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Abstract

Strong Markov Properties for Markov Random Fields

by

Kimberly Kay Johannes Kinateder

Markov properties and strong Markov properties for random fields are defined

and discussed. Special attention is given to those defined by I. V. Evstigneev.

Various definitions of measurability for set-valued functions have been defined.

These definitions are shown to be equivalent to each other for compact domain-

valued functions, called random domains. The strong Markov nature of Markov

random fields with respect to random domains such as [0, 1'1] and [71,72] are

explored, where 1'1 and 1'2 are stopping times. This concept is extended to higher

dimensions by introducing an extension of stopping times called membranes. A

special case of this extension is shown to generalize a recent work of Merzbach

and Nualart.

Finally, the so-called corner Markov and strong corner Markov properties are

introduced, and the strong corner Markov property is proven to hold under some

conditions which include a Cairoli-Walsh (F4) type of condition. The strong

Markov nature of reciprocal Markov processes is explored using techniques of

Stroock and Varadahn.
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Chapter 1

Introduction

The study of Markov properties for random fields was initiated by Lévy

[Lev48]. McKean [McK63], Molchan [M0171], Pitt [Pit71], Kallianpur and Man—

drekar [KM74], and Kunch [Kun79] studied necessary and sufficient conditions

for Markov properties of Gaussian random fields. In [Man83], Markov prop-

erties for general random fields were studied. Evstigneev initiated the study

of strong Markov properties in multi-dimensions by introducing Markov times

in [Evs77] and proposed a necessary and sufficient condition (splitting) for this

strong Markov property in [Evs82]. In [Ev588], Evstigneev presented a nonantic-

ipating sufficient condition for a Markov random field to have his strong Markov

property with respect to a set-valued random function (specifically, random do-

mains). We shall refer to this condition as (2.6). Rozanov [R0282] also explored

set-valued random functions and strong Markov properties for multi-dimensions.

This study has found applications to various fields ([Dud82], [Nel73], [Sim74]).
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For ’Ri , our purpose is to systematically study Evstigneev’s strong Markov

property for random domains related to stopping times. In order to extend these

results to 721 with d > 1 , we introduce random membranes as an analogue

of stopping times and study Evstigneev’s strong Markov property with respect

to random domains related to random membranes. As an example in 712+ , we

show that the so-called decreasing stopping lines occuring in a recent work of

Merzbach and Nualart [MN90] on point processes are a special type of random

membrane that satisfies condition (2.6). [MN90] presents another strong Markov

property and we show that, under some natural assumptions, condition (2.6) is

sufficient for a point process to have this strong Markov property with respect to

a decreasing stopping line.

In Cairoli and Walsh [CW78], a one-dimensional property (F4) is used to

investigate two—dimensional Markov properties. In Chapter 4, we study one-

dimensional strong Markov properties and relate them to two-dimensional strong

Markov properties. Finally, the study of strong Markov properties for reciprocal

Gaussian processes is undertaken. The results obtained present a good beginning

to this study, and some methods from [Str87] are clarified. Since reciprocal pro—

cesses play a major role in various applied problems, it appears that the study of

strong Markov properties for reciprocal processes may have a significant impact

on applications.



Chapter 2

Definitions and Preliminary

Theorems

2. 1 Markov properties

Let (Q,f',P) be a complete probability space. Throughout this thesis, we

assume that all sub- 0 -algebras of .7 introduced will contain all sets of measure 0

from .7: . Since our goal is to determine when certain random fields have a strong

Markov property, we need to understand the simple notion of a random field.

Definition 2.1 Let E = {ahERi be a family of random variables defined on

(9,.7, P). We call 6 a random field.

Example 2.1 One of the special cases of random fields that we study is the

point process. In [MN90], the point process for d = 2 is defined as follows. Let

N be a random measure on 723. such that N(w) is a finite or countable sum

of Dirac measures on random and different points Zi(w), i = 0,1,... . We also

assume that

N({z =(z1,22) E 721: 0 _<_ zigti,i=1,2})< oo,
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for all t = (t1,t2) E R3. and that the measure of the axes is zero. The point

process 6 is then defined for t E R3. by

{t = N({z = (21,22) 6 721:0 g z,- 3 ti, 2' = 1,2}).

Associated with a random field 6 we define a -algebras

Q; E a(€t,t E A)

for A Q R1 and germ—field a -algebras

(>0

for A _C_ Rfi. , where

A6 = {t e 721 : d(t,A) < 6}.

Throughout we assume 9R1 = .7".

Using the above a -algebras, we can express several different Markov proper-

ties for a random field é . For this we need the concept of conditional indepen-

dence.

Definition 2.2 Let A,B, and g be sub a-fields of 1". We say that .A and B

are conditionally independent given g , if

P(AnB|g)=P(A|g)P(B|g), for allAEAandBEB,

where P(- I Q) is the conditional probability given 9 . We denote this by A .LL [3 I g .

In our case, P(. I Q) will be an equivalence class.

The first Markov property that we shall introduced was proposed by Evstigneev

[Evs88]. A subset A C_: R1 is called a domain if A Q 25. Let T denote the set
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of all compact domains in R1. Assume 0 E T. A random field 6 is said to be

Markov with respect to B E T if for all A, C E T with A Q B Q C,

fBJLfFIF/fia-

Definition 2.3 We shall say that a random field 6 is Markov if f is Markov

with respect to B E T, for all B E T.

Given this definition, a natural question arises. When at = 1 , how does this

Markov property relate to the Germ-field Markov Property (denoted GFMP),

(110,” _lL fi,,m)|f{,}, for all t 2 0)

and the classical Markov property

(gm _LL gum” 9“}, for all t Z 0) ?

The answer is given below.

Lemma 2.1 If f has the classical Markov property, then C is Markov.

Before proving the claim, we will state a few results dealing with conditional

independence. Proofs for Propositions 2.1 through 2.4 and Theorem 2.1 can be

found in [Man83], pp.163—167. Proof of the Proposition 2.5 is given in [R0282],

p. 58.

Proposition 2.1 If A,B,g’, and g are sub-a-algebras of .7: with

.AJLBIQ and Q'QQVB, then AlLQ’IQ.

Proposition 2.2 Let {033i 6 I} be disjoint open subsets of X and U =

UiEI 0i- If

gag 'U' g0: lgao“,



for all i E I, then

05 iL Gfic lgaU-

We call the latter condition the simple Markov property on [1.

Proposition 2.3 6 has the simple Markov property on all open subsets of X if

and only if 6 has the simple Markov property on all open intervals in X.

Theorem 2.1 If E has the simple Markov property with respect to a. set A, then

f] gel 0 gal fl 90-

open 0234 open 02? open 026

That is, 6 has the the germ-field Markov property (GMFP) on A .

Proposition 2.4 5 has the GFMP on a set A if and only iffor every open set

0 2 0A,

GA JL 9A: I90.

