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ABSTRACT

HOMOTOPY METHODS

FOR SOLVING

DEFICIENT POLYNOMIAL SYSTEMS

By

Xiaoshen Wang

By a deficient polynomial system of n polynomial equation in n unknowns we

mean a system that has fewer solutions than that predicted by the Bézout number of

the corresponding homogeneous system. Sometimes if the system is m-homogenized,

the Bézout number can be considerably reduced. In this paper, we introduce homo-

topies for numerically determining all isolated solutions of deficient m-homogeneous

systems. The homotopy H(2:,t) is chosen such that H(3,0) = Q is a trivial system

and H(2:, 1) = P is the system to be solved and such that the subschemes or the

number of solutions of H(x,t) at infinity remains invariant when t varies in [0,1).

Thus the number of paths to be followed is reduced.



To my wife Yingni.
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Chapter 1

Introduction

1 . 1 Linear Homotopies

Let P(a:) = 0 be a system of n polynomial equations in n unknowns, where P 2

(p1, . . . ,pn) and m = (x1, . . . , 23,.) We want to find all isolated solutions of

p1(a:1,...,:c,,) = 0

' (1.1)

pn(:rl,...,:r,,) = 0

in C". The homotopy continuation method for solving this system is to find a system

H(a:,t) =0 (1.2)

such that the solutions of H(a:,0) = 0 are known, H(:r, 1) = P(:r) and then to follow

the curves in the real variable t which make up the solution set of

H(:I:,t) = 0. (1.3)

More precisely, we choose H(a:, t) such that the following three assumptions hold:

1. (Triviality) The solutions of H(2:, 0) = O are known.

2. (Smoothness) The solution set of H(x,t) = 0 for O S t < 1 consists of a finite

number of smooth paths, each parameterized by t in [0,1).



3. (Accessibility) Every isolated solution of H(2:,1) = P(a:) = 0 is reached by

some path originating at t = 0. It follows that this path starts at a solution of

H(:L',0) = Q(:L‘) 7- 0.

When the three assumptions hold, we try to follow the solution paths from the

initial points (known because of property 1) at t = 0 to all solutions of the original

problem P(:r) = O at t = 1 .

It is important to realize that even though Properties (1) — (3) imply that each

solution of P(:c) = 0 will lie at the end of a solution path, it is also consistent with

these properties that some of the paths may diverge to infinity as the parameter t

approaches 1.

This approach has the virtue of locating all isolated solutions of the system P(:r) =

0. A typical choice of H that satisfies the three properties [9,16,21] is

H(2:,t) = (1 —t)cQ+tP, (1.4)

where

(11(33) = (173“ -1)

W) = (x3: -1)

where d1, . . . ,dn are the degrees of p1(:1:),. . . , . . . ,pn(x), and c is a random complex

number . In this case, the number of paths which need to be followed to arrive at

all solutions of P(.r) = 0 is the product d 5 d1, . - - ,dn. This number, often called

the Bézout number of the corresponding homogeneous system, is a classical upper

bound on the number of isolated solutions, counting multiplicities. However, in most

practical cases that we have seen, the number of solutions of (1.1) can turn out to be

smaller than d, and in some cases only a small fraction of d. Such systems are called

deficient. When applying the homotopy continuation method to a deficient system,

by sending out (1 paths in search of solutions, the paths which do not converge to

solutions of (1.1) will go to infinity, representing wasted computation.
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For deficient systems, various homotopies have been introduced ([10,11,12,

17,19]). Sometimes we can m-homogenize (1.1) , to get a smaller Bézout number

([17]) and hence if we use a homotopy with same m-homogeneous structure as P we

can reduce number of paths needed to be followed. Given a polynomial p of degree d

in the n variables :31, . . . , 2:", we can define its homogenization

13(30, . . . ,3") = (2:0)d p(:rl/:z:o, . . . , :rn/xo).

For polynomial system P = (p1, . . . , p") we use P to represent ([51, . . . , fin). A typical

suggestion in [10], [11] and [12] for deficient polynomial system is to choose Q(:c) in

(1.4) which shares a similar type of deficiency as P(:r), with the basic assumption that

the zeros of Q(a:) at infinity, i.e. zeros of Q(a:) with 1:0 = 0, are nonsingular. Then,

we need follow fewer solution paths to obtain all isolated solutions of P. However a

flaw was discovered in one of main theorems of [19]. Basically they claimed a general

result that the nonsingularity of the zeros of Q(:r) at infinity can be replaced by the

following. Let the common zeros of P and Q in (1.4) at infinity be denoted by S. If

for each s E S the multiplicity of s as a solution of Q08) = 0 is less than or equal

to that of s as a solution of P(a:) = 0 and all other zeros of Q(:r) are isolated and

nonsingular, then for ‘almost all’ a E C, by following the solution paths of

1:1(x,t) = a(1—t)Q(a:)+tP(a:) = 0 (1.5)

starting from the isolated zeros of Q(:r) outside 5', one can obtain all isolated zeros

of P(a:) = 0 outside 5'. This assertion can be shown to be in error as the following

example indicates.

Example: Let P = (p1,p2) and Q = (q1,q2) be defined as

P1($1,$2) = $3 + $1 (1.6)

P2($1,$2) = $3 + $2

91(31,$2) = 117;— 1 (1.7)

92($I,$2) = 113% + 331552-
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(0,1,0)

(1,1,—1) \ (1,0,0)

  
 

Figure 1.1: The four solution paths.

The nontrivial common solution set of P(:ro,:rl,:r2) = 0 and Q(a:o,:c1,:1:2) = 0 at

infinity is (0, 1, 0) with multiplicity 2. However, for any nonzero a E C which is not a

negative real number, by following the solution paths of (1.4) starting from the 2 zeros

of Q in affine space (1, —1, 1) and (1, 1, —1), one can only find one of the isolated zeros

of P(:z:), (1, —1, —1), in affine space. For a = .59032965 + .15799344i the computation

results are shown in Figure 1.1. The solution path starting with (1, —1, 1) can reach

(1, -1, -1) and the solution path starting from (1,1, —1) goes to infinity as t tends

to 1. A proof of this assertion for almost all a is given in an appendix.

In view of this counterexample, we suggest an alternative which guarantees the

accessibility of the homotopy for deficient polynomial systems. In our homotopy, we

choose Q(a:) in such a way that its subscheme at infinity contains the subscheme of

P(a:) at infinity. Then, for ‘almost all’ a E C, the subschemes of f1(a:,t) in (1.4)

at infinity remain the same for all t 6 [0,1). Consequently, solution paths of (1.4)

originated at zeros of Q(a:) in affine space stay in affine space for all t 6 [0,1). As a

result, the typical assumption of nonsingularity of Q(:r) at infinity in [10,11,12] can

be dropped.



The main results are stated and proved in Chapter 2 for general m—homogeneous

deficient polynomial systems . When m = 1 the conditions given in Theorem 2.1 and

Proposition 2.1 are equivalent to the condition (2.4) of Theorem 2.3 in [12](See [14]

for the proof). However, the condition here is much easier to be verified. In chapter

2, we also give several examples for which our main results apply.

1.2 Nonlinear Homotopies

Many polynomial systems in applications are a family of systems parameterized

by q E C‘, and for generic family members the number of solutions at infinity are

the same. To deal with this kind of deficient systems, various homotopies have been

introduced ([13,18] ). But each of those homotopies can be used to solve only a small

group of systems in that family. In Chapter 3, we suggest an alternative which can

be used to solve the whole family of systems. We also show how the result can be

used to solve a very important problem arising from the robot arm design.

1.3 Preliminaries

The complex n-space C" can be naturally embedded in complex projective space

P. = {(mo,...,xn) e cn+1\(o,....o>}/~

where the equivalent relation “~” is given by 3 ~ y if a: = cy for nonzero c E C.

Similarly, the space N = C"1 x ~ .. x Ck'" can be naturally embedded in M = P"1 x

- - - x Pk'". A point (y1,. . .,ym) in N with y,- = (y{,. . . ,yzi),i = 1, . . . ,m corresponds

to a point (21,...,zm) in M with z,- = (23,...,z;;..) and 23:1,i=1,...,m. The set

of such points in M is usually called the affine space in this setting. The points in M

with at least one 23 = 0 are called the points at infinity.

