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ABSTRACT

SPATIO-TEMPORAL FIELD PREDICTION UNDER LOCALIZATION
UNCERTAINTY FOR MOBILE SENSOR NETWORKS

By

Mahdi Jadaliha

Recently, there has been a growing interest in wireless sensor networks due to the ad-

vanced embedded system and network technologies. Their applications include, but are not

limited to, environment monitoring, building comfort control, traffic control, manufacturing

and plant automation, and surveillance systems. The conventional inverse problem approach

based on physical transport models is computationally prohibitive for resource-constrained,

multi-agent systems. In contrast, Gaussian process and Gaussian Markov models have been

widely used to draw statistical inference from geostatistical and environmental data. How-

ever, the statistical models need to be carefully tailored such that they can be practical and

usable for mobile sensor networks with limited resources. Additionally, one needs to be care-

ful in coping with localization uncertainty resulted from low-cost mobile sensor networks.

Thus, a fundamental problem in various applications is to correctly fuse the spatially col-

lected data and estimate the process of interest under localization uncertainty. Motivated by

the aforementioned issues, in this dissertation, we consider the problem of using mobile sensor

networks to estimate and predict environmental fields modeled by spatio-temporal Gaussian

processes and Gaussian Markov random fields in the presence of localization uncertainty.

In the first part of this dissertation, we formulate Gaussian process regression with ob-

servations under the localization uncertainty. In our formulation, effects of measurement

noise, localization uncertainty, and prior distributions are all correctly incorporated in the

posterior predictive statistics. The analytically intractable posterior predictive statistics are



proposed to be approximated by two techniques, viz., Monte Carlo sampling and Laplaces

method. In addition, the localization problem is studied in this part, when the position of

the robot is estimated by a maximum likelihood estimation (MLE) using vision data. We

transform the high dimensional vision data to a set of uncorrelated feature candidates. A

multivariate GP regression with unknown hyperparameters is formulated to connect the set

of selected features to their corresponding sampling positions. In order to decrease com-

putational load and increase the accuracy of localization, a feature reduction approach is

developed. Therefore, a subset of the features is selected to minimize the localization error

using cross-validation methods.

In the second part of the dissertation, we consider the problem of predicting a spatial

(spatio-temporal) Gaussian Markov random field (GMRF) using sequential noisy observa-

tions collected by robotic sensors. The random field of interest is modeled by a GMRF

instead of Gaussian process. In this way, we propose iteratively updated predictive infer-

ences. We derive the exact Bayesian solution to the problem of computing the predictive

inference of the random field, taking into account uncertain hyperparameters, measurement

noise, and uncertain localization in a fully Bayesian point of view. We show that the exact

solution is not scalable as the number of observations increases. To cope with this exponen-

tially increasing complexity, we propose scalable approximations with a controllable tradeoff

between approximation error and complexity to the exact solution. Finally, we derive an

approximate Bayesian solution to the problem of the simultaneously localization and comput-

ing the predictive inferences, taking into account observations, uncertain hyperparameters,

measurement noise, kinematics of robotic sensors, and uncertain localization.
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Chapter 1

Preliminaries

1.1 Mathematical Notation

Standard notation will be used throughout the dissertation. Let R, R≥0, R>0, Z, Z≥0, Z>0

denote, respectively, the sets of real, non-negative real, positive real, integer, non-negative

integer, and positive integer numbers. In denotes the identity matrix of size n (I for an

appropriate dimension).

For column vectors va ∈ Ra, vb ∈ Rb, and vc ∈ Rc, col(va, vb, vc) :=

[
vTa vTb vTc

]T
∈

Ra+b+c stacks all vectors to create one column vector, and ‖va‖ denotes the Euclidean norm

(or the vector 2-norm) of va. Let rowi(A) ∈ Rm and colj(A) ∈ Rn denote the i-th row and

the j-th column of a matrix A ∈ Rn×m, respectively.

|A| and |(|A) denote the determinant of a matrix A ∈ Rn×n, and tr(A) denotes trace of

a square matrix A. Let AT ∈ Rm×n be the transpose of a matrix A ∈ Rn×m. The positive

definiteness and the positive semi-definiteness of a square matrix A are denoted by A � 0

and A � 0, respectively. The symbol ⊗ denotes the Kronecker product.

Let E, Var and Cov denote the expectation operator, the variance operator and the

covariance operator, respectively.

A random vector z ∈ Rq, which is distributed by a multivariate Gaussian distribution of

a mean µ ∈ Rq and a variance Σ ∈ Rq×q, is denoted by z ∼ N (µ,Σ).
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We define the first and the second derivative operators on h : Rm → R with respect to a

vector x ∈ Rm as follow.

∇h(x) =
∂h(x)

∂x
=

(
∂h(x)

∂x1
, · · · , ∂h(x)

∂xm

)T
,

∇2h(x) =
∂2h(x)

∂x∂xT
=


∂2h(x)
∂x1∂x1

· · · ∂2h(x)
∂x1∂xm

...
. . .

...

∂2h(x)
∂xm∂x1

· · · ∂2h(x)
∂xm∂xm

 .

Let ‖x‖ denote the standard Euclidean norm (2-norm) of a vector x. If there exists c

and k ∈ R>0, such that the approximation error satisfies ‖x̂− x‖ ≤ k|ε|,∀ε < c, we say that

the error between x̂ and x is of order O(ε) and also write x̂− x = O(ε).

The relative complement of a set A in a set B is denoted by B\A := B∩Ac, where Ac is

the complement of A. For a set A ∈ I, we define zA = {zi | i ∈ A}. Let −A denote the set

I \ A. For given A = {c, d} and B = {1, 2}, the multiplication between two sets is defined

as B ×A = {(1, c), (1, d), (2, c), (2, d)}. Other notation will be explained in due course.

1.2 Physical Process Model

In this section, we review important notions on the Gaussian process which will be used

to model the physical phenomenon. In particular, we introduce a class of spatio-temporal

Gaussian process model with anisotropic covariance functions. The properties of Gaussian

Markov Random fields (GMRF) are also briefly reviewed.
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1.2.1 Gaussian process

A Gaussian process can be thought of a generalization of a Gaussian distribution over a finite

vector space to function space of infinite dimension. It is formally defined as follows [83,84]:

Definition 1.2.1. A Gaussian process (GP) is a collection of random variables, any finite

number of which have a consistent1 joint Gaussian distribution.

A Gaussian process

z(x) ∼ GP
(
µ(x),K(x, x′; θ)

)
(1.1)

is completely specified by its mean function µ(x) and covariance function K(x, x′; θ). Al-

though not needed to be done, we take the mean function to be zero for notational sim-

plicity2, i.e., µ(x) = 0. If the covariance function K(x, x′; θ) is invariant to translations in

the input space, i.e., K(x, x′; θ) = K(x − x′; θ), we call it stationary. Furthermore, if the

covariance function is a function of only the distance between the inputs, i.e., K(x, x′; θ) =

K(
∥∥x− x′∥∥ ; θ), then it is called isotropic.

In practice, a parametric family of functions is used instead of fixing the covariance

function [3]. One common choice of a stationary covariance function is

K(x, x′; θ) = σf
2 exp

−
b∑
`=1

(
x` − x′`

)2
2σ2
`

 , (1.2)

where x` is the `-th element of x ∈ Rb. From (1.2), it can be easily seen that the correlation

between two inputs decreases as the distance between them increases. This decreasing rate

1It is also known as the marginalization property [83]. It means simply that the random
variables obey the usual rules of marginalization, etc.

2This is not a drastic limitation since the mean of the posterior process is not confined
to zero [84].
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depends on the choice of the kernel bandwidths {σ`}. A very large kernel bandwidth means

that the predictions would have little bearing on the corresponding input which is then said

to be insignificant. σf
2 gives the overall vertical scale relative to the mean of the Gaussian

process in the output space. These parameters play the role of hyperparameters since they

correspond to the hyperparameters in neural networks and in the standard parametric model.

Therefore, we define θ = (σf
2, σ1, · · · , σb)T ∈ Rb+1 as the hyperparameter vector.

1.2.2 Spatio-temporal Gaussian process

In the first part of this dissertation, spatio-temporal Gaussian processes are of particular

interest. Consider a spatio-temporal Gaussian process

z(s, t) ∼ GP(µ(s, t),K(s, t, s′, t′; θ)),

which is a special case of the Gaussian process defined in (1.1), where x = (sT , t)T ∈

Rι × R≥0. We consider the following generalized anisotropic covariance function K(x, x′; θ)

with a hyperparameter vector θ := (σf
2, σ1, · · · , σι, σt)T ∈ Rι+2:

K(x, x′; θ) = σf
2 exp

(
−

ι∑
`=1

(s` − s′`)
2

2σ2
`

)
exp

(
−(t− t′)2

2σ2
t

)
, (1.3)

where s, s′ ∈ S ⊂ Rι, t, t′ ∈ R≥0. {σ1, · · · , σι} and σt are kernel bandwidths for space

and time, respectively. (1.3) shows that points close in the measurement space and time

indices are strongly correlated and produce similar values. In reality, the larger temporal

distance two measurements are taken with, the less correlated they become, which strongly

supports our generalized covariance function in (1.3). This may also justify the truncation
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(or windowing) of the observed time series data to limit the size of the covariance matrix for

reducing the computational cost. A spatially isotropic version of the covariance function in

(1.3) has been used in [62].

1.2.3 Gaussian Markov random field

In this section, we introduce Gaussian Markov random fields (GMRFs). An undirected

graph G = (V , E) is a tuple consisting of a set of vertices V := {1, · · · , n} and a set of edges

E ⊂ V × V . The neighbors of i ∈ V in G are denoted by Ni := {j ∈ V | {i, j} ∈ E}. The

GMRF is formally defined as follows [88].

Definition 1.2.2. (GMRF, [88, Definition 2.1]) A random vector z = (z[1], · · · , z[n])T

∈ Rn is called a GMRF with respect to a graph G = (V , E) with mean µ and precision matrix

Q � 0, if and only if its density has the form

P(z) =
|Q|1/2

(2π)n/2
exp

(
−1

2
(z− µ)TQ(z− µ)

)
,

and (Q)ij 6= 0 ⇔ {i, j} ∈ E for all i 6= j, where the precision matrix (or information

matrix) Q = K−1 is the inverse of the covariance matrix K.

1.3 Mobile Sensor Network

In this section, we consider the sensor network formed by multiple mobile sensing agents and

present the measurement model used throughout the thesis.

Let N be the number of sensing agents distributed over the surveillance region S ⊂ Rι.

The identity of each agent is indexed by I := {1, 2, · · · , N}. Assume that all agents are
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equipped with identical sensors and take noisy observations at time t ∈ Z>0. At time t, the

sensing agent i takes a noise-corrupted measurement y[i](t) at its current location s[i](t) ∈ S,

i.e.,

y[i](t) = z(s[i](t), t) + ε[i](t), ε[i](t)
i.i.d.∼ N (0, σε

2),

where the sensor noise ε[i] is considered to be an independent and identically distributed

Gaussian random variable. σε
2 > 0 is the noise level and we define the signal-to-noise ratio

as

γ =
σf

2

σε2
.

Notice that when a static field is considered, we have z(s, t) = z(s).

For notational simplicity, we denote the collection of positions of all N agents at time t

as st, i.e.,

st :=
(
s[1](t)T , · · · , s[N ](t)T

)T
∈ SN .

The collective measurements from all N mobile sensors at time t is denoted by

yt :=
(
y[1](t), · · · , y[N ](t)

)T
∈ RN .

The cumulative measurements from time t ∈ Z>0 to time t′ ∈ Z>0 is denoted by

yt:t′ :=
(
yTt , · · · ,yTt′

)T
∈ R(t′−t+1)N .
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1.4 Gaussian Processes for Regression

Suppose we have a data set D′ =
{

(x[i], y[i]) | i = 1, · · · , n
}

collected by mobile sensing

agents where x[i] denotes an input vector of dimension b and y[i] denotes a scalar value

of the noise corrupted output. The objective of probabilistic regression is to compute the

predictive distribution of the function values z? := z(x?) at some test input x?.

For notational simplicity, we define the collective input vector x of dimension n×b as the

aggregation of n input vectors (i.e., x := (x[1], · · · , x[n])T ), and the outputs are collected in

a vector y := (y[1], · · · , y[n])T . The corresponding vector of noise-free outputs is defined as

z := (z(x[1]), · · · , z(x[n]))T .

The advantage of the Gaussian process formulation is that the combination of the prior

and noise models can be carried out exactly via matrix operations [111]. The idea of Gaus-

sian process regression is to place a GP prior directly on the space of functions without

parameterizing the function z(·), i.e.,

P(z|θ) = N (µ,K),

where µ ∈ Rn is the mean vector obtained by µi = µ(x[i]), and K := Cov(z, z|θ) ∈ Rn×n

is the covariance matrix obtained by (K)ij = K(x[i], x[j]; θ). Notice that the GP model and

all expressions are always conditional on the corresponding inputs. In the following, we will

neglect the explicit conditioning on the input matrix x.

The inference in the Gaussian process model is as follows. First, we assume a joint GP
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prior P(z, z?|θ) over functions, i.e.,

P(z, z?|θ) = N


 µ

µ(x?)

 ,
K k

kT K(x?, x?; θ)


 , (1.4)

where k := Cov(z, z?|θ) ∈ Rn is the covariance between z and z? obtained by ki =

K(x[i], x?; θ). Then, the joint posterior is obtained using Bayes rule, i.e.,

P(z, z?|θ,y) =
P(y|z)P(z, z?|θ)

P(y|θ)
,

where we have used P(y|z, z?) = P(y|z). Finally, the desired predictive distribution P(z?|θ,y)

is obtained by marginalizing out the latent variables in z, i.e.,

P(z?|θ,y) =

∫
P(z, z?|θ,y)dz =

1

P(y|θ)

∫
P(y|z)P(z, z?|θ,y)dz. (1.5)

Since we have the joint Gaussian prior given in (1.4) and

y|z ∼ N
(
z, σε

2I
)
,

the integral in (1.5) can be evaluated in closed-form and the predictive distribution turns

out to be Gaussian, i.e.,

z?|θ,y ∼ N
(
µz?|θ,y, σ

2
z?|θ,y

)
, (1.6)

where

µz?|θ,y = µ(x?) + kT (K + σε
2I)−1(y− µ), (1.7)
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and

σ2
z?|θ,y = K(x?, x?; θ)− kT (K + σε

2I)−1k. (1.8)

For notational simplicity, we define the covariance matrix of the noisy observations as C :=

Cov(y,y|θ) = K + σε
2I.
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Chapter 2

Gaussian process regression under

localization uncertainty

Abstract: In this chapter, we formulate Gaussian process regression with observations un-

der the localization uncertainty due to the resource-constrained mobile sensor networks. In

our formulation, effects of observations, measurement noise, localization uncertainty, and

prior distributions are all correctly incorporated in the posterior predictive statistics. The

analytically intractable posterior predictive statistics are proposed to be approximated by

two techniques, viz., Monte Carlo sampling and Laplace’s method. Such approximation

techniques have been carefully tailored to our problems and their approximation error and

complexity are analyzed. Simulation study demonstrates that the proposed approaches per-

form much better than approaches without considering the localization uncertainty properly.

Finally, we have applied the proposed approaches on the experimentally collected real data

from a dye concentration field over a section of a river and a temperature field of an outdoor

swimming pool to provide proof of concept tests and evaluate the proposed schemes in real

situations. In both simulation and experimental results, the proposed methods outperform

the quick-and-dirty solutions often used in practice.
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2.1 Introduction

Recently, there has been a growing interest in wireless sensor networks due to advanced em-

bedded network technology. Their applications include, but are not limited to, environment

monitoring, building comfort control, traffic control, manufacturing and plant automation,

and surveillance systems [17, 25]. Mobility in a sensor network can increase its sensing

coverage both in space and time, and robustness against uncertainties in environments. Ex-

ploitation of mobile sensor networks has been increased in collecting spatio-temporal data

from the environment [10,13,64].

Gaussian process regression (or Kriging in geostatistics) has been widely used to draw

statistical inference from geostatistical and environmental data [14, 84]. Gaussian process

modeling enables us to predict physical values, such as temperature or harmful algae bloom

biomass, at any point and time with a predicted uncertainty level. For example, near-

optimal static sensor placements with a mutual information criterion in Gaussian processes

were proposed in [56, 57]. A distributed Kriged Kalman filter for spatial estimation based

on mobile sensor networks was developed in [13]. Centralized and distributed navigation

strategies for mobile sensor networks to move in order to reduce prediction error variances

at points of interest were developed in [118].

Localization in sensor networks is a fundamental problem in various applications to cor-

rectly fuse the spatially collected data and estimate the process of interest. However, obtain-

ing precise localization of robotic networks under limited resources is very challenging [37,38].

Among the localization schemes, the range-based approach [50,78] provides higher precision

as compared to the range-free approach that could be cost-effective. The global positioning

system (GPS) becomes one of the major absolute positioning systems in robotics and mobile
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sensor networks. Most of affordable GPSs slowly update their measurements and have res-

olution worse than one meter. A GPS is often augmented by the inertial navigation system

(INS) for better resolution [102]. In practice, resource-constrained sensor network systems

are prone to large uncertainty in localization. Most previous works on Gaussian process

regression for mobile sensor networks [14,57,113,118] have assumed that the exact sampling

positions are available, which is not practical in real situations.

Therefore, motivated by the aforementioned issues, we consider correct (Bayesian) inte-

gration of uncertainties in sampling positions, and measurements noise for Gaussian process

regression and its computation error and complexity analysis for the sensor network appli-

cations. The overall picture of our work is similar to the one in [74] in which an extended

Kalman filter (EKF) was used to incorporate robot localization uncertainty and field param-

eter uncertainty. However, [74] relies on a parametric model, which is a radial basis function

network model and EKF, while our motivation is to use more flexible non-parametric ap-

proach, viz., Gaussian process regression taking into account localization uncertainty in a

Bayesian framework.

Gaussian process regression in [29] integrate uncertainty in the test input position for

multiple-step ahead time series forecasting. In [29], uncertainty was not considered in the

sampling positions of the training data (or observations). However, localization uncertainty

effect is potentially significant. For example, Fig. 2.1 shows the effect of noisy sampling po-

sitions on the results of Gaussian process regression. Note that adding noise to the sampling

positions considerably increase the empirical RMS error, shown in the third row of Fig. 2.1.

A Gaussian approximation to the intractable posterior predictive statistics obtained in

[29] has been utilized for the predictive control with Gaussian models [54, 73] and Gaussian

process dynamic programming [18]. In general, the length of the training data is much longer
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Figure 2.1: For interpretation of the references to color in this and all other figures, the reader
is referred to the electronic version of this dissertation. The prediction results of applying
Gaussian process regression on the true and noisy sampling position are shown. The first,
second, and third rows correspond to the prediction, prediction error variance, and squared
empirical error (between predicted and true fields) fields. The first column shows the result
of applying Gaussian process regression on the true sampling positions. Second and third
columns show the results of applying Gaussian process regression on the noisy sampling
positions with 0.1 and 0.4 noise covariance matrices, respectively. True and noisy sampling
positions are shown in circles with agent indices in the second row.

than that of the test point for sensor network applications, therefore, our problem possibly

involves a high dimensional uncertainty vector for the sampling positions.

Gaussian process prediction with localization uncertainty can be obtained as a posterior

predictive distribution using Bayes’ rule. The main difficulty to this is that it has no analytic
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closed-form solution and has to be approximated either through Monte Carlo sampling [75]

or other approximation techniques such as variational inference [108]. As an important

analytical approximation technique, Laplace’s method has been known to be useful in many

such situations [100, 101]. Different Laplace approximation techniques have been analyzed

in terms of approximation error and computation complexity [68,69,100,101].

The contribution of this chapter is as follows. First, we formulate Gaussian process re-

gression with observations under the localization uncertainty due to the resource-constrained

(possibly mobile) sensor networks. Next, approximations have been obtained for analytically

intractable predictive mean, and predictive variance by using the Monte Carlo sampling and

Laplace’s method. Such approximation methods have been carefully tailored to our prob-

lems. In particular, a modified version of the moment generating function (MGF) approxi-

mation [101] has been developed as a part of Laplace’s method to reduce the computational

complexity. In addition, we have analyzed and compared the approximation error and the

complexity so that one can choose a tradeoff between the performance requirements and

constrained resources for a particular sensor network application. Another important con-

tribution has been to provide proof of concept tests and evaluate the proposed schemes in

real situations. We have applied the proposed approaches on the experimentally collected

real data from a dye concentration field over a section of a river and a temperature field of

an outdoor swimming pool.

The remainder of this chapter is organized as follows. In Section 2.2, we review Gaus-

sian process regression, Monte Carlo sampling and Laplace’s method briefly. In Section 2.3,

Gaussian process prediction in the presence of the localization uncertainty has been formu-

lated for a proposed sampling scheme as a Bayesian inference problem. We first present the

Monte Carlo estimators for the posterior predictive mean and variance in Section 2.4. In
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Section 2.5, using Laplace’s method, we provide approximations for the posterior predictive

statistics. Section 2.6 compares the computational cost and approximation accuracy over the

proposed estimators based on the Mont Carlo sampling and the Laplace’s method. Finally

the simulation and experimental results are provided in Sections 2.7 and 2.8, respectively.

2.2 Preliminaries

In this section, we review the spatio-temporal Gaussian process, Monte Carlo sampling and

Laplace’s method, which will be used throughout the chapter.

2.2.1 Gaussian Process Regression

A Gaussian process defines a distribution over a space of functions and it is completely

specified by its mean function and covariance function. Let x ∈ X := S × T ⊂ Rb denote

the index vector, where x := [ sT t ]T contains the sampling position s ∈ S ⊂ Rι and the

sampling time t ∈ T ⊂ R≥0. A Gaussian process, z(x) ∈ R, is formally defined as below.

Definition 2.2.1. A Gaussian process [84] is a collection of random variables, any finite

number of which have a joint Gaussian distribution.

For notational simplicity, we consider a zero-mean Gaussian process1 z(x) ∼ GP(0,

K(x, x′)) ∈ R. For example, one may consider a covariance function defined as

K(x, x′) = σf
2 exp

(
−
∥∥x− x′∥∥2

2σ2
0

)
, (2.1)

1A Gaussian process with a nonzero-mean can be treated by a change of variables. Even
without a change of variables, this is not a drastic limitation, since the mean of the posterior
process is not confined to zero [84].
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where x, x′ ∈ Rb. In general, the mean and the covariance functions of a Gaussian process

can be estimated a priori by maximizing the likelihood function [113].