Proposition 2.5 If {gn},, are monotonically decreasing sub-a-algebras of f

such that .A .lL mg. for all n E N, then

AJLBI fl 9".

n=1

Proof of Lemma 2.1. Assume if has the classical Markov property. Then

910.1] -”- g(t,oo) |0(€t), for all t 2 0.
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From gm] = 910,1) V a(€t), gym) = 90,00) V 0(fg), and Proposition 2.1, we get

that C has the simple Markov property on sets of the form [0, t) and (t, 00) . By

Proposition 2.2, 6 has the simple Markov property on sets of the form [0,3) U

(t,oo), s < t. By Proposition 2.1,

glOvSlUllOO) _ll_ g(s,t) lQ{s,z}, for all t > s;

that is, f has the simple Markov property on all open intervals in (0,00). Propo-

sition 2.3 now gives us the simple Markov property on all open sets in (0, oo) . The

GFMP on all open sets follows from Theorem 2.1. Now let a, b E T with a Q b.

Our goal is to show fa—c _lL Jill—“Tn; Let 6 > 0, A 2 b0, O = (my, and

 
apply Proposition 2.4 to get gbo Jl. g(bo)c |g(a.nb).. Note that gb. = Q'bo VgG'cfiEy

and g—(ac)( : g(bo)c V g(a°—nb)" Hence gill—63‘ _ll. gbc Ham), by Proposition 21.

Finally, we apply Proposition 2.5 and the facts that .77: Q Q—(ac), , for all 6 > 0

and .771, Q gbe, for all e > 0 to get

f? 11— fb lf-fiTib'

Therefore, 5 is Markov with respect to all a,b E T with a Q b. D

The converse of the above claim is not true. A counterexample for this comes

from A = (0,t) and X(t) +X(t) = B(dt), t Z 0, X(0) = X(0) = 0, where B is

Brownian motion. By [D0044], {Xt,t > O} has the GFMP for all A, but it does

not have the simple Markov property for all A .

Another Markov property for R: that we need is the reciprocal Markov

property.

Definition 2.4. 6 has the reciprocal Markov property if

9W] JL g[0,s]U[t,oo) | gm}



fora110_<_s<t<oo.

We now turn our attention toward strong Markov properties. We start by

introducing stopping times.

Definition 2.5. A nonnegative random variable 1' is called a stopping time if

{r g u} 6 gm], for all u _>_ 0

and a two—sided stopping time if

{“13 r 3 ug} E gluhuzl, for all W Z u1_>_ 0.

Observe that r is a stopping time if and only if {w : [O,r(w)] Q [0,u]} E gym]

for all u_>_ 0.

In order to generalize the concept of a stopping time to higher dimensions,

we need to define measurability of set-valued functions ([Evs77], [Evs88], [MN90],

[R0282]). Define a a- algebra T on T by letting

T=a({A€ TzAQ U} : U is anopen subset ofRi).

It is easy to prove that T can also be generated by sets of the form {A 6 T :

A Q U} where U ranges over all Borel subsets of Rff. . For further information,

see [Ev388].

Definition 2.6. A measurable map from ($2,?) to (T,T) is called a random

_dpma'm [Evs88].

That is, a random domain is a compact domain-valued function on it such

that

{QED}€.7, for all DET (2.1)
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It is worth noting that there are other ways to express this measurability (2.1).

Lemma 2.2 If Q(w) E T for all to E Q, then the following conditions are

equivalent to (2.1)

{QnAfi0}ef, for all AeT (2.2)

{Q g A} e .7-' for all A e T. (2.3)

{Q Q B} E f, for all open subsets B E R1. (2.4)

Proof. (2.1), (2.2), and (2.3) are equivalent using [Evs88], p. 31. The equivalence

of (2.3) and (2.4) follows from the relations

m —

{Q s B} = U {Q s 134/")
n=1

for any open domain B in R1 where B‘l/n = {t E R1 : d(t,BC) > 51-} and

m

{Q Q A} = fl {Q Q Al/"} for any A in T.

n=1

[:1

Condition (2.4) is the definition of measurability used in [R0282]. Rozanov

also noted ([R0282], p. 80) that the measurability of a T-valued map on Q can

be expressed in terms of the measurability of random variables, as described in

the next lemma.

Lemma 2.3 Suppose Q(w) E T for all to E 9. Then IQ(z) is a. measurable

random variable for each 2 in R1 if and only if Q is measurable.

We shall also study the strong Markov property for point processes. In order

to relate this work to that in [MN90], we need the definition of measurability

from [MN90]. In [MN90], a random set Q is said to be measurable if

{Q (1 A # ill} 6 .7", for all open A Q R1. (2.5)
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Once again, this definition of measurability is equivalent to Evstigneev’s definition

of measurability when Q takes values in T.

Lemma 2.4 Assume Q(w) E T for each to E 9. Then (2.5) holds if and only

if (2.1) holds.

Proof. (2.1) implies (2.5) by the relation

{Q n A ¢ ¢} = {Q s new for open A,

the equivalence of (2.1) and (2.3), and the fact that (A6)” 6 T. The reverse

implication follows from the same relation after noting that any B E T can be

written as ((BC)C)° and that Bc is open. El

Let C be a collection of sets C . A random set-valued function D is said to

be compatible with C if

{DQC}E.7-'C, forall CEC.

A random set-valued function D is said to be co-compatible with a collection of

sets C if

{DQC} 6.770, for all CEC.

As mentioned earlier in this section, an example of a random domain when

d = 1 is the random interval Q = [0, r] where r is a positive random variable.

We provide an extension of this concept to R1 .

Definition 2.7. A Rf‘l -membr_ane is a subset M Q R1 such that

if (1 =1, then M = {m} for some m 6 (0,00), and

if d 2 2, then Ill satisfies (1) and (2) below:

(1) It! (1 {u E R1 : U, = 0} is a Ri—l -membrane in {u E R1 : u,‘ = 0} for all

i=1,...,d.



11

(2) there exists a continuous one-to-one map

7;Bd_1(0,1)nRi-1 _. R1

such that 7(Bd_1(0, 1) D 721.1) = .M.

We call it a membrane because the first exit set 1’ ‘attaches’ itself to each

axis ((1 = 2) or axis plane (d = 3) and ‘stretches’ itself between the axes (d = 2)

or axis planes (d 2 3).

Figure 2.1 membrane Al (d = 2)

y-axis

1W

  
m-axis

We can define sets of the form [0, M] and [M1,1l42] for d > 1 dimensions

in a natural way using membrane theory as described below. Let M denote the

class of all membranes. If M E M , let

[0, M] E {u E R1. : u lies on some polygon p in R1 which connects 0

to an element v E M and such that p 0 M = {11)}.

Define a partial ordering S on M by M1 _<_ M2 ifand only if [0, M1] _C; [0,M2].

Also define [AILMQ] = [0,M2] fl [0,M1]c for .Ml,M2 E M such that All S M2.
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Figure 2.2 [0,Mi] and (1‘11.le for Alhllfg e M such that MI 3 Mg

y-axis

 
  

2.2 Strong Markov properties

Now let us recall the classical 1-dimensional strong Markov property. As men-

tioned in Section 2.1, a nonnegative random variable 1' is a stepping time if

{1- g u} 6 gm] , for all u 2 0. Define the stopped a -algebra .75} by

f7={A€f: Afl{r$u}€9[0,u], forall u_>_0}.

