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ABSTRACT

0N ACCURACY ESTIMATES

FOR FINITE ELEMENT EIGENVALUE COMPUTATIONS

By

Yun-Jae Kim

Accuracy estimates for finite element computations of

elliptic eigenvalue problems are presented. From results of error

estimates for elliptic boundary value problems, error estimates for

elliptic eigenvalue problems are established for each mode based on

interpolation error theory. An error indicator, which is defined

as an element-wise approximation to the true error, is

computationally implemented using two different techniques, a

smoothing technique and a direct substitution technique using a

differential operator. The accuracy of error indicators is checked

using the eigenvalue problems of a uniform, Bernoulli—Euler beam.

Two measures of accuracy are discussed. The first measures how

accurately the estimator can capture the maximum true element-wise

error over all elements. The second measures how accurately the

estimator estimates the distribution of true error over the domain.

Using the simple node-moving algorithm, improved grids are

constructed keeping the total number of degrees of freedom

constant.
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CHAPTER I.

INTRODUCTION

The finite element method has become an effective and powerful

tool for obtaining approximate solutions to engineering problems.

Much of the power of the method is due to the freedom that it allows

in the construction of the discretized model. However, the quality of

the finite element approximation greatly depends on how the

discretization is performed. For this reason, in the last ten years

considerable effort has been devoted to adaptive finite element

methods which are designed to automatically improve the quality of the

finite element approximation. The goal of adaptive finite element

methods can be achieved only after computationally useful measures of

the ’quality’ of the approximation are available. This thesis

discusses the construction of such measures for the simple class of 1-

D eigenvalue problems.

In finite element methods, two basic techniques for error

estimation have emerged : one based on residual error estimates,

introduced by Babuska and Rheinbolt [1-4] and another based on

interpolation error, introduced by Diaz et.al. [14-16]. The first

. . h
class of error estimates is constructed from estimates of £(u-u ),



 

whered‘e denotes a differential operator and u and uh are the solution

sought and its approximation. The second technique is based on

interpolation error theory and is constructed from an estimation of

higher order derivatives of u.

Having resolved the issue of error estimation, one can improve

the quality of finite element approximations efficiently using local

refinement or relocation. In local refinement, more degrees of

freedom are added to elements where the approximation is<fiflower

quality by either increasing the order of polynomial approximation

inside elements (p-method) [7] or by subdividing elements (h-method)

[1-5]. In node relocation, the quality of the approximation is

improved by optimizing the disposition of the nodes while keeping the

number of degrees of freedom constant [14-16].

This thesis presents accuracy estimates for finite element

computations of elliptic eigenvalue problems. From results of error

estimates for elliptic boundary value problems, error estimates for

elliptic eigenvalue problems are established for each mode based on

interpolation error theory. An error indicator, which is defined as

an.element-wise approximation to the true error, is computationally

implemented using two different techniques. a smoothing technique and

a direct substitution technique using a differential operator. The

accuracy of error indicators is checked using the eigenvalue problem

of ainfiibrm, Bernoulli-Euler beam. Two measures of accuracy are

discussed. The first measures how accurately the estimator can

 



 

capture the maximum true element-wise error over all elements. The

second measures how accurately the estimator estimates the

distribution of true error over the domain. Using the simple node-

moving algorithm proposed by Diaz et.al'. [14-16], improved grids are

constructed keeping the total number of degrees of freedom constant.

The thesis is divided into five chapters. Chapter two is a

review of existing adaptive finite element methods. Error measurement

techniques and adaptation strategies are reviewed with an emphasis on

elliptic problems. Chapter 3 presents an overview of the solution to

eigenvalue problems in infinite dimensional space and their

approximation in finite element subspaces. In chapter 4, error

estimates for elliptic boundary value problems are reviewed and error

estimates for elliptic eigenvalue problems are established. As a

computable form, two types of error indicators are proposed and their

accuracy is tested. Node relocation is also performed to achieve an

improved grid. Chapter 5 discusses the results of the research,

presents conclusions and proposes further research.

 



 

CHAPTER II.

REVIEW OF ADAPTIVE FINITE ELfliENT METHODS

2.1 Adaptive Methodology

The objective of adaptive finite element methods is to adaptively

change the finite element model to improve the quality of the finite

element approximation.

A possible approach to improve the finite element solution is to

increase the number of degrees of freedom by subdividing or increasing

the degree of polynomial approximation. For example, new degrees of

freedom can be added selectively to elements where the finite element

approximation is poorer. In these elements, new degrees of freedom

are added by subdividing the element or by increasing the degree of

polynomial approximation within the element. This process can be

repeated until a prescribed accuracy is achieved. We will refer to

this process of selective addition of new degrees of freedom as

optima]. refinement. Another approach to improve the quality of the

finite element solution is to relocate the mesh by reducing or

increasing the element size (length in 1-D or area in 2-D) to achieve

the best possible grid for the given number of degrees of freedom.

This method can be referred to as ogml relocation problem. Both





 

the refinement and relocation approaches need the element information

from previous solutions to decide where the approximation is poorer so

as to add new degrees of freedom selectively.

To implement an adaptive strategy, one must address the following

issues

1. How to measure the quality of the approximation. The quality of the

approximation is measured by the difference between the exact solution

and time finite element approximation. There are two basic techniques

to estimate errors in finite element analysis: the residual approach

and theWW-

2. How to adapt the solution procedure to improve the quality of the

approximation once an element—wise estimate of the error is known.

Three methods are available involving refinement (h-method, p-method)

and relocation (r-method). Combinations (such as h-p method) are also

available.

We outline in the following sectfinrexisting approaches to

adaptive finite element methods and present a review of the adaptive

finite element literature.

2.2 Error Measurement

2.2.1 Residual Error Estimates





 

One popular way to estimate the finite element error is the so-

called residual error estimate technique. Considertflm linear.

elliptic differential equation.

:3 u + q - o in n (2.1)

with boundary conditions on 60

Replacing u by its finite element solution uh, one has

h .
ii u + q - r in 0 (2.2)

where r is the residual. It is assumed that the approximationii

. . . . . . h .
satisfies the boundary conditions. If the approx1mation u is exact,

the residual r is zero. Otherwise, denoting the finite element error

as e-u-uh, subtracting (2.2) from (2.1) leads to

i: e -j2(u-uh) - -r

To measure an element-wise error, a local auxiliarv problem must be

solved, stated as follows

33 w + q - o in element K (2.3)

w - uh on element boundary 8K

In element K, the solution w to (2.3) is treated as the true solution.

The element-wise residual, rK, and the element-wise error in the

* h .

energy norm, ||e where e -w-u , can be defined as

*

IIE,K '

r -m(w-uh)] and

K K

* 2 h h h
||e I'E,K - fK(w-u ) rK dK - Ix (w-u )jE(w-u ) dK (2.4)



Integration by parts using the boundary condition of the local

auxiliary problem leads to the final form of the element-wise error.

For example, in a 1 dimensional 2nd order differential equation,

d2u d2
_dx__z_.+q-O

Ofi-‘de 1110
(25)

the local auxiliary problem associated with (2.5) is

2

'2';’ + q - 0 in element K (2.6)

dx

w - uh on element boundary 6K

The element-wise error in the energy norm is

*

* d2e

||e*||2 - f e dK - f (w-uh) d2(w'uh) dK
E,K K de K ""7"—

dx

Note that we have the boundary condition, w-uh = ex= O on 8K

Integration by parts leads to the final form

* 2 d h 2

He IIE,K=- IKI-a;<w-u> 1 cm (2.7)

In general, the solution w to the local auxiliary problem (2.3)

*

cannot be.computed exactly and, instead, only an approximation w to w

can be computed. There are several ways to compute the approximation

*

w . For example, one may increase the polynomialOdegree of

approximation inside K or, instead, one may refine the element K by

' *

subdividing it into smaller elements. Once the approximation w to v:

is available, the error in element K can be computed from eq (2.4).



The residual approach is complicated by difficulties iJi solving

the local auxiliary problem. In addition, the approach is difficult

to extend to nonlinear problems and to choose the appropriate norm.

For a discussion of these difficulties, see Oden et.al. [27].

2.2 2 Error Estimates based on Interpolation Error

A different technique for error estimation, interpolation error

theory, can be used to construct error estimates for adaptjAna finite

elements. This approach was proposed by Diaz et.al. [14,15,16]. The

procedure is outlined below.

Assume that the true solution u to an ordinary differential

equation is a smooth function, and let u be an interpolator of u in a
I

finite dimensional space. By construction. u is equal to u at the
I

finite element nodes, i.e.,

u b. - u b. 2.8I< J> < J> < >

where bj are finite element nodes (j-l,2,...,NO) and NO is a number of

nodes in the finite element model. When u is the SOIUCUNICD an

elliptic boundary value problem, the error of approximating u by its

finite element solution uh is bounded by the error associated with the

interpolation u by uI. This follows from Cea's Lemma [45].

where c is a positive constant (2.9)
h

iIu-u II S clllu-ulll 1



 

The following result is available from interpolation error theory

k+l-m

llu-ulllm,K 5 c2 hK |u|k+l K (2.10)

where m, k and hK denote the order of the variational form, the degree

of the finite element solution and the diameter (length) of element K.

respectively, and c2 is a positive constant.

From (2.9) and (2.10),

h k+1-m

Ilu'u lIm,K S C hK lulk+l,K (2.11)

I Inequality (2.11) provides the basis for element error estimates. For

example, consider the solution u to a 2nd order differential equation

approximated by the piecewise linear function uh and” m-l). The

inequality (2.11) becomes,

||u-uh||1,K s c hK |u|2,K

This technique is simpler conceptually as well as computationally

than the residual technique. However, when we use this technique, we

face one problem: since the true solution u is, in general, not

available, we have to use available information, the finite element

solution, to estimate it. To estimate the error, we need to calculate

higher order derivatives of u since the term |u|k+l K includes (k+l)th

O O O o h

order derivatives. However, the finite element solution u on element

K is a k-th order polynomial. The procedure to extract higher order

derivatives needs very accurate post-processing for error estimations.

