHSL, L. x. PI, ERFC, ALPHS.

DERI, DER2. DER3. DER4. DER5. DER6.

RAD, TIME. BETA, NEWBETA. TIMEC. FUNCLZA. FUNCLZB.
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+ NEWBETZ. NEWBETS, BETA2, BETAS, PISR, ALPHSR. X2.

+ XX, X2ALPH, XALPH. XXALPH

EXTERNAL ERFC

COMMON/PROP/KSL. Q. ALPHSL, L. PI, ALPHS

COMMON/TC/IIMEC

COMMON/EQ/X. RAD

ALPHSR = ALPHSL”0.500

PISR = (PI“0.500)/2.00

XX = X‘X

X2 = 2.00‘X

X2ALPH = X2‘ALPHSR

XALPH = X‘ALPHSR

XXALPH = XX‘ALPHSL

BETA = RAD/((4.000"ALPHS‘TIME)“0.500)

NEWBETA = RAD/((4.000‘ALPHS‘CIIME - TIMEC))""0.5000)

BETAS = BETA‘BETA

BETA2 = 2.000‘BETA

NEWBETS = NEWBETA‘NEWBETA

NEWBET2 = 2.000‘NEWBETA

DER] = Q‘EXP(-BETAS)/(2.000"BETAS)

DER2 = ~RAD/(4.000‘(ALPHS“0.5000)*(TIME**(3.000/2.000)))

DER3 = Q‘EXP(-NEWBETS)I(2.0DO"NEWBETS)

DER4 = -RAD/(4.000*(ALPHS“0.5000)"((TIME-TIMEC)“

+ (3.000/2.000)))

DER5 = ((-2.000’BETAS‘ALPHSL‘EXP(-ALPHSL*BETAS) -

+ EXP(-ALPHSL"'BETAS))/(2.000"BETAS*ALPHSR)

+ + (ALPHSR*EXH-ALPHSL‘BETASDMEXPGALPHSL

+ *XX)/(2.000‘X*ALPHSR) - (PISR‘ERFC(ALPHSR*X)))

DER6 = ((-2.000*NEWBETS*ALPHSL‘EXH-ALPHSL"NEWBETS) -

+ EXH-ALPHSL“NEWBETS))/(2.000"NEWBETS*ALPHSR)

+ + (ALPHSR*EXP(-ALPHSL*NEWBETS)))/(EXP(-ALPHSL

+ I"ICC/(2.000"‘X"A.LPHSR) - (PISR‘ERFC(ALPHSR"X)))

IF (BETA .LT. X) THEN

FUNCL2A = DERl‘DERZ

ELSE

IF (BETA .GT. X) THEN

FUNCL2A = DER5‘DER2

ENDIF

ENDIF

IF (NEWBETA .LT. X) THEN

FUNCL2B I: DER3’DER4

ELSE

IF (NEWBETA .GT. X) THEN

FUNCL2B = DER6’DER4

ENDIF

ENDIF

FUNCL2 = FUNCL2A - FUNCLZB

RETURN

END



APPENDIX F

THE FORTRAN PROGRAM MODC.FOR

This program. MODC.FOR. is used to calculate dimensionless temperatures at

corresponding radius locations and times for a given cryosurgical treatment time.

PROGRAM MODC

THIS PROGRAM IS DESIGNED FOR CALCULATING THE TEMPERATURE

AT A GIVEN R LOCATION AND AT A GIVEN TIME.

WRITTEN BY LESLIE A. SCOTT

IMPLICIT REAL‘8 (A-H.O-Z)

DOUBLE PRECISION TIME. TIMEC. R. DELTAT, DELTAR.

+ THETA. BETA. RINT. TINT

DIMENSION ETA(10). BET( 10)

0
0
0
0

C

COMMON TI-IETA. BETA

COMMON/EQ/IIME. R. TIMEC

OPEN(UN1T = 14. FILE='TEMPC1.DAT’. STATUS=”UNKNOWN")

OPEN(UNIT = 12. FILE=’BETA.DAT’. STATUS="UNKNOWN")

P1 = DACOS(-1.000)

TIMEC = 0.185000

DELTAT = 0.(XX)500

DELTAR = 01an 00

R = 0.1000

RINT = 0.099800

TINT = 0.18000

NR = 5

IR 8 1

NT = 40

WRITE(14.5)(RINT+II*DELTAR. II = IR. NR-l-IR)

5 FORMAT(9X. 6(1X.F8.4))

DO I = LNT

TIME = TINT+I*DELTAT

134
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DO 11 = IR. NR-I-IR

R = RINT+II"DELTAR

CALL MODEL

ETA(II) = THETA

BET(II) = BETA

C WRITE(IZ.‘)BET(II). ETA(II)

ENDDO

WRITE(14.10) TIME. (ETA(II), II = IR, NR+IR)

WRITE(14.1 1)(BET(II).II=IR.NR+IR)

10 FORMAT(le8.4.6(1X.F8.5))

1 1 FORMAT(7X.6(1X.F8.5))

ENDDO

STOP

END

SUBROUTINE MODEL

C

DOUBLE PRECISION KSL. Q. L. PI. ALPHSL. ALPHS

DOUBLE PRECISION ERFC. ZBRENT

DOUBLE PRECISION ALPHSR. PISR. X. XX. X2. X2ALPH.

XALPH, XXALPH. BETA. BETAS. BETA2. NEWBETA.

+ NEWBETS. NEWBETZ. ST. TIMEC. TI-IETA. R. TIME.

+ THETAZ

COMMON/PROP/KSL. Q. ALPHSL. L. PI. ALPHS

COMMON TI'IETA. BETA

COMMON/EQ/ITME. R. TIMEC

+

C

EXTERNAL ERFC. ZBRENT

KSL = 1.000

ALPHSL = 1.000

L = -lO0.000

Q = -l.000

ALPHS = 1.000

P1 = DACOS(-l.00)

ALPHSR = ALPHSL**0.500

PISR = (Pl**0.500)/2.00

X IS THE CALCULATED VALUE FOR LAMBDA

ZBRENTisamotfindmgmbmufimusedmsolvemeuanscenduualequafionforme

freezing from location. See Numerical Recipes by Press et al.. Cambridge University

Press. New York. New York. 1986.

