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ABSTRACT

HOMOTOPY METHODS
FOR SOLVING
DEFICIENT POLYNOMIAL SYSTEMS

By

Xiaoshen Wang

By a deficient polynomial system of n polynomial equation in n unknowns we
mean a system that has fewer solutions than that predicted by the Bézout number of
the corresponding homogeneous system. Sometimes if the system is m-homogenized,
the Bézout number can be considerably reduced. In this paper, we introduce homo-
topies for numerically determining all isolated solutions of deficient m-homogeneous
systems. The homotopy H(z,t) is chosen such that H(z,0) = @ is a trivial system
and H(z,1) = P is the system to be solved and such that the subschemes or the
number of solutions of H(z,t) at infinity remains invariant when ¢ varies in [0, 1).

Thus the number of paths to be followed is reduced.



To my wife Yingni.
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Chapter 1

Introduction

1.1 Linear Homotopies

Let P(z) = 0 be a system of n polynomial equations in n unknowns, where P =

(p1y-.-,Pn) and z = (21,...,2,). We want to find all isolated solutions of

p1(z1,...,20) =0
: (1.1)
Pa(T1,...,20) =0

in C*. The homotopy continuation method for solving this system is to find a system
H(z,t)=0 (1.2)

such that the solutions of H(z,0) = 0 are known, H(z,1) = P(z) and then to follow

the curves in the real variable ¢ which make up the solution set of
H(z,t) =0. (1.3)
More precisely, we choose H(z,t) such that the following three assumptions hold:
1. (Triviality) The solutions of H(z,0) = 0 are known.

2. (Smoothness) The solution set of H(z,t) = 0 for 0 <t < 1 consists of a finite

number of smooth paths, each parameterized by ¢ in [0, 1).



3. (Accessibility) Every isolated solution of H(z,1) = P(z) = 0 is reached by

some path originating at ¢ = 0. It follows that this path starts at a solution of

H(z,0) = Q(z) = 0.

When the three assumptions hold, we try to follow the solution paths from the
initial points (known because of property 1) at ¢t = 0 to all solutions of the original
problem P(z)=0att=1.

It is important to realize that even though Properties (1) — (3) imply that each
solution of P(z) = 0 will lie at the end of a solution path, it is also consistent with
these properties that some of the paths may diverge to infinity as the parameter ¢
approaches 1.

This approach has the virtue of locating all isolated solutions of the system P(z) =

0. A typical choice of H that satisfies the three properties [9,16,21] is

H(z,t) = (1 -1t)cQ + tP, (1.4)
where
a(@) = (a? - 1)
gn(z) = (23" = 1)
where dy, ..., d, are the degrees of pi(z),...,...,pa(z), and c is a random complex

number . In this case, the number of paths which need to be followed to arrive at
all solutions of P(z) = 0 is the product d = d,,---,d,. This number, often called
the Bézout number of the corresponding homogeneous system, is a classical upper
bound on the number of isolated solutions, counting multiplicities. However, in most
practical cases that we have seen, the number of solutions of (1.1) can turn out to be
smaller than d, and in some cases only a small fraction of d. Such systems are called
deficient. When applying the homotopy continuation method to a deficient system,
by sending out d paths in search of solutions, the paths which do not converge to

solutions of (1.1) will go to infinity, representing wasted computation.
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For deficient systems, various homotopies have been introduced ([10,11,12,
17,19]). Sometimes we can m-homogenize (1.1) , to get a smaller Bézout number
([17]) and hence if we use a homotopy with same m-homogeneous structure as P we
can reduce number of paths needed to be followed. Given a polynomial p of degree d

in the n variables z,,...,z,, we can define its homogenization

P(zoy...,Zn) = (xg)d p(z1/zo0y ..., Zn/T0)-

For polynomial system P = (py,...,pn) we use P to represent (py,..., ). A typical
suggestion in [10], [11] and [12] for deficient polynomial system is to choose Q(z) in
(1.4) which shares a similar type of deficiency as P(z), with the basic assumption that
the zeros of Q(z) at infinity, i.e. zeros of Q(z) with zo = 0, are nonsingular. Then,
we need follow fewer solution paths to obtain all isolated solutions of P. However a
flaw was discovered in one of main theorems of [19]. Basically they claimed a general
result that the nonsingularity of the zeros of Q(z) at infinity can be replaced by the
following. Let the common zeros of P and Q in (1.4) at infinity be denoted by S. If
for each s € S the multiplicity of s as a solution of Q(z) = 0 is less than or equal
to that of s as a solution of P(z) = 0 and all other zeros of Q(z) are isolated and

nonsingular, then for ‘almost all’ a € C, by following the solution paths of
H(z,t) =a(1 —=t)Q(z) +t P(z) =0 (1.5)

starting from the isolated zeros of Q(z) outside S, one can obtain all isolated zeros
of P(z) = 0 outside S. This assertion can be shown to be in error as the following

example indicates.
Example: Let P = (p;,p:) and @ = (¢1,¢2) be defined as

n(z1,z2) =22+ 1, (1.6)

p2(z1,22) = mZ + z2

qi(z1,22) =22 — 1 (1.7)

q2(zy,72) = l‘% + z,2,.

3



(0,1,0)

(1,1,-1) \_ (10,0

Figure 1.1: The four solution paths.

The nontrivial common solution set of P(IL‘(),:L‘I,IIIQ) = 0 and Q(a:o,:cl,arg) =0 at
infinity is (0,1,0) with multiplicity 2. However, for any nonzero a € C which is not a
negative real number, by following the solution paths of (1.4) starting from the 2 zeros
of Q in affine space (1,—1,1) and (1,1, —1), one can only find one of the isolated zeros
of P(z),(1,—1,—1), in affine space. For a = .59032965 +.15799344 1 the computation
results are shown in Figure 1.1. The solution path starting with (1,—1,1) can reach
(1,-1,-1) and the solution path starting from (1,1, —1) goes to infinity as ¢ tends
to 1. A proof of this assertion for almost all a is given in an appendix.

In view of this counterexample, we suggest an alternative which guarantees the
accessibility of the homotopy for deficient polynomial systems. In our homotopy, we
choose Q(z) in such a way that its subscheme at infinity contains the subscheme of
P(z) at infinity. Then, for ‘almost all’ a € C, the subschemes of H(z,t) in (1.4)
at infinity remain the same for all ¢ € [0,1). Consequently, solution paths of (1.4)
originated at zeros of Q(z) in affine space stay in affine space for all t € [0,1). As a
result, the typical assumption of nonsingularity of @Q(z) at infinity in [10,11,12] can

be dropped.



The main results are stated and proved in Chapter 2 for general m-homogeneous
deficient polynomial systems . When m = 1 the conditions given in Theorem 2.1 and
Proposition 2.1 are equivalent to the condition (2.4) of Theorem 2.3 in [12](See [14]
for the proof). However, the condition here is much easier to be verified. In chapter

2, we also give several examples for which our main results apply.

1.2 Nonlinear Homotopies

Many polynomial systems in applications are a family of systems parameterized
by ¢ € C?, and for generic family members the number of solutions at infinity are
the same. To deal with this kind of deficient systems, various homotopies have been
introduced ([13,18] ). But each of those homotopies can be used to solve only a small
group of systems in that family. In Chapter 3, we suggest an alternative which can
be used to solve the whole family of systems. We also show how the result can be

used to solve a very important problem arising from the robot arm design.

1.3 Preliminaries
The complex n-space C" can be naturally embedded in complex projective space

P" = {(zo,...,2s) € C"*'\(0,...,0)}/ ~

where the equivalent relation “~” is given by z ~ y if £ = cy for nonzero ¢ € C.

Similarly, the space N = C* x ... x C¥= can be naturally embedded in M = Pk x
-+« x Pk, A point (y1,...,ym) in N with y; = (33,...,9},),¢ = 1,...,m corresponds
to a point (z1,...,2m) in M with z; = (2§,...,2}) and 2y = 1,i = 1,...,m. The set
of such points in M is usually called the affine space in this setting. The points in M

with at least one z§ = 0 are called the points at infinity.

