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ABSTRACT

A STUDY OF THE INTERLAMINAR STRESS CONTINUITY THEORIES
FOR COMPOSITE LAMINATES

By
Chun-Ying Lee

In this study, two stress continuity theories are presented. The first one, named in-
terlaminar stress continuity theory (ISCT), accounts for the variation of transverse dis-
placement through the laminate thickness. The continuity of interlaminar shear stresses
and normal stress across the laminate interfaces and traction conditions on laminate sur-
faces are satisfied exactly. The second, interlaminar shear stress continuity (ISSCT), sim-
plifies ISCT by assuming constant transverse displacement through the thickness. Thus,
only the continuity of interlaminar shear stresses and shear traction conditions on laminate
surfaces are enforced. The merit of these stress continuity theories is the direct calculation
of interlaminar stresses from constitutive equations instead of equilibrium equations. The
numerical examples for composite laminates with aspect ratio higher than five in cylindri-
cal bending and bidirectional bending using both theories show excellent accuracy com-
pared with elasticity solutions. ISCT provides significant improvement over ISSCT for
composite analysis only when the aspect ratio is lower than five. The comparison among
other displacement-based laminate theories and present theories is also performed.

Techniques to reduce the computational effort for these stress continuity theories

are proposed in response to the composite analysis of many-layer laminate. The layer re-



duction technique provides a methodology to retain good accuracy while reduces the num-
ber of degree-of-freedom in composite analysis using present theories.

The further applications of ISSCT in composite analysis, ¢.g., vibration, buckling,
nonlinear bending, nonlinear vibration, and free-edge stresses are studied. The associated
numerical examples show the feasibility and potential of using this new theory in the
study of composite laminates.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

_ Fiber-reinforced composite materials have been widely used in both aerospace and
automotive industries since 1960 due to their high stiffness-to-weight and high strength-
to-weight ratios. Their flexibilities in design and manufacturing are also excellent. How-
ever, because of the heterogeneity of the composite materials through the thickness and
the anisotropy in the individual layers, the design and analytical techniques developed for
conventional materials and structures cannot be used for composite materials. For exam-
ple, it is more accurate to express the strength of a composite material by a curve of prob-
ability of failure instead of a single value; the stress concentration around a cutout in a
laminated composite must account for the boundary-layer effect; the low ratio of trans-
verse shear modulus to inplane tensile mbdulus renders the composité laminates more vul-
nerable to transverse shear deformation; and the coupling effects among the inplane
loading, inplane shear deformation, and out-of-plane deformation make the prediction of
composite behavior more complicated. All these unconventional phenomena stimulate
new studies on the behavior of composite materials and structures.

The first theory used in the analysis of laminated composites is the classical lami-
nate theory (CLT). It is based on Kirchhoff’s deformation assumptions. However, due to
the low transverse shear modulus of the composite laminates, CLT seems to overestimate
the stiffness of laminated cqmposites due to the neglect of transverse shear deformation.
CLT has been there for long time. In recent years, many investigations have been focused
on the development of new or refined laminate theories to improve the prediction of the
behaviors of laminated composites with various types of geometry and loading conditions
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[14].

By modifying the assumption of the displacement field of CLT, the first-order
shear deformation theory (FSDT) [7] and the high-order shear deformation theories
(HSDT) (8-12] take the transverse shear deformation into account and therefore improve
the accuracy of composite analysis. Although the properties of the individual layers are
considered in these laminate theories, they virtually treat the composite laminates as sin-
gle-layer structures. Generally, these single-layer approaches give good results in global
responses, such as deflection, vibration frequency, critical buckling load, etc. However, as
far as the local responses of the composite laminates are concerned, the single-layer
approaches usually cannot generate satisfactory results. For example, the transverse
stresses and through-the-thickness deformation cannot be obtained from these techniques
directly. Unfortunately, these kinds of local information are crucial to the analysis of
delamination, debonding, and free-edge effect in composite laminates.

In view of the problems, a laminate theory based on multiple-layer approach is
really desired. Among the investigations in this area, the generalized laminated plate the-
ory (GLPT) (5], is the most recent and advanced technique. However, since the displace-
ment field used in the GLPT does not satisfy the interlaminar stress continuity at tﬁc
composite interfaces, the calculation of transverse stresses needs to resort to stress recov-
ery technique which is usually achieved by using equilibrium equations. During the stress
recovery process, the numerical differentiation can worsen the accuracy of the results.
This deficiency can be overcome with the introduction of interlaminar stress continuity on
the composite interfaces. In addition, the incorporation of interlaminar stress continuity
conditions in the displacement field has the potential to increase the accuracy and to
decrease the degree-of-freedom of the GLPT. This modvates the studies carried out in this

thesis.



1.2 Literature Review

Structures composed of laminated composites are frequently modeled as single-
layer plates by classical laminate theory. However, as the aspect ratio, i.e., the span to
thickness ratio, of a structure becomes smaller, the CLT can produce erroneous results [6].
This is due to the neglect of transverse shear deformation which is critically important in
materials which have relatively low transverse shear modulus compared to inplane tensile
modulus. To account for this deficiency, the idea of Reissner-Mindlin plate theory for iso-
tropic plates was first adopted by Yang, Norris, and Stavsky [7] for composite laminates.
However, the determination of shear correction factor for some particular problems is very
difficult. This shortcoming of the first-order shear deformation theory was overcome by
the so-called higher order shear deformation theories [8-12]. The introduction of a higher-
order displacement field made the shear correction factor redundant in the analysis. It also
automatically improved the accuracy of transverse shear stress distribution. Although the
high-érder laminate theories gave better predictions of global responses, such as deflec-
tion, vibration frequency, and critical buckling load, they were of single-layer approach
and discounted the independence of individual layers. Hence, the transverse stresses could
not be obtained satisfactorily from constitutive equations.

By considering the layers in a composite laminate individually, the multiple-layer
approaches generally produced more accurate results for both global and local responses.
According to the variational theorems employed, the approaches used for multiple-layer
laminate theories can be divided into the following four categories.

(1) Ambartsumyan’s Approach

This method was first proposed by Ambartsumyan for symmetric cross-ply lami-
nates [13], and further generalized by Whitney for symmetric laminates (14]. In this
approach, a continuous transverse shear stress field was assumed for composite laminates
first. Then, by using constitutive equations and integration through the thickness, a dis-
placement field was obtained. Based on this displacement field and equations of motion
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from classical plate theory, the governing differential equations were derived for compos-
ite analysis. Since no variational principle was used in this analysis, the displacement
field, goveming equations, and boundary conditions obtained from this approach were
variationally inconsistent. Moreover, the solutions only showed small improvements in
the global responses.

(2) Hybrid-stress Finite Element Method ‘

Due to the difficulty in satisfying the transverse stress continuity at the composite
interfaces by using conventional displacement-based finite element method [15], a so-
called hybrid-stress finite element method was developed to ov@mc this problem by
assuming a stress field for finite elements [16,17]. With the assumed stress field, which
satisfied the equilibrium equations exactly, and the principle of minimum complementary
energy, the formulation of finite element analysis was achieved. Because of the carefully
assumed stress field, the stresses resulted from this technique were very accurate when
compared with elasticity solutions. However, the shortcoming of this method was the
sophistication in determining an appropriate stress field. In addition, as the order of the
stress field increased, the derivation became very tedious. |
(3) Mixed Variational Principle

Another method to satisfy both displacement and transverse stress continuity con-
ditions at the composite interfaces was to assume displacement field and transverse stress
field independently. This technique was performed by Murakami and Toledano [18,19]
with the use of a mixed variational principle developed by Reissner [20]. Although the
inplane response was greatly improved by this technique, the transverse stresses needed to
resort to the equilibrium equations for more accurate results.

(4) Principle of Virtual Displacement

In this category, all approaches were based on assumed displacement fields. Seide

[21] assumed a layer-wise linear displacement field for composite laminates and solved

simultaneous equations for individual layers by considering interfacial continuity condi-



5

tions. DiSciuva developed a shear-deformable rectangular plate element based on a piece-
wise linear displacement field [22,23). With this linear displacement field, the transverse
shear stresses satisfied the continuity condition at the interfaces of the composite laminate.
However, the shear traction boundary conditions at top and bottom surfaces of composite
laminates were not assured. Therefore, the transverse stresses could not be calculated
directly from constitutive equations. Another approach, proposed by Hinrichsen and Pala-
zotto [24], used a cubic spline functions to describe the displacement field in the thickness
direction. However, this C? continuous displacement field resulted in a continuous strain
field through the thickness, hence overconstrained the composite response. Recently, a so-
called generalized laminated plate theory (GLPT) was presented by Reddy [5]. It was fur-
ther expanded by his colleagues [25,26]. In this theory, a layer-wise representation of
inplane displacements resulted in improved inplane response and transverse shear defor-
mation. However, due to the low-order displacement field used, the surface shear traction
boundary conditions land the interfacial transverse shear stress continuities could not be
satisfied beforehand [25,26]. A sophisticated technique using equilibrium equations for
recovering transverse stresses must be enforced in the post-process calculation [26].

Along with all the attempts mentioned above to solve the response of composite
laminates, there was little success in using elasticity approach. Pagano (6], and Pagano
and Hatfield [27] solved simply-supported cross-ply laminates under cylindrical bending
and bidirectional bending, respectively. The exact solution of natural frequencies for lami-
nates under cylindﬁcal bending was presented by Jones for cross-ply layups [28] and off-
axis laminae [29]. Kulkarni and Pagano extended this technique for off-axis laminates
[30). The vibration analysis for rectangular laminates by Srinivas, Rao, and Rao [31] was
limited to laminates composed of isotropic layers, while the study by Noor was associated
with vibration of cross-ply laminates [32] and stability of multi-layered composites [33].
The results from elasticity solutions can serve as examples for assessing the laminate the-

ories.



L3 Present Studies

Upon the demand for finding both displacements and stresses accurately and effi-
ciently in the composite laminate analysis, it is the intention of this study to develop a dis-
placement-based laminate theory which can calculate the transverse stresses directly from
the constitutive equations. Hence, the numerical differentiation during the recovery of
transverse stresses, which usually reduces the accuracy of the results, and other deficiency
of the recovery technique for some particular problems [34] can be avoided.

In order to calculate the transverse stresses directly from the constitutive equa-
tions, the displacement field should conform to the stress field in the laminate. In other
w<:.»rds, the continuity of interfacial tractions and the boundary tractions at top and bottom
surfaces of composite laminates need to be satisfied exactly when the displacement field is
assumed. These requirements can be accomplished by assuming layer-wise cubic dis-
placement functions through the thickness and incorporating the traction boundary condi-
tions in the formulation. With this conformal displacement field, the governing equations
and associated boundary conditions can be obtained via the principle of virtual displace-

-ment. In this study, an interlaminar stress continuity theory (ISCT) is derived first. Then,
by assuming constant transverse displacement through the thickness, which is used in
most laminate theories, the derivation can be reduced to interlaminar shear stress continu-
ity theory (ISSCT). The formulations of these theories constitute Chapter 2 of this thesis.

In Chapter 3, numerical examples for static bending are used to demonstrate the
accuracy of these interlaminar stress continuity theories by comparing them with elasticity
solutions. In addition, a comprehensive disscusion regarding the stress continuity theories
and other laminate theories is also presented.

Due to the increase of the order of displacement function through the thickness, the
number of displacement variables in the interlaminar stress continuity theories increases
accordingly. As the number of layers in a composite laminate increases dramatically, the
burden of a huge number pt' degree-of-freedom on the computational effort can easily
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jeopardize the feasiblity of these theories. Therefore, a layer reduction technique is pro-
. posed in Chapter 4 with a goal to keep the computational effort to minimum while stll
retain fair accuracy. The demonstration of this technique is carried out for ISSCT only,
though similar procedure can be used for ISCT.

Chapter 5 presents the applications of ISSCT for natural vibration, linear buckling
load, nonlinear bending, nonlinear vibration, and free-edge stresses of composite lami-
nates. Finally, the conclusions and recommendations for this study are summarized in
Chapter 6.



CHAPTER 2
INTERLAMINAR STRESS CONTINUITY THEORIES

2.1 Introduction

Ever since the use of classical laminate theory (CLT), many studies were devoted
to the dévelopmem of a more accurate theory for composite stress analysis. First was the
first-order shear deformation theory (FSDT). It accounted for transverse shear deforma-
tion which was ignored in the CLT. However, the difficulty in determining shear correc-
tion factor for FSDT rendered it inconvenient to use. By assuming higher order
displacement field, the high-order shear deformation theories (HSDT) overcame the prob-
lem of shear correction factor. They were also able to give good results for deflection and
vibration analysis. Regardless of their advantz.!ges, a more refined theory was desired to
present more accurate stresses. By modeling the individual layers of a composite laminate
separately, the multiple-layer theories gave improvement in predicting both deflection and
stress state. Nevertheless, among the developed multiple-layer theories, the continuity of
interlaminar stresses was not satisfied. Hence, the correct transverse stresses could only be
obtained by means of equilibrium equations. In this respect, two interlaminar stress conti-
nuity theories which allow the calculation of transverse stresses directly from the constitu-

tive equations are presented.

2.2 Interlaminar Stress antinuity Theory (ISCT)
In deriving the interlaminar stress continuity theory, the following displacement
field is assumed for an n-layer composite laminate:

n
u(nyn) = Y (U (xeP + 1 22067 + Uiz 067 + T 1 () 0N

A
im]
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where ¢’s are so-called Hermite cubic interpolation functions and are defined as follows

2 3
M 4 - Liak N | -3
o =1 3( h; ) +2( k;

2-2;

-] 2
¢2(‘-) = (2-2‘-_1) (l" h‘ )

]

- 2 - 3 2, 15283 2.2)
QYN (el 3 B WPY el il
2 3( % ) 2(' k;
2
; -z, -z,
00 = (-5 (( h; ) Tk )
¢l(‘l) = (0] = ¢3(‘) = ¢‘(‘) =0 l<l‘~_l or 2)8‘-

As depicted in Figure 2.1, (i) represents for the number of layer and &; the thick-
ness of the layer. U, V;, and W, denote single-valued displacement components at the in-
terface between (i) and (i+1) layers in x, y, and z directions, respectively. Hence, the
continuity of displacements across the interface is enforced. In addition, %5:_3, 37:—3, and
Ry; -2 stand for the first derivatives of u, v, and w with respect to z immediately below the i-
interface, respectively, while 13;_1,32;-1, and R;_ above the interface. Since the cond-
nuity of interlaminar tractions must be satisfied at every interface, some of the first deriva-
tives can be eliminated. .

