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ABSTRACT

ON ACCURACY ESTIMATES
FOR FINITE ELEMENT EIGENVALUE COMPUTATIONS

By

Yun-Jae Kim

Accuracy estimates for finite element computations of
elliptic eigenvalue problems are presented. From results of error
estimates for elliptic boundary value problems, error estimates for

elliptic eigenvalue problems are established for each mode based on

interpolation error theory. An error indicator, which is defined
as an element-wise approximation to the true error, is
computationally implemented wusing two different techniques, a

smoothing technique and a direct substitution technique using a
differential operator. The accuracy of error indicators is checked
using the eigenvalue problems of a uniform, Bernoulli-Euler beam.
Two measures of accuracy are discussed. The first measures how
accurately the estimator can capture the maximum true element-wise
error over all elements. The second measures how accurately the
estimator estimates the distribution of true error over the domain.
Using the simple node-moving algorithm, improved grids are
constructed keeping the total number of degrees of freedom

constant.
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CHAPTER 1.

INTRODUCTION

The finite element method has become an effective and powerful
tool for obtaining approximate solutions to engineering problems.
Much of the power of the method is due to the freedom that it allows
in the construction of the discretized model. However, the quality of
the finite element approximation greatly depends on how the
discretization is performed. For this reason, in the last ten years
considerable effort has been devoted to adaptive finite element
methods which are designed to automatically improve the quality of the
finite element approximation. The goal of adaptive finite element
methods can be achieved only after computationally useful measures of
the ‘quality’ of the approximation are available. This thesis
discusses the construction of such measures for the simple class of 1-
D eigenvalue problems.

In finite element methods, two basic techniques for error
estimation have emerged : one based on residual error estimates,
introduced by Babuska and Rheinbolt [1-4] and another based on

interpolation error, introduced by Diaz et.al.[l4-16]. The first

h
class of error estimates is constructed from estimates of i(u-u )i



where;2 denotes a differential operator and u and uh are the solution
sought and its approximation. The second technique is based on
interpolation error theory and is constructed from an estimation of
higher order derivatives of u.

Having resolved the issue of error estimation, one can improve
the quality of finite element approximations efficiently using local
refinement or relocation. 1In local refinement, more degrees of
freedom are added to elements where ‘the approximation is of lower
quality by either increasing the order of polynomial approximation
inside elements (p-method) [7] or by subdividing elements (h-method)
{1-5]. 1In node relocation, the quality of the approximation is
improved by optimizing the disposition of the nodes while keeping the
number of degrees of freedom constant [14-16].

This thesis presents accuracy estimates for finite element
computations of elliptic eigenvalue problems. From results of error
estimates for elliptic boundary value problems, error estimates for
elliptic eigenvalue problems are established for each mode based on
interpolation error theory. An error indicator, which is defined as
an element-wise approximation to the true error, is computationally
implemented using two different techniques, a smoothing technique and
a direct substitution technique using a differential operator. The
accuracy of error indicators is checked using the eigenvalue problem
of a uniform, Bernoulli-Euler beam. Two measures of accuracy are

discussed. The first measures how accurately the estimator can




capture the maximum true element-wise error over all elements. The
second measures how accurately the estimator estimates the
distribution of true error over the domain. Using the simple node-
moving algorithm proposed by Diaz et.al.[l4-16], improved grids are
constructed keeping the total number of degrees of freedom constant.
The thesis is divided into five chapters. Chapter two is a
review of existing adaptive finite element methods. Error measurement
techniques and adaptation strategies are reviewed with an emphasis on
elliptic problems. Chapter 3 presents an overview of the solution to
eigenvalue problems in infinite dimensional space and their
approximation in finite element subspaces. In chapter 4, error
éstimates for elliptic boundary value problems are reviewed and error
estimates for elliptic eigenvalue problems are established. As a
computable form, two types of error indicators are proposed and their
accuracy is tested. Node relocation is also performed to achieve an
improved grid. Chapter 5 discusses the results of the research,

presents conclusions and proposes further research.




CHAPTER II.

REVIEW OF ADAPTIVE FINITE ELEMENT METHODS

2.1 Adaptive Methodology

The objective of adaptive finite element methods is to adaptively
change the finite element model to improve the quality of the finite
element approximation.

A possible approach to improve the finite element solution is to
increase the number of degrees of freedom by subdividing or increasing
the degree of polynomial approximation. For example, new deg?ees of
freedom can be added selectively to elements where the finite element
approximation is poorer. In these elements, new degrees of freedom
are added by subdividing the element or by increasing the degree of
polynomial approximation within the element. This process can be
repeated until a prescribed accuracy is achieved. We will refer to
this process of selective addition of new degrees of freedom as
optimal refinement. Another approach to improve the quality of the
finite element solution is to relocate the mesh by reducing or
increasing the element size (length in 1-D or area in 2-D) to achieve
the best possible grid for the given number of degrees of freedom.