Given a polynomial p in the n variables z,,...,z,, if we partition the variables
into m groups y1 = (zf,...,2}, )42 = (2,...,28)s.. ., ym = (27,..., 2 ) with

ki1 +---+ km = n and let d; be the degree of p with respect to y;(more precisely, to



the variables in y;), then we can define its m-homogenization as

ﬁ(zh'-- azm) = (""'(g)qll X X (Z(')n)dmp(yl/z(l)a'- "ym/z(;n)

which is homogeneous with respect to each z; = (2}, .. .,z;;..),i = 1,...,m. Here
zj = %, for j # 0. Such a polynomial is said to be m-homogeneous. To illustrate this

definition, let us consider the polynomial

p(A, z1,. .., 20) = A (@121 + -+ - + @z, — a)
+A(hiz1+ -+ bz — b) + (121 + - - + cuzp — ©).

We may let y; = (A),y2 = (21,.-.,Z4) and z; = (Ao, A), 22 = (20, Z1,...,Zx). The de-
gree of p is 2 with respect to y; and is 1 with respect to y2. Hence its 2-homogenization
is

(Ao, A, Zo, T1y- ooy o) = A2(ayz1 + -+ + @nT, — azo)

+Mo(b121 + + -+ + bazy — bag) + A(c121 + -+ + €aTn — cT0),

which is homogeneous with respect to (Ao, A) and (zo, 21, . . ., ). For m-homogeneous
polynomial systems P(z) = 0, we are interested in the solutions in P* x ... x P¥m,
So often, by abuse of terminology, we say z € P¥ x ... x P*=. For z; = (2{,...,2})

vi=1,...,m,let S = Clz},z],...,20 ] be the polynomial ring of the variables in
z;’s with complex coefficients. If A is an ideal generate by m-homogeneous poly-
nomials and T is a prime ideal of S, denote by AT the ideal {f € S | Af €
A for some m-homogeneous h ¢ T}. For a point z = (z1,...,2,) € PF x ... x Pkm,
let I, denote the maximal ideal {f € S | f(z) = 0}. If fi,..., fo are m-homogeneous
polynomials in the variables (z1,...,2m), let V(fi,..., fr) be the common zero set of

fiyeooy frin PR x ... x P*m We say a point y € V(f1,..., f;) is nonsingular if

mnk@(zl,...,zm)"COd'my(V(fl,---,fr),P X - x PEm)

where codim denotes complex codimension. We use (fi, ..., f;) to represent the ideal
generated by fi,..., f,. To be more precise, (fi,..., fr) is the set of all polynomials

of form

zf: gifi

1=1



where the g;’s are polynomials in S.

For a 2-homogeneous polynomial system P = (p1,...,5.) in the variables z; =
(z8-..,2k) 1 =1,2 with ky = k, k, = ¢, and k + £ = n and deg p; = (di,d}),
t=1,---,n the Bézout number B of this system is ([6, p. 146]) the coefficient of o3¢

in the product

[1(diec+ ). (1.8)

That means the number of isolated solutions of the system in P* x P¢, counting

multiplicities, is at most B. For m > 2 we have similar formula(See[17]).



Chapter 2

Linear Homotopies

2.1 Main Results

Given the system P(z) = (p1(z),...,pa(z)) in (1.1) let Q(z) = (q1(z),. .., qn(z))
and

H(a,z,t) = (1 —t)aQ(z) +t P(z), a€ C. (2.1)
Here, we consider £ € Ck x C* x ... x CF» with ky + ks + -+ + k, = n, t real ,
H:Ch xCk x ... x Ck» — C" and degp; = degq;,z = 1,...,n, here by degree
we mean the m-degree. Let

H(a,z,t) = (1 —-t)aQ(z) +t P(z) t€[0,1], (2.2)

which is the m-homogenization of (2.1). Let (Q) = (di,-..,d,) and (P) = (1, .., Pn)

and M = P*% x ... x P*»_ The main result is the following.

Theorem 2.1 Suppose that the polynomial system Q in (2.2) satisfies the following

assumptions:

(1) for every point z € M at infinity,
(@" 2(P)

(2) the set T = {the points of V(q1,...,Gn) C M in affine space} consists of non-

singular isolated points z!,...,z".



Then, there ezists an open dense subset D of C with full measure, such that for a=?

chosen from D, we have

a. (Smoothness) For each isolated zero z*¥ € T,k = 1,...,r there is a function
zF(t) : [0,1] = M which is analytic and contained in affine space for all t in
[0,1) and satisfies H(a,z*(t),t) = 0.

b. (Accessibility) Each isolated solution of P(z) = 0 in the affine space is reached
by z*(t) for some k at t = 1.

Remark 2.1 If 2z & V(p1,...,Pn) then there exists h € (p1,...,Pn) such that h(z) #
0, i.e. h g I,. Thus, (P} = {f € S| fh € (P) for some h ¢ I} = S. Hence,
condition (1) above implies that every point of V(§1,...,q4n) at infinity is also a point
of V(P1,...,Pn). By the same argument, if z & V(§y,...,Gn) then (Q)s = S and (1)
is obvious. So, in order to check the condition (1) of Theorem 2.1 one only needs
to check this condition for those points at infinity which lie in V(§1,...,§n). Con-
sequently, the condition (1) implies that the subscheme at infinity of the polynomial
system Q(z) contains the subscheme of P(z) at infinity. (For general definitions and
properties of scheme and subscheme, see [7, pp. 60-190].)

Remark 2.2 By a straightforward verification one can easily see that ((Q)") =
(Q). Hence, if (Q)' 2 (P), then (@)% 2 (P)".

Remark 2.3 In the counterezample (1.5), (1.6) we give in Chapter I,

pi(z0,21,72) = 25+ 7170
p2(To, T1,22) = IL‘% + T220
qi(0,21,22) = =3+ 23

G2(z0,71,72) = 2+ 1125,

At z = (20,21, 22) = (0,1,0) € bf P2, (Q)s 2 (P)!s. This can be shown as follows.
Since pz — pr = zo(z2 — 1) € (P)+ and 3 — 1 # 0 at z = (0,1,0), 2o € (P)=. Thus
22 € (P).S0 (P)!s = (zo,22). Since (p1 — p2)x2 — prz1 = 22(z1 + 72) € (Q)* and
z1+ T2 # 0 at 2,22 € (Q)+. Therefore (Q)* = (z,,z2). Apparently, () 2 (P)!.
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We need several lemmas for the proof of the theorem. Let R be a ring of poly-
nomials (perhaps a quotient of S) and ¢ a prime ideal of R. We denote by R, the

localization of R at q. The local ring R(,) is made up of “formal fractions”
{-f- | fER, g¢q, deg f = deg g with respect to each z;,1=1,...,m}
g

such that g—: = bf% if and only if fig2 = fog1 in R.

Lemma 2.1 If
(@) 2 (P)™ (2.3)

for any point y at infinity, then there exists a subset Dy of C
D, = {re’® € C | 0 € [0,27)\F, F a finite set, r > 0}
such that for any y at infinity and c € D,
(@1 + cpry - Gn + cpa) " = (@) (2.4)
Proof. From (2.3), for any y at infinity we have
a! pi =04 1 + ... + b, Gn, i=1,...,n
where af, b; € S and af(y) #0, i=1,...,n, j=1,...,n. Thus,

ai (1+cp)=(af+cbf)) G +...+ b, dn
: (2.5)

34 (q'n + Cf)n) = Cb?ﬂ G+...+ (a% + bem) Gn

for any ¢ € C. For f € (§1+¢p1,---,dn+CPn)’ there exists h € S, such that h(y) # 0,

and

fh=3 dildi+ i), (2.6)

=1
where d; € S, 7 =1,...,n. Multiplying both sides of (2.6) by a} X ... x a¥ and using
(2.5), we have f € (Q)%. Hence,
(G + cPry- - Gn + cPa)™ C(Q)Y