In this study, composite laminates are assumed to deform within a linear elastic

range. Hence, the following linear strain-displacement relations hold.
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Figure 2.1 Coordinate system and displacement variables.
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du ov ow
e‘ = 3; R 8, = T’ K e‘ = ;;
(2.3)
ou v v ow du_ dw
Tt Em TRy ETutsm

With these strain components, the stresses in each layer can be calculated from the follow-

ing constitutive equations for orthotropic materials,

o . ~( )

S, Q1 212 Q13 Q56 e,
o, - | Q12 Q22 Q23 Q25 2 (2.4a)
0‘, Q;g ng Qn st t,
S, | Q16 Q26 Q36 Qs | 2,

s 10 % 0 CIPINNC

S bt v 2.4b
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where the definitions of Q’s can be found in Reference [35]. By substituting the displace-
ment field into the ransverse shear strains in the strain-diaplacement relations and then the
constitutive equations, the continuity condition for the transverse shear stresses at the i-in-

terface can be employed, i.e.,

O] (i+1)

[} [+}
{ yz } = { 2 } i=l23..n-1 (2-5)
Ors 1wy O =y

These equations can help to eliminate some variables. In fact, the following correlations

between the first derivatives can be established,

aw, |

$2i-1 | _ o] 8y O3y

{rz.--.}—[“ { 2‘_}*[31 8 2.6)
ox

where
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® @ A@] [+ AGsD
Ay Ay @D ABf [+ HG+D -7a)
Qs Qss| [Qus ~ Qss

' O] 0]
@ _(BuBu _|Audnl _[10 .
(5] '[’zx az,] o i i=123..1  (2.7b)

Similarly, the continuity condition of the transverse normal stress at the i-interface,

ie.,
o‘(i) |l- l" = O:i+ l)I:.l,- i= 1'2'3""'“.1 (2°8)
can also be satisfied by requiring
W, 23U, o 2
hici= PG g+ + 6 gy + O A 2.9
in which
(i+1) 0]
e - 2 2 (2.10a)
Q s
33
(i+]) ()
cp - G~ (2.10b)
2 ®
Q33
(i+1) ()
o - B2 (2.100)
Q233
Q(l+|)
€ = 2 (2.10d)
Q 8,

From Equatons (2.6) and (2.9), it is clear that the first derivatives of «, v, and w
with respect to z right below the interface are related to those right above the interface and

some other dispacement components. By letting
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hel=[30]  wa Bl @110

CPacac a0 a1 | (2.11b)

and changing the notations

fz,‘ =T, ; Sz,- =S,

i Ry=R; i=20123..n1 »
2.12)
Ponc1 =T, ; 821 =8, ; Raam1 =R, '

the displacement field can be rewritten as follows,

BW 3

im]

aw, w, .
v= z (Vi 100 +5;_ 100 + V00 +3,‘;’¢“’§ B‘%"’b- +AD0OT,+ae8s)

im]

2,0%i 0, @ i Vi
w= 2(W-,¢‘°+R‘ 07 + Wl + P00 T+ P00 (5 e g2he

3

It should be noted that the interlaminar stress continuity conditions reduce the total
number of displacement variables from 9a+3 of Equation (2.1) to 6n+6 of Equation
(2.13). In this study, for simplicity, a bidirectional laminate with dimensions of axb sub-
jected 10 a distributed lateral load ¢ (z y) on the top surface of the laminate is presented.
The shear tractions on both top and bottom surfaces and the normal traction on the bottom
surface are all equal to zero. Hence, with the principle of virtual displacement, the follow-

ing variational equation can be written for the composite laminate considered herein,
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T
] cx 888 T 8(2 )
0=[*f 2 o, 53, ...{ cyt} { €y } dz-q8W, |dydx (2.14)
IOIO J‘_; c: 88‘ 0'” 6(28"‘)
Oy ] (28,,)

By using the linear strain-displacement relation, Equation (2.3) can be expressed

el
. = (N9 (£} (2.15a)
zt
221’
2 (O]

{ ,,} = N (2 (2.15b)
2_ |

where the matrices are defined as follows,

9, | ¢ 05
) o | 1 )
L Q | |92 o' Cory| Cat'y| o0y 0
beded o (%% | 0| & | |
Bné, | B39, And, I Ay0,
B30, | By 9, Apd, Apd,
. Ced's (2.16a)
B
B30, _'_Bll" By, i Appdy i Apd,i Apd,i Agd,i
2%
LU LT LI e
’ = ! H ) g
Wl LT ] el (] foslesdens

Cadg C30i B8’y 1B 8+ 05 A0,

Aty [Cedy
L1 eaen
A21°'4ic4¢4 i

Cad,i Bpt'y+93i Byud', {Ant',
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™7 U,_, ;_, V,_, ,;_, aw,_, aWw,_, dW,_, aT,_, aT,_, 35;_, 3S;_
x w. -1 i-1 i-1 i-1 i-1 i=1
5‘ T v;; vr’ » ‘-paz ry :ayz o;; 95 :5; ’s;

W; U, v, v, AW, aWw, a%w, aT, 3T, &S, 3,
i ] (2.17a)

St it AP Rt e e R

®.T a’u,a’u,a’u a’v,a’v,a’v_,a -1 W,
(%, }'[Ui-vxz 'y iy ""x’ "dxdy ‘32 '9x '3y TiopSioy

R,_, R;_, W, ; 3; W, W, W, aw, aw, aR; IR,

cr L o e e i b i A LR P L :r](“"’)

It should be noted that (“) depicts the differentiation with respect to z. Substituting the
above expressions into Equation (2.15) and using Equation (2.4), the principle of virtual

displacement becomes

0 = [3[6 (182,17 [SKa] {Ra} + (82,} 7 (SK,] (R,} - qBW,) dydx (2.18)

In the above equation, the following notations, which represent for the assembled
matrices through the thickness, are used.

(% = 3 127} (2.19a)
im]
(t1 = Y 2”1 (2.19b)
im]
- ()
n Qll le Qﬂ Ql6
5k = 3 [0 )| 22920800 ()4 (2.20a)
sl Q13 O Q33 3
L QIG Q26 Q36 Q66_‘
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a ®
2_‘,!]:‘_‘[,1 ooy Wi (2.200)

It is not difficult to see that {%,} has dimensions of (13a+13) x1 while ({%,}
(14a + 14) x 1. Since the laminate surface traction conditions should be satisfied in the as-
sumed displacement ficld, the number of displacement variables can be further reduced.

First, the vanished shear tractions on the surfaces give rise to

M m ] [ 5,200
{ cyz} = Q4 Q4s 0 Ty = { 0} (2.21a)
o, ol o W, 0
1=z, 45 55 T0+$

. () A(W|]| § 3W.
Jled es’|] 2ty | L 0
s

(")
{ Xz }

Because the matrices of shear moduli are nonsingular, the following equations can be con-
cluded.

W, aw,
Soi - ;-’- H S = -5; (2.22&)
oW, w, :

Similarly, the conditions to satisfy the applied normal tractions on laminate surfaces,

o =0 . S| ,=9=)
I8 —a F B

2 2

can be achieved with the following two equations,

e au, oY v, Qi v, ¥,

Rym o e = e = (= =) (2.23a)
0 Qa(;w; Qg)b‘i Qg)é’i ax
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2 oW, 03, 0 W g
L By . n = 2.23b
o= o3y P & *5= oD (2:23b)

By incorporating Equations (2.22a,b) and (2.23a,b) in Equations (2.17a,b), the as-
sembled matrices {£,} and {%,} can be associated with the reduced ones, {X,} and

{X,},ie.

{Ra} = () {Xa} + {q,} (2:242)
(X} = (E) {X;} + {q,} (2.24b)

where [(E,] and (E,) are constraint matrices with dimensions of (13a+13) x (132 +3)

and (14n+14) x (14n+6) , respectively, while {q,} and {q,} are associated column ma-
trices related to the distributed loading ¢ (x, y) . Details of these matrices are listed in Ap-
pendix A. It can also be concluded that the total number of independent displacement
variables required for the reduced displacement field is 6a. Since both {q,} and {q,} are
known quantities, the variation of these two column matrices will vanish. Therefore, the

substitution of Equation (2.24) into Equation (2.18) yields

0= 200 18R} T (1SKa) (Ra} + (E,) (SKA] {,1)+

s - . (2.25)
{8X,}" ((SK,) {X,} + (E,) (SK,) {q,}) - g8 W,) dydx
where
(SKa) = [E)T(SR,] [E,] (2.26a)
(SK,] = (E,T(SK,] [E,] (2.26b)

2.3 Interlaminar Shear Stress Continuity Theory (ISSCT)
In the foregoing formulation for ISCT, the variation of transverse displacement w

in the thickness direction has been taken into account. For very thick composite laminates,
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as it will be seen later, this consideration provides a more accurate modeling for composite
deformation and stress analysis. However, the high degree-of-freedom results from this
assumption becomes a major concern for analysis efficiency. Moreover, as the aspect ratio
of a composite laminate increases, the assumption of uniform transverse displacement
through the thickness becomes more practical. Hence, there is & need to have a simpler
theory for composite lamainate analysis. An interlaminar shear stress continuity theory is
then proposed. '

Following the notations used in the previous derivation, the displacement field for

the interlaminar shear stress continuity theory can be written as

u(xy.2) = 2(”« ,(x.y)¢‘°+fz. 2500 + U,z 0 0 + B 1 (0 0{")

im]

v(xy,3) = 2 Vi1 @D 0D + 32200 +Vi(x ¢ +3ic1x N6 227

im]

w(xy,2) = wy(xy)

It should be noted that by assuming constant w over the thickness, the normal
strain in the z direction vanishes. Hence the effect of transverse normal stress is neglected
in this theory. In other words, the continuity condition of transverse normal stress, Equa-
ton (2.8), is automatically satisfied. Again, the number of the first derivatives in Equation
(2.27) can be reduced by employing the continuity conditions of transverse shear stresses
at the composite interfaces, i.e., Equation (2.5). With the same notations used in Equation

(2.12), the reduced displacement field becomes

b OO b aW DING a“'o
wm 3 U 00 4T 00 + U0 + A OO T A 05+ 8D 4050 +830 05

im]

2. M .. (oM™
va Z(V-m"’+5.-.¢‘°+m“’+au 0T+ AD s+ 800050+ B0 5

w = wo(xy) . (2.28)
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The principle of virtual displacement for the laminate with the same geometry and
loading condition as used in the formulation of ISCT can be obtained from Equation
(2.14) by simply dropping the virtual displacement term corresponding to the transverse
normal strain, the principle then becomes as follows,

A c T Se T
a 2 N £ y 8
o=[3[c [E:[ o, S, +{ :n} { sgﬁ }]dz-q&wo]dydx (229)
2\| o, 8(2:1’) =

Using Equations (2.3) and (2.28), the strains can be substituted by the displacement vari-

ables shown below,

U]

e, = v 22} (2.30a)
Zex,
2e (O] o ®

{ u:} = N71{%"} (2.30b)

where the following matrix definitions are used,

o [ ¢ ® And, Aude| |
(N,]= ) ¢, 4 Apd, Au%i
‘1 ’l 02 ¢2 ’3 ‘3 A12¢4 Aﬁ¢4 All" A21¢4

Bn“’ 32104
B0, B0, (2.31a)
B12941B110,+Bné,| By0,

B9,
1488y By,

1+Byn¢

! ":; "‘124"4 Apnd',
i
{

AT Tl e 1 @3
¥3i 934094400,

&
P
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i=1 95,y 9U; dU; aV, oV,

{x(,-)}‘r. oU;_, oU;_, aV,_, dV;_, oT;_, aT;_, 95;
L vT’ -a; 15 v3; nT’ '5 03; v;; -r’ ’;;'Ty

aT; aT; 3S; 35; 3%y 33wy 33w,
'Tx.r"x'si.s; '5;5’—'5’—2 (2.32&)
b dw, ow
{x'n}f - [Ui-l' VicrTicp Sic v Up Vo T S, ;;o'a;o] (2.32b)

It should be mentioned that although the same matrix notations as those of ISCT.
are used, the contents of these matrices are different. This also applies to the upcoming
derivations. Plug these expressions into Equation (2.29) and utilize the constitutive equa-
tions of Equation (2.4), after integration over the thickness, a similar equation as obtained
in ISCT can be achieved.

0 = [2[o (18R, TISRA (Ra} + (B} IR, (R} ~gBwodyds  (2.33)

In the above equation, all the matrices denote the corresponding assembled ones over the

thickness, i.c.,
= oD S oD
R} =Y (2 (=3} (2.34)
im] im]
- ®
. Jenea o |
(K] = 3 [0 W1 (01 05 0 (NS (2.35a)
i=1 1216 225 65
” Tr-Q 0 ()
(SR, = RTS8 M o "] vP1dz (2.35b)
‘_;lcrt-l LQ“ st

The matrices associated with the inplane strains have a dimension of (8n+11)
while those with transverse shear strains (4a +6) . Moreover, the shear traction-free condi-

tions on both top and bottom surfaces of the composite laminate enforce the displacement
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variables to be further reduced. This similar manipulation as performed in the derivation
of ISCT results in the following relations.
Sy = Sm -0 | T, =T a0
These equations can be employed to eliminate the dependent displacement variables in
{%.} and {%,} by introducing constraint matrices (E,] and (E,], i.c.,

{2} = [E,] (X,} (2.37a)
{2} = (E,) (X,} (2.37b)

where {X.} and {X,} are the reduced matrices with dimensions of (81 +3) and (4n+2),
respectively. The complete expressions of (E,] and (E,] can also be found in Appendix
A. With these reduced displacement matrices, the equation for the principle of virtual dis-

placement becomes
0 = [3[3 (18X} TISK. (X} + {8X,} T (SK,] (X,} - qBwy) dydx 2.38)
where
(SKa) = (E )T (SR (E,] (2.392)
(SK,] = [EJT(SK,] [E,] (2.39b)
2.4 Closed-Form Solution

The governing equations and associated boundary conditions for ISCT and ISSCT
can be obtained by substituting the displacement fields, Equations (2.13) and (2.28), into
the corresponding principle of virtual displacement, i.c., Equations (2.14) and (2.29), re-
spectively, with the use of Gaussian theorem. Since the purpose of this study is to discuss

and compare the results from different theories, these equations are not described here. In-
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stead, the techniques for solving the closed-form solution and finite element analysis are
presented. Since the solution phases for both ISCT and ISSCT are similar, only ISCT is
discussed.
For a laminate with all edges simply-supported and subjected to bidirectionally si-
nusoidal loading, |

- . kxx _ Ixy
9(zy) = “Zla"’nn7m—,,- (2.40)

there exists a closed-form solution. By assuming the following displacement functions,

U. = z Uf‘m?ﬁnm_’ T = 2 TH o g K% g IBY

i b J J a b
ki=1 hi=1
o ou . knx Iny Z. . krx Imy i=012,..n 2.41
V‘- = ‘.IE l i sm-;—cos-b— SJ = K ls;lsmTCOST jSI.ZJ....n-I ( )

-—.m.lxy = . krx | Ixy
W‘-.’ "lzlwgusmTﬂnT Rj.&.’zlk. sstm—

the boundary conditions on tﬁe edges will be satisfied automatically. In the above equa-
tions, the displacement variables with “-” on top of them represent for the corresponding
displacement amplitudes. Substitute these displacement functions into Equation (2.25)
and carry out the integration over the x-y plane, the governing equation for the unknown
displacement amplitudes can be obtained,

(o* (X%} = (F¥} k1=123.. oo (2.42)

In Equation (2.42), [D*] is a coefficient matrix with dimensions of 6ax6n, {X*'}
is a 6ax1 column matrix and contains all the unknown displacement amplitudes, and

{F*} a 6nx 1 column matrix associated with the external loading ¢ (x.y) .



2.5 Finite Element Solution
For loading types other than sinusoidal distribution and boundary conditions other

than simple support, a closed-form solution becomes impossible. Hence, finite element so-
lution should be pursued. In finite element formulation, a set of shape function for an ele-

ment on x-y plane is introduced,

{Xa} = [v,] {X}

) (2.43)
(%} = lv,) (X}

where {X} is the nodal column matrix and (] ‘s are the matrices consisting of the shape
functions and their derivatives. Plugging Equation (2.43) into Equation (2.25) and per-
forming the integrations, the principle of virtual displacement results in the following fi-

nite element equation

(K] {X} = {F} (2.44)
in which [X] is the stiffness matrix and {F} is the external loading vector, ie.,

(K1 = [5fo (lwJT(SKa] Lw,] + (W17 (SK,] [w,])dyds | (2.452)
(F} = - [3 [0 (LW ITIEIT ISR {q,} + W TIEITISK] (4,)) dydx

+[o[o (ot adyas (2.45b)

In die above equation {9} is the interpolation function associated with W, only.