This method can be referred to as optimal relocation problem. Both






the refinement and relocation approaches need the element information
from previous solutions to decide where the approximation is poorer so
as to add new degrees of freedom selectively.

To implement an adaptive strategy, one must address the following
issues
1. How to measure the quality of the approximation. The quality of the
approximation is measured by the difference between the exact solution
and the finite element approximation. There are two basic techniques
to estimate errors in finite element analysis: the residual approach
and the interpolation approach.
2. How to adapt the solution procedure to improve the quality of the
approximation once an element-wise estimate of the error is known.
Three methods are available involving refinement (h-method, p-method)
and relocation (r-method). Combinations (such as h-p method) are also
available.

We outline in the following section existing approaches to
adaptive finite element methods and present a review of the adaptive

finite element literature.

2.2 Error Measurement

2.2.1 Residual Error Estimates






One popular way to estimate the finite element error is the so-

called residual error estimate technique. Consider the linear.

elliptic differential equation.

Lu+q=-0 inag (2.1)

with boundary conditions on 40
Replacing u by its finite element solution uh, one has
h .
£u +q=r inQ (2.2)
where r is the residual. It is assumed that the approximation uh

satisfies the boundary conditions. If the approximation uh is exact,

the residual r is zero. Otherwise, denoting the finite element error

as e-u-uh, subtracting (2.2) from (2.1) leads to

£ e -£(u-uh) - -r

To measure an element-wise error, a local auxiliarv problem must be

solved, stated as follows :
<£ w+q=20 in element K (2.3)

W o= uh on element boundary 4K

In element K, the solution w to (2.3) is treated as the true solution.

The element-wise residual, Tys and the element-wise error in the

* h .
energy norm, ||e where e =w-u , can be defined as

*
e,k

r -Lf,(w-uh)] and
K K

* 2 h h h
e lg g = Jg-uh) ry & = [ (w-u YL (w-uy dK (2.4)



Integration by parts using the boundary condition of the local
auxiliary problem leads to the final form of the element-wise error.

For example, in a 1 dimensional 2nd order differential equation,

d2u d2

the local auxiliary problem associated with (2.5) is

2
-i;;— +q=20 in element K (2.6)
w - uh on element boundary 34K

The element-wise error in the energy norm is

2 * 2 h
* * .
“ellgl(-fl(e jﬂe_dx'fk(w'uh)%&dk
’ X X

Note that we have the boundary condition, w-uh - e =0 on 3K

Integration by parts leads to the final form
* 2 d h, ,2
e 115 g~ Jglgg¥-u) 17 (2.7)

In general, the solution w to the local auxiliary problem (2.3)

*
cannot be.computed exactly and, instead, only an approximation w to w

can be computed. There are several ways to compute the approximation

*
w . For example, one may increase the polynomial, degree of

approximation inside K or, instead, one may refine the element K by

' *
subdividing it into smaller elements. Once the approximation w to w

is available, the error in element K can be computed from eq (2.4).



The residual approach is complicated by difficulties in solving
the local auxiliary problem. 1In addition, the approach is difficult
to extend to nonlinear problems and to choose the appropriate norm.

For a discussion of these difficulties, see Oden et.al. [27].

2.2.2 Error Estimates based on Interpolation Error

A different technique for error estimation, interpolation error
theory, can be used to construct error estimates for adaptive finite
elements. This approach was proposed by Diaz et.al. [14,15,16]. The
procedure is outlined below.

Assume that the true solution u to an ordinary differential

equation is a smooth function, and let u_ be an interpolator of u in a

I

finite dimensional space. By construction. ug is equal to u at the

finite element nodes, i.e.,

u.(b.) = u(b, 2.8)
p(by) = u(by) (
where bj are finite element nodes (j=1,2,...,NO) and NO is a number of
nodes in the finite element model. When u is the solution to an

elliptic boundary value problem, the error of approximating u by its

finite element solution uh is bounded by the error associated with the

interpolation u by u This follows from Cea’'s Lemma [45].

1

||u-uh|| < c1||u-uI|| where 1 is a positive constant (2.9)



The following result is available from interpolation error theory :

k+l-m

I|u-uI'|m,K =c, hK |u|k+l K (2.10)

where m, k and hK denote the order of the variational form, the degree

of the finite element solution and the diameter (length) of element K,

respectively, and ¢y is a positive constant.