10



for any ¢ € C. For the reverse inclusion, let

- -

a1(2) +cbiy(z) -+ cbi,(2)
cbjy(2)
Ay(cs Z) = : . (27)
cby(2) e ap(z) + e (2)
then (2.5) can be written as

ai (g1 + cp1) ¢
. = Ay(c, Z) S . (28)

a¥(gn + cpn) Gn

Let By(c,z) be the determinant of A,(c,z) and A,(c,z) be the adjoint matrix of
A,(c, z). Multiplying both sides of (2.8) by A,(c, z) yields,

ai(G + cpr) G
Zy(c,z) : = By(c,2) | * |. (2.9)

a¥(Gn + Cﬁn) qn

Consider By(c,z) as a polynomial in C x M. Denote its homogenization with
respect to ¢ in P! x M by B,(co,c,z). Let B be the ideal generated by the B,’s. Its
zero set at infinity, denoted by v, is an algebraic set. Let 7; : P! x M — P! be the
natural projection. By the proper mapping theorem ([5, p.64]) 7;(v) is an algebraic
set in P1. The only algebraic subsets in P! are the empty set, the finite-element
subsets and P! itself. Since B,(1,0,y) # 0 for any y at infinity, (1,0) ¢ m(v). So
m1(v) is a proper algebraic set of P! and hence is a finite set {(c¢;,d;), i =1,...,k}.
Let Fy = {6; = arg (%) | ci #0} and D, = {re? € C | r >0, 0 € [0,27)\F1}.
Then for any y at infinity and ¢ € Dy, (1,c,y) € v, that is, there exists b € B such
that b(1,c,y) # 0. Since b€ B, b= g,B,, +---+ g,B,, where y;,...,y, are some

points at infinity and g¢4,...,g, are polynomials.

11



From (2.9) we see that b§; € (G + ¢p1,.--,Gn + ¢Pn), & = 1,...,n. Hence,
(Q) C (G + cpr,- .., Gn + cBn)™ and we conclude that, by Remark 2.2,

(@) € (G + chry. -y dn + cha).
This completes the proof. o
Under the same assumption of Lemma 2.1, we have the following three corollaries:

Corollary 2.1 For fized nonzero a, with a=! € D, and any y at infinity
(H(a,z,t))v = (Q)" for all t €[0,1). (2.10)

Proof. From (2.2),

tP(2)
(1—-t)a

Since a=! € Dy, for t # 1, (_l—ttT € D,. The assertion follows. O

H(a,z,t) = (1 - t)aQ(z) + tP(z) = (1 - t)a (Q(2) + )-
Corollary 2.2 For fized a=! € Dy, t € [0,1) and y at infinity, we have

(1) the quotient rings S/(H(a,z,t)) and S/(Q) have the same localization at the
mazimal ideal I, = {f € S| f(y) = 0}. That is,

(S/(H (a,2, ), = (S/ @) u,)-

Here I, is considered as mazimal ideal in S/(H(a,z,t)) and S/{Q) through

canonical projections.

(2) For any prime ideal ¢ of S, considered as prime ideal in S/(H(a,z,t)) and
S/(Q), with zero set V(q) lying at infinity, we have

(S/(H(a,2,1)))) = (S/{Q)) )

Proof.

12



(1) Forany f € (S/(@Q))1,), f= 2%, where g € (Q) and b(y) # 0. From Corollary
2.1, (H(a, z,t)) = (Q) > (Q), so, there exists an m-homogeneous r € S such

that r(y) # 0 and rq € (H(a, 2,t)). Thus,

r(a+q) _(ra+rq)

rb B < (S/(H(a,z,t)))(1,)s

f=

and hence, (S/(H(a,z,t)))1,) 2 (S/{Q)),)- The reverse inclusion follows by

the same reason.

(2) Let y € V(q), then I, D ¢q and
(S/{H(a,2,1)))(@) = ((S/(H(a,2,))) @) = ({S/H{@N e = (S/{@))0)-

0

Corollary 2.3 For a~! € D,, the intersection schemes of

ﬂ 7!,'(0«, z, t)

i=1

at infinity are the same closed subscheme of the projective scheme
P¥ x ... x Pkm
for all t € [0,1).

Proof. This follows from Corollary 2.2 and the local property of a

scheme. 0
Lemma 2.2 Let P and Q satisfy the conditions (1) and (2) in Theorem 2.1 and

F(/\o,A,Z) = AOQ~+/\]P (211)

with (Ao, A1) € P1. Then for each k, the irreducible component Ay C M of H '(0)
passing through =* satisfies the following:

13



(1) Let N be the set of points (Ao, M1,2) with z at infinity, then m (AN N) € P! is

a finite set, where m; is the natural projection;

(2) (1,0) ¢ m(Ae N N).

Proof.

(1)

(2)

By exercise II. 3.12 of [7] dim Aj = 1, since z* is a nonsingular point of Ay.
Let B; be any irreducible component of Ax N N. Since B; # Ag, by Theorem
2, X.5. of [8] dim B; < 1. So (1) follows.

From the proof of Lemma 2.1, there exists a set D = {C\ a finite set} such
that for Ao = 1 and A; € D the intersection schemes of H(1, A1, 2) at infinity
are the same. By Proposition 9.1.2 and Example 9.1.10 of [6], for A\; € D and
Ao = 1, the number of solutions of (2.11) in affine space are the same (= r).
Since there are only finitely many points not in D, there exists €; > 0 such that
0 <| M\ |< &1 implies \; € D. Andsince (1,0,z%), k =1,...,r are nonsingular,
there exists 0 < € < ¢; such that for each 0 <| A\; |[<e, Q@+ \P =0hasr

isolated affine solutions z*();). We claim that for each k,

V(Q) N NN A = ¢. (2.12)

Suppose this is not true. Then there is a point (1,0,2°) € N N Ai. Since A
is connected and dim Aj = 1, let ¢(s) be a curve such that ¢(0)=(1,0, 2°) and
c(1)= (1,0, z*). From (1) above, there are only finitely many (Ao, A;) such that
(Mo, A1) can be in N N A, for suitable z. Hence, thereis 0 < sp <1 and e, > 0
such that if § € (so, 50+ €2), ¢(8) & N and m1(c(6)) = (1, A1) with |A] < €. But
then we have at least r+1 zeros of Q + A P in affine space, which leads to a

contradiction. This completes the proof. o

(Proof of Theorem 2.1.)
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Let H(\, 2) = AoQ(2)+ A1 P(2) with A = (Ao, A1) € PL. A point (), z) in P1x M
is said to be regular if and only if rank H,()\,z) = n. Foreach z*¥, k=1,...,7in T,
let Ax be the irreducible component of V(H), the zero set of H in P! x M, passing
through z*. Let Bi be the set of points in Ax which are nonregular. Nonregularity
can be described in terms of vanishing subdeterminants of H,(), z) which lead to a
system of polynomial equations. Consequently, By is an algebraic set for each k. So
m1(Bx) is a proper algebraic set in P!, because (1,0) ¢ n1(Bx) by Lemma 2.2 and
hence it is finite for each k. Let A = UI_, m(Bx) = {(c,d)) | i = 1,...,I}, F; =
{6; = arg (;é-), i=1,....,1 | ¢ #0} and D; = {re® € C|r > 0, 6 € [0,27)\F3,}.
For a € C with a™ € Dy, y5; € Dz forall ¢ € [0,1). That is, (1, 7255;) € A, so,
H.(1, (I—:‘m,z) is of rank n for any (1, (T-L:)Z’Z) ¢ By. A repeat application of the

Implicit Function Theorem on the affine representation of the homotopy

0= H(a,z,t)= (1 —t)aQ(z) +tP(z) = (1 — t)aH(1, (—1—_%)-&,2) (2.13)

implies the smoothness property. For accessibility, it follows from Corollary 2.3 that
for fixed a=! € D;, the intersection schemes of H(a, z,t) at infinity are the same for
all t € [0,1). By Proposition 9.1.2 and Example 9.1.10 of (6], for each t in [0, 1) the
number of solutions of (2.13) in affine space are the same (= r). As a consequence,
the z*(t)’s are the only solutions in affine space for each t € [0,1). By a degree theory
argument as in [3], or an algebraic argument as in [10], the accessibility property
follows.

By choosing D = D, N D,, the proof of the theorem is completed. a

The following proposition indicates that Theorem 2.1 is a generalization of the

main result in [12].

