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The Effect of Interface on Thermo-Mechanical

Properties of Composites

By
Yihong Tong

The effect of ipterface on local stress and displacement fields
and thermo-mechanical properties of composites is studied. The
inclusions are assumed to be uniformly but non periodically
distributed in the matrix. The interface is varied theoretically by
considering two models. The first one is the flexible interface
model, in which the continuity of tractions at the interfaces is
maintained but there exist jumps in the displacements, such that the
jumps in the tangential and normal displacements are proportional to
shear tractions and normal tractions, respectively. Two parameters
are introduced to describe the degree of adhesion between inclusion
and matrix. Specific interface condition can be simulated by proper
selection of the two parameters. The second model describes the
interface as a layer between the inclusion and the matrix. This
layer, called interphase, has a given thickness and the thermo-
mechanical properties different from those of the matrix and the

inclusions. The elastic properties of the layer are assumed uniform



or variable. The perfect bond is assumed at both the matrix-
interphase and interphase -inclusion interfaces.

For both of these interfacial representations, a unified
approximate approach to evaluate the effective thermo-mechanical
properties is used. Initially, the boundary value problem of the
isolated inclusion embedded in the matrix is solved. Then, stress
disturbance in the inclusion due to the presence of other inclusions
is accounted for by using a successive iteration method (Mori and
Wakashima, 1990) based on Mori-Tanaka theory (Mori and Tanaka, 1973).
The successive iteration yields solutions that converge into closed
forms under a certain condition. The analytical forms of the local
stress and displacement fields and the effective properties are
obtained. The latter are predicted by using the concept of the
average strain in the composite. The approach is simple and can be
easily extended to other boundary conditions and is valid for any
shape. In the numerical results presented, the inclusions are assumed
to be cylindrical or spherical in shape for simplicity. The influence
of various mechanisms at the interface is studied and the results are
compared with the perfect bonding case, bounds, as well as the other
analytical results. It is shown that imperfect interface may have a
significant effect on the local fields and the effective properties of

composites.
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CHAPTER 1

INTRODUCTION

The effectiveness of the bond between matrix and inclusion in
transferring the load across the interface is one of the principal
factors affecting the mechanical response of composite materials.

Many theories have been developed to predict the mechanical behavior
of composite materials, but most of them assume perfect bonding at the
matrix-inclusion interface. However, experimental results clearly
indicate that a more complex state exists at the interface between the
constituents (Drzal, 1983, 1986, 1987). The imperfect contact due to
the poor chemical bonding, the presence of microcracks due to the
thermal loading, and other, may more accurately describe the condition
at the interface. 1In order to increase understanding and provide
guidance for material development, the mechanical models to describe
interfacial characteristics need to be established. Since a precise
description of the interface is complicated, in order to include its
effect in the modeling of composite, it is necessary to introduce
simplified interfacial models, which simulate the actual behavior.

In this dissertation, two terms will be used to describe the
boundary between inclusions and the matrix: interphase and interface.

The "interphase" is a region in which the inclusion and matrix
phases are chemically and/or mechanically combined. The interphase

may be a diffusion zone, a nucleation zone, a chemical reaction zone,
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etc., or any combination of the above. An "interface" is a two-
dimensional boundary separating distinct phases, such as inclusion,
matrix, interphase, coating, etc. ( Swain et al., 1989).

Since the control of interface behavior has become a key factor
in developing composite materials, the understanding of its role is
highly desirable. The influence of interfaces and interphases on the
thermal and mechanical behavior of composite materials has been widely
discussed in the literature, particularly in the last few years.
Several books have been devoted to the subject. However, the work in
this area is far from complete.

One of the analytical models of interface that appears in the
literature is so called flexible interface model. In this model, the
debonding between the constituents is simulated by a very thin
ficticious layer having a spring-like behavior. At the interface,
continuity of tractions is maintained but there exist jumps in the
displacement, such that the jumps in the tangential and normal
displacements are proportional to shear tractions and normal
tractions, respectively. Consequently, two parameters are introduced
that determine the degree of bonding between inclusion and matrix.
Specific interface condition can be simulated by proper selection of
the two parameters. The infinite values of the parameters imply
vanishing of displacement jumps and therefore perfect bonding case;
the zero values of the tangential debonding parameters imply vanishing
of shear tractions at the interface and therefore pure sliding case;
the zero values of the normal and tangential debonding parameters
imply vanishing of tractions at the interface and therefore debonding

case; any finite positive values of the interface parameters define
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the imperfect interface. This flexible interfacial model was employed
by Jones and Whitter (1967), Mal and Bose (1975), Lene and Leguillon
(1982), Benveniste (1984, 1985), Aboudi (1987), Steif and Hoysan
(1986, 1987), Achenbach and Zhu (1989), Jasiuk and Tong (1989), Jasiuk
et al. (1989), and Hashin (1990b), among others.

In an alternate model, the interface is described as a layer
between the inclusion and the matrix. This layer, called interphase,
has a given thickness and the interphase properties different from
those of the matrix and the inclusion. The perfect bonding is assumed
at both matrix-layer and layer-inclusion interfaces. The extreme case
of perfect bonding at inclusions/matrix interface is obtained by
decreasing the interphase thickness to zero, while the case of
complete debonding is obtained by an interphase of infinitesimal
thickness and material properties that approach zero. The moduli of
the interphase may simultaneously represent the degree of bonding and
the material properties of the region. Owing to the lack of
definitive data, the interphase zone is often treated as a phase with
uniform material properties which are different from those in the bulk
matrix. Such a model might accurately decribe systems in which
finishes or coatings are employed. The interphase model which has
constant properties was used by Broutman and Agarwal (1974), Maurer et
al. (1986, 1988), and Pagano and Tandon (1988), Jasiuk and Tong
(1989), Benveniste et al. (1989), Chen et al. (1990), Tong and Jasiuk
(1990 a, 1990 b), Maurer (1990), Sullvian and Hashin (1990), and
others. However, in many composite systems, the interphase may have a
gradient in resin properties. The composites with interphase which

has property variation ware studied by Theocharis et al. (1985),
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Theocharis (1986), Sideridis (1988), Papanicolaou et al. (1989),
Sottos et al. (1989), and Jayaraman et al. (1990) among others.

The primary motivation of the present work is to predict the
thermoelastic properties of composites in order to increase the
understanding how various interface conditions can influence the
thermal and mechanical behavior of composite materials. The effect of
interface is investigated by considering the two above mentioned
models, i.e., the flexible interface model and the interphase model.
The present study supplements the previous results in this area. For
both of these interfacial repregentations, a unified approximate
approach to evaluate the effective thermo-mechanical properties is
used. Initially, the boundary value problem of the isolated inclusion
embedded in the matrix is solved. The stress disturbance in the
inclusion due to the presence of other inclusions is accounted for by
using a successive iteration method (Mori and Wakashima, 1990) based
on Mori-Tanaka theory (Mori and Tanaka, 1973). The successive
iteration yields solutions that converge into closed forms under a
certain condition. The analytical forms of the local stress and
displacement fields and the effective properties are obtained, the
latter are predicted by using the concept of the average strain in the
composite. The approach is simple and can be easily extended to other
boundary conditions and is valid for any shape. The present
derivation applies for a composite consisting of uniformly but non-
periodically distributed inclusions (with overlapping not allowed).

In the numerical results presented, the inclusions are assumed to be
cylindrical or spherical in shape for simplicity. The influence of

various mechanisms at the interface is studied and the results are
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compared with the perfect bonding case, bounds, as well as the other
analytical results. It is shown that imperfect interface may have a

significant effect on the local fields and the effective properties of

the composites.



CHAPTER 2
BACKGROUND: EFFECTIVE MEDIUM THEORIES
2.1 REFERENCES TO THE MAIN THEORETICAL MODELS

In the &;termination of effective properties of heterogeneous
materials, a fundamehtal problem is the phase interaction. The
problem of a single ellipsoidal inclusion embedded in an infinite body
is easily solved by the use_of Eshelby’s (1957) equivalent inclusion
method. The case of two ellipsoidal inclusions embedded in an
infinite body was solved by Moschovidis and Mura (1975). However,
there are seldom only one or two inclusions in a matrix. The case of
finite concentration of inclusions is an extremely difficult problem
due to the complex spatial distribution of the inclusions. It is very
hard to find the exact solution for the stress field since the
stresses will differ for every inclusion. Therefore, several
simplified micromechanics models have been developed to account for
the interaction between inclusions at high concentrations (Hashin,
1983). Among these are self-consistent scheme SCS (Budiansky, 1965;
Hill, 1965), generalized self-consistent scheme GSCS or three phase
model (Kermer, 1956; Christensen and Lo, 1979), composite spheres and
cylinders model (Hashin, 1962; Hashin and Rosen,1964, Hashin, 1965),
the differential scheme (McLaughlin, 1977) and the Mori-Tanaka method
(Mori and Tanaka, 1973; Wakashima et al., 1974; Benveniste, 1987; Mori

and Wakashima, 1990). Although there are many other micromechanics
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models to determine the effective properties of the composites than
the ones listed, they usually are either of numerical nature involving
series or finite element solutions, or they are of an empirical

nature, or finally they involve grossly oversimplifying assumptions.
BOUNDS

Bounds for the effective elastic moduli of the composites are
obtained by using variational methods. The minimum complementary
energy theorem yields the lower bounds, while the minimum potential
energy theorem yields the upper bounds. Method suitable for arbitrary
phase geometry was given by Hashin and Shtrikman (1963), and it was
generalized by Hill (1963), Walpole (1966), and others (Willis, 1977;
Kroner, 1977). Bounds for the effective elastic moduli of particulate
composites were given by Hashin (1962), while bounds for fiber
composites with arbitrary transverse phase geometry were given by Hill
(1964) and Hashin (1965). It is found that for the composites
reinforced with spherical particles, the bounds on the bulk modulus
coincide, so that the exact result for bulk modulus was obtained. 1In
contrast to the situation with the bulk modulus, the bounds on the
shear modulus do not coincide. Same phenomenon was observed for the
fiber composite having circular cross sections, where the exact
solutions for four of the elastic constants and the bounds for the

fifth (transverse shear modulus) were obtained (Hashin, 1983).

2.2 DESCRIPTION OF THE MODELS



SELF-CONSISTENT SCHEME

In the most commonly used version of the self-consistent scheme
(SCS) (Budiansky, 1965; Hill, 1965) it is assumed that an inclusion is
embedded in a homogeneous body which has the unknown properties of the
effective medium, Figure 2.1. This defines a boundary value problem
which can be solved for an arbitrary ellipsoidal inclusion. The
solution for an isolated ellipsoidal inclusion was given by Eshelby
(1957). His most valuable result is that the strain and stress fields
are uniform for the interior points (points inside the inclusion).

The method has been extended to randomly oriented ellipsoidal
inclusions by Wu (1966) and Walpole (1969) to investigate the effect
of inclusion shape on the effective properties of the composites.

They both found that for stiffer inclusions, the disk shape inclusions
give most significant increase in the elastic modulus. Hill showed
that the expressions derived by this method give reliable values at
low inclusion volume fractions, reasonable values at intermediate
volume fractions, and unreliable values at high ones when applied to
composite materials. When the reinforcing particles are much stiffer
than matrix, this method overestimates the effective moduli, while for
particles much more compliant than the matrix, the effective moduli

are underestimated.
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GENERALIZED SELF-CONSISTENT SCHEME

Instead of embedding the inclusion directly in the effective
medium, one may imagine the inclusion to be embedded in a matrix
shell which is embedded in the effective medium. This is called
generalized self-consistent scheme (GSCS) or three phase model
(Kerner, 1956; Christensen and Lo, 1979). Obviously, the mathematics
is now more difficult since it is necessary to solve a three-phase
boundary value problem to obtain the stress field around an inclusion.

In the GSCS, a composite sphere or cylinder consisting of an
inclusion with radius "a" and a concentric matrix shell with radius
"b", is embedded in the effective medium, Figure 2.2. 1In most works,

3

the ratio n = a/b is assumed that n~ = f (inclusion volume fraction of

composite spheres) or 02 = f (inclusion volume fraction of composite
cylinders), implying that volume fraction in the composite spheres or
cylinders is the same as in the composite.

Using GSCS, Kernmer (1956) obtained the exact solution for the
effective bulk modulus of the composites with spherical inclusions.
The solution for the effective shear modulus was given by Christensen
and Lo (1979). The result for the effective shear modulus lies within

Hashin-Shtrikman’s (1963) upper and lower bounds.
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The result for the composites with cylindrical inclusions was

given by Hermans (1967) for the case n2 - (a/b)2 = £f. The exact
solutions for the four of the five independent elastic constants were
obtained. The result for the (transverse shear modulus) derived by
Hermans is incorrect (Christensen and Lo, 1979). The correct one has
been given by Christensen and Lo (1979).

Note that this model permits full packing with f+1 due to the
fact that it allows the gradation of sizes of inclusions.

The generalized SCS appears to be a more realistic approximation
than the SCS since the inclusion is now embedded in a matrix shell
instead of being embedded in the effective medium directly (Hashin,
1983). 1Intuitively, it appears that in any embedding approximation,
the best results will be achieved when a typical "building block" of
the composite material will be embedded. An element consisting of
inclusion and surrounding matrix is such a building block but a

particle by itself is not.
COMPOSITE SPHERES AND CYLINDERS MODEL

The composite spheres or cylinders model assumes gradation of
sizes of spherical or cylindrical inclusions, such that a volume-
filling configuration is obtained. Each individual composite sphere
or cylinder has the same ratio of radii, a/b as seen in Figure 2.3.

