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ABSTRACT

INTERACTIONS BETWEEN STREAN-WETLAND BOUNDARIES AND AN

AQUIEER STRESSED BY A PUNPING WELL

BY

Yakup Darama

The rates of stream depletion (q,) and captured wetland

evapotranspiration (q,) caused by a pumping well located in a

connecting water table aquifer are studied.

An analytical model is developed to predict q, caused by

cyclic pumping from a deep phreatic aquifer. Equations and

dimensionless plots are developed for the volume of stream

depletion over a pumping cycle (vac) and for the maximum rate

of stream depletion at dynamic equilibrium. These plots

provide a way to determine the time required to reach

equilibrium and the error in q, produced by neglecting the

nonuniform pumping rate within a pumping cycle. Analysis

showed that vac ending at time t, is equal to the volume of

stream depletion between the start of pumping and time t by

continuous pumping and under some circumstances, approximating

the effects of cyclic pumping by a continuous pumping at the

equivalent cycle-average rate is not adequate.

A second analytical model is developed to predict q, and

q, caused by a continuously pumping well located in a shallow

phreatic aquifer. Linear variation of q, as a function of the

drawdown of the water table is incorporated to the model .

Scaled plots of q, are developed for transient and for steady
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state conditions. Analysis showed that as the pumping

distance increases, q, increases, while q, decreases, and the

system reaches equilibrium faster. Analysis also showed that

linear ET assumption can produce errors in q,, and q,.

A third model is developed to predict the steady state g,

by a pumping well including the effects of the nonlinear

variation of q; as a function of water table depth.

Dimensional analysis is used to determine the relationship

between the scaled q,, the scaled pumping distance (a/hl) , the

scaled hydraulic conductivity (Ks/PET) , and the scaled initial

depth to the water table ((d,/h,,) ") . Families of scaled graphs

are developed for a wide range of these parameters. Analysis

showed that (1) (CL/1),)" has an increased effect on g, as KS/PET

increases, and (2) q, decreases as Ks/PET decreases while

(d,/h,,)", and a/h, increase.
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CHAPTER I.

INTRODUCTION

Groundwater is one of the major water resources in the

United States as well as around the world. In the past and

present, groundwater has been a major source of fresh water

for many municipalities, industries and irrigation. In the

United States alone, groundwater is estimated to supply water

for about half of the population and about one-third of all

irrigation water (Bouwer, 1978). Reports (William et al.,

1973; Henningsen, 1977; Bedell and Van Til, 1979; Fulcher et

a1. , 1986) indicate that groundwater usage for irrigation

purposes has been increasing tremendously over the past two

decades and will be increasing in the future. Since groundwa-

ter supplies are not unlimited, adequate management of

groundwater is essential to keep the groundwater resources

usable for this and future generations.

It is well known that surface water features are

hydraulically connected to the groundwater in the adjacent

aquifers. Because of the hydraulic connection between the

surface water features and the groundwater in the aquifer,

water removed from the aquifer to irrigate crops reduces the

flow available to support habitats in streams, lakes, and

1
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wetlands. Reduction of streamflow and/or evapotranspiration

(ET) for phreatophyte use occurs because the irrigation water

is returned to the atmosphere rather than to the aquifer.

This depletion rate is often referred to as capture

(Bredehoeft et al., 1982) that can be considered as reduced

groundwater flow to surface water features or increased flow

from the surface water features toward the pumping well. This

capture often adversely effects the quantity and the quality

of water in ‘wetlands, lakes and streams during' drought

periods. The magnitude and timing of the capture caused by

pumpage are transmitted through the aquifer to the surface

water features and depend upon the aquifer properties

(storativity or specific yield and transmissivity), the

hydraulic connection between the aquifer and stream and/or

wetland, and the distance between the pumping well and the

stream. Numerous problems, past and present, have

illustrated the excessive reduction in the quantity of

streamflow and wetland evapotranspiration caused by excessive

pumping for irrigation purpose. In order to reduce the

adverse impacts of pumping on streamflow, legislation was

created in Massachusetts (Mueller and Male, 1990) to regulate

pumping rates at certain times.

To determine the reduction in wetland ET due to drawdown

of the water table by a pumping well, it is necessary to

recognize the importance of the unsaturated zone. The

unsaturated zone is near the ground surface and plays a

critical role in the determination of evaporation or the ET
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rate from the ground surface to the atmosphere. Several

investigators (Gardner, 1958; Anat et al., 1965, Ripple et

al., 1972; Skaggs, 1978; Markar and Mein, 1987; Warrick, 1988)

indicated that the rate of actual ET is limited by the soil

water distribution in the unsaturated zone when the ET rate is

less than the potential rate. They concluded that the

distribution of soil water in the unsaturated zone strongly

depended on the unsaturated soil properties and the depth to

water table.

1.1. Objective and Scope of the Study

1.1.1. Objective

The overall objective of this research is to gain an

improved understanding of the transient and steady state

behavior of stream depletion caused by wells that pump water

(1) from a deep water table aquifer where there is no ET loss

and (2) from a shallow water table aquifer where there is ET

loss from 'the ground surface» The specific objectives

involved in this study are:

1. To develop an analytical model to predict stream depletion

caused by nonuniform cyclic pumping during the period when

flow in the aquifer establishes a condition of dynamic

equilibrium.

2. To develop an analytical solution that predicts stream

depletion and captured wetland ET that varies as a linear
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function of water table depth in a semi-infinite wetland

area where water is pumped from a shallow phreatic aquifer.

3. To investigate the adequacy of the analytical solution for

stream depletion where the effects of linear variation of

captured wetland evapotranspiration are included.

4. To develop a method that can approximate the nonlinear

variation of wetland ET accurately.

5. To develop a method that can be used to predict steady

state stream depletion which accounts for the effects of

nonlinear variation of captured wetland ET.

1.1.2. Scope

This study is carried out in three phases. In the first

phase of the study, two analytical models are developed for

stream depletion rate and volume produced by a pumping well.

The first model describes the development of the analytical

solution for stream depletion produced by nonuniform cyclic

pumping from a deep semi-infinite phreatic aquifer. The

solutions are obtained by the application of the superposition

principle to Jenkins' solution for stream depletion produced

by steady continuous pumping of a well (Jenkins, 1968). The

second model describes the development of the analytical

solution for stream depletion and captured wetland ET caused

by continuous pumping of a well located in a shallow semi-

infinite phreatic aquifer. The effects of ET are incorporated

into the solutions as a linear function of water tablezdepth.
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The second phase of the research consists of two stages.

The first stage is to develop’atmethod.that could describe the

nonlinear behavior of wetland ET accurately. Anat et al.’s

(1965) method to predict the steady state ET from the water

table is used to develop this method. The dimensional

analysis technique is used. to combine this method. with

Hantush’s equation for stream depletion so that the scaled

parameters that influence the stream depletion and captured

wetland ET could be determined. Dimensional analysis showed

that the scaled steady state stream depletion depends on three

independently scaled parameters: the pumping distance, the

hydraulic conductivity, and the initial depth to water table.

The second stage of the phase is a numerical study of

steady state stream depletion in a hypothetical stream-aquifer

system by using the two dimensional finite element model. The

numerical model is modified to incorporate the nonlinear

variation of wetland ET as a function of water table depth.

Anat et al.'s method is used to calculate ET losses in the

model. The results of the numerical simulations are evaluated

by the scaled parameters developed in the first stage. Three

families of dimensionless graphs are developed that can be

used to predict steady state stream depletion rates for a wide

range of aquifer properties. These graphs are valuable tools

that eliminate the necessity of the numerical model.

In the third phase, the study is. summarized and the

conclusions are presented.



CHAPTER II

LITERATURE REVIEW

2.1. Introduction

The objective of this study is to gain an improved

understanding of the transient and steady state behavior of

stream depletion and/or captured wetland ET caused by a

pumping well located in a shallow water table aquifer. A

review of the literature for stream.depletion and evaporation

(or ET) from the water table was necessary to meet this

objective. This section is devoted to a review of the

previous research in these areas. This review will be divided

into two sections. The first section summarizes the studies

related to stream depletion produced by continuous pumping

wells“ The second section. reviews :models that. predict

evaporation or ET as a function of the depth to the water

table and unsaturated soil properties.

2.2. Stree- Depletion by Pumping Wells

The study of the interactions between surface water

features and aquifers started in the early 1940's. Theis

6
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(1941) was the first investigator to derive an analytical

expression that determines the percentage of the pumped water

being diverted from the stream by a pumping well, provided

there is a hydraulic connection between the aquifer and the

stream. Later, Theis and Conover (1963) developed the first

dimensionless graph for calculating the percentage of stream

depletion during steady continuous pumping of a well.

Glover (1960) developed charts based on the theoretical

equations of Glover and Balmer (1954) to determine the capture

from the river which was computed in terms of the distance of

the well from the river, the properties of the aquifer

(storativity and transmissivity), and time.

Hantush (1955, 1964a, 1964b) derived the rate and volume

of stream depletion for a leaky water table aquifer

hydraulically connected to a straight stream. He developed

the stream depletion rate and volume in terms of the

complementary error function of the dimensionless pumping time

and dimensionless leakage coefficient. He developed these

equations by combining the drawdown equation for a leaky water

table aquifer (Hantush and Jacob, 1955) with the generalized

form of Darcy's equation.

Hantush (1965) also developed an analytical equation for

depletion rate and volume from streams with semipervious beds.

He replaced the resistance to flow due to the semiperviousness

of the stream bed which is determined by use of a pumping test

technique (Kazmann, 1948; Rorabaugh, 1956; and Hantush, 1959)

by an equivalent resistance. This resistance is caused by a
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horizontal flow through a semipervious layer of insignificant

storage capacity which is lying between the aquifer and the

streambed. He introduced this resistance in his previous

analytical solutions as an additional length between the

pumping well and the stream. Hantush (1967) made further

refinements to his analysis and eliminated the assumption of

a straight river of infinite length. He developed an

analytical solution for stream depletion by pumping wells that

are located near streams that border a quadrant aquifer.

Jenkins (1968) defined a "lumped” parameter known as the

"sdf" which is a time scale that uniquely characterizes the

aquifer response curve. The "sdf" is based on the aquifer

parameters (transmissivity and specific yield) and the

perpendicular distance from the stream to the well. He

developed dimensionless plots of rate and volume of stream

depletion based on the equations developed by Glover and

Balmer (1954), and Hantush (1964a, 1965) so that calculation

of the stream depletion rate and volume as a function of sdf

and time would be easier for practical purposes. Furthermore,

Jenkins (1968) described the residual impacts after pumping

stopped and briefly discussed cyclic pumping. Jenkins (1968b)

and Moulder and Jenkins (1969) also modeled a non-straight

river of infinite length to determine stream depletion by

using electric-analog and digital computer.

Recently, Burns (1983) used Jenkins' method to describe

how to develop discrete unit response functions for unit

periods of stress and showed how the shape of the response
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function depended on the value of sdf. He used the unit

response function and time series of aquifer stresses with a

discretized version of the convolution equation to compute the

time series of stream depletion.

None of the theoretical studies reviewed above indicate

that the effect of a discharging well on a nearby stream is

independent of the length of the reach of a stream-aquifer

system. Taylor (1971) confirmed this by using a digital

computer model of short and long reaches of a stream-aquifer

system. From the results of digital computations, he

concluded that short reaches of stream-aquifer systems gave

comparable results to long reaches with considerably less

effort and expense.

All of the analytical models briefly reviewed above rely

on the linearity of the governing flow equation of the

unconfined aquifer. The basic assumption required to have a

linear aquifer system is that the drawdowns are small compared

to the thickness of the aquifers. These models and the

analytical solutions developed in the present study considered

an average hydraulic conductivity and specific yield for the

entire aquifer. They did not consider how sensitive the

stream depletion was to stochastic variations of hydraulic

conductivity and specific yield of the aquifer.

In a recent study, Hantush and Marino (1989) developed a

stochastic water management model for the stream-aquifer

system. The model can be used to optimize pumping patterns

from the aquifer while minimizing the stream depletion rate
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under specified system performance probability requirements.

The model considers the distribution of the hydraulic

conductivity and the specific yield of the aquifer. These

parameters were assumed to be log-normally distributed. The

stream depletion rate was introduced into the model as a

function of random aquifer parameters with a known probability

distribution. Hantush and Marino (1989) applied their model

to a hypothetical situation so that they could examine the

sensitivity of the pumping patterns and stream depletion by

varying the statistical properties of the aquifer parameters.

They concluded that the results obtained from the model

indicated that the stream depletion rate was insensitive to

the coefficient of variation of the log-specific yield and

slightly sensitive to the probability levels, whereas, the

depletion rate was highly sensitive to the hydraulic

conductivity statistics.

Analytical solutions that are briefly reviewed above for

computing streamflow depletion rates neglect conditions that

exist in typical stream aquifer systems. Some of these

conditions are (1) partial penetration of the stream to the

aquifer, (2) the presence of the semipermeable layer which

covers the streambed, (3) aquifer storage available to the

pumping well from areas beyond the stream and (4) hydraulic

disconnection between the stream and the aquifer. Recently,

Spalding and Khaleel (1991) analyzed these conditions by using

the 2-D finite element.model, AQUIFEM-l, (Townley and Wilson,

1980). From ‘the ‘results of numerical experiments they
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concluded that the analytical solutions can be in error by 20

percent for neglecting the partial penetration of the stream,

by 45 percent for neglecting the existence of a semipermeable

layer between the stream and the aquifer, and by 21 percent

for neglecting the storage available in areas beyond the

stream. They also found that neglecting hydraulic

disconnection had only a minor effect. They indicated that the

combined effects of these errors can be as high as 85 percent.

2.3. Steady State Evaporation Fran the later Table

The steady state upward flow of water from the water

table through the soil profile for evaporation from the soil

surface was first studied by Moore (1939) . He introduced

water tables at the bottom of soil columns and allowed the

soil to absorb water. The soil surface was subjected to

evaporation and tensiometers were placed along the length of

the column. By using these tensiometers, he observed the

relationship between water pressure, moisture content, and

rate of water loss from the water table. As a result of his

experiments, he concluded that the finer soils supplied higher

evaporation rates even at the greater depths to the water

table.

Theoretical solutions of the flow equations for

evaporation processes from the water table were given by

several investigators, including Philip (1957), Gardner

(1958), Staley (1957), Anat et al. (1965), Ripple et a1.
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(1972) and Warrick (1988).

Gardner (1958) analyzed upward flow rates with the water

table at any particular depth.and any suction head at the soil

surface. For homogeneous soils, he started with the

"diffusivity equation" that describes unsteady flow in

partially saturated porous media. He solved this equation for

the special case of steady one dimensional flow in a vertical

(upward) direction.

 

S

d3
2 =

{1+}? (2.1)

C

Here 2 is the depth to water table, S is the suction head, q

is the steady state evaporation flux, and K5 is the

unsaturated hydraulic conductivity (it is sometimes called

"capillary conductivity"). He defined an empirical equation

for the unsaturated hydraulic conductivity as:

K = a. (2 2)

‘ b,+S” .

 

Where as, b3, and n are constants for particular soils. He

substituted Equation 2.2 into Equation 2.1 and obtained

analytical expressions for the steady state evaporation flux

when n = 1, 3/2, 2, 3, and 4. Gardner also showed maximum

values of evaporation as an inverse function of the depth to

the water table when the suction head approaches infinity.

Gardner and Fireman (1958) conducted laboratory studies

of evaporation from soil columns. The columns were saturated
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and drained a few times in order to develop or simulate a

structure of the soil in the columns as close as possible to

soils in the field. The water was supplied from a reservoir

through porous cups at the lower end of the column. They

simulated different ranges of water table depths by varying

the vertical position of the inflow reservoir. In addition

they measured evaporation fluxes for two soils: Chino clay and

Pachappa sandy loam. They found agreement between the theory

and the experiment.

Staley (1957) conducted wind tunnel experiments to

determine how the evaporation rate from a fine sand column was

affected by the wind velocity and the depth of the water

table. He also derived functional relationships between the

evaporation rates under specific ambient conditions and the

depth of the water table. Staley’s approach was different

from that employed by Gardner. He employed Darcy's law for

the case of one dimensional flow in the vertical direction and

rearranged this equation to give an explicit expression

describing the rate of change of capillary pressure with the

depth to the water table as a function of evaporation flux and

capillary conductivity. He solved this expression for 2 which

is identical in form to Gardner's equation (Equation 2.1).

Schleusener and Corey (1959) studied the role of

hysteresis in reducing evaporation from the soils in the

presence of a water table. They concluded that the analysis

of upward movement of water from a water table in the absence

of hysteresis effects does not provide a satisfactory
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explanation for the inverse relation that Gardner (1958)

found.

Anat et al., (1965) modified Duke's (1965) equation for

maximum rate of upward flow for evaporation from the water

table. They expanded the term in the infinite integral of

Duke's equation into a convergent series and integrated it

term by term. They obtained the first dimensionless explicit

equation for maximum upward flux from the water table in terms

of depth to water table, and the hydraulic properties of soil.

Ripple et al. (1972) also developed a set of

dimensionless equations and graphs that can be used to

estimate maximum steady state evaporation from the water

table. Their treatment of evaporation was more flexible than

previous investigators, because they considered the role of

meteorological conditions. Their procedure makes it possible

to estimate the steady state evaporation from soils including

layered soils, with a high water table. The field data

required include soil-moisture characteristic curves, water

table depth, and a record of air temperature, air humidity,

and wind velocity at one elevation (Hillel, 1980; Ripple et

al., 1972).

Recently, Warrick (1988) developed additional analytical

solutions for steady state evaporation from a shallow water

table. He incorporated Gardner’s unsaturated conductivity

equation (Equation 2.2) into Richard's equation for steady

state upward flow. His solution is valid for all n > 1,

including fractional values and bs= 0, therefore is more
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general than Gardner's solution. .However, Warrick's equation

is an implicit equation and requires iteration to determine

the value of steady state evaporation.

2.4. Summary

The literature review in the preceding sections shows

that analytical solutions used to predict stream depletion in

the case of nonuniform cyclic pumping are limited. It also

showed that there is no analytical solution available for

stream depletion which includes the effects of captured

wetland ET.

The present study will go beyond these studies in several

aspects. For example, in the first phase of the research, the

first analytical model will focus on stream depletion caused

by nonuniform cyclic pumping during the period when flow in

the aquifer establishes a condition of dynamic equilibrium.