From (2.9) and (2.10),

h k+l-m
| Ju-u Ilm,K <c hK |u|k+1,K (2.11)

Inequality (2.11) provides the basis for element error estimates. For

example, consider the solution u to a 2nd order differential equation

approximated by the piecewise linear function uh (k=1, m=1). The

inequality (2.11) becomes,

||u-uh||1'K <c hK |u|2,K

This technique is simpler conceptually as well as computationally
than the residual technique. However, when we use this technique, we
face one problem: since the true solution u is, in general, not
available, we have to use available information, the finite element
solution, to estimate it. To estimate the error, we need to calculate

higher order derivatives of u since the term |u|k+l K includes (k+1)th

order derivatives. However, the finite element solution uh on element
K is a k-th order polynomial. The procedure to extract higher order
derivatives needs very accurate post-processing for error estimations.

A simple technique was proposed by Diaz et.al. [14-16], and is also
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used in the present work. A different technique based on rigorous
estimates was proposed by Babuska and Miller ‘6, and extended by
Demkowicz et.al.[5].

Applications of error estimation techniques based on both
residual and interpolation approaches to linear problems in
elasticity, fluid, and heat transfer as well as nonlinear problems can

be found in the paper by Oden et.al. ([27].

2.3 Acdaptation Strategies

Suppose that we have already estimated the element-wise error of
the approximation. We are now in position to change the finite
element model in order to improve the accuracy of the approximation.
The methodology for adaptation can be roughly classified into two
classes : local refinement and relocation.

efinement
Local refinement increases the total degrees of freedom in the finite
element model by
1. increasing the number of elements while keeping the polynomial
degree of local basis functions fixed (h-method),or
2. increasing the polynomial degree of approximation while keeping the
number of elements fixed (p-method)

e o ion
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In the node relocation method (r-method), the total number of degrees
of freedom remains constant. Nodes are relocated within a fixed
number of elements and with a fixed polvnomial degree of
approximation. In time-dependent problems, some moving mesh methods
(e.g. moving finite element method) have been proposed. These methods
have similar basic features to the r-method.
combination

Some combinations of the above methods are possible (e.g. h-p, h-r,
and p-r method). The most popular method is the combination of h and
p method. (h-p method)

In the following sections, the different adaptation strategies
are discussed based on the type of differential equation : time-
independent (elliptic) and time-dependent (parabolic, or hyperbolic)

problems. We also include discussion of eigenvalue problems, which

are the main objective of this work.

2.3.1 Elliptic Problems

Since the late 70’'s, adaptive finite element methods have been
applied to linear, elliptic problems, using heuristic as well as
rigorous mathematical justifications. Originally developed for linear
elliptic problems, adaptive finite element methods have now been
extended to some classes of nonlinear problems. We review adaptive

methods in elliptic problems based on the h-, p-, h-p, and r-method.
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2.3.1.1 h-version

In the h-method, elements are subdivided into smaller ones while
the order of polynomial approximation remains unchanged. Optimally
refined meshes are achieved by selectively subdividing elements where
the error is large until a specified accuracy is achieved. This
method is based on the fact that, as the mesh size h goes to 0 (as the
number of elements increase), the error in the energy converges to 0
[44]. The computational detail of this approach can be found in
series of papers by Babuska and Rheinbolt [1-4], where the residual
technique was used for error estimation. There, error indicators
constructed from the finite element solution were used to identify
elements where the approximation is less accurate.

An impressive work using the h-version of mesh refinement was
done by Demkowicz et.al.[5], where interpolation error estimates are
used to estimate the error and the extraction formula was modified to

calculate highly accurate higher order derivatives.

2.3.1.2 p-version

In the p-method, the number of finite elements remains unchanged,
while the order of polynomial approximation is selectively increased.
The p-version of the finite element me:thod is based on the notion that
higher order polynomials can approximate a smooth function better than
lower order ones. Distributing different higher order polynomials in
regions where the approximation is poorer can produce better overall

approximations. The higher order polynomial is used in the elements
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where the error is large. Note that the original grid (element size)
is not modified. The p-version was studied by Babuska et.al. [7]. The
authors obtained error estimates in terms of the polynomial of degree
p, and showed that if the convergence rate of the h-method and p-
method is expressed in terms of the numbef of degrees of freedom, the
p-method cannot have a slower rate of convergence than the h-method.
In particular, when corner singularities are present, the convergence
rate of the p-method is exactly twice that of the h-version.
Numerous works have been published on p-methods, especially
applications to fracture mechanics problems (see references in Szabo
(10]) The p-method has been shown to produce better results than the
h-method in elasticity problems with singularities. [7,11,12]

A popular way to formulate the p-version is the so called
hierarchical finite element approach. This is a computationally
efficient procedure in which the stiffness matrix corresponding to the
hierarchically enriched ﬁesh includes the stiffness matrix
corresponding to the previous mesh as a submatrix. The hierarchical
finite element method is discussed by Zienkiewicz et.al. [8,9]. The
paper by Zienkiewicz and Craig [11] includes recent advances in the p-

method and hieriarchical finite elements.