Suppose, we have N noise corrupted observations without localization error, and D′ =

{(x[i], y[i]) | i = 1, · · · , N}. Assume that y[i] = z[i] +ε[i] ∈ R, where ε[i] is an independent and

identically distributed (i.i.d.) white Gaussian noise with variance σε
2. x is defined by x =

col(x[1], x[2], · · · , x[N ]) ∈ RbN . The collections of the realizations z = [ z[1] · · · z[N ] ]T ∈

RN and the observations y = [ y[1] · · · y[N ] ]T ∈ RN have the Gaussian distributions

z ∼ N (0,K(x)), y ∼ N (0,K(x) + σε
2I),

where K(x) ∈ RN×N is the covariance matrix of z obtained by (K(x))ij = K(x[i], x[j]),

and I is the identity matrix with an appropriate size. We can predict the value z? of the

Gaussian process at a point x? as [84]

z?|D′ ∼ N (µ?(x), σ?2(x)). (2.2)

In (2.2), the predictive mean is

µ?(x) = E(z?|D′) = k(x)T (K(x) + σε
2I)−1y, (2.3)

and the predictive variance is given by

σ?2(x) = Var(z?|D′) = σf
2 − k(x)T (K(x) + σε

2I)−1k(x), (2.4)

where k(x) ∈ RN is the covariance matrix between z and z? obtained by kj(x) = K(x[j], x?),
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and σf
2 = K(x?, x?) ∈ R is the variance at x?. (2.3) and (2.4) can be obtained from the

fact that

col(z?,y)|x?,x ∼ N

0,

 σf
2 k(x)T

k(x) (K(x) + σε
2I)


 . (2.5)

Note that the predictive mean in (2.3) and its prediction error variance in (2.4) require

the inversion of the covariance matrix whose size depends on the number of observations

N . Hence a drawback of Gaussian process regression is that its computational complexity

and memory space increase as more measurements are collected, making the method pro-

hibitive for agents with limited memory and computing power. To overcome this increase

in complexity, a number of approximation methods for Gaussian process regression have

been proposed. In particular, the sparse greedy approximation method [95], the Nystrom

method [112], the informative vector machine [58], the likelihood approximation [93], and

the Bayesian committee machine [104] have been shown to be effective for many problems.

In particular, it has been proposed that spatio-temporal Gaussian process regression can

be applied to truncated observations including only measurements near the target position

and time of interest for agents with limited resources [118]. To justify prediction based on

only the most recent observations, a similar argument has been made in [6] in the sense

that the data from the remote past do not change the predictors significantly under the

exponentially decaying correlation functions.

In this chapter, we also assume that at each iteration the mobile sensor networks only

needs to fuse a fixed number of truncated observations, which are near the target points of

interest, to limit the computational resources.
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2.2.2 Monte Carlo and Importance Sampling

In what follows, we briefly review Monte Carlo and Importance sampling based on [2]. The

idea of Monte Carlo simulation is to draw an i.i.d. set of random samples {x(i)}ri=1 from

a target density P(x), where x ∈ XN = R. These r random samples will be used to

approximate P(x) by an empirical point-mass function Pr(x) = 1
r

r∑
i=1

δ(x(i) − x), where

δ(·) denotes the Dirac delta. Consequently, the integrals I(f) can be approximated with

tractable sums Ir(f) that converge as follows.

Ir(f) =
1

r

r∑
i=1

f(x(i))
a.s.→
r→∞

I(f) =

∫
R
f(x)P(x)dx.

Ir(f) is an unbiased estimator. In addition, it will almost surely asymptotically converge to

I(f), which can be proved by the strong law of large numbers. Considering f : R → R for

simplicity, if f(·) satisfies σe
2 = E(f2(x)) − I2(f) < ∞, then the variance of the estimator

Ir(f) converges to σe
2

r as r increases. In particular, the central limit theorem provides

us with convergence in distribution as follows.
√
r (Ir(f)− I(f)) ⇒

r→∞
N (0, σe

2), where ⇒

denotes convergence in distribution.

Importance sampling is a special case of Monte Carlo implementation, having random

samples generated from an available distribution rather than the distribution of interest. Let

us introduce an arbitrary importance proposal distribution ρ(x) whose support includes the

support of P(x). We can then rewrite I(f) as I(f) =
∫
R f(x)ω(x)ρ(x)dx, where ω(x) =

P(x)
ρ(x)

is known as the importance weight. Simulating r i.i.d. samples {x(i)}ri=1 according to

ρ(x) and evaluating ω(x(i)), a possible unbiased Monte Carlo estimate of I(f) is given by

Îr(f) =
∑r
i=1 f(x(i))ω(x(i))/

∑r
i=1 ω(x(i)).

Under weak assumptions, the strong law of large numbers applies, yielding Îr(f)
a.s.→
r→∞

I(f).
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This integration method can also be interpreted as a sampling method where the posterior

density P(x) is approximated by P̂r(x) =
∑r
i=1 ω(x(i))δ(x− x(i))/

∑r
i=1 ω(x(i)), and Îr(f)

is the integration of f(x) with respect to the empirical measure P̂r(x).

In this chapter, we shall compute the ratio of two integrals in the form of

G(f) =

∫
R f(x)ω(x)ρ(x)dx∫
R ω(x)ρ(x)dx

, (2.6)

where ρ(x), f(x) and ω(x) are defined on a space R. To compute G(f) in (2.6), we use the

following approximation as proposed in [28].

Ĝr(f) =

∑r
i=1 f(x(i))ω(x(i))∑r

i=1 ω(x(i))
, (2.7)

where {x(i) | i = 1, · · · , r} is a sequence of i.i.d. random vectors, which is drawn from ρ(x)

distribution.

In the following theorem, which can be shown to be a special case of the results from [28],

we show the convergence properties of the approximation in (2.7) as functions of r, the

number of random samples [28].

Theorem 2.2.2. (Theorems 1 and 2 from [28]) Consider the approximation Ĝr(f) given in

(2.7) to the ratio given G(f) in (2.6). If ω(x)ρ(x) is proportional to a proper probability den-

sity function defined on R, and G(f),
∫
R ω(x)ρ(x)dx and

∫
R f

2(x)w2(x)ρ(x)dx are finite,

we have

Ĝr(f)
a.s.→
r→∞

G(f), and
√
r
(
Ĝr(f)−G(f)

)
⇒
r→∞

N (0, σ2
g),

where

σ2
g =

∫
R

(f(x)−G(f))2w2(x)ρ(x)dx.
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Proof. It is a straightforward application of the results from Theorems 1 and 2 in [28] to

(2.6) and (2.7).

2.2.3 Laplace Approximations

The Laplace method is a family of asymptotic approximations that approximate an integral

of a function, i.e.,
∫
R f(x)dx, where x ∈ R ⊂ Rm, and m = N × b. Let the function f(x) be

in a form f(x) = e−nh(x), where 1� n ∈ Z>0, and h : R → R is a two times continuously

differentiable real function on R. Let x̂ denote the exact mode of −h, i.e.,

x̂ = arg max
x∈R
−h(x).

Then Laplace’s method produces the approximation [100]:

∫
R
f(x)dx =

(
2π

n

)m
2
|φ(x̂)|

1
2 e−nh(x̂) +O(n−1), (2.8)

where φ(x̂) = [∇2h(x̂)]−1. The Laplace approximation in (2.8) will produce reasonable

results as long as the −h is unimodal or at least dominated by a single mode.

In practice it might be difficult to find the exact mode of −h. A concept of an asymptotic

mode is introduced to gauge the approximation error when the exact mode is not used [68].

Definition 2.2.3. x̆ is called an asymptotic mode of order O(n−k) for −h if ‖x̆ − x̂‖ →

0 as n→∞, and ∇h(x̆) = O(n−k).

Suppose that x̆ is an asymptotic mode of order O(n−1) for −h and {h, x̆} satisfies the
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regularity conditions. Then it follows that we have

∫
R
f(x)dx =

(
2π

n

)m
2
|φ(x̆)|

1
2 e−nh(x̆)Ch(x̆) +O(n−1), (2.9)

where Ch(x̆) is given by

Ch(x̆) = e
n
2∇h(x̆)T φ(x̆)∇h(x̆).

More precise form with the asymptotic mode of order O(n−2) is computed for an ap-

proximation of order O(n−3) in [69].

In many Bayesian inference applications and as in our problem, we need to compute

the ratio of two integrals. To this end, fully exponential Laplace approximations has been

developed by [100] to compute Laplace approximations of the ratio of two integrals, i.e.,

M =

∫
R e
−nu(x)dx∫

R e
−nh(x)dx

. (2.10)

If each of −u and −h has a dominant peak at its maximum, then Laplace’s method may

be directly applied to both the numerator and denominator of (2.10) separately. If the

regularity conditions are satisfied, using (2.8) for the denominator approximation and (2.9)

for the numerator approximation, Miyata [68] obtained the following approximation and its

error order ,

M̂ =
|∇2h(x̂)|

1
2 enh(x̂)

|∇2u(x̆)|
1
2 enu(x̆)

× Cu(x̆),

M = M̂+O(n−2),

(2.11)
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where x̂ is the exact mode of −h, and x̆ is the asymptotic mode of −u, and

Cu(x̆) = e

(
n
2∇u(x̆)T [∇2u(x̆)]−1∇u(x̆)

)
,

x̆ = x̂− [∇2u(x̂)]−1∇u(x̂).

(2.12)

Laplace approximations typically has an error of order O(n−1) as shown in (2.8) and (2.9).

On the other hand, fully exponential Laplace approximations for the ratio form yield an error

of order O(n−2) as shown in (2.11) since the error terms of order O(n−1) in the numerator

and denominator cancel each other [100].

Fully exponential Laplace approximations which are presented in (2.11) is limited for

positive functions. Then, Tierney et al. [101] proposed a second-order approximation to the

expectation of a general function g(x) (not necessarily positive) by applying the fully expo-

nential method to approximateM(τ) = E(eτg(x)) and then differentiating the approximated

M(τ). Consider M(τ) is defined as follow

M(τ) =

∫
R e
−nu(x)dx∫

R e
−nh(x)dx

=

∫
R e

τg(x)e−nh(x)dx∫
R e
−nh(x)dx

,

where u(x) = − τng(x)+h(x), and eτg(x) is positive, while g(x) could be positive or negative.

In particular, d
dτ M̂(τ) evaluated at τ = 0 yields a second-order approximation to E(g(x))

and its order of the error as follow.

E(g(x)) =
d

dτ
M(τ)

∣∣∣∣
τ=0

=
d

dτ
M̂(τ)

∣∣∣∣
τ=0

+O(n−2). (2.13)

This method, which is called moment generating function (MGF) Laplace approximation,

gives a standard-form approximation using the exact mode of −h(x) [101].
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Miyata [68,69] extended the MGF method for one without computing the exact mode of

−h(x). Let x̂ be an asymptotic mode of order O(n−1) for −h(x). Suppose that {h, x̂} satis-

fies the regularity conditions for the asymptotic-mode Laplace method. By using Theorem 5

in [68], the approximation of Ê(g(x)) and its error order are given as

Ê(g(x)) = g(x̂) +
1

2n
tr
(
∇2g(x̂)φ(x̂)

)
− 1

2n

m∑
ijk`=1

∂3h(x̂)

∂xi∂xj∂xk
φi`φjk

∂g(x̂)

∂x`

−∇g(x̂)Tφ(x̂)∇h(x̂),

E(g(x)) = Ê(g(x)) +O(n−2),

(2.14)

where φij is the i-th row, j-th column element of the matrix φ(x̂). Furthermore, if x̂ is the

exact mode of −h(x), then the approximation has a simpler form because the terms that

include ∇h(x̂) vanish

Ê(g(x)) = g(x̂) +
1

2n
tr
(
∇2g(x̂)φ(x̂)

)
− 1

2n

m∑
ijk`=1

∂3h(x̂)

∂xi∂xj∂xk
φi`φjk

∂

∂x`
g(x̂). (2.15)

2.3 The Problem Statement

In practice, D′ (data with perfect localization) is not available due to localization uncertainty,

and instead its exact sampling points will be replaced with noise corrupted sampling points.

To average out measurement and localization noises, in this chapter, we propose to use a

sampling scheme in which multiple measurements are taken repeatedly at a set of sampling

points of a sensor network. For robotic sensors or mobile sensor networks, this sampling

strategy could be efficient and inexpensive since the large energy consumption is usually due

to the mobility of the sensor network. Let N sensing agents be indexed by J = {1, · · · , N}.
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From the proposed sampling scheme, we assume that each agent takes multiple data pairs

{(x̄[i], y[i]) | i ∈ I}, which are indexed by I = {1, · · · , n} at a set of sampling points by the

sensor network {x[j] | j ∈ J }. We then define the map ψ : I → J that takes the index of

the data pair in I as the input and returns the index of the sensor that produced the data

pair as the output. Consider the following realizations using the sampling scheme and the

notation just introduced.

x̄[i] = x(ψ(i)) + v[i] ∈ Rb, ∀i ∈ I

y[i] = z(ψ(i)) + ε[i] ∈ R, ∀i ∈ I,

where ε[i] is an i.i.d. white Gaussian noise with a zero mean and a variance of σε
2, i.e.,

ε[i] ∼ N (0, σε
2) and v[i] is a localization error which has a multivariate normal distribution

with a zero mean and a covariance matrix Σv ∈ Rb×b, i.e., v[i] ∼ N (0,Σv). For instance,

the distribution of the localization error may be a result of the fusion of GPS and INS

measurements [102], or landmark observations and robot’s kinematics [24].

To simplify the notation, D is introduced to denote the data with the measurement noise

and localization error as follows.

D =
{

(x̄[i], y[i]) | i ∈ I
}
. (2.16)

We also define the collective sampling point vectors with and without localization uncer-

24



tainty, and the cumulative localization noise vector, respectively by

x = col(x[1], x[2], · · · , x[N ]) ∈ RbN ,

x̄ = col(x̄[1], x̄[2], · · · , x̄(n)) ∈ Rbn,

v = col(v[1], v[2], · · · , v(n)) ∈ Rbn.

(2.17)

From the proposed sampling scheme, to average out the measurement and localization un-

certainties, the number of measurements n can be increased without increasing the number

of sensors N , and consequently without increasing the dimension of x ∈ RbN . Hence, this

approach may be efficient for the resource-constrained (mobile) sensor network at the cost

of taking more measurements. Using collective sampling point vectors in (2.17), we have the

following relationship.

x̄ = Lx + v, (2.18)

where L = L̄⊗ Ib ∈ Rbn×bN , L̄ ∈ Rn×N and
(
L̄
)
ij = 1 if ψ(i) = j, otherwise

(
L̄
)
ij = 0.

The conditional probabilities P(x̄|x) and P(x|x̄) can be expressed as

P(x̄|x) =
1

|2πΣv|
1
2

e−
1
2(x̄−Lx)TΣ−1

v (x̄−Lx),

P(x|x̄) =
P(x̄|x)P(x)∫
R P(x̄|x)P(x)dx

,

where Σv = In ⊗ Σv ∈ Rbn×bn. From a Bayesian perspective, we can treat x as a random

vector to incorporate a prior distribution on x. For example, if we assign a prior distribution

on x such that x ∼ N (0,Σx) then we have

P(x|x̄) =
1

|2πΣ̊|
1
2

e−
1
2(x−Hx̄)T Σ̊−1(x−Hx̄). (2.19)

25



where H = Σ̊LTΣ−1
v and Σ̊−1 = Σ−1

x + LTΣ−1
v L.

Evaluating posterior predictive statistics such as the density, the mean, and the variance

are of critical importance for the sensor network applications.

Therefore, given the data D in (2.16), our goal is to compute the posterior predictive

statistics. In particular we focused on the following two quantities given in detail.

• The predictive mean estimator (PME) is given by E(z?|D) =
∫
Z z

? P(z?|D)dz?.

E(z?|D) =

∫
Z z

?
∫
R P(z?|x,y)P(y|x)P(x|x̄)dxdz?∫

R P(y|x)P(x|x̄)dx

=

∫
R µ

?(x)P(y|x)P(x|x̄)dx∫
R P(y|x)P(x|x̄)dx

,

(2.20)

where µ?(x) is given by (2.3).

• The predictive variance estimator (PVE) is obtained similarly. From the following

equation,

E(z?2|D) =

∫
R
(∫
Z z

?2 P(z?|x,y)dz?
)
P(y|x)P(x|x̄)dx∫

R P(y|x)P(x|x̄)dx
,

where
∫
Z z

?2 P(z?|x,y)dz? = σ?2(x) + µ?2(x), we obtain Var(z?|D) given as the fol-

lowing formula.

Var(z?|D) =

∫
R(σ?2(x) + µ?2(x))P(y|x)P(x|x̄)dx∫

R P(y|x)P(x|x̄)dx
− E2(z?|D), (2.21)

where σ?2(x) is given by (2.4).

The main challenge to our problems is the fact that there are no closed-form formulas
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for the posterior predictive statistics listed in (2.20), and (2.21). Therefore, in this chap-

ter, approximation techniques will be carefully applied to obtain approximate solutions.

In addition, the tradeoffs between the computational complexity and the precision will be

investigated for the sensor networks with limited resources.

From (2.19), one might be tempted to use the best estimate of x, e.g., the conditional

expectation of x for given measured locations x̄, i.e., E(x|x̄) for Gaussian process regression.

Comparison between these type of quick-and-dirty solutions and the proposed Bayesian

approaches will be evaluated and discussed with simulated and experimental data presented

in Sections 2.7 and 2.8, respectively.

2.4 The Monte Carlo method

In this section, we propose importance sampling to compute the posterior predictive statis-

tics. We also summarize the convergence results of the MC estimators based on Theo-

rem 2.2.2.

2.4.1 Predictive mean

The predictive mean estimator is given by (2.20). Using importance sampling to approximate

(2.20) leads to the following equation,

Ê(z?|D) =

∑r
i=1 P(y|x(i))µ?(x(i))∑r

i=1 P(y|x(i))
. (2.22)
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Theorem 2.2.2 and (2.22) lead to

Ê(z?|D)
a.s.→
r→∞

E(z?|D),(
E(z?|D)− Ê(z?|D)

)
⇒
r→∞

N
(

0,
σ2
m

r

)
,

where σ2
m =

∫
R (µ?(x)− E(z?|D))2 P2(y|x)P(x|x̄)dx, µ?(x) is calculated from (2.3), and

x(i) has been sampled from P(x|x̄) given by (2.19).

2.4.2 Predictive variance

For the prediction error variance given by (2.21), we have

Var(z?|D) = E
(
σ?2(x)

)
+ Var (µ?(x)) .

Thus, we propose the following estimator.

V̂ar(z?|D) =

∑r
i=1 P(y|x(i))σ?2(x(i))∑r

i=1 P(y|x(i))

+

∑r
i=1 P(y|x(i))(µ?(x(i))− Ê(z?|D))2∑r

i=1 P(y|x(i))
,

(2.23)

where σ?2(x(i)) = Var(z?|x(i),y), µ?(x(i)) = E(z?|x(i),y) are obtained from the formulas

similar to (2.4) and (2.3), and Ê(z?|D) is given by (2.22).

Applying Theorem 2.2.2 for f(x) = σ?2(x) + (µ?(x) − Ê(z?|D))2, ω(x) = P(y|x), and

ρ(x) = P(x|x̄), we obtain the following results.

V̂ar(z?|D)
a.s.→
r→∞

Var(z?|D),
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where

Var(z?|D) = E(z?2|D)− 2E(z?|D)Ê(z?|D) + Ê2(z?|D),(
Var(z?|D)− V̂ar(z?|D)

)
⇒
r→∞

N
(

0, σ2
zr
−1
)
,

and

σ2
z =

∫
R

(σ?2(x) + (µ?(x)− Ê(z?|D))2 − Var(z?|D))2 P2(y|x)P(x|x̄)dx.

Remark 2.4.1. Since E(z?|D) is not available in (2.23), Ê(z?|D) is used instead. Sub-

sequently, the convergence results for V̂ar(z?|D) are given with respect to Var(z?|D) which

converges to Var(z?|D) as r →∞ by the definition.

2.5 Fully Exponential Laplace Approximations

In this section, we propose fully exponential Laplace approximations to compute the posterior

predictive statistics. In the process of applying Laplace approximations, we also obtain the

estimation of the sampling points given D as a by-product. From the observations D given

by (2.16), we can update the estimates of the sampling points x. To this end, we use the

maximum a posteriori probability (MAP) estimate of x given by

x̂MAP = arg max
x∈R

P(y|x)P(x|x̄). (2.24)
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2.5.1 Perdictive mean

The predictive mean estimator, given by (2.20), can be approximated using MGF method

(2.14). To compute E(z?|D), let g(x) = µ?(x). Using

h(x) = − 1

n
ln (P(y|x)P(x|x̄)), (2.25)

the predictive mean estimation using MGF method (MGF-PME), Ê(z?|D) and its error

order are given as

Ê(z?|D) = Ê(g(x)),

E(z?|D) = Ê(z?|D) +O(n−2),

(2.26)

where Ê(g(x)) is given in (2.14) or (2.15). However, the MGF-PME given by (2.26) needs

the computation of the third derivative of h, which increases the complexity of the algorithm.

In this chapter, another MGF method has been developed in order not to use the third

derivative of h. To approximate the derivative of M(·) at a point τ in (2.13), we utilize

a three-point estimation, which is the slope of a nearby secant line through the points

(τ − ζ,M(τ − ζ)) and (τ + ζ,M(τ + ζ)). Approximating the derivative in (2.13) with the

three-point estimation, we can avoid the third derivative in (2.14) or (2.15). We summarize

our results in the following theorem.

Theorem 2.5.1. Let x̂ be the exact mode of −h(x). The three-point predictive mean esti-
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mator (TP-PME) and its order of the error are given by

Ê(z?|D) =
1

2
n

3
4

∣∣∣∇2h(x̂)
∣∣∣12 enh(x̂)

×

{∣∣∣∇2̊b(x̂̊
b
)
∣∣∣−1

2 C̊
b
(x̂̊
b
)e
−n̊b(x̂̊

b
) −

∣∣∣∇2p̊(x̂p̊)
∣∣∣−1

2 Cp̊(x̂p̊)e
−np̊(x̂p̊)

}
,

Ê(z?|D) = E(z?|D) +O(n−3/2),

(2.27)

where h(x) is given by (2.25), and we have used the following definitions

b̊(x) = h(x)− n−
7
4µ?(x),

p̊(x) = h(x) + n−
7
4µ?(x),

x̂̊
b

= x̂− [∇2̊b(x̂)]−1∇̊b(x̂),

x̂p̊ = x̂− [∇2p̊(x̂)]−1∇p̊(x̂),

C̊
b
(x̂̊
b
) = e

n
2 ∇̊b(x̂̊b)

T [∇2̊b(x̂̊
b
)]−1∇̊b(x̂̊

b
)
,

Cp̊(x̂p̊) = e
n
2∇p̊(x̂p̊)T [∇2p̊(x̂p̊)]−1∇p̊(x̂p̊)

.

Proof. First we use the three-point method to approximate derivative such that

d

dτ
M(τ)

∣∣∣∣
τ=0

=
M(ζ)−M(−ζ)

2ζ
+O(ζ2).