By using this model and minimum theorems of elasticity, the bounds for
the effective elastic moduli of particulate (Hashin, 1962) and fiber

composites (Hill, 1964; Hashin, 1965) were derived.
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Figure 2.3 Composite spheres and cylinders model
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It was found that for the composites reinforced with spherical
particles, the bounds on the bulk modulus coincide and the results
give the exact solution. In contrast to the situation with the bulk
modulus, the bounds on the shear modulus do not coincide. The reason
why the bounds do not coincide in the shear modulus problem is because
a composite sphere cannot be simultaneously subjected to pure shear
displacement and traction boundary conditions. The composite sphere
model for shearing displacement boundary conditions leads to an upper
bound for the shear modulus while the solution for shearing traction
boundary conditions leads to a lower bound. The greater the disparity
of the stiffness between the matrix and the inclusions, the greater is
the gap between the bounds. Same phenomenon is observed for the
composite cylinders model where the exact solutions for the four of
the five independent elastic constants are obtained while the bounds
of transverse shear modulus do not coincide, for the same reason as
explained above. The solution for displacement boundary conditions
leads to an upper bound for the shear modulus, while the solution for

shearing traction boundary conditions leads to a lower bound.

DIFFERENTIAL SCHEME

The starting point of the differential scheme is the well known
dilute suspension result for the effective modulus of a composite
containing non-interacting inclusions. It is assumed that the
addition of a small amount of particles to a composite will increase
the effective modulus by a dilute concentration type expression with

current effective modulus replacing the matrix modulus. The basic
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concept of the method is to view the composite as a sequence of dilute
suspensions. The first inclusions which are added to the matrix are
used to calculate the effective properties from dilute solutions.
Next, that suspension is viewed as a homogeneous medium of those
properties, to which a new increment of inclusions is added under
assumed dilute conditions. The new effective properties are obtained
from suitably modified form of dilute solutions. The process is
continued up to the condition of full packing of the inclusion phase,
i.e., £ - 1. Mathematically the process involves going to the limit
where the increments of added inclusions become infinitesimal and a

differential form results.
MORI-TANAKA THEORY

The concept of an average field (Mori and Tanaka, 1973) in
inclusions and the surrounding matrix is another model to include the
interaction between the inclusions. It is summarized here for
completeness.

Let us denote the domain of the composite by D and the inclusions

by Q. D-0 will denote the matrix. Assume there are many inclusions

in the matrix. When agg) is applied at infinity, the average total

(0),
stress in the matrix is <aiJ ij >D-0’ where aiJ is tbe stress

disturbance. The average stress in the inclusions is calculated as
<o (0

(0) L
j + aij>ﬂ - ij + aij>D Q <01j>0 (2.1)
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where <ai3°>0 is the average stress disturbance in a single inclusion

present in an infinite medium. a:j for perfect bonding case was

obtained by Eshelby (1957). The above equation is obtained by adding

an isolated inclusion into the matrix which is subjected to the
applied stress <a§g)+ aij>D-0 caused by the rest of the inclusions and

the boundary surface of body D. The similar relation involving the

stress disturbance only is

<055 >0 = <933 >pgt 9y g (2.2)

Since the average stress disturbance must vanish,

f<o,. >, + (1-f) <o

1 i1 >p-a = O (2.3)

where f = % is the volume fraction of inclusions. From (2.2) and

(2.3), we obtain the average stress disturbance in the matrix

<0
< aij >D-0 - - f <aij >0 (2.4)
and
@
< aiJ >0 = (1 - £) <aij >0 (2.5)

The work of Mori-Tanaka (1973) originally concerned with

calculating the average internal stress in the matrix of a material
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containing precipitates with eigenstrains. It is exact for an
elastically homogeneous body. It is also a good approximation when
the volume fraction of inclusion is small. However, when the method
is extended to the large volume fraction of inclusions, the basic
equation to determine the elastic state of an inclusion must be
modified from the original form given by Eshelby (1957). The
modification is to include the interaction between inclusions. The
modification was first given by Wakashima et al. (1974) who analyzed
thermal expansion of composites. They used Eshelby’s solution (1957)
of an ellipsoidal inclusion and Mori-Tanaka’s concept (1973) of
average stress in the matrix. Other autho;s who employed this method
are Taya and Chou (1981), Taya and Mura (1981), Weng (1984), Takao and
Taya (1985), Tandon and Weng (1986a, 1986b), Takahashi and Chou
(1988), Zhao et al. (1988), Luo and Weng (1987, 1989), Norris (1989),
and others.

Following Wakashima et al. (1974), when an inhomogeneity-bearing
body is subjected to a uniform change of temperature, the total strain

in the inclusion <¢1j>0 is taken as

* *
<eij>O - (1-f)T1jk£€k2+ fckﬁ (2.6)
where Tijkl is Eshelby’s tensor (Eshelby, 1957), which depends on the

aspect ratios of the ellipsoidal inclusion and Poisson’s ratio. f is
the volume fraction of the inclusions and ‘Ij is the equivalent

eigenstrain, which can be found by using Eshelby’s equivalent

inclusion method.
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The equivalent inclusion method, proposed by Eshelby (1957),
states that the stress disturbance of an applied stress caused by an
inhomogeneity @ (a sub-domain which has different elastic moduli than
those of the matrix) can be simulated by the stress field caused by an

inclusion having the same elastic moduli as those of the matrix with a
suitablly chosed eigenstrain te (stress-free strain, phase

transformation strain or inelastic strain). The equivalency
condition to determine the stress and strain disturbances in the

inhomogeneities is given as

m * * *
aij - Cijkl( (l-f)Tkquepq+ feij -eij }
£ * *
- Cijkll (1-f)Tk£pqepq+ feij } 2.7)

m £
where Cijk£ and Cijkl are the elastic stiffness tensors of the matrix

and inclusion, respectively.

In a recent paper, Benveniste (1987) reexamined the average field
method (Mori and Tanaka, 1973) and applied it to composites with large
volume fraction of inclusions. By introducing the "concentration-
factor" tensors, he presented the formulation to calculate the average
elastic moduli of composites. The advantage of this approach is that
the approximation affects only the boundary conditions of the modified
dilute problem, but the problem itself can be solved exactly for the
stress field in the inclusion, matrix and the respective interfaces,

Figure 2.4. The result obtained is consistent with the one obtained
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by Weng (1984) where the effective behavior of multiphase composite
has been studied by means of Mori-Tanaka’s method in the framework of
equivalent inclusion and eigenstrain concepts. The works following
this approach are due to: Norris (1989), Benveniste et al. (1989), and
Chen et al. (1990), among others.

Very recently another approach has been offered. Mori and
Wakashima (1990) have examined the elastic state of an inhomogeneous
body by introducing a successive iteration method. The method
involves infinite series which éonverge to'close forms, from which the
pertinent quantities such as the average stresses in the inclusions
and the matrix, the average stress disturbances in the inclusions, and
the equivalent eignstrains in the inclusions are obtained. The works
which follow this approach are: Tong and Jasiuk (1990a, 1990b),
Shibata et al. (1990), and others.

In contrast to the approach of Wakashima et al. (1974), which is
suitable for perfect bonding case only, both Benveniste’s approach
(1987) and Mori and Wakashima'’'s approach (1990) are applicable to the
imperfect bonding case also. The results obtained from the succesive
iteration method (Mori and Wakashima, 1990) have been found to
coincide with those given by Benveniste (1987) as indicated in the
paper of Mori and Wakashima (1990), however, the approach is
different.

It was showed by Weng (1984) that the Mori-Tanaka method yields
consistent results when applied either with displacement or traction
boundary conditions. Weng (1984) also indicated that the Mori-Tanaka
method with spherical inclusions gives the Hashin-Shtrikman lower

(upper) bound for the bulk and shear moduli when the inclusions are
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harder (softer). Zhao et al. (1988) proved that in the case of
composite reinforced with cylindrical inclusions of circular cross-
section, the five effective constants of composite derived from the
Mori-Tanaka method coincide with Hill’s (1964) and Hashin’'s (Hill-
Hashin bound, arbitrary transverse phase geometry, 1965) lower bounds
if the inclusions are the harder phase, and coincide with their upper
bounds if the inclusions are the softer phase. Norris (1985) pointed
out that randomly-oriented disk-shaped particles of the harder
(softer) phase yield the Hashin-Shtrikman lower (upper) bounds.
Benveniste (1987) proved that the bulk and shear moduli predicted by
Mori-Tanaka for a two-phase composite with randomly-oriented

ellipsoidal particles lie within the Hashin-Shtrikman bounds.
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Figure 2.4 MORI-TANAKA THEORY
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2.3 COMPARISON OF THE MODELS

Comparing the theoretical models mentioned above, several
interesting observations have been found.

First, it is observed that, in all cases, all models recover
dilute behavior (Christensen, 1990).

Secondly, it is also interesting to note that in all cases where
the composite spheres and cylinders models yield closed form results,
both GSCS model and Mori-Tanaka method give precisely the same
results. As it was discussed by Christensen (1979), the physical
meaning behind this is that in determining the properties of the
equivalent homogeneous medium, the criterion to be used in composite
spheres and composite cylinders models is that the repeating cells be
replaced by the equivalent homogeneous material without changing the
conditions of average stress and aQerage strain. In considering an
infinite medium of the composite spheres or composite cylinders
models, one could replace all but one of the cells by the equivalent
homogeneous medium to arrive at the GSCS model. Since the Mori-Tanaka
theory is based on the average stress or strain in the matrix, it also
answered the question of why it gives the same result for bulk modulus
as the composite spheres model and all but transverse shear modulus as
composite cylinders model.

The composite cylinders (unidirectional composite) or spheres
(particulate composite) model does not yiéld a solution for the

transverse shear modulus or shear modulus, whereas both the
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generalized self-consistent scheme and the Mori-Tanaka method do give
the solution.

Another interesting phenomenon is found by Jasiuk et al. (1990)
in their study of the elastic mouli of composites with rigid sliding
inclusions. They indicated that when the flexible interface is
considered, the self-consistent approach and differential scheme yield

a solution for the bulk modulus which depends on the tangential

sliding parameter k. The other models such as composite spheres or

cylinders model, generalized self-consistent model, and Mori-Tanaka

method would give the result, which does not depent on k, since they
assume that symmetry is maintained for whole range of £.

Note that all of the models except the self-consistent scheme
allow the volume fraction of inclusions up to f~»1 and therefore
require a wide distribution of inclusion size. As it was indicated by
Christensen (1979), the self-consistent scheme is suitable for
polycrystalline materials but not for composites. When applied to
multi-phase media, 1£ does not always cover the full range of volume
fraction up to f+1. This is true particularly when there is a large
mismatch in properties of the phases.

The differential scheme is not described by a single physical
model, but rather by a hierarchy of models. As discussed by Norris
(1985), the differential scheme involves an initial dilute suspension
which is then "homogenized", after which a new dilute suspension is
formed by inserting inclusions which are at least an order of
magnitude larger than the initial inclusions. Then this second stage
dilute suspension is homogenized and a third one is formed by

inserting yet larger particles. This process is repeated until a
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limit is approached. As it was mentioned by Christensen (1990), this
sequence will provide results very different from a single model
involving very tightly packed inclusions. such as the generalized
self-consistent scheme, the composite spheres or cylinders model, and
the Mori-Takana method.

Comparing the Mori-Tanaka theory with the generalized self-
consistent scheme, we found that the latter is simple in concept but
complex in execution. When this model is used, it is nééessary to
solve a three-phase boundary value problem (for the flexible interface
model) and four-phase boundary value problem (for the interphase
model) to obtain the stresses in the composites. In contrast, the
Mori-Tanaka method is matheiatically more simple. The advantage of
this approach is that the local stresses and displacements in a
composite can be evaluated by using the solution of a single inclusion
embedded in an infinite matrix, and inclusion interaction can be taken
into account by using a successive iteration method (Mori and
Wakashima, 1990) based on the average field theory (Mori and Tanaka,
1973). This method can treat any boundary conditions at inclusion-
matrix interface provided that the solution for an isolated inclusion
is known. This method is truly versatile, since hard, soft, or void
inclusions of any geometrical shape can all be treated in a unified
fashion. This is a reason why in this dissertation, the Mori-Tanaka
method is used. The focus of this work is the study of the effect of
interface on the effect thermo-mechanical properties of the

composites.
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CHAPTER 3

EFFECTIVE ELASTIC MODULI

3.1 DESCRIPTION OF THE METHOD

In this chapter, the method to predict the local stress and
displacement fields and the effective elastic moduli of the composites
reinforced with imperfectly bonded inclusions is described. First,
the elastic field of a single inclusion embedded in a matrix and
subjected to a uniform stress state at the remote boundaries of the
matrix is solved by using linear elasticity theory. Next, the
successive iteration method (Mori and Wakashima 1990) based on the
average field theory (Mori and Tanaka 1973) is used to account for the
interaction between the inclusions. This method, decribed by Mori and
Wakashima (1990), is modified here to account for the effect of
interface. Then, the overall elastic moduli are evaluated by equating
the average strain in the effective medium (composite) and the average
strain in the material with the inclusions subjected to equivalent
eigenstrain. The advantage of this approach is that the local fields
in the inclusion, the interphase and the adjacent volume of the matrix
can be evaluated by using the solution of isolated inclusion.

