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The Effect of Interface on Iberia-Mechanical

Preperties of'Co-posites

BY

Yihong Tong

The effect of interface on local stress and displacement fields

and thermo-mechanical properties of composites is studied._ The

inclusions are assumed to be uniformly but non periodically

distributed in the matrix. The interface is varied theoretically by

considering two models. The first one is the flexible interface

model, in which the continuity of tractions at the interfaces is

maintained but there exist jumps in the displacements, such that the

jumps in the tangential and normal displacements are proportional to

shear tractions and normal tractions, respectively. Two parameters

are introduced to describe the degree of adhesion between inclusion

and matrix. Specific interface condition can be simulated by proper

selection of the two parameters. The second model describes the

interface as a layer between the inclusion and the matrix. This

layer, called interphase, has a given thickness and the thermo-

mechanical properties different from those of the matrix and the

inclusions. The elastic properties of the layer are assumed uniform



or variable. The perfect bond is assumed at both the matrix-

interphase and interphase -inclusion interfaces.

For both of these interfacial representations, a unified

approximate approach to evaluate the effective thermo-mechanical

properties is used. Initially, the boundary value problem of the

isolated inclusion embedded in the matrix is solved. Then, stress

disturbance in the inclusion due to the presence of other inclusions

is accounted for by using a successive iteration method (Mori and

Wakashima, 1990) based on Mori-Tanaka theory (Mori and Tanaka, 1973).

The successive iteration yields solutions that converge into closed

forms under a certain condition. The analytical forms of the local

stress and displacement fields and the effective properties are

obtained. The latter are predicted by using the concept of the

average strain in the composite. The approach is simple and can be

easily extended to other boundary conditions and is valid for any

shape. In the numerical results presented, the inclusions are assumed

to be cylindrical or spherical in shape for simplicity. The influence

of various mechanisms at the interface is studied and the results are

compared with the perfect bonding case, bounds, as well as the other

analytical results. It is shown that imperfect interface may have a

significant effect on the local fields and the effective properties of

composites.
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CHAPTER 1

INTRODUCTION

The effectiveness of the bond between matrix and inclusion in

transferring the load across the interface is one of the principal

factors affecting the mechanical response of composite materials.

Many theories have been developed to predict the mechanical behavior

of composite materials, but most of them assume perfect bonding at the

matrix-inclusion interface. However, experimental results clearly

indicate that a more complex state exists at the interface between the

constituents (Drzal, 1983, 1986, 1987). The imperfect contact due to

the poor chemical bonding, the presence of microcracks due to the

thermal loading, and other, may more accurately describe the condition

at the interface. In order to increase understanding and provide

guidance for material development, the mechanical models to describe

interfacial characteristics need to be established. Since a precise

description of the interface is complicated, in order to include its

effect in the modeling of composite, it is necessary to introduce

simplified interfacial models, which simulate the actual behavior.

In this dissertation, two terms will be used to describe the

boundary between inclusions and the matrix: interphase and interface.

The "interphase" is a region in which the inclusion and matrix

phases are chemically and/or mechanically combined. The interphase

may be a diffusion zone, a nucleation zone, a chemical reaction zone,
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etc., or any combination of the above. An "interface" is a two-

dimensional boundary separating distinct phases, such as inclusion,

matrix, interphase, coating, etc. ( Swain et al., 1989).

Since the control of interface behavior has become a key factor

in developing composite materials, the understanding of its role is

highly desirable. The influence of interfaces and interphases on the

thermal and mechanical behavior of composite materials has been widely

discussed in the literature, particularly in the last few years.

Several books have been devoted to the subject. However, the work in

this area is far from complete.

One of the analytical models of interface that appears in the

literature is so called flexible interface model. In this model, the

debonding between the constituents is simulated by a very thin

ficticious layer having a spring-like behavior. At the interface,

continuity of tractions is maintained but there exist jumps in the

displacement, such that the jumps in the tangential and normal

displacements are proportional to shear tractions and normal

tractions, respectively. Consequently, two parameters are introduced

that determine the degree of bonding between inclusion and matrix.

Specific interface condition can be simulated by proper selection of

the two parameters. The infinite values of the parameters imply

vanishing of displacement jumps and therefore perfect bonding case;

the zero values of the tangential debonding parameters imply vanishing

of shear tractions at the interface and therefore pure sliding case;

the zero values of the normal and tangential debonding parameters

imply vanishing of tractions at the interface and therefore debonding

case; any finite positive values of the interface parameters define
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the imperfect interface. This flexible interfacial model was employed

by Jones and Whitter (1967), Mal and Bose (1975), Lane and Leguillon

(1982), Benveniste (1984, 1985), Aboudi (1987), Steif and Hoysan

(1986, 1987), Achenbach and Zhu (1989), Jasiuk and Tong (1989), Jasiuk

et al. (1989), and Hashin (1990b), among others.

In an alternate model, the interface is described as a layer

between the inclusion and the matrix. This layer, called interphase,

has a given thickness and the interphase properties different from

those of the matrix and the inclusion. The perfect bonding is assumed

at both matrix-layer and layer-inclusion interfaces. The extreme case

of perfect bonding at inclusions/matrix interface is obtained by

decreasing the interphase thickness to zero, while the case of

complete debonding is obtained by an interphase of infinitesimal

thickness and material properties that approach zero. The moduli of

the interphase may simultaneously represent the degree of bonding and

the material properties of the region. Owing to the lack of

definitive data, the interphase zone is often treated as a phaSe with

uniform material properties which are different from those in the bulk

matrix. Such a model might accurately decribe systems in which

finishes or coatings are employed. The interphase model which has

constant properties was used by Broutman and Agarwal (1974), Maurer et

al. (1986, 1988), and Pagano and Tandon (1988), Jasiuk and Tong

(1989), Benveniste et a1. (1989), Chen et al. (1990), Tong and Jasiuk

(1990 a, 1990 b), Maurer (1990), Sullvian and Hashin (1990), and

others. However, in many composite systems, the interphase may have a

gradient in resin properties. The composites with interphase which

has property variation were studied by Theocharis et al. (1985),



4

Theocharis (1986), Sideridis (1988), Papanicolaou et al. (1989),

Sottos et al. (1989), and Jayaraman et al. (1990) among others.

The primary motivation of the present work is to predict the

thermoelastic properties of composites in order to increase the

understanding how various interface conditions can influence the

thermal and mechanical behavior of composite materials. The effect of

interface is investigated by considering the two above mentioned

models, i.e., the flexible interface model and the interphase model.

The present study supplements the previous results in this area. For

both of these interfacial representations, a unified approximate

approach to evaluate the effective thermo-mechanical properties is

used. Initially, the boundary value problem of the isolated inclusion

embedded in the matrix is solved. The stress disturbance in the

inclusion due to the presence of other inclusions is accounted for by

using a successive iteration method (Mori and Wakashima, 1990) based

on Mori-Tanaka theory (Mori and Tanaka, 1973). The successive

iteration yields solutions that converge into closed forms under a

certain condition. The analytical forms of the local stress and

displacement fields and the effective properties are obtained, the

latter are predicted by using the concept of the average strain in the

composite. The approach is simple and can be easily extended to other

boundary conditions and is valid for any shape. The present

derivation applies for a composite consisting of uniformly but non-

periodically distributed inclusions (with overlapping not allowed).

In the numerical results presented, the inclusions are assumed to be

cylindrical or spherical in shape for simplicity. The influence of

various mechanisms at the interface is studied and the results are
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compared with the perfect bonding case, bounds, as well as the other

analytical results. It is shown that imperfect interface may have a

significant effect on the local fields and the effective properties of

the composites.



CHAPTER 2

BACKGROUND: EFFECTIVE MEDIUM THEORIES

2.1 REFERENCES TO THE MAIN THEORETICAL MODELS

In the determination of effective properties of heterogeneous

materials, a fundamental problem is the phase interaction. The

problem of a single ellipsoidal inclusion embedded in an infinite body

is easily solved by the use of Eshelby's (1957) equivalent inclusion

method. The case of two ellipsoidal inclusions embedded in an

infinite body was solved by Moschovidis and Mura (1975). However,

there are seldom only one or two inclusions in a matrix. The case of

finite concentration of inclusions is an extremely difficult problem

due to the complex spatial distribution of the inclusions. It is very

hard to find the exact solution for the stress field since the

stresses will differ for every inclusion. Therefore, several

simplified micromechanics models have been developed to account for

the interaction between inclusions at high concentrations (Hashin,

1983). Among these are self-consistent scheme SCS (Budiansky, 1965;

Hill, 1965), generalized self-consistent scheme 0808 or three phase

model (Kerner, 1956; Christensen and LO, 1979), composite spheres and

cylinders model (Hashin, 1962; Hashin and Rosen,l964, Hashin, 1965),

the differential scheme (McLaughlin, 1977) and the Mori-Tanaka method

(Mori and Tanaka, 1973; Wakashima et al., 1974; Benveniste, 1987; Mori

and Wakashima, 1990). Although there are many other micromechanics
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models to determine the effective properties of the composites than

the ones listed, they usually are either of numerical nature involving

series or finite element solutions, or they are of an empirical

nature, or finally they involve grossly oversimplifying assumptions.

BOUNDS

Bounds for the effective elastic moduli of the composites are

obtained by using variational methods. The minimum complementary

energy theorem yields the lower bounds, while the minimum potential

energy theorem yields the upper bounds. Method suitable for arbitrary

phase geometry was given by Hashin and Shtrikman (1963), and it was

generalized by Hill (1963), Walpole (1966), and others (Willis, 1977;

Kroner, 1977). Bounds for the effective elastic moduli of particulate

composites were given by Hashin (1962), while bounds for fiber

composites with arbitrary transverse phase geometry were given by Hill

(1964) and Hashin (1965). It is found that for the composites

reinforced with spherical particles, the bounds on the bulk modulus

coincide, so that the exact result for bulk modulus was obtained. In

contrast to the situation with the bulk modulus, the bounds on the

shear modulus do not coincide. Same phenomenon was observed for the

fiber composite having circular cross sections, where the exact

solutions for four of the elastic constants and the bounds for the

fifth (transverse shear modulus) were obtained (Hashin, 1983).

2.2 DESCRIPTION OF THE MODELS



SELF-CONSISTENT SCHEME

In the most commonly used version of the self-consistent scheme

(SCS) (Budiansky, 1965; Hill, 1965) it is assumed that an inclusion is

embedded in a homogeneous body which has the unknown properties of the

effective medium, Figure 2.1. This defines a boundary value problem

which can be solved for an arbitrary ellipsoidal inclusion. The

solution for an isolated ellipsoidal inclusion was given by Eshelby

(1957). His most valuable result is that the strain and stress fields

are uniform for the interior points (points inside the inclusion).

The method has been extended to randomly oriented ellipsoidal

inclusions by Wu (1966) and Walpole (1969) to investigate the effect

of inclusion shape on the effective properties of the composites.

They both found that for stiffer inclusions, the disk shape inclusions

give most significant increase in the elastic modulus. Hill showed

that the expressions derived by this method give reliable values at

low inclusion volume fractions, reasonable values at intermediate

volume fractions, and unreliable values at high ones when applied to

composite materials. When the reinforcing particles are much stiffer

than matrix, this method overestimates the effective moduli, while for

particles much more compliant than the matrix, the effective moduli

are underestimated.
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GENERALIZED SELF-CONSISTENT SCHEME

Instead of embedding the inclusion directly in the effective

medium, one may imagine the inclusion to be embedded in a matrix

shell which is embedded in the effective medium. This is called

generalized self-consistent scheme (GSCS) or three phase model

(Kerner, 1956; Christensen and Lo, 1979). Obviously, the mathematics

is now more difficult since it is necessary to solve a three-phase

boundary value problem to obtain the stress field around an inclusion.

In the GSCS, a composite sphere or cylinder consisting of an

inclusion with radius "a" and a concentric matrix shell with radius

"b”, is embedded in the effective medium, Figure 2.2. In most works,

the ratio n - a/b is assumed that n3 - f (inclusion volume fraction of

composite spheres) or 02 - f (inclusion volume fraction of composite

cylinders), implying that volume fraction in the composite spheres or

cylinders is the same as in the composite.

Using GSCS, Kerner (1956) obtained the exact solution for the

effective bulk modulus of the composites with spherical inclusions.

The solution for the effective shear modulus was given by Christensen

and Lo (1979). The result for the effective shear modulus lies within

Hashin-Shtrikman's (1963) upper and lower bounds.
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The result for the composites with cylindrical inclusions was

given by Hermans (1967) for the case 02 - (a/b)2 - f. The exact

solutions for the four of the five independent elastic constants were

obtained. The result for the (transverse shear modulus) derived by

Hermans is incorrect (Christensen and LO, 1979). The correct one has

been given by Christensen and Lo (1979).

Note that this model permits full packing with fel due to the

fact that it allows the gradation of sizes of inclusions.

The generalized SCS appears to be a more realistic approximation

than the SCS since the inclusion is now embedded in a matrix shell

instead of being embedded in the effective medium directly (Hashin,

1983). Intuitively, it appears that in any embedding approximation,

the best results will be achieved when a typical ”building block" of

the composite material will be embedded. An element consisting of

inclusion and surrounding matrix is such a building block but a

particle by itself is not.

COMPOSITE SPHERES AND CYLINDERS MODEL

The composite spheres or cylinders model assumes gradation of

sizes of spherical or cylindrical inclusions, such that a volume-

filling configuration is obtained. Each individual composite sphere

or cylinder has the same ratio of radii, a/b as seen in Figure 2.3.