CHAPTER 3
ASSESSMENTS OF THE STRESS CONTINUITY THEORIES

3.1 Introduction |

The stress continuity theories presented in the previous chapter provide a direct
way to calculate the interlaminar stresses from constitutive equations. In this chapter, sev-
eral examples which have exact elasticity solutions are used to demonstrate the accuracy
and'feasibﬂity of these theories. In addition, since the solutions from other laminate theo-
ries such as HSDT and GLPT are also available, it is the objective of this chapter to com-
pare the advantage and disadvantage of the different theories.

3.2 Numerical Examples for Stress Continuity Theories
3.2.1 Laminates under Cylindrical Bending |
For a composite laminate which consists of cross-ply layups and is under cylindri-
cal bending along x-axis, as shou;n in Figure 3.1, the displacement field becomes indepen-
dent of y-direction. Conséquently, the laminate analysis can be reduced to a two-
dimensional problem and is easy to be done. In fact, Pagano [6] has presented an elasticity
solution for this problem. His investigation has long been coasidered as a standard study
to assess the accuracy of laminate theories. Therefore, a similar routine is performed here.
The material properties used in this study are exactly the same as those used in [6],

ie.,

E, = 25x 10%si;E, = E, = 1x lO‘psi;G = G1,=0.5 % 10%psi; G,y = 02 % 10%psi
1 3 12 13 <]
Vi2 = Vi3 = Vpy = 0.25.

The results are presented with the following normalizations.

24
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Figure 3.1 Simply-supported composite laminate under cylindrical bending.
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The assessments of the interlaminar stress continuity theories are presented in the
following sections.

1. Assessment of ISSCT

The investigation starts from ISSCT. Tables 3.1 and 3.2 present both closed-form
solutions and finite element results for asymmetric [0/90] and.symmctric [0/90/0] lami-
nates, respectively. The normalized midspan deflection and transverse shear stress are of
major interest. In the finite element analysis, Hermite cubic interpolation functions are
used for through-the-thickness assembly while both cubic and linear interpolation func-
tions are used for inplane assembly. Hence, in an n-layer composite laminate, the number
of degree-of-freedom for one element is 8a+4 when using cubic functions while 4a +4
when using linear functions. As shown in Tables 3.1 and 3.2, only the four-layer ones are
presented with both cubic and linear interpolation functions for comparison. It is clear that
the cubic interpolation has faster convergence than the linear one even when they have the
same number of degrees-of-freedom. This conclusion becomes more distinct as the aspect
ratio of the composite laminates increases. Nevertheless, all the finite element results con-
verge to the closed-form solutions as the number of clements increases.

There is no surprise that the transverse displacement converges faster than the
transverse shear stress. This is because that ISSCT is a displacement-based approach. Fur-
thermore, the number of layers used in the analysis does not seem to have significant ef-
fect on the results, especially when the laminates have large aspect ratios, say S=20 and
S$=40. It should also be noted that due to the assumption of constant transverse displace-
ment through the thickness, both the transverse displacement and the transverse shear

stress show high deviations from the exact solutions when S=4. As the aspect ratio of the
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Table 3.1 Results of a nmply-supponed [0/90] laminate under cylindrical bending
by using ISSCT -

Aspect Inter- FEM
y i Closed-
ko mg"n No. of elements oo | Exact
2 4 6 10 20
Cubic | 4.7977 4.7808 4.7790 4.7786 4.7786 | 4.7T785
S=4 Cubic | 4.7983 4.7818 4.7801 4.7796 4.7796 | 4.7797 4.6950

Linear | 4.1088 4.6748 4.7311 4.7647 4.7760 | 4.7797
Cubic | 4.7983 4.7848 4.7802 4.7798 4.7797 | 4.7797

Cubic | 2.7122 2.7078 2.7071 2.7069 2.7069 | 2.7069
Cubic | 2.7122 2.7077 27071 2.7069 2.7069 | 2.7069 | 5 7027
Linear | 2.1405 2.5718 2.6490 2.6878 2.7030 | 2.7069 | “

W(é: 0) 8-20
Cubic | 27122 27077 2.7071 2.7069 2.7069 | 2.7069

Cubic | 2.6430 2.6414 2.6410 2.6409 2.6409 | 2.6408
Cubic | 2.6430 2.6414 2.6410 2.6409 2.6409 | 2.6407 | 5 ca0g

S=40 Linear | 20778 2.5051 2.5814 2.6201 2.6362 | 2.6407
Cubic |2.6430 26414 26410 2.6409 2.6409 | 2.6408
Cubic |0.8995 0.8555 0.8534 0.8531 0.8530 | 0.8530
St Cubic [ 09395 08763 08714 08704 08703 | 0.8703 | 09135

Linear | 1.0698 1.0710 0.9549 0.9010 0.8716 | 0.8703
Cubic | 0.9352 0.8735 0.8680 0.8666 0.8664 | 0.8664

Cubic | 6.1093 42095 3.9985 3.9416 3.9344 | 3.9340
Cubic | 6.1055 4.2548 4.0224 3.9503 3.9380 | 3.9372 | 3 9469
Linear | 4.8953 53319 5.3973 52201 4.6595 | 3.9372 | -
Cubic | 6.0885 4.2532 4.0221 3.9499 3.9373 | 3.9365

G.,(0,0)] s=20

Cabic | 13.933 8.8000 8.1848 7.8414 7.9038 | 7.8374
Cubic | 13.996 8.8347 82165 7.9213 7.8457 | 7.8395 | 5 0436
Linear | 9.7482 10.716 11.007 11.031 10.451 | 7.8395
Cubic | 13.979 88314 82156 7.9213 7.8450 | 7.8405

B
bbb |obbrd bbb aban ‘35 iy
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Table 3.2 Results of a simply-supported [0/90/0] laminate under cylindrical bending
by using ISSCT.

Aspect
ratio

No. of elements

2

4

6

10

form

29217
2.6596
29217

29110
2.8687
29110

2.8965
29100

2.9062
2.9098

2.9089
2.9097

2.9096
2.9096
2.9097

S$=20

0.6197
0.5039
0.6197

0.6179
0.5909
0.6178

0.6177
06176

0.6176
0.6140
0.6176

0.6176
0.6170
0.6176

0.6176
0.6176
0.6176

0.6172

05381
0.4264
0.5381

0.5370
0.5103
0.5370

0.5368
05252
0.5368

0.5368
0.5328
0.5368

05368
05359
0.5368

0.5368
0.5368
0.5368

05367

5,,(0,0)

14545
1.6571
1.4655

1.4265
1.5449
1.4351

1.4252
1.4917
1.4328

1.4251
1.4523
14322

1.4250
14323
14321

1.4251
1.4251
1.4321

14318

S=20

9.7495
10.446
9.7613

8.8230
9.7329
8.8279

8.7608
9.5946
8.7639

8.7471
94110
8.7495

8.7452
9.0906
8.7474

8.7451
8.7451
8.7472

8.7490

U
oabrbr|lovslosn|lovaloss]laasn 3

23.462
21.103
23479

13218
19.662
18.228

17.757
19.463
17.761

17.654
19.293
17.656

17.640
18.906
17.642

17.639
17.639
17.641

17.634
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laminates increase, good agreements between the ISSCT and the exact analysis are ob-
tained. In addition, it is concluded that the results of the symmetric layup, [0/90/0], show
better accuracy than those of the asymmetric layup, [0/90].
2. Assessment of ISCT
The same examples are investigated by using ISCT and the results are given in Tables 3.3
and 3.4. Comparing the closed-form solutions of ISCT with the exact solutions, it is clear
that both the transverse displacement and stresses converge as the number of layer increas-
es. However, the number of elements affects the solutions in a different manner. This re-
sult can be viewed from the finite element aspect ratio which is defined as the ratio of the
element length to the element thickness. For coxgggsjtq la;gijlatcs with high aspect ratios,
it requires more elements to keep thc/tfigtcﬂc—l_c_mcm aspect mﬁé\aoic to one. On the con-
trary, for compgsite laminates with low aspect ratios,Ait requires fewer elements. Accord-
ingly, thcre is 1o gc}ygnmgc to use too many elements for composite laminate with small
aspect ratio. It then is understandable that the convergences of the transverse displacement
and transverse shear stress are not monotonic for the cases under investigation. In addi-
tion, for symmetric laminates, [0/90/0], the interlaminar normal stress converges to the ex-
act solution very well. However, for asymmetric laminate, [0/90], this stress converges
from lower values at S=4, while from higher values at S=20 and S=40.
3. Effect of Aspect Ratio ‘

In order to verify the feasibility of using the new theories for both thin and thick
composite laminates, the normalized deflections at the midplane and midspan are present-
ed in Figure 3.2. It is in a logarithmic scale with the aspect ratios ranging from four to 200
for all three laminates, [0], [0/90], and [0/90/0]. The results show that both stress continu-
ity theories agree with the exact solutions perfectly through the entire span of aspect ratio.
Hence, they can be used for deflection analysis for both thin and thick composite lami-

nates.



Table 3.3 Results of a simply-supported [0/90] laminate under cylindrical

bending by using ISCT.

Aspect
ratio

£3

R,

No. of elements

2

4

10

form

Smd

4.7266
4.714
4.7139

4.7281
4.7002
4.6984

4.7402
4.7014
4.6979

4.7349
4.7033
4.6989

4.6918

-4.6950

4.6952

4.6950

$=20

2.7080
2.7079
2.7079

2.7037
2.7036
2.7036

2.7029
2.7028

2.7030
2.7027
2.7027

2.7027
2.7027
2.7027

2.7027

2.6418
2.6418
2.6418

2.6403
2.6403
2.6403

2.6399
2.6398
2.6398

2.6398
2.6398
2.6398

2.6398
2.6397
2.6399

2.6398

3,,(0.0

0.9806
09854

0.9936
0.9349
0.9259

1.1218
0.9781
0.9352

1.1189
0.9742

0.9055
0.9212
09174

0.9135

S=20

6.1426
62074
6.1872

4.2638
42775
4.2742

4.1143
3.9631

4.3936
3.9563

39451
39479
39472

3.9460

14371
14384
14356

8.9330

8.9371 82500

8.9305

8.0049
1.9306

8.1679
7.8561

7.8431
7.8437
7.8448

7.8436

3,(.0

0.6192
0.7041
0.7436

0.7629
0.7468
0.7609

0.8531
0.7880

0.8533
0.7890

0.8468
0.7947
0.7887

0.7860

S=20

1.0821
12045
12507

0.8203
0.8547
0.8768

0.8874
0.8249

0.8889
0.8216

0.8875
0.8273
0.8208

0.8180

ANV ORI RN RN RN AN IOERND | OASBN

32649
3.4873
35518

1.4036
1.4349
1.4559

0.9326
0.8710

0.8955
0.8345
0.8278

0.8891
0.8285
0.8220

0.8193
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Table 3.4 Results of a simply-supported [0/90/0] laminate under cylindrical

bending by using ISCT.
FEM
Aspect | No. of Closed-
ratio | layers No. of elements form Exact
2 n 3 10 20
sas | 4 [ 29025 28982 2901 29052 2.9078| 2.8868| , goce
6 | 2.8992 2.8837 2.8879 2.8878 2.8880 | 2.8872
1 4 | 0.6194 06176 0.6174 0.6173 0.6173| 0.6173
wW(30) | =20 | ¢ | 06194 06175 06173 0.6173 0.6173 | 0.6173| 06172
4 | 05380 0.5369 0.5368 0.5367 0.5367| 0.5367
S=40 | ¢ | 05380 0.5369 05367 0.5367 0.5367| 0.5367| 05367
ses | 4 | 14548 14653 15136 16001 res3e| 14244] | o0
6 1.4643 14337 1.4318 1.4341 1.4396| 14314| ™
- 4 | 97509 88301 8.7740 8.7811 8.8976| 8.7462
G,,(0,00| S=20 | ¢ | 97513 88297 8.7661 8.7514 8.7440| 8.7480| 37490
4 23471 18224 17.767 11673 17.706| 17.640
S=40 | ¢ | 23485 18228 17763 17.660 17.645| 17.641| 17643
ses | 4 | 035000 04993 0.4976 0.4985 0.4985 [ 0.4985[ o 10e
6 | 05000 04987 04987 04987 0.4987| 0.4987| O
_ 1 4 | 0.5018 0.5002 0.5002 0.5001 0.5001| 0.5001
5,(30| =20 | ¢ | 03018 035000 0.5000 0.5001 0.5001| 0:5001| 0-5001
4 | 05018 04997 04999 0.5000 0.5000| 0.5000
S=40 | 6 | 05018 04997 04999 0.5000 0.5000| 05000| 05000
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Figure 3.2 Normalized transverse displacements at midspan for [0], [0/90], and
[0/90/0) laminates with different aspect ratios. ‘
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4. Through-The-Thickness Distibution

Aside from the results calculated at the particular points as discussed in the previ-
ous tables, another way to assess the results obtained from the new theories is to compare
them with exact solutions through the thickness. The closed-form solutions for [0/90] and
[0/90/0] laminates with S=4 using four-layer analysis are presented in Figures 3.3 to 3.10.
~ In Figures 3.6 and 3.10, the results of transverse normal stress o, of ISSCT are recovered
from equilibrium equations. Details of the stress recovery néchnique will be discussed in
Section 3.3.2. From these figures, it is concluded that both ISSCT and ISCT agree with the
clasticity analysis very well. In most cases, ISCT can improve the results of ISSCT slight-
ly except for the transverse normal stress in the [0/90/0] laminate, shown in Figure 3.10.
Studies show that the recovered transverse normal stress from ISSCT gives better predic-
tion than those directly calculated from ISCT.

3.2.2 Laminates under Bidirectional Bending
Consider a simply-supported cross-ply laminate which has dimensions of a x b and
is subjected to bidirectionally sinusoidal loading, i.e.,

qm»-%¢§ﬂ¥
as shown in Figure 3.11. The three-dimensional elasticity solution has been obtained by
Pagano and Hatfield [27]. It is the purpose of this study to compare the stress continuity
theories with the exact solution. Although the results presented here are all for symmetric
cross-ply layups, the theories have no difficulty in analyzing asymmetric or angle-ply lam-
The material properties studied here are exactly the same as those used in cylindri-

cal bending. Similarly, the following normalized quantities are used in the presentations
_  100Ep’w K?
w=

- = = - = A
. (6),0,0) = —(0,0,0. ) ; (0,0, =—(0,,0,.,)
P 1» 92 O¢) od * %7 %n (GpTg) = 253 % On




— Exact
--- [SCT
- ISSCT

[0/90] —4-
S=4

Figure 3.3 Normalized inplane dxsplacement #(0) of a simply-supported [0/90]
laminate with S=4 under cylindrical bending.
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0.4 e 1SSCT
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z/h
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Figure 3.4 Normalized inplane normal stress &_(1/2 i -
lacxinate with S=4 gy . e, (172) of a simply-supported (0/90]



0.5
— Exact
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0.4" come lsscr
0.3 -
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0.1 -
3
[0/90]
S=4

Figure 3.5 Normalized transverse shear stress 3., (0) of a simply-supported [0/90]
laminate with S=4 under cylindrical bending.
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0.5
— Exact
--- ISCT
0.4- - ISsCT
0.3-
0.2-
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z/h i -
1.0
[0/90]
S=4

Figure 3.6 Normahzed transverse normal stress G, (1/2) of a sxmply-supponed [0/90]
laminate with S=4 under cylindrical bending.
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— Exact

--- ISCT
0.4 - wee  ISSCT
z/h
-1.0 -5 1.0

G

[0/90/0] =4

S=4

Figure 3.7 Normalized inplane displacement & (0) of a simply-supported [0/90/0]
laminate with S=4 under cylindrical bending.
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— Exact

--- ISCT

- ISSCT

0.1-
© =20 -10 T 10 20

’X
[0/90/0]
Sm4

Figure 3.8 Normalized inplane normal stress &, (1/2) of a simply-supported [0/90/0]
laminate with S=4 under cylindrical bending.
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Figure 3.9 Normalized transverse shear stress 3_,(0) of a sxmplyosupponed [(0/90/0]
laminate with S=4 under cylindrical bending.
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0.5

[0/90/0]
Sm4

Figure 3.10 Normalized transverse normal stress G, (1/2) of a simply-supported [0/90/0]
laminate with S=4 under cylindrical bending.