Given a polynomial p in the n variables 2:1, . . . ,asn, if we partition the variables

into m groups y1 = (:r],...,z},l),y2 = (x¥,...,:cfi2),...,ym = (x?,...,:r;”m) with

k1 + - - - + km = n and let d,- be the degree of p with respect to y;(more precisely, to



the variables in y,), then we can define its m-homogenization as

P(zl,°'° ’27") = (2(1))d1 X X (Zan)dmp(yl/z(1)a°' .,ym/z6n)

which is homogeneous with respect to each 2, = (26,...,z;;i),i = 1,.. . ,m. Here

2;: = mg, forj :,£ 0. Such a polynomial is said to be m-homogeneous. To illustrate this

definition, let us consider the polynomial

p()\,:r1, . . . ,xn) = /\2(a1:r1 + - - - + anal:n — a)

+/\(b1$1 + ' - ° + bnan — b) + (Cl-131 + '- - + Cnxn - C)-

We may let y1 = (/\),y2 = (2:1, . . . ,3") and 21 = (A0,A),zg = (170,31, . . . ,3"). The de-

gree of p is 2 with respect to yl and is 1 with respect to yg. Hence its 2-homogenization

is

[3(A0, A,:r0,:c1, . . . ,atn) = /\2(a1:r1 + --- + anxn — are)

+A/\0(b1.’131+ ° ° ° + bnxn '— (3170) + A3(C1$1 + ' ' ' + Cnxn — 61:0),

which is homogeneous with respect to (A0, A) and (2:0, 171, . . . , 1:”). For m-homogeneous

polynomial systems P(z) = 0, we are interested in the solutions in P"1 x x Pk'".

So often, by abuse of terminology, we say 2 E P"1 x x Pk'". For 2,- = (zé, . . . , 2}“)

,i = 1, . . . ,m, let S = C[z(§, z], . . . ,zf‘m] be the polynomial ring of the variables in

z,’s with complex coefficients. If A is an ideal generate by m-homogeneous poly-

nomials and T is a prime ideal of 5', denote by AT the ideal {f E S I hf E

A for some m-homogeneous h g T}. For a point z = (21, . . . ,zm) E P"1 x x Pkm,

let 1,, denote the maximal ideal {f E S I f(2) = 0}. If f1, . . . , fn are m-homogeneous

polynomials in the variables (21, . . . , 2",), let V(f1, . . . , fr) he the common zero set of

f1,...,f,. in P"1 x X Pk'". We say a point y E V(f1,...,f,) is nonsingular if

5(f1,---,fr) _ . k, t...
ranka(21,.n,zm)_c0dzmy(V(f1,...,f,.),P xonxP )

where codim denotes complex codimension. We use (f1, . . . , f,) to represent the ideal

 

generated by f1, . . . ,f,. To be more precise, (f1, . . .,f,) is the set of all polynomials

of form

2: gif.’
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where the gg’s are polynomials in S.

For a 2-homogeneous polynomial system P = (151, . . .,15,,) in the variables 2; =

(23,...,z;;..) i = 1,2 with k1 = k , k2 = l, and k +3 :2 n and deg 13,- : (d‘i,d§),

i = 1, - - - ,n the Bézout number B of this system is ([6, p. 146]) the coefficient of akfl‘

in the product

it

H(d‘ia + dam- (1.8)
i=1

That means the number of isolated solutions of the system in P" x P’, counting

multiplicities, is at most B. For m > 2 we have similar formula(See[17]).



Chapter 2

Linear Homotopies

2.1 Main Results

Given the system P(:1:) = (p1(x),...,pn(a:)) in (1.1) let Q(:1:) = (q1(:r),...,qn(x))

and

H(a,:r,t) = (1 — t)aQ(:r) +tP(a:), a E C. (2.1)

Here, we consider at E C"1 x C"2 x x Ck'" with k1 + k2 + + km = n, t real ,

H : C"1 x C"2 x x Ck'" ———> C" and degp, = degq,,i=1,...,n, here by degree

we mean the m-degree. Let

PI(a, z,t) = (1 -— t)aQ(z) + t P(z) t E [0,1], (2.2)

which is the m-homogenization of (2.1). Let (Q) = (61],. . .,(j,,) and (P) = (151,. . .,13,,)

and M = P"1 X .. - x Pk'". The main result is the following.

Theorem 2.1 Suppose that the polynomial system Q in (2.?) satisfies the following

assumptions:

(1) for every point z E M at infinity,

(62)" 2 (13)";

(2) the set T = {the points ofV(('1'1,.. .,ijn) C M in afi‘ine space} consists of non-

singular isolated points (1:1, . . . , 3:".



Then, there exists an open dense subset D ofC with full measure, such that for a“1

chosen from D, we have

a. (Smoothness) For each isolated zero at" E T,k = 1,...,r there is a function

x"(t) : [0, 1] —+ M which is analytic and contained in affine space for allt in

[0, 1) and satisfies H(a,:1:"(t),t) = 0.

b. (Accessibility) Each isolated solution of P(:1:) = 0 in the affine space is reached

by :r"(t) for some k at t = 1.

Remark 2.1 Ifz E V(131,. . . ,jin) then there exists h E (131, . . . ,pn) such that h(z) yé

0, i.e. h g 1,.. Thus, (13)1= = {f e s | fh e (P) for some h g! 1.} = 5. Hence,

condition (1) above implies that every point of V(q1, . . . , (7,.) at infinity is also a point

of V051, . . . ,pn). By the same argument, ifz E V(§1, . . . ,6”) then (Q)I‘ = S and {1)

is obvious. So, in order to check the condition (I) of Theorem 2.1 one only needs

to check this condition for those points at infinity which lie in V(q~1,. . . ,qn). Con-

sequently, the condition (1) implies that the subscheme at infinity of the polynomial

system Q(z) contains the subscheme of P(z) at infinity. (For general definitions and

properties of scheme and subscheme, see [7, pp. 60-190].}

Remark 2.2 By a straightforward verification one can easily see that ((Q)’*)“ =

(Q)"- Hence, 17(0)" 2 (13), than (0)" 2 (13)".

Remark 2.3 In the counterexample (1.5), (1.6) we give in Chapter I,

I31($0,$1,$2) = 133+ :1:le

132(330, $1, $2) = mg + :7:ng

C'1'1(5l?o,€131, $2) = 133+ .103

51.20130, 331,332) = so: + :3le.

At 2 = ($0,231,552) = (0,1,0) 6 bfP2,(Q)" 2 (PW This can be shown as follows.

Since 132 —p1 = x0(:r2 — 2:1) E (15)“ and $2 — :51 # 0 at z = (0,1,0),a:o E (P)I‘. Thus

at: E (P)I'.So (P)" = (2:0,:23). Since (151 — [32)x2 — [311:1 = 223051 + 9:2) E (Q)I‘ and

31+ 1:; 7f 0 at 2,1236 (Q)". Therefore (Q)I‘ = ($2,333). Apparently, (Q)" 2 (15)“.
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We need several lemmas for the proof of the theorem. Let R be a ring of poly-

nomials (perhaps a quotient of S) and q a prime ideal of R. We denote by R01) the

localization of R at q. The local ring R(q) is made up of “formal fractions”

{i I f E R, 9 Eq, deg f = deg g with respect to each 2,, i = 1,...,m}

9

such that 5—: = £- if and only if flgg = fggl in R.

Lemma 2.1 If

~

<va 2 <13)“ (2.3)

for any point y at infinity, then there exists a subset D1 ofC

D1 = {reio E C I 0 E [0,21r)\F, F a finite set, r > 0}

such that for any y at infinity and c E D1

(61 + 0151, - - . Kin + 61372),” = (Qlly- (2-4)

Proof. From (2.3), for any y at infinity we have

ayp,=b§’,q1+...+b?nqm i=1,...,n

where af’, bf,- E S and a?(y) # 0, i=1,...,n, j :2 1,...,n. Thus,

ai(<'1'1 + 6151) = (at + Obit) (it + - - . + cbi’n (in.

' (2.5)

0?,(51'71 + 615”) : cbi’fl q, + . . . + (a3, + cbg’m) (in

for any c E C. For f E (q1+c131, . . . ,q'n+c;3,,)’v there exists h E S, such that h(y) yé 0,

and

fh = Zn: dim; + 615;), (2.6)

i=1

where d.- E S, i = 1, . . . , n. Multiplying both sides of (2.6) by a? x . . . x a% and using

(2.5), we have f E (Q)Iv. Hence,

(61 + CPD ' ' ' iqn + Cfin)ly g <Q>1y

10



for any c E C. For the reverse inclusion, let

P -

  

ai(Z) + cbit(2) "° Obin(z)

Cbiik)

Ay(c, z) = (2 7)

055110) 031(2) + 053mb)

then (2.5) can be written as

(Ii/((31 + €151) q~1

' = Ay(c, z) E . (2.8)

_ “#671 + CPn) J . 6n .    