By using this model and minimum theorems of elasticity, the bounds for

the effective elastic moduli of particulate (Hashin, 1962) and fiber

composites (Hill, 1964; Hashin, 1965) were derived.



l3

 

 
  

 

 

Figure 2.3 Composite spheres and cylinders model
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It was found that for the composites reinforced with spherical

particles, the bounds on the bulk modulus coincide and the results

give the exact solution. In contrast to the situation with the bulk

modulus, the bounds on the shear modulus do not coincide. The reason

why the bounds do not coincide in the shear modulus problem is because

a composite sphere cannot be simultaneously subjected to pure shear

displacement and traction boundary conditions. The composite sphere

model for shearing displacement boundary conditions leads to an upper

bound for the shear modulus while the solution for shearing traction

boundary conditions leads to a lower bound. The greater the disparity

of the stiffness between the matrix and the inclusions, the greater is

the gap between the bounds. Same phenomenon is observed for the

composite cylinders model where the exact solutions for the four of

the five independent elastic constants are obtained while the bounds

of transverse shear modulus do not coincide, for the same reason as

explained above. The solution for displacement boundary conditions

leads to an upper bound for the shear modulus, while the solution for

shearing traction boundary conditions leads to a lower bound.

DIFFERENTIAL SCHEME

The starting point of the differential scheme is the well known

dilute suspension result for the effective modulus of a composite

containing non-interacting inclusions. It is assumed that the

addition of a small amount of particles to a composite will increase

tine effective modulus by a dilute concentration type expression with

Cttrrent effective modulus replacing the matrix modulus. The basic
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concept of the method is to view the composite as a sequence of dilute

suspensions. The first inclusions which are added to the matrix are

used to calculate the effective properties from dilute solutions.

Next, that suspension is viewed as a homogeneous medium of those

properties, to which a new increment of inclusions is added under

assumed dilute conditions. The new effective properties are obtained

from suitably modified form of dilute solutions. The process is

continued up to the condition of full packing of the inclusion phase,

i.e., f 4 l. Mathematically the process involves going to the limit

where the increments of added inclusions become infinitesimal and a

differential form results.

MORI-TANAKA THEORY

The concept of an average field (Mori and Tanaka, 1973) in

inclusions and the surrounding matrix is another model to include the

interaction between the inclusions. It is summarized here for

completeness.

Let us denote the domain of the composite by D and the inclusions

by O. D-O will denote the matrix. Assume there are many inclusions

in the matrix. When 0(0) is applied at infinity, the average total

11

(0)
stress in the matrix is <0iJ + aij >D-O’ where a is the stress

11

disturbance. The average stress in the inclusions is calculated as

(0)
<aij (O)+ a >

d)

+ 01 > - < aij ij D_0 + <01j>0 (2 1)
j 0
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where (ai:>0 is the average stress disturbance in a single inclusion

present in an infinite medium. 0:3 for perfect bonding case was

obtained by Eshelby (1957). The above equation is obtained by adding

an isolated inclusion into the matrix which is subjected to the

applied stress <a§g)+ aij>D-O caused by the rest of the inclusions and

the boundary surface of body D. The similar relation involving the

stress disturbance only is

<01.j >‘2 - <01j>D-0 4- ij 0 (2.2)

Since the average stress disturbance must vanish,

f <0ij >0 + (l-f) < 01] >D-0 - o (2.3)

where f - g is the volume fraction of inclusions. From (2.2) and

(2.3), we obtain the average stress disturbance in the matrix

Q

and

Q

< aij >0 - (l - f) <0ij >0 (2.5)

The work of Mori-Tanaka (1973) originally concerned with

calculating the average internal stress in the matrix of a material
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containing precipitates with eigenstrains. It is exact for an

elastically homogeneous body. It is also a good approximation when

the volume fraction of inclusion is small. However, when the method

is extended to the large volume fraction of inclusions, the basic

equation to determine the elastic state of an inclusion must be

modified from the original form given by Eshelby (1957). The

modification is to include the interaction between inclusions. The

modification was first given by Wakashima et a1. (1974) who analyzed

thermal expansion of composites. They used Eshelby's solution (1957)

of an ellipsoidal inclusion and Mori-Tanaka’s concept (1973) of

average stress in the matrix. Other authors who employed this method

are Taya and Chou (1981), Taya and Mura (1981), Wang (1984), Takao and,

Taya (1985), Tandon and Wang (1986a, 1986b), Takahashi and Chou

(1988), Zhao et a1. (1988), Luo and Wong (1987, 1989), Norris (1989),

and others.

Following Wakashima et al. (1974), when an inhomogeneity-bearing

body is subjected to a uniform change of temperature, the total strain

in the inclusion <¢1j>o is taken as

*

<6 .>0 - (l-f)Tijk£ek2

f *

ij + 6k2 (2.6)

where T is Eshelby’s tensor (Eshelby, 1957), which depends on the
ijk!

aspect ratios of the ellipsoidal inclusion and Poisson's ratio. f is

the volume fraction of the inclusions and 5* is the equivalent

11

eigenstrain, which can be found by using Eshelby's equivalent

inclusion method.
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The equivalent inclusion method, proposed by Eshelby (1957),

states that the stress disturbance of an applied stress caused by an

inhomogeneity O (a sub-domain which has different elastic moduli than

those of the matrix) can be simulated by the stress field caused by an

inclusion having the same elastic moduli as those of the matrix with a

suitablly chosed eigenstrain eij (stress-free strain, phase

transformation strain or inelastic strain). The equivalency

condition to determine the stress and strain disturbances in the

inhomogeneities is given as

m * * *

aij - Cijk2{ (l-f)T + f6ij - ij

kipqepq }

f * *

- Cijk£{ (l-f)Tk£pqepq+ feiJ ) (2.7)

m f .

where Cijkl and Cijkl are the elastic stiffness tensors of the matrix

and inclusion, respectively.

In a recent paper, Benveniste (1987) reexamined the average field

method (Mori and Tanaka, 1973) and applied it to composites with large

volume fraction of inclusions. By introducing the "concentration-

factor" tensors, he presented the formulation to calculate the average

elastic moduli of composites. The advantage of this approach is that

the approximation affects only the boundary conditions of the modified

dilute problem, but the problem itself can be solved exactly for the

stress field in the inclusion, matrix and the respective interfaces,

Figure 2.4. The result Obtained is consistent with the one obtained
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by Wang (1984) where the effective behavior of multiphase composite

has been studied by means of Mori-Tanaka's method in the framework of

equivalent inclusion and eigenstrain concepts. The works following

this approach are due to: Norris (1989), Benveniste et a1. (1989), and

Chen et al. (1990), among others.

Very recently another approach has been offered. Mori and

Wakashima (1990) have examined the elastic state of an inhomogeneous

body by introducing a subcessive iteration method. The method

involves infinite series which Converge to close forms, from which the

pertinent quantities such as the average stresses in the inclusions

and the matrix, the average stress disturbances in the inclusions, and

the equivalent eignstrains in the inclusions are obtained. The works

which follow this approach are: Tong and Jasiuk (1990a, 1990b),

Shibata et al. (1990), and others.

In contrast to the approach of Wakashima et al. (1974), which is

suitable for perfect bonding case only, both Benveniste's approach

(1987) and Mori and Wakashima's approach (1990) are applicable to the

imperfect bonding case also. The results obtained from the succesive

iteration method (Mori and Wakashima, 1990) have been found to

coincide with those given by Benveniste (1987) as indicated in the

paper of Mori and Wakashima (1990), however, the approach is

different.

It was showed by Wang (1984) that the Mori-Tanaka method yields

consistent results when applied either with displacement or traction

boundary conditions. Wang (1984) also indicated that the Mori-Tanaka

method with spherical inclusions gives the Hashin-Shtrikman lower

(upper) bound for the bulk and shear moduli when the inclusions are
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harder (softer). Zhao et a1. (1988) proved that in the case of

composite reinforced with cylindrical inclusions of circular cross-

section, the five effective constants of composite derived from the

Mori-Tanaka method coincide with Hill's (1964) and Hashin's (Hill-

Hashin bound, arbitrary transverse phase geometry, 1965) lower bounds

if the inclusions are the harder phase, and coincide with their upper

bounds if the inclusions are the softer phase. Norris (1985) pointed

out that randomly-oriented disk-shaped particles of the harder

(softer) phase yield the Hashin-Shtrikman lower (upper) bounds.

Benveniste (1987) proved that the bulk and shear moduli predicted by

Mori-Tanaka for a two-phase composite with randomly-oriented

ellipsoidal particles lie within the Hashin-Shtrikman bounds.
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Figure 2.4 MORI-TANAKA THEORY
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2.3 COMPARISON OF THE MODELS

Comparing the theoretical models mentioned above, several

interesting observations have been found.

First, it is observed that, in all cases, all models recover

dilute behavior (Christensen, 1990).

Secondly, it is also interesting to note that in all cases where

the composite spheres and cylinders models yield closed form results,

both GSCS model and Mori-Tanaka method give precisely the same

results. As it was discussed by Christensen (1979), the physical

meaning behind this is that in determining the properties of the

equivalent homogeneous medium, the criterion to be used in composite

spheres and composite cylinders models is that the repeating cells be

replaced by the equivalent homogeneous material without changing the

conditions of average stress and average strain. In considering an

infinite medium of the composite spheres or composite cylinders

models, one could replace all but one of the cells by the equivalent

homogeneous medium to arrive at the GSCS model. Since the Mori-Tanaka

theory is based on the average stress or strain in the matrix, it also

answered the question of why it gives the same result for bulk modulus

as the composite spheres model and all but transverse shear modulus as

composite cylinders model.

The composite cylinders (unidirectional composite) or spheres

(particulate composite) model does not yield a solution for the

transverse shear modulus or shear modulus, whereas both the
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generalized self-consistent scheme and the Mori-Tanaka method do give

the solution.

Another interesting phenomenon is found by Jasiuk et a1. (1990)

in their study of the elastic mouli of composites with rigid sliding

inclusions. They indicated that when the flexible interface is

considered, the self-consistent approach and differential scheme yield

a solution for the bulk modulus which depends on the tangential

sliding parameter E. The other models such as composite spheres or

cylinders model, generalized self-consistent model, and Mori-Tanaka

method would give the result, which does not depent on k, since they

assume that symmetry is maintained for whole range of f.

Note that all of the models except the self-consistent scheme

allow the volume fraction of inclusions up to fel and therefore

require a wide distribution of inclusion size. As it was indicated by

Christensen (1979), the self-consistent scheme is suitable for

polycrystalline materials but not for composites. When applied to

multi-phase media, it does not always cover the full range of volume

fraction up to fel. This is true particularly when there is a large

mismatch in properties of the phases.

The differential scheme is not described by a single physical

model, but rather by a hierarchy of models. As discussed by Norris

(1985), the differential scheme involves an initial dilute suspension

which is then "homogenized", after which a new dilute suspension is

formed by inserting inclusions which are at least an order of

magnitude larger than the initial inclusions. Then this second stage

dilute suspension is homogenized and a third one is formed by

inserting yet larger particles. This process is repeated until a
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limit is approached. As it was mentioned by Christensen (1990), this

sequence will provide results very different from a single model

involving very tightly packed inclusions. such as the generalized

self-consistent scheme, the composite spheres or cylinders model, and

the Mori-Takana method.

Comparing the Mori-Tanaka theory with the generalized self-

consistent scheme, we found that the latter is simple in concept but

complex in execution. When this model is used, it is neCessary to

solve a three-phase boundary value problem (for the flexible interface

model) and four-phase boundary value problem (for the interphase

model) to obtain the stresses in the composites. In contrast, the

Mori-Tanaka method is mathematically more simple. The advantage of

this approach is that the local stresses and displacements in a

composite can be evaluated by using the solution of a single inclusion

embedded in an infinite matrix, and inclusion interaction can be taken

into account by using a successive iteration method (Mori and

Wakashima, 1990) based on the average field theory (Mori and Tanaka,

1973). This method can treat any boundary conditions at inclusion-

matrix interface provided that the solution for an isolated inclusion

is known. This method is truly versatile, since hard, soft, or void

inclusions of any geometrical shape can all be treated in a unified

fashion. This is a reason why in this dissertation, the Mori-Tanaka

method is used. The focus of this work is the study of the effect of

interface on the effect thermo-mechanical properties of the

composites.
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CHAPTER 3

EFFECTIVE ELASTIC MODULI

3.1 DESCRIPTION OF THE METHOD

In this chapter, the method to predict the local stress and

displacement fields and the effective elastic moduli of the composites

reinforced with imperfectly bonded inclusions is described. First,

the elastic field of a single inclusion embedded in a matrix and

subjected to a uniform stress state at the remote boundaries of the

matrix is solved by using linear elasticity theory. Next, the

successive iteration method (Mori and Wakashima 1990) based on the

average field theory (Mori and Tanaka 1973) is used to account for the

interaction between the inclusions. This method, decribed by Mori and

Wakashima (1990), is modified here to account for the effect of

interface. Then, the overall elastic moduli are evaluated by equating

the average strain in the effective medium (composite) and the average

strain in the material with the inclusions subjected to equivalent

eigenstrain. The advantage of this approach is that the local fields

in the inclusion, the interphase and the adjacent volume of the matrix

can be evaluated by using the solution of isolated inclusion.