It will show the magnitude of the error in depletion rates

estimated by assuming steady-continuous pumping at the cycle-

average rate. The second analytical model will focus on

stream depletion and/or linear variation of captured wetland

ET caused by the continuous pumping of a well from a shallow

water table aquifer.

The literature review in this chapter showed that ET from

the ground surface varies as a nonlinear function of the

position of the water table. This indicates that the second

analytical solution for stream depletion and captured wetland
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ET has limitations. Therefore, the accuracy of the linear

variation of captured wetland ET will be investigated.

In order to obtain a more accurate solution for stream

depletion and captured wetland ET, numerical simulations will

be carried out by using a 2-D finite element model. The model

will be modified to incorporate the nonlinear variation of

wetland ET as a function of the position of the water table.

The numerical model will be applied to a hypothetical

situation to simulate steady state stream depletion and

captured wetland ET for a large range of aquifer parameters.

The present study will also make use of the dimensional

analysis technique to determine the scaled aquifer parameters.

The result of the numerical simulations will be plotted in

dimensionless graphs for a wide range of the scaled aquifer

parameters. These dimensionless graphs will be useful tools

for determining steady state stream depletion rates and

nonlinear captured wetland ET rates without employing the

numerical model.



CHAPTER III

STREAM DEPLETION EY CYCLIC PUMPING OP WELLS

3.1. Introduction

Groundwater withdrawals for irrigation have been

increasing over the past two decades in humid regions of the

U.S. These withdrawals occur primarily during summer months

and impact wetlands, streams, and lakes. For example, a

portion of the discharge from a pumping well located in an

aquifer that is hydraulically connected to a stream consists

of water captured from that stream (Figure 3.1) . The

groundwater withdrawal reduces the streamflow. This can occur

as a reduction of groundwater flow to the stream or an

increased flow from the stream to the aquifer. Besides

reducing the streamflow, secondary effects include the

possible reduction in quality of instream flow or the need to

improve the quality of point discharges in an attempt to

maintain instream water quality. This could be especially

pronounced during drought periods. Assuming that the demand

for consumptive water use will increase,it is important to

continue improving the methods available for estimating the

impacts of future groundwater use.
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Previous works lead to analytical solutions describing

the depletion of stream flow during a period of constant

pumping. Superposition was used to obtain similar solutions

for the period following a single episode of pumping and it

was recognized that other solutions could be obtained by this

method. In this chapter, an analytical method for stream

depletion as it approaches dynamic equilibrium in response to

cyclic pumping was derived.

This chapter focuses on stream depletion caused by

nonuniform cyclic pumping during the period when flow in the

aquifer establishes a condition of dynamic equilibrium.

3.2. Strean Depletion During a Single Pumping Cycle

3.2.1. Strean Depletion During Pumping

Previous investigators (Jenkins, 1968; Theis, 1941; Theis

and Conover, 1963; Glover and Balmer,1954; Hantush,1964a)

derived equations for rate and volume of stream depletion

caused by a constant, steady pumping of water from.an aquifer.

This stream depletion is also referred to as capture

(Bredehoeft et al.,1982). According to Jenkins (1968) the

dimensionless stream depletion rate at time t is

qr , _t_e on (3.1)
-c—) erfc [(l 4t) Osts

and the dimensionless volume removed from the stream in

time t is



t

Vt t. q C. 2 '14!)

—= —+1—- ——e C 0st: (3.2)
or: (21: )0 “:7; °°

In Equations 3.1 and 3.2

aZS
t.=—1I'_z (3e3)

The term‘qlis the response time of the aquifer which is used

in this study in preference to Jenkins' (1968) stream

depletion factor. In this stream depletion problem, t; is a

measure of the time required for the aquifer to reach a new

equilibrium after a pumping stress Q is first introduced at

the well located a distance "a" away from the stream boundary

where water is captured.

To develop Equations 3.1 and 3.2, the following

assumptions are required for the aquifer properties: (1) T is

constant with time and space, therefore, drawdown is

negligible compared to the thickness of the phreatic aquifer;

(2) there is no recharge to the aquifer under natural

conditions, so that the water-table is initially horizontal;

(3) the aquifer is isotropic, homogeneous and.semi-infinite in

areal extent; (4) the stream that forms the boundary is

straight and fully penetrates the aquifer; (5) water is

instantaneously released from aquifer storage; the well fully

penetrates the aquifer; (6) the pumping rate is steady during

any period.of pumping; (7) the temperature of the water in the

stream is constant and is the same as the temperature of the

water in the aquifer.



21

Equation 3.1 is plotted in Figure 3.2 where the solid

line shows the stream depletion rate as it approaches the

pumping rate which is shown by the broken line. As time goes

to infinity the depletion rate approaches the pumping rate.

The area under the q curve between zero and t gives the

accumulated volume of stream depletion (V) at time t and the

area between the solid line and the broken line in the same

period is the accumulated volume of water mined from aquifer

storage.

A

qt

   

0 ——__MWLML_

Wanna . . 1

Water
   

 o . t

Figure 3.2 Stream depletion during constant-steady pumping.

3.2.2. Stream Depletion After Pumping Stops

Stream depletion continues after pumping stops (Jenkins,

1968). If tP is the time the pump was on and t is the time
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when conditions are assessed, the volume of water pumped from

the well during this time is Qt,. .Assuming t z t), then as t

approaches infinity, the volume of stream depletion v,

approaches QtP, if the stream is the only source of captured

water. The rate and volume of stream depletion at any time

after pumping ends can.be computed using Equations 3.1 and 3.2

and the method of superposition. According to Jenkins (1968) ,

the equation for rate of stream depletion after pumping ends

= - ‘3; _ _ t. a (3.4)

Q: Q (1 erf 4t) 0 [1 erf\J ——4(t-tp)] cysts

Equation 3.4 is plotted in Figure 3.3.
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Figure 3.3. Stream depletion during and after pumping



23

3.3. Rate of Stream Depletion During cyclic Pumping

3.3.1. Conceptual Description

The rate of stream depletion during cyclic pumping can be

calculated using the principle of superposition and Equation

3.4. A detailed example is given below. Suppose t, is the

length of the pumping period as shown in Figure 3.4.

Furthermore, suppose, this pattern repeats itself at intervals

in as shown in Figure 3.4. The final stream depletion rate is

obtained by adding the stream depletion rate produced by each

individual pumping period. In the following section, an

equation is derived to calculate the rate of stream depletion

at any time after pumping starts.

3.3.2. Analytical Solution for Stream Depletion

An analytical expression for the rate of stream depletion

during cyclic pumping can be written for the conceptual

problem stated above. For constant t9 and t,, if ta, t“, U“

and U; are defined as follows:

 

 

t01=t-tdi (3.5a)

U , t. (3.5b)
01 4t°1

tuft-tp-tdi (3.50)

‘5 3.5d
U111: . ( )

41:m
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and the rate of stream depletion is

N-l

(I, = Q;6(t°1) [l-erflUoiH-Mtni) [1-erf(Uni)] 0stsco (3.6)

-0

Here 6 is the unit step function which has a value of 1 when

its argument is greater than zero, and a value of zero when

its argument is less than or equal to zero. The arguments are

the terms (t-tdi) and (t-tP-tdi) . The summation over 1 starts

at zero in order to include the impact of the first pumping

cycle, and ends at (N-l) where N is the number of times the

pump is turned on in the time t.

The detailed example in Figure 3.5 is useful to show the

nature of Equation 3.6. If t, is 90 days and t, is 360 days,

then the stream depletion rate g, at t = 450 days can be

calculated as follows: At t -= 450 days, N-l = 1. When i = O,

the term in the first square bracket of Equation .3.6

calculates the depletion rate q,' at t’= 450 days and the term

in the second square bracket of Equation 3.6 calculates the

depletion rate g" (point e in Figure 3.5) at time t"= 360 days

(t"= 450-90) which is associated with the recharge well; each

term is based on an application of Equation 3.1. The depletion

rate contribution g, caused by the first pumping cycle (point

f in Figure 3.5) can then be calculated by taking the

difference of these terms according to Equation 3.6 (q0=q0'-

go") . For i = 1 the term in the first bracket of Equation 3.6

calculates depletion rate q,’ at time t'= 90 days (t’=t-t,.i =

450-360) using Equation 3.1. Since the argument (t-tP-tdi)=o,
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the unit step function of the second term has a value of zero.

Therefore, the second term in Equation 3.6 is q,"-O. Thus, the

depletion rate contribution q, of the second pumping cycle

(point d in Figure 3.5) is according to Equation 3.6 g,=q,'-q,".

The total impact rate¢;.(point c in Figure 3.5) is calculated

by summing go and q, according to Equation 3.6.

3.4. Volumetric Stream Depletion During One Cycle of Pumping

3.4.1. Graphical Interpretation

Figure 3.6, a simplified version of Figure 3.4, shows the

total stream depletion during one cycle produced by a series

of pumping cycles. The total volume of stream depletion

between the time t, which need not be a time of maximum q"

and t-tg is the area under the curve ab in Figure 3.6b. This

volume is the same as the summation of the areas below the

individual curves ed, at, and gh in Figure 3.6b. For the

example shown in Figure 3.6 where N=3, at is the recession

limb from the first pumping cycle, cd is the recession limb

from the second pumping cycle, and gh is the rising limb of

the third pumping cycle. Since t,, Q, and t, are constant, the

area under curve cd is the same as the area under curve c'e;

also, the area under curve gh is the same as the area under

curve 0c'. Therefore, the total volume of stream depletion

between the time t-t,l and t is the same as the volume of
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(b)

Figure 3.6. (a) Construction of total stream depletion for

cyclic pumping when t, and to are constant and

(b) detail of Figure 3.6a between t - to and t.
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stream depletion produced between zero and t by a single

period of pumping. Recognizing this fact reduces a

potentially complex mathematical problem to a very simple one,

and an analytical expression for volumetric stream depletion

over one cycle can easily be derived.

3.4.2. Analytical Solution

On the basis of the above explanation, Figures 3.7a and

3.7b can be plotted. The shaded area in Figure 3.7a is the

same as the shaded area in Figure 3.7b. Each gives the total

volume of stream depletion between time t-tg,.and t discussed

in relation to Figure 3.6. This volume can be calculated

using Equation 3.2.

If V) is the volume represented by the area under curve

I and v2 is the volume represented by the area under curve II

(Figure 3.7b), then the shaded area represents the volume of

stream depletion during one cycle, vac, for the case of cyclic

pumping. Here

VM: ‘,'1-v2 (3.7)

where application of Equation 3.2 gives

.. t. l t. _ lfil 75 (3.8a)
" Qt [(32+1) erfC{ TE) 4: fie t]

t. '-‘—‘ (3 8b)
v2: Qt’((——‘,+1))erfc{ 4:]- ftp/‘9 “ '

where, t'-t-tp
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Eq .3.4

I'is EqJLl

   
(b)

Figure 3.7. (a) Total stream«depletion.during the cycle ending

at t and (b) alternate representation of

Figure 3.7a



31

3.5. The Approach to and the Conditions at Dynamic Equilibrium

3.5.1. Conceptual Description

Dynamic equilibrium occurs when, during one cycle, the

volume of stream depletion vac (Equation 3.7) is equal to the

volume of water pumped from the well. Let r be the ratio of

var to the volume of water pumped during one cycle,

V

at,

Dynamic equilibrium occurs when 1 = 1. According to Equation

3.7, chc -. Qt, only as t -. on. Thus, dynamic equilibrium

occurs at t =‘w. For practical purposes, dynamic equilibrium

occurs at a finite time if it is defined as occurring when

1 = r’. In this study the value of 1' was taken as 0.95. This

practical state of dynamic equilibrium occurs at t = tr

3.5.2. Dependence of 1 on the Pumping Cycle Characteristics,

Aquifer Response Time, and Time

Substituting Equations 3.8a and 3.8b into Equation 3.9

and simplifying produces the following equation for 1:

r=n((2c+1)erfcfl-ifle‘<)-(n-1)((2E+1>erchE-is/Ee") (340)
J5? J1?
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where,

= an

1/4a

n
e
w
:

II

= 1/[4(a-7)] (3-10a)

a-t/t

'Y = tP/td

Equation 3.10 is plotted in Figure 3.8 for a range of

dimensionless times a and 7. Table 3.1 contains data for the

plot. Note that 'r is independent of td/t,I even though the

stream depletion rate q, (Equation 3.6) shows such a

dependence. The range of values of dimensionless time used in

the figure were selected on the basis of the range of values

of hydraulic conductivity, specific yield, and aquifer

thicknesses given by Freeze and Cherry (1979) and summarized

in Table 3.2. A typical value for th was taken as 90 days.

The range of values for the distance from the pumping well to

the river was 30 to 6,000 meters.

Figure 3.8 shows that lines of 7 versus a collapse onto

a single line as r d 1’. This feature reveals a significant

aspect of the time required for the aquifer-stream system to

reach dynamic equilibrium. This may be seen most easily by

using Figure 3.8 to determine the time required to reach

equilibrium as the length of the pumping period decreases.

That is, fix'q" let r= 0.95, and use Figure 3.8 to determine

how long it takes, in each situation, for the aquifer

stream system to come into equilibrium. Table 3.3 shows the



dm/OKQA
=.L

 

‘
L
O
O

(
1
9
0
‘

(
L
8
0
4

(
l
7
0
~

0
.
6
0
4

(
1
5
0
4

(
L
4
0
—

'
r
=
;
C
1
9
5

  

7

T
Y
U
U
T
T
V
T

V
r
U
F
T
T
T
‘
I

1
o
2

 

 
 

(
L
3
0

r
r

r
I
r
r
r
r
l

 1
1
0

r
W
W

I
r
r
r
T
I

1
0
0

a

1
:
?
F
I
t
r
r
r
r
'

r
r
r
r
t
r
r
r

1
0
0
0

1
E
+
O
4

F
i
g
u
r
e

3
.
8
.

T
h
e

d
e
p
e
n
d
e
n
c
e

o
f

1
,

t
h
e

d
i
m
e
n
s
i
o
n
l
e
s
s

v
o
l
u
m
e

o
f

s
t
r
e
a
m

d
e
p
l
e
t
i
o
n

d
u
r
i
n
g

o
n
e

c
y
c
l
e

o
n

t
h
e

s
c
a
l
e
d

t
i
m
e
s

a
a
n
d

y
.

33



34

Table 3.1 Data for dimensionless volume of stream depletion

1, corresponding to selected values of a and 7.

 

 

 

'y 10'7 10'1 1 101 102 103

a Dimensionless volume of stream depletion (r)

1.000 0.4795 0.4680 0.3068

1.500 0.5644 0.5570 0.4671

2.000 0.6171 0.6125 0.5586

2.500 0.6545 0.6514 0.6144

3.000 0.6828 0.6805 0.6531

3.500 0.7052 0.7034 0.6820

4.000 0.7235 0.7219 0.7047

4.500 0.7387 0.7374 0.7231

5.000 0.7518 0.7506 0.7385

5.100 0.7523 0.7510 0.7406 0.3018

6.000 0.7727 0.7719 0.7627 0.3685

7.000 0.7891 0.7885 0.7813 0.4436

8.000 0.8025 0.8019 0.7961 0.5250

9.000 0.8136 0.8131 0.8082 0.6034

10.000 0.8230 0.8226 0.8184 0.6902

15.000 0.8551 0.8548 0.8526 0.8170

20.000 0.8743 0.8742 0.8727 V0.8530

25.000 0.8875 0.8874 0.8863 0.8733

30.000 0.8972 0.8971 0.8964 0.8869



35.540

44.430

50.000

66.660

77.770

88.880

100.00

105.50

111.10

122.20

133.30

166.60

200.00

300.00

311.10

388.80

444.40

500.00

555.50

611.10

666.60

777.70

888.80

1000.00

1111.10

1222.20

Table 3.1 (cont'd.)

0.9055

0.9155

0.9203

0.9307

0.9358

0.9400

0.9434

0.9449

0.9463

0.9488

0.9510

0.9562

0.9600

0.9674

0.9685

0.9713

0.9732

0.9747

0.9760

0.9771

0.9781

0.9797

0.9810

0.9821

0.9830

0.9838

0.9055

0.9155

0.9203

0.9307

0.9358

0.9400

0.9434

0.9449

0.9463

0.9488

0.9510

0.9562

0.9600

0.9674

0.9685

0.9713

0.9732

0.9747

0.9760

0.9771

0.9781

0.9797

0.9810

0.9821

0.9830

0.9838
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0.9047

0.9150

0.9199

0.9307

0.9358

0.9400

0.9434

0.9449

0.9463

0.9488

0.9510

0.9562

0.9600

0.9674

0.9685

0.9713

0.9732

0.9747

0-9760

0.9771

0.9781

0.9797

0.9810

0.9821

0.9830

0.9838

0.8985

0.9101

0.9159

0.9281

0.9339

0.9384

0.9421

0.9437

0.9452

0.9479

0.9497

0.9556

0.9596

0.9671

0.9784

0.9712

0.9731

0.9746

0.9759

0.9771

0.9781

0.9797

0.9810

0.9821

0.9830

0.9838

0.2931

0.3740

0.4298

0.5794

0.6831

0.7874

0.8920

0.9109

0.9188

0.9285

0.9349

0.9465

0.9532

0.9639

0.9649

0.9692

0.9715

0.9733

0.9748

0.9761

0.9772

0.9790

0.9805

0.9816

0.9826

0.9835

0.2917

0.3671

0.4211

0.4752

0.5294

0.5837

0.6380

0.7468

0.8557

0.9648

0.9742

0.9773



Table 3.1 (cont'd.)
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1666.60 0.9861 0.9861 0.9861 0.9861 0.9859 0.9830

2222.20 0.9880 0.9880 0.9880 0.9880 0.9878 0.9862

3333.30 0.9902 0.9902 0.9902 0.9902 0.9901 0.9893

4000.00 0.9910 0.9910 0.9910 0.9910 0.9910 0.9904

5000.00 0.9920 0.9920 0.9920 0.9920 0.9920 0.9919

 

Table 3.2 Range of Values of Hydraulic Conductivity, Specific

Yield, Aquifer Thickness, Transmissivity and 7

 

Parameter Range

 

Hydraulic Conductivity, Ks (m/day) 0.009 - 8550

Specific Yield, S, 0.01 - 0.3

Aquifer Thickness, b (m) 6 - 100

Transmissivity, T=K,*b (mzlday) 0.06 - 8.5(10)5

7 10'7 - 106
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results of these calculations. It can be seen from Table 3.3

that for small values of 7 in the range 10’757510‘, the time to

equilibrium is constant multiple of t,. This is revealed at

point A in Figure 3.8 which shows that 1 = 0.95 for values of

7 in the range 10'7575101 when the dimensionless time

a=1.27(10)2. Within this large range of a, t, depends on t,

only! The details of the dependence are given by the value of

a at point A which produces a simple expression for

determining time to equilibrium

t9= 127 t. for 104575101 (3.11)

On the other hand, large values of 7 imply situations

where the aquifer response time is small compared to the

length of one pumping period i.e. t, >> t“. In this situation

wells are close to the stream and stream depletion rates are

approximately the same as the pumping rate. Figure 3.9 shows

how the stream depletion rate (Equation 3.6) varies with time

when 7 is large. Here 7 = 900, t,= 0.1 days and the well is

pumped at a rate of 300 m3/day for 90 days of each year.