Let By(c, 2) be the determinant of Ay(c, z) and Ade, 2) be the adjoint matrix of

Ay(c, z). Multiplying both sides of (2.8) by Ay(c, 2) yields,

r ~ ~ 1 ' '

ai’(q1 + 0191) <11

Ade, z) E = By(c, z) E . (2.9)

    “31(4): + 61511) 91:
b cl t- .l

Consider By(c,z) as a polynomial in C x M. Denote its homogenization with

respect to c in P1 x M by By(co,c, 2). Let B be the ideal generated by the By’s. Its

zero set at infinity, denoted by v, is an algebraic set. Let in : P1 x M —-t P1 be the

natural projection. By the proper mapping theorem ([5, p.64]) 1rl(v) is an algebraic

set in P1. The only algebraic subsets in P1 are the empty set, the finite-element

subsets and P1 itself. Since By(1,0,y) 915 0 for any y at infinity, (1,0) E 7r1(v). So

1r1(v) is a proper algebraic set of P1 and hence is a finite set {(c,-,d,-), i = 1,. . . , 1:}.

Let F1 = {0,- = arg (it) | c,- 75 0} and D1 = {reio E C | r > 0, 0 E [0,27r)\F1}.

Then for any y at infinity and c E 01, (1,c,y) E v, that is, there exists b E B such

that b(1,c,y) 31$ 0. Since b E B, b = ngy, + + g,By, where y1,...,ys are some

points at infinity and g1, . . . , g, are polynomials.

11



From (2.9) we see that bq'; E (q, + cp1,...,q,, + cpn), i = 1,...,n. Hence,

(Q) S; (61 + 0151, - - - , (in + 015,1)!" and we conclude that, by Remark 2.2,

(QlIy _C. (<71 + C151, - . - ,fin + Cfinlly-

This completes the proof. C1

Under the same assumption of Lemma 2.1, we have the following three corollaries:

Corollary 2.1 For fixed nonzero a, with a"1 E D1 and any y at infinity

(H(a,z,t))’v = (Q)’v for all t 6 [0,1). (2.10)

Proof. From (2.2),

Ii(a,z,t) = (1 — t)aQ(z) + tP(z) = (1 — t)a (Q(z) + ([13:30). 

Since a‘1 E D1, for t 9é 1, (Ti—{)3 E DI. The assertion follows. Cl

Corollary 2.2 For fixed a"1 E D1, t E [0,1) and y at infinity, we have

(I) the quotient rings S/(Iil(a,z,t)) and S/(Q) have the same localization at the

maximal ideal]y = {f E S I f(y) = 0}. That is,

(5/(H(a,z,t))>uy) = (S/(Qlltn)-

Here I1, is considered as maximal ideal in S/(Iil(a,z,t)) and S/(Q) through

canonical projections.

(2) For any prime ideal q of S, considered as prime ideal in S/(B(a,z,t)) and

S/(Q), with zero set V(q) lying at infinity, we have

(S/<F1(avzat)>>(9) = (S/<Q))(Q)‘

Proof.

12



(1) For any f E (S/(Q))(1y), f = “-13, where q E (Q) and b(y) 7i 0. From Corollary

2.1, (B(a, z,t))19 = (Q)I¥ 3 (Q), so, there exists an m-homogeneous r E S such

that r(y) 75 0 and rq E (lil(a,z,t)). Thus,

_ r(a+q) _ ("(+111)

f "' —rb_ _ Tb E (S/(Ii(a,z,t)))(1y),

and hence, (S/(B(a,z,t)))(1y) Q (S/(Q))(1y). The reverse inclusion follows by

the same reason.

(2) Let y E V(q), then I3, 3 q and

<S/<H(aazat))>(0) = ((5/(H(a,2,t))(1,))(q) = ((5/(Q))(1,)>(q) = (5/<Q))(q)-

C]

Corollary 2.3 For a”1 E DI, the intersection schemes of

3

h,(a,z,t)

i l

at infinity are the same closed subscheme of the projective scheme

P"1 x x Pk'"

for all t E [0,1).

Proof. This follows from Corollary 2.2 and the local property of a

scheme. D

Lemma 2.2 Let P and Q satisfy the conditions {1) and {2) in Theorem 2.1 and

T100, 1,2) = AOQ + A113 (2.11)

with (AOAI) E P1. Then for each k, the irreducible component A), C M ofH_l(0)

passing through x" satisfies the following:

13



(1) Let N be the set ofpoints (A0, Ahz) with 2 at infinity, then «1(Ak 0 N) E P1 is

a finite set, where 1r1 is the natural projection;

(2) (1,0) g «,(A, n N).

Proof.

(1)

(2)

By exercise II. 3.12 of [7] dim A), = 1, since xk is a nonsingular point of A1,.

Let Bj be any irreducible component of Ah (1 N. Since Bj :,£ Ak, by Theorem

2, X.5. of [8] dim B,- < 1. So (1) follows.

From the proof of Lemma 2.1, there exists a set E = {C\ a finite set} such

that for A0 = 1 and A1 E B the intersection schemes of Til-(1,)\1,z) at infinity

are the same. By Proposition 9.1.2 and Example 9.1.10 of [6], for A1 E B and

A0 = 1, the number of solutions of (2.11) in affine space are the same (= r).

Since there are only finitely many points not in 7)., there exists 61 > 0 such that

0 <| A1 |< 61 implies A1 E B. And since (1,0, x"), k = 1,. . . ,r are nonsingular,

there exists 0 < e < 61 such that for each 0 <[ A1 |< 8, Q + MP 2 0 has r

isolated affine solutions x"()\1). We claim that for each k,

~

V(Q) n N n A, = <25- (2.12)

Suppose this is not true. Then there is a point (1,0,20) E N 0 Ah. Since A),

is connected and dim A), = 1, let c(s) be a curve such that c(0)=(1,0, 2°) and

c(1)= (1, 0, x"). From (1) above, there are only finitely many (A0, A1) such that

()to, A1) can be in N D A), for suitable 2. Hence, there is 0 < so < 1 and 52 > 0

such that if 6 E (30,30 +52), c(6) E N and 7r1(c(6)) = (1,/\1) with |/\1| < 6. But

then we have at least r+1 zeros of Q + MP in affine space, which leads to a

contradiction. This completes the proof. Cl

(Proof of Theorem 2.1.)
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Let Tip, 2) = A0Q(z)+A1P(z) with A = (10,11) 6 P. A point (1,2) in P1 x M

is said to be regular if and only if rank 7720, 2) = n. For each x", k = 1,. . . ,r in T,

let A)c be the irreducible component of V(TT), the zero set of F in P1 X M, passing

through x". Let Bk be the set of points in A)c which are nonregular. Nonregularity

can be described in terms of vanishing subdeterminants of FAA, 2) which lead to a

system of polynomial equations. Consequently, Bk is an algebraic set for each It. So

7r1(Bk) is a proper algebraic set in P1, because (1,0) E «1(Bk) by Lemma 2.2 and

hence it is finite for each k. Let A := Ule 7rl(Bk) = {(c:,d:-) | i = 1,...,I}, F2 =

{0,- = arg(i:fr'),i=1,...,1|c,- # 0} and D; 2 {ma9 E C | r > 0, 9 E [0,27r)\F2}.

For a E C with a"1 E 0;, 11—33—6- E D2 for allt E [0,1). That is, (I’lthtF) E A, so,

772(1, (Fifi—0,2) is of rank n for any (1, (ti—5,2) E B1,. A repeat application of the

Implicit Function Theorem on the affine representation of the homotopy

t

(1 — t)a’z)

implies the smoothness property. For accessibility, it follows from Corollary 2.3 that

0 = B(a,z,t) = (1 — t)aQ(z) + tP(z) = (1 — t)a-H—(1, (2.13)

for fixed a"1 E D1, the intersection schemes of B(a, z, t) at infinity are the same for

all t E [0,1). By Proposition 9.1.2 and Example 9.1.10 of [6], for each t in [0, 1) the

number of solutions of (2.13) in affine space are the same (= r). As a consequence,

the x"(t)’s are the only solutions in affine space for each t E [0, 1). By a degree theory

argument as in [3], or an algebraic argument as in [10], the accessibility property

follows.