A simple technique was proposed by Diaz et.al. [14-16], and is also



 

10

used in the present work. A different technique based on rigorous

estimates was proposed by Babuska and Miller {6}, and extended by

Demkowicz et.al.[5].

Applications of error estimation techniques based on both

residual and interpolation approaches to linear problems in

elasticity, fluid, and heat transfer as well as nonlinear problems can

be found in the paper by Oden et a1. [27].

2.3 Adaptation Strategies

Suppose that we have already estimated the element-wise error of

the approximation. We are now in position to change the finite

element model in order to improve the accuracy of the approximations

The methodology for adaptation can be roughly classified1hnx>two

classes : local refinement and relocation.

re 'nement

Local refinement increases the total degrees of freedom in the finite

element model by

1. increasing the number of elements while keeping the polynomial

degree of local basis functions fixed (h-method),or

2. increasing the polynomial degree of approximation while keeping the

number of elements fixed (p-method)

node relocation
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In the node relocation method (r-method), the total number of degrees

of freedom remains constant. Nodes are relocated within a fixed

number of elements and with a fixed polynomial degree of

approximation. In time-dependent problems, some moving mesh methods

(e.g. moving finite element method) have been proposed. These methods

have similar basic features to the r-method.

combination

Some combinations of the above methods are possitflxa (e.g. h-p, h-r,

and p-r method). The most popular method is the combination of h and

p method. (h-p method)

In the following sections, the different adaptation strategies

are discussed based on the type of differential equation : time-

independent (elliptic) and time-dependent (parabolic, or hyperbolic)

problems. We also include discussion of eigenvalue problems, which

are the main objective of this work.

2.3.1 Elliptic Problems

Since the late 70's, adaptive finite element methods have been

applied to linear, elliptic problems, using heuristic as well as

rigorous mathematical justifications. Originally developed for linear

elliptic problems, adaptive finite element methods have now been

extended to some classes of nonlinear problems. We review adaptive

methods in elliptic problems based on the h-, p-, h-p, and r-method.
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2.3.1.1 h-version

In the h-method, elements are subdivided into smaller ones while

the order of polynomial approximation remains unchanged. Optimallv

refined meshes are achieved by selectively subdividing elements where

the error is large until a specified accuracy is achieved. This

method is based on the fact that, as the mesh size h goes to O (as the

number of elements increase), the error in the energy converges to 0

[44]. 'fiuzcomputational detail of this approach can be found in

series of papers by Babuska and Rheinbolt [1-4], where the residual

technique was used for error estimation. There, error indicators

constructed from the finite element solution were used to identify

elements where the approximation is less accurate.

An impressive work using the h-version of mesh refinement was

done by Demkowicz et.a1.[5], where interpolation error estimates are

used.tna estimate the error and the extraction formula was modified to

calculate highly accurate higher order derivatives.

2.3.1.2 p-version

In the p-method, the number of finite elements remains unchanged,

‘while the order of polynomial approximation is selectively increased.

The p-version of the finite element method is based on the notion that

higher order polynomials can approximate a smooth function better than

lower order ones. Distributing different higher order polynomials in

regions where the approximation is poorer can produce better overall

approximations. The higher order polynomial is used iritflua elements

 



 

13

where the error is large. Note that the original grid (element size)

is not modified. The p-version was studied by Babuska et al. [7]. The

authors obtained error estimates in terms of the polynomial of degree

p, and showed that if the convergence rate of the h-method and p-

method is expressed in terms of the number of degrees of freedom, the

p-method cannot have a slower rate of convergence than the h-methodu

In particular, when corner singularities are present, the convergence

rate of the p-method is exactly twice that of the h-version.

Numerous works have been published on p-methods, especially

applications to fracture mechanics problems (see references in Szabo

[10]) The p-method has been shown to produce better results than the

h-method in elasticity problems with singularities. [7,11,12]

.A popular way to formulate the p-version is the so called

hierarchical finite element approach. This is a computationally

efficient procedure in which the stiffness matrix corresponding to the

hierarchically enriched mesh includes the stiffness matrix

corresponding to the previous mesh as a submatrix. The hierarchical

finite element method is discussed by Zienkiewicz et.al. [8,9]. The

paper by Zienkiewicz and Craig [11] includes recent advances in the p-

method and hieriarchical finite elements.

2.3.1.3 Combined h-p method

Babuska and Dorr [13] studied the combination of h and p-methods,

*where error estimates in terms of both the mesh size h and the

polynomial degree p were explicitly obtained. An important result
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there is that the optimal h-type refinement together with properly

distributing p's can produce exponential convergence.

In summary, it is generally believed that a faster increase in

local accuracy can be achieved using the p-method, specially in

problems with singularities. The best approach in terms of accuracy

is the combined h and p method, which leads to exponential

convergence. These results haveibeen restricted to one-dimensional

problems and to linear elliptic problems in two dimensions.

2.3.1.4 r-version

The h- and p-method improve the finite element approximation by

increasing the number of degrees of freedom. In some problems,

however, one may want to keep the number of degrees of freedom

constant, i.e. improve an existing grid. This is the case, for

instance, when finite elements are used as part of an iterative design

optimization process. In.this context, the r-method was proposedlnr

Diaz et.al. [14-16]. The paper [15] includes some theoretical aspects

of the r-method. The work is summarized as an optimal relocation

problem where an objective function B is derived based on

interpolation error estimates and design variables are element lengths

h in 1-D problems or areas A in 2-D problems. The optimal relocation

problem is stated as follows

(1) l-dimensional case

Find the vector of element lengths h-(hl,h2,...,hN) that
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. . . 2 2k 2
minimizes B (u,h) - N21 hK |u|k+l K (2.12.a)

subject to KglhK-i , th o

(2) 2-dimensional case

Find the vector of element areas A-(A1,A2,...,AN) that

. . 2 k 2

minimizes B (u,A) - Kg, AK |u|k+1 K (2 12.b)

subject to KglAK-l , AK 2 0

where N is the total number of elements. The authors also derived

optimality conditions for (2.12),

fK- 1112<k|\.i|)l2(_'_1’K - constant in 1 dimensional problems (2 l3.a)

f - k |u|2 - constant in 2 dimensional problems (2 13 b)

K AK k+l,K ‘ '

for all K-l,2,3,...JL. This means that the necessary condition for

optimality of the grid-relocation problem is that the element—wise

quantity fK be the same for all elements K=1,2,. . . ,N. This grid is

defined as an optimal grid. A simple node-moving algorithm was

proposed to obtain the optimal grid. and successfully tested in

[14,15,16]. This algorithm is also used in the present work. The r-

method has proven to be effective for nonlinear problems (e.gp

plasticity) in solid mechanics. and has been applied to fracture

mechanics problems [14,15,16] as well as fluid mechanics problems

[15]. 'The r-method can be more easily extended.to time-dependent

problems than the h and p versions.
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Other applications of the h- and r-method (e.g.,in metal forming,

flow problems and shape optimization) are referred to in the review

paper by Kikuchi [l7] . A general review of adaptive methods can be

found in the paper by Oden et.al [27].

2.3.1.5 Adaptive Mesh Generation Techniques

Adaptive mesh generation techniques which combine numerical grid-

generation and adaptive finite element methods have also appeared in

the literature [17]. Demkowicz and Oden [5] proposed a new mesh

generation technique, which extends an existing conformal map-type

mesh generator combined with a minimization of interpolation error

estimates as the mesh modification strategy. Another mesh generation

technique was presented in [19], where the h-type mesh refinement was

adopted for mesh modification.

2.3.2 Eigenvalue Problems

In static, force-deflection (elasticity) problems, only one

single solution is sought. For these problems. it has been statedin

the previous section that the p-version is more attractive than the h-

version. By contrast, in eigenvalue problems, a large number of

solutions (eigenpairs associated with natural modes) are sought. In

the paper by Bennighof and Meirovitch [20], two questions were





 

l7

addressed regarding the convergence of finite element methods applied

to eigenvalue problems : 1. Why the approximation to the eigenvalue

and eigenfunction of the higher mode is poorer than that of the lower

mode. 2. Why the p-method can produce significantly better eigenvalue

convergence than the h-method. The authors also explain why the upper

half of the modes obtained from finite element approximations are

useless. The second issue is also discussed in the paper by Sun and

Hwang [48], where higher order (quintic) elements were shown-through

numerical examples to be more efficient for beam-like structural

dynamics problems. Error indicators based on p-version hierarchical

adaptive finite element methods for eigenvalue problems were derived

by Friberg in [21] and tested in [22]. The author has shown the

superiority of the p-version through the observation that three-

quarters of the lower mode eigenpairs are acceptable in the p-version,

whereas only one-half of the lower mode eigenpairs are acceptable in

the h-version for the same number of degrees of freedom.

2.3.3 Time Dependent (Parabolic and Hyperbolic) Problems

Recently, there have been significant advances in adaptive

finite element methods applied to time dependent problems. For

example, in computational fluid mechanics or in heat transfer problems

governed by nonlinear partial differential equations, important

features tend to occur in localized regions whose location may change
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in time. The use of extremely fine meshes over the whole domain to

capture these features accurately is not computationally feasible in

realistic problems. In such problems, adaptive methods, especially

moving-mesh methods, are very effective.

