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ABSTRACT

A STUDY OF THE INTERLAMINAR STRESS CONTINUITY THEORIES

FOR COMPOSITE LAMINATES

By

Chun-Ying Lee

In this study, two stress continuity theories are presented. The first one, named in-

terlaminar sness continuity theory (ISCT), accounts for the variation of transverse dis-

placement through the laminate thickness. The continuity of interlaminar shear stresses

and normal stress across the laminate interfaces and traction conditions on laminate sur-

faces are satisfied exactly. The second. interlaminar shear stress continuity (ISSCT), sim-

plifies ISCT by assuming constant transverse displacement through the thickness. Thus,

only the continuity of interlaminar shear stresses and shear traction conditions on laminate

surfaces are enforced. The merit of these stress continuity theories is the direct calculation

of interlaminar Stresses from constitutive equations instead of equilibrium equations. The

numerical examples for composite laminates with aspect ratio higher than five in cylindri-

cal bending and bidirectional bending using both theories show excellent accuracy com-

pared with elasticity solutions. ISCT provides significant improvement over ISSCT for

composite analysis only when the aspect ratio is lower than five. The comparison among

other displacement-based laminate theories and present theories is also performed.

Techniques to reduce the computational efi‘ort for these stress continuity theories

are proposed in response to the composite analysis of many-layer laminate. The layer re-



duction technique provides a methodology to retain good acctnacy while reduces the num-

ber of degree-of-freedom in composite analysis using present theories.

The further applications of ISSCT in composite analysis, e.g., vibration, buckling,

nonlinear bending, nonlinear vibration. and me—edge stresses are Studied. The associated

numerical examples Show the feasibility and potential of using this new theory in the

study of composite laminates.



To Mei-wen

iv



ACKNOWLEDGMENTS

First, I wouldliketoexpreesmydeep gratitudeandappreciation tomy majo'radvi-

sor, Dr. Dahsin Liu, for his true friendship, constant encotn'agement, and guidance.

I am also indebted to Dr. Nicholas J. Altiero for his moral support and endeavour

to do the best for students. -

Thanks also extend to my college friends at MSU for their hearty encouragement

during the course of this study. In addition, the susrained discussion and suggestion by Mr.

Xianqiang Lu is acknowledged.

Finally, but not the least, I thank the moral support and encouragement of my fam-

ily that made the difficult time easier to overcome. Especially, a great debt is owed to my

wife, Mei-wen, for her undersranding and patience during these five years.



TABLES OF CONTENTS

List ofTables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

List of Figures x

Chapterl - Introduction- 1

1.1 Motivation ‘1

1.2 Literature Review 3

1:3 Present Work 6

- Chapter 2 - Interlaminar Stress Continuity Theories . - 8

2.1 Introduction ' 8

2.2 Interlaminar Stress Continuity Theory (ISCT) - 8

2.3 Inter-laminar Shear Stress Continuity Theory (ISSCT) - - 17

2.4 Closed-Form Solution ' 21

2.5 Finite Element Solution 23

Chapter 3 - Assessments of the Stress Continuity Theories 24

3.1 Introduction 24

3.2 Numerical Examples for Stress Continuity Theories 24

3.2.1 Laminates under Cylindrical Bending 24

3.2.2 Laminates under Bidirectional Bending 33

3.3 Comparison ofDifi'erent Laminate Theories 49

3.3.1 Number of Degree-of-Freedom 49

3.3.2 Recovery ofTransverse Stresses 52

3.3.3 Closed-Form Solutions for Difi‘erent Laminate Theories - 53

3.3.4 Summary 59 



 Chapter 4 - Techniques for Layer Reduction - - - ............................... 67

 

 

 

 

 

 

4.1 Introduction ......... - - u - - - 67

4.2 Fundamental Techniques - - - -- - _ 67

4.3 Numerical Examples - 66

4.3.1 Cylindrical Bending ...... - - 71

4.3.2 Bidirectional Bending -- - 71

4.4 Discussions -- - . 75

Chapter 5 - Applications of ISSCT in Vibration, Buckling, and Nonlinear Analysis 84

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1 Introduction -- - - - - - ..... - 84

5.2 Natural Vibration -- - - -- ......... 84

5.3 Critical Buckling Load - -- - - 87

5.4 Nonlinear Bending ............................................................................................ 96

5.4.1 Formulation of Nonlinear Equation - -- - _- ....... 96

5.4.2 Laminates Subjected to Transverse Loadings - ............... 100

5.4.3 Laminates Subjecred to Inplane Loadings . - ...... 106

5.5 Large-Amplitude Vibration -- -- - - - - - 109

5.6 Free-Edge Snesses . - - - ...... - ........... 114

Chapter 6 - Conclusions and Recommendations . ...... - 119

6.1 Conclusions -- -- - 119

6.2 Recommendations ............. -- .............. 120

Appendices _ - - -_ -- - - - - 122

Appendix A o [E] and {q} Manices - - 122

Appendix B - The Equivalence of ISSCT and HSDT for One-Layer Laminate ....... 126

List of References ........................................................................................................... 128



LIST OF TABLES

Table 3.1 - Results of a simply-supported [0/90] laminate under cylindrical bending by us-

ing ISSCT 27

Table 3.2- Results of a simply-supported [0190/0] laminate under cylindrical bending by

using ISSCT .......... 28

Table 3.3- Results of a simply-supported [0/90] laminate under cylindrical bending by us-

ing ISCT 30

Table 3.4- Results of a simply-supported [0/90/0] laminate under cylindrical bending by

using ISCT 31

Table 3.5 - Closed-form solutions of a simply-supported [0/90/90/0] square (a=b) lami-

nate under bidirectional bending by using ISSCT - 44

Table 3.6 - Closed-form solutions of a simply-supported [0/90/0] rectangular (3a=b) lam-

inate under bidirectional bending by using ISSCT - - - _- 45

Table 3.7 - Closed-form solutions of a simply-supported [0/90/90/0] square (a=b) lami-

nate under bidirectional bending by using ISCT 46

Table 3.8 - Closed-form solutions of a simply-supported [0/90/0] rectangular (3a=b) lam-

inate under bidirectional bending by using ISCT 47

Table 3.9 - Finite element solutions of a simply-supported [0/90/90/0] square (a=b) lami-

nate under bidirecrional bending by using ISSCT - - 48

Table 3.10 - Comparison ofdifi'erent laminate theories for an n-layer laminate ............. 51

Table 3.11 - Closed-form solutions of a [0/90] laminate under cylindrical bending by us-

ing difi'erent laminate theories 54

Table 3.12 - Closed-form solutions of a [0/90/90/0] laminate under cylindrical bending by

using difierent laminate theories - 56

Table 3.13 - Closed-form solutions of a square (a=b) [0/90/90l0] laminate under bidirec-

tional bending by using different laminate theories ...... 60

Table 3.14 - Closed-form solutions of a rectangular (3a=b) [0/90/0] laminate under bidi-

rectional bending by using different laminate theories _____ _ -_ 61

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5.1 - Normalized fundamental frequency 1., of a simply-supported [0/90/90/0]

 square laminate 89

Table 52 - Normalized first buckling load 1., of a simply-supported [0/90/90/01 square

laminate 93 

Table 5.3 - Normalized first buckling load it, of a simply-supported [0190] square laminate

- 94 

Table 5.4 - Normlized first buckling load it. of a simply-supported [0/90l0l90/0/90]

square laminate 95 



LIST OF FIGURES

 

 

 

 

 

 

 

 

Figln'e 2.1 - Coordinate system and displacement variables - 10

Figure 3.1 - Simply-supported composite laminate under cylindrical bending .............. 25

Figlne 3.2'- Normalized transverse displacements at midspan for [0], [0190], and [0/90/0]

laminates with difierent aspect ratios ..... _ ..32

Figure 3.3 - Normalized inplane displacement i (0) of a simply-supported [0/90] laminate

with S=4 under cylindrical bending - - 34

Figure 3.4 - Normalized inplane normal stress 6‘ (1/2) of a simply-supported [0/90] lami-

nate with S=4 under cylindrical bending - 35

Figure 3.5 - Normalind transverse shear Stress in (0) of a simply-supported [0/90] lami-

nate with S=4 under cylindrical bending 36

Figure 3.6 - Normalized n'ansverse normal Stress 6, (1/2) of a simply-supported [0/90]

laminate with S=4 under cylindrical bending 37

Figure 3.7 - Normalized inplane displacement 5(0) of a simply-supported [0/90/0] lami-

nate with S=4 under cylindrical bending - 38

Figure 3.8 - Normalized inplane normal stress 6‘ (1/2) of a simply-supported [0/90/0] lam-

inate with S=4 under cylindrical bending 39

Figure 3.9 - Normlized transverse shear stress 3,,(0) of a simply-supported [0190/0]

laminate with S=4 under cylindrical bending 40

Figure 3.10 Normalized transverse normal stress 6 (1/2) of a simply-supported [0/90/0]

laminate with S=4 under cylindrical bending

Figure 3.11- Simply-supported composite lanrinate under bidirectionally sinusoidal load-

ing - - 42

 

 

 

Figure 3.12 - Normalized n'ansverse shear stresses at the edge of a simply-supported [0/

90] laminate with S=4 by using difi'erent laminate theories. (a) constitutive

equations, (b) equilibrium equations 55 

Figure 3.13 - Normalized transverse shear Stresses at the edge of a simply-supported [O/

9010] laminate with S=4 by using difi'erent laminate theories. (a) conStitutive

X



equmons,‘ (b) equilibrium equations 57

Figure 3.14 - Normalized midspan deflections all/2.0) of a simply-supported [0/90] lami-

nate under cylindrical bending by using difi'erent laminate theories .......... 63

 

Figure 3.15 - Normalized inplane normal stresses o,.(ll2,lrl2) of a simply-supported [0/90]

laminate undercylindrical bending by using difi‘erent laminatetheories .... 64

Figure 3.16 - Normalized transverse shear stresses on( 0, 0) of a simply-supported [0/90]

laminate under cylindrical bending by using difi'erent laminate theories .... 65

Figure 3.17 -Normalized transverse normal stresses o,( (/2, 0) of a simplymrpported [Ol

90] laminate under cylindrical bending by using difierent laminate theories

66

Figure 4.1 - Cross-sections of original and reduced layups 69

Figure 4.2- Normalized midspan deflections of a [0/90/0/90/0]s laminate under cylindri-

cal bending at difl'erent aspect ratios from difl‘erentlayer reducdon approach-

es . -- - 72

Figure 4.3 - Normalized inplane normal Stress 6‘ (1/2, ill/2) of a [0/90/0/90/0]s laminate

under cylindrical bending at difl'erent aspect ratios fi'om different layer re-

duction approaches 73

Figure 4.4 - Normalized transverse shear stress 6“ (0, 0) of a [0/90/0/90/0]S laminate un-

der cylindrical bending at different aspect ratios from difi'erent layer reduc-

tion approaches 74

Figlne 4.5 - Normaliud inplane displacement ti (tr/2. 0) of a square [0/90/0/90/0]s lami-

nate subjected to bidirectional bending at S=4 from difi‘erent layer reduction

approaches 76

Figure 4.6 - Normalized inplane displacement H0, b/2) of a square [0/90/0/90/Ols lami-

nate subjected to bidirectional bending at S=4 from difi‘erent layer reduction

approaches 77

Figlne 4.7 - Normalind inplane normal stress Ego/2. b/2) of a square [0190/0/90/01s

laminate subjected to bidirectional bending at 8-4 hour difi‘erent layer re-

duction approaches - 78

Figure 4.8- Normalind inplane normal Stress 5,(a/2. b/Z) of a square [0190/0/90/0]s

laminate subjecwd to bidirectional bending at S=4 fi'om difi‘erent layer re-

ducrion approaches - 79

Figure 4.9- Normalized inplane shear stress “11(0’ 0) of a square [0/90/0/90/013 laminate

subjected to bidirectional bending at S=4 from difi'erent layer reduction ap~

preaches -80

Figure 4.10 - Normalized transverse shear stress Saw, 1272) of a square [0/9010/90/015

 

 

 

 

 

 

 

 

 

 

xi



laminate subjected to bidirectional bending at S=4 from difi'erent layer re-

ducrion approaches 81

Figtne 4.11 - Normalized transverse shear stress 5"(0/2. 0) of a square [0/90/0/90/013

laminate subjected to bidirectional hearing at S=4 from difi'erent layer re-

 

 

 

duction approaches 32

Figure 5.1 - Fundamental frequencies of simply-supported [01.[0/90] and [0/90/01 lami-

nates with different aspeCt ratios under cylindrical bending 88

Figure 5.2 - Pinned-pinned [0/90] laminate with aspect ratio S=225 subjected to uniformly

distribumd loading : (a) inplane force resultant: (b) midspan deflection 101

Figure 5.3 - Normalized stresses of a pinned-pinned [0/90] laminate with S=225 subject-

ed to uniformly distributed loadings : (a) o; ( llZ,-h/2) ; (b) on ( 0, 0) ..... 103

Figure 5.4 - Normalized stresses of a pinned-pinned [0/90] laminate with S=225 subject-

ed to uniformly distributed loading : (a) (5x ( (/2, 'z) ; (b) on ( 0, z) ........... 104

Figure 5.5 - Normalized nonlinear results of [0/90] laminated beam with S=225 subjeCted

' to uniformly disnibuted loading in three different boundary conditions : (a)

 midspan deflections; (b) inplane force resultants - 105

Figure 5.6 - ’Ihe load-deflation awe of a square [0] laminate with all edge clamped and

all: a 100 is subjected to uniformly distributed loading 107 

Figure 5.7 - The load-deflection curve of a simply-supported [0/90] laminate under cylin-

drical bending with S=225 is subjected to inplane compressive loading .. 108

Figure 5.8 - The load-deflection curve of a simply-supported square [0/90] laminate with

alll = 1000 is subjected to inplane compressive loading in the x-direction

 - 110

Figure 5.9 - ‘lhe amplitude—dependent fundamental frequency of a pinned-pinned [0/90/

9010] laminate with 8:100 under cylindrical bending 112 

Figure 5.10 - Normalized amplitude-dependent fundamental frequencies of [0190/90/0]

laminate in three difi‘erent boundary conditions : (a) 83100; (I!) 82-10 113

Figure 5.11 - The change of nonlinear fundamental fi'equency and mode shape of [0190/

90/0] laminate at the vibration amplitude Al r 32.0 : (a) fundamental frequen-

cy; (b) coherence factor 115

Figme 5.12 - Mesh layout for [45/4513 laminate in calculation of free-edge stress ...... 1.17

Figure 5.13 -Normalized results of a [45l-45]s laminate subjected to uniform inplane load-

ing : (a) the tluough-the-width in-plane displacement u (0, y, hIZ) ; (b) the

through-the-width interlaminar shear stress on ( 0, y, [214) 118

 

 



CHAPTER 1

INTRODUCTION

1.1 Motivation

. Fiber-reinforced composite materials have been widely used in both aerospace and

automotive industries since 1960 due to their high stiflness—to-weight and high strength-

to-weight ratios. Their flexibilities in design and manufactming are also excellent. How-

ever, because of the heterogeneity of the composite materials through the thickness and

the anisotropy in the individual layers, the design and analytical techniques developed for

conventional materials and structures cannot be used for composite materials. For exam-

ple, it is more accurate to express the strength of a composite material by a curve of prob-

ability of failure instead of a single value; the sums concentration around a cutout in a.

laminated composite must account for the boundary-layer efi‘ect; the low ratiolof trans-

verse shear modulus to inplane tensile modulus renders the composite laminates more vul-

nerable to transverse shear deformation; and the coupling efi'ects among the inplane

loading, inplane shear deformation, and out-of-plane deformation make the prediction of

composite behavior more complicated. All these unconventional phenomena stimulate

new studies on the behavior ofcomposite materials and sn'uctures.

The first theory used in the analysis of laminated composites is the classical lami-

nate theory (CLT). It is based on Kirchhoff's deformation assumptions. However, due to

the low transverse shear modulus of the composite laminates, CLT seems to overestimate

the stifi'ness of laminated composites due to the neglect of transverse shear deformatic‘m.

CLT has been there for long time. In recent years, many investigations have been focused

on the development of new or refined laminate theories to improve the prediction of the

behaviors of laminated composites with various types of geometry and loading conditions

1



[1-4].

2 By modifying the assumption of the displacement field of CLT, the firstoorder

shear deformation theory (FSDT) [7] and the high-order shear deformation theories

(HSDT) [8-12] take the transverse shear deformation into account and therefore improve

the accuracy of composite analysis. Although the properties of the individual layers are

considaedmmesehnunammeones,meyvhmanyneumecompositehminawsassino

gle-layer structures. Generally, these single-layer approaches give good results in global

responses, such as deflection, vibration frequency, critical buckling load, etc. However, as

far as the local responses of the composite laminates are concerned, the single-layer

approaches usually cannot generate satisfactory results. For example, the transverse

Stresses and through-the-thickness deformation cannot be obtained fi‘om these techniques

directly. Unfortunately, these kinds of local information are crucial to the analysis of

delamination, debonding, and flee-edge efi‘ect in composite laminates.

In view of - the problems, a laminate theory based on multiple-layer approach is

really desired. Among the investigations in this area, the generalized laminated plate the-

ory (GLPT) [5], is the most recent and advanced technique. However, since the displace-

ment field used in the GLPT does not satisfy the interlaminar stress continuity at the

composite interfaces, the calculation of transverse Stresses needs to resort to Stress recov-

ery technique which is usually achieved by using equilibrium equations. During the stress

recovery process, the numerical differentiation can worsen the accuracy of the results.

