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ABSTRACT

ANALYSIS OF THE EFFECT OF AXIAL

CONDUCTION ON THE PERFORMANCE OF A

COUNTERFLOW HEAT EXCHANGER

By

Kevin J Dowding

An investigation into the effect of axial (longitudinal) conduction

within the wall of a counterflow heat exchanger has been completed. The

exact solution was obtained for the temperature fields of the wall and fluids

while including the possibility of heat flow in the direction of the fluid flow

within the wall of the heat exchanger, so-called axial conduction.

The effect of axial conduction on the performance of the heat

exchanger was quantified by comparison to a solution that neglects this

effect. The results showed that the effectiveness could be over-estimated up

to 45% under certain conditions. These conditions were a small Biot number,

small ratio of the heat exchanger wall length to thickness, and large flow heat

capacity ratios. The severity of the effect on the performance of the heat

exchanger depended on the magnitudes of these conditions. Predicting the

presence of axial conduction was shown to depend on a dimensionless

parameter called the Mondt number. For magnitudes less than .01 , axial con-

duction was negligible; while magnitudes greater displayed a nonzero axial

conduction, which grew larger as the Mondt number increased.
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Chapter 1

Introduction

Heat exchangers provide for the transfer of heat between two moving

fluids. These devices are used in power generation, chemical and food pro-

cessing, heating and air conditioning, and motor vehicles. It is the most rec-

ognizable heat transfer device and one of the most widely used. Heat

exchangers are classified based on flow arrangement and type of construc-

tion. There are many types of heat exchanger designs, each type with its own

characteristics that make it suitable for a particular application. The simplest

form of a heat exchanger would be a double pipe (or concentric tube) heat

exchanger. The construction of this type of heat exchanger consists of two

moving fluids separated via a wall parallel to the fluid motion; with the fluids

moving in the same direction for a parallel flow heat exchanger and in oppo-

site directions in a counterflow heat exchanger.

Design of heat exchangers in general, requires consideration of the

heat transfer occurring between the two fluids in addition to the mechanical

energy needed to overcome the frictional forces to move the fluids through

the heat exchanger. These two design criteria can be generally classified as

heat transfer and pressure drop. It is typically desired to achieve large heat

transfer yet maintain a small pressure drop. Large heat transfer rates can be

obtained by either having a larger heat transfer area or having a larger heat

transfer convection coefficient. Unfortunately, both of these conditions cause

an increase in the pressure dr0p, since a larger area gives more frictional area

resulting in an increase in the pressure drop and the larger flow rate to

increase the convection coefficient would likewise increase the pressure drop.

There is a trade-off in these two design criteria; a beneficial gain in one crite-

ria is usually at the expense of the other criteria and a compromise must be

established.

Focusing on the heat transfer, consider a simplistic heat exchanger that

has two fluid streams separated by an infinitesimally thin wall. The analysis



 

Cold Fluid
4c (1)

   

Heat Exchanger

Wall

9110‘)

Hot Fluid

  
 

Figure 1.1. Podble heat flow paths for the wall on heat exchanger

of this heat exchanger could be accomplished by considering the energy bal-

ances of the two fluids since the wall has negligible thickness. In reality, the

wall will be required to have some thickness to perform its function of sepa-

rating the two fluids. As the thickness of the wall becomes nonnegligible,

some resistance to the flow of heat between the two fluids is added and now

the wall must be considered in the analysis. In addition, an alternate path for

the heat to flow is provided. Figure 1.1 shows the heat flow paths: q” is the

heat convected from the hot fluid to the wall, qMa, is the heat conducted

along the wall, and qc is the heat conducted to the cold fluid from the wall.

When the wall is very thin, it is unlikely that heat transferred to the wall from

the fluid will flow parallel to the wall and the energy exchanged will balance

locally (qH (x) = qc (x) ). This may not be the case when the wall thickness is

increased; some of the heat may flow along the wall. This effect is call axial

(longitudinal) conduction, and when axial conduction is nonzero(qAx,.a, = 0)

the fluid streams may have a local energy imbalance (qH (x) at qc (x) ). The

energy is conserved, however.

Axial conduction of heat is typically neglected in the analysis of the

heat transfer in a heat exchanger. This assumption may be appropriate for

most cases, but under certain circumstances the effect of axial conduction can

become important. These circumstances depend on more than the wall thick-

ness, which was used to introduce the efi‘ect. In general, axial conduction

depends on the material and physical dimensions of the wall and the proper-
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ties and flow rate of the fluids. Assessing the effect of axial conduction will

be the focus of this thesis. Specifically, the effect of axial conduction will be

quantified and the conditions of the wall and fluids for which it is nonnegligi-

ble identified. Also, the adverse effect on the performance of a counterflow

heat exchanger will be determined.