Miller and Miller [23] and Miller [24] proposed a Moving Finite

Element (MFE) method for problems characterized by nonlinear partial

differential equations such as Burger's equation with a large Reynolds

number, which develop shocks and other sharp moving fronts. In the

MFE method, the nodes are allowed automatically to concentrate and

move with the front, making it possible to handle such problems with

far fewer nodes and with larger time steps for time integration. The

basic idea of the MFE method is that the approximation is a function

of amplitudes as well as nodal positions, whereas it is only a

function of amplitudes in usual FEM. Recent results and additional

references are summarized in Miller [25].

Another moving-mesh method was proposed by Adjerid and Flaherty

[24] for the class of 1 dimensional, 2nd order parabolic partial

differential vector systems. The authors derived the error indicator

based on residual estimates. The p—type mesh refinement was used to

solve the local auxiliary problem. A differential equation was

proposed to control the mesh motion so that three differential

equations for approximation, error, and mesh motion control are solved

concurrently.

Some important works have been done recently with applications in

supersonic gas dynamics and.fluid mechanics [27-31]. Ir1[27], Oden
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et.al. applied both residual and interpolation error estimates to the

Navier Stokes equation as a model problem of incompressible/viscous

flow problems. A moving-grid algorithm for supersonic flow between

moving bodies was proposed by Strouboulis et.al. [30] using Taylor-

Galerkin finite element approximations, which can be applied to rotor-

stator flow problems in turbomachinery [31]. More general classes of

unsteady, inviscid/compressible flow problems were also studied by

Oden et.al. [29] , where an effective adaptive scheme was formulated

using a Lax-Wendroff/ Taylor-Galerkin method for a time-dependent

Euler equation. The authors use h-enrichment as well as r-moving mesh

adaptive methods, and errors are estimated based on a residual

approach in the time domain and on interpolation error estimates in

the space domain.

 



CHAPTER III.

EIGENVALUE PROBLEMS AND FINITE ELEMENTS

3.1 Solutions in Infinite Dimensional Space

3.1.1 Differential Form

Consider a l-dimensional beam in transverse vibration. Under the

assumption of small deflections and rotations and neglecting shear and

rotary inertia effects, the transverse displacement is governed by the

Bernoulli-Euler equation

2 ' 2 .2 _
a 2”: I(x) a (x,t)] .. __ m(x)0 24kt) (1)

6x 6x a:

t a 0 , 0 < x < 2

+ boundary conditions

In equation (1), E, I(x), m(x) and 2 denote Young’s modulus, area

moment of inertia about neutral axis. mass per unit length and beam

length, respectively. The solution to equation (1) is a function of

space x as well as time t. The assumption that the suxhition to (l)

is separable in time and space, i.e. y(x,t)=u(x)T(t), leads to the

following two equations:

20
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2 2

_d__2 [g 1009‘; 1 = i m(x)u(x) o < x < 2 (2)

dx dx

2

dT+AT(t)-0 :20 (3)
2

dt

The scalars A that produce nontrivial solutions of (2) are the

eigenvalues and.the associated solutions u(x) are the eigenfunctions.

The eigenvalue problem for the transverse vibration of the Bernoulli-

Euler beam is, therefore, as follows.

Find the pair (A,u(x)) such that

d2 d2u(x)

—d—2— [E I(x) d ]- A m(X)u(X) 0 < X < 3 (4)

X X

+ boundary conditions

When can one solve the equation (4) exactly? Solutions to this

problxnn must satisfy all the boundary conditions as well as the

differential equation in 0 < x < 2 . The solution of (4) must be

smooth so that u and its partial derivatives up to 4th order are

continuous at every point in (0,2). These are difficult conditions to

satisfy. A small complication, such as a tapered cross section, can

make (4) not solvable in closed form.

As another example, consider a 2-dimensional thin elastic plate

in transverse vibration. The eigenvalue problem can be expressed as

a“ < z) a“ ( > a“ < X)
XX’ + 2 u x’ + ZX’ =- A u(x.y) (my) 6 0 (5)

6x 6x 8y 6y

+ boundary conditions on 60
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In this case, we can get the general terms of the series solution only

when the problem is defined over a simple domain. e.g. circular or

rectangular with simple boundary conditions. e.g. clamped or simply

supported along the boundary.

The general eigenvalue problem (including beam. plate etc) can be

written in a compact form as follows

Find the pair (A,u), where uEECZT such that

L u - A u in O

M u - O on 60 (6)

where L and M are linear differential operators and 0 is a smooth,

bounded region with its boundary 80. The differential operator L is

a self-adjoint, elliptic operator of order 2m and M is a compatible

boundary operator of order m. We will call equathn1(6) the

differential form. Equation (6) has an infinite number of solution

eigenpairs (Lu) and since the equation is homogeneous in u,

amplitudes of eigenfunctions are arbitary and only their shape can be

determined uniquely.

Admissible boundary conditions are either essential, resulting

from the geometric compatibilities, or natural, resulting from moment

or shear force equilibrium. For example, in the case of the Bernoulli-

Euler beam of length 2 simply supported at both ends, boundary

conditions are

essential : u(O) - 0 u(t) - O
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d2u(2) =
2

d “(0) - o E 1(2) 2

dx dx

0 . (7) natural : E I(O)

In the case of the thin elastic plate clamped along its boundary an,

essential : u(s) - 0 _g%_(_§l - 0 s E 80 (8)

natural : none

3.1.2 Weak (Variational) Form

The differential form (6) requires that u and all of its

derivatives of order less than or equal to 2m be continuous at every

. . . . m ’ . . . . . .
pOint in 0 (i.e, u is in C2 ). This is a difficult condition to

satisfy. A weak or variational formulation relaxes this requirement

and facilitates computations. This weak form will be used to obtain

a finite element approximation to the eigenfunction.

Consider again the differential form (4) and boundary conditions

(7), representing the behavior of the Bernoulli-Euler beam simply

supported at both ends. We multiply a weight (test) function v

defined on (0,2) to both sides of equation (4) and integrate tuner the

domain such that the differential equation with boundary conditions is

satisfied in the sense of weighted average, i.e.,

fév[%2-2—(E1(x)iz%) - Au 1 dx= o in (0,2)

x dx

+ boundary conditions on 60 . (9)
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The equation (9) includes 4th order derivatives of u, whereas no

derivatives of v appear. Integration by parts of (9) leads to

2 d2u d2v 2
f0 E I(x)—7—7dx - A [O uv dx = o in (0,2), (10)

dx dx

provided that the solution u and the test function v belong to the

class of admissible functions, denoted by V, defined as

v - ( VEHZ I v(0)-O, v(2)-0 )

In words, \I is the set of HZ-functions (bounded energy) that satisfy

the essential boundary conditions v(0)-0 and v(2)-0. A function is

said to be in H2 if the function and all of its partial derivatives up

to 2nd order are defined in a square-integral sense (see Appendix A

for more detail), i.e.,

H2 - { v | |v|0,|v|l,|v|2 S M < w I

2

where |v|0- févzdx, |v| 1- f20(%2dx , |v| 2= [20(3-1 2dx and M is a

dx

constant. Note that essential boundary conditions are included in the

definition of V and that the smoothness requirement on u is weakened.

Now we can write the weak form of this problem as follows

Find uEiV such that

2 d u d2v 2
fOEI(x)-——2- zdx-Afouvdx=0 forallvinV (11)

dx dx

 

where V is defined as before.
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In the case of the thin elastic plate clamped along its boundary,

the weak form can be derived follwing similar steps. After introducing

V and integrating by parts, the corresponding weak form is

find uEV such that

2
f0 V2u V v dxdy - A In uv dxdy - 0 for all v in V (12)

2 2 a2 62
where V is Laplacian operator defined by V =-——§ + -—7-.

8x 6y

The weak form can be written in a compact form by introducing

inner products. The general form of variational eigenvalue problems

is

find uEV such that

a(u,v) - A(u,v) - 0 in 0 for all v in V (13)

where a(.,,.) is a symmetric, bilinear energy inner product and ( ,.)

is a symmetric, linear inner product.

In the case of the Bernoulli-Euler beam of length 2sfihmly

supported at both ends,

2 dzu dzv 2
a(u,v)-f E I(x)———-———-dx , (u.vr-f uv dx in 0(0,2)

0 dx2 dx2 0

u and v should satisfy u(O)-v(O)-O u(2)=v(2)=0

In the case of the thin elastic plate.

a(u,v)-f0 Vzu V2v dxdy , (u,v)- [nuv dxdy in 0

2 2

2 6 a
where V - +

.;;§ 3;?-
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8u(s)_dv(s):0

u and v should satisfy u(s)-V(s)-0, an an sGdO

The differential form (6) and weak form (12) lead to an infinite

number of eigenpairs (A,u). These pairs can be«ordered according to

the magnitude of eigenvalues under the.assumption of no repeated

eigenvalues, i.e.,

A1< A2< A3< <A£<

The eigenpair (A£,u£) is the 2-th mode eigenpair. Equations (6) and

(13) can be written in terms of the 2-th mode as follows.

differential form

Find the pair (A2’u2) where uz E sz such that

Lug - A£u in 0

Mug - 0 on 80 (6.a)

weak form

Find ug V such that

a(u2,v) - A£(u£,v) - 0 in O for all v in V (l3.a)

General comments on this weak form should be made

1. The solution u as well as the test function v belong to the class

of admissible functions V defined as follows

V - ( VEEHm | v must satisfy essential boundary conditions i

where m is the order of the weak (variational) form.
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2. Assume that the solution to the weak forni (13) is snmxnfli enough.

Then the weak form (13) and the differential form (6) are equivalent.

See reference [43] for proof.

3. The weak form still cannot be solved in closed form. However, it

is important in the sense that it will be used to derive useful finite

element formulations.

Since, in general, neither the differential form nor the weak

form can be solved in closed form, an approximation to u is needed.