This deficiency can be overcome with the introduction of interlaminar stress continuity on

the composite interfaces. In addition, the incorporation of interlaminar stress continuity

conditions in the displacement field has the potential to increase the accuracy and to

decrease the degree-of-freedom of the GLPT. This motivates the studies canied out in this

thesis.



1.2 literature Review

Structures composed of laminated composites are frequently modeled as single-

layer plates by classical laminate theory. However, as the aspect ratio, i.e., the span to

thickness ratio, of a structure becomes smaller, the CLT can produce errOneous results [6].

Thisisduemmeneglectofnansvasesheardefmmadonwhichisuidcanyimpommm

materials which have relatively low transverse shear modulus compared to inplane tensile

modulus. To account for this deficiency, the idea of Reissner-Mindlin plate theory for iso-

tropic plates was first adopted by Yang, Norris, and Stavsky [7] for composite laminates.

However, the determinatiOn of shear correction factor for some particular problems is very

difficult. This shortcoming of the first-order shear deformation theory was overcome by

the so—called higher order shear deformation. theories [8-12]. The introduction of a higher-

order displacement field made the shear correction factor redundant in the analysis. It also

automatically improved the accmacy of nansverse shear stress disnibution. Although the

high-Order laminate theories gave better predictions of global responses, such as deflec-

tion, vibration fi'equency, and critical buckling. load, they were of single-layer approach

and discounted the independence of individual layers. Hence, the transverse stresses could

not be obtained satisfactorily from constitutive equations.

By considering the layers in a composite laminate individually, the multiple-layer

approaches generally produced more accurate results for both global and local responses.

According to the variational theorems employed, the approaches used for multiple-layer

laminate theories can be divided into the following four categories.

(1) Ambartsumyan’s Approach

This method was first proposed by Ambartsumyan for symmetric cross-ply lami-

nates [13], and further generalized by Whimey for symmetric laminates [14]. In this

approach, a continuous transverse shear stress field was assumed for composite laminates

first. Then, by using consdtutive equations and integration through the thickness, a dis-

placement field was obtained. Based on this displacement field and equations of motion

A
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from classical plate theory, the governing difi'erential equations were derived for compos-

ite analysis. Since no variational principle was used in this analysis, the displacement

field, governing equations, and boundary conditions obtained from this approach were

variationally inconsistent. Moreover, the solutions only showed small improvements in

the globfl responses.

(2) Hybrid-stress Finite Element Method .

Due to the dificulty in satisfying the transverse stress continuity at the composite

interfaces by using conventional displacement-based finite element method [15], a so-

called hybrid-stress finite element method was developed to overcOme this problem by

assuming a stress field for finite elements [16,17]. with the assumed stress field, which

satisfied the equilibrium equations exactly, and the principle of. minimum complementary

energy, the formulation of finite element analysis was achieved. Because of the carefully

assumed stress field, the stresses resulted fi'om this technique were very accurate when

compared with elasticity solutions. However, the shortcoming of this method was the

sophiStication in determining an appropriate stress field. In addition, as the order of the

stress field increased the derivation becamevery tedious. '

(3) Mixed Variational Principle

Another method to satisfy both displacement and transverse stress continuity con-

ditions at the composite interfaces was to assume displacement field and transverse stress

field independently. This technique was performed byMW and Toledano [18,19]

with the use of a mixed variational principle developed by Reissner [20]. Although the

inplane response was greatly improved by this technique, the transverse stresses needed to

resort to the equilibrium equations for more accurate results.

(4) Principle of Virtual Displacement

In this category, all approaches were based on assumed displacement fields. Seide

[21] assumed a layer-wise linear displacement field for composite laminates and solved

simultaneous equations for individual layers by considering interfacial continuity condi-
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tions. DiSciuva developed a shear-deformable rectangular plate element based on a piece-

wise linear displacement field [22.23]. thb this linear displacement field, the transverse

shear stresses satisfied the continuity condition at the interfaces of the composite laminate.

However, the shear traction boundary conditions at top and bottom sm'faces of composite

mnfinamswaenmassmedTherefom,meuansversesnessescouldnmbecalculawd

directly from constitutive equations. Another approach, proposed by l-linrichsen and Pala-

zotto [24], used a cubic spline functions to describe the displacement field in the thickness

direction. However, this C2 continuous displacement field resulted in a continuous strain

field through the thickness, hence overconstrained the composite response. Recently, a so-

called generalized laminated plate theory (GLPT) was presented by Reddy [5]. It was fur-

ther expanded by his colleagues [25,26]. In this theory, a layer-wise representation of

inplane displacements resulted in improved inplane response and transverse shear defor-

mation. However, due to the low-order displacement field used, the surface shear traction

boundary conditions and the interfacial transverse shear stress continuities could not be

satisfied beforehand [25,26]. A sophisticated technique using equilibrium equations for

recovering transverse stresses man be enforced in the porn-process calculation [26].

Along with all the attempts mentioned above to solve the response of composite

laminates, there was little success in using elasticity approach. Pagano [6], and Pagano

and Hatfield [27] solved simply-supported cross-ply laminates under cylindrical bending

and bidirectional bending, respectively. The exact solution of natural frequencies for lami-

nates under cylindrical bending was presented by Jones for cross-ply layups [28] and 0&-

axis laminae [29]. Kulkarni and Pagano extended this technique for ofi'-axis laminates

[30]. The vibration analysis for rectangular laminates by Srinivas, Rao, and Rao [31] was

limited to laminates composed of isotropic layers, while the study by Noor was associated

with vibration of crossoply laminates [32] and stability of multi-layered composites [33].

The results from elasticity solutions can serve as examples for assessing the laminate the-

ories.



1.3 Praent Studies

Upon the demand for finding both displacements and stresses accurately and em-

ciently in the composite laminate analysis, it is the intention of this study to develop a dis-

placement-based laminate theory which can calculate the transverse stresses directly from

the constitutive equations. Hence, the numerical difi‘erentiation during the recovery of

transverse stresses, which usually reduces the accuracy of the results, and other deficiency

of the recovery technique for some particular problems [34] can be avoided.

In order to calculate the transverse stresses direcrly from the constitutive equa-

tions, the displacement field should conform to the stress field in the laminate. In other

werds, the continuity of interfacial tractions and the boundary tractions at top and bottom

surfaces of composite laminates need to be satisfied exactly when the displacement field is

assumed. These requirements can be accomplished by assuming layer-wise cubic dis-

placement functions through the thickness and incorporating the traction boundary condi-

tions in the formulation. With this conformal displacement field, the governing equations

and associated boundary conditions can be obtained via the principle of virtual displace-

ment. In this study, an interlaminar stress continuity theory (1301) is derived first. Then,

by assuming constant transverse displacement through the thickness, which is used in

most laminate theories, the derivation can be reduced to interlaminar shear stress continu-

ity theory (ISSCT). The formulations of these theories consritute Chapter 2 of this thesis.

In Chapter 3, numerical examples for static bending are used to demonstrate the

accuracy of these interlaminar Stress continuity theories by comparing them with elasticity

solutions. In addition, a comprehensive disscusion regarding the Stress continuity theories

and other laminate theories is also presented.

Due to the increase of the order of displacement funcrion through the thickness, the

number of displacement variables in the interlaminar stress continuity theories increases

accordingly. As the number of layers in a composite laminate increases dramatically, the

burden of a huge number of degree-of-freedom on the computational efiort can easily
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jeopardize the feasiblity of these theories. Therefore, a layer reduction technique is pro-

posed in Chapter 4 with a goal to keep the computational efi‘ort to minimum while still

I retain fair accuracy. The demonsn'ation of this technique is canied out for ISSCT only,

though similarprocedluecanbeusedforISCT.

Chapter 5 presents the applications of ISSCT for natural vibration, linear buckling

load,nonlinearbending,nonlinearvibration,andfree-edge stressesofcomposite lami-

nates. Finally, the conclusions and recommendations for this study are summarized in

Chapter 6.



CHAPTER 2

INTERLAMINAR STRESS CONTINUITY THEORIES

2.1 Introduction

Ever since the use of classical laminate theory (CLT), many studies were devoted

to the development of a more accurate theory for composite Stress analysis. First was the

first-order shear deformation theory (FSDT). It accounted for transverse shear deforma-

- tion which was ignored in_the CLT. However, the difiiculty in determining shear correc-

tion factor for FSDT rendered it inconvenient to use. By assuming higher order

displacement field, the high-order shear deformation theories (HSDT) overcame the prob-

lem of shear correction factor. They were also able to give good results for deflection and

vibration analysis. Regardless of their advantages, a more refined theory was desired to

present more accurate stresses. By modeling the individual layers of a composite laminate

separately, the multiple-layer theories gave improvement in predicfing both deflection and

stress state. Nevertheless, among the developed multiple-layer theories, the continuity of

interlaminar Stresses was not satisfied. Hence, the correct transverse stresses could only be

obtained by means of equilibrium equations. In this respect, two interlaminar stress conti-

nuity theories which allow the calculation of transverse stresses directly from the consritu-

tive equations are presented.

2.2 Interlaminar Stress Continuity Theory (ISCT)

In deriving the interlaminar stress continuity theory, the following displacement

field is assumed for an n-layer composite laminate:

u(x.y.z) - Z (U;-j(x.)')¢1(°+7'2i-2(x.y)¢zm+U,-(X.y)¢3m+7‘2i-l(x.y)¢4m)

i-l



v(x.y.zz) - Z (V-,(x.y)¢‘°+32t-t(x.y)¢‘°+v(sy)¢,‘°+$tt-ttx.y)¢§°) (2.1)
i-l

W(x.y.z) . 2 (W-1(I-))¢m+R2i-2(X.J)¢2m+W;(Z.7)45m+ku-l(xel)¢qm)

in!

where o’s are so—called Hermite cubic interpolation functions and are defined as follows

2 2-2- 3
(i) a zr'--l s-l

¢ 1-2-3(hi ) +:(12hi )

 

 

¢2(0‘ (3“ 3;-1) (1'13.

  

  

2 3 zi-l 5 z 5 ‘i (23)

"’ "l'‘l 3:“l

..._.,MI:)-1r)

Q1“) 3 ¢2(0 =3 Q3“) 3 ¢:0 3 0 Z<Zi_‘ or 2>Zi

As depicred in Figure 2.1, (i) represents for the number of layer and ’1‘- the thick-

ness of the layer. U... V,, and W“. denom single-valued displacement components at the in-

terface between (i) and (3+1) layers in x, y, and 2 directions, respectively. Hence, the

continuity of displacements across the interface is enforced In addition, t2“, 32'“, and

R25- 2 stand for the firm derivatives of u. v, and iv with respect to 2 immediately below, the 1'-

interface, respectively, while 21,--" 325-1, and Rzi-1 above the interface. Since the conti-

nuity of interlaminar tractions must be satisfied at every interface, some of the first deriva-

tives can be eliminated. .

In this Study, composite laminates are assumed to deform within a linear elaStic

range. Hence, the following linear strain-displacement relations hold.
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Figlne 2.1 Coordinate system and displacement variables.



e ‘au 8 .3v 8:

8 33' I 5;, t 5?

(2.3)

Bu 3v 3v 3w an 3w

2‘» ' 5+5; ' 2"» ' 5+3; . 2a.. ' #3:

With these main components, the Stresses in each layer can be calculated tom the follow-

ing constitutive equations for orthouopic materials.

      

, . (a) . . m , . (o

“x Q1! 9:2 Qt: 916 ‘3

4 5, > . Qt: 922 923 925 l ‘1 » (2.4a)

O" 013 Q23 Q33 Q36 :2

. a” . _Ql€ Q“ Q36 956‘ t 23:7 .

0’ (D Q Q (I) 2! (i)

y: . 44 45 ,2

{ct} [e.g.,] {2...} <14”)

where the definitions of Q’s can be found in Reference [35]. By substituting the displace-

ment field into the transverse shear strains in the strain-diaplacement relations and then the

constitutive equations, the continuity condition for the transverse shear stresses at the i-in-

terface can be employed, i.e.,

(0 (H1)

0' 0’

{ a" } . { an } i. 1,23...n-1 (2-5)

3‘ x - x, xx ‘ " ‘1 ‘

These equations can help to eliminate some variables. In fact, the following correlations

between the first derivatives can be eStablished,

aw; .

{32i-1}=[A]m{32i}+[81m
5’- (2.6)

1.25-! 23‘ 3V;

5}

where
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(i) l l I g

[ A10) . Au‘u . Q” Q4?Q(+l) asH) (27

A A (0 (5) (5+1) (5+1) ° a)
2! 22 Q45 Q55 Q45 9,,

' (0 (3)

(‘3 ,_ 311312 . Au‘tz _ 10 .
I B ] [th 52] L21 0 1 ts 1.2.3....n-1 (2.7b)

Similarly, the continuity condition of the transverse normal Stress at the i-interface,

i.e.,

“ML"; = o“”’| i=12.3.....n-I (23)

can also be satisfied by requiring

an 30,. ‘ av‘. ‘ 3V; I

Rz‘- l 8 C:03};+C205i+C‘35; +C3()a-’- +C4()R23 , (2.9)

inwhich

(5+1) (0

cf“: Q” a?'99 (2.10a)

(1'44) (1')

cm. Q” 0Q” (2.10b)
Q33l

‘ Q(E+l)_ Q0)

cg.) 8 930) (2.103)

can)

C4“) _33(_)_ (2.10d)

9;;

From Equations (2.6) and (2.9), it is clear that the first derivatives of u, v, and w

with respect to 2 right below the interface are related to those right above the interface and

some other dispacement components. By letting
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[AW] ’ [3?] and [5“] " [38] (2.11a)

cf" - cz‘" - c§"’ - 0; Ci” - 1 _ (2.1113)

and changing the notations

72.17.- ; SZi’S.’ ; RZi‘R; i=0J23.....n-I

(2.12) .

TZa-l 3 T. ' '328-1: 5,. ; RZn-l = R.

the displacement field can be rewritten as follows,

" 3W. aw. '

u =- 2 (”i-14’1“) ”ms” + Uni" ”$93; ‘+B§§’¢£°;; ‘+A$¢.“’T.+A2‘i’¢.‘°59
i-l

" ' duh anfl

V " 2 (V'- 1‘91“) +5.2-14’2“) +Vt¢§° ”$293; ‘+Br(?¢4m§; i""41?4’4mTt'*'Ai(?‘l’:°5i)

i-l

.
30- av. 3v.

(0 ‘ ‘ (0') ‘ ' (0 I a

w " Zm'd‘”! +R5’1¢2()+Wi¢;)+cl has; “'2 dub? +§;‘)+

i-l

av‘. ‘ ‘

c§°¢§°$ +C§’¢§’R,) (2.13)

It should be noted that the interlaminar stress continuity conditions reduce the total

number of displacement variables floor 913 + 3 of Equation (2.1)~ to 6» + 6 of Equation .

(2.13). In this study, for simplicity, a bidirectional laminate with dimensions of a xb sub-

jeeted to a disuibuted lateral load q(z, y) on the top surface of the laminate is presented.

The shear tractions on b0th top and battom surfaces and the normal traction on the bottom

surface are all equal to zero. Hence, with the principle of virtual displacement, the follow-

ing variational equation can be written for the composite laminate considered herein,



° '13:
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4’41 (2.14)

By using the linear Strain-displacement relation, Equation (2.3) can be expressed

  

 

   

 

 

 

 

   

  

   

  

  

 

 

 

 

 

 

 

  

 

as

r t (9

ex '

e (i) (0

t , » = (N, H2. } (2.1521)

g:

L 2“, J

28 (0

n} .. [N9] {29} (2.15b)
28:: ’

where the maniacs are defined as follows,

4’1 ¢2 4’3

[Min]. *1 4’2 f ¢3

V1 4"2 CW4 (32¢, 62°} 634’} V3

_ o, ‘91 ¢2 ¢2 ‘13 4’3

32294 32194 A22” A21” -

312% 311% A12” All¢4

- 649.4 (2.168)

B

312% +811” 321% A12” A22¢4 Ari¢4 Azr¢4 -

22%

g z o g I i i u 2 C ¢ {C Q l 0

~ [5 g m H «i an ,. :14IN" 18 o g 0 ' I g a

M i i i i l it: its 4’2: ts CnMCztt

lcz‘i’ai C3” 3124’} ' Bti¢'4+¢3 A12“ Anni ”4%

i l . g (2.16b)

§C2°4§C3¢4§ 322¢4+¢3 32W) A22¢'4‘ Aar‘P'sicflhi    



me[avg-Hau ,av.,1 av_,W a’w._.,a’w 137w, ar._ ar._,as.,as.

:- a; a; 25 W423; 2333;7,2231; '5; '3';

aumauavav. a’wakv a’whmara23,3533,

‘2""33252323;“;$322572 5;a- a;52‘s]

(0 r a’u._ 320.- a’u. 32V a’v 31th,, ._ aw.-
{x } - U _t l l _t- -l -l l I l T S

: 5-1.3:: 253' '3’; ' Vi-l'-3:2 'm’.372 1'}: '5; ’ i-l’ i-l

aRMan air/Hazy azu a7v‘a2v‘ a’vmawaw arias.

a; 2a; 2 ”2372 553272 ”23:2 6'3??? a; a'2 ’32 22a?5;](2217b)

It should be timed that (') depicts the differentiation with respect to 2. Substituting the

above expressions into Equation (2.15) and using Equation (2.4), the principle of virtual

displacement becomes

0 = jg]; ( {53.}TISknl {1.} + {83.}Ttska {2.} ~45 W.)dydx (2.18)

In the above equation, the following notations, which represent for the assembled

matrices through the thickness, are used.

  

{2.} = 2 {2w} (2.19a)
In!

