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ABSTRACT

WEAK CONVERGENCE OF STANDARDIZED KAPLAN-MEIER
PROCESS IN L2 SPACE

By

Mangalam Vasudaven

Let X,,...,X, beiid. with a distribution function F and Y,..,Y, be
iid. with an unknown censoring distribution function G with X;’s and
Y;’s independent. In the random censorship model one observes

Z; =X;AY; and § =IX;<Y;), 1<i<n Such models arise in
clinical trials and survival analysis.

This thesis discusses the weak convergence of some standardized and
rescaled versions of the Kaplan — Meier Process to a Gaussian process in
L2(A, p) where A is the support set of F and u is a o—finite measure
defined on A. Applications of this result to the goodness—offit test
pertaining to F are also discussed. In addition, certain tests of
Hy: F = F,, F, a known distribution function, based on L~ norms of a
suitably scaled Kaplan — Meier Process with respect to certain random

measures, are shown to be asymptotically distribution free.
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CHAPTER 0
INTRODUCTION

A common feature of many survival studies is that the time of
occurrence of the event of interest, called a death, may be prevented for an
item of the sample by previous occurrence of some other event, called a loss.
In other words, a censorship may be present due to which the units under
study may not be completely observable. Typically this is the case in a
clinical trial where patients under treatment cannot be followed up due to
withdrawals from study. For example, in medical follow—up studies to
determine the distribution of the survival times after an operation, contact
with some of the patients may be lost before their death and others may die
from causes it is desired to exclude from consideration. Similarly, observation
of the life of a vacuum tube may be ended by breakage of the tube or a need
to use the test facilities for some other purposes. In both examples,
incomplete observation may also result from a need to get a report out within
a reasonable time. The losses may be either accidental or by design, the
latter resulting from a decision to terminate certain observations. There are
various types of censorships. For an excellent overview of different types of
censorship, see Chapter 3 of Gill (1980).

In the random right censorship model (random censorship model, for
short) considered here, for each item, the only data available are the minimum
of the survival time and the time of loss, and whether or not censoring is
present. Kaplan and Meier (1958) suggested the Product-Limit Estimator
(PLE) F, of the true survival distribution of the lifetime when there is
random censorship in the data. While the usual empirical distribution function

(EDF) assigns mass 1/n to each of the observations, the PLE redistributes
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the mass of censored observations equally among the observations to the right,
giving zero mass to all the censored observations. More precisely, first, one
arranges the observations in the ascending order and assigns mass 1/n to
each observation, whether or not uncensored. Next, starting from the smallest
observation, one locates the first censored observation, and redistributes its
mass equally among the observations to its right. Then one moves on to the
next censored observation and redistributes its new mass equally among the
observations to its right. This process is continued for all the censored
observations. Note that, if the largest observation is censored, the total mass
will be less than 1, thereby making the PLE a defective distribution.

This thesis studies the standardized error W, of a version of the PLE
as a process with paths in the space of square-integrable functions. It is
shown that this process converges weakly to a Gaussian Process in the space
mentioned above, where the integration is with respect to a measure belonging
to a large class of o—finite measures. Also proved are the weak convergence
of some rescaled versions of the error process in the aforementioned space.
These results are useful in developing goodness—of-fit tests pertaining to the
survival distribution F and/or the censoring distribution G. It is
conceivable that they may also be useful in minimum distance estimation
problems.

In the uncensored case Anderson and Darling (1952) considered a
Cramér-von Mises type statistic for the goodness—of-fit problem of testing
Hy: F=F, vs H: F #F, where F, is a completely specified continuous
d.f.. The statistic was obtained by squaring the standardized E.D.F. and
integrating it with respect to the o-finite measure dF,/(F,(1-F,)). The
asymptotic distribution of this statistic was shown to be that of the integral of

the square of a rescaled Brownian Bridge, where the scaling function is the
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standard deviation function of the Brownian Bridge so as to make the
standard deviation 1 through out. Koziol and Green (1976) considered the
above-mentioned testing problem for the censored data and discussed the much
simpler situation when the hazard functions of the survival and the censoring
distributions are proportional (herein referred to as proportional hazards model)
and the integrating measure is the finite measure dF,. Even in this case it is
not clear how they prove the tightness.

In this dissertation, the result of Anderson and Darling (1952) is
extended to random censorship model, where there is an additional unknown
function G. Even if the integrating measure depends on F, the limiting
distribution of corresponding goodness—of—fit test statistic may not be
distribution—free in the case of randomly censored data. However, if one
chooses the measure suitably, perhaps depending on the data and varying with
n, one can get asymptotically distribution—free (A.D.F.) tests. Two
Anderson-Darling type statistics are considered and it is proved that these
statistics are A.D.F. and hence can be used for tests regarding F. The
limiting null distribution in both cases is same as that of the
Anderson-Darling statistic of the uncensored case.

Now we will state the problem more precisely. Let X,,... X, be i.i.d.
random variables (r.v.’s) with distribution function (df) F on [0, »), and
Y,..,Y, beiid. r.v.’s independent of X;'s with unknown and possibly
defective d.f. G (that is, G may assign positive mass to ) on [0, ).
We observe the pairs {(X; A Y}), I(X; < Y;)}, 1 <i<n, where a A b
denotes min(a,b) and I(A) denotes the indicator function of the set A.

If we observe Y;, that is, if I(X; < Y;) = 0, we say the observation is
censored. Otherwise it is referred to as an uncensored observation. The

general problem is to make inferences about F.
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Let 7, denote the supremum of the support of X, A Y, and W,(t)
denote the scaled error & (F,(t) — F(t)), t < g Gill (1980) proved that

W, = W in D[0, 7] for every 7 < 7, where W is a Gaussian process
depending on F and G, and D[0, 7] denotes the set of all bounded
CADLAG functions on [0, 7]. Yang (1988) extended this result to the entire
set [0, 7p).

Let 4 be a o-finite measure on [0, 7). It is shown in this thesis
that, under suitable conditions on F, G and pu, W, belongs to
Lz([O, Tgl #) and that W, converges weakly to W in Lz([O, Tah H)-
For infinite p, W, may not belong to L2([0, Tgh #) which is the reason
for considering the modified version W,. This is discussed in more detail in
Remark 1.1. For the L2- weak convergence of W_, the key step is to show
that R, the mean of an estimate of the survival ratio (1-F)/(1-G) is
uniformly bounded on [0, 7.].

The material is organized as follows. In Chapter 1, further notation and
assumptions are stated and some preliminary results are proved. In Chapter 2
it is proved that W, converges weakly to W on L2[0, 7] for every
T < Ty Chapter 3 is devoted to proving that if the underlying model is
proportional hazards model with hazard ratio less than 1, them R, is
uniformly bounded on [0, rn]. In Chapter 4, the weak convergence of W,
to W in L2([0, TH], u) under the proportional hazards model is proved.
In Chapter 5, it is proved that the above weak convergence holds under more
general assumptions on F and G. Some examples, where proportional
hazards model does not hold, are given. Two A.D.F. tests are constructed in

Chapter 6 and the variance of the limiting distribution is computed.



CHAPTER 1
NOTATION, ASSUMPTIONS AND PRELIMINARIES

First, we need to introduce some general notation.
(i) For any real-valued function f, I denotes 1, ||f||b denotes

sup |f(t)], f(t) := lxm f(s) whenever the limit exists and
t

( ) = f_(rg). Unless otherwise mentioned, f (t) = 1/f(t) for any
real-valued function f. For any df. K, let Ty denote the supremum of
the support of K. For any set A, I(A) denotes the indicator function of
A. For any interval I, D(I) denotes the set of all bounded CADLAG
functions on I equipped with the supremum norm.

Next, notation and assumptions for some frequently used functions and
r.v.’s are introduced.
(ii) Let F be a continuous d. f. on [0, w), G be a possibly defective
censoring d.f. on [0, o] such that e $ T H=FG, X,.,X, beiid
F and Y,.,Y, beiid. G such that X;s and Y;’s are independent;
Z,:=X;AY; and § :=I(X;<Y,). Let Z 's denote the order
statistics of Z;’s, §,;'s denote the order statistics induced on §;’s by

Z ;s and T, denote Z ;. Let

C(t) := j; F‘:FG-, K(t) := C(t)/(1+C(t)), t ¢ 7.

Next the PLE’s of F and G, two versions of the standardized
Kaplan-Meier Processes (KMP’s) and some other related stochastic processes
are defined.