X a ZBRENT(1.00-4.2.00.0.00100)

XX 2 X*X

X2 = 2.00‘X

X2ALPH = XZ‘ALPl-ISR

XALPI-l s X'ALPHSR

XXALPH a XX*ALPHSL

G
O
O
D

BETA = R/((4.000*ALPHS"TIME)“0.500)

ST = X*2.000"‘((ALPI'IS"TIME)“0.5000)

BETAS = BETA‘BETA
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BETA2 8 2.IX)"'BETA

IF (BETA .LT. X) THEN

THETA 8 l - Q‘(EXP(-BETAS)/BETA2 - EXP(-XX)/X2 -

PISR*(ERFC(BETA) - ERFC(X)»

ELSE

IF (BETA .GT. X) THEN

THETA = (EXP(-ALPHSL"BETAS)/(BETA2*ALPHSR) -PISR

‘ERFC(ALPHSR"BETA))/(EXP(-XXALPH)IX2ALPH

~PISR‘ERFC(XALPH))

ELSE

THETA = 1.000

ENDIF

ENDIF

IF (TIME .GT. TIMEC) THEN

NEWBETA = R/((4.000"ALPHS"(TIME - TIMEC»“0.5000)

NEWBETS = NEWBETA‘NEWBETA

NEWBET2 = 2.000‘NEWBETA

IF (NEWBETA .LT. X) THEN

THETA2 = 1 - Q*(EXP(-NEWBETS)/NEWBET2 - EXP(-XX)/X2

- PISR*(ERFC(NEWBETA) - ERFC(X)»

WRITE(“.‘)THETA2

ELSE

1F (NEWBETA .GT. X) THEN

THETA2 = (EXP(-ALPHSL*NEWBETS)I(NEWBET2*ALPHSR)

-PISR*ERFC(ALPHSR*NEWBETA))I

(EXP(-XXALPH)/X2ALPH -PISR"ERFC(XALPH))

ELSE

THETA2 = 1.000

ENDIF

ENDIF

THETA = THETA - THETA2

ENDIF

RETURN

END

CALCULATION OF LAMBDA FROM FUNCIION ZBRENT

DOUBLE PRECISION FUNCIION ZBRENT(X1. X2, TOL)

PARAMETEROTMAX=1¢XL EPS= 3.0E-8)

DOUBLE PRECISION A. B. C. 0. 5. FA. FB, FC

DOUBLE PRECISION TOLL TOL, X1. X2. XM

DOUBLE PRECISION P. Q. R. S. FUNCL

EXTERNAL FUNCL

A=X1

B=X2

FA=FUNCL(A)

FBBFUNCL(B)

IF(FB‘FA .GT. 0.000) PAUSE 'ROOT MUST BE BRACKETED FOR

ZBRENT.‘

FC=FB
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00 15 1TER=1.ITMAX

IF(FB‘FC .GT. 0.000) TIIEN

C=A

FC=FA

D=B~A

E==0

ENDIF

IF(ABS(FC) .LT. ABS(FB)) THEN

A=B

B=C

@A

FA=FB

FB=FC

FC-FA

ENDIF

TOL1=2.000*EPS*ABS(B)+0.500‘TOL

XM=0.500‘(C-B)

IF(ABS(XM) .LE. TOLl .OR. FB .EQ. 0.000)THEN

ZBRENT=B

RETURN

ENDIF

IF(ABS(E) .GE. TOLl .AND. ABS(FA) .GT. ABS(FB)) THEN

S=FBIFA

IF(A .EQ. C)THEN

P=2.000"XM*S

Q=L000 - S

ELSE

Q=FAIFC

R=FBIFC

P=S*(2.0N*XM*Q‘(Q-R) - (B-A)’(R-L000))

Q=(Q- 1.000)‘(R-1.000)"(S-1.000)

ENDIF

IF(P .GT. 0) Q = -Q

P=ABS(P)

IF(2.000"‘P .LT. W(3.0IX)‘ICM*QABSCTOL1*Q)ABS(E*Q)))TIIEN

E=D

DBP/Q

ELSE

DBXM

E=D

ENDIF

ELSE

DBXM

E=D

ENDIF

A=B

FA=FB
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IF(ABS(D) .GT. TOL1)THEN

B=B+D

ELSE

B=B+SIGN(T0L1.XM)

ENDIF

FB=FUNCL(B)

CONTINUE

PAUSE ‘ZBRENT EXCEEDING MAXIMUM ITERATIONS.’

ZBRENT=B

RETURN

END

DOUBLE PRECISION FUNCIION ERFC(X)

DOUBLE PRECISION A1. A2. A3. A4. A5. P. T. X

A1=0.25482959200

A2=-0.28449673600

A3=L421413741m

A4=-L45315202700

A5=L06140542900

P-0327591 100

T=1.000/(1 .000+P"'X)

ERFC=(A1*T+A2"T**2.0IX)+A3"'T“3.000+A4*T“4.000+A5‘T“5.000)

+ ‘EXP(-X‘”"2.000)

RETURN

END

DOUBLE PRECISION FUNCTION FUNCL(X)

DOUBLE PRECISION KSL, Q. ALPHSL. L. X. PI. ERFC. ALPHS

DOUBLE PRECISION EXPX. EXPXASL. XX2. RATIO

COMMON/PROP/KSL. Q. ALPHSL. L. PI. ALPHS

EXTERNAL ERFC

EXPX=EXP(—X"X)

EXPXASL=EXP(-X"'X*ALPHSL)

XX2=X*X*2.000

RATIO=EXPXASU(XX2‘ALPHSL”0.500)

FUNazKSL‘Q‘EXPX/XXZ - RATIO/(RATIO-(PI“0.500/Z)

+ 1“ERFC(ALPHSL"“0.500“'X)) -L"X

RETURN

END
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ThisfilerepresentstheoutputfilefromthepmgramMODCfOR. Thefirstrowisthe

radiusvalues.thefirstentryisthesecondrowisthetime. Theremainingentriesinthesecond

mwaredimensionlesstemperatures. Thisaltematingpattemisrepeatedtluoughoutthelist.

.1805

.1810

.1815

.1820

.1825

.1830

.1835

.1840

.1845

.1850

.1855

.1860

.1865

.1870

.1875

.1880

.1885

.1890

.1895

.19“)

.0999

2.33546

.11757

2.34126

.1 1741

2.34706

.1 1725

2.35285

.1 1708

2.35863

.1 1692

2.36441

.11676

2.37017

.1 1661

2.37593

.1 1645

2.38168

.1 1629

2.38743

.11613

2.39311

.11597

2.39721

.1 1582

2.39837

.11566

2.39724

.1 1551

2.39464

.11535

2.391 13

.1 1520

2.38709

.1 1505

2.38272

.1 1490

2.37819

.1 1474

2.37359

.11459

.1(XX)

2.33126

.1 1769

2.33706

.1 1753

2.34285

.11736

2.34864

.1 1720

2.35441

.1 1704

2.36018

.1 1688

2.36594

.1 1672

2.37170

.1 1656

2.37744

.1 1641

2.38318

.1 1625

2.38885

.11609

2.39296

.11593

239414

.11578

2.39303

.1 1562

2.39045

.11547

2.38696

.1 1532

2.38294

.1 1516

2.37859

.1 1501

237408

.1 1486

2.36949

.11471

.1(X)1

2.32708

.11781

2.33287

.11764

2.33866

.11748

234443

.11732

2.35020

.11716

2.35597

.1 17(1)

2.36172

.11684

2.36747

.11668

2.37321

.11652

2.37894

.11636

238461

.11621

2.38872

.11605

2.38991

.11589

2.38882

.11574

2.38627

.11559

2.38280

.11543

2.37879

.11528

2.37447

.11513

236997

.11497

236539

.11482

.1002

2.32290

.11792

2.32869

.11776

2.33447

.11760

2.34024

.11744

2.346“)