{2.} . 2 {3:0} (2.19b)

it 1

,. - (8')

‘ QuQuQuQm

[$12.] =- 2 j? [NPIT 912 922 923 an t~£°ldz (2.20a)
5.1 M Q13 923 933 Q36

_ Q16 Q26 Q36 QGG‘
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. (5)

221K” ’ Q45 955 ’ z ( )

It is not dificult to see that {2.} has dimensions of (1313+ 13) x1 while {2,}

(14:: + 14) x 1. Since the laminate surface traction conditions should be satisfied in the as-

sumed displacement field, the number of displacement variables can be further reduced.

First, the vanished shear tractions on the surfaces give rise to

 

 

‘” m (I) s +3W°
a): a Q44 Q45 0 33' s { 0 } (2.213)

On Q (1) Q (1) 3W0 0

x :- z. 45 55 TO + a;

"" ( ) (a) 3W“

“22 . 4: 945 5"”; - {0} 221
o m m aw o ( 2 b)
It 2 _ 8. Q45 955 T. + 5; I

Because the matrices of shear moduli are nonsingular, the following equations can be con-

eluded.

aw0 aw”

so. - a; ; 5,,- -3-; (222a)

aw aw .
r0... -5; °' ; r“. -a.; 2 (2.22b)

Similarly, the conditions to satisfy the applied normal tractions on laminate surfaces,

0', 5'0 ; 0, h-qow)

z... z-

2
 

N
I

can be achieved with the following two equations,

QS’aU, Qg’avo egg) (at/0+avo)

0" " '2
ngufi ngy 9321) 3'; ‘3}
  

(223a)
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ag’au Q"’av Q“) (“an av '

R22" Q7333 "QT-23'; QT.) (33 M32) Qt») (2223b)
 

By incorporating Equations (2.22a.b) and (2.23a,b) in Equations (2.17a,b), the as-

sembled matrices {2.} and {2,} can be associated with the reduced ones, {3.} and

{2%,} , i.e.,

{3.} - IE.) {22.} + {22,} (2.24a)

{2.} - t5,1{i.}+tq,} (2.2413)

where [5.] and [5,] are constraint matrices with dimensions of (1312+ 13) x (13:: +3)

and (14:: + 14) x (141: + 6) , respectively, while {qn} and {21,} are associated column ma-

triees related to the distributed loading q (x, y) . Details of these matrices are listed in Ap-

pendix A. It can also be concluded that the tOtal number of independent displacement

variables required for the reduced displacement field is 621. Since b0th {qn} and {(1,} are

known quantities, the variation of these two column matrices will vanish. Therefore, the

substitution of Equation (2.24) into Equation (2.18) yields

0 3 ISI;( {aifl}r( [Skill {in} 4" [5.] [SkJ {qn})+

- T . - (2.25)

{am ([SKJ {L} + [5,1 [ska {4m «:5 W,)dydx

where

[312.] =- tEJTtsk.) [5,1 (2.26a)

[31h] . [5,17[SK.1[E,] (2.26b)

2.3 Interlaminar Shear Stress Continuity Theory (ISSCT)

In the foregoing formulation for ISCT, the variation of transverse displacement w

in the thickness direction has been taken into account. For very thick composite laminates.
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as it will be seen later, this consideration provides a more accurate modeling for composite

deformation and stress analysis. However, the high degree-of-freedom results from this

assumption becomes a major concern for analysis eficiency. Moreover, as the aspect ratio

of a composite laminate increases, the assumption of uniform transverse displacement

through. the thickness becomes more practical. Hence, there is a need to have a simpler

theory for composite lamainate analysis. An interlaminar shear stress continuity theory is

then proposed. .

Following the notations used in the previous derivan'on, the displacement field for

the interlaminar shear stress continuity theory can be written as

u(x.y.z) - 2w.--,(x.y>¢‘°+th-2(x.y)¢,‘°+v,(x.y)¢§°+th-t<x.y)¢§“)

i-l

V(x.y.z) - 2 (V,-, mm,” +32t-z<2.y)¢‘° +V,(x.y)¢,“’ +32t-t(x.y)¢£°) (227)

hi

Maya) 2.. wo(x.y)

It should be noted that. by assuming constant w over the thickness, the normal

strain in the z direction vanishes. Hence the effect of transverse normal Stress is neglected

in this theory. In ether words, the continuity condition of transverse normal stress, Equa-

tion (2.8), is automatically satisfied. Again, the number of the first derivatives in Equation

(227) can be reduced by employing the continuity conditions of transverse shear stresses

at the composite interfaces, i.e., Equation (2.5). With the same notations used in Equation

(2.12), the reduced displacement field becomes

. aw, a»,
as Zwiqtfhrt- ,¢‘°+U¢‘°+AQ¢,“T+ ‘;’¢‘°S. +B‘°¢‘°5;° +B§?¢‘°;;°)

i-l

aw, , aw,
v a 2 (Vidom+S‘._,¢;°+V¢m+A9¢§°T£+Af?¢(033”glam;+a,‘,’¢‘°3—;°)

W 3 W0 (Xv Y) - (2.28)
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The principle of virtual displacement for the laminate with the same geometry and

loading condition as used in the formulation of ISCT can be obtained from Equation

(2.14) by simply dropping the virtual displacement term corresponding to the transverse

normal strain, the principle then becomes as follows,

1'

5 °8 5" e' T 5mg0 b 2

o-M. L. ., n, +{:} {n.4,} w <22”
2 on 5(220) ‘_‘

Using Equations (2.3) and (2.28), the strains can be substituted by the displacement vari-

ables shown below,

" (0

at

e, .. tN£°1{X§°} (230a)

23x,

2‘ (5)

{ 21‘} - tN§°1ttf°i (2.301»

where the following matrix definitions are used,

 

  
  

(a 4’11 ‘5! 4’3; ‘22” ‘21” I

[Na 1" I .1 ¢2 ¢3 A12¢4 A11¢4§

1’1 ’1 ’21 ¢2l i ¢3 ¢3 A12” ‘n‘hi‘ufi ‘21”

822M 321%

Baa4 8“” (2.31a)

312% i Bll¢4 + 522.4 le¢4

Buv‘ 1+Bu¢
V: IA12¢'4;Al1¢'4

i; 1+3224’th 321W

, i . . ‘ (2.31b)

4’ siAzz¢ 4; Azt" 4   
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{2(5) T an-l an-l aV'-l aV'-l aT'-l aTi-l asi-l asi-l aUt' aUt' avt' 3V5

l ’5; '5; 93'; 05; 0;; 95; '5; 9;; or, 039;;

3r, ar, as, as, a7», 3’», a’wo

’5’5,3'3.¥’m'$f] (2.3%)

. 1' 3w aw

{2:0} ' [vi-l'Vi-l'Ti-l'Si—l'ut’ V9 Tespgovgo] (2.32»

It should be mentioned that although the same matrix notations as those of Iscr,

are used, the contents“ of these matrices are difi’erent. This also applies to the upcoming

derivations. Plug these expressions into Equation (2.29) and utilize the constitutive equa-

tions of Equation (2.4), after integration over the thickness, a similar equation as obtained

in ISCT can be achieved.

0 . jgj;({83.}rtsk.1 {it} + {82,}TISKJ {3,} -q8w°) dydx (2.33)

In the above equation, all the matrices denOte the corresponding assembled ones over the

thickness,i.e.,

{2.} = Z {29} ; {2.} =- 2 {25°} (2.34)

i-l 3.1

(a)

, an 912 at
[ska . 2]” [NW] (2,, Oz; 925 mm”: (2.35a)

' " Q16 925 966

(a)

(3x3) . 2fm mm][9“ Q45] (1)1914: (2.35b)

fill
55

The matrices associated with the inplane strains have a dimension of (8:: +11)

while those with transverse shear Strains (4n + 6) . Moreover, the shear traction-free condi-

tions on bath top and bottom surfaces of the composite laminate enforce the displacement
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variables to be further reduced. This similar manipulation as performed in the derivation

of ISCT results in the following relations.

3 s aw° ' r r aw°

These equations can be employed to eliminate the dependent displacement variables in

{2.} and {2,} by introducing consn'aint matrices [5.] and [5,] ,i.e.,

{2.} - {5.16.} (2.37a)

{is} 3 [E3] {is} (2.37!»

where {3.} and {12,} are the reduced matrices with dimensions of (81: + 3) and (4n+2) ,

respectively. The complete expressions of [ER] and [5,] can also be found in Appendix

A. With these reduced displacement matrices, the equation for the principle of virtual dis-

placement becomes

0 - [3]; < (522,} 7151?.) ii.) + {512,}TtSl-le ti.) -45wo)dydx (2.38)

where

[sin] = [5.1 Tux.) [5.1 (2.3%)

[512.1 - [lavish] [5,] (2,391,)

2.4 Closed-Form Solution

The governing equations and associated boundary conditions for ISCT and ISSCT

can be obtained by substituting the displacement fields, Equations (2.13) and (2.28), into

the corresponding principle of virtual displacement, i.e., Equations (2.14) and (2.29), re-

Spectively, with the use of Gaussian theorem. Since the pmpose of this study is to discuss

and compare the results from difi‘crent theories. these equations are nOt described here. In-
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stead, the techniques for solving the closed-form solution and finite element analysis are

presented. Since the solution phases for both ISCT and ISSCT are similar. only ISCT is

discussed.

For a laminate with all edges simply-supported and subjected to bidirectionally si-

nusoidal loading. '

- , m , (it)

ML!) 8 UZIWMTMT (2.40)

there exists a closed-form solution. By assuming the following displacement functions,

' -: mum) m.hty
0.:- 2Ufcos-a—srn— T-s zf‘i’cos—sln—. b I 1 a b

131-1 “-1

- V" , krtx (rt) S - 3’” .1110 My i=0J2....n (2.41)

VP 2 ism-{CWT 1" 2 ism-7°“? j=1.2.3....n-1
u-l 1.1-1

'_,Intx,hty '-u.knx.lur

2.1-l 1.1-l

the boundary conditions on the edges will be satisfied automatically. In the above equa-

tions, the displacement variables wi “-” on top of them represent for the corresponding

displacement amplitudes. Substitute these displacement functions into Equation (2.25)

and carry out the integration over the x—y plane, the governing equation for the unknown

displacement amplitudes can be obtained,

(0") {2"} = {F"} It. I = 1.2.3....0- (2.42)

In Equation (2.42), [0“] is a coefficient matrix with dimensions of 6:: x Ga, {53’}

is a 6nd column matrix and contains all the unknown displacement amplitudes, and

{5"} a 6» x 1 column matrix associated with the external loading q (x, y) .



2.5 Finite Element Solution

For loading types Other than sinusoidal distribution and boundary conditions other

than simple support, a closed-form solution becomes impossible. Hence, finite element so-

lution should be pursued. In finite element formulation, a set of shape function for an ele-

ment on x-y plane is introduced,

ti.) . [v.1 {X}
. (2.43)

at.) - [VA {1:}

where {X} is the nodal column matrix and [y] ‘s are the matrices consisting of the shape

functions and their derivatives. Plugging Equation (2.43) into Equation (2.25) and per-

forming the integrations, the principle of virtual displacement results in the following fi-

nite element equation

[Kl {X} = {F} (2.44)

in which [K] is the stifincss matrix and {F} is the external loading vector, i.e.,

m . [313(le Tlsim [v.1 + W.) Ttsfm lv,l)dydx ' (2.45a)

{F} = {31; ( [v.1 715,171.93.) {4,} + lvytzdrlskd {42mm

43!: {v} 4414: (245")

In the above equation {on} is the interpolation function associated with W. only.



CHAPTER 3

ASSESSMENTS OF THE STRESS CONTINUITY THEORIES

3.1 Introduction .

The stress continuity theories presented in the previous chapter provide a direct

way to calculate the interlaminar stresses from constitutive equations. In this chapter, sev-

eral examples which have exact elasficity solutions are used to demonstrate the accuracy

andfeasibility of these theories. In addition, since the solutions from other laminate theo-

ries such as I-ISDT andcmare also available, it is the objective of this chapter to com-

pare the advantage and disadvantage of the difl‘erent theories.

3.2 Numerical Examples for Stmes Continuity Theories

3.2.1 Laminates under Cylindrical Bending .

For a composite laminate which consists of cross-ply layups and is under cylindri-

cal bending along x-axis, as shown in Figure 3.1, the displacement field becomes indepen-

dent of y-direction. Consequently, the laminate analysis can be reduced to a two-

dimensional problem and is easy to be done. In fact, Pagano [6] has presented an elasticity

solution for this problem. His investigation has long been considered as a standard study

to assess the accuracy of laminate theories. Therefore, a similar routine is performed here.

Thematerialpropertiesusedinthissmdyareexactly thesameasthoseusedin [6],

i.e.,

5, =- 25x lo‘psmt2 a £3 =- 1x lO‘psi;Gu . 613:»ij lo‘ttsm;23 . 02X 10%:

V12 3 v13 2 v23 2 0.25.

The results are presented with the following normalizations.
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Figtn'e 3.1 Simply-supported composite laminate under cylindrical bending.
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The assessments of the interlaminar stress continuity theories are presented in the

following sections.

1. Assessment ofISSCT

The investigation starts fi'om ISSCI'. Tables 3.1 and 3.2 present both closed-form

solutions and finite element results for asymmetric [0/90] andsymmetric [0/90/0] lami-

nates, respecfively. The normalized midspan deflection and transverse shear stress are of

major interest. In the finite element analysis, Hermite cubic interpolation functions are

used for through-the-thiclmess assembly while both cubic and linear interpolation func-

tions are used for inplane assembly. Hence, in an n-layer composite laminate, the number

of degree-ofofreedom for'one element is 8n+4 when using cubic funcfions while 4:: +4

when using linear functions. As shown in Tables 3.1 and 3.2, only the four-layer ones are

presented with both cubic and linear interpolation functions for comparison. It is clear that

the cubic interpolation has faster convergence than the linear one even when they have the

same number of degrees-of-freedom. This conclusion becomes more distinct as the aspect

ratio of the composite laminates increases. Nevertheless, all the finite element results con-

verge to the closed-form solutions as the number of elements increases.

There is no surprise that the transverse displacement converges faster than the

transverse shear stress. This is because that ISSCT is a displacement-based approach. Fur-

thermore, the number of layers used in the analysis does n0t seem to have significant ef-

fect on the results, especially when the laminates have large aspect ratios, say 8820 and

3:40. It should also be noted that due to the assumption of constant transverse displace-

ment through the thickness, bath the transverse displacement and the transverse shear

stress show high deviations from the exact solutions when S=4. As the aspeCt ratio of the



by using ISSCT.‘
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Table 3.1 Results of a simply~supported [0/90] laminate under cylindrical bending

 

Aspect

ratio

Iggy.

°mfil

FEM

 

No. of elements

 

2 4 10 20

form

 

mg»)

S=4

Cubic

Cubic

Linear

Cubic

4.7977

4.7983

4. 1088

4.7983

4.7808

4.7818

4.6748

4.7848

4.7786

4.7796

4.7647

4.7798

4.7786

4.7796

4.7760

477.97

4.7785

477.97

4779.7

4.7797

4.6950

 

5820

Cubic

Cubic

linear

Cubic

2.7122

2.7122

2.1405

2.7122

2.7078

2.7077

2.5718

2.7077

2.7069

2.7069

2.6878

2.7069

2.7069

2.7069

2.7030

2.7069

2.7069

2.7069

2.7069

2.7069

2.7027

 

Cubic

Cubic

Linear

Cubic

2.6430

2.6430

2.0778

2.6430

2.6414

2.6414

2.5051

2.6414

2.6409

2.6409

2.6201

2.6409

2.6409

2.6362

2.6409

2.6408

2.6407

2.6408

2.6398

 

 
an (o, 0)

Cubic

Cubic

Linea

Cubic

0.8995

0.9395

1069.8

0.9352

0.8555

0.8763

1.0710

0.8735

0.8531

0.8704

0.9010

0.8666

0.8530

0.8703

0.8716

0.8664

0.8530

O.8703

0.8703

0.8664

0.9135

 

8820

Cubic

Cubic

Linear

Cubic

6.1093

6.1055

4.8953

6.0885

4.2095

4.2548

5.3319

4.2532

3.9416

3.9503

5.2201

3.9499

3.9344

3.9380

4.6595

3.9373

3.9340

3.9372

3.9372

3.9365

3.9460

 

  

5
'
2

a
s
s
u
m
e

o
t
h
e
r
»
)

o
n
u
s
»

o
n
u
s
»

o
n
u
s
»

c
u
s
s
e
s
)

3
9

"
s

"
'
0

 Cubic

Cubic

Linear

Cubic  13.933

13.996

9.7482

13.979

8.811!)

8.8347

10.716

8.8314

7.8414

7.9213

11.031

7.9213

7.9038

7.8457

10.451

7.8450  7.8374

7.8395

7.8395

7.8405  7.8436
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Table 3.2 Results of a simply-supported [0190/0] laminate under cylindrical bending

by using ISSCT.

 

Aspect

rauo

No.0!

Inter.