The remaining sections of this chapter will review the analysis of a

heat exchanger and conclude with a literature review. The describing equa-

tions and boundary conditions for the problem will be addressed in chapter

two, while the methods employed to solve the problem are shown in chapter

three. Chapter four will present the results of the investigation with corre-

sponding discussion. A summary and the resulting conclusions will be given

in chapter five, in addition to recommendations for future work
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1.0 Heat Exchanger Analysis

1.0.1 Basic Analysis

Figure 1.2 shows a heat exchanger that transfers energy between two

moving fluids through a wall; the geometry and construction of this heat

exchanger may be considered arbitrary. A general thermal analysis of this

heat exchanger will be performed. First, taking the heat exchanger as a con-

trol volume and applying an overall energy balance, assuming no interactions

(work or heat) with the surroundings and steady state, results in an enthalpy

balance (it)

HI» = Hm (1.1)

which can be written in terms of the inlet and exiting conditions using spe—

cific enthalpy and mass flow rate as

mufiH|In+mcficlin = mflfiulout+mcficlout (1'2)

and rearranged to group the fluids

) = martial - incl“) (1.3)

Assuming the fluid behaves as an incompressible liquid or an ideal gas and a

negligible pressure change, the change in enthalpy can be expressed as

"In (511", - 511'
0I“ 0“!

din = deT (1.4)

 

 

  
Hot Fluid
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Cold I‘Iuld
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5

which can be approximated by differences(dlr ~ 712 - 71, ). Using the approxi-

mate form of equation (1.4) in equation (1.3), the results for the overall

energy balance

are

q = mHCp, H (TH, in - TH, out) = mCCp, C (TC, out — TC, in) (1'5)

Introducing the heat capacity

Ca Inc, (1.6)

equation (1.5) can be rewritten as

q = CH (TH, in ' T1101“) = Cc (Team " Tc, in) (1:7)

In general, the heat transfer between the two fluid streams is a function of the

following six parameters:

(1.8)  *

q = f(e my» "'0 TH,in’ Tarn, . Teen: TILoutl )

given unknown

where the first four are typically given design parameters and the last two are

desired results. Thus, in order to obtain a solution more information is

needed. The additional information will come from the heat transfer analysis

of the wall separating the two fluids.

A circuit describing the thermal communication of the two fluids is

shown in Figure 1.3. This circuit shows the resistance that impedes the heat

flow, neglecting any fouling on the heat exchanger wall. The total resistance

of the series circuit is the sum of the individual resistances

 

 

T T

” e—va w W—e C 

   
Figure 1.3. Thermal circuit for a heat exchanger wall neglecting any fouling



R

Also, the overall conductance of the heat exchanger wall, that will give the

total amount of heat transferred if the temperature difference is known, is

m = Ru+RW+Rc
(1.9)

UA = J— (1.10)

. tot

These terms are analogous to an electrical circuit, with the temperature differ-

ence as the voltage potential and the heat flow as the current. The heat trans-

fer over a differential element of length (11: is

dq = UP [TH (x) - Tc (x) ] dx (1.11)

The heat transfer over the entire length of the heat exchanger is the sum of

these differentials elements over the total length

L L

q = jdq = UP] [7,,(x) -Tc(x)] dx (1.12)

0 0

The product UP was assumed constant and thus could be taken out of the

integral, but (TH - Tc) depends on x and cannot be removed from the inte-

gral. Because this integral is not known in general, we will define the mean

temperature difference as

L

(AT)... = H [1,,(x) -Tc(x)]dx (1.13)

0

Substituting equation (1.13) into equation (1.12), the total heat transfer can

be written as

q = UA (A1)" (1.14)

For a double pipe heat exchanger, equation (1.13) can be evaluated.

The result is the log mean temperature difference. However, for geometries

that are more complicated, evaluating equation (1.13) is difficult if not

impossible. This suggests that another approach may be necessary to remain

a general analysis.

1.0.2 Dimensionless Analysis

To introduce another approach, consider the parameters that the mean

temperature difference is a function of



It depends on the inlet temperatures and heat capacities of the fluids and the

wall conductance. The number of independent parameters can be reduced by

considering a second function times the temperature difference at the inlet

(A1)", = 3 (CC, C”, UA) (TH, .1.- TC, ,n) (1.16)

substituting equation (1.16) into equation (1.14) the functional dependence

for the heat transfer is given by

‘1 = UAg (Co CH: UA) (711.111 " Tarn) (1.17)

As typical in heat transfer, scaling will be introduced to provide dimension-

less parameters. Define the maximum possible heat transfer as

qrnax = Cmin (TH, in - TC, in) (1°18)

where Cm." = min (CH, CC) . Dividing equation (1.17) by equation (1.18)

_‘1 = ”A 3 (CC, C”, 0.4) (1.19)
anax Carin

and introducing another function that is in terms of the scaled independent

variables gives

 

 

= g (C , _) (1.20)

qrnax Cmin R Cmin

where

C .