The present method can be clearly demonstrated by considering a
composite reinforced with spherical inclusions and subjected to an

applied shear stress a{g) at infinity. The case of inclusions having

the shape of circular cylinder is treated in Appendices A and B.
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3.2 1ISOLATED INCLUSION SOLUTION

When an isolated inhomogeneity O in domain D is subjected to an
applied stress aig)- o, at infinity, the stress and displacement

fields for the entire body can be obtained by using the following

govening equations of linear elasticity:

a) equilibrium equations

s

"13,3'0 (3.1)
b) Hooke'’s law

s s s

915 = Cijkecke (3.2)
c) strain-displacement relations

s 1 s s

eij -3 (ui,j + uj,i) (3.3)

and the specified boundary conditions. The superscript s denotes the
matrix (m) or inclusion (f). In the present work, the interface
conditions are varied theoretically by considering two models, the

flexible interface model and the interphase model.
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3.2.1 The flexible interface model

The flexible interface model represents an interface as a
continuous spring connecting the inclusion and the matrix, such that
tractions at the interface are continuous, while the displacement
components are discontinuous, with the displacement jumps being
proportional to the tractions. The spring constants that one would
choose in practice depend on the nature of interface. This model has
the advantage of mathematical simplicity as it incorporates two
parameters that can be adjusted appropriately. By varying the
interfacial parameters and comparing the predicted results with the
experimental results, it is possible to infer the quality of the
interface in the composite. (Note that by adopting interphase model,
several material parameters need to be appropriately selected). One
could view this model as representing, for example, a thin inclusion
coating or a series of cracks along the interface. The boundary

conditions for the flexible interface model are:

a) continuity of tractions
[aiJ]nJ-O (3.4)

b) tangential tractions proportional to the jump in tangential

displacement

o ™ k [ut] (3.5)
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c) normal tractions proportional to the jump in normal displacement

o =g [u] (3.6)

where u and o denote the displacement and stress at the interface.
The subscripts nt and t refer to the tangential direction, while the
superscripts nn and n refer to the normal direction. [ ] implies the
jump of the bracketed expression across the interface. k and g are
the spring constants which have dimension of stress divided by length.
These spring constants represent the degree of bonding at the
interface. Note that the classical case of perfect bonding is
obtained from the limit case when k -+ » and g -+ », the case of pure
sliding is reached when k -+ 0 and g + », the case of completely
debonded interface is obtained by setting k -+ 0 and g -+ 0, while any
finite positive values of k and g represents the imperfectly bonded
interface. However, this model needs to be used with caution. The
imperfect bonding representation in the normal direction might be
unrealistic because it infers that the behavior under normal tensile
stresses is identical to its response under equal but compressive
stresses. Numerical treatment of this model has been given by
Achenbach and Zhu (1989), where they solved the mixed boundary value
problem to avoid the radial overlap by using boundary element method.
In this dissertation, the numerical calculations for the
effective shear modulus are limited to the case when only the jump in
the tangential displacement is allowed while the continuity of normal
displacements is maintained in order to avoid the overlapping of the

material.
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Elastic strain energy

When an isolated elastic inhomogeneity (inclusion) Of in a domain

(0)
1)

D (composite) is subjected to an applied stress o at infinity, the

elastic strain energy is expressed as

J—I (°) K ug?; +ug ) Qv (3.7)
where uio) is the displacement caused by the applied stress aij) in

the situation when the inclusions are not present. aij and u; are the

stress and displacement disturbances caused by the presence of the

inclusion. The Equation (3.7) is rewritten as

%13 “1,3

w_Jz.J‘ <0>u<0)dv+1J‘ Oy, | av
D

Since Equation (3.8) involves complicated quadratic form
integrations over the volumetric region, it is desirable to express

(3.8) in terms of integrals in Qf or on |0f|, where only linear form
integrations are involved. Here fi; denotes the domain of the
inclusion, and |0f| denotes the surface of the inclusion. By

employing Gauss’'s theorem to the Equation (3.8), the third term in

(3.8) vanishes, while the last term in (3.8) becomes as
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%ID oyy U,y 4V = - %Ilﬂflaij [u;] ny ds (3.9)
where nJ is the outward unit vector normal to Iﬂfl- Then (3.8)
becomes
V-2 -[o i‘;)uiog av + % I (°) av
+ 1 J‘D N (0) R ]Z.J‘Iﬂflaij [u;] m, dS' (3.10)

The third term in (3.10) is rewritten as

1 (0) -3 (0)
2 b0 aij ui,j dv 2 b0 aij u i,] dv
£ £
- - %J.Iﬂ ' aijnjuio) ds = 1I u<°) av (3.11)

Finally, the elastic strain energy is given as

1[ oDul®) av 4 lJ' oQuy @

1 (0) 1
I u; dav - 2I|Q Iaij n.j [ui] ds (3.12)
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which can be rewritten as

lI (O)u(o) av + lj (0) f v

lj f u(0) av - ljln 1 7y [u,] ds (3.13)

£ _ (0) £_ (0
where aij aij + aij and ui ui + uy are the total stress and the

total displacement in the inclusions, respectively.

The elastic strain energy of the interface springs is given by

spring 1
Iln | ij nj [u ] ds

- % I k (u, 12 as + % I g lu_ 12 das (3.14)
19| ||

The total elastic strain energy of the composites with boundary
conditions given by this model is the summation of the energy of the

elastic medium (matrix and inclusions) and the energy of the springs

(Jasiuk and Tong, 1989). Expressed in terms of integrals in Of or on

|Of|, it becomes:

lj‘ oDul®) av + J.J‘ Ouf |

lf f u<°) av + 1I|0 I ig)nj [u,] ds ©(3.15)
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By employing Hooke’s law, the elastic strain energy per unit volume is

expressed as

C

Y 1,00 gm o0 e (0 (of _Sm‘);L_J‘
D 1j 1jk£ 4"y ij ijks ijke
+ 1—1' (0) n, [u;]ds (3.16)
I8¢ I
where s:jkt is the compliance of phase s, s = f,m.

Suppose the same work is done by the applied stress 0(0) on the

1)

(non-sliding) inclusion with the eigenstrain ei; (uniform)

U.

yeauiv _ 1]‘ (0) dv+1I <°) av (3.17)

1.3 J

The elastic strain energy per unit volume stored in the equivalent

homogeneous medium is

yeaulv L, L0 1,00,
D jsijkl ke T2fe5y0 _1 (3.18)

If we compare these two results, the idea of Eshelby'’s "equivalent

inclusion method" (Eshelby, 1957) is employed. Thus, the expression

for e: is obtained:

3
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0y * (0) £ m .1 [ _f
157413 T 713 ¢ GSigee Sped) g In og WV
£

|
+ [u,]n. dS ) (3.19)
Qf Iﬂfl i’

As an example, let us consider a spherical inclusion in the matrix

subjected an uniformly applied stress aig)- o, at infinity. Both

inclusion and the matrix are assumed isotropic. The solution of

Equations (3.1)-(3.6) can be expressed as:

aij (x) = wij (x)a, (3.20)

ui(x) - wi(x)ao (3.21)

where W:J(x) and w:(x) are functions of x for phase s which are

defined as concentration factors in the paper of Benveniste et al

(1989). Then, the only non-zero eigenstrain is 5;2- e;l‘ If we
* * *
define €~ 2612, €0 is expressed as:
*
€0 = Aoy

(3.22)

where
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£
W, (x)dVv
Iﬂ 12

kb k
f m £

£

1 m £ m £
+ Qg Ilo I( [ W@ -wi(x) ] ny + [ wy(x)-wy(x) ] ny } d5  (3.23)
f

The average stress in the isolated inclusion due to the applied stress

% is

) J‘ £
<0, > - o dav
12 nf Of ﬂf 12

1 3
- & ,L, wE, ()0 av (3.24)
£

The average of the stress disturbance in the isolated inclusion

due to L) is

Aalz - Aao - <¢712>Of B Baad (3.25)
where
a= 21 w (xav -1 (3.26)
Of 12
¢

In this example, a and B are scalars. However, in general, they will

be in the tensor form.
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3.2.2 Interphase model

Consider a composite system consisting of three components: fiber
(£), layer (%) and the matrix (m). The perfect bonding boundary
conditions, which.imply continuity of tractions and displacements, are
assumed at the fiber-layer and layer-matrix interfaces. The elastic
properties of constituents are distinct and the interlayer has a given
thickness. In this representation, the degree of debonding or damage
at the interface can be simulated by adjusting the elastic constants
and the thickness of the interphase region. For example, a soft layer
will imply the weak or damaged interface. It might be noted that this
model is more realistic than the previous one, but algebraically it is

more involved.
Elastic strain energy

The elastic strain energy for this case is obtained by using

Equation (3.15) with the substitution of Qf by 0f+02 and the omission

of last term:

;LJ' oDul®) av 4 J.J' oDl | av s ;LJ' oDul | av
1,3

; %'[ fj u(o) av - 1J' ‘ u(o) av (3.27)
a
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(0)

where uy is the displacement due to 0(0) in the absence of

1]

inclusions. afj and uf are the total stresses and displacements in the

inclusion, respectively, and afj and uf are the total stresses and

displacements in the layer, respectively. D is the volume of the

composite, ﬂf and 02 are the volumes of fiber and layer, respectively.

Then, by using Hooke’s law, the expression for the elastic strain

energy per unit volume becomes

w l o(0)g o0, lf (0)(8 )J._ av
D ij ijkl k1 ij ijkl” ijkl
.l (0) g™ i 2
+ 2 oy 1] ijkl 1Jkl) 02 In %1p dav (3.28)
2
Ot
where £ is the volume fraction of inclusions, f = D’ and £ is the
)

volume fraction of layers, £ = D -

Suppose the same work is done by the applied stress a(o) on the

ij

inclusion (consisting of inclusion and interphase) with a ficticious

*
eigenstrain €

3

yequiv lJ' oOu® av 4 1 SO, *

(3.29)
i, o0, U qy
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The elastic strain energy per unit volume stored in the equivalent

homogeneous medium is

equiv
¥ - 12* aig)s‘:ju aég) +12- (E+2) aﬁ.’)ei; (3.30)

o

If we compare these two results, as it was done in previous section,

*
the expression for cij is obtained:

0) * o) , £ £ m 1l f
13¢5 T %13 L E+ 1 Sigee Siged ag .[0 %129V
£

i S m 1 2
*E 1 2 Sigee Sijke a, In %2V (3.31)
2

As an example, let us again consider a spherical inclusion and let the
applied stress a{g)- %" Again, both the inclusion and the matrix are

*
assumed isotropic. Then, the only non-zero eigenstrain is €™ 621'

If we define e =2¢ ., e i d as:
we e ne Go- 512, Co S expresse as.

eg = Bo, (3.32)
where
p-is (- b B[ vhma
£ m £



o
B
o

bt (L L I w{z(x)dv (3.33)
Q

The average stress in the isolated coated inclusion due to the applied

stress % is

1 £ 2
<012%a _+a, " a+a, I o1 4V + I 712 V)
£y 949, " Jg a
£ 2
1 £ 2
—h— ¢ I W, (x)dv + I W, (0 dV o, (3.34)
£% o, a |

The average of the stress disturbance in the isolated inclusion

due to 7 is

Aalz - Auo - <012>of - 0g = aog, (3.35)
where
a = " - ( Wf (x)dv + W’ (x)dv ) -1 (3.36)
Q.40 12 12
£ 2 Of Q

Note that here, a and B8 are given as scalars. However, in general,

they will be in tensor form.
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3.3. Successive iteration and effective elastic moduli of imperfectly

bonded composites

In section 3.2 we obtained the zeroth-order solution, in which
only a single inclusion is considered. The zeroth-order eigenstrain
and the stress disturbance in the inclusion are the overestimates or
underestimates of the real situation when the elastic stiffness of
inclusion is greater or smaller than the one of the matrix (Mori and
Wakashima, 1990). The reason for this is because the presence of
other inclusions will reduce or increase the stress in the inclusion,
since the other inclusions carry stress larger (if the inclusions are

stiffer) or smaller (if the inclusions are softer) than % (the

average stress of the matrix for the single inclusion case). In order
to obtain the actual stress distribution and the effective properties
of composites with finite concentration of inclusions, some correction

should be made.
3.3.1 The flexible interface model

Equations (3.22) - (3.26) give the zeroth-order solution. If the
total volume fraction of inclusions is f, these inclusions with the
eigenstrain of the zeroth-order produce the average stress in the

matrix. According to Mori-Tanaka’s theory (1973), this average stress

is

1
a{z)- o) = -fhoy = -fao, (3.37)
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Following Mori and Wakashima (1990), this average stress in the matrix
acts as an applied logding and causes additional disturbance in the

vicinity of inclusions. The first-order correction becomes

oy = - faao (3.38)
Ao, = ad, = - faAo, = - faza (3.39)
1 1 0 0 ’

* *
€ - ﬂal - - fﬁAao - - faeo (3.40)

The above procedure is repeated infinite number of times. The n-th

order correction is given as
n
o = - ann_1 = (-fa) % (3.41)

n
Aan = a(-fa) % (3.42)

* n *
€& - (-fa) € (3.43)

Then, the total equivalent eigenstrain is the sum of the

eigenstrains from every iteration
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- e3< 1-fa+ a2+ ...) (3.44)

Note that, under the condition: |[fa| <1, e* will converge to the
closed form expression:
(3.45)

The effective elastic moduli are defined by using the concept of

the average strain in the composite, i.e.

c (0) m (0) *
Sigke “ke’ " Sigks %k’ * E ¢y (3.46)
Therefore, the effective shear modulus is given by
1 1 £
G. - 6 *1l+a A (3.47)

where a and B8 are given by Equation (3.23) and (3.26).