We discuss approximate solutions in finite dimensional subspaces next.

3.2 Approximations in Finite Dimensional, Finite Element Subspaces

We will approximate the weak solution within a finite-dimensional

subspace Vh of the full admissible space V. In this subspace, due

problem is stated as follows

. . . h h
Find an approx1mated pair A and u such that

a(uh,vh) - Ah(uh,vh) for all vh in th V (14)

The approximation uh on the subspace Vh has the form of uh- igl qioi,

. . h
where N is the dimenSion of V , qi are unknown.cxnnstants to be

determined, and (ii are linearly independent basis functions spanning
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the subspace Vh. The finite element method provides a systematic

technique for constructing the basis functions (bi. In the finite

element method, the basis functions 451 are typically piecewise

polynomials and are chosen in such a way that the parameters qi are

the values of u, and possibly its derivatives, at the nodal points.

Consider a l-dimensional, 4th order problem in the domain (0,2)

such as a beam vibration problem. We discretize the domain into M

finite beam elements, i.e., there are M elements and (M+l) nodes.

Since Vh should be contained in V, the approximation uh and the test

. 2 . . . .
function vh must be in H and satisfy essential boundary conditions.

 

 

2 h

From the first requirement, d; must be square integrable, which

dx

duh

does not allow discontinuities in dx Thus in this problem the

finite element basis function must be such that the function o and its

first derivatives are continuous throughout the domain. The simplest

choice is‘the Hepmite cubic polynomial that interpolates both the

function value and its derivative over each element. The global basis

function consists of two functions u(x) and m(x) so that the

approximation uh takes the form of

h
du.
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The Hermite cubic element has 2 degrees of freedom (the function value

and its derivative) at each node, and hence there are 2(ibkl) degrees

(if freedom in the finite element model. Thus N, the dimension of Vh,

is 2(M+l). The global basis functions m(x) and w(x)lunm the

following properties:

d¢i(x.)

¢i(xj) ' 513 “E§“l“ ' 0

dwi(x )

wi(xj)-0 TL-l-Sij lSl,jSM.

In the finite element method, the approximation is constructed

one element at a time, the final formulation being obtained by summing

up the contribution of each element. Within element K, the

'. h . .
restriction of u in element K is

h K _ (K) (K)
(u > 121 qi ¢1 (15)

‘where ¢§K»(i-l,2,3,4) are local shape functions (cubic polynomial) in

element K. Patching together shape functions ¢1. ¢3 and d2, oé‘over

the domain lead to the global basis function u(x) and m(x)

(K)
{K) and q3 represent therespectively. The nodal values q

(K)
4 represent theand qdisplacements at nodes i and i+1, and qéK)

slopes at nodes i and 1+1.

Substituting the element-wise approximation (15) and the test

function into the weak form (14) leads to an element matrix,
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[K] q - Ah [M] q (16)

where [K] and [M] are the 4x4 element stiffness and mass matrix.

Summing up the contribution of each element, one can get the global

formulation,

[KIGQ - Ah [MJGQ (17)

where [K]Gand [M]G are the N by N global stiffness and mass matrix.

Equation (17) is a matrix eigenvalue problem. The approximated

eigenfunction uh can be computed from the approximated eigenvector Q

and global basis functions d, i.e.,

h

” '1g1 Q1¢1

The matrix eigenvalue problem (17) leads to N approximated

eigenpairs (Ah,uh). As before, ordering them according to the

magnitude of approximated eigenvalues, i.e.,

h h h h h
A1 < A2< A3< ... < AN_1< AN

the approximated eigenvalue A? and corresponding eigenvector Q3 are

the 2-th mode eigenvalue and eigenvector The 2-th mode approximated

eigenfunction u? can be computed from

h

“2 '1-1 Q2121

Equation (17) can be also written in terms of the 2-th mode as

follows.
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[K1G Q, - A? [MIG Q, (l7.a)

4.3 Summary and Discussion

In the previous sections, we have gone from the differential form

(6,6.a) to the matrix eigenvalue problem (17,17 a). Closed form

solutions to the differential form (6) or to the weak form (13) are

not generally available, which leads to approximations in finite

dimensional subspaces Vh of the original space V. We selected Vh as

a finite element space. In general, Vh differs from V and the finite

element approximation is different from the exact solution. Our

concern is to reduce the error between the finite element

. . h .
approx1mation u and the exact solution u.

To reduce the approximation error, an error indicator should be

constructed first so that we can estimate and reduce the error based

on the error indicator. This question is discussed in the next

chapter.



 

CHAPTER IV.

ERROR INDICATORS FOR ELLIPTIC EIGENVALUE PROBLEMS

4.1 Review of the Error Estimates for Elliptic Boundary Value Problems

Let u be the weak solution to the variational form of the

elliptic boundary value problem of order m, a(u,v)-(f,v) for a11.\r in

V, where V denotes an admissible space. Then u minimizes the

functional (potential energy) I(v)-a(v,v)-2(f,v) over V. Let uh be a

finite element approximation to this problem. Then uh is the solution

to a(uh,vh)u- (f,vh) for all vh in Vh, where Vh denotes a finite

element subspace. It is also the minimizing function of the functional

I(v) over Vh

Theorem [44]

(a) a(u-uh,u-uh) - hMin h a(u-vh,u-vh) for all vh in Vh

v in V

. . h . .
TUnis means that, measured in the energy norm, u 15 the best pOSSlble

member of all the members in the subspace Vh.

h h
(b) a(u-u ,vh) - O for all vh in V

32
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The error u-uh is orthogonal to all the members in Vh, i.e., uh is the

. . h .
prOJection.of u onto the subspace V with respect to the energy inner

product. See Figure 1.1.

The distance between u and uh in the energy norm is bounded by

c2h2(k+1‘m) 2 for uEHk+l(0) (l8)a(u-uh,u-uh) 5 |u]k+l

where k is a polynomial degree of approximations in subspace Vh, c is

a constant independent of h, m is an order of the variational form,

denotes the semi-norm in Hk+1(0) and h is the size of the

l'Ik+1

largest e1ement.[44] In l-D, h is the length of the largest element.

In 2-D, h is the diameter of the largest circle inscribed in the

largest element.

v
;

 
 

-
-
-
-
-
n

Figure 1.1

Approximation error in elliptic boundary value problems

(measured in energy norm)
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The exponent OflllIl(18) indicates the rate of convergence as

meshes are refined. The error can be reduced if h becomes smaller via

. h h

mesh refinements : as h 4 0, a(u-u ,u-u ) -* 0. As more elements are

used, the finite element solution uh converges to the solution u in

the energy norm. This is the key to the h-method.

The term [u]k+l reflects the smoothness of soluthnL Suppose

that linear interpolation functions (k-l) are used to approximate the

solution to the 2nd order elliptic problem (m=l). Frmn(18), the

approximation error is bounded by c2h2|u|§ and the convergence rate in

the energy norm is 2. If u is linear, the error is 0 since the |u|2

term vanishes. This is the case in truss problems with concentrated

loads. ‘If u is quadratic, the approximation error is not 0 since the

[u]2 term does not vanish. However, if we used quadratic interpolation

functions (kr2), the approximation error would be bounded by czhalu]§

and, thus, the error would again be 0 since the |u|3 term would

vanish. Higher order basis functions can approximate u better. This

is the key to the p-method.

Equation.(18) is the key for the construction of error estimates

for elliptic boundary value problems. The same equation.will be

applied to elliptic eigenvalue problems.
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4.2 Error Estimates for Elliptic Eigenvalue Problems

In elliptic boundary value problems, the finite element

. . h . . . h .
approx1matuniti is the prOJection of u onto V and is the closest

member to u in Vh. However, in.elliptic eigenvalue problems, due

in Vh is theclosest approximation to the 2-th mode eigenfunction uz

Rayleigh projection Pug. The Rayleigh projection Puz is defined as

follows

If u is the 2-th mode eigenfunction (solution) to the
2

variational eigenvalue problem in V, then the Rayleigh projection

Pu£ is its orthogonal projection in the subspace Vh , i.e.,

a(ui-Pu£,vh) - 0 for all vh in Vh.

By definititni, the Rayleigh projection Pug is the closest

approximation in Vh to ufl measured in the energy norm. See Figure

1.2.

Since the projection of ug onto Vh is Pug, the error bound (18)

for elliptic boundary value problems suggests the following error

bound for the 2-th mode eigenfunction uZ for elliptic eigenvalue

problems

c,h2(k+1-m) 2 (19)
a(uz-Pu£,u2-Pu2) s Iu2lk+l
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Figure 1.2 Approximation error in elliptic eigenvalue problems

(measured in the energy norm)

USing the equivalence of the energy and Hm norm, equation (19) is

equivalent to

k+l-m
[lug-Pu!”m 5 ch |u£|k+1 (20)

where ||.||m denotes the Hm norm (Sobolev norm).

The distance between u! and u? in the energy norm is expressed as

h h h h

a(ul-u£,u£-u£) - a(uz-Pu2,u2-Pu2) + a(Pug-u2,Pu2-u£) . (21)

If Vh is a finite element space, the Rayleigh projection Pug is not

computable in general, but is 'close' to u?, i.e.. u? z Pug. Thus, if
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the term a(Puz-u$,Pu2-qr) in (21) can be neglected, from (19) and

(21),

a(uI-uh ug-uz) S c'h2(k+l m)£. (22)In 12
2 k+l

This error bound (22) allows us to set up the explicit form of error

estimators for eigenvalue problems.

4.3 Error Estimators

To improve the quality of approximations efficiently, new degrees

of freedom should be added in a selective manner to elements where the

approximation is poorer. This requires error information at the

element level. Define an element-wise estimator of the true error as

. 2 .

an error estimator and let 6K denote the error estimator of the 2-th

mode in the element K. Then, the error bound (22) suggests the

following form of the error estimator.