For large 7 the rate of stream depletion should not be

approximated by assuming pumping occurs at the equivalent

cycle-average rate. Figure 3.9 shows how poorly the capture

rate produced by pumping the same volume at the equivalent

cycle average rate approximates the capture produced by cyclic

pumping. Here t,= 360 days so, Of 300*90/360 = 75 m3/day.
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Table 3.3. Values of time to practical state of dynamic

equilibrium t, at r = 0.95 for corresponding

values of 7

 

 

1 t.

103 9.80(10)2 t,

102 1.85(10)2 t,

101 1.27(10)2 1:.

10° 1.27(10)2 t,

10°l 1.27(10)2 t,

10'2 1.27410)2 t.

10'3 1.27(10)2 t.

104 1.27(10)2 t.

10" 1.27(10)2 t.

1045 1.27(10)2 t,

10'7 1.2“)(10)2 t,  
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3.5.3. Accuracy of Stream Depletion Rates Calculated with the

Cycle-Average Pumping Rate

The previous example illustrates two rather obvious

points: First, the stream depletion rate is essentially the

pumping rate for wells located close to the stream. Second

and more important, some measure is needed to characterize the

error in a stream depletion rate calculated by assuming

pumping at the cycle-average rate when infect the pumping is

nonuniform and cyclic. Let the error criterion be defined by

the equation

 (3.12)

Here 8 is the error caused by approximating the effects of

cyclic pumping by assuming continuous, steady pumping at the

equivalent cycle-average rate; qc is the rate of stream

depletion caused by continuous, steady pumping; and gm is the

maximum rate of stream depletion caused by cyclic pumping.

Values of B have been determined at time t, when dynamic

equilibrium is first established. Table 3.4 shows the data

developed to define the variation in 8; time to dynamic

equilibrium was calculated implicitly using Equation 3.10 for

'r = 0.95 for a range of values of 7. This calculated value of

t; was used in Equation 3.1 to calculate qt, assuming pumping

at the equivalent cycle-average rate, Q“. The maximum rate of

stream depletion at dynamic equilibrium, gm, was determined
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Table 3.4. Values of 8 corresponding to selected values

 

 

 

of A and 7.

X 2 4 8 12

7 B

1000. 0.5000 0.7500 0.8750 0.9167

100. 0.4921 0.7460 0.8730 0.9154

33.3 0.4792 0.7360 0.8680 0.9120

10.0 0.4528 0.7164 0.8562 0.9039

5.00 0.4237 0.6938 0.8434 0.8950

3.33 - 0.3998 0.6744 0.8319 0.8871

2.00 0.3644 0.6433 0.8130 0.8739

1.33 0.3266 0.6073 0.7903 0.8578

1.00 0.2943 0.5740 0.7684 0.8420

0.700 0.2465 0.5213 0.7318 0.8154

0.500 0.1989 0.4596 0.6852 0.7805

0.333 0.1420 0.3699 0.6085 0.7206

0.200 0.0777 0.2459 0.4778 0.6095

0.133 0.0419 0.1569 0.3574 0.4942

0.100 0.0247 0.1062 0.2732 0.4037

0.075 0.0135 0.0678 0.1978 0.3140

0.050 0.0049 0.0324 0.1143 0.2012

0.033 0.0014 0.0134 0.0589 0.1156

0.020 0.0002 0.0034 0.0216 0.0493

0.014 0.0000 0.0011 0.0093 0.0242

0.010 '0.0000 0.0003 0.0037 0.0112    
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by a search.procedure using Equation 3.6 between the time t;4g

to t;. Value of 8 were then calculated using Equation 3.12

and are shown in Figure 3.10 as a function of the independent

variables 7 and A = td/tp.

Figure 3.10 can be used to determine 8. For example,

assume a well located 1272.8 meters away from the stream,

pumping 90 days in one year at the rate 300 m3/day. If the

aquifer transmissivity is 900 mz/day, and the specific yield

is 0.1, then the aquifer response time t, = 180 days, the

dimensionless pumping period 7 = 0.5 and the dimensionless

cycle length.A = 4. ‘With these parameters, the error 8 z 0.46

can be found from Figure 3.10. Figure 3.11 shows stream

depletion rates during one complete cycle at the equilibrium

time of 22933 days for the above conditions. This figure

illustrates how inadequate the cycle-average approximation.q¢

is, especially if the maximum rate of stream depletion gin

occurs during a critical time of the year.

The listing of the computer program that calculates 1,

gm, and 8 given in the Appendix B.

3.6. Summary and Conclusions

Stream depletion produced by nonuniform, cyclic pumping

from a well located in a hydraulically connected aquifer was

studied. The mathematical treatment required standard use of

superposition theory and the existing analytical solutions for
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steady, continuous (pumping. The solutions obtained are

appropriate only when the actual field conditions approach the

assumed conditions. Study focused on the approach to and

conditions at dynamic equilibrium.

The 1 criterion was developed for determining the time

required to achieve a practical state of dynamic equilibrium.

An analytical expression for 1 was obtained (Equation 3.10)

and plotted (Figure 3.8) for a practical range of the

independent variables. Equation 3.10 was obtained by

recognizing that the volume of stream depletion over one

cycle, from t-t, to t, is the same as the volume of stream

depletion between the start of pumping and the time t by a

single period of pumping (Figure 3.6). Equation 3.8 shows

that 1 depends on the values of a and 7 but that it is

independent of the value of t,/t, even though the stream

depletion rate shows such a dependence (Equation 3 . 6).

Analysis of the 1 relationship produced Equation 3.11 which

shows that time to equilibrium depends on t, alone for small

values of 7. Inspection of conditions when 7 is large lead to

the recognition that such wells are close enough to the stream

to reach equilibrium within the first pumping period so that

the nonuniform pumping pattern is an accurate representation

of the stream depletion pattern.

Having obtained a consistent basis for determining the

occurrence of dynamic equilibrium permitted study of stream

depletion rates at dynamic equilibrium. The 8 criterion
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(Figure 3.10) was developed to characterize the error in

depletion rates estimated by assuming steady, continuous

pumping at the cycle-average rate. Figure 3.10 showed that

under some circumstances, the cycle-average approximation is

not an adequate representation of the pumping pattern.



CHAPTER IV

BTRIAII DEPLETION BY A PUMPING ml. INCLUDING THE EFFECTS OF

LINEAR VARIATION OF CAPTURED mmn EVAPOTRANSPIRATION

4.1. Introduction

A pumping well located in a wetland-stream aquifer

system, where the water table is close to the ground surface,

captures some of the well discharge from wetland evapotranspi-

ration (ET) and the rest from the bounding stream (Figure

4.1). Pumping lowers the water table in the wetland so that

water is captured by reducing ET losses. The water captured

from ET will not be captured from streamflow. Therefore,

estimates of streamflow reduction based on methods that do not

account for captured evapotranspiration are conservative and

over estimate the reduction in streamflow. 0n the other hand,

neglecting the fact that a lowered water table in the wetland

may reduce the flux of groundwater up to the wetland surface

may result in a failure to identify circumstances that can

threaten survival of wetland biology.

Analytical solutions describing the stream depletion

rates and volume during periods of steady continuous pumping

were summarized in the previous chapter. In addition to these

47
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Figure 4.1. Cross section of the semi-infinite stream-wetland

aquifer system during pumping.
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studies, Hantush (1955, 1964a) developed analytical

expressions for stream depletion, for induced leakage from the

lower confined aquifer and for mined water from the aquifer

storage by continuous pumping wells from a leaky water table

aquifer. He also developed solutions to estimate stream

depletion, induced leakage from the lower aquifer, and mined

water from the aquifer storage by gravity wells in sloping

leaky water table aquifers (Hantush, 1964b).

This chapter focuses on the development of analytical

solutions that predict captured wetland evapotranspiration and

stream depletion in a semi-infinite wetland area where water

is continuously pumped from a shallow phreatic aquifer that is

bounded by a stream. The model developed in this chapter is

based on the Hantush's solutions for pumping from a leaky

water table aquifer which is hydraulically connected to a

bounding stream.

4.2. Analytical Model Development

4 . 2 . 1 . nodal Assumptions

In addition to the assumptions stated in the third

chapter, the following two groups of assumptions are required

in order to obtain the analytical model developed in this

chapter. The first group of assumptions for the aquifer

properties is: (1) there is no recharge to the aquifer from

the aquifer surface; however, there is a constant horizontal



50

boundary flux to the aquifer and this flux supplies the

groundwater for evapotranspiration.and.groundwater discharged

to the stream (see Figure 4.1); (2) the boundary flux is not

influenced by pumping; (3) water in the unsaturated zone,

except for the region close to the well, is always drained to

an equilibrium condition; that is, whenever drawdown occurs,

soil water in the unsaturated zone is redistributed

instantaneously. This assumption was justified by Skaggs and

Tang (1976, 1978) and Skaggs (1978) for shallow water table

aquifers with high hydraulic conductivity soils.

The second group of assumptions for wetland ET is as

follows: (1) Initially the water table is at the ground

surface, so that evapotranspiration from the wetland is at the

potential rate before pumping; (2) the ground surface is

shifted to the bottom of the root zone so that steady state

evaporation flux from the water table can be replaced by

steady state ET flux from the water table. This assumption

was also used by Skaggs (1978) to account for ET from a

shallow water table aquifer; (3) evapotranspiration captured

at the wetland surface varies linearly with water table depth

for drawdown sSd . Here do is the depth at which the

evapotranspiration flux becomes zero.

One of the assumptions in the previous chapter is that

the specific yield does not vary with the position of the

water table and time. This is a valid assumption for deep

water table aquifers. Duke (1972) and Gillham (1984) showed
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that for shallow water table aquifers with fine textured

soils, the specific yield depend on the position of the water

table and time. Duke (1972) showed that for Touchet silt loam

the relative specific yield changes greatly for depths between

0 meter to 8 meter below the ground surface. This indicates

that the unsteady stream depletion and/or captured wetland ET

obtained from the analytical solution developed later in this

chapter (Equations 4.15 to 4.21) might be in error especially

when the value of hydraulic conductivity is low. Duke also

showed that for fine sand the relative specific yield values

are the same for two different water table depths when the

bubbling pressure head is 105 cm. This indicates that, as the

values. of hydraulic. conductivity' of soil increases, the

bubbling pressure head decreases; in addition a small drawdown

in the water table will result in a maximum yield. Therefore,

specific yield can be assumed constant for high conductivity

soils. This assumption was also used by Skaggs (1975, 1978),

and Bredeoheft et a1. (1982).

4.2.2. Plow Equation

The governing equation for flow in the control volume,

shown as a shaded area in Figure 4.1, can be described

approximately by the following differential equation (Hantush,

1964a):
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azfia+azfi2+2qfl5 a: (EX)§E (4.1)

3):” 8y? K, T at

Here, T is the transmissivity, Sy the specific yield, K5 the

saturated hydraulic conductivity, qa the captured

evapotranspiration flux, and fi(xhy,t) the depth of water in

the observation well screened throughout the aquifer during

pumping. This depth is the average hydraulic head that is

intercepted by the observation well and approximately equal to

both, h(x, y, t) , the depth of water above the base of the

aquifer during pumping and h,(x, y, t) , the depth of water in a

piezometer that is open at the base of the aquifer (Hantush,

1963, 1964a) .

As stated above, the captured evapotranspiration flux is

assumed to be a linear function of the water table depth in

the aquifer. Although Gardner (1958), Anat et al. (1965),

Ripple et al. (1972) and Warrick (1988) showed that

evapotranspiration is a highly nonlinear function of water

table depth, it was necessary to make this assumption for the

following reasons: (1) to obtain a partial differential

equation that would yield an analytical solution, (2) to gain

a better understanding of the general behavior of the system

for a wide range of aquifer parameters during pumping. It is

recognized that the linear variation of ET assumption in the

analytical solution might produce results that are in error.

However, the magnitude of the error is not known a priori.

Therefore, it is valuable to develop an analytical solution so
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that the magnitude of error in the results caused by this

assumption could be investigated. The analytical solution can

also be used.as.a qualitative tool to show the behavior of the

system. Prickett and Lonnquist (1971) , Trescott et a1.

(1976), Bredeoheft et a1. (1982), and McDonald and Harbaugh

(1988) also used this assumption in a hypothetical situation

to show how phreatophyte evapotranspiration was captured by

steady continuous pumping. With this assumption, captured ET

can be written as

13310:, —Ii)

get: d

0

 for (121—Ii) 5d,, (4-2)

Here, PET’is the potential evapotranspiration rate, h,is

the elevation of the piezometric surface required in order for

the groundwater flux that supplies evapotranspiration to be

equal to the potential ET rate and do is the depth where q, is

equal to the potential ET rate. Substitution of Equation 4.2

into Equation 4.1 gives the following:

   

3252+azfi2+2pzflhrfi> : (Ella? (4.3)

T0212 By2 doK, 8E

Equation 4.3 is the approximate partial differential

equation for groundwater flow in the system shown in Figure

4.1. This equation is identical in form to Hantush's (1964a)

equation for flow to a well in a horizontal, leaky water table

aquifer (Figure 4.2). Thus, his procedure can be followed to
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Figure 4.2. Cross section of the leaky water table aquifer

during pumping (After Hantush, 1964a).
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solve Equation 4.3. This leads to analytical solutions that

predict captured wetland ET and captured streamflow.

Following Hantush (1964a) , suppose ho(x, y, to) is the

distribution of water table depth that would have prevailed in

the flow system if the well had not been pumped. That is, ho

is the solution to the boundary value problem shown in Figure

4.3 when the discharge from the pumping well is equal to zero

at t = to. The governing equation for flow in this system

then can be written by replacing h with ha in Equation 4.3:

  

 

 

 
 

  

62h: 631:: 223m: 410) a (s )ah:
ax3+ay2+ (1016: .7! .5? (4.4)

Q-0 (t-O)

PET . f f l 1 l J

l = l ::
Stream Aquifer K98, «— q:

«m——-Qb h° ‘*—-

l +-
Willi/I’llliillllld 4 (II/11111111111111)   

Figure 4.3. Cross section of the semi-infinite stream-wetland

aquifer system before pumping.

The superposition principle may be used to combine

Equations 4.3, and 4.4. This gives the following differential

equation for determining drawdown from the initial condition
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in the aquifer

 

2 2
2a2(h.-fi2>+3’<ho-fiz>-2PET(ho‘m .(Ez)___a‘h°'52’ (4.5)

6x2 3Y2 (QR; T at

Equation 4.5 is a nonlinear partial differential equation

which Hantush (1964) linearized by assuming (ho-fi)<ho; that

is, drawdown is negligible compared to the saturated thick-

ness. Then, if the variables 2 anij are defined as follows:

z = 123-F (4-6)

13 = 0.5mm) (4.7)

Equations 4.6 and.4.7 may be substituted into Equation 4.5 and

the resultant differential equation manipulated to give

 

 

22.1.2-2 . (5)12 (...,
0x2 ay2 3 T at

Here,

Td, . (4.9)
B 1931 

and the initial and boundary conditions are:

Z(X.y.o) = 0

Z(°o,y, t) = 0

Z(0,y,t) = 0 (4-10)

Z(x.t~.t) = 0

The point sink that represents the pumping well requires that
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Lim (I3;)“

r-0 K,

where, r = [(x-a)2+y2]"’. Equation 4.8 and its solution are

valid as long as the drawdown (hi-7i) in the aquifer is less

than or equal to do. Here B is an "ET capture coefficient"

that serves the role of Hantush's "leakage coefficient". The

linear dependence of q,I on drawdown (hi-75) results in a

constant B as in the leakage problem.

4.2.3. The relationship between do, PET, and soil properties

To obtain an analytical solution to Equation 4.8, do in

Equation 4.9 must be determined in terms of PET and the

unsaturated sail hydraulic properties. Warrick's equation was

linearized to obtain a relationship between do, PET, and the

unsaturated soil hydraulic properties. According to Warrick

(1988) the steady state ET flux, go, is related to the depth

to the water. table, d, and the unsaturated soil properties by

the following equation:

l/n .

d=ho (“A”) - 45L g: aj (4.11)

qe (K,+Q.l2 -0

Here ho is the displacement head during imbibition cycle, 11 is

 

the pore-size distribution parameter (n > 1) and
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. l l ” .An ((n) cosec(n)) (4 12a)

_ n

ao- n+1 (4.12b)

. 61.
(1+1) (K.+q. 6!, . (4.12c)

aj,1- 1+j+(1/n) for 120

Equation 4.11 is an implicit nonlinear relationship

between depth to water table and the ET flux. The general

nature of this equation is shown in Figure 4.4 for the

situation where Ks= 3000 cm/day and PET = 0.5 cm/day. This

figure shows that the ET flux is constant and equal to PET

when d is less than or equal to do. Here do is the critical

depth where the ET flux is equal to PET. As the water table

drops below do, the ET rate decreases rapidly at first but

goes to zero only as the depth to water table approaches m.

If the position of the water table is above do, the soil is

capable of transmitting higher flux than PET. Since the upper

limit of q, is limited by atmospheric conditions, then g,= PET

when d s d . If the position of the water table is below do,

then the ET flux is limited by the flux that can be

transmitted by the soil profile. The value of do can be

determined from the intersection of these two curves as shown

in Figure 4.4. Here do= 21.2 cm was obtained for Ko=3000

cm/day and PET-0.5 cm/day.