Proposition 2.1 Suppose that the polynomial systems Q, P in (2.2) has the following

properties:
(1) every point of V(Q) at infinity is also a point of V(P);

(2) the set T = {the points of V(Q) in affine space} consists of nonsingular isolated

points.
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Then for a nonsingular point z of V(Q) at infinity, (Q)!* D (P)-.

Proof For f € (P)!s there exists h € S such that h(z) # 0, and fh € (P). From con-
dition (b), fh vanishes on the set of zeros of (Q) at infinity. Let = = (zi,...,z%) i =

1,...,r, be the isolated zeros of Q in C", and
F(z) = H Z ei(z; — zf)
j=1 i=1

where e; € C, i = 1,...,n are chosen such that F(z) # 0. It is easy to see that
I:—'(z‘) = 0 for each ¢ = 1,...,r, where 2' is the corresponding point of z* in M, and
F hf vanishes on V(Q). By the Nullstellensatz, (Fhf)* € (Q) for some positive
integer k. Since (F'h)*(z) #£0, f* € (Q)%. By Theorem 48 of [15], (Q)* is a prime
ideal. Hence, f € (Q)' which completes the proof. a

2.2 Applications
Example 2.1. Suppose we want to solve the system

n(z,y) = zy+y+1=0 (2.14)

p(z,y) = 2y —zy+1=0.
By considering (z,y) € C! x C!, we may 2-homogenize (2.14) as
P1(70,7,90,y) = Ty + zoy + Zoyo =0 (2.15)
pa(z0,7,90,y) = 2°y* — z2gyyo + 255 = 0

where (o, Z,0,y) € P! x P1. Then this system P = (§,, ;) has 1 solution (0,1, 1,0)
at infinity with multiplicity 2 and 3 affine solutions. Our starting system @ = (q1, ¢2)

can be chosen as
a(z,y) = zy+y+1=0 (2.16)
a(z,y) = sy —zy =0.
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Parameter a = —.13960695 — .6281187:

Starting Point Solution Reached
17 ) T y
0 -1 —.4301591 —1.7648765

D1—1/2 + V3i/2—1/2 + /3i/2 —.78492 + 1.307138 |—.1225614 + 7448609:
B1-1/2 — V/3i/2—1/2 — \/3i/2—.78492 — 1.30714134—.1225611 — 74486181

Table 2.1: Solutions to (2.14)

Its 2-homogenization is

qx(xo,l',yo,y) = $y+$oy+$oyo=0

§2(T0, 2, y0,y) = %y —zalyyo = 0.

The system @ has 3 nonsingular solutions (z,y) = (0,-1),(=1/2 + v/31i/2,-1/2 +
V3i/2) and (—-1/2—-+/3i/2,-1/2—+/3i/2) and its solution at infinity is the same as
that of P. Write §, = zg with g = z%y? — z2yoy. Sincez # 0 at z = (0,1,1,0),z ¢ I,,
50, g € (Q)’. Further, izy—g = zoy(zoyo+2zy+2zyo) € (Q)** and zoyo+zy+zyo # 0

I we have z2y2 = zoyodi — zoy(zyo +

at z imply zoy € (Q)%. Since Zoyod € (Q)
zoyo) € (Q)% and thus p, = Go + zo(z2y2) € (Q)%. Along with p; = §; € (Q)", we
have (Q)* D (P)%. So Theorem 2.1 applies. It provides a homotopy and 3 paths,
beginning from the roots of (2.16), which lead to all roots of (2.14).

The table 2.1 shows the computing result.

The notion of m-homogeneous when m = 1 is the same as homogeneous. For ho-
mogeneous polynomials fi,..., f, weuse (fi,..., f;). to denote the subset of ( fi, ..., f;)
consisting of homogeneous polynomials of degree e. In [12], the following condition of

P,Qin (2.2) is used to guarantee the accessibility of the “random product homotopy”
paths:

For each positive integer k,

(GiyeeerGrnr@8)e D (Pryee s Py TE)e (2.17)
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for all sufficiently large e.

The condition (2.17) is equivalent to condition (1) in Theorem 2.1 when m = 1(See
[14]). However, we shall illustrate in Example 2.2 that condition (1) in Theorem 2.1

can be much easier to verify.

Example 2.2. The following system is the mathematical model of a lumped-

parameter chemically reacting system [2].

p1(z1,22,73,74) = —a1z1(l — z3 — T4) + a223 — (21 — by) (2.18)
p2(21,%2,73,24) = —aaz2(l — 23 — z4) + a4z4 — (22 — b2)
p3(z1,22,23,24) = a121(l — 23 — T4) — 223 — a5T3T4
pa(z1,22,23,24) = a3z2(l — T3 — z4) — a4T4 — a5T324.

While the Bézout number of the corresponding homogeneous system of P = (p1, p2, p3,Pa)

is 16, for generic a;’s and b;’s there are only 4 zeros of (2.18) in C*([2]). Define

Q= (ql, q2, q3, Q4) by

ql(:rl,a:g,xg, 134) = ($1 - 1)(1 — T3 — CL'4) (219)
q2(z1, 72,23, 24) = (22 — 1)(2 — 73 — z4)
q3(Z1, T2, T3, T4) = T1(2 — T3 — T4) + T3T4

q4(T1, T2, T3,24) = (22 + 1)(1 — 23 — z4) + z374.

The homogenization Q of Q is

G1(zo, 21, 22,23,24) = (21— Zo)(To — T3 — T4) (2.20)
G2(z0, T1,T2,23,24) = (T2 — t20)(200 — T3 — T4)

§3(T0, 1, %2,73,%4) = T1(2T0 — T3 — T4) + T3T4

Ga(zo, T1,T2,23,24) = (Z2+ 20)(T0 — T3 — T4) + T324.

The points of V(Q) at infinity are (zo, 21, Z2, £3, z4) = (0,0,0,0,1),(0,0,0,1,0) and
a line I = (0, z,,,,0,0). The rank of
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[ 1 -1 00 0]
0(¢1, G2, 43, Ga) _ t 0 -100
3(1‘0, T1,T2,ZT3, 334) (0,0,0,0,1) 0 —1 010
_—-1 0 -1 1 0-

is 4 and hence, (0,0,0,0,1) is nonsingular, similarly for (0,0,0,1,0). These two
points also belong to V(P). Further, the system (2.19) has 4 nonsingular isolated
zeros: (z1,72,23,24) = (1,-1,0,2),(1,-1,2,0),(0,2,0,1) and (0,7,1,0). So, Propo-
sition 2.1 applies. That is,

(G1, G2, G3,4a)™* 2 (Pr, P2, P3, Pa) ™
for 2 = (0,0,0,0,1),(0,0,0,1,0). For z € I =(0,z,,z,,0,0), either z; # 0 or z; # 0,
say z; # 0. Then z; — zo # 0 at 2. So, from ¢,
g — T3 — T4 € (Q)I‘. (221)

It follows, from g4, 374 € (Q)" and hence z,(2zo — z3 — z4) € (Q)!* from §s. Since
z, # 0 at 2,220 — 23 — z4 € (Q). Comparing with (2.21), yields zo, € (Q)%.
Accordingly, it is easy to see that (Q)!* D (P). Thus by Remark 2.2 we have (Q)%* D
(P)!:. So Theorem 2.1 provides a homotopy and 4 paths which lead to all roots of

(2.18). The table 2.2 shows a computing result with given parameters.