By choosing D = D1 0 Dg, the proof of the theorem is completed. D

The following proposition indicates that Theorem 2.1 is a generalization of the

main result in [12].

Proposition 2.1 Suppose that the polynomial systems Q, P in (2.2) has the following

properties:

(1) every point of V(Q) at infinity is also a point of V(P);

(2) the set T = {the points of V(Q) in affine space} consists of nonsingular isolated

points.
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Then for a nonsingular point z of V(Q) at infinity, (Q)I' 2 (P)I'.

Proof For f E (P)" there exists h E S such that h(z) 75 0, and fh E (P). From con-

dition (b), fh vanishes on the set of zeros of (Q) at infinity. Let x‘ = (x'1,. . . xi ) i =
’ n

1, . . . , r, be the isolated zeros of Q in C“, and

m) =11 i mm -133)
i=1

where e, E C, i = 1,...,n are chosen such that P(z) 75 0. It is easy to see that

P(z‘) = 0 for each i = 1,. . . ,r, where z‘ is the corresponding point of x‘ in M, and

th vanishes on V(Q). By the Nullstellensatz, (th)" E (Q) for some positive

integer 11:. Since (Ph)k(z) 51$ 0, f" E (Q)I'. By Theorem 48 of [15], (Q)I' is a prime

ideal. Hence, f E (62)“ which completes the proof. C]

2.2 Applications

Example 2.1. Suppose we want to solve the system

many) = xy+y+1=0 (2.14)

112017,?!) = $3312 - Icy +1 = 0.

By considering (x,y) E C1 X C1, we may 2-homogenize (2.14) as

151($0,$,y0,3/) = xy + 3303/ + 1703/0 = 0 (2-15)

152(xo, 32,310.11) = $3312 — nit/yo + 33y?) = 0

where (x0,x,yo,y) E P1 X P1. Then this system P = (151,132) has 1 solution (0,1,1, 0)

at infinity with multiplicity 2 and 3 affine solutions. Our starting system Q = (q1, q2)

can be chosen as

q1(:v,y) = xy+y+1=0 (2.16)

(May) = $3.212 —— xy = 0.
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Parameter a = —.13960695 — .6281187i

 

 

 

Starting Point Solution Reached

x y x y

0 —1 —.4301591 —1.7648765

 

2—1/2 + t/31/2—1/2 + t/31/2 —.78492 + 1.307138i —.1225614 + 74486092’

3H/2 — «7.1/24 /2 — fii/2—.78492 —1.3071413i—.1225611 — .74486182‘

 

      
 

Table 2.1: Solutions to (2.14)

Its 2-homogenization is

61(xo,x,yo,y) = $11 + 1:031 + $0310 = 0

62(330, 3719013!) = $3312 — 337121990 2 0.

The system Q has 3 nonsingular solutions (x,y) = (0, —1), (-1/2 + x/3i/2, —1/2 +

x/Si/Z) and (—1/2— \f3i/2, —1/2— JIM/2) and its solution at infinity is the same as

that of P. Write (1'2 = xg with g = xzy2 -—x3yoy. Since x # 0 at z = (0,1,1,0),x E 12,

so, 9 E (Q)I'. Further, q'lxy—g = xoy(xoyo+xy+xyo) E (Q)I’ and xoy0+xy+xyo 74 0

at 2 imply xoy E (Q)I'. Since xoyoél E (Q)I'

xoyo) E (Q)" and thus {12 = q; + xo(x3y3) E (Q)I'. Along with 131 = a, E (Q)I', we

have (Q)!2 2 (P)I‘. So Theorem 2.1 applies. It provides a homotopy and 3 paths,

we have 231/3 = $031061 - $oy($y0 +

beginning from the roots of (2.16), which lead to all roots of (2.14).

The table 2.1 shows the computing result.

The notion of m-homogeneous when m = 1 is the same as homogeneous. For ho-

mogeneous polynomials f1, . . . , f, we use (f1, . . . , f,.)e to denote the subset of (f1 , . . . , fr)

consisting of homogeneous polynomials of degree e. In [12], the following condition of

P, Q in (2.2) is used to guarantee the accessibility of the “random product homotopy”

paths:

For each positive integer k,

(ql,'°°aqnaxg)e 2 (P19---afina$3)e (2.17)
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for all sufficiently large e.

The condition (2.17) is equivalent to condition (1) in Theorem 2.1 when m = 1(See

[14]). However, we shall illustrate in Example 2.2 that condition (1) in Theorem 2.1

can be much easier to verify.

Example 2.2. The following system is the mathematical model of a lumped-

parameter chemically reacting system [2].

p1(x1, x2,x3,x4) = —a1x1(1 — x3 — x4) + a2x3 — (x1 — b1) (2.18)

P2($1,$2,$3, $4) = —as$2(1 — $3 — $4) + a4$4 — ($2 — b2)

p3(x1, x2, x3, 3:4) '2 (113:1(1 — $3 — $4) — a2m3 — 0151:3174

p4(x1, x2, x3, x4) = a3x2(1 — x3 — x4) — a4x4 — a5x3x4.

While the Bézout number of the corresponding homogeneous system of P = (p1, p2, p3, p4)

is 16, for generic ag’s and (25,8 there are only 4 zeros of (2.18) in C4([2]). Define

Q : (q11q2aq33q4) by

q1(x1,x2,x3,x4) = (x1 — 1)(1 — x3 — x4) (2.19)

q2(x1, x2, x3, x4) = (x2 - i)(2 — x3 — x4)

(13(331, $2,133,934) = $1(2 - $3 - $4) + $3$4

(04 :61, $2,033.22) = ($2 +1)(1- x3 — x4) + 23334

The homogenization Q of Q is

61(20, x1, x2, x3, x4) = (x1 — xo)(xo — x3 — x.,) (2.20)

172m), x1,x2,x3, x4) = (x2 — ixo)(2xo — x3 — x4)

§3($o, $1, :82, x3, x4) = 31(2330 - x3 — x4) + 323124

§4($o, $1, $2, $3, $4) = ($2 + $o)($o — $3 — $4) + $3134-

The points of V(Q) at infinity are (xo,x1,x2,x3,x4) = (0,0,0,0,1),(0,0,0,1,0) and

a line I = (0,x1,x2,0,0). The rank of
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[ 1 —1 0 0 0‘

8(qlvq2263aq4) _ Z 0 “'1 0 0

a($o,$1,$2,$3,$4) (0,0,0,0,1) 0 _1 0 1 0

_—1 0 —1 1 0‘

is 4 and hence, (0,0,0,0,1) is nonsingular, similarly for (0,0,0,1,0). These two

points also belong to V(P). Further, the system (2.19) has 4 nonsingular isolated

zeros: (x1,x2,x3,x4) = (1,—1,0,2),(1,—1,2,0),(0,i,0,1) and (0,i,1,0). So, Propo-

sition 2.1 applies. That is,

(duflzfiatitll’ 2 (21,22,2311301'

for z = (0, 0,0,0, 1), (0,0, 0, 1,0). For 2 E I = (0,x1,x2,0,0), either x1 75 0 or 2:2 915 0,

say x1 gé 0. Then x1 -— x0 7i 0 at 2. So, from (1'1,

x0 — x3 — x, E (Q)I‘. (2.21)

It follows, from (74,232., E (Q)1* and hence x1(2xo — x3 — x4) E (Q)I' from (73. Since

x1 5‘4 0 at z,2xo — x3 — x4 E (Q)I’. Comparing with (2.21), yields 230 E (Q)".

Accordingly, it is easy to see that (Q)" Q (P). Thus by Remark 2.2 we have (Q)" Q

(P)I'. So Theorem 2.1 provides a homotopy and 4 paths which lead to all roots of

(2.18). The table 2.2 shows a computing result with given parameters.