Definition 2.8. f is said to beWif for every stopping time 1' ,

P(€t E C'Hfr) = P(£¢ E C||a(€1-)) as on {t > 7'}

for all t Z 0 and C E B(R).

Intuitively, this says that the information from the process after the random

time 1' is conditionally independent of the future information after the random

time T , given the information from the process at the random time 1'. As the

extension of the Markov property to R1 , d > 1, corresponds to the conditional

independence of the information of the process in the ‘interior’ and ‘exterior’

regions of a set given the information on the boundary of the set, the extension

of the strong Markov property to R1, (1 > 1 , corresponds to the conditional

independence of the information of the process in the ‘interior’ and ‘exterior’
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regions of a random domain given the information on the boundary of the random

domain.

Strong Markov properties of this type were proposed by Evstigneev ([Evs88]

and [Evs77]) and Rozanov [Roz 82]. Exploring Evstigneev’s most recent strong

Markov property is the main purpose of this thesis, and it is defined below.

For notational convenience, define

«41M, 13) = 7:13

A2(A, B) = F];

«4304, B) =W

for A,B g 721 with A _c_ B.

Let c > 0 and a,fl be random domains such that 01(0)) _C_ fl(w) for all 00 E 9.

Let i E {1,2,3}. Define Af(a,fl) to be the a-algebra generated by a,fl and

sets of the form

{Fe Ame 2 BmI‘

where F E Ai(A,B) and

a—‘(w) = {t Z 0 : d(t,a(w)c > e}.

Let Ai(a,fl) E 000 Af(a,fl).

Definition 2.9. A random field 6 is t a k v with r e to a

random domain Q if, for every two a(Q)-measurable random domains or, ,8 with

a(w) Q Q(w) Q ,B(w) for all w E Q,

A1(C¥, fl) J-L A2(a$ fl) |A3(OI,,B)-

Evstigneev [EvsSS] proved that each of the following conditions on a random

domain Q is sufficient for a Markov random field 6 to be strong Markov with
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respect to a random domain Q:

{Q Q B} E 7:3, for all B e T (2.6)

{Q 2 B} e .7-‘3, for all 13 e T (2.7)

The following lemma is helpful in relating condition (2.6) to some more com—

mon conditions.

Lemma 2.5 Let Q be a random domain.

(i) {Q Q A} E .7714, for all open subsets A of R1 is equivalent to condition

(2.6).

(ii) (2.6) implies {Q Q V} E fv, for all compact intervals V of R1 .

(iii) If Q = [71,72] for some random variables 71,12 such that 0 _<_ 110») <

12(w) < 00, for all to E Q, then {Q Q V} E TV, for all compact intervals

V of R1 implies (2.6).

Proof.

(i) We shall first show that {Q Q A} E .77A for all open subsets A of

R1 implies condition (2.6). Let V E T. Since 00 fvc = fv, it is enough to

6)

show that {Q Q V} E TV. for every 6 > 0. Let c > 0. Then {Q Q V} =

{'1 {Q Q Vii} E fve and we are done. Now assume condition (2.6) and let

n=m+1
A be an open subset of R1 . Using that A is open and Q(w) is closed for each

wen, {ow}: gnu-her...

 

(ii) Consider the compact interval V = [a, b] . If a = b, then V = {a} and

{Q Q V} = (b E 7v , because Q(w) is a domain for each to E Q. If a < b, then

V E T and {Q Q V} E fv by condition (2.6).
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(iii) In order to prove (2.6), we shall show that {Q Q V} E fve for every

VET and e>0. Let VET and e>0. Then

00

{09V}: 0 U {Q§[8.tl}

n=lfil+1 ssevth; [3;]th

is an element of fv1 Q fvc and the proof is complete. D

We will later show that condition (2.7) is not equivalent to E having the strong

Markov property with respect to Q. The next theorem describes the relationship

of a random domain Q with the random set “Qua.

Theorem 2.2 Consider the random field E = {fthep where D is some compact

subset of R1 .

(i) Q is a random domain if and only if Q? is a random domain.

(ii) 6 is strong Markov with respect to Q if and only if 5 is strong Markov with

respect to Q5.

Proof.

(i) Let Q be a random domain. Since Q is closed, we have that QC is open

and thus Q3 is a domain. Hence Qc(w) E T, for all to E 9. Using results (2.10)

and (2.15) on pp. 79,80 of [Roz82], we can get the measurability of Q . Therefore

Q“ is a random domain.

 

The reverse implication follows by the above and the fact that (Q5)C = Q.

(ii) Assume 5 is strong Markov with respect to Q. Let a and ,6 be 0(3)?)-

measurable random domains such that a Q Q? Q fl. Note that for an arbitrary

A E T, it holds that 71-5 = A, 8A0 = 8A, and (715)“ = A0 ([Roz82, pp. 80-81,

(2.17), (2.18)]). Thus

{Q _C. A} = {62" g A”} = {(Q")“ 2 (A”)°} = {"6973 2 7F}.
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Since 715 E T and T is generated by sets of the form

{B E T : B 2 C}

where C E T ([Ev388], Lemma 62(3)), we get that 0(Q) = 4?). Combining

this, 0(a) = 0(3), and 0(6) = a(—fl_c), it follows that E and F are o(Q)-

measurable. By the assumed strong Markov property,

A1(F’E) J‘L A2(E—E)a-E) l “43(Fva—é)

In order to prove the desired strong Markov property, it is enough to show

A1(FE,a—E)= “42(av18)! (2'8)

A2(I—'§éa?) = A1(a1fl)? and (2'9)

sum—6,3?) = A3(a, s). (2.10)

For e>0, A,BET with AQB and PEA,‘(A,B), iE {1,2,3},

 

{FQA}0{F2B}HF={(F)C2F}fl{(fl_—‘)c QEE}0F

={(?)“‘2F}H{W§F}HF-

Moreover,

A1(A,B) = .73 = FEB—77 = A2(F,AF),

A2(A,B) = .732; = A1(F,AE), and

= A3(—B.E,F).Aid/1,13) = 3,4an 2 W07?

Hence Ai(a,fl) = §(-fl_c,?), §(a,,6) = {(Fir—é), and A§(a,fl) = $33,376).

Therefore (2.8) holds. (2.9) and (2.10) can be proven in a similar fashion.

 

The reverse implication follows from (air = a and CST)" = fl and the same

techniques used above. El



Chapter 3

Special random domains

We will now look at some specific random fields { and random domains Q such

that 6 has the strong Markov property with respect to Q.

3.1 Random domains of the form Q = [0,7] when d: 1.

In this section, two theorems with different hypotheses and identical conclusions

will be stated for d = 1. The second theorem is decidedly stronger than the first

theorem. However, the proofs of the two theorems use different techniques. The

proof of the first theorem uses an interesting result of Rozanov and condition (2.6).

The second proof uses only (2.6) and is most similar to the rest of the proofs in

Sections 3.3 and 3.5.