(iii) Define the PLE F, of F by
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n
r n_. 6 .
Fo(0) = [] Sdp s
i=1
Z(j)st

and F, by
F,(t) == I(t < T,) Fy(t), t ¢
The PLE G, of G is defined by

T, (1) := H (Zdp” Mt

je1
Zj,<t

TH.

The standardized KMP’s are

W,(t) = v (F(t) - (1), W,(t) == v& (F,(t) - F(1)),
for t < 7.. We shall also need the following estimators of C

H
t . t dF
Gt) = | FE-, el = [ 2,
0F T _ o F.F, G,

and the corresponding estimators of K
Ku(t) 5= Cyt)/(1+C,(t)) and Kg(t) := Ch(t)/(14+Cy(t)) for t < 7.
Some rescaled KMP'’s are defined by
£a(t) = (RO/F(1))-Wo(t), £(t) = (Ry(t)/F(t))-Wy(t),
6(t) = (RL()/Fy(8)- W,(t), t ¢ 7y
Another sequence of stochastic processes and their mean functions are
defined next.

(iv) Define an estimate of the survival ratio and its mean by

()‘in-(t)l (t) := E(Qy(t)) H
Qu(t) := t < T.), Ry(t) := E(Qut)), t < 7.
n n_(t) ( - n) ) T,
Observe that Q_(t) is bounded for each n and each t ¢ Ty 80 the

expectation is guaranteed to be finite.

Next, two key Gaussian processes are defined.
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(v) Let B be a Brownian Motion on [0, ), B, be a Brownian Bridge
on [0, 1],

W(t) := F(t) B(C(t)), t < .

Finally, we state the condition on the integrating measure with respect

to which the L2 space is defined.
(vi) For any set S, any measure 7 on S and any subset A of S, let
L2(A, 9) be the set of all real-valued functions on A which are square
integrable with respect to 7. Let u be a o—finite measure on [0, -rH]

such that

.,
j“F’cdpmn.
0

REMARK 1.1. Recall that, if the last observation is censored, that is, if

§(my = 0, then for t > T,, F,(t) = F,(T,) <1 sothat F, isa
defective distribution. Consequently, Wn may not be in Lz([O, -rH], B),

for it will be a non—zero constant function of t on [T, 7] and hence
non—integrable if x4 is an infinite measure. To overcome this difficulty, as is
customary in applications, we assign all the left-over mass to Z,,, the last
observation, whether or not it is censored, making F_, a regular distribution.
This makes F, =1 on [T, 7] and enables us to prove that, under (vi),
W, belongs to L2([0, Tgh #) . Note that F,(t) and F,(t) differ only
for t> T, As we have the condition that 7, < 7, Fy(ry) = F(rg) =1
and the change in the definition of PLE will not affect the uniform
convergence of F, to F on [0, 7;]. This becomes clearer after

Lemma 1.1. On the other hand G, should be defined without the indicator
function F, has, to assure us of the uniform convergence on [0, 7] when

Tp < Tg- Gy(rg) cannot converge to G(ry) if Gy(ry) is always 1



and G(rg) < L.
We shall state and prove a few lemmas that are frequently used in this

dissertation.

LEMMA 1.1
(i) " F,-F ";H — 0 as.

@l 6, -clE = o

PROOF.
(i) From the Proposition of Wang (1987), since F(rg-) = 1, we get,
(1.1) sup |F (t) - F(t)] — 0 as.
t<‘rH

Since F(T,) — 1 as., (3) of Wang (1987) gives F (T,) — 1 as.
So

(1.2) sup |F(t) — F(t)] = |1 - F(T,)] — 0 as..
t<rH
Now, (1.1) and (1.2) together with the fact that F,(7;) = F(r;) = 1 imply

(i)-

(i) Apply (2) of Wang (1987) to G,; F and G are
interchangeable for the results in Wang (1987), so

sup | G,(t) - G(t) | =P o.
i<t

H

By (3) of Wang (1987) applied to G,, G,(T,) —° G(ry) and hence
Gy(7y) —P G(rg)- o

REMARK 1.2. All the results in Wang (1987) go through even if G is

defective.



LEMMA 1.2. For every 7 < T
W, = W on D[0,7].

PROOf. By Theorem 1.1 of Gill (1983),
W, = W on D[0,7].
"wn - Wn"; = "Vﬁ (Fn - F»‘n)"; = |V‘E (1 - i‘n(Tn))I I(Tn <tg T)
— 0 as.
because T, — 7, as. and 7 < 7. !

REMARK 1.3. It may be interesting to know the conditions under which
(1.3) W, = Won D[0,r]
In Theorem 2.2 of Yang (1988), it is proved that W, = W on D[0,ry]

under the condition

.
(1.4) JOH é—F <o

So it suffices to examine " W, -W,

T
H  This quantity is equal to
0

Ja F(T,). But by Gill (1983; Remark 2.2), under (1.4), F{(t) B(C(t)) — 0

as. a§ t— 7. So the aforementioned weak convergence result of Yang

also tells us that & [F,(T,) - F(T,)] =P 0, since T, — 7

n — o. Therefore we need to find when ya F(T ) —P 0. in Lemma 1.3,

a.8. as

the condition under which this happens is proven to be

(1.5) F(t)/G(t)) = 0 ast — 7.

So (1.4) and (1.5) together imply (1.3). Note that, though both (1.4) and
(1.5) say that F(t) should approach 1 as t — 7, somewhat faster than
G(t) does, neither of these conditions implies the other.
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LEMMA 1.3. A necessary and sufficient for ym F(T,) —P 0 is (1.5).

PROOF. v F(T,)) =P 0 & P{WF(T,)>e — 0 V >0
o P{T, < Fli{¢/va))} = 0 V ¢>0
& P{T, < Fl{e/ya])} —» 0 V e>0
where Fl(t) = inf{x: F(x) > t}. Fix ¢ > 0.
P{T, ¢ F(1{¢/va])} = HO[F(1-{e/va])]
= [1 - (¢/vA) B(F(1{e/vaD)"
Now recall that for a sequence {6,} such that 0 < 4, <1, [1-4,]" — 0
if and only if n 6, — o Thus ya F(T,) —® 0 if and only if
yo G(F_l(l—[e/ﬁf])) — o Ve>0 If M is the smallest integer greater
than or equal to (l/e)z, then ¢/yn > 1/yMn and hence
V@ G(F ' (1{e/va])) 2 & G(F'(1{1/vMa]))
= (1/yM) yMa G(F (1-{1/yMa])).
Therefore, since F(F'l(x)) =x and 7, = 7,
ATE(H/VE]) — o ¥V >0 & 4 GEQ{/]) — o
& GF(x)/(1=x)) - o asx —1
& G(t)/(1-F(t)) - o as t — 7.
This proves the desired result. o

LEMMA 14. Let A € (0, ] and let g: [0, A] — [0, ] be such that
g(t) <o forall t <A and g(t) = 0 € 0,0 a8 t — A. Let s be
an infinite measure on [0, A] such that [0, t] < o for all t < A. Then

t
([0, t])_l Jo gds — 0 as t — A.

PROOF. Case 1. § < w. Given € > 0, 3 M > 0 such that for all
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t > M, |g(t) - 8] < e So
t d N d t d
Jjeaw = [ san+] ga
implies
a M [
(oo, 67 [ gdn + (G-HudM, a0, 4} < (oo, D7 [ g o
M
COlo, 7 [ gm0+
0

Ast — A, 4[0,t] - o and {uM, t]/uf0, t}]} — 1 so by taking liminf
in the first inequality and limsup in the second inequality we get the result.

Case 2. 0§ = ©. Proof is similar. o



CHAPTER 2

CONVERGENCE OF W, IN L2 [0, 1, 7 < L

In this Chapter 7 will denote an arbitrary but fixed number less than
Ty All the conditions of Chapter 1 are assumed to hold, though all the
functions and measures that are originally defined on [0, ;] are now
restricted to [0, 7]. Theorem 2.1 states that W, = W on L2([0, 7], b)
where 4 is a o-finite measure satisfying 1(vi). To prove this, we are going
to show that a bias—adjusted version of W, satisfies all the conditions of
Lemma 9 of Koul (1984), which in turn is based on Theorem 2.2 of
Parthasarathy (1967). For that, we will state and prove a few lemmas.

For p=1,2 LP(s) isshort for LP([0, 7], ). As L(s) n L%(y)
is dense in Lz(p), there exists a sequence {e,: n € N} C Ll(p) n Lz(u)

such that {e,: n € N} is a complete orthonormal set for Lz(p). Define

F(T,) F
Uy(t) = I(t 2 T,) E‘:(—:‘(‘;'_)(t)’ Xp(t) = Wy(t) — v Uy(t), t ¢ 4:3

LEMMA 2.1.