Parameters

a; = .76771879 + .32820278: | a = .54890949 + .1093949: | a3z = .33010021 + .89058417:

aq = 11129092 + .67177492i | a5 = .89248163 + .45296562¢ | b; = .04796080 + .888686781

by = 82915151 4+ .66987747¢ | a = .59527814 + .71154547:

Example 2.3. For generalized eigenvalue problems (or A-matrix problem), the system

P has the following form:

MBoz + \'Biz + ... 4+ Brz = 0 (2.22)

l+aiz1+ -+ oapz, =0
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Starting Points Solution

Reached

r) = —.731938 + .3453089:

1.171 = 11‘2 = -1

z, = .049258 + .1264814:

r3 = 2.9605355 + 7.79467:

zy = .05647949 — .0998576:

vy = —2.214090 + 1.074372:

T2 = —1.43290 + .8555617:

T3 = .6873539 — 1.0286067:

Ty = 1.6660806 + .7643948:

B1 =0r2=2: |, =.0433732 4 .7503662

iz, = .8245659 + .5315566:

r3 =0rgy =1 £33 = .1027011 + .2787743:

4 = .4602318 — .0694782:

dir; =0ry =¢ |y = .8908184 — .8041871:

ro = 1.6720086 — 1.0229946:

rs = 1.6573049 — 1.6070463

Ty = —.5652349 + .591969:

Table 2.2: Solutions to (2.18) with given parameters

where z = (21,...,2,),k > 1 and By, ..., Bx are n X n matrices. Consider (A, z1,...,z,) €

C! x C™. With 2-homogenization, (2.22) becomes

A Boz + N 1oBiz 4 -+ + (M) Brz = 0 (2.23)
To+ o1y + -+ @z, =0
with (Ao, A, Zo,...,2Zs) € P! X P". If By is a nonsingular matrix, it is quite obvious that

(2.23) has kn solutions for generic a;’s. In [4], a homotopy is given for nonsingular By,

which provides kn paths leading to all roots of (2.22).

Here, we give an example on which Theorem 2.1 can be applied when By is singular.

Forn=3and k =2, let

010 010 1 00
Bo=|{0 10|, B=]001{,B=|001
0 01 100 010
and oy =---= a, = 1. Then (2.23) becomes,

Pr = Az + Adoz2 + Az =0
P2 = Azo+ AMoz3+ A3z =0
B3 = Azz+ Aoz + A3z, =0

To+T1+z2+23=0
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Parameter a = —-.74127114 4 .70628309:

zy z2 z3 A
1. —4.0795970 3.075972 0 7548779
2. | —.4602 — .1825814: | —.5397982 + .1825814: 0 —.8774412 + .7448597:
3. | —.4602 + .1825814: | —.5397982 — .18258141 0 —.8774414 — .7448597:
4. -.33333333 -.333333333 -.3333333 —-.5 — .866025:
5. —.33333333 —.333333333 -.3333333 -.5 4 .8660251

Table 2.3: Solutions to (2.24)

and the solution set at infinity is v = {(Xo, A, Z0,Z1,22,23) | Ao =0, A =1, 22 =0, 7o +

I = 0, I3 = 0}' Define Q = (Qh‘h, q3, ‘14) by

(A=1)(A=2)z3=0

Q=

@2 = A=-3)(A-4)z3=0

3 = (A=3)A—4)z3+Az; =0
g4 = l+z1+22+23=0.

It is easy to check that the zero set at infinity of

= (/\ - /\0)(/\ - 2A0)22 =0

I

(/\ - 3/\0)(A - 4A0)33 =0
(/\ - 3Ao)(/\ - 4)\0)2:3 + Aoz =0

= zo+z1+z2+23=0

(2.25)

(2.26)

is the same as that of (2.24). The system (2.25) has 5 nonsingular solutions (), z1, z2,23) =
(0,-1,0,0), (1,0,-1,0), (2,0,-1,0), (3,0,0,—1) and (4,0,0,—1). For any z € v, Ag =0
and A = 1 hence (A —3Xg)(A—4Xo) # 0 and (A= Ag)(A—2Xo) # 0. From ¢ and §; both z;
and z3 are in (Q)* and from §3, Aoz; € (Q)!*. In summary, (Q)s O (P)!: and Theorem

2.1 applies. The table 2.3 shows our computing result.
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Chapter 3

Nonlinear Homotopies

It occurs sometimes in practice that the polynomial system P(x) is associated with a set of
parameters ¢ = (g1, ...,¢;) € C’. In this situation we write P(g, ). It is often the case that
the system needs to be solved repeatedly with varying parameters of q’s. In this chapter
we give a procedure that begins with solving P(g,z) for a particular parameter ¢°. Then
for each subsequent choice of the parameters q of the system, a nonlinear homotopy is used
to find all isolated solutions with amount of computation approximately proportional to
the actual number of solutions. The theorem on which the method is based is described in
section 3.1. As an application, we show, in section 3.2, how to compute the 32 solutions of

the Tsai-Morgan manipulator problem in [20] by following only 32 solution paths.

3.1 Main Results

Definition 3.1 We say that a property K holds for generic ¢ € C* (P*), if there ezists an
algebraic subset E C C*(P*) of dimension < s such that ¢ ¢ E implies K hold.

Theorem 3.1 Suppose that the polynomial system P(q,z) of n equations with z € M =
Pk x...x P*¥m and q € C?, which is m-homogeneous with respect to 2, satisfies the following

conditions:

1. For generic q € C/, the solutions of P(q,z) = 0 at infinity are isolated and its number,

counting multiplicities, equals B - r, where B is the Bézout number of the system

P(g,2);
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2. There is a fized generic point q° such that the solution set of P(¢°,2) = 0 in the affine

space consists of nonsingular isolated points z!,...,z".
For any point ¢ in C7, let
H(a,z,t) = P((1 -t +t(1 — t)a)¢d® + (2(1 — a(1 — t))q", 2). (3.1)
Then there ezists an open dense full measure subset D of C, such that for a € D, we have

a. (Smoothness) For each isolated zero z* € T,k = 1,...,r there is a function z*(t) :
[0,1] = M which is analytic and contained in affine space for all t in [0,1) and
satisfies H(a,z*(t),t) = 0.

b. (Accessibility) Each isolated affine solution of P(¢*,z) = 0 is reached by z*(t) for

somek att =1.

Before proving Theorem 3.1, we need the following lemma. Let E be the algebraic set
associated with the genericity of the parameter ¢ in the condition (1) above. That is, if

q ¢ E, then the system P(q, z) satisfies condition (1).

Lemma 3.1 Suppose that ¢° and q! are as in Theorem 3.1 and consider the homotopy
A(X2) = P((1- )¢’ + A¢',2) = 0, (3.2)

where A € C. Let H(Ao, A, 2), (Mo, A, z) € P! x M, be the homogenization of H with respect
to X\. Then for each k=1,...,r, the irreducible component of H-1(0) passing through z*
satisfies the following:

(1) Let N be the set of points (Ao, A1, 2) with z at infinity, then m;(Ar N N) € P! is a

finite set, where 7, is the natural projection;

(2) Let
J={AeC|(1-X)¢"+ A\¢' € E}. (3.3)

Then J is a finite set.

(3) (1,0) ¢ m(Ax O N).

Proof. The proof of (1) follows the same line of arguments in Lemma 2.2 , so we omit it.
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(2) Without loss of generality we may assume ¢° = (0, ...,0) and ¢! = (1,0,...,0). Because
E is an algebraic set , it is the set of common zeros of polynomials fj, ..., f;. Since
¢ ¢ E, f(0,...,0) # 0 for some i. Thus f;(},0,...,0) # 0. Hence there are only finite
many solutions to g(A) = fi(},0,...,0) = 0. Therefore the line (1 — A)¢® + Ag! =
(A,0,...,0) intersects with E at finitely many points. This completes the proof of (2).

(3) From the proof of (2), there exists a set D = {C)\ a finite set} such that for g = 1

and A; € D the number of solutions of
H(1,)1,2) =0 (3.4)

at infinity are the same. The rest of the proof is the same as the proof of Lemma 2.2,

SO we omit it.

For each A in J, the set I = {(1,),z) € P! x M|z € M} is an algebraic set, so is its union
Unxeg Jx since J is finite.

Proof of Theorem 3.1

For each z*, k = 1,...,r in T, let A; be the irreducible component of V(H), the zero
set of H in P! x M, passing through z*. Let Bj be the set of points (Ao, ), 2) in A
which are nonregular or at infinity or m;(Xg,A,2) = (1,)) with X in J. By is an alge-
braic set for each k. So m(By) is a proper algebraic set in P1, because (1,0) ¢ m;(Bx) by
Lemma 3.1 and hence it is finite for each k. Let A = Ur=; m1(Bk) = {(ci,di) |i=1,...,1},
F = {aj]a; = s‘T(c d)) € A,cl # 0}. Aslongasa ¢ Dy = {(t—a;)/t(1-t)|a; € F,t € [0,1)},
(1,t(1 - a(1-1))) # (1,a;) for any i and t€ (0,1). Thus (1,#(1 — a(1 - t)), z) € Bi for any
k,t € (0,1) and z € M. Let D = C\D,. By a similar argument as in the proof of theorem
2.1, the smoothness property and the accessibility property follow.