Plugging M(ζ) = M̂(ζ) +O(n−2) into the above equation and using (2.13), we obtain

Ê(z?|D) =
M̂(ζ)− M̂(−ζ)

2ζ
+O(n−2)O(ζ−1) +O(ζ2). (2.28)

By selecting ζ = n−3/4, we recover the order of the error O(n−2)O(ζ−1) + O(ζ2) =

O(n−3/2). By computing the estimates M̂(ζ) and M̂(−ζ) in (2.28) using (2.11), (2.27)
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is obtained.

Remark 2.5.2. The complexity of either (2.14) or (2.15) is O(n4) while the complexity of

(2.27) is O(n3). In return, the error of (2.15) is of order O(n−2) and the error of (2.27) is

of order O(n−3/2).

2.5.2 Predictive variance

We now apply Laplace’s method to approximate the prediction error variance in a similar

way. The prediction error variance is given by (2.21). In this case, h(x) is given by (2.25)

and u(x) = − 1
n

(
ln(σ?2(x) + µ?2(x)) + ln(P(y|x)P(x|x̄))

)
. Applying (2.11) to this case, the

approximate of Var(z?|D) and its order of the error are given by

V̂ar(z?|D) =
|∇2h(x̂)|

1
2 enh(x̂)

|∇2u(x̆)|
1
2 enu(x̆)

Cu(x̆)− Ê2(z?|D),

V̂ar(z?|D) =Var(z?|D) +O(n−3/2),

(2.29)

where x̂ is the exact mode of −h, and x̆ is the asymptotic mode of −u. Cu(x̆) and x̆ are

given by (2.12) and Ê(z?|D) is given by (2.27).

2.5.3 Simple Laplace approximations

To minimize the computational complexity, one may prefer a simpler approximation. In

this chapter, we propose such a simple approximation at the cost of precision, which is

summarized in the following theorem.

Theorem 2.5.3. Let x̂ be an asymptotic mode of order O(n−1) for −h given by (2.25).

Assume that {h, x̂} satisfies the regularity conditions. Consider the following approximations
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for E(z?|D) and Var(z?|D)

Ê(z?|D) = kT (x̂)(K(x̂) + σε
2I)−1y, (2.30)

V̂ar(z?|D) = σf
2 − kT (x̂)(K(x̂) + σε

2I)−1k(x̂), (2.31)

where K(x̂) and k(x̂) are covariance matrices as in (2.3) but obtained with x̂.

We have then the following order of errors.

Ê(z?|D) = E(z?|D) +O(n−1),

V̂ar(z?|D) = Var(z?|D) +O(n−1).

Proof. The approximation for E(z?|D) given by (2.30) is the first term of (2.14) neglecting

high order terms. The second and third terms in (2.14) have n−1 inside. x̂ is an asymptotic

mode of orderO(n−1) for−h. By Definition 2.2.3, the last term of (2.14) that contains∇h(x̂)

is O(n−1). Hence, without these high order terms, we obtain a simpler approximation of

order O(n−1).

The approximation for Var(z?|D) given by (2.31) can be obtained by approximating

(2.21) with the first term of the MGF approximation. Let g(x) = σ?2(x) + µ?2(x), then

Var(z?|D) = E(g(x)|D) − E2(z?|D). Using the first term of MGF E(g(x)|D) = g(x̂) +

O(n−1) = σ?2(x̂) + µ?2(x̂) + O(n−1), and using E2(z?|D) = µ?2(x̂) + O(n−1), we obtain

Var(z?|D) = σ?2(x̂) + O(n−1). The procedure of showing the order of the approximation

error is the same as what was shown for the approximation in (2.30).

Remark 2.5.4. Note that the simple Laplace predictive mean and variance estimators in

(2.30) and (2.31) take the same forms of the original predictive mean and variance without
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the localization error, respectively given in (2.3) and (2.4), evaluated at the MAP estimator

of x. As we previously mentioned, x̂ is the mode of −h given by (2.25) and is the MAP

estimator of x, i.e., x̂ = x̂MAP as defined in (2.24). Therefore, the difference in the simple

Laplace approximations with respect to a quick-and-dirty solution in which the measured

location vector x̄ is used is that the simple Laplace approximations use x̂ instead of x̄.

In applying Laplace’s method, using the one step Newton gradient method to compute

asymptotic modes, e.g., x̆ required in (2.29) or x̂̊
b

and x̂p̊ required in (2.27) may not satisfy

the regularity conditions. In this case, one needs to continue the Newton gradient optimiza-

tion until the regularity conditions are satisfied.

2.6 Error and Complexity Analysis

In this section, we analyze the order of the error and the computational complexity for the

proposed approximation methods, which are summarized in Table 2.1. A tradeoff between

the approximation error and complexity can be chosen taking into account the performance

requirements and constrained resources for a specific sensor network application.

For Laplace’s method, the order of the error ranges from O(n−1) to O(n−2) at the cost

of complexity from O(n3) to O(n4) as shown in Table 2.1.

For the Monte Carlo estimators, we introduce O(σr), which is the probabilistic error

order and it implies that the estimation error converges to N (0, σ2
r ) in distribution as the

number of random samples r increases. Therefore it is not appropriate to compare the error

bound between Monte Carlo and Laplace’s method exactly. Monte Carlo algorithms are

used for multivariate integration of dimension b×N . The probabilistic error order of Monte

Carlo algorithms that use r sample evaluations is of order r−1/2 for a given n. We may
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Table 2.1: Error and complexity analysis

Estimator Method Error Complexity

MC-PME in (2.22) Monte Carlo O
(
σm√
r

)
O(n3 × r)

MGF-PME in (2.14) Laplace MGF O(n−2) O(n4)

TP-PME in (2.27) Laplace MGF O(n−3/2) O(n3)

S-PME in (2.30) Laplace MGF O(n−1) O(n3)
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Figure 2.2: A realization of the Gaussian process-ground truth.

assume that the order of the error for Monte Carlo methods do not depend on the number of

measurements n for a large n [28]. With this assumption, the number of samples needed for

Monte Carlo algorithms to reduce the initial probabilistic error by n−2 is of order r = n4.

The complexity of the Monte Carlo methods, for the investigated problems in this chapter,

is O(n3×r). To achieve the probabilistic error order O(n−2), the complexity of Monte Carlo

methods has to be O(n7). If we want to keep the error order at the level of O(n−2) and

O(n−2) for Laplace’s and Monte Carlo methods, respectively, the Monte Carlo methods are

slightly more expensive than Laplace’s method.

2.7 Simulation Results

In this section, we provide simulation results to evaluate the performances of different esti-

mation methods. To this end, a realization of a Gaussian process that will serve as ground
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truth is shown in Fig. 2.2. The Gaussian process is generated for σf =
√

2 and σ0 =
√

2 in

(2.1). The measurement noise and the sampling position uncertainty variance are σε = 0.01

and Σv =
√

0.1 × I, respectively. N = 20 and n = 40 imply that 20 robot takes measure-

ments twice at each sampling position. In Figs. 2.2-2.7, the predicted fields and predicted

error variance fields are shown with color bars.

The results from Gaussian process regression using the noiseless positions x and the noisy

measurement y are shown in Fig. 2.3.

To compare with typical quick-and-dirty solutions (QDS) to deal with noisy locations x̄

in practice, we define two solutions: QDS 1 and 2 approaches. QDS 1 is to applying Gaussian

process regression given by (2.3) and (2.4) by simply ignoring noises in the locations and

taking x̄ as the true positions, i.e.,

µ?(x̄) = kT (x̄)(K(x̄) + σε
2I)−1y. (2.32)

When the measurements are taken repeatedly as suggested in Section 2.3, QDS 1 could be

improved. In this regard, QDS 2 is to use the conditional expectation of sampling positions

x given x̄ as in (2.19) and the least squares solution of z for given y, which shall be plugged

into Gaussian process regression, i.e.,

µ?(Hx̄) = kT (Hx̄)(K(Hx̄) + σε
2I)−1[(L̄T L̄)−1L̄T z̄], (2.33)

where H is from (2.19) and L̄ is from (2.18). QDS 2 might be an improved version of

QDS 1 when there are many repeated measurements for a set of fixed sampling positions.

Figs. 2.4 and 2.5 show the results of applying QDS 1 and QDS 2 on x̄ and y, respectively.
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Table 2.2: Simulation RMS error

Estimator & Method Figure RMS error
Gaussian process regression in (2.3) Fig. 2.3 0.1281
QDS 1 in (2.32) Fig. 2.4 0.9126
QDS 2 in (2.33) Fig. 2.5 0.7374
Monte Carlo method in (2.22) Fig. 2.6 0.3403
Laplace’s method in (2.27) Fig. 2.7 0.3320
Simple Laplace method in (2.30) Fig. 2.8 0.3503

This averaging helps the QDS approach to generate smoother predictions, and it shows

improvement with respect to QDS 1.

The results of the Monte Carlo method with r = 1000 samples are shown in Fig. 2.6.

The results of Laplace’s method are shown in Fig. 2.7, and they look very similar to those of

the Monte Carlo methods in Fig. 2.6. Figs. 2.4-2.7 clearly shows that both the Monte Carlo

and Laplace’s method outperform QDS 1 and 2 with respect to the true field in Fig. 2.3.

To numerically quantify the performance of each approach, we have computed the root

mean square (RMS) error between the predicted and true fields for all methods, which are

summarized in Table 2.2. This RMS error analysis could be done since we know the true

realization of the Gaussian process exactly in this simulation study. As expected, Gaussian

process regression with the true locations perform best. The proposed approaches, i.e.,

Monte Carlo and Laplace’s method outperform QDS 1 and 2 in terms of RMS errors as well.
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Figure 2.3: Gaussian process regression using the true positions x. a) The predictive mean
estimation. b) The predictive variance estimation, and the true sampling positions x in
aquamarine crosses.

2.8 Experimental Results

2.8.1 Experiment with simulated noisy sampling positions

In this section, we apply proposed prediction algorithms to a real experimental data set to

model the concentration of 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3kPZS), a

synthesized sea lamprey (Petromyzon marinus) mating pheromone, in the Ocqueoc River,

MI, USA which the authors of [49] provided. The sea lamprey is an ecologically damaging

vertebrate invasive fish invader of the Laurentian Great Lakes [94] and a sea lamprey man-

agement program has been established [11]. A recent study by Johnson et al. [49] showed
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Figure 2.4: The results of the QDS 1 approximations using x̄. a) The predictive mean
estimation. b) The predictive variance estimation, and x̄ shown with aquamarine crosses.

that synthesized 3kPZS, a synthesized component of the male mating pheromone, when re-

leased into a stream to reach concentrations of 10−14 − 10−10 M (molar) or mol/L, triggers

robust upstream movement in ovulated females drawing ≈ 50% into baited traps. The abil-

ity to predict 3kPZS concentration at any location and time with a predicted uncertainty

level would allow for fine-scale evaluations of hypothesized sea lamprey chemo-orientation

mechanisms such as odor-conditioned rheotaxis [49]. Here 3kPZS was added to the stream

to produce pulsing excitation to sea lampreys by applying 3kPZS at two minutes inter-

vals [48]. To describe 3kPZS concentration throughout the experimental stream, rhodamine

dye (Turner Designs, Rhodamine WT, Sunnyale, CA, USA) was applied at the pheromone

release point (or source location) to reach a final in-stream concentration of 1.0 mug/L (mea-
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Figure 2.5: The results of the QDS 2 approximations using E(x|x̄). a) The predictive mean
estimation. b) The predictive variance estimation, and E(x|x̄) shown with aquamarine
crosses.

sure the concentration of the 3kPZS). The same pulsing strategy is used when 3kPZS was

applied. The dye and 2kPZS pumping systems are shown in Fig. 2.9-(a). An example of the

highly visible dye plume near the source location is shown in Fig. 2.9-(c).

To quantify dye concentrations in the stream, water samples were collected along tran-

sects occurring every 5 m from the sea lamprey release cage (0 m) to the application location

(73 m upstream of release cage) as shown in Fig. 2.9-(b). Three sampling positions were fixed

along each transect at 1/4, 1/2 and 3/4 of the channel width from the left bank. Water was

collected from the three sampling sites along a transect simultaneously (three samplers) ev-

ery 10 sec. for 2 minutes time interval. Further, a series of samples over 2 min were collected
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Figure 2.6: The results of the Monte Carlo approximations with 1000 samples using x̄. a)
The predictive mean estimation. b) The predictive variance estimation, and x̄ shown with
aquamarine crosses..

exactly 1 meter downstream of the dye application location. Water samples were collected in

5 ml glass vials and subsequently the fluorescence intensity of each sample measured at 556

nm was determined in a luminescence spectrometer (Perkin Elmer LSS55, Downers Grove,

IL, USA) and rhodamine concentration was estimated using a standard curve (R2 = 0.9998).

The objective here is to predict the spatio-temporal field of the dye concentration. In

fact, the sampling positions are exactly known from the experiment. Therefore, we will

intentionally inject some noises in the sampling positions to evaluate the proposed prediction

algorithms in this chapter. Before applying the proposed algorithms, the hyperparameters

such as σf and σ0 were identified from the experimental data by a maximum a posteriori
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Figure 2.7: The results of the Laplace approximations using x̄. a) Predictive mean estima-
tion. b) The predictive variance estimation, and x̄ shown with aquamarine crosses.

probability (MAP) estimator as described in [113]. On the other hand, the value for σε was

set to σε = 5×10−3 mug/L according to the noise level from the data sheet of the sensor. We

consider the anisotropic covariance function [113] to deal with the case that the correlations

along different directions in x = [x1, x2, x3]T ∈ R3 are different. Next, we performed a

change of variables such that in a transformed space and time. The covariance function,

given (2.1), could be used for the proposed approaches.

For the case of this experiment, the spatial correlation along the river flow direction is

different from the correlation perpendicular to the river flow direction. We consider the
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Figure 2.8: The results of the simple Laplace approximations using x̄. a) The predictive
mean estimation. b) The predictive variance estimation, and x̂ shown with aquamarine
crosses. x̂ is the estimation of the true sampling positions, computed as a by-product of
both fully exponential Laplace and simple Laplace approximations.

following covariance function in the units for the experimental data.

K(x, x′) = σf
2 exp

− 2∑
j=1

(xj − x′j)
2

2σ2
j

 . (2.34)

Using this covariance function in (2.34) and computing likelihood function with true value

of x, the hyperparameter vector θ := [σf , σ1, σ2] can be computed by the MAP estimator as

follow:

θMAP = arg max
θ∈Θ

P(y|θ)P(θ). (2.35)
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Figure 2.9: (a) The dye pumping system. (b) An example of normal dye concentration
applied to the stream for the pheromone distribution estimation. (c) An example of the
highly visible dye plume near the source location.
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Table 2.3: Experiment parameters

Description Parameter Value
Number of sensors N 15
Number of measurements n 15

The variability at a fixed point σf
√

0.3
Bandwidth σ1 (vertical) 1.6

σ2 (horizontal) 10.7

Noise covariance matrix Σv

[
4 0
0 0.089

]
Measurement noise level σε 0.005

Using the optimization in (2.35), we obtained σf =
√

0.3 mug/L, σ1 = 1.6 m and σ2 = 10.7

m. x1 and x2 are the coordinates of the vertical and horizontal (flow direction) axes of

Fig. 2.10. As we expect, we have σ1 < σ2, i.e., the field is more correlated along the river

flow direction as compared to the perpendicular to the river flow direction. Next, after finding

MAP estimates of hyperparameters σ1 and σ2, we change the scale of each component of x,

such that we have the same values for hyperparameters in the transformed coordinates. The

new coordinates are given by {xnewi =
σ0
σi
xi} and we recover

K(x, x′) = σf
2 exp

− b∑
i=1

(
(
σ0
σi

)xi − (
σ0
σi

)x′i

)2

2σ2
0

 ,

as in (2.1). Note that scaling xi with
σ0
σi

, also transforms the covariance matrix Σv in a

normalized space. Table 2.3 shows parameter values which are estimated and used for the

experimental data.

Fig. 2.10 shows the predicted field by applying Gaussian process regression on the true

positions x. To illustrate the advantage of proposed methods over the QDS approach in

dealing with the noisy localizations, we show the results of applying QDS 1, Monte Carlo,

Laplace, and simple Laplace approximations in Figs. 2.11, 2.12, 2.13, and 2.14, respectively.
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Figure 2.10: The results of Gaussian process regression using true x. a) The posterior mean
estimation. b) The posterior variance estimation, and x shown with aquamarine crosses.
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Figure 2.11: The results of the QDS 1 approach using noisy positions x̄. a) The predictive
mean estimation. b) The predictive variance estimation, and x̄ shown with aquamarine
crosses.

Since there is only one measurement per position, QDS 2 is same as QDS 1. As can be

seen in these figures, the peaks of the predicted fields by Monte Carlo and Laplace’s method
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Figure 2.12: The results of the Monte Carlo method with 1000 samples using noisy positions
x̄. a) The predictive mean estimation. b) The predictive variance estimation, and x̄ shown
with aquamarine crosses.
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Figure 2.13: The results of the Laplace method using noise augmented positions x̄ shown
with aquamarine crosses. a) The predictive mean estimation. b) The predictive variance
estimation and x̄ shown with aquamarine crosses.

with noisy x̄ are closer to the peak predicted by the true x than that of the QDS approach.

Indeed, QDS 1 has failed in Fig. 2.11 to produce a good estimation of the true field with
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Figure 2.14: The results of the simple Laplace method using noise augmented positions
x̄ shown with aquamarine crosses. a) The predictive mean estimation. b) The predictive
variance estimation and x̂ shown with aquamarine crosses.

Table 2.4: Experimental RMS error w.r.t. Gaussian estimation

Estimator & Method Figure RMS error
QDS 1 in (2.32) Fig. 2.11 0.3955
Monte Carlo method in (2.22) Fig. 2.12 0.1176
Laplace’s method in (2.27) Fig. 2.13 0.1305
Simple Laplace method in (2.30) Fig. 2.14 0.1252

neglecting the uncertainty in the positions, while Monte Carlo, Laplace and simple Laplace

methods, proposed in this chapter, produce good estimations in Figs. 2.12, 2.13, and 2.14,

respectively.

Gaussian regression using true x is our best estimation of the true field (Fig. 2.10).

Table 2.4 shows the RMS errors of the different estimation approaches using the noisy x (i.e.

x̄) with respect to Gaussian regression using the true x. As can be seen in Table 2.4, the

proposed approaches outperform QDS 1 in terms of the RMS error.
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2.8.2 Experiment with noisy sampling positions

In Section 2.8.1 we used the true and simulated noisy sampling positions to compare the

performance of the proposed approaches. In this section, we present another set of experi-

mental results under real localization errors. The experimental results were obtained using a

single aquatic surface robot in an outdoor swimming pool as shown in Fig. 2.15. The robot

is capable of monitoring the water temperature in an autonomous manner while could be

remotely supervised by a central station as well. To measure the location of the robot, we

used a Xsense MTi-G sensory unit [1] (as shown in the center of Fig. 2.15-(a)) which consists

of an accelerometer, a gyroscope, a magnetometer, and a Global Positioning System (GPS)

unit. A Kalman filter is implemented inside of this sensor by the company, which produces

the localization of the robot with accuracy of one meter. More information about this exper-

iment can be found in [39]. In this experiment, we have selected and identified the system

parameters based on a priori knowledge about the process and sensor noise characteristics.

Therefore, model hyperparameters such as σ0 = 2, Σv = I, σε = 0.005, and σf
2 = 0.3 are

known. The number of sampling positions and sampled measurements are N = n = 10.

To validate our approaches, we have controlled the temperature field by turning the hot

water pump on and off. The hot water outlet locations have been shown in Fig. 2.15-(b).

We turned on the hot water pump for a while. After that, the hot water pump was turned

off, and after 6 minutes, the robot collected 10 measurements with 10 sec. time intervals.

The estimated temperature and its error variance fields, by applying QDS 1, Monte Carlo,

fully exponential Laplace, and simple Laplace methods are shown in Figs. 2.16, 2.17, 2.18,

and 2.19, respectively. For each method, the estimated temperature and its error variance

fields are shown in subfigures of (a) and (b), respectively.
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Figure 2.15: a) The developed robotic sensor. b) The experimental environment- a 12 × 6
meters outdoor swimming pool.

As can be seen in Figs. 2.17, 2.18, and 2.19, results from Monte Carlo, fully exponential

Laplace, and simple Laplace methods are well matched.
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Figure 2.16: The results of the QDS 1 approach using noisy positions x̄. a) The predictive
mean estimation. b) The predictive variance estimation, and x̄ shown with aquamarine
crosses.

2.9 Conclusion

We have formulated Gaussian process regression with observations under the localization

uncertainty due to (possibly mobile) sensor networks with limited resources. Effects of the

measurements noise, localization uncertainty, and prior distributions have been all correctly

incorporated in the posterior predictive statistics in a Bayesian approach. We have reviewed

the Monte Carlo sampling and Laplace’s method, which have been applied to compute the

analytically intractable posterior predictive statistics of the Gaussian processes with local-

ization uncertainty. The approximation error and complexity of all the proposed approaches
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Figure 2.17: The results of the Monte Carlo method with 1000 samples using noisy positions
x̄. a) The predictive mean estimation. b) The predictive variance estimation, and x̄ shown
with aquamarine crosses.

have been analyzed. In particular, we have provided tradeoffs between the error and com-

plexity of Laplace approximations and their different degrees such that one can choose a

tradeoff taking into account the performance requirements and computation complexity due

to the resource-constrained sensor network. Simulation study demonstrated that the pro-

posed approaches perform much better than approaches without considering the localization

uncertainty properly. Finally, we applied the proposed approaches on the experimentally

collected real data to provide proof of concept tests and evaluation of the proposed schemes

in practice. From both simulation and experimental results, the proposed methods outper-
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Figure 2.18: The results of the Laplace approximations using x̄. a) Predictive mean estima-
tion. b) The predictive variance estimation, and x̄ shown with aquamarine crosses.

formed the quick-and-dirty solutions often used in practice.
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Figure 2.19: The results of the simple Laplace method using noise augmented positions
x̄ shown with aquamarine crosses. a) The predictive mean estimation. b) The predictive
variance estimation and x̂ shown with aquamarine crosses.
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Chapter 3

Position estimation using Gaussian

process regression

Abstract: This chapter presents a position estimation method for a robot using an omni-

directional camera. We present an approach to build a map from optimally selected visual

features using Gaussian Process (GP) regression. Optimal feature selection for regression

is challenging in general. In this chapter, we apply a cross-validation technique to select

features in order to improve the quality of the position estimation. The position of the robot

is estimated by a maximum likelihood estimation (MLE). The collection of selected features

over a surveillance region is modeled by a multivariate GP with unknown hyperparameters.