9 t R dF
E(X,(1) = 0, V(X,(t) = F(1) jo S T

where R, is as in 1(iv).

PROOF. From the identity F,(t) = F,(t) + F,(T,) I(t > T,) we get
Fot) - F(t) - Up(t) = Fy(t) + I(t 2 T,) Fy(T,) - F(t) - U(t)

= Fy(t) - F(t) + It 2 T,) Fo(T,) [1 - (F(&)/F(T,)]

12



Fa(T)[F () - F(Tn)]]
F(T,)

“1e2 Ty |

I 2 T,) Fo(T,) [1 - (F&)/F(T,)]
(from 3.2.15 of Gill (1980))

(2.1) = F(t) j
where H, = F, G,, J, = I(H,_ > 0), and
M (t) = i I(Zj <, 6 =1) - J; (n H, /F) dF.
j=1

(Note that in Gill (1980), n H,_  is denoted by Y,.) By (2.1) and an
argument similar to 3.2.20 of Gill (1980),

o2
BOG() = 0, V() = B | E[(l F;i: J];—g‘ LSy
Moreover,
(1-F, (1) 3,(t) = (1F, (1))° It < T,)

= Fa () I(t ¢ T,)

= H, (t) Qu(t).
by 1(iv). Thus

V(X,(t) = F(t) r ol o
" 0 F3

LEMMA 2.2. As n — o,
V(X,(1) — F(t) C(t) Vi< Ty

and
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[vexan aue) — [Fe) cte) auts)
0 0

PROOF. By Lemma 1.1, F (t) — F(t) as. and G,(t) =P G(t) for each

t € [0, 7. Therefore Qg(t) —P :—;(% for each fixed t € [0, 7]. We shall
t

show that Q,(t) is uniformly integrable by showing E(QX(t)) ¢ C_ for a

constant C_ depending only on 7. As n H, (t) ~ Bin(n, H_(t)),

I, ®7?
n 1, (t)

- 2 Y O )] ]

i=1

E(Q%(t) < o’E

n—i—1

n-1 n i+1
=a? ¥ a2 Cy, (o] [m )
i=0
= n® H (t) E{1 + Bin(n-1, H (1))
¢ o* B (0)[E_0)] e
<48 W 47), telo 1]
because E[1 + Bin(n, p)]” ¢ r! (np)” by Moment Lemma, Section 7 of
Koul, Susarla and Van Ryzin (1981).

Consequently,
= — E(Q_
R,(t) = E(Qy(t)) 0
and
R L,
o [FA)G_(1)]™ for all t € [0, 7).
Now,

Ry(t) = E(Qu(t) ¢ [EQIWN ¢ 7 [H (A forall te o, 7l
Therefore by the Bounded Convergence Theorem and by 1(ii),
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t R dF
0o F3
Hence by Lemma 2.1,

V(X,(t)) — FXt)C(t) for all t € [0, 1].

t
- JOIF’(s)G_(s)]“ dF(s) = C(t).

Now,
VO,(0) € 7 P [FRer = 7 E 0 )
by 1(vi) and the fact that
jr F(t) du(t) < 1_J‘T F(t) F(t) du(t) ¢ =— "F(t) c(t) du(t)
0 " F(n)o " F(rYo ’

F(t) is integrable on [0, 7] with respect to u. So by the Dominated

Convergence Theorem,

T T 2
JOV(Xn(t)) du(t) — IOF (t) C(t) dult). o

LEMMA 2.3. For every m € N,

X_eds, J"x e du,...,fx edy| = J'We du, J.We du,...,J'We dul.
'[0 n>1 0 nv32 0 nvm 0 1 0 2 0 m

PROOF. By Lemma 1.2, we how that W, = W on D[0, 7]. Next,
observe that on [T, < t], F(t) < F(T,) and hence U,(t) < I(T, < t). So,
sup |va Uy(t)] ¢ vmsup |[I(T, < t)|] < o I(T, < 7).

t<r t<r

as. and 7 < 7, for ae w, I(T (w) <t) =0 for

Since T, — 7 -

H
n sufficiently large. Therefore,

sup |vh Uy(t)] — 0 as.
t<r

Thus X, = W, -vn U, = W on D0, 7]

Define T: D[0, 7] ~— R™ by

I'(x) = [on e du, Jox ey dpp ooy on en dp].
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Then T is a continuous function since e;’s are in Ll(u). Therefore,

rx, = TI(W) on R™ o

LEMMA 24. For all i€ N,

T 2 T 2
JXneidu qEJWeidy .
0 0

PROOF. Fix i € N. Let d¢ = e; du. Then ¢ is a finite signed

measure and we need to show that

i 2 , 2
J X, dp| — E J Wdy | .

0 0
By Theorem 3.4 of Gardiner, Susarla and Van Ryzin (1985) and Theorem 1 of
Lo and Singh (1986),

E

(22) wit) = 2t Sgm) + A, Lo
where ;s are i.i.d. uniformly bounded r.v.’s with mean zero, (2.3)

sup E|r,(t)|? = O(nP)
@

and

(2.4) sup | (t)] = O(n3/* (log n)*/*) aus..
t<r
From (2.2), (2.4) and Lemma 1.2,

W, (t) = nt i:} £&() = W on Do, 7]

and hence
T. T
(2.5) J W, dyp = J' W dy.
0 0
Now,
T. § D n
[KRATEESS: j &1 dwt) = ot 3 B, (say)
0

where B;’s are i.i.d. bounded mean zero r.v’s. So by the Central Limit
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Theorem,
(2.6) Jrv‘vll d¢ = Normal (0, V(B,))

0
where V(X) indicates variance of X. By (2.5) and (2.6),
T T 2
J Wd¢] = E[I Wd¢] .
0 0

As W, = W, + a1, by Jensen’s inequality and (2.3),

T 2
(2.7) E Jownw =V

Jrv"vnw = VB) =V
0

T T 2 T 2 T
(2.8)E[Jownd¢ - jow,,w] =n E[Jornd¢] <k n JOE(rf,)d|¢| < kot

for some k, and k. From (2.7) and (2.8) we get
2

(2.9) E[ J:w,, dy ]2 — E[ JOTW d¢] .

Now we shall show that
2

— 0

r

(2.10) E[ j' (W, - X,) dy
0

which will prove the lemma in view of (2.9). Note that W, - X, = va U,.

Now,

2 r r
£l [(vaas] < [Tmodaivt <xn [T OPaly
= kn I LI — 0

for some k by Jensen’s inequality since Up(t) < I(T, ¢ 7) for t < 7 and
P(T, < 7) = [H_ (7)]". Hence (2.10). 0

THEOREM 2.1. Assume 1(i) — 1(vi) hold. Then,
W, = W on L.

PROOF. All the conditions of Lemma 9 of Koul (1984) are verified by
Lemmas 2.1 through 2.4; so it follows that X, = W on Lz(y). Now all
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T2
that needs verification is that J nU;dpg =P 0.
0

We know that T, — 7, as. 8o for almost all w, KT, < 7) is
equal to zero if n is sufficiently large. Therefore for almost all w, I N W
such that va U (w) =0 forall n> N o Therefore for almost all w, 3

r
2 —
N w such that Jon Ujw)dp = 0 forall n2 N o Thus

T o2
JnUndp — 0 as. o
0



CHAPTER 3

R
UNIFORM BOUNDEDNESS OF 2
F/G

In view of Theorem 2.1, to show the weak convergence of W, in
L2[0, gl We need to show that W, is ‘tight at 7.’ in the sense of
Theorem 4.2 of Billingsley (1968). A sufficient condition for this to hold is

that the sequence R, < k F/G for some constant k. In this chapter it is
R
proved that l"n_G' is uniformly bounded on [0, rH] under the assumption

that
(3.1) G =F forsome ac¢ [0, 1).
We begin with several Lemmas.

EMMA 3.1. Let X ~F and Y ~ G be two independent r.v.’s. Let v

be (F+G)/2. Let f=3F and g=9%. Let 2 denote XA Y and
f(x) G_(x)

(x)T_(x)+8(x)F(x)

Then ¢(Z) is a version of P(X < Y|2Z).