2.3.1.3 Combined h-p method
Babuska and Dorr [13] studied the combination of h and p-methods,
where error estimates in terms of both the mesh size h and the

polynomial degree p were explicitly obtained. An important result
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there is that the optimal h-type refinement together with properly
distributing p’s can produce exponential convergence.

In summary, it is generally believed that a faster increase in
local accuracy can be achieved using the p-method, specially in
problems with singularities. The best apbroach in terms of accuracy
is the combined h and p method, which leads to exponential
convergence. These results have been restricted to one-dimensional

problems and to linear elliptic problems in two dimensions.

2.3.1.4 r-version

The h- and p-method improve the finite element approximation by
increasing the number of degrees of freedom. 1In some problems,
however, one may want to keep the number of degrees of freedom
constant, i.e. improve an existing grid. This is the case, for
instance, when finite elements are used as part of an iterative design
optimization process. In this context, the r-method was proposed by
Diaz et.al. [14-16]). The paper [15] includes some theoretical aspects
of the r-method. The work is summarized as an optimal relocation
problem where an objective function B is derived based on
interpolation error estimates and design variables are element lengths
h in 1-D problems or areas A in 2-D problems. The optimal relocation
problem is stated as follows

(1) l1-dimensional case

Find the vector of element lengths hs(hl,hz,...,hN) that
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... 2 2k 2
minimizes B (u,h) = Ngl hK |u|k+l,K (2.12.a)

subject to 3 h =1 .m0

(2) 2-dimensional case

Find the vector of element areas A-(Al'A2""‘AN) that

o . 2 k 2
minimizes B"(u,A) = Kgl AK lu|k+l,K (2.12.b)
subject to KglAK-l , AK 20

where N is the total number of elements. The authors also derived
optimality conditions for (2.12),

- h§k|u|§+l’x = constant in 1 dimensional problems (2.13.a)

k 2 . . .
fK- AK Iulk+1,K = constant in 2 dimensional problems (2.13.b)

for all K=1,2,3,...,N. This means that the necessary condition for
optimality of the grid-relocation problem is that the element-wise

quantity fK be the same for all elements K=1,2,...,N. This grid is

defined as an optimal grid. A simple node-moving algorithm was
proposed to obtain the optimal grid. and successfully tested in
(14,15,16]. This algorithm is also used in the present work. The r-
method has proven to be effective for nonlinear problems (e.g.
plasticity) in solid mechanics. and has been applied to fracture
mechanics problems [14,15,16] as well as fluid mechanics problems
(15]. The r-method can be more easily extended to time-dependent

problems than the h and p versions.
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Other applications of the h- and r-method (e.g.,in metal forming,
flow problems and shape optimization) are referred to in the review
paper by Kikuchi [17]. A general review of adaptive methods can be

found in the paper by Oden et.al.[27].

2.3.1.5 Adaptive Mesh Generation Techniques

Adaptive mesh generation techniques which combine numerical grid-
generation and adaptive finite element methods have also appeared in
the literature [17]. Demkowicz and Oden (5] proposed a new mesh
generation technique, which extends an existing conformal map-type
mesh generator combined with a minimization of interpolation error
estimates as the mesh modification strategy. Another mesh generation
technique was presented in [19], where the h-type mesh refinement was

adopted for mesh modification.

2.3.2 Eigenvalue Problems

In static, force-deflection (elasticity) problems, only one
single solution is sought. For these problems. it has been statedin
the previous section that the p-version is more attractive than the h-
version. By contrast, in eigenvalue problems, a large number of
solutions (eigenpairs associated with natural modes) are sought. In

the paper by Bennighof and Meirovitch [20], two questions were
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addressed regarding the convergence of finite element methods applied
to eigenvalue problems : 1. Why the approximation to the eigenvalue
and eigenfunction of the higher mode is poorer than that of the lower
mode. 2. Why the p-method can produce significantly better eigenvalue
convergence than the h-method. The authors also explain why the upper
half of the modes obtained from finite element approximations are
useless. The second issue is also discussed in the paper by Sun and
Hwang (48], where higher order (quintic) elements were shownvthrough
numerical examples to be more efficient for beam-like structural
dynamics problems. Error indicators based on p-version hierarchical
adaptive finite element methods for eigenvalue problems were derived
by Friberg in [21] and tested in [22]). The author has shown the
superiority of the p-version through the observation that three-
quarters of the lower mode eigenpairs are acceptable in the p-version,
whereas only one-half of the lower mode eigenpairs are acceptable in

the h-version for the same number of degrees of freedom.