When the polynomial system P(q, z) satisfies the property that

P(q,z) = 0 implies P(aq,z2) =0 foranya€C

then, in Lemma 3.1 and Theorem 3.1, instead of considering the line (1 —)g®+ Ag! and the
quadratic curves [(1 — ¢ + (1 —t)a]q® + [t — (1 — t)a]q* through ¢° and ¢! we may consider
20q° + Ag! and (1 —t)Aog® + tAg! and we can take the homotopy

H(z,t) = P((l—t)aqo'*'tqlaz)
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to solve P(q!,z) = 0. In this situation we have a linear homotopy. In particular, we have
Theorem 3.2 Suppose that for generic (a,b)€ P! the solutions to
H(a,b,z) = aQ(2) + bP(2) (3.5)

at infinity are isolated and the number of them , counting the multiplicities, equals B-r,
where B is the Bézout number of the system . And the set T = { the points of V(Q) in
affine space } consists of nonsingular isolated points z!,...,z". Then, there ezists an open

dense subset D of C with full measure, such that for a=! chosen from D, we have
a. (Smoothness) For each isolated zero z* € T,k = 1,...,r there is a function z*(t) :
[0,1] = M which is

analytic and contained in affine space for all t in [0,1) and satisfies
A(a,z%(1),1) = (1 - 1)aQ(z*(1)) + tP(z*(1)) = 0. (3.6)

b. (Accessibility) Each isolated solution of P(z) = 0 in affine space is reached by z*(t)

for some k att = 1.

3.2 Applications

The very important inverse kinematics problem for the 6R manipulator of general ge-
ometry (robot arm design) was reduced by Tsai and Morgan ([20]) to the solution of a

polynomial system of 8 equations in 8 unknowns.The system is as follows.

P1 = —Z1Z3A1pi2q + T1T4p2p + T2T3 A1 2P + T2T4p2q — (3.7
T5TgP3Aea5 — TeTTH3a5 — T1A2019 + T2A21P —
zappa(r — d1) — T4p201 + Tspapads — Tepzag —
TgigA3as + M Aar — Adad) — Aody — d3 — A3dy —
A3dgds =0
P2 = —ZT1T3AloV + T1T4p2U + T2T4paV + TaT3A U +
T5TTpP3A4ps — TeTgpaps — T1 A2V + T2Agpu —
Tapipaw + TspspaAs + TrAzpaps + A Aw
—A3x A5 =0
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P3 = ZI1T3au + T1T4A1a20 + T2T3020 — T2T4A 102U —
TsT7p3Agpsds + TsTgpsas + TeTrpusAqaz +
Tezgiapsds — T1(—a1u + p1dav) + z2(a1v + prdau) +
Tap102W — Tz Asds + Teparsas — z7(papsds +
A3papsds) + Tepsag + diw + Adaw + A3AgAsds +
AgAsdqy + Asds —pu—qu—rw =10

P4a = ZT1Z3G2D + T1T4A1a2q + T2T3029 — T2T4A1a2D +
T5T7a3a5 + T5TalaAqasds + TeZrpzasds —

T6T8A4a3a5 + 21(a1p — p1d2q) + z2(a19 + prd2p) -
z3a1a + z4(—p162d; + praar) + Ts(azay — papgdads)
+z6(padsas + p3aqds) + z7a4a5 + zg(paasds + Azpqasds)
+d11 + A1dar — A1d1da + Azdady + A3hydads + Aqdads
+0.5(—a? — d? — a2 — d? + a% + d% + a2 + d} + a?
+di—-pP - -1%)=0

ps = z24z3-1=0

pe = Ti4zi-1=0

pr = zi4+zi-1=0

ps = z?,+z§-1=0

where z;, 1 = 1,2,-.-,8 are the variables and the others are parameters. From various
computing experiences, it has been predicted ([13, 19]) that this system has 32 isolated
solutions for generic parameters. In this section, we shall prove this assertion and give
an algorithm, via homotopy continuation method, for finding all 32 isolated solutions with
minimal computation efforts. By letting (o, 21,2, %s,26) € P* and (yo,z3,24,27,28) €

P*, we may 2-homogenize (3.7) and obtain (introduced in [19]),

P1 = —T1Z3ApH2q + T1T4p2P + T2T3A1U2P + T2T4p2q —
T5TglaAqas — TeTT7M3as — T1A241qY0 + T2A2041PY0 —

zapp2(r — d1)zo — T4p201%0 + Tspapadsyo — TefaaaYo —
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Tgpar3asTo + (A1A27 — AjA2d) — Aady — d3 — Azdy —
A3A4ds)Zoyo = 0

P2 = —Z1T3Mp2v + T1T4pu + ToTapov + T2T3 A pou +
T5T7UaA4ls — TeTsHaps — T1A2041VY0 + T2A241UYo —
Tap 2 WTo + TspapaAsYo + TrAapapsTo + (MAw
—A3AgAs5)zoyo = 0

T1T3a2% + T1T4A1G20 + 223620 — TaT4A\ 102U — (3.8)

s:
Il

T5Trp3Apsds + TsTgisas + TeTrpusAqa3 +
Tezgpapsds — 1(—aru + pr1dav)yo + z2(a1v + pdau)yo +
Tap182WTo — Tsp3paAsdayo + TepaAsasyo — T7(papsds +
Aspiapisds)zo + Tapsaszo + (diw + Adow + AzAgAsds +
AgAsdy + Asds — pu — qu — rw)zoye = 0
Pa = Z1Z3a2p + T1T4A102q + T2T3a2¢ — T2T4A102p +
T5T70385 + TsTgpaAasds + TeTrpuzasds —
zeTgAqa3as + T1(a1p — p1d2q)yo + z2(a19 + p1d2p)yo —
£3a182T0 + T4(—p1a2d1 + p1a27)z0 + T5(azaq — papsdads)yo
+z6(padsas + p3aads) + 276405 + 78(paasdy + A3paasds)
+(dir + Aidar — A did; + A3dady + A3Aqdads + Aads)zoyo
+0.5(—a? - d? — a2 — d% + a2 + d% + a% + d2 + a?
+d} - p* ~ ¢® — r})zoyo = 0
ps = zi+ai-zf=
ps = a3+zi-y3=0
pr = zi+zi-zi=0
Bs = 2i+ai-95=0
It is easily seen that for the system (3.8),d} =dy=1,i=1,---,4,d} =d] = d§ = d§ =2
and d3 = d} = d$ = d§ = 0. Accordingly, from (1.7), the Bézout number of the system is

the coefficient of a/* in the product
(a + B)*(22)*(28)%,
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which equals 96. It was proved in [19] that this system has at most 64 isolated solutions
in P4 x P4, We shall prove that the number of zeros at infinity, counting multiplicities,
is 64, and consequently, the number of isolated zeros in affine space is at most 32. The
points at infinity consists of 3 categories, that is, (i) zo = yo = 0, (ii) zo = 0, yo = 1, (iii)

zo = 1, yo = 0. We shall discuss each case separately.
(l) To = Yo = 0.