$(x) =

PROOF. As ¢(Z) is o0<Z> measurable, all we need to check is

IAo(Z) dp = IAI(x < Y) dP
for all sets A of the form {Z < z}, where P is the probability measure
with respect to which the distributions of X and Y are F and G
respectively.
JAI(XSY)dP =P(X <Y, Z¢3)

= j J dF(s) dG(t)
8t 8¢z

19
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= L(tz:_(s) dF(s).
jA¢(Z) P = J' [ oareace) + [ [ o) are) a6

8<t,8¢z 8>t,t<z
= | ¢(s) G_(s) dF(s) + I $(t) F(t) dG(t)
8z t<z

L

= [ 4() [C_(s)f(s) + F(s)e(s)] du(s)

78z

=1 G_(8)f(s) dufs)

Js<

= JG_(s) dF(s).
8$z

This proves the result. o

LEMMA 32. Let {(Z; §,),1 <i ¢ n} be iid. two-dimensional random
vectors with the d.f. of Z, continuous. Let Z(;), 1 <i < n be the order
statistics of Z;'s, &(;, be the corresponding induced order statistics of 3,’s
and G, denote the conditional df. of & given Z = z. Given

{Z,, 1¢i¢n}, 8;), 1 < i ¢ n, are conditionally independent with d.f’s

Gz(i)'
PROOF. See Lemma 1 of Bhattacharya (1974). o

LEMMA 33. Let X;, Y;, Z,, 68 and §;,’s be as in 1(ii). Assume (3.1)
holds. Then § ;,’s are ii.d Bernoulli (p) and are independent of Z;,’s,

where p = 1% .

PROOF. From Lemmas 3.1 and 3.2, all we need to show is that the function

¢ of Lemma 3.1 is identically equal to p when G = .

First note that g := a F'f isa possible version of g—%— because
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rar“" {dv = ra F'dF = 1 - F(t) = G(1).
0 0

Thus

¢= {¢] = an-i = 1 = p. o
fG+gF fF+oF F 1+o

In what follows, D = {0, 1} and D; = {0, l}j, 1<j<n For
d € D, d, is the KD entry of d and d(0) and d(1) respectively denote
the number of zeros and ones in d. By B,;(q), we mean P(X = i)

when X -~ Binomial (n, q) and p will always denote 1%5.

LEMMA 34 Let Q, and R, be asin 1(iv). Let a,, =1 and

i . .
a = [ | PED + -pEE)
i=1

for 1 <i < n-1. Then under (3.1),

n-1
Ro(t) = ), Buy(H(t)ay

i=0

PROOF. Note that

o 2d
u® = [] G5
je
on {Z <t <Zy, J(k, =4d,1<k<n- 1}. Hence,

Ry(t) = E(Q,(t))
n-1 i . 2d.-1
-3 3 b

i=0 gEDn-l j'l
P{Z(yy) <t <Ly, 6y =4d;, 1< <01}
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n-1
=Y Au (ay).
i=0

By Lemma 3.3 and by elementary properties of order statistics,
P{Z(;)<t¢ Zjayys by =dy, 18kCn-1} = P{Z(5) < t < Zyuy}

-P{ﬁ(k) = dk’ l( k < n—l}

= B EY) b )

Therefore,

d(0) noi 24571
A = BuE) Yo (19" I &
i=1

QEDn-l
Write D, as D; x D,,; sothat d is written correspondingly as
(dp d))- Then, d(0) + dy(0) = d(0) and d,(1) + d(1) = d(1). Hence

d(l) d(o) } . 2d-1
ai= Y P (1P GotD

-

gEDn -1 i=t

d,(1) d(0) 4 . 2d-1 d,(1) d,(0)
= Yriew [T Y ¢ en”
d 1€D; jui1 d2€Dp -y
1(1) 1()
- 2 H = I
glen j

because the last sum is 1. Now, by breaking up D; as D;, x D and

proceeding as in the earlier step,

o= Y B ) H (n—f}‘-f)

dlED '
(l) d,0) + d(1) do) . . 2d-1
=Y () H,gﬁ) Y or 0w G
d(€D; j=1 d€D

dy( ) d(0)
- ¥ »an H(ﬁﬁ) Ty + (1p)(E5)

d4€D;
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. i+1

= aupEay) + -PEEF)L
Since ay, = 1, iteration of the above relation gives

i . .
o = [ [ IG5 + DA = 2y
i=

n-1{
Thus Ay = Byy(H(t) oy and Ry(t) = Y By(H(t) 3, o
i=0

LEMMA 3.5. Let
- -x+1
f(x) = log [PG=rp) + (1-P)E=E), x € [0, n).
Then for M < n,

J:f(x) dx = (n+6) logl(n+A)* + 1] - (-M+) log[(n-M+4)* + ]

+ (n-M) log(n-M) + (n-M+1) log(n-M+1) — n log n

- (n+1) log(n+1) + 2 -1 n+f) _ .. -10-M+f
(+1) log(at1) + 2 V7 {tan™ (255 - tan™ (> )

where f = 1-p and 7 = S(1-6) = p(1-p).

PROOF. We follow the convention that x log x = 0 if x = 0.

2 2
1) = og Bo t (plaent)

= log [(n—x)2 + 28(n—x) + f] - log(n—x) - log(n—x+1).

So

M n n n
Jf(x)dx=Jlog[y2+2ﬂy+ﬂ]dy—]logydy—llogydy
0 n-M n-M n-M+1

= (1) - (I1) - (M)  (say).
O = [logliy+8)? + K1-A) dy
n+ﬂ
= I 1og(z%+7) dz

n—M+
= ¥(n+f) - ¥(n-M+f)
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where

¥(z) = z log (z2+7) + 2{y7 tan (%) - z}.
’y
This will give us

(1) = (n+f) log [(n+6)® + 1] - (n-M+5) log[(n-M+5)? + ]

+ 2/7{ tan~! (OB _ tan1(2MHB)y _ oM.
i ™ G20 an<f—7_—ﬁ)}
(IT) + (III) is easily seen to be

n log n — (n-M) log(n-M) + (n+1) log(n+1) — (n-M+1) log(n-M+1)

- 2M.
From these relations, the lemma follows. 0
LEMMA 3.6. There is a constant K such that a ; < K ()21 2% for

0<i<n-1, where a,s are as in Lemma 3.4.

PROOF. Let f be as in Lemma 3.5. One can easily see that
sga(f (x) = sga(x - n + ———)

[p/(1-p) -1

so that f'(x) = 0 for at most one x € [0, n). Hence f has at most one

local minimum in [0, n). Thus it follows that

3.2 it"( i+1f dx
(32) quo)-jo (x) dx.

Note that LHS of (3.2) = log a,; therefore,
(3.3) 3y ¢ exp(fy+H(x) dx).

Now, ta.n"l(a) - ta.n"l(b) < —; for any non-negative a and b; so
(34)  exp [ 2/pTp)ftan { BB} gt 21 ] ]5 /2
-P vp(I-p)

Note that

2 n n
§n+1:2% + p(1-p) _ 1-2p )
[ n(n+ ] - [ 1+ n + n(n+1I) ]
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< [ 1+ 22 ]n
(3.5) ¢ 2P,
(3.6) [(n+1—p):l+ p(Ip)'® (4 1%
n - H
and since
M2 M-p ) M2 M—p
[(M—p)2+p(w)] ) (M—p)’]
= [1(p/M)[XPM),
we have
M2 e —
w1 [(M—p)%p(l-p)] ¢ (el = 16
Therefore,
(2-1)" i) =[ (1)’ ]"*”(nT-i-;)n4-l(n Ly
[(nd-p)“+p(1-p)]" " ? [(n-i-p) “+p(1-p)]
(3.7) < 16 ()%,

From (3.4), (3.5), (3.6), (3.7) and Lemma 3.5 we get
i+l
exp J f(x) dx) < 64e2t™2 412 (p )21
0

Therefore by (3.3),

a; ¢ K% (a-)%1 o

THEOREM 3.1. Assume 1(i) — 1(vi). Then under (3.1),

Rl‘l
3.8 t) <K, t<7., nel
(3.8) F_/G'-() H

where K as in Lemma 3.6.

PROOF. From the convexity of the map x +—» xl/ " for x ¢ [0, »),

r € (0, 1], and Jensen’s inequality, it follows that for any non-negative r.v.
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Y, [E(Y)]Y" ¢ E(Y'"). Applying this to r = 2p-1 and Y = X2P!
where X is Binomial (n, H(t)), one gets

B ¢ [omE)”

Now, by Lemmas 3.4 and 3.6,
n-1

Rn(t) = z Bni(H(t)) ani
=0

n-1
(K X B,(H(t)) (n-i)*"! o'~
i=0

n

K 2 B_,(H(t)) i??! 2%
i=1

= K E(X*1) ol

< X [n H(t)] P 2
2p—-1
= x [H(v)

Now, since p = 1%, H=FG and (3.1) holds, H?*! = F/G. Hence

(3.8). o



CHAPTER 4
CONVERGENCE OF W, ON L’[0, ]

This chapter proves the weak convergence of W, to W in
L%([0, 75), #) under (3.1).