Theorem 3.1 Let 6 = {50120 be a Markov random field with continuous sample

paths. Assume there exists some open set A0 Q R such that {0(w) E A0, for all
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w E 9. Define the random set

A(w) = {u 2 o = saw) 6 A0}

and assume that /\(w) is bounded for all to E 9.

Then 6 is strong Markov with respect to the random domain Q = [0,1'], with

T(w) = inf{u Z 0 : £u(w) ¢ A0}.

We call T the first exit time from An.

Before we prove this theorem, we need to state a result of Rozanov

([R0z82], p. 82).

Theorem 3.2 Let (9 denote the collection of all open subsets of R3, and let

uo be a fixed point in RI. If D is a random domain, co-compatible with (9,

then the connected component D0 of D containing uo is compatible with 0.

Proof of Theorem 3.1. We will first show that T is a random domain. Note

that the set /\(w) is open in X since A0 is open and {(w) is continuous for all

u) E fl. Thus Who) 2 The), for all to E Q; that is, X0») is a domain for all

to E 0. By assumption that T0») is bounded, for all to E Q, and since The)

is closed, for all to E 9, we have that The) is compact, for all a) E 0. Thus

X0») E T, for all w E 9.

Next we must check the measurability of A. Since /\ is open, it is enough to

check if {A 2 A} E .7, for all A E (9 ([Roz82], pp. 79—80). Now

{A2A}={X2A}=fl 0 U {éVEAo},

(>0uEAnQ VEB(u,c)nQ
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which is an element of .7A , for all A E 0 using that A is open. Hence T is

measurable, and thus T is a random domain. From {:1 2 A} E 7/1, for all

A E (9, we also get that T is co-compatible with the family {0(Eu, u E AllAEO-

Applying Theorem 3.2 with D = 3: and an = 0, yields that Q = [0,7]

is compatible with the family {gAlAeC}, where r = inf{u Z 0 : {u ¢ A0}.

Let B E T. Then {Q Q B} = 2:1{Q Q 131/71} since B is closed. Also,

{Q Q Bl/fl} E 98% , since Bil? is open and Q is compatible, for all n E IN.

So {Q Q B} E 030:1ng = .73 since ng Q 0%S€<;%f 63:, for all n. This

inclusion and condition (2.6) yield that 6 has the strong Markov property with

respect to Q . E]

It turns out that Theorem 3.1 holds for any positive stopping time r, not

just exit times. The path continuity and initial conditions on é can be removed

to yield the result given below.

Theoreln 3.3 If C is a Markov random field and r is a positive finite stopping

time, then 5 is strong Markov with respect to the random domain Q = [0,1'].

Proof. We must first show that Q is a random domain. Certainly, using that

0 < r(w) < 00, for all to E 52, we get that Q(w) E T, for all to E Q. Moreover,

given V E T and e > 0,

{Q g V} = ii {[0,7-19; Vt}
n:[-:- +1

= a U {r_<_s}.

n-----[-.‘-]+1 set/tuna); [0,s1gvt

L
—
l

The latter equality comes from the proof of the following lemma.
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Lemma 3.1

{tents/i}: U {r33}

.96th02; [0,s]gV%

for arbitrary n E N.

Proof. If u E [0,r(w)] and there is an s E Vi (N) such that [0,3] Q Vii and

r(w) S s , then u E [0,3] Q Vii. Hence '

U {r33} 9 {tons Vi}.

sevt‘nQ; [0,s]QV?i‘

Furthermore, if {0, r(w)] Q Vi , then by Vii—(101w), 00) being open, there exists

some rational s E Vi such that [0,r(w)] Q [0,s] Q Vii . In particular, r(w) S 3.

Thus

U {.- s s} 2 {[0,7] 9 vi},

sEVAnQ; [O,s]QVb

and the lemma is proven.

Continuing with the proof of Theorem 3.3, we have {Q Q V} E fyc for each

6 > 0 and {Q Q V} E .7V. Hence Q is a random domain and 6 is strong

Markov with respect to Q using condition (2.6). D

3.2 A counterexample

We are now ready to construct an example of a process 5 and a random

domain D such that { is strong Markov with respect to D but D does not

satisfy (2.7).

Let go , E1 , and E2 be independent random variables. Define

3 ,. ..

{t = Z til-11(n—1,n](t) +€ol{0}(t) for t 6 [0,31

n=l
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Suppose that go lies in some open set A0 and let 7' = inf{t Z 0 : ft ¢ A0} .

Furthermore, assume that 7(a)) < 00 for all to E Q and 0 < P(r 2 1) < 1 . Note

that .f is classical Markov since gm] 2 0(60) is independent of 451,52) 2 gm].

Thus 6 is Markov and has the strong Markov property with respect to the domain

Q = [0, T] by Theorem 3.3. By Theorem 2.2, § also is strong Markov with respect

to the random domain QC- : [r, 3].

However,

{Z27 211,31}={1~r,312[1.31}

= {T 2 1}

= {r < 1}”

E 9m,”

since {7' < 1} = 1:)ng g 1- ;1,-} and {r g 1 — %} e g[0’1_1] g g[0,1] for each

72. Suppose {Q0 2 [1,3]} 6 gm]. Then {Qc 2 [1,3]} 6 910.110 g[1.3] and,

since gm] is independent of 911.3], P(T 2 1) = Mae" 2 [1,3]) = 0 or 1. This

contradicts our assumption that 0 < P(r 2 1} < 1. Hence {'QE 2 [1, 3]} e g[l,3]

and condition (2.7) does not hold.

3.3 Random domains of the form Q = [0,r] when d > 1

Recall that membrane theory was discussed in Section 2.1. The extension of

Theorem 3.3 now follows naturally.

Theorem 3.4 Let 6 be a Markov random field and let 7' : Q —t M be a map

such that

{T _<_ 114} E g[0,M], for all M E M (3.1)
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Then £ has the strong Markov property with respect to the random domain Q =

[0, r] .

Proof. We need only to show that Q is a random domain and that (2.6) holds.

Since Q(w) E T, for all to E Q , we may conclude that Q is a random domain

once we have proven (2.3), as was done in the proof of Theorem 3.3. For arbitrary

VET and e>0,define

d

’H’f/={MEM:[0,M]QV1/", MD(U{uER1:uj=0forj #21591}

i=1

Then given any VET and e>0,

{09V}: (1 U {QEM}
n=[-l;]+l ME”?

6 0 9w

(>0

which equals .7V using the hypothesis. [3

3.4 Stopping lines

In [MN90] a special type of membrane is defined for d = 2. Let M be a

R1-membrane. Define Q(u) = M {'1 {x E R1 : x1 = u} for u E [0, 1]. We shall

say that M is aW113; if Q(u) is a singleton for each u E [0,1] and the

map Q on [0, 1] is non-increasing, where Q(u) is defined to be the y-coordinate

of Q(u) . Let L(w) be a decreasing line for each to E Q . Then L is said to be a

stepping line if

{2 = C; S L} E 9px;].

for all z E R1 where

CzE{$ER1:xl=21,OS$2_<_22}U{:BER1:x2=22,03x1$21}.