The hyperparameters are identified through the learning process by an MLE, which are used

in prediction in an empirical Bayes approach. The excellent results of the proposed algorithm

are illustrated by the experimental study under two different real-world scenarios with and

without uncertainty in sampling positions.

3.1 Introduction

Localization of a mobile robot relative to its environment using vision information has re-

ceived extensive attention over past few decades from the robotic and computer vision com-
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munities [5, 20]. Vision-based robot positioning involves two steps. The first step involves

learning some properties of vision data (features) with respect to the spatial position where

observation is made, so-called mapping. The second step is to find the best match for the

new spatial position corresponding to the newly observed features, so-called matching. The

mapping from these visual features to the domain of the associated spatial position is highly

nonlinear and sensitive to the type of selected features. In most cases, it is very difficult

to derive the map analytically. The features shall vary as much as possible over the spatial

domain while varying as small as possible for a given position over the disturbance. For

example, they should be insensitive to changes in illumination and partial obstruction.

Motivated by the aforementioned situations, we consider the problem of selecting features

from the original feature set in order to improve the localization performance of a robot.

The central assumption when using a feature selection technique is that the original feature

set contains many redundant or irrelevant features. To facilitate further discussion, let us

consider a configuration where the input vector X is the robot position and the output

feature vector Y is the collection of extracted features from the vision data. We first build

a feature map F at a robot location X such that F (X) = Y . In order to reduce position

estimation error, the ideal subset is defined as follows.

Yopt = arg min
Ŷ
‖X − F−1(Ŷ )‖2,

where Ŷ is a vector that consists of the selected entries of the original vector Y . However with

a high cardinality of the original feature set, the optimal solution relies on the combinatorial

optimization which is not feasible.

On the other hand, using mutual information criteria, F and F−1 could be chosen as
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follows:

F (X) = arg max
Y

I(X, Y ), F−1(Y ) = arg max
X

I(X, Y ),

where I(X, Y ) =
∫ ∫

P(X, Y ) log
(

P(X,Y )
P(X)P(Y )

)
is the mutual information of X and Y . Note

that, in the case where P(X) and P(Y ) are constant then F (X) is equivalent to the maximized

log-likelihood function. Guo et al. [33] show by using mutual information, one can achieve a

recognition rate higher than 90% while just using 0.61% of feature space for a classification

problem. The only issue with mutual information is with its computational complexity and

to avoid that, one has to avoid the higher dependencies among variables [81].

In order to make a fast and precise estimation, most of the existing localization algorithms

extract a small set of important features from the robotic sensor measurements. The features

used in different approaches for robotic localization range from C.1: artificial markers such

as color tags [45] and barcodes (that need to be installed) [92], C.2: geometric features such

as straight wall segments and corners [46], and to C.3: natural features such as light and

color histograms [4]. Most of the landmark-based localization algorithms are classified in C.1

and C.2. It is shown in [87] that autonomous navigation is possible for outdoor environments

with the use of a single camera and natural landmarks. In a similar attempt, [22] addressed

the challenging problem of indoor place recognition from wearable video recording devices.

The localization methods which rely on artificial markers (or static landmarks) have

three disadvantages: lack of flexibility, lack of optimality, and lack of autonomy. A method

is described in [99] that enables robots to learn landmarks for localization. Artificial neural

networks are used for extracting landmarks. However, the localization methods which rely

on dynamic landmarks [99] have disadvantages such as lack of stability. Furthermore, there

are reasons to avoid the geometric model as well, even when a geometric model does exist.
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Such cases may include: 1) the difficulty of reliably extracting sparse, stable features using

geometrical models, 2) the ability to use all sensory data directly rather than a relatively

small amount of abstracted discrete information obtained from feature extraction algorithms,

and 3) high computational and storage costs of dealing with dense geometric features.

In contrast to the localization problem with artificial markers or popular geometrical

models, there is a growing number of practical scenarios in which global statistical informa-

tion is used instead. Some works illustrate localization using various spatially distributed

(continuous) signals such as distributed wireless Ethernet signal strength [27], or multi-

dimensional magnetic fields [105]. In [110], a neural network is used to learn the implicit

relationship between the pose displacements of a 6-DOF robot and the observed variations

in global descriptors of the image, such as geometric moments and Fourier descriptors. In

similar studies, gradient orientation histograms [55] and low dimensional representation of

the vision data [103] are used to localize mobile robots. In [80], an algorithm is developed for

navigating a mobile robot using a visual potential. The visual potential is computed from

the image appearance sequence captured by a camera mounted on the robot. A method

for recognizing scene categories by comparing the histograms of local features is presented

in [59]. Without explicit object models, by using global cues as indirect evidence about the

presence of an object, they consistently achieve an improvement over an orderless image

representation [59].

The recent research efforts that are closely related to our problem are summarized as

follows. The location for a set of image features from new observations is inferred by com-

paring new features with the calculated map [7, 66, 67]. In [109], a neural network is used

to learn the mapping between image features and robot movements. Similarly, there exists

effort on automatically finding the transformation that maximizes the mutual information
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between two random variables [107]. Using Gaussian process (GP) regression, the authors

of [7,91] present effective approaches to build a map from a sparse set of noisy observations

taken from known locations using an omnidirectional camera. While the selection of visual

features for such applications determines the ultimate performance of the algorithms, such

a topic has not been investigated to date. Therefore, building on Brook’s approach [7] our

work expands it more on the feature extraction and selection in order to improve the quality

of localization. A Bayesian point of view is taken to make the map using a GP framework.

The contributions of the chapter are as follows. This chapter provides a position esti-

mation method for a robot using an omnidirectional camera. We present an approach to

build a map from optimally selected visual features using GP regression. First, we describe

how we can extract some robust properties from vision data captured by an omnidirectional

camera (Section 3.2). In particular, we describe how the fast Fourier transform (FFT) is

applied to the panoramic image to calculate a set of image properties. We then transform

the high dimensional vision data to a set of uncorrelated feature candidates. A multivariate

GP regression with unknown hyperparameters is formulated to connect the set of selected

features to their corresponding sampling positions (Section 3.3). An empirical Bayes method

using a point estimate is used to predict the feature map. Next, a feature reduction approach

is developed using a cross-validation method such that an optimal subset of the features is

selected to minimize the Root Mean Square Error (RMSE) (Section 3.4). The effectiveness of

the proposed algorithms is illustrated by excellent experimental results under two different

setups (Section 3.5). Additionally, some comparison results are presented under different

images features and feature selection methods.
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Figure 3.1: (a) and (b) show the wrapped omnidirectional image and the unwrapped
panoramic image, respectively. (c) and (d) show the reduced size gray scale image and
the two-dimensional FFT magnitude plot, respectively.

3.2 Image features

Conventional video cameras with projective lens have restricted fields of view. Adding mir-

rors of different shapes, 360◦ panoramic views can be achieved in a single image [26]. In

this chapter, to make localization insensitive to heading angle, a spherical mirror is used to

capture a 360◦ view from the environment of a robot.

Before an omnidirectional image is processed, it is first unwrapped. When it comes from

the camera, the image is a nonlinear mapping of a 360◦ panoramic view onto a donut shape.

Recovering the panoramic view from the wrapped view requires the reverse mapping of pixels

from the wrapped view onto a panoramic view [19, 66]. Figs. 3.1-(a) and 3.1-(b) show the

wrapped omnidirectional image and the unwrapped panoramic image, respectively.

The fast Fourier transform (FFT) is applied to the panoramic image to calculate a set of
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image properties y. For a square image of size N ×N , the two-dimensional FFT is given by

F [i](ρ, l) =
N−1∑
a=0

N−1∑
b=0

f [i] (a, b)e
−j2π(ρ aN+l bN )

,

where f [i] is the i-th two-dimensional realized image, and j is the imaginary unit. In order

to use FFT, we convert panoramic color images to gray scale 128 × 128 pixel images, i.e.,

[f(a, b)]. Fig. 3.1-(c) and (d) show the reduced size gray scale image and its two-dimensional

FFT magnitude plot, respectively. The Fourier transform is an important image process-

ing tool which is used to decompose an image into its periodic components. The output

of the transformation represents the image in the Fourier or frequency domain, while the

input image is in the spatial domain. In image processing, often only the magnitude of the

Fourier transformed image is utilized, as it contains most of the information of the geometric

structure of the spatial domain image [76]. The Fourier transform is used in a wide range of

applications such as image analysis, image filtering, image reconstruction, and image com-

pression. In addition, localization methods are proposed in [66, 110] where every image is

represented by a family of components in the Fourier domain.

We briefly highlight three properties obtained by applying the Fourier transform on the

omnidirectional images. First, the magnitude of the Fourier components can be represented

by a continuous function of the robot position. Next, the phase angles of the Fourier compo-

nents are related to the heading of the robot. Finally, by representing an image with a small

number of frequency components in the Fourier domain, data compression can be achieved.

In [66], it was shown that the first 15 components of FFT carry enough information to

correctly match a pair of images.

In an indoor environment most of the objects stand vertically. In this planer navigation

61



case, it is reasonable to assume that features in the horizontal direction are more important

than those in the vertical direction. For example, the borders between wall and doors and

widows in the horizontal direction will be observed by this planar robot. As expected,

from the spectrum Fig. 3.1-(c) it can be seen that almost all the information is contained

near the center and the low parts of the frequencies. It is reasonable that components in

the frequencies provide the best ground for the localization process. Therefore, the image

properties are computed by:

y
[i]
ρ =

∣∣∣F [i](ρ, 0)
∣∣∣ =

∣∣∣∣∣
127∑
b=0

(
127∑
a=0

f [i] (a, b)

)
e
−j2πρb

128

∣∣∣∣∣ , (3.1)

where |·| denotes the absolute value of a complex number.

Equation (3.1) can be interpreted as the one-dimensional FFT of the image that is aver-

aged over the vertical direction.

In addition to the FFT coefficients, the histogram for the image, and wavelet coefficients

could be used as image properties [59]. An image histogram is a type of the histogram that

acts as a graphical representation of the tonal distribution in a digital image. The number

of different tonal bins in the histogram is specified by the number of properties. Then the

histogram determines the number of pixels for each tonal value. A discrete wavelet transform

(DWT) is a wavelet transform for which the wavelets are discretely sampled. The wavelet

coefficients is also used widely by appearance-based place recognition methods [7, 103]. In

Section 3.5, we will experimentally evaluate our approach with features obtained by using

FFT, histogram, and discrete wavelet transforms.
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3.3 Gaussian process (GP) model

We propose a multivariate GP as a model for the collection of image features. A GP defines

a distribution over a space of functions and it is completely specified by its mean function

and covariance function. We denote that y
[i]
ρ := yρ

(
s[i]
)
∈ R is the i-th realization of the

ρ-th image property and s[i] ∈ S is the associated position where the realization occurs.

Here S denotes the surveillance region, which is a compact set. Then, the accumulative

image properties y is a random vector defined by y =
(
yT1 , · · · , y

T
m

)T
∈ Rnm, and yρ =(

y
[1]
ρ , · · · , y[n]

ρ

)
∈ Rn contains n realizations of the ρ-th image property.

We assume that the accumulative image properties can be modeled by a multivariate

GP, i.e. y ∼ GP(Γ,Λ), where Γ : Sn → Rmn and Λ : Sn → Rmn×mn are the mean function

and the covariance function, respectively. However, the size and multivariate nature of the

data lead to computational challenges in implementing the framework.

For models with multivariate output, a common practice is to specify a separable covari-

ance structure for the GP for efficient computation. For example, Higdon [36] calibrated

a GP simulator with the high dimensional multivariate output, using principal components

to reduce the dimensionality. Following such model reduction techniques, we transform the

vector y to a vector z such that its elements
{
zρ|ρ ∈ Ωm

}
, where Ωm = {1, · · · ,m} are i.i.d.

The statistics of y can be computed from the learning dataset.

µy =
1

2

n∑
i=1

y[i], Σy =
1

n− 1

n∑
i=1

||y[i] − µy||2.

The singular value decomposition (SVD) of Σy is a factorization of the form Σy = USUT ,

where U is a real unitary matrix and S is a rectangular diagonal matrix with nonnegative

real numbers on the diagonal. In summary, the transformation will be performed by the
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following formula.

z[i] = S−1/2UT (y[i] − µy). (3.2)

From now on, we assume that we applied the transformation given by (3.2) to the visual

data. Hence, we have the zero-mean multivariate GP: z(s) ∼ GP(0,K(s, s′)), which consists

of multiple scalar GPs that are independent of each other.

3.3.1 The ρ-th random field

In this subsection, we only consider the ρ-th random field (visual feature). Other scalar

random fields can be treated in the same way. The collection of n realized values of the

ρ-th random field is denoted by zρ := (z
[1]
ρ , · · · , z[n]

ρ )T ∈ Rn, where z
[i]
ρ := zρ(s

[i]) is the

i-th realization of the ρ-th random field and s[i] = (s
[i]
1 , s

[i]
2 ) ∈ S ⊂ R2 is the associated

position where the realization occurs. We then have zρ(s) ∼ N (0,Σρ), where Σρ ∈ Rn×n is

the covariance matrix. The i, j-th element of Σρ is defined as Σ
[ij]
ρ = Cov (z

[i]
ρ , z

[j]
ρ ). In this

chapter, we consider the squared exponential covariance function [85] defined as

Σ
[ij]
ρ = σ2

f,ρ exp

−1

2

2∑
`=1

(s
[i]
` − s

[j]
` )2

σ2
`,ρ

 . (3.3)

In general, the mean and the covariance functions of a GP can be estimated a priori by

maximizing the likelihood function [114].

The prior distribution of zρ is given by N (0,Σρ). A noise corrupted measurement z̃
[i]
ρ at

its corresponding location s[i] is defined as follows.

z̃
[i]
ρ = z

[i]
ρ + ε

[i]
ρ , (3.4)
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where the measurement errors {ε[i]ρ } are assumed to be an independent and identically dis-

tributed (i.i.d.) Gaussian white noise, i.e., ε
[i]
ρ
i.i.d.∼ N (0, σ2

ε,ρ). Thus, we have that

z̃ρ ∼ N (0, Rρ),

where Rρ =
(
Σρ + σ2

ε,ρI
)
. The log-likelihood function is defined by

Lθ,ρ = −1

2
z̃Tρ Rρz̃ρ −

1

2
log |R|ρ −

n

2
log 2π, (3.5)

where n is the size of z̃ρ.

The hyperparameter vector of the ρ-th random field is defined as θρ = (σf,ρ, σε,ρ, σ1,ρ, σ2,ρ)

∈ R4
>0. Using the likelihood function in (3.5) the hyperparameter vector can be computed

by the ML estimator

θ̄ρ = arg max
θ

Lθ,ρ, (3.6)

which will be plugged in prediction as in an empirical Bayes way.

All parameters are learned simultaneously. If no prior information is given, then the

maximum a posteriori probability (MAP) estimator is equal to the ML estimator [114].

In a GP, every finite collection of random variables has a multivariate normal distribution.

Consider a realized value of the ρ-th random field z?ρ being taken from the associated location

s?. The probability distribution P(z?ρ|s?, s, z̃ρ) is a normal distribution with the following

mean and variance.

µρ(s
?) = CTρ R

−1
ρ z̃ρ, σ2

ρ(s?) = σ2
f,ρ − C

T
ρ R
−1
ρ Cρ, (3.7)
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where the covariance Cρ := Cov (z?ρ, zρ) ∈ R1×n is defined similar to (3.3).

In order to estimate location s?, using the MAP estimator, we need to compute

P(s?|z̃?ρ, s, z̃ρ), where the noisy observation z̃?ρ is the summation of the realized values of the

random field z?ρ and a noise process.

P(s?|z̃?ρ, s, z̃ρ) =
P(z̃?ρ|s?, s, z̃ρ)P(s?|s, z̃ρ)

P(z̃?ρ|s, z̃ρ)
. (3.8)

A MAP estimator given the collection of observations z̃ρ is a mode of the posterior

distribution.

s̄?ρ = arg max
s?∈S

P(s?|z̃?ρ, s, z̃ρ). (3.9)

If P(s?|s, z̃ρ) and P(z̃?ρ|s, z̃ρ) are uniform probabilities, then the MAP estimator is equal

to the ML estimator, given by

s̄?ρ = arg max
s?∈S

Lρ(s
?), (3.10)

where the ρ-th log-likelihood function, i.e., Lρ(s
?), is defined as follows.

Lρ(s
?) =

−1

2

(
|z̃?ρ − µρ(s?)|2

σ2
ε,ρ + σ2

ρ(s?)
+ log

(
σ2
ε,ρ + σ2

ρ(s?)
)

+ log 2π

)
. (3.11)

3.4 Localization and feature selection

Let Ω be the collection of indices that are associated to the multiple scalar random fields

(of the multivariate GP). Provided that all scalar random fields (of the multivariate GP) are

independent of each other, we then obtain a computationally efficient ML estimate of the
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location given the observations of all scalar random fields {z̃ρ|ρ ∈ Ω} as follows.

s̄?Ω = arg max
s?∈S

∑
ρ∈Ω

Lρ(s
?), (3.12)

where Lρ(s
?) is the ρ-th log-likelihood function as given in (3.11).

In this chapter, a hold-out cross-validation technique [52] is used for the model selection.

It is mainly used in settings where the goal is prediction, and one wants to estimate how

accurately a predictive model will perform in practice. To this end, we divide the dataset

into two segments: one used to learn or train the GP model and the other used to validate

the model.

The RMSE is used to measure the performance of GP models. It is defined by the

following equation.

RMSE(Ω) =

√√√√ 1

nc

nc∑
i=1

∥∥∥s[i]
c − s̄?Ω

∥∥∥2
, (3.13)

where ‖ ·‖ is the Euclidean norm of a vector. In the case that Ω = ∅, we define the following.

RMSE(∅) =

√√√√ 1

nc

nc∑
i=1

∥∥∥s[i]
c −median(sc)

∥∥∥2
,

where median(·) is the median of a random vector. Assume that Ωm = {1, · · · ,m} is the set

of all features. Dupuis et al. [23] reported that the backward sequential selection outperform

the forward sequential selection. Thus, we use a backward sequential selection algorithm as

67



Algorithm 1 Learning maps from a sparse set of panoramic images observed in known
locations

Input: (1) training dataset includes a set of panoramic images captured from
known spatial sites,

Output: (1) a linear transformation from image properties to uncorrelated
visual features,
(2) the estimated hyperparameter, the estimated mean and the esti-
mated variance function of each independent visual feature,

1: extract image properties y[i] in the available learning dataset using (3.1)

2: use SVD to make a set of uncorrelated visual features z[i] using (3.2)
3: for each independent visual feature estimate hyperparameters using (3.6)
4: compute the mean function and variance function for each of independent features

using (3.7)
5: choose optimal subset of visual features using (3.15) to eliminate some of the visual

features that are worthless for the localization goal.

follows.

Ω`−1 = Ω` − arg min
ρ∈Ω`

RMSE(Ω` − ρ),∀` ∈ Ωm, (3.14)

where Ω` − ρ = {p|p ∈ Ω`, p 6= ρ}.

Finally a subset of features is selected as follows.

Ωopt = arg min
Ω=Ω1,··· ,Ωm

RMSE(Ω). (3.15)

The optimum subset Ωopt has the minimum RMSE among {Ω1, · · · ,Ωm}. The mapping and

matching steps of the proposed approaches in this chapter are summarized in Algorithm 1

and Algorithm 2, respectively.
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Algorithm 2 Localization predictive inference using learned map of visual features

Input: (1) a linear transformation from image properties to uncorrelated
visual features,
(2) the estimated hyperparameter and the estimated mean and vari-
ance function of selected visual features,

Output: (1) position of newly captured images.

1: capture new images and obtain image properties y? using (3.1)
2: compute the selected visual features z? using (3.2)
3: compute the likelihood function of selected features ρ ∈ Ωopt over possible sampling

positions using (3.11)
4: determine the estimated position s̄?Ωopt

using (3.12)

3.5 Experimental Results

In this section, we demonstrate the effectiveness of the proposed localization algorithms using

experiments. We report results on two different datasets of Case 1 and Case 2, obtained

from two experimental setups.

3.5.1 Experimental setups

In Case 1, the Kogeto panorama lens was used to capture 360-degree images. In total,

207 pairs of exact sampling positions were recorded manually and corresponding captured

panoramic images on a regular lattice (23× 9 feet2) were collected.

In Case 2, a vision-based robotic sensor was built by the authors to validate a proof of

concept for the proposed methods. The wireless mobile robot is equipped with two motorized

wheels, a micro-controller, a 360 degree omnidirectional camera, a wireless receiver, and a

transmitter. The omnidirectional camera was built from a cheap camera (Ai-Ball Treck R©)

and a spherical mirror. The 360 degree images of the environment around the robot produced

by the omnidirectional camera were steamed via 802.11 b/g Wi-Fi (see Fig. 3.2). In Case 2,

we collected 825 pairs of noisy sampling positions recorded automatically by image processing
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software (using an exterior camera), and corresponding captured panoramic images. The

noise power of the image processing software is 1 square foot, and the samples were taken

on a 10× 26 feet2 surface.

Figs. 3.2-(a) and 3.2-(b) show two different hardware setups for Case 1 and Case 2,

respectively. The datasets are divided into 80% learning, 10% cross-validation and 10%

testing subsets. The learning subset is used to estimate hyperparameters, mean functions,

and variance functions of GP models for the scalar fields. The cross-validation subset is used

to select the best features in order to minimize the localization estimation error. After the

training, the testing subset is used to evaluate the algorithm performance.

3.5.2 Learning of GP models in an empirical Bayes approach

As illustrative examples, we apply the proposed algorithm on both dataset with 32 computed

visual features. Figs. 3.3 and 3.4 show the estimated hyperparameters (k ∈ Ω32) for Case 1

and Case 2, respectively. The variance of the random field σf , the spatial bandwidths β1 and

β2, and the noise variance σε are estimated for each independent feature, individually. Thus,

32 × 4 = 128 hyperparameters have been estimated in total for each experimental setup.

In Case 1, the predictive mean and variance of each visual features {zk|k ∈ Ω32} are shown

in Figs. 3.5 and 3.6, respectively. The predictive mean and variance for Case 2 are shown

similarly in Figs. 3.7 and 3.8, respectively. The fixed running time using Matlab R2009b on

a PC (3.2 GHz Intel i7 Processor) is summarized in Table 3.1, for Case 2 (similar results are

observed for Case 1). Localization for each test point takes 0.2 sec which is fast enough for

a real time implementation.
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(a)

(b)

Figure 3.2: (a) Dot iPhone Panorama lens is used for Case 1. (b) A vision-based robot was 
built equipped with a 360 degree omnidirectional camera for Case 2.
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1

σf,k σ1,k σ2,k σε,k

1

Figure 3.4: Estimated hyperparameters for each individual scalar field for Case 2.