C = "'"' (1.21)

R Curax

Finally, noting that equation (1.20) can be written for a final function as

UA

C
ruin

This demonstrates that the performance of a heat exchanger can be expressed

in terms of three dimensionless variables. The first was given previously in

equation (1.21) as the ratio of the heat capacities. The second is the effective-

ness

i=h(CR,

anax

) (1.22) 

q q
a = —_ = ._ — — (1.23)

gm Carin (TH, in - TC, in)
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which is the ratio of the actual heat transfer given by equation (1.7) to the

maximum possible heat transfer. The number of transfer units (NTU) is the

last dimensionless parameter

UA

min

which is a ratio of the heat exchangers ability to transfer energy to the mini-

mum fluid’s ability to retain energy.

NTU = (1.2/I) 

The previously mentioned dimensionless parameters, at least for the

moderately simple heat exchanger geometry, can result during the analytical

analysis of the heat transfer occurring in a heat exchanger. For example, con-

sider a double pipe counterflow heat exchanger arrangement. The correlation

describing the performance of this heat exchanger, whose derivation is shown

in Appendix E, is

1_e-NTU(1-C.)

= 1 - Cge'muu - c,) (1.25)

 

for the case of CR :1: 1. If CR = 1, equation (1.25) reduces to

e ___ NTU

1+NTU (126)

This is the usual form used in evaluating or presenting the performance of a

heat exchanger, as a function describing the relationship between the three

dimensionless parameters. These functional relations are tabulated for many

different heat exchanger geometries and are the basis for easily predicting the

performance of a heat exchanger design.

The derivation of these functional relationships typically assumes neg-

ligible axial flow of heat in the wall. The conditions for which this assump-

tion is true for a counterflow heat exchanger geometry is the focus of this

thesis. Furthermore, the amount that the performance is over-estimated by

assuming axial conduction is negligible will be addressed.



1.1 Literature Review.

The counterflow heat exchanger theory previously presented was for

the idealization of no axial conduction (in the flow direction) of heat in the

wall or fluids. It is not apparent under what conditions this assumption is not

valid, but the consequences can be an over-estimation of the effectiveness for

a given NTU by as much as 45%, as shown by Rosenhow [17].

Some of the earliest work performed in analyzing the effect of axial

conduction was done by Mondt [9]. By inspecting the finite difference equa-

tions for a solution that includes axial conduction, he proposed using a con-

duction parameter to correlate the results. This conduction parameter was

_ Kw...

" 1.me

and he showed that to accurately predict the convection from a surface at low

Reynolds numbers requires consideration of longitudinal conduction.

A (1.27)

In later works, the investigation was less specific and looked to predict

the influence of axial conduction on the performance of the heat exchanger.

Landau and Hlinka [8] and Pan and Welch [11] developed exact solutions to

predicting the performance of a counterflow heat exchanger while including

the effect of axial conduction. The solutions were in the form of finite series

and were algebraically involved. A general investigation was difficult, if not

impossible, with the availability of the computing power at the time.

However, Pan, Welch and Head [10], were able to improve on their

earlier work [11] and predicted analytically the effect of axial conduction on

the performance of the heat exchanger as a function of the NTU and a “modi-

fied-conduction-flowrate-ratio”

N ____ KM... M

K mcp Lure“p

Using the exact solution, the existence of axial conduction was predicted for

a counterflow heat exchanger with balanced symmetric flow, that is equal

mass flow rates and convective heat transfer coefficients for both fluids.

Although more general than their past work, the balanced symmetric flow

was still rather restrictive.

 

(1.28)
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The most recent work was performed by Rohsenow [17], who

addressed reasons that laminar flow heat exchangers perform poorly. He

incorporated a similar formulation as [8], [10], and [11], but used the conduc-

tion parameter above in equation (1.27), from Mondt [9], which he called the

Mondt number

Kw...

M0 = mep

He then solved for the performance of the heat exchanger at the limits of the

Mondt number, zero and infinity. The extremes of the Mondt number provide

worst and best case scenarios. A Mondt number of zero gives the perfor-

mance of the heat exchanger when axial conduction is negligible; while a

large Mondt number gives the performance when axial conduction is domi-

nant.