42

. KX . XY '
q(xy) = "0“"7)"“(7;" A

x | all edges are simply-supported

Figure 3.11 Simply-supported composite laminate under bidirectionally sinusoidal
loading.
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" Since the maximum values of the displacement and stresses are of major concern, only the
maximum values in the individual cases are reported. The studies are based on both
closed-form solution and finite element analysis and are presented below.
1. Effect of Layer Number

The closed-form solutions of a square (a=b) [0/90/90/0] and a rectangular (b=3a)
. [0/90/0] laminates from ISSCT are given in Tables 3.5 and 3.6, respectively. Comparing
the results, it is obvious that the increase of layer number introduces very small improve-
ments to both displacement and stresses. This is also true for the analysis using ISCT
shown in Tables 3.7 and 3.8.
2. Effect of Laminate Thickness

From Table 3.5 to Table 3.8, it is clear that the conclusion drawn from the result of
composite laminates under cylindrical bending is still valid in the case of bidirectional
bending. More specifically, both ISSCT and ISCT are feasible for the analysis of both thin
and thick composite laminates.
3. Effect of Element Number

‘ In the finite clement analysis, because of the symmetry of the problem, only one

quarter of the laminate needs to be examined. Table 3.9 presents the ISSCT results of a
simply-supported [0/90/90/0] square laminate under bidirectional bending. In order to
evaluate the influence of the order of interpolation functions on the inplane assembly, both
linear and cubic interpolation functions are used. However, the assembly of the displace-
ment components through the laminate thickness uses a 12-term cubic interpolation func-
tion. Based on these interpolation functions for element assembly, the degree-of-freedom
of a four-node rectangular element is 16a + 12 for linear function while 48a + 12 for cubic.
For a [0/90/90/0] composite laminate, if » = 4 is selected, the total number of degree-qf-
freedom for a finite element mesh can be calculated accordingly. The numbers for differ-
ent cases are presented as with parentheses in Table 3.9. It then can be seen that with ap-

proximately the same number of degree-of-freedom used in the finite element analysis,



Table 3.5 Closed-form solutions of a

(a=b) laminate under bidirectional bending by using ISSCT.

simply-supported [0/90/90/0] square

; Solution w 3, 3, g, 3 5
dlayer | 19555 +07048 206703 02876 02187 F0.0465
8-layer | 19555 07035 £0.6695 02915 02192 30.0465

4 124ayer | 19555 +0.7034 06694 02918 02193 F0.0465

+0.720  +0.663 -0.0465
Exact 1937 Q220 +0663 o292 o219 Q%63
4layer | 07324 +0.5583 103999 0.1957 03006 F0.0274
8-layer | 07324 05583 103999 0.1961 03007 F0.0274

10 | 124ayer | 0.7324 105583 103999 0.1962 03007 F0.0274

+0.559  +0.401 -0.0275

Exact 0737 *933% +0401 0196 o301 ;%%
4-layer | 05078 05411 $03071 01563 03272 70.0228

8-layer | 05078 0.5411 103078 0.1564 03272 0.0228

20 | jo2.ayer | 0.5080 +0.5413 03072 0.1564 03272 70.0228
+0.543  +0.308 00230

d-layer | 04296 +0.5366 +02699 01400 03377 F0.0211

8-layer | 04307 0.5380 02705 0.1398 03378 30.0212

100 | jojayer | 04318 +0.5394 02713 0139 03381 F0.0212
0539 +0271 -0.0214

G, = 64(5 ,0,0), G5 = G4(0, 2.0)

l’al(gnet')v cz’“g(;’b =2 ) 0"80'6(0.0,1 5)




Table 3.6 Closed-form solutions of a simply-supported [0/90/0] rectangular
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(3a=b) laminate under bidirectional bending by using ISSCT.

% Solution w S, 0, S, S S
4layer | 28406 1.1254 01115 00319 03494 F0.0277
6-layer | 28409 $1.1209 0.1115 00320 03512 F0.0277

4 10-layer | 28409 +1.1205 #0.1115 00320 03512 F0.0277

+1140  +0.109 -0.0269
Exact | 2820 +L180 +0108 0334 o351 00269
d-layer | 09178 +0.7265 £0.0424 00154 0.4196 F0.0121
6-layer | 09178 07264 100424 00154 04199 F0.0121

10 | jouayer | 09178 $0.7264 +0.0424 00154 04198 F0.0121

+0.726 +0.0418 -0.0120

Exact | 0919 *9726 +00418 00155 o420 90120
4layer | 06073 +0.6501 $00301 00124 04342 F0.0092
G-layer | 06073 06501 00301 00124 04343 F0.0092

20 | joayer | 06073 106501 $0.0301 00120 04340 F0.0092
+0650 +0.0294 -0.0093

4-dayer | 05053 +0.6243 $00260 0.0114 04392 F0.0083
6-layer | 05061 06252 100260 00114 04392 0.0083

100 | jo.myer | 05061 $0.6253 00260 0.0109 04389 F0.0083
+0624 +00253 -0.0083

Exact | 0508 *9824 +00253 0108 0439 ;30083

_ _,ab_h - _.,ab.h - - h

0'1 = cl (i. i,ii). '62 = Gz(i, -2',13) ’ 06 = 0'6(0.0.12)

64 = 64(‘230-0) ’ 65 = as(ov g'o)




Table 3.7 Closed-form solutions of a simply-supported [(0/90/90/0] square
(a=b) laminate under bidirectional bcmg by using ISCT. B

a N - - - - -
& Solution w % o, o, O S

)

7216 +0.6642 -0.0467
alayer | 19377 Q26 +06642 2876 02189 QT

+0.7203  +0.6628 -0.0467
4 Slayer | 19369 ‘D203 +06628 02912 02193 ;0067

+0.720 +0.663 -0.0465
Exact 1937 5634  -0665 0292 0.219 +0.0458

+0.5587 +0.4010 -0.0275
4layer | 0.7371 +04010 01955 03013

-03591 +0.0276

+0.5586 +0.4010 -0.0275

10 | Slayer | 07370 *03386 +04010 01959 03014 ;90273
+0559  +0.401 -0.0275

Exact | 0737 *+933% +040L o196 o301 ;%273

+0.5428 +0.3084 -0.0230
slayer | 05130 3028 +0308% ousss oz G0N

+0.5428 +03084 -0.0230

+0543  +0308 -0.0230
Exact | 0513 *+9343 +0308 o156 o328 ;0020

4-layer 04346 +0.5389 +0.2710 0.1389 03388 0.0214
100 8-layer 04346 +0.5389 10.2710 0.1389 03388 F0.0214
Exact | 0435 0539 $0271 0.139 0339 $0.0214

ab h _ -,8b A = - h
-'ii)' 02 = cz('z'p intz) ’ 06 = 06(00 09 t‘2')

5, = 3,(3.0.0), 3 =3,(0,3,0
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Table 3.8 Closed-form solutions of a simply-supported [0/90/0] rectangular
(3a=0b) laminate under bidirectional bending by using ISCT.

a . - - - - - -
i Solution w g, G, g, O O

+1.1496 +0.1085 . -0.0269

+1.1449 +0.1088 -0.0269

4 Glayer | 28212 11449 +0.1088 00333 03511 ;0025
+1.140  +0.109 -0.0269

Exact 2820 o0 -0.119 00334 0351 (40781

+0.7261 +0.0417 -0.0120
slayer | 09189 *+QT261 +001T op1s2 04108 ;30120
10 6layer | 09189 +07260 +00418 44,57 4201 -0.0120

-0.7254 -0.0435 +0.0123
+0.726 +0.0418 -0.0120

+0.6500 +0.0294 -0.0092

4-hyer 0.6095 -0.6502 -0.0299 0.0119 0.4343 +0.0093
+0.6500 +0.0294 -0.0092

20 6’hyet o-ms - 0.6”1 - 0.0299 0.01 19 0.4344 + o.ws
+0.650 +0.0254 -0.0093

) Exact 0.610 -0650 -0.0299 0.0119 0434 +0.0093

4-layer 05077 10.6244 10.0253 0.0108 0.4393 ¥0.0083
100 6-layer 05077 +0.6244 +0.0253 0.0108 0.4393 ¥0.0083
Exact 0508 +0.624 +0.0253 0.0108 0439 +0.0083

o, =0, (5. ioti)o g, = 0’3(5- i.ig) y Og = 66(0.0,15)

b

8, =5,(300, 3=37050
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Table 3.9 Finite element solutions of a simply-supported [0/90/90/0] square

(a=b) laminate under bidirectional bending by using ISSCT.

8 | No.of | Interpolation| = s = = = =
R | elements| function v % 2 S O Ss
11 | [Linear | 16979 05420 05136 03223 02498  0.0367
x Cubic(204) | 1.9484 08039 0.7593 03241 02318 0.0463
2x3 | Linear(171) [ 19059 06748 0.6404 03132 02353  0.0448
Cubic(459) | 1.9516 0.7149 0.6795 02908 02197 0.0464
4 3x3 | Linear324) [ 19361 06933 - 0.6584 03084 02288  0.0459
Cubic(816) | 1.9527 07072 0.6723 02879 02186 0.0465
axs | Linear(d75) [ 19457 06990 0.6641 03036 02253  0.0462
Cubic(1275)| 19537 0.7065 0.6709 0.2876 02186  0.0465
Closed-form 19555 0.7048 0.6703 02876 02187 0.0465
x1 | Linear(76) | 0.5651 03899 02921 00853 03022 00198
Cubic(204) | 0.7204 06607 0.5032 02766 03306 0.0267

axp | Libear(171)1 07043 05281 03823 0.1764 03189  0.0261
Cubic(459) | 0.7309 05727 04121 02052 03047 0.0275
10 33 | LiearG24)[ 07211 05463 03929 01969 03175  0.0269
Cubic(816) | 0.7315 05610 04024 0.1973 03013 0.0274

axs | Lnear@75)| 0.7265 05520 03963 02039 03154 00271
Cubic(1275)] 0.7319 05605 0.4007 0.1961 03008  0.0274
Closed-form 0.7324 05583 03999 0.1957 03006 00274
1x1 | Linear(76) | 03107 03122 0.1815 0.2361 0.1827 00133
Cubic(204) | 0.480S 06501 04460 02775 04069 0.0203
2xa | Linear(171) [ 04796 05069 0.2893 0.0343 03116 00214
Cubic(459) | 0.5062 05623 0.3277 0.1836 03413  0.0229
20 3x3 | Linear(324)| 04968 05277 03002 0.1077 03317 0.0223
Cubic(816) | 0.5071 05487 03134 0.1620 03300 0.0228
4x4 | Linear@75)| 05020 05340 03035 0.1355 03384 0.0225
Cubic(1275)] 0.5074 05461 0.3098 0.1580 03280 0.0228
Closed- form 0.5078 05411 03071 0.1563 03272 0.0228
1x1 | Linear(76) | 0.0403 00489 0.0246 13249 04703  0.0019
Cubic(204) | 02299 05089 0.3066 09368 0.1338 0.0060
2xa | Linear(17D)[ 03249 04053 02039 23455 0.6838 0.0160
Cubic(459) | 04177 05977 03170 0.2904 0.5130  0.0204
100| 5.3 | Linear324)[ 04027 05029 02529 12435 0.1987 00198
Cubic(816) | 04276 05615 0.2913 0.1933 03940  0.0210
4x4 | Linear(475)| 04187 05230 02630 06719 00335 0.0206
Cubic(1275)| 04291 05471 0.2805 0.1699 03597  0.0211

Closed- form 04296 05366 02699 0.1400 03377 0.0211

* numbers in parenthesis denote the corresponding degree-of-freedom for each mesh
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elements with cubic interpolations show faster convergence at small aspect ratios. Howev-
er, if the aspect ratio of the composite laminate becomes large, although cubic ones still
have better results for transverse stresses, linear ones can give good predictions for inplane
stresses. In addition, it is also interesting to know that as the aspect ratio of the laminate
increases, more clements are required for convergence. Because of the excellent results
from ISSCT and the requirement of a very large degree-of-freedom for ISCT, the finite el-
ement analysis based on ISCT is omitted.

3.3 Comparison of Different Laminate Theories
In addition to the stress continuity theories, a couple of other laminate theories also
deserve some attention. The comparison of the laminate theories with the stress continuity

theories becomes an important study in assessing ISSCT and ISCT.

3.3.1 Number of Degree-of-Freedom

Although the accuracy is an essential requirement for a good theory, the number of
displacement variables used in the theory can affect the feasibility of the theory. Fortu-
nately, the rapid renovation of computer has made the computational work easier and fast-
er than ever before. Nevertheless, the reduction in the wmpumﬁmﬂ effort should never
be ignored. In the following sections, two typical displacement-based laminate theories
are compared with the stress continuity theories for feasibility evaluation. The first one
stands for a singié?layér approach. It is, in fact, a high-order shear deformation theory and
has the following displacement field [11]:

4 2.2 awp
u(x,yz) = "o(Iv.Y)*"(V,"E(;) (V,*‘a; ))

4 22 w,
VR = () +2(0,= 5 () (¥, +5) 3.1

w(xy2) = wy(xy)
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In Equation (3.1), 4, v, and w, denote the displacements on the midplane in the x, y, and z
coordinates, respectively, while y, and v, are the rotations of the normals to the midplane
about y and x axes, respectively. It can be seen that the number of displacement variables
is five regardless of the number of layers in the composite laminate.
The other approach is the generalized laminated plate theory [5]. This mutliple-
layer approach has the following displacement field:

N
u(zy.2) = ug(x) + 3 () ®;(2)
i=1

N
v(%y,2) = vy(xYy) + Zw(x.)) @, (2) (3.2)
ji=1

w(xyz) = wy(xy)

where the quantities with subscript 0 denote the midplane displacements, while ®'s are
the global interpolation functions for thickness assembly. U7 and V7 are the nodal displace-
ments relative to the midplane. It should be noted that the number of disﬁlaccment vari-
ables used in Equation (3.2) totally depends on the order of the interpolation functions and
the number of layers, », in the laminate of interest. For instance, the order of a piecewise
linear interpolation gives rise to N = a+ 1. Since U7 and V7 vanish on the midplane accord-
ing to definition, it then results in ¥ = ». Hence the total number of displacement variables
for linear interpolation is 2a + 1. With higher-order interpolation in each layer, the condi-
tions for free shear tractions on top and bottom surfaces of the composite laminate can
eliminate four more variables. This brings the total number of displacement variables to
4n-1 and 6a -1 for quadratic and cubic interpolations, respectively.