LEMMA 4.1. Under the assumptions of Chapter 1,
W e Lz([O, Tgh B) 8.
Moreover, for every n,

W, € LY, 7], u) as.

PROOF. That W ¢ Lz([O, gl #) a.8. is obvious since by 1(vi) its second

moment is integrable with respect to 4.
T
Let n, € N be fixed. We shall show that J H W:Sai)dp < o for
0

almost all w. Let {r,; n € N} be an enumeration of rationals in [0, ).

Let
r

Q= {w: J . W:o(w) dp < o }.
0
By Theorem 3.1, W, € L2([0, 7], p) almost surely for all 7 < Ty 80
[

P(Q,) =1 for all n and hence Q, := q 1., has probability 1. Since
ns

F is continuous,

0y = {wr Ty(w) < 74}

has probability 1 for each n and hence so does 1), := ﬂ N, Let
ns

Q, := 0y, n 2y, so that P(Q) =1. Let we Q) Ty(w) <7y s0 3
0

n(w) € N such that r,,, € (Tngw), Tg) and Iy, > Kp, Wwhere K s

27
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the infimum of the support of F. Since w € Q,,,, the following hold
when evaluated at w.

First of all,
r
J . W: dy < o
0 0
Also

T T
JHW?I du =nJHF2du
0 r

= sl [ a

< o

r
Thus JOH Wﬁ‘()w)dy < o for all we Q,. 0

LEMMA 4.2. If ¢, defined in Lemma 3.1, is bounded away from zero near

T then

H’
.
n I H dey —P 0.

Ty

r
PROOF. Let V, =n JTH F2 dp. Since T, — Ty 38, P(T, < a) =% 0
n

for all a < 7. So it is enough to show that 3 a € (0, 7;) such that

r
H 2
= n Fdu =Po.
ma‘x(Tnv a)

’

\'

Define

f(x) = sup n x", x € [0, 1].
nel

Simple calculus techniques show that
f(x) < ~(log x)™* ¢ (1x)™".
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Hence
(41) n(HE)" < EE), [0, 7]
Note that
cit) = j; ¢ dH
and use Lemma 1.4 to get H C is bounded away from zero near 7. So
by the continuity of F 3 a € (0, 75) and k € (0, o) such that
B! ¢ kxC

This along with (4.1) gives us

aF?(t) (H(H)" ¢ k FX(t) C(t)
Vo and Vte€[a, 7] Since for every t € [a, 7], n F2(t) (H(t))®

on [a, 7]

converges to0 0 as n — o and is dominated by the integrable function

k Fz(t) C(t), Dominated Convergence Theorem gives

n J H R0y EE)® dut) — o.

This quantity is precisely the expectation of V;. o

LEMMA 43. If ¢ is bounded away from zero mear 7, then

T
JHnU:du —P 0.
0

TH .2 TH F2(T,)F(t)
PROOF. Jo nUpgdp = JTnn (1) du(t)
Flzl(Tn) TH 2
= F .
P Iz, n F7(t) du(t)

2
n

(
By Theorem 3.2.1 of Gill (1980), ———
FX(T

is Op(1) and by Lemma 4.2,
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T
J B Fz(t) du(t) —P 0. Hence the product goes to zero in probability. o
T

THEOREM 4.1. Assume 1(i) — 1(vi) and (3.1) hold. Then
W, = W on L0, ), p).

PROOQPF. Since (3.1) holds, by Lemma 3.3, ¢ = p so that the condition in
Lemmas 4.2 and 4.3 is satisfied. Since Theorem 2.1 has already shown the
weak convergence on L’([o, 7], ) for every 7 < 75, as mentioned at the
beginning of Chapter 3, it is enough to show ‘tightness at Ty’ in the sense

of Theorem 4.2 of Billingsley (1968).

Define
Xat) = Wi(t)ift<TAT,
= 0 otherwise.
and
X,(t) = W) ift<r
= 0 otherwise.

W, = W on L"’([o, 7], p,) by Theorem 3.1. Now if p, denotes the

norm on Lz([O, 7], u),
PWay X) = [ IWy(8) — Wo(eaT, ) d)
0
= AT, < ) [ [Walt) - Wy(T)" dut)

— 0 a.s.

as. and 7 < T Therefore,

= W onL¥[0, 1], s asn — o

since T, — 7,

X

m

This is same as saying V 7 < T

2
Xp = X; on LY([0, 7], ) a8n — o

Now we shall show that as 7 — T X, = W on L2([0, rH], B)
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by showing that p(X,,W) —P 0.
EP(X,W)] = E[ J® - w? du]
= [ BowW(0) auty
= J :H F2(t)C(t) dult)

— 0 as T = Ty

Therefore p(X,,W) — 0 in probability.

It remains to show that

(4.2) lim limsup P{p(X,,,W,) > €} = 0.

—b —
TTHn ®

But observe that

P W) = [ (Kpam W s+ [ (X W)
0 T,

TH 2
The second term = j Wi (t) du(t)
T

- ITH F(t) dult)
T

n
(4.3) —P 0
by Lemma 4.2. As far as the first term is concerned,
T T
RS AETES Y I HORYO
T
Ta o
= I(T, > 7) J' X2(t) du(t)
T

TH 42
(4.4) <[ X3 dauw)
T
because X, = W, for t < T,. But by Lemma 2.1,

¢ R dF
E(X3(t)) = V(X,(t)) = F(t) Jo =

and by Theorem 3.1, R,(t) < K F(t) G'(t). Hence




32

(4.5) V(X,(t) ¢ K FX(t) C(t).
Now (4.2) follows from (4.3), (4.4), (4.5) and 1(vi).



CHAPTER 5§
MORE GENERAL CASES

In this Chapter we shall assume F and G are any two continuous
d.fs on [0,0), not necessarily satisfying (3.1). Theorem 5.1 proves the
weak convergence of W, in L’([o, gl #) under more general conditions.

1(i) - 1(vi) are assumed to hold.

LEMMA 5.1. Let Z,, Z,,......... 2, be iid H and Z ), Z 4, ...t Y/
be the corresponding order statistics. Let v be as in Lemma 2.1 and h be
a density of H wart. v. For 0<i {n -1, define

Ait) = {w:Zp(w) <t < Zgay (W)}
Then for every i, the conditional density of (Z,,, Z 4),....-.--- Z(5), given
A (t), is given by

where all the densities are w.r.t. the corresponding product measure.

PROOF. We need to show that
(5.1) J J Jo hb(x yXgyierX;) diAx,) dUAX,)........dNx;)

0 Y0
= P[Z( l) S 21, Z(z) S z,, .......... Z(i) .<_ ZiIAi(t)]a
Let h; denote the joint density of (Z,,, Z g),-ereeer vZ ;). Using

the ideas of Section 2.2 of David (1970), we get that h;(x,x,,.......,x;) is

equal to

i
lnﬁi! Hn"'(xi)[Hh(xj)] I(x, € x; € .8 x;).
i=1

33
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Fori = 1 to n - 1, define

t
hi‘t(xl ..... ’ xi,t) = Jo hi‘l(xl, ..... xi,S) dV(S)-

j H"" l(s) dH(s)

i
(ﬁgl'!'ﬁ [Hh("j)J I(x, € x5 € .o < x;)

{Jfr'l‘*'(x,) H‘“‘(t)}

= hy(x,....x;) [ h( )} I(x, < x5 € oo € x)-H7(0).

On the other hand, because P(A(t)) = m Hi(t) H*7¥(t), one can rewrite

hti(xl,xz, ....... X;) as

I(x;<t i
( ) [ [Hh(xj)] I(x, € x5 € ..o < x;) Hn—l(t)]'

t *
hy(x,Xg0 e X)) = PIAT)) [hy(xyye.eexy) = By pq(xgyeeXy,t))

I(x;<t) t
= PIA(Y)) [hy(xy.....x;) = Jo hy, (xgeeee x58) difs))].