~
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Let N be a point process and L be a random membrane. Upon application

of Theorem 3.4, if N is Markov and satisfies

{L S M} E g[0,M] for M E M (3.2)

then N is strong Markov with respect to the random domain Q = [0, L] .

Evstigneev showed that there is another strong Markov property such that

N is strong Markov with respect to Q which also follows from condition (3.1)

for N and Q. This strong Markov property is

A(Q) -U— A(7) I #1090)

where A5(D) E 0(D,{7 Q B} F] F, B E T, F E 913) for 6 > 0 and A(D) =

fl A€(D) for any random domain D ([Evs77]).

e>0

Merzbach & Nualart define the following strong Markov property:

For a set—valued random function D, let H1) be defined to be the a-algebra

generated by D-1(T) and the random variables 1D(z)Nz, z E R1. We say

that N has Merzbach & Nualart’s strong Markov property with respect to D if

710 .11. H5; I “60-

Merzbach & Nualart’s strong Markov result is stated below.

Theorem 3.5 [MN90] If L is a decreasing stopping line and N has the simple

Markov property with respect to sets of the form [0,5], t a decreasing line, then

'HQ JL’HQ'C‘I'HL.
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Next, we compare sufficient conditions on L.

Lemma 3.2 If L is a decreasing stopping line, then L satisfies condition (3.1).

Proof. Let L be a decreasing stopping line. Since L is decreasing, it is enough

to show that {L S M} E gm,M] for arbitrary decreasing lines M E M . Choose

an M as described. Then

{LSM}={L§$M}°

=( U {02 SLW

zEMnQ2

Now {Cz S L} E 9pc.) by L a stepping line. Moreover, gm’C‘] Q g[0,M] for

z E M (1 Q1 since [0,Cz] Q [0,M] and M is decreasing. Thus {L S M} E

gw’M], and we have that L satisfies (3.1).

The converse of this proposition is not true, as the following example shows.

Counterexample 3.1. Here we present an exmaple of a point process N and

random membrane L such that L is decreasing and satisfies (3.1), but L is not

a stepping line. Let N be Poisson. Recall that N is a.s. boundedly finite and

without fixed atoms. We can apply Theorem 2.4 VII of [DV88] (p. 35) to get

that for every finite family of bounded disjoint Borel sets {Ai,i = 1,. . . , k} , the

random variables N(A1),...,N(Ak) are mutually independent. Define Mu =

{(r,y):y=u—r}flR1 for u>0 and

L(w) = inf{Mu if{8(w)1[0,Mu]fl£.(u)‘1([3,oo))(3)’\2(d3) 2 6}.
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Assume that z E R1 and {CZ S L} ¢ {0,0} . Then given any Mu ,

{L s. Mu} = {w = / €s(w)1[o,Mu]ng.(o)-1([3,oo))(8)/\2(d8) 2 6}

E g[O,Mu]

Thus L satisfies (3.1). However, for z E R1 ,

{02 S L} = {L < Mzi+zzlc

U {L _<_ My}

VEQ:D(O,21+22)

E g[0,M31+32]’

By independence of N([0,le+z,]) and N([0,C'z] fl [0,Mz1+z2]c), it does not

hold that {0; S L} E g[0,Cs] . Thus L is not a stepping line.

The above lemma and counterexample show that (3.1) is a weaker assumption

on L than the assumption that L is a stepping line. However, condition (3.1) is

sufficient for N to have Merzbach & Nualart’s strong Markov property. We shall

new state and prove our version of Theorem 3.5.

Theorem 3.6 Assume A(Q) V A(—QE) = .7 and (QC ’H[L__1_ L+i] = HL. If

n=1 "’ "

N has the simple Markov property with respect to sets of the form [0,6], 8 a

decreasing line, and L satisfies (3.1) then

HQ .11. Ha? I H1,

Remark. The condition A(Q) V A(QE) = .7 is clearly satisfied if Q is a

00

deterministic compact domain. Also, the condition 0 H[L— _1_ L+11 = ’HL is

11:] "’ "

00

similar to the condition 01%“,Ln] = HL which is proved in [MN90] for L a

n:

decreasing stopping line and {Ln} a sequence of decreasing stopping lines which

converge to L .
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In order to prove this result, we will need a few lemmas.

Lemma 3.3 If N has the simple Markov property with respect to set of the form

[OJ], L a decreasing line,

then N is Markov.

Proof. Let B E T. We must show that .7? .11. .70 [W for all A,C E T

with A Q B Q C. Certainly 9“”) 11 gm]. [ 95 for any decreasing line 6.

Moreover, gm) _U_ Qmoc I Qg using Proposition 2.1 and gm). Q 910.5? V 95.

Thus, by Proposition 2.2, we know that

GD JL 91)? I 961)

for all sets D of the form

D = [0,6) U [0,s]c

where e S s and l,s are decreasing lines. This, of course, is equivalent to

90 .11 95c IgaD for D=(€,s).

Given any open convex set 9 Q R1 , there exists a collection {(Ei, 3i)}iEN of

pairs of decreasing stopping lines such that

E,- S s, for each i E IN,

U (35,35 — i) = B,

i6

and (6,33,) 0 (t’j,s_,') = (15 for i 761'.

Thus, by Proposition 22, N has the simple Markov property on 9; that is,

grngaflgao-
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According to Corollary 3.1 of [Man83], this is equivalent to N having the simple

Markov property on all open subsets of R1. Hence, N has the GFMP on all

open sets by Theorem 2.1, and the rest of the proof is identical to the last part

of the proof of Lemma 2.1 with a = A and b = B . Cl

Lemma 3.4

(i) HQ? Q A(Q) V 245(1)) and HW Q 1“?) V A€(L) for all 6 > 0

(ii) A(Q) 9 Ho and A?) g "rt—Q:

(iii) Asa?) = H[L—e,L+e]

Proof.

(i) We shall first show Ha; Q A(Q) V A€(L) for arbitrary e > 0. Consider

C E [3(R+) , z E R2 , and note that 1 e is equal to
{10 (leIECl

1{lar(z)}1{Nz€C} + knack) if 0 E C

01‘

1{15r(2)}1{NzEC} if 0 g C.

Furthermore, note that (Q’s-)6 is 0(Q) -measurable and hence A(Q) ~measurable.

Thus, it is enough to show 1{zeQ7}1{N,EC} is A(Q) V A€(L) -measurable. Now

1{ze©?}n{N.EC}

= 1{zeo)n{N.e0} +1{ze[L—e,L+s)}n{N.eC} “ 1{zEQ}¢1{ze[L—6.L+e]}n{N.EC}'

In addition, since Q(w) E T for each to E (2,

{z 6 Q} 0 {NZ 6 C} = {7;}? 2 B(z,c)} n {Nz e C} 6 245(6)).
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Thus {2 e Q}fl{Nz e C} e A(Q). Because L is decreasing, {z e [L—e,L+c]} =

{IL—e, L+el 2W}UttL—e. L+el 2 F6723} U(0<U<€{[L-6, L+el 2

B(z,6)}) where

B++(z,2c) = B(z,2e) n {(s,t) : s _>_ 21, t _>_ 22}

B_—(Z,2€) = B(z,2c) fl {(s,t) : s S 21, t S 22}.