3.5.3 Comparison study

We compare the performance of the proposed approach under different image features as

summarized in Table 3.2. In this comparison study three different types of appearance-based

features such as FFT [110], histogram [34], and wavelet [7] are considered. Additionally, the

comparison between the proposed cross-validation (CV) method and the traditional PCA in

feature elimination is investigated. Finally, we compared the result of localization methods

in terms of different number of features.

Table 3.2 shows the dataset (column 1), the appearance-based features type (column 2),

the total number of features (column 3), the optimum number of features determined by the
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Figure 3.5: Predictive mean function map for each individual feature zk for Case 1.

proposed approach (column 4), the localization RMSE obtained using the total number of

features (column 5), the sixteen features selected by PCA (column 6), the sixteen features

selected by CV (column 7), and the optimum number of features (column 8).

Note that sampling positions of Case 1 were recorded exactly while those of Case 2
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Table 3.1: Computational time

Procedure Number of observations Time (sec)
Pre-processing 825 35
Feature extraction 825 2
Learning hyperparameters 659 286
Learning map and variances 659 51
Feature selection 83 21
Localization 83 10

Table 3.2: The localization performance comparison

number of features RMSE using subset of features
feature type total optimum All PCA 16 CV 16 CV opt

Case 1

FFT 8 7 4.98 - - 0.63
FFT 16 13 4.98 - - 0.53
FFT 32 10 4.98 4.98 0.24 0.22
FFT 64 26 4.98 4.98 0.31 0.26
Histogram 8 5 4.12 - - 2.10
Histogram 16 10 3.85 - - 1.57
Histogram 32 13 1.44 1.43 1.22 1.18
Histogram 64 32 1.46 1.56 1.15 1.13
Wavelet 78 32 6.69 4.43 4.03 2.49

Case 2

FFT 8 8 2.21 - - 2.21
FFT 16 11 2.00 - - 1.58
FFT 32 21 1.52 2.42 1.37 1.36
FFT 64 21 1.96 2.54 1.24 1.19
Histogram 8 5 2.88 - - 2.38
Histogram 16 9 2.60 - - 1.77
Histogram 32 19 2.03 1.54 1.59 1.47
Histogram 64 32 2.08 2.23 1.53 1.40
Wavelet 78 27 5.96 7.94 3.82 3.52
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Figure 3.6: Prediction variance map for each individual feature zk for Case 1.

were noisy. As expected, the results of Case 1 outperform those of Case 2. This could

be due to the fact that noisy sampling positions lead to poorly estimated hyperparameters

and predictions of the GP. Furthermore, the FFT appearance-based features show more

vulnerability against sampling position noise. The RMSE results of FFT-based localization

75

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8

2

8



µ23

5 10

5

10

15

20

25
µ24

5 10

5

10

15

20

25

µ25

5 10

5

10

15

20

25
µ26

5 10

5

10

15

20

25
µ27

5 10

5

10

15

20

25
µ28

5 10

5

10

15

20

25
µ29

5 10

5

10

15

20

25
µ30

5 10

5

10

15

20

25
µ31

5 10

5

10

15

20

25
µ32

5 10

5

10

15

20

25

µ12

5 10

5

10

15

20

25
µ13

5 10

5

10

15

20

25
µ14

5 10

5

10

15

20

25
µ15

5 10

5

10

15

20

25
µ16

5 10

5

10

15

20

25

µ17

5 10

5

10

15

20

25
µ18

5 10

5

10

15

20

25
µ19

5 10

5

10

15

20

25
µ20

5 10

5

10

15

20

25
µ21

5 10

5

10

15

20

25
µ22

5 10

5

10

15

20

25

µ1

5 10

5

10

15

20

25
µ2

5 10

5

10

15

20

25
µ3

5 10

5

10

15

20

25
µ4

5 10

5

10

15

20

25
µ5

5 10

5

10

15

20

25
µ6

5 10

5

10

15

20

25
µ7

5 10

5

10

15

20

25
µ8

5 10

5

10

15

20

25

µ9

5 10

5

10

15

20

25
µ10

5 10

5

10

15

20

25
µ11

5 10

5

10

15

20

25

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 3.7: Predictive mean function map for each individual feature zk for Case 2.

are slightly better than those of histogram-based localization and much better than those of

wavelet-based localization [7]. Besides the type and total number of features, the CV has
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Figure 3.8: Prediction variance map for each individual feature zk for Case 2.
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a better performance with respect to PCA. In general, increased cardinality of the original

feature set leads to a better performance in the 5th column possibly due to the increased

information. Similar trends are observed in the 7th and the 8th columns of Table 3.2.

Most importantly, we conclude that eliminating some of the features helps to improve the

localization error. Therefore, the RMSE of the proposed approach in this chapter is much

lower than other methods.

3.6 Conclusion and future works

This chapter has presented a novel approach to use vision data for the mobile robot local-

ization. The predictive statistics of vision data is learned in advance and used in order to

estimate the position of mobile robot, equipped just with an omnidirectional camera in a

GPS-denied environment. The multivariate GP model with unknown hyperparameters is

used to model a collection of selected visual features. Experimental study shows excellent

positioning results within a reasonable computational time under two different experimental

setups with and without uncertainty in sampling positions.

A key limitation of the current approach arises from the fact that, after the initial training

phase, learning is discontinued. In particular, if the environment changes, it is desirable that

the localization routines adapt to the changes in the environment. Thus, a future research

direction is develop a localization scheme that is adaptive to changes in the environment.
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Chapter 4

Bayesian Prediction with Uncertain

Localization

Abstract: In this chapter, we consider the problem of predicting a spatio-temporal random

field using sequential noisy observations collected by robotic sensors. The spatio-temporal

field of interest is modeled by a sum of a time-varying mean function and a Gaussian Markov

random field (GMRF) with unknown hyperparameters. We first derive the exact Bayesian

solution to the problem of computing the predictive inference of the random field, taking

into account observations, uncertain hyperparameters, measurement noise, and uncertain

localization in a fully Bayesian point of view. We show that the exact solution for un-

certain localization is not scalable as the number of observations increases. To cope with

this exponentially increasing complexity and to be usable for mobile sensor networks with

limited resources, we propose a scalable approximation with a controllable tradeoff between

approximation error and complexity to the exact solution. The effectiveness of the proposed

algorithms is demonstrated by simulation and experimental results.
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4.1 Introduction

In recent years, there has been an increasing exploitation of mobile robotic sensors in en-

vironmental monitoring [10, 12, 62, 64, 117]. Gaussian processes (or Gaussian random fields)

defined by mean and covariance functions over a continuum space [14, 84] have been fre-

quently used for mobile sensor networks to statistically model physical phenomena such as

harmful algal blooms, pH, and temperature, e.g., [30, 57,119].

The significant computational complexity in Gaussian process regression due to the grow-

ing number of observations (and hence the size of covariance matrix) has been tackled in

different ways. In [119], the conditions under which near-optimal prediction can be achieved

is analyzed, using truncated observations when the covariance function is known a priori.

In [120], a new efficient and scalable inference algorithm for a class of Gaussian processes

that builds on a Gaussian Markov random field (GMRF) is developed for known hyperpa-

rameters. On the other hand, unknown hyperparameters in the covariance function can be

estimated by a maximum likelihood (ML) estimator or a maximum a posteriori (MAP) esti-

mator and then can be used for the prediction [114]. However, the point estimate itself needs

to be identified using certain amount of measurements and it does not fully incorporate the

uncertainty in the estimated hyperparameters into the prediction in a Bayesian perspective.

The advantage of a fully Bayesian approach is the capability of incorporating various un-

certainties in the model parameters and measurement processes in the prediction [3]. How-

ever, the solution often requires an approximation technique such as Markov Chain Monte

Carlo (MCMC), Laplace approximation, or variational Bayes methods, which still requires

a high level of computational complexity [3]. In [115, 117], a sequential Bayesian prediction

algorithm and its distributed version are designed to deal with uncertain bandwidths by
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using a compactly supported kernel and selecting a subset of collected measurements. Se-

quential fully Bayesian prediction algorithms for a GMRF with unknown hyperparameters

are reported in [116].

Inexpensive wireless/mobile sensor networks [17, 79] are widespread at the cost of pre-

cision in localization. Due to their growing usage, there are many practical opportunities

where continuously sampled measurements need to be fused for sensors with localization

uncertainty. Theoretically-correct yet efficient (or scalable) inference algorithms need to be

developed to meet such demands.

Related works involving uncertain localization in our context are as follows. Gaussian

process regression has been used in building map and localization in many practical appli-

cations. In [7], Gaussian process regression is used to model geo-referenced sensor measure-

ments (obtained from a camera). After training, an ML estimator is used to find the best

match for the locations of newly sampled measurements. However, the training step should

be done in advance for a new environment using a set of data including noisy measurements

and the exact sampling positions [7]. In [51, 105], Gaussian process regression is used to

implement simultaneous localization and mapping (SLAM) using a magnetic field and its

feasibility is shown experimentally. In [77,106], the problem of using laser range-finder data

is investigated to probabilistically classify a robot’s environment. They provide a continu-

ous representation of the robot’s surroundings by employing a Gaussian process. In [65], a

Gaussian process model is presented for training on input points corrupted by independent

and identically distributed (i.i.d.) Gaussian noise. To make the computation tractable a

local linear expansion is used about each sampling position for the mean function. The work

in [65] assumes that all hyperparameters are trained offline a priori. In [44], the problem of

Gaussian process regression with uncertain localization and known hyperparameters is for-
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mulated and solved. A key limitation of such a approach with fixed hiperparameters arises

from the fact that, after the initial training phase, learning is discontinued. In general, if the

environment changes, it is desirable that the localization algorithm adapts to the changes

on the fly. A fully Bayesian approach that treats hyperparameters as random variables can

address this issue with increased computational complexity.

The novelty of our work as compared to the previous ones in [115–117] is to fully consider

the uncertainty on the sampling positions along with other uncertainties such as hyperpa-

rameters, observation noise etc., in a fully Bayesian manner. To the best of our knowledge,

fully Bayesian prediction algorithms for spatio-temporal random fields that can take into

account uncertain localization is scant to date. Hence, this chapter aims to develop such

inference algorithms for robotic sensor networks in practical situations. With continuous

improvement in computation power in embedded systems, it is very important to prepare

theoretically-correct, and flexible fully Bayesian approach to cope with such practical prob-

lems.

The contributions of the chapter are as follows. First, we model a physical spatio-

temporal random field as a GMRF with uncertain hyperparameters and formulate the predic-

tion problems with and without localization uncertainty. Next, we derive the exact Bayesian

solution to the problem of computing the predictive inference of the random field, taking

into account uncertain hyperparameters, measurement noise, and uncertain localization in

a fully Bayesian point of view. We show that the exact solution for uncertain localization is

not scalable as the number of observations increases. To cope with this increasing complex-

ity, we propose a scalable approximation with a controllable tradeoff between approximation

error and complexity to the exact solution. The effectiveness of the proposed algorithms is

demonstrated by simulation and experimental results. In particular, experimental results
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are illustrated in both static and dynamical environments.

A preliminary version of this work without the proofs of theorems and experimental

results has been reported in [41].

The chapter is organized as follows. In Section 4.2, we explain how a GMRF can be

viewed as a sparse and discretized version of a Gaussian process. In Sections 4.3 and 4.4, we

introduce a spatio-temporal field model based on a GMRF and the mobile sensor network. In

Section 4.5.1, we present a fully Bayesian inference approach to estimate the spatio-temporal

field. The Bayesian prediction algorithm is extended for uncertain sampling positions in

Section 4.5.2. The complexity of the proposed algorithms is discussed in Section 4.5.3. We

demonstrate the effectiveness through a simulation study in Section 4.6. Finally, we evaluate

our approach on a real experimental setup in Section 4.7.

4.2 Gaussian Process and Gaussian Markov Random

fields

Recently, there are efforts to fit a computationally efficient GMRF on a discrete lattice to a

Gaussian random field on a continuum space [15,35,90,116]. It has been demonstrated that

GMRFs with small neighborhoods can approximate Gaussian fields surprisingly well [90].

This approximated GMRF and its regression are very attractive for the resource-constrained

mobile sensor networks due to its computational efficiency and scalability [60] as compared

to the standard Gaussian process and its regression. Fast kriging of large data sets by using

a GMRF as an approximation of a Gaussian random field has been proposed in [35].

We now briefly review a GMRF as a discretized Gaussian process on a lattice. Consider

a zero-mean Gaussian process: z(s) ∼ GP(0,K(s, s′)), where K is the covariance function
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defined in a continuum space S. We discretize the compact domain S := [0 max(s1)] ×

[0 max(s2)] into n spatial sites Q :=
{
s̊(1), · · · , s̊(n)

}
⊂ R2, where n = hmax(s1) ×

hmax(s2). h will be chosen such that n ∈ Z>0. Note that n→∞ as h→∞. The collection

of realized values of the random field in Q is denoted by z := (z(1), · · · , z(n))T ∈ Rn, where

z(i) := z(̊s(i)).

The prior distribution of z is given by z ∼ N (0,K), and so we have

P(z) ∝ exp

(
−1

2
zTK−1z

)
, (4.1)

where K ∈ Rn×n is the covariance matrix. The i, j-th element of K is defined as (K)ij =

Cov(z(i), z(j)) = K(z(i), z(j)). The prior distribution of z can be written by a precision

matrix Q0 = K−1, i.e., z ∼ N (0,Q−1
0 ). This can be viewed as a discretized version of

the Gaussian process (or a GMRF) with a precision matrix Q0 on Q. Note that Q0 of this

GMRF is not sparse. However, a sparse version of Q0, i.e., Q̂0 with local neighborhood that

can represent the original Gaussian process can be found, for example, making Q̂0 close to

Q0 in some norm [15,35,90]. This approximate GMRF will be computationally efficient due

to the sparsity of Q̂0. For our main problems, we will use a GMRF with a sparse precision

matrix that represents a Gaussian process precisely (see Section 4.4).

In this section, we assume that we take N noisy measurements y = (y[1], · · · , y[N ])T ∈

RN from corresponding sampling locations s = (s[1]T , · · · , s[N ]T )T ∈ SN . Here, the mea-

surement model is given by

y[i] := y(s[i]) = z(s[i]) + ε[i], ∀i = 1, · · · , N (4.2)
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where ε[i]
i.i.d.∼ N (0, σε

2) is the measurement noise and is assumed to be independent and

identically distributed (i.i.d.).

Using Gaussian process regression, the posterior distribution for z ∈ Rn is given by

z|s,y ∼ N (µ,Σ). (4.3)

The predictive mean µ ∈ Rn and covariance matrix Σ ∈ Rn×n can by obtained by

µ = kTC−1y, Σ = K− kTC−1k, (4.4)

where the covariance matrices are defined as k := Cov(y, z) ∈ RN×n, C := Cov(y,y) ∈

RN×N , and K := Cov(z, z) ∈ Rn×n.

In practice, resource-constrained robotic sensors are prone to large uncertainty in lo-

calization. Most previous works on Gaussian process regression for mobile sensor net-

works [8, 9, 14, 57] have assumed that the exact sampling positions are available, which is

not practical in real situations. Localization uncertainty effect is potentially significant. For

example, Fig. 2.1 shows the effect of noisy sampling positions on the results of Gaussian

process regression. Note that adding noise to the sampling positions considerably increase

the empirical RMS error, shown in the third row of Fig. 2.1. This motivates our work in

this chapter.

The pose of a robot can be estimated by fusing different sensory information producing

its estimate and estimation error statistics. In general, Bayes filters such as extended and

unscented Kalman filters [47, 96], particle filters [70], and Monte Carlo techniques [98] are

used for such localization. Nevertheless, obtaining precise localization of robotic networks
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under limited resources is very challenging [37,38].

Throughout the chapter, we assume that the positions of robotic sensors are estimated

by a standard technique that produces the position estimates along with estimation error

statistics. A discussion regarding specific localization technique is standard and is beyond

the scope of this chapter.

Having had the aforementioned assumption, from a localization algorithm, the prior dis-

tribution for sampling location s[i] is given as P(s[i]|s̃[i]), possibly with a compact support in

S. Then the predictive distribution of z given the measured locations s̃ = (s̃[1]T , · · · , s̃[N ]T )T

is thus given by

P(z|s̃,y) =

∫
s∈SN

P(z|s,y)P(s|s̃,y)ds, (4.5)

where P(z|s,y) can be obtained in (4.3). However, the predictive distribution in (4.5) does

not have a closed-form solution and needs to be computed either by MCMC methods or

approximation techniques [43].

Now we consider a discretized version of the Gaussian process, i.e., (GMRF) with a

precision matrix Q0 on Q. Since the sampling points of Gaussian process regression are not

necessarily on Q, we use the nearest grid point of a given sampling point s in S

q[i] = arg min
q∈Q
‖s[i] − q‖.

The sampling positions for the GMRF are then exactly on the lattice, i.e., q[i] ∈ Q. The

posterior distribution of z ∈ Rn on Q given by measurements in y ∈ RN and sampling
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positions in q = (q[1]T , · · · , q[N ]T )T ∈ QN , is then obtained by

z|q,y ∼ N (Q−1b,Q−1), (4.6)

where Q = Q0 + HP−1HT , b = HP−1y, with P = σε
2I ∈ RN×N and H ∈ Rn×N defined

as

(H)ij =


1, if s̊(i) = q[j],

0, otherwise.

(4.7)

We consider again localization uncertainty for this GMRF. Let the measured noisy loca-

tion q̃[i] be the nearest grid point of the measured noisy sampling point s̃[i] of the Gaussian

process. Now we obtain a set of discretized probabilities in Q induced by the continuous

prior distribution defined in S. The discrete prior distribution for the sampling location q[i]

is given by

P(q[i] = s̊(j)|s̃[i]) =

∫
s⊂Vj

P(s|s̃[i])ds, (4.8)

where P(s|s̃) is the continuous prior as in Gaussian process regression and Vj is the Voronoi

cell of the j-th grid point s̊(j) given by

Vj := {s ∈ S | ‖s− s̊(j)‖ ≤ ‖s− s̊(i)‖, ∀i 6= j}.

The predictive distribution of z given y and q̃ is thus given by

P(z|q̃,y) =
∑

q∈QN
P(z|q,y)P(q|q̃,y), (4.9)
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(a) h1 (b) h2

Figure 4.1: Example of localization uncertainty for s[i]. The measured sampling location
q̃[i] is indicated in a small red circle which is the closest point in the discrete support to the
measured sampling position in the continuous space. The small red circle along with the
blue squares and the blue star show the possible locations of the true sampling point q[i]

according to the prior distribution P(q[i] = s̊(j)|q̃[i]) with a compact support as shown in the

big red circle. The blue star indicates q[i] which is the closest point in the discrete support
to the true sampling position in the continuous space.

where P(z|q,y) can be obtained by (4.6) and the summation is over all possible locations

in Q. Fig. 4.1 shows two examples of using this approximation approach with h1 > h2

to convert a continuous space to a discrete one. When h → ∞, q̃ → s̃ and the standard

Gaussian process regression in a continuum space shall be recovered from the prediction

using the GMRF in a discretized space.

4.3 Mobile Senor Networks

Suppose that the sampling time t ∈ Z>0 is discrete. Let zt := (z
(1)
t , · · · , z(n)

t )T ∈ Rn be the

corresponding values of the scalar field at n special sites and time t.

Consider N spatially distributed mobile sensing agents indexed by j ∈ J := {1, · · · , N}

sampling at time t ∈ Z>0. At time t, agent j takes a noise corrupted measurement at its
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current location s
[j]
t u s̊(i) ∈ Q, i.e.,

y
[j]
t = z

(i)
t + ε

[j]
t , ε

[j]
t

i.i.d.∼ N (0, σε
2), (4.10)

where the measurement errors {ε[j]t } are assumed to be i.i.d. The measurement noise level

σε
2 > 0 is assumed to be known. For notational simplicity, we denote all agents’ locations at

time t by qt =
(
q

[1]T
t , · · · , q[N ]T

t

)T
∈ QN and the observations made by all agents at time t

by yt =
(
y

[1]
t , · · · , y[N ]

t

)T
∈ RN . Furthermore, we denote the collection of agents’ locations

and the collective observations from time 1 to t by q1:t =
(
qT1 , · · · ,q

T
t

)T
∈ QNt and y1:t =

(y1, · · · ,yt)T ∈ RNt, respectively. In addition, let us define zt = (z
(1)
t , · · · , z(n)

t )T ∈ Rn on

Q, and εt = (ε
[1]
t , · · · , ε

[N ]
t )T ∈ RN . We then have the following collective notation.

yt = HT
t zt + εt, (4.11)

where Hτ ∈ Rn×N is defined by

(Hτ )ij =


1, if s̊(i) = q

[j]
τ ,

0, otherwise.

(4.12)

4.4 Spatio-Temporal Field Model

The value of the scalar field at s̊(i), z
(i)
t is modeled by a sum of a time-varying mean function

and a GMRF

z
(i)
t = λ

(i)
t + η

(i)
t , ∀i ∈ {1, · · · , n}, t ∈ Z>0. (4.13)
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Here the mean function λ
(i)
t : Q× Z>0 → R is defined as

λ
(i)
t = f (̊s(i))Tβt, (4.14)

where f (̊s(i)) = (f1(̊s(i)), · · · , fp(̊s(i)))T ∈ Rp is a known regression function and βt =

(β
[1]
t , · · · , β[p]

t )T ∈ Rp is an unknown vector of regression coefficients. The time evolution of

βt ∈ Rp is modeled by a linear time-invariant system given by

βt+1 = Atβt +Btωt, (4.15)

where ωt ∼ N (0,W ), β0 ∼ N
(
µβ0

,Σβ0

)
, and At and Bt are known system parameters.

In addition, we consider a zero-mean GMRF [88] ηt =
(
η

(1)
t , · · · , η(n)

t

)T
∈ Rn whose

covariance matrix is given by

E(ηtη
T
k |θ) = Q−1

θ δ(t− k), (4.16)

where δ(·) is the Kronecker delta defined by

δ(k) =


1, k = 0,

0, otherwise,

(4.17)

and the inverse covariance matrix (or precision matrix) Qθ ∈ Rn×n is a function of the

hyperparameter vector θ.

There are different parameterizations of the GMRF (i.e., the precision matrix Qθ) [88].

Our Bayesian approach does not depend on the choice of the parameterization for the preci-
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sion matrix. However, for a concrete and useful exposition, we describe a specific parameter-

ization used in this chapter. The precision matrix is parameterized with the full conditionals

as follows.