The present method can be clearly demonstrated by considering a

composite reinforced with spherical inclusions and subjected to an

(0)
applied shear stress 012 at infinity. The case of inclusions having

the shape of circular cylinder is treated in Appendices A and B.
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3.2 ISOLATED INCLUSION SOLUTION

When an isolated inhomogeneity O in domain D is subjected to an

applied stress aig)- 00 at infinity, the stress and displacement

fields for the entire body can be obtained by using the following

govening equations of linear elasticity:

a) equilibrium equations

0:1 J-o (3.1)

b) Hooke's law

3 _ CS cS

ij ijk! k1
0 (3.2)

c) strain-displacement relations

3 l s 3
‘ij - 2(‘11.34- “j,i) (3.3)

and the specified boundary conditions. The superscript 3 denotes the

matrix (m) or inclusion (f). In the present work, the interface

conditions are varied theoretically by considering two models, the

flexible interface model and the interphase model.
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3.2.1 The flexible interface model

The flexible interface model represents an interface as a

continuous spring connecting the inclusion and the matrix, such that

tractions at the interface are continuous, while the displacement

components are discontinuous, with the displacement jumps being

proportional to the tractions. The spring constants that one would

choose in practice depend on the nature of interface. This model has

the advantage of mathematical simplicity as it incorporates two

parameters that can be adjusted appropriately. By varying the

interfacial parameters and comparing the predicted results with the

experimental results, it is possible to infer the quality of the

interface in the composite. (Note that by adopting interphase model,

several material parameters need to be appropriately selected). One

could view this model as representing, for example, a thin inclusion

coating or a series of cracks along the interface. The boundary

conditions for the flexible interface model are:

a) continuity of tractions

[aij]nj-0 (3.4)

b) tangential tractions proportional to the jump in tangential

displacement

ant - k [ut] (3.5)
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c) normal tractions proportional to the jump in normal displacement

ann - g [un] (3.6)

where u and 0 denote the displacement and stress at the interface.

The subscripts nt and t refer to the tangential direction, while the

superscripts nn and n refer to the normal direction. [ ] implies the

jump of the bracketed expression across the interface. k and g are

the spring constants which have dimension of stress divided by length.

These spring constants represent the degree of bonding at the

interface. Note that the classical case of perfect bonding is

obtained from the limit case when k 4 o and g 4 a, the case of pure

sliding is reached when k 4 0 and g 4 o, the case of completely

debonded interface is obtained by setting k 4 0 and g 4 0, while any

finite positive values of k and g represents the imperfectly bonded

interface. However, this model needs to be used with caution. The

imperfect bonding representation in the normal direction might be

unrealistic because it infers that the behavior under normal tensile

stresses is identical to its response under equal but compressive

stresses. Numerical treatment of this model has been given by

Achenbach and Zhu (1989), where they solved the mixed boundary value

problem to avoid the radial overlap by using boundary element method.

In this dissertation, the numerical calculations for the

effective shear modulus are limited to the case when only the jump in

the tangential displacement is allowed while the continuity of normal

displacements is maintained in order to avoid the overlapping of the

material.
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Elastic strain energy

When an isolated elastic inhomogeneity (inclusion) Of in a domain

(m

U
D (composite) is subjected to an applied stress a at infinity, the

elastic strain energy is expressed as

w-Ji—ID (0(0) + an) (‘19,); + ui’J ) dV (3.7)

where “(0) is the displacement caused by the applied stress 0(0 ) in

1.1

the situation when the inclusions are not present. 013 and ui are the

stress and displacement disturbances caused by the presence of the

inclusion. The Equation (3.7) is rewritten as

w_1ID (mgmdv,1ID<0)ui w

4.111),,juw) av+lIDa. dV (3.8)

Since Equation (3.8) involves complicated quadratic form

integrations over the volumetric region, it is desirable to express

(3.8) in terms of integrals in Of or on |Of|, where only linear form

integrations are involved. Here Of denotes the domain of the

inclusion, and |0f| denotes the surface of the inclusion. By

employing Gauss's theorem to the Equation (3.8), the third term in

(3.8) vanishes, while the last term in (3.8) becomes as
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1 _ _ 1
2 I aij ui,j dV 2 I oij [ui] n.J d3 (3.9)

D |0f|

where nj is the outward unit vector normal to IOfI. Then (3.8)

becomes

w_1J‘D (mum) d, + 1105(0),11 W

D-0f 2 lofl ij i j

The third term in (3.10) is rewritten as

”(0) _ 1 I (0)Ali-J-Dofaij dV 2 D-“ 01“] uijdv

f

--% Jlnf I oi“n“(0) d8 - - lw! jiuio; dV (3-11)

Finally, the elastic strain energy is given as

W_1.L)(0>,,l<0) W + 1L1f<mu1 dv

inUnio) dV - i! n [u 1 as ' (3.12)

Infa‘I 31
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which can be rewritten as

“-1113 (0),,(0) W + 11%(0)f dv

_1I% f3 u<0) av _ leOf | 13 n1 [“1 1 as (3.13)

f _ (o) _ (0)
where 01J aij + aij and ui u1 + u1 are the total stress and the

total displacement in the inclusions, respectively.

The elastic strain energy of the interface springs is given by

spring _ l f
W 2 I aij nJ [ui] dS

Infl

- % I k [uo ]2 as + % I g [ur )2 as (3.14)

Inf: Infl

The total elastic strain energy of the composites with boundary

conditions given by this model is the summation of the energy of the

elastic medium (matrix and inclusions) and the energy of the springs

(Jasiuk and Tong, 1989). Expressed in terms of integrals in Of or on

IOfI, it becomes:

c:_1JD (mum) d, + 1J‘nf (0)f dv

-1I% afj uio) av + 11f 0(O)n. [ui] as (3.15)

InfaJIiJ
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By employing Hooke's law, the elastic strain energy per unit volume is

expressed as

E“ _1 <0) <0) 1 (0) m 1.

D013 Sijkiak2 £013 (Sijkz‘ 5131a) of In a

+12‘f1'f'I 0(0) n [u11as (3.16)

m,—i 3

where Sijkl is the compliance of phase 3, s - f,m.

Suppose the same work is done by the applied stress 0;?) on the

(non-sliding) inclusion with the eigenstrain Ci; (uniform)

w‘qui" -1ID 0(0)uij av + lfczf0(0):611 av (3.17)

The elastic strain energy per unit volume stored in the equivalent

homogeneous medium is

equiv

D
I
S

_.1. 0(0)m 0(0) +1 (0)
aij Sijkla1d f 01631:) (3.18)

If we compare these two results, the idea of Eshelby's "equivalent

inclusion method" (Eshelby, 1957) is employed. Thus, the expression

*

for e. is obtained:

1.1
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(0) * (0) f m 1_ f

”13 ‘13 " 0 ij ‘ (3131c! Sijkl) of In ”k2 W

E

.L+ 0 I [ui]nj as } (3.19)

f Iflfl

As an example, let us consider a spherical inclusion in the matrix

subjected an uniformly applied stress 013)- 00 at infinity. Both

inclusion and the matrix are assumed isotropic. The solution of

Equations (3.1)-(3.6) can be expressed as:

s ’ s

aij(x) - “13(‘)°o (3.20)

u:(x) - w:(x)ao (3.21)

where W:J(x) and w:(x) are functions of x for phase 5 which are

defined as concentration factors in the paper of Benveniste et a1.

(1989). Then, the only non-zero eigenstrain is £12— 621' If we

df * 2* *1 -e ine £0 - £12, ‘0 5 expressed as.

*

£0 - 800 (3.22)

ivhere
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l. L l. f

5 ' ( Cf ' G ) of I; “712““!v

” f

+ g; Ila l( [ Wyn-vim 1 n2 + [ w‘;(x>-w§<x> 1 n, i as (3.23)

f

The average stress in the isolated inclusion due to the applied stress

00 is

"
9
1
‘

L."

- %— I;

<0 > -

12 Of

"
I

f
12 av

f

wf (x)a av (3 24)
12 o '

f

The average of the stress disturbance in the isolated inclusion

due to 00 is

A012 - A00 - <012>of - 00 - ado (3.25)

where

a - 1— wf (x)dV -1 (3.26)
Of 12

“f

In this example, a and B are scalars. However, in general, they will

be in the tensor form.
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3.2.2 Interphase model

Consider a composite system consisting of three components: fiber

(f), layer (1) and the matrix (m). The perfect bonding boundary

conditions, which imply continuity of tractions and displacements, are

assumed at the fiber-layer and layer-matrix interfaces. The elastic

properties of constituents are distinct and the interlayer has a given

thickness. In this representation, the degree of debonding or damage

at the interface can be simulated by adjusting the elastic constants

and the thickness of the interphase region. For example, a soft layer

will imply the weak or damaged interface. It might be noted that this

model is more realistic than the previous one, but algebraically it is

more involved.

Elastic strain energy

The elastic strain energy for this case is obtained by using

Equation (3.15) with the substitution of Of by 0f+01 and the omission

of last term:

c_lJ‘D (0)u(0) av + 119130“)th av + 1101 0(0)“2 av

ul J

- a 0:3 (11°; av - 11:01? a“)? av (3.27)
D ’J
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(0)
where ui is the displacement due to 0(9) in the absence of

1J

inclusions. of) and uf are the total stresses and displacements in the

inclusion, respectively, and 0:3 and uf are the total stresses and

displacements in the layer, respectively. D is the volume of the

composite, 0 and 0 are the volumes of fiber and la er, respectively.
f 2 Y

Then, by using Hooke's law, the expression for the elastic strain

energy per unit volume becomes

EC _1H<0) <0) 1 <0) 1.

D ”11313k1ak1 + f”13 (Sijkl Sijkl)0“I av

1 (0) l.
+ £013 (Sijkl- Sijkl)0gffi dV (3.28)

0

where f is the volume fraction of inclusions, f - -Di’ and 2 is the

volume fraction of layers, 1 - ‘5; .

Suppose the same work is done by the applied stress 0(0) on the

11

inclusion (consisting of inclusion and interphase) with a ficticious

*

eigenstrain e

13

wequiv_12ID (0>u<0) dv + 1 “(0)
V .ij 06.010ij eij d (3 29)
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The elastic strain energy per unit volume stored in the equivalent

homogeneous medium is

equiv

3:5 " % ”SETH! “1(3) +15 ( f + 1 ’ 03%;; (3'30)

If we compare these two results, as it was done in previous section,

*

the expression for eij is obtained:

(0) * _ (0) i f _ m 1_ f

“11 ‘13 a 13 ‘ f + z (Sijkz Sijkl) of I; ?k2dv

f

g 2 m 1_ £

+ f + 2 (S1jk2' Sijkl) a, I? ”kzdv (3'31)

1

As an example, let us again consider a spherical inclusion and let the

applied stress 0:2). 00. Again, both the inclusion and the matrix are

*

assumed isotropic. Then, the only non-zero eigenstrain is 512- 5:1.

* * *

If we define eo-Zelz, 60 is expressed as.

a; - 500 (3.32)

where



+ —1-—- ( l— - l— ) l— I w{2(x)dv (3.33)

oa
s

9 !
§

The average stress in the isolated coated inclusion due to the applied

stress 00 is

<"12>n +0
_ -l-- ( I of dV + I 0:2 dV )

f l a 0
0 +0 12
f 1 f l

-_1_(L f 1
0f+0£ W12(x)dV + I; W12(x)dV )00 (3.34)

f

The average of the stress disturbance in the isolated inclusion

due to do is

A012 - A00 - <012>of - 00 - aao (3.35)

where

a - -—1—-— ( I wf (x)dV + I w‘ (x)dV ) -1 (3.36)
0 +0 12 12

f z of 0

Note that here, a and 3 are given as scalars. However, in general,

they will be in tensor form.
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3.3. Successive iteration and effective elastic moduli of imperfectly

bonded composites

In section 3.2 we obtained the zeroth-order solution, in which

only a single inclusion is considered. The zeroth-order eigenstrain

and the stress disturbance in the inclusion are the overestimates or

underestimates of the real situation when the elastic stiffness of

inclusion is greater or smaller than the one of the matrix (Mori and

Wakashima, 1990). The reason for this is because the presence of

other inclusions will reduce or increase the stress in the inclusion,

since the other inclusions carry stress larger (if the inclusions are

stiffer) or smaller (if the inclusions are softer) than do (the

average stress of the matrix for the single inclusion case). In order

to obtain the actual stress distribution and the effective properties

of composites with finite concentration of inclusions, some correction

should be made.

3.3.1 The flexible interface model

Equations (3.22) - (3.26) give the zeroth-order solution. If the

total volume fraction of inclusions is f, these inclusions with the

eigenstrain of the zeroth-order produce the average stress in the

matrix. According to Mori-Tanaka's theOry (1973), this average stress

is

l

aiz)- 01 - -ano - -faao (3.37)
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Following Mori and Wakashima (1990), this average stress in the matrix

acts as an applied loading and causes additional disturbance in the

vicinity of inclusions. The first-order correction becomes

01 - - faao (3.38)

A0 - aa - - faAa - - faza (3 39)

l l 0 0 '

* *

cl - flal - - ffiAao - - faeo (3.40)

The above procedure is repeated infinite number of times. The n-th

order correction is given as

a - - an - (-£a)“a (3 41)
n n-l O '

Aan - a(-fa)n 00 (3.42)

** n

en - (-fa) ‘0 (3.43)

Then, the total equivalent eigenstrain is the sum of the

eigenstrains from every iteration
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- e;( l - fa + f2a2 + ... ) (3.44)

Note that, under the condition: |fa| < l, e* will converge to the

closed form expression:

(3.45)

The effective elastic moduli are defined by using the concept of

the average strain in the composite, i.e.

c 0(0) _ 0(0) *

3111:}: ”kg 5111:: ”k1 ““f‘ij (3'46)

Therefore, the effective shear modulus is given by

G +l+fa

Gc m

where a and fl are given by Equation (3.23) and (3.26).