Since the three summands are disjoint, {z E [L —- e, L + 6]} fl {Nz E C} E AE(L).

Therefore, 1{zEQ‘—}1{N;EC} is A(Q)V.A€(L) -measurable. The proof of Hm Q

A(—Q_E) V A€(L) is proven in a similar fashion.

(ii) We show A(Q) Q ’HQ by proving A5(Q) Q ’H-QT for all e > 0. Consider

a set {_QE 2 I‘} n A where I‘ E T and A E gr. Now A E gp implies the

existence of a countable collection Z Q P and a measurable function (I) such

that 1A = <I>(Nz,z E Z). Moreover, {QE 2 1"} = fl {3: E Q5} for

zEI‘nsupp(N)

the countable collection X = F D supp(N) Q R1 since supp (N) is countable.

Therefore

1{-Q—‘2P}0A = HX 1{xe§E}(I’(Nz,Z E Z)

x6

= 1,, .<I>(1z—.Nz,zEZ)
sci—tin {63'} {662}

is Hat-measurable. So A€(Q) Q 716,-.

The proof of A5 (Q?) Q 71W is handled in a similar fashion.

(iii) Proof of A€(L) Q H[L-e,L+e] uses the same technique as in (ii) and will not

be shown here. In order to show that reverse inclusion, consider 6 > 0 , z E R2 ,

and C E 3(R). Then

1{[L—6.L+€]2{z}}fl{N.EC} + 1{[L—6.L+e]2{z}} if 0 E C

1 1 _, t 2 NZ C ={ .

{ [L M I” E } 1{[L—e,L+e];{z}}n{N.eC} 1f0¢ C
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Now {[L — e,L + c] 2 {2}} e A€(L) and so it is enough to show that

{[L—c,L+c] 2 {2}}n {N. e C} e A€(L). Now {[L—e,L+e] 2 {2}} =

(6L>JO{[L - 5.1: + e] 2 WWW - eL + e] 2 WNW— eL +

e] 2 B“(z,25)} and so {[L— e,L+e] 2 {2}}fl{Nz E C} E A5(L). Thus

HIL—e,L+c] Q A(L)- D

Proof of Thin 3.6. By Lemma 3.3 and the fact that (3.1) holds, we get

A(Q) 1L #7) I A(L)o

Since A(Q) v A(Z2‘C) = .77 and A(L) c_: A5(L) c; f for any c > 0,

A(Q) 11- 4'52?) | AWL).

Now A(Q) V 246(L) _LL A(QE) V A€(L) I A€(L) by applying Prop. 2.1. Apply-

ing Lemma 3.4(i) now gives us HQ? .11. ”(Q—0‘ I A€(L) , and Lemma 3.4 (iii) yields

7Q? .lLW I H[L—e,L+e] . By the Martingale convergence theorem,

:ij HiL— g ’L+ :1;l = ’HL. Since ’HD Q ’HDr for all set-valued random functions

D Q D‘ , we conclude that ’HQ .11. H3: I ’HL . C]

3.5 Random domains of the form Q = [T1,7‘2]

Another type of set-valued random function that may be of interest, particu-

larly when considering reciprocal Markov processes, are of the form

Q = [71,72]

and T1 and 7'2 are positive random variables that satisfy

0 S 71(w) < T2(w) < 00, for all to E fl.
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For T1 and 12 membrane-valued random functions satisfying the above inequal-

ities, we have the following result for d 2 1 :

Theorem 3.7 If C is a Markov random field and T1 and 7'2 satisfy

{M13 7'1 < 72 S M2} 6 QIM,,M2], (3.3)

for all M1 E M U {0} and M2 E M with M1 S M2 then f is strong Markov

with respect to the random domain Q = [71,72] .

Note: If 1'1 and 7'2 areWWthat is, if for i = 1,2

{M13 Ti S M2} 6 Q[M1,M2].

for all 11/11 E M U {0} and M2 E M with M1 S M2 then the sufficient condition

(3.3) holds. This follows from the relation

{M1STi<T2SM2}={M1ST1SM2}0{MiSTzSM2}~

Proof of Theorem 3.7. It is enough to show (2.6). Let V E T and n E IN

be arbitrary and define

5i} = {(M1,M2) E (M U {0}) X M =M1< M2, [1141.le 9 Vi,

d

IVIifl(U{uER1:uk=O,k;éj})QQ1fori=1,2}.

1:0

Then for e > 0,

00

{QSZV}= (l U {MlST1<7‘ZSM2}€gV‘-

n:[-:-]+1(M1,M2)ESI}

Hence {Q Q V} E {100 CW = .7V, and we have that g is strong Markov with

respect to Q . Cl



Chapter 4

Corner Markov and

Reciprocal processes

Definition 4.1 A random field E for d = 1 has the reciprocal Markov property

if

9L9,” Ji— g[0,s]U[t,oo) Iggy}, for all s 2 t 2 0.

The type of strong Markov property that a reciprocal Markov process has and

the extension of this reciprocal Markov property are two topics that are treated

in this chapter.

4.1 The corner Markov property

One way that the reciprocal Markov process can be extended to R1 utilizes

“corners”. Define a mg; Kg for a,b Z 0 by

Kg={uER1:u1=a,0Su2Sb}U{uER1:u2=b,0Su1Sa}.

31



Figure 4-1 corner Kg
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The following result puts one-dimensional conditions on a process that in turn

yields a “corner Markov” type of property; that is

9pm] JJ- 9mm” for all a, b 2 0.

Theorem 4.1 Assume the following:

Ai : gimu] .LLgliu’oo)’ I Gin}, for all u 2 O i = 1,2

A3 : g[10,u1]'u-g[20,u2] I g[0,K3f]’ for all 111,112 2 0

Bi 2 Alglu‘) nMg[0,K312] = M923},

where MA E {f E L2(Q,.7, P) : f is A-measurable} for any sub-a-algebra A

of .7 and Gig, E 0(X(,l,82) : s,- = u;,0 S 33-,- S 113..) i = 1,2

Ci 1 E(P(Blg[u,})lg[o,1{3§]) = E(P(BIQI0’K3?])|QEW}), i = 1,2

for all B E Q(u)} such that s _>_ u1,t 2 112 for all 111,112 _>_ 0.

Note that A3 is a Cairoli-VValsh [CW78] (F4)-type of condition.

Then g{0,1{3;2] .11. ngldf for all 111,112 _>_ 0.
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Proof. Given any u = (u 1, 112) E 72.2,. , define the following regions.

[1] = {(s,t) : .9 2 ul, 0_<_ t S 112}

[2]={(3,t):0$s£u1,t_>_u2}

[3] = {(s,t) : s 2 ul, t2 uz}.

For notation convenience, let K = K312 .