.11728

2.35176

.11711

2.35751

.11696

2.36325

.11680

2.36898

.11664

2.37471

.11648

2.38037

.11632

2.38449

.11617

2.38570

.11601

238463

.11586

2.38209

.11570

2.37865

.11555

237466

.11539

2.37035

.11524

2.36587

.11509

2.36131

.11494

.1003

2.31873

.11804

2.3245 1

.11788

233029

.11772

2.33605

.11755

2.34181

.11739

2.34756

.11723

2.35330

.11707

235904

.11691

2.36477

.11675

237049

.11660

2.37615

.11644

2.38027

.11628

2.38150

.11613

2.38045

.11597

2.37793

.11582

2.3745 1

.11566

2.37053

.11551

2.36624

.11536

2.36178

.11520

2.35723

.11505

.1004

231457

.11816

2.32035

.11800

2.32611

.11783

2.33187

.11767

2.33763

.1175]

2.34337

.11735

234911

.11719

235484

.11703

2.36056

.11687

2.36628

.1167]

2.37193

.11656

2.37606

.11640

2.37730

.11624

2.37627

.11609

2.37377

.11593

2.37037

.11578

2.36642

.11562

2.36214

.11547

2.35769

.11532

2.35316

.11517



APPENDIX G

THE FORTRAN PROGRAM RAD.FOR

This program. RAD.FOR. was written to read a file of data. TEMP.DAT. and to add

random errors to the fourth column of that data file. This simulates random measurement enors

present in the radius measurement data. Both TEMPDAT and the output file. TEMPC.DAT. are

used as input to the program NLINA.FOR for the determination of the Optimal treatment time. t..

C

PROGRAM RAD

C WRITTEN BY DEBBIE MONCMAN

COMMON/RAND/NT. STDDV

COMMON NDAT.NPTS.C3

DOUBLE PRECISION B(4).X(5)

DIMENSION DATA(2(XXX))

INTEGER C2.NT.C5.C6.C7.I.C3.C4. C8

OPEN(UN1T=14. FILE = ‘TEMP.0AT’. STATUS = ’UNKNOWN’)

READ(14."') NT.C2.C3.C4.C5.C6

READ(14.*) (B(I).1=1.C2)

OPEN(UN1T=15. FILE=°TEMPC.DAT'.STATUS=’UNKNOWN’)

WRITE(15.5) NT. C2. C3. C4. C5. C6

FORMAT(lX. 6(I5.1X))

WRITE(15.6) (B(I).I=1.C2)

FORMAT(lX.4(E14.8.1X))

CALL RANDOM (DATA)

DO 10. I = 1. NT

READ(14.*)II. TEMP. SIGMA. “(Db-"LC”

WRITE(15.7)II.TEW.SIGMA.(X(J)-r-DATA((I-1)‘C3+J).J=1.C3)

FORMAT(1X15.1X.5(E14.8.1X))

CONTINUE

READ(14.")C7. C8

140
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O
O

0
0
9
9

O
0
0
0

11

12
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WRITE(15.8) C7. C8

FORMAT(1X.I5)

CLOSE(14)

CLOSE(15)

STOP

END

SUBROUTINE RANDOM (DATA)

INTEGER C3

COMMON/RAND/NT. STDDV

COMMON NDATNPTS.C3

PARAMETER(PI=3. 14159265.NPI‘Sa4.NBm=1000.NDAT=NPrS+NBm)

PARAMETER(PI=3. 14159265.NBIN=10(X))

SEE Numerical Recipes by Press. Flamrery. Teukolsky and Vetteriing.

Cambridge Press. 1986 about page 192

Modified by J.V. Beck. Michigan State University.

E-mail address: 22427jvb@ibm.cl.msu.edu

DIMENSION DATA(2(I)00)

CHARACTER‘SO FOUT

NPTS = NT*C3

IDUM IS SEED. SET TO ANY NEGATIVE NUMBER TO INITIALIZE OR

REINITIALIZE.

10UM=~5

WRITE(*.*)’ Enter the number of points ’

READ(*.'*)NPI‘S

WRITE(*.*)'ENTER THE SEED NUMBER (-)'

READ(*.*)IDUM

NDAT=NPTS+NBIN

WRITE(*.*)’ GIVE THE STANDARD DEVIATION’

READ(*.")STDDV

WRITE(*.*)'Give the name Of the output file’

READ(*.’(A80)‘)FOUT

OPEN(13. FILE=FOUT)

RHON=0.0

RHOD=0.0

WRITE(*.*)‘ I RAND. NO.’

00 500 IDUMI=1.1

DATA(1)=GASDEV(IDUM)*STDDV

WRITE(*.100)1.DATA(1)

WRITE(13.1(X))1.DATA(1)

DO 11 l=2.NPTS

DATA(I)=GASDEV(IDUM)*STDDV

RHON=RHON+DATA(I-1)*DATA(I)

RHOD=RHOD+DATA(I)"DATA(I)

WRITE(*.100)I.DATA(I)

WRITE(13.1(X))I.DATA(I)

CONTINUE

CONTINUE

RHO=RHONIRHOD
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CCC WRITE(*.‘(1X.AI)') ’Descriptors of a gaussian distrilmtion’

CALL MOMENT(DATAJ-IAVEADEVSDEVNARRHO)

5(1) CONTINUE

C WRITE(*.’(1X.T29.A.T42.A/)') ’ Values of qramities’.’ ’

WRITE("'.*)' Values of quantities’

WRITE(*.'(1X.T29.A.T42.AI)’) ’ Sample ’J’Expected

WRITE(*.’(1X.A.T25.2F12.4)’) 'Mean :’.AVE.0.0

WRITE(*.'(1X.A.T25.2F12.4)’) 'Average Deviation :’.ADEV.STDDV

WRITE(*.'(1X.A.T25.2F12.4)') ’Standard Deviation :’.SDEV.STDDV

VARTIi=STDDV*STDDV

WRHE(‘.'(1X.A.T25,2F12.4)') ’Variance :‘.VAR.VARTH

WRI’I'E(*.'(1X.A.'1‘25.F12.4)’)’ESL Correlation Coef.’.RI-IO

WRITE(*.*)’Average deviation comes from use of absolute values’

100 FORMAT(110.F10.6)

11

12

END

SUBROUTINE MOMENT(DATA.N.AVE.ADEV.SDEV,VAR.RHO)

DIMENSION DATA(2(XXX))

IF(NLE.1)PAUSE ’N must be at least 2’

S=0.

80:0.

SN=0.

DO 11 J=LN

S=S+DATA(J)

IF(J .EQ. ])GOTO 11

SN=SN+0ATA(J)*DATA(J-l)

SD=SD+DATA(I)*DATA(I)

CONTINUE

AVE=SIN

ADEV=0.

VAR=0.