The actual stresses and displacements (including interaction of

inclusions) can be also estimated by using successive iteration

method. For example, the actual stress component aij(x) and

displacement component ui(x) in the phase 3 are
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0:1(2) - 0:?) + Aa§3)(x) + 0(1)+ Aa(1)(x)
ij ij

0:?) + Aaéi)+ (x) + ... (3.48)

and

u:(x) - uio) + Au§0)(x) + u§1)+ Au§1)(x)

+ uiz) + Au§2)(x) + ... (3.49)

In this particular case

a:j(x) - Wij(x) ( 00 + 01 + 02 + a3 + ... )

- Wij(x) 00( 1 -fa + f2a2 - £3a3+ ... )

1 + fa ”23“) (3'50)

and

S S

ui(x) - wi(x) ( 00 + 01 + 02 + a3 + ... )

- w:(x) ao( 1 -fa + f2a2 - £3a3+ ... )

‘TJIFJ “ism <35“

where a:§(x) and u:s(x) represent the stress and displacement fields

of an elastic body containing an isolated inclusion. Note that the
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local stresses and local displacements given in Equations (3.50) and

(3.51) are the product of the solutions of the isolated inclusion

given by Equations (3.20) and (3.21) and the correction factor

l/(l+fa), which accounts for the inclusion interaction. Note also

that ao/(l+fa) is the average stress in the matrix (Mori and

Wakashima, 1990). It might be noted that the Equations (3.50)-(3.Sl)

are not the exact solutions of the stress and displacement fields,

since the result assumes that the other inclusions are not very close

to the given inclusion and they all exert an additional uniform stress

on the inclusion of interest. However, the solution is a good

approximation in the average sense since it takes into account the

inclusion interaction. By using the average stress in the matrix,

other inclusions are smeared out so that no detailed information about

the distributions of inclusions is neccessary. Note that the exact

solution for the stress field is very difficult due to complex spatial

distributions of inclusions. Also the stresses will differ for every

inclusion since the inclusions are non-periodically distributed.

3.3.2 Interphase model

The procedure here is similar to the derivation in the previous

model. Equations (3.32) - (3.36) give the zero-order solution. If

the total volume fraction of inclusions and coatings is f+£, these

coated inclusions with the eigenstrain of the zeroth-order produce the

average stress in the matrix. According to Mori-Tanaka's theory

(1973) this stress is
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a(1)- a - -(f+2) Ad12 1 - -(f+£) ad0 (3.52)
0

Following Mori and Wakashima (1990), this average stress in the matrix

acts as an additional applied loading which causes the additional

disturbance in the vicinity of fibers. The first-order correction

becomes:

01 - - (f+£) Ado- -(f+2) ado (3.53)

A01 - a 01 - - (f+£) a Ado - - (f+£) 0200 (3.54)

* *

£1 - B 01 - - (f+£) 3 A00 - - (f+2) a 3 do - - (f+£) a 60 (3.55)

The above procedure is repeated infinite number of times. The n-th

order correction is given as

an - -(f+£) Adn_1 - [ - (£+2) a 1“ a0 (3.56)

Adn - a an - - (£+2) Adn - a [- (f+2) a 1“ (3.57)
-l

a: - 8 an - - (f+£) fl Adn - - (f+£) a fi on“1
-l

- [ - (£+2) a 1“ a; (3.58)
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Then, the total equivalent eigenstrain is the sum of the

eigenstrains from every iteration

* * + * + * +

6 60 £1 62 ...

- e;{ 1 - (f+£)a + (f+2)2a2 + ... 1 (3.59)

6* converges under the condition: |(f+£)a| < l.

* 1 *

‘ ' 1 + (£+2)a ‘0

1

' 1 + (f+£)a 5‘0 (3'60)

The effective elastic moduli are defined by using the concept of

the average strain in the composite, i.e.

c (O) _ m (0) *
Sijk! 0k! Sijkl 0k! + (f+2) eij (3.61)

Therefore, the effective shear modulus is

__l_ _ __l_ .f:£___.

cc Gm + l+(f+£)a 5 (3°62)

where a and p are given in the Equations (3.32) and (3.36). Again, in

general, a and 8 are tensors.

The estimate of the actual stresses and displacements (including

interaction of inclusions) can be also given by using successive
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iteration method. For example, the stress components 01J(X) and

displacement components ui(x) in the phase 3 are

(0)+ A0(0)

13013

+ 0:?) + Aa§§)(l)

(x) + 0(1)+ A0(})(X)I

Q0:1(X)

+ (3.63)

and

+ Au(1)(x)u: (x) “(0) + Au§0)(x)+ u(1)

++ uéz) + Au§2)(x) (3.64)

In this particular case

031(1) - W3ij(x) ( 00 +01 + 02 + d + ... )

3

- w:j(x) a0( 1 -(f+£)a + (£+2)2a2 - (f+2)3a3+ ... )

1 ms

1 + (f+£)a ”13“) (3-55)

u: (x) - w:(x) ( a0 + d + d + d + ... )

1 2 3

- w:(x) ao( 1 -(f+£)a + (f+2)2a2 - (f+£)3a3+ ... )

1 +l(f+£)a “25(‘) (3-55)
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where 0::(3) and u:s(x) represent the stress and displacement field of

an elastic body containing an isolated coated inclusion. Note that

the local stresses and local displacements given in Equations (3.65)

and (3.66) are the products of solutions for the isolated inclusion

given by Equations (3.20) and (3.21) and the correction factor

l/[l+(f+£)a], which accounts for the inclusion interaction. Note also

that do/[l+(f+£)a] is the average stress in the matrix (Mori and

Wakashima, 1990). Again, the Equations (3.65)-(3.66) are not the

exact solutions of the stress and displacement fields, however, they

are good approximation in the average sense since they take into

account the inclusion interaction.

3.4 COMPARISON BETWEEN TWO MODELS

Comparing the two interfacial models we used, we can see that the

flexible interface model simplifies the problem in that we need to

specify only two parameters in order to describe the interface.

Thickness and the moduli of the interphase need not be separately

prescribed. Also, we only need solve a boundary value problems of

two-phase materials. The interphase model is mathematically more

involved since it is necesary to solve a boundary value problem of a

three-phase material. Both thickness and moduli of the interlayer

need be prescribed. But physically it seems to be a more realistic

boundary condition.

Although the flexible interface model and the interphase model

are mathematically different, they may represent the similar physical
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behavior of the bond between inclusion and matrix for the special case

when the inclusions are coated with very thin and very compliant

interphase layers (Hashin, 1990b). The conditions of this special

case are quantitatively expressed by

2 - 2t / a << 1 (3.67)

K c‘<<1<c
1 ’ I f’ f

(3.68)

where a is inclusion radius and t is an interphase thickness.

It is observed that the interface parameters of the flexible

interface model can be simply related to interphase properties and

geometry of the interphase model for this case. For example, the

relation between interface parameters and interphase characteristics

for cylindrical fiber composites is given by Hashin (1990b) as

 

follows:

K + G

g - —3t—-3— (3.69)

G}:
k - t _ (3.70)

where K is transverse bulk modulus, G is transverse shear modulus, and

substript 2 denotes interphase.
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CHAPTER 4

THERMAL STRESS AND THERMAL EXPANSION COEFFICIENTS

When a composite material is subjected to temperature change,

thermal stresses are created due to the mismatch of thermal expansion

coefficients. Large thermal stresses may develop in the interphase or

at the interface during composite processing and cure shrinkage in

thermosetting matrices, which may cause stress concentration and

initiate yielding or debonding. If these stresses exceed the bond-

strength of the inclusion/interphase interface or the

interphase/matrix interface, the microcracks will form, and the local

failure of the composite will occur. Thus, these thermal stresses may

ultimately control the structural performance of composite.

Therefore, for design purposes it is important to know and to control

the magnitude of these stresses. Also it is important to know the

overall thermal expansion coefficients.

In this dissertation, the effect of interface on thermal stresses

and thermal expansion coefficients of composite is also investigated.

The thermal stress and thermal expansion coefficients of a composite

with perfectly bonded interfaces have been studied by Schapery (1968),

Wakashima et al. (1974), Ishikawa et al. (1978), Uemura et al. (1979),

Takahashi et al. (1984), Avery and Herakovich (1986), Hahn and Kim

(1988), Bowles and Tompkins (1989), Dvorak and Chen (1989), and

Others. The stress field around coated reinforcement (inclusion) has

been addressed by Mikata and Taya (1985, 1986), Luo and Weng (1987,

1989), Pagano and Tandon (1988), Sottos et al. (1989), Vedula et a1.
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(1988a), Hsueh et al. (1988), among others. The effective thermal

expansion coefficients have been predicted by Pagano and Tandon

(1988), Maurer et a1. (1988), Vedula et al. (1988b), and Tong and

Jasiuk (1990), and others. The composite with sliding interfaces was

studied by Jasiuk et al. (1988)., In these works, various methods were

used to account for the inclusion interaction.

4.1 DESCRIPTION OF THE METHOD

The effect of interface on thermal stress and thermal expansion

coefficients is studied here by using again the successive iteration

method (Mori and Wakashima, 1990). In the analysis, two composite

systems are used, i.e., the spherical particle composite and the

cylindrical fiber composite. The cylindrical fibers are assumed to

have a circular cross-section, and are aligned. Since the composites

with spherical or circular cylindrical inclusions will not allow the

sliding to happen along the interface under the uniform temperature

change, the flexible interface model is not applicable here.

Therefore, only the interphase model is used in this chapter.

4.2 ISOLATED INCLUSION SOLUTION

Consider a three phase composite consisting of coated inclusions

uniformly distributed in the matrix. The inclusions, layers (coatings)

and the matrix are assumed to be linearly elastic and isotropic. They

have distinct material properties for each phase 3 (s - f,£,m):

elastic constants cijkl and thermal expansion coefficients aij. The
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perfect bonding conditions are assumed at the inclusion-layer and

layer-matrix interfaces. In the notation used, the superscripts and

subscripts f, 2 and m refer to the inclusion, layer, and matrix,

respectively.

When the composite is subjected to a uniform temperature change

AT, the stress and displacement field for the entire body can be

obtained by the following governing equations and the specified

interface conditions:

a) equilibrium equations:

3
aij,j -0 (4.1)

b) Hooke's law:

0:1 - CIjk£(‘:£ - aijeT) (4.2)

c) strain-displacement relations:

(4.3)

For the given interface model, we have a boundary value problem which

can be solved by using linear elastic theory. The solution can be

expressed as:
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S S

dij(x) - Hij(x) AT (4.4)

u:(x) - h:(x) AT (4.5)

where 8:1(3), h:(x) are functions of x for phase 3, which are defined

as concentration factors in the paper of Benveniste et al. (1989).

Let us denote the volume of the composite by D and the volumes of

the phases by as, where s - f, 2 and m. The volumes 0f and Oz are the

sums of the volumes of all the inclusions and coatings, respectively,

such that Or -i§1 01, where r - f, 2 and N is the number of

inclusions. Then, the total average strain in the composite is given

88

1

--(I e dV+J e dV+J e dV) (“-5)
D 0f 1.1 011.1 0 1.1

m

By employing Hooke's law

3 S S

”13 ' Cijk£(€k£ ‘ a sz
T) (s - f, 2, m) (4.7)

the Equation (4.6) can be expressed as
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< > - E { [Sf ] f dv + [83 ] a! dV
‘1) D D ijkl 0 ”k1 ijki 0 k!

f 2

m m f
+ [Sijkll I akldv + I aijATdV

0m 0f

+ I a 1 ATdV + a” ATdV ) (4.8)

o 15 o 13
2 m

Since the volume average of the stress disturbance in D vanishes

(Mura, 1987, pp. 334-335)

111

[Sijkll Jacki dV - o, (4.9)

then

m m m f

[Sijkll In ”kzdv ' ' [Sijkll I; ”kzdv

m f

- - [Sfjkfll I afildv (4.10)

“1

Substitution of Equation (4.7) into (4.5) yields

m l f m f
<eij>D - aij AT + D ( ([sijki] - [Sijk£]) Igfakldv

I m 1

+ (lsijkzl' [Sijk£]) I; ”kde ’

1

f

ij '

1 m
+ f(a ij - aij6:3)61 + 1(6 )AT (4.11)
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where f and 1 are the volume fractions of particles and layers,

respectively, and Sijkl is the compliance tensor of phase 3, s - f, 2,

Next, suppose the same total average strain is obtained when a

*

homogeneous material is subjected to a uniform ficticious strain e

13

(called eigenstrain by Eshelby, 1957) in the region originally

occupied by the inclusion and the layer. Then

> "Ar £2* 412<eij D - :213 + ( + )eij ( . )

Again, we employ the idea of Eshelby's (1957) "equivalent inclusion

method". By equating (4.11) and (4.12), the "equivalent" eigenstrain

6*. is obtained as

13

* 1 1 f m f
6 - ___ - { ([5 l-[3 I) 0 dV
ij f” D 131:2 111a Li k2

2 -1 m -1 2

+ ([Sijk2] '[Sijk2] ) L ”1:2‘1V }

2

1

+ .f. (a:

f+£

m

f+2 j - aij)AT + ((25% - 613)“ (4.13)

For a numerical example, let's consider a spherical coated inclusion.

h 1 i , i * * * *

Then, t e on y non-zero e genstrain s 611- 622- 633- 60.