2.3.3 Time Dependent (Parabolic and Hyperbolic) Problems

Recently, there have been significant advances in adaptive
finite element methods applied to time dependent problems. For
example, in computational fluid mechanics or in heat transfer problems
governed by nonlinear partial differential equations, important

features tend to occur in localized regions whose location may change
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in time. The use of extremely fine meshes over the whole domain to
capture these features accurately is not computationally feasible in
realistic problems. In such problems, adaptive methods, especially
moving-mesh methods, are very effective.

Miller and Miller [23] and Miller [24] proposed a Moving Finite
Element (MFE) method for problems characterized by nonlinear partial
differential equations such as Burger’'s equation with a large Reynolds
number, which develop shocks and other sharp moving fronts. 1In the
MFE method, the nodes are allowed automatically to concentrate and
move with the front, making it possible to handle such problems with
far fewer nodes and with larger time steps for time integration. The
basic idea of the MFE method is that the approximation is a function
of amplitudes as well as nodal positions, whereas it is only a
function of amplitudes in usual FEM. Recent results and additional
references are summarized in Miller [25].

Another moving-mesh method was proposed by Adjerid and Flaherty
[24] for the class of 1 dimensional, 2nd order parabolic partial
differential vector systems. The authors derived the error indicator
based on residual estimates. The p-type mesh refinement was used to
solve the local auxiliary problem. A differential equation was
proposed to control the mesh motion so that three differential
equations for approximation, error, and mesh motion control are solved
concurrently.

Some important works have been done recently with applications in

supersonic gas dynamics and fluid mechanics [27-31]. 1In [27], Oden
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et.al. applied both residual and interpolation error estimates to the
Navier Stokes equation as a model problem of incompressible/viscous
flow problems. A moving-grid algorithm for supersonic flow between
moving bodies was proposed by Strouboulis et.al. [30] using Taylor-
Galerkin finite element approximations, which can be applied to rotor-
stator flow problems in turbomachinery ([31]. More general classes of
unsteady, inviscid/compressible flow problems were also studied by
Oden et.al. [29], where an effective adaptive scheme was formulated
using a Lax-Wendroff/ Taylor-Galerkin method for a time-dependent
Euler equation. The authors use h-enrichment as well as r-moving mesh
adaptive methods, and errors are estimated based on a residual
approach in the time domain and on interpolation error estimates in

the space domain.




CHAPTER III.

EIGENVALUE PROBLEMS AND FINITE ELEMENTS

3.1 Solutions in Infinite Dimensional Space

3.1.1 Differential Form

Consider a l-dimensional beam in transverse vibration. Under the
assumption of small deflections and rotations and neglecting shear and
rotary inertia effects, the transverse displacement is governed by the

Bernoulli-Euler equation

2 2 2
2ote 100 S8 o nod 0 (1)
ax ax at

t=20, 0<x<2

+ boundary conditions
In equation (1), E, I(x), m(x) and ? cdenote Young'’'s modulus, area
moment of inertia about neutral axis. mass per unit length and beam
length, respectively. The solution to equation (1) is a function of
space x as well as time t. The assumption that the solution to (1)
is separable in time and space, i.e. v(x.t)=u(x)T(t), leads to the

following two equations:

20
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2 2
d—2 (E 1(x)2 51 = 2 mGoux) 0<x< 2 (2)
dx dx

2

4T+ 2 T(e) =0 - >0 (3)
de

The scalars A that produce nontrivial solutions of (2) are the
eigenvalues and the associated solutions u(x) are the eigenfunctions.
The eigenvalue problem for the transverse vibration of the Bernoulli-
Euler beam is, therefore, as follows.

Find the pair (A,u(x)) such that

d2 dzu(x)
— [E I(X)T] = ) m(x)u(x) 0 <x < 4 (4)
dx X

+ boundary conditions

When can one solve the equation (4) exactly? Solutions to this
problem must satisfy all the boundary conditions as well as the
differential equation in 0 < x < £ . The solution of (4) must be
smooth so that u and its partial derivatives up to 4th order are
continuous at every point in (0,£2). These are difficult conditions to
satisfy. A small complication, such as a tapered cross section, can
make (4) not solvable in closed form.

As another example, consider a 2-dimensional thin elastic plate

in transverse vibration. The eigenvalue problem can be expressed as

4 4 4
3 z(x'y) + 22 ;("é” + 8 z(x'Y) - A u(x.v) x,y) Ea (5)

ax ax~ady ay

+ boundary conditions on 40
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In this case, we can get the general terms of the series solution only
when the problem is defined over a simple domain. e.g. circular or
rectangular with simple boundary conditions. e.g. clamped or simply
supported along the boundary.