Table 3.10 gives the comparison of the degree-of-freedom among the theories-of
single-layer approach, multiple-layer approach, and the stress continuity theories present-
ed in this thesis. In this table, GLPT! represents for GLPT based on quadratic interpolation
function while GLPT? cubic interpolation function. It can be seen ISSCT and GLPT! have
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Table 3.10 Comparison of different laminate theories for an n-layer laminate.

Theory | gicpimcoment varisbes | smey | shoravs | nommal s
HSDT 5 " constitutive equilibrium equilibrium
GLPT! 4n-1 constitutive equilibrium equilibriom
GLPT? 6n-1 constitutive equilibrium equilibrium
ISSCT 4n+1 constitutive constitutive equilibrium
ISCT 6n constitutive constitutive constitutive
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nearly the same number of displacement variables. However, ISSCT can describe a cubic
displacement field through the thickness of each layer while GLPT" only quadratic. More-
over, for the same cubic interpolation functions through each layer, GLPT? requires nearly
50% more displacement variables than ISSCT. As also shown in Table 3.10, ISCT de-
mands much more displacement variables than ISSCT, though the former is rewarded with
the simplicity of calculating the transverse normal stress directly from constitutive equa-

tions.

3.3.2 Recovery of Transverse Stresses
The recovery of transverse stresses from inplane stresses can be accomplished by

using the equilibrium equations in the absence of body forces, i.c.,

, d_ &
0, =~f 457+ 55 (3.32)
2
30, 3o
o =" (55 *+35 )4 (3.3b)
2
3, 3
o, = ~['h (5455 e (33¢)
~3

It must be mentioned that in the analysis of closed-form solution, the distribution of all un-
known variables in the x-y plane are exact functions. In other words, there is no inplane as-
sembly in the closed-form analysis. Hence, the derivatives involved in Equations (3.3) do
not include any error due to numerical differentiation. However, in the finite element anal-
ysis, a composite laminate is discretized into many elements. The variables need to be as-
sembled by interpolation functions and are not exact. The errors from numerical
differentiations become unavoidable and always cause losses of accuracy. In addition,
cach integration in Equations (3.3) pmvidcs‘ an integration constant to be determined by
the boundary conditions. Usually one undetermined constant cannot satisfy the two trac-

tion boundary conditions at the top and bottom surfaces of the composite laminate. How-
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ever, as the finite element result converges to closed-form solution, both traction boundary
conditions can be satisfied.

3.3.3 Closed-Form Solutions for Different Laminate Theories

The basic difference of the laminate theories mentioned in Section 3.3.1 is due to
the assumption of the displacement field through tl;e thickness. Since the closed-form so-
lution is based on a complete function for inplane deformation instead of section-by-sec-
ﬁon assembly, it then does not introduce error due to approximation and assembly. A
direct insight into the different theories is possible. Therefore, closed-form solutions are
performed for comparing the different laminate theories.

Table 3.11 presents the results of a [0/90] laminate under cylindrical bending. For
HSDT, GLPT'and GLPT?, since the transverse shear stresses calculated from the constitu-
tive equations are not continuous across the laminate interface, two numerical values, one |
for the layer above the interface and the other below the interface, are reported in the table.
The transverse shear stress distributions through the thickness for some of these theories
are shown in Figure 3.12(a). In addition, the continuous transverse shear stress distribu-
tions from equilibrium equations can be found in Figure 3.12(b). Because the results from
ISCT and elasticity are very close to each other and so are GLPT 2 and ISSCT, the results
from ISCT and GLPT 2 are not presented in these figures for clearity. Similar results for [0/
90/90/0] laminate are presented in Table 3.12, Figures 3.13(a), and (b). It should be noted
that because of symmetric layup, the transverse shear stress at the midplane calculated by
HSDT, GLPT!, and GLPT? has only one value.

The comparison for different laminate theories can be addressed from the follow-
ing viewpoints.

1. Transverse Deflection at Midspan

Comparing the results from the different theories, it is clear that ISCT gives the

best prediction ( error < 0.1% ) of the transverse deflection at the midspan for the aspect



Table 3.11 Closed-form solutions of a [0/90] laminate under cylindrical bending
by using different laminate theories.

e | e | ® & & . g

HSDT 44445 -33.6062 24769 0.7147 03320

3.0915 09907
GLPT' | 42625 -334930 32215 07411 08220
| 32913 08623
GLPT* | 47785 -310802 08479 08623  0.7957
Smd 37159 08553
ISSCT | 47785 310844 08530 —— 07897
3.7158
ISCT | 46918 -302907 09055 -———  0.3468*
3.8362
Elasticity | 4.6953 -300293 09135 —— 07860
- 38359 -
HSDT | 26933 -703437 12625 38998 08202
75805 50501

GLPT 2.6867 -703315 16611 39053 08198
76.016  4.4181

GLPT? 2.7069 -700.464 39342 39353 08184

$=20 76.563 39340
ISSCT 2.7069 -700.459 39340 —— 08182
76.562
ISCT 2.7027  -699.737 39451 —  0.8875*
76.652
Elasticity | 2.7027 -699.734 39460 —— 0.8180
76.653
HSDT 2.6375 -279629 25266  7.8204 08198
303.03 10.106
GLPT! 26359 -2796.41 33257 7.8241 08198
30326 88432
GLPT? 2.6409 -279339 78380 7.8387 03194
S=40 30380 78375
ISSCT 2.6408 -279327 78373 — 08193
303.79
ISCT 2.6398 -2792.56 7.8430 - 0.8891*
303.88 .
Elasticity | 2.6398 -2792.59 78436  —— 03193
303.88

o, = cx(%';;) ;6‘“’6‘“(0,0) ; 6,=0,(50)

* calculated from constitutive equations directly
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Figure 3.12 Normalized transverse shear stresses at the edge of a simply-supported
[0/90] laminate with S=4 by using different laminate theories. (a) constitutive
equations, (b) equilibrium equations.
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Table 3.12 Closed-form solutions of a [0/90/90/0] laminate under cylindrical bending
by using different laminate theories.

Aspect | Theory w 5’ 5’ 3, 3,
HSDT | 32020 7186276 13636 15061  0.7960
GLPT' | 33325 7205875 14383 14400 07834
GLPT? | 33581 199049 14541 14541  0.7862
S=4 ISSCT | 33581 F199125 14512 ——  (.7855
ISCT | 33360 -197062 14532 ——  0.7776*
202308
Elasticity | 33361 -196700 14560 ——  0.7858
202020
HSDT | 06885 3284205 70885 82173 08213
GLPT' | 06796 287302 82132 8.1964  0.8206
GLPT? | 06797 287079 8.1973 81974 . 0.8206
$=20 | [sSCT | 06797 287080 81966 —— 08206
ISCT | 06793 -287.109 81977 ——  0.3185*
286913
Elasticity | 06793 -287.108 8.1983 ——  0.8207
286912

HSDT | 05861 111321 14195 16479 0822
GLPT' | 05889 111635 16504 16469 0.8220
GLPT? | 05889 7111614 16469 16469  0.8220

S=4( ISSCT 058389 ¥111615 16469 — 0.820
ISCT 05888 -1116.18 16469 —  0.8201*
111595
Elasticity | 05889 -111618 16470 — 08220
1115.96
g = cx(i':i) ;6,=6,(00 ; 3 = q‘(.i,())

* calculated from constitutive equations
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ratios considered. However, there is no surprise to see that at large aspect ratio, HSDT can
also give excellent result.
2. Inplane Stress

The inplane stress considered in cylindrical bending is the normal stress in x-direc-
tion, G,. Although ISCT again shows the best result ( error < 1% ), the remaining theories
can give accuracy within 0.5% at S=40. However, the error becomes very large, e.g., 12%,
at S=4.
3. Transverse Shear Stress ‘
For the transverse shear stress, ISSCT and GLPT? have the same accuracy as those of
ISCT except for a [0/90] laminate with S=4. However, since GLPT?2 has higher degree-of-
freedom than ISSCT and its transverse shear stress has to be calculatcd from equilibrium
equations, GLPT 2 is not as efficient as ISSCT. Although GLPT! has approximately the
same degree-of-freedom as ISSCT, its result is not as good as ISSCT. In addition, from
Figure 3.13(b), it is found that HSDT does not predict the correct trend of the transverse
shear stress through the thickness when S=4.
4. Transverse Normal Stress

Among the laminate theories discussed in this study, only ISCT can calculate the
transverse normal stress directly from the constitutive equations. However, it is surprising
to see that the results obtained by ISCT does not provide better accuracy than those recov-
ered from equilibrium equations, especially for the asymmetric layup, [0/90] laminate. Al-
though the accuracy can be improved by increasing the number of layers in the analysis as
shown in Table 3.3, the penalty of increasing the degree-of-freedom may drastically over-
whelm the support of using ISCT.
5. Bidirectional Bending '

Beside the examples for laminates under cylindrical bending, laminates under bidi-
rectional bending are also studied here. Since there is .no advantage of using GLPT 2,
GLPT?is omitted in the following discussion. Thus, GLPT in the following tables denotes
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the GLPT. The closed-form solutions of a square [0/90/90/0] laminate and a rectangular
[0/90/0] laminate are presented in Tables 3.13 and 3.14, respectively. For the transverse
shear stresses, the results obtained from equilibrium equations are reported within paren-
theses right under the quantities calculated directly from the constitiutive equations. More-
over, due to the symmetric stacking sequence of the laminates studied, only one value of
transverse shear stress is found at the midplane.With the results shown in Tables 3.13 and
3.14, it can be seen that HSDT has an error around 10% for both deflection and stresses at
a/h = 4. The prediction can be improved as t’hc aspect ratio of the composite laminate in-
creases. In additions, the results obtained by GLPT are less accurate than ISSCT while

ISCT gives excellent agreement ﬁm elasticity solutions.

3.3.4 Summary

Based on the numerical results presented in the previous sections, the following
summary can be drawn.

1. The importance of interlaminar shear stress continuity condition in composite
laminate analysis can be recognized from the comparison between ISSCT and GLPT?,
shown in Tables 3.11 and 3.12. In both theories, a cubic displacement field within each
layer is used though only ISSCT satisfies the interlaminar shear stress continuity condi-
tions at the composite interfaces. It can be seen from Tables 3.11 and 3.12, both theories
predict almost the same results for displacement and stresses. In other words, they have
about the same accuracy for composite analysis. However, as the computational effort is
concemned, ISSCT has degree-of-freedom 30% lower than that of QLFP, shown in Table
3.10.

2. As mentioned in Chapter 2, the major difference between ISCT and ISSCT lies
in the assumption of transverse displacement w. The former varies in the thickness direc-
tion while the latter is constant through the thickness. If phrased differently, as can be rec-
ognized from Equations (2.14) and (2.29), the significance is the consideration of o, in the
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Table 3.13 Closed-form solutions of a square (a=b) [0/90/90/0] laminate

under bidirectional bending by using different laminate theories.

a - - - - - -

A Theory | % % 4 Os %

HSDT | 18813 106641 0.6253 02398, 02056 F0.43S
: (02977)* (0.2299)

GLPT | 19433 07323 $0.6632 03297 02182 F0.0470
. (02893) (02174)

ISSCT | 19555 +0.7048 +0.6703 02876 02187 F0.0465

ISCT | 19377 +0.7216 +0.6642 02876 02189 -0.0467

-0.6856 -0.6671 +0.0459

Elasticity | 1937 +0.720 +0663 0292 0219 -0.0465

-0.684 -0.666 +0.0458

HSDT | 07079 +0.5433 $03863 0.1546 02629 F0.0264
(0.1930) (0.3059)

GLPT | 07319 05606 103996 02225 03020 F0.0274
(0.1960) (0.3005)

10 ISSCT | 07324 05583 +0.3999 0.1957 03006 ¥0.0274

ISCT | 0.7371 +0.5587 +0.4010 0.1955 03013 —0.0275

-05591 -0.4027 +0.0276

Elasticity | 0.737 +0559 +0401 0.196 0301 -0.0275

-0559 -0.403 +0.0276

HSDT | 0.5004 105369 03027 0.1251 02814 30.0225
(0.1550) (03289)

GLPT | 05077 £0.5415 $03071 0.771 03288 $0.0228
(0.1564) (03272)

2 ISSCT | 05078 +05411 03071 0.1563 03272 0.0228

ISCT | 05130 +0.5428 +03084 01555 03281 -0.0230

-05432 -03088 +0.0231

Elasticity | 0513 +0.543 +0308 0156 0328 00230

-0543 -0309 +0.0230

HSDT | 04293 $05365 102697 0.1134 02887 F0.0211
(0.1400) (0.3380)

GLPT | 04297 05368 02700 0.1580 03395 0.0211
(0.1401) (0.3380)

100 ISSCT | 04296 05366 02699 0.1400 03377 $0.0211

ISCT | 04346 +0.5389 +02710 0.1389 03388 -0.0214

-05389 -02710 +0.0214

Elastici 0435 +0.539 +0271 0.139 0339 -0.0214

my -0539 -027m +0.0214

* quantity in parenthesis denotes the result obtained by equilibrium equations
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Table 3.14 Closed-form solutions of a rectangular (3a=5) [0/90/0] laminate
under bidirectional bending by using different laminate theories.

a _ _ _ —
A Theory | W % % % Os Ts
HSDT | 2.6366 £1.0372 £0.1026 0.0356 02722 F0.0262
(0.0309)" (0.3822)

GLPT | 2.7800 +1.1866 +0.1093 0.0331 03405 =$0.0278
(0.0313) (0.3408)

4

ISSCT | 2.8406 £1.1254 10.1115 0.0319 03494 =$0.0277
ISCT 28215 +1.1496 +0.1085 00332 0.3494 -0.0269
-1.1041 -0.1191 +0.0281
Elasticity | 2.820 +1.14 +0.109 00334 0351 -0.0269
-110 -0.119 +0.0281
HSDT | 0.8594 +0.6923 10.0404 0.0177 0.2858 0.0115

(0.0150) (0.4298)
GLPT | 09159 0.7320 +0.0423 0.0161 04192 0.0121

(0.0154) (0.4190)
10 ISSCT | 09178 10.7265 10.0424 0.0154 04196 F0.0121
ISCT 09189 +0.7261 +0.0417 0.0152 04198 -0.0120
-0.7256 -0.0435 +0.0123
Elastcity | 0919 +0.726 +0.0418 0.0152 0420 -0.0120
: -0.725 -0.0435 +0.0123

HSDT | 0.5911 +0.6404 10.0295 0.0147 02879 F0.0091
(0.0123) (0.4370)

GLPT | 0.6070 +0.6511 #0.0301 00129 04345 30.0092
(0.0124) (0.4341)

20 ISSCT | 0.6073 +0.6501 10.0301 0.0124 04342 0.0092
ISCT | 0.6095 +0.6500 +0.0294 0.0119 04343 -0.0092

-06502 -0.0299 +0.0093
Elasticity | 0610 +0650 +0.0294 00119 0434 -0.0093
0650 -0.0299 +0.0093

HSDT | 0.5045 $0.6238 $0.0260 0.0137 02886 0.0083
(0.0114) (0.4394)

GLPT | 0.5051 +$0.6241 10.0260 0.0118 04395 0.0083
(0.0114) (0.4392)

100 ISSCT | 0.5053 +0.6243 0.0260 00114 04392 0.0083
ISCT 0.5077 +0.6244 +0.0253 0.0108 04393 -0.0083

-06244 -0.0253 +0.0083
Elastici 0508 +0539 +0.0253 00108 0439 -0.0083
o 0539 -0.0253 +0.0083

* quantity in parenthesis denotes the result obtained by equilibrium equations
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thickness direction. In order to illustrate the significance, Figures 3.14 to 3.17 present the
: 'closed-form solutions obtained from different laminate theories. The investigations are for
a simply-supported [0/90] laminate under cylindrical bending and has aspect ratios rang-
ing from three to 200. In these figures, the midspan deflection, maximum inplane stress at
midspan, interfacial shear stress at laminate edge, and the transverse normal stress at the
interface of midspan are normalized with respect to associated exact solutions [6]. It
should be mentioned that the results with asterisk denote the stresses recovered from equi-
librium equations, otherwise they ‘are calculated directly from constitutive equations.