DO 12 1:1,N

S=DATA(J)—AVE

ADEV=ADEV+ABS(S)

P=S"'S

VAR=VAR+P

CONTINUE

ADEV=ADEVIN

VAR=VAR/(N-1)

SDEV=SQRT(VAR)

RHO=SN/SD

WRITE(‘J‘YSN SD RHO’SNSDJKHO

RETURN

END

FUNCIION RAN](IDUM)

DIMENSION R(97)

RETURNS UNIFORMLY DISTRIBUTED NUMBERS BETWEEN 0 AND]

PARAMETER (M1=2592(X).IA1=7]41.IC1=54773.RM1=3.8580247E—6)

PARAMETER (M2=134456.IA2=8121.IC2=28411.RM2=7.4373773E-6)

PARAMETER (M3=243(XX).IA3=456LIC3=51349)
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DATA IFF (OI

IF (IDUM.LT.0.0R.IFF.EQ.0) THEN

IFF=1

IX]=MOD(IC]-IDUM.M1)

IX1=MOD(IA1*IX1+IC1.M1)

IX2=MOD(IX1.M2)

IX1=MOD(IA]"IX1+IC1.M1)

IX3=MOD(IX1.M3)

DO 11 I=1.97

IX1=MOD(IA1"IX1+IC1.M1)

IX2=MOD(IA2‘IX2+ICZ.M2)

R(J)=(FLOAT(IX1)+FLOAT(D(2)*RM2)"RM1

1 l CONTINUE

IDUM=1

ENDIF

IX]=MOD(IA1"IX]+IC1.M])

IX2=MOD(IA2‘IX2+IC2.M2)

IX3=MOD(IA3’IX3+IC3.M3)

J=]+(97*IX3)/M3

IF(J.GT.97.0RJ.LT. 1)PAUSE

RAN 1=R(J)

R(WAT(IX1)+FLOAT(IX2)*RM2)"RM1

C WRl'I'EC“.“)’J.R(I).l?~A1*I1’.J.l?»(J).RANl

RETURN

END

FUNCTION GASDEV(IDUM)

C USES BOX-MULLER TRANSFORMATION FROM UNIFORM DISTRIBUTION TO

C NORMAL DISTRIBUTION WITH UNIT STANDARD DEVIATION

DATA [SET/Cl

IF (ISET.EQ.0) THEN

1 V1=2."RAN1(IDUM)-1.

V2=2."‘RAN1(IDUM)-1.

R=V1**2+V2“2

IF(R.GE.1..OR.R.EQ.0.)GO TO 1

FAC=SQRT(-2.*LOG(R)/R)

GSET=V1"FAC

GASDEV=V2*FAC

[SET-=1

ELSE

GASDEVaGSET

ISET=0

ENDIF

C WRITE(‘.‘)’IDUM.GASDEV’.IDUM.GASDEV

RETURN

END



as input for NLINA.FOR when exact radius measurement data was used. The first row of

numbersrepresemthenumberofdatapoints.thenumberofparameterstobeestimated.the

number of independent variables. the maximum lumber of iterations to be performed. the model

number.andtheusualprintoutsrespectively. Thesecondrowrepresentstheinitialguessofthe

Optimalneannerncoolirrgtimetobedetermined. Thefirstcolumnistheindex.thesecond

columnisundesireddimensiomesstempemmres.memirdismestandarddeviafionofme

measurement errors. and the fourth is the measured values for the radii. without random enors.

addedtotheradiusmeasurementsinthefourthcolumn. ItisalsousedasinputforNLINAFOR.

10

This file. TEMRDAT. represents the input to the program RAD.FOR. It was also used

10.1.].200.1.]

0.125000

1 2.39414

2 2.39414

3 2.39414

4 2.39414

5 2.39414

6 0.99467

7 0.99467

8 0.99467

9 0.99467

10 0.99467

0

This file. TEMPC.DAT. is an output file from RAD.FOR with random measurement enors

1 1 2(1)

.125(XXXX)E+(X)

S
o
m
q
a
u
s
-
m
r
o
— .2394]4(X)E+01

.23941400E+0]

.2394”(DE-+0]

23941400510]

23941405401

.99467m0E4-m

.99467(X)0E+m

.99467(X)0E+(X)

.99467(XIOE+(X)

.99467(XX)E+(X)

0.(X)]0

0.11)]0

0.(X)10

0.(X)10

0.0010

00.110

0.(X)10

0.0010

0.(X)10

0.(X)10

1 1

JUNE-02

AWE-02

AWE-02

AWE-02

.IWOE-OQ

.1WE-02

.lmE-02

.1WOE—02

.1WE—02

.IWXXDE-OZ
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0.1000

0.1111)

0.1CDO

0.](00

0.11110

0.1500

0.1500

0.1500

0.1500

0.1500

.10147277E-r-(X)

.99968570E-01

.99997108E-0]

.1(X)73597E+(X)

.99912973E-01

.15010918E4-(X)

.14650322E+(X)

.1490] 197E441)

. 150265765400
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APPENDIX H

THE SUBROUTINES MODEL AND SENSE FROM NLINA.FOR

MODIFIED FOR THE DETERMINATION OF THE OPTIMAL

TREATMENT TIME WITH PRIOR INFORMATION

FROM A DIFFERENT RADIUS

Inthemainprogram.thetermEX'1‘RA(1)issetequalto 1 whenpriorinformationfrom

asingle different radius isused. andsetequal t02 whentwo differentradiiare used. Calculations

performed in the subroutine MODEL are as follows: beginning with the estimate of the treatment

time. I... and the conesponding radius. Rad,. the time that the minimum temperature is achieved.

1...... is calculated. Using these values. the minimum temperature. T... is determined. Using 1'...

and the radius at which the prior information was Obtained. Rad, a calculated value of rd is then

Obtained. ThisvalueisusedwiththeachralvalueoftwobtainedfiomtheinputfileJnthe

modified sum of squares function given by equation (3.4).

Inthe SENSE mbroutine.thefinitedifferencemethodis usedtodetermine thesensitivity

coefficients when EXT‘RA(I) is equal to 1 or 2.

SUBROUTINE MODEL

C THIS SUBROUTINE IS FOR CALCULATING ETA. THE MODEL VALUE

IMPLICIT REAL‘8 (A-H.O«Z)

DIMENSION T(35m.5).Y(35(X)).SIG2(35(X)).B(5)1(5).

+A(5).BS(5).VINV(5.5).EXI'RA(20)

DIMENSION P(5.5).PS(5.5)

C WRITTEN BY JAMES V. BECK

C MODIFIED BY LESLIE A. SCOTT

DOUBLE PRECISION KSL. Q. L. PI. ALPHSL. ALPHS

DOUBLE PRECISION ERFC. ZBRENT]

145
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DOUBLE PRECISION ALPHSR. PISR. X. XX. X2. X2ALPH.

+ XALPH. XXALPH. BETA. BETAS. BET‘AZ. ETA. NEWBETA.

+ NEWBETS. NEWBETZ. TIME. TIMEC. RAD. ETA]. ETAZ.

+ RA02

COMMON SIG2.T.Z.BS.I.ETA.PS.P.B.A.Y.MODL.VINV.NP

+.EXT'RA

COMMON/MODIAAJ'L

COMMON/PROP/KSL. Q. ALPHSL. L. PI. ALPHS

C

EXTERNAL ERFC. ZBRENT]

KSL = 1.000

ALPHSL = 1.000

L = -](X).000

Q = -].000

ALPHS = 1.000

RAD = T(I.2)

RA02 = T(I.1)

P1 = DACOS(-1.00)

TIMEC = BS(])

0

ALPHSR = ALPHSL**0.500

PISR = (P1“0.500)/2.00

X IS TIE CALCULATED VALUE FOR LAMBDA

ZBRENTisarootfindingsubmufineusedtosolvethen'amcendentalequafionforthe

freezing from location. See Numerical Recipes by Press et al.. Cambridge University

Press. New York. New York. 1986.