The general eigenvalue problem (including beam. plate etc) can be

written in a compact form as follows

Find the pair (A,u), where uECZITl such that

Lu=12Au in Q

Mu=0 on 30 (6)
where L and M are linear differential operators and Q is a smooth,
boﬁnded region with its boundary 4Q. The differential operator L is
a self-adjoint, elliptic operator of order 2m and M is a compatible
boundary operator of order m. We will call equation (6) the
differential form. Equation (6) has an infinite number of solution
eigenpairs (A,u) and since the equation is homogeneous in u,
amplitudes of eigenfunctions are arbitary and only their shape can be
determined uniquely.

Admissible boundary conditions are either essential, resulting
from the geometric compatibilities, or pnatural, resulting from moment
or shear force equilibrium. For example, in the case of the Bernoulli-
Euler beam of length £ simply supported at both ends, boundary
conditions are

essential : u(0) =0 u(l) = 0
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2 2
natural : E I(O)g—%igl =0 E I(l)g—%iﬁl =0 . (7)
dx dx

In the case of the thin elastic plate clamped along its boundary 4Q,
essential : u(s) = 0 -%%Sil -0 s € 30 (8)

natural : none

3.1.2 Weak (Variational) Form

The differential form (6) requires that u and all of its

derivatives of order less than or equal to 2m be continuous at every

point in Q (i.e, u is in sz). This is a difficult condition to
satisfy. A weak or variational formulation relaxes this requirement
and facilitates computations. This weak form will be used to obtain

a finite element approximation to the eigenfunction.

Consider again the differential form (4) and boundary conditions
(7), representing the behavior of the Bernoulli-Euler beam simply
supporteh at both ends. We multiply a weight (test) function v
defined on (0,£) to both sides of equation (4) and integrate over the
domain such that the differential equation with boundary conditions is
satisfied in the sense of weighted average, i.e.,

[Ev [j—xzz—(EI(x)%Z{;—) “Au ] dx =0 in (0,4)

+ boundary conditions on 3Q . (9)
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The equation (9) includes 4th order derivatives of u, whereas no

derivatives of v appear. Integration by parts of (9) leads to

2 d2u d7v £
fOEI(x)j—[dx-Afo uv dx = 0 in (0,2), (10)
dx” dx

provided that the solution u and the test function v belong to the

class of admissible functions, denoted by V, defined as
V = ( vEHZ | v(0)=0, v(£)=0 )

In words, V is the set of Hz-functions (bounded energy) that satisfy
the essential boundary conditions v(0)=0 and v(£)=0. A function is

said to be in H2 if the function and all of its partial derivatives up

to 2nd order are defined in a square-integral sense (see Appendix A

for more detail), i.e.,

H2 = { v ] |v|0,|v|l,|v|2 S M<wo)

2
where |v| = févzdx vl T f‘eo d—c‘l'zdx vl g S &% and o is a
dx

constant. Note that essential boundary conditions are included in the
definition of V and that the smoothness requirement on u is weakened.
Now we can write the weak form of this problem as follows
Find u€V such that
2 a%u d%v 2
Jo EI(x) = ==dx - 2 Jyuvdx =0 for all v inV (11)
dx2 dx2 0

where V is defined as before.
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In the case of the thin elastic plate clamped along its boundary,
the weak form can be derived follwing similar steps. After introducing
V and integrating by parts, the corresponding weak form is

find u€V such that

2 2

anqudxdy- /\fn uv dxdy = 0 for all v in V (12)
2 2_3% 4%

where V- is Laplacian operator defined by V ——
ax ay

The weak form can be written in a compact form by introducing
inner products. The general form of variational eigenvalue problems
is

find u€V such that

a(u,v) - A(u,v) =0 inQ for all v in V (13)
where a(.,.) is a symmetric, bilinear energy inner product and (.,.)
is a symmetric, linear inner product.

In the case of the Bernoulli-Euler beam of length £ simply

supported at both ends,

2. 2
auv)=f E 1038 L ax |, (uvi-ffuv ax in (0, 2)
0 o2 2 0

u and v should satisfy u(0)=v(0)=0 u(2)=v(£)=0

In the case of the thin elastic plate.

a(u,v)--f0 v2u viv dxdy , (u,v)= fnuv dxdy in 0
2 2
2 4 d
where V= +
T
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u and v should satisfy wu(s)=v(s)=0, %-g%(il-o s€an

The differential form (6) and weak form (12) lead to an infinite
number of eigenpairs (A,u). These pairs can be ordered according to
the magnitude of eigenvalues under the assumption of no repeated
eigenvalues, i.e.,

A1< A2< A3< <,\£<

The eigenpair (Az,uz) is the £-th mode eigenpair. Equations (6) and
(13) can be written in terms of the £-th mode as follows.
differential form

Find the pair (Az,uz) where Uy 65132m such that

Lu‘2 - Azu in Q

Muz = 0 on 30 (6.a)

weak form

Find u, V such that

a(uz,v) - Az(uz,v) =0 inQ for all v in V (13.a)

General comments on this weak form should be made :
1. The solution u as well as the test function v belong to the class

of admissible functions V defined as follows

V=(vEH" | v must satisfy essential boundary conditions }

where m is the order of the weak (variational) form.
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2. Assume that the solution to the weak form (13) is smooth enough.
Then the weak form (13) and the differential form (6) are equivalent.
See reference [43] for proof.
3. The weak form still cannot be solved in closed form. However, it
is important in the sense that it will be used to derive useful finice
element formulations.