To find a relationship between do, PET and the soil

properties, q, in Equation 4.11 is assumed to vary linearly
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between PET and zero as the position of the water table varies

between the ground surface and do.

g, = PET (l-Bq) for d < do (4.13a)

0

q. = CtPE'T for d = do (4-13b)

The depth do is calculated by substituting Equation 4.13b into

Equation 4.11.

 
 

 

K. An m C PET K. ' (4 14)
do: hd - aj e

C*PET (K.+C*PET) 3 .0

. C PET

a _ ‘3 *1) l—x,+cpm") 31 for .20 (4.14aI

1’1 1+j+(1/n) 3

Here C is a fractional coefficient. For example, C = 0.0001

implies that the ET flux is assumed to be zero when q, is

C*PET. Conceptually Figure 4.5 shows how steady state

captured ET flux varies linearly between zero and

(1-C)*PET as the position of the water table varies between

the ground surface and do.

In Equations 4.11 and 4.14, the displacement head and

pore-size distribution parameter can be determined by

empirical relationships given by Campbell (1985) . However

these relationships are not reliable for high conductivity

soils. Therefore, the values of the displacement head and the

pore-size distribution must be determined experimentally

(Carey, 1990).
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Figure 4.5. Linear and nonlinear dependence of captured ET,

q.“ on the depth to water table.
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4.2.4. Solutions for Drawdown, Stream.Depletion, Hined later,

and Captured ET

According to Hantush (1964a) , Equation 4.8 can be solved

to determine the following relations (see Appendix A):

For drawdown,

= ___Q .5 — ' .5; (4‘15)3 (Wm. B) W(u . B ))

where,

u=rzs/4Tt

u'2=r'2S/4Tt

r'2=(.x+a)’+y2

For the rate of stream depletion,

(I, = O-SQ(e" erfcwo) + e‘ erfc(ne)) (4.16)

where

B.=(o.s/\/E)- 675

n.=(0.5/JE)+ eI/E

For the volume of stream depletion,

q’ 1 ‘ -¢ .17
v: a Qt (34.23“ erfcm‘) + e err-C(33)) (4 )
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For the rate that water is mined from aquifer storage,

(1., = 0 e"“/‘" erf(0.5/foT) (4.18)

and for the volume of mined water,

1- qt+qfl

T (4.19)
V’ = Qt

«£2

Then, following Hantush, the captured ET flux can be

calculated as

9.. = Q - (q,+qo) (4.20)

and the volume of captured ET,

V“ -= Qt: - (vr+vm) (4.21)

During the steady state (as t awn) equations for the rate and

volume of stream depletion can be simplified as:

qz=oe" (4.22)

= -‘ -——aBS 423v2 06 (t 21 (. )

At steady state, Equations 4.18 and 4.19 reduce to;

q... = 0 (4.24)

v, = Elf—2 (l-e“) (4.25)

and equations for the rate and volume of captured ET become:
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qgg 8 Q (l-e-e) (4.26)

 

v... = o (t-e“ (t-§1-,§(%+B))+ 53,5) (4.27)

In Equation 4.15, W(u,r/B) is a leaky aquifer well

function which is available in tabular form in many references

(Hantush, 1956; Walton, 1962; and Hantush, 1964a). The

variable B in Equations 4.15 to 4.27 must be defined by

Equation 4.9 in order to account for captured ET as linear

function of water table depth.

Equations 4.16 to 4.27 are valid for s<do. .According to

Equation 4.2, the maximum possible ET capture at a point is

PET- Thus, the solution for the case where g, = 0 can be

obtained by taking PET = 0 in Equation 4.9. Then 6 = 0 and

Equations 4.16 and 4.17 reduce to Glover and Balmer's (1954)

and Jenkins's (1968) equations for a nonleaky water table

aquifer where evapotranspiration processes are neglected.

Note that q; in Equations 4.20 and 4.26 is the total captured

ET flux i.e. the captured flux integrated over the entire

surface area effected.

Figure 4.6 shows conceptually how stream depletion and

captured ET rates vary with time if the pumping rate Q is

continuous. The dashed line in this figure shows the stream

depletion when the effects of ET are neglected. The lower

solid curve shows the stream depletion rate when the effects

of ET capture are included, and the upper solid curve which

starts from the pumping rate at t = 0 and approaches the

'2:
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Cl" q,

Pumping Rate
 

’.

."

/‘/ Captured ET Volume

.//l . <—— Captured ET Rate

 
 

 

   
 

Mined Water /' Y

/

./ 1 Stream depletion without ET

//_ Stream depletion rate with ET

Stream depletion volume

I I 4.

0 t

Figure 4.6. Transient behaviour of stream depletion and

captured ET rates when pumping is continuous.
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stream depletion rate as time increases, shows the captured

ET. The area under the lower solid curve (q, curve) between

zero and time t gives the accumulated volume of stream

depletion (v,) at time t. The area between the upper solid

curve (captured ET curve) and the dashed horizontal line

(pumping rate) intthe same period is the accumulated volume of

captured ET. The area between the two solid curves in the

same period is the accumulated volume of water mined from

aquifer storage.

The temporal response of the system exhibits the

following characteristics that can be seen in Figure 4.6.

Pumping causes a drawdown cone to develop in the aquifer.

Initially, most of the water removed is mined from aquifer

storage. As pumping continues, the drawdown cone enlarges.

This generates a horizontal flow to the well by reducing the

groundwater flow to the stream as well as reducing the

vertical flux from the water table that supplies ET at the

ground surface. The system reaches steady state when mining

ends at which time the discharge from.the well must equal the

total rate of capture from the stream and ET boundaries.

Equations 4.16 and 4.18 can be written in dimensionless

form as:

- f(e.a) (4.28a)d

I

(I

f(e,a) (4.28b)4
'
! ll
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_and Equation 4.22 can be written in dimensionless form as:

1“ = f (e) (4.29)

where,

74‘ qr/QI

Tm= gnu/Q.

Calculation of stream depletion rate and water removed

from the aquifer storage by Equations 4.16 and 4.18 require

evaluation of the complementary error function and the error

function. These equations were evaluated numerically (see the

listing of the computer program in Appendix B) and plotted in

Figure 4.7 in terms of the dimensionless parameters suggested

by Equations 4.28a and 4.28b.

In Figure 4.7, for the solid lines that increase as the

dimensionless time, 0; increases represent dimensionless

stream depletion, 1“; and the dashed lines that decrease with

increasing a represent dimensionless water mined, 1 froma"

aquifer storage. This figure can be used to determine the

rates of stream depletion, mined water, and ET capture at any

desired time for the range of values of the dimensionless

pumping distance, 6, shown in the figure. In order to make

the value of e = 0 in Figure 4.7, either 'a' or PET has to be

zero. The 'a'- 0 case indicates that the well is in the

stream. The PET = 0 case indicates that the ET prior to

pumping is zero so there is no ET to capture. Figure 4.7

shows that as the dimensionless pumping distance increases,
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the portion of the well discharge captured from the stream

decreases; whereas, the portion of the well discharge captured

from the wetland ET increases. Furthermore, when the distance

between the pumping well and the stream increases, the aquifer

response time , t
4!

increases (Jenkins, 1968; Burns, 1983).

Burns (1983) showed that as to increases, the response of the

recharge boundary (stream) to the pumping is slowed which

results in less stream depletion at any instant of time.

Moreover, as the distance between the pumping well and the

stream increases, the area from which ET may be captured

increases. This results in a larger rate of ET captured from

the wetland and a smaller rate of stream depletion.

Figure 4.7 can be used to determine the time when the

practical steady state condition is reached. Theoretically,

steady state is reached when mining stops, that is, gm= 0.

According to Equation 4.18, _-» 0 in two cases. The first

case is e-m and the second case is a-nD. In the first case, 6

can approach infinity either as ea» or as B~o. For a given

stream-wetland-aquifer system the value of B is constant, thus

6 can approach infinity only as a-no. This situation can be

seen in Figure 4.7; as 6 increases, the time to steady state

decreases. As explained above, as 'a' increases, the value of

to increases. This indicates that the major portion of the

pumped water is being captured from the wetland ET long before

the effects of the drawdown reached the stream. In the second

case, a can approach infinity either as t-«n or as t,-»0. If
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'a' is fixed, then a can approach infinity only as t -v 90. For

practical purposes, steady state is reached at a finite time

if it is defined as occurring when 1m=1‘m. In this study the

value of 1;, was taken as 0.01. This practical steady state

is reached at t = t . Substituting the value of I‘m and to into
0

Equation 4.18 and solving for to results in the following:

 t = -£§[-4.605-ln.[erf 421]] (4'30)

Equation 4.30 is an implicit equation for t, which can be

solved by trial and error methods. The dimensionless form of

Equation 4.30 could have been plotted for determining the

value of tr. This would have eliminates the need to solve

Equation 4.30.

The dimensionless rate of stream depletion at steady

state is plotted in Figure 4.8 in terms of the dimensionless

pumping distance suggested by Equation 4.29. This figure

shows that for a fixed value of 'B’ the rate of stream

depletion decreases as 'a’ increases. This figure also shows

that at steady state, as 'a’ increases, captured ET increases

too, since qg= 0 at steady state. From this analysis, it can

be deduced that the coefficient 13 is the radius of the

characteristic area required to capture 0 from the wetland

area where ET is at the potential rate.
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4.2.5. Discussion of the Solution

The results of the analytical model developed in this

chapter are valid when the actual field conditions approach

the assumed conditions. The actual field conditions can be

described as a stream-wetland-aquifer system where the water

table is shallow. In this system, Duke (1972) and Gillham,

(1984) have shown that the specific yield depends on the

position of the water table and time. The variable specific

yield assumption is discussed in section 4.2.1 in detail,

thus, it will not be discussed in this section again.

Furthermore, Gardner (1958), Anat et al., (1965), Ripple et

al., (1972), and Warrick (1988) have shown that ET from the

wetland surface varies as a nonlinear function of the position

of the water table depth and the unsaturated soil hydraulic

properties. The effects of a linear variation of ET

assumption on the accuracy of results obtained from the

analytical model is investigated in this section.

The analytical model results at steady state might

therefore deviate from the results obtained from a model that

describes the actual system in more detail. As explained in

section 4.2.4 that as long as 'd' is less than do, there is no

reduction in wetland ET and as 'd’ drops below do, the ET rate

decreases as a nonlinear function of 'd'. Contrary to the

assumption of a nonlinear variation of ET, Figure 4.5 shows

that even small change in 'd' produces a reduction in the
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wetland ET rate in the case of a linear ET assumption.

Therefore, a linear dependence of captured ET on the depth to

water table can produce a substantial amount of error in

predicting the rate of stream depletion and capture wetland ET

at steady state. Figure 4.9 shows the magnitude of error in

steady state stream depletion rates obtained from the

analytical model as compared to results obtained from a model

that employes the nonlinear dependence of ET on the depth to

water table. The latter results are obtained with a numerical

solution to the nonlinear form of Equation 4.1 (Equation 5. 1).

Figure 4.9 shows the results of the numerical model and the

analytical model at steady state for pumping distance varying

from 0 m to 1600 m. This figure shows the comparison for

Ito-43.2 m/day. The comparison is also made for the lower

range of values of K5 and presented in the next chapter.

Figure 4.9 also shows the steady state stream depletion

rates obtained from the analytical model for three different

values of do. These values of do are computed with Equation

4.14 by adjusting the value of C. It is apparent from the

figure that when the value of do is small, the results

obtained from the analytical model are in substantial error.

The amount of error could be decreased if the value of C in

Equation 4.14 could be altered in order to increase the value

of do. It was deduced from this analysis that a theoretical

basis is needed to justify the above method that determines

the value of do that reduces the error. However, it is not
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possible to define such a method at this stage of the study.

Therefore, the analytical model developed in this chapter is

restricted significantly as a quantitative tool, but it is

still valuable as a qualitative tool.

4.3. Solution of Partial Differential Equation Using A 2-D

Finite Element.lodel

A 2-D horizontal finite element model, AQUIFEH-l (Townley

and Wilson, 1980) , was modified to incorporate linear and

nonlinear variation of ET as a function of water table depth.

The objectives of this modification were (1) to compare the

analytical model results with a numerical solution of the

equation and (2) to prepare the numerical model for further

investigations“ The governing flow equation of the numerical

model is a second order nonlinear parabolic partial

differential equation and it is solved iteratively by

employing the finite element method, based on the Galerkin

technique with linear finite elements (Townley and Wilson,

1980).

4.3.1. Formulation and Description of the Hypothetical Aquifer

for 2-D Finite Element Model Application

In order to compare the finite element results with the

analytical solution, the aquifer is located adjacent to a
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flowing surface water feature (Figure 4.10a). The aquifer is

4400 meters wide and 6300 meters long. Initially, the water

table in the aquifer is horizontal and very close to the soil

surface so that ET is at the potential rate. The aquifer is

bounded by a fully-penetrating stream on the southern side and

bounded by no-flow boundaries on the other sides“ The well is

located 800 meters away from the stream as shown in Figure

4.10a and pumps water from the aquifer at a constant rate of

3000 m3/day. Table 4.1 shows the characteristics of the

hypothetical aquifer. The aquifer domain shown in Figure

4.10a is divided into triangular finite elements for the

application of the numerical model. Three grid configurations

were designed in order to determine the effects of spatial

discretization of the aquifer domain on the accuracy of the

numerical model results. Table 4.2 shows the total number of

elements, the total number of nodes and the dimensions of the

grid in the vicinity of the well and the stream in each

configuration.

The finite element and analytical models were applied to

the aquifer described above to predict the stream depletion

and captured wetland ET. .Figure 4.11 shows the results of the

simulation from both models for comparison.
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Table 4.2. Characteristics of the hypothetical aquifer

 

(1)

 

Aquifer thickness, Do (meter)

Initial saturated thickness, ho (meter)

Saturated hydraulic conductivity, Ks (meter/day)

Specific yield, Sy

Maximum ET depth, do (meter)

Potential ET rate, (meter/day)   

Table 4.2. Characteristics of the grid configurations used in

the finite element model

 

of nodes of elements the smallest elem.

(Base width X

Total number Total number Dimensions of thel

 

    

height)

Configuration 1 416 744 200 x 200

Configuration 2 1081 2024 100 X 100

Configuration 3 2808 5396 50 X 50
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4.3.2. Celpariaon of the Analytical Model and 2-D Finite

Element nodal Results

Figure 4.11 shows stream depletion rates and captured ET

rates obtained from both models using 1 day time increments

for the computations during continuous pumping. This figure

shows that stream depletion rates obtained from both models

agreed well throughout the simulation for each configuration.

table 4.1 and table 4.2. Stream depletion rates obtained from

the finite element.model are observed to converge to the rates

obtained from the analytical model as Ateo.

Stream depletion rates agreed well for all the configura-

tions described in Table 4.2. However, the captured ET rates

obtained from the finite element model are considerably

different from those obtained with the analytical model during

early pumping for configurations l and 2. These results

agreed well throughout the simulation for configuration 3.

Figure 4.11 shows the simulation. results for the 'three

configurations. This clearly indicates that as spatial

discretization of the aquifer domain gets smaller in the.

vicinity of the well and the stream, captured ET rates

obtained from the numerical model converge to rates obtained

from the analytical model. At late time, when steady flow is

established, the two models converge for all configurations.

As stated earlier, the analytical model describes the

behavior of a semi-infinite aquifer while the numerical model
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was applied to the finite aquifer domain shown in Figure 4.10.

It is apparent that there is no influence of the no-flow

boundaries in the results obtained with the analytical model,

whereas, the results produced by the numerical model could be

influenced if the drawdown cone reached the no-flow boundaries

of the aquifer. Figure 4.12 and Figure 4.13 show that the

water table is unaffected at the no-flow boundaries. Figure

4.12 shows the water table elevations at cross section II-II'

when a steady state condition is obtained. The well is

located 2200 meters from both the eastern and western no-flow

boundaries. The piezometric head at the boundary computed by

the finite element model is 30.0 meters which is the same as

the initial piezometric head and the drawdown at the well is

approximately equal to 1.6 meters. This amount of drawdown at

the well indicates that the analytical solution is in error in

the vicinity of the well since drawdown at the well is greater

than do = 0.7 meter. Figure 4.13 shows the water table

elevations at cross section I - I' at steady state. The water

table profile between the well and the northern no-flow

boundary of the aquifer indicates that this boundary of the

aquifer did not influence the results either.

4.4. Summary and Conclusions

An analytical model was developed that predicts the

stream depletion by a steady continuous pumping well where the
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effects of captured ET are taken into account. The analytical

model is based on Hantush's solution for pumping from a leaky

phreatic aquifer connected to a bounding fully penetrating

stream. Hantush's leakage from the lower confined aquifer was

interpreted to describe a reduction in wetland ET resulting

from the drawdown of the water table in a shallow phreatic

aquifer. It was assumed that ET varies as a linear function

of the drawdown in the phreatic aquifer so that ET is at the

potential rate with zero drawdown and zero at a depth do. An

explicit relationship was derived that shows how potential ET

and do are related to Hantush's leakage coefficient. Proper-

ties of unsaturated soils were incorporated into the solution

by using Warrick's relationship between ET flux and depth to

water table to determine do.

Application of the analytical model showed that as the

dimensionless distance between the well and the stream

increases (increasing 6) , the portion of the pumping well

discharge captured from wetland ET increases; whereas, the

portion captured from the stream decreases. This resulted

from increased aquifer response time and increased area from

which ET could be captured. A dimensionless graph (Figure

4.7) was developed that shows the relationship between stream

depletion, water mined from aquifer storage, captured wetland

ET, and time. The analysis indicated that Figure 4.7 can be

used to determine the time, t,, when the system reaches

practical steady state. Analysis of Figure 4.7 also showed
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that as scaled pumping distance (6) increases, the system

reaches steady state faster than the case where the effects of

captured ET was neglected.

A.dimensionless graph (Figure 4.8) for the rate.of stream

depletion at steady state was also developed as a function of

the scaled pumping distance. This graph could easily be used

to determine the stream depletion rate and captured ET rate at

steady state for known value of the scaled pumping distance.

The solutions obtained in this study are appropriate only

when the actual field conditions approach the assumed

conditions. The accuracy of the steady state stream

depletion, based on the assumption that captured ET rate

linearly depends on the position of the water table, was

investigated. The analysis indicated that this assumption

could result in substantial error in stream depletion rate

when do was small. The analysis also indicated that the

magnitude of this error could be decreased as the value of do

was increased. However, there was no theoretical procedure to

determine the value of do which could minimize the error.