 

Parameters

 

a1 = .76771879 + .32820278i a2 = .54890949+ .1093949i a3 = .33010021+ .89058417i

 

a4 = .11129092 + .67177492i a5 = .89248163 + .45296562i bl = .04796080 + .88868678i

 

 b2 2 .82915151 + .66987747i a = .59527814 + .71154547i    
Example 2.3. For generalized eigenvalue problems (or A-matrix problem), the system

P has the following form:

AkBox + Ak’lle + ..-+ ka = 0 (2.22)

1+01$1+-~+01n$n=0
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Starting Points Solution Reached

 

1.131 = 1:132 = —1 x1 = —.731938 + .3453089i x2 = .049258 + .1264814i

 

$3=0$4=2 x3 = 2.9605355 + 7.79467i $4 .0547949 — .0998576i

 

2.131 = 11172 = -1 x1 = -2.214090 + 1.074372i x2 = —1.43290 + .8555617i

 

x3=2x4=0 x3 = .6873539 — 1.0286067i x4 = 1.6660806 + .7643948i

 

3.231 = 0172 =2 x1 = .0433732 + .750366i x2 = .8245659 + .5315566i

 

$3=0$4=1 x3 = .1027011 + .2787743i x4 = .4602318 — .0694782i

 

4. 1=0$2=i x1 = .8908184 — .8041871i x2 = 1.6720086 — 1.0229946i

 

$3=1$2=0    113 = 1.6573049 — 1.6070461  x4 = —.5652349 + .591969i  
 

Table 2.2: Solutions to (2.18) with given parameters

where x = (x1, . . .,x,,),k > 1 and Bo, . . .,Bk are n X n matrices. Consider (A,x1, . . . ,xn) E

C'1 X C". With 2-homogenization, (2.22) becomes

W301: + 121101311 + ...+ (10¢ka = 0 (2.23)

x0+a1$1 +"’+anxn = 0

with (A0,)\,xo, . . .,x,,) E P1 X P". If Bo is a nonsingular matrix, it is quite obvious that

(2.23) has kn solutions for generic ag’s. In [4], a homotopy is given for nonsingular Bo,

which provides kn paths leading to all roots of (2.22).

Here, we give an example on which Theorem 2.1 can be applied when Bo is singular.

Forn=3andk=2,let

    

[0 1 01 '0 1 0-

30:010131‘4001

_0 0 1‘ _1 0 OJ

and aI=---=an=1. Then (2.23) becomes,

131 = A2$2+Abo$2+hg$1=0

152 = A2$2+/\/\o$3+A3333:0

23 = A2$3+AA0$1+A3$2=0

154 = $0+x1+22+23=0
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001

  010

(2.24)



 

Parameter a = -—.74127114 + .70628309i

 

 

 

 

 

 

    

x1 x2 x3 A

1. —4.0795970 3.075972 0 .7548779

2. —.4602 -- .1825814i —.5397982 + .1825814i 0 —.8774412 + .7448597i

3. -—.4602 + .1825814i —.5397982 — .1825814i 0 -.8774414 — .7448597i

4. -—.33333333 —.333333333 —.3333333 —.5 — .866025i

5. -.33333333 -.333333333 —.3333333 —.5 + .866025i  
 

Table 2.3: Solutions to (2.24)

and the solution set at infinity is v = {(Ao,A,xo,x1,x2,x3) | A0 = 0, A = 1, x2 = 0, x0 +

$1 = 0, $3 = 0}- Define Q =(911921931‘14) by

91 = (A - 1)(’\ " 2)$2 = 0

q2 = (A — 3)(A — 4)x3 = 0

q3 = (A — 3)(A — 4)x3 + Axl = 0

24 = 1+$1+$2+$3=0-

It is easy to check that the zero set at infinity of

z: (A -- A0)(/\ -~ 2A0)$2 Z 0

(A — 3A0)(A — 4A0)$3 = 0

(A - 3A0)(/\ - 4A0)$3 + AonI =2 0

= $o+$1+$2+$3=0

(2.25)

(2.26)

is the same as that of (2.24). The system (2.25) has 5 nonsingular solutions (A, x1, x2, x3) =

(0,—-1,0,0), (1,0,—1,0), (2,0,-—1,0), (3,0,0,-—1) and (4,0,0,-—-1). For any z E v, A0 = 0

and A = 1 hence (A -3Ao)(A —4A0) 75 0 and (A — A0)(A — 2A0) yé 0. From 11 and (72 both 2:;

and x3 are in (Q)!2 and from (1'3, on1 E (Q)I'. In summary, (Q)" 2 (P)!1 and Theorem

2.1 applies. The table 2.3 shows our computing result.
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Chapter 3

Nonlinear Homotopies

It occurs sometimes in practice that the polynomial system P(x) is associated with a set of

parameters q = (q1, ...,q,-) E Cj. In this situation we write P(q, x). It is often the case that

the system needs to be solved repeatedly with varying parameters of q’s. In this chapter

we give a procedure that begins with solving P(q,x) for a particular parameter qo. Then

for each subsequent choice of the parameters q of the system, a nonlinear homotopy is used

to find all isolated solutions with amount of computation approximately proportional to

the actual number of solutions. The theorem on which the method is based is described in

section 3.1. As an application, we show, in section 3.2, how to compute the 32 solutions of

the Tsai-Morgan manipulator problem in [20] by following only 32 solution paths.

3. 1 Main Results

Definition 3.1 We say that a property K holds for generic q E C5 (P’), if there exists an

algebraic subset E C C’(P’) of dimension < s such that q E E implies K hold.

Theorem 3.1 Suppose that the polynomial system P(q,x) of n equations with z E M =

P"1 X x Pkm and q E 0’, which is m-homogeneous with respect to 2, satisfies the following

conditions:

1. For generic q E Cj, the solutions of P(q,x) = 0 at infinity are isolated and its number,

counting multiplicities, equals B - r, where B is the Bézout number of the system

H(112};
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2. There is a fixed generic point q0 such that the solution set of P(qo, z) = 0 in the afiine

space consists of nonsingular isolated points x1, ..., x'.

For any point q1 in Cj, let

H(a, z,t) = P((l — t + t(1 — t)a)q0 +(t(1— a(1 — t))ql, z). (3.1)

Then there exists an open dense full measure subset D of C, such that for a E D, we have

a. (Smoothness) For each isolated zero x" E T,k = 1, . . .,r there is a function x"(t) :

[0, 1] -—+ M which is analytic and contained in afl‘ine space for all t in [0,1) and

satisfies H(a,x"(t),t) = 0.

b. (Accessibility) Each isolated afi‘ine solution of P(q1,x) = 0 is reached by xk(t) for

somek att= 1.

Before proving Theorem 3.1, we need the following lemma. Let E be the algebraic set

associated with the genericity of the parameter q in the condition (1) above. That is, if

q E E, then the system P(q, 2) satisfies condition (1).

Lemma 3.1 Suppose that q0 and q1 are as in Theorem 3.1 and consider the homotopy

3(A12)= 1"((I - r040 + A4112) = 0, (3-2)

where A E C. Let H(Ao, A, 2), (A0, A, z) E P1 X M, be the homogenization of]? with respect

to A. Then for each k=1,...,r, the irreducible component of B‘1(0) passing through x"

satisfies the following:

(1) Let N be the set of points (A0,A1,z) with 2 at infinity, then 1r1(A;c n N) E P1 is a

finite set, where 171 is the natural projection;

(2) Let

J = {A e 0|(1— A)q° + Aql e E}. (3.3)

Then J is a finite set.

(3) (1,0) g “(4,. n N).

Proof. The proof of (1) follows the same line of arguments in Lemma 2.2 , so we omit it.
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(2) Without loss of generality we may assume q0 = (0, ..., 0) and q1 = (1, 0, ..., 0). Because

E is an algebraic set , it is the set of common zeros of polynomials f1, ..., ft. Since

q0 E E, f.-(0, ...,0) 7‘— 0 for some i. Thus f;(A,0, ...,0) i 0. Hence there are only finite

many solutions to g(A) E f,-(A,0,...,O) = 0. Therefore the line (1 — A)q0 + Aq1 =

(A,0, ...,0) intersects with E at finitely many points. This completes the proof of (2).

(3) From the proof of (2), there exists a set D = {C\ a finite set} such that for A0 = 1

and A1 E D the number of solutions of

IT(1,/\1,Z) = 0 (3.4)

at infinity are the same. The rest of the proof is the same as the proof of Lemma 2.2,

so we omit it.

For each A in J, the set I,\ = {(1, A,z) E P1 X Mlz E M} is an algebraic set, so is its union

Uye‘, J,\ since J is finite.