Since, in general, neither the differential form nor the weak
form can be solved in closed form, an approximation to u is needed.

We discuss approximate solutions in finite dimensional subspaces next.

3.2 Approximations in Finite Dimensional, Finite Element Subspaces

We will approximate the weak solution within a finite-dimensional

subspace Vh of the full admissible space V. In this subspace, the

problem is stated as follows

Find an approximated pair Ah and uh such that

h _h \b

a(u,v) = uh h h

(u,v) for all vh inVcVv (14)

The approximation uh on the subspace Vh has the form of uh- igl qi¢i,

where N is the dimension of Vh, q; are unknown constants to be

determined, and ¢i are linearly independent basis functions spanning
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the subspace Vh. The finite element method provides a systematic

technique for constructing the basis functions ¢i. In the finite
element method, the basis functions ¢i are typically piecewise
polynomials and are chosen in such a way that the parameters q; are

the values of u, and possibly its derivatives, at the nodal points.
Consider a l-dimensional, 4th order problem in the domain (0, %)
such as a beam vibration problem. We discretize the domain into M

finite beam elements, i.e., there are M elements and (M+l) nodes.
Since Vh should be contained in V, the approximation uh and the test

function vh must be in H2 and satisfy essential boundary conditions.

2 h
From the first requirement, d; must be square integrable, which
dx
duh
does not allow discontinuities in = Thus in this problem the

finite element basis function must be such that the function ¢ and its
first derivatives are continuous throughout the domain. The simplest
choice is‘the Hermite cubic polynomial that interpolates both the
function value and its derivative over each element. The global basis

function consists of two functions ¥(x) and w(x) so that the

approximation uh takes the form of

h
du,
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The Hermite cubic element has 2 degrees of freedom (the function value

and its derivative) at each node, and hence there are 2(M+l) degrees

of freedom in the finite element model. Thus N, the dimension of Vh,

is 2(M+1). The global basis functions ¥(x) and w(x) have the
following properties:

dwi(x.)
1"1("3‘) = 6ij "Ei“l“ =0

dwi(x )

wi(xj)-O -_H.X_J_-slj lSi,jSM.

In the finite element method, the approximation is constructed
one element at a time, the final formulation being obtained by summing

up the contribution of each element. Within element K, the

. h .
restriction of u in element K is

hK _ (K) ,(K)
@ - 8 () 4! (15)
where ¢(K)(i-l,2,3,h) are local shape functions (cubic polynomial) in

i

element K. Patching together shape functions ¢l‘ ¢3 and ¢2, ¢£‘over

the domain lead to the global basis function ¥(x) and w(x)

(K)

(K)
1 and 9,

respectively. The nodal values q represent the

(K)

and q,

éK) represent the

displacements at nodes i and i+l, and q

slopes at nodes i and i+l.
Substituting the element-wise approximation (15) and the test

function into the weak form (14) leads to an element matrix,
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(K] @ =" (M] q (16)
where (K] and (M] are the 4x4 element stiffness and mass matrix.
Summing up the contribution of each element, one can get the global
formulation,

1% =" p0 (17)
where [K]Gand [M]G are the N by N global stiffness and mass matrix.

Equation (17) is a matrix eigenvalue problem. The approximated

eigenfunction uh can be computed from the approximated eigenvector Q

and global basis functions ¢, i.e.,
h
v '121 éy
The matrix eigenvalue problem (17) leads to N approximated

eigenpairs (Ah,u}5. As before, ordering them according to the
magnitude of approximated eigenvalues, i.e.,

h _ ,h_.h h h
A] < Ap< A3< L. < Ag < Ay

the approximated eigenvalue A? and corresponding eigenvector Q2 are
the 2-th mode eigenvalue and eigenvector The £-th mode approximated

eigenfunction u? can be computed from

Equation (17) can be also written in terms of the £-th mode as

follows.
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(k]° Q, - A: )¢ Q, (17.a)

4.3 Summary and Discussion

In the previous sections, we have gone from the differential form
(6,6.a) to the matrix eigenvalue problem (17,17.a). Closed form
solutions to the differential form (6) or to the weak form (13) are

not generally available, which leads to approximations in finite
dimensional subspaces Vh of the original space V. We selected Vh as

a finite element space. In general, Vh differs from V and the finite
element approximation is different from the exact solution. Our

concern is to reduce the error between the finite element

approximation uh and the exact solution u.