The actual stresses and displacements (including interaction of
inclusions) can be also estimated by using successive iteration

method. For example, the actual stress component aij(x) and

displacement component ui(x) in the phase s are
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aij(x) - aig) + Aaig)(x) + ai})+ Aa§})(x)
+aﬁ)+mﬁNn+.“ (3.48)

and

+ u§2) + Auiz)(x) + ... (3.49)

In this particular case

aij(x) - wij(x) (og+0y+0y+05+ ... )
- W:J(x) oo 1 -fa + £2a2 . £33+ ... )
- Th R on® (3.50)

and
$(x) = wi(x) (o, +0, +0, +0, +

uj (x wi x % %9 o, o4 e )
- wi(x) oy( 1 -fa + £2a2 . £33+ ... )
-TrE @ (3.51)

where a?j(x) and u:s(x) represent the stress and displacement fields

of an elastic body containing an isolated inclusion. Note that the
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local stresses and local displacements given in Equations (3.50) and
(3.51) are the product of the solutions of the isolated inclusion
given by Equations (3.20) and (3.21) and the correction factor
1/(1+fa), which accounts for the inclusion interaction. Note also

that ao/(1+fa) is the average stress in the matrix (Mori and

Wakashima, 1990). It might be noted that the Equations (3.50)-(3.51)
are not the exact solutions of the stress and displacement fields,
since the result assumes that the other inclusions are not very close
to the given inclusion and they all exert an additional uniform stress
on the inclusion of interest. However, the solution is a good
approximation in the average sense since it takes into account the
inclusion interaction. By using the average stress in the matrix,
other inclusions are smeared out so that no detailed information about
the distributions of inclusions is neccessary. Note that the exact
solution for the stress field is very difficult due to complex spatial
distributions of inclusions. Also the stresses will differ for every

inclusion since the inclusions are non-periodically distributed.

3.3.2 Interphase model

The procedure here is similar to the derivation in the previous
model. Equations (3.32) - (3.36) give the zero-order solution. If
the total volume fraction of inclusions and coatings is f+£, these
coated inclusions with the eigenstrain of the zeroth-order produce the
average stress in the matrix. According to Mori-Tanaka’s theory

(1973) this stress is
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0(1)- ag

12 1= -(f+2) Ao

- -(f+2) ao (3.52)

0 0
Following Mori and Wakashima (1990), this average stress in the matrix
acts as an additional applied loading which causes the additional

disturbance in the vicinity of fibers. The first-order correction

becomes:
oy = - (£+2) Aao- -(f+2) ao, (3.53)
Aal -ao) = - (f+2) a Aao - - (f+2) azao (3.54)
* *
€ - B o, = - (f+2) B Aao = - (f+2) a B 99 = - (f+2) « €0 (3.55)

The above procedure is repeated infinite number of times. The n-th

order correction is given as
op = -(£+8) Bo | = [ - (£+0) a |7 o (3.56)

b0 =ao = - (£+8) 8o ) =a [- (£+0) a |" o (3.57)

ch=Bo = (E+D) Boo_ = - (E+) aBo_,

= [ - (£ a ® o (3.58)
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Then, the total equivalent eigenstrain is the sum of the

eigenstrains from every iteration
* * kL r
€ - €o 61 62

- a1 - (E+D)a + (£+0)%% + ... ) (3.59)

e* converges under the condition: |(f+f)a| < 1.

* I *

€ T 1+ (f+)a €0

S S
=1+ (¢+D)a P9 (3.60)

The effective elastic moduli are defined by using the concept of

the average strain in the composite, i.e.

c (0) m (0)

*
sijk! O%p - Sijk2 %10 + (f+2) eij (3.61)
Therefore, the effective shear modulus is
1 1 £+2
G, =G, *Ire+da P (3.62)

where a and 8 are given in the Equations (3.32) and (3.36). Again, in
general, a and B are tensors.
The estimate of the actual stresses and displacements (including

interaction of inclusions) can be also given by using successive
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iteration method. For example, the stress components aij(x) and

displacement components ui(x) in the phase s are

aij(x) - aig) + Aaig)(x) + ai})+ Aai})(x)
+ a§§> + Aafj)(x) + (3.63)
and
ui (x) = ugo) + Auio)(x) +'u§1)+ Auil)(x)
+ uiz) + Auiz)(x) + ... (3.64)
In this particular case
S S
aij(x) - Wij(x) ( % + o, + 9, + o, + ... )
- wij<x) 0p( 1 -(£+D)a + (£+0)2a? - (F+0)3a3+ ... )
1 g
1+ (g+ha “13® (3.65)

ui (x) = w:(x) ( % + % + %) + o, + ... )

- v (®) oy( 1 -(£+d)a + (£+0)2a2 - (£+0)3a3+ .. )

T EDe Y™ (3.66)
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where a?j(x) and u:s(x) represent the stress and displacement field of

an elastic body containing an isolated coated inclusion. Note that
the local stresses and local displacements given in Equations (3.65)
and (3.66) are the products of solutions for the isolated inclusion
given by Equations (3.20) and (3.21) and the correction factor
1/[1+(f+£2)a), which accounts for the inclusion interaction. Note also

that ao/[1+(f+2)a] is the average stress in the matrix (Mori and

Wakashima, 1990). Again, the Equations (3.65)-(3.66) are not the
exact solutions of the stress and displacement fields, however, they
are good approximation in the average sense since they take into

account the inclusion interaction.
3.4 COMPARISON BETWEEN TWO MODELS

Comparing the two interfacial models we used, we can see that the
flexible interface model simplifies the problem in that we need to
specify only two parameters in order to describe the interface.
Thickness and the moduli of the interphase need not be separately
prescribed. Also, we only need solve a boundary value problems of
two-phase materials. The interphase model is mathematically more
involved since it is necesary to solve a boundary value problem of a
three-phase material. Both thickness and moduli of the interlayer
need be prescribed. But physically it seems to be a more realistic
boundary condition.

Although the flexible interface model and the interphase model

are mathematically different, they may represent the similar physical
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behavior of the bond between inclusion and matrix for the special case
when the inclusions are coated with very thin and very compliant
interphase layers (Hashin, 1990b). The conditions of this special

case are quantitatively expréssed by
2 =2t/ a<l (3.67)

K, , G, << K

2 S £ ¢ (3.68)
where a is inclusion radius and t is an interphase thickness.

It is observed that the interface parameters of the flexible
interface model can be simply related to interphase properties and
geometry of the interphase model for this case. For example, the

relation between interface parameters and interphase characteristics

for cylindrical fiber composites is given by Hashin (1990b) as

follows:
K, + G
g - ——4 (3.69)
Sy
k = P ‘ (3.70)

where K is transverse bulk modulus, G is transverse shear modulus, and

substript £ denotes interphase.
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CHAPTER 4
THERMAL STRESS AND THERMAL EXPANSION COEFFICIENTS

When a composite material is subjected to temperature change,
thermal stresses are created due to the mismatch of thermal expansion
coefficients. Large thermal stresses may develop in the interphase or
at the interface during composite processing and cure shrinkage in
thermosetting matrices, which may cause stress concentration and
initiate yielding or debonding. If these stresses exceed the bond-
strength of the inclusion/interphase interface or the
interphase/matrix interface, the microcracks will form, and the local
failure of the composite will occur. Thus, these thermal stresses may
ultimately control the structural performance of composite.

Therefore, for design purposes it is important to know and to control
the magnitude of these stresses. Also it is important to know the
overall thermal expansion coefficients.

In this dissertation, the effect of interface on thermal stresses
and thermal expansion coefficients of composite is also investigated.
The thermal stress and thermal expansion coefficients of a composite
with perfectly bonded interfaces have been studied by Schapery (1968),
Wakashima et al. (1974), Ishikawa et al. (1978), Uemura et al. (1979),
Takahashi et al. (1984), Avery and Herakovich (1986), Hahn and Kim
(1988), Bowles and Tompkins (1989), Dvorak and Chen (1989), and
others. The stress field around coated reinforcement (inclusion) has
been addressed by Mikata and Taya (1985, 1986), Luo and Weng (1987,

1989), Pagano and Tandon (1988), Sottos et al. (1989), Vedula et al.



50
(1988a), Hsueh et al. (1988), among others. The effective thermal
expansion coefficients have been predicted by Pagano and Tandon
(1988), Maurer et al. (1988), Vedula et al. (1988b), and Tong and
Jasiuk (1990), and others. The composite with sliding interfaces was
studied by Jasiuk et al. (1988).‘ In these works, various methods were

used to account for the inclusion interaction.
4.1 DESCRIPTION OF THE METHOD

The effect of interface on thermal stress and thermal expansion
coefficients is studied here by using again the successive iteration
method (Mori and Wakashima, 1990). In the analysis, two composite
systems are used, i.e., the spherical particle composite and the
cylindrical fiber composite. The cylindrical fibers are assumed to
have a circular cross-section, and are aligned. Since the composites
with spherical or circular cylindrical inclusions will not allow the
sliding to happen along the interface under the uniform temperature
change, the flexible interface model is not applicable here.

Therefore, only the interphase model is used in this chapter.

4.2 ISOLATED INCLUSION SOLUTION

Consider a three phase composite consisting of coated inclusions
uniformly distributed in the matrix. The inclusions, layers (coatings)
and the matrix are assumed to be linearly elastic and isotropic. They

have distinct material properties for each phase s (s = f,2,m):

elastic constants Cijkl and thermal expansion coefficients a’

ij° The
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perfect bonding conditions are assumed at the inclusion-layer and
layer-matrix interfaces. In the notation used, the superscripts and
subscripts £, £ and m refer to the inclusion, layer, and matrix,
respectively.

When the composite is subjected to a uniform temperature change
AT, the stress and displacement field for the entire body can be
obtained by the following governing equations and the specified

interface conditions:

a) equilibrium equations:
s
=0 4.1

b) Hooke’'s law:

S S S S
17 = Cijeelere - 158D (4.2)

ag
c) strain-displacement relations:

€55 = 2 (ui,J + u;’i) (4.3)

For the given interface model, we have a boundary value problem which
can be solved by using linear elastic theory. The solution can be

expressed as:
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S S
aij(x) - Hij(x) AT (4.4)
ui(x) - hi(x) AT (4.5)

where Hij(x), hi(x) are functions of x for phase s, which are defined

as concentration factors in the paper of Benveniste et al. (1989).
Let us denote the volume of the composite by D and the volumes of

the phases by 08, where s = f, £ and m. The volumes ﬂf and 02 are the
sums of the volumes of all the inclusions and coatings, respectively,

such that ﬂr -121 01, where r = £, £ and N is the number of

inclusions. Then, the total average strain in the composite is given

as

1
--(J- € dV+J € dV+J €, .dV) (4.6)
m

By employing Hooke’'s law

S S S
935 = Cijkalere - @ D)

(s=f, £, m (t.7)

the Equation (4.6) can be expressed as
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<€,.,> = E { [Sf ] af av + [Sz ] 02 dav
13D = D 1jke’ Jo ke ijke’ g ke
£ 2

m m f
+ [Sijkll I akde + I aijATdV
ﬂm nf

+ I mi’Z ATAV + J a®, ATdV ) (4.8)
g q *13
2 m

Since the volume average of the stress disturbance in D vanishes

(Mura, 1987, pp. 334-335)

m
CH L;’kl av = 0, (4.9)
then
m m m f
[S55ke] L 9109V = - [Syjpp) L T

m £
- [S?julj oy 44V (6.10)

a,

Substitution of Equation (4.7) into (4.5) yields

1
D

<€, .> AT +

m £ m £
137D = %ij C(IS5yrpl = [Sijue]) J;, 9199V
£

* (Sippee) [Tpiee) In %V )
2

£
ij ~

+ £(a a';j)AT + z(afj ; a';j)AT (4.11)
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where f and £ are the volume fractions of particles and layers,

respectively, and s:jkl is the compliance tensor of phase s, s = £, 2,

Next, suppose the same total average strain is obtained when a

homogeneous material is subjected to a uniform ficticious strain e*

1)
(called eigenstrain by Eshelby, 1957) in the region originally
occupied by the inclusion and the layer. Then
<e. > = o AT + (£+8)e; 4.12

Again, we employ the idea of Eshelby’s (1957) "equivalent inclusion

method"”. By equating (4.11) and (4.12), the "equivalent" eigenstrain

e:j is obtained as
* 1 1 £ m f
€. = _( ([S ]-(S ) a, ,dV
ij £+2 D 1jk2 ijke Jﬂf k2

* ([Sfjkz]-l'[szju]-l) L Tig®V )
2

+ £ (afj ; a‘;j)A'r +

f+2

2

2 m
(a; - a;, )AT (4.13)
s 1

For a numerical example, let’s consider a spherical coated inclusion.

* * * *
Then, the only non-zero eigenstrain is €11™ €20 €33~ €q-

Introducing the expressions (4.4) into (4.13), we have
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e; = n AT (4.164)
where
pe £ L, 1 j W oav e 2L L1y L j a2 oy
f+2 K K 0 JOg f+£ K, K a, Ja,
+ _f (af- a™) + _1 (a2° a™) (4.15)
f+2 f+2

The average stress in the isolated inclusion and layer due to a

uniform temperature change in the composite is

1 £ 2
<o, .> - ( o dv + o dav) (4.16)
170+, o n Inf 1] Ioz 1]

Substituting the stress expressions given in (4.4) into (4.16) yields

the following result:

<0,.> = <O\n> - <g,.>
117040, 22”0+, 330,40,
- - <o> - 4 AT (4.17)

where

+ 421 I B, (xav (4.18)
11
Q 02
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Note that the stresses given in (4.17) represent the disturbance due

to temperature change. Let us define this disturbance as Ao,

Ao, = <o> - vy AT (4.19)

Let us define the corresponding displacement disturbance by Bu,. Note

that v and n are scalars here. However, in general, they would be

tensors.