X = ZBRENTl(1.00-4.2.00.0.00100)

XX = X*X

X2 = 2.DO"X

X2ALPH = X2*ALPIISR

XALPII = X'ALPIISR

XXALPH = XX‘ALPIISL

0
0
0
0

TIME = ZBRENTZCTIMEC+L00-9.TIMEC + 0.01000.1.00-6. RAD. TIMEC)

BETA = RAD/((4.000‘ALPI-IS‘TIME)“0.5DO)

NEWBETA = RAD/((4.000*ALPHS*(TIME - TIMEC))"'“0.5000)

BETAS = BETA’BETA

BETA2 = 2.00‘BETA

NEWBETS = NEWBETA‘NEWBETA

NEWBETZ = 2.000‘NEWBETA

IF (1 .LE. EXT'RA(I))THEN

CALL MODEL2(BS(1). ETAl)

ELSE

IF (BETA.LT.X)THEN

ETA] = 1.000 - Q‘(EXP(-BETAS)/BETA2 - EXP(-XX)/X2 -

+ PISR“(ERFC(BETA) - ERFC(X)»
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ELSE

IF(BETA.GT.X)THEN

ETA] = (EXP(-ALPHSL*BETAS)I(BETA2"ALPHSR) -PISR"

+ ERFC(ALPHSR‘BE‘TA))/(EXP(-XXALPH)IX2ALPH

+ -PISR*ERFC(XALPH))

ELSE

ETA] = 1.000

ENDIF

ENDIF

ENDIF

IF (1 .LE. EX'TRA(1)) THEN

ETA2 = 0.000

ELSE

IF (NEWBETA .LT. X) THEN

ETA3 = EXP(-NEWBETS)/NEWBET2

ETA4 = EXP(-XX)/X2

ETA5 = ERFC(NEWBETA)

ETA6 = ERFC(X)

ETA7 = 1 - Q‘CETA3 - ETA4 - PISR“(ETA5 - ETA6»

ETA2 = ETA7

ELSE

IF (NEWBETA .GT. X) TI-IEN

ETA2 = (EXP(-ALPHSL"NEWBETS)/(NEWBET2*ALPHSR)

+ -PISR*ERFC(ALPHSR*NEWBETA))/

+ (EXP(-XXALPH)/X2ALPH -PISR*ERFC(XALPH))

ELSE

ETA2 = 1.000

ENDIF

ENDIF

ENDIF

ETA = ETAl-ETA2

IF (1 .EQ. 1) THEN

TMIN = ETA

ENDIF

RETURN

END

C CALCULATION OF LAMBDA FROM FUNCTION ZBRENT

DOUBLE PRECISION FUNCIION ZBRENT1(X1. X2. TOL)

0
0
0

C

PARAMETER(ITMAX=](X). EPS= 3.0E-8)

DOUBLE PRECISION A. B. C. D. E. FA. FB. FC

DOUBLE PRECISION TOL]. TOL, X1. X2. XM

DOUBLE PRECISION P. Q. R. S. FUNCL]

C

EXTERNAL FUNCL]

A=X1

B=X2

FA=FUNCL1(A)
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FB=FUNCL1(B)

C

IF(FB‘FA .GT. 0.000) PAUSE ’ROOT MUST BE BRACKETED FOR

+ ZBRENT] .‘

FaFB

DO 15 ITER=1.ITMAX

IF(FB‘FC .GT. 0.000) TIEN

C=A

FC=FA

D=B-A

E=D

ENDIF

IF(ABS(FC) .LT. ABS(FB)) TIEN

A=B

B=C

C=A

FA:

FB=FC

FC=FA

ENDIF

TOL]=2.000"EPS*ABS(B)+0.5DO‘TOL

XM=0.500*(C-B)

IF(ABS(XM) .LE. TOL] .OR. FB .EQ. 0.000)THEN

ZBRENT1=B

RETURN

ENDIF

IF(ABS(E) .GE. TOLl .AND. ABS(FA) .GT. ABS(FB)) THEN

S=FBIFA

IF(A .EQ. C)THEN

P=2.000‘XM*S

Q=L000 - S

ELSE

Q‘FA/FC

R=FB/FC

P=S"'(2.000"XM"Q*(Q-R) - (B-A)*(R-L000))

Q==(Q-1.0m)*(R-L000)“(S-L0m)

ENDIF

IF(P .GT. 0) Q = —Q

P=ABS(P)

IF(2.000"P .LT. MUNI(3.000"XM*Q«ABS(TOL1*Q).ABS(E*Q)))TT-IEN

E=D

D=P/Q

ELSE

D=XM

E30

ENDIF

ELSE
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D=XM

E=D

ENDIF

A=B

FA=FB

IF(ABS(D) .GT. TOL])THEN

B=B+D

ELSE

B=B+SIGNCTOL1.XM)

ENDIF

FB=FUNCL](B)

15 CONTINUE

PAUSE 'ZBRENT] EXCEEDING MAXIMUM ITERATIONS.‘

ZBRENT1=B

RETURN

END

DOUBLE PRECISION FUNCTION ERFC(X)

DOUBLE PRECISION A1. A2. A3. A4. A5. P. T. X

A1=0.25482959200

A2=-0.28449673600

A3=1.42141374100

A4=-L45315202700

A5=1.06140542900

P=0.327591 100

T=].000/(1.000+P"X)

FJIFC=(A1*T-r-AZ‘T"*2.000+A3"’T“3.000+A4*T“4.000+A5'T“5.000)

+ *EXP(-X“2.000)

RETURN

END

DOUBLE PRECISION FUNCTION FUNCL1(X)

DOUBLE PRECISION KSL. Q. ALPHSL. L. X. PI. ERFC. ALPHS

DOUBLE PRECISION EXPX. EXPXASL. XX2. RATIO

COMMON/PROP/KSL. Q. ALPHSL. L. PI. ALPHS

EXTERNALERFC

EXPX=EXP(-X*X)

EXPXASIzEXH-X“X*ALPHSL)

XX2=X"X*2.000

RATIO=EXPXASU(XX2*ALPHSL“0.500)

FUNCL1=KSL*Q*EXPX/XX2 - RATIO/(RATIO-(PI“0.500/2)

+ *ERFC(ALPHSL“0.500*X)) -L"X

RETURN

END
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SUBROUTINE SENS

C THIS SUBROUTINE IS FOR CALCULATING TIE SENSTTIVITY COEFFICIENTS

C

O
0
0
0
0

IMPLICIT REAL‘S (A-H.O-Z)

‘ DIMENSION T(3500.5).Y(3500).8162(3500).B(5).

+Z(5).A(5).BS(5).VINV(5.5).EX'I'RA(20)

DIMENSION P(5.5).PS(5.5)

DOUBLE PRECISION KSL. Q. ALPHSL. L. PI. ALPHS

DOUBLE PRECISION ERFC. ZBRENT1. ZBRENT2

DOUBLE PRECISION ALPHSR. PISR. X. XX. X2. X2ALPH.