Additional error could be expected from the analytical

model results during the transient period. This error would

be produced as a result of the constant specific yield

assumption for soils that have low hydraulic conductivity

values. It was concluded from the above analysis that the

analytical model is restricted significantly as a quantitative

tool, but it is still valuable as a qualitative tool.
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It was determined that the analytical model is also a

valuable tool for determining the optimum finite element grid

density which produces accurate stream depletion rates and

captured wetland ET rates during the transient period.



STREAM DEPLETION BY A PUMPING HELL INCLUDING THE EFFECTS OF

NONLINEAR VARIATION OF CAPTURED NETLAND EVAPOTRANSPIRATION

5.1. Introduction

In the previous chapter, an analytical solution for

stream. depletion and captured ‘wetland ET jproduced by a

continuous pumping well from a shallow'water table aquifer is

derived. A linear variation of captured wetland ET is

incorporated into the flow equation in order to obtain the

analytical solution. The assumption of linear variation of

wetland ET as a function of water table depth is found to

overestimate the captured wetland ET and underestimate the

stream depletion for the values of do defined by Equation

4.14. When pumping starts and the drawdown cone develops and

propagates in the aquifer, reduction in wetland ET starts

immediately with the assumption of the previous chapter.

Contrary to the assumption of a linear variation of ET, it is

shown in previous chapter (section 4.2.3) and by Ripple et

al., (1972) that there is no change in ET until the depth to

the water table is equal to the critical depth, do. When the

depth to the water table exceeds do, ET is reduced according

87



88

to Warrick’s relationship (Equation 4.11) given in chapter 4.

The objective of this chapter is to develop a method that

can be used to predict the steady state stream depletion rate

produced by a pumping well which includes the effects of

captured wetland ET. .For'this method.a nonlinear variation of

wetland ET’as a function of the water table depth and the soil

properties is incorporated into the flow'equation. IBecause of

the nonlinear behavior of ET, the governing flow equation

becomes nonlinear, as shown in section 5.2.2. Thus, there is

no known analytical solution. To solve the flow equation for

stream depletion a 2-D finite element model (Townley and

Wilson, 1980) is employed for a hypothetical situation. To

generalize the numerical results for stream depletion,

dimensional analysis is employed to find the functional

relationship between the stream depletion rate, the aquifer

properties, and the pumping characteristics. As a result of

dimensional analysis, the scaled steady state stream depletion

will be shown to depend on five independent scaled variables

in the case where ET varied as a nonlinear function of the

water ‘table depth- Therefore, it is not practical to

generalize the simulation results in this case. In order to

reduce ‘the number of scaled independent (parameters, the

nonlinear variation of ET is approximated by a step variation

of ET as a function of water table depth. This assumption

reduced the number of scaled independent parameters to three;

thus, it. is practical to jpresent. the numerical results

graphically. The scaling of the flow equation in the case of
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the nonlinear variation of ET as well as the step variation of

ET is explained in detail in section 5.2.4.

The accuracy of stream depletion rates obtained from the

numerical model by incorporating the step ET assumption is

determined by comparing stream depletion rates resulting from

the nonlinear ET assumption. The comparison is made during

the transient period because the numerical model results

oscillate in the step ET case. The oscillation is caused by

the spatial discretization of the aquifer domain and the

insufficiently'small time intervals that.are practical for the

transient computations. . The accuracy analysis of the

depletion rates is presented in section 5.3.2. Excellent

agreement is found between stream depletion rates that were

obtained from the numerical models. This indicated that

steady state stream depletion rates can be obtained

numerically by employing the nonlinear variation of ET and

that such results can be presented in the dimensionless form

developed by employing the step assumption.

From the results of the computer simulations, families of

dimensionless graphs were developed for a wide range of soil

hydraulic properties and pumping distances. Provided the

basic assumptions of the model are satisfied, these graphs

provide a means for easily determining the steady state stream

depletion and captured wetland ET rates if the following

parameters are known: the transmissivity of the aquifer, the

displacement head, the pore size distribution parameter (Anat

et al., 1965), the initial position of the water table, the
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perpendicular distance between the river and the well, the

pumping rate, and the annual average PET rate.

5.2. nodal Development

5.2.1. lodel Assumptions

In addition to the assumptions for the aquifer properties

stated in chapters 3 and 4, the following assumptions are

required for wetland ET. These assumptions are necessary to

make use of the advantage of dimensional analysis technique

and to develop the families of dimensionless graphs from the

results of numerical simulations: (1) the ground surface is

located from the bottom of the root zone. With this

assumption, the steady state evaporation rate from the water

table can be replaced by the steady state ET rate from the

water table. This assumption was also used by Skaggs (1978)

to determine the reduction in steady state ET rate from a

shallow water table aquifer. Skaggs also incorporated the

effects of the storage in the root zone into his water

management model. However, the effects of the storage in the

root zone will not be included in this study in order to limit

the number of dimensionless parameters; (2) the rate of

evapotranspiration captured at the wetland surface is zero

when the depth to the water table is less than or equal to the

average critical depth, do, and occurs at the potential rate

when the position of the water table exceeds do (see Figure

.
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5.1) . The concept of do as it relates to captured wetland ET

will be explained in more detail in section 5.2.4; (3) the

initial depth to the water table, d,, is constant and parallel

to the ground surface; (4) the average critical depth is

always greater than the initial depth to the water table so

that the ET rate from the wetland surface is at the potential

rate before pumping.

5.2.2. Flow Equation

The governing differential equation for two-dimensional,

essentially horizontal, groundwater flow in a homogeneous

isotropic aquifer is (see Figure 5.1):

a.2. m i .62 11.5242.
8x(hax)+dy(hay+K, K,at (5'1)

In equation 5.1, K, is the saturated hydraulic conductivity,

5, specific yield, F flux per unit area that leaves or enters

the aquifer and, h(x,y,t) is the piezometric head during

pumping. If the bottom of the aquifer is coincident with the

horizontal datum, then, h(x, y, t) is the saturated aquifer

thickness. Because of the product (bah/61m , Equation 5.1 is

a nonlinear second order parabolic partial differential

equation. This equation is solved for h(x,y,t) by the 2-D

finite element groundwater flow model and the values of

h(x, y, t) are used to calculate the stream depletion rates and
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Figure 5.1. Cross section of the semi-infinite stream-wetland

aquifer system described by Equation 5.1.
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captured wetland ET rates as discussed in section 5.2.4.

To determine the most influential parameters on stream

depletion and captured wetland ET rates, Equation 5.1 is

manipulated as follows. The product (bah/6x9 can be written

 

as

an _ lam
32 2 6X1 (5.25)

and

K, at 2T t:

Substituting Equations 5.2a and 5.2b into Equation 5.1 and

manipulating gives

flfdflflfl': 32.113: (5.3)

8x2 ayz K; T at

Equation 5.3 is the partial differential equation for

groundwater flow in the system shown in Figure 5.1. This

equation looks similar to Equation 4.3 except for the third

term on the left hand side. This term represents the scaled

flux per unit surface area that leaves or enters the aquifer

and varies from PET/K5 to zero depending on the position of

the water table.

Suppose ho(x, y, to) describes the position of the water

table that would have prevailed in the flow system if the well

had not been pumped. That is, ho is the solution to the

boundary value problem shown in Figure 5.2, when the discharge

from the well is equal to zero at t = to. The flow equation



94

for this undisturbed system can be written by replacing h with

ho and ZIP/Ks with ZPET/Ks in Equation 5.3.

 
  

2 2 2

32ho+32ho+2pET= 5%3110 (5.4)

Equation 5.4 is linear in hf, since PET/Ks is constant.

0'0 (t-O)

rPEltlt M iii  
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Figure 5.2. Cross section of the semi-infinite stream-wetland

aquifer system prior to pumping.

Combining Equations 5.3 and 5.4 by the superposition principle

yields

a2 (223-122) of a“ (123-122) + 2a,: 5: 3013—122)
(5 . 5)

3x2 ay2 K, T at

 

In Equation 5.5 g,/K$ is the scaled ET flux leaving the aquifer
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surface. This term is variable according to Anat et al.’s

(1965) equation 'that. is. presented in. the next section.

Therefore, Equation 5.5 is a nonlinear partial differential

equation and no analytical solution is known. Although,

Equation 5.5 is nonlinear, it can be manipulated so that the

most influential parameters that affect the stream depletion

and captured wetland ET could be obtained.‘ If the parameter

2 is defined as follows:

z = 1102-112
(5.6)

Substituting Equation 5.6 into Equation 5.5 yields

aZZ+3ZZ.2q-= Era—Z (5.7)
8x2 By2 R; 2'6:

The initial and boundary conditions are:

Z(x.y.0) = 0

Z(°°,y, t) = 0 (5.73)

Z(0.y. t) = 0

Z(x, :I:°°, t) = O

The point sink that represents the discharging well requires

that

 - .32 .. - 0

1:334 61’ nK, (5°7b)

where r’=(x-a) 2+y’. Equation 5.7 is still nonlinear because

the third term on the left hand side did not change.
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5.2.3. The Nonlinear Relationship for g, as a Function of

Water Table Depth

In the previous chapter, Warrick's (1988) equation was

linearized to determine do in term of PET and the unsaturated

soil hydraulic properties. During the latter part of this

study, it was found that an explicit relationship had been

developed by Anat et a1. (1965) for estimating the steady

state ET flux in terms of the depth to the water table and the

soil hydraulic properties. An investigation was conducted to

determine if this relationship is as accurate as Warrick's

relationship. According to Anat et a1. (1965), the steady

state ET flux is related to the depth to water table and the

unsaturated soil hydraulic properties by the following

equation:

 

. hold“) 1.886 n (5.8)

q’ (l 0' (1+ n2+1 l)

The ET flux in Equation 5.8 may be limited by either of

two boundaries. The first is the atmospheric boundary at the

soil surface where the upper limit of the ET flux is PET, and

the second is the water table boundary where the ET flux is

negligible when the position of the water table is below do.

Figure 5.3a shows how the steady state ET flux varies between

the two boundaries and Figure 5.3b shows how the steady state

captured ET flux varies. The dashed lines in Figure 5.3a and
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PET

 
Figure 5.3.

 “
l

  f d

d: (b)

(a) Dependence of steady state ET flux on the

depth to water table, (b) Dependence of steady

state captured ET flux on the depth to water

table.
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Figure 5.3b depicts the nonlinear relation calculated by

Equation 5.8. The dashed line in Figure 5.3a shows that the

steady state ET flux is constant and equal to PET until the

depth to water table reaches do. .As the water table drops to

a depth that is greater than do, the steady state ET flux

starts to decline very rapidly, and theoretically, it becomes

zero only at depth d=w.

The critical depth where the ET rate is equal to the PET

rate can be found by replacing g, with PET and d with do in

Equation 5.8 and solving for dc;. this yields,

d = h ( K: )1,n 1+.1_-_§§£ (5.9)

c d PET 112-+1

 

5.2.4. Scaling the Flow Equation

An analytical solution of Equation 5.7 with respect to

given boundary conditions is not known. Therefore, a

numerical method (finite element method) is used to obtain the

solution. 3

The numerical model used in this study requires

considerable time to operate and substantial expense for

computer time. Consequently, it is an objective of this

part of the study to obtain results in a form that may be

applied to as wide a range of field conditions as practical.

This is accomplished by expressing the governing equation and
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its boundary conditions in terms of such dimensionless

variables that the model produces similar results within the

largest possible range of physical situations. This involves

choosing the most appropriate set of variables to describe the

physical system shown in Figure 5.1 and non-dimensionalizing

the variables with appropriate scaling variables.

In order to include the effects of a nonlinear variation

of q,/Ks on stream depletion, it is necessary to express this

term in terms of the most appropriate soil parameters

suggested by Equation 5.8, the initial conditions, and the

atmospheric bouhdary conditions. Equation 5.8 and the

discussion that followed it in the previous section shows

that,

 22: .2 _d_1 PETES 510

f(h.""h.' K.'h.) ( ’

Here d/ho is the scaled depth to water table, d,/ho is the

scaled initial depth to water table, do/ho is the scaled

critical depth. In Equation 5.10, the first two terms on the

right.hand side are introduced by Equation 5.8, the third term

is introduced by the initial condition, and.the last two terms

are introduced by the atmospheric boundary condition. In this

equation d,is the initial depth to water table, an important

physical parameter that influences the rate of stream

depletion and captured ET. For example, suppose dfi=05 that

is, the water table is at the ground surface before pumping.
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In this case the water table has to be lowered more than do

before any wetland ET is captured. If initially d,=do, the

reduction in wetland ET starts as soon as the water table

drops and this could produce a higher ET capture rate and

lower stream depletion rate.

As indicated above the objective of this section is to

find.the:most.appropriate scaled parameters that influence the

magnitude of stream depletion. Therefore, dimensional

analysis was used to find these scaled physical parameters.

The mathematical relationship between the stream depletion

rate and Equation 5.7 is given by Hantush (1964b).

qr = 31911;?! dy (5.11)

According to Equation 5.11, the stream depletion rate can be

determined if the gradient of z in the vicinity of the stream

can be integrated along the stream boundary. The functional

relationship between the stream depletion rate and other

parameters suggested by Equations 5.7 and 5.11 can be written

as,

— . 1“ (Z) (5.12)

where,

..Qfa 32.52 5.13Z K}. [ ,x,y,1gr Tt ( )
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Equations 5.10 and 5.13 can be substituted into Equation 5.12.

The resulting equation can be manipulated by employing the

dimensional analysis technique, incorporating boundary

conditions of x-O and integrating from y=-co to y-oo as

suggested by Equation 5.11. This yields

 33 = f £,n,$,£, K8 , Ti: (5.14)

0 ho dc do per azsy

Equation 5.14 shows that the scaled stream depletion during a

transient period depends on six scaled independent parameters

when q, varies as a nonlinear function of the depth to the

water tables The reason that the parameter d does not show up

in Equation 5.14 is because the parameter 2 is related to the

drawdown produced by the pumping well. In other words, the

solution of Equation 5.7 for z is equivalent to solving for

drawdown in the aquifer. Since d is the combination of the

drawdown and d,, it is redundant to include d in Equations 5.13

and 5.14. As few, the system approaches steady state. Thus,

the scaled time can be eliminated from Equation 5.14.

g: _ a di a K.
_ .. _ ._ _ 5.15

o f(ho’n' dc' do.’ PET) ( )

 

Equation 5. 15 shows that even at steady state, the scaled

stream depletion depends on five independent scaled parameters

in the case of a nonlinear variation.of wetland ET. .Although,

the dimensional analysis technique revealed the appropriate
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dimensionless parameters that influence the steady state

depletion rate, it is impractical to develop useful results in

this case. The impracticality stems from the extremely large

number of computer solutions that would be required and the

difficulty of using the information if obtained.

To reduce the number of scaled parameters introduced by

the assumption of a nonlinear variation of wetland ET and to

take advantage of dimensional analysis, the step variation of

ET assumption is adopted. With this assumption, qc/Ko is

either equal to PET/K5 or zero depending on whether the depth

to the water table is greater than do (See Figures 5.3a and

5.3b) . Moreover, Carey (1990) indicated that incorporation of

the step variation of wetland ET into the numerical model

would produce more accurate results than the linear variation

of wetland ET.

As shown in Figures 5.3a and 5.3b, it is necessary to

determine do so that the step variation of wetland ET can

accurately approximate the nonlinear variation of wetland ET.

The value of do shown in Figure 5.3 is determined by the

following procedure: (1) Equation 5.8 is evaluated numerically

for a wide range of soil types. (2) As a first guess, the

vertical line AB in Figures 5.3a and 5.3b is located on do.

(3) The shaded areas on the right and on the left side of AB

are computed. (4) The position of AB is adjusted by locating

it into a new position and then the shaded areas at the new

position are computed. (5) The depth do defines the position

of the vertical line AB so that the two areas are equal to

F“
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each other.

The procedure described above to find the value of do is

applied to soil types varying from fine clean sand to silty

sand. The soil types that are used to evaluate Equations 5.8

and 5.9 numerically are obtained from Anat et al.'s (1965)

report (page 23-26). Thus, the soil parameters, Ko,1y, and n

are the same as theirs. The annual average PET rate used in

Equation 5.9 is taken.as 0.005 m/day for humid regions (Merva,

1990). The results of the numerical evaluations of Equations

5.8 and 5.9 show that the value of do is approximately 1.08

times the value of do for fine clean sand and 1.13 times for

silty sand. In this study, do= 1.1do is taken for practical

purposes. Thus, the value of do can be written in terms of

the displacement head, the saturated conductivity, the PET

rate and the pore-size distribution parameter using Equation

5.9 as

 

3,: 1 1h (( K, )1” (1+1.886)) (5.16)

c . d PET n2+1

For n26, the second term on the right hand side of Equation

5.16 is approximately equal to 1, thus Equation 5.16 can be

simplified further,

 

1

a; = 14(1)” “8 )3 (5.17)

The functional relationship between qe/Ko, the soil
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parameters, the atmospheric conditions and the initial

conditions for the block ET case can be obtained with the aid

of Equation 5.10 and the discussion that immediately follows.

As indicated before, the first two terms on the right hand

side of Equation 5.10 are introduced by Equation 5.8 which

determines the dashed curves in Figures 5.3a and 5.3b. Since

Equation 5.8 is not used to determine the ET flux as a

function of the depth to water table in the step ET case,

these two terms on the right hand side of Equation 5.10 can be

eliminated and also do can be replaced by do. Thus, Equation

5.10 in the step ET case simplifies to

 i: = _d_ _‘2 PET (5.18)

K, ac'ac’ K,

Equations 5.17 and 5.18 can be substituted into Equations 5.12

and 5.13. The resulting equation can be manipulated by

dimensional analysis and by the boundary conditions of x=0 and

by integrating from ys-co to y-uo suggested by Equation 5.11.

 22.,53 3.!" K8 Tt (5.19)
Q ho' 12,, 'PET’ .323,

Equation 5.19 indicates that, in the case of step ET

variation, the solution of Equation 5.7 for the scaled stream

depletion rate, 9J0. depends on four independent scaled

variables. These variables are the scaled initial depth to

water table, (d,/ho)"; the scaled pumping distance, a/ho; the
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scaled saturated hydraulic conductivity, Ko/PET; and the

scaled time, Tt/afig.

At steady state the scaled time in Equation 5.19 can be

eliminated. Thus, Equation 5.19 becomes,

 
3.! = f(£,($)n, Kn] (5.20)

12,, PET

Since the number of independent scaled variables has been

reduced to three, it is practical to represent the results of

numerical simulations graphically.