$5.22

 

No.ofelemeots

 

2 4 6 10

form

 

Cubic

Linear

Cubic

2.9217

2.6596

2.9217

2.9110

2.8687

2.9110

2.8965

2.9100

2.9062

2.9098

2.9089

2.9097

2.9096

2.9097

 

8:20

. Cubic

Linear

Cubic

0.6197

0.5039

0.6197

0.6179

0.5909

0.6178

0.6177

0.6176

0.6176

0.6140

0.6176

0.6176

0.6170

0.6176

0.6176

0.6176

0.6176

0.6172

 

Cubic

Linear

Cubic

0.5381

0.4264

0.5381

0.5370

0.5103

0.5370

0.5368

0.5252

0.5368

0.5368

0.5328

0.5368

0.5368

0.5359

0.5368

0.5368

0.5368

0.5368

0.5367

 

 
an (o, 0)

Cubic

Linear

Cubic

1.4545

1.6571

1.4655

1.4265

1.5449

1.4351

1.4252

1.4917

1.4328

1.4251

1.4523

1.4322

1.4250

1.4323

1.4321

1.4251

1.4251

1.4321

1.4318

 

S-20

Cubic

Linear

Cubic

9.7495

10.446

9.7613

8.8230

9.7329

8.8279

8.7608

9.5946

8.7639

8.7471

9.4 110

8.7495

8.7452

8.7474

8.745 1

8.7451

8.7472

8.7490

 

  m
a
n

O
b
b

a
a
u

o
u
u

a
n
;

a
s
;

 Cubic

Linear

Cubic  23.462

21. 103

23.479

18.218

19.662

18.228

17.757

19.463

17.761

17.654

19.293

17.656

17.640

18.906

17.642  17.639

17.639

17.641  17.634
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laminates increase, good agreements between the ISSCT and the exact analysis are ob-

tained. In addition, it is concluded that the results of the symmetric layup, [0/90/0], show

better accuracy than those of the asymmetric layup. [0/90].

2. Assessment of ISCT

The same examples are investigated by using ISCT and the results are given in Tables 3.3

and 3.4. Comparing the closed-form solutions of 130' with the exact solutions, it is clear

that b0th the transverse displacement and stresses converge as the number of layer increas-

es. However, the number of elements afi‘ects the solutions in a difierent manner. This re-

sult can be viewed from the finite element aspect ratio which is defined as the ratio of the

element length to the element thickness. For composite laminates with high aspect ratios,
AF....__

f a—a—rfl‘

it requires more elements to keep the/mute element aspect ratioclos\e to one. On the con-

trary, for composite laminates with low aspect ratios, it requires fewer elements. Accord-

ingly. there is39advantage to use too many elements for. oompositeiaminatewith small

aspect ratio. It then is ’underStandable that the convergences of the transverse displacement

and transverse shear stress are not monotonic for the cases under investigation. In addi—

tion, for symmetric laminates, [0/90/0], the interlaminar normal Stress converges to the ex-

act solution very well. However, for asymmetric laminate, [0/90], this Stress converges

from lower values at S=4, while from higher values at 3:20 and sa4o.

3. Efi'ect of Aspect Ratio .

In order to verify the feasibility of using the new theories for both thin and thick

composite laminates, the normalized deflections at the midplane and midspan are present-

ed in'Figure 3.2. It is in a logarithmic scale with the aspect ratios ranging from four to 200

for all three laminates, [0], [0/90], and [0/90/0]. The results show that b0th stress continu-

ity theories agree with the exact solutions perfectly through the entire span of aspect ratio.

Hence, they can be used for deflection analysis for bath thin and thick composite lami—

nates.



Table 3.3 Results of a simply-supported [0/90] laminate under cylindrical

 

 

 

 

 

 

 

 

 

 

 
 

      

bending by using ISCT.

fit Egg: No. of elemenu %‘ Exact

2 4 10 20

2 4.7266 4.7281 4.7402 4.7349 4.6918

s-4 4 - 4.7144 4.7002 4.7014 4.7033 4.6950 4.6950

6 4.7139 4.6984 4.6979 4.6989 4.6952

__ 1 2 2.7080 2.7037 2.7029 2.7030 2.7027

19(5. 0) $220 4 2.7079 2.7036 2.7028 2.7027 2.7027 2.7027

6 2.7079 2.7036 2.7028 2.7027 2.7027

2 2.6418 2.6403 2.6399 2.6398 2.6398

M 4 2.6418 2.6403 2.6398 2.6398 2.6397 2.6398

6 2.6418 2.6403 2.6398 2.6398 2.6399

2 0.9806 0.9936 1.1218 1.1189 0.9055

S-4 4 0.9907 0.9349 0.9781 1.0563 09212 0.9135

6 0.9854 0.9259 0.9352 0.9742 0.9174

2 6.1426 4.2638 4.1143 4.3936 3.9451

6'“ (0, 0) 8-20 4 6.2074 4.2775 3.9688 3.9878 3.9479 3.9460

6 6.1872 42742 3.9631 3.9563 39472

2 14.371 8.9330 8.0049 8.1679 7.8431

8:40 4 14.384 8.9371 8.2500 7.9340 7.8665 7.8437 7.8436

6 14.356 8.9305 7.9306 7.8561 7.8448

2 0.6192 0.7629 0.8531 0.8533 0.8468

s-4 4 0.7041 0.7468 0.7944 0.7956 0.7947 0.7860

6 0.7436 0.7609 0.7880 0.7890 0.7887

l 2 1.0821 0.8203 0.8874 0.8889 0.8875

3 (—,0) S-20 4 1.2045 0.8547 0.8320 0.8282 0.8273 0.8180

' 2 6 12507 0.8768 0.8249 0.8216 0.8208

2 3.2649 1.4036 0.9326 0.8955 0.8891

8-40 4 3.4873 1.4349 0.8764 0.8345 0.8285 0.8193

6 3.5518 1.4559 0.8710 0.8278 0.8220
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Table 3.4 Results of a simply-suppomd [0/90/0] laminate under cylindrical

 

 

 

 

 

 

 

 

 

 

 
 

      

bending by using ISCT.

FEM

Aspect No. of Closed-
m 18M No. of elements tam Exact

2 4 6 10 20

534 4 29025 2.8982 29011 29052 2.9078 2.8868 23868

6 2.8992 2.8887 2.8879 2.8878 28880 2.8872

.. l 4 0.6194 0.6176 0.6174 0.6173 0.6173 0.6173

445.0) 5'20 6 0.6194 0.6175 0.6173 0.6173 0.6173 0.6173 0'51”

4 0.5380 0.5369 05368 0.5367 0.5367 0.5367

5'40 6 0.5380 05369 05367 0.5367 0.5367 0.5367 05357

5‘4 4 1.4548 1.4653 15136 1.6001 1.6534 1.4244 ”318

6 1.4643 1.4337 1.4318 1.4341 1.4396 1.4314 -

-- 4 9.7509 8.8301 8.7740 8.7811 8.8976 8.7462

6.. (0' 0) 5'20 6 9.7613 8.8297 8.7661 8.7514 8.7440 8.7480 “49°

'4 23.471 18.224 17.767 17.673 17.706 17.640

M 6 23.485 18.228 17.763 17.660 17.645 17541 ”-543

s-4 4 05000 0.4993 0.4976 0.4985 0.4985 0.4985 0 4988

6 05000 0.4987 0.4987 0.4987 0.4987 0.4987 -

.. l 4 05018 0.5002 0.5002 05001 05001 05001

“.(5-01 5'20 6 05018 0.5000 0.5000 05001 05001 05001 05001

4 0.5018 0.4997 0.4999 05000 05000 05000

5"” 6 0.5018 0.4997 0.4999 05000 05000 05000 050‘”
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Figure 3.2 Normalized transverse displacements at midspan for [0]. [0/90], and

[0/90/0] laminates with different aspect ratios. '
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4. Through-The-Thickness Disnibution

Aside from the results calculated at the particular points as discussed in the previ-

ous tables, anather way to assess the results obtained from the new theories is to compare

them with exact solutions through the thickness. The closed-form solutions for [0/90] and

[019010] laminates with S=4 using four-layer analysis are presented in Figures 3.3 to 3.10.

_ In Figures 3.6 and 3.10, the results of transverse normal stress 03 of ISSCT are recovered

from equilibrium equations. Details of the stress recovery technique will be discussed in

Section 3.3.2. From these figures, it is concluded that both ISSCT and ISCT agree with the

elasticity analysis very well. In most cases, ISCT can improve the results of ISSCT slight-

ly except for the transverse normal stress in the [0/90/0] laminate, 'shown in Figure 3.10.

Studies show that the recovered transverse normal Stress from ISSCT gives better predic-

tion than those directly calculated from ISCT.

3.2.2 Laminates under Bidirectional Bending

Consider a simply-supported cross-ply laminate which has dimensions of a x b and

is subjected to bidirectionally sinusoidal loading, i.e., '

. fl . “I

900) 903137937;

as shown in Figure 3.11. The three—dimensional elasticity solution has been obtained by

Pagano and Hatfield [27]. It is the pin-pose of this study to compare the stress continuity

theories with the exact solution. Although the results presented here are all for symmetric

cross-ply layups, the theories have no dimculty in analyzing asymmetric or angle—ply lame

The material properties studied here are exactly the same as those used in cylindri-

cal bending. Sirrrilarly, the following normalized quantifies are used in the presentations

_ 1005,1314 __ - - 12 ._ - I.
w s 400‘ ; (01,432,435) 2 (7;;(0‘, of a”) , (64.65) a 35(0’1'6“)
 



 

— Exact

--- ISCT

ISSCT

 

 
[0/90] "-4‘

Sad.    
Figure 3.3 Normalized inplane displacement ii (0) of a simply-supporwd [0190]

laminate with S=4 under cylindrical bending.
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Figure3.4Normalizedinlanenormalstress61/2 f ‘ 1-
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0.5

— Exact

--. ISCT

0.4 4 ISSCT

0.3 -

0.2 -

0.1 4

5

[0/90]

S=4     
Figure 3.5 Normalized transverse shear stress 5,, (0) of a simply-supported [0/90]

laminate with S=4 under cylindrical bending.
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0.5

- Exact

--- user

0-4‘ Isscr

0.3a

0.24

0.1«-

110 -

[0/90]

s-4    

Figure 3.6 Normalizedtransverse normal stress a (1/2) of a simply-supported [0190]

laminate with S=4 under cylindrical bending.
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Figtn'e 3.7 Normalized inplane displacement 17 (0) of a simply-supported [0/90/0]

laminate with S=4 under cylindrical bending.
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Figure 3.8 Normalized inplane normal stress 6, (1/2) of a simply-supported [0/90/0]

larrrinate with 8:4 under cylindrical bending.
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Figtn'e 3.9 Normalized transverse shear stress an (0) of a simply-supported [0/90/0]

laminate with S=4 under cylindrical bending.
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[0/90/0]

s-4
    

Figure 3.10 Normalized transverse normal stress a (1/2) of a simply-supported [0/90/0]

laminnte with S=4 under cylindrical bending.
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/x ' all edges are simply-supported

Figure 3.11 Simply-supported composite laminate under bidirectionally sinusoidal

loading.
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1 Since the maximum values of the displacement and Stresses are of major concern. only the

maximum values in the individual cases are reported. The strrdies are based on bath

closed-form solution and finite element analysis and are presented below.

1. Efi'ect of Layer Number

The closed-form solutions of a square (a=b) [WM] and a rectangular (b=3a)

- [0/90/0] laminates from rsscr are given-in Tables 3.5 and 3.6, respectively. Comparing

the results, it is obvious that the increase of layer number introduces very small improve-

ments to b0th displacement and stresses. This is also true for the analysis using ISCT

shown in Tables 3.7 and 3.8.

2. Efi'ect of Laminate Thickness

From Table 3.5 to Table 3.8, it is clear that the conclusion drawn from the result of

composite laminates under cylindrical bending is still valid in the case of bidirectional

bending. More specifically, both ISSCT and ISCT are feasible for the analysis of both thin

and thick composite laminates.

3. Efi'ect of Element Number

In the finite element analysis, because of the symmetry of the problem, only one

quarter of the laminate needs to be examined. Table 3.9 presents the ISSCT results of a

simply-supported [0/90/90/0] square laminate under bidirectional bending. In order to

evaluate the influence of the order of interpolation functions on the inplane assembly, bath

linear and cubic interpolation functions are used. However, the assembly of the displace-

ment components through the laminate thickness uses a 12-term cubic interpolation func-

tion. Based on these interpolation functions for element assembly, the degree-of-freedom

of a four-node rectangular element is 16:: +12 for linear function while 48:: + 12 for cubic.

For a [0/90/90/0] composite laminate, if n a 4 is selected, the total number of degreeoof-

freedom for a finite element mesh can be calculated accordingly. The numbers for differ-

ent cases are presented as with parentheses in Table 3.9. It then can be seen that with ap-

proximately the same number of degree-of—freedom used in the finite element analysis,



 

 

 

 

 

   
 

 

Table 3.5 Closed-form solutions of a simply-supported [0/90/90/0] square

(asb)laminateunderbidirectional bending by using ISSCI‘.

a s . - - - - .. -

I oluuou 19 a1 62 up a, 66

4-layer 19555 $07048 $06703 02876 02187 $00465

8-layer 1.9555 $07035 $06695 02915 02192 40.0465

4 12-layer 1.9555 $0.7034 20.6694 02918 02193 $00465

+0.720 +0.663 -0.0465
Exact 1.937 -0.684 .0566 0292 0219 +0.04”

4-layer 0.7324 r05583 $03999 0.1957 0.3006 40.0274

8Mm 0fl%:MfilflMEOflm mmrwmu

1° lZ-layer 0.7324 $05583 $03999 0.1962 0.3007 40.0274

+0559 +0.401 00275
M 00737 . 0.559 . 0.403 001% 0.301 +0.m76

4mm‘0mnrmm1wmnonm wnzwma

8-layer 05078 $05411 $03078 0.1564 0.3272 40.0228

m ”Mm 0mw$umrmwn0fia mnrmmx

+0543 +0.308 00230
Exact 0513 .0543 .0309 0.156 0.328 +0.02”

4-layer 0.4296 $05366 $02699 0.1400 03377 40.0211

8-layer 0.4307 r05380 $02705 0.1398 0.3378 4:0.0212

10° 12.1ayer 0.4318 $05394 $02713 0.1394 0.3381 40.0212

+0539 +0271 .0.0214
Exact 0.435 .0539 .0271 0.139 0339 +0.02“

- - h - - h - - a
6‘ a 04(5' £015), 62 3 a:(‘;’: £913) 9 0‘ a 66(orori'z’)

asagum.§=§m%m



Table 3.6 Closed-form solutions of a simply-supported [0/90/0] rectangular

45

(3a=b) laminate under bidirectional bending by using ISSCT.

 

 

 

 

 

     

£- 801 . E 61 62 64 6:5 66

4-layer 28406 $1.1254 $01115 0.0319 05494 400277

6-layer 28409 $1.1209 $01115 0.0320 0.3512 :00277

4 10-layer 2.8409 $1.1205 $01115 0.0320 03512 $00277

+1.140 +0109 -0.0269
Exact 2.820 “00 -0119 0.0334 0.351 +0028,

4-layer 09178 $07265 $00424 0.0154 0.4196 40.0121

6-layer 09178 $07264 $00424 0.0154 0.4199 40.0121

1° 10-layer 09178 $07264 $00424 0.0154 0.4198 40.0121

+0726 +0.0418 -0.0120
Exact 0919 4,725 .004” 0.0152 0.420 +0.01%

4-layer 05073 $06501 $00301 0.0124 04342 400092

6-layer 05073 $05501 $00301 0.0124 0.4343 400092

2° 10-layer 05073 $05501 $00301 0.0120 0.4340 :0.0092

+ 0.650 +0.0294 - 0.0093
Exact 0510 .0650 .00299 0.0119 0.434 +000”

4-layer 05053 $06243 $00260 0.0114 0.4392 $00083

6-layer 05061 $05252 $00260 0.0114 0.4392 40.0083

10° lO-layer 05061 $06253 $00260 0.0109 0.4389 $00083

+0524 +0.0253 - 0.0083
Em‘ om .0.624 - o.ms3 0.0108 0.439 +0.m83

- .. a b h - - a b h .. .. h

0'1 3 61(2'2't2)’ .02 3 62(59-2'9i3) 9 0'5 3 0’5 (0- Gotta)

64 =- 6,(;.00) . 6, =- 6,(0,§.0)



Table 3.7 Closed-form solutions of a simplyosupported [0/90/90/0] square
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(a=b) laminate under bidirectional bending by using ISCT.
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61 52 E54 55 c'6

+0.7215 +0.5542 - 0.04574-layer 19377 0. .056.“ 02876 02189 “0459

10.7203 +0.5528 - 0.04574 8-layer 1.9369 0.6843 .0665, 02912 02193 +0.04”

+0.720 + 0.553 - 0.0455Exact 1937 0.684 -0666 0292 0219 ”10458

+0.5587 + 0.4010 - 0.0275

+ 0.5585 + 0.4010 - 0.027510 8-layer 0.7370 .05591 -0.4026 0.1959 03014 +0.02%

+0.559 +0.401 - 0.0275

40.5428 +03084 -0.02304-layer 05130 4,5432 . 03088 0.1555 0.3281 +0023,

+0.5428 + 0.3084 - 0.0230

+0543 +0.308 - 0.0230
mt 0.513 .0543 . 0.309 0.156 0.328 +0.m30

448” 0.4345 10.5389 #03710 0.1389 0.3388 $00214

100 8-layer 0.4345 10.5389 10.2710 0.1389 0.3388 470.0214

Exact 0.435 $0.539 $0.271 0.139 0.339 . $00214  
 

aaaéam.§-am;m

.. ab It .. .. ab It .. .. II

01 . 01(50 E'ti), oz . 02(59 59:2) 9 06 . 05(09 out-2')

 



Table 3.8 Closed-form solutions of a simply-supported [0190/0] rectangular

47

(3a=b) laminate under bidirectional bending by using ISCT.