Introducing the expressions (4.4) into (4.13), we have



55

a; - n AT (4.14)

where

n - _ <_ - _> _ Hflmdv + .fi (.1. - .1.) L Hflmdv
f+2 K K 0 0 f+2 K K 0 O

m f f 2 m 2 2

 

+ _£ (af- a”) + _£ (al— a“) (4.15)

f+2 f+2

The average stress in the isolated inclusion and layer due to a

uniform temperature change in the composite is

l f 2
<a > - ( d dV + d dV) (4.16)

13 “6‘32 “5*“2 I013 13 I0, 13

Substituting the stress expressions given in (4.4) into (4.16) yields

the following result:

<"11>0 +0 ' <"22>0 +0 ' <"33>0 +0
f 2 f 2 f 2

- - <d> - 1 AT (4.17)
0f+0£

where

v-i .1. I Hfl (x)dv
f+2 0f 0f

 

+ _E_, J a! (x)dV (4.18)
11

0 02
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Note that the stresses given in (4.17) represent the disturbance due

to temperature change. Let us define this disturbance as Ado

Ad0 - <d>0 +0 - 1 AT (4.19)

Let us define the corresponding displacement disturbance by Auo. Note

that 1 and n are scalars here. However, in general, they would be

tensors .

4.3 SUCCESIVE ITERATION AND EFFECTIVE THERMAL EXPANSION COEFFICIENTS

The above solution is the zeroth-order solution, in which only a

single coated inclusion is considered. In order to estimate the

actual stress distribution and the effective thermal expansion

coefficients of composite with finite concentration of inclusions,

some correction should be made. The argument is the same as given in

section 3.3. If the total volume fraction of inclusions and coatings

is f+2, these coated inclusions with the eigenstrain of the zeroth-

order produce the average stress in the matrix. According to Mori-

Tanaka's theory (1973) this average stress is

aii)- 0:3) - 0%; - al - -(f+2) Ado - -(f+2)1AT (4.20)

Following Mori and Wakashima (1990), this average stress in the matrix

acts as an applied loading and causes additional disturbance in the
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vicinity of inclusions. Therefore, it is necessary to solve the

second boundary value problem involving the isolated inclusion

(1)_ 0(1)_ 0(1)
subjected to hydrostatic stress 011-022 033-01 at infinity.

The stress and displacement fields in this case are of the same forms

as expressed in (3.20) and (3.21) of section 3.2 except that d is
0

replaced by 01.

aiju) - wijuoa1 (4.21)

u:(x) - w:(x)dl (4.22)

The elastic strain energy produced by the applied stress 0(1) is

11

“1J0 <11>u<1)dv+1j“$<jl)f“'11”
2 0 i

L
a
m

A

H

v

Q
.

<

+1 (1)u1j_l (1)
wI wjdij ui dV (4.23)

(1)
where ui is the displacement due to 0(1) in the absence of

1]

inclusions. 0:1 and uf are the total stresses and displacements in the

inclusion, respectively, while dfj and u: are the total stresses and

displacements in the layer, respectively. D is the volume of the

composite, 0f and 01 are the volumes of fiber and layer, respectively.
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Note that this expression is the same as given in Equation (3.27)

except for superscripts (1) which replace superscripts (0).

Then, the expression for the elastic strain energy per unit

volume becomes

2° _1H(1> ma<1> 1 f<1)S ) 1.J}
D %j s131:1 k1 13 (Sijkl Sijkl Mk!

1 (1) m .1. 2
+ £0ij (Sijkl' Sijkl) 01 In ”R! dV (4.24)

2

<1)
Suppose the same work is done by the applied stress oi] on the

inclusion (consisting of inclusion and interphase) with ficticious

*

eigenstrain eij

wBQUiV- l210 0(1)u(1) dV + % W§;). dV (4.25)

of+o£

The elastic strain energy per unit volume stored in the equivalent

homogeneous medium is

equiv

§ la(})ST3k1 Hi2) l < f + 1 > 0(})f3 (4.26)

By equating (4.25) and (4.26), the expression for €:j is obtained:



S9

(1) * (1) f f m 1_ f

”11 ‘13 " a ij ‘ f + 2 (Sijkz' 5131:!) of In ”k2“

f

L. 1 In J._ 2

+ f + 1 (Side' Sijkl) “2 In ”1:2“ (“'27)

1

For the case of a spherical coated inclusion, the only non-zero

* * * * *

eigenstrain is ell— 622- 633- 61' 61 is expressed as.

*

£1 - Bel (4.28)

where

fl-i—(L-l-Hh wflumv

 

f + 2 RE Km of of

2 1. l. l. 1
+ f + g ( K - K ) 0 I W11(x)dV (4.29)

2 m 2 03

The component of the average stress in the isolated coated inclusion

is

I f I

<0 > - ( a dV + a dV )

11 Of+0£ 0f+0£ of 11 0 11

<0 > - <0 >

22 of+o£ 33 0f+0£

-W ( In wflmdv +10 V{1(x)dV )01 (4.30)

f 2
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The average of the stress disturbance in the isolated inclusion

(1)
due to all is

A011 - A01 - <011>of - 01 - A01 (4.31)

where

A - ‘-1——- ( wf (x)dV + w’2 (x)dV ) -1 (4.32)
0 +0 11 11

f 2 0f 01

Then, the second-order correction is similarly performed. Using

again Mori-Tanaka's average field concept, the additional stress

disturbance Aa causes the additional average stress 02 in the
1,

matrix, which acts as an applied loading. Therefore, as before

02 - -(f+£) Aal- -(f+£)A01 (4.33)

- - (f+£) A20A02 - A 02 - - (f+2) A A01 1 (4.34)

*

£2 - p 02 - - (f+2) p A01

- - (f+£) A p 01 - - (f+£)A a: (4.35)

The n-th order correction is given as
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an - -(f+2) Aan_1 - [-(f+£)A]nal (4.36)

A0 - A a - - (f+£) A A0

n n

n

n _1 - A[--(f+£)A] a1 (4.37)

a: - 3 an - - (f+£) p Aan - - (f+l) A p on
-1 -1

- [- (f+£)A]ne:‘ (4.38)

The above procedure is repeated infinite number of times. Then,

the total equivalent eigenstrain is the sum of the eigenstrains from

every iteration

+ O O O

a; + a: ( 1- (f+£)A + (f+2)2A2 + ... ) (4.39)

Note that, under the condition: |(f+£)A| < 1, c* will converge to

 

* * 1 *

e - e + £1 (4.40)

1 + (f+£)A

This closed form expression can be further simplified. Since

* - f+£ Aa - £+2 7 * 4 41
51 fl 01 ' ( ) fl 0 ' ( ) fl __ 50 ( - )

n
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by (4.15), (4.18), (4.29), (4.32), and

 

 

  

7 _ Aa<0> _ Aa(1) _ A (4 42)

3(0) 3(1) 19

Therefore,

5* _ {1_ (f+£)A }e*

1 + (f+l)A

- 1 a; - " AT (4.43)

1 + (f+£)A 1 + (f+£)A

The stresses and displacements (including interaction of

inclusions) can be estimated in the same way. For example, the local

fields for phase 3 are:

0:1(1) - Aa§§)(x) + a§})+ Aa§})(x)

+ 0:?) + Aa§§)(x) + ... (4.44)

and

u: (x) - Au§0)(x) + u§1)+ Au§1)(x)

+ u§2) + Au§2)(x) + ... (4.45)

Introducing the solutions from zeroth order and first order, we have :
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0:1(1) - H:j(x) AT + w:J(x) (a1 + 02 + a3 + ...)

- H:j(x) AT + w:j(x) ( 1 - (f+£)A + (f+£)2A2 + ...)a1

5 s 1

' H13“) AT + ”13(x) 1 + (f+£)A ”1

s s f+£
- Hij(x) AT - Wij(x) 1 + (f+£)A 1 AT (4.46)

and

u:(x) - h:(x) AT + w:(x) (a1 + 02 + a3 + ...)

- hi(x) AT + w:(x) ( 1 - (£+2)1 + (f+2)2A2 + ...)a1

 

s s l

' h1“’ AT + "1(‘) 1 + (f+£)A ”1

f+£3 S

' h1“) AT ‘ "1(‘) 1 + (f+l)
A 7 AT (4.47)

The effective thermal expansion coefficients are, by definition,

the average strains resulting from a unit temperature rise for a

traction free composite:

c 1 1 *
- < > — + f+2 4.48

“13 711: ‘13 D “13 711* ( ) ‘13 ( )

Therefore

ac - a” + f+£ n (4.49)
 

l + (f+£)A
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where n is defined in (4.15) and A in (4.32).

It is interesting to note that the thermal expansion coefficient

obtained by the successive iteration method coincides with the one

obtained by modified composite spheres model, which includes the

interphase layer. It is also found that for the cylindrical composite

without coating (the perfect bonding case), the results obtained by

the successive iteration method coincide with the ones obtained by the

composite cylinders model. In this dissertation, the results for the

transverse thermal expansion coefficient QT and longitudinal thermal

expansion coefficient aL for the composites with cylindrical coated

inclusions are obtained by using the composite cylinders model for

simplicity (See Appendix E).
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CHAPTER 5

INTERPHASE WITH PROPERTY GRADIENTS

5.1 DESCRIPTION OF THE METHOD

The incorporation of a realistic interphasial model into the

micromechanical analysis of composite systems is critical for the

understanding of composite behavior. The interphase is usually

modeled as a homogeneous region, despite the fact that it may have

property gradients.

In this dissertation, the effect of variation of interphase

properties is also studied. For the mathematical simplicity, the

attention is given to the case of spherical inclusions in a matrix

subjected to the hydrostatic stress at the matrix boundary and the

uniform temperature change. The successive iteration method (Mori and

Wakashima) is used here for the determination of the stresses,

effective bulk modulus, and effective thermal expansion coefficients

of composite. A power law introduced by Jayaraman et al. (1990) is

chosen to simulate the variation of both elastic Young's modulus and

coefficient of thermal expansion in the interphase region. The

governing field equations are solved directly in the closed form. The

influence of various parameters such as interphase thickness and

inclusion volume fraction on the local stresses and thermal and

elastic constants is studied. It is found that the property gradients

have a distinct and important effect on the local stresses and the

overall thermal and elastic properties.
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Future research may deal with the interphase with other

variations of the properties and include other geometric shapes.

Consider a composite with a single spherical coated inclusion

embedded in a matrix which is subjected to a hydrostratic stress 0:2)

- 0;?) - 0:2) - 00 at infinity and a uniform temperature change. The

governing differential equations in terms of displacements for

isotropic inclusion and matrix are

2 s s

LL+_L_§AL__2_u5_O s-m,f (5.1)
d r2 r dr r2

where u is the radial displacement. The general solutions to equation

(5.1) are given by

B

us(r) - Asr + -;§- (5.2)

where s - f, m. As and B3 are the constants for phase 3 which will be

determined by the perfect bonding boundary conditions at inclusion-

layer and layer-matrix interfaces.

Power variation model

The elastic Young's modulus and the thermal expansion coefficient

of the interphase are given by
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E, (r) - P rQ (5.3)

(23 (r) - M rN (5.4)

where P, Q, M, N are the constants which are evaluated by considering

the following conditions:

of at r - a (5.5)

l m a! - a at r - b (5.6)

d r r

- —1— (Q+N)urN'1AT (5.7)
1-2u2

”2
where p - ‘—Ij;—- u! is the Poisson's ratio of the layer, which is

1

assumed constant for simplicity. The general solutions to equation

(5.7) are given by

A1 A2 N+1

u(r) - Air + Bit + C r (5.8)
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where

 

 
)1. A2 - -§— 1 -(Q+1) f \ Q2+2Q(1-4Q)+9 ) (5.9)

and

(11mm
C2 ‘ (1-2v£)[ (N+1)N+(Q+2)(N+1)+2(Q¢-1)1 (5°10)

A2 and B! are the unknown constants. These constants will be

determined from the boundary conditions. The boundary conditions for

this problem are the perfect bonding conditions at interfaces

arr - arr ur - ur at r - a (5.11)

1 m 2 m

arr - arr ur - ur at r - b (5.12)

- do as r e m (5.13)

where a is the radius of inclusion, while b is the outside radius of

the layer.
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The effective bulk modulus is evaluated by setting AT in Equation

(5.7) to be zero, while the thermal expansion coefficient is

calculated by setting 00 in Equation (5.13) to be zero.

Then the isolated inclusion solution is iterated and the

procedure is similar to the constant interphase case given in Sec.

3.3. Comparing with the results of constant interphase case, in which

the Young's modulus and thermal expansion coefficient of the

interphase are taken as the average of Equations (5.3) and (5.4) over

the interphase volume, it is found that the property gradients at the

interphase may have significant effect on the local fields and the

thermoelastic properties of the composites.

It might be noted that the present results coincide with the ones

obtained by the modified composite spheres model, which includes the

variable interphase.
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CHAPTER 6

NUMERICAL RESULTS AND DISCUSSION

6.1 EFFECTIVE ELASTIC MODULUS

In the numerical results presented in this paper the inclusions

are assumed to be cylindrical or spherical in Shape. They are

uniformly but not periodically distributed in the matrix. The effect

of inclusion interaction is accounted for by using the successive

iteration method based on Mori-Tanaka theory. The details of

derivations are given in Chapters 3, 4 and Appendices A-D. The

predicted elastic constants are the transverse shear and bulk moduli

for the unidirectional composites reinforced with aligned cylindrical

fibers and the shear and bulk moduli for the composites reinforced

with spherical particles. In the calculations presented, the

Poisson's ratio of the constituents is taken as 0.3 and the ratio of

stiffness P - Gf/Gm - 10 unless it is specified otherwise.

