

HBBIS

MICHIGAN STATE UNIVERSITY LIBRARIES
3 1293 00895 2594

This is to certify that the

dissertation entitled

Weak Convergence of Kaplan-Meier Process in  $L^2$ -Space

presented by

Mangalam Vasudaven

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Statistics

Major profess

Date August 9, 1990

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.

| DATE DUE | DATE DUE | DATE DUE |
|----------|----------|----------|
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          | ·        |
|          |          |          |
|          |          |          |

MSU Is An Affirmative Action/Equal Opportunity Institution characteristics.pm3-p.1

# WEAK CONVERGENCE OF STANDARDIZED KAPLAN-MEIER PROCESS IN $L^2$ SPACE

By

Mangalam Vasudaven

#### **A DISSERTATION**

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Statistics and Probability

1990

# 648-425

#### **ABSTRACT**

## WEAK CONVERGENCE OF STANDARDIZED KAPLAN-MEIER PROCESS IN L<sup>2</sup> SPACE

By

#### Mangalam Vasudaven

Let  $X_1,...,X_n$  be i.i.d. with a distribution function F and  $Y_1,...,Y_n$  be i.i.d. with an unknown censoring distribution function G with  $X_i$ 's and  $Y_i$ 's independent. In the random censorship model one observes  $Z_i = X_i \wedge Y_i$  and  $\delta_i = I(X_i \leq Y_i), \quad 1 \leq i \leq n$ . Such models arise in clinical trials and survival analysis.

This thesis discusses the weak convergence of some standardized and rescaled versions of the Kaplan – Meier Process to a Gaussian process in  $L^2(A, \mu)$  where A is the support set of F and  $\mu$  is a  $\sigma$ -finite measure defined on A. Applications of this result to the goodness-of-fit test pertaining to F are also discussed. In addition, certain tests of  $H_0$ :  $F = F_0$ ,  $F_0$  a known distribution function, based on  $L^2$ - norms of a suitably scaled Kaplan – Meier Process with respect to certain random measures, are shown to be asymptotically distribution free.

To my parents and my wife Sushama

#### **ACKNOWLEDGEMENTS**

I would like to express my appreciation to my thesis adviser Professor Hira Lal Koul for his support and encouragement during the preparation of this dissertation, especially for the patience with which he explained statistical concepts to me. I would also like to thank Professors Roy Erickson, Habib Salehi and Joseph Gardiner for serving on my guidance committee. My special thanks go to Professor Erickson for numerous mathematical discussions which enhanced my insight into Probability Theory.

Thanks are also due to Loretta Ferguson for her technical assistance in typing this manuscript.

Finally I express my deep appreciation to my family; to my parents whose help and encouragement I could not have done without, and to my wife Sushama whose total support of me in this project has been constant even in the most trying circumstances.

#### TABLE OF CONTENTS

| <u>Chapter</u>                                              |    |
|-------------------------------------------------------------|----|
| 0. Introduction                                             | 1  |
| 1. Notation, Assumptions and Preliminaries                  | 5  |
| 2. Convergence of $W_n$ in $L^2[0, \tau]$ , $\tau < \tau_H$ | 12 |
| 3. Uniform Boundedness of $R_n/(\overline{F}/\overline{G})$ | 19 |
| 4. Convergence of $W_n$ in $L^2[0, \tau_H]$                 | 27 |
| 5. More General Cases                                       | 33 |
| 6. Asymptotically Distribution-free Tests                   | 40 |
| References                                                  | 56 |

#### CHAPTER 0

#### INTRODUCTION

A common feature of many survival studies is that the time of occurrence of the event of interest, called a death, may be prevented for an item of the sample by previous occurrence of some other event, called a loss. In other words, a censorship may be present due to which the units under study may not be completely observable. Typically this is the case in a clinical trial where patients under treatment cannot be followed up due to withdrawals from study. For example, in medical follow-up studies to determine the distribution of the survival times after an operation, contact with some of the patients may be lost before their death and others may die from causes it is desired to exclude from consideration. Similarly, observation of the life of a vacuum tube may be ended by breakage of the tube or a need to use the test facilities for some other purposes. In both examples, incomplete observation may also result from a need to get a report out within a reasonable time. The losses may be either accidental or by design, the latter resulting from a decision to terminate certain observations. There are various types of censorships. For an excellent overview of different types of censorship, see Chapter 3 of Gill (1980).

In the random right censorship model (random censorship model, for short) considered here, for each item, the only data available are the minimum of the survival time and the time of loss, and whether or not censoring is present. Kaplan and Meier (1958) suggested the Product-Limit Estimator (PLE)  $\hat{\mathbf{F}}_{\mathbf{n}}$  of the true survival distribution of the lifetime when there is random censorship in the data. While the usual empirical distribution function (EDF) assigns mass 1/n to each of the observations, the PLE redistributes

the mass of censored observations equally among the observations to the right, giving zero mass to all the censored observations. More precisely, first, one arranges the observations in the ascending order and assigns mass 1/n to each observation, whether or not uncensored. Next, starting from the smallest observation, one locates the first censored observation, and redistributes its mass equally among the observations to its right. Then one moves on to the next censored observation and redistributes its new mass equally among the observations to its right. This process is continued for all the censored observations. Note that, if the largest observation is censored, the total mass will be less than 1, thereby making the PLE a defective distribution.

This thesis studies the standardized error  $W_n$  of a version of the PLE as a process with paths in the space of square—integrable functions. It is shown that this process converges weakly to a Gaussian Process in the space mentioned above, where the integration is with respect to a measure belonging to a large class of  $\sigma$ —finite measures. Also proved are the weak convergence of some rescaled versions of the error process in the aforementioned space. These results are useful in developing goodness—of—fit tests pertaining to the survival distribution F and/or the censoring distribution G. It is conceivable that they may also be useful in minimum distance estimation problems.

In the uncensored case Anderson and Darling (1952) considered a Cramèr-von Mises type statistic for the goodness-of-fit problem of testing  $H_0$ :  $F = F_0$  vs  $H_1$ :  $F \neq F_0$ , where  $F_0$  is a completely specified continuous d.f.. The statistic was obtained by squaring the standardized E.D.F. and integrating it with respect to the  $\sigma$ -finite measure  $dF_0/(F_0(1-F_0))$ . The asymptotic distribution of this statistic was shown to be that of the integral of the square of a rescaled Brownian Bridge, where the scaling function is the

standard deviation function of the Brownian Bridge so as to make the standard deviation 1 through out. Koziol and Green (1976) considered the above—mentioned testing problem for the censored data and discussed the much simpler situation when the hazard functions of the survival and the censoring distributions are proportional (herein referred to as proportional hazards model) and the integrating measure is the finite measure dF<sub>0</sub>. Even in this case it is not clear how they prove the tightness.

In this dissertation, the result of Anderson and Darling (1952) is extended to random censorship model, where there is an additional unknown function G. Even if the integrating measure depends on F, the limiting distribution of corresponding goodness-of-fit test statistic may not be distribution-free in the case of randomly censored data. However, if one chooses the measure suitably, perhaps depending on the data and varying with n, one can get asymptotically distribution-free (A.D.F.) tests. Two Anderson-Darling type statistics are considered and it is proved that these statistics are A.D.F. and hence can be used for tests regarding F. The limiting null distribution in both cases is same as that of the Anderson-Darling statistic of the uncensored case.

Now we will state the problem more precisely. Let  $X_1,...,X_n$  be i.i.d. random variables (r.v.'s) with distribution function (d.f.) F on  $[0, \infty)$ , and  $Y_1,...,Y_n$  be i.i.d. r.v.'s independent of  $X_i$ 's with unknown and possibly defective d.f. G (that is, G may assign positive mass to  $\infty$ ) on  $[0, \infty]$ . We observe the pairs  $\{(X_i \wedge Y_i), I(X_i \leq Y_i)\}, 1 \leq i \leq n$ , where a  $\wedge$  b denotes  $\min(a,b)$  and I(A) denotes the indicator function of the set A. If we observe  $Y_i$ , that is, if  $I(X_i \leq Y_i) = 0$ , we say the observation is censored. Otherwise it is referred to as an uncensored observation. The general problem is to make inferences about F.

Let  $\tau_{\rm H}$  denote the supremum of the support of  $X_1 \wedge Y_1$  and  $\hat{W}_{\rm n}(t)$  denote the scaled error  $\sqrt{n}$  ( $\hat{F}_{\rm n}(t) - F(t)$ ),  $t \leq \tau_{\rm H}$ . Gill (1980) proved that  $\hat{W}_{\rm n} \Rightarrow W$  in D[0,  $\tau$ ] for every  $\tau < \tau_{\rm H}$ , where W is a Gaussian process depending on F and G, and D[0,  $\tau$ ] denotes the set of all bounded CADLAG functions on [0,  $\tau$ ]. Yang (1988) extended this result to the entire set [0,  $\tau_{\rm H}$ ].

Let  $\mu$  be a  $\sigma$ -finite measure on  $[0, \tau_H]$ . It is shown in this thesis that, under suitable conditions on F, G and  $\mu$ ,  $W_n$  belongs to  $L^2([0, \tau_H], \mu)$  and that  $W_n$  converges weakly to W in  $L^2([0, \tau_H], \mu)$ . For infinite  $\mu$ ,  $\hat{W}_n$  may not belong to  $L^2([0, \tau_H], \mu)$  which is the reason for considering the modified version  $W_n$ . This is discussed in more detail in Remark 1.1. For the  $L^2$ - weak convergence of  $W_n$ , the key step is to show that  $R_n$ , the mean of an estimate of the survival ratio (1-F)/(1-G) is uniformly bounded on  $[0, \tau_H]$ .

The material is organized as follows. In Chapter 1, further notation and assumptions are stated and some preliminary results are proved. In Chapter 2 it is proved that  $W_n$  converges weakly to W on  $L^2[0, \tau]$  for every  $\tau < \tau_H$ . Chapter 3 is devoted to proving that if the underlying model is proportional hazards model with hazard ratio less than 1, then  $R_n$  is uniformly bounded on  $[0, \tau_H]$ . In Chapter 4, the weak convergence of  $W_n$  to W in  $L^2([0, \tau_H], \mu)$  under the proportional hazards model is proved. In Chapter 5, it is proved that the above weak convergence holds under more general assumptions on F and G. Some examples, where proportional hazards model does not hold, are given. Two A.D.F. tests are constructed in Chapter 6 and the variance of the limiting distribution is computed.

#### CHAPTER 1

#### NOTATION, ASSUMPTIONS AND PRELIMINARIES

First, we need to introduce some general notation.

Next, notation and assumptions for some frequently used functions and r.v.'s are introduced.

(ii) Let F be a continuous d. f. on  $[0, \infty)$ , G be a possibly defective censoring d.f. on  $[0, \infty]$  such that  $\tau_F \leq \tau_G$ ; H = F G;  $X_1, ..., X_n$  be i.i.d. F and  $Y_1, ..., Y_n$  be i.i.d. G such that  $X_i$ 's and  $Y_i$ 's are independent;  $Z_i := X_i \wedge Y_i$  and  $\delta_i := I(X_i \leq Y_i)$ . Let  $Z_{(i)}$ 's denote the order statistics of  $Z_i$ 's,  $\delta_{(i)}$ 's denote the order statistics induced on  $\delta_i$ 's by  $Z_{(i)}$ 's and  $T_n$  denote  $Z_{(n)}$ . Let

$$C(t) := \int_0^t \frac{dF}{F^2 G}, \quad K(t) := C(t)/(1+C(t)), \quad t \leq \tau_H.$$

Next the PLE's of F and G, two versions of the standardized Kaplan-Meier Processes (KMP's) and some other related stochastic processes are defined.

(iii) Define the PLE  $\hat{F}_n$  of F by

$$\overline{\hat{F}}_n(t) := \prod_{\substack{j=1\\ Z_{(j)} \leq t}}^n \left(\frac{n-j}{n-j+1}\right)^{\delta(j)},$$

and F<sub>n</sub> by

$$\mathbf{F}_{\mathbf{n}}(\mathbf{t}) := \mathbf{I}(\mathbf{t} < \mathbf{T}_{\mathbf{n}}) \ \overline{\hat{\mathbf{F}}}_{\mathbf{n}}(\mathbf{t}), \ \mathbf{t} \leq \tau_{\mathbf{H}}.$$

The PLE G<sub>n</sub> of G is defined by

$$\overline{G}_{n}(t) := \prod_{\substack{j=1\\ Z_{(j)} \leq t}}^{n} \left(\frac{n-j}{n-j+1}\right)^{1-\delta_{(j)}}, \quad t \leq \tau_{H}.$$

The standardized KMP's are

$$\hat{W}_{n}(t) := \sqrt{n} (\hat{F}_{n}(t) - F(t)), \quad W_{n}(t) := \sqrt{n} (F_{n}(t) - F(t)),$$

for  $t \leq \tau_H$ . We shall also need the following estimators of C

$$C_n(t) := \int_0^t \frac{dF}{F^2 G_{n-}}, \quad C_n^*(t) := \int_0^t \frac{dF_n}{F_n F_{n-} G_{n-}},$$

and the corresponding estimators of K

 $K_n(t) := C_n(t)/(1+C_n(t))$  and  $K_n^*(t) := C_n^*(t)/(1+C_n^*(t))$  for  $t \le \tau_H$ . Some rescaled KMP's are defined by

$$\begin{split} \tilde{\xi}_n(t) \; := \; (K(t)/F(t)) \cdot W_n(t), \quad \xi_n(t) \; := \; (K_n(t)/F(t)) \cdot W_n(t), \\ \xi_n^*(t) \; := \; (K_n^*(t)/F_n(t)) \cdot W_n(t), \quad t \; \le \; \tau_H. \end{split}$$

Another sequence of stochastic processes and their mean functions are defined next.

(iv) Define an estimate of the survival ratio and its mean by

$$Q_n(t) := \frac{\overline{F}_{n_-}(t)}{\overline{G}_{n_-}(t)} I(t \leq T_n), \quad R_n(t) := E(Q_n(t)), \quad t \leq \tau_H.$$

Observe that  $Q_n(t)$  is bounded for each n and each  $t \leq \tau_H$ , so the expectation is guaranteed to be finite.

Next, two key Gaussian processes are defined.

(v) Let B be a Brownian Motion on  $[0, \infty)$ , B<sub>0</sub> be a Brownian Bridge on [0, 1],

$$W(t) := F(t) B(C(t)), t < \tau_{H}.$$

Finally, we state the condition on the integrating measure with respect to which the L<sup>2</sup> space is defined.

(vi) For any set S, any measure  $\gamma$  on S and any subset A of S, let  $L^2(A, \gamma)$  be the set of all real-valued functions on A which are square integrable with respect to  $\gamma$ . Let  $\mu$  be a  $\sigma$ -finite measure on  $[0, \tau_H]$  such that

$$\int_0^{\tau_{\rm H}} \mathbf{F}^2 \mathbf{C} \ \mathrm{d}\mu < \infty.$$

REMARK 1.1. Recall that, if the last observation is censored, that is, if  $\delta_{(n)}=0$ , then for  $t\geq T_n$ ,  $\hat{F}_n(t)=\hat{F}_n(T_n)<1$  so that  $\hat{F}_n$  is a defective distribution. Consequently,  $\hat{W}_n$  may not be in  $L^2([0,\,\tau_H],\,\mu)$ , for it will be a non-zero constant function of t on  $[T_n,\,\tau_H]$  and hence non-integrable if  $\mu$  is an infinite measure. To overcome this difficulty, as is customary in applications, we assign all the left-over mass to  $Z_{(n)}$ , the last observation, whether or not it is censored, making  $F_n$  a regular distribution. This makes  $F_n\equiv 1$  on  $[T_n,\,\tau_H]$  and enables us to prove that, under (vi),  $W_n$  belongs to  $L^2([0,\,\tau_H],\,\mu)$ . Note that  $F_n(t)$  and  $\hat{F}_n(t)$  differ only for  $t\geq T_n$ . As we have the condition that  $\tau_F \leq \tau_G$ ,  $F_n(\tau_H) = F(\tau_H) = 1$  and the change in the definition of PLE will not affect the uniform convergence of  $F_n$  to F on  $[0,\,\tau_H]$ . This becomes clearer after Lemma 1.1. On the other hand  $G_n$  should be defined without the indicator function  $F_n$  has, to assure us of the uniform convergence on  $[0,\,\tau_H]$  when  $\tau_F < \tau_G$ .  $G_n(\tau_H)$  cannot converge to  $G(\tau_H)$  if  $G_n(\tau_H)$  is always 1

and  $G(\tau_H) < 1$ .