 

 

 

 

 

     

1'3 sand“ 5 61 6'2 64 6, 50

+1.14% +0.1085 ’ -0.0269

“‘7“ 13215 4.1041 -0.1191 ”332 03494 +00231

+1.1449 +0.1088 -0.0269
4 6-layer 2.8212 «1.0998 -0.1193 0.0333 0.3511 +0.0281

+1.140 +0.109 -0.0269
Exact 2.820 -1.100 -0.119 0.0334 0.351 +0.0281

+0.7261 +0.0417 -0.0120
4-layet 0.9189 _0.7256 $0435 0.0152 0.4198 +0013

+0.7260 +0.0418 -0.0120
10 6-layer 0.9189 $3254 $0435 0.0152 0.4201 ”3.0123

+0.726 +0.0418 -0.0120
Exact 0.919 -0.725 .004” 0.0152 0.420 “10123

+0.6500 +0.0294 -0.0092
4'13,“ 0.5095 . 0.6502 . 0.0299 0.01 19 0.4343 +0”3

406500 +0.0294 - 0.0092

+0.650 +0.0294 0.0093
_ Exact 0.610 -0.650 . 0.0299 0.0119 0.434 +0(X193

4-layer 0.5077 $06244 $0.0253 0.0108 0.4393 #00083

100 6olayet 0.5077 20.6244 £007.53 0.0108 0.4393 $00083

Exact 0.508 $0.624 £00253 0.0108 0.439 $00083

. - a b 1:" - ab 1h .. .. h

C" .C:(§, -2-, Li) 0': 332(2'3'13)’ 06306(Oooui§)

'0:6‘(§,0,0). 65:6,(0,g, 0)
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Table 3.9 Finite element solutions of a simply-supported [0/90/90/0] square

(a=b) laminate under bidirectional bending by using ISSCT.

 

 

 

 

 

  
 

 

 

 

  
 

 

 

 

 

 

 
 

 

   

2 No. of Interpolation - - - - - .—

[1 elements function “' ‘1 (’2 °4~ “5 °6

11 mgarOQ' 1.6979 05420 05136 0.3223 02498 0.0367

* Cubzc(204) 1.9484 0.8039 0.7593 03241 02318 0.0463

m 140444171) 19059 0.6748 0.6404 03132 02353 0.0448

Cub1c(459) 1.9516 0.7149 0.6795 02908 02197 0.0464

4 3x3 116641024) 1.9361 0.6933- 0.6584 0.3084 0.2288 0.0459

Cub1c(816) 1.9527 0.7072 0.6723 02879 02186 0.0465

4x4 1.0104475) 1.9457 0.6990 0.6641 0.3036 02253 0.0462

Cubnc(1275) 1.9537 0.7065 0.6709 02876 02186 0.0465

Closed-{01m 1.9555 0.7048 0.6703 02876 02187 0.0465

m M6) 0.5651 03899 0.2921 0.0853 03022 0.0198

00644204) 0.7204 0.6607 0.5032 02766 03306 0.0267

m M171) 0.7043 05281 0.3823 0.1764 0.3189 0.0261

00616059) 0.7309 05727 0.4121 0.2052 03047 0.0275

10 313 M324) 0.7211 05463 0.3929 0.1969 03175 0.0269

Cub1C(816) 0.7315 05610 0.4024 0.1973 03013 0.0274

4x4 1.4494475) 0.7265 05520 0.3963 0.2039 03154 0.0271

0015160275) 0.7319 05605 0.4007 0.1961 03008 0.0274

Closed-{01m 0.7324 05583 03999 0.1957 0.3006 0.0274

In LW“) 0.3107 03122 0.1815 0.2361 01827 0.0133

Cubnc<204) 0.4805 0.6501 0.4460 02775 04069 0.0203

2112 M171) 0.4796 05069 0.2893 0.0343 03116 0.0214

Cubnc<459> 05062 05623 0.3277 0.1836 03413 0.0229

20 3x3 1.0444324) 0.4968 05277 0.3002 0.1077 03317 0.0223

Cub1c(816) 0.5071 05487 0.3134 0.1620 03300 0.0228

4.4 W475) 05020 05340 0.3035 0.1355 03384 0.0225

Cubsc<1275) 0.5074 05461 0.3098 0.1580 03280 0.0228

016660161111 05078 05411 03071 0.1563 03272 0.0228

m 1.1125106) 0.0403 0.0489 00246 13249 04703 0.0019

00014204) 02299 05089 0.3066 0.9368 01338 0.0060

21.2 M171) 0.3749 0.4053 02039 2.3455 0.6838 0.0160

Cub1c(459) 0.4177 05977 0.3170 0.2904 05130 0.0204

100 3x3 Limrmts) 04027 05029 0.2529 12435 01987 0.0198

Cub1c(816) 0.4276 05615 0.2913 0.1933 03940 0.0210

4.4 M475) 0.4187 05230 0.2630 0.6719 00335 0.0206

Cubxc(1275) 0.4291 05471 0.2805 0.1699 03597 0.0211

Closed- 1am 0.4296 05366 0.2699 01400 03377 0.0211  
 

‘ numbers in parenthesis denote the corresponding degree-of-freedom for each mesh
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elements with cubic interpolations show faster convergence at small aspect ratios. Howev-

er, if the aspect ratio of the composite laminate becomes large, although cubic ones still

have better results for transverse stresses, linear ones can give good predictions for inplane

Stresses.Inaddidomitisalsointerestingtoknowthatastheaspectratioofthelaminate

increases, more elements are required for convergence. Because of the excellent results

from ISSCT and the requirement of a very large degree-of-freedom for ISCT, the finite el-

ement analysis based on ISCT is omitted.

3.3.,Comparison of Din‘erent Laminate Theories

In additionto the stress continuity theories, a couple ofother laminate theories also

deserve some attention. The comparison of the laminate theories with the stress continuity ‘

theories becomes an important study in assessing ISSCT and ISCT.

3.3.1 Number of Degree-of-Freedom

Although the accuracy is an essential requirement for a good theory, the number of

displacement variables used in the theory can afi'ect the feasibility of the theory. Form-

nately, the rapid renovation of computer has made the computational work easier and fast-

er than ever before. Nevertheless, the reduction in the computational efl‘ort should never

be ignored. In the following sections, two typical displacement-based laminate theories

are compared with the streSs continuity theories for feasibility evaluation. The ErSt one

Stands for a stagrollayor approach. It is, in fact, a high-order shear defamation theory and

has the following displacement field [11]: .

4 z 3 319°

u(x.)'.z) - uo(x.y)+2(V,-§(;) (11,455”

4 z 2 a”

Nam) = vo(x.y)+z(V,-§(;) (154-50)) (3.1)

"(1.751) 3 190(3))
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In Equation (3.1), 14., v, and w. denote the displacements on the midplane in thex, y, and z

coordinates, respectively, while \y, and v, are the rotations of the normals to the midplane

about y and x axes, respeCtively. It can be seen that the number of displacement variables

is five regardless of the number of layers in the composite laminate.

The other approach is the generalized laminated plate theory [5]. This mutliple-

layer approach has the following displacement field:

N

Mann) - 4,045) + Z (flung-(z)

1"!

N

v(x.y.z) - v00.» + ZW’ 0:.» 01.12) (3.2)

i-1

W(x.y.z) = water)

where the quantifies with subscript 0 denote the midplane displacements, while (05’s are

the global interpolation functions for thickness assembly. (fl and V’ are the nodal displace:

ments relative to the midplane. It should be mad that the number of displacement vari--

ables used in Equation (3.2) totally depends on the order of the interpolation funcfions and

the number of layers, It, in the laminate of interest. For instance, the order of a piecewise

linear interpolation gives rise to N a n + 1. Since UI’ and annish on the midplane accord-

ing to definition, it then results in N . :1. Hence the total number of displacement variables

for linear interpolation is 211 +1. With higher-order interpolation in each layer, the condi-

tions for free shear tractions on tap and bouom surfaces of the composite laminate can

eliminate four more variables. This brings the total number of displacement variables to

4» - 1 and 671 - 1 for quadratic and cubic interpolations, respeCtively.

Table 3.10 gives the comparison of the degree-of-freedom among the theories ‘of

single-layer approach, multiple-layer approach, and the stress continuity theories present-

ed in this thesis. In this table, GLP'I" represents for GLPT bmed on quadratic interpolation

function while GIJ’T’z cubic interpolation function. It can be seen ISSCT and GLP'I'l have
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Table 3.10 Comparison of different laminate theories for an n-layer laminate.

 

 

 

 

 

ram mm3:11.614. 13;: aims"... m

HSDT 5 ' ' constitutive equilibrium equilibrium

GLPT l 4n-l constitutive equilibrium equilibrium

GLPTZ 611-1 constitutive equilibrium equilibrium

ISSCT 4114-1 ‘ constitutive constitutive equilibrium

    ISCT 6n constitutive constitutive constitutive  
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nearly the same number of displacement variables. However, ISSCT can describe a cubic

displacement field through the thickness of each layer while GLP’I‘l only quadratic. More-

over, for the same cubic interpolation functions through each layer, (31.1"?z requires nearly

50% more displacement variables than ISSCT. As also shown in Table 3.10, ISCT de-

mands much more displacement variables than ISSCI', though the former is rewarded with

the simplicity of calculating the transverse normal sness directly from constitutive equa-

tions.

3.3.2 Recovery of Transverse Stresses

“ The recovery of transverse stresses from inplane Stresses can be accomplished by

using the equilibrium equations in the absence of body forces, i.e.,

. 04: 8o
on . “1.3 (33" + 5’14: (3.3a)

2

30 30’

an . “It. (fixi’gq) dz (33b)

.5

30 36

O" 8 .120 (538+3’8) dz (34k)

-5

It must be mentioned that in the analysis of closed-form solution, the disnibution of all un-

known variables in the x-y plane are exact functions. In Other words, there is no inplane as-

sembly in the closed-form analysis. Hence, the derivatives involved in Equations (3.3) do

n0t include any error due to numerical difierentiation. However, in the finite element anal-

ysis, a composite laminate is discretized into many elements. The variables need to be as-

sembled. by interpolation functions and are not exact. The errors from numerical

differentiations become unavoidable and always cause losses of accuracy. In additidn,

each integration in Equations (3.3) provides. an integration constant'to be determined by

the boundary conditions. Usually one undetermined constant cann0t satisfy the two trac-

tion boundary conditions at the top and bortom surfaces of the composite lamimte. How-
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ever, as the finite element result converges to closed-form solution, both traction boundary

conditions can be satisfied.

3.3.3 Closed-Form Solutions for Different Laminate Theories

The basic difi'erence of the laminate theories mentioned in Section 3.3.1 is due to

the assumption of the displacement field through the thickness. Since the closed-form so-

lution is based on a complete function for inplane deformation instead of section-by-sece

tion assembly, it then does nOt introduce error due to approximation and assembly. A

direct insight into the different theories is possible. Therefore, closed-form solutions are

performed for comparing the different laminate theories.

Table 3.11 presents the results of a [0/90] laminate under cylindrical bending.For

HSDT, GLPT‘and GLP'I", since the transverse shear stresses calculated from the constitu-

tive equations are not continuous across the laminate interface, two numerical values, one -

for the layer above the interface and the Other below the interface, are reported in the table.

The transverse shear stress disnibutions through the thickness for some of these theories

are shown in Figure 3.12(a). In addition, the continuous transverse shear Stress distribu-

tions from equilibrium equations can be found in Figure 3.12(b). Because the results from

ISCT and elasticity are very close to each other and so are GLP'I‘2 and ISSCT, the results

from ISCT and Gl..l"l'2 are nor presented in these figures for clearity. Similar results for [0/

9019010] laminate are presented in Table 3.12, Figtn'es 3.130), and (b). it should be noted

that because of symmetric layup, the transverse shear stress at the midplane calculated by

HSDT, GLPT‘, and GLP'I" has only one.value.

The comparison for different laminate theories can be addressed from the follow-

ing viewpoints.

1. Transverse Deflection at Midspan

Comparing the results from the difi'erent theories, it is clear that ISCT gives the

besr predicdon ( error < 0.1% ) of the transverse deflection at the midspan for the aspect



Table 3.11 Closed-form solutions of a [0/90] laminate under cylindrical bending

 

 

 

 

   

~ by using different laminate theories.

“is m w a; a. a.

3801‘ 4.4445 33.6062 2.4769 0.7147 0.8320

3.0915 0.9907

Gm“ 4.2625 -33.4930 3.2215 0.7411 08220

. 32913 0.8623

611'!" 4.7785 61.0802 0.8479 0.8623 0.7957

5.4 3.7159 0.8553

ISSCT 4.7785 81.0844 0.8530 -—-- 0.7897

3.7158

ISCI‘ 46918 302907 0.9055 ........ 08468"

3.8362

Elasticity 4.6953 -30.0293 0.9135 ---- 0.7860

' 3.8359 ~

HSDT 2.6933 -703.437 12.625 3.8998 0.8202

75.805 5.0501

61.?!“ 2.6867 4703.315 16.611 3.9053 0.8198

76.016 4.4181

GLP‘I'2 2.7069 -700.464 3.9342 3.9353 0.8184

5320 76.563 3.9340

ISSCT 2.7069 -700.459 3.9340 ....... 0.8182

76.562

ISCT 2.7027 699.737 3.9451 «- 08875‘

76.652

Elasticity 2.7027 699.734 3.9460 ---- 0.8180

76.653

HSDT 2.6375 4796.29 25.266 7.8204 0.8198

303.03 10.106

6131“ 2.6359 2796.41 33.257 7.8241 08198

303.26 8.8432

(11.1712 2.6409 279339 7.8380 7.8387 03194

3.40 303.80 7.8375

13801 2.6408 2793.27 78373 -—~- 03193

303.79

ISCT 2.6398 -2792.56 7.8430 ....... 0.88917

303.88 .

Elasticity 2.6398 4792.59 7.8436 ....... 0.8193

303.88
 

 
1. - .. - - 1

oz: egg-.15) ;on-O,,(0.0) ; O,= 645.0)

"' calculated from constitutive equations directly
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(a)

 

— Exact

-- lSSCT(eonat.)

-- GLPT‘

.... HSDT

 

 

 
 

3.12 Normalized transverse shear stresses at the edge of a simpl}

(b)

y-supported

 [0/90] laminate with S=4 by using difi'erent laminate theories. (a) constitutive

equations, (0) equilibrium equations.
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Table 3.12 Closed-form solutions of a [0190/9010] laminate under cylindrical bending

by using different laminate theories.

 

 

 

 

 

“33‘ Thea? 1? a; a; 5.. a,

nsnr 32020 $186276 13636 15061 0.7960

GLPT' 33325 4205875 1.4383 1.4400 0.7834

G!!!" 33581 42199049 1.4541 1.4541 0.7862

5'4 ISSCT 33581 $199125 1.4512 --—~ 0.7855

rscr 33360 «19.7062 1.4532 ....... 07776"

202398

Elasticity 33361 .196700 1.4560 ---—- 0.7858

202020

HSDT 0.6885 $284205 7.0885 82173 0.8213

61.?!“ 06796 4287.302 82132 8.1964 0.8206

01218 06797 $287079 8.1973 8.1974 . 0.8206

5‘20 ISSCT 06797 $287080 8.1966 ---— 0.8206

rscr 06793 -287.109 8.1977 -—-- 08185"

286.913

Elasticity 0.6793 -287.108 8.1983 ---- 0.8207

286912

HSDT 05861 $111321 14.195 16.479 0.8222

61.?!" 05889 $1116.35 16504 16.469 0.8220

curt“ 0.5889 $1116.14 16.469 16.469 0.8220

5'40 tsscr 05889 $1116.15 16.469 ---- 08220

rscr 05888 -1116.18 16.469 --- 08201-

111595

Elasticity 05889 -1116.18 16.470 ---- 08220

1115.96  
 

6‘ " 63(éfig) 3 an ' 342(0'0) 3 at ' 5:(-é.0)

‘ calculated from constitutive equations
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Z/h 0.0 . ,2 3.

 

 

 
 

 

 

[0/90/01

S=4»   
(a)

 

 

 

— Exact

- - lSSCT(conet.)

- - GLPT'

HSDT

0.1 ~ :

I :

2/h 0.0 r . : E r .

1 1 2

-4 ‘ 1 5x2

-.2- ‘ '

[0/90/0]

S=4- 

 

 
 

(b)

Figure 3.13 Normalized transverse shear sn'esses at the edge of a simply-supported

[0190/0] laminate with S=4 by using difi'erent laminate theories. (a) constitutive

equations. (b) equilibrium equations.
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ratios considered However, there is no surprise to see that at large aspect ratio, HSDT can

also give excellent result.

2. Inplane Stress

The inplane stress considered in cylindrical bending is the normal Stress in x-direc-

tion, 6,. Although ISCT again shows the best result ( error < 1% ), the remaining theories

can give accuracy within 0.5% at 8:40. However, the error becomes very large, e.g., 12%,

at S=4.

3. Transverse Shear Stress .

For the transverse shear Stress. ISSCT and GLP'l‘2 have the same accuracy as those of

ISCT except for a [0/90] laminate with S=4. However, since GLP'I‘2 has higher degree-of-

freedom than ISSCT and its transverse shear stress has to be calculated from equilibrium

equations, GLPT3 is not as eficient as ISSCT. Although GLP'I'l has approximately the

same degree-of-freedom as ISSCT, its result is n0t as good as ISSCI‘. In addition, from

Figure 3.13(b), it is found that HSDT does nor predicr the correcr trend of the n'ansverse

shear stress through the thickness when S=4.