5.3. numerical Solution of Flow Equation for Hypothetical

Situation

“This section of the study is related to the development

of dimensionless graphs that can be used to predict the scaled

steady state stream depletion as expressed by Equation 5.20.

In order to develop families of dimensionless curves for

stream depletion rate, the 2-D finite element model Aquifem-l

(Townley and Wilson, 1980) is modified first to incorporate

the nonlinear behavior of wetland ET as a function of water

table depth and soil hydraulic properties, and second to

incorporate the step variation of wetland ET as a function of

the water table depth. For the remainder of this chapter, the

first model will be referred to as the nonlinear ET model

(NL—ET model) and the second model will be referred to as the
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step ET model (ST—ET model). The governing flow equation of

the numerical model is given by Equation 5.1 which is

nonlinear and it is solved iteratively'by'employing'the finite

element method, based on the Galerkin technique with linear

finite elements.

5.3.1. The Hypothetical Aquifer

The hypothetical aquifer used for the numerical

simulations in this chapter is the same one (Figure 4.10) that

is described in chapter 4. In order to account for the

effects of scaled.pumping distance, the‘well is located at the

center line (I - I' in Figure 4.10) and the position of the

well varies from 100 meters to 2500 meters from the stream,

and pumps water from the aquifer at a constant rats. Table

5.1 summarizes the range of values of the hypothetical aquifer

properties. In this table, the range of values of the aquifer

thickness and the range of values of the initial depth to

water table are assumed. The range of the values of the

annual average PET rate was suggested by Herva (1990) for

humid regions. Also, the range of values of the saturated

hydraulic conductivity, the displacement head and the pore-

size distribution parameter are given by Brooks and Carey

(1964), Anat et a1 (1965), and Freeze and Cherry (1979).

These soil hydraulic properties are given for the upper range

of silt loam soils and for the upper to lower range of clean

sand. The range of the values of do is calculated according

.
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to Equation 5.10.

The aquifer domain shown in Figure 4.10a is divided into

triangular elements for the application of the numerical

model. The two grid configurations used in this part of the

study (configurations 2 and 3) are the same as those in

chapter 4. Table 4.2 summarizes the total number of elements,

the total number of nodes and the dimensions of the smallest

elements in the vicinity of the pumping well in each

configuration.

Table 5.1 Range of Values of the Aquifer Parameters

 

 

Parameter Range

Hydraulic conductivity“l” (m/day) 0.85 - 50

Displacement headflm (m) .10 - .70

Pore-size distribution parameter “3, n 6 - 12

Average critical depth“h ag=1.1 dk (m) .20 - 1.50

initial depth to water table“), di (m) 0 - 1.20

Total aquifer thicknessm'(m) 30.00

Potential ET rate“ (m/day) 0.005 - 0.009 
 

(1) Brooks and Carey (1964)

(2) Anat et a1. (1965)

(3) Freeze and Cherry (1979)

(4) Computed by Eq. 5.10

(5) Assumed

(6) Herva (1990)    
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5.3.2. Accuracy of the Solution

The finite element model is applied to the aquifer

described above to predict the stream depletion produced by a

pumping well. The results of the numerical simulations are

used first to check the influence of the grid discretization

on the accuracy of stream depletion rates and captured ET

rates, and second to compare the accuracy of the depletion

rates that are obtained from the ST-ET model with the true

values of depletion rates. It is assumed.that the true values

of depletion rates are obtained from NL-ET model. This

comparison is made within the range of aquifer parameters that

are given in Table 5.1. Finally, having established a method

for obtaining accurate solutions with reasonable computational

effort, steady state simulations with the NL-ET model are used

to develop dimensionless families of graphs for q, for the

range of aquifer parameters given in Table 5.1.

It is necessary to determine how configuration 3

influences the accuracy of stream depletion rates as well as

captured ET rates that are obtained from the numerical model.

This was done by comparing the numerical results with those

for two analytical models presented in chapter 3 and chapter

4, for steady continuous pumping. The numerical model is

applied to configuration 3 for two cases. In the first case,

the transient stream depletion is determined by neglecting the

effects of wetland ET. In the second case, transient stream

depletion rates and captured wetland ET rates are determined
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by assuming a linear variation of ET as a function of water

table depth. The numerical model for each case is executed

six times for the three different values of Ks given in Table

5.1, and the two different values of 'a'. no is chosen such

that the lowest, the mid, and the highest values of the range

are used. It is found that the depletion rates that are

obtained from the numerical model and from the analytical

models are in excellent agreement (the relative error < 1%)

for' configuration. 3. This. indicates 'that. spatial

discretization in configuration 3 is adequate.

It is concluded in section 5.2.4 that the depletion rates

can be presented graphically by using the ST-ET parameters if

the ST-ET model can accurately approximate the true values of

stream depletion. Therefore, it is necessary to determine the

accuracy of the depletion rates that are obtained from the

ST-ET model. This is determined by comparing transient g,

results for ST-ET and NL—ET generated using configuration 3.

The comparison of the results from both models is made for

1g=43.2 m/day, 8.64 m/day and 0.864 m/day when a=500 m and

cy=0.01 m and plotted in Figures 5.4, 5.5, and 5.6. Here the

values of ho and n are varied according to the values of Ks,

since these parameters depend on each other (Brooks and Carey,

1964; Anat et al., 1965; Carey 1986). Figures 5.4, 5.5, and

5.6 indicate that as the values of hydraulic conductivity

decrease the accuracy of the depletion rates obtained from the

ST-ET model increases.
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Figure 5.4 shows that the relative error is approximately

3 % between the depletion rates obtained from the ST-ET model

and the NL-ET model when K,=43.2 m/day and d,=0.01 m. Since

the maximum relative error occurs when K3431 m/day, it is

necessary to investigate the accuracy of the ST-ET model

results for K‘s-43.2 m/day and for different range of values of

d, and 'a'. The ST-ET model is run when K,=43.2 m/day, d,=dc,

=200 m and a=1000 m. The maximum relative error in these

cases is less than 6 %. This indicated that the ST-ET model

results are accurate for practical purposes, thus, the ST-ET

model parameterization (Equation 5.20) can be used to

represent the NL-ET model results (Equation 5.15).

Stream depletion rates obtained by incorporating the

linear variation of wetland ET and by neglecting the effects

of captured wetland ET (No ET model) are also plotted in

Figures 5.4, 5.5, and 5.6 for comparison. These figures

clearly document that the depletion rates obtained by

incorporating a step variation of wetland ET are very accurate

compared to depletion rates obtained by incorporating a linear

variation of wetland ET.

Although it is not readily apparent, Figure 5.4 shows

that stream depletion rates are fluctuating in the case of a

step variation of ET as the system approaches steady state.

These fluctuations occur due to the spatial discretization of

the aquifer domain and the insufficiently small time intervals

that are practical for the transient computations. It is

observed that these fluctuations could be eliminated if the
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grid density were finer and time interval smaller. However,

this would make the computational cost as well as execution

time unfeasible.

In order to obtain ‘the scaled steady state stream

depletion suggested by Equation 5.20, the numerical model is

forced to predict the final steady state solution by using the

information at the final time step of the transient

calculations. This indicates that the accuracy of the final

steady state results depend. on 'the accuracy of results

obtained from the final time step of the transient

computation. Because of the oscillations of q, obtained by

ST—ET model during the transient period, predictions of steady

state q, with this model are inaccurate. It is shown that

during the transient period, stream depletion rates that are

obtained from the ST-ET model do accurately approximate the

depletion rates obtained from the NL-ET model. Therefore the

NL-ET model is used to predict the final steady state stream

depletion rate, and the results are presented by using the

ST-ET model parameters.

As indicated above, the final steady state stream

depletion is computed by using the results of the final time

step of the transient computations. Numerical simulations for

stream depletion in the case of nonlinear variation of ET

showed that the system approaches the final steady state

asymptotically. However, when the values of Rgrare small and

'a' is large, the system approaches the steady state much

slower than in the case where R; is large and 'a' is small.
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In these kinds of cases, the numerical model requires an

unreasonably long time for transient computations so that it

could predict the final steady state stream depletion rate.

Thus, the CPU time required to run the model would not be

practical. To reduce the CPU time and maintain the accuracy

in these cases, the steady state depletion rate is predicted

by extrapolating the lines for stream depletion and captured

ET until they intersect (dashed lines in Figure 5.7). The

error introduced by extrapolation is controlled by carrying

out the transient computations for a period long enough that

the rate that water is mined from aquifer storage (the rate

shown as BC in Figure 5.7) is less than 10% of the stream

depletion rate (rate AB shown in Figure 5.7). If the

extrapolation had not been used, the error in depletion rate

at this time would be 10 %. Thus, the error in steady state q,

is less than 10% after the extrapolation.

Figure 5.7 shows that for K5:- 8.64 m/day and a=1000

meters, both stream depletion rate and captured ET rate

approach. their steady state ‘values very slowly as time

increases. It is observed from the numerical simulations that

this asymptotical approach to a steady state value is much

slower for lower range of values of R5 and higher values of

'a' than shown in Figure 5.7. Therefore, a longer period of

time is required to execute the numerical model for smaller

values of Kgiand larger values of 'a' for configuration 3 so

that the above criteria for extrapolation is achieved. For

example, it took 26 hours of CPU time to obtain the results at
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time t-5000 days for Ks=8.64 m/day and a=1000 meter shown in

Figure 5.7. In order to reduce this time and to control the

relative error within 10 %, the numerical model is applied to

configuration 2.

Since configuration 2 has coarser grid density than

configuration 3, it is important to check the influence of

configuration 2 on the accuracy of the depletion rate before

the development of the families of dimensionless graphs. The

scaled steady state stream depletion rates obtained by

applying the numerical model to configuration 2 are compared

with those obtained by applying the model to configuration 3

for three different values of Its/PET and a/hd. Table 5.2

shows these scaled depletion rates, the values of Ks/PET, a/hd,

and the relative error of configuration 2 depletion rates.

The relative error is determined by comparing the results of

configuration 2 with the results of configuration 3. Table

5.2 shows that the amount of relative error in q, obtained by

using configuration 2 increases as the value of a/h, increased

when Ks/PE'T - 10‘. In order to find the maximum amount of

relative error in steady state q,, the numerical model is

10‘. Theexecuted for a/h‘, = 20000 (a=2000 m.) and Ks/PET

relative error in this case is also less than 10% (9.6%).

This indicates that as the distance between the pumping well

and the stream increases, the growth rate in relative error in

steady state q, decreases. Therefore, at steady state,

configuration 2 produces approximately 90% accurate results.

This amount of accuracy in this study is assumed ‘to be

‘
0
4
.
~
.
_
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acceptable for practical purposes, since using this

configuration reduced the CPU time about one order of

magnitude.

Table 5.2 Comparison of the scaled steady state q, obtained

from configurations 2 and 3

 

 

 

 

       

Config. 2 Config. 3

KS/PET a/h, q,/Q g,/Q Relative err. (1;)

2000 1.000 0.988 1

10‘ 6000 1.000 0.964 5

10000 0.972 0.902 8

800 0.649 0.670 3

103 2000 0.420 0.425 1

4000 0.287 0.291 1

286 0.325 0.326 .3

102 715 0.160 0.159 .6

1430 0.107 0.106 .9

5.3.3. Discussion of Scaled Families of Curves for Stream

Depletion

Dimensionless families of graphs that may be used to

predict the steady state stream depletion rates and captured

wetland ET rates are developed by using the results of
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numerical simulations. Graphs (Figures 5.8, 5.9, and 5.10)

are plotted for values of Ks/PET equal to 10‘, 103, and 102 and

(ca/ha)" between 0 and 100. The symbols in Figures 5.8, 5.9,

and 5.10 show the values of steady state stream depletion

rates obtained from the numerical simulations. These data

points are connected to each other by fitting the best curve.

These figures provide a means for easily determining the

steady state stream depletion rates for values of Ks/PET,

(d,/h,,)", and a/h, within the range of values presented.

Figures 5.8, 5.9, and 5.10 show that the scaled steady

state stream depletion, q,/Q, approaches zero as a/hd

approaches infinity; whereas, qr/Q approaches 1.0 as a/hd

approaches zero. This can be interpreted as follows: as the

pumping distance increases, the aquifer response time

increases and this produces a lower rate of stream depletion.

An increase in the value of a/h, also indicates that the area

from which ET may be captured increases, thus, producing

higher ET capture. This trend can be observed from these

figures for all the range of values of Ks/PET and (ca/ha)".

Figure 5.8 shows that when the value of the scaled

conductivity is high, the steady state stream depletion rate

can not be neglected even for large values of a/hd. This

figure also confirms the importance of the initial depth to

water table as explained in section 5.2.4. For instance, as

the value of (CL/I14)” approaches zero, steady state stream

depletion rates increase, and the major portion of the well

discharge is captured from the stream, although the value of
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a/hd is large. As the value of d, approaches zero, captured ET

from the wetland decreases. This occurs because the sum (d,+s)

approaches the drawdown, s, and ET capture begins only when

s>dc instead of (d,+s) >30 and this causes a lower ET capture

rate and a higher stream depletion rate.

In Figures 5.8, 5.9 and 5.10, the lowest curve for (d,/h,,)’I

is the case where the product d,/c-ic =5 1. In this case, ET

capture from the wetland starts immediately after the pumping

starts, and as the value of a/h, increases, the major portion

of the well discharge is being captured from wetland ET. The

upper horizontal line in Figures 5.8, 5.9, and 5.10 (q,/Q =

1.0) is the case where d, >dc. In this case, the ET rate from

the wetland surface is zero, thus, all the pumped water is

captured from the stream for all the values of a/hd.

Figures 5.9 and 5.10 show the variation of the steady

state stream depletion rates for lower values of Its/PET. The

curves in these figures are closer to each other than the

curves in Figure 5.8 for the given range of (d,/hd)". This can

be interpreted as follows: the.effects of the initial position

of the water table is a more influential parameter for

determining steady state stream depletion rate when K5 is

higher. Although d, is more effective when K5 is higher,

Figures 5.9 and 5.10 also show the effects of (d,/h,,)" on the

magnitude of q,/Q distinctively. This indicates that the

initial position of the water table can influence the stream

depletion and/or captured ET rates even when the value of

saturated hydraulic conductivity is low.
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As indicated above, Figures 5.8, 5.9, and 5.10 can also

be used to predict the captured wetland ET since the system is

at steady state. An estimate could be made based on the

assumption that all pumped water is obtained from captured ET.

That would result in an estimate that is at.most 20 % in error

when the value of a/h, is greater than 5000 (see Figure 5.9) .

The scaled pumping distance decreases for the same amount of

relative error caused by the assumption that all of the pumped

water that is captured from the wetland ET decreases as Ks

decreases, as seen ianigure 5.10. 'This figure shows that the

maximuerelative<error at steady state is less than.10% if one

assumes that all of the pumped water is captured from the

wetland ET when a/hd 2 2000. This clearly indicates that as

the value of R; decreases while 'a’ increases, the aquifer

response time increases. Thus, steady state stream depletion

will be low, and the major portion of the well discharge will

be captured from the wetland ET.

5.4. Summary and Conclusions

In this part of the study, an investigation was conducted

to develop a model that can be used to predict the steady

state stream depletion rates caused by a continuous pumping

welli The effects of nonlinear variation of wetland ET on the

steady state stream depletion rate was investigated in the

model. The model was based on combining the governing flow
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equation for a water table aquifer and Anat et al's equation

for nonlinear ET from the water table.

Dimensional analysis was performed to find the functional

relationship between the scaled steady state stream depletion

and the physical aquifer parameters. It was found that the

scaled steady state stream depletion depended on five

independent scaled aquifer parameters in the case where ET

varies as a nonlinear function of the water table depth. It

was also found that these independent parameters were reduced

to three when the step ET assumption was employed to

approximate the nonlinear ET assumption. The scaled

parameters in the case of step ET assumption were: the scaled

hydraulic conductivity, the scaled pumping distance from the

stream, and the scaled initial depth to water table.

To incorporate step variation of wetland ET into the

model, an explicit relationship was found for the average

critical ET depth, dc, by combining Anat et al’s equation with

the atmospheric boundary condition. In the model it was

assumed that captured ET from wetland is zero when the sum of

the initial depth to water table and the drawdown is less than

or equal to 5;;‘whereas, captured ET is equal to PET when the

sum of the initial depth to water table and drawdown is

greater than dc. It was found that stream depletion rates

obtained by employing this assumption were very accurate as

compared to stream depletion rates obtained by incorporating

the linear variation of the ET assumption.

A 2-D finite element model for saturated groundwater,
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AQUIFEM-l, was modified to incorporate the nonlinear behavior

of wetland ET as a function of the position of the water table

and the soil hydraulic properties. The numerical model was

applied to a hypothetical situation for a wide range of scaled

independent aquifer parameters. The results of the numerical

simulations were used to develop the families of dimensionless

graphs that could be used to estimate the rate of steady state

stream depletion for a practical range of scaled independent

parameters. Three families of dimensionless graphs were

developed between the range of values of the scaled hydraulic

conductivity of 10‘ - 102, the scaled initial depth to water

table of 0-100, and the scaled pumping distance of 100-25000.

The following conclusions were made from the analysis of

the dimensionless graphs: the scaled steady state stream

depletion rate approached zero as the scaled pumping distance

approached infinity; whereas, the scaled steady state stream

depletion approached 1 as the scaled pumping distance

approached zero. When the value of the saturated hydraulic

conductivity was high, the error caused by the assumption that

all of the pumped water is captured from wetland ET is

substantial even for large values of a/hd. The dimensionless

graphs showed that steady state stream depletion rates

strongly depended on the initial position of the water table.

Analysis showed that as the saturated conductivity increased,

the effect of the initial position of the water table on the

magnitude of stream depletion rate was more influential.
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Analysis also showed, that as the value of saturated

conductivity decreased, the error caused by the assumption

that all of the pumped water is captured from wetland ET,

decreased.



CHAPTER VI

BOMB! m CONCLUDING amass

In the present study, three different mathematical models

were developed. These models can be used to predict the

stream depletion and/or captured wetland ET rates produced by

a pumping well from the phreatic aquifer which is

hydraulically connected to an adjacent stream. The

mathematical treatment required standard use of superposition

theory and the existing analytical solutions for steady,

continuous pumping. The solutions obtained are appropriate

only when the actual field conditions approach the assumed

conditions. The study focused on the approach to dynamic

equilibrium as well as conditions at dynamic equilibrium.