XALPH. XXALPH. BETA. BETAS. BETA2. NEWBETA.

NEWBETS. NEWBET2. DER7. SENSE]. TIME. TIMEC.

DER3. DER6. RAD. RA02. TMIN. ETA. ETAB

COMMON 8162.11.38.I.E'l‘A.PS.P.B.A.Y.MODL.VINV.NP

+.EXTRA

COMMON/MOD/AAJ'L

COMMON/PROP/KSL. Q. ALPHSL. L. PI. ALPHS

COMMON/EQ/X

COMMON/RD/RAD. RA02

COMMON/TEMP/TMIN

EXTERNAL ERFC. ZBRENTI. ZBRENT2

KSL = 1.000

ALPHSL = 1.000

L = 400.000

Q = -1.000

ALPHS = 1.000

P1 = DACOS(-1.DO)

RAD = T02)

RA02 = T‘(1.1)

TIMEC = BS(l)

VARIABLES DECLARED

ALPHSR = ALPHSL“0.500

PISR = (PI“0.500)/2.DO

X IS TIE CALCULATED VALUE FOR LAMBDA

ZBRENTisarootfindingsubroutineusedtosolvethetranscendentalequationforthe

freezing from location See Numerical Recipes by Press et al.. Cambridge University

Press. New York. New York. 1986.

X = ZBRENT1(1.0D-4.2.D0.0.00100)

WRIT'E(*.‘)’X = ’.X

XX = X‘X

X2 = 2.000*X

X2ALPH = X2*ALPHSR

XALPI-I = X‘ALPHSR

XXALPH = XX'ALPI-ISL

TIME = ZBRENT2CTIMEC+L00-9.TIMEC + 0.01000.1.00-6. RAD. TIMEC)

BETA s RAD/((4.000*AIPIIS*TDE)**05DO)
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NEWBETA = RAD/((4.000‘AIJ’HS‘CTIME - TIMEC))“0.5000)

BETAS = BETA‘BETA

BETA2 = 2.0WBETA

NEWBETS = NEWBETA'NEWBETA

NEWBETZ = 2.000‘NEWBETA

DER3 = Q’EXP(-NEWBETS)/(2.000"'NEWBETS)

DER6 = ((-2.000“NEWBETS"AI..PHSL"EXP(-ALPHSL"I

NEWBETS) - EXP(-ALPHSL*NEWBETS))/

(2.000*NEWBETS*ALPHSR) + ALPHSR

‘EXP(-ALPHSL*NEWBETS))/((EXP(-ALPHSL*XX))

l(2.000*X*ALPHSR) - PISR‘ERFC(ALPHSR*X))

DER7 = RAD/(4.000"(ALPI-IS“0.500)*((TIME - TIMEC)"

+ (3.000f2.000)))

+
+
+
+

C

IF (1 .LE. EX'TRA(])) TIEN

CALL MODEL2(BS(1). ETA)

ETAB = ETA

CALL MODEL2(BS(1)*(1.000+1.00—12).ETA)

SENSE] = (ETA - ETAB)/1.0D-12

ETA = ETAB

ELSE

IF (NEWBETA .LT. X) TIEN

SENSE] = -DER3"'DER7

ELSE

IF (NEWBETA .GT. X) TIEN

SENSE] = -DER6*DER7

ELSE

SENSE] = 0.000

ENDIF

ENDIF

ENDIF

20) = SENSE]

RETURN

END

DOUBLE PRECISION FUNCTION ZBRENT2(X1. X2. TOL, RAD. TIMEC)

PARAMETER(TTMAX=1(X). EPS= 3.0E-8)

DOUBLE PRECISION A. B. C. D. E. FA. FB. FC

DOUBLE PRECISION TOL]. TOL. X1. X2. XM

DOUBLE PRECISION P. Q. R. S. FUNCL2. X. TIMEC. RAD

COMMON/EQ/X

EXTERNAL FUNCL2

A=X1

B=X2

FA=FUNCL2(A. RAD. TIMEC)

FB=FUNC12(B. RAD. TIMEC)
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IF(FB‘FA .GT. 0.000) PAUSE ’ROOT MUST BE BRACKETED FOR

ZBRENT2.’

FC=FB

DO 15 ITER=L1TMAX

IF(FB‘FC .GT. 0.000) TIEN

C=A

FG-FA

D=B-A

E=D

ENDIF

IF(ABS(FC) .LT. ABS(FB)) THEN

A=B

B=C

C=A

FA=FB

FB=FC

FC=FA

ENDIF

TOL1=2.000"EPS*ABS(B)+0.500*TOL

XM=0.500"(C-B)

IF(ABS(XM) .LE. TOL] .OR. FB .EQ. 0.000)TIEN

ZBRENT2=B

RETURN

ENDIF

IF(ABS(E) .GE. TOL] .AND. ABS(FA) .GT. ABS(FB)) THEN

S=FBIFA

IF(A .EQ. CYTI'IEN

P82.000"XM"S

Q=L000 - S

ELSE

Q=FAIFC

RSFB/FC

P=S“(2.0W*XM*Q*(Q-R) - (B-A)*(R-1.000))

Q=(Q-1.0IX))’(R-1.0m)‘(S-l.0m)

ENDIF

IF(P .GT. 0) Q = -Q

hABSCP)

IF(2.000"P .LT. MIN(3.0WXM*Q-ABS(TOL1*Q).ABS(E*Q)))TI'IEN

E=D

DIP/Q

ELSE

D=XM

E=D

ENDIF

ELSE

D=XM
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E=D

ENDIF

A=B

FA=FB

IF(ABS(D) .GT. TOL])TIEN

B=B+D

ELSE

B=B+SIGNCTOL1.XM)

ENDIF

FB=FUNQ.2(B. RAD. TIMEC)

15 CONTINUE

C

PAUSE 'ZBRENTZ EXCEEDING MAXIMUM ITERATIONS.’

ZBRENT2=B

RETURN

END

DOUBLE PRECISION FUNCTION FUNCLZCTIME. RAD. TIMEC)

DOUBLE PRECISION KSL. Q. ALPHSL. L. X. PI. ERFC. ALPHS.

DER]. DER2. DERB. DER4. DER5. DER6.

RAD. TIME. BETA. NEWBETA. TIMEC. FUNCL2A. FUNCLZB.

NEWBET2. NEWBETS. BETA2. BETAS. PISR. ALPHSR. X2.