We shall state and prove a few lemmas that are frequently used in this dissertation.

#### **LEMMA 1.1.**

(i) 
$$\| \mathbf{F}_{\mathbf{n}} - \mathbf{F} \|_{\mathbf{0}}^{\tau_{\mathbf{H}}} \rightarrow \mathbf{0}$$
 a.s..

(ii) 
$$\| G_n - G \|_0^{\tau_{\overline{H}}} \rightarrow^p 0.$$

#### PROOF.

(i) From the Proposition of Wang (1987), since  $F(\tau_H^-) = 1$ , we get,

(1.1) 
$$\sup_{\mathbf{t} < \tau_{\mathbf{H}}} |\hat{\mathbf{F}}_{\mathbf{n}}(\mathbf{t}) - \mathbf{F}(\mathbf{t})| \rightarrow 0 \quad \text{a.s.}.$$

Since  $F(T_n) \rightarrow 1$  a.s., (3) of Wang (1987) gives  $\hat{F}_n(T_n) \rightarrow 1$  a.s.. So

(1.2) 
$$\sup_{\mathbf{t} < \tau_{\mathbf{H}}} |\mathbf{F}_{\mathbf{n}}(\mathbf{t}) - \hat{\mathbf{F}}_{\mathbf{n}}(\mathbf{t})| = |1 - \hat{\mathbf{F}}_{\mathbf{n}}(\mathbf{T}_{\mathbf{n}})| \rightarrow 0 \quad \text{a.s.}.$$

Now, (1.1) and (1.2) together with the fact that  $F_n(\tau_H) = F(\tau_H) = 1$  imply (i).

(ii) Apply (2) of Wang (1987) to  $\hat{G}_n$ ; F and G are interchangeable for the results in Wang (1987), so

$$\sup_{\mathbf{t}<\tau_{\mathbf{H}}} | \hat{\mathbf{G}}_{\mathbf{n}}(\mathbf{t}) - \mathbf{G}(\mathbf{t}) | \rightarrow^{\mathbf{p}} 0.$$

By (3) of Wang (1987) applied to  $\hat{G}_n$ ,  $G_n(T_n) \rightarrow^p G(\tau_H)$  and hence  $G_n(\tau_H) \rightarrow^p G(\tau_H)$ .

REMARK 1.2. All the results in Wang (1987) go through even if G is defective.

**LEMMA 1.2.** For every  $\tau < \tau_{\rm H}$ ,  $W_{\rm n} \implies W \quad \text{on} \quad D[0,\tau].$ 

PROOf. By Theorem 1.1 of Gill (1983),

$$\hat{\mathbf{W}}_{\mathbf{n}} \implies \mathbf{W} \quad \text{on} \quad \mathbf{D}[0,\tau].$$

$$\|\mathbf{W}_{\mathbf{n}} - \hat{\mathbf{W}}_{\mathbf{n}}\|_{0}^{\tau} = \|\sqrt{\mathbf{n}} \left(\mathbf{F}_{\mathbf{n}} - \hat{\mathbf{F}}_{\mathbf{n}}\right)\|_{0}^{\tau} = |\sqrt{\mathbf{n}} \left(1 - \hat{\mathbf{F}}_{\mathbf{n}}(\mathbf{T}_{\mathbf{n}})\right)| \quad \mathbf{I}(\mathbf{T}_{\mathbf{n}} \le \mathbf{t} \le \tau)$$

$$\rightarrow \quad \mathbf{0} \quad \text{a.s.}$$

because  $T_n \rightarrow \tau_H$  a.s. and  $\tau < \tau_H$ .

REMARK 1.3. It may be interesting to know the conditions under which (1.3)  $W_n \Rightarrow W \text{ on } D[0, \tau_{tt}].$ 

In Theorem 2.2 of Yang (1988), it is proved that  $\hat{W}_n \implies W$  on  $D[0, \tau_H]$  under the condition

$$\int_0^{\tau_{\rm H}} \frac{\mathrm{d}\,\mathrm{F}}{\mathrm{G}} < \omega.$$

So it suffices to examine  $\|W_n - \hat{W}_n\|_0^{\tau_H}$ . This quantity is equal to  $\sqrt{n} \ \hat{F}_n(T_n)$ . But by Gill (1983; Remark 2.2), under (1.4),  $F(t) \ B(C(t)) \to 0$  a.s. as  $t \to \tau_H$ . So the aforementioned weak convergence result of Yang also tells us that  $\sqrt{n} \ [\hat{F}_n(T_n) - F(T_n)] \to^p 0$ , since  $T_n \to \tau_H$  a.s. as  $n \to \infty$ . Therefore we need to find when  $\sqrt{n} \ F(T_n) \to^p 0$ . in Lemma 1.3, the condition under which this happens is proven to be

(1.5) 
$$F(t)/\overline{G}(t)) \rightarrow 0 \text{ as } t \rightarrow \tau_H$$

So (1.4) and (1.5) together imply (1.3). Note that, though both (1.4) and (1.5) say that F(t) should approach 1 as  $t \to \tau_H$  somewhat faster than G(t) does, neither of these conditions implies the other.

**LEMMA 1.3.** A necessary and sufficient for  $\sqrt{n}$   $F(T_n) \rightarrow^p 0$  is (1.5).

where  $F^{-1}(t) = \inf\{x: F(x) \ge t\}$ . Fix  $\epsilon > 0$ .

$$P\{T_{n} \leq F^{-1}(1-[\epsilon/\sqrt{n}])\} = H^{n}[F^{-1}(1-[\epsilon/\sqrt{n}])]$$
$$= [1 - (\epsilon/\sqrt{n}) \overline{G}(F^{-1}(1-[\epsilon/\sqrt{n}]))]^{n}.$$

Now recall that for a sequence  $\{\theta_n\}$  such that  $0 \le \theta_n \le 1$ ,  $[1-\theta_n]^n \to 0$  if and only if  $n \theta_n \to \infty$ . Thus  $\sqrt{n} \ F(T_n) \to^p 0$  if and only if  $\sqrt{n} \ G(F^{-1}(1-[\epsilon/\sqrt{n}])) \to \infty \ \forall \ \epsilon > 0$ . If M is the smallest integer greater than or equal to  $(1/\epsilon)^2$ , then  $\epsilon/\sqrt{n} \ge 1/\sqrt{Mn}$  and hence

$$\sqrt{n} \ \overline{G}(F^{-1}(1-[\epsilon/\sqrt{n}])) \ge \sqrt{n} \ \overline{G}(F^{-1}(1-[1/\sqrt{Mn}]))$$

$$= (1/\sqrt{M}) \ \sqrt{Mn} \ \overline{G}(F^{-1}(1-[1/\sqrt{Mn}])).$$

Therefore, since 
$$F(F^{-1}(x)) = x$$
 and  $\tau_F = \tau_H$ , 
$$\sqrt{n} \ \overline{G}(F^{-1}(1-[\epsilon/\sqrt{n}])) \rightarrow \infty \quad \forall \quad \epsilon > 0 \iff \sqrt{n} \ \overline{G}(F^{-1}(1-[1/\sqrt{n}])) \rightarrow \infty$$
 
$$\Leftrightarrow \quad \overline{G}(F^{-1}(x)/(1-x)) \rightarrow \infty \quad \text{as } x \rightarrow 1$$
 
$$\Leftrightarrow \quad \overline{G}(t)/(1-F(t)) \rightarrow \infty \quad \text{as } t \rightarrow \tau_H.$$

This proves the desired result.

**LEMMA 1.4.** Let  $A \in (0, \infty]$  and let  $g: [0, A] \longmapsto [0, \infty]$  be such that  $g(t) < \infty$  for all t < A and  $g(t) \mapsto \theta \in [0, \infty]$  as  $t \mapsto A$ . Let  $\mu$  be an infinite measure on [0, A] such that  $\mu[0, t] < \infty$  for all t < A. Then  $(\mu[0, t])^{-1} \int_{0}^{t} g \ d\mu \mapsto \theta$  as  $t \mapsto A$ .

**PROOF.** Case 1.  $\theta < \infty$ . Given  $\epsilon > 0$ ,  $\exists M > 0$  such that for all

implies

$$(\mu[0, t])^{-1} \int_{0}^{M} g d\mu + (\theta - \epsilon) \{\mu[M, t]/\mu[0, t]\} \leq (\mu[0, t])^{-1} \int_{0}^{t} g d\mu$$

$$\leq (\mu[0, t])^{-1} \int_{0}^{M} g d\mu + \theta + \epsilon$$

As  $t \to A$ ,  $\mu[0, t] \to \infty$  and  $\{\mu[M, t]/\mu[0, t]\} \to 1$  so by taking liminf in the first inequality and limsup in the second inequality we get the result.

Case 2. 
$$\theta = \infty$$
. Proof is similar.

#### CHAPTER 2

## CONVERGENCE OF W<sub>a</sub> IN L<sup>2</sup> [0, $\tau$ ], $\tau$ < $\tau_{\rm H}$

In this Chapter  $\tau$  will denote an arbitrary but fixed number less than  $\tau_{\rm H}$ . All the conditions of Chapter 1 are assumed to hold, though all the functions and measures that are originally defined on  $[0, \tau_{\rm H}]$  are now restricted to  $[0, \tau]$ . Theorem 2.1 states that  $W_{\rm n} \Rightarrow W$  on  $L^2([0, \tau], \mu)$  where  $\mu$  is a  $\sigma$ -finite measure satisfying 1(vi). To prove this, we are going to show that a bias-adjusted version of  $W_{\rm n}$  satisfies all the conditions of Lemma 9 of Koul (1984), which in turn is based on Theorem 2.2 of Parthasarathy (1967). For that, we will state and prove a few lemmas.

For p=1, 2,  $L^p(\mu)$  is short for  $L^p([0, \tau], \mu)$ . As  $L^1(\mu) \cap L^2(\mu)$  is dense in  $L^2(\mu)$ , there exists a sequence  $\{e_n: n \in \mathbb{N}\} \subseteq L^1(\mu) \cap L^2(\mu)$  such that  $\{e_n: n \in \mathbb{N}\}$  is a complete orthonormal set for  $L^2(\mu)$ . Define

$$U_n(t) := I(t \geq T_n) \frac{\overline{\hat{F}}_n(T_n) F(t)}{F(T_n)}, \quad X_n(t) := W_n(t) - \sqrt{n} U_n(t), \quad t \leq \tau_H.$$

#### LEMMA 2.1.

$$E(X_n(t)) = 0, \quad V(X_n(t)) = F^2(t) \int_0^t \frac{R_n dF}{F^3}, \quad t \leq \tau_H$$

where  $R_n$  is as in 1(iv).

PROOF. From the identity 
$$F_n(t) = \hat{F}_n(t) + \overline{\hat{F}}_n(T_n) I(t \ge T_n)$$
 we get 
$$F_n(t) - F(t) - U_n(t) = \hat{F}_n(t) + I(t \ge T_n) \overline{\hat{F}}_n(T_n) - F(t) - U_n(t)$$
$$= \hat{F}_n(t) - F(t) + I(t \ge T_n) \overline{\hat{F}}_n(T_n) [1 - (\overline{F}(t)/\overline{F}(T_n))]$$

$$= F(t) \int_{0}^{t} \frac{(1-\hat{F}_{n})_{-}J_{n}}{n F H_{n}_{-}} dM_{n}$$

$$- I(t \geq T_{n}) \left[ \frac{\overline{\hat{F}}_{n}(T_{n})[F(t) - F(T_{n})]}{F(T_{n})} \right]$$

$$+ I(t \geq T_{n}) \overline{\hat{F}}_{n}(T_{n}) [1 - (F(t)/F(T_{n}))]$$
(from 3.2.15 of Gill (1980))

(2.1) 
$$= F(t) \int_0^t \frac{(1-\hat{F}_n)_J_n}{n F H_n} dM_n$$

where  $\overline{H}_n = \overline{F}_n \overline{G}_n$ ,  $J_n = I(\overline{H}_{n-} > 0)$ , and

$$M_n(t) = \sum_{j=1}^n I(Z_j \le t, \ \delta_j = 1) - \int_0^t (n \ H_n_f) dF.$$

(Note that in Gill (1980), n  $\overline{H}_n$  is denoted by  $Y_n$ .) By (2.1) and an argument similar to 3.2.20 of Gill (1980),

$$E(X_n(t)) = 0, V(X_n(t)) = \overline{F}^2(t) \int_0^t E\left[\frac{(1-\hat{F}_n)_-^2 J_n}{\overline{H}_{n_-}}\right] \frac{dF}{\overline{F}^3}, t \le \tau_H.$$

Moreover,

$$(1-\hat{F}_{n}(t))^{2} J_{n}(t)$$
 =  $(1-\hat{F}_{n}(t))^{2} I(t \le T_{n})$   
=  $\overline{F}_{n}(t) I(t \le T_{n})$   
=  $\overline{H}_{n}(t) Q_{n}(t)$ .

by 1(iv). Thus

$$V(X_n(t)) = F^2(t) \int_0^t \frac{R_n dF}{F^3}.$$

**LEMMA 2.2.** As  $n \rightarrow \infty$ ,

$$V(X_n(t)) \rightarrow F^2(t) C(t) \forall t \leq \tau_H$$

and

$$\int_0^\tau V(X_n(t)) d\mu(t) \rightarrow \int_0^\tau \overline{F}^2(t) C(t) d\mu(t).$$

<u>PROOF.</u> By Lemma 1.1,  $F_n(t) \to F(t)$  a.s. and  $G_n(t) \to^p G(t)$  for each  $t \in [0, \tau]$ . Therefore  $Q_n(t) \to^p \frac{F(t)}{G_-(t)}$  for each fixed  $t \in [0, \tau]$ . We shall show that  $Q_n(t)$  is uniformly integrable by showing  $E(Q_n^2(t)) \leq C_\tau$  for a constant  $C_\tau$  depending only on  $\tau$ . As  $n H_{n-}(t) \sim Bin(n, H_{-}(t))$ ,

$$E(Q_{n}^{2}(t)) \leq n^{2} E\left[\frac{J_{n}(t)}{n H_{n}(t)}\right]^{2}$$

$$= n^{2} \sum_{i=1}^{n} i^{-1} C_{i}^{n} \left[H_{-}(t)\right]^{i} \left[H_{-}(t)\right]^{n-i}$$

$$= n^{2} \sum_{i=0}^{n-1} (i+1)^{-2} C_{i+1}^{n} \left[H_{-}(t)\right]^{i+1} \left[H_{-}(t)\right]^{n-i-1}$$

$$= n^{3} H_{-}(t) E[1 + Bin(n-1, H_{-}(t))]^{-3}$$

$$\leq n^{3} H_{-}(t) \left[H_{-}(t)\right]^{-3} (3!)(n-1)^{-3}$$

$$\leq 48 H^{-2}(\tau), t \in [0, \tau]$$

because  $E[1 + Bin(n, p)]^{-r} \le r! (np)^{-r}$  by Moment Lemma, Section 7 of Koul, Susarla and Van Ryzin (1981).

Consequently,

$$R_n(t) \equiv E(Q_n(t)) \rightarrow \frac{F(t)}{G_-(t)}$$

and

$$\frac{R_n(t)}{F^3(t)} \rightarrow [F^2(t)\overline{G}_{-}(t)]^{-1} \text{ for all } t \in [0, \tau].$$

Now,

$$R_n(t) = E(Q_n(t)) \le [E(Q_n^2(t))]^{\frac{1}{2}} \le 7 [\overline{H}_n(\tau)]^{-1}$$
 for all  $t \in [0, \tau]$ .

Therefore by the Bounded Convergence Theorem and by 1(ii),

$$\int_0^t \frac{R_n dF}{F^3} \rightarrow \int_0^t [\overline{F}^2(s)\overline{G}_{-}(s)]^{-1} dF(s) \equiv C(t).$$

Hence by Lemma 2.1,

$$V(X_n(t)) \rightarrow F^2(t)C(t)$$
 for all  $t \in [0, \tau]$ .