6.1.1 UNIDIRECTIONAL COMPOSITES

A unidirectional composite reinforced with aligned cylindrical

fibers of circular cross—section is considered. The transverse shear

and bulk moduli are investigated for the two interfacial models.

The two interfacial models discussed in Chapter 3 and Chapter 4

can reduce to the case of two phase composite with the perfect bonding

at the inclusion matrix interface. Therefore, initially, as a check
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of the present predictions we compare our results for the effective

shear modulus for the perfect bonding case with the three phase model

(Christensen and Lo, 1979), self-consistent scheme (Hill, 1965,

Budiansky, 1965), and Hill-Hashin's upper and lower bounds (Hill,

1964; Hashin, 1965). As it is seen from Figure 6.1, the present

solution coincides with Hill-Hashin's lower bound for the composites

with stiffer inclusions. It is also found that for the composites

with softer inclusions, the result coincides with Hill-Hashin's upper

bound. Also, it is seen from Figure 6.1 that our result lies closely

with the result given by the three phase model. The effective elastic

moduli obtained by the self-consistent scheme are somewhat higher for

stiffer inclusions and lower for softer inclusions.

The expressions of the bulk modulus and shear modulus for perfect

bonding case are obtained, by using the successive iteration method,

as follows:

K

J

(GIn + Km) + ( K - 1)(l(m + fcm)

 

 

.59.- 111 (6.1)

Kn (Gm + Km) + (1 - f)(Kf - Km)

3. S.
+ n + f ( 1 - )

_:_q_- Gf Gf (6.2)

c c

m 59+; +1: £(Em-1)

f f

where G and K are transverse shear and bulk moduli. It is found that

the transverse shear modulus given by the Equation (6.1) coincides the

one given by composite cylinders model (Hashin, 1965). However, the
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composite cylinders model does not yield a solution for the tranverse

shear modulus, whereas the Mori-Tanaka mathod does give the solution

as given by Equation (6.2).

The effect of interface on the effective elastic moduli is

studied in Figures (6.2)~(6.10). Figure (6.2) represents the

nondimensional transverse shear modulus of composite Gc/Gm versus

fiber volume fraction f for the flexible interface model for changing

k - k a / Gm’ where "a" is the radius of the fiber, Gm is the shear

modulus of the matrix, and k is the tangential spring constant given

in Equation (3.5). In the numerical calculations, the normal spring

constant g - g a /Gm is taken as infinity in order to avoid the

overlapping of the material. Figure (6.3) supplements Figure (6.2)

by showing the change of the effective shear modulus with l/k for f -

0.5. When k is infinite, Gc corresponds to perfect bonding case, then

the behavior rapidly changes and finally Gc approaches asymptotically

the solution for pure sliding case. Note that E has a significant

effect on 6c“ The effective shear modulus decreases as k decreases,

therefore the weaker the bond, the lower the effective shear modulus.

At the limit case k - 0 (pure sliding), the shear modulus decreases

considerably in comparison with the perfectly bonded ease. The

similar behavior is observed in Figure (6.4), which illustrates the

effect of parameter E on the effective transverse bulk modulus Kc.

Note that Kc is independent of k due to symmetry. Figure (6.5) shows
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that the spring constant E has an important effect on the interfacial

shear stress.

Figures (6.6)-(6.lO) illustrate the numerical results for the

interphase model. Figure (6.6) shows Gc versus f and Gl/Gm for F -

Gf/Gm- 10 and £/f - 0.01. Similarly as for the previous model, the

weaker the interface, or the lower the stiffness of the interphase

region, the lower the effective shear modulus. This effect becomes

more pronounced as the inclusion volume fraction increases. It is

interesting to observe that for certain interphase stiffness (GI/Gm-

0.0055 for this case), the stiff fiber combined with the soft

interphase results the effective shear modulus of the composite to be

the same as those of the pure matrix material. Also, the soft

interphase may cause the effective modulus to become lower than that

of the matrix. For example, when Gl/Gm - 0.001, the increase in f

will only further reduce Gc’ as shown in Figure (6.6). Since the

interface plays an important role in transfering the load from the

matrix to inclusions, when G27 0, the inclusions will not contribute

toward the reinforcement. In Figure (6.6), the volume fraction of

inclusion is taken theoretically to f z 1 for completeness, but in the

typical composite this value never reached. Compared with the case

when GZ/cm - l, which corresponds to the case when there is no layer

(classical perfect bonding case), the stiffer interphase will improve

the elastic properties of composite. Similar phenomenon is observed

in Figure (6.7), which illustrates Kc/Km vs. f for F - 10 and
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£/f - 0.01 with changing Kl/Km° Figure (6.8) gives Kc/Km vs. Kl/K
m

and l/f for fixed inclusion volume fraction f - 0.2. Again it is

observed that the stiffer layer will improve the effective properties,

while the softer layer with larger thickness willeignificantly reduce

the elastic constants. Note that the thickness of interphase has a

significant effect on the effective properties if the layer is softer

than the matrix. Figures (6.9)-(6‘10) show the transverse shear

modulus and transverse bulk modulus vs. f for the composite materials

given in Table (6.1).



75

Table 6.1

Material properties of several coated-fiber composites

System E ET G

l Nicalon fiber 172.38 172.38 71.78

Carbon coating 34.48 34.48 14.34

LAS matrix 103.43 103.43 43.09

2 Tungsten fiber 345.0 345.0 135.0

Carbon coating 34.48 34.48 14.34

Nickel matrix 214.0 214.0 81.6

3 SiC fiber 431.0 431.0 172.0

Carbon coating 34.48 34.48 14.34

Titanium

aluminate matrix 96.5 96.5 37.1

71.78

14.34

43.09

135.0

14.34

81.6

172.0

14.34

13.

.25

.86

.25

0.4

0.01616

0.58384

0.4

0.0107

0.5893

0.4

0.0107

0.5893
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6.1.2 PARTICULATE COMPOSITES

The numerical results in this section include the effective bulk

and shear moduli of composites reinforced with spherical inclusions.

In the calculations presented, Poisson's ratio of inclusions, layers

and matrix is taken as 0.3 unless it is specified otherwise. The two

interfacial models considered in this dissertation can reduce to the

case of two phase composite with the perfect bonding at the inclusion

matrix interface. The results of both models coincide in this case.

As a check of the present prediction, we compare our results with

Hashin-Shtrikman upper and lower bounds (Hashin and Shtrikman, 1963)

and three phase model (Christensen and Lo, 1979). As is seen from

Figure 6.11, the present solution coincides with Hashin-Shtrikman's

lower bound for the composites with stiffer inclusions. It may also

be mention that the present solution coincides with Hashin-Shtrikman’s

upper bound for the composites with softer inclusions.

The perfect bonding results obtained by the current method are

expressed as:

x (3KE+4G )x +4£c (XE-K )

E; ' (3x +40 )K +3x f(K -x ) (5'3)
f m m m m f

ES 66 (K +26 )+G (9K +86 )+f(6 -6 )(6K +126 )

_
(6.4)

Gm 6Gf(Km+28m)+Gm(9km+8Gm)-f(Gm-Gf)(9Km+8Gm)
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where G and K are shear and bulk moduli. It is found that the

effective bulk modulus given by the Equation (6.3) coincides the one

obtained by the composite spheres model (Hashin, 1962). However, the

composite spheres model does not yield a solution for the effective

shear modulus, whereas the Mori-Tanaka mathod does give the solution

as given by Equation (6.4).

Figure 6.12 represents the ratio of effective shear moduli Gc/Gm

versus inclusion volume fraction f for the flexible interface model

for changing k - k a/Gm. Note that the parameter E has a significant

effect on Cc. The effective shear modulus decreases as k decreases,

therefore the weaker the bond the lower the effective shear modulus.

At the limit case

k - 0 (pure sliding), the shear modulus decreases considerably in

comparison with the perfectly bonded case.

Figure 6.13 supplements Figure 6.12 by showing the change of the

effective shear modulus with l/k for f - 0.4. When k approaches

infinity, Gc corresponds to the perfect bonding case, then the

behavior rapidly changes and finally Gc approaches asymptotically the

solution for pure sliding case. The results obtained by Benveniste

(1985) and Mal and Rose (1974) are given here for comparison. The

similar behavior is observed in Figure 6.14, which illustrates the

«effect of parameter E on the effective bulk modulus Kc. Note that K0

is independent of E due to symmetry.
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Figures 6.15-6.18 illustrate the numerical results for the

interphase model.

Figure 6.15 shows Gc/Gm versus f and Gfi/Gm for F - 10 and i/f -

0.01, where 62 is the shear modulus of the layer. Similarly as for

the previous model, the weaker the interface, or the lower the

stiffness of the interphase, the lower the effective shear modulus.

It is interesting to observe that the softer interphase may cause the

effective modulus to become lower than that of the matrix. Similar

phenomenon is observed in Figure 6.16, which illustrates Kc/Km vs. f

for F - 10, 2/f - 0.01 and change Kl/Km' where K2 is the bulk modulus

of the layer. Figure 6.17 gives Kc/Km vs. KI/Km and 2/f for the fixed

inclusion volume fraction f - 0.2 and Km/Kf<<l. Again it is observed

that the stiffer layer will improve the effective properties, while

the softer layer with larger thickness will have a significant effect

on the effective properties if the layer is softer than the matrix.

For a nearly incompressible interlayer and matrix, K >>G
1 1’ Km>> Gm’

the results coincide with Equation 1b in the paper of Maurer (1986) as

show in Figure 6.18.

Comparing Figure 6.12 with Figure 6.15, it is found that the

parameter k of the flexible interface model has the similar effect on

the effective shear modulus as Gfi/Gm of the interphase model, i.e. the

increasing of k or Gl/Gm will increase the effective modulus of the

composites. The fact that the interphase model gives the effective

modulus lower than that of the matrix for soft interlayer, which will
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not happen for flexible interface model even for the pure sliding, is

because of the effect of the layer's thickness. Since in the flexible

interface model it is assumed that the interface is very thin film

while in the interphase model certain thickness has been given (l/f -

0.01), which amplifies the effect of weak interface.
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6.2 THERMAL STRESS AND THERMAL EXPANSION COEFFICIENTS

6.2.1 UNIDIRECTIONAL COMPOSITES

Figures 6.19-6.20 show the effective thermal expansion

coefficents versus Poisson's ratio of the matrix um for the perfect

bonding case. It is interesting to find that the Poisson's ratio of

the matrix has a significant effect on the transverse thermal

expansion coefficent but insignificant effect on the longitudinal

thermal expansion coefficient. Note that when "m is great, the

transverse thermal expansion coefficent has a peak at f z 0.1. This

increase of acT can be interpreted in the following manner. The

fibers constrain the thermal expansion of the matrix in the

longitudinal direction. This constraining (compression) of the matrix

in the longitudinal direction is accompanied by the transverse strain

components (extensions) equal to the product of the compression strain

and Poisson's ratio. At the small volume fraction of fibers, this

extension of matrix has more effect on the overall expansion of the

composite in the transverse direction than the small thermal expansion

of fibers. Therefore in the transverse direction, acT becomes

effectively larger even than that of the matrix.

Figures 6.21-6.23 show the thermal stress versus the radial

distance for changing of the interphase thickness with the given

composite materials given in Table 6.1. It is seen that the
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interphase thickness may have significant effect on the stress field

in the composite.
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6.2.2 PARTICULATE COMPOSITES

Figures 6.24-6.28 represent the ratio of thermal expansion

coefficient a! / am versus inclusion volume fraction f.

In Figure 6.24 , the elastic properties of the interlayer are

given to be the same as those of the matrix, while the thermal

expansion coefficient of the layer is varied from lower to higher

values. The numerical results show that the lower ratio of a2 / am

yields the lower ac / am.

Figures 6.25 and 6.26 both show the effect of the interlayer

thickness on the ac / am. In Figure 6.25, mi / am is given as 0.5,

while in Figure 6.26 it is given as 10. The results show that when

a! / am is higher than 1, the thicker layer will yield higher ac / am,

and when a2 / am is lower than 1, the results will be opposite.

Figures 6.27 and 6.28 both shows the effect of interlayer

stiffness on the ac/ am when a! / am equals to one. Figure 6.27 shows

that when K£ / Km > 1, the increase in K1 / Km will cause increase in

ac / am. It is interesting to note that when Kl/Km < l, the increase

in KZ/Km will result again in the higher ac/am (Figure 6.28). It

implies that Ki/Km - 1 may give the lower bound of ac/am.

Figure 6.29 represents the radial stress at inclusion-interphase

interface versus KI/Km' It is observed that the change of az/am has a
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significant influence on the interfacial stress. The higher ratio of

afi/am will cause higher interfacial stress. The increase of Ki/Km

will also increase the interfacial stress when ag/am>l. However, when

az/am<l and Kfl/Km>l’ there will be no effect on the interfacial stress

as Ki/Km changes. When Kt/Km-o’ which corresponds to the debonding at

the interface, the interfacial stress arr becomes zero as expected.

One can also see that the solution for single coated inclusion gives

upper bound of the actual stress as expected.
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Figure 6.30 shows the interphase modulus variation following the

power law. The same variation is given to the interphase thermal

expansion coefficient. Figures 6.31-6.33 show the stresses and the

effective thermoelastic properties of the composite with properties

gradation at the interphase.