XX. X2ALPH. XALPH. XXALPH+
+
+
+

EXTERNALERFC

COMMON/PROP/KSL. Q. ALPHSL. L. PI. ALPHS

COMMON/EQ/X

ALPHSR = ALPHSL*"‘0.500

PISR = (PI'“'0.500)/2.00

XX 8 X*X

X2 8 ZWX

X2ALPH 8 XZ‘ALPHSR

XALPH = X‘ALPHSR

XXALPH = XX‘ALPHSL

BETA = RAD/((4.000*AI..PI-IS"TIME)“O.500)

NEWBETA = RAD/((4.000*ALPHS‘(TIME - TIMEC))"‘"0.5000)

BETAS = BETA‘BETA

BETA2 = 2.000‘BETA

NEWBETS = NEWBETA‘NEWBETA

NEWBETZ = ZOWNEWBETA

DER] = Q'EXP(-BETAS)/(2.000*BETAS)

DER2 = -RAD/(4.000*(ALPHS“0.5000)‘(TIME"*(3.000/2.000)))

DER3 = Q*EXP(-NEWBETS)I(2.000*NEWBETS)
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DER4 = «RAD/(4.000"(ALPI'IS"‘“05000)”«TIME-TIMEC)""I

+ (3.000/2.000)))

DER5 = ((-2.0IX)*BETAS‘AIPHSL‘EXP(-ALPHSL*BETAS) -

+ EXP(-ALPHSL*BETAS))/(2.000"BETAS*ALPHSR)

+ + (ALPHSR‘EXH-ALPHSL"BETAS)»/(EXP(-ALPHSL

+ ‘XX)/(2.000*X*ALPHSR) - (PISR’ERFC(ALPHSR"X)))

DER6 = ((-2.000*NEWBETS‘AIPHSL‘EXH-ALPHSL‘NEWBETS) -

+ EXH-ALPHSL‘NEWBETSD/(Z.000‘NEWBE‘TS*ALPHSR)

+ + (ALPHSR‘EXPG-ALPHSL"NEWBETS)))/(EXP(-ALPHSL

+ *XX)/(2.000’X"'ALPHSR) - (PISR‘ERFC(ALPHSR"X)))

C

IF (BETA .LT. X) THEN

FUNCL2A = DERI‘DERZ

ELSE

IF (BETA .GT. X) TIEN

FUNCL2A = DER5'DER2

ENDIF

ENDIF

IF (NEWBETA .LT. X) THEN

FUNCLZB = DER3’DER4

ELSE

IF (NEWBETA .GT. X) TIEN

FUNCL2B = DER6‘DER4

ENDIF

ENDIF

FUNCL2 = FUNCL2A - FUNCLZB

RETURN

END

SUBROUTINE MODEL2(TIMEC. TIMEC2)

DOUBLE PRECISION X. RAD. RA02. TIMEC. TIMEC2. TIME2.

+ TIME2B. ZBRENT2. ZBRENT3. ERFC. TMIN

COMMON/EQ/X

COMMON/RD/RAD. RA02

COMMON/COUNT/M

COMMON/TEMP/TMIN

EXTERNAL ERFC. ZBRENT2. ZBRENT3

CALL MODEL3(TIMEC. TMIN)

MAX = 50

00 M = 1. MMAX

IF (M .EQ. 1) TIEN

TIMECZ = ZBRENT3(L00-4. 2.000. 1.00-6. TIME2. RA02)

ELSE

IF (M .GE. 2) TIEN

TIME2B=ZBRENT2(T'IMEC2+L00-9.TIMEC2+0.0200.1.00-6.RA02.TIMECZ)
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TIMEC2 = ZBRENT3(1.004. time2B - 1.00-6. 1.00-6.TILE2B. RA02)

ENDIF

ENDIF

IF (ABS(TIME2B . TIME2) .LE. 1.00-3) TIEN

RETURN

ELSE

TIME2 = TIME2B

ENDIF

E (M .EQ. MMAX) TIEN

WRITE(‘.")’NUMBER OF ITERATIONS OF M EXCEEDED’

ENDIF

ENDDO

RETURN

END

DOUBLE PRECISION FUNCTION ZBRENT3(XL X2. TOL, TIME2. RA02)

PARAMETER(ITMAXslm. EPS= 3.0E-8)

DOUBLE PRECISION A. B. C. D. E. FA. FB. FC

DOUBLE PRECISION TOLL TOL, X1. X2. XM

DOUBLE PRECISION P. Q. R. S. FUNCL3. X. TIME2. RA02. TMIN

COMMON/EQ/X

COMMON/TEMP/TMIN

COMMON/COUNT/M

EXTERNAL FUNCL3

=X1

B=X2

FA=FUNCL3(A. TIME2. RA02)

FB=FUNCL3(B. TIME2. RA02)

IF(PB‘FA .GT. 0.000) PAUSE ’ROOT MUST BE BRACKETED FOR

+ ZBRENT3.’

FC=FB

DO 15 lTERa-lfl'MAX

IF(FB‘FC .GT. 0.000) TIEN

C=A

FC=FA

D=B-A

E20

ENDIF

E(ABS(FC) .LT. ABS(FB)) TIEN

A=B

B=C

C-A

FA=FB

FB=FC

FCIFA

ENDIF
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TOL1=2.000*EPS"ABS(B)+0.SIX)“TOL

XM=0.500*(C-B)

IF(ABS(XM) .LE. TOL] .OR. FB .EQ. 0.000)TIEN

ZBRENT3=B

RETURN

ENDIF

IF(ABS(E) .GE. TOL] .AND. ABS(FA) .GT. ABS(FB)) THEN

S=FBIFA

IF(A .EQ. C)TI'IEN

P=2.000"'XM"S

Q=1.000 - S

ELSE

Q=FAIFC

R=FB/FC

P=S*(2.000"XM*Q*(Q-R) - (B-A)"(R-L000))

Q=(Q-1.ODO)*(R-1.ODO)*(S-1.0113)

ENDIF

IF(P .GT. 0) Q = -Q

P8ABS(P)

IF(ZDWP .LT. MIN(3.0m"XM*Q-ABS(TOL1‘Q).ABS(E*Q)))THEN

E=D

D=P/Q

ELSE

D=XM

E=D

ENDIF

ELSE

D=XM

E=D

ENDIF

A=B

FA=FB

IF(ABS(D) .GT. TOLDTHEN

B=B+D

ELSE

BBB-ISIGNCTOLIJCM)

ENDIF

FB=FUNCL3(B. TIME2. RA02)

CONTINUE

PAUSE ‘ZBRENT3 EXCEEDING MAXIMUM ITERATIONS.’

ZBRENT3=B

RETURN

END

DOUBLE PRECISION FUNCTION FUNCL3(TIMEC‘2. TIME2. RA02)

DOUBLE PRECISION KSL. Q. ALPHSL. L. X. PI. ERFC. ALPHS. TIME2.
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+ BETA. BETAS. BETA2. NEWBETA. NEWBETS. NEWBET2. ETA]. ETA2.

+ XX. X2. X2ALPH. XALPH. XXALPH. ALPHSR. PISR. RA02. TMIN.