To reduce the approximation error, an error indicator should be
constructed first so that we can estimate and reduce the error based
on the error indicator. This question is discussed in the next

chapter.



CHAPTER IV.

ERROR INDICATORS FOR ELLIPTIC EIGENVALUE PROBLEMS

4.1 Review of the Error Estimates for Elliptic Boundary Value Problems

Let u be the weak solution to the variational form of the
elliptic boundary value problem of order m, a(u,v)=(f,v) for all v in

V, where V denotes an admissible space. Then u minimizes the
functional (potential energy) I(v)=a(v,v)-2(f,v) over V. Let uh be a

finite element approximation to this problem. Then uh is the solution

to a(uh,vh) - (f,vh) for all vh in Vh, where Vh denotes a finite

element subspace. It is also the minimizing function of the functional

I(v) over Vh

Theorem [44]
(a) a(u-uh,u-uh) - hMin h a(u-vh,u-vh) for all vh in Vh
v in V

This means that, measured in the energy norm, uh is the best possible

member of all the members in the subspace Vh.

h h

(b) a(u-u ,vh) = 0 for all vh in V

32
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The error u-uh is orthogonal to all the members in Vh, i.e., uh is the

. . h .
projection of u onto the subspace V' with respect to the energy inner

product. See Figure 1.1.
The distance between u and uh in the energy norm is bounded by

a(u-uh,u-uh) < czhz(k+1-m)|u|12<+1 for u€Hk+1(0) (18)

where k is a polynomial degree of approximations in subspace V', c is
a constant independent of h, m is an order of the variational form,

denotes the semi-norm in Hk+l(0) and h is the size of the

I'|k+1
largest element. [44] In 1-D, h is the length of the largest element.

In 2-D, h is the diameter of the largest circle inscribed in the

largest element.

s

-\-.—i—.-——.a——.—_.

Figure 1.1
Approximation error in elliptic boundary value problems

(measured in energy norm)
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The exponent of h in (18) indicates the rate of convergence as

meshes are refined. The error can be reduced if h becomes smaller via
. h h
mesh refinements : as h - 0, a(u-u ,u-u’) - 0. As more elements are

- . h .
used, the finite element solution u converges to the solution u in
the energy norm. This is the key to the h-method.

The term |u|k+1 reflects the smoothness of solution. Suppose

that linear interpolation functions (k=1) are used to approximate the
solution to the 2nd order elliptic problem (m=1). From (18), the

approximation error is bounded by c2h2|u|§ and the convergence rate in

the energy norm is 2. If u is linear, the error is 0 since the |u|2

term vanishes. This is the case in truss problems with concentrated
loads. If u is quadratic, the approximation error is not 0 since the

|u|2 term does not vanish. However, if we used quadratic interpolation

functions (k=2), the approximation error would be bounded by c2h4|u|§
and, thus, the error would again be 0 since the |u|3 term would

vanish. Higher order basis functions can approximate u better. This
is the key to the p-method.

Equation (18) is the key for the construction of error estimates
for elliptic boundary value problems. The same equation will be

applied to elliptic eigenvalue problems.
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4.2 Error Estimates for Elliptic Eigenvalue Problems

In elliptic boundary value problems, the finite element
. . h . . . h .
approximation u  is the projection of u onto V' and is the closest

X h . C s .
member to u in V. However, in elliptic eigenvalue problems, the

h

closest approximation to the £-th mode eigenfunction u, in V' is the

Rayleigh projection Puﬂ. The Rayleigh projection Pu£ is defined as

follows

If u is the £-th mode eigenfunction (solution) to the

2

variational eigenvalue problem in V, then the Rayleigh projection

Pu, is its orthogonal projection in the subspace Vh , 1.e.,

2
a(uz-Puz,vh) - 0 for all v in VM.

By definition, the Rayleigh projection PujZ is the closest

approximation in Vh to u, measured in the energy norm. See Figure
1.2.
Since the projection of u, onto v Pu,, the error bound (18)

for elliptic boundary value problems suggests the following error

bound for the £-th mode eigenfunction Uy for elliptic eigenvalue

problems

,h2(k+1-m) (19)

2
a(uz-Puz,uz-Puz) <c |u£|k+l
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Figure 1.2 Approximation error in elliptic eigenvalue problems

(measured in the energy norm)

Using the equivalence of the energy and H™ norm, equation (19) is

equivalent to

k+l-m (20)

ITug-Puglly = ch g lier

where ||.||m denotes the H™ norm (Sobolev norm).
The distance between up and u? in the energy norm is expressed as

h h h h
a(uz-uz,uz-uz) - <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>