Let η be a GMRF on a regular two-dimensional lattice. The associated Gaussian full

conditional mean is

E(η
(i)
t |η

(−i)
t , θ) = − 1

(Qθ)ii

n∑
j=1

(Qθ)ijη
(j)
t , (4.18)

where (Qθ)ij is the i-th row and j-th column element of κ−1Qθ. Here, η
(−i)
t is the collection

of ηt values everywhere except s̊(i). The hyperparameter vector is defined as θ = (κ, α)T ∈

R2
>0, where α = a − 4. Fig. 4.2 shows the value of

(
κ−1Qθ

)
ij for one point along with its

neighbors, graphically. The value of (Qθ)ij is (4 + a2)κ−1 as denoted at the center node

of the graph in Fig. 4.2. That of (Qθ)ij is −2aκ−1 if j is one of the four closest neighbors

of i in the vector 1-norm sense as illustrated by the graph in Fig. 4.2. Thus, the value of

(Qθ)ij is zero if j is not one of the twelve closest neighbors of i (or twelve neighbors whose

1-norm distance to the i-th location is less than or equal to 2). The equation in (4.18) states

that the conditional expectation of η
(i)
t given the value of ηt everywhere else (i.e., η

(−i)
t )

can be determined just by knowing the value of ηt on the twelve closest neighbors (see more

details in [63]). The resulting GMRF accurately represents a Gaussian random field with

the Matérn covariance function as shown in [63]

G(r) = σf
2 21−ρ

Γ(ρ)

(√
2ρr

`

)ρ
Kρ

(√
2ρr

`

)
, (4.19)

where Kρ(·) is a modified Bessel function [84], with order ρ = 1, a bandwidth ` = 1/h
√α

2 ,

and vertical scale σf
2 = 1/4πακ.
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Figure 4.2: Elements of the precision matrix Qθ related to a given location.

The hyperparameter α > 0 guarantees the positive definiteness of the precision matrix

Qθ. In the case where α = 0, the resulting GMRF is a second-order polynomial intrinsic

GMRF [88,89].

From the presented model in (4.13), (4.15), and (4.16), the distribution of zt given βt

and θ is

zt|βt, θ ∼ N
(
Fsβt,Q

−1
θ

)
, (4.20)

where Fs := (f (̊s(1)), · · · , f (̊s(n)))T ∈ Rn×p.

In other words, zt|βt, θ ∼ GP(Fsβt,Kθ) ∈ Rn is a non-zero mean Gaussian process. Here,

the covariance matrix Kθ is defined as inverse of the precision matrix (i.e., Kθ = Q−1
θ ).

Note that the precision matrix is a positive definite matrix and invertible, and (Kθ)ij =

Cov(z
(i)
t , z

(j)
t ), where (Kθ)ij is the i, j-th element of the covariance matrix.

For simplicity, let us define Bt = {βt,qt,yt, θ}. Using Gaussian process regression, the
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posterior distribution for zt|Bt ∈ Rn is given by

µzt|Bt =Fsβt + KθHt

(
HT
t KθHt + σε

2I
)−1 (

yt −HT
t Fsβt

)
,

Σzt|Bt =Kθ −KθHt

(
HT
t KθHt + σε

2I
)−1

HT
t Kθ.

(4.21)

The basic idea behind the model introduced in (4.13), (4.15), and (4.16) stems from

the space-time Kalman filter model proposed in [16]. The advantage of this spatio-temporal

model with known hyperparameters is to make inferences in a recursive manner as the number

of observations increases. The zero-mean Gaussian process represents a spatial structure

by assuming that the difference between the parametric mean function and the dynamical

environmental process is governed by a relatively large time scale. This formulation in turn

makes the optimal prediction recursive in time.

In this chapter, however, uncertainties in the precision matrix and sampling positions are

considered in a fully Bayesian manner. In addition, in contrast to [12, 16, 53], the GMRF

with a sparse precision matrix is used to increase the computational efficiency.

4.5 Bayesian Predictive Inference

4.5.1 Uncertain hyperparameters and exact localization

In this section, we consider the problem of predicting a spatio-temporal random field, using

successive noisy measurements sampled by a mobile sensor network. For a known covari-

ance function, the prediction can be shown to be recursive [12] based on Gaussian process

regression. The uncertainty in θ in a GMRF has been considered and its sequential predic-

tion algorithms are derived in [116]. However, only the static field has been considered, i.e.
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µt = µ0. In this section, we use a Bayesian approach to make predictive inferences of the

spatio-temporal random field zt ∈ Rn for the case with uncertain hyperparameters and the

exact localization. To this end, we use the following assumptions A.1-A.5.

A.1 The spatio-temporal random field is generated by (4.13), (4.15), and (4.16).

A.2 The precision matrix Qθ is a given function of an uncertain hyperparameter vector θ.

A.3 The noisy measurements {yt}, as in (4.11), are continuously collected by robotic sensors

in time t.

A.4 The sample positions {qt} are measured precisely by robotic sensors in time t.

A.5 The prior distribution of the hyperparameter vector θ is discrete with a support Θ ={
θ(1), · · · , θ(L)

}
.

Remark 4.5.1. A.1 and A.2 stem from the discretization of a Gaussian process as we de-

scribed in Section 4.2. From the model in A.1, the zero-mean GMRF represents a spatial

structure by assuming that the difference between the parametric mean function and the dy-

namical environmental process is governed by a relatively large time scale. However, this

assumption could be rather strong for cases where data can be fitted better with temporally

correlated GMRFs. A.3 is a standard assumption over the measured observations [53]. A.4

is rather strong but it will be relaxed to A.6 in Section 4.5.2 in order to deal with localiza-

tion uncertainty. A.5 is from the discretization of the hyperparameter vector to replace an

integration with a summation over possible hyperparameters.
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For notational simplicity, we denote the full latent field of dimension n + p by xt =

(zTt , β
T
t )T . Let’s define Dk:r := {Pk−1,qk:r,yk:r}, where

Pk =
{
µxk|D1:k

,Σxk|D1:k
} ∪ {P(θ|D1:k)|θ ∈ Θ

}
,

and P0 is assumed to be known.

We formulate the first problem as follows.

Problem 4.5.2. Consider the assumptions A.1-A.5. Our problem is to find the predictive

distribution, mean, and variance of xt conditional on D1:t.

In what follows, we summarize the intermediate steps to obtain the solution to Prob-

lem 4.5.2.

Lemma 4.5.3. Under assumptions A.1 and A.2, the predictive distribution of xt conditional

on the hyperparameter vector θ and the measurements D1:t−1 is Gaussian with the following

mean and precision matrix

µxt|θ,D1:t−1
=

Fsµβt|θ,D1:t−1

µβt|θ,D1:t−1

 ,

Qxt|θ,D1:t−1
=

 Qθ −QθFs

−FTs Qθ FTs QθFs + Σ−1
βt|θ,D1:t−1

 ,

(4.22)

where µβt|θ,D1:t−1
= Atµβt−1|θ,D1:t−1

denotes the expectation of βt conditional on θ and

D1:t−1 and Σβt|θ,D1:t−1
= AtΣβt−1|θ,D1:t−1

ATt +BtWBTt denotes the associated estimation

error covariance matrix. For a given hyperparameter vector θ, (4.22) provides the optimal

prediction of the spatio-temporal field in time t using data up to time t− 1.
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The following lemma is used to compute the posterior distribution of θ, recursively.

Lemma 4.5.4. Under assumptions A.3 and A.4, the posterior distribution of the hyperpa-

rameter vector θ can be obtained recursively via

P(θ|D1:t) ∝ P(yt|θ,D1:t−1, qt)P(θ|D1:t−1), (4.23)

where the distribution of yt given {θ,D1:t−1, qt} is Gaussian with the following mean and

variance

µyt|θ,D1:t−1,qt
= MT

t µxt|θ,D1:t−1
,

Σyt|θ,D1:t−1,qt
= MT

t Σxt|θ,D1:t−1
Mt + σε

2I,

(4.24)

here MT
t = [HT

t 0] ∈ RN×(n+p).

Proof. The posterior distribution of θ given in (4.23) is computed by applying Bayes’ rule on

P(θ|yt,D1:t−1). The predictive statistics of yt|θ,D1:t−1 are straightforward results of using

(4.11). Note that P(θ|D1:t−1) is equal to P(θ|D1:t−1,qt).

Lemma 4.5.5. Under assumptions A.1-A.4, the full conditional distribution of xt for a

given hyperparameter vector and data up to time t is

xt|θ,D1:t ∼ N (µxt|θ,D1:t
,Q−1

xt|θ,D1:t
),

where

Qxt|θ,D1:t
=Qxt|θ,D1:t−1

+ σε
−2MtM

T
t ,

µxt|θ,D1:t
=µxt|θ,D1:t−1

+ σε
−2Q−1

xt|θ,D1:t
Mt(yt −MT

t µxt|θ,D1:t−1
).

(4.25)
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Remark 4.5.6. In order to keep computing the prediction error covariance matrix Q−1
xt|θ,D1:t

alone, the Woodbury lemma could be used to reduce the computational load as follows.

Q−1
xt|θ,D1:t

=Q−1
xt|θ,D1:t−1

−Q−1
xt|θ,D1:t−1

Mt

×
(
σε

2I +MT
t Q
−1
xt|θ,D1:t−1

Mt

)−1

MT
t Q
−1
xt|θ,D1:t−1

,

(4.26)

where Q−1
xt|θ,D1:t−1

can be computed with blockwise inversion using (4.22),

Q−1
xt|θ,D1:t−1

=

Q−1
θ + FsΣβt|θ,D1:t−1

FTs FsΣβt|θ,D1:t−1

ΣT
βt|θ,D1:t−1

FTs Σβt|θ,D1:t−1

 .

The blockwise inversion needs to be updated only with Σβt|θ,D1:t−1
.

The following theorem explicitly illustrates how the results of Lemma 4.5.4 and Lemma

4.5.5 lead to the predictive statistics of xt under assumptions A.1-A.5, which will be the

solution to Problem 4.5.2.

Theorem 4.5.7. Under assumption A.5, the predictive distribution of xt|D1:t is given by

P(xt|D1:t) =
∑
θ∈Θ

P(xt|θ,D1:t)P(θ|D1:t), (4.27)

where P(θ|D1:t) and P(xt|θ,D1:t) are given by Lemmas 4.5.4 and 4.5.5, respectively. The
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predictive mean and variance follow as

µxt|D1:t
=
∑
θ∈Θ

µxt|θ,D1:t
P(θ|D1:t),

Σxt|D1:t
=
∑
θ∈Θ

[
Σxt|θ,D1:t

+ (µxt|θ,D1:t
− µxt|D1:t

)(µxt|θ,D1:t
− µxt|D1:t

)T
]
P(θ|D1:t).

(4.28)

Proof. The predictive mean and variance is obtained by marginalizing over the conditional

distribution of θ given D1:t. The marginal mean and variance are E(Y ) = E(E(Y |X)) and

Var(Y ) = E(Var(Y |X)) + Var(E(Y |X)). Having Y := xt|D1:t and X := θ|D1:t completes

the proof of Theorem 4.5.7.

Remark 4.5.8. The optimal prediction of the spatio-temporal field xt|θ,D1:t−1 using pre-

dictive statistics of xt−1|θ,D1:t−1 is provided by Lemma 4.5.3. Lemma 4.5.5 provides the

optimal estimator of xt|θ,D1:t, using predictive statistics of xt|θ,D1:t−1 which is given by

Lemma 4.5.3. Using Lemma 4.5.3 and Lemma 4.5.5 sequentially we can update predic-

tive statistics of xt|θ,D1:t for known hyperparameters. Lemma 4.5.4 gives us the posterior

distribution of θ based on the measured data. Finally Theorem 4.5.7 provides the optimal

Bayesian prediction of the spatio-temporal random field with a time varying mean function

and uncertain hyperparameters by marginalizing θ over the conditional distribution of θ given

D1:t.

Remark 4.5.9. Under assumption A.5, i.e., a discrete prior on the hyperparameter vector

θ with a support Θ =
{
θ(1), · · · , θ(L)

}
, the predictive distribution of xt = (zTt , β

T
t )T (or the

predictive mean and variance) conditional on D1:t can be computed explicitly in a constant

time as time t (or as the number of observations) increases in a recursive way. For a
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Algorithm 3 Sequential Bayesian predictive inference

Initialization:

1: initialize Fs
2: for θ ∈ Θ, initialize Qθ, and compute Q−1

θ
At time t ∈ Z>0, do:

1: obtain new observations yt collected at current locations qt
2: find the map Mt from qt to spacial sites Q, and compute radial basis values Fqt in

qt.
3: for θ ∈ Θ do
4: predict µxt|θ,D1:t−1

and Qxt|θ,D1:t−1
using measurements up to time t− 1, given

by (4.22).
5: compute µxt|θ,D1:t

and Qxt|θ,D1:t
given by (4.25).

6: compute µyt|θ,D1:t−1,qt
and Σyt|θ,D1:t−1,qt

given by (4.24).

7: calculate P(θ|D1:t) given by (4.23).
8: end for
9: compute the predictive mean and variance using (4.28).

continuous prior distribution P(θ), the summations in (4.27) and (4.28) need to be replaced

by integrations with respect to θ, which need to be approximated. The proposed solution to

the formulated problem is summarized by Algorithm 3.

4.5.2 Uncertain hyperparameters and localization

In the previous section, we assumed that the localization data q1:t is exactly known. How-

ever, in practice positions of sensor networks cannot be measured without noise. Instead,

for example, there could be several probable possibilities inferred from the measured posi-

tion. In this section, the proposed method in the previous section will be extended for the

uncertain localization data. To the best of our knowledge, this is the first attempt to obtain

predictive statistics for a case where both uncertainties in hyperparameters and localization

are simultaneously included in a fully Bayesian perspective. In what follows, we present our

idea in a problem statement and the corresponding solution.
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In order to take into account the uncertainty in the sampling positions, we replace as-

sumption A.4 with the following assumption A.6.

A.6 The prior distribution P(qt = q̊
(i)
t ) is discrete with a support q̊

(i)
t ∈ Ω(t), and

Ω(t) =
{

(̊s(k1), · · · , s̊(kN ))|(k1, · · · , kN ) ∈ L(t)
}

, which is given at time t along with the corresponding measurement yt. Here, γ(t) =

|L(t)| denotes the number of the probable possibilities for qt.

A straightforward consequence of Assumption A.6 is that the prior distribution P(qk:r) is

discrete with a support Ω(k : r) :=
∏r
g=k Ω(g). In addition, L(k : r) :=

∏r
g=k L(g) denotes

the index in the support Ω(k : r), and γ(k : r) :=
∏r
g=k γ(g) is the number of the probable

possibilities for qk:r. Now we state the problem as follows.

Problem 4.5.10. Consider assumptions A.1, A.2, A.3, A.5, and A.6. Our problem is to

find the predictive distribution, mean and variance of xt conditional on the prior P0 and the

measurements y1:t.

For the sake of conciseness, let us define Rr:k := {Pr−1,yr:k}. We then have that

Rr:k ⊂ Dr:k, where we recall that Dr:k := {Pr−1, q̃r:k,yr:k}.

To solve Problem 4.5.10, we first seek for a way to compute the posterior distribution of

qt as summarized in the following lemma.

Lemma 4.5.11. Consider P(yt|θ,D
(n)
1:t−1, q̊

(k)
t ) given by (4.24) and P(θ|D(n)

1:t−1) given by

(4.23), where n ∈ L(1 : t − 1), k ∈ L(t), and D(n)
1:t−1 :=

{
P0, q̊

(n)
1:t−1,y1:t−1

}
. Under
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assumption A.5, we have

P(yt|D
(n)
1:t−1, q̊

(k)
t ) =

∑
θ∈Θ

P(yt|θ,D
(n)
1:t−1, q̊

(k)
t )P(θ|D(n)

1:t−1).

Under assumption A.6, the posterior distribution of q1:t =
(̊
q

(n)
1:t−1, q̊

(k)
t

)
can be obtained,

recursively, via

P
(̊
q

(n)
1:t−1, q̊

(k)
t |R1:t

)
∝ P(̊q

(n)
1:t−1|R1:t−1)P(yt|D

(n)
1:t−1, q̊

(k)
t )P(̊q

(k)
t ). (4.29)

Proof. The proof is a straightforward result of applying Bayes’ rule.

We now give the exact solution to Problem 4.5.10 as follows.

Theorem 4.5.12. Consider the predictive distribution P(xt|D
(i)
1:t) given by Theorem 4.5.7

and the posterior P
(̊
q

(i)
1:t|R1:t

)
given by Lemma 4.5.11, where q̊

(i)
1:t ∈ Ω(1 : t) and D(i)

1:t ={
P0, q̊

(i)
1:t,y1:t

}
. Under assumption A.6, the predictive distribution of xt|R1:t can be obtained

as follows.

P (xt|R1:t) =
∑

i∈L(1:t)

P
(
xt|D

(i)
1:t

)
P
(̊
q

(i)
1:t|R1:t

)
. (4.30)

Consequently, the predictive mean and variance are given by the formulas.

µxt|R1:t
=

∑
i∈L(1:t)

µ
xt|D

(i)
1:t

P
(̊
q

(i)
1:t|R1:t

)
,

Σxt|R1:t
=

∑
i∈L(1:t)

[
Σ
xt|D

(i)
1:t

+

(
µ
xt|D

(i)
1:t

− µxt|R1:t

)

×

(
µ
xt|D

(i)
1:t

− µxt|R1:t

)TP
(̊
q

(i)
1:t|R1:t

)
.

(4.31)
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Proof. The proof is similar to that of Theorem 4.5.7. Hence, the predictive mean and variance

are obtained by marginalizing over the conditional distribution of q1:t. The marginal mean

and variance are E(Y ) = E(E(Y |X)) and Var(Y ) = E(Var(Y |X)) + Var(E(Y |X)). Having

Y := xt|R1:t and X := q1:t|R1:t proves Theorem 4.5.12.

Remark 4.5.13. The complexity of the proposed algorithm in Theorem 4.5.12 is proportional

to the number of possibilities for q1:t. The result of Lemma 4.5.11 enables us to compute these

probable possibilities recursively. However, the number of the non-zero probable combinations

grows exponentially by a power of time. In other words, the number of possibilities for q1:t

is the multiplication of the numbers of possibilities for q1:t−1 and possibilities for qt. Note

that this growing computational complexity of this exact solution, given in Theorem 4.5.12,

to Problem 4.5.10 is prohibitive for sensor networks with limited resources.

In what follows, we propose an approximation, with a controllable tradeoff between ap-

proximation error and complexity, to the exact solution given in Theorem 4.5.12 by including

an option of ignoring uncertainties on past position data. This approximation will include

a case of the exact solution with the maximal and original complexity. The idea is based

on the fact that the estimation of xt is more susceptible to the uncertainties in recently

sampled positions as compared to old ones. To formulate our idea clearly, we present first

the following results.

Lemma 4.5.14. Using prior distribution of xt−m and measured data yt−m+1:t, where m ∈

Z>0, the posterior distribution of qt−m+1:t can be obtained recursively via

P
(̊
q

(j)
t−m+1:t−1, q̊

(k)
t |Rt−m+1:t

)
∝

P(̊q
(j)
t−m+1:t−1|Rt−m+1:t−1)P(yt|D

(j)
t−m+1:t−1, q̊

(k)
t )P(̊q

(k)
t ).

(4.32)
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where j ∈ L(t−m+ 1 : t− 1), and k ∈ L(t).

Proof. The proof is a straightforward result of applying Bayes’ rule.

Theorem 4.5.15. Consider µ
xt|D

(h)
t−m+1:t

and Σ
xt|D

(h)
t−m+1:t

computed by Theorem 4.5.7.

Under assumption A.6, the predictive statistics of xt|Rt−m+1:t are as follows.

µxt|Rt−m+1:t
=

∑
h∈L(t−m+1,t)

µ
xt|D

(h)
t−m+1:t

P
(̊
q

(h)
t−m+1:t|Rt−m+1:t

)
,

Σxt|Rt−m+1:t
=

∑
h∈L(t−m+1,t)

[
Σ
xt|D

(h)
t−m+1:t

+

(
µ
xt|D

(h)
t−m+1:t

− µxt|Rt−m+1:t

)

×

(
µ
xt|D

(h)
t−m+1:t

− µxt|Rt−m+1:t

)TP
(̊
q

(h)
t−m+1:t|Rt−m+1:t

)
.

(4.33)

Proof. The proof is similar to that of Theorem 4.5.12.

To implement approximations to the predictive statistics of xt|R1:t which are given by

Theorem 4.5.12, we consider the following conditions.

C.1 For 1� m ≤ t, we have that

P(xt|R1:t) ≈ P(xt|Rt−m+1:t) (4.34)

C.2 For 1� m ≤ t, Pt can be approximated by

Pt ≈
{
µxt|Rt−m+1:t

,Σxt|Rt−m+1:t

}
∪ {P(θ|Rt−m+1:t)|θ ∈ Θ} . (4.35)

103



Under conditions C.1 and C.2, it is natural for us to propose the following approximations.

µxt|R1:t
≈ µxt|Rt−m+1:t

,

Σxt|R1:t
≈ Σxt|Rt−m+1:t

.

(4.36)

Remark 4.5.16. In Theorem 4.5.15, the predictive statistics of xt|D
(h)
t−m+1:t are obtained

from Algorithm 3 which is given in Section 4.5.1. The only difference is that we start from

time t − m + 1 instead of time 1 with Pt−m instead of P0. Note that without condition

C.2 we cannot use Algorithm 3 to calculate the statistics of xt|D
(h)
t−m+1:t. The proposed

approximation for the case of uncertain localization in (4.36) is quite different from a mere

truncation of old data in the sense that past measurements still affect the current estimation

through the approximately updated prior information using (4.35). Note that we update the

prior information from Pt−m to Pt with the cumulative data collected from time t−m+1 up to

time t, which is different from only using truncated observations. The proposed approximation

for the formulated problem is summarized by Algorithm 4.

To further understand the nature of the proposed approximation, consider the following

two extreme special cases.

Corollary 4.5.17. As a special case of Theorem 4.5.15 for m = 1, the posterior distribution

of qt can be obtained via

P(̊q
(k)
t |Pt−1,yt) ∝ P(yt|Pt−1, q̊

(k)
t )P(̊q

(k)
t ), (4.37)

where k ∈ L(t). The predictive distribution of xt|R1:t can be approximated in a constant
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time as time t increases in a sequential way.

P (xt|R1:t) ≈ P (xt|Pt−1,yt) ,

where

P (xt|Pt−1,yt) =
∑

k∈L(t)

P
(
xt|Pt−1, q̊

(k)
t ,yt

)
P
(̊
q

(k)
t |Pt−1,yt

)
(4.38)

and the posterior P
(̊
q

(k)
t |Pt−1,yt

)
is given by (4.37). Consequently, the predictive mean

µxt|R1:t
and variance Σxt|R1:t

can be approximated by µxt|Pt−1,yt
and Σxt|Pt−1,yt

, respec-

tively, i.e.,

µxt|Pt−1,yt
=
∑

k∈L(t)

µ
xt|Pt−1 ,̊q

(k)
t ,yt

P
(̊
q

(k)
t |Pt−1,yt

)
,

Σxt|Pt−1,yt
=
∑

k∈L(t)

[
Σ
xt|Pt−1 ,̊q

(k)
t ,yt

+

(
µ
xt|Pt−1 ,̊q

(k)
t ,yt

− µxt|Pt−1,yt

)

×

(
µ
xt|Pt−1 ,̊q

(k)
t ,yt

− µxt|Pt−1,yt

)TP
(̊
q

(k)
t |Pt−1,yt

)
.