Proof of Theorem 3.1

For each x", k = 1,. ..,r in T, let Ak be the irreducible component of V(B), the zero

set of IT in P1 X M, passing through x". Let B). be the set of points (A0,A,z) in Ak

which are nonregular or at infinity or 7r1(Ao,A,z) = (LA) with A in J. Bk is an alge-

braic set for each It. So 1r1(Bk) is a proper algebraic set in P1, because ( 1, 0) E 7r1(Bk) by

Lemma 3.1 and hence it is finite for each It. Let A = U2=1 7r1(Bk) = {(c;,d,) | i = 1,. . .,I},

F = {aglag = g],(c£, d:) E A,c{- 7i 0}. Aslongas a E DI = {(t—a,)/t(1—t)|a,- E F,t E [0,1)},

(1,t(1 - a(1—t))) ¢ (1,a,-) for any i and t6 (0, 1). Thus (1,t(1 — a(1 - t)),z) E 8;, for any

k, t E (0,1) and z E M. Let D = C\D1. By a similar argument as in the proof of theorem

2.1, the smoothness property and the accessibility property follow.

When the polynomial system P(q, 2) satisfies the property that

P(q,z) = 0 implies P(aq, z) = 0 for any a E C

then, in Lemma 3.1 and Theorem 3.1, instead of considering the line (1 — A)q0 + Aql and the

quadratic curves [(1 — t + t(1 — t)a]q0 + [t — t(1 — t)a]q1 through q0 and q1 we may consider

Aoq0 + Aq1 and (1 — t)Aoq° + tAq1 and we can take the homotopy

H(zJ) = P((l-t)aq°+tql,z)
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to solve P(ql, z) = 0. In this situation we have a linear homotopy. In particular, we have

Theorem 3.2 Suppose that for generic {a,b)E P1 the solutions to

H(a, b, 2) = aQ(z) + bP(z) (3.5)

at infinity are isolated and the number of them , counting the multiplicities, equals B-r,

where B is the Bézout number of the system . And the set T = { the points of V(Q) in

afl‘ine space } consists of nonsingular isolated points x1, . . . ,x”.Then, there exists an open

dense subset D of C with full measure, such that for a"1 chosen from D, we have

a. (Smoothness) For each isolated zero 2:" E T,k = 1, . . .,r there is a function x"(t) :

[0, 1] -+ M which is

analytic and contained in afline space for all t in [0, 1) and satisfies

B(a,xk(t),t) = (1 — t)aQ(xk(t)) + tP(xk(t)) = 0. (3.6)

b. (Accessibility) Each isolated solution of P(z) = O in afl‘ine space is reached by x"(t)

for some I: at t = 1.

3.2 Applications

The very important inverse kinematics problem for the 6R manipulator of general ge-

ometry (robot arm design) was reduced by Tsai and Morgan ([20]) to the solution of a

polynomial system of 8 equations in 8 unknowns.The system is as follows.

P1 = -$1$3/\lflzq + $1$4fl2P + $2$3AIM2P + 3725541129 — (3-7)

$5$8H3A405 - $6$7tl305 - $1A2I‘14 + $2/\2#1P -

9131111120 - d1) — 33411201 + $5fl3fl4d5 - $6l13¢14 -

$8F4A305 + AIM" - A1/\2dl - A2d2 - d3 - /\3d4 -

A3A4d5 = 0

p2 = —x1x3A1p2v + x1x4p2u + x2x4p2v + x2x3A1p2u +

$5$7fl3r\4#5 - $6$8I£3fl5 - $1 Azfliv + $2A2fl1u -

$3H1M2w + $5H3fl4A5 + $7/\3#4H5 + A1 A2111

—A3A4A5 = 0
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p3 = x1x3a2u + x1x4A1a2v + x2x3a2v — x2x4A1a2u -

$5$7fl3A4flsd3 + $5$8l1503 + $6$7#5/\403 +

$6$8fl3l15d3 - x1(—a1u + #16121?) + $20110 + #1d2’u)+

x4u1a2w - $5M3H4Asds + $6I£4I\503 - $7(#4/15d4 +

A3fl4fl5d3) + $811504 + (111” + Aldzw + A3/\4/\5d3 +

A4A5d4 + A5d5 — pu — qv — rw = 0

P4 = $1$302P + $1$4A1024 + $2$302q - $2$4A102P +

x5x7a3a5 + x5x8p3A4a5d3 + x6x7p3a5d3 —

$6$8A4a305 + $1(01P - #ldzq) + 32(014 + #1d2P) -

$30102 + $4(-#102d1 + [1102?) + $501304 - flamdads)

+$6(#4d503 + #304d3) + $70405 + $s(fl405d4 + A3p4a5d3)

+d17‘ + A1012? - Aldidz + A3d3d4 + A3A4dsds + A4d4d5

+0.5(—a';’—d§—a§—d§+a§+d§+ai+d§+a§

+d§—22-qz-r2)=0

p5 = x? + x3 — = 0

p6 = x§+xZ—1=0

p7 = x§+x§—1=0

p3 = x§+x§-1=O

where x;, i = 1,2, . . -,8 are the variables and the others are parameters. From various

computing experiences, it has been predicted ([13, 19]) that this system has 32 isolated

solutions for generic parameters. In this section, we shall prove this assertion and give

an algorithm, via homotopy continuation method, for finding all 32 isolated solutions with

minimal computation efforts. By letting (xo,x1,x2,x5,x6) E P4 and (y0,x3,x4,x7,x8) E

P4, we may 2-homogenize (3.7) and obtain (introduced in [19]),

~

191 = —z123A1142q + 31341421? + $2$3/\1#2P + $2$4H24 —

$5$8M3A405 - $6$7fl305 - $1A2Iliqy0 + $2/\2/11Py0 -

$3u1#2(7‘ - d1)$0 - $4H201$0 + $5M3fl4d5y0 - $6H3a4y0 -
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x8p4A3a5xo + (A1A2r — A1A2d1 — Agdg — d3 — A3d4 -

Ashdsfioyo = 0

p2 = —x1x3A1p2v + x1x4p2u + x2x4p2v + x2x3A1p2u +

$5$7H3A4P5 - $6$8fl3115 - (DIM/110310 + $2/\2#1 H.710 —

$3P1fl2w$0 + $5P3P4A5y0 + $7A3P4P5$0 + (A1 A2111

-/\3A4/\5)$oyo = 0

p3 = x1x3a2u + x1x4A1a2v + x2x3a2v - x2x4A1a2u — (3.8)

$5$7P3A4flsds + $5$8P503 + $6$7P5A403 +

$6$8P3l15d3 - $1(—alu + Pidzvhlo + $2011” + Pldzulyo +

$4H102w$0 - $5fl3M4A5d3yo + 36H4A503y0 - 937014115614 +

A3u4p5d3)xo + $sflsa4$o + (diw + Aldzw + A3A4A5d3 +

A4A5d4 + A5d5 — pu — qv - rw)xoyo = 0

P4 = $1$302P + $1$4A1024 + x2x3a2q - $2$4A102P +

x5x7a3a5 + $5$8#3/\4asds + $6$7P305d3 -

$6$8A40305 + $1(01P - fl1d29)yo + $2011!) + #1 dzplyo -

$30102$o + it'd-#102611 + P102T)$o + $5(0304 - #3P4d3d5)y0

+$6(#4d503 + [1304(13) + $70405 + $8(#4a5d4 + Asmasds)

+(d17' + A1427‘ - Aldldz + A3d3d4 + A3A4d3d5 + A4d5)$oyo

+0.5(—a’f—d§—a§ —d§+a§+d§+a3+dfi+a§

+d§ - 122 — r12 — r2)zoyo = 0

p5 = xf+x§-xg=0

26 = z§+z2—y§=0

p7 = x§+xg—x3=0

P8 = $i+$§—yfi=0

It is easily seen that for the system (3.8), d‘[ = d; = 1, i = 1,- ~,4, d? = d1]: d6 = d8 = 2

and d5 = d; = d? = d? = 0. Accordingly, from ( 1.7), the Bézout number of the system is

the coefficient of am“ in the product

(a + 5)4(2a)2(2fl)21
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which equals 96. It was proved in [19] that this system has at most 64 isolated solutions

in P4 x P4. We shall prove that the number of zeros at infinity, counting multiplicities,

is 64, and consequently, the number of isolated zeros in affine space is at most 32. The

points at infinity consists of 3 categories, that is, (i) x0 = yo = 0, (ii) x0 = 0, yo = 1, (iii)

x0 = 1, yo = 0. We shall discuss each case separately.

(1)170 = yo = 0.

The last 4 equations in (3.8) gives,

155 = x¥+x§=0

p6 :: x§+x§=0

157 = x§+xg=0

P8 = $i+$§=01

and hence x2 = :lzixl, x4 = :tixg, x6 = :l:ix5 and x3 = :lzix7. There are 16 combinations.