The first model is an analytical solution for stream

depletion produced by nonuniform, cyclic pumping from a well

located in a deep water table aquifer. The effects of

captured wetland ET were not included in this model. An

analytical expression for dimensionless volume of stream

depletion (r) was developed. This expression can be used to

determine the time required to achieve a practical state of

dynamic equilibrium. An analytical expression for r was

obtained (Equation 3.10) and plotted (Figure 3.8) for a

128
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practical range of the independent variables. Equation 3.10

was obtained by recognizing that the volume of stream

depletion over one cycle, from t-tg‘to t, is the same as the

volume of stream depletion between the start of pumping and

the time t by a single period of pumping (Figure 3.6).

Equation 3.8 shows that 1 depends on the values of a and 7 but

that it is independent of the value of tad; even though the

stream depletion rate shows such a dependence (Equation 3.6).

Analysis of the 1 relationship produced Equation 3.11 which

shows that time to equilibrium depends on t; alone for small

values of 7. An inspection of conditions when 7 is large

leads to the recognition that such wells are close enough to

the stream to reach equilibrium within the first pumping

period so that the nonuniform pumping pattern is an accurate

representation of the stream depletion pattern.

Having obtained a consistent basis for determining the

occurrence of dynamic equilibrium permitted the study of

stream depletion rates at dynamic equilibrium. The 6

criterion (Figure 3.10) was developed to characterize the

error in depletion rates estimated by assuming steady,

continuous pumping at the cycle-average rate. Figure 3.10

showed that under some circumstances, the cycle-average

approximation is not an adequate representation of the pumping

pattern.

The second model that was developed is also an analytical

model to predict the stream depletion by a steady continuous

pumping well where the effects of linear variation of captured
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ET were taken into account. The analytical model is based on

Hantush's solution for pumping from a leaky phreatic aquifer

connected to a bounding fully penetrating stream. Hantush's

leakage from the lower confined aquifer was interpreted to

describe a reduction in wetland ET resulting from the drawdown

of the water table in a shallow phreatic aquifer. It was

assumed that ET varies as a linear function of the drawdown in

the phreatic aquifer so that ET is at the potential rate with

zero drawdown and zero at a depth do. An explicit

relationship was derived that showed how potential ET and d0

were related to Hantush's leakage coefficient. Properties of

unsaturated soils were incorporated into the solution by using

Warrick's relationship between ET flux and depth to water

table to determine do.

Application of the analytical model to a hypothetical

situation showed that as the dimensionless distance between

the well and the stream increases (increasing 6) , the portion

of the pumping ' well discharge captured from wetland ET

increases; whereas, the portion captured from the stream

decreases. This resulted from increased aquifer response time

and increased area from which ET could be captured. A

dimensionless graph (Figure 4.7) was developed that shows the

relationship between stream depletion, water mined from

aquifer storage, captured wetland ET, and time. The analysis

showed that Figure 4.7 could be used to determine the time,

t when the system reaches a practical steady state. The
(I

analysis of Figure 4.7 also showed that as scaled pumping
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distance (6) increased, the system reached steady state faster

than the case where the effects of captured ET was neglected.

A dimensionless graph (Figure 4.8) for the rate of stream

depletion at steady state was also developed as a function of

the scaled pumping distance. This graph was used to determine

the stream depletion rate and captured ET rate at steady state

for known value of the scaled pumping distance. T h e

solutions obtained in this study are appropriate only when the

actual field conditions approach the assumed conditions. The

accuracy of the steady state stream depletion based on the

assumption that the captured ET rate linearly depended on the

position of the water table was investigated. The analysis

indicated that this assumption could result in substantial

error in stream depletion rate when do was small. The

analysis also indicated that the magnitude of this error could

be decreased as the value of do was increased. However, there

was no theoretical procedure to determine the value of do

which could minimize the error.

Additional error could be expected from the analytical

model results during the transient period as a result of a

constant specific yield assumption for soils that have low

hydraulic conductivity values. It was concluded from the

above analysis that the analytical model is restricted

significantly as a quantitative tool, but it is still valuable

as a qualitative tool.

An existing finite element model was modified extensively

in order to incorporate captured wetland ET as a linear
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function of the depth to water table in the aquifer.

Application of the finite element model and the analytical

model to a hypothetical situation showed that the results

obtained from the finite element model could be made to

converge to the results obtained from the analytical model if

the spatial discritization of the aquifer domain and time

interval were made sufficiently small. Therefore, the

analytical model is a valuable tool for determining the

optimum finite element grid density which could produce

accurate results during the transient period.

In the third model, the effects of a nonlinear variation

of wetland ET was investigated on steady state stream

depletion rates caused by a continuous pumping well. The

model was based on combining the governing flow equation for

water table aquifer and Anat et.al's equation for nonlinear ET

from the water table.

Dimensional analysis was performed to find the functional

relationship between the scaled steady state stream depletion

..and the physical aquifer parameters. It was found that the

scaled steady state stream depletion depended on five

independent scaled parameters in the case where ET varied as

a nonlinear function of the water table depth. It was also

found that the number of these independent parameters was

reduced to three when the step ET assumption was employed to

approximate the nonlinear ET assumption. These scaled

parameters were the saturated hydraulic conductivity, the

pumping distance from the stream, and the initial depth to

e
.
I
e
e
~
.
-
s
u
-

-
u
c
.
‘
-
1
_
n
-
L
‘
1



133

water table.

To incorporate the step variation of wetland ET into the

model, an explicit relationship was found for the average

critical depth, do, by combining Anat et al’s equation with

the atmospheric boundary condition. In the model it was

assumed that captured ET from the wetland is zero when the sum

of the initial depth to water table and the drawdown is less

than or equal to 3,; whereas, the captured ET is equal to PET

when the sum of the initial depth to water table and drawdown

is greater than do. It was found that stream depletion rates

obtained by employing this assumption were very accurate

compared to stream depletion rates obtained by incorporating

the linear variation of ET assumption.

A 2-D finite element model for saturated groundwater,

AQUIFEH-l, was modified to incorporate the nonlinear behavior

of wetland ET as a function of water table depth and soil

hydraulic properties. The numerical model was applied to a

hypothetical situation for a wide range of scaled independent

aquifer parameters. The results of the numerical simulations

were used to develop families of dimensionless graphs that

could be used to estimate the rate of steady state stream

depletion for a practical range of scaled independent

parameters. Three families of dimensionless graphs were

developed between the range of values of the scaled hydraulic

conductivity of 10‘ - 10’, the scaled initial depth to water

table of 0 - 100, and the scaled pumping distance of 100 -

25000.
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The following conclusions were made from an analysis of

the dimensionless graphs: the scaled steady state stream

depletion rate approached zero as the scaled pumping distance

approached infinity whereas, the scaled steady state stream

depletion approached 1 as the scaled pumping distance

approached zero. When the value of the saturated hydraulic

conductivity was high, the error caused by the assumption that

all the water is captured from wetland ET is substantial even

for large values of a/h,. The dimensionless graphs showed

that the steady state stream depletion rates strongly depended

on the initial position of the water table. Analysis showed

that as the saturated conductivity increased, the effect of

the initial position of the water table on the magnitude of

stream depletion rate was more influential. Analysis also

showed, that as the valuezof the scaled.saturated.conductivity

decreased, the error caused by the assumption that all the

pumped water was captured from wetland ET, decreased.

At this point some suggestions are made for future

analytical and numerical work on stream depletion and captured

wetland ET rates caused by either continuous or cyclic pumping

of the well.

For a more complete understanding of the physics of the

problem, it is important to modify the numerical model further

by incorporating the 1-D unsteady Richards' Equation between

the water table and the ground surface. This would allow the

specific yield to vary with the position of the water table

and time.
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Partial penetration of the aquifer by a stream including

the presence of the clogging layer between the streambed and

the aquifer is more realistic than a fully penetrating stream

with no clogging layer. Although this option was already

available in the numerical model, it was not used in the

numerical part of the present study. The effects of these

parameters on stream depletion and captured wetland ET rates

can be investigated in the future study.

It is also interesting to study the effects of the

partial penetration of stream with the presence of a streambed

clogging layer on stream depletion caused by cyclic pumping of

a well. This can be accomplished by combining Hantush's

theory (1965) with the superposition principle that was used

in the present study.

Also as a natural extension to the second analytical

model, a theoretical development is suggested for determining

the value of do that improves the accuracy of the analytical

model as a quantitative tool.

Finally, it is of equal importance to investigate further

the possibility of obtaining an analytical solution for stream

depletion by a pumping well where the effect of step variation

of captured ET is accounted.
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APPENDIX A

SOLUTION OP EQUATION 4.8 E! LAPLACE TRANSPOENLIIONB

Analytical solution of Equation 4.8 can be obtained by

applying Laplace transformations (Hantush, 1964a).

%+%§-_BZE = %% (A.1a)

Z(x,y,0) = 0 (A.1b)

z(oo,y, t) = 0 (A.1c)

Z(x, 10°, t) = 0 (A.1d)

Equations A.1a, A.1b, A.1c, A.1d can be written in radial

 

coordinates.

.52_Z.+l.a£-£ a £22 (A.2a)
r3 r r 32 T t

z<:,0) - 0 (A.2b)

Z(°°,t) - 0 (A-ZC)

130m (1.3% = 33(- (A.2d)
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Here r is the radial distance from the center of a pumping

well located at (xo,yo) to any point in the surrounding area

and is equal to [(x-xo)2+(y-yo)2]m. Applying ‘ Laplace

transformations to Equations A.2a, A.2b, A.2c, and A.2d one

can obtain,

 

fl+l§Z-(£§+i) 2 = o (A.3a)

3:2 rar T 32

7(oo'p) = O (A.3b)

lim (Ia—2) = - Q for t > 0 (Ii-30)

r-0 8: upKfl

In Equations A.3a, A.3b, and A.3c, p is the transformation

variable. Equation A.3a is the zero order modified Bessel

Equation and the general solution is (Hantush, 1964a)

2 = C1K°(Nr) +C2I° (Nr) (A- 4)

where N’- pS/T + 1/B’. In Equation A.4, Io and Ko are the zero

order modified Bessel functions of the first and the second

kinds, respectively. Since Ko(oo)=0, Io(co)=oo, and

6Ko(Nr)/6r=-N K,(Nr) and as xeo, lim x K,(x)-1, (Carslaw, and

Jaeger, 1959) the constants Cl and C2 can be obtained by

evaluating Equations A.3c and A.4. K, in the above expression

is the first order modified Bessel function of the second

kind.



 

,, Q
1 npK, (A.5a)

CZ = 0
(AeSb)

Substituting Equations A.5a and A.5b into Equation A.4 yields,

N
I u

 

Q 1
— K NI 0"P199 0( ) (A 6)

Substituting the value of N into Equation A.6 and taking the

inverse Laplace transformation of the resultant equation gives

the analytical solution of boundary value problem defined by

Equation A.1 (Hantush, 1964a)

 

2

z= 0 W(L§,£) (A.7)

21m, 42': B

where W is the well function for leaky aquifers which is

available in tabular form in the literature (Hantush, 1956;

and Walton, 1962). Equation A.7 is identical to Equation 4.15

that is given in chapter 4.

The rate of stream depletion per unit with of an aquifer

can be obtained by combining Equation A.7 with Darcy’s Law

(Hantush, 1964a)

qzw=0.5K, (g3) - (A,3)

x-O

The total rate of stream depletion then can be obtained by
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integrating Equation A.8 along the stream boundary (Hantush,

1964b)

= N a_z A.9q, O'SK'£(aXx-ody ( )

and the volume of stream depletion at time t can be obtained

by integrating Equation A.9 from t=0 to t (Hantush, 1964b)

c-co

V .-.- [qr dt (AelO)

I

C'O

The mathematical reduction of Equations A.9 and A.10 gives

Equations 4.17 and 4.18. 'To evaluate the infinite integral in

Equation A.9 and the definite integral in Equation A.10,

Laplace transformations were used (Hantush, 1964b).
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LISTING OF COMPUTER PROGRAM
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STREAM DEPLETION CAUSED BY CYCLIC PUMPING OF WELLS
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********************************************************

THIS PROGRAM CALCULATES THE IMPACT OF IRRIGATION

WATER ON INSTERAM FLOW QUANTITY BY USING UNSTEADY

GROUNDWATER FLOW EQUATIONS. THE PROGRAM COMPUTES

THE IMPACTS FOR CYCLIC PUMPING. IT IS ASSUMED THAT

THE PUMPING RATIO Q AND AQUIFER CHARACTERISTICS

ARE CONSTANT WITH TIME AND SPACE.

WRITTEN AND DEVELOPED

BY

Yakup Darama Ph.d Candidate

Michigan State University

College of Engineering

Department of Civil and Env. Engineering

East Lansing, Michigan 48824   
INTEGER ANSWER,MUNIT,EUNIT,OPTION,FLAG

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION RATEQ(4000)

CHARACTER FLNAME*10

WRITE(*,*) ' OUTPUT FILE NAME FOR BETAl AND BETAz ?'

READ(*,'(A)')FLNAME

OPEN(UNIT=5,FILE=FLNAME,STATUS='NEw',FORM='FORMATTED')

WRITE(*,*) ' OUTPUT FILE NAME FOR SDF ?'

READ(*,'(A)')FLNAME

OPEN(UNIT=6,FILE=FLNAME,STATUS='NEW',FORM='FORMATTED')

WRITE(*,*) ' OUTPUT FILE NAME FOR TAU ?'

READ(*,'(A)')FLNAME

OPEN(UNIT=7,FILE=FLNAME,STATUS='NEW',FORM='FORMATTED')

************* INPUT VARIABLES *********
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DX

PI

1.0

4.0*ATAN(DX)

WRITE(*,7)

FORMAT(/,10X,'UNIT SYSTEM FOR INPUT DATA',/

* ,on,'o = METRIC UNIT ',/

* ,10X,'1 = ENGLISH UNIT ',//

* ,lOX,'PLEASE SPECIFY --> '/)

READ(*,*)IO

IF(IO.EQ.O) THEN

MUNIT = o

ELSE

EUNIT = 1

ENDIF

WRITE(*,*) ' STORATIVITY Sy ?'

READ(*,*) STOR

IF(EUNIT.EQ.1) THEN

WRITE(*,*) ' TRANSMISSIVITY IN ft‘z/day ?'

READ(*,*) TRANS

WRITE(*,*) ' DISTANCE BETWEEN WELL AND RIVER IN ft ?'

READ(*,*) DIST

WRITE(*,*) ' PUMPING RATE Q IN ft‘3/day ?'

READ(*.*) Q

ELSEIF(MUNIT.EQ.O) THEN

WRITE(*,*) ' TRANSMISSIVITY IN m‘z/day ?'

READ(*,*) TRANS

WRITE(*,*) ' DISTANCE BETWEEN WELL AND RIVER IN m. ?'

READ(*,*) DIST

WRITE(*,*) ' PUMPING RATE Q IN m‘3/day ?'

READ(*.*) Q

ENDIF

WRITE(*,*)' PUMPING PERIOD DURING ONE CYCLE TP ?'

READ(*,*) TP

WRITE(*,*)' CYCLE LENGTH TD in days ?'

READ(*,*) TD

WRITE(*,*)' TIME INCREMENT DT in days ?'

READ(*,*) DT

WRITE(*,*)' DLT in days FOR CONV TO TAU=O.95 ?'

READ(*,*) DLT1

WRITE(*,*)' NUMBER OF MAX ITERATION MAXIT ?'

READ(*,*) MAXIT

WRITE(*,*)' TOLERANCE FOR TAUSTR=O.95+TOL ?'

READ(*,*) TOL

WRITE(*,*)' THE VALUE OF T1 in days ?'
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READ(*,*) TI

DDT DLT1

C

TA = ( DIST*DIST*STOR )/TRANS

C

WRITE(5,8)TA

WRITE(*,8)TA

8 FORMAT(10X,'AQUIFER RESPONSE TIME = ',DZO.12)

C

I = o

FLAG = 1

c

C ----------------------------------------------------

c

so x1 = DSQRT((TA)/(4.0*TI))

C ----------------------

CALL ERRFNC (X1,ERFCX)

C ----------------------

xx1 = x1*x1

EXPTRl = 1.0/(EXP(XX1))

A = ((((TA)/(2.0*TI))+1.0)*ERFCX)

B = (2.0*X1*EXPTR1)/(DSQRT(PI))

VC1 = (TI/TP)*(A-B)

C

IF(TI.GT.TP)THEN

C _

TMDIF =TI-TP

x2 = DSQRT((TA)/(4.0*TMDIF))

C ------------,..........