4.3 SUCCESIVE ITERATION AND EFFECTIVE THERMAL EXPANSION COEFFICIENTS

The above solution is the zeroth-order solution, in which only a
single coated inclusion is considered. In order to estimate the
actual stress distribution and the effective thermal expansion
coefficients of composite with finite concentration of inclusions,
some correction should be made. The argument is the same as given in
section 3.3. If the total volume fraction of inclusions and coatings
is f+£, these coated inclusions with the eigenstrain of the zeroth-
order produce the average stress in the matrix. According to Mori-

Tanaka’s theory (1973) this average stress is

”ii)‘ ”é%) = °§% =0, = -(f+2) Bgy = -(£+2)yAT (4.20)

Following Mori and Wakashima (1990), this average stress in the matrix

acts as an applied loading and causes additional disturbance in the
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vicinity of inclusions. Therefore, it is necessary to solve the

second boundary value problem involving the isolated inclusion

subjected to hydrostatic stress a{i) é%) §%) o, at infinity.

The stress and displacement fields in this case are of the same forms

as expressed in (3.20) and (3.21) of section 3.2 except that o, is

0
replaced by o,-
aij (x) = w*;j(x)a1 (4.21)
u;‘(x) - wz(x)al (4.22)

The elastic strain energy produced by the applied stress a( ) is

1]

lJ o) av + lJ' Dyf lJ' o,f o) o

l I (1) l P I ij u(l) dv (4.23)

(1)

where uy is the displacement due to a( ) in the absence of

ij

inclusions. afj and uf are the total stresses and displacements in the

inclusion, respectively, while afj and ui are the total stresses and

displacements in the layer, respectively. D is the volume of the

composite, Qg and Q, are the volumes of fiber and layer, respectively.
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Note that this expression is the same as given in Equation (3.27)

except for superscripts (1) which replace superscripts (0).

Then, the expression for the elastic strain energy per unit

volume becomes

W B LTI SO NP IS T )LI
D %13 131 x1 %1j ijkl ijkl o%g ¢
LoD L[ 2
+ J (S 1jk1 sijkl) 02 Iﬂ ks dav (4.24)

2

(L)
1)

inclusion (consisting of inclusion and interphase) with ficticious

Suppose the same work is done by the applied stress o on the

*
eigenstrain ‘ij

weauiv _ 1 I (1)u(1) av + % il) dv (4.25)
agqa, U

The elastic strain energy per unit volume stored in the equivalent

homogeneous medium is

wequiv l

W JMDgn (1) 1 L,
b 95y Siqke kg *2 (£ L) oy j (4.26)

By equating (4.25) and (4.26), the expression for ¢'. is obtained:

1j
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1), o) £ g ) £
743 j i3 CE+ (sijkl Sty o IQ 9199V
£
. g 1l 2
*Ee (sijkz Si3e) @, I; 7199V (4.27)
2

For the case of a spherical coated inclusion, the only non-zero

eigenstrain is eIl- czz- 523- eI. cI is expressed as:

eI - Bo, (4.28)

where

B = ;f;- L i— ) é— wfl(x)dv
Ke £ Ja;
+ f + 2 ¢ l‘ l- l- I 1<x)dv (4.29)
1 Kn

The component of the average stress in the isolated coated inclusion

is

I L I
<0,.> - ( o dv + o av )
11 0f+02 0f+02 Qf 11 Q 11

<O nn>,
22 0f+n£ 33 nf+nl

S N
0+,

( J; wfl(x)dv + I; w{l(x)dv Yo, (4.30)
£ 2
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The average of the stress disturbance in the isolated inclusion

(1)
due to 011 is
Aall - Aal - <all>Of - al - Xal (4.31)
where
r= —— | W mav+ | v (x)av) -1 (4.32)
a+a 11 11
£ 0 a,

Then, the second-order correction is similarly performed. Using

again Mori-Tanaka'’s average field concept, the additional stress
disturbance Aal, causes the additional average stress o, in the

matrix, which acts as an applied loading. Therefore, as before

o, = - (£+2) Aal- -(f+£)Aal (4.33)

- - (f+2) Aza

Aaz - g, = - (f+2) A Aal 1 (4.34)
*
€5 =B oy = - (£+0) B B0y
- - (£+0) A B oy = - (£+D)) eI (4.35)

The n-th order correction is given as
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o = -(£+0) o, = [-(£+0)A]70, (4.36)

n
Bo_ = X o= - (£+8) X Aoy = A[- (£+2)A]70; (4.37)

& =Ba_=- (£+) BAg_ | = - (£+D) X B o,

- [- (A% (4.38)

The above procedure is repeated infinite number of times. Then,
the total equivalent eigenstrain is the sum of the eigenstrains from

every iteration

‘3 + eI { 1- (f+2)Xx + (f+2)2A2 + ... ) (4.39)

. *
Note that, under the condition: |(f+£)A] < 1, € will converge to

* * 1 *
€ =€, + € (4.40)

1 + (£+2)

This closed form expression can be further simplified. Since

(4.41)

o %

eI =B oy = - (£+0) B Aoy = - (£+2) B %_ ¢
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by (4.15), (4.18), (4.29), (4.32), and

v 200 _ ao(D) _A (4.42)
*(0) (1) B
Therefore,
& _EDY 2
1 + (£+2)
- - g = — " AT (4.43)
1 + (£+2)A 1 + (f+2)

The stresses and displacements (including interaction of
inclusions) can be estimated in the same way. For example, the local

fields for phase s are:

aij(x) - Aaﬁ?)(x) + a§})+ Aai})(x)
+ 0 4 4@ (xy + .. (4.44)

1) 1)

and

ui (x) Auio)(x) + u§1)+ Auil)(x)

+

uiz) + Auiz)(x) + ... (4.45)

Introducing the solutions from zeroth order and first order, we have :
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+

aij(x) Hij(x) AT Wij(x) (0, + 0, + 03+ ...)

S

1]

(x) AT + WS, (x) (1 - (E+0)r + (£+0)22% + .oy

Hij

s 1
Vii® T E GEor 1

+

s
Hij(x) AT

f+2
1 + (f+2)

(x) AT - sz(x) 7 AT (4.46)

S
HY |

and

ui(x) h:(x) AT + wi(x) (0) + 0y + 03 + ..0)

- h5(m AT + wi(x) (1 - (E+D) + (£+0)222 & ey

s s 1
= hy(® AT + wi(X) T (Frpr 1

£+42
1 + (£+2)

- hi(x) AT - wi(x) v AT (4.47)

The effective thermal expansion coefficients are, by definition,
the average strains resulting from a unit temperature rise for a

traction free composite:

c 1 m 1 *
@ - <€e,.> = a + (f+2) ¢ (4.48)
ij AT ij°D ij AT ij
Therefore
¢ = o0+ _fH " (4.49)

1 + (£+£)A
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where n is defined in (4.15) and X in (4.32).

It is interesting to note that the thermal expansion coefficient
obtained by the successive iteration method coincides with the one
obtained by modified composite spheres model, which includes the
interphase layer. It is also found that for the cylindrical composite
without coating (the perfect bonding case), the results obtained by
the successive iteration method coincide with the ones obtained by the
composite cylinders model. In this dissertation, the results for the

transverse thermal expansion coefficient ar and longitudinal thermal
expansion coefficient ap for the composites with cylindrical coated

inclusions are obtained by using the composite cylinders model for

simplicity (See Appendix E).
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CHAPTER 5
INTERPHASE WITH PROPERTY GRADIENTS
5.1 DESCRIPTION OF THE METHOD

The incorporation of a realistic interphasial model into the
micromechanical analysis of composite systems is critical for the
understanding of composite behavior. The interphase is usually
modeled as a homogeneous region, despite the fact that it may have
property gradients.

In this dissertation, the effect of variation of interphase
properties is also studied. For the mathematical simplicity, the
attention is given to the case of spherical inclusions in a matrix
subjected to the hydrostatic stress at the matrix boundary and the
uniform temperature change. The successive iteration method (Mori and
Wakashima) is used here for the determination of the stresses,
effective bulk modulus, and effective thermal expansion coefficients
of composite. A power law introduced by Jayaraman et al. (1990) is
chosen to simulate the variation of both elastic Young’s modulus and
coefficient of thermal expansion in the interphase region. The
governing field equations are solved directly in the closed form. The
influence of various parameters such as interphase thickness and
inclusion volume fraction on the local stresses and thermal and
elastic constants is studied. It is found that the property gradients
have a distinct and important.effect on the local stresses and the

overall thermal and elastic properties.
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Future research may deal with the interphase with other
variations of the properties and include other geometric shapes.

Consider a composite with a single spherical coated inclusion

0)

embedded in a matrix which is subjected to a hydrostratic stress O ex

-0 _ 0 _

vy 2z o, at infinity and a uniform temperature change. The

governing differential equations in terms of displacements for

isotropic inclusion and matrix are

2 s s
_d_u_2.+_2__gAL-—L2us-o s=m, f (5.1)
dr r r r

where u is the radial displacement. The general solutions to equation

(5.1) are given by

B
u’(r) = AT + _rL (5.2)

where s = £, m. As and Bs are the constants for phase s which will be

determined by the perfect bonding boundary conditions at inclusion-

layer and layer-matrix interfaces.
Power variation model

The elastic Young’s modulus and the thermal expansion coefficient

of the interphase are given by



EZ (r) =Pr

a, (r) = Mr

where P, Q, M, N are the constants which

Q

N

the following conditions:
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(5.3)

(5.4)

are evaluated by considering

at r = a (5.95)

atr = b (5.6)

The governing differential equations for the interphase region are

%, _(0s2)

2

v
where ¢y = —i .

l-vz

assumed constant for simplicity.

(5.7) are given by

u(r) = A

r

r

“TAT

du  _20Q9-1)
dr 2

(5.7)

vy is the Poisson’s ratio of the layer, which is

Al

+ B,r

A2

+ C,r

N+1

The general solutions to equation

(5.8)



68

where
AL a2 = @ ] \ Q?+2Q(1-4Q)+9 ) (5.9)
and
(OHNIM
Co = 2w, [ (WLIF+(Qv2) (FHD)+2(Qb-1) ] (5.10)

Az and Bz are the unknown constants. These constants will be

determined from the boundary conditions. The boundary conditions for

this problem are the perfect bonding conditions at interfaces

f 2 f 2

e = %r u, = u at r = a (5.11)
2 m 2 m

Or ™ Opr u. =u, at r=b> (5.12)

oy 0 as r - ® (5.13)

where a is the radius of inclusion, while b is the outside radius of

the layer.
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The effective bulk modulus is evaluated by setting AT in Equation
(5.7) to be zero, while the thermal expansion coefficient is

calculated by setting % in Equation (5.13) to be zero.

Then the isolated inclusion solution is iterated and the
procedure is similar to the constant interphase case given in Sec.
3.3. Comparing with the results of constant interphase case, in which
the Young’s modulus and thermal expansion coefficient of the
interphase are taken as the average of Equations (5.3) and (5.4) over
the interphase volume, it is found that the property gradients at the
interphase may have significant effect on the local fields and the
thermoelastic properties of the composites.

It might be noted that the present results coincide with the omnes
obtained by the modified composite spheres model, which includes the

variable interphase.
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CHAPTER 6

NUMERICAL RESULTS AND DISCUSSION

6.1 EFFECTIVE ELASTIC MODULUS

In the numerical results presented in this paper the inclusions
are assumed to be cylindrical or spherical in shape. They are
uniformly but not periodically distributed in the matrix. The effect
of inclusion interaction is accounted for by using the successive
iteration method based on Mori-Tanaka theory. The details of
derivations are given in Chapters 3, 4 and Appendices A-D. The
predicted elastic constants are the transverse shear and bulk moduli
for the unidirectional composites reinforced with aligned cylindrical
fibers and the shear and bulk moduli for the composites reinforced
with spherical particles. In the calculations presented, the
Poisson’s ratio of the constituents is taken as 0.3 and the ratio of

stiffness T = Gf/Gm = 10 unless it is specified otherwise.

6.1.1 UNIDIRECTIONAL COMPOSITES

A unidirectional composite reinforced with aligned cylindrical
fibers of circular cross-section is considered. The transverse shear
and bulk moduli are investigated for the two interfacial models.

The two interfacial models discussed in Chapter 3 and Chapter 4
can reduce to the case of two phase composite with the perfect bonding

at the inclusion matrix interface. Therefore, initially, as a check
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of the present predictions we compare our results for the effective
shear modulus for the perfect bonding case with the three phase model
(Christensen and Lo, 1979), self-consistent scheme (Hill, 1965,
Budiansky, 1965), and Hill-Hashin’s upper and lower bounds (Hill,
1964; Hashin, 1965). As it is seen from Figure 6.1, the present
solution coincides with Hill-Hashin’s lower bound for the composites
with stiffer inclusions. It is also found that for the composites
with softer inclusions, the result coincides with Hill-Hashin’s upper
bound. Also, it is seen from Figure 6.1 that our result lies closely
with the result given by the three phase model. The effective elastic
moduli obtained by the self-consistent scheme are somewhat higher for
stiffer inclusions and lower for softer inclusions.