Now,

$$V(X_n(t)) \le 7 [H_{-}(\tau)]^{-1} F^2(t) \int_0^t F^{-3} dF = 7 [H_{-}(\tau)]^{-1} F(t);$$

by 1(vi) and the fact that

$$\int_0^{\tau} F(t) d\mu(t) \leq \frac{1}{F(\tau)} \int_0^{\tau} F(t) F(t) d\mu(t) \leq \frac{1}{F(\tau)} \int_0^{\tau} F^2(t) C(t) d\mu(t),$$

F(t) is integrable on  $[0, \tau]$  with respect to  $\mu$ . So by the Dominated Convergence Theorem,

$$\int_0^\tau V(X_n(t)) \ d\mu(t) \rightarrow \int_0^\tau F^2(t) \ C(t) \ d\mu(t). \qquad \Box$$

**LEMMA 2.3.** For every  $m \in \mathbb{N}$ ,

$$\left[\int_0^{\cdot} X_n e_i d\mu, \int_0^{\cdot} X_n e_2 d\mu, ..., \int_0^{\cdot} X_n e_m d\mu\right] \quad \Rightarrow \quad \left[\int_0^{\cdot} W e_i d\mu, \int_0^{\cdot} W e_2 d\mu, ..., \int_0^{\cdot} W e_m d\mu\right].$$

PROOF. By Lemma 1.2, we know that  $W_n \Rightarrow W$  on  $D[0, \tau]$ . Next, observe that on  $[T_n \leq t]$ ,  $F(t) \leq F(T_n)$  and hence  $U_n(t) \leq I(T_n \leq t)$ . So,  $\sup_{t \leq \tau} |\sqrt{n} \ U_n(t)| \leq \sqrt{n} \sup_{t \leq \tau} |I(T_n \leq t)| \leq \sqrt{n} \ I(T_n \leq \tau).$ 

Since  $T_n \to \tau_H$  a.s. and  $\tau < \tau_H$ , for a.e.  $\omega$ ,  $I(T_n(\omega) \le t) = 0$  for n sufficiently large. Therefore,

$$\sup_{\mathbf{t} \le \tau} |\sqrt{\mathbf{n}} \ \mathbf{U_n(t)}| \ \to \ \mathbf{0} \ \text{a.s.}.$$

Thus  $X_n = W_n - \sqrt{n} U_n \Rightarrow W$  on  $D[0, \tau]$ .

Define  $\Gamma: D[0, \tau] \longmapsto \mathbb{R}^m$  by

$$\Gamma(\mathbf{x}) = \left[ \int_0^{\cdot} \mathbf{x} \ \mathbf{e_1} \ d\mu \ , \int_0^{\cdot} \mathbf{x} \ \mathbf{e_2} \ d\mu \ ,...., \int_0^{\cdot} \mathbf{x} \ \mathbf{e_m} \ d\mu \right].$$

Then  $\Gamma$  is a continuous function since  $e_i$ 's are in  $L^1(\mu)$ . Therefore,

$$\Gamma(X_n) \Rightarrow \Gamma(W) \text{ on } \mathbb{R}^m.$$

**LEMMA 2.4.** For all  $i \in \mathbb{N}$ ,

$$E\left[\int_0^\tau X_n e_i d\mu\right]^2 \rightarrow E\left[\int_0^\tau W e_i d\mu\right]^2.$$

**PROOF.** Fix  $i \in \mathbb{N}$ . Let  $d\psi = e_i d\mu$ . Then  $\psi$  is a finite signed measure and we need to show that

$$\mathbf{E} \left[ \int_0^\tau \mathbf{X_n} \ \mathrm{d}\psi \right]^2 \rightarrow \mathbf{E} \left[ \int_0^\tau \mathbf{W} \ \mathrm{d}\psi \right]^2.$$

By Theorem 3.4 of Gardiner, Susarla and Van Ryzin (1985) and Theorem 1 of Lo and Singh (1986),

(2.2) 
$$W_{n}(t) = n^{-\frac{1}{2}} \sum_{i=1}^{n} \xi_{i}(t) + \sqrt{n} r_{n}(t), t \leq \tau,$$

where  $\xi_i$ 's are i.i.d. uniformly bounded r.v.'s with mean zero, (2.3)

$$\sup_{\mathbf{t} \leq \tau} E |r_n(\mathbf{t})|^p = O(n^{-p})$$

and

(2.4) 
$$\sup_{t \le \tau} |r_n(t)| = O(n^{-3/4} (\log n)^{3/4}) \quad a.s..$$

From (2.2), (2.4) and Lemma 1.2,

$$\tilde{W}_{n}(t) := n^{-\frac{1}{2}} \sum_{i=1}^{n} \xi_{i}(t) \implies W \text{ on } D[0, \tau]$$

and hence

Now,

$$\int_{0}^{\tau} \tilde{W}_{n} d\psi = n^{-\frac{1}{2}} \sum_{i}^{n} \int_{0}^{\tau} \xi_{i}(t) d\psi(t) = n^{-\frac{1}{2}} \sum_{i}^{n} B_{i}$$
 (say)

where Bi's are i.i.d. bounded mean zero r.v's. So by the Central Limit

Theorem,

(2.6) 
$$\int_0^{\tau} \tilde{W}_n d\psi \implies \text{Normal } (0, V(B_i))$$

where V(X) indicates variance of X. By (2.5) and (2.6),

$$(2.7) \ \mathbb{E}\left[\int_0^{\tau} \tilde{W}_n d\psi\right]^2 = V\left[\int_0^{\tau} \tilde{W}_n d\psi\right] = V(B_i) = V\left[\int_0^{\tau} W d\psi\right] = \mathbb{E}\left[\int_0^{\tau} W d\psi\right]^2.$$

As  $W_n = \tilde{W}_n + \sqrt{n} r_n$ , by Jensen's inequality and (2.3),

$$(2.8) E \left[ \int_{0}^{\tau} W_{n} d\psi - \int_{0}^{\tau} \tilde{W}_{n} d\psi \right]^{2} = n E \left[ \int_{0}^{\tau} r_{n} d\psi \right]^{2} \le k_{1} n \int_{0}^{\tau} E(r_{n}^{2}) d|\psi| \le k n^{-1}$$

for some  $k_1$  and k. From (2.7) and (2.8) we get

(2.9) 
$$\mathbb{E}\left[\int_0^{\tau} W_n \ d\psi\right]^2 \rightarrow \mathbb{E}\left[\int_0^{\tau} W \ d\psi\right]^2.$$

Now we shall show that

(2.10) 
$$\mathbb{E} \left[ \int_0^{\tau} (W_n - X_n) d\psi \right]^2 \to 0$$

which will prove the lemma in view of (2.9). Note that  $W_n - X_n = \sqrt{n} U_n$ . Now,

$$E\left[\sqrt{n}\int_{0}^{\tau}U_{n}d\psi\right]^{2} \leq k n \int_{0}^{\tau}E(U_{n}^{2})d|\psi| \leq k n \int_{0}^{\tau}[H_{-}(\tau)]^{n}d|\psi|$$

$$= k n ||\psi|| [H_{-}(\tau)]^{n} \rightarrow 0$$

for some k by Jensen's inequality since  $U_n(t) \le I(T_n \le \tau)$  for  $t \le \tau$  and  $P(T_n \le \tau) = [H_{-}(\tau)]^n$ . Hence (2.10).

THEOREM 2.1. Assume 
$$1(i) - 1(vi)$$
 hold. Then,
$$W_n \implies W \text{ on } L^2(\mu).$$

**PROOF.** All the conditions of Lemma 9 of Koul (1984) are verified by Lemmas 2.1 through 2.4; so it follows that  $X_n \implies W$  on  $L^2(\mu)$ . Now all

that needs verification is that  $\int_0^{\tau} n U_n^2 d\mu \rightarrow^p 0$ .

We know that  $T_n \to \tau_H$  a.s. so for almost all  $\omega$ ,  $I(T_n < \tau)$  is equal to zero if n is sufficiently large. Therefore for almost all  $\omega$ ,  $\exists \ N_\omega$  such that  $\sqrt{n} \ U_n(\omega) = 0$  for all  $n \ge N_\omega$ . Therefore for almost all  $\omega$ ,  $\exists \ N_\omega$  such that  $\int_0^\tau n \ U_n^2(\omega) \ d\mu = 0$  for all  $n \ge N_\omega$ . Thus  $\int_0^\tau n \ U_n^2(\omega) \ d\mu \to 0 \quad a.s..$ 

#### CHAPTER 3

## UNIFORM BOUNDEDNESS OF $\frac{R_n}{F/G}$

In view of Theorem 2.1, to show the weak convergence of  $W_n$  in  $L^2[0,\,\tau_H]$ , we need to show that  $W_n$  is 'tight at  $\tau_H$ ' in the sense of Theorem 4.2 of Billingsley (1968). A sufficient condition for this to hold is that the sequence  $R_n \leq k \ F/G$  for some constant k. In this chapter it is proved that  $\frac{R_n}{F/G}$  is uniformly bounded on  $[0,\,\tau_H]$  under the assumption that

(3.1) 
$$\overline{G} = \overline{F}^{\alpha}$$
 for some  $\alpha \in [0, 1)$ .

We begin with several Lemmas.

LEMMA 3.1. Let X ~ F and Y ~ G be two independent r.v.'s. Let  $\nu$  be (F+G)/2. Let  $f=\frac{dF}{d\nu}$  and  $g=\frac{dG}{d\nu}$ . Let Z denote X A Y and  $\phi(x) = \frac{f(x) \ \overline{G}_-(x)}{f(x)\overline{G}_-(x)+g(x)\overline{F}(x)}.$ 

Then  $\phi(Z)$  is a version of  $P(X \le Y|Z)$ .

for all sets A of the form  $\{Z \le z\}$ , where P is the probability measure with respect to which the distributions of X and Y are F and G respectively.

$$\int_{\mathbf{A}} \mathbf{I}(\mathbf{X} \leq \mathbf{Y}) d\mathbf{P} = \mathbf{P}(\mathbf{X} \leq \mathbf{Y}, \mathbf{Z} \leq \mathbf{z})$$

$$= \int_{\mathbf{S} \leq \mathbf{t}, \mathbf{S} \leq \mathbf{z}} d\mathbf{F}(\mathbf{s}) d\mathbf{G}(\mathbf{t})$$

$$= \int_{g \le z} \overline{G}_{-}(s) dF(s).$$

$$= \int_{g \le t} \int_{s \le z} \phi(s) dF(s) dG(t) + \int_{s > t, t \le z} \phi(t) dF(s) dG(t)$$

$$= \int_{g \le z} \phi(s) \overline{G}_{-}(s) dF(s) + \int_{t \le z} \phi(t) \overline{F}(t) dG(t)$$

$$= \int_{g \le z} \phi(s) [\overline{G}_{-}(s)f(s) + \overline{F}(s)g(s)] d\nu(s)$$

$$= \int_{g \le z} \overline{G}_{-}(s)f(s) d\nu(s)$$

$$= \int_{g \le z} \overline{G}_{-}(s) dF(s).$$

This proves the result.

**LEMMA 3.2.** Let  $\{(\tilde{Z}_i, \tilde{\delta}_i), 1 \leq i \leq n\}$  be i.i.d. two-dimensional random vectors with the d.f. of  $\tilde{Z}_1$  continuous. Let  $\tilde{Z}_{(i)}, 1 \leq i \leq n$  be the order statistics of  $\tilde{Z}_i$ 's,  $\tilde{\delta}_{(i)}$  be the corresponding induced order statistics of  $\tilde{\delta}_i$ 's and  $G_z$  denote the conditional d.f. of  $\tilde{\delta}$  given  $\tilde{Z} = z$ . Given  $\{\tilde{Z}_i, 1 \leq i \leq n\}, \tilde{\delta}_{(i)}, 1 \leq i \leq n$ , are conditionally independent with d.f.'s  $G_{\tilde{Z}_{(i)}}$ .

0

PROOF. See Lemma 1 of Bhattacharya (1974).

**LEMMA 3.3.** Let  $X_i$ ,  $Y_i$ ,  $Z_i$ ,  $\delta_i$ 's and  $\delta_{(i)}$ 's be as in 1(ii). Assume (3.1) holds. Then  $\delta_{(i)}$ 's are i.i.d Bernoulli (p) and are independent of  $Z_{(i)}$ 's, where  $p = \frac{1}{1+\alpha}$ .

<u>PROOF.</u> From Lemmas 3.1 and 3.2, all we need to show is that the function  $\phi$  of Lemma 3.1 is identically equal to p when  $\overline{G} = \overline{F}^{\alpha}$ .

First note that  $g := \alpha \overline{F}^{\alpha-1}$  f is a possible version of  $\frac{dG}{d\nu}$  because

$$\int_0^t \alpha \overline{F}^{\alpha-1} f d\nu = \int_0^t \alpha \overline{F}^{\alpha-1} dF = 1 - \overline{F}^{\alpha}(t) = G(t).$$

Thus

$$\phi = \frac{f \overline{G}}{f \overline{G} + g \overline{F}} = \frac{f \overline{F}^{\alpha-1}}{f \overline{F}^{\alpha} + \alpha \overline{F}^{\alpha-1} f \overline{F}} = \frac{1}{1+\alpha} = p. \quad \Box$$

In what follows,  $D = \{0, 1\}$  and  $D_j = \{0, 1\}^j$ ,  $1 \le j \le n$ . For  $d \in D_n$ ,  $d_k$  is the  $k^{th}$  entry of d and d(0) and d(1) respectively denote the number of zeros and ones in d. By  $B_{ni}(q)$ , we mean P(X = i) when  $X \sim \text{Binomial } (n, q)$  and p will always denote  $\frac{1}{1+\alpha}$ .

**LEMMA 3.4.** Let  $Q_n$  and  $R_n$  be as in 1(iv). Let  $a_{n0} = 1$  and

$$a_{ni} = \prod_{j=1}^{i} [p(\frac{n-j}{n-j+1}) + (1-p)(\frac{n-j+1}{n-j})]$$

for  $1 \le i \le n-1$ . Then under (3.1),

$$R_n(t) = \sum_{i=0}^{n-1} B_{ni}(H(t))a_{ni}.$$

PROOF. Note that

$$Q_n(t) = \prod_{j=1}^i \left(\frac{n-j}{n-j+1}\right)^{2d_j-1}$$
 on  $\{Z_{(i)} < t \le Z_{(i+1)}, \delta_{(k)} = d_k, 1 \le k \le n-1\}$ . Hence,  $R_n(t) = E(Q_n(t))$ 

$$= \sum_{i=0}^{n-1} \sum_{\underline{d} \in D_{n-1}} \prod_{j=1}^{i} \left(\frac{n-j}{n-j+1}\right)^{2d_{j}-1} \cdot P\{Z_{(i)} < t \leq Z_{(i+1)}, \ \delta_{(i)} = d_{i}, \ 1 \leq j \leq n-1\}$$

$$=\sum_{i=0}^{n-1}A_{ni} \quad (say).$$

By Lemma 3.3 and by elementary properties of order statistics,

$$\begin{split} P\{Z_{(i)} < t \leq \ Z_{(i+1)}, \ \delta_{(k)} = d_k, \ 1 \leq k \leq n-1\} &= \ P\{Z_{(i)} \ < \ t \leq \ Z_{(i+1)}\} \\ & \cdot P\{\delta_{(k)} \ = \ d_k, \ 1 \leq \ k \leq \ n-1\} \\ &= \ B_{ni}(H(t)) \ p^{n} \ (1-p)^{n}. \end{split}$$

Therefore,

$$A_{ni} = B_{ni}(H(t)) \sum_{\underline{d} \in D_{n-1}} p^{\underline{d}(1)} (1-p)^{\underline{d}(0)} \prod_{j=1}^{i} \left(\frac{n-j}{n-j+1}\right)^{2d_{j}-1}.$$

Write  $D_{n-1}$  as  $D_i \times D_{n-1-i}$  so that  $d_i$  is written correspondingly as  $(d_1, d_2)$ . Then,  $d_1(0) + d_2(0) = d(0)$  and  $d_1(1) + d_2(1) = d(1)$ . Hence

$$\begin{split} \alpha_{ni} &:= \sum_{\underline{d} \in D_{n-1}} p^{d(1)}_{n-1} (1-p)^{d(0)} \prod_{j=1}^{i} \left(\frac{n-j}{n-j+1}\right)^{2d_{j}-1} \\ &= \sum_{\underline{d} \in D_{i}} p^{d_{1}(1)}_{n-1} (1-p)^{d_{1}(0)} \prod_{j=1}^{i} \left(\frac{n-j}{n-j+1}\right)^{2d_{j}-1} \sum_{\underline{d} \in D_{n-1-i}} p^{d_{2}(1)}_{n-1-i} (1-p)^{d_{2}(0)} \\ &= \sum_{\underline{d} \in D_{i}} p^{d_{1}(1)}_{n-1} (1-p)^{d_{1}(0)} \prod_{j=1}^{i} \left(\frac{n-j}{n-j+1}\right)^{2d_{j}-1} \end{split}$$

because the last sum is 1. Now, by breaking up  $D_i$  as  $D_{i-1} \times D$  and proceeding as in the earlier step,

$$\begin{split} \alpha_{n\,i} &= \sum_{\substack{d \ 1 \in D_{i}}} p^{d(1)}_{i}(1-p)^{d(0)}_{i} \prod_{j=1}^{i} \left(\frac{n-j}{n-j+1}\right)^{2d_{j}-1} \\ &= \sum_{\substack{d \ 1 \in D_{i-1}}} p^{d_{1}(1)}_{i}(1-p)^{d_{1}(0)}_{i} \prod_{j=1}^{i-1} \left(\frac{n-j}{n-j+1}\right)^{2d_{j}-1} \sum_{\substack{d \in D}} p^{d(1)}_{i}(1-p)^{d(0)} \left(\frac{n-i}{n-i+1}\right)^{2d-1} \\ &= \sum_{\substack{d \ 1 \in D_{i-1}}} p^{d_{1}(1)}_{i}(1-p)^{d_{1}(0)} \prod_{j=1}^{i} \left(\frac{n-j}{n-j+1}\right)^{2d_{j}-1} [p(\frac{n-i}{n-i+1}) + (1-p)(\frac{n-i+1}{n-i})] \end{split}$$

$$= \alpha_{n\,i-1}[p(\frac{n-i}{n-i+1}) + (1-p)(\frac{n-i+1}{n-i})].$$

Since  $\alpha_{n0} = 1$ , iteration of the above relation gives

$$\alpha_{ni} = \prod_{j=1}^{i} [p(\frac{n-j}{n-j+1}) + (1-p)(\frac{n-j+1}{n-j})] = a_{ni}.$$

Thus 
$$A_{ni} = B_{ni}(H(t)) \alpha_{ni}$$
 and  $R_n(t) = \sum_{i=0}^{n-1} B_{ni}(H(t)) a_{ni}$ .