Therefore, LHS of (5.1)

= [P( Ai(t)]'l{L:1];2...J;iAt[hi(x1»x2"'""xi) - J; hm(xl,....,xi,s)du(s)]]f[dv(xj)]
i=t
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-1
= [P(A,(t)] {Hi(zt,z,, ..... zi.p2iAt) — Hy,(2,2,,..... zi_l,zi)\t,t)}
-1
= [P(A(t)] P[Z(y) < 2y Zgg) € Zgpennene Zigy €24 Zogy €t < Lyl
- P[Z(t) S Zl, Z(z) < z,, .......... Z(i) S ZiIAi(t)]

where H; is the joint d.f. corresponding to h;. o

LEMMA 5.2. Let Q, and R, be as in 1(iv). Then

n-1
Ry(t) = ), Bay(H(t)ay(t)

i=0
where
wilt) = i NN []'[[(ﬁﬁ) ¥x) + it é(xj)llf[d»(xj).

j=1

PROOF. Note that exactly as in Lemma 3.4,

no=Y 3 [T e

iz0 d€Dp .y j=1
'P{Z(i) <t < Zigayibg = diy 1 Sk < n—l}

:2-: Z f[ (ﬁi'-r)%"_l P{J(k, =d, 1<k n—llAi(t)} P(A(t))

i=0 d€Dy 4 j=1

ZB..l(H(t)) Y ]'[(,,"T;JT) P{f = b 1 <k ol

dEDn -1 ]-1

n-1
= Y Bu(H()ag(t) (say).
i=0
We need to prove that a,;(t) = a,(t). By writing D, , = D; x D__,,

w= Y [

d(€D; dz€Dp . 1 j=1
-p{a(k, —d 1<k n—1|Ai(t)}
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-y H (n_f;.};T)zd’_l Y Pl = d 1 <k <n1]A0)

d1€Dg j=1 d2€Dy -1
i
. 2d-1
- j .
= ¥ JIE " plow = &1 < cilaw)

From Lemma 3.2, given Z;,’s, §;,’s have conditional distribution

given by

i=t
Thus, by Lemma 5.1,

P{J(j, =d,1¢] 5i|Ai(t)}

i
= E{ H[¢dj(z( i )él—dj(z(j) N Ai(t)]
1

j =
= H_EG j; j:‘ j:"‘... J:’f[ 4 )~i(x) ]'i[dﬂ(x,-).
j=1 j=1

Therefore, to show a,; = a,;, it is enough to show that

i . 2d.— i
2 [H (n_f:]_i_r)zdj 1] [II [¢dj(xj)61-dj(xj)]]
i=1

d4€D; “j=1
i
. il
= |1 (G5t #txp) + B ).
i=1
We shall show this by induction on i. For i = 1,

tas = Y 521" ¢ §4e)

d=0,1
= [} o= + 2y =0
= RHS.

Assume the result for i-1. Write D; = D;  x D and d as (d, d)
Then LHS is equal to



[H i H]'[w (x4 i(x )1] ) )
d€D

d1€Djy"j=1

- H (D o) + E5Y 6l G o) + 5D )

i=1
=[] 654 ox) + &I dixy)

= RHS. o

THEOREM 5.1. Assume 1(i) — 1(vi) hold. Then
W, = W in Lo, r], p)
if any of the following conditions is satisfied.
(5.2) For some a € [0, 1), G/'Fu is non—decreasing and bounded
above.
(5.3) ¢ is non-increasing and 1 G® is bounded above.

PROOF. First, we will prove that the condition G/F° is non—decreasing is

equivalent to ¢ > 'I%E as8. v. Since F and G are continuous,

¢ 2 1—_}7& as. v & (1 + @F/O)" » 1%1 as. v

o gF/I{G < a as. v
& g/G < of/F) as. v

e Jb (g/G)dv < .[b off/fF)dv forall a<b

& log G(a) — log G(b) < aflog F(a) - log F(b)]
forall a<b

& T(a)/T(b) ¢ [F(a)/F(b)]” for all a<b

& (G/F)a) ¢ (G/F)(b) foral a < b

e (G/Fn) is non—decreasing.
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-

> T—%-—a implies
(i ¢ + & § « S+ G

80
¢ > 1_4175 a.s. v implies

WOR ]'[{(n—fﬁxu,,n At

i=1
from Lemma 5.2 and from the fact that

H(t)J ri.[ - r’ HdH( = 1

Now from Lemma 3.6 and proof of Theorem 3.1, it follows that
l—a

Ry(t) < K HIV%(1).

Therefore,
2 ¢ g Fteglte g-ig
F/G
-2a 2
1 1 a
Now T < K, F* implis TIT® ¢ K170 FIFo
-a 1 1
implies Fm Gm < K})ﬁ
-2a 2 2
implies K FITeglte ¢ g KF’
Rn
implies ¢ K, for some constant K,.
F/G

From the proof of Theorem 4.1, it is clear that this is all we need to show
that (5.2) is sufficient for the weak convergence of W, to W in
LX([o, 74), w).

To show that (5.3) is sufficient for the L2~ weak convergence of W, as

earlier, we just need to show R, < K, F/G for some constant K,.
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If ¢ is non-increasing, (n_J"Ll') ¢ + ( ) ¢ is non—decreasing; so
for all j, 1< j<m,
(2D o6x) + CD éx) < G o0 + A é)

i

and therefore, as earlier, a;(t) < | {(n_n}'lT) ¢(t) + (—i'-*.'—l) é(t)}

Consequently R (t) < K : O l(t) as in Lemma 2.5 and Theorem 2.1.
Note that the bound in Lemma 2.5 is uniformly in p so the constant K is free

of t.
H2¢(t)—1 = P11y g1y
. . t)-2 t
implies ﬁ(t) ¢ K FRO-2) g2l
K{F¢<‘H(t) cm)}z
= K K2
= Kl
where K, bounds F-1 gb. 0

REMARK 5.1. Note that condition (ii) of Theorem 5.1 is the same as A /A,
being non-increasing and Ap - AH-(AF/AG) being bounded above, where
A8 and A’s are hazard functions and integrated hazard functions

respectively.

EXAMPLE 5.1. Let G be any distribution on [0, ), 6 € (1, ») and W
be any bounded non-decreasing function on [0, ®) with ¥(0) = 1. Define
F by

F(t) = (G()/v()°.
It is easy to verify that these F and G do not satisfy the proportional
hazards model, but do satisfy (5.2).



CHAPTER 6
ASYMPTOTICALLY DISTRIBUTION FREE TESTS
In this chapter some Anderson-Darling type A.D.F. statistics that are

used to test Hy: F = F, vs. H;: F # F, are discussed. It is shown that

T, 1
J R/ WP @K, = [ B0/ a

and

T. ., s * 1
JF ) wo/E a = [ BRI g
where K and K; are as in 1(iii). Also discussed are the L? - weak

convergence of £,, ¢, and f; (as defined in 1(iii)) to W. A few

preliminary results are proved first.

=

Kll

- <1 and — is a monotonic

LEMMA 6.1 ¢ For each n, 0 ¢ F

decreasing function on [0, 7.].

PROOF. From the definition both C, and K, are increasing and

non-negative functions. Moreover, for t < o

Y4F _F 1 K,
C,(t) » jo o7 = Ch 0 prr®) < F(9) and hence (1) < 1

For t < 7_, we shall show that

¥ t
E(t) =J M, dF

0

where

1
My = - Cy+

which will prove that

is increasing.

40
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Using integration by parts, a8 F is continuous and C_(0) = 0,

J; ngn- _ J;“Cn = () Cyt) + ]; C, dF

and hence

t F
J M, dF = F(t) Cyt) = —E(t).
0 K,

But
t
dF F 1
Cu(t) = | P S () . )
" oG, FG, FG,
and hence M,(t) > 0. o
K, K,
LEMMA 6.1 b. For each n, G ¢ — <1 and — is a monotonic
I".ll Fn
decreasing function on [0, 7g].
K. 0
PROOF. Note that on [T, TH], 1? is of the form - % there, it is

n
*

K
defined to be }Tn(Tn-)’ which is well-defined. Now, C: is same as the

function C defined in Gill (1983). The remarks that follow Theorem 1.2 of

Gill (1983) give the result. 0
LEMMA 6.2 a
K "
(6.1) »_K =P
F  TFo

PROOF. The proof is split into two cases. First is the case when



42

T
G(rg) > 0. In this case, ||G,;1 - G‘llloH —P 0. The proof below is given
under the assumption that the convergence holds almost surely. If it holds
only in probability, a subsequence argument will yield the result.