The expressions of the bulk modulus and shear modulus for perfect
bonding case are obtained, by using the successive iteration method,

as follows:

K
G, +K) + (-Ef - (R + £6_)

K. 2 (6.1)
K G, *K) + (1 - DK, - K)
S Sp

+x +£(1-=0)
6, = G m C¢ (6.2)
" ,

+x_ +x £ ( -1)

Ce Cg

where G and K are transverse shear and bulk moduli. It is found that
the transverse shear modulus given by the Equation (6.1) coincides the

one given by composite cylinders model (Hashin, 1965). However, the
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composite cylinders model does not yield a solution for the tranverse
shear modulus, whereas the Mori-Tanaka mathod does give the solution
as given by Equation (6.2).
The effect of interface on the effective elastic moduli is
studied in Figures (6.2)-(6.10). Figure (6.2) represents the

nondimensional transverse shear modulus of composite Gc/Gm versus
fiber volume fraction f for the flexible interface model for changing
k=kay/ Gm’ where "a" is the radius of the fiber, Gm is the shear

modulus of the matrix, and k is the tangential spring constant given

in Equation (3.5). In the numerical calculations, the normal spring
constant g = g a /Gm is taken as infinity in order to avoid the
overlapping of the material. Figure (6.3) supplements Figure (6.2)
by showing the change of the effective shear modulus with 1/k for f =
0.5. When k is infinite, Gc corresponds to perfect bonding case, then

the behavior rapidly changes and finally Gc approaches asymptotically

the solution for pure sliding case. Note that k has a significant
effect on Gc' The effective shear modulus decreases as k decreases,
therefore the weaker the bond, the lower the effective shear modulus.

At the limit case k = 0 (pure sliding), the shear modulus decreases
considerably in comparison with the perfectly bonded case. The

similar behavior is observed in Figure (6.4), which illustrates the

effect of parameter g on the effective transverse bulk modulus Kc.

Note that K, is independent of k due to symmetry. Figure (6.5) shows
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that the spring constant k has an important effect on the interfacial
shear stress.
Figures (6.6)-(6.10) illustrate the numerical results for the

interphase model. Figure (6.6) shows Gc versus f and Gl/Gm for I' =
Gf/Gm' 10 and £/f = 0.01. Similarly as for the previous model, the

weaker the interface, or the lower the stiffness of the interphase
region, the lower the effective shear modulus. This effect becomes
more pronounced as the inclusion volume fraction increases. It is

interesting to observe that for certain interphase stiffness (Gl/cm-

0.0055 for this case), the stiff fiber combined with the soft
interphase results the effective shear modulus of the composite to be
the same as those of the pure matrix material. Also, the soft
interphase may cause the effective modulus to become lower than that

of the matrix. For example, when Gl/cm = 0.001, the increase in f
will only further reduce Gc’ as shown in Figure (6.6). Since the

interface plays an important role in transfering the load from the

matrix to inclusions, when Gl* 0, the inclusions will not contribute

toward the reinforcement. 1In Figure (6.6), the volume fraction of
inclusion is taken theoretically to £ = 1 for completeness, but in the
typical composite this value never reached. Compared with the case

when Gz/Gm = 1, which corresponds to the case when there is no layer

(classical perfect bonding case), the stiffer interphase will improve
the elastic properties of composite. Similar phenomenon is observed

in Figure (6.7), which illustrates Kc/l(m vs. f for T = 10 and
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£/f = 0.01 with changing Kz/Km. Figure (6.8) gives KC/Km vs. KZ/Km

and 2/f for fixed inclusion volume fracti;ﬁ f =0.2. Again it is
observed that the stiffer layer will improve the effective properties,
while the softer layer with larger thickness w111 s1gnif1cant1y reduce
the elastic constants. Note that the thickness of interphase has a
significant effect on the effective properties if the layer is softer
than the matrix. Figures (6.9)-(6‘10) show the transverse shear
modulus and transverse bulk modulus vs. f for the composite materials

given in Table (6.1).



Table 6.1

Material properties of several coated-fiber composites
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----------------------------------------------------------------------

System EL ET

Gy

1 Nicalon fiber
Carbon coating

LAS matrix

2 Tungsten fiber 345.0 345.0
Carbon coating 34.48 34.48

Nickel matrix 214.0 214.0

3 siC fiber 431.0 431.0
Carbon coating 34.48 34.48
Titanium

aluminate matrix 96.5 96.5

172.38 172.38 71.78
34.48 34.48 14.34

103.43 103.43 43.09

135.0
14.34

81.6

172.0

14.34

37.1

71.78
14.34

43.09

135.0

14.34

81.6

172.0

14.34

37.1

13.

9.

.86

13.

.86

.25

o

o O

o

.0107

.5893

.0107

.5893
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6.1.2 PARTICULATE COMPOSITES

The numerical results in this section include the effective bulk
and shear moduli of composites reinforced with spherical inclusioms.
In the calculations presented, Poisson’s ratio of inclusions, layers
and matrix is taken as 0.3 unless it is specified otherwise. The two
interfacial models considered in this dissertation can reduce to the
case of two phase composite with the perfect bonding at the inclusion
matrix interface. The results of both models coincide in this case.
As a check of the present prediction, we compare our results with
Hashin-Shtrikman upper and lower bounds (Hashin and Shtrikman, 1963)
and three phase model (Christensen and Lo, 1979). As is seen from
Figure 6.11, the present solution coincides with Hashin-Shtrikman’s
lower bound for the composites with stiffer inclusions. It may also
be mention that the present solution coincides with Hashin-Shtrikman’s
upper bound for the composites with softer inclusions.

The perfect bonding results obtained by the current method are

expressed as:

EQ (3K +4G_)K +4fG (K -K )
(3K +4G )K +3K f(K -K

(6.3)
f)

_ 60 (R +2G )46, (9K #8G )+£(G -Gy) (6K +12G )
"8G (K T 4G (9k TR RE f(G cf)(sx +8G ) (6.4)

SO IOQ
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where G and K are shear and bulk moduli. It is found that the
effective bulk modulus given by the Equation (6.3) coincides the one
obtained by the composite spheres model (Hashin, 1962). However, the
composite spheres model does not yield a solution for the effective
shear modulus, whereas the Mori-Tanaka mathod does give the solution
as given by Equation (6.4).

Figure 6.12 represents the ratio of effective shear moduli GC/Gm
versus inclusion volume fraction f for the flexible interface model

for changing k = k a/Gm. Note that the parameter k has a significant

effect on Gc‘ The effective shear modulus decreases as k decreases,

therefore the weaker the bond the lower the effective shear modulus.

At the limit case

k=0 (pure sliding), the shear modulus decreases considerably in
comparison with the perfectly bonded case.

Figure 6.13 supplements Figure 6.12 by showing the change of the

effective shear modulus with 1/k for £ = 0.4. When k approaches

infinity, Gc corresponds to the perfect bonding case, then the
behavior rapidly changes and finally GC approaches asymptotically the

solution for pure sliding case. The results obtained by Benveniste
(1985) and Mal and Rose (1974) are given here for comparison. The

similar behavior is observed in Figure 6.14, which illustrates the

effect of parameter g on the effective bulk modulus K. Note that Kc

is independent of k due to symmetry.
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Figures 6.15-6.18 illustrate the numerical results for the
interphase model.

Figure 6.15 shows Gc/Gm versus f and GZ/Gm for T = 10 and £/f =
0.01, where Gz is the shear modulus of the layer. Similarly as for

the previous model, the weaker the interface, or the lower the
stiffness of the interphase, the lower the effective shear modulus.
It is interesting to observe that the softer interphase may cause the
effective modulus to become lower than that of the matrix. Similar

phenomenon is observed in Figure 6.16, which illustrates l(c/l(m vs. £

for ' = 10, £/f = 0.01 and change Kz/Km' where Kl is the bulk modulus

of the layer. Figure 6.17 gives Kc/l(m vs. Kz/Km and £/f for the fixed
inclusion volume fraction f = 0.2 and Km/Kf<<1. Again it is observed

that the stiffer layer will improve the effective properties, while
the softer layer with larger thickness will have a significant effect
on the effective properties if the layer is softer than the matrix.
For a nearly incompressible interlayer and matrix, K2>>Gz, Km>> Gm’
the results coincide with Equation 1b in the paper of Maurer (1986) as
show in Figure 6.18.

Comparing Figure 6.12 with Figure 6.15, it is found that the
parameter k of the flexible interface model has the similar effect on
the effective shear modulus as GI/Gm of the interphase model, i.e. the
increasing of k or Gz/Gm will increase the effective modulus of the

composites. The fact that the interphase model gives the effective

modulus lower than that of the matrix for soft interlayer, which will
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not happen for flexible interface model even for the pure sliding, is
because of the effect of the layer’s thickness. Since in the flexible
interface model it is assumed that the interface is very thin film
while in the interphase model certain thickness has been given (£/f =

0.01), which amplifies the effect of weak interface.
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6.2 THERMAL STRESS AND THERMAL EXPANSION COEFFICIENTS

6.2.1 UNIDIRECTIONAL COMPOSITES

Figures 6.19-6.20 show the effective thermal expansion

coefficents versus Poisson’s ratio of the matrix Yn for the perfect

bonding case. It is interesting to find that the Poisson’s ratio of
the matrix has a significant effect on the transverse thermal
expansion coefficent but insignificant effect on the longitudinal

thermal expansion coefficient. Note that when Vo is great, the

transverse thermal expansion coefficent has a peak at £ = 0.1. This

increase of a o can be interpreted in the following manner. The

fibers constrain the thermal expansion of the matrix in the
longitudinal direction. This constraining (compression) of the matrix
in the longitudinal direction is accompanied by the transverse strain
components (extensions) equal to the product of the compression strain
and Poisson’s ratio. At the small volume fraction of fibers, this
extension of matrix has more effect on the overall expansion of the
composite in the transverse direction than the small thermal expansion

of fibers. Therefore in the transverse direction, @ ¢ becomes

effectively larger even than that of the matrix.
Figures 6.21-6.23 show the thermal stress versus the radial
distance for changing of the interphase thickness with the given

composite materials given in Table 6.1. It is seen that the
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interphase thickness may have significant effect on the stress field

in the composite.
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6.2.2 PARTICULATE COMPOSITES

Figures 6.24-6.28 represent the ratio of thermal expansion

coefficient az / o™ versus inclusion volume fraction f.

In Figure 6.24 , the elastic properties of the interlayer are
given to be the same as those of the matrix, while the thermal
expansion coefficient of the layer is varied from lower to higher

values. The numerical results show that the lower ratio of a, / a
yields the lower a, / an-

Figures 6.25 and 6.26 both show the effect of the interlayer
thickness on the a, / a - In Figure 6.25, a, / a is given as 0.5,
while in Figure 6.26 it is given as 10. The results show that when
a, / an is higher than 1, the thicker layer will yield higher a, / @
and when a, / e is lower than 1, the results will be opposite.

Figures 6.27 and 6.28 both shows the effect of interlayer
stiffness on the ac/ @ when a, / e equals to one. Figure 6.27 shows
that when Kz / Km > 1, the increase in Kl / Km will cause increase in
@, / a- It is interesting to note that when Kl/Km < 1, the increase
in Kz/Km will result again in the higher ac/am (Figure 6.28). It

implies that KI/Km = 1 may give the lower bound of ac/am.

Figure 6.29 represents the radial stress at inclusion-interphase

interface versus Ky/K . It is observed that the change of ay/a, has a
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significant influence on the interfacial stress. The higher ratio of
az/am will cause higher interfacial stress. The increase of Kl/Km
will also increase the interfacial stress when al/am>1. However, when
az/am<1 and KZ/Km>1’ there will be no effect on the interfacial stress
as Kl/xm changes. When Kz/Km-O, which corresponds to the debonding at
the interface, the interfacial stress Or becomes zero as expected.

One can also see that the solution for single coated inclusion gives

upper bound of the actual stress as expected.
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Figure 6.30 shows the interphase modulus variation following the
power law. The same variation is given to the interphase thermal
expansion coefficient. Figures 6.31-6.33 show the stresses and the
effective thermoelastic properties of the composite with properties
gradation at the interphase.

Figures 6.31 and 6.32 show the stresses along the radial
direction of the concentric sphere for f and (b-a)/a equal to 0.3 and

0.14 respectively. The stresses are normalized by og = KopaT- The

radial distance is normalized by the radius of the matrix, d. The
result of the variable layer are compared with those of the constant
layer in which the interphase properties are taken as the average of
Equation (5.3) and (5.4) over the interphase volume, and the perfect
bonding result. It is clear seen that continuous variations in the
interphase elastic modulus and the thermal expansion coefficient
affect the stress states in all the constituents even though the
effects are more pronounced in the inclusions and the interphase.
This is very important since the composite failure often initiated in

the interphase.

Figure 6.33 shows the effective bulk modulus Kc/Km versus

inclusion volume fraction f. It is observed that the variable layer
has significant effect on the effective bulk modulus when the
interphase is thick but insignificant effect when the interphase is

thin. It is also seen from the figure that when Kf/Km > 1, the

thicker layer will increase the effective bulk modulus.
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Figure 6.34 shows the effective thermal expansion coefficient

ac/am versus f£. It is observed that the variable layer has

insignificant effect on the effective thermal expansion coefficient.

It is also seen from the figure that wheb af/am < 1, the thick layer

will decrease the effective thermal expansion coefficient.