2 2a 2 .
6K - c hK lu2lk+1,K in l-D (23.a)

2 a 2 .
6K - c AKlu2|k+l,K in 2-D (23 b)

where hK is a length of element K,

AK is an area of element K,

2 is a mode number,

k is the order of local basis functions,
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a is the order of convergence (=k+l-m).

c is a constant independent of hK' A and 2,

K

k+l .

denotes the H semi-norm on element K.

and |'|k+l,K

Note that the constant c depends only on the element type. In

general, this constant is not available. For example, suppose that

Hermite cubic interpolation functions (standard beam element, 2 nodes

and 2 dof per node) are used to approximate solutions (eigenfunctions)

to the vibration of a uniform, Bernoulli-Euler beam. Then the 2-th

mode error estimator on element K is

4

2 2a 2 4 d u 2

ex - c hK |u|k+1’K- c hKfK( t/dxa) dx a II

r
x
.
)

The error estimator of the form (23) is not still usable for

computation since it includes the exact solution ug. To make the form

(23) computable, it is necessary to replace ufi by a known function

A

. . . . h
that can be computed from the finite element approximation ui. Let u£

be such function. Then, the computable form of the error estimator,

denoted by 0:, is

2 2a A 2
"K - hK lu2lk+1,K a-k+m-l . (24)

We call this an error indicator. The error indicator should be

A

available from finite element approximations. Different forms of u

will be discussed in the following sections. This is the main result

of this work.
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4.4 Computational Implementation of Error Indicators

Recall that the error indicator has the form of

2 2a A 2
0K - hK Iu2lk+l,K a=k+m~l . (24)

A

The function u should be, first, computed easily from the finite
2

A

and, second, such that the ratio lu2'u2lk+l,K /element solution u:

|u2|k+l K is small and asymptotically correct. i.e.. converges to zero

as h a 0. In this section, two techniques to construct

A

U2 are discussed.

4.4.1 Smoothing Technique

This technique was originally proposed and successfully tested by

Diaz et.al. in [14,15,16]. Using this technique, the function.uy is

constructed directly from the finite element approximation. For

simplicity, let us illustrate only the l-dimensional case here. Irrea

l-D problem, an approximation u? is a k-th order polynomial over each

element where k is the polynomial degree of local basis functions.

The k-th derivative of uh is a constant that may vary from element to
2

element, and the (k+l)-th derivative vanishes inside the element and

A

is undefined across elements. The new function ufi is defined such



 

  

  

4O

dkui dkuh

that the difference between k and vanishes in the weighted

d x d x

average sense, i.e.,

dku dkuh
2 2

f0v( k— k)c1x==o

d x d x

where v is a weight function and k is the order of the basis functions

of us.

Let us illustrate the procedure using an example. Consider cubic

beam elements over the domain 0-(O,l). The approximation u: is a 3rd

order polynomial on the element. Over the domain, the 3rd order

. . h . . . .
derivative of u! is a pieceWise constant function.

The function u satisfies

 

2

l d3u£ d3u3

f0v(——3-— 3 )dx-O. (25)

d x d x

To simplify the notation, let 22 and p2 be the 3rd order derivative of

62 and “3' Then eq (25) becomes

fév<z,-p,)dx-o (26)

where pl is a constant since u: is a 3rd order polynomial. Choose

linear basis functions for v and 22 . i.e..
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o o
-j§1¢j vj W121 . (27)

where NO is a number of finite element nodes, ¢'S are linear basis

functions, and the vector zi includes nodal values of 22.

Substituting (27) into (26) gives a system of equations,

N .
M2121, -bi , i-l,2,...,NO (28)

l l
Aij - f0 ¢i¢j dx and bi - pi I0 ¢i dx

Eq (28) gives nodal values of a piecewise linear function 23.

Whericpiintic beam elements are used, the procedure is the same except

A

that now the function u satisfies

 

1 dsui dsug

f0 v [ 5 --——§—-] dx - 0

dx dx

Using this technique, the 2-th mode error indicator of element K has

the form,

2 2 2 2 2
"K - hKa IZ2II,K - hKa fK (dzi/dx) dx.

We will call this type of indicator the interpolation type 1

indisater.

This smoothing technique can be easily extended to more general

problems such as a tapered beam or two dimensional problems siruua the

A

function “2 is constructed only from finite element approximations.

0n the other hand, this method has one defect: As more derivatives

are taken of the finite element approximation, the accuracy may be
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lost. The function u? may be very close to u lNJC d3u2/dx3 may not
2 I

be close to d3u2/dx3. Therefore, the function ”E computed from

dgug/dx3 may lack the necessary accuracy. More details about the

accuracy of this type of indicator will be given in the next section

using numerical examples.

4.4.2 Direct Substitution Technique using a Differential Operator

The term |U2|§+1 includes derivative terms of U1 that may be

replaced using a differential operator in Recall the differential

form of the eigenvalue problem L u2 - A2 ui. The basir:rm3tivation

is to reduce the order of the derivative terms oftre. This

technique is immediately applicable to only one case : a uniform,

Bernoulli-Euler beam in l-D. Let us illustrate the details using this

case .

Consider the vibration of a uniform, BemmnflJi-Euler beam

governed by

 

d4

L u! - m Aflui , L - E I 4 (29)

dx

where 8,1 and m are constants. When cubic beam elements are used.

the error estimator of the element K has the form

2 4 2

6K - c hK |u£|4,K (30)
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The term lugla K can be replaced using eq (29).

A

d u

2 2 2 2 2 2 _ 2 2 2

'“2'4,x fx 0;;3') dx ' C1 fx *2 “2 dx ' C1 A2 '“2'o,x (31)

where c1 - m/EI - constant. In (31), A2 andtieare still not

available. Replacing them by their approximatmmusleads to a

computable form of the error indicator.

2 2a h 2 h 2

"K - hK (A!) ‘u3‘0,K (32)

We will call this type of indicator as an interpolation type 2

indicator.

This method has two positive features: First, it is

computationally easy to implement. The L2 norm of u? in (32) can be

computed using multiplication of a element mass matrix and nodal value

vector.

h 2 h h h K h

fx (”2) dx ' § § “1 (fx¢i¢jdx) “j ' § § ”1 Mijuj

K . . h . .
where Mij is the element mass matrix, ui is the nodal solution vector

of element K, and d1 are local basis functions. We don't need to

solve any system of equations as in the smoothing technique. Second,

this type of the error indicator does not include higher order

. . h
derivatives of u and, thus, seems to be more accurate. The accuracy

of this indicator will also be checked in the next section. However,

this method has a dificiency : It is not easy to generalize.
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4.5 Accuracy of Error Indicators

In previous sections, we established error estimators for

elliptic eigenvalue problems based on interpolation error estimates

and proposed two types of error indicators: the interpolation type 1

and interpolation type 2.

In this section, the accuracy of error indicators is checked

based on the following issues

1. Let Emax denote the maximum element-wise error in the energy norm

over all elements, i.e.,

E - x E .
max mi K

Let "max denote the maximum error indicator over the domain, i.e.,

- x .
"max mg "K

In sec. 4.5.1, we will test the accuracy of indicators based on how

accuratel estimates E . This ovidey "max max pr 5 good guidance for

improving an approximation via enrichment, i.e., determining whether

an adaptive finite element scheme is needed or not.

2. Let EK(%) denote the ratio

EK(%) - EK / Emax x 100

Let nK(%) denote the ratio

nK(%)- 0K / nmaxx 100-
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In sec. 4.5.2, we will test the accuracy of the indicators based on

tune accurately nK(%) can estimate EK(%) over the domain. This kind

of accuracy is needed if "K is to be used to relocate elements without

enrichment.

3. Using results of sec. 4.5.1 and 4.5.2, improved grids are

constructed by node relocation. Results are shown in sec.4.5.3.

Model Problem

Consider a l-dimensional, 4th order eigenvalue problem,

d4u(x)

dx4
-Au(x) O<x<b (36)

+ four typical types of boundary conditions

(1) pinnedcpinned (88-85)

(2) cantilever (CL)

(3) clamped-pinned (CL-SS)

(4) clamped-clamped (CL-CL)

The 2-th mode eigenvalue A2 and the associated eigenfuncticni ul

satisfy

dau£(x)

'-7E__-. - A2u£(x) O < x < b (36.a)

dx

and the associated boundary conditions. The weak form associated

with (36) is

a(u2,v) - A£(u2,v) for all v in V (37)
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b b

a(u ,v)- f dx (u ,v)= f u v dx .

2 O dx2 dx2 2 O 2

The associated finite element problem is as follows.

. . . . . h h

Find the approx1mation to the E-th mode eigenpair, (A£,u£), such

that

h h h h h h
a(u£,v ) - A£(u£,v ) for all vh in V C V (38)

In this work, two types of elements are used : a cubic beam element

and a quintic beam element.

Let E2 denote the exact error in the energy norm.of the i-th mode
K

eigenfunction in the element K. Then E: can be computed from

2 2 h
d u d u

2 h h 2 2 2

Ex " “Uruz'uz‘uwx ' fx ("“2— ‘ “72“) d"
dx dx

4.5.1 Accuracy on Maximum Errors

In this section, the accuracy of error indicators is tested based

on how accurately they can estimate the maximum of errors.

4.5.1.1 Cubic Beam Elements

Eigenvalue Error Estimates
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Figure 2 illustrate the relative percentage error in eigenvalues

as the number of cubic beam elements (N) increases uniformly. A

cubic beam element has 2 nodes and 2 dof per each node. Thus, the

total number of degrees of freedom in the model is 2N (see Appendix C.

for the exact eigenvalues for each case).