Figures 6.31 and 6.32 show the stresses along the radial

direction of the concentric sphere for f and (b-a)/a equal to 0.3 and

0.14 respectively. The stresses are normalized by do - KmemAT. The

radial distance is normalized by the radius of the matrix, d. The

result of the variable layer are compared with those of the constant

layer in which the interphase properties are taken as the average of

Equation (5.3) and (5.4) over the interphase volume, and the perfect

bonding result. It is clear seen that continuous variations in the

interphase elastic modulus and the thermal expansion coefficient

affect the stress states in all the constituents even though the

effects are more pronounced in the inclusions and the interphase.

This is very important since the composite failure often initiated in

the interphase.

Figure 6.33 shows the effective bulk modulus Kc/Km versus

inclusion volume fraction f. It is observed that the variable layer

has significant effect on the effective bulk modulus when the

interphase is thick but insignificant effect when the interphase is

thin. It is also seen from the figure that when Kf/Km > 1, the

thicker layer will increase the effective bulk modulus.
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Figure 6.34 shows the effective thermal expansion coefficient

ac/am versus f. It is observed that the variable layer has

insignificant effect on the effective thermal expansion coefficient.

It is also seen from the figure that wheb af/am < 1, the thick layer

will decrease the effective thermal expansion coefficient.
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CHAPTER 7

CONCLUSIONS

The local stress and displacement fields and the effective

thermo-mechanical properties of composite materials are predicted for

composites with imperfectly bonded interface by considering the two

interfacial models: the flexible interface model and the interphase

model. The closed form solutions are obtained. The results from this

study are compared to the perfect bonding results, bounds, and other

analytical results. It is observed that the interface behavior may

have significant effect on the stress field, effective elastic moduli

and thermal expansion coefficients.
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APPENDIX A

TRANSVERSE SHEAR MODULUS (2D)

THE INTERPHASE MODEL AND

THE FLEXIBLE INTERFACE MODEL

A1. A SINGLE CYLINDRICAL INCLUSION

A1.1 The interphase model

Consider a cylindrical coated inclusion embedded in a matrix is

subjected to a uniform transverse shear stress egg) - r0 at infinity.

Both the inclusion and the matrix are assumed isotropic. The

displacement fields are as follows:

a) in the inclusion (r < a)

26 uf

7:4 - [ (II-.f-3)Afr3 - 23f: ] sinzo (Al-1)

—-£—£ - - [ (”f + 3)Afr3 + ZBfr ] c0320 (Al-2)

b) in the layer (a < r < b)

ZGgui

’0

3
- [ (n£-3)A£r - ZBfir
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1 l

+ (n£+l)C£‘;- + 2D£-§ ] sin20 (Al-3)

r

2

26 u

44-- [ (n+3)Ar3+ZBr
To 2 1 2

l 1

- (”2-1)C£_;_ + 2D£——§ ] c0820 (Al-4)

r

c) in the matrix (r > b)

ZGum 1 1

-;:—£ - [ r + (nm+l)Cm-;- + ZDm—fg ] sin20 (Al-5)

r

ZGum 1 1
__IIL_£_ , __ _ _
f0 [ r + (mm 1)Cm r 2Dm 3 ] c0320 (Al 6)

r

In the notation used

3-lwi for plane strain

Ki - (i - f,£,m)

(3-vi)/(1+ui) for plane stress

where "1 is the Poisson's ratio of the components and G are the
i

transverse shear moduli. "a" is radius of inclusion and "b" is

outside radius of layer. Subscripts or superscripts f, 2, m

correspond to the fiber, layer, and matrix, respectively. A A
f. Bf! £9

32’ C2, D3, Cm and Dm are the constants determined from the perfect
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bonding boundary conditions, involving continuity of tractions and

displacements at fiber-layer and layer-matrix interfaces:

f i f f f
arr — rr ur - u ua - ua at r - a (Al-7)

oz - a“1 u2 - um u! - um at r - b (Al-8)

rr rr r r 9 0

where "a" is the radius of the fiber and ”b” is the outside radius of

the layer. Note that the boundary condition ”gr- r0 at infinity is

satisfied automatically by Equation (Al-5)-(Al-6).

A1.2 The flexible interface model

Consider a cylindrical inclusion embedded in a matrix is

subjected to a uniform shear stress 0:3) - r0 at infinity. Both

inclusion and the matrix are assumed to be isotropic. The

displacement fields are given as follows:

a) in the inclusion (r < a)

f
ZG u

__f_r_ _ 3_
,0 [ (nf 3)Afr 23f: 1 sin20 (Al-9)

f
ZG u

“:fi'l - - [ (Cf + 3)Afr3 + 23f: 1 c0520 (Al-10)
0

b) in the matrix (r < a)
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26 um l l

-::—I - [ r + (xm+l)Cm*;- + 2Dmf—5 ] sin20 (Al-11)

r

zcu‘“ . 1 1
_III_£_ _ __ _ _
r0 [ r + (Km 1)Cm r 2Dm :3 ] c0320 (Al 12)

where Af, Bf, Cm and Dm are the constants determined from the

interface boundary conditions as follows:

f m m f

ar9 - are - k ( uo - uo ) at r - a (Al-l3)

f m m f

arr - arr - g ( ur - ur ) at r - a (Al-14)

where "a" is the radius of the fiber, and ”k" and "g" are the spring

constants . Note that the boundary condition atr- r0 at infinity is

automatically satisfied by Equations (Al-ll)-(Al-12).

A2. Effective shear modulus for the composites with finite volume

fraction of inclusions

A2.l The interphase model

The single inclusion solution obtained in section Al is used in

the successive iteration scheme (Mori and Wakashima, 1990), which is

based on Mori-Tanaka average field theory (Mori and Tanaka, 1973), to

evaluate the effective shear moduli. Considering the average strain

in the composite, the effective shear modulus is obtained as:
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1 1 f+£

 ___ - ___ + 5 (AZ-1)

G G l + (f+2)a

C m

where

2

fl " :— [3Af32 + 2Bf1('1-' ' .1_.)

b2 Gm Gf

+ £_ [3A£(b“-a“) + 232(b2-a2)](l_ - £_) (AZ-2)

b2 Gm GI

a2 2

a - - __ [3Afa + 28f]

b2

2 2

- (b ‘a ) [3A2(b2+a2) + 231)] - 1 (AZ-3)

2
b

A2.2 The flexible interface model

The single inclusion solution obtained in section A1 is used in

the iteration scheme (Mori and Wakashima, 1990), which is based on

Mori-Tanaka average field theory (Mori and Tanaka, 1973), to evaluate

the effective shear modulus.

Considering the average strain in the composite, the effective

shear modulus is obtained as:

- ___ + B (A274)
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where

 

)9- I 3Afa2 +2396. - l.)
C G
m f

+1 [1+zcm(lc 1)-2m]

2c: 2 2
a a

1 2
- [Aa(n +3)+2B] (AZ-S)

f f f
20
m

a--[3Aa2+23] -1 (AZ-6)
f f
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APPENDIX B

TRANSVERSE BULK MODULUS (2D)

THE INTERPHASE MODEL AND

THE FLEXIBLE INTERFACE MODEL

Bl. A single cylindrical inclusion

81.1 The interphase model

Consider a single coated fiber is embedded in the matrix. All of

the constitutes are linear elastic and isotropic materials. The

(0)_ 0(0)_ 0 at
applied loading is the transverse hydrostatic stress 0

xx yy 0

infinity. The plane elasticity problem yields the following

displacement fields:

a) in the inclusion (r < a)

26 uf

-;§-§ - Af (sf-1)r (Bl-1)

b) in the layer (a < r < b)

26 u! B!

-—&—£ - A£(n£-l)r - ;_ (Bl-2)

”o
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c) in the matrix (r > b)

2G u l B

__m_r - (n -1)r - -m (31-3)
00 2 m r

The other displacement components vanish due to symmetry.

A B! and 8m are the constants determined from the perfect
f, Alf

bonding boundary conditions:

0f - 02 uf - u! at r - a (Bl-4)

rr rr r r

a£ - a” 03 - um at r - b (31-5)
1:]: rr r r

Note that the boundary condition ctr - so at infinity is automatically

satisfied by Equation (Bl-3).

81.2 The flexible interface model

Consider a single fiber is embedded in the matrix. Both fiber and

matrix are isotropic materials. The applied loading is the transverse

<0)_ 0(0)
hydrostatic stress 0

xx YY

- 00 at infinity. The plane elasticity

problem yields the following displacement fields:

a) in the inclusion (r < a)
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- Af (Kf-1)r (31-6)

b) in the matrix (r > a)

3

- 2 (um-1): - :9 (31-7)

The other displacement components vanish due to symmetry.

Af, 8m are the constants determined from the interfacial boundary

conditions:

of - am - ( um - uf
rr 3 r

rr r ) at r - a (81-8)

Note that the boundary condition arr - do at infinity is satisfied

automatically by Eqn.(81-7). Note also that the transverse bulk

modulus for this case is independent of the interface sliding

parameter k due to symmetry.

82. Effective bulk modulus of the composites with finite inclusion

volume fraction

82.1 The interphase model
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The effective transverse bulk modulus is defined by using the

concept of the average strain in the composite, i.ez'

1 _ 1 + f+£ 2 fl . (32-1)

E“ ii; 1+ (f+£)a

where K1 (i-f,£,m) are the transverse bulk moduli of components

\

defined as Ki - 2G1/(n1-l).

B-I__<_-_>Af+_<_-_)A,I (32-2)
f+£ K K f+£ K K ,

f m 2 m

a-i 2Af+i 2A£ - 1 (32-3)

f+£ f+£

82.2 The flexible interface model

The effective transverse bulk modulus is defined by using the

concept of the average strain in the composite, i.e:

 

1_-}_+ f 25 . (32-4)

K K 1 + fa
C m

where

l l l B A

fi-[(_-_)A +(_‘_lll_2'_.f_)] (32-5)

K K f 2K 2C a K
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(82-6)
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APPENDIX C

EFFECTIVE SHEAR MODULUS (3D)

THE INTERPHASE MODEL AND

THE FLEXIBLE INTERFACE MODEL

61. A single spherical inclusion

Cl.1 The interphase model

When a spherical inclusion in an infinite matrix subjected to a

uniform shear stress r0 at infinity, the displacement fields are as

follows:

a) in the inclusion (r < a)

f

26 u 6v

f z _ f 3 2

'0 (Afr - 1_2yf Bfr ) sin 0 sin 2¢ (61-1)

26 u f 7-4uf 3

-§;£ - (Afr - Ij§;f Bfr ) sin 0 cos 0 sin 2¢ (Cl-2)

f

26 u 7-4u

- o f 3"fgi (Afr 1:2;f Afr ) sin 0 cos 2¢ (Cl-3)

b) in the layer (a < r < b)
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6v 3 3

--‘L-' r

l-ZVI 2

5-4u D

--£ -£§ )sin 0 sin 2d

3 r

7-4u

3

1-2”! Bit

2

- ‘-& + '5 D2) sin 0 cos 0 sin 2¢

ZGEu - ( A r

r 2
0

3C

+—f+

1'

1

26 u

_Lf_(Ar,

7 i

O .

2C

4

r

26£u€ - ( A r

r l
O

_3‘32,
4

c) in the matrix (r >

26 um

-:m—I - ( r +

0

I'

:5 D2) sin 0 cos 2¢

13)

36 5-4u D
m __n_m 2 '4 + 1-2y 2 ) sin 0 Sin 2¢

1-
mr

26 20

__Q + -—n ) sin 0 cos 0 sin 2¢

r4 :2

(61-4)

(61-5)

(61-6)

(61-7)

(Cl-8)
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26 u“ 2C 20

_:HL1._ ( r - -% + 7‘? ) sin2 9 cos 2¢ (Cl-9)

O r r

where Af, 8f, A3, 83, C1’ D1, Cm’ Dm are the constants determined from

the perfect bonding condition at the particle-layer and layer-matrix

interfaces,

i.e. ‘

At r - a

a f - a 1 'uf - a! (01-10)
rr rr r r

f 1 f 2

are are uo - uo (61-11)

At r - b

l m 2 m

rr - arr _ ur - ur (61-12)

2 m 2 m

are - are uo - uo (Cl-13)

C1.2 The flexible interface model

Consider a single elastic inclusion of radius "a", embedded in an

elastic matrix, subjected to the shear stress 0:3) - r0 applied at

infinity. The displacement fields ars:



a) in the inclusion (r < a):

26Euf

’0

26 uf

_fJ;

’0

26Eu§

’0

b) in the matrix

26 um

’0

where 6 and u are

- (Afr

- (Afr

- (Afr

-n—I - (r + C -l + D
m r4

6v

- -—£;- 8fr3) sin2 0 sin 2¢

l-2uf

7-

1-2 f

- -j-:£ 8fr3) sin 0 cos 2¢

(r > a):

S-hu

r r

.2 .2.

' C111 4 + Dm 2
r r

the shear modulus and Poisson's ratio,

135

Av

- --;£ 8fr3) sin 0 cos 0 sin 2¢

_nl.

m 1-2v

m

-—m—1 _ (r - cm -% + Dm 23 ) sin 0 cos 0 sin 2¢

) sin 9 cos 2¢

) sin 0 sin 2d

r

(61-14)

(61-15)

(61-16)

(61-17)

(61-18)

(61-19)

respectively,
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and the subscripts and superscripts m and f denote the matrix and

inclusion. Af, 8f, Cm’ Dm are the constants determined from the

following boundary conditions at r - a:

uf - um a f - a m (Cl-20)

r r rr rr

f m m f

are - are - k (uo - uo) (Cl-21)

where k is the tangential spring constant, which characterizes the

flexibility of the interface at tangential direction. In the limit

cases, when k 4 m we have perfectly bonded interface and when k 4 0

pure sliding case exists. In order to avoid the overlaping

phenomenon, the normal spring constant g is chosen to be g » w in this

case. Note that the Equations (Cl-l7) - (Cl-l9) satisfy automatically

the boundary condition at infinity, i.e.