 (l .29)

This investigation shall differ from previous work in the formulation

and solution of the problem. All previous investigations involving a counter-

flow heat exchanger have neglected temperature gradients normal to the wall

([8], [10], [l l], [17]). Although this assumption does seem reasonable it is

not needed for this investigation to obtain a solution; whereas past studies

required this assumption. This diflerence results in a partial differential equa-

tion to describe the wall temperature for this study, instead of the ordinary

differential equation obtained for past studies. However, the techniques used

to solve the partial differential equation will allow for a solution that is more

easily evaluated; while past solution techniques required special flow condi-

tions to obtain a solution. Therefore, by considering the two-dimensionality

of the heat exchanger wall the problem was more mathematically compli-

cated in comparison to past studies, but allowed for a more general investiga-

tion of the heat exchanger design parameters.



Chapter 2

Describing Equations and Boundary

Conditions

2.0 Dimensional Equations

2.0.1 Wall Conduction Equation

The geometry is shown in Figure 2.1, a two dimensional wall with hot

fluid entering at one end and cold fluid entering at the other. The problem was

formulated as a boundary value problem on the wall assuming steady state

and constant properties. The differential equation and boundary conditions

corresponding to the plane geometry with the given assumptions are

 

 

 

a’rw a’rw
a—XE +5?- = O (2.1)

or",

1&5; x=0 = halTWWJ) -TOI (2.2a)

at},
““53 “L = hLlTw(L, y) -TL] (2211)

Cold Fluid

Tom 4—

3 :2 WW

1: = 0
x = L

'—'> T3 (I)

Hot Fluid     
Figure 21. Heat exchanger geometry sturflINote, the analysis was perErmed on a per

unit Width basis.

11
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-K"3§wly=o = h” IT" 0‘) - T”(x’0)] (2.2c)

BTW

_K‘Q} ”5 = hen}, (x, 8) -Tc(x)] (2.211)

where boundary conditions of the third kind were used to represent the most

general case and still allow for boundary conditions of the first and second

kind by adjusting the magnitudes of the constants (Kw, ha, 11,, I)”, he) .

2.0.2 Fluid Energy Balance Equations

The describing equations for the fluids were formulated using an energy

balance on a difl’erential length element of the heat exchanger. For the hot

fluid the energy balance on a differential element of length Ax can be written

Hlx = HI”Ax+ q"w,,PHAx (2.3)

Substituting mass flow rates and the specific enthalpy and rearranging gives

m£|x+ Ax "' litiil

Ax

Taking the limit as Ax -) 0 and assuming the fluid behaves as an ideal gas or

an incompressible liquid (deT = din) gives

x +quwauPH = O (2.4)
 

. 47'H

(mHCp. Ifld—x '1’ ‘1"wauPH = 0 (25)

The heat flux from the wall from Newton’s law of cooling is

4"...11 = hHITH (x) - T... (x. 0)] (2.6)

substituting into equation (2.5) and rearranging, results in the final describing

equation for the hot fluid

(IT 111’
”+111!

E mucp,[T"(x) -T,,,(x. 0)] = 0 (2.7)

Prescribing a constant temperature at the inlet gives the initial condition

1,,(0) .-.- TH’ 1.. (2.3)

Using a similar analysis, the describing equation for the cold fluid and

corresponding initial condition are



l3

ch hcpc
,. — T = O (2.9)T + .CCpc [Tw (x, 8) C (x)]

TC (L) = TC, 1.. (2.10)
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2.1 Dimensionless Equations

2.1.1 Nondirnensionallzation of lengths

To remove any dimensional length dependence on the formulation of

the problem the length scales were nondimensionalized using the characteris-

tic lengths of the wall

3

L (2.11)

+ y
y =

8 (2.12)

Applying this nondimensionalization to the previously presented equations

for the wall and fluid temperatures results in equations that only have units of

temperature, which were made dimensionless after solving (to be shown

later) for algebraic ease and for the physical insight available with units of

temperature. The wall conduction equation and boundary conditions are

371,, L2 3’1,

 

 

 

— — —- = 0 (2.13)

8x+2 52 ay+2

31,, +

"T +BioTw(0.y ) = BioT, (2.1421)

ax x’=0

or”,

— +BiLTw(19y+) = BiLTL (2.1411)

ax x‘ l

a W . + . +

”—I +B'nTw(x :0) = Br,,T,,(x ) (2.14c)

ay yO_o

an, . + . +

57 +B'cTw(x 11) = Bic Tc(x ) (2.141)

2’  
y’=1

where dimensionless parameters introduced in the equations are defined in

the next section.