Eigenvalue errors decrease exponentially as N increases. Note

that the Nth mode eigenvalue error of N cubic beam elements in the SS-

SS case is about 22 %. From Figure 2, we can observe that the

relative percentage error in the 2-th mode eigenvalue is the same for

all modes 2 when the numbers of elements N - 2, 22, 32, etc are used.

For example, in the 58-88 case, if the relative percentage error in

the 2nd eigenvalue computed with 4 elements is l %, the relative

percentage error in the 3rd mode computed with 6 is also 1 %.

Similarly, if the relative percentage error in the 2nd eigenvalue

using 6 elements is 0.1 %, the relative percentage error in the 3rd

mode using 9 elements is also 0.1 %. Similar behavior of constant

error can be observed in other cases. We can characterize this

behavior follows: The relative error in the 2-th;node eigenvalue is

  

tha aaga to; all modes 2 whan the numbers of elements usad in tha

apngximagign 15 N - (22 + b). (32 + b). etc. The constant b depends
 

on the boundary conditions : b-O in 53-38 case, b--1 in CL case and

b-l in CL-SS and CL-CL cases. The relative percentage error of the

2-th mode eigenvalue is within 1 % when N - (22 + b) is used and is

between 0.1 % - 0.2 % when N - (32 + b) is used. As will be shown

next, the same behavior can also be found in the error of
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eigenfunctions.

Eigenfunction Error Estimates

Figure 3.1-3.4 show the results relating to errors in

leigenfunctions using the energy norm, along with the associated error

estimator and error indicators. Recall the form of the error

estimator and indicators,

1 2a 2 .
6K - c hK Iu£|k+l,K (error estimator)

2 2a
lufili+l,K (error indicator)

"K-hK

In Figure 3.1-3A, the plots show variations in the following four

kinds of values ( mfix EK’ mfix 6K, mix (interp l)K, mfix (interp 2)K )

for each boundary conditions as the number of cubic beam elements (N)

increases.

1) mix E - the maximum exact error in the energy over all
K

elements

2) mix 6K - the maximum error estimator over all elements

3) mix (interp l)K - the maximum interpolation type 1 indicator

over all elements

4) mix (interp 2)K - the maximum interpolation type 2 indicator

over all elements

The constant c in the error estimator is assumed to be 1 and, during

iscomputation, the element length (hK) remains unchanged, i.e., th<
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fixed to be 1. Thus, the effect of the term hi0 in the error

estimator and indicators is not considered in these plots (see

Appendix C. for closed forms of exact eigenfunctions).

In Figure 3.1-3.4, the same behavior of constant error, found in

Figure 2, is observed. Ihe maximum error in the i-th mode

eigenfunction is the same for all modes 2 when the number of elements

N - (21 + b)- (31 + b)L,etc is used. The constant b equals 0 in the

 

SS-SS case, -1 in CL case and 1 in CL-SS and CL-CL cases. Note that

this behavior can be found in all plots for the exact error in the

energy norm, error estimator and error indicators.

Since the constant c in the error estimator is assumed to be 1,

the accuracy of the indicators is reflected by the ratio of indicator

to the estimator, i.e., nfi/efi. Similarly, the accuracy of the maximum

. . £ 2
error indicator is reflected by mfix "K / mix 6K. Let R1 and R2 be

such ratios, i.e.,

R1 - mix (interp l)K / mix 6K

R2 - mix (interp 2)K / mix 6K
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The indicator is said to be accurate when R z 1. From Figure 3.1-3.4,

we can observe that R1 *4 l and R2 z 1 when N z (32 + b). This means

that both indicators are accurate as long as more than (32 + b)

elements are used.

4.5.1.2 Quintic Beam Elements

In the previous section, results concerning mesh refinements

varyinglnmmer of elements keeping the polynomial degree of basis

functions fixed have been presented. In this section, we repeat the

computations using a different (higher order) polynomial degree of

basis functions. Quintic beam elements with 3 nodes and 2 dof/node

are used (see Appendix B for the description of this type of quintic

beam elements). When quintic beam elements are used, the error

estimator and indicator have the form

‘fi ' ° h31u|§,K ' "é ' hfi'ulg,x

The constant c is again assumed to be 1.

In Figure 4, the relative percentage eigenvalue error in 88-88

case is illustrated as the number of quintic beam elements (N)

increases uniformly. We can observe that the eigenvalues are

estimated much more accurately using quintic beam elements than using

cubic beam elements.

Figure 5.1-5.4 include error estimates of eigenfunctions using

quintic beam elements.
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General conclusions concerning estimates of maximum errors using

indicators can be made as follows

(1) The maximum error of the l-th mode eigenfunction is the same for

all modes 2 when the number of elements N = (22 + b), (32 + b), etc.

is used. The constant b depends on the boundary conditions. It

equals 0 in 55-38 case, -l in CL case, and l in CL-SS and CL-CL cases.

This is true for both cubic and quintic elements and is true for the

maximum error estimator and maximum error indicators.

(2) Both error indicators can estimate accurately the maximum error in

the i-th mode eigenfunction when more than N= (32 + b) elements are

used.

(3) Since, in general, fewer elements are preferred for practical

reasons, the numbers of elements between (23 f b) and (32 + b)

elements may be used when a certain amount of error can be accepted.

4.5.2 Accuracy on Error Distributions

In this section, the accuracy of error indicators is tested based

on how accurately they can estimate the distribution of true errors

over the domain. As will be discussed in the next section, the node

relocation to achieve an improved grid within a fixed total degrees of

freedom requires accurate estimates of the distribution of true errors

over the domain.

4.5.2.1 Cubic Beam Elements
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Figure 6 includes results concerning the percentage error

distributjxni1ising cubic beam elements. Let EK(%) and nK(%) denote

the percentage error in the energy norm and percentage error indicator

corresponding to the K-th element. The percentage error distribution

is computed by

EK(%) - BK / Emax X 100 , nK(%) = UK / ”max x 100

In Figure 6, three kinds of bars are shown . The height of the bar

at a given location corresponds to the percentage measure ( EK(%) or

nK(%)) at that point. In symmetric cases (SS-SS and CL-CL cases),

only half of the domain is shown. The legend of three bars is

descibed below.

EK(%) = BK / Emax x 100
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The interpolation type 2 indicator can eStimate the distribution

of the true error more accurately than the interpolation type 1. In

the 88-83 case, the interpolation type 2 indicator can estimate the

distribution of the true error accurately regardless of N. However,

in the CL case, N - (3.2 + b) elements are needed to accurately

estimate the distribution of the true error. This can be observed

also in the cases, CL-SS and CL-CL. We can conclude that the

interpolation type 2 indicator can estimate accurately the

distribution of the true error when, in symmetric cases, more than N =

(22 + b) elements is used and, in unsymmetric cases. more than N - (3£

+ b) is used.
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Figure 6. (cont’d)
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Figure 6. (cont’d)
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Figure 6. (cont'd)
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4.5.2.2 Quintic Beam Elements

Figure 7 includes results of error distributions using quintic

beam elements. Using these elements, the interpolation type 2

indicator estimates very accurately the distribution of the true

erroru Even in the CL case, N - (2 + 1) elements are enough to

estimate accurately the error distribution for the 2-th mode.

Conclusions concerning the accuracy of the distribution of error

indicators over the beam are as follows

1. The interp 2 type indicator can estimate more accurately the

distribution of the true error than the interpolation type 1. When

higher order elements are used, the interpolation type 2 estimator can

estimate error distributions very accurately.

2. Symmetric boundary conditions have an important effect on the

number of elements needed to estimate accurately the error

distribution. Using cubic beam elements, the interpolation 2 type

indicator can estimate the distribution of the true error when N-(22 t

1) elements are used in symmetric cases and N=(3£ : 1) elements are

used in unsymmetric cases.

 





Figure 7. Percentage error va. Location
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Figure 7. (cont’d)
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4.5.3 Node Relocation : An Improved Grid

In this section we discuss the construction of an improved grid

by node relocation within a given number of degrees of freedonL ii

node moving algorithm that can produce improved grids is also

presented. Since it was shown that the interpolation type 2 indicator

is more accurate for error distributions than the interpolation type 1

in the previous section, the interpolation type 2 indicator is used

in node relocation. . I

In the node relocation method, the variables consist of the nodal

positions as well as the nodal variables (displacements and slopes).

The objective is to arrange the nodal positions so that the best

possible approximation for the given total number of degrees of

freedom is achieved. This has been formulated in an explicit form by

Diaz et a1. [14-16]. An optimal relocation problem for eigenvalue

problems in a 1 dimensional case is described below.

Find the vector of element lengths h-(hl’h2"""hN) such that

. . . 2 20 2
minimizes B (u£,h) - K21 hK lu£|k+l,K (39.a)

subject toxglhK-l , hK 2 o

The alternative form of the objective function B2(u2,h) is

2 2a 2
B (u£,h) - Mflx { hK Iufilk+l,K } (39.b)

The 'true' optimality condition associated with (39.a or 39.b) is
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2 2 2

fK- hKalu£|k+l,K = constant for K=l,2 ..... N (40)

A

Equation (40) can be used in computations using a known function u

instead of u, i e.,

‘1 2a A 2 2

fK - hK 'u£|k+l,K - "K - constant for K=l,2,...,N (41)

where n: denotes the error indicator of the fi-th mode in the K-th

element. Equation (41) will be referred to a 'near’ optimality

condition. It indicates that the near optimality condition canbe

achieved by relocating nodes such that error indicators are same for

all elements.

To achieve the 'near’ optimal (improved) grid, however, an

appropriate node-moving algorithm must be proposed first. A simple

node-moving algorithm was proposed by Diaz et.al. [14,15,16] . The

‘basic idea.is that a 'mass-like' quantity is assigned to each element

and is assumed to be at the element's geometric center. The mass

assigned to an element is proportional to the element error indicator.