The last 4 equations in (3.8) gives,

ps = zi+zi=0
Pe = z24+22=0
pr = zi4zi=0
ps = zi4+zi=0,

and hence z; = tizq, 4 = tiz3, ¢ = *izs and zg = +iz7. There are 16 combinations.
For a typical combination, say, zo = iz, 4 = iz3, T¢ = iZ5, Tg = iz7, the first 4 equations
of (3.8) gives

Pr = pa(l+ M)(—q+ip)z123 — iaspazszr(l + Ag)

P2 = ma(l+ A)(-v+iu)z123 + papszsz7(l + Ad) (3-9)
az(—)(1+ M)(—v + tu)z1z3 + pszsz7(1 + Ag)(taz — pads)

3
I

D4 a21(1 4+ A )(q — ip)z123 + aszsz7(1 + Ag)(as + ips)

If we regard (3.9) as a linear system with unknowns z,z3 and zsz7, then it is easy to see
that the only solutions are z,z3 = 0 and zsz7 = 0 for generic parameters. However, z; and
zs cannot be zero simultaneously, for otherwise (zo, 21, z2,2s,26) = (0,0,0,0,0) which is
not in P4. Similarly, z3 and z7 cannot be zero simultaneously. Thus, only 2 solutions left,
that is, (1, z2, 23, 24, s, Z6, 7, 28) = (1,,0,0,0,0,1,2) and (0,0,1,4,1,¢,0,0).

Counting multiplicities, there are 32 isolated solutions in total in this case.
(ii) :Bo=0, 0=l
From (3.8), we have

Pps = :tf+:c§=0

P7 z§+x§=0.
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Hence, z; = *iz,, z¢ = zizs. There are 4 combinations. Let us consider a typical

situation: z; = —izy, z¢ = izs. It follows from (3.8),
1 = —z1(q+ip) fi(z3,24) — pazsgi(z7,28) = 0
P2 = —z1(v+iu)fi(z3,74) + pazsg2(z7,28) = 0 (3.10)

3 = z1(v+ iu)fo(z3,24) + (ia3 — pads)zs592(z7,28) = 0

Pa = z1(q +1ip)fa(z3, z4) — (a3 — pads)zsgi(z7,28) = 0

where
hH(z3,z4) = pa(Mza +iz4) + Ao,
fa(23,24) = ax(—iz3+ A124) — (ia1 + d2p1)
and
91(z7,28) = as(iz7 + Aqzs) — (pads — iay),
92(z7,28) = ps(Aaz7 — iz8) + pads.
Now,

(v+1iu) X p1 — (¢ +ip) X P2
= —pazs[(v + tu)g1(z7, z8) + (g + ip)g2(z7, 28)] = 0.

If z5 = 0, then 26 = 0 and z; # 0. We then have an overdetermined system of z3 and

z4 for generic parameters. That is,

fi(za,ze) = pe(Mz3+ize)+ Ap1 =0

fo(z3,z4) = ag(—izz+ Mz4) — (i@ + doph) =0

Pe = zi+zi-1=0,
which has no solution in general. Hence, z5 # 0, and
(v +1u)g1(z7,28) + (¢ + ip)g2(z7,28) = 0.

Combining this linear equation with pg = 2 + z2 — 1 = 0, we arrive at 2 solutions for z7

and zg. On the other hand,

(d3ps — ia3z) X p1 + paps

= 71(q + ip)[(1a3 — dap3) f1(z3,24) + p3fa(z3,24)] = 0.
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By a similar argument, z; # 0 for generic parameters, and combining the linear equation

(ia3 — d3p3) fi(z3,24) + p3fa(z3,24) = 0

with ¢ = z2 + 23 — 1 = 0, we arrive at 2 solutions for z3 and z4. Substituting any

combination of z3,z4,27,zs we have obtained back to p; = 0,5, = 0 in (3.10), unique

solution of z;,z5 can be found. As a consequence, there are 4 solutions in this case. And

there are 16 solutions in total.

(iii) zo=1, =0

From (3.8), we have

ﬁs = :Eg + 23 =0
ps = zi+a3=0
Along the same line of argument as in (ii), we consider a typical combination: z4 = —iz;

and zg = iz7. It follows that

h
P2
D3
P4
where
f3(z1,22) =
fa(z1,22) =
g3(zs5,26) =
94(Ts,76) =
And,

P23 f3(z1,22) — tasz7g3(Ts,6) = 0

= pez3f4(T1,22) + psr793(T5,26) = 0 (3.11)
= ta273f4(21,%2) — p57794(25,2¢) = 0

= 1a273f3(21,72) + tasz7g4(Ts,26) = 0

—(ip+ Aig)z1 + (Mip — ig)z2 + (i1 — (7 — dy))
—(iu + \v)zy + (Mu — v)z — pw

Aq13Ts — 1u3Te + Azpig

(d3Asps — iaz)zs — (idsus + Aga3)ze

+d3Aaps + pads — iay.

(—us?) X p1 + as X p2 = paz3(asfs — psifs) = 0.

It can be shown that z3 # 0 for generic parameters. And combining the linear equation

as fs(z1,72) — psifs(z1,72) =0
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with ps = 2 + 22 — 1 = 0, we have two solutions for z; and z2. On the other hand,
az X P2 + (p2t) X p3 = psz7(az93 — p2igs) = 0.
Again, for generic parameters, z7 # 0. The linear equation
a293(2s, T6) — H2194(25,26) = 0

and

ﬁ7=z§+x§—l=0

yields 2 solutions for zs and zg. Substituting any combination of z;,z;,z5,z6 back to
(3.11), we have a unique solution of z3 and z;. Hence, we have 4 solutions in this case and

16 solutions in total.

There are 26 parameters in the system (3.7). Let E € C?5 be the vector representing
all these parameters and write P(z) = P(E,z). To find a particular system with easily
calculated isolated zeros, we proceed as follows. First, we add more parameters B =

(b1, b2, b3, by4) into (3.7) by defining P(B, E,z) = (p1,---,Ps) as:

o= mnth

P2 = P2

p3 = patb

Pa = patbs (3.12)
Ps = Ps

Pe = De

pr = pr

Ps = ps+ by

When we 2-homogenize the system (3.12) and look at the zeros at infinity of (3.12) as we did
on the system (3.7), all the parameters in B will disappear. Thus, for generic parameters B
and E, P(B, E,z) = 0 has the same number of solutions as P(0, E,z) = P(E,z). Namely,
for generic parameters B and E, P(B, E,z) = 0 has at most 32 isolated solutions. For a
particular choice of B and E, denoted by (Byg, Ep), with r =w=v=qg=d, =d3; =ds =

a4=Al=A3=A4=A5=/[2=0’u=p=01=02=a3=a5=d2=d4=l[,1:#3:
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Hg = ps = A2 =1 and by = 1,b; = —4,b3 = —4.5,by = —1, the system (3.12) becomes,

P = —Zexr+ 22

P2 = —Zers+ z2

P3 = ZT1Z3+ 253+ Z1+ T2 — 27 -5

P4 = T1z3+25z7+T1+22—-2T3+ 28— 5 (3.13)
Ps = :cf + z% -1

Pe = z3+zi-1

pr = zi+z3-1

Ps = zi+zi—2
There are exactly 32 isolated zeros of the system above, and each one of them can be
easily obtained by straightforward eliminations. We shall briefly describe the calculations

here. From p; — p2 = 0, we have

276(277 - 178) =0
which implies (i) ze = 0, or (ii) z7 = zs.
(i) Tg = 0.

In this case, z2 = 0. Consequently, zs = +1 and z; = +1. A typical combination, say,

zy = 1 and z5 = 1 yields, from p4 = 0,
T7+ Tg — 4=0.

Together with pg = z% + z3 — 2 = 0, two solutions of z7 and zg are obtained. That is,
z7 = 2+ /3i and zg = 2 F V/3i. Substituting back to p3 = 0, we have z3 = 4 + 21/3i. And,
from ps = 2% + 23 — 1 = 0, two solutions of z4 can be calculated for each value of z3.

In total, we have 16 solutions in this category.

(ll) 7 = Ig.

From pg = z% + z3 — 2 = 0, we have z7 = zg = %1, and, from p, = 0, z, = *zs.
Consequently, z; = +z5. Also, Py — P; = 0 yields, z3 = 2, and hence, z, = +v/3i. A

typical combination, say, z7 = zg = 1, z2 = z¢, 21 = 25 and z3 = 2, gives, from p3 = 0,
4171 +z9 = 6.
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Together with ps = z2 + 22 — 1 = 0, two solutions of z; and z; become available. That is,

— 241+\/19: 24FV/19%
= 1 .

1 and z, = &8
In total, we also have 16 solutions in this case.