For a typical combination, say, 2:; = ix], x4 = ix3, x6 = ixs, x8 = ix7, the first 4 equations

of (3.8) gives

151 220+ A1)(-q + ip)x1z3 4615;433:5370 + A4)

fl2(l + A1)(—’U + iu)x1x3 + fl3fl5$5$7(1 + A4) (3.9)

a2(—i)(1 + A1)(—v + 2.1033122; + [15351.7(1 + A4)(ia3 -— fl3d3)

a2i(1 + A1)(q — ip)x1x3 + a5x5x7(1+ A4)(a3 + i113)

If we regard (3.9) as a linear system with unknowns mm and x5x7, then it is easy to see

that the only solutions are x1x3 = 0 and x5x7 = 0 for generic parameters. However, x1 and

x5 cannot be zero simultaneously, for otherwise (xo,x1,x2,x5,x6) = (0,0,0,0,0) which is

not in P4. Similarly, x3 and x7 cannot be zero simultaneously. Thus, only 2 solutions left,

that is, (x1,x2,x3,x4,x5,x6,x7,x3) = (1,i,0,0,0,0,1,i) and (0,0,1,i,1,i,0,0).

Counting multiplicities, there are 32 isolated solutions in total in this case.

(ii) 20:0, 0:1

From (3.8), we have

p5 : x¥+x§=0

x§+x§=0.

"
o
q

H
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Hence, x2 = :lzixl, x6 = iixs. There are 4 combinations. Let us consider a typical

situation: x2 = —ix1, x6 = ix5. It follows from (3.8),

P1 = -$1(q + ip)f1($3, 1:4) — 1139:5910”, x8) = 0

152 = ‘310’ +iu)f1($3a $4) + fl3$592($7, $8) = 0 (3.10)

133 = 31(1’ + i")f2(331 934) + (503 — #3d3)$592($7, $8) = 0

P4 = 2:1(q + iP)f2(‘1531-’174) " (£03 - P3d3)3591($71$8) = 0

where

fl($39 $4) = ”2(Alx3 + 1.274) + A2/1'12

f2($3, $4) = 02(-i$3 + A1$4) - (501 + d2111)

and

91(3371338) = 050937 + A4138) — (#4d5 — ia4),

'92($7, $8) = H5(/\4$7 - i508) + #4r\5-

Now,

(v+iu)><151 -(q+ip)><152

= -#3$5[(v +iu)g1(x7,x3)+ (q + z°P)92(5'3711’8)l = 0-

If x5 = 0, then x6 = 0 and x1 76 0. We then have an overdetermined system of x3 and

x4 for generic parameters. That is,

fl($3134) : 1120\le + i334) + A2/11 = 0

f2(x3,x4) = (”(4553 'l' had-(1'01 + (12/11) = 0

~

p6 = x§+x§-1=0,

which has no solution in general. Hence, x5 75 0, and

(v + iu)g1(x7,x8) + (q + ip)g2(x7, x3) = 0.

Combining this linear equation with pa = x3, + xg - 1 = 0, we arrive at 2 solutions for x7

and x3. On the other hand,

(d3P3 — £03) X P1 + [13134

= x1(q + ip)[(ia3 - d3P3)f1($3, $4) + #3f2($3, $4)l = 0-
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By a similar argument, x1 9i 0 for generic parameters, and combining the linear equation

(ids - d3P3)f1($3, $4) + #3f2($3, $4) = 0

with 136 = x3 + x2 — 1 = 0, we arrive at 2 solutions for x3 and x4. Substituting any

combination of x3,x4,x7,x8 we have obtained back to 131 = 0,152 = 0 in (3.10), unique

solution of x1,x5 can be found. As a consequence, there are 4 solutions in this case. And

there are 16 solutions in total.

(ill) 20 = 1, yo = 0

From (3.8), we have

fig = 23:23 + 1'3 2 0

P8 = 3i + 2?, = 0

Along the same line of argument as in (ii), we consider a typical combination: x4 = —ix3

and x8 = ix7. It follows that

P1 = #2$3f3($1,$2) - £053793(25136) = 0

P2 = H2$3f4($1, $2) + P5$793($5,$6) = 0 (3.11)

P3 = z'02$3f4(-’1=1,$2)" P5$7g4($5,$6) = 0

P4 = i02$3f3($1,$2) + ias$794($5, $6) = 0

where

f3($1,$2) = —(iP + Aiq)$1 + (A119 -i‘1)$2 +(ia1 — #1(7‘ — ‘11))

f4($1,$2) = —(iu + A1103] +(A1u — 1.10272 - [11w

93(35136) = Antares 411326 + A3114

94(335, $6) = (d3/\4l15 - i€13)$s - (idslls + A403)$6

+d3/\3#4 + P4d4 - £114.

And,

(—-u5i) X P1 + as X P2 = M2$3(05f4 - Psifs) = 0-

It can be shown that x3 99 0 for generic parameters. And combining the linear equation

05f4($1,$2) - usif3($1,$2) = 0
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with 135 2 xi + xg — 1 = 0, we have two solutions for x1 and x2. On the other hand,

a12 X P2 + (1121') >< Pa = 2527(0293 - #2204) = 0-

Again, for generic parameters, x7 75 0. The linear equation

0293(7551136) - P2i94($5136) = 0

and

p7=x§+xg—1=0

yields 2 solutions for $5 and x6. Substituting any combination of x1,x2,x5,x6 back to

(3.11), we have a unique solution of x3 and x7. Hence, we have 4 solutions in this case and

16 solutions in total.

There are 26 parameters in the system (3.7). Let E E C26 be the vector representing

all these parameters and write P(x) = P(E,x). To find a particular system with easily

calculated isolated zeros, we proceed as follows. First, we add more parameters B =

(b1,b2,b3,b4) into (3.7) by defining P(B, E,x) = (131, - - -,p8) as:

P1 = P1 + b1

P2 = P2

P3 = P3 + 52

P4 "-‘ P4 + 53 (3~12)

P5 = P5

P6 = P6

P7 = P7

P8 = P8 + 54

When we 2-homogenize the system (3.12) and look at the zeros at infinity of (3.12) as we did

on the system (3.7), all the parameters in B will disappear. Thus, for generic parameters B

and E, P(B, E,x) = 0 has the same number of solutions as P(O, E,x) = P(E, x). Namely,

for generic parameters B and E, P(B,E,x) = 0 has at most 32 isolated solutions. For a

particular choice of B and E, denoted by (Bo,Eo), with r = w = v = q = d1 = d3 = d5 :-

a4=A1=A3=A4=A5=u2=O,u=p=a1=a2=a3=a5=d2=d4=111:113:
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p4 = #5 = A2 = 1 and bl = 1,b2 = -4,b3 = —4.5,b4 = —1, the system (3.12) becomes,

P1

P2

P3

P4

P5

-$6$7 + $2

-$6$8 + $2

$1$3+$5$s+$1+$2-$7-5

x1x3+x5x7+x1+x2—x3+x3—5 (3.13)

x¥+x§—1

x§+x§—l

x§+x§—1

x§+x§-2

There are exactly 32 isolated zeros of the system above, and each one of them can be

easily obtained by straightforward eliminations. We shall briefly describe the calculations

here. From 131 — p2 = 0, we have

235(37 — $3) = 0

which implies (i) x6 = O, or (ii) x7 = x8.

(1) $6 = 0.

In this case, x2 = 0. Consequently, x5 = :t1 and x1 = :lzl. A typical combination, say,

x1 = 1 and x5 = 1 yields, from 134 = 0,

$7+$g-4=0.

Together with p3 = x; + x3 — 2 = 0, two solutions of x7 and x3 are obtained. That is,

x7 = 2 :l: fii and x8 = 2 q: fii. Substituting back to 133 = 0, we have x3 = 4 :l: 2J3i. And,

from p5 = x3 + x3 — 1 = 0, two solutions of x4 can be calculated for each value of 3:3.

In total, we have 16 solutions in this category.

(ii) 237 = 173.

From p8 = x; + x3 — 2 = O, we have x-,- = x8 = 21:1, and, from p1 = 0, x2 = ixs.

Consequently, x1 = ixs. Also, P4 - P3 = 0 yields, x3 = 2, and hence, x4 = :l:\/3i. A

typical combination, say, x7 = x8 = 1, x2 = x6, x1 = x5 and x3 = 2, gives, from 133 = 0,

4x1 +x2 = 6.
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Together with 135 = 2:? + x3 — 1 = 0, two solutions of x1 and x2 become available. That is,

and x2 =
.. 24:1: 191

“’1’ 17

24 191'

17 °

In total, we also have 16 solutions in this case.