The mass 'attracts’ the nodes surrounding it. thereby reducing the

size of elements with high error. In this work, a slightly modified

version is used. We assign a weighting factor to each mass srufli that

nodes cannot move too far from their prevhmuspmsitions. The

algorithm used in this*work is presented below for a 1 dimensional

case .
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Let Ki denote the i-th element and Xi denote the i-th node in l-D

 

finite element model. The motion of the node Xi is described by

* x + *2 fl

new ”Ki—l i-l "Ki 1 * (”Ki)

Xi = >2 + * ”Ki: —————L. (42)

"K. "K. 1
i-l i

new . . . .
where Xi is the new location of the node xi. Li 18 the length of

’H1 is the measured error indicator of element K, X1 is

i

element Ki’

the geometric center of element K and B iseaxfiflgmt to be assigned.

If fl >1, node movements are accelerated, i 63.. nodes nmnna far from

their previous positions. If B <1, nodermnmmmnts are deccelerated,

i.e., nodes cannot move too far from their previous positiorm; The

Choice of the value of B may depend on the type of problem and thus,

some preliminary tests with the different values of fizmgrbe

necessary. In our problem, the weight fl between 0.3 and 0.5 was

proved to be a proper value. This process is repeated.unti1 the

measured error indicators satisfy the near optimality condition (41) ,

i.e.,

"K — constant for K=1,2,....,N

We now turn our attention to the effect of finitmzealement nodal

positions to the approximation error of eigenvalues and

eigenfunctions. A simple test can illustrate tfliis. The rnxflalem is

stated as follows





 

Suppose that a finite element beam model of total length 1 has

only 2 cubic elements and 3 nodes. The first and third nodes are

fixed but the second node is free to move along the beam.

Our concern is the variation of the relative eigenvalue error as the

second node moves along the beam and also the error in eigenfunctions

in the energy norm. For this purpose, two kinds of plots are shown

in Figure 8. One depicts eigenvalue errors and the other

eigenfunction errors in the energy norm:

(A? - A2)
Eigenvalue error (%) - ————:——————- x 100

where A2 , A; are the 2nd mode eigenvalue and its approximation and

|El— E2|

Eigenfunction error (%) - '7F777i73_ x 100

1 2

where I .| denotes the absolute value and EK (K-l,2) denotes the exact

error in the energy norm of the K«th element. At the optimal

location, the error in elements 1 and 2 is the same, i.e., El- E2. At

this point, the eigenfunction error (%) is 0. Vertical lines in

Figure 8 denote the point where the minimum occurs.

In this test problem, symmetric cases (SS-SS and CL-CL) are

special since a uniform grid of lements is actually optimal for the

2nd mode. In general, however,the optimal node location does not

coincide with the uniform mesh.
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Fig. 8. (cont'd)
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Other results related to node relocation are illustrated in

Figure 9, where numerical results associated with the improved grid

with respect Us a single mode are presented. There, two kinds of

plots are shown. One depicts the error distrflmnjLWIof the unifonn

and improved grid based only on the interpolation tvpe 2 indicgtor.

The other depicts the error distribution of the met error in the

energy norm using the same grids. The dotted line is the error

distribution of the uniform grid and the solhiljmm:the error

distribution of the improved grid. A 10 element mesh is used in all

cases except in the CL-CL case, where only 7 elements are used. In

symmetric cases (SS-SS and CL-CL cases), modes up to 4th are tested.

In unsymmetric cases (CL and CL-SS cases), modes up to 3rd are tested.

In Figure 10, the nodal location of the improved grids anf

improved eigenvalue with respect to a single mode is illustrated in

two cases, 88-88 and CL cases. Table 1 lists eigenvalues and relative

errors for the uniform grid in those cases.

Symmetric cases (SS-SS and CL-CL cases) need N = (22 +lfl

elements for accurate estimates of error distributions, whereas

unsymmetric cases (CL and CL-SS cases) need N = (32 + b) elements.

In all cases except the 4th mode in 58-85 case, the similar

reductions in both the exact error and in the indicator can be

achieved. For example, suppose that after node relocations the

maximum indicator is reduced by 50 %. Ifmniiwa can expect that the

maximum exact error will be also reduced by about 50 %.
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Figure 9. (cont'd)

element #
element #

.
4

e
r
r
o
r

i
n
d
i
c
a
t
o
r

x
1
0

 

 
 

e
x
a
c
t

e
r
r
o
r

x
I
I
I

 

 
 

 

 

3rd nnode

CL 3rd mode

element. # element #

.
.

2

e
r
r
o
r

i
n
d
i
c
a
t
o
r

x
1
0 IN

650

300

150-

 

 e
x
a
c
t

e
r
r
o
r

x
1
0
4

§
§
§
5
§

.

 

 

 
 
 

.
.

2

e
r
r
o
r

i
n
d
i
c
a
t
o
r

x
1
0

88—33

|

|

88—58

element #

4th made

i
l

0

4th mode

7
I

I

h

v

 
 

i

.
o

O .
o

_
.

.
.

N U

SS—SS

SS-SS

element #

«in mode

 

4th anode

F-

'\

 
 

I

I

I

I

‘l

I

l

O

IOIIIEIJ

82

 



 

Figure 9. (cont'd)
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Figure 9. (cont'd)
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Figure 9. (cont'd)
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pined-pined (SS-SS)

uniform grid

- A ; A e - v

2nd mode optimized grid

A2 - 1558.79639

3rd mode optimized grid

A3 - 7895.98101

A a A A v vA f

4th mode optimized grid

A“ f 24996.22791

cantilever (CL)

2nd mode optimized grid

A2 - 485.53422

3rd mode optimized grid

A3 - 3807.76813

Figure 10. Nodal location of the improved grid

 





PINED-PINED (SS-SS) CASE

NUMBER OF ELEMENTS -

CANTILEVER (CL) CASE

NUMBER OF ELEMENTS-

ClAMPED-PINED (CL-SS) CASE

10

10

NUMBER OF ELEMENTS- 10

CLAPMED-CLAMPED
(CLvCL) CASE

NUMBER OF ELEMENTS- 7
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MODE

P
L
O
-
3
N

MODE

N

MODE

W
N
H

W
N
W

EIGENVALUE

1558.87662

7898.54283

25019.26h21

EIGENVALUE

485.54857

3808.46023

EIGENVALUE

237.72772

2497.32518

10883.449h7

EIGENVALUE

500.69958

3811.58909

14733.62586

REL ERROR(§)

0.0212481848

0.1065438590

0.3309853171

REL ERROR(§)

0.0061282991

0.0502809047

REL ERROR(\)

0.0027999471

0.0335568255

0.1460053260

REL ERROR(‘)

0.0271058632

0.2116979730

0.7935330701

Table 1. Eigenvalues and relative errors for the uniform grid



 

CHAPTER V.

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

 

We established error estimates for elliptic eigenvalue problems

for each mode based on interpolation error theory. The error

indicator was implemented using two different techniques, the

smoothing technique and the direct substitution technique. The

accuracy of error indicators was checked using the eigenvalue problem

of a uniform, Bernoulli-Euler beam.

Based on the accuracy on maximum error, the following conclusions

were drawn :

(l) The maximum error of the i-th mode eigenfunction is the same

for all modes 2 when the number of elements N - (22 + b),

(32 + b), etc. is used. The constant b depends on the

boundary conditions. It equals 0 in the 85-85 case, -1 in

the CL case, and l in the CL-SS and the CL-CL cases. This

is true for both cubic and quintic elements and is true for

the maximum error estimator and maximum error indicators.

(2) Both error indicators can estimate accurately the maximum
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error in the I-th mode eigenfunction when more than N=- (32 +

b) elements are used.

Based on the accuracy on error distributions. the following

conclusions were drawn:

(1) The interp type 2 indicator can estimate more accurately the

distribution of the true error than the interpolation type

1. When higher order elements are used. the interpolation

type 2 estimator can estimate error distributions very

accurately.

(2) Symmetric boundary conditions have an important effect on the

number of elements needed to estimate accurately the error

distribution. Using cubic beam elements. the interpolation

type 2 indicator can estimate accurately the distribution of

the true error when N-(22 i 1) elements are used in

symmetric cases and N-(32 t 1) elements are used in

unsymmetric cases.

Using these results,improved grids were constructed by node

relocation. It was observed that the similar reductions in both the

exact error and in the indicator were achieved.

5.2 Discussions and Future Reasearch

The results from the improved grids (e g.improved eigenvalues and

eigenfunctions) may not be so impressive. The reason is that, in our

model problem (eigenvalue problem of the uniform, Bernoulli-Euler



 

9O

beam), the uniform grid itself can estimate lower mode eigenvalues

with enough accuracy. An extension of 1-D beam problems to 2-D, 4th

order problems (e.g. vibration of plates) may be another candidate.

Main issues in 2-D problems are somewhat different from those in 1-D

problems. In l-D problems, the issue is 'how many elements’ and 'what

type of element' are needed to estimate eigenfunctions with enough

accuracy. In 2-D problems, however, an important issue is 'where we

should put additional elements'.

Accuracy estimates of eigenvalue problems may be applied to many

engineering problems. As a familiar example of a stability problem

from solid mechanics, the buckling of a column may be one candidate.

Here, the buckling load is proportional to the smallest eigenvalue for

the corresponding differential operator of beam theory and buckling

mode is the associated eigenfunction.