Now, consider the homotopy

H(a,z,t)= P([(1 - 1)+ #(1 ~ t)a](Bo, Eo) (3.14)
+[t(1 - a(1-1)))(0, E),z) = 0,

where a € C. When t = 0, we have H(a,z,0) = P(Bo, Ep,z) = 0, which is the system
(3.13) and the solutions are known. When t = 1, H(a,z,1) = P(0,E,z) = P(E,z) = 0
which is the system (3.7). By the Theorem 3.1, we have the following,

Proposition 3.1 For any given parameter set E € C?6 and a randomly chosen a € C, the

homotopy (3.14) satisfies the smoothness and accessibility properties.

From this proposition, every isolated solution of P(E,z) = 0 in (3.7) can be reached
by some solution path of H(a,z,t) = 0 in (3.14), originating at ¢ = 0. The path can be
parameterized by t in [0, 1) and starts at a solution of H(a,z,0) = P(Bo, Ep,z) = 0in (3.13
). Notice that there are exactly 32 paths, which is less than all the existing homotopies
for this problem by at least a half. The algorithm has been implemented and executed
without any failure for different sets of parameters we tried. The table 3.1 shows a typical
computing result.

An application of theorem 3.2 can be found in following example.

Suppose we want to solve the system

n = 2yP-1

P2 = zytz+y+1

Let

(z-D(z-2)(z-3)(y-1)(y-2)(y-3)

zy+1

qQ1

Q1

and G(a,b,z,y) = aQ + bP. If G is the 2-homogenization of G, then the Bézout number of
the system G is 12. For generic (a,b) € P!((a,b) # (1,-1)) , the system has two solutions
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Parameters
a u A w Ha H2
.336675 -.28947i 2727448 57121 .0000 .3663635 | -.5088737
a, d; B A az d; q
982733 | .4798967 | -.9464922 | .3227267 | .7639239 | .25918 .7449497
a3 d3 U3 A3 a4 dy P
5451146 | .04037 -.071255 | .997458 .3263 8215618 | .963759
as ds Bs As A2 A4 r
.107496 | .6027525 | .803982 .594653 | .8608412 | .9304718 52614
Solutions Found
) E) 3 x4 xs xg zT z8
.4479964 -.89403% .6380733 .7699757 -.938979 .3439749 -.159925% -.9871292
.2218439 -.975082 .4720904 .8815501 .0203477 .999793 ..260256 .9655395
-..135018 -.990843 .0696905%5 .9975684 -.022661 .9997432 .0982504 .9951615
.4540939 ..890954 .5255288 .8507758 -.733651 -.6795284 -.34666 -.937991
—.540165F .842621F —2.32259F 5.69644F 10.09924 F —15.6863F 5.74658F 2.251062%¢
.0356i .022824i 5.6207i 2.291703i 15.663703i 10.08472i 2.22103i 5.66893i
1.661705% ~.573575% —1.15989F —.56853% —8.53055F ~7.515156% —1.669081F 98484 F
471729i 1.3666474i .359879i .734212i 7.486027i 8.497486i .843605i 1.429713i
1.004864 % —-.14298% 3.19571 % 8.44499F —2.379306% ~T7.573479F 2.41357F —2.324815F
.024479i .172036i 8.393040i 3.176051i 7.513149i 2.360352i 2.215251i 2.297895i
1.155795% .0002F —6.719234F .226035F -9.35885% —~1.88501F —1.964046F —4.13826%
.0001i .579536i .223521i 6.644488i 1.87464i 9.307368i 4.038446i 1.916653i
1.423549F —0.490041F 1.082638F —0.716682F 1.00763% -~12.81038% -1.6951% 1.31788%
.3663253i 1.0641598i .457099i .6905057i1 12.771532i 1.004575i 1.166219i 1.50003i
2.955148F 770925+ =1.185142% —.947416F 1.687669F —4.64051F —1.166774F 2.65762F
.728427i 2.792242i .7125328i .8913217i 4.544349i 1.6526986i 2.494902i 1.095336
896764 F —.458226 F 1.946745% .906342F —-6.9181% 1.909785% —1.035343F 1.0319154F
.054138i .10595i .802069i 1.7227758i 1.891155i 6.850612i .7526668i .7551665i
4.368425F .230832% -1.292526% —.530158F -.947854% 1.240695% —1.076679F 2.16523F
224721 4.252755i .3702095i .902571i .952823i .7279286i 1.971413i .9803015i
—.278632F —-.972686 % —-.28221% 966405+ -1.6677% 6328941 447261 % -.9876348%
.1481645i .0424426i .1118686i .032668i .5240848i 1.380983i .3815813i .172803i
—.992321% .123889% 508913 F 2.003189F —4.387059F 9.856731F 2.722861F -1.03913F
.000862i .008907i 1.7531098i .44538i 9.8143i 4.3681736i .976045i 2.557557i
3.728055F 061396+ -1.270256% ~.582666F —.979966 % .204924 % —-.51712F ~1.999667+%
.059146i 3.59147i .4070247i .887345i .009874i .04722086i -1.749672i .4524707i
.038208 % —1.012304% .276872% 970562 F .832789F —.650007F .260632F 97937554+
.1618099i .006107i .131319i .037461i .209601i .2685406i .1590995i .0423396i
1.183174% —.466935% —3.58459F —~.832769% —10.39366 % —9.491538F -1.77677% .548376 %
.288567i .7312i .801433i 3.44971i 9.467553i 10.36739i .4623247i 1.4979576i
2.863816F —1.36066F -1.0717F —.507232% —3.735566F -2.686579% -.96021% —2.23979F
.291212i 2.717648i .272529i .5758127i 2.622366i 3.64628i 2.042529i .8756418i

Table 3.1: Solutions to (3.7) with given parameters
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(0,1,0) and (0,0,1) at infinity, each one with multiplicity 3. Thus by theorem 3.1 we can
use the homotopy H(z,t) = (1 — t)aQ + tP to find all isolated solutions of P by following

6 solution paths.
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Appendix

For P = (p1,p2) in (1.5) and @ = (q1,¢2) in (1.6), let H = (hy,hy) =
(1 = t)a@Q + tP, where a is any nonzero number in C, which is not a negative real number.

To be precise,

(1) hl(a,zl,zz,t)z(l—t)a(xg— 1)+t(2§+$1)=0

(2) ho(a,z,,22,t) = (1 - t)a(:cg + z122) + t(:z:% + z2) = 0.
Multiplying (1) by z2(1 — t)a and subtracting ¢ x (2), yields,
(3) 23 [(1 - t)at + (1 - t)%a?] + 22 [-(1 - t)at — t?] + z5[-(1 —t)%a® - t?] = 0.

From (3), we can see that for each fixed a € C and t € (0,1), the zero set of H(a,z;,z2,t)
are (zy,z2) = (Q-'t—t)ﬁ,O), (d1,€1) and (d2, e2), where

—b+ Vb2 - 4c —b—- Vb2 -4¢c
(4) € = —m——m, g =———
2 2
t(e;+ 1)
d; = - — € =1,2,
(5) (1=1t)a € 2
or

©) g e?-D-ta—(e)? _
1 t '~
with
—t —(1-1t)%a? - 12

Ll ) Ul ) P CR A

It is easy to see that ast — 0, b — 0, ¢ — —1. Hence, from (4) and (5), (d;,€e1) —

(-1,1) and (dz,e3) — (1,-1). Whent — 1, 3% — 0, § is bounded and

= _b+ VB —do=b(—1+4 \/1-%,;): b(—141— 2 +o(%)): ::—C + o34,

b2 b

However,
¢ _ [P+ (1= 1)

b~ 1ft+ (- t)a] —lasit-1
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Hence f — -2, and e — -1, as t — 1. From (6), (dy,e;) — (-1, —1). Similarly,

g = -b-—Vb2-4dec=b(-1- 1—%;
2c 4c
= b(-1-[1- 7t 0(35)])

2c 4c
= —-2b+ T + o(ﬁ).

When t — 1, b — +o00, hence, g — +00 and e; — +00. Therefore, (dz,e;) — (400, +00)
from (6).
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