”12 ’0

62. Effective shear modulus for the composites with finite volume

fraction of inclusions

62.1 The interphase model

The effective shear modulus is defined by using the concept of

the average strain in the composite as
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é__%;_+_fl;£_p
(CZ-1)

c m l+(f+£)a

where

J. _2l_21_l_ -

fl ' 3+2 DAf' 5(1-2uf) BE“ ] (6f ' Gm) (CZ 2)

5 5
3 2].“: -a_)__ l. 1..

+ -——- A - 3 ] ( - ) (62-3)
2+2 [ 2 5(1-2u£)(b3-a3) 2 62 Cm

_L __21_ 2

° ' £+2 [Af' 5(1-2uf) Bf“ ]

5 s
__Zli__;é_l___

+ 337 [A1 - b B] ' 1 “2“"5(1-2u,)(b3-a3) 1

62.2 The flexible interface model

The effective shear modulus is defined by using the concept of

the average strain in the composite as

1.1.1—
G - G + 3 (CZ-5)

1+fa
c m

where



138

16-209 D

11. __IIIJI

5 ' s ‘ 6 [5 + 1-2u 3
I]! ma.

1.. _2L2

- 6f [SAf - 1-2vf Bfa ] }

JL—ZLL

+ [A2 ' 5(1-2uf)3£a ] ‘ Cf ' Cm ) (02‘6)

2
a Af - 5(1'2Vf> 8fa - 1 (C2-7)

It is observed that for a homogenous material containing pure

sliding inclusions, the results obtained from Equation (62-5) coincide

with Equation (51) in Shibata et al. (1990).
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APPENDIX D

EFFECTIVE BULK MODULUS (3D)

THE INTERPHASE MODEL AND

THE FLEXIBLE INTERFACE MODEL

01. A single spherical inclusion

D1.l The interphase model

When a single coated inclusion in an infinite matrix subjected to

(0) _ 0(0) _ 0(0) _ a
, the displacement

xx yy 22 0
the hydrostatics stress 0

fields are:

a) in the inclusion (r > a)

26Euf

00 - Af (sf-1)r (Dl'l)

b) in the layer (a < r < b)

1

26 u 8

00 A10:2 1)r r2 (D1-2)

c) in the matrix (r > b)



20 09 1 3m

‘32-: - 3 (mm-1)r - :3 (D1'3)

The other displacement components vanish due to symmetry.

Af, A1, 83 and 8m are the constants determined from the perfect

bonding boundary conditions:

of - 01 uf - u! at r - a (Dl-A)

rr rr r r

02 - a” u2 - um at r - b (01-5)
rr rr r r ,

Note that the boundary condition ctr - 00 at infinity is satisfied

automatically by Equation (bl-3).

01.2 The flexible interface model

When a single inclusion in an infinite matrix is subjected to the

hydrostatic stress 0(0) - 0(0) - 0(0) - a , the displacement fields
xx yy 22 0

are I

a) in the inclusion (r < a)

- Af (Rf-1)r (D1-6)
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b) in the matrix (r > a)

26 u 1 8m

J-Iao — 3 (Am-1)r - :2- (31-7)

The other displacement components vanish due to symmetry. Af, 8m are

the constants determined from the interfacial boundary conditions:

f m m f
arr - arr - g ( ur - ur ) at r - a (Dl-8)

Note that the boundary condition at: - do at infinity is satisfied

automatically by Equation (Dl-7). Note also that the transverse bulk

modulus in this case is independent of the interface-sliding-parameter

k due to symmetry.

D2. Effective bulk modulus of the composites with finite inclusion

volume fraction

D2.1 The interphase model

The effective transverse bulk modulus are defined by using the

concept of the average strain in the composite, i.e:

1 - _1_ + f” 2 3 (02-1)

1(— K 1 + (f+£)a
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where Ks ( s - f, 2, m ) are the bulk moduli of components.

fl-Ii<L-L>Af+_i_(1_-1_)A,I (02-2)
f+2 Kf x 2+2 K K

m 2 m

a - _f_ 3Af + _f_ 3A! - 1 (02-3)

f+2 f+2

D2.2 The flexible interface model

The effective transverse bulk modulus are defined by using the

concept of the average strain in the composite, i.e:

 

i. - i. + f 2 3 (02-4)

K K 1 + fa

c

where

1 l

fi-[(_'_)Af

Kf Km

1 8

+(_-_m_-_f_A )1 (02-5)

3K 26 a3 K

m f

a - 3A - 1 (02-6)
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APPENDIX E

EFFECTIVE THERMAL EXPANSION COEFFICIENTS (20)

THE INTERPHASE MODEL

E1. The stress and displacement fields

The thermal expansion coefficients for perfectly bonded fiber

composites have been derived by using both the successive iteration

method (Mori and Wakashima, 1990) and the modified composite

cylindrical

method give

model (which include interphase), it is found that both

the same results.

The effective thermal expansion coefficients for the composite

with coated

cylindrical

when a

temperature

cylindrical

fiber are derived here by using modified composite

model for symplicity.

coated fiber in a matrix is subjected to a uniform

change AT, the displacement and stress fields in the

coordinates (r, 0, z) are:

a) in the fiber ( r < a )

(El.1)

(El.2)
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f E: ”:32
a - A + 6

rr (1+vf)(l-2uf) f (1+vf)(l-2uf) 0

Bf f ”2E2

’ [ (1+vf)(1-2uf) ° +

f

T (1+uf)(l-2v “L 1 AT (51'3)f)

f _ E: A + ”£32

00 (1+uf)(l-2vf) f (1+uf)(1-2v

a 6

f) 0

E
u E

f f f f f

- [ (1+vf)(l-2uf) “T + (1+uf)(1°2”f) aL ] AT (E1.4)

  

of ‘ 2V£Ef A + Ef(1-vf) e

22 (1+uf)(1-2uf) f (1+uf)(l-2uf) 0

znyf f Ef(1'”f) f
  

0+

T (1+vf)(l-2V “L 1 AT (31.5)' [ (1+uf)(l-2u
f) f)

b) in the layer (a < r < b)

  

B2
u - Ag r + -;- (El.6)

2 - 31 7
uz 60 z

( . )

a, _ E, A - 3g 3 + ugEz 6

rr (1+u,)(1-2u,) 2 (1+0!) ré (1+v£)(l-2u£) 0



145

 

 

 

 

 

 

  

 

 

 

E u E

2 2 2.2 2

' 1 (1+0 )(1-20 ) “T ’ (1+0 )(1-20 ) “L 1 AT (31.3)
2 2 2 2

02 E2 A + E2 32 + ”2E2 6

00 (1+0£)(1-20£) 2 (1+0,) r‘ (1+02)(1-20£) 0

E u E

2 2 2 2 2

' 1 (1+0£)(1-20,) “1 ’ (1+0£)(1-20£) “L 1 AT (51°91

03 - 2V2E2 A + E£(l-v£) 6

22 (1+v£)(1-2u2) 2 (1+u£)(1-2u2) 0

2v E E (l'V )
2 2 2 2 2

‘ 1 (1+0£)(1-20£) “T + (1+0£)(1-20£) ‘0 1 AT (31.10)

c) in the matrix (r > b)

3

u - Am r + -m (31.11)

u: - 60 2 (31.12)

. E _‘ng. .3
A-

arr (1+0m)(1-20m) m (1+0 ) r ’ (1+0m)(1-20m) ‘0

E v E

——-1"-—— 1“ __III_IIL___ m

' 1 (1+0m)(1-20n) “T + a I AT
(1+0n)(1-20m) L (21.13)
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E E B u E

m .....Jl________ .__1L_.__gL. ___—_JLJ1______

0 - A + + e

90 (1+Vm)(l-2um) m (1+um) r (1+vm)(1-2um) 0

E u E

[ m an + ILL

(1+0m) (1-20m) 'r (1+0m) (1-20m)
 
 

a: ] AT (31.

 

2v E E (l'V )
m 44D -E

022 " (1+0m)(1-20m) Am + (1+0m)(1-20m) ‘C

2v E m E (l'V )
[_IIJL—a +—-111——111—-eo]A'r (31.

(1+um)(1-2um) T (1+vm)(l-2vm)

where E and v are the Young's modulus and Poisson's ratio, and the

subscripts and superscripts f, 2 and m denote the fiber, layer and

matrix. A , A , 8 , A , 8 and e are the unknown constants to be
f 2 2 m m 0

determined from the following boundary conditions:

a - a u - u at r - a (El.
rr rr r r

2 m 2 m

arr - arr ur - ur at r - b (El

m

arr - 0 at r - d (E1

0:2(area of fiber) + a:z(area of interfacial layer)

+ a:z(area of matrix) - 0 (E1

14)

15)

16)

.17)

.18)

.19)
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where "a" is the radius of the fiber, "b" and "d" are the outside

radius of the layer and matrix. Note that Equation (El.19) is due to

the fact of force equilibrium in the z-direction.

E2. Effective thermal expansion coefficients

The effective thermal expansion coefficients are, by definition,

the average strains resulting frofi1a unit temperature rise for a

traction free composite. Therefore, a: and a; are given as follows

c .

L AT (E2.l)

C

T AT AT (“'2’



148

APPENDIX F

EFFECTIVE THERMAL EXPANSION COEFFICIENTS (3D)

THE INTERPHASE MODEL

Fl. A single spherical inclusion

When an isolated spherical coated inclusion in a matrix is

subjected to a uniform temperature change AT, the displacement and

stress fields in the spherical coordinates (r, 0, ¢) are:

a) in the inclusion (r < a)

f .

ur - (Afr)AT (31.1)

af-a -af-3K(A-a)AT (F12)
rr 00 «I f f f °

b) in the layer (a < r < b)

3 - ( A + 3 )AT F1 3ur 1r r3 ( . )

2 3

arr - ( 3K£A£ - 461 :3— - 31923:)Z )AT (31.4)

a - oz - (3K A + 26 E; - 3K )AT (F1 5)

oo 40» . 2 2 2 3 2"2 °

'
1

c) in the matrix (r > b)
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B
m _ _m
ur 3 AT (El.6)

r

m 53
arr - ( - 46m r3 - 3Kmam )AT (Fl.7)

m m In .
099 - a¢¢ - ( 26m r3 - 3KmaIn )AT (F1.8)

where K and G are bulk and shear moduli. The other displacement and

stress components are zero due to symmetry. Af, A2’ Bland 8m are the

unknown constants to be determined from the perfect bonding boundary

conditions at the particle-layer and layer-matrix interfaces:

of - a2 uf - u! at r - a (F1.9)

rr rr r r

2 m 2 m

arr - arr ur - ur at r - b (Fl.10)

m

a - 0 as r v m (F1.ll)

rr

where ”a" is the radius of the particle, and "b" is the outside radius

of the layer. Note that the stresses in the matrix are chosen such

that the condition of vanishing tractions at infinity is automatically

satisfied (Am is taken as zero).

The zeroth-order solution is given as:

e; - 0 AT (F1.12)
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*

where ‘0 and A00 are the zeroth-order eigenstrain and the average

stress disturbance in the coated inclusion, respectively.

 

2 1

" ‘ f<1%)KEA£ (1 -—)K2A2
f+2 <Kf Km f+2 (K2 Km

+ _f (af- am) + _f (al- am) (31.14)

f+2 f+2

and

f 2

1 - ___ 33f Af + 32, A2 (31.15)

f+2 f+2

F2. First order solution

Consider an isolated spherical coated inclusion subjected to

(1) _ 0(1) _ 0(1)
hydrostatic stress a - a at infinity. The stress

xx yy 22 l

and displacement fields are as follows:

a) in the inclusion (r < a)

u: - (A; r)a1 (32.1)

0:: - ago -a:¢- (afoéw1 (32.2)

b) in the layer (a < r < b)
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B
2 ' _1

I

B
z I z

BI

2 3 ' .2.

c) in the matrix (r > b)

' in
u - (Amr + 3 )01

r

' 3;.
art - (3KmAm - 46 r3 )a1

. 3'
009 a¢¢ (3KmAm + 26m r3 )01

I I I I

(F2.3)

(F2.4)

(F2.S)

(F2.6)

(F2.7)

(F2.8)

Af, A3, Am, 81 and 8m are the constants determined from the following

boundary conditions:

f 2 f

a - a u - u

rr rr r r

2 m 2

a - a u - u

rr rr r

aIn - 0

rr 1

where

at r - a (F2.9)

at r - b (F2.10)

as r 4 m (F2.ll)



fl - ___ ( __ - __ )K + ___ ( __ - ___ )K A (F2.12)

f+2 K K fAf f+2 K fl 3

f m 2 m

and

A f 3K ' 3 '- ___ fAf + ___ 3K£A£ (F2-13)

f+2 f+2

F3. Effective thermal expansion coefficient of the composites with

finite inclusion volume fraction

The effective thermal expansion coefficients are, by definition,

'the average strains resulting from a unit temperature rise for a

traction free composite

 

c 1 m 1 *

a - __ <e > - a + __ (f+2) E (F2.14)
ij AT ij D ij AT ij

therefore

ac - a” + f” a (32.15)

1 + (f+2)A

where n is defined in (F1.15) and A in (F2.13).
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