#### LEMMA 3.5. Let

$$f(x) = \log \left[ p(\frac{n-x}{n-x+1}) + (1-p)(\frac{n-x+1}{n-x}) \right], \quad x \in [0, n].$$

Then for  $M \leq n$ ,

$$\int_{0}^{M} f(x) dx = (n+\beta) \log[(n+\beta)^{2} + \gamma] - (n-M+\beta) \log[(n-M+\beta)^{2} + \gamma]$$

$$+ (n-M) \log(n-M) + (n-M+1) \log(n-M+1) - n \log n$$

$$- (n+1) \log(n+1) + 2 \sqrt{\gamma} \left\{ \tan^{-1} \left( \frac{n+\beta}{\sqrt{\gamma}} \right) - \tan^{-1} \left( \frac{n-M+\beta}{\sqrt{\gamma}} \right) \right\}$$

where  $\beta = 1-p$  and  $\gamma = \beta(1-\beta) = p(1-p)$ .

**PROOF.** We follow the convention that  $x \log x = 0$  if x = 0.

$$f(x) = \log \left[ \frac{p(n-x)^2 + (1-p)(n-x+1)^2}{(n-x)(n-x+1)} \right]$$
  
= \log \left[ (n-x)^2 + 2\beta(n-x) + \beta\right] - \log(n-x) - \log(n-x+1).

So

$$\int_{0}^{M} f(x) dx = \int_{n-M}^{n} \log[y^{2} + 2\beta y + \beta] dy - \int_{n-M}^{n} \log y dy - \int_{n-M+1}^{n} \log y dy$$

$$= (I) - (II) - (III) \quad (say).$$

$$(I) = \int_{n-M}^{n} \log[(y+\beta)^{2} + \beta(1-\beta)] dy$$

$$= \int_{n-M+\beta}^{n+\beta} \log(z^{2} + \gamma) dz$$

$$= \Psi(n+\beta) - \Psi(n-M+\beta)$$

where

$$\Psi(z) = z \log (z^2 + \gamma) + 2\{\sqrt{\gamma} \tan^{-1}(\frac{z}{\sqrt{\gamma}}) - z\}.$$

This will give us

(I) = 
$$(n+\beta) \log [(n+\beta)^2 + \gamma] - (n-M+\beta) \log[(n-M+\beta)^2 + \gamma] + 2\sqrt{\gamma} \{ \tan^{-1} (\frac{n+\beta}{\sqrt{\gamma}}) - \tan^{-1} (\frac{n-M+\beta}{\sqrt{\gamma}}) \} - 2M.$$

(II) + (III) is easily seen to be  $n \log n - (n-M) \log(n-M) + (n+1) \log(n+1) - (n-M+1) \log(n-M+1) - 2M.$ 

From these relations, the lemma follows.

**LEMMA 3.6.** There is a constant K such that  $a_{ni} \le K (n-i)^{2p-1} n^{1-2p}$  for  $0 \le i \le n-1$ , where  $a_{ni}$ 's are as in Lemma 3.4.

0

**PROOF.** Let f be as in Lemma 3.5. One can easily see that

$$sgn(f'(x)) = sgn(x - n + \frac{1}{\sqrt{p/(1-p)} - 1})$$

so that f'(x) = 0 for at most one  $x \in [0, n)$ . Hence f has at most one local minimum in [0, n). Thus it follows that

Note that LHS of  $(3.2) = \log a_{ni}$ ; therefore,

$$\mathbf{a_{ni}} \leq \exp(\int_0^{i+1} \mathbf{f}(\mathbf{x}) \ d\mathbf{x}).$$

Now,  $\tan^{-1}(a) - \tan^{-1}(b) \le \frac{\pi}{2}$  for any non-negative a and b; so

(3.4) 
$$\exp \left[ 2\sqrt{p(1-p)} \left[ \tan^{-1} \left\{ \frac{n+1-p}{\sqrt{p(1-p)}} \right\} - \tan^{-1} \left\{ \frac{n-i-p}{\sqrt{p(1-p)}} \right\} \right] \le e^{\pi/2}.$$

Note that

$$\left[ \frac{(n+1-p)^2 + p(1-p)}{n(n+1)} \right]^n = \left[ 1 + \frac{1-2p}{n} + \frac{p}{n(n+1)} \right]^n$$

$$\leq \left[1 + \frac{2-2p}{n}\right]^{n}$$

$$\leq e^{2(1-p)};$$

(3.6) 
$$\frac{[(n+1-p)^2 + p(1-p)]^{1-p}}{n+1} \leq 4n^{1-2p};$$

and since

$$\left[\frac{M^{2}}{(M-p)^{2}+p(1-p)}\right]^{M-p} \leq \left[\frac{M^{2}}{(M-p)^{2}}\right]^{M-p}$$

$$= \left[1-(p/M)\right]^{2(p-M)},$$

we have

$$\sup_{\mathbf{M} \geq 1} \left[ \frac{\mathbf{M}^2}{(\mathbf{M} - \mathbf{p})^2 + \mathbf{p}(1 - \mathbf{p})} \right]^{\mathbf{M} - \mathbf{p}} \leq (1 - (\mathbf{p}/2))^{-4} \leq 16.$$

Therefore,

$$\frac{(n-i-1)^{n-i}-1(n-i)^{n-i}}{[(n-i-p)^2+p(1-p)]^{n-i-p}} = \left[\frac{(n-i)^2}{[(n-i-p)^2+p(1-p)]}\right]^{n-i-p} (\frac{n-i-1}{n-i})^{n-i-1}(n-i)^{2p-1}$$
(3.7)
$$\leq 16 \ (n-i)^{2p-1}.$$

From (3.4), (3.5), (3.6), (3.7) and Lemma 3.5 we get

$$\exp(\int_0^{i+1} f(x) dx) \le 64e^{2+\pi/2} n^{1-2p} (n-i)^{2p-1}$$

Therefore by (3.3),

$$\mathbf{a_{ni}} \leq \mathbf{K} \mathbf{n^{1-2p}} (\mathbf{n}-\mathbf{i})^{2p-1}.$$

**THEOREM 3.1.** Assume 1(i) - 1(vi). Then under (3.1),

$$\frac{R_n}{F/G}(t) \leq K, \quad t \leq \tau_H, \quad n \in \mathbb{N}$$

where K as in Lemma 3.6.

**PROOF.** From the convexity of the map  $x \mapsto x^{1/r}$  for  $x \in [0, \infty)$ ,  $r \in (0, 1]$ , and Jensen's inequality, it follows that for any non-negative r.v.

Y,  $[E(Y)]^{1/r} \le E(Y^{1/r})$ . Applying this to r = 2p-1 and  $Y = X^{2p-1}$  where X is Binomial (n,  $\overline{H}(t)$ ), one gets

$$E(X^{2p-1}) \leq [n \ \overline{H}(t)]^{2p-1}.$$

Now, by Lemmas 3.4 and 3.6,

$$\begin{split} R_{n}(t) &= \sum_{i=0}^{n-1} B_{ni}(H(t)) a_{ni} \\ &\leq K \sum_{i=0}^{n-1} B_{ni}(H(t)) (n-i)^{2p-1} n^{1-2p} \\ &= K \sum_{i=1}^{n} B_{ni}(H(t)) i^{2p-1} n^{1-2p} \\ &= K E(X^{2p-1}) n^{1-2p} \\ &\leq K \left[n H(t)\right]^{2p-1} n^{1-2p} \\ &= K \left[H(t)\right]^{2p-1}. \end{split}$$

Now, since  $p = \frac{1}{1+\alpha}$ , H = F G and (3.1) holds,  $H^{2p-1} = F/G$ . Hence (3.8).

#### CHAPTER 4

### CONVERGENCE OF $W_n$ ON $L^2[0, \tau_H]$

This chapter proves the weak convergence of  $W_n$  to W in  $L^2([0,\ \tau_H],\ \mu)$  under (3.1).

**LEMMA 4.1.** Under the assumptions of Chapter 1,

$$W \in L^{2}([0, \tau_{H}], \mu)$$
 a.s..

Moreover, for every n,

F is continuous,

$$W_n \in L^2([0, \tau_H], \mu)$$
 a.s..

<u>PROOF.</u> That  $W \in L^2([0, \tau_H], \mu)$  a.s. is obvious since by 1(vi) its second moment is integrable with respect to  $\mu$ .

Let  $n_0 \in N$  be fixed. We shall show that  $\int_0^{\tau_H} W_n^2(\omega) d\mu < \infty$  for almost all  $\omega$ . Let  $\{r_n: n \in N\}$  be an enumeration of rationals in  $[0, \tau_H)$ . Let

$$\Omega_{n1} = \{ \omega : \int_0^{r_n} W_{n_0}^2(\omega) d\mu < \infty \}.$$

By Theorem 3.1,  $W_n \in L^2([0, \tau], \mu)$  almost surely for all  $\tau < \tau_H$ , so  $P(\Omega_{n1}) = 1 \quad \text{for all} \quad n \quad \text{and hence} \quad \Omega_{01} := \bigcap_{n=1}^{\infty} \Omega_{n1} \quad \text{has probability 1.} \quad \text{Since}$ 

$$\Omega_{n2} := \{\omega: T_n(\omega) < \tau_H\}$$

has probability 1 for each n and hence so does  $\Omega_{02}:=\bigcap_{n=1}^{\infty}\Omega_{n2}$ . Let  $\Omega_0:=\Omega_{01}\cap\Omega_{02}$  so that  $P(\Omega_0)=1$ . Let  $\omega\in\Omega_0$ .  $T_n(\omega)<\tau_H$  so  $\exists$   $n(\omega)\in\mathbb{N}$  such that  $r_{n(\omega)}\in(T_n(\omega),\tau_H)$  and  $r_{n(\omega)}>\kappa_F$ , where  $\kappa_F$  is

the infimum of the support of F. Since  $\omega \in \Omega_{n(\omega)}$ , the following hold when evaluated at  $\omega$ .

First of all,

$$\int_0^{r_n} W_{n_0}^2 d\mu < \infty.$$

Also

$$\int_{\mathbf{r}_{\mathbf{n}}}^{\tau_{\mathbf{H}}} \mathbf{W}_{\mathbf{n}_{0}}^{2} d\mu = \mathbf{n} \int_{\mathbf{r}_{\mathbf{n}}}^{\tau_{\mathbf{H}}} \mathbf{F}^{2} d\mu$$

$$= \mathbf{n} [\mathbf{C}(\mathbf{r}_{\mathbf{n}})]^{-1} \int_{\mathbf{r}_{\mathbf{n}}}^{\tau_{\mathbf{H}}} \mathbf{F}^{2} d\mu$$

$$< \infty.$$

Thus 
$$\int_0^{\tau_{\mathrm{H}}} W_{\mathrm{n}_0}^2(\omega) \mathrm{d}\mu < \infty$$
 for all  $\omega \in \Omega_0$ .

**LEMMA 4.2.** If  $\phi$ , defined in Lemma 3.1, is bounded away from zero near  $\tau_{\rm H}$ , then

$$\mathbf{n} \int_{\mathbf{T}_{\mathbf{n}}}^{\tau_{\mathbf{H}}} \mathbf{F}^{2} \mathrm{d}\mu \rightarrow^{\mathbf{p}} 0.$$

**PROOF.** Let  $V_n = n \int_{T_n}^{\tau_H} \overline{F}^2 d\mu$ . Since  $T_n \to \tau_H$  a.s.,  $P(T_n < a) \to^p 0$ 

for all a  $< \tau_{\rm H}$ . So it is enough to show that  $\exists$  a  $\in$  (0,  $\tau_{\rm H}$ ) such that

$$V'_n := n \int_{max(T_n, a)}^{\tau_H} F^2 d\mu \rightarrow^p 0.$$

Define

$$f(x) = \sup_{n \in \mathbb{N}} n x^n, x \in [0, 1].$$

Simple calculus techniques show that

$$f(x) \le -(\log x)^{-1} \le (1-x)^{-1}$$

Hence

$$(4.1) n(H(t))^n \leq (\overline{H}(t))^{-1}, [0, \tau_H]$$

Note that

$$C(t) = \int_0^t \phi \ dH^{-1}$$

and use Lemma 1.4 to get H C is bounded away from zero near  $\tau_{\rm H}$ . So by the continuity of F  $\exists$  a  $\in$  (0,  $\tau_{\rm H}$ ) and k  $\in$  (0,  $\infty$ ) such that

$$\mathbf{H}^{-1} \leq \mathbf{k} C$$

on [a,  $\tau_{\rm H}$ ]. This along with (4.1) gives us

$$nF^2(t) (H(t))^n \leq k F^2(t) C(t)$$

 $\forall$  n and  $\forall$  t  $\in$  [a,  $\tau_{\rm H}$ ]. Since for every t  $\in$  [a,  $\tau_{\rm H}$ ], n  ${\bf F}^2({\bf t})$  (H(t))<sup>n</sup> converges to 0 as n  $\rightarrow$  m and is dominated by the integrable function k  ${\bf F}^2({\bf t})$  C(t), Dominated Convergence Theorem gives

$$n \int_{a}^{\tau_{H}} \mathbf{F}^{2}(t)(\mathbf{H}(t))^{n} d\mu(t) \longrightarrow 0.$$

This quantity is precisely the expectation of  $V'_n$ .

**LEMMA 4.3.** If  $\phi$  is bounded away from zero near  $\tau_{\rm H}$ , then

$$\int_0^{\tau_{\mathbf{H}}} \mathbf{n} \ \mathbf{U_n^2} \ \mathrm{d}\mu \ \longrightarrow^{\mathbf{p}} \ 0.$$

PROOF. 
$$\int_{0}^{\tau_{H}} n U_{n}^{2} d\mu = \int_{T_{n}}^{\tau_{H}} n \frac{F_{n}^{2}(T_{n})F^{2}(t)}{F^{2}(T_{n})} d\mu(t)$$
$$= \frac{F_{n}^{2}(T_{n})}{F^{2}(T_{n})} \int_{T_{n}}^{\tau_{H}} n F^{2}(t) d\mu(t).$$

By Theorem 3.2.1 of Gill (1980),  $\frac{F_n^2(T_n)}{F^2(T_n)}$  is  $O_p(1)$  and by Lemma 4.2,

 $\int_{T_n}^{T_H} n \ F^2(t) \ d\mu(t) \rightarrow^p 0.$  Hence the product goes to zero in probability.  $\Box$ 

THEOREM 4.1. Assume 1(i) - 1(vi) and (3.1) hold. Then  $W_n \implies W$  on  $L^2([0, \tau_H], \mu)$ .