(4.39)

Corollary 4.5.18. For another special case with m = t, Theorem 4.5.15 becomes Theorem

4.5.12.

Remark 4.5.19. For a fixed m ∈ Z>0, Algorithm 4 is scalable as time t (or the number

of observations) increases. In our approach, the level of the approximation can be controlled

by users by selecting a tradeoff (or by choosing a value for m) between the approximation

error and complexity. Most simplistic approximation can be obtained by choosing m = 1

as in Corollery 4.5.17. The original exact solution with maximal complexity is recovered by
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Algorithm 4 Sequential Bayesian predictive inference approximation with uncertain local-
ization.

At time t ∈ Z>0, do:

1: obtain new observations yt along with the probabilities for locations P(qt)

2: for q̊
(h)
t ∈ Ω(t−m+ 1 : t) do

3: predict µ
xt|D

(h)
t−m+1:t

, Σ
xt|D

(h)
t−m+1:t

and P(yt|D
(j)
t−m+1:t−1, q̊

(k)
t ) using Algorithm

3
4: compute P

(
q̊

(h)
t−m+1:t|Rt−m+1:t

)
using Lemma 4.5.14.

5: end for
6: compute µxt|Rt−m+1:t

and Σxt|Rt−m+1:t
, using Theorem 4.5.15.

7: use following approximation to update estimations

µxt|R1:t
≈ µxt|Rt−m+1:t

,

Σxt|R1:t
≈ Σxt|Rt−m+1:t

,

Pt ≈
{
µxt|Rt−m+1:t

,Σxt|Rt−m+1:t
,P(Θ|Rt−m+1:t)

}
.

selecting m = t as shown in Corollery 4.5.18.

4.5.3 Complexity of Algorithms

In this section, we discuss complexity aspects of the proposed algorithms. For a fixed number

of the radial basis functions (i.e., p) and a fixed number of the special sites (i.e., n), the com-

putational complexity of Algorithm 3 is dominated by (4.25). The complexity of Algorithm 3

in each time step is O(LN2), where L is the number of possible hyperparameter vectors and

N is the number of agents. The complexity of Algorithm 4 in time t is O (γ(t−m+ 1 : t))

times the complexity of Algorithm 3 for m time steps. Hence, the complexity of Algorithm

4 in time t is O
(
γ(t−m+ 1 : t)LN2M

)
.

The numbers of special sites and radial basis functions affect the complexity of Algorithm

3 as well. The complexity of the three cases is O(n3) with respect to the number of special
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sites due to the matrix inversion. Thus, if we use finer grids we increase the number of

special sites, i.e. n, and the complexity increase cubical. For a fixed set of L, n and N , the

complexity of Algorithm 3 with respect to p is O(p3).

4.6 Simulation Results

In this section, we demonstrate the effectiveness of the proposed sequential Bayesian inference

algorithms using a numerical experiment. Consider a scenario, where mobile sensing agents

can only move on a regular lattice, denoted by G, which is shown with circles in Fig. 4.3.

This reachable set of robotic sensors is a subset of the spatial sites (i.e., G ⊂ Q). Note

that Q is a finer grid graph on which the GMRF is realized. The spatial sites are shown

as intersections between dashed lines in Fig. 4.3. Assume that some agents measure their

true positions exactly while others only know a finite set of probable positions with the

associated probabilities. Fig. 4.3 shows an illustrative configuration where agents 1 and 3

measure sampling positions exactly while agent 2 knows only a set of uncertain possibilities

(as shown with 2a, 2b, 2c, and 2d) for a given measured sampling position (a solid star). The

prior probability that the true sampling position of agent 2 is located in 2a is proportional

to the rectangular area between the star and 2d, i.e., 2
16 . The other prior probabilities of 2b,

2c, and 2d are defined in the same way, which provides a high probability for a node whose

location is close to the observed sampling location. This way of assigning priors guarantees

that the sum of prior probabilities is equal to one. In this simulation, we allow two agents

get measurements at the same location and time. Repeatedly sampled positions are denoted

by large circles in Fig. 4.5-(g).

In this illustrative example, we use the spatio-temporal field introduced in Section 4.4.
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3 1

2a 2b

2c 2d

Figure 4.3: Agents 1 and 3 measure their exact sampling positions while agent 2 has a noisy
sampling position measured in the star location. Four possible sampling positions for the
true sampling position of agent 2 are 2a, 2b, 2c and 2d with the prior probabilities 2

16 ,
6
16 ,

2
16 ,

and 6
16 , respectively.

The spacial sites in Q consist of 51×51 grid points, i.e., n = 2601, uniformly distributed over

the surveillance region [−25, 25]× [−25, 25]. The time-varying mean function µt consists of

ten radial basis functions (i.e., p = 10), which are defined as follow.

fj(q
[i]) = exp

(
−
‖q[i] − ξj‖2

2σ2
j

)
, j ∈ {1, · · · , p}, (4.40)

where σj is the bandwidth and ξj is the center location of the j-th radial basis function. The

first radial basis function has an infinity bandwidth (i.e., σ1 =∞) to represent the average

of the field, and the others have a bandwidth equal to σj = 15. The centers of radial basis

functions are {(0, 0)} ∪ {−15, 0, 15}× {−15, 0, 15}. The prior distribution of β0 is chosen to

be β0 ∼ N (0, 5I). The time evolution of βt is modeled by (4.15), where the state matrix

At and the input matrix Bt are given by 0.95I10×10 and 0.5I10×10, respectively. The input

disturbance variance is known to be W = I10×10.
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Figure 4.4: (a) The realized spatio-temporal field at time t = 2 is the summation of (b) the
smooth mean field and (c) the GMRF as described in (4.13).

We choose the precision matrix Qx|θ with hyperparameters α = 0.01 equivalent to a

bandwidth ` =
√

2/
√
α ≈ 14.14, and κ = 10 equivalent to σf

2 = 1/4πακ ≈ 0.8. The

measurement noise variance σε
2 = 0.1 is assumed to be known.

The numerically simulated field zt from our model in (4.13) is shown in Fig. 4.4-(a).

From the same realization, the mean function µt and the GMRF ηt, as in (4.13), are shown

in Fig. 4.4-(b) and Fig. 4.4-(c), respectively.

Ten mobile sensing agents, i.e, N = 10, take measurements at time t ∈ {1, 2, · · · , 10},

where only three agents are assumed to have uncertain sampling positions. In Figs. 4.5-(g),

(h), and (i), true, noisy, and probable sampling positions are shown in circles, stars, and

corners of squares, respectively.

The prediction results are summarized for three methods of prediction as follows.

• Case 1: Figs. 4.5-(a), (d), and (g) show the prediction, prediction error variance, and

squared (empirical) error fields, using Algorithm 3 with exact sampling positions. With

the true sampling positions, the best prediction quality is expected for this case.

• Case 2: Figs. 4.5-(b), (e), and (h) show the resulting fields, by applying Algorithm 3

naively to measured sampling positions including noisy locations. The results clearly
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illustrate that naively applying Algorithm 3 to noisy sampling positions can potentially

distort prediction at a significant level as shown in Figs. 4.5-(b) and (h).

• Case 3: Figs. 4.5-(c), (f), and (i) show the resulting fields, by applying Algorithm 4

with m = 1. In particular, we use the result from Corollary 4.5.17 (i.e., m = 1) to eval-

uate the effectiveness of the proposed approximation in marginalizing the uncertainty

in sampling positions. The resulting prediction quality is much improved as compared

to Case 2 and is even comparable to the result for Case 1.

Cases 1, 2, and 3 will be also applied to realistic experimental data in Section 4.7.

Fig. 4.6-(a) shows the RMS errors of the estimated βt for Cases 1, 2, and 3 in time. The

RMS errors are defined as follows.

RMS(t) =

√√√√1

p

p∑
i=1

(µ
β

[i]
t

− β[i]
t )2. (4.41)

Fig. 4.6-(a) clearly illustrates that the RMS errors of Cases 1 and 3 are similarly lower than

that of Case 2 for all time.

Now we examine the convergence rate of hyperparameters. The prior distribution of the

hyperparameter vector θ is discrete with a support

Θ = {(κ, α), (0.1κ, α), (10κ, α), (κ, 0.1α), (κ, 10α)} ,

along with the corresponding uniform probabilities {0.2, 0.2, 0.2, 0.2, 0.2}. As shown in

Fig. 4.6-(b), the updated posterior probabilities of the hyperparameters (κ, α) converge to

the true hyperparameters for Case 1 (blue circles) and Case 3 (red squares), as the number

of observations increases. However, Case 2 (green stars) does not converge to the true ones.

110



(a)

(d)

(g)

(b)

(e)

(h)

(c)

−3
−2
−1
0
1
2
3

(f)

0

5

10

15

20

25

(i)

0

2

4

6

8

10

Figure 4.5: The prediction results of Cases 1, 2, and 3 at time t = 2 are shown in the
first, second, third columns, respectively. The first, second, and third rows correspond to
the prediction, prediction error variance, and squared empirical error fields between the
prediction and true fields. True, noisy, and probable sampling positions are shown in circles,
stars, and corners of squares, respectively.
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Figure 4.6: (a) The RMS estimation error of βt v.s. time and (b) the posterior probability
of the true hyperparameter vector v.s. time. The results for Cases 1, 2, and 3 are shown in
blue circles, green stars, and red squares, respectively.

Note that the results in Figs. 4.4 and 4.5 are obtained at time t = 2. The corresponding

values for t = 2 in Fig. 4.6 are highlighted by a gray area.

Fig. 4.7 shows the controllable tradeoff between approximation error and complexity.

The complexity of Algorithm 4 increases exponentially with respect to m. The predicted

field is compared between Case 1, which is the best prediction quality expected, and Case 3.

Clearly, by increasing m, the mean square difference between Case 1 and Case 3 decreases.

However, this improvement costs exponentially increasing computational load.

Fig. 4.8 shows the effect of increasing number of observations with uncertain sampling

positions on the three cases. Here we assume that we have seven observations with known

true sampling positions plus a few observations with uncertain sampling positions. Clearly

the RMS error decreases in Case 1 and Case 3 by adding new observations with true and
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Figure 4.7: The mean square difference between Case 1 and Case 3 is shown for the different
approximation orders m = 1, · · · , 5. On each box, the central mark is the median, the upper
and lower edges of the box are the 25th and 75th percentiles, respectively. The whiskers
extend to the most extreme data points.

uncertain sampling positions, respectively. On the other hand, as shown in Fig. 4.8, adding

new observations with noisy sampling positions could increase RMS error for Case 2.

In this example, the fixed running time using Matlab R2009b (MathWorks) on a PC

(2.4 GHz Intel Core 2 Duo Processor) is about 3 minutes for the proposed approximation

(m = 1) which is fast enough for real world implementation. In addition, the quality of

prediction by Algorithm 4 with a finite m could be as good as one using Algorithm 3 with

the true sampling positions.

4.7 Experimental Results

Similarly to [82], a vision-based robotic sensor was built by the authors to validate the

proof of concept for the proposed methods. The wireless mobile robot is equipped with two

motorized wheels, a micro-controller, and a 360 degree omnidirectional camera, a motion

sensor, a wireless receiver, and transmitter. The omnidirectional camera is homemade from

a cheap Wi-Fi remote CCD camera (Ai-Ball Treck R©) and a globe mirror. The vision images
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Figure 4.8: The number of observations with uncertain sampling position on the three dif-
ferent cases is shown on the horizontal axis. The field prediction RMS error for Case 1, Case
2 and Case 3 are shown with white, black, and hatched bars, respectively.

of the 360 degree environment around the robot produced by the omnidirectional camera

are steamed via 802.11 b/g Wi-Fi interface to a laptop for image processing (see Fig. 4.9).

In this section, we apply the proposed prediction algorithms to real experimental data.

Fig. 4.10 shows our experimental setup in which a redness intensity field is sampled by

the captured images from the CCD camera on top of the mobile robot. The CCD camera

captures 360 degree images. The redness intensity is computed by simply averaging the

red component of the RGB picture. Noisy measurements are sampled at random sampling

positions by our robot. The position of the robot has been measured by an image processing

software which is built by the authors and the true sampling positions are obtained manually.

The objective is to predict the redness intensity field using the scalar field model proposed

in Section 4.4. Note that each image has a lot of information. However, we only used the

redness out of each image as a scalar value of interest. In the future, we plan to extend this

experiment for multivariate random fields for multiple features from each image. Here we are
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Figure 4.9: A vision-based robot is built by the authors, and equipped with a 360 degree
omnidirectional camera.

Figure 4.10: The experimental setup is shown. The measured position of the robot and 4
possible sampling positions are shown in dark green star and light green squares, respectively.
The spacial sites are marked with aqua blue dots on the ground. The panoramic view of the
robot is pictured on the upper left hand side of the figure.
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considering two different scenarios. First, we consider a static field and then a time-varying

field with a moving person in the surveillance region.

4.7.1 The Static Experiment

In this study, the spatial sites in Q are considered to be 10 × 26 grid points, i.e., n = 260.

The grid points are shown in Fig. 4.10 with aqua-blue dots. The mean function µt consists

of only one radial basis function that keeps moving average of the field. Note that this basis

function can model the changes in the brightness of the images caused by the slow changes of

the environment lights. The center of the radial basis function is (5, 13), and its bandwidth

σ1 is∞. The prior distribution of the hyperparameter vector θ is chosen to be discrete with

a support Θ = {25, 50, 100, 200, 400} × {0.1, 0.2, 0.4, 0.8, 1.6} and the associated uniform

probabilities. The measurement noise variance σε = 0.01 is estimated.

To demonstrate the usefulness of our model in (4.13), (4.15), and (4.16), and our pre-

diction algorithm, the mobile robot measures eighty samples, i.e., N = 80, where only nine

sampling positions are uncertain with four possibilities each. Thus there is 49 possible com-

binations for this set of sampling positions. After two set of observations, the resulting

posterior probabilities of the hyperparameters for Case 1 is shown in Fig. 4.11. Fig. 4.11

shows the estimated hyperparameters converge to κ = 100 and α = 0.8, where is equivalent

with ` = 1.58 and σf = 0.0315.

Similarly to Section 4.6, the prediction and prediction error variance are computed for

Cases 1, 2, and 3. However, since it is a realistic experiment, the ground truth of the field of

interest is not available and so we are not able to compute the empirical error. The prediction

and the prediction error variance using true sampling positions (Case 1), are shown in Figs.

4.12-(a) and (d), respectively. Figs. 4.12-(b) and (e) show the resulting fields, by applying
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Figure 4.11: The posterior probability of the hyperparameter vector at t = 2.

Algorithm 3 naively to measured sampling positions including noisy locations (Case 2).

Figs. 4.12-(c) and (f) show the results by applying Algorithm 4 with m = 1 (Case 3).

The results confirm that the quality of the prediction in Case 3 is not much compromised as

compared to Case 1 and demonstrate the capability of our proposed algorithm to deal with

uncertain sampling positions.

4.7.2 The Dynamic Experiment

In this scenario, the spatial sites are the same as in the previous experiment. The mean

function µt consists of twenty nine radial basis functions. The centers of radial basis functions

are {(5, 13)} ∪ {1, 4, 7, 10} × {1, 5, 9, 13, 17, 21, 25}. The time evolution of βt is modeled

by (4.15), where the state matrix At and the input matrix Bt are given by I and 0.05I,

respectively. The first radial basis function has an infinity bandwidth (i.e., σ1 = ∞) to

represent the average of the field, and the others have a bandwidth that is equal to σj = 4.

117



2 4 6 8 10

5

10

15

20

25

2 4 6 8 10

5

10

15

20

25

2 4 6 8 10

5

10

15

20

25

2 4 6 8 10

5

10

15

20

25

2 4 6 8 10

5

10

15

20

25

2 4 6 8 10

5

10

15

20

25

0.7

0.75

0.8

0.85

0.9

−9

−8

−7

−6

−5

(a) (b) (c)

(d) (e) (f )

Figure 4.12: The prediction results of Cases 1, 2, and 3 at time t = 2 are shown in the first,
second, third columns, respectively. The first and second rows correspond to the predictions
and the natural logarithm of the prediction error variance.

In this experiment, a person moves in the surveillance region while the robot is collecting

observations. The robot collects 57, 40, 31, and 45 observations corresponding to times

t = 1, 2, 3, and 4, respectively. The first column in Fig. 4.13 shows the positions of moving

robot and person in the domain. As mentioned, the position of the robot has been measured

with a fixed camera and help of an image processing software. Sometimes, the robot is not

visible by the positioning system since the moving person blocks the visual contact between

the robot and the positioning system. The black areas in the second column of Fig. 4.13
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show the blind spots of the positioning system. Note that other positioning systems like

GPS also have blind spots such as GPS denied areas. Therefore, when the robot moves to

a blind spot the position cannot be determined precisely. In this case, we assign different

probabilities on multiple sampling positions.

True sampling positions in each time step are shown with blue dots in the second column

of Fig. 4.13 while just blue dots in the white area are measured through the positioning

system and the positions in the blind spots are recorded manually for a comparison purpose.

The prediction results of Case 1 and Case 3 are compared with a trivial method of

prediction defined as follows.

• Case 4: The fifth column of Fig. 4.13 shows the resulting fields, by applying Algo-

rithm 3 on just observed sampling positions. Here all the observations whose sampling

positions are uncertain are discarded. In particular, 12, 3, 2, and 4 observations have

been discarded for time t = 1, 2, 3 and 4, respectively.

The predicted field using true sampling positions (Case 1) and uncertain sampling posi-

tions (Case 3) are shown in the third and forth columns of Fig. 4.13, respectively. Since in

the fully automated experiment true sampling positions in the blind spot are not available,

we used the proposed algorithm in this chapter to deal with uncertain sampling positions

in the blind spot areas. The predicted field simply by discarding uncertain sampling po-

sitions is shown in the fifth column of Fig. 4.13. Clearly, the results obtained for Case

3 with m = 1, is comparable to the result for Case 1 that is the best prediction quality

expected among all cases. Thus, the experimental result demonstrates the effectiveness of

the proposed algorithm in this chapter.
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Figure 4.13: The time varying field is shown for 4 time iterations. The first column shows
the moving object in the field. The second column shows the sampling positions with blue
dots and the positioning blind spot with black areas. the third, forth and fifth columns show
predicted field for Case 1, Case 3 and Case 4, respectively. The rows are correspond to the
time intervals t = 1, 2, 3 and 4.
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4.8 Conclusion

We have tackled a problem of predicting a spatio-temporal field using successive noisy mea-

surements obtained by robotic sensors, some of which have uncertain localization. We devel-

oped the spatio-temporal field of interest using a GMRF and designed sequential prediction

algorithms for computing the exact and approximated predictive inference from a Bayesian

point of view. The most important contribution is that the computation times for Algo-

rithm 3 and Algorithm 4 with a finite m at each time step do not grow as the number of

measurements increases. Two different experimental results provide a solid proof of concept

on the proposed scheme.

The proposed algorithm will be useful for robotics applications such as environmental

monitoring by autonomous aquatic robots [40], decentralized environmental modeling by

mobile sensor networks [64], gradient climbing of environmental fields [10,62] with or without

localization uncertainty. Furthermore, our approach can provide a fully Bayesian way to

automatically tune the hyperparameters in Gaussian process-based SLAM [7, 51, 77, 105]

with increase computational complexity.
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Chapter 5

Simultaneous Localization and Spatial

Prediction

Abstract: This chapter investigates a fully Bayesian way to solve the simultaneous localiza-

tion and spatial prediction (SLAP) problem using a Gaussian Markov random field (GMRF)

model. The objective is to simultaneously localize robotic sensors and predict a spatial field

of interest using sequentially obtained noisy observations collected by robotic sensors. The

set of observations consists of the observed uncertain poses of robotic sensing vehicles and

noisy measurements of a spatial field. To be flexible, the spatial field of interest is modeled

by a GMRF with uncertain hyperparameters. We derive an approximate Bayesian solution

to the problem of computing the predictive inferences of the GMRF and the localization,

taking into account observations, uncertain hyperparameters, measurement noise, kinemat-

ics of robotic sensors, and uncertain localization. The effectiveness of the proposed algorithm

is illustrated by simulation results.

5.1 Introduction

The simultaneous localization and mapping (SLAM) problem is important to be solved

for a robot to explore an unknown environment under localization uncertainty [21]. The
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variations of the SLAM problem are surveyed and categorized with different perspectives

in [97]. In general, most SLAM problems have strong geometric models [21,32,61,71,72,97].

For example, a robot learns the locations of the landmarks while localizing itself using

triangulation algorithms. Such geometric models could be classified in two groups, viz., a

sparse set of features which can be individually identified, often used in Kalman filtering

methods [21], and a dense representation such as an occupancy grid, often used in particle

filtering methods [31].

In contrast to the SLAM problem with popular geometrical models, there is a growing

number of practical scenarios in which no such geometric model exists. Consider localization

using various spatially distributed (continuous) signals such as distributed wireless Ethernet

signal strength [27], or multi-dimensional magnetic fields [105]. Underwater autonomous

gliders for ocean sampling cannot find usual geometrical models from measurements of en-

vironmental variables such as pH, salinity, and temperature [62]. Furthermore, there are

reasons to avoid the geometric model as well, even when a geometric model does exist. Such

cases may include: 1) the difficulty of reliably extracting sparse, stable features, 2) the ability

to use all sensory data directly rather than a relatively small amount of abstracted discrete

information obtained from feature extraction algorithms, and 3) high computational and

storage costs of dealing with dense features.

Motivated by the aforementioned situations, in this chapter, we consider scenarios with-

out geometric models and tackle the problem of simultaneous localization and prediction

(SLAP) of a spatial field.

Nonparametric modeling and prediction techniques for random fields have been exploited

for mobile robotic sensors [10,12,62,64,117]. Random fields such as Gaussian processes and

Gaussian Markov random fields (GMRFs) [14, 84] have been frequently used for mobile
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sensor networks to statistically model physical phenomena such as harmful algal blooms,

pH, salinity, temperature, and wireless signal strength e.g., [30, 57,119].