All the statements in this paragraph hold on a probability 1 set.
. 1 _ 1y 'H
Given € > 0,3 N suchthat Vo2 N, G5 -G, ¢e If n2N,

IF) (G, - C)l € € ¥ [ P2 aF] ¢

r
for all t < 7. So it follows that |[F(C,- C)lloH — 0. By an application
of Lemma 1.4 with dp = dF and g = G-!, F(t) C(t) is seen to

converge to G‘l(rﬂ) a8 t— r_. Since F (1+C,) — F (1+C) uniformly

-
on [0,r;] and F (1+C) is bounded away from zero mear 7y, (6.1) follows.
Next is the case when G(7y) = 0. In this case F(t)C(t) — o as

t — 7 and hence %—(t) — 0. Now for each 7 < 7,
K T
1 _K — 0 as.
F T o
because
1 L 1 uniformly on [0, 7] aus..
G,_ _
(Note that G and F are bounded away from zero on [0, 7].) So 3 Q,
K, K T
such that P(Q,) =1 and forall we Q, || —(w) - = — 0 for all
F F |fo
7 < 7y Then the following statements hold on Q,.
Kn K Kn K Kn Kn
—0) =+0) =1, —ry) ==ry) =0, 0<— <1, — is monotonic
F F F B FH F F

is continuous, by

decreasing; and En-(t) — I—(-(1;) pointwise. Since K
’ T F F

Polya’s Theorem the convergence is uniform on [0, 7]. o
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LEMMA 6.2 b.
K, H

(6.2) 2_Kl"_r o
F, F o

PROOQF. Again the proof is split into the same two cases as in Lemma 6.2 a.

Because of Lemma 6.1 b, the proof in the second case is exactly the same as

in the proof of Lemma 6.2 & so we will prove the result only in case 1.

Here, the proof will go along the same lines as in Lemma 6.2 a, with the

comment about a possible subsequence argument applicable. So all we need to

prove is that ||Fn(l+C;) - F(14C) || — 0. Note that we need to define

Fn(1+C;) to be a suitable left limit whenever it is of the form 0 times w.
By Lemma 6.1 b, G, < K /F, <1 and K_/F, is increasing. Hence

(6.3) F,(14C,) ¢ ;!

and for each n,

(6.4) F,(14C,) in a non—decreasing function.

We know that G;! — Tlon [0, gl 38 G(rg) > 0. Also we know

that F(t)(14C(t)) —» TG'(ry) as t — 7, and that, for any 7 < 7,

H
Fy(1+C)) — F(14C) a8n — o on [0, 7. Let ¢> 0. 3 7< 7y

such that

(6.5) IF(£)(1+C()) - Tl(rg)| ¢ e
for all t > 7. Also, 3 N such that Vn > N,
(6.6) IFa(1+C,) - F+C)llg <
and

(6.7) IS -G <.

Now Vn2>N and Vt2 7
1G;1(t) - Fa®)(14C(t))] = T;l(t) - Fo(t)(14+Cy(t))
(by (6.3))
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¢ T,l(t) - Fy(n)(1+Cy(7))
(by (6.4))
Gl(t) - F(1)(1+C(7)) + 2¢
< 3e
So by (6.5) and (6.7), Vn 2 N and V1t > 7,
|Fa(t)(1+Cy(t)) - F(t)(1+C(t))| < Be

IA

The above, together with (6.6), gives the result. s}
K, ||T»

LEMMA 6.3 a " E— is bounded in probability. More specifically, for all
M e (1, o),

K, |To

1
P{ LY BN M+1} <&
K |o M

PROOF. Note that it is enough to show that

c ||T» 1
P{I M}( for all M € (1,
C-; 0 > ‘M or € ( m)
because
K

P{ o >M}<1 for all M € (L,a)
G o "M ’
Now,
(B
C,2C,1 <M
G_ o
n— n
<M
MIOFzG [ 0o - ]
G, |t
C f| Ga-
- C <M
M{G. 0 ]
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on [t < T,]. Hence

Ty G Ty
P{g- zM}sP =0 aMfcd o
n G_ |lo
K "=
LEMMA 6.3 b. — is bounded in probability.
0

PROOF. The proof will follow as in Lemma 6.3 a but we still need to show
T
r dF / r dF,||'=®
o F o F,llo
By (7.7.21) of Shorack and Wellner (1986),

IR;-KIT — 0 as. V1<

(6.8)

is  Op(1).

and hence, a8 K(7) >0 for 7 < 7

H’
* 0T
Kn
_ — 1 as, 7<TT

K o B
Therefore, we only need to show (6.8) near .
Zi; €t < Z,,, by explicit computation we can show that
i 5
(6.9) r Fa _ 2 {_-L._n"“} D
0o F, =)

i=1
Also, log x<x-1 Vx21, so

(6.10) Z[n‘“ “’ - ] Zlog {“‘“} D g F,

by the deﬁmtlon of F,. By Lemma 2.6 of Gill (1983) and the relation
log (F,/F) / (- log F,) 2> -1, it follows that

(6.11) llog (Fu/F) / (- log Fy)] = 0(1)
Now (6.8) follows from (6.9), (6.10) and (6.11) o

Now, if i is such that

near TH.
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LEMMA 6.4. Assume ¢ is bounded away from zero mear 7 as. v. Then
V> 1/2

(6.12) A KqT,) —° o

PROOF. Following along the same line as in the proof of Lemma 1.3, we get
that (6.12) is equivalent to

4+CEHP HE) — o a8 t — 7
So it i8 enough to prove that C(t) H(t) is bounded away from 0 near

T

.- Note that C(t) = r ¢ dH'. So by Lemma 14, C(t) H(t) — &(ry)
0

ast—o‘rH. 0

LEMMA 6.5 ¢ Assume that 3 a € [0, 1) such that

(6.13) ¢ s
and
(6.14) (G'/F") is non—decreasing.

Then 3 § € (0, 1/2) such that for a special construction of X;’s, Y;’s and
B,

PROOF. Under (6.14), 3 B € (0,1/2) such that

(6.15) J:“ Fg%t_;— <o

Use the construction of Theorem 7.1.1 of Shorack and Wellner (1986) and

Rifw,_ _gPw

F F

"H
P 0
0

where W := F B(C).

apply the theorem with gq(t) := (l-t)ﬂ to get
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Tll
=P 0.

4
W -W
K n
(6.16) | —=—
F K K\4)
By (6.13), Lemma 6.4 is applicable, and hence W, in (6.16) can be replaced
by W,. Also,

K4)

k| W W p
F K7
_ _ K3
since F is bounded away from zero and Wn-W" —P 0. Thus we
0
have
1-8 T
K Pw -w] |Ta
(6.17) L —P 0.
F 0

From (6.15) and from Remark 2.2 of Gill (1983), it follows that
- B(C(t)) = 0 as. as t — 7. Therefore

H
T
H
W
6.18) <o as.
( " 7 |l
and since K < F,
(6.19) G B(C(t)) = 0 as as t— 7.
From (6.12), (6.17) and (6.19) one gets
KA w -w)] |"r
(6.20) —P 0
F 0
Use Lemma 6.3 a to get
1- T
Kn ﬂ[wn-w] n P 0
F 0
and use the same idea as above to conclude
KB w_—w] |"x
(6.21) 2~ [WarW] P 0
F 0

So it is enough to show that
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KP -k Aw s
— 0.
F 0
1+ 1-
[Kn g -K ﬁ] TH P
From Lemma 6.2 g, = —" 0. Now the result follows
0

from (6.18). o
LEMMA 6.5 b. Assume (6.13) and (6.14) hold. Then for the S/ and the

special construction in Lemma 6.5 a,
11—

F F 0
PROOF. Follows exactly as in Lemma 6.5 a by using b type lemmas instead

"
—P 0.

of a type whenever applicable. o

REMARK 6.2. Note that if G is continuous, we need to assume only one of
(6.13) and (6.14), since they are equivalent in that case by the proof of

Theorem 5.1. The remark is applicable to Lemma 6.5 a also.

LEMMA 66. Fix A > 0 and let {X(t): t € [0, A]} be a stochastic
process such that X(t) — 0 as. a8 t — 0 and ||X||: < o as8. Let
{Y,(t): t € [0, A]} be a sequence of stochastic processes such that

IYly ¢D forarv. D and [[Y,[% — 0 as forall ¢ > 0. Then
[IX Yn||‘3‘ — 0 a.s.. If the convergence of ||Yn||‘: holds in probability, so

does the convergence in the conclusion.