<u>PROOF.</u> Since (3.1) holds, by Lemma 3.3,  $\phi \equiv p$  so that the condition in Lemmas 4.2 and 4.3 is satisfied. Since Theorem 2.1 has already shown the weak convergence on  $L^2([0, \tau], \mu)$  for every  $\tau < \tau_H$ , as mentioned at the beginning of Chapter 3, it is enough to show 'tightness at  $\tau_H$ ' in the sense of Theorem 4.2 of Billingsley (1968).

Define

$$X_{\tau n}(t) = W_n(t) \text{ if } t \leq \tau \wedge T_n$$
  
= 0 otherwise.

and

$$X_{\tau}(t) = W(t)$$
 if  $t \le \tau$   
= 0 otherwise.

 $W_n \implies W$  on  $L^2([0, \tau], \mu)$  by Theorem 3.1. Now if  $\rho_{\tau}$  denotes the norm on  $L^2([0, \tau], \mu)$ ,

$$\begin{split} \rho_{\tau}^2(W_n, \ X_{\tau n}) &= \int_0^{\tau} \left[W_n(t) - W_n(t \wedge T_n)\right]^2 d\mu(t) \\ &= I(T_n < \tau) \int_{T_n}^{\tau} \left[W_n(t) - W_n(T_n)\right]^2 d\mu(t) \\ &\rightarrow 0 \quad \text{a.s.} \end{split}$$

since  $T_n \rightarrow \tau_H$  a.s. and  $\tau < \tau_H$ . Therefore,

$$X_{\tau n} \implies W$$
 on  $L^2([0, \tau], \mu)$  as  $n \rightarrow \infty$ .

This is same as saying  $\forall \tau < \tau_H$ ,

$$X_{\tau n} \implies X_{\tau} \text{ on } L^2([0, \tau_H], \mu) \text{ as } n \rightarrow \infty.$$

Now we shall show that as  $\tau \to \tau_{\rm H}$ ,  $X_{\tau} \Rightarrow W$  on  $L^2([0, \tau_{\rm H}], \mu)$ 

by showing that  $\rho(X_{\tau}, W) \rightarrow^{p} 0$ .

$$\begin{split} \mathrm{E}[\rho^2(\mathrm{X}_{\tau},\mathrm{W})] &= \mathrm{E}\bigg\{\int_0^{\tau_\mathrm{H}} \left(\mathrm{X}_{\tau^-} \; \mathrm{W}\right)^2 \; \mathrm{d}\mu\bigg\} \\ &= \int_{\tau}^{\tau_\mathrm{H}} \; \mathrm{E}(\mathrm{W}^2(\mathrm{t})) \; \mathrm{d}\mu(\mathrm{t}) \\ &= \int_{\tau}^{\tau_\mathrm{H}} \; \mathrm{F}^2(\mathrm{t})\mathrm{C}(\mathrm{t}) \; \mathrm{d}\mu(\mathrm{t}) \\ &\to 0 \quad \text{as} \quad \tau \to \tau_\mathrm{H}. \end{split}$$

Therefore  $\rho(X_{\tau}, W) \rightarrow 0$  in probability.

It remains to show that

(4.2) 
$$\lim_{\tau \to \tau_{\mathbf{H}}} \limsup_{n \to \infty} P\{\rho(X_{\tau n}, W_n) > \epsilon\} = 0.$$

But observe that

$$\rho^{2}(X_{\tau n}, W_{n}) = \int_{0}^{T_{n}} (X_{\tau n} - W_{n})^{2} d\mu + \int_{T_{n}}^{\tau_{H}} (X_{\tau n} - W_{n})^{2} d\mu.$$

The second term = 
$$\int_{T_n}^{\tau_H} W_n^2(t) d\mu(t)$$
  
=  $n \int_{T_n}^{\tau_H} F^2(t) d\mu(t)$ 

$$(4.3) \qquad \rightarrow^{\mathbf{p}} 0$$

by Lemma 4.2. As far as the first term is concerned,

$$\int_{0}^{T_{n}} (X_{\tau n} - W_{n})^{2} d\mu = I(T_{n} > \tau) \int_{\tau}^{T_{n}} W_{n}^{2}(t) d\mu(t)$$

$$= I(T_{n} > \tau) \int_{\tau}^{T_{n}} X_{n}^{2}(t) d\mu(t)$$

$$\leq \int_{\tau}^{\tau_{H}} X_{n}^{2}(t) d\mu(t)$$
(4.4)

because  $X_n = W_n$  for  $t \leq T_n$ . But by Lemma 2.1,

$$E(X_n^2(t)) = V(X_n(t)) = \overline{F}^2(t) \int_0^t \frac{R_n dF}{\overline{F}^3}$$

and by Theorem 3.1,  $R_n(t) \le K F(t) \bar{G}^{-1}(t)$ . Hence

0

 $(4.5) V(X_n(t)) \leq K \overline{F}^2(t) C(t).$ 

Now (4.2) follows from (4.3), (4.4), (4.5) and 1(vi).

#### CHAPTER 5

### MORE GENERAL CASES

In this Chapter we shall assume F and G are any two continuous d.f's on  $[0,\infty)$ , not necessarily satisfying (3.1). Theorem 5.1 proves the weak convergence of  $W_n$  in  $L^2([0, \tau_H], \mu)$  under more general conditions. 1(i) - 1(vi) are assumed to hold.

<u>LEMMA 5.1.</u> Let  $Z_1, Z_2, \ldots, Z_n$  be i.i.d. H and  $Z_{(1)}, Z_{(2)}, \ldots, Z_{(n)}$  be the corresponding order statistics. Let  $\nu$  be as in Lemma 2.1 and h be a density of H w.r.t.  $\nu$ . For  $0 \le i \le n-1$ , define

$$A_{\mathbf{i}}(\mathbf{t}) := \{\omega : Z_{(\mathbf{i})}(\omega) < \mathbf{t} \leq Z_{(\mathbf{i}+1)}(\omega)\}.$$

Then for every i, the conditional density of  $(Z_{(1)}, Z_{(2)}, \dots, Z_{(i)})$ , given  $A_{i}(t)$ , is given by

$$h_i^t(x_1,x_2,...,x_i) = \frac{i!}{H^i(t)} \left[ \prod_{j=1}^i h(x_j) \right] I(x_1 \le x_2 \le ....x_i \le t)$$

where all the densities are w.r.t. the corresponding product measure.

PROOF. We need to show that

(5.1) 
$$\int_{0}^{\mathbf{z}_{1}} \int_{0}^{\mathbf{z}_{2}} \dots \int_{0}^{\mathbf{z}_{i}} h_{i}^{t}(\mathbf{x}_{i}, \mathbf{x}_{2}, \dots, \mathbf{x}_{i}) d\nu(\mathbf{x}_{1}) d\nu(\mathbf{x}_{2}) \dots d\nu(\mathbf{x}_{i})$$

$$= P[Z_{(1)} \leq \mathbf{z}_{1}, Z_{(2)} \leq \mathbf{z}_{2}, \dots, Z_{(i)} \leq \mathbf{z}_{i} | A_{i}(t)].$$

Let  $h_i$  denote the joint density of  $(Z_{(1)}, Z_{(2)}, \dots, Z_{(i)})$ . Using the ideas of Section 2.2 of David (1970), we get that  $h_i(x_1, x_2, \dots, x_i)$  is equal to

$$\frac{n!}{(n-i)!} \ \overline{H}^{n-i}(x_i) \left[ \prod_{j=1}^i h(x_j) \right] \ I(x_1 \leq x_2 \leq \ldots \leq x_i).$$

For i = 1 to n - 1, define

$$h_{i+1}^*(x_1,..., x_i,t) := \int_0^t h_{i+1}(x_1,..., x_i,s) d\nu(s).$$

Note that

$$\begin{split} h_{i+1}^*(x_1, & \dots x_i, t) &= \int_0^t \left\{ \frac{n!}{(n-i-1)!} \left[ \prod_{j=1}^i h(x_j) \right] \ h(s) \ H^{n-i-1}(s) \right. \\ & \cdot I(x_1 \le x_2 \le \dots \dots \le x_i \le s) \right\} \ d\nu(s) \\ &= \frac{n!}{(n-i-1)!} \left[ \prod_{j=1}^i h(x_j) \right] \ I(x_1 \le x_2 \le \dots \dots \le x_i) \\ & \cdot \int_{x_i}^t H^{n-i-1}(s) \ dH(s) \\ &= \frac{n!}{(n-i)!} \left[ \prod_{j=1}^i h(x_j) \right] \ I(x_1 \le x_2 \le \dots \dots \le x_i) \\ & \cdot \left\{ \overline{H^{n-i}}(x_i) - \overline{H^{n-i}}(t) \right\} \\ &= h_i(x_1, \dots x_i) - \frac{n!}{(n-i)!} \left[ \prod_{j=1}^i h(x_j) \right] \ I(x_1 \le x_2 \le \dots \dots \le x_i) \cdot \overline{H^{n-i}}(t). \end{split}$$

On the other hand, because  $P(A_i(t)) = \frac{n!}{i!(n-i)!} H^i(t) H^{n-i}(t)$ , one can rewrite  $h_i^t(x_1,x_2,...,x_i)$  as

$$\frac{I\left(x_{i} \leq t\right)}{P(A_{i}(t))} \left\{ \frac{n!}{(n-i)!} \left[ \prod_{j=1}^{i} h(x_{j}) \right] I(x_{1} \leq x_{2} \leq \dots \leq x_{i}) \right. \left. H^{n-i}(t) \right\}.$$

Thus

$$h_{i}^{t}(x_{1},x_{2},.....,x_{i}) = \frac{I(x_{i} \leq t)}{P(A_{i}(t))} [h_{i}(x_{1},....x_{i}) - h_{i+1}^{*}(x_{1},....x_{i},t)].$$

$$= \frac{I(x_{i} \leq t)}{P(A_{i}(t))} [h_{i}(x_{1},....x_{i}) - \int_{0}^{t} h_{i+1}(x_{1},....x_{i},s) d\nu(s)].$$

Therefore, LHS of (5.1)

$$= [P(A_i(t)]^{-1} \left\{ \int_0^{s_1} \int_0^{s_2} ... \int_0^{s_i \wedge t} [h_i(x_i, x_2, ...., x_i) - \int_0^t h_{i+1}(x_i, ..., x_i, s) d\nu(s)] \prod_{i=1}^i d\nu(x_i) \right\}$$

$$= [P(A_{i}(t)]^{-1} \left\{ H_{i}(\mathbf{z}_{1}, \mathbf{z}_{2}, \dots, \mathbf{z}_{i-1}, \mathbf{z}_{i} \wedge t) - H_{i+1}(\mathbf{z}_{1}, \mathbf{z}_{2}, \dots, \mathbf{z}_{i-1}, \mathbf{z}_{i} \wedge t, t) \right\}$$

$$= [P(A_{i}(t)]^{-1} P[Z_{(1)} \leq \mathbf{z}_{1}, Z_{(2)} \leq \mathbf{z}_{2}, \dots, Z_{(i)} \leq \mathbf{z}_{i}, Z_{(i)} \leq t < Z_{(i+1)}]$$

$$= P[Z_{(1)} \leq \mathbf{z}_{1}, Z_{(2)} \leq \mathbf{z}_{2}, \dots, Z_{(i)} \leq \mathbf{z}_{i} | A_{i}(t)]$$

$$\text{where } H_{i} \text{ is the joint d.f. corresponding to } h_{i}.$$

**LEMMA 5.2.** Let  $Q_n$  and  $R_n$  be as in 1(iv). Then

$$R_n(t) = \sum_{i=0}^{n-1} B_{ni}(H(t))a_{ni}(t)$$

where

$$a_{n\,i}(t) = \frac{i!}{H^{i}(t)} \int_{0}^{t} \int_{0}^{x_{i}} \int_{0}^{x_{i-1}} ... \int_{0}^{x_{2}} \left\{ \prod_{j=1}^{i} \left[ \left( \frac{n-j}{n-j+1} \right) \phi(x_{j}) + \left( \frac{n-j+1}{n-j} \right) \phi(x_{j}) \right] \right\} \prod_{j=1}^{i} d\nu(x_{j}).$$

**PROOF.** Note that exactly as in Lemma 3.4,

$$\begin{split} R_{n}(t) &= \sum_{i=0}^{n-1} \sum_{\underline{d} \in D_{n-1}} \prod_{j=1}^{i} \left( \frac{n-j}{n-j+1} \right)^{2d_{j}-1} \\ &\cdot P \Big\{ Z_{(i)} < t \leq Z_{(i+1)}, \delta_{(k)} = d_{k}, \ 1 \leq k \leq n-1 \Big\} \\ &= \sum_{i=0}^{n-1} \sum_{\underline{d} \in D_{n-1}} \prod_{j=1}^{i} \left( \frac{n-j}{n-j+1} \right)^{2d_{j}-1} P \Big\{ \delta_{(k)} = d_{k}, \ 1 \leq k \leq n-1 \, | \, A_{i}(t) \Big\} P(A_{i}(t)) \\ &= \sum_{i=0}^{n-1} B_{ni}(H(t)) \sum_{\underline{d} \in D_{n-1}} \prod_{j=1}^{i} \left( \frac{n-j}{n-j+1} \right)^{2d_{j}-1} P \Big\{ \delta_{(k)} = d_{k}, \ 1 \leq k \leq n-1 \Big\} \\ &= \sum_{i=0}^{n-1} B_{ni}(H(t)) \alpha_{ni}(t) \qquad (say). \end{split}$$

We need to prove that  $\alpha_{ni}(t) = a_{ni}(t)$ . By writing  $D_{n-1} = D_i \times D_{n-1-i}$ ,

$$\alpha_{ni}(t) = \sum_{\substack{d \ 1 \in D_i \ d \ 2}} \sum_{\substack{d \ 2 \in D_{n-1-i} \ j=1}} \prod_{j=1}^{i} \left( \frac{n-j}{n-j+1} \right)^{2d_j-1} \cdot P \left\{ \delta_{(k)} = d_k \ 1 \le k \le n-1 \, | \, A_i(t) \right\}$$

$$= \sum_{\substack{d \ 1 \in D_i \ j=1}} \prod_{j=1}^{i} \left(\frac{n-j}{n-j+1}\right)^{2d_j-1} \sum_{\substack{d \ 2 \in D_{n-1-i}}} P\Big\{\delta_{(k)} = d_k, \ 1 \le k \le n-1 \, | \, A_i(t)\Big\}$$

$$= \sum_{\substack{d \ 1 \in D_i \ j=1}} \prod_{j=1}^{i} \left(\frac{n-j}{n-j+1}\right)^{2d_j-1} P\Big\{\delta_{(k)} = d_k \ 1 \le k \le i \, | \, A_i(t)\Big\}.$$

From Lemma 3.2, given  $Z_{(j)}$ 's,  $\delta_{(j)}$ 's have conditional distribution given by

$$P\Big\{\delta_{(j)} = d_j, \ 1 \leq j \leq i \, | \, Z_{(1)}, Z_{(2)}, \dots, Z_{(i)} \Big\} = \prod_{j=1}^{i} [\phi^{d_j}(Z_{(j)}) \bar{\phi}^{1-d_j}(Z_{(j)})].$$

Thus, by Lemma 5.1,

$$\begin{split} & P\Big\{\delta_{(j)} = d_{j}, \ 1 \leq j \leq i \, | \, A_{i}(t)\Big\} \\ & = E\Big\{\prod_{j=1}^{i} [\phi^{d}j(Z_{(j)})\bar{\phi}^{1-d}j(Z_{(j)})] \, | \, A_{i}(t)\Big\} \\ & = \frac{i!}{H^{i}(t)} \int_{0}^{t} \int_{0}^{x_{i}} \int_{0}^{x_{i-1}} ... \int_{0}^{x_{2}} \prod_{j=1}^{i} \left[\phi^{d}j(x_{j})\bar{\phi}^{1-d}j(x_{j})\right] \prod_{j=1}^{i} dH(x_{j}). \end{split}$$

Therefore, to show  $\alpha_{ni} = a_{ni}$ , it is enough to show that

$$\begin{split} \sum_{\substack{d \ 1 \in D_i}} \left[ \prod_{j=1}^i \left( \frac{n-j}{n-j+1} \right)^{2d_j-1} \right] \left[ \prod_{j=1}^i \left[ \phi^{d_j}(x_j) \bar{\phi}^{1-d_j}(x_j) \right] \right] \\ &= \prod_{j=1}^i \left[ \left( \frac{n-j}{n-j+1} \right) \phi(x_j) + \left( \frac{n-j+1}{n-j} \right) \bar{\phi}(x_j). \end{split}$$

We shall show this by induction on i. For i = 1,

LHS = 
$$\sum_{\substack{d=0,1\\ \\ = n}} \left[\frac{n-1}{n}\right]^{2d-1} \phi^{d}(x_{1}) \ \bar{\phi}^{1-d}(x_{1})$$
= 
$$\left[\frac{n-1}{n}\right] \phi(x_{1}) + \left[\frac{n}{n-1}\right] \bar{\phi}(x_{1})$$
= RHS.