Similarly, nondimensionalization of the equations for the hot and cold flu-

ids gives
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j{IEIHM(THO?) -T.,(x*.0)] = 0
dx“

711(0) = 771.1»

£0+NC[T,,(x+, 1) —Tc(x*)] = 0dx+

Tc“) = Tc...

2.1.2 Nondimensionalization of Temperature

(2.15)

(2.16)

(2.17)

(2.18)

The problem was solved as presented in equations (2.13-2.18), giving the

solution with units of temperature only. The following equations were used to

present the results in a dimensionless form:

_ T..(x*.y*)_— Ta...
 

 

 

9 (x+9 +) ""

w y TH,in"-TC,in

T (x+)-T

9110‘” = I; -T C'in

H.111 C,in

T x+ -T
9C(x+) = C( ) C,in

TH, in - TC, In

(2.19)

(2.20)

(2.21)
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2.2 Dimensionless Parameters

The dimensionless parameters that resulted during the nondimension-

alization of lengths in the equations will provide a link between the mathe-

matical model and the physical problem. The dimensionless parameter in the

wall conduction equation, equation (2.13), is a ratio of the wall length to

thickness

L‘ 3% (222)

As this parameter is increased, the change in heat conduction in the x-direc—

tion must also increase. Therefore axial conduction must increase; or the wall

must be isothermal in the y-direction (normal to the wall). The later is most

likely the dominant effect, but there may be values of L’ for which axial con-

duction is the dominant effect.

The dimensionless parameters that appear in the boundary conditions on

the wall, equations (2.14a-d), are Biot numbers

71,1.
Bin 1! 7?: (2.23)

BiL I Elf—f (224)

Bi:1 a hr”; (225)

BiC I hTC-s (2.26)

These parameters are expected to have the most influence on the solution and

axial conduction. The Biot numbers on the hot and cold sides of the wall,

equations (2.25-26), should be more influential than the Biot numbers at the

ends of the wall. Biot numbers, in general, give a ratio of the convection from

a surface of the body to the conduction through the body. This provides

insight into the temperature difference that will exist across the body com-

pared to the temperature difference between the surface and convecting fluid.

For large Biot numbers the convection dominates, resulting in a large temper-

ature gradient across the body and a surface temperature that is close to the

convecting fluid temperature. Conversely, for small Biot numbers the con—
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duction will dominate, giving a small temperature gradient across the body

and a large difference between the surface and convecting fluid temperatures.

The dimensionless parameters for the fluids are similar to the number

of transfer units (NTU), but based on the pertinent fluid only. These parame-

ters are

 

  

h h

N” = WA” -.- .55! (2.27)

mHCpn C”

h I:

NC = .cgc = 34C (2.28)

m Pc C

where the area in equations (2.27-28) is

A” = AC = Lw (2.29)

Using equation (2.29) with the heat capacity, equations (2.27-28) can be writ-

ten in terms of the corresponding Biot number

Bi K L’w

N1! = JG";— (2.30)

Bi K L'w
”c = _Cé_ (2.31)

which relates the wall parameters to the fluid parameters.
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2.3 Heat Exchanger Performance Analysis

Solution of the equations presented up to this point provides the tempera-

ture fields for the wall and fluids, without neglecting axial conduction in the

wall. But the temperature as a function of the position along the length of the

heat exchanger is not the desired result. It is desired to compare the perfor-

mance from this solution with one that neglects axial conduction. The corre-

lation neglecting axial conduction was presented in equations (1.25-26) in

terms of the effectiveness, number of transfer unit, and heat capacity ratio.

These dimensionless parameters must be related to the dimensionless param-

eters from the mathematical solution to make the comparison in the heat

exchanger’s performance when axial conduction is included.

Effectiveness, defined in equation (1.23), will depend upon which fluid is

considered when axial conduction is included because some of the energy

may be conducted out the ends of the heat exchanger and result in an energy

imbalance between the fluids. Thus, when including axial conduction the

energy balance on the fluids are, from equation (1.5)

‘IH = CH (TH, in " TH, out) if 9c = Cc (Tc, out " Tc, in) (232)

and the effectiveness must be defined as a function of the fluid

qt!
8 = — (2.33)

” 9......