As can be seen from these figures, all theories predict excellent results &ccpt for
the transverse normal stress o, from ISCT when the aspect ratio of the composite laminate
is greater than 10. However, the results from ISCT can converge to the exact solution as
the number of layers used in the analysis increases (see Table 3.11). In spite of this offset
difference in o,, the results of ISCT have excellent agreement with the exact solutions
even for S<10. However, it should be noted that ISSCT can also predict very good result
for S=5. Based on the numerical analysis, it can be concluded that ISCT is necessary only

when laminates have aspect ratio lower than five. In other words, when the ci:mi:osite
laminate is very thick, especially when c:, is of major concern, the variation of transverse
Aisplacemcnt with respect to the thickness needs to be considered.

3. Beside the comparison of accuracy described above, another important aspect
needs to be considered is the feasibility of finite element analysis. Unlike ISSCT, the finite
element analysis using ISCT suffers from the element aspect ratio problem as pointed out
in Tables 3.3 and 3.4. As the aspect rato of the element is away from one, the results of
ISCT diverge. Furthermore, the ISCT demands 50% higher degree-of-freedom than
ISSCT. Therefore, it is believed that ISSCT is superior to ISCT for finite element analysis.
In the following chapters, only ISSCT is used to demonstrate the feasibility of using the

stress continuity theory for composite analysis.
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Figure 3.14 Normalized midspan deflections w(l/2.0) of a simply-supported [0/90]
laminate under cylindrical bending by using different laminate theories.
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Figure 3.15 Normalized inplane normal stresses o,(1/2, 2) of a simply-supported
[0/90] laminate under cylindrical bending by using different laminate theories.
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Figure 3.16 Normalized transverse shear stresses o, ( 0. 0) of a simply-supported
[0/90] laminate under cylindrical bending by using different laminate theories.
( * indicates the results are from equilibrium equations)
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CHAPTER 4
TECHNIQUES FOR LAYER REDUCTION

4.1 Introduction

As discussed in the previous chapter, different laminate theories have different as-
pects of advantage and disadvantage. For instance, HSDT is simple and has low degree-
of-freedom. However, its results for small aspect ratio ( S<10 ) are poor. In addition, the
calculation of transverse stresses in this technique needs to resort to the equilibrium equa-
tions. On the other hand, ISSCT and ISCT are suitable for both thick and thin composite
laminates, and the calculation of transverse stresses can be obtained directly from consti-
tutive equations without extra effort. However, the number of degree-of-freedom in these
theories increases with the number of composite layer. A large number of degree-of-free-
dom can result in costly computation if not impossible. Fortunately, in most design cases,
instead of the whole stress distributions through the thickness, frequently only the stress
states at some particular interfaces are of interest. This indicates a possibility of combining
different theories together to reduce the computational effort while still retain the accuracy

in predicting stresses and deformations.

4.2 Fundamental Techniques

The goal of layer reduction is to combine the simplicity of single-layer approach
and the accuracy and easiness for stress calculation of the interlaminar shear stress conti-
nuity theory. Figure 4.1 illustrates the idea of layer reduction. The original n-layer lami-
nate is reduced to a four-layer laminate. The decision of the layer reduction is dependent
on the interface where the stress state is of interest. As pointed out in the previous chapter,

every laminate theory can predict inplane stresses more accurately than transverse stress-
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es. Hence, the interface of interest should be retained in the layup after layer reduction.

Consequéntly, the two layers adjacent to the interested interface remain unchanged while
the layers above and below these two layers are lumped into two single layers. It can be
seen that this technique reduces the composite laminate from an n-layer one to a four-layer
one. As shown in Figure 4.1, the second and third layers remain unchanged. The material
properties used in these two layers are exactly the same as those used in the original case.
The determination of the material properties in the reduced layers, i.e., the first and fourth
layers, are proposed in the following sections. In this study, only ISSCT is used to demon-
strate the feasibility of the layer reduction technique. If ISCT is of interest, similar proce-
dure can be followed.
1. Lumping the Reduced Layers by CLT

The first approach of lumping the material properties for the reduced layers is to
find an equivalent inplane stiffnesses by CLT and an equivalent shear moduli by averaging
the shear modulus through the thickness. Due to this homogenization of the first and
fourth layers, both the inplane stresses and transverse shear stresses are continuous
through the thickness of each reduced layer.
2. Lumping the Reduced Layers by HSDT

As can be shown in Appendix B, ISSCT can be reduced to HSDT for single-layer
laminates. Hence, HSDT can be viewed as a single-layer version of ISSCT. It then is pos-
sible to model ISSCT and HSDT with a consistent displacement field. That is, the reduced
layers can be modeled by HSDT while the unchanged layers by ISSCT. If the reduced lay-
er is modeled by HSDT, the transverse shear stresses calculated from constitutive equa-
tions cannot be continuous at the interfaces of the reduced layer. However, because ISSCT
is virtually used in assembling the reduced and the unchanged layers, the continuity of

transverse shear stresses at their interfaces is guaranteed.



Figure 4.1 Cross-sections of original and reduced layups.
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3. Lumping Inplane Stiffnesses by HSDT and Transverse Shear Moduli by Parallel Aver-
aging

The transverse shear stresses calculated from constitutive equations in HSDT are
not continuous through the interfaces inside a reduced layer in the second approach while
the inplane stresses calculated from the first approach are continuous. These results do not
fit the real situation since the inplane stress should be discontinuous through the thickness
while the transverse shear stress continuous. However, by lumping the inplane stiffness
with HSDT and averaging the transverse shear moduli through the thickness of a reduced
layer, the distributions of the stresses through the thickness of the composite laminate be-
come consistent with the exact solutions. In other words, discontinuous inplane stresses
and continuous transverse shear stresses through the thickness can be obtained from this

approach. The averaging technique for the transverse shear moduli is called parallel aver-

aging and implies
0. = (3 @87 (Th) (4.1a)
0, = (3 (@7 k)7 (k) (4.1b)

4. Lumping Inplane Stiffnesses by HSDT and Transverse Shear Moduli by Serial Averag-
ing
Same argument as proposed in the above approach except that serial averaging is
employed for transverse shear moduli, i.e.,

Q.. = (Th)/ (Th/QD) (4.22)
0, = (Thy/ (T /0% (4.2b)

4.3 Numerical Examples

The feasibility of the aforementioned techniques for layer reduction is evaluated
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with the investigation of several numerical examples. Since the techniques only involve

the alternation of layup in the thickness direction without any change in property or geom-
etry in the x-y plane, closed-form solutions are available.

43.1 Cylindrical Bending
Consider a simply-supported 10-layer [0/90/0/90/0]s laminate subjected to cylin-
drical bending, and assume the midspan deflection, the maximum inplane stress at mid-
span, and the midplane transverse shear stress at the laminate boundary are of interest. As
can be noted that these are also critical stresses for the composite laminate. The ten-layer
laminate is then reduced to a four-layer one, ie., [R/0]s, where R denotes the reduced lay-
ers. The normalizations of the numerical results with respect to ISSCT for the four ap-
proaches at different aspect ratios are presented in Figures 4.2-4.4. In these figures,
superscripts o and r represent for the results obtained from the original and the reduced
laminates, respectively. Since HSDT is the one-layer version of ISSCT, i.e., the simplest
reduction of ISSCT, the results from HSDT are included in the following figures for com-
parison. Figure 4.2 shows clearly that the midspan deflections from all approaches con-
verge to those of ISSCT as the aspect ratio increases. Among the four approaches, the
fourth approach gives the best results for all S. For the inplane normal stress as shown in
Figure 4.3, all approaches except the first one agree very well with ISSCT. The normalized
result for the transverse shear stress is shown in Figure 4.4. It should be pointed out that
- although HSDT gives fair results in shear stress, the results are obtained by stress recovery
technique. If the constitutive equations are used to calculate the shear stress, poor result

can be expected.

4.3.2 Bidirectional Bending
The same 10-layer [0/90/0/90/0}s laminate is used again in the analysis of bidirec-

tional bending. The displacements and stresses of the simply-supported, square laminate
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Figure 4.2 Normalized midspan deflections of a [0/90/0/90/0]s laminate under cylindri-
cal bending at different aspect ratios from different layer reduction approaches.
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laminate under cylindrical bending at different aspect ratios from different layer
reduction approaches.
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Figure 4.4 Normalized transverse shear swress G, (0,0) of a [0/90/0/90/0]s laminate
under cylindrical bending at different aspect ratios from different layer reduction
approaches.
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subjected to bidirectionally sinusoidal loading are investigated. Since HSDT needs to re-
sort to equilibrium equations to calculate the ransverse shear stresses, it is different from
other appmiches and is dropped out from the discussion. Furthermore, since the biggest
difference among the different approaches appears at small aspect ratio, only the results at
S=4 are presented herein.

The normalized inplane displacements through the thickness are shown in Figures
4.5 and 4.6. The solid lines represent for the results obtained by the original 10-layer lam-
inate with the use of ISSCT. It is clear that the displacements predicted by the layer reduc-
tion techniqués are continuous through the thickness. Figures 4.7, 4.8, and 4.9 present the
normalized inplane stresses, 3, 5, and O pyr respectively. As pointed out in the cylindrical
bending case, the first approach predicts continuous inplane stress distributions through
the reduced layer which obviate from the exact distribution significantly. The normalized
results of the transverse shear stresses are shown in Figures 4.10 and 4.11. The second ap-
proach gives a disconﬁnuous shear stress through the reduced layer due to the use of
HSDT and constitutive equations. In general, both the third and fourth approaches show
good approximations through the thickness.

4.4 Discussions

Of the four approaches and the numerical examples presented in the previous sec-
tions, the third and the fourth approaches seem to give better r&ults for both displacement
and stresses. Both approaches also give the same trends of inplane and transverse stresses
as the elasticity solutions.

As can be seen in Figures 4.2 to {.4, HSDT is accurate for laminates with aspect
ratio greater than 10. However, as mentioned in Reference [33], if the stress state near the
free edge of the laminate is of concern, the stress recovery technique using equilibrium
equations is not satisfactory. On the contrary, as will be seen in the next chapter, the inter-

laminar stress continuity theory gives very good descriptions of displacement and stress
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Figure 4.5 Normalized inplane displacement ii(a/2,0) of a square [0/90/0/90/0]s
laminate subjected to bidirectional bending at S=4 from different layer reduction
approaches..
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Figure 4.6 Normalized inplane displacement (0, 5/2) of a square [0/90/0/90/0]s
laminate subjected to bidirectional bending at S=4 from different layer reduction
approaches.
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Figure 4.7 Normalized inplane normal stress &, (a/2, b/2) of a square [0/90/0/90/0]s
laminate subjected to bidirectional bending at S=4 from different layer reduction
approaches.
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Figure 4.8 Normalized inplane normal stress 3, (a/2, b72) of a square [0/90/0/90/0]s

laminate subjected to bidirectional bending at S=4 from different layer reduction
approaches..
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Figure 4.9 Normalized inialane shear stress 5, (0, 0) of a square [0/90/0/90/0]s laminate
subjected to bidirectional bending at S=4 from different layer reduction approaches.
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Figure 4.10 Normahzed transverse shear stress 3, (0, 5/2) of a square [0/90/0/90/0]s
laminate subjected to bidirectional bending at S=4 from different layer reduction
approaches.
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Figure 4.11 Normalized transverse shear stress 3, (a/2,0) of a square [0/90/0/90/0]s
laminate subjected to bidirectional bending at S=4 from different layer reduction
approaches.
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near the free edge. Therefore, it is believed that ISSCT is superior to HSDT in this respect.

Another technique in reducing the computational effort can be achieved by com-
bining ISSCT and HSDT together. This technique implies the use of different types of ele-
ments in structural discretization. It is suggested that the ISSCT will be employed only
where the stress state is of interest, and the remaining part of laminate can be modeled by
HSDT. This mixed technique can reduce the total number of degree-of-freedom consider-
ably, especially for the composite laminate with many layers. However, special attention
should be paid to the compatibility between the two different theories. Since this tech-
nique 1s very similar to the traditional finite element analysis for a complicated structure,
e.g., a structure composed of truss, beam, and plate substructures, it is not included in this

study.



CHAPTER §

APPLICATIONS OF ISSCT IN
VIBRATION, BUCKLING, AND NONLINEAR ANALYSIS

5.1 Introduction

In Chapter# 2 and 3, the derivatons and assessments of ISCI‘ and ISSCT are
accomplished. Static bending is used to demonstrate the merit of these new theories. It is
concluded that for very thick composite laminate (S<5) and for very high accuracy ISCT
is necessary. Otherwise, ISSCT is more efficient for computation. In order to further
investigate the applicability of ISSCT for engineering analysis, the governing equations of
laminated structures in natural vibradon, buckling, nonlinear bending, and nonlinear
vibration are obtained. Some numerical examples need to be solved and compared with
elasticity solutions to assess the new theory. Moreover, the feasibility of using ISSCT for

free-edge analysis is presented.

5.2 Natural Vibration

For a composite laminate with some particular boundary conditions, linear free
vibration analysis gives the resonant frequencies and associated mode shapes. These kinds
of information provide a valuable insight into the structure performance under dynamic
loading. Hence, in this section, the governing equation for linear, undamped, free vibration
will be derived. In addition, some examples will be examined to justify the accuracy of the
laminate theory. .

The Lagrangian of a rectangular composite laminate with dimensions of axb

under free vibration can be written as
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2

where the first term is the strain energy stored in the structure while the second term is the
kinetic energy associated with the time-varying response. In addition, (*) denotes time
derivative and p stands for mass density. By nsing constitutive equations, the stresses can
be substituted by strains. Employing the strain-displacement relations and carrying out the
integration through the thickness, the Lagrangian then becomes

s T N
L= 2fef (RITISK (e} + (R T(SK) (R} - (R} (SHA (R} -mitydyds (52

In the above equation, all the notations used in Chapter 2 are followed. Some new nota-
tions are defined below,

R
o i DT o0
(SHg = -21( o PO WP W14 (5.3)
N1 = [0, 0 0, 00, 0 450, 4510, Be, B9, (5.4)
06, 00, 00;450,4,,0, B0, 8,9,

m= 3P @-5y (5.5)
iml
To satisfy the shear traction free conditions on the laminate surfaces, the same con-
straint matrices used in Chapter 2, i.e., Equations (2.37a,b), can be introduced into Equa-
tion (5.2). The Lagrangian then results in
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L= ; fo I:({x.}r[sx.l (Ka} + (X} (5K, (K,} - (X} (SMQ (X} -miPrdyds  (5.6)

In the case of closed-form solution, since there exists an exact modal function for
this particular problem, the displacement matrices can be assumed as

{(X.} = [D,) (X} ™ (5.72)
{X,} = (D] (X} ™ (5.7b)

where (D,] and (D,) are matrices containing assumed modal functions and their deriva-
tives with respect to the hphnc axes. The matrix {X} consists of unknown magnitudes of
the displacement variables of the particular mode shape. In addition, ¢ represents for the
time variant part of the displicement functions where j = /=1 and o is the circular fre-
quency. By piugging Equations (5.7a,b) into Equation (5.6) and using the Lagrange’s

equations
%G%)-%; = {0}, i=1,2..4n+1 (5.8)

the governing equation for this eigenvalue problem can be obtained, i.e.,

(D] {X} - 0?[G] {X} = {0} (5.9)

In Equation (5.8), X; is the i-component of the column matrix {X} .