LL°0

uojavjava sninpow eswydiejuj 0t 9 eandig

69°0

L9°0

I[ll d

AV J18VIRIVA

¥IAV] INVISNOD W-¥||

115

-0°6

Wy /2y



o'l

90

€0 = J Yaya v/1 eouwyep 1vIpex -ea oo\hu

"o/

A

(ac ‘1epom eswydaiesuy *W3) 91°0 = v/(v-q)

© sse13s eipwy (9 eandiy

0

v.o

00

116

oz_oz 8 103443d XX
43AV] NEVINVA @-@
_ YAV INVISNOD ¥-¥

v

0p /1o



(ae

‘1opom eswydieauj eya) y1°Q = ¥/(v-q) ‘€0 = J YIIA

®/X eoUPISIP [PIPEI "GA co\:u sse13s dooj ¢E°'9 eandiy

0l 9°0 20
80 - $0 0°0
A A 1 A 4 A | I a1 ok n *oPl
ONIONOS 1034¥43d >&X
HIAVT NaGVIIVA @-@ |
AT INVISNOD ¥ ¥l (-
lw.°|
) -20-
~2'0
~9°0
cﬁo.—




118

(a¢ ‘tepom eswydiejuj ey3l)

sseund1yy essydiesuy eyy SujSusyo 103 3 ‘eA ls\ou sninpom AIng T¢°9 eandid

Oy sninpow ing

}
S0 . €0 10

ONIGNOE 1033d3d +—+
(¥3AV1 318VINVA) £0°0=0/(P-Q) A4
(¥3AV1 INVISNOD) £0°0=0/(0—-q) m-@
(¥3Av1 318viNVA) 60°0=0/(0—q) V-¥
(¥3Av1 318VINVA) ¥1°0=0/(0-q) @-@
¥3AV] INVISNOD) ¥1'0=0/(0—q) »-X




119

(1opom eswydaejuj ey3) seeundjyl eswydiejuj ejqeiawa

oya SujSuwys 103 3 ‘ea "o/ 0 3ue}dj3je0o uojsuvdxe Temzeyl %€ 9 eandiy

}
L0 S0 €0 10
90 v'0 20

' - A - - .

0’0
00

— 1 A A L
(¥3AV1 INVISNOD) ¥1°0=0/{0—q) X
(¥3Av1 NEVivA) ¥1°0=0/(0—q) e-e||
(¥3AV1 TNGViIiVA) 60°0=0/(0—q) w-¥
(¥3Av1 T1aVIIVA) £0'0=0/(0—q) m-8|}-z'0

ONIGNOE 1034M3d A




120

CHAPTER 7

CONCLUSIONS

The local stress and displacement fields and the effective
thermo-mechanical properties of composite materials are predicted for
composites with imperfectly bonded interface by considering the two
interfacial models: the flexible interface model and the interphase
model. The closed form solutions are obtained. The results from this
study are compared to the perfect bonding results, bounds, and other
analytical results. It is observed that the interface behavior may

have significant effect on the stress field, effective elastic moduli

and thermal expansion coefficients.
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APPENDIX A

TRANSVERSE SHEAR MODULUS (2D)
THE INTERPHASE MODEL AND

THE FLEXIBLE INTERFACE MODEL
Al. A SINGLE CYLINDRICAL INCLUSION

Al.1 The interphase model

Consider a cylindrical coated inclusion embedded in a matrix is

subjected to a uniform transverse shear stress a{g) -7 at infinity.

Both the inclusion and the matrix are assumed isotropic. The

displacement fields are as follows:

a) in the inclusion (r < a)

2GEuf

3
"o = [ (nf-3)Afr - ZBfr ] sin2¢4 (Al-1)

- - [ (kg + DAL+ 2B.r | cos2f (A1-2)

b) in the layer (a<r<hb)

2G uz 3
‘;ﬁ‘l = (n£-3)A£r - ZBlr
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1 1
+ (n£+1)c2-;- + ZDZ-_S ] sin26 (Al1l-3)
r
2
2G ,u
420 _ 3
o [ (n£+3)A£r + ZBEr
1 1
- (“2'1)C2—;_ + 2D£——§ ] cos26 (Al-4)
r
c¢) in the matrix (r > b)
2G6_u® 1 1
—;2—1 - [ r+ (sm+1)Cm-;- + ZDm—:g ] sin26 (Al-5)
2G6_u" 1 1
—m 4 _ . —_ S -
o [+ (nm 1)Cm - 2Dm 3 ] cos24 (Al-6)
r
In the notation used
3-4ui for plane strain
Ky = (i =£,2,m)
(3-ui)/(1+ui) for plane stress

where vy is the Poisson’s ratio of the components and Gi are the

transverse shear moduli. "a" is radius of inclusion and "b" is
outside radius of layer. Subscripts or superscripts £, £, m

correspond to the fiber, layer, and matrix, respectively. Af, Bf, Az,

B,, C

2 Cpo DZ’ Cln and Dm are the constants determined from the perfect
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bonding boundary conditions, involving continuity of tractions and

displacements at fiber-layer and layer-matrix interfaces:

£ 2 f f 2

Oy = % u, =u u, =y at r = a (Al-7)
2 m 2 m 2 m

Oy ™ Ty u, =u, u, =y, at r = b (Al1-8)

where "a" is the radius of the fiber and "b" is the outside radius of
the layer. Note that the boundary condition a:r- T, at infinity is

satisfied automatically by Equation (Al-5)-(Al-6).
Al.2 The flexible interface model

Consider a cylindrical inclusion embedded in a matrix is
subjected to a uniform shear stress a{g) -7 at infinity. Both

inclusion and the matrix are assumed to be isotropic. The

displacement fields are given as follows:

a) in the inclusion (r < a)

b3
2G_u
£ _ 3
o [ (nf-3)Afr - ZBfr ] sin24 (A1-9)
£
ZGEu2
, - - (Kf + 3)Afr3 + 2Bfr ] cos24d (Al1-10)
0

b) in the matrix (r < a)
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26_u"™ 1 1

-;z—x =-=[r+ (nm+1)cm—;— + 2Dm-;§ ] sin24 (Al-11)
2G_u® . 1 1

—nd _ . —_— —_— .
To [ r + (nm 1)Cm T ZDm r3 ] cos24 (Al1-12)

where Af, Bf, Cm and Dm are the constants determined from the

interface boundary conditions as follows:

f
afa - a?a =k ( u? - uy ) at r = a (Al-13)
f m m f
Oy =%y = 8 ( u. - oug ) at r = a (Al-14)

where "a" is the radius of the fiber, and "k" and "g" are the spring

constants . Note that the boundary condition a:r- Ty at infinity is

automatically satisfied by Equations (Al-11)-(Al-12).

A2. Effective shear modulus for the composites with finite volume

fraction of inclusions
A2.1 The interphase model

The single inclusion solution obtained in section Al is used in
the successive iteration scheme (Mori and Wakashima, 1990), which is
based on Mori-Tanaka average field theory (Mori and Tanaka, 1973), to
evaluate the effective shear moduli. Considering the average strain

in the composite, the effective shear modulus is obtained as:
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1 - 1 + f+2 8 (A2-1)
G G 1 + (f+)a
[o] m
where
2
p-2 (gl + 2 - L)
b2 Gm Gf
+ 1 3a,0%a% + 28,0220 - L) (A2-2)
b2 Gy, 6y
az 2
a=-_"_[3A.a" + 2B,]
2 f f
b
2 2
- 82 3a,mP+ad) + 28] - 1 (42-3)
2
b

A2.2 The flexible interface model

The single inclusion solution obtained in section Al is used in
the iteration scheme (Mori and Wakashima, 1990), which is based on
Mori-Tanaka average field theory (Mori and Tanaka, 1973), to evaluate
the effective shear modulus.

Considering the average strain in the composite, the effective

shear modulus is obtained as:

- + ﬂ (A2-4)
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where

2 1 1

B = [ 3a.a° + 2B_](C_ - _)
f £ G G
o £
+ 1 [ 1 + zcm (x,m - 1) - 2@ ]
26 2 2
m a a
- L (aa¥k,+3) + 28] (he->
2 £ £ ‘
G
m
9 1 (A2-6)

a = - [3A;a” + 2B]



127
APPENDIX B
TRANSVERSE BULK MODULUS (2D)
THE INTERPHASE MODEL AND
THE FLEXIBLE INTERFACE MODEL
Bl. A single cylindrical inclusion

Bl.1 The interphase model

Consider a single coated fiber is embedded in the matrix. All of

the constitutes are linear elastic and isotropic materials. The

0)_ (O0)_

applied loading is the transverse hydrostatic stress o at
XX yy 0
infinity. The plane elasticity problem yields the following
displacement fields:
a) in the inclusion (r < a)
f
2Gu
—L L _ A (ke-Dr (B1-1)
o f Vf
0
b) in the layer (a<r<hb)
2qu£ BZ
- Az(nz-l)r -7 (B1-2)

%
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¢c) in the matrix (r > b)

26 u® 1 Em
-;z—z -3 (nm-l)r -7 (B1-3)

The other displacement components vanish due to symmetry.

A Bz and Bm are the constants determined from the perfect

£ Ap

bonding boundary conditions:

af - az uf - u2 at r = a (Bl1-4)
ryr ryY r r

ol - W oa at r =b (B1-5)
rr rr r r

Note that the boundary condition O = 9 at infinity is automatically

satisfied by Equation (B1l-3).
Bl1.2 The flexible interface model

Consider a single fiber is embedded in the matrix. Both fiber and

matrix are isotropic materials. The applied loading is the transverse
0_ )
hydrostatic stress Ok ™ ayy -0, at infinity. The plane elasticity

problem yields the following displacement fields:

a) in the inclusion (r < a)
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2GEU.f

% - Ag (nf-l)r (B1-6)

b) in the matrix (r > a)

_mx 1 fm
-3 (e D - 3 (B1-7)

The other displacement components vanish due to symmetry.

Af, Bm are the constants determined from the interfacial boundary

conditions:

af - " - ( u? - uf
rr & r

rr - ) at r = a (B1-8)

Note that the boundary condition o

- o, at infinity is satisfied

automatically by Eqn.(Bl1-7). Note also that the transverse bulk
modulus for this case is independent of the interface sliding

parameter k due to symmetry.

B2. Effective bulk modulus of the composites with finite inclusion

volume fraction

B2.1 The interphase model
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The effective transverse bulk modulus is defined by using the

concept of the average strain in the composite, i.e:-

1 _1 . f+2 2 8 " (B2-1)

K K 1+ (ftd)a
[o3 m

where Ki (i=f,2,m) are the transverse bulk moduli of components
\

defined as Ki - 2Gi/(ni-1).

I LI LI I VIS G (B2-2)
f+2 K K f+2 K K .
f m 2 m
a=_f 28 + £ 28, - 1 (B2-3)
f+2 f+2

B2.2 The flexible interface model

The effective transverse bulk modulus is defined by using the

concept of the average strain in the composite, i.e:

S S | (B2-4)
K K 1l + fa
[o] m
where
11 1 B A
B=[(C__-__)A +(_-_m_2-_£_)] (B2-5)
K. K £ 2K 2C a K
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2A

1
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(B2-6)
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APPENDIX C
EFFECTIVE SHEAR MODULUS (3D)
THE INTERPHASE MODEL AND
THE FLEXIBLE INTERFACE MODEL
Cl. A single spherical inclusion

Cl.1 The interphase model

When a spherical inclusion in an infinite matrix subjected to a

uniform shear stress Ty at infinity, the displacement fields are as

follows:

a) in the inclusion (r < a)

f

2Gu 6v

£fr - £ 3 2

"o (Afr - 1'2"f Bfr ) sin™4 sin 2¢ (C1-1)
2G u £ 7-4v 3
-—f;l - (Afr - ITEEf Bfr ) sin § cos 8 sin 2¢ (Cl1l-2)
2G u £ 7-lwf 3
-—f;ﬂ - (Afr - TTE;f Afr ) sin 8 cos 2¢ (C1-3)

b) in the layer (a < r < b)
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26 ,u? 6v
2 _ .4 5.3
( A,r B,r
r £ 1-2v 2
0 2
3C 5-4v, D
2 I
+ + )sin 4 sin 2¢
ra 1-2v£ r2
2G uz 7-4v 3
r = (A - 750" Byr
0 2
2C 2
- = —5 D,) sin 8 cos § sin 24
r r
26 ,u? 7-4v
L4 _ . —2 3
( A,r B,r
T 2 1-2v 2
0 2
2C 2
- ——f + Dz) sin 6 cos 2¢
r r

c) in the matrix (r >

26 u™
b\ 5

- +
T (r

b)

3C 5-4v_ D

~8 , —B2 & ) sin2 0 sin 24
4 1-2v 2
r mr

2C 2D

——2 + -—g ) sin 6 cos 4 sin 2¢
r r

(C1-4)

(C1-5)

(Cl1-6)

(C1-7)

(C1-8)
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26_u" 2C_ 2D
—ns _ (r - —84+—B), sinZ 6 cos 2¢ (C1-9)
o r4 t2

where Af, Bf, Az, Bz, Cl’ Dz, Cm' Dm ére the constants determined from

the perfect bonding condition at the particle-layer and layer-matrix

interfaces,
i.e. \
At r = a
f 2 f 2
Or = %pr u, = u, (C1-10)
f 2 f 2
%8 = %rg ug = u, (C1l-11)
At r =bD
2 m 2 m
Or = %rr | u. = u, (C1-12)
2 m 2 m
%8 = %9 ug; = u, (C1-13)

Cl.2 The flexible interface model

Consider a single elastic inclusion of radius "a", embedded in an
elastic matrix, subjected to the shear stress aig) - applied at

infinity. The displacement fields ars:



a) in the inclusion

ZGﬁuf

= (A.x -
o f

2G uf

]

™o - (Afr -

2G uf

£
"o

- (Afr
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(r < a):

6v
—~L B r3) sin2 § sin 2¢
1-2vf £

7-4v
—1£ B r3) sin 0 cos @ sin 2¢
1-2vf £

-——;f Bfr3) sin 0 cos 2¢

b) in the matrix (r > a):

2G_u® 3 5-4v 1 2
—;:—I - (r + cm i Dnl 1-20 2 ) sin“4 sin 2¢
r mr

2G_u®

—BE _(r.c %4+p 2 ) sin § cos § sin 24
o m r4 m r2

26_u%

—mé _ . . 2 2
o (x Cm r“ + D r2 ) sin 6 cos 2¢

(Cl-14)

(C1-15)

(C1l-16)

(C1-17)

(C1-18)

(C1-19)

where G and v are the shear modulus and Poisson’s ratio, respectively,
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and the subscripts and superscripts m and f denote the matrix and

inclusion. Af, Bf, Cm’ Dm are the constants determined from the

following boundary conditions at r = a:

f m f m

u. = u, O =™ Py (C1-20)
f m m f

g = % = k (ua - uo) (Cl1l-21)

where k is the tangential spring constant, which characterizes the
flexibility of the interface at tangential direction. In the limit
cases, when k + » we have perfectly bonded interface and when k -+ 0
pure sliding case exists. In order to avoid the overlaping
phenomenon, the normal spring constant g is chosen to be g + « in this
case. Note that the Equationé (C1-17) - (Cl1-19) satisfy automatically

the boundary condition at infinity, i.e.