Part I

Let B, 6 gm 2' e {1,2,3}. If i 5 {1,2}, then P(B..|g[Q,K]) = P(B,~|gf0,,,,])

using A3 and B 6 9,0;..-1' Furthermore, P(Bilgf0,u,]) = fizz-19;“) by A.-

and B,- 6 game). Thus P(B,-|Q[O,K]) = P(Bilgiu.~})' Otherwise, P(133 Igmm)

= E(P(133l9f0,u,])|9[o,1c]) by 9mm 9 glam], WhiCh in tum equals

E(P(Bglgiui})lg[o,1{]) using A; and B3 6 glance)‘ Thus

P(Bz' lgl0,K]) = p(Bi|gfu,}), 2': 1,2 *(i)

and

HR": |9[0,K]) = E(P(33 lgiu,})|g[0,1{])- *(3i)

Notation. Given asub- a -algebra A of f, let IPA denote the L262) -projection

onto MA. Of course, IPAf = E(f I A) , for all f E L2(Q) .

Part II

Now we prove P(Bi IgmK]) = P(Bi IQiu), and P(B3 I g[()1(])—"’ P(B3 lgzili)

for i—- 1, 2. First, let i E {1, 2}. Note that Pgmxfl%1,11; 6 Mgiu} HMGmK] by

*(z) and that Mgiu}; nNIng1=MGin by 85. Moreover,

. X — 1 . > .(Y '— 1 .X615,323? ll all x6131};} ll all
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Mag; 2 Mg...” and X631}; llX-13.ll =Ilrg,,,,13.—IB..II = “mg...”—
{as}

13." by *(z)- But llll’glmla- - 13.“ s “max? IIX - 13.“ and Pgrmlm E

MgL‘f together imply lng[o,xllBa-13s" = Xenia.” [IX—13..“ . Hence P9{o,x]13s =

.ul

139-313,; that is, P(Bi |9[0,K]) = P(Bi IQiZi -

Next we consider B3 .

Lemma 4.1 (IPg,0 K11130-

JlUi}

)"1133 = IPQ[0,K]133 for all n E IN .

Proof. We shall prove this by induction. The proof for n = 1 follows from

*(3)-

Next, assume the result holds for 71; show the results holds for n + 1: Now

. +1 _ . .

(PQ[0,K]]Pgi,,i} )n 133 — (P9[0,K]]Pgiui} )(Pg[O,K] IPgiu‘})nlB3

= (PngqIPgiufl )(Pg[o,K]133)

by assumption. Moreover,

(P9[0,K1 P92” )(PngqlBs) = IP9[0,K]IPQEU,}Pg[o,K]IPGE,,,} 1133

= 1139‘me EDGE,” I)93“,} Pgmx] 1133

by applying *(3) and Ci. One more application of *(3) allows us to conclude

. l __

UPC/10.x] Pandlnl‘ 1133 _ 1PQ[0,K]1133 ‘

Thus

P(B3 lgigf = P(B3 lgiui} n g[0,K]) = "Iiigo(n)g[o,l{]lpgiui} )nlBa

using [3; , and

nl—ilgo(][)9{o,xlmg‘ )nlBa' : II)glomlBa : P(B3 IPQIOJG){Us}
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by Lemma 4.1. Hence P(B3 lgiiff = P(B3 Ingm'Kl).

Part III

Next, we show P9{ox]135 = nglB; for i = 1,2,3. Now Pang; =

PGK (IPgIO'Kl 18") and IPGK (PG(2_I,'_

(2—l-2|)"2B

2|)“21‘B) = Pg<2-Ii-2I)“§

13, since MQiu'f Q

‘ngifif for i = 1,2. By applying Pg 13 =1Pg,0K113 twice (by Part

II), we get the desired result.

Part IV

In order to complete the proof, we must show that Part III holds for sets of

the form B1 n B2, Bl 0 33 , 82 fl Bg , and B1 0 B2 n B3. We shall first consider

B1 0 HQ . Observe that

Pg“,K] 181082: 11)gmK]1 PgmK]1

= “MM. '1ngle

= IPgK(13l -]PgK132)

= PgK(1B,Pg[o,KllBgl

= rgxmvgmug, .IPgW, 132))

= IPQK(]P9[0,1K] 32',1P9[oK1131)

= H’gKUPgtmmlBlnBz)

= nglBinBz

Note that the above implies

by A3

by Part III

by ngK 132 E MgK

by MQK Q Nffiom

by Pglo’K1132EA/[glo’1q

by A3

by MQ'K Q MQ[0,K]'

PgmxllBf: IPgKIB. f, for all f E Il/Ig[3_ l’ (4.1)
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where i = 1, 2. Next we shall consider Bi 0 B3 for i E {1, 2} . Recall that

PM 3-.- 133 = PMngq VMQallBa

= 1139(qu 133 + P931133 — 1Pglmkllpgli] 133

+ P9[51P9[0,K1P9u1133 " Pgmxllpfiqnjfimmlpfii] 133 + ' ° '(4°2)

We shall show that each summand18 in Mg”. First, IPg,0K1133 Pg"2 1336

MC
Jlil

using Part II and Mgifif _C_ Mgm .

From Part II, we see that E(f|g[0,](])= E(flgiii2), for all f 6 Mg”.

Combining this and the relation Mgg; g Mg“, , we conclude that

Palmlpgmlaa = P9i3§(PG[a]133) = P933133 6 Mam-

Using the same techniques as above, we see that each term in (4.2) is an element

of Mgm , and so we can conclude that IPQEJ—i ]133 E Mgli] . We will use this fact

v“3—:‘

below.

P910,“ 183183 = Pam (113i ngj;3_,, 133)

by MC[O,K] C M913-.- _-1 and B; 6 9,075,341. Using (4.1) and PQEJTja-i1133 E Mgm ,

we have

IPgKuB‘ . Pgllftls—illBs) = ngloJ‘lUB‘ 11393175341183).

We eventually conclude that 1P9[o“13,033 = ngK 133133 by recognizing that

Ang _C; Mga—i] and B; E Mgs-i

[,_Oua-i] J[,_003il

Finally, we must prove ll’glo’ml31"132nB3 = ngK 131n32n33, for each Bi 6

931'

Lemma 4.2 IPG[o,K]1BmanBs 6 Mg, .
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Proof. Recall that

1Pg[(,,,'.,131r133 = PMgIO'K] V ”0(2) 133133

= Pgwq 181083 + 1PgmlBlnB3

_ Pglwfl 1P9121 131033 + Pgm IP91”) Pgm 131033

_ Pfiom IP93] Pylon 11393111310133 + ' ' '

Thus IP9[0,K] 131032033

2 IPgl°vK11Pgilo~u(lBlnanBa) by Mg”, g Mglb,u1]

: 1PQ[0,K](182 . Pgllo’ulllBlnBa)
by B2 6 Mg[10,u1]

: IPQ[0,K](1B2 ‘ 1P9[o,K]131rlBs)

+ Pg[o,x}(132 ' 1P93111310133) _ Pfiomaflz _ 11393.1(] 1139(2) 131033)

+ IPQquuBz ' PG[2}PQ[0,K11PQ[2]131033)

‘ Pgloxdlfiz ' Pg[0.K]H)g[2]Pg[0.K]]Pgl2]131n33) + ' "

We must consider each term separately and show it to be in MgK . First,

P93141132 -1Pg[0,,qlBlnBal = IPQK 132 ' IPQK 131033

using ll’(_;[0_,(,13lm33 E MQ[0,K] and Part III. Next,

Pg[0,K](1132 PgmlmnBa) = Pg[o'K](]Pg[2]]-BlntnBa) = P9K(IP(J[2]1BlanBal

by (4.1) and B2 6 gm . nglo'Klgm13ml}a E Nlfiox] and (4.1) together imply

ng[0,K](lB2 ' IPQ'qu 1139(21131033) = 1P9[0,K]IP9[2]131033 ' 1P§/'[o,K]1132

= IPQK(B2 ' PG[0,K]1Pg[2]131nBS)

: 1PQ'Klpgp]11310133 ' IPGK 132'
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These same techniques will yield that every other term in the series is indeed in

MQK . Hence IPgwm13,032.133 E MgK .