4. Transverse Normal Stress

Among the laminate theories discussed in this study, only ISCT can calculate the

transverse normal Stress directly from the constimtive equations. However, it is surprising

to see that the results obtained by ISCT does nor provide better accuracy than those recov-

ered from equilibrium equations, especially for the asymmetric layup, [0/90] laminate. Al-

though the accuracy can be improvedby increasing the numberoflayers in the analysis as

shown in Table 3.3. 11:: penalty of increasing 1116 degree-Of-fi'eedom may drastically over-

whelm the support of using ISCT.

5. Bidirectional Bending .

Beside the examples for laminates under cylindrical bending, laminates under bidi-

rectional bending are also Studied here. Since there is no advantage of using GLPT 2,

GLP'I'2 is omitted in the following discussion. Thus, GLPT in the following tables denotes
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the GLPT ‘. The closed-form solutions of a square [0/90/9010] laminate and a rectangular

[0/90/0] laminate are presented in Tables 3.13 and 3.14, respectively. For the transverse

shear stresses, the results obtained from equilibrium equations are reported within paren-

theses right under the quantities calculated directly from the constitiutive equations. More-

over, due to the symmetric stacking sequence of the laminates Studied. only one value of

transverse shear stress is found at the midplane.With the results shown in Tables 3.13 and

3.14, it can be seen thatHSDT has an error around 10% for borh deflection and stresses at

a/h :- 4. The prediction can be improved as the aspect ratio of the composite laminate in-

creases. In additions, the results obtained by GLPT are less accurate than ISSCT while

ISCT gives excellent agreement with elasticity solutions.

3.3.4 Summary ,

Based on the numerical results presented in the previous sections, the following

summary can be drawn.

1. The importance of interlaminar shear stress continuity condition in composite

laminate analysis can be recognized from the comparison between ISSCT and GLPT‘,

shown in Tables 3.11 and 3.12. In bath theories, a cubic displacement field within each

layer is used though only ISSCT satisfies the interlaminar shear stress continuity condi-

tions at the composite interfaces. It can be seen from Tables 3.11 and 3.12, bath theories

predict almost the same results for displacement and stresses. In Other words, they have

about the same accuracy for composite analysis. However, as the computational efi'ort is

concerned, ISSCT has degree-of-freedom 30% lower than that of GIN", shown in Table

3.10.

2. As mentioned in Chapter 2, the major difl‘erence between ISCT and ISSCT lies

in the assumption of transverse displacement w. The former varies in the thickness direc-

tion while the latter is constant through the thickness. If phrased difi'erently, as can be rec-

ognized from Equations (2.14) and (2.29), the significance is the consideration of at in the



Table 3.13 Closed-form solutions of a square (a=b) [0190/90/01 laminate

 

 

 

 

 

under bidirectional bending by using difi'erent laminate theories.

(2 .. .. - - - -

71' M “' “1 “2 ‘4 ‘5 ‘6

HSDT 1.8813 206641 +0.6253 02398 02056 $00435

- (02977)" (02299)

cm 1.9433 20.7323 206632 03297 02182 $010470

4 (0.2893) (02174)

rsscr 1.9555 10.7048 £06703 02876 02187 $00465

rscr 1.9377 +0.7216 + 0.6642 02876 02189 -0.0467

-0.6856 -06671 +0.0459

Elasticity 1.937 +0720 +0663 0.292 0219 -0.0465

-0.684 -0.666 +00458

nsnr 0.7079 205433 :03863 0.1546 02629 4200264

(0.1930) (03059)

cm 0.7319 20.5606 10.3996 02225 0.3020 $00274

(0.1960) (03005)

10 18801" 0.7324 $05583 203999 0.1957 03006 $00274

rscr 0.7371 +05587 +0.4010 0.1955 03013 -0.0275

-o5591 -0.4027 + 0.0276

13111366113, 0.737 +0559 +0401 0.196 0301 -0.0275

-0559 -0.403 +0.0276

asnr 05004 10.5369 203027 0.1251 02814 200225

(0.1550) (03289)

cm 05077 205415 103071 0.1771 03288 #00228

(01564) (03272)

2° ISSCT 05078 +05411 203071 0.1563 03272 :00228

ISCT 0.5130 +05428 +03084 0.1555 03281 —0.0230

—05432 -03088 +00231

Elasticity 0513 +0543 +0308 0.156 0328 —00230

-0.543 -0.309 +00230

nsnr 0.4293 10.5365 20.2697 0.1134 02887 400211

(0.1400) (0.3380)

cm 0.4297 20.5368 +02700 0.1580 03395 :00211

(0.1401) (03380)

10° 1sscr 0.4296 10.5366 20.2699 0.1400 03377 $00211

rscr 0.4346 +05389 +02710 0.1389 03388 -0.0214

-05389 —02710 +00214

may 0.435 +0539 +0271 0.139 0.339 4.0214

-0539 -0271 +0.0214   
 

' quantity in parenthesis denotes the result obtained by equilibrium equations

 



Table 3.14 Closed-form solutions of a rectangular (3a=b) [0/90/0] laminate

under bidirectional bending by using difi'erent laminateththeories.

61

 

 

 

 

 

   

a .. - .. .-

71' my “’ “1 62 °'4 °5 60

user 26366 11.0372 10.1026 0.0356. 02722 $0.0262

(0.0309) (0.3822)

am 27800 11.1866 10.1093 0.0331 03405 +0.0278

4 (00313) (03408)

15507 28406 11.1254 10.1115 00319 03494 $00277

1501' 28215 +1.1496 +0.1085 0.0332 03494 —0.0269

-1.1041 -0.1191 +0.0281

Elasticity 2.820 +1.14 +0.109 0.0334 0.351 40269

-1.10 -0.119 +0.0281

HSD‘I‘ 0.8594 10.6923 10.0404 0.0177 02858 400115

(0.0150) (0.4298)

GLPT 0.9159 10.7320 10.0423 0.0161 0.4192 40.0121

(0.0154) (0.4190) ,

10 ISSCT 0.9178 107265 10.0424 0.0154 0.4196 40.0121

rscr 0.9189 +0.7261 +0.0417 0.0152 04198 —00120

-07256 -0.0435 +00123

1511966113, 0.919 +0726 +0.0418 00152 0.420 -0.0120

. -0.725 -0.0435 +00123

HSDT 05911 106404 10.0295 0.0147 02879 4200091

(0.0123) (04370)

cm 0.6070 106511 10.0301 0.0129 0.4345 40.0092

(0.0124) (0.4341)

2° ISSCT 0.6073 10.6501 10.0301 0.0124 0.4342 $00092

1scr 0.6095 +06500 +0.0294 00119 0.4343 -0.0092

-06502 -0.0299 +00093

Elasticity 0610 +0650 +0.0294 00119 0.434 -0.0093

-0.650 -0.0299 +00093

l-lSDT 05045 106238 10.0260 0.0137 02886 $0.006

(0.0114) (0.4394)

cm 05051 10.6241 10.0260 00118 0.4395 $0.0083

(0.0114) (0.4392)

1°° Isscr 05053 10.6243 10.0260 00114 0.4392 $00083

rscr 05077 +06244 +0.0253 0.0108 0.4393 -00083

-0.6244 -0.0253 NM

15111116 0508 +0539 +0.0253 0.0108 0.439 —0.0083

g -0539 -0.0253 +0.0083
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thickness direction. In order to illustrate the significance, Figures 3.14 to 3.17 present the

. N closed-form solutions obtained fi'om difl'erent laminate theories. The investigations are for

a simply-supported [0/90] laminate under cylindrical bending and has aspect ratios rang-

ing from three to 200. In these figmes, the midspan deflection, maximum inplane stress at

midspan, interfacial shear stress at laminate edge, and the transverse normal stress at the

interface of midspan are normalized with respect to associated exact solutions [6]. It

should be mentioned that the results with asterisk denote the stresses recovered from equi-

librium equations, otherwise they are calculated directly from constitutive equations.

As can be seen from these figures, all theories predict excellent results except for

the transverse normal sness ‘1 from ISCT when the aspect ratio of the composite laminate

is greater than 10. However, the results from ISCT can converge to the exact solution as

the number of layers used in the analysis increases (see Table 3.11). In spite‘of this offset

difference in “1' the results of ISCT have excellent agreement with the exact solutions

even for S<10. However, it should be noted that ISSCT can also predict very good result

for S=5. Based on the numerical analysis, it can be concluded that ISCTrs necessary only

i.-.-

laminate is very thick, especially when <1xis of major concern, the variation of transverse

displacement with respect to the thickness needs to be considered.

3. Beside the comparison of accuracy described above, anather important aspect

needs to be considered is the feasibility of finite element analysis. Unlike ISSCT, the finite

element analysis using ISCT sufi‘ers from the element aspect ratio problem as pointed out

in, Tables 3.3 and 3.4. As the aspect ratio of the element is away from one, the results of

ISCT diverge. Furthermore, the ISCT demands 50% higher degree-of-freedom than

ISSCT. Therefore, it is believed that ISSCT is superior to ISCT for finite element analysis.

In the following chapters, only ISSCT is used to demonstrate the feasibility of using the

stress continuity theory for composite analysis.
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Figure 3.14 Normalized midspan deflections 14112.0) of a simply-supported [0190]

laminate under cylindrical bending by using difl'erent laminate theories.
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Figure 3.15 Normalized inplane normal stresses 6,012. 1112) of a simply-supported

[0/90] laminate under cylindrical bending by using difi‘erent laminate theories.
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CHAPTER 4

TECHNIQUES FOR LAYER REDUCTION

4.1 Introduction

As discussed in the previous chapter, difi‘erent laminate theories have difl‘erent as-

pects of advantage and disadvantage. For instance, HSDT is simple and has low degree-

of-freedom. However, its results for small aspect ratio ( S<10 ) are poor. In addition, the

calculation of transverse stresses in this technique needs to resort to the equilibrium equa-

tions. On the other hand, ISSCT and ISCT are suitable for bath thick and thin composite

laminates, and the calculation of transverse stresses can be obtained directly from consri-

tutive equations without an efl'ort. However, the number of degree-of-freedom in these

theories increases with the number of composite layer. A large number of degree-of-free-

dom can result in costly computation if not impossible. Fortunately, in most design cases,

instead of the whole stress distributions through the thickness, fi'equently only the stress

states at some particular interfaces are of interest. This indicates a possibility ofcombining

difl'erent theories together to reduce the computational efi‘ort while still retain the accuracy

in predicting stresses and deformations.

4.2 Fundamental Techniques

The goal of layer reduCtion is to combine the simplicity of single-layer approach

and the accuracy and easiness for stress calculation of the interlaminar shear stress conti-

nuity theory. Figure 4.1 illustrates the idea of layer reduction. The original n-layer lami-

nate is reduced to a four-layer laminate. The decision of the layer reduction is dependent

on the interface where the stress State is of interest. As pointed out in the previous chapter,

every laminate theory can prediCt inplane snesses more accurately than transverse Stress-
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es. Hence, the interface of interest should be retained in the layup after layer reduCtion.

Consequently, the two layers adjacent to me interested interface remain unchanged while

the layers above and below these two layers are lumped into two single layers. It can be

seen that this technique reduces the composite laminate from an n-layer one to a four-layer

one. As shown in Figure 4.1, the second and third layers remain unchanged. The material

propertiesusedinthesetwolayersareexactlythesameasthoseusedintheoriginalcase.

The determination of the material properties in the reduced layers, i.e., the first and fotn'th

layers, are proposed in the following sections. In this study, only ISSCT is used to demon-

strate the feasibility of the layer reduction technique. If ISCT is of interest, similar proce-

dure can be followed. .

1. Lumping the Reduced Layers by CLT

The first approach of lumping the material prOperties for the reduced layers is to

find an equivalent inplane Stiffnesses by CLT and an equivalent shear moduli by averaging

the shear modulus through the thickness. Due to this homogenization of the first and

fourth layers, bath the inplane stresses and transverse shear stresses are continuous

through the thickness of each reduced layer.

2. Lumping the Reduced Layers by HSDT

As can be shown in Appendix B, ISSCT can be reduced to HSDT for single-layer

laminates. Hence, HSDT can be viewed as a single-layer version of ISSCT. It then is pos-

sible to model ISSCT and HSDT with a consistent displacement field. That is, the reduced

layers can be modeled by HSDT while the unchanged layers by ISSCT. If the reduced lay-

er is modeled by HSDT, the transverse shear stresses calculated from constitutive equa- .

tions cannot be continuous at the interfaces of the reduced layer. However, because ISSCT

is virtually used in assembling the reduced and the unchanged layers, the continuity. of

n'ansverse shear stresses at their interfaces is guaranteed.
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Original laminate Reduced laminate

Figure 4.1 Cross-sections of original and reduced layups.
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3. Lumping Inplane Stifinesses by HSDT and Transverse Shear Moduli by Parallel Aver-

asins

The nansverse shear stresses calculated from constitutive equations in HSDT are

n0t continuous through the interfaces inside a reduced layer in the second approach while

the inplane stresses calculated from the first approach are continuous. These results do nor

fit the real situation since the inplane stress should be discontinuous through the thickness

while the transverse shear. stress continuous. However, by lumping the inplane stifiness

with HSDT and averaging the nansverse shear moduli through the thickness of a reduced

layer, the distributions of the stresses through the thickness of the composite laminate be-

come consistent with the exact solutions. In other words, discontinuous inplane stresses

and continuous transverse shear stresses through the thickness can be obtained from this

approach. The averaging technique for the transverse shear moduli is called parallel aver-

aging and implies

Q1, ‘ (Z (22’ 4.11/(24;) (4.13)

2,, - 1212;31:01/1249 (4.11:)

4. Lumping Inplane Stiffnesses by HSDT and Transverse Shear Moduli by Serial Averag-

ing

Same argument as proposed in the above approach except that serial averaging is

employed for transverse shear moduli, i.e.,

Q... - (Eliza/(gh/QE') (4.2a)

9,. = (th)/(th/Q,‘?) (4.2b)

4.3 Numerical Examples

The feasibility of the aforementioned techniques for layer reduction is evaluated
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with the investigation of several numerical examples. Since the techniques only involve

the alternation of layup in the thickness direction without any change in property or geom-

etry in the x-y plane, closed-form solutions are available.

43.1 Cylindrical Bending

Consider a simply-supported lO-layer [0/90/0/90/015 laminate subjected to cylin-

drical bending, and assume the midspan deflection, the maximum inplane stress at mid-

span, and the midplane transverse shear stress at the laminate boundary are of interest. As

can be noted that these are also critical stresses for the composite laminate. The ten-layer

laminate is then reduced to a four-layer one, i.e., [Rl0]s, where R denotes the reduced lay-

ers. The normalizations of the numerical results with respect to ISSCT for the four ap-

proaches at different aspeCt ratios are presented in Figures 4.2-4.4. In these figures,

superscripts o and r represent for the results obtained from the original and the reduced

laminates, respecfively. Since HSDT is the one-layer version of ISSCT, i.e., the simplest

reducfion of ISSCT, the results from HSDT are included in the following figures for com-

parison. Figure 4.2 shows clearly that the midspan deflections from all approaches con-

verge to those of ISSCT as the aspect ratio increases. Among the four approaches, the

fourth approach gives the best results for all 5. For the inplane normal Stress as shown in

Figure 4.3, all approaches except the first one agree very well with ISSCT. The normalized

result for the transverse shear stress is shown in Figure 4.4. It should be poinwd out that

. although HSDT gives fair results in shear stress, the results are obtained by stress recovery

technique. If the constitutive equations are used to calculate the shear stress, poor result

can be expected.

4.3.2 Bidirectional Bending

The same 10+layer [0/90/0/90/0]s laminate is used again in the analysis of bidirec-

tional bending. The displacements and Stresses of the simply-supported, square laminate
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Figure 4.2 Normalized midspan deflections of a [0/90/0/901015 laminate under cylindri-

cal bending at different aspect ratios from difi’erent layer reduction approaches.
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under cylindrical bending at difi'erent aspect ratios from difi'erent layer reduction

approaches.
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subjected to bidirectionally sinusoidal loading are investigated. Since HSDT needs to re-

sort to equilibrium equations to calculate the transverse shear Stresses, it is difi'crent from

Other approaches and is dropped out from the discussion. Furthermore, since the biggesr

difi'erence among the difi'erent approaches appears at small aspect ratio, only the results at

S=4 are presented herein.

The normalized inplane displacements through the thickness are shown in Figures

4.5 and 4.6. The solid lines represent for the results obtained by the original 10~layer 1am-

inate with the use of ISSCI'. It is clear that the displacements predicted by the layer reduc-

tion techniques are continuous though the thickness. Figures 4.7, 4.8, and 4.9 present the

normalized inplane Stresses, 6“, a, and 6'”, respectively. As pointed out in the cylindrical

bending case, the first approach predicts continuous inplane Stress distributions through

the reduced layer which obviate from the exact disnibution significantly. The normalized

results of the transverse shear stresses are shown in Figures 4.10 and 4.11. The second ap-

proach gives a discontinuous shear stress through the reduced layer due to the use of

HSDT and conStitutive equations. In general, b0th the third and fourth approaches show

good approximations through the thickness.

4.4 Discussions

Of the four approaches and the numerical examples presented in the previous sec-

tions, the third and the fourth approaches seem to give better results for both displacement

and stresses. Bath approaches also give the same trends of inplane and transverse stresses

- as the elasricity solutions.