5c = _qC (2.34)

9max

The definition ofNTU is given in equation (1.24) and will not depend on

the inclusion of axial conduction, but must be related to the dimensionless

parameters used to model the physical problem. This was accomplished by

evaluating the thermal circuit that describes the heat exchanger wall. The

thermal circuit, neglecting any fouling, is shown in Figure 2.2, which is simi-

lar to the previously presented thermal circuit (except values for the individ-

ual resistances are shown for the geometry studied). The total resistance of

the circuit is evaluated using equation (1.9). The conductance for the heat

exchanger wall given by equation (1 . 10) is



l9

 

 
 O—W 'ww «MA—o

1 6 1

hHAH Kwfiw hcAc

 

   
Figure 2.2. Thermal circuit for heat exchanger wall

 

  

UA=-1—- = [_L.+_5 + 1 I1 (2.35)
Rm hHAH KM») ”MC

and NTU easily follows:

HA 1 1 8 1 '1
NTU = — = + + ] (2.36)

Cnu‘n Cmin[hHAH KHAN! hC‘AC

Relating equation (2.36) to the mathematical formulation was accomplished

through equations (2.27-28); substituting these equations into equation (2.36)

gives

1 1 8 1 '1

”T” ‘ c7; [~74 " V. * N—ccc]

Noting that A, = Lw, equation (2.37) can be rewritten as a function of dimen-

sionless parameters and the wall thermal conductivity using equations (2.30-

31), after some arranging it becomes

(2.37)

 

waL’ [ BiHBiC ]

7:," 31,,+ BiHBic+ Bic
NTU = (2.38)

The equations to be solved for the temperature fields of the wall and fluids

are given in equations (2.13-2.18). Using the solution, the performance of the

heat exchanger can be presented with equations (2.33), (2.34), and (2.38) in

terms of heat exchanger dimensionless parameters, which can be compared

to solutions neglecting axial conduction to quantify the effect of axial con-

duction.



Chapter 3

Method of Solution

3.0 General Method

The problem presented in equations (2.13-18) is a system consisting of

a second order homogenous partial differential equation (PDE) with four

nonhomogeneous boundary conditions coupled with two first order nonho-

mogeneous ordinary differential equations (ODE). The coupling occurs

through the boundary conditions of the PDE and in the nonhomogeneous

term for the ODEs. Thus, if a general solution can be obtained for the PDE

without evaluating all boundary conditions, that is in terms of a product of

unknown constants and functions, the solution can be substituted into the

ODEs and the ODEs solved as a function of the unknown constants. The

ODEs solution’s can then be substituted back into the boundary conditions of

the PDE and the unknown constants evaluated. With the constants specified,

the explicit solutions for all differential equations can be generated. This is

the general procedure used to solve the set of differential equations and is

shown schematically in Figure 3.1.

This section is intended to present the methods that were applied to

solve the problem. However, when the same methods were applied more than

once they are not shown in detail after the first application. Also, some meth-

ods contain details that are not necessary in understanding a method, and

whose inclusion would overburden this section. For these reasons, the reader

is referred to the Appendices (A-D) for additional details about the solution.
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FIGURE 3.1. Flowchart of solution procedure
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3.1 General Solution of the Wall Conduction Equation

Since the problem is linear, the PDE could be solved using many dif-

ferent mathematical approaches; Fourier transforms, Green’s functions, or

separation of variables. The method chosen was separation of variables. Use

of this method requires that only one nonhomogeneous term exist in the dif-

ferential equation or boundary conditions. As presently formulated the prob-

lem has four nonhomogeneous boundary conditions equations (2.14a-d). By

introducing scaling on the temperature

9,,(x’.y*) = T,.(x*.y*) -T, (3.1)

one of the nonhomogeneous boundary conditions is eliminated. The mathe—

matical formulation with the scaled temperature becomes '

  

 

 

 

a’o , a’e

3+‘;’+L2 83:0 (3.2)

x y

00w . +

___; +8106“: (0’)) ) = O (3.3a)

x .
x =0

80w . + .

5;: +BrL0w(l,y ) = BrL(TL—T0) (33b)

x’=l

33:" + nine“, (xt, 0) = 31,47}, (xt) - To]

y yI=0

(3.3C)

30w e + _ . 4-

5y— 413101)w (x ,1) _ Brcch(x )-T,] (33d)

 
y’ =1

Three nonhomogeneous boundary conditions, equations (3.3b-d), still exist.