As the static bendings examined in Chapter 2, finite element analysis is required to
study the structures with general geometry and boundary condition. For this type of eigen-
value problem, a set of interpolation functions are introduced

(Xa} = [y (3% (5.102)
{X;} = v, (X} (5.10b)

Substituting these functions into Equation (5.6) and employing Lagrange’s equations,

Equation (5.8), the following finite element equation for a single element can be achieved,
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(K] {X} - 0?[M] {X} = {0} (5.11)

where [X] is the same stiffness matrix as used in static case while [M] the consistent mass
matrix associated with the assumed interpolation functions.

Once the governing equation for the modal analysis is obtained, several examples
are used to demonstrate the accuracy of ISSCT in vibration analysis. The fundamental fre-
quencies of simply-supported (0], [0/90], and [0/90/0] laminates with aspect ratio ranging
from four to 200 under cylindrical bending arc shown in Figure 5.1. The same material
properties as used in Chapter 2 are examined in the simulation. In this figure, the exact fre-
quencies [28] are obtained using two-dimensional elasticity analysis while the ISSCT
results are obtained from finite element analysis using four layers and four elements. It is
clear that the ISSCT results agree very well with. the exact solutions in both thin and thick
composite laminates. |

Table 5.1 presents the normalized fundamental frequency of a simply-supported
- [0/90/90/0] square laminate with aspect ratio a/h=5. Different anisotropic ratios, E, /E; , for
the material is also investigated and compared with three-dimensional elasticity results
[32]. In the finite element analysis, because of laminate symmetry, only a quarter of the
plate is examined. It can be seen that with a 4 x4 mesh, the finite element solutions con-

verge very well to the closed-form solutions.

5.3 Critical Buckling Load

For a composite laminate subjected to inplane loading, the critical buckling load is
the essential information for stability analysis. The buckling phenomenom occurs due to
the coupling berween the applied inplane loading and lateral deflection. In this study, the
principle of minimum potential energy is used. The total potential energy of a rectangular
laminate subjected to uniformly compressive and shear loads along its boundaries can be

written as follows [36], i.e.,



88

‘o | AR B )  § A | § v T v ¥ °
— Exoct
1 o FEM (ISSCT)
9"‘ -
8- [0/90/0] -
[o]
e 74 -
-~ ]
g [0/90]
} 6- el e ~
g
sﬂ
3 5 -
4 .
34 -
2 v ¥ LD SRR § L A L3 LR VAR S
4 6 8 10 20 40 60 80100 200

S (¢/h)

Figure 5.1 Fundamental frequencies of simply-supported [0],[0/90] and (0/90/0]
laminates with different aspect ratios under cylindrical bending.



Table 5.1 Normalized fundamental frequency A, of a simply-supported [0/90/90/0]
square laminate.

ISSCT
EvE, | Hastcdy) o o FEM(4x4)
40 10.752 10.698 10.724
30 10272 10228 10255
20 9.5603 95310 9.5604
10 82103 83366 83679
3 6.6185 6.7062 6.7354

2
os P, .
l'.TfE:. asb=5.h=l

E, = E; = 1x10%si;G}y = G5 = 0.6x 10%p5i;Gp5 = 0.5x 10%psi

vusvuavnso.ls
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In the above equation, the first term is the strain energy stored in the structure. The second,

third, and fourth terms are the coupled potential energy components due to inplane loading

fo f» and f;, respectively. The final four terms are the potential energy of external forces

- exerted on the boundaries. Since these four terms correspond to the inhomogeneous term,

i.e., the force vector, in the final eigenvalue equation, they are not relevant to the calcula-

tion of the homogeneous eigenvalue problem. Therefore, they are omitted in the following

derivation. In addition, for simplicity, only the compressive loading f; is considered

herein. The terms associated with f, and f;, are removed from the total potential encrgy.'

Following the notations used in the previous section, the displacement field for a

composite layer and its derivative can be written as
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O]

(43 = ) (5.13)
u 0]

ox 3 vy 9D

St =HWa 1k (5.14)
ox

Substituting these expressions into the potential energy and manipulating the strain energy
term as in the vibration study, the total potential energy after integration through the thick-

ness béoomes

R AU T AN AR AU S ARTE R ALE RENeA

ow. 2
SAGD ) dyds (5.15)
where
(580 = 3 (7 w1 VP14 (5.16)
im]

is the assembled matrix through the thickness.

The closed-form solution for the critical buckling load is also valid for the prob-
‘lems with simply-supported boundary conditions and cross-ply layup. The buckling mode
shape in the x-y plane can be assumed either a sine or cosine function with unknown mag-

nitudes, i.c.,

{X.} = (D] {X} (5.163)
{X;} = (D] {X} | (5.16b)

and
g; (X} = (3@; (D,)) (X} (5.16¢c)

Again, (X} consists of unknown magnitudes of the displacement variables. Then, by
employing the principle of minimum total potential energy,

5x =0 : (5.17)
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the homogeneous eigenvalue equation can be obtained

(D] {X} -£,(B1 {X} =0 (5.18)

In a similar way, a finite element equation can be derived for a more general analy-
sis. Instead of the exact mode shapes as assumed in the closed-form solution, a set of inter-
polation functions in the x-y plane is introduced in the finite element method.

{Xa} = [w] {X} (5.19a)
{X,} = v, {X} (5.19b)

Substituting these interpolation functions into Equation (5.15) and employing the princi-
ple of minimum potential energy, the finite clement equation in terms of the nodal dis-

placement variables can be obtained
(K] {X} =£,(Gp] {X} =0 (5.20)

The normalized first buckling load of a simply-supported [0/90/90/0] square lami-
nate with aspect ratio a/h=10 is shown in Table 5.2. Because of the symmetry of the rect-
angular laminate, only a quarter is required in the finite element analysis. The quarter
laminate is discretized into 16 equal elements. The results from both closed-form solution
and finite element analysis are presented with different anisotropic ratios along with three-
dimensional elasticity solutions [33]. Similar analysis is performed on an asymmetric [0/
90] laminate and the results are given in Table 5.3. These results show that the ISSCT
analysis yields satisfactory predictions for both symmetric and asyfnmctn'c laminates. For
another asymmetric laminate [0/90/0/90/0/90], Table 5.4 presents the closed-form solu-
tions. Comparing these results with those obtained from elasticity analysis, it is clear that

ISSCT predicts the buckling loading of the first mode very accurately.
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Table 5.2 Normalized first buckling load A, of a simply-supported [0/90/90/0]
square laminate.

E,/E. Elasticity(33]
1772 Closed-form | FEM(4x4)
40 22.8807 23.1262 23.1360
30 19.3040 19.5545 19.5385
20 15.0191 15.2759 15.2198
10 9.7621 10.0283 9.9038
3 52944 5.5957 53707
3
l'-%:—z; a=b=10A=1

Ey=E;=1x lO‘psi;Gu = G3 = 0.6x lO‘p:i;st = 05 x lO‘psi

Vg = V3 =Vy = 025



Table 5.3 Normalized first buckling load A, of a simply-supported [0/90] square
laminate.

E,/E, | Elasticity(33) BSSct
acl!

1772 d Closed-form | FEM(4x4)
40 - 28807 23.1262 23.1360
20 15.0191 152759 152198
10 9.7621 10.0283 9.9038

3

l.,t-fiz; =b=10Ah=1

Erh

E, = Ey = 1x10%si;G}, = G5 = 0.6x10%psi;G,y = 0.5 x 10%psi

Vi = Vi3 = Vg = 025
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Table 5.4 Normalized first buckling load A, of a simply-supported [0/90/0/90/0/90]
square laminate.

. . ISSCT
E./E. Elasticity[33
1”52 033 Closed-form
40 23.6689 23.6673
20 15.0014 15.0126
10 9.6501 9.6289
Py
l.'-fx : a=b=10Ah=1
. E

E, = Ey = 1x10%si;G,; = G5 = 06X 10%si;Gpy = 0.5x 10%psi

vu-vu-vn-OJS



5.4 Nonlinear Bending

As pointed out in Reference [36], the composite laminates containing the coupling
effect between the transverse deflection and inplane force are more sensitive to the nonlin-
ear cffect. Even in the range of small deformation defined by conventional analysis, the
laminate can behave in a nonlinear fashion. Many investigations have used different lami-
nate theories and different types of nonlinearity [24,36-39] for this study. In this section,a
laminate subjected to moderately large deflections is examined with the use of interlami-

nar shear stress continuity theory.

5.4.1 Formulation of Nonlinear Equation

The material is assumed to behave linearly and elastically though the linear rela-
tionships between strains and displacements are no longer valid. In fact, a nonlinear rela-
tionship of vonK4irm4n sense is considered, i.c.,

ou

1 ow 2 v 1 ow? Jou v owdw
“"%'1% ¢ HT5HTIF T T TutuTny
v ow, du  ow
28” = 54’3;, 28“: = 54’& (5.21)

It can be noted that the expressions for the transverse shear strains remain the same as lin-
ear case while the inplane strain componeats are modified with quadratic terms which
involve the first derivatives of transverse displacement component. Since the reduction of
displacement variables from Equation (2.27) to Equation (2.28) is achieved by imposing
the shear stress continuity on the interface, this mampulanon remains the same for both
linér and nonlinear analysis. Thus, following the linear analysis and Equation (5.21), the

strains in each layer can be written as

(O]

e, = IN?] (2} + Ny (X, (5.22a)
2e : :
'xy
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(©)

{ :‘n} = v 223 (5.22b)

Cr

where

low . |
39 ©
Wyd = | o ;g_‘; (5.23)
13w 13w
23y 20x]

ow

=] ox
{x,} ol (5.24)

9y
The same notations defined in Equations (2.31) and (2.32) are also used. It should be noted
that (Ny,] is a function of the derivatives of transverse displacement. It constitutes the
nonlinear part of the analysis.
Again, the principle of virtual displacement is employed for deriving the govern-
ing equation. Substituting the stresses by strains of Equation (2.29), plugging Equations

(5.22a,b) into Equation (2.29), and integrating through the thickness yields

[a]o (182 T15Ka) {Ra} + {8837 (SK) {R,} + {8X,}T(SKwe) {Ra}

+ (8%} (SRwial (X,} + (8X,} T [SRwi3) {X,} - q6w)dydz = 0 (5.25)

In the above equation, the following notations are used to denote the assembled matrices

through the thickness,

(SKweal = Y ([7 20N 101 (N 1d) (5.262)

im]

(Skuad = 3 (7 NP17108) Ny day (5.26b)
1 .
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]
(SRwesl = Y ([7 2071071 Wy ) d2) (5.26¢)

i=l
The introduction of vanished shear tractions on both top and bottom surfaces of the
laminate results in the reduced displacement vectors,

(.} = [E]] {Xa} (5.27a)
{%,} = (E] (X,} (5-27b)

These are the same matrices as used in Equations (2.37a,b). Substitute the reduced matri-

ces into Equation (5.25), the principle of virtual displacement becomes,

[ofo (18%a}T 15K (Xa} + (8K} (SK,) (K} + (8K, }T(SKnea {Ka}

+ (8%} T (SKneal (X} + (8K} T[SRur3) {X,} —qBw )dydx = 0 (5.28)
in which
(5K = (E)T(SK.) (E,) (5.292)
(SK,) = (E,)T(SK,) (E,) (5.29b)
(SKnei] = (SRuei) (E,] (5.29¢)
(SKne2) = (E,)T(SRnpa] (5.29d)

As in the linear case, the following interpolation functions in an element are
assumed,

{Xa} = lw,) {X} (5.302)
(X} = (v, {X} (5.30b)
{x,} = lv,] (X} (5.30c)

w = [y] {X} (5.30d)

where (X} is the nodal displacement vector while (v,], [v,], [v,], and (y] are the
interpolation functions corresponding to the displacement vectors. By using these interpo-
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lation functions, the principle of virtual displacement, Equation (5.28), leads to the follow-

ing finite element equation,
(K] + [Ky, (W)]) {X} = {F} (5.31)
where
(K1 = [3[o (1w, I TSR {w,} + {w,}TISK,] {v,} )dydx (5.32)
Ky 01 = [ofo ({w 1 TISRNLi) {w,} + (¥,} T(SRNea] (v, }
+{v }T (kN3] (v, } )dydx (5-33)
(F} = [3[o (W qdydx (5.34)
It should be noted that the linear part of the stiffness matrix and the external loading vector
are the same as those derived in the linear analysis in Chapter 2. The major difference
between the nonlinear and linear studies is the nonlinear part of the stiffness matrix which
is a function of the transverse displacement.

In the solution phaSc of the nonlinear governing equation, a standard Newton-

Raphson method is used. First, the governing equation is rewritten as
{/} = (K] + [Ky,]) {X} - {F} = {0} (5.35)

Then the Jacobian can be calculated. The component at ith row and jth column of the Jaco-
bian matrix is defined as
oF;
J.. = (5.36)
37}.
where the subscripts of the column vectors represent for the corresponding components

accordingly. Once the Jacobian matrix is formulated, the numerical iteration scheme fol-

lows. A brief analysis is given below,

P = (x+ Ky (X2 DD (X3 @ - (F) (5.372)
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vy ™1 axp® =W (5.37b)

XY 2 xy P4 qaxy @ (5.37¢)

where the superscript k denotes the result of kth iteration. The first iteration starting from
the null nodal displacement vector gives the linear sohition of the equation. As the itera-
tions continue, the analysis is assumed to converge when the successive change of the dis-
placement is less than 0.1%.

In the following sections, several examples are used to examine the feasibility of

using ISSCT for nonlinear bending.

5.4.2 Laminates Subjected to Transverse Loadings

First, a pinned-pinned [0/90] laminate under uniform loading over the cn;irc span
is studied. This problem was investigated by CLT [36] for aspect ratio equals to 225. For
such thin composite laminate, the transverse shear effect can be neglected. Therefore, the
ISSCT is expecfed to yield a result close to CLT. Figures 5.2a and 5.2b present the mid-
span deflection and the inplane force resultant at different loading magnitudes. The mate-
rial properties used are the same as those in Reference [36], i.e.,

E, = 20x10%si, E; = 14x10%si, Gy = G, 1 = 0.7x 10%si, v, = 0.30

The ISSCT results are obtained by using four layers and four elements for finite element
analysis. The dashed lines in Figures 5.2a and 5.2b represent for the linear results calcu-
lated from the same ISSCT model. It is clear that nonlinear analysis from ISSCT coincides
with with that in Refernece [36] while the linear analysis erroneously predicts both the
midspan deflection and the inplane force resultant. It should also be noted that the struc-
ture behaves differently for upward and downward loading. This is due to the inplane
forces caused by the couplings of asymmetric layup and geometrical nonlinearity.

One advantage of using ISSCT is the simplicity and accuracy in the calculation of
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Figure 5.2 Pinned-pinned [0/90] laminate with aspect ratio S=225 subjected to uniformly
distributed loading : (a) inplane force resultant; (b) midspan deﬂecuon.
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transverse shear stresses. This is also true for the stresses from nonlinear analysis. Figures
5.3a and 5.3b present the maximum inplane normal stress at the midspan and the trans-
verse shear stress at the midplane of the laminate edge, respectively. Figure 5.3a shows the
inplane normal stress obtained from linear analysis may overpredict or underpredict the
actual stress depending upon the loading range. The same observation applies to the trans-
verse shear stress, shown in Figure 5.3b. Moreover, it is interesting to see that the trans-
verse shear stress at the interface even changes its sign as the loading is higher than a
certain value, 75 1b/in in this example. These unusual results can become a very important
issue in composite design and need to be carefully examined.