912 " 7o

C2. Effective shear modulus for the composites with finite volume

fraction of inclusions

C2.1 The interphase model

The effective shear modulus is defined by using the concept of

the average strain in the composite as



where

i _ L1l B
G G 1+(f+2)a
(o] m
£
B =%z (B¢ 5(1-2v,
L 55
+ A [a, 2D ca) 4
F+2 LAy 5(1_2”1)033.*13) 2
£ —21 2
a = 5,7 [A¢ 5(1-2vp) Bea”]
5 5
4 —21("-a")
+ A - - B
£ 4 5(1-2v,) (b>-a)

, —Etl
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C2.2 The flexible interface model

(

L

G

2

2y 1 1
y Bga'] (cf - Gm)

Ll
G
m

)

(C2-1)

(C2-2)

(C2-3)

(C2-4)

The effective shear modulus is defined by using the concept of

the average strain in the composite as

where

1
¢ "¢ *t

[

1

£

+fa

B

(C2-5)



16-20v_ D
) P _n
B=35 g [s + 5o : ]
m m a
L 21 o .2
K> [5a¢ - T2, B¢ 1)
—21 2 1 1
+ [ag - 5(1-2vf)Bfa 1« G, "¢ ) (C2-6)
2
Y I TERr ! Bga™ -1 (C2-7)

It is observed that for a homogenous material containing pure
sliding inclusions, the results obtained from Equation (C2-5) coincide

with Equation (51) in Shibata et al. (1990).
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APPENDIX D

EFFECTIVE BULK MODULUS (3D)
THE INTERPHASE MODEL AND

THE FLEXIBLE INTERFACE MODEL

D1. A single spherical inclusion

D1.1 The interphase model

When a single coated inclusion in an infinite matrix subjected to

(0) _ (0 _

the hydrostatics stress o = g,, the displacement
XX Yy 0

fields are:

a) in the inclusion (r > a)

2G uf
—;i—‘ - Af (nf~1)r (D1-1)

b) in the layer (a < r < b)

2
2G ,u B
—2xr _ . i
% Az(n‘2 Dr r2 (D1-2)

c) in the matrix (r > b)
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26 u® B
—nx _1 (x_-1)r - B (D1-3)
% 3 m r2

The other displacement components vanish due to symmetry.

Af, Az, Bz and Bm are the constants determined from the perfect

bonding boundary conditions:

af - 02 uf - uz at r = a (D1-4)
rr rr r T
az - " uz -u" atr=5> (D1-5)
rr rr r r
Note that the boundary condition a:r - 0, at infinity 1is satisfied

automatically by Equation (D1-3).

D1.2 The flexible interface model

When a single inclusion in an infinite matrix is subjected to the

hydrostatic stress 0(0) - 0(0) - 0(0) = o,, the displacement fields
XX yy zz 0
are:
a) in the inclusion (r < a)
f
2G u
—LE oA, (kpD)x (D1-6)

%
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b) in the matrix (r > a)

26_u™® 1 By
—Mao - 3 (e lr - (D1-7)

The other displacement components vanish due to symmetry. Af, Bm are

the constants determined from the interfacial boundary conditions:

£ m m f
Oy = %pr ~ 8 ( u. - oug ) at r = a (D1-8)

Note that the boundary condition a:r -0, at infinity is satisfied

automatically by Equation (D1-7). Note also that the transverse bulk
modulus in this case is independent of the interface-sliding-parameter

k due to symmetry.

D2. Effective bulk modulus of the composites with finite inclusion

volume fraction
D2.1 The interphase model

The effective transverse bulk modulus are defined by using the

concept of the average strain in the composite, i.e:

LB o (D2-1)

K 1 + (f+8)a
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where Ks (s=f, £, m ) are the bulk moduli of components.

p-1 2 -l ya+ L -1y, (D2-2)
f+2 Kf K f+2 K K
m 2 m
a=t .+ 2 o, -1 (D2-3)
f+2 f+2

D2.2 The flexible interface model

The effective transverse bulk modulus are defined by using the

concept of the average strain in the composite, i.e:

Ll 2 (D2-4)

K K 1 + fa

c m

where

1 1

ﬂ-[(_'._.)Af
Kf Km

S G T SN (D2-5)
3K 2G a3 Kf
a= 3A_. -1 (D2-6)
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APPENDIX E

EFFECTIVE THERMAL EXPANSION COEFFICIENTS (2D)

THE INTERPHASE MODEL

El. The stress and displacement fields

The thermal expansion coefficients for perfectly bonded fiber
composites have been derived by using both the successive iteration
method (Mori and Wakashima, 1990) and the modified composite
cylindrical model (which include interphase), it is found that both
method give the same results.

The effective thermal expansion coefficients for the composite
with coated fiber are derived here by using modified composite
cylindrical model for symplicity.

When a coated fiber in a matrix is subjected to a uniform
temperature change AT, the displacement and stress fields in the

cylindrical coordinates (r, 4, z) are:

a) in the fiber ( r < a )

(El1.1)

(E1.2)
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£ ____Ef A s ——fiE .
rr T T (v M T @R ) (Tvy %o

E v E
£ £ £Es £
- T (2w °T ¥ "aw ) (Tavy L ] AT (E1.3)
Uf - Ef A. + VfEf €
00 " (T (L-2vp 26 " (T (Tzvy 0
E v E
£ £ £Ee £
- T (v 1+ Taw ) (Tavy %L ] AT (EL.4)
af _ zvaf A4 Ef(l-uf) .
zz T (T (-2vg) £ 5 (T d-2vp 0
2v E E-(1l-v,)
£Ee £ g(l-ve £
- T (T-2vy °T ¥ T d-2vp) °L ] aT  (E1.5)
b) in the layer (a < r < b)
: ]
ur - A! r + T (E1.6)
2
u =,z (E1.7)
ot - ®s A, - = Bf + V4 ]
rr T (T @vy M T ey T (v ) (1-2v,) 0
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: E& 2 . ”zgg
(L+v,) (1-2v ) T (1+v ) (1-2v

) ai ] AT  (E1.8)
2

E E B v,E
ot - 4 A, + —E— —4- 42 ¢
Y] (v (L-2vy) "2 7 (v = (I+v ) (1-2v,) ‘0
E v, ,E
2 2 2°8 2
- 1 T -2vp o1 * T pd-avp oL ] 4T (E1.9)
2 _ 2v1E2 A s El(l-vl) .
922 (L+v,) (1-2v ) "2 (L4+v,) (1-2v ) 0

2v ,E

2Es 2 Ep(1-vy)
a,., +

- (1+v2)(1-2v2) T (1+u£)(1-2u

s € | AT (EL.10)
2

c) in the matrix (r > b)

B
m —m
U T AT+ (E1.11)
U = €0 2 (E1.12)
m Em __En__ _E!_ VEEE
Trr T (L) (1-2v) b " @y Tt I+ ) (1-2v) ‘0
Em m VIEI m
- v ) T-2v) °t 7 Taw (T2 L ] AT  (E1.13)
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E E v E
m o —n —9- “ng
%90 = “(Ttv_) (1-20) Ay + (T ) (T ) (T-2v) ¢
;m, m v_E m
( <1+Vm)(1'2"m) an + (1+V:;?Ij2"m) a ] AT (E1.14)
. 2v E E (1-v))
2z T T ) (1 2v) Ay + (1+u ) (1- > D €
2v E E (1-v_ )
ntn m i U
( T ) (T-2v) 1 ¥ (T ) (L-2v) O ] AT (E1.15)

where E and v are the Yonng’s modulus and Poisson’s ratio, and the

subscripts and superscripts £, £ and m denote the fiber, layer and

matrix. A., A,, B,, A, B and ¢, are the unknown constants to be
f 2 2 m m 0

determined from the following boundary conditions:

o - g u - u at r = a
rr rr r r
2 m £ m

Or oy u, = u. at r=b
m

o =0 at r=d
rr

agz(area of fiber) + aiz(area of interfacial layer)

+ azz(area of matrix) = 0

(E1.16)

(E1.17)

(E1.18)

(E1.19)
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where "a" is the radius of the fiber, "b" and "d" are the outside
radius of the layer and matrix. Note that Equation (E1.19) is due to

the fact of force equilibrium in the z-direction.
E2. Effective thermal expansion coefficients

The effective thermal expansion coefficients are, by definition,

the average strains resulting from a unit temperature rise for a

traction free composite. Therefore, ai and a; are given as follows

°§ AT (E2.1)

u /r A +B {r
ol - —H2-m _

C
T AT AT (E2.2)
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APPENDIX F

EFFECTIVE THERMAL EXPANSION COEFFICIENTS (3D)

THE INTERPHASE MODEL

F1. A single spherical inclusion

When an isolated spherical coated inclusion in a matrix is

subjected to a uniform temperature change AT, the displacement and

stress fields in the spherical coordinates (r, 4, ¢) are:

a) in the inclusion (r < a)

c ,

u. - (Afr)AT (F1.1)
f f £

Or = %9 " a¢¢ - 3Kf(Af- af)AT (Fl1.2)

b) in the layer (a < r < b)

W ear+ Lt (F1.3)
3

2 o (3K, - 4G 0 )AT Fl.4

Ty V) 23 7 (F1.4)

o — ot - (R, + 26, 2 - IRy, )T (F1.5)

T ¢¢ 28 2 3 252 :

r

¢) in the matrix (r > b)
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B

m B

u. =3 AT (Fl1.6)
r

m Ba

LA ( - 4Gm r3 - 3Kmam )AT (F1.7)

m m B

Ogp = a¢¢ - ( 2Gm r3 - 3Kmaln )AT (F1.8)

where K and G are bulk and shear moduli. The other displacement and

stress components are zero due to symmetry. Af, AZ' Bzand Bm are the

unknown constants to be determined from the perfect bonding boundary

conditions at the particle-layer and layer-matrix interfaces:

af - az uf - uz at r = a (F1.9)
rr r r r

2 m 2 m

Orr = %pr u, = u, at r=b (F1.10)
m

o =0 8s r -+ o (F1.11)
rr

where "a" is the radius of the particle, and "b" is the outside radius
of the layer. Note that the stresses in the matrix are chosen such
that the condition of vanishing tractions at infinity is automatically

satisfied (Am is taken as zero).

The zeroth-order solution is given as:

eg - n AT (F1.12)
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Boy = v AT (F1.13)

*
where €0 and Aao are the zeroth-order eigenstrain and the average

stress disturbance in the coated inclusion, respectively.

=t & - loka v 2L - Lk,
f+2 Kf Km f+2 K2 Km
+ _E (af- ™) + _f (az- a™) (F1.14)
f+4 f+4
and
v=- 5 koac+_t ok, a, (F1.15)
f+2 f+2

F2. First order solution

Consider an isolated spherical coated inclusion subjected to

M _ (D _ () _

hydrostatic stress O ex vy 2z o, at infinity. The stress

and displacement fields are as follows:

a) in the inclusion (r < a)

uf - (Ap Yoy (F2.1)
f f f !
%r = %0 -a¢¢ - (3KfAf)a1 (F2.2)

b) in the layer (a < r < b)
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Bl
2 ! 4
U.r - (Azt + r3 )al

B

2 ! -4
LR (3K1Az - AGI r3 )01

: BN
T a¢¢ - (3K£A£ + 2G2 r3 )al

¢) in the matrix (r > b)

m
g

, B
- = -
Y a¢¢ (3KmAm + 2Gm r3 )a1

’ ’ ’ ’

(F2.3)

(F2.4)

(F2.5)

(F2.6)

(F2.7)

(F2.8)

Af, Az, Am, Bl and Bm are the constants determined from the following

boundary conditions:

f 2 f

o - g u. =u
rr rr r r
£ m 2

o - g u, =u
rr rr r

ot =g

rr 1

where

at r = a

atr=0>0

as r + «

(F2.9)

(F2.10)

(F2.11)



B= __ (__-__) +_~ (__-___)J)XA (F2.12)
f+2 K K fAf f+2 K £
f m 2 m
and
A= £ 3fo,'£.+ £ KA, (F2.13)
f+2 f+2

F3. Effective thermal expansion coefficient of the composites with

finite inclusion volume fraction

The effective thermal expansion coefficients are, by definition,
" the average strains resulting from a unit temperature rise for a

traction free composite

c 1 m 1 *
@ - "<, >. = a + _~ (f+2) € (F2.14)
1 75 S0 T My T 5 1]
therefore
oC - (F2.15)
1 + (£+2))

where n is defined in (F1.15) and )\ in (F2.13).
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