As can be seen in Figures 4.2 to 4.4, HSDT is accurate for laminates with aspecr

ratio greater than 10. However, as mentioned in Reference [33], if the stress State near the

free edge of the laminate is of concern, the stress recovery technique using equilibrium

equations is not satisfactory. On the 0mm, as will be seen in the next chapter, the inter-

laminar Stress continuity theory gives very good descriptions of displacement and mess
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Figure 4.5 Normalized inplane displacement 17(11/2. 0) of a square [0/90/0/90/0]s

laminate subjected to bidirectional bending at S-4 from difi'erent layer reduction
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Figure 4.6 Normalized inplane displacement 6(0, b/2) of a square [0/90/0/90/0]s

laminate subjeCted to bidirectional bending at S=4 from difl‘erent layer reduction

approaches.
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Figure 4.7 Normalized inplane normal stress 51(4’2' b/2) of a square [0/90/0/90/0]s

laminate subjected to bidirectional bending at S=4 from different layer reduction

approaches.
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Figure 4.9 Normalized inplane shear Stress 51, (0, 0) of a square [0190/0/90/01s laminate

subjected to bidirectional bending at S=4 from difi‘erent layer reduction approaches.



81

0.5 - 

 

 

 

0:4

5x2(0,b/2)

a-b. a/h-4

[O/SO/O/SO/OL  
 

Figure 4.10 Normalized transverse shear stress in (0, b/2) of a square [0/90/0/90/0]S

laminate subjected to bidirectional bending at S=4 from difl'erent layer reduction

approaches.
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Figure 4.11 Normalized transverse shear Stress in (tr/2. 0) of a square [0/90/0/90/0]s

laminate subjected to bidirectional bending at S=4 from difl'erent layer reduction

approaches.
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near the free edge. Therefore, it is believed that ISSCT is superior to HSDT in this respecr.

AnOther technique in reducing the computational efi'ort can be achieved by com-

bining ISSCT and HSDT together. This technique implies the use of different types of ele-

ments in strucntral discretization. It is suggested that the ISSCT will be employed only

where theStressStateisofintereseandtheremainingpartoflaminatecanbemodeledby

HSDT. This mixed mchnique can reduce the total number of degree-of-freedom consider-

ably, especially for the composite laminate with many layers. However, special attention

should be paid to the compatibility between the two difl‘erent theories. Since this tech-

nique is very similar to the n'aditional finite element analysis for a complicated structure,

e.g., a structure composed of truss, beam, and plate substructtues, it is not included in this

Study.



CHAPTER 5

APPLICATIONS OF ISSCT IN

VIBRATION, BUCKLING, AND NONLINEAR ANALYSIS

5.1 Introduction

In Chapters 2 and 3, the derivations and assessments of ISCT and ISSCT are

accomplished. Static bending is used to demonstrate the merit of these new theories. It is

concluded that for very thick composite laminate (8(5) and for very high accuracy ISCT

is necessary. Otherwise, ISSCT is more efficient for computation. In order to further

inveStigate the applicability of ISSCT for engineering analysis, the governing equations of

laminated Structures in natural vibration, buckling, nonlinear bending, and nonlinear

vibration are obtained Some numerical examples need to be solved and compared with

elaSticity solutions to assess the new theory. Moreover, the feasibility of using ISSCT for

free-edge analysis is presented.

5.2 Natural Vibration

' For a composite laminate with some particular boundary conditions, linear free

vibration analysis gives the resonant frequencies and associated mode shapes. These kinds

of information provide a valuable insight into the Structure performance under dynamic

loading. Hence, in this section, the governing equation for linear, undamped, fiee vibration

will be derived. In addition, some examples will be examined to justify the accuracy of the

laminate theory. .

The Lagrangian of a teetangular composite laminate with dimensions of a x I:

under free vibration can be written as

84
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r

21 o ‘ a T 2:
. C b 2 - ”

L 10,101.52 '5 , IL, } {28"}‘1‘4’4‘
2 6 x2 x:

x) x)

5 l
-I3I3I2h§p(liz+92+wz)dzdy¢t (5.1)

‘2

where thefirsttermisthestrainenergystoredin the structurewhilethe secondtermisthe

kinetic energy associated with the time-varying response. In addition, C) denotes time

derivative and p stands for mass density. By using constitutive equations, the Stresses can

be substituted by strains. Employing the strain-displacement relations and carrying out the

integration through the thickness, the Lagrangian then becomes

.: T :

L . gj;[3118.171310] 18.} + {8.171001 {2.15— {11,} [mar {101-whoa (52)

In the above equation, all the norations used in Chapter 2 are followed. Some new nota-

tions are defined below,

1517.1 - 2 (1:49") (~§°)’(~§°)4z) (5.3)
fill

[”50] ' .1 0 82 0 83 0 42284 A2184 32284 521.4 (5.4)

0 1’1 ° 1’2 ° 83 A1294 51184 31294 51194

m a 2 pm (21" 2‘; ') (55)

1'- 1

To satisfy the shear traction free conditions on the laminate surfaces, the same can-

Straint matrices used in Chapter 2, i.e., Equations (2.37a,b), can be inn'oduced into Equa-

tion (5.2). The Lagrangian then results in
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. . - - - . .- T - .' _

1 - gj;[3118.1’1340 (11,} + 18.1’1580 {11,} - (11,) 154421 (11,) «13214144 (5.6)

In drecaseofclosed-form solution.Since there exists anexactmodal function for

thispudcularpmblemthedisplacementmauicescanbeassumedas

ti.) - 10.112)!“ (5.7a)

{is} - 10,1127)!“ (5.71))

where [0.] and [DJ are matrices containing assumed modal functions and their deriva-

tives with respect to the inplane axes. The matrix {5?} consists ofunknown magnitudes of

the displacement variables of the particular mode shape. In addition, 1"“ represents for the

timevariantpartofthe displacementrunctions whereja- J3 and o isthe circularfre—

quency. By plugging Equations (5.7a,b) into Equation (5.6) and using the Lagrange’s

equations

%%)-%; a {0} , i a I, 2, ....,4n+1 (5.8)

the governing equation for this eigenvalue problem can be obtained, i.e.,

101 (ii-02101 11?} - {0} (5.9)

In Equation (5.8), f,- is the i-component of the column mauix {1?} .

As the static bendingsexarrlinedinChapterLfinite element analysis isrequiredto

study the Structures with general geometryandboundarycondition. Forthis typeofeigen-

value problem, a set of interpolation functions are introduced

{8.} - 111.1 m 4'" ' (5.104)

{X1} -- 1111,1110!“ (5.10b)

Substituting these functions into Equation (5.6) and employing Lagrange’s equations,

Equation (5.8), the following finite element equation for a Single element can be achieved.
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110 m «13140120 =- 10} (5.11)

where [K] is the same stifiness matrix as used in static case while [M] the consiStent mass

matrix associated with the assumed interpolation functions.

Once the governing equation for the modal analysis is obtained, several examples

are used to demonstrate the acctnacy of ISSCT in vibration analysis. The fundamental fre-

quencies of Simply-supported [0], [0190], and [0/90/0] laminates with aspect ratio ranging

from fan to 200 under cylindrical bending are [shown in Figln'e 5.1. The same material

properties as used in Chapter 2 are examined in the simulation. In this figure, the exact fre-

quencies [28] are obtained using two-dimensional elasticity analysis while the ISSCT

results are obtained from finite element analysis using fotn' layers and four elements. It is

clear that the ISSCT results agree very well with the exact solutions in both thin and thick

composite laminates. '

Table 5.1 presents the normalized fundamental frequency of a simply-Supported

- [0190/90/0] square laminate with aspect ratio a/h=5. Difi‘erent anisotropic ratios, 5,15, , for

the material is also investigated and compared with three-dimensional elasticity results

[32]. In the finite element analysis, because of laminate symmetry, only a quarter of the

plate is examined. It can be seen that with a 4 x4 mesh, the finite element solutions con-

verge very well to the closed-form solutions.

5.3 Critical Buckling Load

For a composite laminate subjected to inplane loading, the critical buckling load is

the essential information for stability analysis. The buckling phenomenom occurs due to

the coupling between the applied inplane loading and lateral deflecuon. In this study, the

principle of minimum potential energy is used. The total potential energy of a rectangular

laminate subjected to uniformly compressive and shear loads along its boundaries can be

written as follows [36], i.e.,
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Figure 5.1 Fundamental frequencies of simply-supported [0],[0/90]and [0/90/0]

laminates with different aspect ratios under cylindrical



Table 5.1 Normalized fundamental fiequency 1.. of a simply-supported [0190/90/01

square laminate.
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Intheaboveequation,thefirsttermisthestrainenergy storedinthe structureThesecond.

third, and forum terms are the coupled potential energy components due to inplane loading

fpf, andfx, respectively. The final forn' terms are the potential energy of external forces

' exerted on the boundaries. Since these four terms correspond to the inhomogeneous term.

i.e., the force vector, in the final eigenvalue equation, they are not relevant to the calcula-

tion of the homogeneous eigenvalue problem. Therefore, they are omitted in the following

derivation. In addition, for simplicity, only the compressive loading f, is considered

herein. The terms associated withf, andf” are removed from the total patential energy.

Following the notations used in the previous seetion, the displacement field for a

composite layer and its derivative can be written as
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(0

t :1 - 11191185") (5.13)

a‘ (0

3'1? , a (0 (0
at am, 112. 1 (5.14)

3}

SubStituting these expressions into the pctential energy and manipulating the Strain energy

term as in the vibration study, the total potential energy after integration through the thick-

ness becomes

1 - 21313 1 {8.1715120 18.11-18.171380 11?.) - .53., {8318503318.}

aw 2

1.413;) 1414: , (5.15)

where

135.] - 2 (r1. 1N§”1'1N§°1421 (5.16)
i-l

is the assembled matrix through the thickness.

The closed-form solution for the critical buckling load is also valid for the prob-

'lems with simply-supported boundary conditions and cross-ply layup. The buckling mode

shape in the x-y plane can be assumed either a sine or cosine function with unknown mag-

nitudes, i.e.,

{id's- 10,111?) (5.16a)

ii.) . 10,111?) . (5.16b)

and

33302:} - (gt-(DJ) {17} (5.160)

Again, {if} consi5ts of unknown magnitudes of the displacement variables. Then, by

employing the principle of minimum total p0tential energy,

811 'e 0 - (5.17)
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the homogeneous eigenvalue equation can be obtained

101 {fl-1,1811?) =- 0 (5.18)

In a similar way, a finite element equation can be derived for a more general analy-

sis. Instead of the exact mode shapes as assumed in the closed-form solution, a set of inter-

polation funcfions in the x-y plane isintroduced in the finite element method.

{12.} =- [11,] {X} - (5.19a)

ti.) - 01,118} (5.19b)

Substituting these interpolation functions into Equation (5.15) and employing the princi-

ple of minimum potential energy, the finite element equation in terms of the nodal dis-

placement variables can be obtained A

m {Xi-210.111!) = o (520)

The normalized firSt buckling load of a simply-supported [0/90/90/0] square lami-

nate with aspect ratio a/h=10 is Shown in Table 5.2. Because of the symmetry of the rect-

angular laminate, only a quarter is required in the finite element analysis. The quarter

laminate is discretized into 16 equal elements. The results from both closed-form solution

and finite element analysis are presented with difl'erent anisou'opic ratios along with three-

dimensional elasticity solutions [33]. Similar analysis is performed on an asymmetric [0/

90] laminate and the results are given in Table 5.3. These results show that the ISSCT

analysis yields satisfactory predictions for b0th symmetric and asymmetric laminates. For

anorher asymmetric laminate [0/90/0/90/0/90]. Table 5.4 presents the closed-form solu-

tions. Comparing these results with those obtained from elasticity analysis, it is clear that

ISSCT predicts the buckling loading of the first mode very accurately.
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Table 5.2 Normalized first buckling load 14, of a simply-supported [0/90/90/0]

square laminate.

 

 

 

    
 

 

s n: my[331

‘ 2 Closed-form FEM(4x4)

40 22.8807 23.1262 23.1360

30 193040 195545 195385

20 15.0191 152759 152198

10 9.7621 10.0283 9.9038

3 52944 55957 53707
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Table 5.3 Normalized first buckling load kg of a Simply-supported [0/90] square

laminate.
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Table 5.4 Normalized first buckling load 1., of a simply-supported [0/90/0/90/0/90]

square laminate.
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5.4 Nonlinear Bending

As pointed out in Reference [36], the composite laminates containing the coupling

efl‘ect between the transverse deflection and inplane force are more sensitive to the nonlin-

ear efi'ect. Even in the range of small deformation defined by conventional analysis, the

laminate can behave in a nonlinear fashion. Many investigations have used difi'erent lami-

natetheoriesanddifl'erenttypesofnonlineafity [2436-39] forthis Snldy.Inthissection.a '

laminate subjeCted to moderately large deflections is examined with the use of interlami-

nar Shear stress continuity theory.

5.4.1 Formulation of Nonlinear Equation

The material is assumed to behave linearly and elastically though the linear rela-

tionships between Strains and displacements are no longer valid. In fact. a nonlinear rela-

tionship of vonKarman sense is considered, i.e.,

3141314r 2, 8v 1 3w 2. . 314 311 awaw

8: ‘ 3732‘s? 1 er ' art‘s) - 2‘» 131-01321;

BV 3111. 3a Div

2"» ' it"s? 2‘» " 8'33; (5'21)

Itcanbe n0tedthatthe expressionsforthetlansverse shearstrainsremainthesameaslin—

ear case while the inplane strain components are modified with quadratic terms which

involve the first derivatives of transverse displacement component. Since the reduction of

displacement variables from Equation (2.27) to Equation (2.28) is achieved by imposing

the shear Stress continuity on the interface, this manipulation remains the same for borh

linear and nonlinear analysis. Thus, following the linear analysis and Equation (5.21), the

strainsineach layercanbewrittenas

(0

ex

1, =1~§°112§"}+1NN,11X,} (5.224)

28‘, - -



{ :22} .- [N59] {119} (5.22b)

where

'13w 0

'23;

[N . ‘3‘“ .

1319 law

_25'y' 252  

319

= 8';
{X,} aw . (5.24)

33

The same notations defined in Equations (2.31) and (2.32) are also used. It should be n0ted

that [NNL] is a function of the derivatives of transverse displacement. It constitutes the

nonlinear part of the analysis.

Again, the principle of virtual displacement is employed for deriving the govern-

ing equation. Substituting the Stresses by suains of Equation (2.29), plugging Equations

(5220b) into Equation (2.29), and integrating through the thickness yields

[3131183071580 {2.} + {5311'13811 {8.} 1160171881“) (8,}

+ (88.17138...) (8.1+ 1“,}7138'01121 {1,1 -qu 1414: = 0 (5.25)

In the above equation, the following notations are used to denote the assembled matrices

through the thickness,

tskrttl . 2 (Returning?) 1N£°ldzl (5,25,)

i-l

[skate] =- 2 (.12-. IN? 1'12:o l [N111] dz) (5.26b)
1'81 -
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[Sk‘ml ' 2 (£8-12[NNL]T[Q:D] (”141.1“) (5.256)

in 1

The introduction of vanished Shear uactions on bOth top and bonom surfaces of the

laminate results in the reduced displacement vectors,

{8.} - [5,) 1i.) (5.27a)

18.} - 15,118.} (5.27b)

These are the same matrices as used in Equations (2.37a,b). Substitute the reduced mani-

ces into Equation (5.25), the principle of virtual displacement becomes,

Isl: (15311155701 {12,} + (851.100,) 15?.) + {58.171800 (55.1

+1si.1’tsft~tzl {8.1+ 188.171.1803] {101 -48... 1414: - o (5.28)

in which

(sim . 15.17158.) 15,1 (529a)

[sic] - 15.171501 15,1 (5.29b)

[sim] - 1381111115,] (5.29c)

[sim] - [christian] (5293))

As in the linear case, the following interpolation functions in an element are

assumed,

if.) - 111,10!) (5.30a)

ti.) . 111,111!) (5.30b)

{101 - 111.1123} (5.30c)

w - 110 m (5.30d)

where {X} is the nodal displacement vector while (v.1. [‘11,]. [111,] . and [w] are the

interpolation functions corresponding to the displacement vectors. By using these interpo-
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lation funcrions, the principle of virtual displacement, Equation (5.28), leads to the follow-

ing finite element equation,

([K] + [KNL(W)]) {X} '- {F} (5.31)

where

m - [3]; ( {v.JTISkd {v,} + {wrists {)5} max (5.32)

[Irmwn - m; < {v.17tskml by.) + {“176ka w.)

+ {v.fllskml at.) Web: (5.33)

{F} .. m; tvlqdydx (5.34)

It should be noted that the linear part of the stiflness matrix and the external loading veCtor

are the same as those derived in the linear analysis in Chapter 2. The major difi'erence

between the nonlinear and linear studies is the nonlinear part of the stifl'ness matrix which

is a function of the transverse displacement.

In the solution phase of the nonlinear governing equation, a standard Newton-

Raphson method is used. First, the governing equation is rewritten as

{f} 8 ([10 + [KNLll {X} - {F} = {0} (5.35)

Then the Jacobian can be calculated. The component at ith row andjth column of the Jaco-

bian matrix is defined as

a".

J" ' 55; (5.36)

where the subscripts of the column vectors represent for the corresponding components

accordingly. Once the Jacobian matrix is formulated, the numerical iteration scheme fol-

lows. A brief analysis is given below,

m "" =- (m + [M {X} “"m {X} “"3 {F} (5.37a)
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m {X} ""n {A X} “" -- -{n "" (5.371»

{X} W" = {X} "" + {A X} “0 (5.37c)

where the superscript It denotes the result of kth iteration. The first iteration starting from

the null nodal displacement vector gives the linear solution of the equation. As the itera-

tions continue, the analysis is assumed to converge when the successive change of the dis-

placement is less than 0.1%.

In the following sections, several examples are used to examine the feasibility of

using ISSCT for nonlinear bending.