CALL ERRFNC (X2,ERFCX)

C ----------------------

xxz = x2*x2

EXPTRZ = 1.0/(EXP(xx2))

AA = ((((TA)/(2.0*TMDIF))+1.0)*ERFCX)

BB = (2.0*X2*EXPTR2)/(DSQRT(PI))

VC2 = (TMDIF/TP)*(AA-BB)

TAU = vc1-vc2

c

ELSEIF(TI.LE.TP)THEN

TAU = VCl

ENDIF

C

c -------------------------------------------------

C ***** FIND THE VALUE OF te WHEN TAU = 0.95 ******
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TAUSTR = 0.95+TOL

IF(I.LE.MAXIT) THEN

I a 1+1

IF((TAU.GE.O.95).AND.(TAU.LE.TAUSTR)) THEN

TE = TI

TTA = TE/TA

WRITE(*,*) ' CONVERGENCE REACHED'

GO TO 45

ELSEIF(TAU.LT.O.95) THEN

IF(FLAG.EQ.2) THEN

DLT = DLT/2.0

ENDIF

FLAG = 1

TI = TI+DLT

WRITE(*,51)TAU,TAUSTR

51 FORMAT(sx,'TAU =',F20.10,5X,'TAUSTR =',F10.7)

GO TO 50

ELSEIF(TAU.GT.TAUSTR) THEN

IF(FLAG.EQ.1) THEN

DLT = DLT/2.0

ENDIF

FLAG = 2

T1 = TI-DLT

GO TO so

WRITE(*,52)TAU,TAUSTR

52 FORMAT(5x,'TAU =',F20.7,5X,'TAUSTR =',F10.6)

ENDIF

ELSE

WRITE(*,56)I,MAXIT

56 FORMAT(5X,I4,1X,'CONVERGENCE NOT SUCCEEDED',/,

1 SX,'INCREASE THE VALUE OF MAXIT >',15)

GO TO 999

ENDIF

C **** COMPUTATION OF IMPACT AT ANY FUTURE TIME ******

45 WRITE(*,46)

46 FORMAT(/,1OX,'CALCULATE qmax ?',/

*,1ox,'(enter 0PTION)',/

*,1OX,'TYPE o <----------- YES',/

*,10X,'TYPE 1 <----------- NO',//

*,10X,'PLEASE SPECIFY ------->',/)

READ(*,*)OPTION

IF(OPTION.EQ.1) THEN

GO TO 190

ELSEIF(OPTION.EQ.O) THEN

WRITE(*,91)
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91 FORMAT(5X,' calculating the max. q')

N = INT(TE/TD)+1

NN = INT(TD/DT)+5

DO 4000 I=1,NN

RATEQ(I) = O.Do

4000 CONTINUE

C

K = NN

5000 IF(K.GE.1) THEN

C

TI = TE-((NN-K)*DT)+DT

C

write(*,*)K

SUM1 = 0.00

SUM2 = 0.00

I = 0

100 IF(I.LE.N) THEN

TI-I*TD

TI-TP-I*TD

ARGl

ARGZ

IF(ARG1.GT.O) THEN

x = DSQRT((TA)/(4*ARGl))

CALL ERRFNC (X,ERFCX)

SUM1 = Q*ERFCX

ENDIF

IF(ARG2.GT.O) THEN

x = DSQRT((TA)/(4*ARGZ))

CALL ERRFNC (X,ERFCX)

SUM2 = Q*ERFCX

ENDIF

IF((ARG1.GT.O).AND.(ARG2.LE.O)) THEN

RATEQ(K) = RATEQ(K)+SUM1

ELSEIF((ARG1.GT.O).AND.(ARG2.GT.O)) THEN

RATEQ(K) = RATEQ(K)+SUM1-SUM2

ELSEIF((ARG1.LE.O).AND.(ARG2.LE.O))THEN

SUM1 = o.Do

SUM2 = O.DO

RATEQ(K) = RATEQ(K)+SUM1-SUM2

ENDIF

I = I+1

GO TO 100
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ENDIF

c

WRITE(*,21)K,RATEQ(K),TI

21 FORMAT(5X,'RATEQ(',I3,')=',F12.5,5X,'t =',F10.2)

c

C —————————————————————————————————————————————————————————

C **** FIND MAx IMPACT DURING THE CYCLE WHEN TAU=O.95 *****

C ——————————————————————————————————————————————————————————

c

IF(K.LE.(NN-2)) THEN

IF((RATEQ(K+1).GT.RATEQ(K)).AND.

1 (RATEQ(K+1).GT.RATEQ(K+2)))THEN

QMAx = RATEQ(K+1)

TMAx = TI+DT

GO TO 450

ENDIF

ENDIF

c

C ------------------------------------------------

C ****** CHECK THE DERIVATIVE OF EQ. 3.1 *********

IF(K.EQ.(NN-1)) THEN

SLOPE = (RATEQ(K)-RATEQ(K+1))/DT

WRITE(*,22)SLOPE

22 FORMAT(SX,'SLOPE =',F15.7)

IF(SLOPE.LT.0.DO) THEN

K = ((NN-5)/2)+5

GO TO 5000

ELSE

K = K-l

GO TO 5000

ENDIF

ENDIF

K = K-l

GO TO 5000

ENDIF

C ***** CALCULATING THE STREAM DEPLETION ********

C ***** FOR CYCLE-AVEREGE CONTINUOUS PUMPING *******

C

450 X = DSQRT((TA)/(4.0*TMAX))

C

CALL ERRFNC (X,ERFCX)

C

QTD = Q*TP/TD

QC1 = ERFCX*QTD
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****** THE ERROR BETA IN EQUATION 11. ******
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x = DSQRT((TA)/(4.0*TE))

CALL ERRFNC (X,ERFCX)

QCZ = ERFCX*QTD

BETAl = 1.0-QC1/QMAx

BETAz = 1.0-QC2/QMAX

TPTA = TP/TA

TDTP = TD/TP

ENDIF

CONTINUE

IF(EUNIT.EQ.1) THEN

WRITE(5,184)TMAX,RATEQ,QC1

WRITE(*,184)TMAX,RATEQ,QC1

FORMAT(10X,'At t=',F18.0,' days',2x,

l'qmax =',D15.10,2X,'cu.ft/day'

2,/,40X,'qc =',D15.10,2X,'cu.ft/day')

WRITE(5,185)TE,QC2

WRITE(*,185)TE,QC2

FORMAT(10X,'At te=',F18.0,' days',2X,

1'qc =',Dl§.10,2X,'cu.ft/day')

ELSEIF(MUNIT.EQ.O) THEN

WRITE(5,186)TMAX,QMAX,QC1

WRITE(*,186)TMAX,QMAX,QC1

FORMAT(1OX,'At t=',F18.0,' days',2X,

l'qmax =',D15.10,2X,'cu.m/day',

2/,40X,'qc =',D15.10,2X,'cu.m/day')

WRITE(5,187)TE,QC2

WRITE(*,187)TE,QC2

FORMAT(10X,'At te=',F18.0,' days',2X,

l'qc =',D15.10,2X,'cu.m/day')

ENDIF

WRITE(5,255)BETA1,TPTA,TDTP

WRITE(*,255)BETA1,TPTA,TDTP

FORMAT(10X,'BETA1 =',F10.6,5x,'tp/ta =',F10.3,

15X,'TD/TP =',F10.3)

WRITE(5,256)BETA2,TPTA,TDTP

WRITE(*,256)BETA2,TPTA,TDTP

FORMAT(1OX,'BETA2 =',F10.6,5X,'tp/ta =',F10.3,
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15X,'TD/TP =',F10.3)

WRITE(6,257)TPTA,BETA2

257 FORMAT(10X,F10.4,5X,F10.5)

WRITE(7,191)TP,TTA,TAU

WRITE(*,191)TP,TTA,TAU

191 FORMAT(10X,'Tp =',F5.1,1X,'days',5x,

l't/ta =',D20.12,5X,'TAU =',DZO.12)

WRITE(*,888)

888 FORMAT(/,10X,'CALCULATE THE qmax',/

*,10X,'FOR ANOTHER TIME (enter ANSWER) ?',/

*.10X,'TYPE O <----------- YES',/

*,10X,'TYPE 1 <----------- NO',//

*.10X,'PLEASE SPECIFY ..............>',/)

READ(*,*)ANSWER

IF(ANSWER.EQ.O) THEN

WRITE(*,*)' NEW DISTANCE BETWEEN WELL AND RIVER ?'

READ(*,*) DIST

GO TO 99

ELSEIF(ANSWER.EQ.1) THEN

WRITE(*,*)' PROGRAM TERMINATED'

GO TO 999

ENDIF

C

999 CONTINUE

STOP

END

C

C

C **********************************************

SUBROUTINE ERRFNC (X,ERFCX)

***************************

***********************************************

THIS SUBROUTINE COMPUTES THE VALUE OF ERROR

FUNCTION FOR A GIVEN ARGUMENT X BY USING

THE RATIONAL POLYNOMIAL APPROXIMATIONS

  



0
0
0
0
0
0
0
0

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION CONST(S)

CONSTANT TERMS IN THE APPROXIMATING FORMULA

--’---------------------------------..........

NCONST = 5

PT = 0.3275911

CONST(l) = 0.254829592

CONST(2) = -0.284496736

CONST(3) = 1.421413741

CONST(4) = -1.453152027

CONST(5) = 1.061405429

APPROXIMATION OF ERROR FUNCTION X (erf X) BY

RATIONAL APPROXIMATIONS

SUM = O.Do

PARM = 1.0/(1.0+PT*X)

COEFF = EXP(-(X*X))

DO 500 M=1,NCONST

AI = FLOAT(M)

SUM = SUM+CONST(M)*(PARM**(AI))

500 CONTINUE

ERFX = 1.0-(SUM*COEFF)

ERFCX = 1.0-ERFX

RETURN

END
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PROGRAM TO CALCULATE STREAM DEPLETION AND ET REDUCTION PRODUCED

BY CONTINUOUS PUMPING WELLS LOCATED IN HOMOGENEOUS, AND

ISOTROPIC AQUIFER.

WRITTEN AND DEVELOPED

I l

| I

| l

| l

l l

| I

I By I

| Yakup Darama Ph.d Candidate |

I l

| Michigan State University |

| College of Engineering |

I l

I |

| l

I I

| I

Department of Civil and Environmental Engineering

East Lansing, Michigan 4882h

......................................................................

IMPLICIT REAL*8(A-H,0-Z)

CHARACTER FLNAME*10,FLIN*10

WRITE(*,*) ' INPUT FILE NAME - ?'

READ(*,'(A)')FLIN

OPEN(UNIT-5,FILE-FLIN,STATUS-'OLD')

WRITE(*,*) ' OUTPUT FILE NAME FOR LEAKY DEPL. - ?'

READ(*,'(A)')FLNAME

OPEN(UNIT-6,FILE-FLNAME,STATUS-'NEW',FORM-'FORMATTED')

WRITE(*,*) ' ENTER THE OUTPUT FILE NAME FOR CAPTURED ET - ?'

READ(*,'(A)')FLNAME

OPEN(UNIT-7,FILE-FLNAME,STATUS-'NEW',FORM-‘FORMATTED')

WRITE(*,*) ' ENTER THE OUTPUT FILE NAME FOR MINED WATER - ?'

READ(*,'(A)')FLNAME

OPEN(UNIT-8,FILE-FLNAME,STATUS-'NEW',FORM-'FORMATTED')

. INPUT VARIABLES

0
0
0

DX - 1.0

PI - 4.0*DATAN(DX)

CALL INPUT(STOR,TRANS,DIST,Q,PET,DT,SOILN,RHOB,SANDM,

* SATK,DTPARM,EPS)

CALL DEPTH(PI,SOILN,RHOB,SANDM,SATK,PET,EPS,DO)



15

16

153

WRITE(*,*) 'D0 -',D0

TI - 0.00

RATEQ - O.DO

RATEQL - 0.00

RATEQS - 0.DO

ETRATE - 0.00

QRQET - RATEQL + ETRATE

TOL - O.9999*Q

ENDTIM - 17S

IF(QRQET.LE.TOL) THEN

DT - DT * DTPARM

TI - TI + DT

00 - SDF(DIST,STOR,TRANS,TI)

TA - ATA(DIST,STOR,TRANS)

ALPHA - DIST/ALEAK(TRANS,DO,PET)

CALL BFLUX1(Q,TI,TA,UO,RATEQ)

CALL BFLUX2(Q,TI,TA,UO,ALPHA,RATEQL)

CALL REDSTO(Q,TI,U0,ALPHA,RATEQS)

CALL ETCAP(TI,Q,RATEQS,RATEQL,ETRATE)

QRQET - RATEQL + ETRATE

WRITE(*,16)TI,QRQET

FORMAT(5X,F10.3,5x,F12.6)

GO TO 15

ENDIF

STOP

END

C WWWMW”***************

DOUBLE PRECISION FUNCTION ALEAK(TRANS,DO,PET)

*********************************************

IMPLICIT REAL*8(A-H,O-Z)

. CALCULATION OF PARAMETER ALEAK FOR LINEAR ET CAPTURE

ALEAK - DSQRT((TRANS*DO)/PET)

RETURN

END
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C *******************************************************************

SUBROUTINE BFLUX1(Q,TI,TA,U0,RATEQ)

c ***********************************

C SUBROUTINE TO CALCULATE BOUNDARY FLUXES WHEN ET CAPTURE IS NOT

C CONCERNED.

c ....................................................................

C

IMPLICIT REAL*8(A-H,O-Z)

C

XIN - U0

CALL ERRFNC (XIN,ERFCX)

RATEQ - Q * ERFCX

TITAl - TI/TA

C WRITE(*,22)TI,RATEQ

C WRITE(7,22)TI,RATEQ

022 FORMAT(5X,F10.3,5X,F10.4)

C

RETURN

END

C

C

C .

C **********************************************************************

SUBROUTINE BFLUX2(Q,TI,TA,U0,ALPHA,RATEQL)

C ******************************************

c ......................................................................

C SUBROUTINE T0 CALCULATE BOUNDARY FLUXES WHEN ET CAPTURE IS CONCERNED

c ......................................................................

C

IMPLICIT REAL*8(A-H,O-Z)

BETA - U0 - ((ALPHA/2.D0)/U0)

CALL ERRFNC (BETA,ERFCX)

TERMl - (l.DO/EXP(ALPHA)) * ERFCX

ETA - 00 + ((ALPHA/2.DO)/UO)

CALL ERRFNC (ETA,ERFCX)

TERM2 - EXP(ALPHA) * ERFCX

RATEQL - (Q/2.D0) * (TERMI + TERMZ)

TITAz - TI/TA

DIMQRT - RATEQL/Q

C WRITE(*,21)TI,RATEQL

WRITE(6,21)TI,RATEQL .

21 FORMAT(sx,F10.3,5x,F12.6)

RETURN

END
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c t**************************************************************

SUBROUTINE REDSTO(Q,TI,UO,ALPHA,RATEQS)

C SUBROUTINE TO CALCULATE THE RATE OF MINED WATER FROM AQUIFER

C STORAGE

IMPLICIT REAL*8(A-H,O-Z)

XVAL - U0

CALL ERRFNC (XVAL,ERFCX)

ERFUO - 1.D0-ERFCX

HALPUO - - (0.5 * ALPHA/UO)**2

RATEQS - Q * EXP(HALPUO) * ERFUO

c WRITE(*,24)TI,RATEQS

' WRITE(8,24)TI,RATEQS

24 FORMAT(5x,F10.3,5x,F12.6)

C

RETURN

END

C

C

C

c ***************************************************************

SUBROUTINE ETCAP(TI,Q,RATEQS,RATEQL,ETRATE)

*******************************************

IMPLICIT REAL$8(A-H,O-Z)

C

ETRATE - Q - (RATEQL + RATEQS)

C AVET - Q - ETRATE

C

C WRITE(*,26)TI;ETRATE

WRITE(7,26)TI,ETRATE

26 FORMAT(5X,FIO.3,5X,F12.6)

RETURN

END
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C HMWMMWWWWWW**

SUBROUTINE DEPTH(PI,SOILN,RHOB,SANDM,SATK,PET,EPS,DO)

c *****************************************************

C SUBROUTINE TO CALCULATE DEPTH do WHERE EVAPOTRANSPIRATION FLUX IS

C NEGLIGIBLE

C ......................................................................

C

C

IMPLICIT REAL*8(A-H,O-Z)

C

C .... Soil parameters

C

DC - SANDM

SIGMAG - 1

C

C .... Air Entry Suction SE in cm of water

C

PSIES - -0.S/DSQRT(DC)

SLOPE - -2.o * PSIES + 0.2 * SIGMAG

POW1 - 0.67 * SLOPE

PSI - PSIES * (RHOB/1.3)**POW1

SE - -10.2 * PSI

WRITE(*,121)SE

121 FORMAT(SX,’ SE - ',F10.5)

APP - PET * EPS

R - APP/(SATK + APP)

...Computing the depth do Where ET - 0.

0
0
C
)

PIN - PI/SOILN

COSEK - l.D0/SIN(PIN)

AN - (PIN * COSEK)**SOILN

ANOM - SATK * AN

Do - SE * ((ANOM/APP)**(1.0/SOILN) - R)

160 WRITE(*.113)DO

113 F0RMAT(SX,'dO -',F10.3)

RETURN

END
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C WMWW****H***H******************

200

SUBROUTINE ERRFNC (X,ERFCX)

***************************

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION CONST(S)

REAL AI

. CONSTANT TERMS IN THE APPROXIMATING FORMULA

NCONST - 5

PT - 0.3275911

CONST(l) - 0.254829592

CONST(Z) - -0.284496736

CONST(3) - 1.421413741

CONST(h) - -1.453152027

CONST(S) - 1.061405429

.. APPROXIMATION OF ERROR FUNCTION X BY RATIONAL APPROXIMATIONS

IF(x.LT.o.DO)THEN

Y - DABS(X)

ELSE

Y - x

ENDIF

SUM - 0.00

FARM - 1.0/(l.0+PT*Y)

COEFF - EXP(-(Y*Y))

DO 200 Mp1,NCONST

AI - FLOAT(M)

SUM - SUM+CONST(M)*(PARM**(AI))

CONTINUE

IF(X.LT.0.DO)THEN

ERFX - l-(SUM*COEFF)

ERFCX - 1.0+ERFx

ELSE

ERFX - 1.0-(SUM*COEFF)

ERFCX - 1.0-ERFX

ENDIF

RETURN

END
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c *****************************************************************

SUBROUTINE INPUT(STOR,TRANS,DIST,Q,PET,DT,SOILN,RHOB,SANDM,

* SATK,DTPARM,EPS)

c *********************************

c ......................................................................

C SUBROUTINE TO READ THE INPUT DATA FROM THE FILE

0 ......................................................................

C

IMPLICIT REAL*8(A-H,O-Z)

C

C .... AQUIFER PROPERTIES

C

READ(5,*) STOR

READ(S,*) TRANS

READ(5,*) DIST

READ(5.*) Q

READ(5,*) DT

READ(5,*) PET

C

C . .. SOIL (MATERIAL) PROPERTIES

C

READ(5,*) SOILN

READ(5.*) RHOB

READ(5,*) SANDM

READ(5,*) SATK

C

C .... CONTROL PARAMETERS

C

READ(5,*) EPS

READ(5,*) DTPARM

C

RETURN

END
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c *************************************************************

DOUBLE PRECISION FUNCTION SDF(DIST,STOR,TRANS,TI)

c *************************************************

C .............................................................

C FUNCTION T0 CALCULATE AQUIFER RESPONSE TIME

C .............................................................

C

IMPLICIT REAL*8(A-H,0-Z)

C

C

SDF - DSQRT((DIST * DIST * STOR)/(4.0 * TI * TRANS))

C .

RETURN

END

C

c *************************************************************

DOUBLE PRECISION FUNCTION ATA(DIST,STOR,TRANS)

c *********************************************

C IMPLICIT REAL$8(A-H,O-Z)

g .... CALCULATION OF AQUIFER RESPONSE TIME TA

: ATA - DIST*DIST*STOR/TRANS'

RETURN

END
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