Accuracy estimates for l-D finite element eigenvalue problems may

also be applied to modelling of beam-like structures for control

design problems. In the development of feedback control theory for

distributed parameter systems (DPS) which are described by partial

differential equations, it is important to design an implementable

finite dimensional controller. The implementation is usually done

with on-line digital computers. The dimension of the controller is

directly related to the memory capacity and the access time for

retrieval of information from the computer memory. Therefore, the

controller of the least possible dimension is preferred from a

practical point of view. In order to design the finite dimensional
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controller often a reduced order model (ROM) is sought. If the actual

modes (eigenfuntions) are known, the dimension of the DPS may be

reduced using projection into a modal space. In general, however,

these modes are never known exactly and some other reasonable

approximation procedure must be used. [One popular choice is the

finite element method [35,36]. The feedback control force or moment

is computed based on approximated mode shapes and mode slopes, and is

applied to atabilize the motion of the DPS. The accuracy of

approximated.solutions affect the stabilty of the DPS. To design the

proper ROM, following two issues may be resolved :

1..Model selection problem, i.e., 'how many' and 'which' modes should

be retained in the ROM. A modal cost analysis [38,39] may resolve

this issue.

2. Finite element modeling problem, i.e., 'what type' auui "how many'

elements should be used in the finite element ROM to produce stability

of the original DPS. Accuracy estimates may resolve this.
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Appendix A .

Mathematical Background [42,43]

A.l Real Linear Space

A real linear space is a collection of objects for which the

operations of addition and scalar multiplication are defined and

behave as follows:

if x and y are members of the linear space and a and 8 are scalars,

then ax + fly is also a member of the linear space.

Linear spaces may be endowed with important structures, most

significantly, inner products and norms.

Definitions

An inner product (.,.) on a real linear space A is a map (.,.) : AxA 4

R with the following properties:

Let x,y,zEA and a E R, then

1. (x,y)-(y,x) (symmetry)

2. (x+y)- (y+x) (linearity)

3. (x+y,z)-(x+z)+(y+z)

4. (x,x) 2 0 (positive definiteness)

(x,x)-0 if and only if x-O
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A QQLE ||. || on a linear space A is a map || .||: A e m, with the

following properties:

Let x,yEA and aE R, then

1. ||x|| Z O and

[lxll - 0 if and only if x - 0 (positive definiteness)

2- IIOIXII ' lal ||X||

3. [|x+y|| S ||x|| + ||y|| (triangular inequality)

A semi-norm |.| on a linear space A is a map [.| A e R with the

following properties

Let x,y 6 A and aE R, then

1. |x] 2 0 (positive semi-definiteness)

2. lax! ' lallxl

3. |x+y| 5 |x| + |y] (triangular inequality)

A.2 The Continuity Class Cm(0)

Suppose that 0 is a bounded region in 'R% and that u is a given

real-valued function of position in 0. Then u is said to be the class

of Cm(0) on 0 if u and all of its partial derivatives up to order m (m

is nonnegative integer) are continuous at every point in O, i.e.,

r

Cm(0)-( v | —2—%———-— is continuous in Q C.R21

6x 6yj

i,j z 0 , i+j - r , r s m

The class Cm(0) is a linear space of functions.
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A.3 The L2(0) Class

. . . . 2 . . .

The functuxni f is said to be in L class if its derivatives can

be defined only in a square integral sense. The function f in L2

class will have the property of f0 fzdn < w .

A.4 The Sobolev Class Hm(0)

A function u is in Hmm) if u and all of its partial derivatives

of up to order m (nonnegative integer) are members of L2(O), i.e. ,

m

 

m av 8v 3 v '2

Y

The space Hm(0) is a Hilbert space. The Hm(0) inner product, norm,

and semi-norm are defined by

8au aflv 2
 

h m .

(u,v)m- ( In a§85m[ a xa a yfl ] dX } (H inner product)

8 m

[lullm' (U,u)m (H norm)

(a+fi)

a u 2 dX lL2 (Hm semi-norm) 

lulm- { f0 agfl-m [ a xa a yfi ]

where a and 8 are nonnegative integers.

A.5 Equivalence of Two Norms
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(l) I(2)
Two norms, [ |.]| and |].| , on a linear space A, are said

c such thatto be equivalent if there exist constants c 2l'

(l)
IXI|(1)S IIxIIm for all x Acll SCZIIXII
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Appendix B .

Interpolation Functions for Quintic Beam Elements

B.1 Quintic Element Type 1 (3 nodes, 2 dof/node)

We list here interpolation functions for the quintic beam element

with 3 nodes and 2 degrees of freedom per each node. A model of N

quintic elements has a total 2(2N+l) degrees of freedom. This element

has continuity in displacements and slopes (lst derivative) over the

domain. Moments (2nd derivative) and shear forces (3rd derivative)

are, however, discontinuous at element boundaries. The 5th order

polynomial interpolation functions of this quintic e1ement<uuibe

constructed using continuity conditions of displacement and slope at:

three nodes.

Interpolation functions for this element are as follows

1 - 23 n2 + 66 "3. 68 "4+ 24 "5N1(n)

2 3 4 5

N2(n) - LK( n - 6 n + 13 n - 12 n + 4 n )

N3(n) 16 "2 - 32 "3. 16 n“

2 3 4 5

N4(n) - LK( - 8 n + 32 n - 40 n + 16 n )

N5(n) - 7 n2 - 34 "3+ 52 n“- 24 "5
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2 3 4

N6(n) - LK( - n + 5 n - 8 n + 4 n ).

U
!

8.2 Quintic Element Type 2 (2 nodes, 3 def/node)

Another type of quintic element can also be defined using 2 nodes

and 3 degrees of freedom per node. A model of N quintic elements has

a total 3(N+l) degrees of freedom. The difference between the quintic

element type 1 and type 2 is the following: lkithe quintic element

type 1, the displacement and slope (up to lst derivative) are

continuous across elements, and the moment (curvature, 2nd derivative)

is discontinuous at element boundaries. However, in the quintic

element type 2, the moment (curvature, up to 2nd derivatives) is also

continuous at element boundaries. This type of quintic element has

proven to be very efficient in the dynamical analysis of beam-like

structures [48].

Interpolation functions for this type of element are as follows:

N1(n) - 1 - 10 n3 + 15 "a - 6 n5

3 4 5

N2(n) - LK( n - 6 n + 8 n - 3 n )

22 3 3 5

N3(n) - LK( 0.5 n - 1.5 n + 1.5 n - 0.5 n )

10 n3 - 15 "4 + 6 n5Ng(n)

N5(n) - LK< -4 n3 + 7 n“ - 3 n5)
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N6(n) - L§< 0.5 n - n“ + 0.5 as)
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Appendix C .

Exact Eigenpairs of a Uniform, Bernoulli-Euler Bean

The equation of motion of a uniform, Bernoulli-Euler beam of

length 2 can be written as

84(xt) 62(xt)
EI 3" +m y' -o t>0,0<x<£ (C.1)

4 2
8x at

where E,I,m are constants. The assumption that the solution to (C.1)

is separable in time and space, i.e., y(x,t)-u(x)T(t), leads to the

eigenvalue problem of the following form : (see chapter 3)

4

41—“?- pl‘u-o (C.2)

dx

where fiA- 2 ? and A - wz 

The general solution of eq (C.2) is expressed as

u(x) - clsin fix + c2cos fix + c3sinh fix + cacosh fix (C 3)

C.1 Pinned-Pinned Beam (SS—SS)

The n-th mode eigenvalue can be found from

sin 82 - O or fin! - nr where 84- g $ or X = 64 EmI  
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The corresponding eigenfunction un(x) has the form of

un(x) - c sin finx where c is a arbitary constant.

C.2 Cantilever Beam (CL)

The n-th mode eigenvalue can be found from

cos flni cosh fin! - -l.

The corresponding eigenfunction un(x) is

un(x) - c [ (sin flni - sinh fln2)(sin flux - sinh flux)

+(cos fin! + cosh fln£)(cos finx - cosh finx) ]

C.3 Clamped-Pinned Beam (CL-SS)

tanh fln£ - tan fin!

un(x) - c [ (cos fin! - cosh fln2)(sin an - sinh an)

-(sin fin! - sinh Bni)(cos an - cosh flux) ]

C.4 Clamped-Clamped Beam (CL-CL)

cos fin! - cosh fin!

un(x) - c [ (sin fin! + sinh fln2)(sin an - sinh flux)

+(cos flni - cosh fin2)(cos an - cosh flnx) ]
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C.S Normalization

The exact eigenfunction should be normalized.immaun appropriate

way, since the eigenfunction is unique up to scalar multiplications.

The problem of comparing the exact solution to an approximate solution

does not make sense if both functions are not normalized in a

compatible way.

Usually, normalizations are performed with respect to the mass, i.e.,

L
[0 un(x) m um(x) dx - Jmn or,

assuming m-l along the beam,

L
f0 un(x) um(x) dx - smn

In the present work, the following normalization is adopted.

02§§L lun(x)l - 1
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Numerical Data of Eigenvalues

In tableC.1,the exact eigenvalues for the different boundary

conditions are listed.

 

 

 

 

 

 

 

 

 

TableC.1.Exact Eigenvalues Ania m1 where 2 is length of beam

modesbc I 53-55 I CL-F I CL-SS I CL-CL

lst modeI («)4 I (1.875)4 I (4.730)“ I (3.927)“

2nd modeI (2«)“ I (4.694)4 I (7.853)4 I (7.069)A

3rd model (3«)4 I (7.855)4 I (10.996)4 I (10.210)4

4th modeI (a«)“ ll (10.995)4 I (14.137)4 I (13.352)“

5th model (5«)“ I (14,137)“ | (17.279)4 I (16.493)4

6th modeI (6«)“ I (17.279)A I (20.420)4 I (19.635)4

7th model (7«)“ I (20,420)“ I (23.562)“ I (27.776)4
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