Assume the result for i-1. Write  $D_i = D_{i-1} \times D$  and d as  $(d_i, d)$ . Then LHS is equal to

$$\begin{split} \sum_{\substack{d \ 1 \in \mathbb{D}_{i-1}}} \left[ \prod_{j=1}^{i-1} \left( \frac{n-j}{n-j+1} \right)^{2d_j-1} \right] \left[ \prod_{j=1}^{i-1} [\phi^{d_j}(\mathbf{x}_j) \bar{\phi}^{1-d_j}(\mathbf{x}_j)] \right] & \times \sum_{\substack{d \in \mathbb{D}}} \left( \frac{n-i}{n-i+1} \right)^{2d-1} \phi^{d}(\mathbf{x}_i) \bar{\phi}^{1-d}(\mathbf{x}_i) \\ &= \prod_{j=1}^{i-1} \left[ \left( \frac{n-j}{n-j+1} \right) \phi(\mathbf{x}_j) + \left( \frac{n-j+1}{n-j} \right) \bar{\phi}(\mathbf{x}_j) \right] \left\{ \left( \frac{n-i}{n-i+1} \right) \phi(\mathbf{x}_i) + \left( \frac{n-i+1}{n-i} \right) \bar{\phi}(\mathbf{x}_i) \right\} \\ &= \prod_{j=1}^{i} \left[ \left( \frac{n-j}{n-j+1} \right) \phi(\mathbf{x}_j) + \left( \frac{n-j+1}{n-j} \right) \bar{\phi}(\mathbf{x}_j) \right] \\ &= \text{RHS}. \end{split}$$

THEOREM 5.1. Assume 1(i) - 1(vi) hold. Then

$$W_n \implies W \text{ in } L^2([0, \tau_H], \mu)$$

if any of the following conditions is satisfied.

- (5.2) For some  $\alpha \in [0, 1)$ ,  $\overline{G}/\overline{F}^{\alpha}$  is non-decreasing and bounded above.
- (5.3)  $\phi$  is non-increasing and  $\overline{F}^{\phi-1}$   $\overline{G}^{\phi}$  is bounded above.

<u>PROOF.</u> First, we will prove that the condition  $\overline{G}/\overline{F}^{\alpha}$  is non-decreasing is equivalent to  $\phi \ge \frac{1}{1+\alpha}$  a.s.  $\nu$ . Since F and G are continuous,

$$\phi \geq \frac{1}{1+\alpha} \quad \text{a.s. } \nu \iff [1 + (gF/fG)]^{-1} \geq \frac{1}{1+\alpha} \quad \text{a.s. } \nu$$

$$\Leftrightarrow gF/fG \leq \alpha \quad \text{a.s. } \nu$$

$$\Leftrightarrow g/G \leq \alpha(f/F) \quad \text{a.s. } \nu$$

$$\Leftrightarrow \int_a^b (g/G)d\nu \leq \int_a^b \alpha(f/F)d\nu \quad \text{for all } a < b$$

$$\Leftrightarrow \log G(a) - \log G(b) \leq \alpha[\log F(a) - \log F(b)]$$
for all  $a < b$ 

$$\Leftrightarrow G(a)/G(b) \leq [F(a)/F(b)]^{\alpha} \quad \text{for all } a < b$$

$$\Leftrightarrow (G/F^{\alpha})(a) \leq (G/F^{\alpha})(b) \quad \text{for all } a < b$$

$$\Leftrightarrow (G/F^{\alpha}) \quad \text{is non-decreasing.}$$

$$\phi \ge \frac{1}{1+\alpha}$$
 implies

$$\left(\frac{\mathbf{n}-\mathbf{j}}{\mathbf{n}-\mathbf{j}+1}\right) \ \phi \ + \ \left(\frac{\mathbf{n}-\mathbf{j}+1}{\mathbf{n}-\mathbf{j}}\right) \ \bar{\phi} \ \leq \ \left(\frac{\mathbf{n}-\mathbf{j}}{\mathbf{n}-\mathbf{j}+1}\right) \left(\frac{1}{1+\alpha}\right) + \ \left(\frac{\mathbf{n}-\mathbf{j}+1}{\mathbf{n}-\mathbf{j}}\right) \left(\frac{\alpha}{1+\alpha}\right)$$

80

 $\phi \ge \frac{1}{1+\alpha}$  a.s.  $\nu$  implies

$$a_{ni}(t) \leq \prod_{j=1}^{i} \left\{ \left(\frac{n-j}{n-j+1}\right) \left(\frac{1}{1+\alpha}\right) + \left(\frac{n-j+1}{n-j}\right) \left(\frac{\alpha}{1+\alpha}\right) \right\}$$

from Lemma 5.2 and from the fact that

$$\frac{i!}{H^{i}(t)} \int_{0}^{t} \int_{0}^{x_{i}} \int_{0}^{x_{i-1}} ... \int_{0}^{x_{2}} \prod_{j=1}^{i} dH(x_{j}) = 1.$$

Now from Lemma 3.6 and proof of Theorem 3.1, it follows that

$$R_n(t) \leq K \frac{1-\alpha}{1+\alpha}(t).$$

Therefore,

$$\frac{R_n}{F/G} \leq K F^{\frac{1-\alpha}{1+\alpha}} \frac{1-\alpha}{G^{\frac{1+\alpha}{1+\alpha}}} \bar{F}^{-1}\bar{G}$$

$$= K F^{\frac{-2\alpha}{1+\alpha}} \frac{2}{G^{\frac{1+\alpha}{1+\alpha}}}$$

Now 
$$G \subseteq K_0$$
  $F^{\alpha}$  implies  $G^{\frac{1}{1+\alpha}} \subseteq K_0^{\frac{1}{1+\alpha}} F^{\frac{\alpha}{1+\alpha}}$  implies  $F^{\frac{-\alpha}{1+\alpha}} G^{\frac{1}{1+\alpha}} \subseteq K_0^{\frac{1}{1+\alpha}}$  implies  $K F^{\frac{-2\alpha}{1+\alpha}} G^{\frac{2}{1+\alpha}} \subseteq K K_0^{\frac{2}{1+\alpha}}$  implies  $\frac{R_n}{F/G} \subseteq K_1$  for some constant  $K_1$ .

From the proof of Theorem 4.1, it is clear that this is all we need to show that (5.2) is sufficient for the weak convergence of  $W_n$  to W in  $L^2([0, \tau_H], \mu)$ .

To show that (5.3) is sufficient for the  $L^2$ - weak convergence of  $W_n$ , as earlier, we just need to show  $R_n \leq K_1 \overline{F}/\overline{G}$  for some constant  $K_1$ .

If  $\phi$  is non-increasing,  $(\frac{n-j}{n-j+1})$   $\phi$  +  $(\frac{n-j+1}{n-j})$   $\bar{\phi}$  is non-decreasing; so for all j,  $1 \le j \le n$ ,

$$(\frac{n-j}{n-j+1}) \ \varphi(x_j) \ + \ (\frac{n-j+1}{n-j}) \ \bar{\varphi}(x_j) \ \leq \ (\frac{n-j}{n-j+1}) \ \varphi(t) \ + \ (\frac{n-j+1}{n-j}) \ \bar{\varphi}(t)$$

and therefore, as earlier,  $a_{ni}(t) \le \prod_{i=1}^{i} \left\{ \left(\frac{n-j}{n-j+1}\right) \phi(t) + \left(\frac{n-j+1}{n-j}\right) \tilde{\phi}(t) \right\}$ 

Consequently  $R_n(t) \le K \overline{H}^{2\phi(t)-1}(t)$  as in Lemma 2.5 and Theorem 2.1.

Note that the bound in Lemma 2.5 is uniformly in p so the constant K is free of t.

$$\begin{split} &H^{2\varphi(t)-1} \; = \; F^{2\varphi(t)-1}(t) \;\; \overline{G}^{2\varphi(t)-1}(t) \\ &\stackrel{R_n}{=} (t) \;\; \leq \;\; K \;\; F^{2\varphi(t)-2}(t) \;\; \overline{G}^{2\varphi(t)}(t) \\ &= \; K \Big\{ F^{\varphi(t)-1}(t) \;\; \overline{G}^{2\varphi(t)} \Big\}^2 \\ &= \; K \;\; K_0^2 \\ &= \; K_1 \end{split}$$

where  $K_0$  bounds  $\mathbf{F}^{2\phi-1}$   $\mathbf{G}^{\phi}$ .

REMARK 5.1. Note that condition (ii) of Theorem 5.1 is the same as  $\lambda_{\rm F}/\lambda_{\rm G}$  being non-increasing and  $\Lambda_{\rm F} - \Lambda_{\rm H} \cdot (\lambda_{\rm F}/\lambda_{\rm G})$  being bounded above, where  $\lambda$ 's and  $\Lambda$ 's are hazard functions and integrated hazard functions respectively.

0

EXAMPLE 5.1. Let G be any distribution on  $[0, \omega)$ ,  $\delta \in (1, \omega)$  and  $\Psi$  be any bounded non-decreasing function on  $[0, \omega)$  with  $\Psi(0) = 1$ . Define F by

$$\overline{\mathbf{F}}(\mathbf{t}) = [\mathbf{G}(\mathbf{t})/\Psi(\mathbf{t})]^{\delta}.$$

It is easy to verify that these F and G do not satisfy the proportional hazards model, but do satisfy (5.2).

### CHAPTER 6

## ASYMPTOTICALLY DISTRIBUTION FREE TESTS

In this chapter some Anderson-Darling type A.D.F. statistics that are used to test  $H_0$ :  $F = F_0$  vs.  $H_1$ :  $F \neq F_0$  are discussed. It is shown that

$$\int_{0}^{\tau_{H}} [K_{n}/K_{n}] [W_{n}/F]^{2} dK_{n} \implies \int_{0}^{1} B_{0}^{2}(t)/[t(1-t)] dt$$

and

$$\int_0^{\tau_H} [\overline{K}_n^*/K_n^*] [W_n/\overline{F}_n]^2 dK_n^* \implies \int_0^1 B_0^2(t)/[t(1-t)] dt.$$

where  $K_n$  and  $K_n^*$  are as in 1(iii). Also discussed are the  $L^2$  – weak convergence of  $\tilde{\xi}_n$ ,  $\xi_n$  and  $\xi_n^*$  (as defined in 1(iii)) to W. A few preliminary results are proved first.

<u>LEMMA 6.1 a.</u> For each  $n, 0 \le \frac{K_n}{F} \le 1$  and  $\frac{K_n}{F}$  is a monotonic decreasing function on  $[0, \tau_H]$ .

<u>PROOF.</u> From the definition both  $C_n$  and  $K_n$  are increasing and non-negative functions. Moreover, for  $t \leq \tau_H$ ,

$$C_n(t) \geq \int_0^t \frac{dF}{F^2} = \frac{F}{F}(t); \quad \text{so} \quad \frac{1}{1+C_n}(t) \leq F(t) \text{ and hence} \quad \frac{K_n}{F}(t) \leq 1.$$

For  $t \leq \tau_H$ , we shall show that

$$\frac{\overline{F}}{K_n}(t) = \int_0^t M_n dF$$

where

$$M_n = -C_n + \frac{1}{F G_{n-}} \geq 0,$$

which will prove that  $\frac{\mathbf{F}}{\mathbf{K}_n}$  is increasing.

Using integration by parts, as F is continuous and  $C_n(0) = 0$ ,

$$\int_0^t \frac{dF}{F G_{n-}} = \int_0^t F dC_n = F(t) C_n(t) + \int_0^t C_n dF$$

and hence

$$\int_0^t M_n dF = \overline{F}(t) C_n(t) = \frac{\overline{F}}{K_n}(t).$$

But

$$C_n(t) = \int_0^t \frac{dF}{F^2 G_{n-}} \le \frac{F}{F G_{n-}}(t) \le \frac{1}{F G_{n-}}(t)$$

0

and hence  $M_n(t) \ge 0$ .

**LEMMA 6.1 b.** For each n,  $\overline{G} \le \frac{\overline{K_n^*}}{\overline{F_n}} \le 1$  and  $\frac{\overline{K_n^*}}{\overline{F_n}}$  is a monotonic decreasing function on  $[0, \tau_H]$ .

PROOF. Note that on  $[T_n, \tau_H]$ ,  $\frac{K_n^*}{F_n}$  is of the form  $\frac{0}{0}$  so there, it is defined to be  $\frac{K_n^*}{F_n}(T_n-)$ , which is well-defined. Now,  $C_n^*$  is same as the function  $\hat{C}$  defined in Gill (1983). The remarks that follow Theorem 1.2 of Gill (1983) give the result.

## LEMMA 6.2 a.

(6.1) 
$$\left\| \frac{\mathbf{K_n}}{\mathbf{F}} - \frac{\mathbf{K}}{\mathbf{F}} \right\|_0^{\gamma_{\mathbf{H}}} \to^{\mathbf{p}} 0.$$

PROOF. The proof is split into two cases. First is the case when

 $G(\tau_H) > 0$ . In this case,  $||G_n^{-1} - G^{-1}||_0^{\tau_H} \to^p 0$ . The proof below is given under the assumption that the convergence holds almost surely. If it holds only in probability, a subsequence argument will yield the result.

All the statements in this paragraph hold on a probability 1 set. Given  $\epsilon > 0$ ,  $\exists$  N such that  $\forall$  n  $\geq$  N,  $\|\overline{G}_n^{-1} - \overline{G}^{-1}\|_0^{\tau_H} \leq \epsilon$ . If n  $\geq$  N,  $|F(t) (C_n(t) - C(t))| \leq \epsilon |F(t)| \int_0^t |F|^2 dF \leq \epsilon$ 

for all  $t \leq \tau_H$ . So it follows that  $\|F(C_n - C)\|_0^{\tau_H} \to 0$ . By an application of Lemma 1.4 with  $d\mu = dF^{-1}$  and  $g = \overline{G}_-^{-1}$ ,  $\overline{F}(t)$  C(t) is seen to converge to  $\overline{G}^{-1}(\tau_H)$  as  $t \to \tau_H$ . Since  $F(1+C_n) \to F(1+C)$  uniformly on  $[0,\tau_H]$  and F(1+C) is bounded away from zero near  $\tau_H$ , (6.1) follows.

Next is the case when  $\overline{G}(\tau_H)=0$ . In this case  $\overline{F}(t)C(t)\to \infty$  as  $t\to \tau_H$  and hence  $\frac{K}{F}(t)\to 0$ . Now for each  $\tau<\tau_H$ ,

$$\left\| \frac{\mathbf{K_n}}{\mathbf{F}} - \frac{\mathbf{K}}{\mathbf{F}} \right\|_0^{\tau} \rightarrow 0 \quad \text{a.s.}$$

because

$$\frac{1}{G_{n-}} \rightarrow \frac{1}{G_{-}}$$
 uniformly on  $[0, \tau]$  a.s..

(Note that  $\overline{G}$  and  $\overline{F}$  are bounded away from zero on  $[0, \tau]$ .) So  $\exists \Omega_0$  such that  $P(\Omega_0) = 1$  and for all  $\omega \in \Omega_0$ ,  $\left\| \frac{K_n}{F}(\omega) - \frac{K}{F} \right\|_0^{\tau} \to 0$  for all  $\tau < \tau_H$ . Then the following statements hold on  $\Omega_0$ .

$$\frac{K_n}{F}(0) = \frac{K}{F}(0) = 1; \quad \frac{K_n}{F}(\tau_H) = \frac{K}{F}(\tau_H) = 0; \quad 0 \le \frac{K_n}{F} \le 1; \quad \frac{K_n}{F} \quad \text{is monotonic}$$
decreasing; and 
$$\frac{K_n}{F}(t) \rightarrow \frac{K}{F}(t) \quad \text{pointwise. Since } \frac{K}{F} \quad \text{is continuous, by}$$
Polya's Theorem the convergence is uniform on  $[0, \tau_H]$ .