The recent research efforts that are closely related to our problem are summarized as

follows. In [43], the authors formulated Gaussian process regression under uncertain local-

ization. In [42], the authors used a GMRF with uncertain hyperparameters and tackled a

problem of prediction of the random field under localization uncertainty. However, kine-

matics or dynamics of the sensor vehicles were not incorporated in [42,43]. In [7], Gaussian

process regression was used to model geo-referenced sensor measurements (obtained from a

camera). After training with data including noisy measurements and their exact sampling

positions, a maximum likelihood estimator was used to find the best match for the location

of each of newly sampled measurements. However, this was not SLAM since the training

step has to be performed a priori for a given environment [7]. In [51,105], Gaussian process

regression was also used to implement SLAM using a magnetic field and the feasibility of

such approaches were shown experimentally. The work in [77] used laser range-finder data

to probabilistically classify the robot’s environment into a region of occupancy. It provides a

continuous representation of robot’s surroundings by employing a Gaussian process. In [27],

so called a WiF-SLAM problem was solved using a Gaussian process latent variable model

(GP-LVM). However, the accurately known training data and the independence across the

dimensions and instantiations of the data were assumed in [27], which may not be practical.

To the best of our knowledge, most work related to our SLAP problem did not address

uncertainties in the hyperparameters of the Gaussian process in a fully Bayesian way. In

most of the previous work, the hyperparamters in the model were estimated offline a priori.

In this chapter, we formulate the simultaneous localization and spatial prediction (SLAP)

problem, in order to simultaneously localize robotic sensors and predict a spatial random
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field of interest using sequentially obtained noisy observations collected by robotic sensors.

The set of observations consists of the observed uncertain poses of robotic sensing vehicles

and noisy measurements of a spatial field. To be flexible, the spatial field of interest is

modeled by a GMRF with uncertain hyperparameters. We then derive an approximate

Bayesian solution to the problem of computing the predictive inferences of the GMRF and

the localization, taking into account observations, uncertain hyperparameters, measurement

noise, kinematics of robotic sensors, and uncertain localization. The effectiveness of the

proposed algorithm is illustrated by simulation results.

5.2 Sequential Bayesian inference with a GMRF

In this section, we define a GMRF model in detail, formulate the problem, and provide its

solution.

5.2.1 Gaussian processes and Gaussian Markov random fields

In this section, we briefly introduce a GMRF as a discretized Gaussian process on a lattice.

Consider a Gaussian process: z ∼ GP(µ,K), where µ is the mean vector, and K ∈ Rn×n is

the covariance matrix. We discretize the compact domain S := [0 max(s1)] × [0 max(s2)]

into n spatial sites Q :=
{
s̊(1), · · · , s̊(n)

}
, where n = hmax(s1) × hmax(s2). h will be

chosen such that n ∈ Z>0. Note that n→∞ as h→∞. The collection of realized values of

the random field in Q is denoted by z := (z(1), · · · , z(n))T ∈ Rn, where z(i) := z(̊s(i)).

The prior distribution of z is given by N (µ,K). We then have

P(z) ∝ exp

(
−1

2
(z− µ)T K−1 (z− µ)

)
. (5.1)
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The i, j-th element of K is defined as (K)ij = Cov(z(i), z(j)). The prior distribution of z

can be written by a precision matrix Q = K−1, i.e., z ∼ N (µ,Q−1). This can be viewed

as a discretized version of the Gaussian process (or a GMRF) with a precision matrix Q

on Q. Note that Q of this GMRF is not sparse. However, a sparse version of Q, i.e., Q̂

with local neighborhood that can represent the original Gaussian process can be found, for

example, making Q̂ close to Q in some norm [15, 35, 90]. This approximate GMRF will be

computationally efficient due to the sparsity of Q̂. In our simulation study, we will use a

GMRF with a sparse precision matrix that represents a Gaussian process precisely as shown

in [42, 63]. However, any parameterization of µθ and Qθ, where θ is the hyperparameter

vector, can be used.

5.2.2 Multiple robotic sensors

Consider N spatially distributed robots with sensors indexed by j ∈ J := {1, · · · , N}

sampling at time t ∈ Z>0. Suppose that the sampling time t ∈ Z>0 is discrete. Recall

that the surveillance region is discretized as a lattice that consists of n spatial sites, whose

set is denoted by Q. Let n spatial sites in Q be indexed by I := {1, · · · , n}, and z :=

col
(
z(1), · · · , z(n)

)
∈ Rn be the corresponding static values of the scalar field at n special

sites. We denote all robots’ locations at time t by qt = col
(
q

[1]
t , · · · , q[N ]

t

)
∈ QN , the

observations made by all robots at time t by yt = col
(
y

[1]
t , · · · , y[N ]

t

)
∈ RN , and the

observed states of all robots at time t by s̃t = col
(
s̃
[1]
t , · · · , s̃

[N ]
t

)
∈ SN . s̃t and yt are noisy

observations of st and z, respectively. At time t, robot j takes a noise corrupted measurement

at its current location q
[j]
t = s̊(i) ∈ Q,∀j ∈ J , i ∈ I, viz.,

y
[j]
t = z(i) + ε

[j]
t , (5.2)
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where the measurement errors {ε[j]t } are assumed to be the independent and identically

distributed (i.i.d.) Gaussian white noise, i.e., ε
[j]
t

i.i.d.∼ N (0, σε
2). The measurement noise

level σε
2 > 0 is assumed to be known, and we define εt := col

(
ε
[1]
t , · · · , ε

[N ]
t

)
∈ RN .

In addition, at time t, robot j takes a noisy observation of its own vehicle position.

s̃
[j]
t = q

[j]
t + e

[j]
t , (5.3)

where the observation errors {e[j]
t } are distributed by e

[j]
t

i.i.d.∼ N (0, σ2
eI).

The observation noise level σ2
e > 0 is assumed to be known, and we define et :=

col
(
e
[1]
t , · · · , e

[N ]
t

)
∈ R2N .

Our models can be represented in the concise collective notation.

yt = Htz + εt,

s̃t = Ltqt + et,

(5.4)

where Lt is the observation matrix for the vehicle states, and Hτ ∈ Rn×N is defined by

(Hτ )ij =


1, if q

[j]
τ = s̊(i),

0, otherwise.

5.2.3 Kinematics of robotic vehicles

In this section, we introduce a specific model for the motion of robotic vehicles. Each

robotic sensor is modeled by a nonholonomic differentially driven vehicle in a two dimensional
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domain, i.e., S ⊂ R2. In this case, an equation of motion for robot i [86] may be given by

 ṡ
[i]
1,t

ṡ
[i]
2,t

 =

 u
[i]
t cosψ

[i]
t

u
[i]
t sinψ

[i]
t

+ β
[i]
t , (5.5)

where
{
s
[i]
1,t, s

[i]
2,t

}
,
{
ψ

[i]
t

}
,
{
u

[i]
t

}
, and β

[i]
t denote the inertial position, the orientation,

the linear speed, and the system noise of robot i in time t, respectively. In this case, the

kinematics of the vehicle network can be further described in detail as follows.

st+1 = st + Ftut + vt, (5.6)

where ut is a known control input and vt is an i.i.d. white noise realized by a known normal

distribution N
(
0,Σvt

)
.

The evolution of the location of the robot can be more detailed as follows.

qt+1 = Q (qt + Ftut + vt)

= qt + Ftut + wt,

(5.7)

where Q : S → Q is the nearest neighbor rule quantizer that takes an input and returns

a projected value on S. vt is the process noise and wt is the quantization error between

the continuous and discretized states, i.e., wt = Q (qt + Ftut + vt) − (qt + Ftut). As the

cardinality of S increases, we have that wt → vt. A special case of (5.7) is that Ftut is

controlled and wt is chosen such that the next location qt+1 is on a grid point in S. In this

case, we have vt = wt.

Assuming that {ψ[i]
t | ∀i ∈ J } in (5.5) can be measured precisly, Ft ∈ R2N×N in (5.5) is
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obtained as follows.

Ft = ∆t



cosψ
[1]
t 0 · · · 0

sinψ
[1]
t 0 · · · 0

0 cosψ
[2]
t · · · 0

0 sinψ
[2]
t · · · 0

...
...

. . .
...

0 0 · · · cosψ
[N ]
t

0 0 · · · sinψ
[N ]
t



,

where ∆t = 1 is a sampling time. We denote the collections of cumulative robots’ locations,

cumulative observations, and cumulative control inputs from time 1 to time t, respectively, by

s̃1:t := col (s̃1, · · · , s̃t) ∈ SNt, y1:t := col (y1, · · · ,yt) ∈ RNt, and u1:t := col (u1, · · · ,ut) ∈

RNt.

5.2.4 Problem formulation and its Bayesian predictive inference

In this section, we formulate the SLAP problem and provide its Bayesian solution. To be

precise, we present the following assumptions A.1-A.5 for the problem formulation.

A.1 The scalar random field z is generated by a GMRF model which is given by z ∼

N (µθ,Q
−1
θ ), where µθ and Qθ are given functions of a hyperparameter vector θ.

A.2 The noisy measurements {yt} and the noisy sampling positions {s̃t}, as in (5.4), are

collected by robotic sensors in time t = 1, 2, · · · .

A.3 The control input {ut} is a known deterministic vector at time t.
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A.4 The prior distribution of the hyperparameter vector θ is discrete with a support Θ ={
θ(1), · · · , θ(L)

}
.

A.5 The prior distribution P(qt = q̊
(i)
t ) is discrete with a support q̊

(i)
t ∈ Ω(t), and

Ω(t) =
{

(̊s(k1), · · · , s̊(kN ))|(k1, · · · , kN ) ∈ L(t)
}

, which is given at time t. Here, γ(t) = |L(t)| denotes the number of the probable

possibilities for qt.

Problem 5.2.1. Consider the assumptions A.1-A.5. Our problem is to simultaneously find

the predictive distributions, means, and variances for both z and q conditional on Dt :=

{y1:t, s̃1:t}.

The solution to Problem 5.2.1 is derived as follows. The distribution of the GMRF is

given by P (z|θ,Dt−1) = N
(
µz|θ,Dt−1

,Σz|θ,Dt−1

)
. Recall that the evolution of qt is given

by (5.6) and the input ut is a known deterministic vector at time t. Therefore, P (qt|Dt−1)

can be updated by the Gaussian approximation of P(qt−1|Dt−1).

P (qt|Dt−1) ∝ exp
(

(qt − µqt−1|Dt−1
+ Ft−1ut−1)T (Σqt−1|Dt−1

+ Σwt−1)−1

× (qt − µqt−1|Dt−1
+ Ft−1ut−1)

)
.

(5.8)

Similarly, P (yt|θ,Dt−1,qt) is updated by the Gaussian approximation of P(z|θ,Dt−1) as

follows.

P (yt|θ,Dt−1,qt) ≈ N
(
HT
t µz|θ,Dt−1

,Σεt +HT
t Σz|θ,Dt−1

Ht

)
. (5.9)
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Remark 5.2.2. For the sake of reducing memory usage and complexity, the distribution of

qt|Dt−1 and yt|θ,Dt−1, qt are approximated by normal distributions.

The joint distribution z,qt, θ|Dt−1 is obtained as follows.

P (z,qt, θ|Dt−1) = P (z|θ,qt,Dt−1)P (θ|qt,Dt−1)P (qt|Dt−1) . (5.10)

The observation model is given by (5.4), thus the probabilities of the observed data are

P (yt|z,qt) = N
(
HT
t z,Σε

)
and P (s̃t|qt) = N

(
Ltqt,Σet

)
. The measured random variables

have the following conditional joint distribution,

P (yt, s̃t|z,qt, θ,Dt−1) = P (yt|z, θ,qt,Dt−1)P (s̃t|qt) . (5.11)

From Bayes’ rule, the posterior joint distribution of the scalar field values, the sampling

positions, and the hyperparameter vector is given as follows.

P (z,qt, θ|Dt) =
P (yt, s̃t|z,qt, θ,Dt−1)P (z,qt, θ|Dt−1)

P (yt, s̃t|Dt−1)
. (5.12)

In addition, P (qt, θ|Dt) =
∫
P (z,qt, θ|Dt) dz is given as follows.

∫
P (z,qt, θ|Dt) dz =

P (s̃t|qt)P (θ|qt,Dt−1)P (qt|Dt−1)

P (yt, s̃t|Dt−1)

×
∫

P (z|θ,qt,Dt−1)P (yt|z, θ,qt,Dt−1) dz,

(5.13)

where
∫
P (z|θ,qt,Dt−1)P (yt|z, θ,qt,Dt−1) dz = P (yt|qt, θ,Dt−1), and P(yt|qt, θ,Dt−1) is

given by (5.9).

Remark 5.2.3. From the Bayes’ rule, P(θ|qt,Dt−1) is given by
P(θ,qt|Dt−1)
P(qt|Dt−1)

. We can
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compute P (θ, qt|Dt−1) for all the possible combinations of qt in the previous iteration us-

ing (5.13). However, for the sake of reducing the computational cost, we approximate

P (θ|qt,Dt−1) by P (θ|Dt−1). Therefore, we have

P (qt, θ|Dt) ≈
P (s̃t|qt)P (θ|Dt−1)P (qt|Dt−1)P (yt|qt, θ,Dt−1)

P (yt, s̃t|Dt−1)
,

Marginalizing out uncertainties on the possible qt and θ, we obtain the following.

P (z, θ|Dt) =
∑

qt∈Ω(t)

P (z,qt, θ|Dt),

P (z|Dt) =
∑
θ∈Θ

P (z, θ|Dt).
(5.14)

Our estimation of qt and θ can be corrected using measured data up to time t as follows.

P (qt|Dt) =
∑
θ∈Θ

P (qt, θ|Dt),

P (θ|Dt) =
∑

qt∈Ω(t)

P (qt, θ|Dt).
(5.15)

The predictive probability and the mean value of z|θ,Dt are obtained as follows.

P (z|θ,Dt) =
P (z, θ|Dt)
P (θ|Dt)

,

µz|θ,Dt =
1

P (θ|Dt)
∑

qt∈Ω(t)

µz|qt,θ,Dt P (qt, θ|Dt) .
(5.16)

The predictive covariance matrix of z|θ,Dt can be obtained using the law of total variance

Σz|θ,Dt = E
(

Σz|qt,θ,Dt

)
+Cov

(
µz|qt,θ,Dt

)
, where the E and Cov is computed over random
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variable qt. Such variables are obtained as follows.

E
(

Σz|qt,θ,Dt

)
=

∑
qt∈Ω(t)

Σz|qt,θ,Dt P (qt|θ,Dt) ,

Cov
(
µz|qt,θ,Dt

)
=

∑
qt∈Ω(t)

(
µz|qt,θ,Dt − µz|θ,Dt

)(
µz|qt,θ,Dt − µz|θ,Dt

)T
P (qt|θ,Dt) ,

(5.17)

where the predictive mean and covariance of z|qt, θ,Dt are calculated using Gaussian process

regression as follows.

µz|qt,θ,Dt =µz|θ,Dt−1
+ Σz|θ,Dt−1

HT
qt

Σ−1
yt|θ,Dt−1,qt

(yt − µyt|θ,Dt−1,qt
),

Σz|qt,θ,Dt =Σz|θ,Dt−1
− Σz|θ,Dt−1

HT
qt

Σ−1
yt|θ,Dt−1,qt

HqtΣz|θ,Dt−1
.

(5.18)

Finally, the first and second moments of qt|Dt are obtained as follows.

µqt|Dt =
∑

qt∈Ω(t)

qt P (qt|Dt) ,

Σqt|Dt =
∑

qt∈Ω(t)

(
qt − µqt|Dt

)2
P (qt|Dt) .

5.3 Simulation Results

In this section, we demonstrate the effectiveness of the proposed sequential Bayesian infer-

ence algorithm using a numerical experiment. Consider a robot is moving in a discretized

surveillance region Q. The spatial sites in Q consist of 31 × 31 grid points, i.e., n = 961,

uniformly distributed over the surveillance region S := [−15, 15]× [−15, 15].

In this illustrative example, we realize the spatial field developed in [42], which a GMRF
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wrapped around in a torus structure. Thus the top edge (respectively, the left edge) and

the bottom edge (respectively, the right edge) are neighbors each other. The parameters

of the model in [42] are selected as follows. The mean vector µθ is chosen to be zero, and

the precision matrix Qθ is chosen with hyperparameters α = 0.1 equivalent to a bandwidth

` =
√

2/
√
α ≈ 4.47, and κ = 50 equivalent to σ2

f = 1/4πακ ≈ 0.016. The prior distribution

of the hyperparameter vector θ is discrete with a support

Θ = {(κ, α), (0.1κ, α), (10κ, α), (κ, 0.1α), (κ, 10α)} ,

along with the corresponding uniform probabilities {0.2, 0.2, 0.2, 0.2, 0.2}. The measurement

noise variance in (5.2) is given by σε = 0.1.

A robot takes measurements at time t ∈ {1, 2, · · · , 100} with localization uncertainty. In

Figs. 5.1-(d), (e), and (f), true, noisy, and probable sampling positions are shown in circles,

stars, and dots, respectively, at time t = 100. In this simulation, the standard deviation

of the noise in the observed sampling position is given by σe = 10 in (5.3). The probable

sampling positions that form support Ω(t), are selected within the confidence region of

Pr(‖̊s(i)
t − q̃

[j]
t ‖ ≤ σe).

The results of the simultaneous localization and spatial prediction are summarized for

three methods as follows.

• Case 1: Figs. 5.1-(a), (d), and (g) show the prediction, prediction error variance, and

squared (empirical) error fields, using exact sampling positions. With the true sampling

positions, the best prediction quality is expected for this case.

• Case 2: Figs. 5.1-(b), (e), and (h) show the results, by using sampled noisy positions.

The results clearly illustrate that naively applying GMRF regression to noisy sampling
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positions can potentially distort prediction at a significant level. Fig. 5.1-(h) shows

that squared error of this case is considerably higher than that of Case 1.

• Case 3: Figs. 5.1-(c), (f), and (i) show the results, by applying the proposed approach

in Section 5.2.4. The resulting prediction quality is much improved as compared to

Case 2 and is even comparable to that of Case 1.

The averaged squared errors in time and space, using true sampling positions (Case

1), noisy sampling positions (Case 2), and using uncertain sampling positions (Case 3) are

0.0837× 10−3, 0.1664× 10−3, and 0.0989× 10−3, respectively. This shows the effectiveness

of our solution to Problem 5.2.1.

The true positions of the robot for time t ∈ T := {10, 31, · · · , 30} are shown in Fig. 5.2

by red diamonds and lines. The estimated sampling positions of the robot E(qt|Dt) for

t ∈ T are shown in blue dots with estimated confidence regions. Fig. 5.2 clearly shows that

the proposed approach in this chapter significantly reduce the localization uncertainty as

compared to the noise level of the sampled positions (denoted by green stars).

In this example, the fixed running time using Matlab R2009b (MathWorks) on a PC (3.2

GHz Intel i7 Processor) is about 40 seconds for each iteration of time which is fast enough

for real world implementation.

5.4 Conclusion

In this chapter, we provide an approximate Bayesian solution to the problem of simultaneous

localization and spatial prediction (SLAP), taking into account kinematics of robots and

uncertainties in the precision matrix, the sampling positions, and the measurements of a

GMRF in a fully Bayesian manner. In contrast to [42], the kinematics of the robotic vehicles
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Figure 5.1: The prediction results of Cases 1, 2, and 3 at time t = 100 are shown in the
first, second, third columns, respectively. The first, second, and third rows correspond to
the prediction, prediction error variance, and squared empirical error fields between the
prediction and true fields. True, noisy, and probable sampling positions are shown in circles,
stars, and dots, respectively. The x and y axis represent 2-D localization, and colors represent
the value of the desired quantity in the locations.

are integrated into the inference algorithm. The simulation results show that the proposed

approach estimates the sampling positions and predicts the spatial field along with their

prediction error variances successfully, in a fixed computational time. The simulation study

suggests that the complexity of the proposed scalable inference algorithm is affordable for a
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Figure 5.2: The trajectories of true, predicted, and noisy sampling positions of the robot are
shown by red diamonds, blue dots, and green stars for time t ∈ {10, 11, · · · , 30}. The blue
ellipsoids show the confidence regions of about 68% for the estimated sampling positions.

robot to operate in real world situations.
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Chapter 6

Conclusion and Future Work

In this chapter, we briefly summarize the key contributions presented in this dissertation

and propose some directions for future work.

6.1 Conclusion

In Chapter 2, we have formulated Gaussian process regression with observations under the

localization uncertainty. Effects of the measurements noise, localization uncertainty, and

prior distributions have been all correctly incorporated in the posterior predictive statistics

in a Bayesian approach. We have reviewed the Monte Carlo sampling and Laplace’s method,

which have been applied to compute the analytically intractable posterior predictive statistics

of the Gaussian processes with localization uncertainty. The approximation error and com-

plexity of all the proposed approaches have been analyzed. In particular, we have provided

tradeoffs between the error and complexity of Laplace approximations and their different de-

grees such that one can choose a tradeoff taking into account the performance requirements

and computation complexity due to the resource-constrained sensor network. Simulation

study demonstrated that the proposed approaches perform much better than approaches

without considering the localization uncertainty properly.

In Chapter 3, the multivariate Gaussian process model is utilized to use vision data for

the mobile robot localization. The predictive statistics of vision data is learned in advance
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and used in order to estimate the position of a mobile robot, equipped just with an om-

nidirectional camera. For the sake of flexibility, the multivariate GP model with unknown

hyperparameters is used to model vision data. The experiments show good positioning

results within a reasonable computational time.

In Chapter 4, the problem of predicting a spatio-temporal field using successive noisy

measurements is tackled. We developed the spatio-temporal field of interest using a GMRF

and designed sequential prediction algorithms for computing the exact and approximated

predictive inference from a Bayesian point of view. The most important contribution is

that the computation times for the proposed algorithms do not grow as the number of

measurements increases.

In Chapter 5, we provide an approximate Bayesian solution to the problem of simulta-

neous localization and spatial prediction (SLAP), taking into account kinematics of robots

and uncertainties in the precision matrix, the sampling positions, and the measurements of

a GMRF in a fully Bayesian manner. In contrast to Chapter 4, the kinematics of the robotic

vehicles are integrated into the inference algorithm. The simulation results show that the

proposed approach estimates the sampling positions and predicts the spatial field along with

their prediction error variances successfully, in a fixed computational time. The simulation

study suggests that the complexity of the proposed scalable inference algorithm is affordable

for a robot to operate in real world situations.

6.2 Future Work

In the long term, we plan to expanding our current work and exploring on the following

directions.
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Although optimal sampling was not pursued in this dissertation, it will be interesting to

consider the optimal sampling strategies for mobile sensing agents subject to complicated

vehicle dynamics.

The distributed implementation of the proposed algorithms is practically important, es-

pecially for a sensor network with a limited computational power. To this end, we are

interested in investigating on the efficient implementation and emerging technologies such

as GPU computing to speed up current algorithms for real time applications.

Expanding the work on spatial modeling using GMRFs to deal with a general spatio-

temporal process is an important direction to follow in the future. Implementing the devel-

oped algorithms in more challenging and more realistic experiments will play a key role in

expanding the scope of applications of the proposed methods in this dissertation.
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