This claim and the fact that

min ”X — lBlnanBall 2 min “X — 181032033”
xEMgK

“(0,10

= “IPGWJQ — lBlnanBall

will give us ngK 181032083 = P9[0,K]lBlflanBa'

The last step is using the 1r — A Theorem to show that ngK 131(732r133 =

Pg[0,KllBlnB2nB3 for all B; E 93} implies ngK 13 = P§[o,x]13’ all B E 9“),ch .

.C E {A E f:]Pg[0,K]1A = ngK 1A} is a A-system as follows:

i) lpglo K119 = 1 = ngK 19 implies that Q E C.

ii) Let A E .C . Then

Pglo.K]1Ac=1_]Pg 1A=1"']PQK1A=IPQK1A¢
[0.Kl

since A E C .

iii) Let {An} g .C be pairwise disjoint. Then

PQ[O,K]1UA.. = 1P(1uAn lg[0,K]) = “2,3131” l9[0,1{]) = in: 11’ (1A.. lg[0,K])An E 5

by pairwise disjointness. Furthermore,

in: 1130/1" |9[0,1<]) = 2;“)(1/1n ng) = H)(;1An mm = IPQK 1UA,.-

Therefore U An E .C , and we conclude that .C is a A-system.

n

Now apply the 7r — /\ theorem to get that ngK 13 = 1P9,0 K113 , for all B E

93““. Therefore 9mm .11. Q(WIQK.
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The proof is now complete. D

Of particular interest are random domains Q which take on the form Q =

[0,Krrf] for 11,12 nonnegative random variables. That is, Q takes values in the

class {[0,1{3} : a, b > 0}. Note that K3 is a membrane if a, b > O.

T

It is desirable to determine what (2.6) means when Q = [0,1133] .

Lemma 4.2 (2.6) holds if and only if

{qu 3 K3} 6 110“], for all a, b > 0. (4.3)

Proof. Certainly, (2.6) implies (4.3), since [0,K2] E T when a, b > 0. Moreover,

(2.6) follows from (4.3) upon noting that, given V E T and e > 0 ,

{Q <_: V} = n U {Kg2 3 K2} 6 fve.

n=[%l+1 a,beQ+,[o,Kg]gV%

Since flog fvc, we are done. C]

When we write (4.3) as

{T1_<_ (1,7'2 S b}fi0,1(g], VG, b > 0,

we are reminded of a stopping time-type of condition.

Theorem 4.2 Let 6 be a Markov random field and 1'1 and 72 be random

variables which satisfy

0 S 71(w) S Q(u)), for allw E Q.

If {K122 3 K3} E 310,373] , for all a,b > 0, then 6 is strong Markov with respect

to the random domain Q = [0,K7Tf] .
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The random analogue to Theorem 4.1 also arrives at a strong corner Markov

property and is stated below.

Theorem 4.3. Let 71,112 be covntably-valved stopping times, and let K E K?

for notational convenience.

Let

f; = 0(A n {n' = a} : a 6 mm), A e afofll).

I; = 0(A n {n' = a} : a e ri(Q), A e gfoflp,

and

f..- = o(A n {n' = a} : a e ri(f2), gird) for i = 1,2.

Also define

f1? = o<A n {n = a} n {n = b} : (a,b) e 7:2, A 6 9mm).

3:7; —_— 0(A n {n = a} n {72 = b}: (a, b) 6 78, A e 0mm),

and

a = cam {n = a} me =b}: (a,b) e 722, A 6 gm

Assume the following for i = 1, 2.

Z3, :M}; 0 My” = M3,, where

”H,- E 0(A n {n = u1}fl {12 2 ug} :(u1,u2) 6 78, A e 9,3,).

Ci =P(P(33lf1(-)l7ri) = 1P(PU-93 lfri)lfK")i for all B3 6 1‘3, where

r3 2 0(Afl{71=a}fl{72 = b} : (a,b) 6 78,

A E 9111.”, E 0(€(s,t) =3 2 OJ _>_ b))

AiszJLFT'Elf—r, fori=1,2

A3 :13; _lLfT—z' If]?



Then

Elf-Mfr

Proof. The techniques used in the proof of theorem 4.1 are the techniques

used to prove this theorem with the obvious substitutions. f; , El , and 7'},-

play the roles that gf'o’ulgf'um) , and GEM} played in the proof of Theorem 4.1,

respectively. We use fR,.7-7{' , and .7:K in this proof for the 110,163] , W,

and $3 used in the proof of Theorem 4.1, respectively. Also, .73 replaces GB]

and M71.- replaces MQiL‘f in this proof. D

4.2 A Martingale Approach

The following question arises naturally upon considering reciprocal processes

(dzl):

What kind of strong Markov property, if any, does a given reciprocal process

have?

Pasha [Pa882] showed that every Gaussian reciprocal process 6 on a compact

interval [a, b] can be expressed as

Q=K+$§+E®

where Yt is Markov with trivial tails, A and B are real functions on [a, b] , and

460,65) is independent of 0(1’2) for each t E [a,b]. If Y1 i 0 for every t and

if 6 is continuous in quadratic mean, then Y; = <I>¢Ut for all t, where (I): is

a real function on [a,b] and U is a martingale. One can look at a stochastic
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differential equation for the process Z; = (1’1,Ag€a,B¢{b)T. Zt satisfies the

stochastic differential equation '

(I’l‘l’z’l 0 0 in 0 0 dU¢

dZt= 0 AQA;1 0 tht+[0 0 0] [ 0]

0 0 Bfo1 O 0 0 0

under appropriate differentiability assumptions on <I>,A , and B . By the nature

of this differential equation, one needs techniques from [SV79] to study the strong

Markov properties of its solution. In the special case of Agfia +B¢€b = 0 for every

t (that is, é is independent of its boundaries), one can use techniques exhibited in

[Str87] and [SV79] to consider 5 as a solution of a stochastic differential equation,

and then apply Theorem 6.6.2 of [SV79] to get a strong Markov pr0perty on

g. Because the equation involved in the general case is a singular differential

equation, one must define the strong Markov property delicately. This work is

currently under investigation.
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