+ TIMEC2

COMMONEQ/X

COMMON/TEMP/TMIN

COMMON/PROP/KSL. Q. ALPHSL. L. PI. ALPHS

COMMON/COUNT/M

ALPHSR = ALPHSL“0.500

PISR I: (PI"0.500)/2.00

XX = X‘X

X2 = 2.000‘X

X2ALPH = X2‘ALPHSR

XALPH = X‘ALPHSR

XXALPH = XX‘ALPHSL

IF (M .EQ. 1) TIEN

TIME2 = 1.05000‘TIMEC2

ENDIF

BETA = RAD2/((4.000*ALPHS*TIME2)“0.500)

NEWBETA a RAD2/((4.000*ALPHS*(TIME2 - TIMECZ))"0.5000)

BETAS = BETA*BETA

BETA2 = 2.000‘BETA

NEWBETS = NEWBETA‘NEWBETA

NEWBET2 = 2.000‘NEWBETA

IF (BETA.LT.X)THEN

ETA] = 1.000 - Q"(EXP(-BETAS)/BETA2 - EXP(-XX)/X2 -

+ PISR*(ERFC(BETA) - ERFC(X)»

ELSE

IF(BETA.GT.X)TIEN

ETA] = (EXH-ALPHSL‘BETASMBETAZ‘ALPHSR) -PISR*

+ ERFC(AIPHSR*BETA))/(EXP(—XXALPH)IX2ALPH

+ -PISR*ERFC(XALPH))

ELSE

ETA] a 1.000

ENDIF

ENDIF

IF (NEWBETA .LT. X) THEN

ETA2 = 1.000 - Q“(EXP(-NEWBETS)INEWBET2 - EXP(-XX)IX2 -

+ PISR*(ERFC(NEWBETA) - ERFC(X)»

ELSE

IF (NEWBETA .GT. X) TIEN

ETA2 :3 (EXP(-ALPHSL“‘NEWBETS)I(NEWBET2*ALPHSR)

+ -PISR*ERFC(AIJ’HSR*NEWBETA))I

+ (EXP(-XXALPH)/X2AIJ’H -PISR“ERFC(XAIJ’H))

ELSE

ETA2 = 1.000
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ENDIF

ENDIF

FUNCL3 a: TMIN- (ETAI - ETA2)

RETURN

END

SUBROUTTNE MODEL3(TIMEC. TMIN)

IMPLICIT REAL'8 (A-H.O-Z)

DIMENSION T(35m.5).Y(35(1)).SIG2(35(X)).B(5).Z(5).

+A(5).BS(5).VINV(5.5).EXTRA(20)

DIMENSION P(5.5).PS(5.5)

DOUBLE PRECISION KSL. Q. L. PL ALPHSL. ALPHS

DOUBLE PRECISION ERFC. ZBRENT]

DOUBLE PRECISION ALPHSR. PISR. X. XX. X2. X2ALPH.

XALPH. XXALPH. BETA. BETAS. BETA2. ETA. NEWBETA.

NEWBETS. NEWBET2. TIME. TIMEC. RAD. ETA]. ETA2.

RA02

COMMON SIGZ.T.2.BS.I.ETA.PS.P.B.A.Y.MODL.VINV.NP

+.EXTRA

(DMIVIONIMODIAAJL

COMMON/PROP/KSL. Q. ALPHSL. L. PI. ALPHS

EXTERNAL ERFC. ZBRENT]

KSL = 1.000

ALPHSL = 1.000

L = -](X).000

Q = -1.000

ALPHS = 1.000

RAD = T(I.2)

RA02 = T(I.1)

P1 = DACOS(-1.00)

TIMEC = BS(1)

ALPHSR = ALPHSL**O.500

PISR = (Pl*‘0.500)/2.00

X [S TIE CALCULATED VALUE FOR LAMBDA

ZBRENTisaNfindhgsubmufineusedmsolvethenanscendanalequafionforflre

freezing from location. See Numerical Recipes by Press et al.. Cambridge University

Press. New York. New York. 1986.

X a ZBRENT1(1.0D-4.2.D0.0.00100)

XX = X‘X

X2 = 2.DO*X

X2ALPH = X2*ALPIISR

XALPH = X‘ALPl-ISR

XXALPH = XX*ALPI-ISL

TIME = ZBRENT2CTIMEC+LOD-9.TIMEC + 0.01000.1.00-6. RAD. TIMEC)
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BETA = RAD/((4.0D0*ALPHS"'I'IME)“O.SIX))

NEWBETA = RAD/((4.0D0‘ALPHS‘TI'IME - TIMEC»“O.SOD0)

BETAS = BETA’BETA

BETA2 = 2.D0"BETA

NEWBETS = NEWBETA‘NEWBETA

NEWBET2 = 2.0D0‘NEWBETA

IF (BETA.LT.X)THEN

ETAl = 1.0D0 - Q*(EXP(-BETAS)/BETA2 - EXP(-XX)IX2 -

ELSE PISR‘(ERFC(BETA) - ERFC(X)»

IF(BETA.GT.X)THEN

ETA] = (EXH-AIPHSL‘BETASMBETAZ‘ALPHSR) -PISR*

ERFC(AIPHSR‘BETADKEXH-XXALPHMXZALPH

-PISR"'ERFC(XALPH))

ELSE

ETA] = 1.0D0

ENDIF

ENDIF

IF (1 .LE. EXT'RA(I)) THEN

ETA2 = 0.0D0

ELSE

IF (NEWBETA .LT. X) THEN

ETA3 = EXH-NEWBETS)/NEWBET2

ETA4 = EXP(-XX)/X2

ETA5 a ERFC(NEWBETA)

ETA6 = ERFC(X)

ETA7 = 1 - Q‘(ETA3 - ETA4 - PISR‘(ETA5 - ETA6»

ETA2 = ETA7

ELSE

IF (NEWBETA .GT. X) THEN

ETA2 = (EXH-ALPHSL‘NEWBETSWNEWBETZ‘ALPHSR)

-PISR*ERFC(ALPHSR*NEWBETA))I

(EXP(-XXALPI'I)/X2ALPH -PISR*ERFC(XALPH))

ELSE

ETA2 a 1.000

ENDIF

ENDIF

ENDIF

ETA = ETAl-ETAZ

TMIN = ETA

RETURN

END
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ThisfilerepresemstheinputfileforusewithNLlNAfORinthedeterminationofrcwim

prior information from two difierent radius locations. The first two entries in the second column

represemthen'eannent times fromtheprevious procedures,whilethefirsttwo entriesinthefourth

cohmnmpmsemmetwodifiemmmdiuslmanonwithmndomenom.1hisfifmwumnisfln

original radius values, with random enors.

12 1 2 200 1 l

.125000005+00

\
O
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Q
O
‘
M
A
w
N
—
I

10

11

12

l

2

. I65(X)OOOE+(I)

.2250“)me

.23941400E+01

.239414(X)E+Ol

.23941400E+01

.23941400E+01

.2394“(DE-+01

.99467(X)0E+(X)

.99467000E-t-(X)

.99467OIDE+CX)

.994670(X)E+(X)

.99467(XX)E+(X)

AWE-03

.100000005-03

. lflXDOWE-OZ

. lflXXXXDE—OQ

.IWOOIXDE-OZ

AWE-02

.10000000502

. “DOME-O2

.1000000013-02

.loooooooaoz

AWE-02

.ICXXXXXDE-m

.10167473E+(X)

.10745657E-l-(X)

.937932485-01

.1(X)74897E+(X)

.10728538E+(X)

.10788402E4-m

.82217395E-Ol

.IMS796BE-l'00

.86525441E-01

.95035257E-01

.91867172E-01

.92593108E-01

.1m98108E+(X)

.971 19240E-01

.95522674E-01

.99939520E-01

.10820452E+(X)

.99252245E-01

.84363144E-01

.168289'79E+m

. 15766006E+m

.16359131E+(X)

.14363310E+00

.16108979E+m
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