The stress distributidns through the thickness for the same locations as shown in
Figures 5.3a and 5.3b are given in Figures 5.4a and 5.4b. In these figures, the stress distri-
butions at different deflection levels are presented. It is seen that the profiles of the inplane
stress distribution remain the same at different loading levels, however, those of the trans-
verse shear stress alter dramatically as the loading increases. The nonlinear analysis gives
a tremendously different stress state than the linear analysis and can result in a completely
different prediction for failure mode. '

As mentioned in a previous paragraph, the unusual nonlinear behavior of the struc-
ture arises from two inplane forces caused by the couplings due to asymmetric layup and
geometrical nonlinearity. And it is known that the magnitude of the inplane force depends
on the boundary conditions. Therefore, it is interesting to study the effect of different
boundary conditions on the nonlinear structural behavior. Figures 5.5a and 5.5b give the

_normalized midspan deflection and coupled inplane force resultant as a function of trans-
verse deflection. The composite laminate is of [0/90] and is subjected to a uniform load-
ing. Three different boundary conditions are of interest. The subscripts L and NL denote
the results from linear and nonlinear analysis, respectively. Among the three boundary
conditons studied, ie., pinned-pinned, pinned-clamped, and clamped-clamped, the

pinned-pinned one gives the most significant nonlinear effect and should recieve more
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Figure 5.3 Normalized stresses of a pinned-pinned [0/90] laminated with S=22.5 sub-
jected to uniformly distributed loading : (a) G, ( /2,-h2) ; (b) Cxs ( 0, 0).
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attention. In addition, it is interesting to see that in the clamped-clamped boundary condi-
tion, even the stacking sequence is asymmetric, the laminate behaves like a symmetric
one. In other words, the direction of transverse loading does not change the magnitude of
deflection. This is believed to be due to the vanished inplane force in the (0/90] layup [37].
Since the clamped-pinned boundary condition has the intermediate coupling force
between the two extreme cases, it behaves as a compromise of those two.

Once the cylindrical bending is examined, it is to investigate bidirectional bending.
A square [0] laminate with aspect ratio of 100 is of interest. The composite laminate has
the following material properties

EL/ET = 3.0, GLT/ET = 0.5, vLT = 0.25-

It is clamped around four edges and is subjected to a transversely uniform load. Because
of the large aspect ratio, the laminate is analyzed by CLT in Reference [38]. The load-
deflection curve is shown in Figure 5.6. The solid line represents for the result of normal-
ized central deflection obtained by perturbation method in Reference [38]. The open cir-
cles are the results of ISSCT using quarter laminate and a 4x4 mesh. It is obvious that
these two predictions compare very well with each other.

5.4.3 Laminates Subjected to Inplane Loadings

All the examples shown above are the laminates with transverse loading. The same
analysis can be performed for structures with inplane loading. The same [0/90] laminate
with pinned-pinned boundary condition is subjected to inplane compressive loading. The
ISSCT result is based on finite element analysis. It is shown in Figure 5.7 with that
obtained from Reference [36]. Good agreement is concluded. Besides, it should be noted
that the linear buckling load obtained from linear analysis gives the upper bound of the
load-deflection curve.

Similar analysis is performed for a simply-supported [0/90] square laminate with
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Figure 5.6 The load-deflection curve of a square [0] laminate with all edge clamped and
a/h = 100 is subjected to uniformly distributed loading.
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aspect ratio of 1000. The material properties used in the simulation are as follows.

E, = 250GPa,E, = Ey=20GPa,G,3 = G|3=10GPa, Gy = 4GPa,v,, = V|3 = V=025

Figure 5.8 presents the load-deflection curve of the analysis. A 2x2 mesh is used
for a quarter of the laminate. Unlike the laminate under cylindrical bending, the laminate
under inplane compression does not buckle as the load increases. The linear buckling load
as indicated in the diagram is no more than a small deformation.

5.5 Large-Amplitude Vibration

The normal mode phenomenon has been shown to occur for beam and plate struc-
tures in large amplitude vibration [41]. It is also presented in Reference [42] that for com-
posite laminate with aspect ratio greater than five and is subjected to nonlinear vibration
with amplitude-to-thickness raﬁo close to one, the nonlinear analysis using vonK4rm4n
nonlinearity can provide satisfactory results compared to those using full nonlinearity.
Therefore, by combining the nonlinear stiffness matrix obtained in the previous section
and the consistent mass matrix established in Section 5.2, the governing equation of the

undamped cigenvalue problem for amplitude-dependent vibration can be written as
([K] + Ky, D) {X} -2 [M] (X} = {0} (5.38)

To analyze the amplitude-dependent eigenvalue problem, a matrix iteration
met.hod [43] is used. First, the cigenvalue problem in Equation (5.38) is transformed into a
standard form, i.e.,

(1K1 + (K, M1 (X} = = () (5.39)
Then, the iteration scheme takes the following steps

1
(k+1)

(K] + Ky, (X1 ) (3 @ = {x} *+D (5.40)

(0?)
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In the above equation, the resulting vector of the left-hand side is normalized to give the
desired amplitude of vibration for a particular mode and the normalization constant related
to the reciprocal of the associated eigenvalue. The iterations continue until the conver-
gence of the eigenvalue within a preset tolerance is reached. After obtaining the first mode
frequency and mode vector, the second mode frequency and mode vector can be found
similarly. However, for the second mode, a sweeping matrix needs to be introduced to
incorporate an orthogonal constraint in between the first and second mode vectors. Details
of the procedure can be found in Reference [43]. In most situations, only the fundamental
mode is of interest, therefore, the solution for the higher modes are not pursued in this
study.

In order to verify the feasibility of ISSCT for large-amplitude vibration, the funda-
mental frequency of # thin [0/90/90/0] laminate is of interest. This composite laminate has
an aspect ratio of 100 and a pinned-pinned boundary condition is subjected to cylindrical
- bending . Figure 5.9 presents the amplitude-dependent fundamental frequency of the lam-
inate. In the ordinate, A represents for the amplitude of the funamental mode while r the
radius of gyration of the cross-section. For a rectangular cross-section = h/ (4/12) . The
results obtained by using CLT from Reference [44] is shown by a solid line. Clearly, it has
a very good agreement with those from ISSCT.

As concluded in the study of nonlinear bending, the boundary conditions play an
important role in the response of laminated structure. Herein, the amplitude-dependent
natural ﬁtqu?ncies for a [0/90/90/0] laminate under three different boundary conditions
are studied. Figure 5.10a and 5.10b show the ratio of nonlinear fundamental frequency to
linear frequency at different vii;ration amplitudes for a thin (S=100) and a thick (S=10)
composite laminate, respectively. It is interesting to see that the thin laminate in a piqu-
" pinned boundary condition shows the most significant nonlinear effect. However, the least
nonlinear effect is observed in the thick laminate at the same boundary condition. The

reverse is true for the laminates in a clamped-clamped boundary condition.
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Figure 5.9 The amplitude-dependent fundamental frequency of a pinned-pinned

[0/90/90/0] laminate with S=100 under cylindrical bending.
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Due to this different behavior between thick and thin composite laminates, it is
natural to investigate the effect of aspect ratio on the dynamic behavior of the structure.
The result of frequency ratio for a [0/90/90/0] laminate with fixed amplitude ratio
A/r = 20 is presented in Figure 5.11a. As can be seen from this diagram, the characteris-
tics of the laminate undergoes a significant change as the aspect ratio of the laminate is
smaller than 20. This result coincides with the finding of the transverse shear deformation
effect on the composite laminate presented in Reference [6]. Therefore, there is a doubt if
the transverse shear deformation plays an important role in the response of thick lami-
nates. Beside the resonant frequencies, the information of mode shape is also crucial in
structural analysis. In Figure 5.11b, a coherence factor between the linear and nonlinear
mode shapes, {¢,} and {o,,}, is intoduced in Reference [45], i.e.,

({oy } T {9, 1?

coherence = — —
({oy} T {oy D) ({9} {9, })

The coherence factor gives a value between zero and one. If two mode shapes are exactly
the same, it gives a value of one. A zero whmﬁce means that the two mode vectors are
orthogonal. Figure 5.11b shows that as the aspect ratio of the laminate becomes less than
20, the coherence factor drops sharply for laminates of all kinds of boundary condition.
This implies that the mode shapes obtained from nonlinear analysis deviates from those
from linear analysis. This result may jeopardize the assumption of using linear mode
shape for nonlinear structure analysis [46].

5.6 Free-Edge Stresses

The free-edge stress has long been recognized as a unique problem in laminated
composites [47-49]. The purpose of this section is to assess the feasibility of using the
interlaminar shear stress continuity theory presented for free-edge analysis. Since constant
w through the thickness is assumed in ISSCT, i.e., the effect of o, is ignored, a [45/45]s
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laminate which does not generate transverse normal stress due to inplane loading is taken
as an example. Figure 5.12 shows the mesh for finite element analysis. For convenience, it
is possible to examine only one half of the specimen. In addition, specifying the uniform
strain in the x-direction, as usually employed in the free-edge studies [49], is not a feasible
technique in this analysis. Hence, a uniform tensile loading is applied at the laminate ends.
However, the strain across the width is verified to be very close to uniform distribution.

Figures 5.13a and 5.13b present the normalized displacement u(0,y, »/2) and
transverse shear stress o, (0, y, A/4) , respectively. It is clar that the finite element analy-
sis using ISSCT predicts excellent results as obtained in Reference [49]. With these results
and the previous studies, it is believed that ISSCT can be used for general analysis for

laminated composites.
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

In this study, two laminate theories based on multiple-layer approach - ISCT and
ISSCT - for the analysis of both thick and thin composite laminates are presented. The
easiness of the direct stress calculation from constitutive equatioqs and accuracy of the re-
sults from using stress continuity conditions are demonstrated by some numerical exam-
ples. Moreover, the expedience in computation for composite laminates with large number
of layers is achieved by the layer reduction technique. A comprehensive investigation of
using ISSCT in the vibration, buckling, nonlinear, and free-edge analysis of composite
laminates also show a good potential of using the stress continuity theories for composite
analysis. In summary, the following conclusions are drawn:

1. Two interlaminar stress continuity theories for laminated composites are developed.
One considers the variation of transverse displacement through the composite thick-
ness and the other assumes constant transverse displacement. The former is named the
interlaminar stress continuity theory (ISCT) while the latter the interlaminar shear
stress continuity theory (ISSCT). These theories enable a direct and accurate calcula-
tion of transverse stresses from consitutive equations for both thick and thin composite
laminates.

2. A simple technique is developed for finding the closed-form solutions of some particu-
lar problems such as cylindrical bending and bidirectional bending. Since no approxi-
mation is included in this technique, the error from numerical analysis can be avoided.

3. With little modification, the multiple-layer laminate theory ISSCT can be reduced to
single-layer theory , i.e., HSDT. This concludes that HSDT can be deemed as the sin-
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gle-layer version of ISSCT.

4. From the numerical examples examined in this study, it is concluded that high-order
shear deformation theory (HSDT) can be used for laminates with aspect ratios (S)
greater than 10 while ISSCT S>S5. Due to its three-dimensional approach in nature,
ISCT has no limitation in aspect ratio.

5. A layer reduction technique for reducing the degree-of-freedom is developed by com-
bining the interlaminar shear stress continuity theory (ISSCT) and high-order shear
deformation theory (HSDT). This technique can give transverse stresses at desired in-
terfaces without introducing too many degree-of-freedom.

6. The finite elements derived from ISCT have thickness the same as the composite lami-
nates. Based on the numerical examples studied in this thesis, it is observed that as the
aspect ratio of a finite element is close to one best result can be obtained. The finite el-
ement analysis using ISCT seems to suffer from the aspect ratio problem.

7. The applications of ISSCT for vibration, buckling, nonlinear bending, nonlinear vibra-
tion, and free-edge analyses of laminated composites show excellent r&fults. All the
investigations indicate that ISSCT is a very promising technique for comi;ositc analy-

sis.

6.2 Recommendations

Based on the work performed in this thesis, the following studies are recommend-
ed for further investigation:

| 1. This thesis gives two accurate laminate theories for predicting both displace-

ment and stress of laminated composites. The failure analysis can be performed with the
help of these types of information. For example, the first-ply-failure or last-ply-failure
analysis can be combined with the stress continuity theories while the delamination at the
interface can be modeled with a soft and thin embedded layer or by a slip layer{50].

2. The feasibility of using the stress continuity theories in analyzing both global
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a potential application of these thoeries in assessing the performance of smart materials
and intelligent system which are made of composite laminates and embedded sensors and
actuators. The constitutive relations of piezo-electric crystal, shape memory alloy, electro-
rheological fluid, and optical fiber can be incorporated into these stress continuity theories.
In this way, the global response of the smart material and intelligent system can be simu-
lated and the stress state around the embedded sensors can be examined.

3. The structures with viscoelastic damping materials in both constrained layer and
extensional layer configurations can initially be analyzed with these stress continuity theo-
ries. Then, by using the specific damping capacity presented in Reference [S1], the damp-

ing characteristics of the viscoelastic structures can be evaluated.
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APPENDIX A
[E] AND {q} MATRICES

A.1 Interlaminar Stress Continuity Theory

In ISCT, the

int matrices [E,] and [E,] are defined as
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q T
{qn} = [0. 0. 0. cosscscesey 0. 0. —Wj
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A.2 Interlaminar Shear Stress Continuity Theory

In ISSCT, the following constraint matrices are used:
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APPENDIX B
THE EQUIVALENCE OF ISSCT AND HSDT FOR ONE-LAYER
LAMINATE

For a single-layer laminate, the displacement field of ISSCT, Equation (2.27), can
be simplified as
u= U + 1‘002-0- Upjey+ 1‘1¢4

v = Vod, +300,+V, 05+ 310, (B.1)

WSWO
where
3, .h2 2 a3
#13 1-?(2*'5) +;3-(2+§)

1 A h
6= ‘p (2"’5) (2°§)
(B.2)

3, .2 2 3
¢3=?(3+§) -?(“"2-)

1, &3 2, 4?2

¢4';-2'(2+-2') "7'(“'5)
Since there is only one layer, no interfacial shear stress continuity is enforced. However,
the zero shear traction on top and bottom surfaces of the composite laminate should be sat-

isfied, i.e., the shear strains at these locations must vanish,

dwg dwg
2 h-ro»f& =0 ; 2 h.ma =0

g+ X2
= .i = i
Hence,
awO
fo=t = (B.3)
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Similarly
dwg

30=3;= % (B.4)
Substituting these relationships into Equation (B.1), the displacement field becomes

g
u=Upt+Uit=(9+9)5;

ow, S
Ve Vb +V 8- (’2"’4)7;0 (B.3)

w= Wo .
By plugging the Hermite cubic interpolation functions (B.2) into the new displacement
field and letting

Ug+U

and

Y-y (B.6b)

aw
1970 )

3
Y:*3% "1

the new expression for displacement u in terms of new variables can be obtained

42 a“'o
wmtgra(v- 5500z (B.79)

In the above expression, i, is the midplane displacement in the x direction, while v,
relates to the rotation accounting for transverse shear deformation at the midplane. In a
similar fashion, the new expression for v can also be derived as follows,

4:2 3“’0 ;
V= vo+z(v’-§p(v’+8 )) (B.7b)

It then is clear that the displacement field for ISSCT can be reduced to a HSDT.
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