5.4.2 Laminates Subjected to Transverse Loadings

FirSt, a pinned-pinned [0/90] laminate under uniform loading over the entire span

is studied. This problem was investigated by CLT [36] for aspect ratio equals to 225. For

such thin composite laminate, the transverse shear effect can be negleCted. Therefore, the

ISSCT is expected to yield a result close to CLT. Figures 52a and 5.2b present the mid-

span defiecrion and the inplane force resultant at difi‘erent loading magnitudes. The mate-

rial properties used are the same as those in Reference [36], i.e.,

EL a 20 x106psi.ET = 1.4 x 105px}, cu a a” = 0.7 x 10%.“; v“. = 0.30

The ISSCT results are obtained by using four layers and four elements for finite element

analysis. The dashed lines in Figures 5.2a and 5.2b represent for the linear results calcu-

lated from the same ISSCT model. It is clear that nonlinear analysis from ISSCT coincides

with with that in Refernece [36] while the linear analysis erroneously predicts bOth the

midspan deflection and the inplane force resultant. It should also be noted that the struc-

ture behaves differently for upward and downward loading. This is due to the inplane

forces caused by the couplings of asymmetric layup and geometrical nonlinenrity.

One advantage of using ISSCT is the simplicity and accuracy in the calculation of
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(b)

Figure 5.2 Pinned-pinned [0190] laminate with aspectratio S=225 subjected to uniformly

distributed loading : (a) inplane force resultant; (b) midspan deflecnon.
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transverse shearstresses. Thisisalsotrue forthe stressesfromnonlinearanalysis. Figures

5.3aand5.3bprecentthemaximuminplanenormalstressatthemidspanandthetrans-

verse shear stress at the midplane of the laminate edge, respectively. Figure 5.3a shows the

inplane normal stress obtained from linear analysis my over-predict or underpredict the

actual sn'essdependingupontheloadingnngeThesameobsavafionappfiesmtheuans-

verse shear stress, shown in Figure 5.3b. Moreover, it is interesting to see that the trans-

verse shear stress at the interface even changes its sign as the loading is higher than a

certain value, 751b/in in this example. These unusual results can become a very important

issue in composite design and need to be carefully examined.

The stress distributions through the thickness for the same locations as shown in

Figures 5.3a and 5.3b are given in Figures 5.4a and 5.4b. In these figures, the stress distri-

butions at different deflection levels are presented. It is seen that the profiles of the inplane

stress distribution remain the same at difierent loading levels, however, those of the trans-

verse shear stress alter dramatically as the loading increases. The nonlinear analysis gives

a tremendously different stress state than the linear analysis and can result in a completely

difl'erent prediction for failure mode. '

As mentioned in a previous paragraph, the unusual nonlinear behavior of the struc-

ttn'e arises from two inplane forces caused by the couplings due to asymmetric layup and

geometrical nonlinearity. And it is known that the magnitude of the inplane force depends

on the boundary conditions. Therefore, it is interesting to study the efl’ect of difi'erent

boundary conditions on the nonlinear structural behavior. Figures 5.5a and 5.5b give the

. normalized midspan deflection and coupled inplane force resultant as a function of trans~

verse deflection. The composite laminate is of [0/90] and is subjected to a uniform load-

ing. Three different boundary conditions are of interest. The subscripts L and NI. denOte

the results fi'om linear and nonlinear analysis, respectively. Among the three boundary

conditions studied, i.e., pinned-pinned. pinned-clamped. and clamped-clamped. the

pinned-pinned one gives the most significant nonlinear efi'ect and should recieve more
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Figure 5.3 Normalized stresses of a pinned-pinned [0/90] laminated with $222.5 sub-

jected to uniformly disuibuted loading : (a) o, ( (12,-h/2) : (b) (3,,3 ( 0, 0).
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uniformly distributed loading in three difierent boundary conditions : (a) midspan

deflections; (b) inplane force resultants.
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attention. In addition, it is interesting to see that in the clamped-clamped boundary condi-

tion, even the stacking sequence is asymmetric, the laminate behaves like a symmetric

one. In Other words, the direction of transverse loading does not change the magninrde of

deflection. This is believed to be due to the vanished inplane force in the [0190] layup [37].

Since the clamped-pinned boundary condition has the intermediate coupling force

betweenthetwoextremecasesitbehavesasacompromiseofthose two.

Once the cylindrical bending is examined. it is to investigate bidirectional bending.

Asquare[O]laminatewithaspectmfioof100isofintm'ectlhecompositelannnatehas

the following material properties

EL/ET 8 3.0, GLz/ET 3 0.5, VLT 3 0.25.

It is clamped around four edges and is subjected to a transversely uniform load. Because

of the large aspect ratio, the laminate is analyzed by CLT in Reference [38]. The load-

deflection curve is shown in Figure 5.6. The solid line represents for the result of normal-

ized central defiecrion obtained by pernubation method in Reference [38]. The open cir-

cles are the results of ISSCT using quarter laminate and a 4x4 mesh. It is obvious that

these two predictions compare very well with each other.

5.4.3 Laminates Subjected to Inplane Loading:

All the examples shown above are the laminates with transverse loading. The same

analysis can be performed for strucnrres with inplane loading. The same [0/90] laminate

with pinned-pinned boundary condition is subjected to inplane compressive loading. The

ISSCT result is based on finite element analysis. It is shown in Figure 5.7 with that

obtained from Reference [36]. Good agreement is concluded. Besides, it should be noted

that the linear buckling load obtained from linear analysis gives the upper bound of the

load—deflection curve.

Similar analysis is performed for a simply-supported [0190] square laminate with
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aspect ratio of 1000. The material properties used in the simulation are as follows.

51 8 25001’0. £2 =- EfIZOGPa, 612 =- 6”: lOGI’a. G” a 4GPa, v12 = v13 3 V23=025

Figure 5.8 presents the load-deflection curve of the analysis. A 2x2 mesh is used

for a quarter of the laminate. Unlike the laminate under cylindrical bending, the laminate

under inplane compression does not buckle as the load increases. The linear buckling load

asindicatedinthediagramisnomorethanasmalldeformation.

5.5 Large-Amplitude Vibration

f The normal mode phenomenon has been shown to occur for beam and plate Struc-

tures in large amplitude vibration [41].. It is also presented in Reference [42] that for com-

posite laminate with aspect ratio greater than five and is subjected to nonlinear vibration

with amplitude-to-thickness ratio close to one, the nonlinear analysis using vonKarman

nonlinearity can provide satisfactory results compared to those using full nonlinearity.

Therefore, by combining the nonlinear Stiffness matrix obtained in the previous section

and the consistent mass matrix established in Section 5.2, the governing equation of the

undamped eigenvalue problem for amplitude-dependent vibration can be written as

(m + {Xmll {X} - m2 {M} {X} = {0} (5.33)

To analyze the amplitude-dependent eigenvalue problem, a matrix iteration

method [43] is used. FirSt, the eigenvalue problem in Equation (5.38) is transformed into a

standard form, i.e.,

{m + [run-1m {X} a :3,- {X} (5.39)

Then, the iteration scheme takes the following steps

{m + {Km {X} ""m" [M] {X} "" = —-1(,—,,7 {X} "‘* " {5.40)
(oz) .
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Figure 5.8 The loadodeflection curve of a simply-supported square [0/90] laminate with

alh =- 1000 is subjected to inplane compressive loading along the x—direction.
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In the above equation, the resulting veCtor of the left-hand side is normalized to give the

desired amplitude of vibration for a particular mode and the normalization constant related

to the reciprocal of the associated eigenvalue. The iterations continue until the conver-

gence of the eigenvalue within a preset tolerance is reached. After obtaining the first mode

frequency and mode vector, the second mode frequency and mode vector can be found

similarly. However, for the second mode, a sweeping matrix needs to be introduced to

incorporate an orthogonal constraint in between the first and second mode vectors. Details

of the procedure can be found in Reference [43]. In most situations, only the fundamental

mode is of interest, therefore, the solution for the higher modes are not pursued in this

study.

In order to verify the feasibility of ISSCT for large-amplitude vibration, the funda-

mental frequency of a thin [0/90/90/0] laminate is of interest. This composite laminate has

an aspect ratio of 100 and a pinned-pinned boundary condition is subjected to cylindrical

. bending . Figure 5.9 presents the amplitude-dependent fundamental frequency of the lam-

inate. In the ordinate, A represents for the amplitude of the funamental mode while r the

radius of gyration of the cross-section. For a rectangular cross-section r a it/ (.55) . The

results obtained by using CLT from Reference [44] is shown by a solid line. Clearly, it has

a very good agreement with those fi'om ISSCT.

As concluded in the study of nonlinear bending, the boundary conditions play an

important role in the response of laminated structure. Herein, the amplitude—dependent

natural frequencies for a [0/90/90/0] laminate under three difi'erent boundary conditions

are studied. Figure 5.10a and 5.10b show the ratio of nonlinear fundamental frequency to

linear frequency at difl‘erent vibration amplitudes for a thin (8:100) and a thick (8:10)

composite laminate, respectively. It is interesfing to see that the thin laminate in a pinned-

' pinned boundary condition shows the most significant nonlinear effect. However, the least

nonlinear effect is observed in the thick laminate at the same boundary condition. The

reverse is true for the laminates in a clamped—clamped boundary condition.
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Figure 5.9 The amplitude-dependent fundamental frequency of a pinned-pinned
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Due to this difi'erent behavior between thick and thin composite laminates, it is

natural to investigate the effect of aspect ratio on the dynamic behavior of the structure.

The result of fi'equency ratio for a [0/90/90/0] laminate with fixed amplitude ratio

A/r . 2.0 ispresentedinFigmeSJlaAseanbeseenfiomthisdiagramthecharactmiso

tics ofthe laminate undergoesasignificantchangeas theaspectratioofthelaminateis

smallerthan 20. Thisresultcoincideswith the findingofthe transverse sheardeformation

efi‘ect on the composite laminate presented in Reference [6]. Therefore, there is a doubt if

the transverse sheardeformationplaysanimportantrolein theresponse ofthicklami—

nates. Beside the resonant frequencies, the information of mode shape is also crucial in

structural analysis. In Figure 5.llb, a coherence factor between the linear and nonlinear

mode shapes, We} and {9m} , is intoduced in Reference [45], i.e.,

({omli'le)’
coherence a —— -

{{qipLVme (twirling)

 

The coherence factor gives a value between zero and one. If two mode shapes are exactly

the same, it gives a value of one. A zero coherence means that the two mode vectors are .

orthogonaL Figure 5.11b shows that as the aspect ratio of the laminate becomes less than

20, the coherence factor drops sharply for laminates of all kinds of boundary condition.

This implies that the mode shapes obtained from nonlinear analysis deviates from those

fromfinearanalysis'l'hisresultmayjeopardize the assumptionofusinglinearmode

shape for nonlinear structure analysis [46].

5.6 Free-Edge Stresses

The free-edge stress has long been recognized as a unique problem in laminated

composites [47-49]. The purpose of this section is to assess the feasibility of using the

interlaminar shear stress continuity theory presented for free-edge analysis. Since constant

w through the thickness is assumed in ISSCT, i.e., the effect .of a: is ignored, a [45/45]s
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laminate which does not generate transverse normal stress due to inplane loading is taken

as an example. Figure 5.12 shows the mesh for finite element analysis. For convenience, it

is possible to examine only one half of the specimen. In addition, specifying the uniform

strain in the x-direction. as usually employed in the free-edge studies [49], is not a feasible

technique in this analysis. Hence, a uniform tensile loading is applied at the laminate ends.

However, the strain across the width is verified to be very close to uniform distribution.

Figures 5.1311 and 5.13b present the normalized displace-ent u (0, y, U2) and

transverse shear stress a“ (0. y, It/4) , respectively. It is clear that the finite element analy-

sis using ISSCl' predicts excellent results as obtained in Reference [49]. With these results

and the previous studies, it is believed that ISSCT can be used for general analysis for

laminated composites.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

In this study, two laminate theories based on multiple-layer approach - ISCT and

ISSCT - for the analysis of bath thick and thin composite laminates are presenmd. The

easiness of the direct stress calculation fiom constitutive equations and accuracy of the re—

sults from using Stress continuity conditions are demonstrated by some numerical exam-

ples. Moreover, the expedience in computation for composite laminates with large number

of layers is achieved by the layer reduction technique. A comprehensive investigation of

using ISSCT in the vibration, buckling, nonlinear, and free-edge analysis of composite

laminates also show a good patential of using the stress continuity theories for composite

analysis. In summary, the following conclusions are drawn:

1. Two interlaminar stress continuity theories for laminated composites are developed.

One considers the variation of transverse displacement through the composite thick-

ness and the ather assumes constant transverse displacement. The former is named the

interlaminar stress continuity theory. (ISCT) while the latter the interlaminar shear

stress continuity theory (ISSCT). These theories enable a direct and accurate calcula-

tion of transverse stresses from consitutive equations for bath thick and thin composite

laminates.

2. A simple technique is developed for finding the closed-form solutions of some particu-

lar problems such as cylindrical bending and bidirecrional bending. Since no approxi-

mation is included in this technique, the error from numerical analysis can be avoided.

3. With little modification, the multiple-layer laminate theory ISSCT can be reduced to

single-layer theory , i.e., HSDT. This concludes that HSDT can be deemed as the sin-

119
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gle-layer version of ISSCT.

4. From the numerical examples examined in this study, it is concluded that high-order

shear deformation theory (HSDT) can be used for laminates with aspect ratios (5)

greater than 10 while ISSCT S>5. Due to its threerdimensional approach in nature,

ISCT has no limitation in aspect ratio.

5. A layer reduction technique for reducing the degree-of-freedom is developed by com-

bining the interlaminar shear stress continuity theory (ISSCT) and high-order shear

deformation theory (HSDT). This technique can give transverse Stresses at desired in-

terfaces without introducing too many degree-of-freedom.

6. The finite elements derived from ISCT have thickness the same as the composite lami—

nates. Based on the numerical examples studied in this thesis, it is observed that as the

aspect ratio of a finite element is close to one best result can be obtained. The finite el-

ement analysis using ISCT seems to sufl’er from the aspect ratio problem.

7. The applications of ISSCT for vibration, buckling, nonlinear bending, nonlinear vibra-

tion, and free-edge analyses of laminated composites show excellent results. All the

investigations indicate that ISSCT is a very promising technique for composite analy-

sis.

6.2 Recommendations

Based on the work performed in this thesis, the following studies are recommend-

ed for further investigation:

I 1. This thesis gives two accurate laminate theories for predicting both displace-

ment and stress of laminated composites. The failure analysis can be performed with the

help of these types of information. For example, the first-ply-failure or last-ply-failure

analysis can be combined with the stress continuity theories while the delamination at the

interface can be modeled with a soft and thin embedded layer or by a slip layer[50].

2. The feasibility of using the Stress continuity theories in analyzing bath global
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andlocnmspometotcomponmhminmmasmenuonedmcmptms,hasmcommended

a patential application of these thoeries in assessing the performance of smart materials

and intelligent system which are made of composite laminates and embedded sensors and

actuators. The constitutive relations of pieao-electric crystal, shape memory alloy, electro-

rheological fluid, and optical fiber can be incarporamd into these stress continuity theories.

Inthisway, the globalresponseofthesmartmaterialandintelligentsystemcanbesimu-

latedandthesn'essstatearoundtheembeddedsensorscanbeexamined.

3. The structures with viseoelastic damping materials in both constrained layer and

extensional layer configurations can initially be analyzed with these stress continuity theo-

ries. Then, by using the specific damping capacity presented in Reference [51], the damp-

ing characteristics of the viscoelastic structures can be evaluated.
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APPENDIX B

THE EQUIVALENCE OF ISSCT AND HSDT FOR ONE-LAYER

LAMINATE

For a single-layer laminate, the displacement field of ISSCT, Equation (2.27), can

be simplified as

u a (1001+ 7002+ ”1’3 4» 11¢4

v . V001 + 30¢Z+V1¢3 +3104 (B.1)

w=w°

where

3 It2 2 1.3
$1-1 ;§(2+§) +;5(Z+§)

1 It It

0, . ';§(1+‘2')(1'§)

(3.2)

3 12 2 h3

0333(1‘1'5) ‘piz‘l'?

1 It3 2 It?-
04'304'5) -7t(z+§)

Since there is only one layer, no interfacial shear stress continuity is enforced. However,

the zero shear uaction on top and bottom surfaces of the composite laminate should be sat-

isfied, i.e., the shear su'ains at these locations must vanish,

awO . 3W0

2822 h-TO+3-X- 80 p 283 h3tl+$ .0

2 2

Hence,

3’90

70'1'1 "3; ~ (B3)
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Similarly

Div

303 St - 3;" (13.4)

Substituting these relationships into Equation (B.l), the displacement field becomes

3“'0

" ' ”011+”li’i‘ "2“4’5;

aw (B.5)

" " V011 "’ Vl’: " “2"4’330

By plugging the Hermite cubic interpolation functions (B.2) into the new displacement

 

fieldandletting

U H!

and

3w U -U

V: 23'; 2‘ It ) (B )

the new expression for displacement u in terms of new variables can be obtained

4:2 aw0

u 3 110+! Vx-EIZ-(Vx‘i's; ) (3.78)

In the above expression, u. is the nridplane displacement in the x direction, while w,

relates to the rotation accounting for transverse shear deformation at the midplane. In a

similar fashion, the new expression for v can also be derived as follows,

2 3w .4 r 0 ) (3.7!»
V I Vo+1(v,-'3-F (V,+$ )

It thenisclearthatthedisplaeementfieldforISSCI'canbereducedtoaHSDT.
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