# LEMMA 6.2 b.

(6.2) 
$$\left\| \frac{\mathbf{K}_{\mathbf{n}}^*}{\mathbf{F}_{\mathbf{n}}} - \frac{\mathbf{K}}{\mathbf{F}} \right\|_{\mathbf{0}}^{\tau_{\mathbf{H}}} \to^{\mathbf{p}} 0.$$

PROOF. Again the proof is split into the same two cases as in Lemma 6.2 a. Because of Lemma 6.1 b, the proof in the second case is exactly the same as in the proof of Lemma 6.2 a so we will prove the result only in case 1. Here, the proof will go along the same lines as in Lemma 6.2 a, with the comment about a possible subsequence argument applicable. So all we need to prove is that  $||F_n(1+C_n^*) - F(1+C)|| \rightarrow 0$ . Note that we need to define  $F_n(1+C_n^*)$  to be a suitable left limit whenever it is of the form 0 times a.

By Lemma 6.1 b,  $\overline{G}_n \leq K_n/\overline{F}_n \leq 1$  and  $K_n/\overline{F}_n$  is increasing. Hence  $\overline{F}_n(1+C_n) \leq \overline{G}_n^{-1}$ 

and for each n,

(6.4)  $\overline{F}_n(1+C_n)$  in a non-decreasing function.

We know that  $\overline{G}_n^{-1} \to \overline{G}^{-1}$  on  $[0, \tau_H]$  as  $\overline{G}(\tau_H) > 0$ . Also we know that  $F(t)(1+C(t)) \to \overline{G}^{-1}(\tau_H)$  as  $t \to \tau_H$  and that, for any  $\tau < \tau_H$ ,  $\overline{F}_n(1+C_n) \to \overline{F}(1+C)$  as  $n \to \infty$  on  $[0, \tau]$ . Let  $\epsilon > 0$ .  $\exists \ \tau < \tau_H$  such that

(6.5) 
$$|\mathbf{F}(\mathbf{t})(1+\mathbf{C}(\mathbf{t})) - \mathbf{G}^{-1}(\tau_{\mathbf{H}})| \leq \epsilon$$

for all  $t \ge \tau$ . Also,  $\exists$  N such that  $\forall$  n  $\ge$  N,

(6.6) 
$$\|\mathbf{F}_{\mathbf{n}}(1+\mathbf{C}_{\mathbf{n}}) - \mathbf{F}(1+\mathbf{C})\|_{\mathbf{0}}^{\tau} \leq \epsilon$$

and

$$\|\overline{\mathbf{G}_{\mathbf{n}}}^{-1} - \overline{\mathbf{G}}^{-1}\| \leq \epsilon.$$

Now  $\forall n \geq N$  and  $\forall t \geq \tau$ ,

$$|\overline{G}_n^{-1}(t) - \overline{F}_n(t)(1+C_n(t))| = \overline{G}_n^{-1}(t) - \overline{F}_n(t)(1+C_n(t))$$
(by (6.3))

$$\leq \overline{G}_{n}^{-1}(t) - \overline{F}_{n}(\tau)(1+C_{n}(\tau))$$

$$(by (6.4))$$

$$\leq \overline{G}^{-1}(t) - \overline{F}(\tau)(1+C(\tau)) + 2\epsilon$$

$$\leq 3\epsilon.$$

0

So by (6.5) and (6.7),  $\forall n \geq N$  and  $\forall t \geq \tau$ ,

$$|\overline{\mathbf{F}}_{\mathbf{n}}(\mathbf{t})(1+\mathbf{C}_{\mathbf{n}}(\mathbf{t})) - \overline{\mathbf{F}}(\mathbf{t})(1+\mathbf{C}(\mathbf{t}))| \leq 5\epsilon$$

The above, together with (6.6), gives the result.

**LEMMA 6.3** a.  $\left\| \frac{K_n}{K} \right\|_0^{T_n}$  is bounded in probability. More specifically, for all  $M \in (1, \infty)$ ,

$$P\left\{ \left\| \frac{K_n}{K} \right\|_0^{T_n} > M+1 \right\} \leq \frac{1}{M}.$$

PROOF. Note that it is enough to show that

$$P\left\{ \left\| \frac{C}{C_n} \right\|_0^{T_n} > M \right\} \leq \frac{1}{M} \text{ for all } M \in (1,\infty)$$

because

$$\frac{K_n}{K} = \frac{1+C}{1+C_n} \le 1 + \frac{C}{C_n} .$$

Apply Lemma 2.6 of Gill (1983) to G<sub>n</sub> to get

$$P\left\{ \left\| \frac{\overline{G}_{n-}}{\overline{G}} \right\|_{0}^{T_{n}} > M \right\} \leq \frac{1}{M} \text{ for all } M \in (1,\infty).$$

Now,

$$C_{n} \geq C_{n} I \left\{ \left\| \frac{\overline{G}_{n_{-}}}{\overline{G}_{-}} \right\|_{0}^{T_{n}} \leq M \right\}$$

$$\geq \frac{1}{M} \int_{0}^{\cdot} \frac{dF}{F^{2}\overline{G}_{-}} I \left\{ \left\| \frac{\overline{G}_{n_{-}}}{\overline{G}_{-}} \right\|_{0}^{T_{n}} \leq M \right\}$$

$$= \frac{C}{M} I \left\{ \left\| \frac{\overline{G}_{n_{-}}}{\overline{G}_{-}} \right\|_{0}^{T_{n}} \leq M \right\}$$

on  $[t \leq T_n]$ . Hence

$$P\left\{\left\|\begin{array}{c} C \\ \overline{C_n} \end{array}\right\|_0^{T_n} \geq M\right\} \leq P\left\{\left\|\begin{array}{c} \overline{G_{n_-}} \\ \overline{G_-} \end{array}\right\|_0^{T_n} \geq M\right\} \leq \frac{1}{M}. \quad \Box$$

**LEMMA 6.3** b.  $\left\| \frac{K_n^*}{K} \right\|_0^{\tau_H}$  is bounded in probability.

PROOF. The proof will follow as in Lemma 6.3 a but we still need to show

(6.8) 
$$\left\| \int_0^t \frac{dF}{F} / \int_0^t \frac{dF_n}{F_n} \right\|_0^{\tau_H} \text{ is } O_p(1).$$

By (7.7.21) of Shorack and Wellner (1986),

$$\|\mathbf{K}_{\mathbf{n}}^{*} - \mathbf{K}\|_{0}^{\tau} \rightarrow 0 \text{ a.s. } \forall \ \tau < \tau_{\mathbf{H}}$$

and hence, as  $K(\tau) > 0$  for  $\tau < \tau_H$ ,

$$\left\| \frac{\mathbf{K}_{\mathbf{n}}^{\star}}{\mathbf{K}} \right\|_{0}^{\tau} \rightarrow 1 \quad \text{a.s.,} \quad \tau < \tau_{\mathbf{H}}.$$

Therefore, we only need to show (6.8) near  $\tau_{\rm H}$ . Now, if i is such that  $Z_{(i)} \leq t < Z_{(i+1)}$ , by explicit computation we can show that

(6.9) 
$$\int_0^t \frac{dF_n}{\overline{F}_n} = \sum_{j=1}^i \left[ \left\{ \frac{n-j+1}{n-j} \right\}^{\delta_{(j)}} - 1 \right]$$

Also,  $\log x \le x - 1 \quad \forall x \ge 1$ , so

(6.10) 
$$\sum_{j=1}^{i} \left[ \left\{ \frac{n-j+1}{n-j} \right\}^{\delta(j)} - 1 \right] \geq \sum_{j=1}^{i} \log \left\{ \frac{n-j+1}{n-j} \right\}^{\delta(j)} \geq - \log F_n.$$

by the definition of  $F_n$ . By Lemma 2.6 of Gill (1983) and the relation  $\log (F_n/F)$  /  $(-\log F_n) \ge -1$ , it follows that

$$[\log (\overline{\mathbf{F}}_{\mathbf{n}}/\overline{\mathbf{F}}) / (-\log \overline{\mathbf{F}}_{\mathbf{n}})] = O_{\mathbf{p}}(1)$$

near  $\tau_{\rm H}$ . Now (6.8) follows from (6.9), (6.10) and (6.11)

**LEMMA 6.4.** Assume  $\phi$  is bounded away from zero near  $\tau_{\rm H}$  a.s.  $\nu$ . Then  $\forall \ \delta > 1/2$ ,

$$\sqrt{n} \ \mathbb{K}^{\delta}(T_n) \rightarrow^{p} 0.$$

PROOF. Following along the same line as in the proof of Lemma 1.3, we get that (6.12) is equivalent to

$$[1+C(t)]^{2\delta} \overline{H}(t) \rightarrow \infty \text{ as } t \rightarrow \tau_{\overline{H}}.$$

So it is enough to prove that C(t)  $\overline{H}(t)$  is bounded away from 0 near

$$au_{
m H}$$
. Note that  $C(t)=\int_0^t \phi \ d \overline{H}^{-1}$ . So by Lemma 1.4,  $C(t) \ \overline{H}(t) o \phi( au_{
m H})$  as  $t o au_{
m H}$ .

**LEMMA 6.5 a.** Assume that  $\exists \alpha \in [0, 1)$  such that

$$\phi \geq \frac{1}{1+\alpha}$$

and

(6.14) 
$$(\overline{G}/\overline{F}^{\alpha})$$
 is non-decreasing.

Then  $\exists \beta \in (0, 1/2)$  such that for a special construction of  $X_i$ 's,  $Y_i$ 's and B,

$$\left\| \frac{\mathbf{K_n^{1-\beta}W_n}}{\mathbf{F}} - \frac{\mathbf{K^{1-\beta}W}}{\mathbf{F}} \right\|_{\mathbf{0}}^{\tau_{\mathbf{H}}} \to^{\mathbf{p}} \mathbf{0}$$

where  $W := \overline{F} B(C)$ .

**PROOF.** Under (6.14),  $\exists \beta \in (0,1/2)$  such that

$$\int_0^{\tau_{\rm H}} \frac{\mathrm{dF}}{F^2 \beta_{\rm G}} < \infty$$

Use the construction of Theorem 7.1.1 of Shorack and Wellner (1986) and apply the theorem with  $q(t) := (1-t)^{\beta}$  to get

(6.16) 
$$\left\| \frac{\mathbf{K}}{\mathbf{F}} \left[ \frac{\hat{\mathbf{W}}_{\mathbf{n}} - \mathbf{W}}{\mathbf{K}^{\beta}} \right] \right\|_{\mathbf{K}^{-1}(\frac{1}{2})}^{\mathbf{T}_{\mathbf{n}}} \to^{\mathbf{p}} 0.$$

By (6.13), Lemma 6.4 is applicable, and hence  $\hat{W}_n$  in (6.16) can be replaced by  $W_n$ . Also,

$$\left\| \frac{\mathbf{K}}{\mathbf{F}} \left[ \frac{\mathbf{W}_{\mathbf{n}} - \mathbf{W}}{\mathbf{K}^{\beta}} \right] \right\|_{0}^{\mathbf{K}^{-1}(\frac{1}{2})} \to^{\mathbf{p}} 0$$

since F is bounded away from zero and  $\|W_n - W\|_0^{K^{-1}(\frac{1}{2})} \to^p 0$ . Thus we have

(6.17) 
$$\left\| \frac{\mathbf{K}^{1-\beta}[\mathbf{W_n} - \mathbf{W}]}{\mathbf{F}} \right\|_{\mathbf{0}}^{\mathbf{T_n}} \to^{\mathbf{p}} 0.$$

From (6.15) and from Remark 2.2 of Gill (1983), it follows that

 $\mathbf{F}^{1-\beta}$  B(C(t))  $\rightarrow$  0 a.s. as  $\mathbf{t} \rightarrow \tau_{\mathbf{H}}$ . Therefore

$$\left\| \frac{\mathbf{W}}{\mathbf{F}^{\beta}} \right\|_{0}^{\tau_{\mathbf{H}}} < \infty \quad \text{a.s..}$$

and since  $K \leq F$ ,

(6.19) 
$$\mathbb{K}^{1-\beta} B(C(t)) \rightarrow 0 \text{ a.s. as } t \rightarrow \tau_{H}.$$

From (6.12), (6.17) and (6.19) one gets

(6.20) 
$$\left\| \frac{\mathbf{K}^{1-\beta}[\mathbf{W}_{\mathbf{n}}-\mathbf{W}]}{\mathbf{F}} \right\|_{0}^{\tau_{\mathbf{H}}} \to^{\mathbf{p}} 0.$$

Use Lemma 6.3 a to get

$$\left\| \frac{\mathbf{K}_{\mathbf{n}}^{1-\boldsymbol{\beta}}[\mathbf{W}_{\mathbf{n}}-\mathbf{W}]}{\mathbf{F}} \right\|_{\mathbf{0}}^{\mathbf{T}_{\mathbf{n}}} \to^{\mathbf{p}} \mathbf{0}$$

and use the same idea as above to conclude

(6.21) 
$$\left\| \frac{\mathbf{K}_{\mathbf{n}}^{1-\beta}[\mathbf{W}_{\mathbf{n}}-\mathbf{W}]}{\mathbf{F}} \right\|_{0}^{\tau_{\mathbf{H}}} \to^{\mathbf{p}} 0.$$

So it is enough to show that

$$\left\| \frac{[K_n^{1-\beta} - K^{1-\beta}]W}{F} \right\|_0^{\tau_H} \to^p 0.$$
 From Lemma 6.2 a, 
$$\left\| \frac{[K_n^{1-\beta} - K^{1-\beta}]}{F^{1-\beta}} \right\|_0^{\tau_H} \to^p 0. \text{ Now the result follows}$$

**LEMMA 6.5** b. Assume (6.13) and (6.14) hold. Then for the  $\beta$  and the special construction in Lemma 6.5 a,

from (6.18).

$$\left\| \frac{\mathbf{K_n^{*1-\beta} W_n}}{\mathbf{F}} - \frac{\mathbf{K^{1-\beta} W}}{\mathbf{F}} \right\|_0^{\tau_{\mathbf{H}}} \longrightarrow^{\mathbf{P}} 0.$$

PROOF. Follows exactly as in Lemma 6.5 a by using b type lemmas instead of a type whenever applicable.

REMARK 6.2. Note that if G is continuous, we need to assume only one of (6.13) and (6.14), since they are equivalent in that case by the proof of Theorem 5.1. The remark is applicable to Lemma 6.5 a also.

LEMMA 6.6. Fix A>0 and let  $\{X(t): t\in [0,A]\}$  be a stochastic process such that  $X(t)\to 0$  a.s. as  $t\to 0$  and  $\|X\|_0^A<\infty$  a.s.. Let  $\{Y_n(t): t\in [0,A]\}$  be a sequence of stochastic processes such that  $\|Y_n\|_0^A\le D$  for a r.v. D and  $\|Y_n\|_\epsilon^A\to 0$  a.s. for all  $\epsilon>0$ . Then  $\|XY_n\|_0^A\to 0$  a.s.. If the convergence of  $\|Y_n\|_\epsilon^A$  holds in probability, so does the convergence in the conclusion.

<u>PROOF.</u> First, note that the probability 1 set where  $\|Y_n\|_{\epsilon}^A \to 0$  can be chosen free of  $\epsilon$  by taking countable intersection of probability 1 sets. So  $\exists \Omega_0, P(\Omega_0) = 1$ , such that for all  $\omega \in \Omega_0, X(t,\omega) \to 0$  as  $t \to 0$  and

 $\|Y_n(\omega)\|_{\epsilon}^A \to 0$  for every  $\epsilon > 0$ . Now the statements in the following paragraph hold on  $\Omega_0$ .

Let  $\delta \leq 1$ .  $\exists \epsilon > 0$  such that for all  $t \leq \epsilon$ ,  $|X(t)| \leq \delta$ .  $\|XY_n\|_0^A \leq \|XY_n\|_0^\epsilon + \|XY_n\|_\epsilon^A$  $\leq \delta D + \|X\|_0^A \|Y_n\|_\epsilon^A.$ 

Taking limsup as  $n \to \infty$ ,  $\limsup_{n \to \infty} \|XY_n\|_0^A \le \delta D$ . Since  $\delta$  is arbitrary, it follows that  $\|XY_n\|_0^A \to 0$ .

Thus we have proved that on  $\Omega_0$ ,  $\|XY_n\|_0^A \to 0$ . Hence the first part. For the second part, take any subsequence  $\{n_k\}$  of n. By a diagonal argument,  $\exists$  a further subsequence  $\{n_k\}$  of  $\{n_k\}$  through which  $\|Y_n\|_{\epsilon}^A \to 0$  a.s. simultaneously for all  $\epsilon > 0$ . Apply the first part of the theorem to this subsequence and this will prove the second assertion.  $\square$ 

Now we shall prove a variation of Helly-Bray Lemma.