PROOF. First, note that the probability 1 set where ||Yn||‘: — 0 can be
chosen free of ¢ by taking countable intersection of probability 1 sets. So
3 Q, P(Q) = 1, such that for all we Q) X(t,w) =0 as t — 0 and
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||Yn(w)||‘2 — 0 for every ¢ > 0. Now the statements in the following
paragraph hold on ,.
Let 6§<1. 3 e>0 such that for all t < ¢, |X(t)] < &
IXYallg ¢ IXY,lig + IXY,llg
¢ 6D + |IXlig IV, ll¢.
Taking limsup as n — o, limsup ||XYn||‘3 < 6D. Since 6 is

n— o

arbitrary, it follows that ||XYn||‘: — 0.

Thus we have proved that on Q,, IIXYn||‘3 — 0. Hence the first part.
For the second part, take any subsequence {nk} of n. By a diagonal
argument, 3 a further subsequence {nkj} of {n.} through which

||Yn||‘: — 0 a.s. simultaneously for all e > 0. Apply the first part of the

theorem to this subsequence and this will prove the second assertion. o
Now we shall prove a variation of Helly-Bray Lemma.

LEMMA 6.7. Let a, b € [0, o] such that a < b and let f bea
sequence of functions on [a, b] such that ||fn—f]|l: — 0 and f is
continuous and bounded on [a, b]. Let F, be a sequence of monotonic
functions on [a, b] such that 0 < F, < 1, F, converges pointwise to F

on [a, b] and F is continuous on [a, b]. Then

dF, — I f dF.

Ja®
(a,b] (a,b]

PROOF. By integration by parts formula,

J(a’b]f dF, = (b) F,(b) - f(a) F,(a) - J (a’b]F,, af

because f{ 1is continuous. Also

I(a,b]f dF = f(b) F(b) - f(a) F(a) - I(a,b]F df.
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Since by Polya’s Theorem ||F,~F|> — 0,

F,(b) — F(b), F,(a) — F(a) and J(a b]Fn dif — j(a b]F df.

So

J(a,b]f dF, — J(a’b]f dF

Let ¢>0. 3N, such that for all n > N, [If,]] ¢ ¢/2. 3N,
such that for all n > N,,

J(a,b]f dF, — I(a,b]f dF < ¢/2.

Let N =N, VN, Now foral n 2N,

del < {, dF, —J f dF,

(a,b]

I { dF, - J f dFI
(a,b] (a,b]
|Fa(b) — Fy(a)| (e/2) + €/2

€. 0

J(a,b]fn o - J(a,b] (a,b

+

IA

IA

Now we shall state and prove a theorem that will provide an A.D.F. test

for Hy F=F, vs. H: F # F,

THEQOREM 6.1 a Assume that i(i) — 1(vi), (6.11) and (6.12) hold. Then
J‘:n [K./K,] [W,/F) dK, = J:Bﬁ(t)/[t(14)] dt.

PROOQF. It suffices to show that

(1) JRa)- W/ 4K, = [ Bi(K)/KOK) ak

and

@ R/ K, = [ BK)/K0K) ok
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for some 7 € (0, 7;) because then the result follows from (1) and (2)

together with a simple change of variable.

Proof of (1): Apply (7.7.9) of Shorack and Wellner (1986) with
q(t) = (l—t)ﬂ to get that for every § € [0, 1/2), 3 a special construction of
X;’s, Y;s and W such that
Iw? - wh/k?T P 0
because 0 ¢ K(1') < K-(1;) <1 fort €0, 7]
F F_
K = [;;Se(o A

<yl 4E |/ [ e ]

L

< [14+C4(n)] [FANT_()]™
and C,(r) — C(7) as. Therefore for all t € [0, 7], Ilé-(t) < B, for

some r.v. B, free of n and t. Thus ||[W,2l - W2]/K:ﬂ||; —P 0. Now
we shall show that

(8.22) IWR2E - AT =P .
As
2 (20
IR - RPAIG = gl - 1,

n

2
we can invoke Lemma 6.6 with X = %229 and Y, = (K#/k2h) - 1. we

will now verify the conditions of Lemma 6.4. As

W = F B(C) = F B(K/(1-K)),
an application of the Law of Iterated Logarithm for Brownian motion (see
Theorem 12.29 of Breiman (1968)) will show that X satisfies the conditions
of Lemma 6.6. Since K2? — K% uniformly as. on [0, 7] by (7.7.21)
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of Shorack and Wellner (1986) and k%P is bounded away from zero on

[e, 7],

k# |
-1 — 0 as..
kP e
K x| 28
As K—n(i;)gB1 for all t € [0, 7], Eﬁ—ﬂ—lo < By + 1. Hence
(6.22).
Since F is bounded away from zero on [0, 7], it follows that
2 2 T
W, W
K -K —P 0.
} "|Fk? FkA) o
Kn w'l 2 K 2
. \i4
Invoke Lemma 6.7 with f = , = ,
»~ 2P |FkP 2B |Fk?P
F, = Kzﬂ and F = K?2. This gives us
2 2
T Kll Wn 2ﬂ T K W 9
K2 _p J' )
o 2P [Fk?P : o 2P |Fk

That is,

JRars) wo/m ak, = [ BiE)/KOK) aK.

Proof of (2): From Lemma 6.3 and the fact that K is bounded away from

zero, it follows that

1—
K w2 R wp "H N
F K, K o
KA w2 1-8 2
Apply Lemma 6.7. again with f = [;2—11] and f = JK—zﬂl ’
268 F° K, 26 F* K

F,=1- Kx,i and F = 1 - K™ By (6.19), we are assured that f

satisfies the required conditions. Now the result follows. ]
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THEOREM 6.1 b. Assume 1(i) — 1(vi), (6.11) and (6.12) hold. Then
T * et * 1
Jon [Ko/K,] [Wo/FI" dk, = jo B2(t)/[t(1-¢)] dt.

PROOQF. Follows exactly as in Theorem 6.1 a. o

Now we shall prove the weak convergence of £, ¢, and E; in the

L2 - space. See 1(iii) for notation.

THEOREM 6.2. Assume 1(i) — 1(vi) hold. If (5.2) or (5.3) holds, then on
LX([0, 7gl, u),

(i) & = By(K),

(ii) &, = By(K),

(i) & = By(K),

where B, is a Brownian Bridge.

PROOF. First, note that (K/F) W has the same distribution as B (K).
Now, by Lemma 6.1 a, £, € L¥(0, 7],
construction of W, and W such that W, - W — 0 as. in
L%([0, ., #). So by Lemma 6.1 g,

a2
KII
(6.23) — (W, - W) — 0 as.

p). By Theorem 5.1, there is a

in L2([0, Tyl #)- Moreover, by Lemma 6.2 g,

(6.24) — -2 |w =Po.
F F

in L2([0, gh #)- Now (i) follows from (6.23) and (6.24).

Proof of (ii) and (iii) are similar. o
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Denote the limiting r.v. in Theorems 6.1 a and b by X. For a representation
of X as a mixture of independent chi-square r.v.’s, see Anderson and
Darling (1952). Also given in the paper mentioned above is the characteristic
function of X. A more direct computation of the mean and the variance of
X is now discussed. The mean is easily seen to be 1 by taking the
expectation inside the integration. Calculation of the variance is done in the

following lemma.
LEMMA 68 X has mean 1 and variance (21'2/3) - 6.

PROOF. As all the quantities involved are non-negative, Fubini’s Theorem
justifies interchange of expectation and integration and thus the mean of X
is 1. Let us denote B(t)/t(1-t) by B'(t) and E(X?) by Q so that
V(X) = Q -1

1 4 1 %
Q = E[JB(s)ds JB(t)dt]
101 ,, *0
= E[JOJOB(s)B(t)dsdt]

= 2] I E[B'(s) B (t)] ds dt
070
If (X,Y) has bivariate normal distribution with mean 0, variance 1 and
correlation p, then E(XY) =1 + 20%. As (By(8), By(t)), for s < t, is
bivariate normal with dispersion matrix ¥ given by
9 = s(1-8) s(1-t
- s(1-t) t(1-t) |’

it follows that
1 ,t
Q = 2] J{l + [28(1-4)/(1-8)t]} ds dt.
070

1
The above expression simplifies to 4 J (Hog x) (x/(1=x)) dx - 1.
0
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Integrating by parts and changing variables we get
J[(Gog ) (s/(1-5) a5 = 1+ [y explos) logCa-esptey)) dy
Using the Taylor expansion for log x, integrating term by term, and making

®
use of the fact that }13 12 = 12/6, we will get that the expression above
is equal to #°/6 — 1. Thus Q = 4( 7°/6 -1) — 1 = (22°/3) - 5 and
hence V(X) = (27%/3) - 6. 0
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