Since the problem is linear the principle of superposition may be applied. The

problem is partitioned into a set of simpler problems that contain one nonho-

mogeneous boundary condition, and can be solved using separation of vari-

ables techniques. Then the solution to equations (3.2-3) is obtained by

application of superposition. The problem in equations (3.2-3) can be repre-

sented by three simpler problems, since there are three nonhomogeneous

boundary conditions. Using superposition the solutions are related as fol-

lows:
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3

9,,(x*.y+) = 20,(x+.y+) (3-4)

i=1

where 0, is the solution to the problem given mathematically as

 

 

 

 

 

3’9, ,2 3’9,
+L — = 0 (3.5)

ax+2 ay+2

-'—: +Bioeg (01f) = O (3.63)

x .
x =0

5—} +BiL0‘.(0,y+) = outrun—To) (3.6b)

x x’=l

aei . + . +

y y0=o

aei

— +Bicei(x*, 1) = 5318iC[TC(x") —T0] (3.6d)

8y y,___l

wherei = 1,2,3 and

8.. = kroneckerdelta = { 0 “‘1' (3.7)
1' 1 i=j

It can be shown by adding the three problems (i = 1, 2, 3) stated above that

the originally posed problem in equations (3.2-3) is obtained.

3.1.1 General Solution for Nonhomogeneous Boundary Condition at x = L

The separation of variables technique begins by assuming a product

solution for 01 of the form

01 = For“) G (y*) (3.8)

Substituting into the differential equation and boundary conditions, equations

(3.5-6). yields

F, ,G+L”G , ,F = 0 (3.9)
H H

- GFx. +BiaGF(0) = o (3.103)

{=0
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GP", ’0 =1+BIOGF(1) = BiL(TL— To) (3.101))

—FG . +BiHFG(0) = o (3.10c)
y y* =0

FGy, +BIHFG(1) = 0 (3.10d)

y’ =1

where the following convention for representing derivatives was used:

2

a F 3F . . (3.11)

8x+2 “‘ ‘

 

Rearranging equation (3.9) to group similar variables and simplifying equa-

tion (3.10) gives

  

 

 

 

l Fx‘x‘ = _ G”). = i 2 (3 12)

LUZ F G u '

—F, +BioF(0) = o (3.13a)

x x0 = 0

017‘, . 1+BIOGF(1) = BiL(TL-To) (3.1311)

x =

-G . +Bi,,o(0) = o (3.13c)
y y* = 0

Gy, +Bi,,G(1) = 0 (3.13.1)
 

y’ = 1

where a constant, 3:112 (the eigenvalue), has been introduced in equation

(3.12). Since the left hand side is only a function of x+ and the right hand side

only a function of )1+ , to obtain equality both sides must be equal to this con-

stant. This key result allows for separation of the variables, reducing the par-

tial differential equation to two ordinary differential equations. Before

equation (3.12) can be separated a sign must be chosen for the constant. This

sign is chosen to produce an eigenvalue problem for the function that has two

homogenous boundary conditions to evaluate. The eigenvalue problem will

have a general solution in terms of sine and cosine functions for this Carte-

sian coordinate system. After choosing the sign on the eigenvalue, two ordi-

nary differential equations can be written from equation (3.12) with the

appropriate boundary conditions from equation (3.13)

_ ‘2 2 _
F“, L 1.1 F — 0 (3.14)
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-F . +BioF(0) = 0 (3.153)

x {=0

G , , +1120 = 0 (3.16)
y y

-G . +BI°HG (O) = 0 (3.173)

y y0=o

G . +Bi”G(l) = 0 (3.17b)

y y*=1 

Note that equation (3.14) only has one boundary condition, whereas equation

(3.16) has two boundary conditions. The reason for this can be seen in equa-

tion (3.13b), which depends on both functions F and G and cannot be applied

to either function singularly. This is the nonhomogeneous boundary condi-

tion. Thus, this boundary condition must be applied after assembling the

complete solution.

Equations (3.14) and (3.16) have easily obtainable general solutions.

The general solution for equation (3.14) is

F(x*) = Alcosh (uL’x+) +A2sinn (111.?) (3.13)

Applying the boundary condition, equation (3. 15a), gives a relationship for

the two constants

at,
A2 = uL' Ar (3.19)

which can be substituted into equation (3.18) and rearranged giving the solu-

tion

 

F(x”) = A2 [nL’ cosh (uL’xt) +Biosinh (uL’x+)] (3.20)

The solution of equation (3.16) is

G (3") = A3°°5(|1)'+) Main (11)”) (3.21)

Applying the boundary conditions in equation (3.17a) solves for the relation-

ship between the constants

_ 31,,43

' 11

Substituting into equation (3.21) and rearranging gives

 A4 (3.22)
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60*) = A. [was 01)") +Biysin (10+)] (3.23)

Applying the final boundary condition, equation (3.17b), does not provide

any information about the constant A4 because the constant cancels from the

equation. However, it does provide information about the eigenvalue ([1). The

equation simplifies to

(BiH+ Bic) u”

tan (11,.) = 2 . ,

To meet the boundary condition in equation (3. 17b), equation (3.24) must be

satisfied for all values of 11". Equation (3.24) is a transcendental equation and

it has an infinite number of solutions, hence the subscript on n. It will be

solved to determine the possible values of u". The solution for the function G

is then

(3.24) 

G(u,,.y*) = A2 [u.cos (113*) +Biusin (11,310] (3.25)

with u” given by the solution of equation (3.24).