**LEMMA 6.7.** Let a, b  $\in$  [0,  $\infty$ ] such that a  $\leq$  b and let  $f_n$  be a sequence of functions on [a, b] such that  $||f_n-f||_a^b \to 0$  and f is continuous and bounded on [a, b]. Let  $F_n$  be a sequence of monotonic functions on [a, b] such that  $0 \leq F_n \leq 1$ ,  $F_n$  converges pointwise to F on [a, b] and F is continuous on [a, b]. Then

$$\int_{(\mathbf{a},\mathbf{b}]} \mathbf{f}_{\mathbf{n}} \ d\mathbf{F}_{\mathbf{n}} \ \rightarrow \ \int_{(\mathbf{a},\mathbf{b}]} \mathbf{f} \ d\mathbf{F}.$$

PROOF. By integration by parts formula,

$$\int_{(a,b]} f \ dF_n = f(b) \ F_n(b) - f(a) \ F_n(a) - \int_{(a,b]} F_n \ df$$

because f is continuous. Also

$$\int_{(a,b]} f \ dF = f(b) \ F(b) - f(a) \ F(a) - \int_{(a,b]} F \ df.$$

Since by Polya's Theorem  $\|\mathbf{F}_n - \mathbf{F}\|_{\mathbf{A}}^b \to 0$ ,  $F_n(b) \rightarrow F(b), F_n(a) \rightarrow F(a) \text{ and } \int_{\{a,b\}} F_n df \rightarrow \int_{\{a,b\}} F df.$ 

$$\int_{\{a,b]} f \ dF_n \rightarrow \int_{\{a,b]} f \ dF .$$

Let  $\epsilon > 0$ .  $\exists N_1$  such that for all  $n \ge N_1$ ,  $\|f_n - f\|_{\infty}^b \le \epsilon/2$ .  $\exists N_2$ such that for all  $n \ge N_2$ ,

$$\int_{\{a,b\}}^{f} dF_n \rightarrow \int_{\{a,b\}}^{f} dF \leq \epsilon/2.$$
Let  $N = N$ ,  $V$   $N$ ,  $N$  Now for all  $n > N$ .

Let  $N = N_1 \vee N_2$ . Now for all  $n \geq N$ ,

$$\begin{split} \left| \int_{(\mathbf{a},\mathbf{b})} f_{\mathbf{n}} \ \mathrm{d}F_{\mathbf{n}} - \int_{(\mathbf{a},\mathbf{b})} f \ \mathrm{d}F \right| & \leq \left| \int_{(\mathbf{a},\mathbf{b})} f_{\mathbf{n}} \ \mathrm{d}F_{\mathbf{n}} - \int_{(\mathbf{a},\mathbf{b})} f \ \mathrm{d}F_{\mathbf{n}} \right| \\ & + \left| \int_{(\mathbf{a},\mathbf{b})} f \ \mathrm{d}F_{\mathbf{n}} - \int_{(\mathbf{a},\mathbf{b})} f \ \mathrm{d}F \right| \\ & \leq \left| F_{\mathbf{n}}(\mathbf{b}) - F_{\mathbf{n}}(\mathbf{a}) \right| \ (\epsilon/2) \ + \ \epsilon/2 \\ & \leq \epsilon. \end{split}$$

Now we shall state and prove a theorem that will provide an A.D.F. test for  $H_0$ :  $F = F_0$  vs.  $H_1$ :  $F \neq F_0$ 

THEOREM 6.1 a. Assume that 
$$i(i) - 1(vi)$$
, (6.11) and (6.12) hold. Then 
$$\int_0^{\tau_H} [K_n/K_n] [W_n/F]^2 dK_n \implies \int_0^1 B_0^2(t)/[t(1-t)] dt.$$

PROOF. It suffices to show that

$$(1) \qquad \int_0^\tau [K_n/K_n] \cdot [W_n/F]^2 \ dK_n \quad \Rightarrow \quad \int_0^\tau B_0^2(K)/[K(1-K)] \ dK$$

and

So

$$(2) \qquad \int_{\tau}^{\tau_{\mathrm{H}}} [K_{\mathrm{n}}/K_{\mathrm{n}}] \cdot [W_{\mathrm{n}}/F]^{2} dK_{\mathrm{n}} \quad \Rightarrow \quad \int_{\tau}^{\tau_{\mathrm{H}}} B_{0}^{2}(K)/[K(1-K)] dK$$

for some  $\tau \in (0, \tau_{H})$  because then the result follows from (1) and (2) together with a simple change of variable.

Proof of (1): Apply (7.7.9) of Shorack and Wellner (1986) with  $q(t) = (1-t)^{\beta}$  to get that for every  $\beta \in [0, 1/2)$ ,  $\exists$  a special construction of  $X_i$ 's,  $Y_i$ 's and W such that

$$\|[\mathbf{W_n^2} - \mathbf{W^2}]/\mathbf{K^2\beta}\|_0^{\tau} \to^{\mathbf{p}} 0$$

because  $0 \le \frac{K}{F}(\tau) \le \frac{K}{F}(t) \le 1$  for  $t \in [0, \tau]$ .

$$\frac{K}{K_{\mathbf{n}}}(t) = \begin{bmatrix} 1+C_{\mathbf{n}} \\ \overline{1+C}(t) \end{bmatrix} \frac{C}{C_{\mathbf{n}}}(t)$$

$$\leq [1+C_{\mathbf{n}}(\tau)] \begin{bmatrix} \int_{0}^{t} \frac{dF}{F^{2}G_{-}} \end{bmatrix} / \begin{bmatrix} \int_{0}^{t} \frac{dF}{F^{2}G_{\mathbf{n}-}} \end{bmatrix}$$

$$\leq [1+C_{\mathbf{n}}(\tau)] [F^{2}(\tau)\overline{G}_{-}(\tau)]^{-1}$$

and  $C_n(\tau) \to C(\tau)$  a.s. Therefore for all  $t \in [0, \tau]$ ,  $\frac{K}{K_n}(t) \leq B_1$  for some r.v.  $B_1$  free of n and t. Thus  $\|[W_n^2 - W^2]/K_n^{2\beta}\|_0^{\tau} \to^p 0$ . Now we shall show that

(6.22) 
$$||[W^{2}[K_{n}^{2\beta} - K^{2\beta}]||_{0}^{\tau} \rightarrow^{p} 0.$$

A<sub>8</sub>

$$\|[\mathbf{W}^2[\mathbf{K}_n^{2\beta} - \mathbf{K}^{2\beta}]\|_0^{\tau} = \frac{\mathbf{W}^2}{\mathbf{K}^{2\beta}} \left[ \frac{\mathbf{K}^{2\beta}}{\mathbf{K}_n^{2\beta}} - 1 \right],$$

we can invoke Lemma 6.6 with  $X = \frac{W^2}{K^{2\beta}}$  and  $Y_n = (K^{2\beta}/K_n^{2\beta}) - 1$ . We will now verify the conditions of Lemma 6.4. As

$$W = \overline{F} B(C) = \overline{F} B(K/(1-K)),$$

an application of the Law of Iterated Logarithm for Brownian motion (see Theorem 12.29 of Breiman (1968)) will show that X satisfies the conditions of Lemma 6.6. Since  $K_n^{2\beta} \to K^{2\beta}$  uniformly a.s. on  $[0, \tau]$  by (7.7.21)

of Shorack and Wellner (1986) and  $K^{2\beta}$  is bounded away from zero on  $[\epsilon, \tau]$ ,

$$\left\| \frac{K^{2\beta}}{K_n^{2\beta}} - 1 \right\|_{\epsilon}^{\tau} \to 0 \quad a.s..$$

As  $\frac{K}{K_n}(t) \leq B_1$  for all  $t \in [0, \tau]$ ,  $\left\| \frac{K^{2\beta}}{K_n^{2\beta}} - 1 \right\|_0^{\epsilon} \leq B_1^{2\beta} + 1$ . Hence (6.22).

Since  $\overline{F}$  is bounded away from zero on  $[0, \tau]$ , it follows that

$$\left\| K_{n} \left[ \frac{W_{n}}{F K_{n}^{\beta}} \right]^{2} - K \left[ \frac{W}{F K^{\beta}} \right]^{2} \right\|_{0}^{\tau} \rightarrow^{p} 0.$$

Invoke Lemma 6.7 with  $f_n = \frac{K_n}{2\beta} \left[ \frac{W_n}{FK_n^{\beta}} \right]^2$ ,  $f = \frac{K}{2\beta} \left[ \frac{W}{FK^{\beta}} \right]^2$ ,

 $F_n = K_n^{2\beta}$  and  $F = K^{2\beta}$ . This gives us

$$\int_0^\tau \frac{K_n}{2\beta} \left[ \frac{W_n}{FK_n^{\beta}} \right]^2 dK_n^{2\beta} \to^p \int_0^\tau \frac{K}{2\beta} \left[ \frac{W}{FK^{\beta}} \right]^2 dK^{2\beta}.$$

That is,

$$\int_0^\tau [K_n/K_n] [W_n/\overline{F}]^2 dK_n \Rightarrow \int_0^\tau B_0^2(K)/[K(1-K)] dK.$$

Proof of (2): From Lemma 6.3 and the fact that K is bounded away from zero, it follows that

$$\left\| \frac{\left[ K_n^{1-\beta} W_n \right]^2}{F^2 K_n} - \frac{\left[ K^{1-\beta} W \right]^2}{F^2 K} \right\|_0^{\tau_H} \to^p 0.$$

Apply Lemma 6.7. again with  $f_n = \frac{\left[K_n^{1-\beta} W_n\right]^2}{2\beta F^2 K_n}$  and  $f = \frac{\left[K^{1-\beta} W\right]^2}{2\beta F^2 K}$ ,

 $F_n = 1 - K^{2\beta}$ , and  $F = 1 - K^{2\beta}$ . By (6.19), we are assured that f satisfies the required conditions. Now the result follows.

0

0

THEOREM 6.1 b. Assume 1(i) - 1(vi), (6.11) and (6.12) hold. Then  $\int_0^{\tau_H} \left[ K_n^* / K_n^* \right] \left[ W_n / F_n \right]^2 dK_n^* \ \Rightarrow \ \int_0^1 B_0^2(t) / [t(1-t)] \ dt.$ 

PROOF. Follows exactly as in Theorem 6.1 a.

Now we shall prove the weak convergence of  $\xi_n$ ,  $\tilde{\xi}_n$  and  $\xi_n^*$  in the  $L^2$  - space. See 1(iii) for notation.

THEOREM 6.2. Assume 1(i) - 1(vi) hold. If (5.2) or (5.3) holds, then on  $L^2([0, \tau_H], \mu)$ ,

- (i)  $\xi_n \Rightarrow B_0(K)$ ,
- (ii)  $\tilde{\xi}_n \Rightarrow B_0(K)$ ,
- (iii)  $\xi_n^* \Rightarrow B_0(K)$ ,

where B<sub>0</sub> is a Brownian Bridge.

<u>PROOF.</u> First, note that (K/F) W has the same distribution as  $B_0(K)$ . Now, by Lemma 6.1 a,  $\xi_n \in L^2([0, \tau_H], \mu)$ . By Theorem 5.1, there is a construction of  $W_n$  and W such that  $W_n - W \to 0$  a.s. in  $L^2([0, \tau_H], \mu)$ . So by Lemma 6.1 a,

(6.23) 
$$\frac{K_n}{F} (W_n - W) \rightarrow 0 \quad a.s.$$

in  $L^2([0, \tau_H], \mu)$ . Moreover, by Lemma 6.2 a,

$$\left[\begin{array}{c} \frac{K_n}{F} - \frac{K}{F} \end{array}\right] W \ \stackrel{\textstyle \rightarrow^p}{\rightarrow} \ 0.$$

in  $L^2([0, \tau_H], \mu)$ . Now (i) follows from (6.23) and (6.24).

Proof of (ii) and (iii) are similar.

Denote the limiting r.v. in Theorems 6.1 a and b by X. For a representation of X as a mixture of independent chi-square r.v.'s, see Anderson and Darling (1952). Also given in the paper mentioned above is the characteristic function of X. A more direct computation of the mean and the variance of X is now discussed. The mean is easily seen to be 1 by taking the expectation inside the integration. Calculation of the variance is done in the following lemma.

**LEMMA 6.8.** X has mean 1 and variance  $(2\pi^2/3) - 6$ .

<u>PROOF.</u> As all the quantities involved are non-negative, Fubini's Theorem justifies interchange of expectation and integration and thus the mean of X is 1. Let us denote  $B_0^2(t)/t(1-t)$  by  $B^*(t)$  and  $E(X^2)$  by Q so that V(X) = Q -1.

$$Q = E \left[ \int_{0}^{1} B^{*}(s) ds \int_{0}^{1} B^{*}(t) dt \right]$$

$$= E \left[ \int_{0}^{1} \int_{0}^{1} B^{*}(s) B^{*}(t) ds dt \right]$$

$$= 2 \int_{0}^{1} \int_{0}^{t} E[B^{*}(s) B^{*}(t)] ds dt$$

If (X,Y) has bivariate normal distribution with mean 0, variance 1 and correlation  $\rho$ , then  $E(XY) = 1 + 2\rho^2$ . As  $(B_0(s), B_0(t))$ , for  $s \le t$ , is bivariate normal with dispersion matrix  $\Sigma$  given by

$$\Sigma = \begin{bmatrix} s(1-s) & s(1-t) \\ s(1-t) & t(1-t) \end{bmatrix},$$

it follows that

$$Q = 2 \int_0^1 \int_0^t \{1 + [2s(1-t)/(1-s)t]\} ds dt.$$

The above expression simplifies to  $4 \int_0^1 (-\log x) (x/(1-x)) dx - 1$ .

Integrating by parts and changing variables we get

$$\int_0^1 (-\log x) (x/(1-x)) dx = 1 + \int_0^\infty y \exp(-y) \log(1-\exp(-y)) dy$$

Using the Taylor expansion for  $\log x$ , integrating term by term, and making use of the fact that  $\sum_{1}^{\infty} n^{-2} = \pi^2/6$ , we will get that the expression above is equal to  $\pi^2/6 - 1$ . Thus  $Q = 4(\pi^2/6 - 1) - 1 = (2\pi^2/3) - 5$  and hence  $V(X) = (2\pi^2/3) - 6$ .

## REFERENCES.

- Anderson, T. W. and Darling, D. A. (1952). Asymptotic theory of certain goodness of fit criteria based on stochastic processes. *Annals of Statistics*23 193-212
- Bhattacharya, P. K. (1974). Sums of order statistics. Annals of Statistics 2

  1034-1039
- Billingsley, P. (1968). Convergence of probability measures. John Wiley and Sons, New York
- Breiman, L. (1968). Probability. Addison Wesley.
- David, H. A. (1970). Order Statistics. John Wiley and Sons, New York.
- Gardiner, J. C., Susarla, V. and Van Ryzin, J. (1985). Estimation of the median survival time under random censorship. Adaptive Statistical Procedures and Related Topics. IMS Lecture Notes 8 350-364
- Gill, R. D. (1980). Censoring and stochastic integrals. Mathematical Centre

  Tracts 124, Amsterdam.
- Gill, R. D. (1983). Large sample behavior of the PLE on the whole line.

  Annals of Statistics 11 49-58
- Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete samples. Journal of American Statistical Association 53, 457-481.
- Koul, H. L., Susarla, V., and Van Ryzin, J. (1981). Regression analysis with randomly right-censored data. Annals of Statistics 9 1276-1288.
- Koul, H. L. (1984). Tests of goodness-of-fit in linear regression. Colloquia

  Mathematica societatis Janos Bolyai 45.
- Koziol, J. A. and Green, S. B. (1976). A Cramèr-von Mises statistic for randomly censored data. *Biometrika* 63 465-474

- Lo, S. H. (1986). The Product Limit Estimator and the Bootstrap: Some Asymptotic Representations. *Probability Theory and Related Fields* 71, 455-465.
- Parthasarathy, K. R. (1967). Probability Measures on Metric Spaces. Academic Press, New York.
- Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. John Wiley and Sons, New York
- Wang, J. G. (1987). A note on the uniform consistency of the Kaplan Meier estimator. Annals of Statistics 15 1313–1316.
- Yang, S. (1988). Minimum Hellinger distance Estimation of parameters in Random Censoring Models. Ph. D. Thesis: Michigan State University.

MICHIGAN STATE UNIV. LIBRARIES
31293008952594