Now, consider the homotopy

H(a,-Pat) = P([(1—t)‘l't(1—t)al(301 E0) (3-14)

+1111 — a(1 — 01110. 131.2) = o,

where a E C. When t = 0, we have H(a,x,0) = P(Bo,Eo,x) = 0, which is the system

(3.13) and the solutions are known. When t = 1, H(a,x,1) = P(0,E,x) = P(E,x) = 0

which is the system (3.7). By the Theorem 3.1, we have the following,

Proposition 3.1 For any given parameter set E E C26 and a randomly chosen a E C, the

homotopy (3.14) satisfies the smoothness and accessibility properties.

From this proposition, every isolated solution of P(E,x) = 0 in (3.7) can be reached

by some solution path of H(a,x,t) = 0 in (3.14), originating at t = 0. The path can be

parameterized by t in [0, 1) and starts at a solution of H(a, x,0) = P(Bo, E0, x) = 0 in (3.13

). Notice that there are exactly 32 paths, which is less than all the existing homotopies

for this problem by at least a half. The algorithm has been implemented and executed

without any failure for different sets of parameters we tried. The table 3.1 shows a typical

computing result.

An application of theorem 3.2 can be found in following example.

Suppose we want to solve the system

P1 = $3t/3— 1

P2 = xy+x+y+1

Let

(76 -1)(z - 2X1: - 3)(y —1)(v - 2)(y — 3)

xy+1

(11

(11

and G(a,b,x, y) = aQ + bP. If C is the 2-homogenization of G, then the Bézout number of

the system C is 12. For generic (a,b) E P1((a,b) 76 (1,-1)) , the system has two solutions
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Parameters

a 11 V W #4 #2

.336675 -.28947i .2727448 .57121 .0000 .3663635 -.5088737

01 d1 [‘1 A1 02 d2 q

.982733 .4798967 - .9464922 .3227267 .7639239 .25918 .7449497

03 d3 #3 A3 04 d4 P

.5451146 .04037 -.071255 .997458 .3263 .8215618 .963759

as (15 [15 A5 A2 A4 1‘

.107496 .6027525 .803982 .594653 .8608412 .9304718 .52614

Solutions Found

1'1 x2 x3 :4 1:5 16 x7 ‘8

.4479964 -.894035 .6380733 .7699757 -.938979 .3439749 -.l59925 ..9871292

.2218439 ..975082 .4720904 .8815501 .02034 77 .999793 - .260256 .9655395

..135018 -.990843 .0696905 .9975684 ..022661 .9997432 .0982504 .9951615

.4540939 -.890954 .5255288 .8507758 ..733651 ..6795284 - .34666 -.937991

-.540165; .842621 ; —2.32259; 5.69644; 10.09924; —15.6863:F 5.74658; 2.251062i

.0356i .022824i 5.6207i 2.291703i 15.663703i 10.084 72i 2.221031 5.66893i

1 .6617053: —.5735751 —1.15989; —.56853:1: 4.53055; —7.515156:l; -1.669081¥ .98484 ;

.471 729i 1 .36664 741 .359879i .7342l2i 7.486027i 8.497486i .843605i 1.429713i

1.004864i -.l4298d: 3.19571 i 8.444991: —2.379306:!: ~7.573479:F 2.41357; —2.324815¥

.024479i .172036i 8.3930401 3.176051i 7.5131491 2.3603521 2.2152511 2.297895i

1.1557953: .0002; —6.719234=F .226035; —9.35885:h —1.88501¥ —1.964046¥ —4.13826:t

.0001i .579536i 2235211 6.644488i 1.87464i 9.307368i 4.038446i 1 .916653i

1.423549; —0.490041¥ 1.082638; —0.716682$ 1.00763i: -l2.81038i —1.6951t 1.31788:

.3663253i 1.0641598i .457099i .6905057i 12.771532i 1.004575i l .1662l9i 1.50003i

2.955148; .7709251 -—l.185142:t —.947416; 1.687669; —4.640512}: -1 .166774; 2.65762;

.728427i 2.792242i .7125328i .8913217i 4.5443491 165269861 2.494902i 1.095336

396764; —.458226$ 1.946745t 906342? -6.9181 i 1.909785zl: -1 035343? 1.0319154 4:

.054138i .10595i .802069i 1.7227758i 1.891155i 6.8506121 .7526668i .7551665i

4.368425; .230832i —1 .292526i —.530158:F -—.94 7854:}: 1.240695i —1.076679¥ 2.16523;

.224 721 4.252755i .3702095i .9025711 .952823i .7279286i 1.971413i .9803015i

-,278632; —.972686i —.28221i .966405i —1.6677:t 6328941 4472611: -.9876348:h

.1481645i .0424426i .1118686i .032668i .5240848i 1.3809831 .3815813i .172803i

—.992321:t .123889i .508913? 2.0031893: —4.387059:F 9.856731? 2.7228612}: —1.03913¥

.000862i .0069071 1.7531098i .44538i 9.8143i 4.3681 736i .976045i 2.557557i

3.728055; .061396i —1.270256§: —.582666¥ —.979966:k .204924t —.517122F —1.999667i

.O59146i 3.59147i .407024 7i .887345i .009874i .0472206i .1.749672i .4524 7071

.038208i —1 .012304i .276872i .970562; .832789; —.650007$ 3606323}: .9793755i

.1618099i .0061071 .1313191 .03746li .2096011 .2685406i .1590995i .0423396i

1.183174i -—.466935i -3.58459¥ —.832769i —10.39366:k —9.491538¥ —1.77677i “5483762:

.288567i .7312i .8014331 3.44971i 9.467553i 10.36739i .462324 7i 1.4979576i

2.8638162F —l.36066¥ —1.0717¥ —.507232:l: —3.735566¥ —2.686579t —.96021:t -2.23979¥

.291212i 2.717648i .272529i .5758127i 2.622366i 3.64628i 2.042529i .8756418i       
 

Table 3.1: Solutions to (3.7) with given parameters
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(0,1,0) and (0,0,1) at infinity, each one with multiplicity 3. Thus by theorem 3.1 we can

use the homotopy H(2:,t) = (1 — t)aQ + tP to find all isolated solutions of P by following

6 solution paths.
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Appendix

For P = (121,122) in (1.5) and Q = (q1,q2) in (1.6), let H = (h1,h2) =

(1 — t)aQ + tP, where a is any nonzero number in C, which is not a negative real number.

To be precise,

(1) h1(a,:1:1,2:2,t) = (1 — t)a(xg — 1) + t(zrg + 2:1) = 0

(2) h2(a, 231,222,t) = (1 — t)a(xg + 2:132) + t(xg + 2:2) = 0.

Multiplying (1) by 2:2(1 — t)a and subtracting t x (2), yields,

(3) $3 [(1 — t)at + (1 — t)202] + 2:3 [—(1 — t)at — t2] + 2:2[—(1—t)2a2 — t2] = O.

From (3), we can see that for each fixed a E C and t 6 (0,1), the zero set of H(a,:rl,:132,t)

are (21,12) = (Ll—"ftl‘ififi (d1,€1) and ((12,62), where

  

 

—b+\/b2—4c —b—\/b2—4c

t(e;+1)

dg=- — i = 1 1(5) (1—t)a e 1 2

01'

d.- z _[((e.)2 — nut— t)a — (em .= 1,2,
(6)

with

b_ —t C_ —(1—t)2a2—t2

' (1 —t)a’ _ (1—t)a[t+(1—t)a]'

 

It is easy to see that as t -> 0, b —> 0, c ——> -1. Hence, from (4) and (5), (d1,€1) —>

(—1, 1) and (d2,eg) —* (1,—1). When t —+ 1, g—f —-> 0, i- is bounded and

4 2 4 —2 4
f5—b+\/b2—4c=b(—1+‘/1-3§)=b(—1+1—b—:+0(b—:))=——C+0(—£).

b b

However,

9 _ [t2 + (1 - 020’]

b” t[t+(1-t)a]
—>la.st—81.
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Hence f -—> —2, and 61 —> —1, as t —+ 1. From (6), ((11,631) —> (—1, —1). Similarly,

g E —b—\/b2—4c=b(—1- 1":2‘;

26 46

= b(—1 — l1 - b_2 + 0(35”)

2c 46

When t -—> 1, b —-> +00, hence, g —-> +00 and 62 —> +oo. Therefore, (d2,62) —-> (+oo,+oo)

from (6).
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