Substituting equations (3.25) and (3.20) into equation (3.8) will pro-

vide the solution. However, since there exist an infinite number of solutions

to equation (3.25) all possible solutions will be summed to obtain the final

solution. Also, the undetermined constants, A2 and A4, will be grouped into

one constant that will be determined later by applying the last boundary con-

dition, equation (3.6c), which was the boundary condition that did not sepa-

rate and was not evaluated. The solution for problem one is

91(x+,y+) = A" [nnL’ cosh (unt’xt) +Biosinh (11,133?) 1 1-

n = 0

[uncos (unyt) + BiHsin (uny+)] (3.26)

and the eigenvalues are found from the solution of equation (3.24).

For ease in presenting these large solutions, the following functions are

defined:

x1 (9.1 x") a nnL‘ cosh (unL'f) + Biosinh (unL'f) (3.27)

Y1 (11,. y’) a 11,.cos (9.2+) + Bigsin (113*) (3.28)

and the solution can be rewritten as
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01(x*,y”) = Aux1 (113,1?) If1 (nu, y+) (3.29)

=0

3.1.2 General Solution for Nonhomogeneous Boundary Conditions on y

The solution for i=2, 3 apply a similar procedure as used in the previ-

ous section. The details of which are shown in Appendix A and will not be

repeated here. Applying these procedures results in the following solutions

for problems two and three:

“ or or

02 (1:3)”) = Z B..[°°Sh (41+) - Cnsinh (4)11"

n=0 L L

[ancos (an?) + Biosin (anx+)] (3.30)

6H“+ “cohsnmH B'inha"+*m3: [Eco t.» )+ e )1
[ances (0:an) + Biosin (anx+)] (3.31)

The eigenvalues are given by the positive roots of the transcendental equation

 

(Bio + BiL) an

tan (on) = 2 . . (3.32)

(an—BrLBro)

Defining the following variables:

X2 (an, x”) = ances (anxt) 4» Bio sin (anxt) (3.33)

all an

Y2(an,y+) I cosh (—;y*)-§nsinh (7f) (3.34)

L L

Y (a y") sficosh (25y+)+8i sinh (5f) (3 35)
3 11’ Lo Lo H Le

allows the solutions to be presented in a compact form

02 (x+, y+) = Butt2 (an, y+) X2 (01”, x”) (3.36)

n = 0

03 (x*, V) = CnY3 (“.1 y+) X2 (“.2 x+) (3.37)

- 0
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3.2 Solution of the Fluid Energy Balances Equations

3.2.1 Hot Fluid Formulation

The ordinary differential equation describing the temperature of the

hot fluid, presented in equations (2.15-16), is coupled to the wall conduction

equation in the differential equation itself. This is seen by the presence of

Tw (x+, 0) in the differential equation. The value of this term can be obtained

from equations (3.1), (3.4), (3.29), (3.36), and (3.37) as

Tw(x+,0) = 0w(x+,0) +7}, = 70+ ZAnX1(un,x”)Y1(un,0)

n=0

+ 2‘, [3,Y2(a,,. 0) +C,,Y3 (an, 0)]x2(o1n, x") (3.33)

n = 0

where the last term in equation (3.38) is obtained from combining equations

(3.36) and (3.37). Substituting this into the difi'erential equation in equation

(2.15) and arranging gives

d1” " ,35.1.1111,” = NH{T0+ 2A,,X1(un.x )Y1(ll,,.0)

n=0

+ 2 [BnY2(an,0) +CuY3(a,,.0)]X2(a,,,x*) } (3.39)

n=0

with the initial condition from equation (2. 16a)

TH (0) = T”, ,n (3.40a)

This equation is a linear nonhomogeneous ordinary differential equation. Its

solution may be written as the sum of a homogeneous solution and a particu-

lar solution. The homogenous problem is given as

dTH’ h

x‘.’

 +N,,r,,,,, = o (3.41)

and a particular problem is
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dT
a.

dSP+NHT
H,p = NH{T0+ ZAIXI (un’x-r) Y1(un’0)

n=0

+ 2 [B.Yz(a,,.0) +CuY3(a,,,0)]X2(an,x+) } (3.42)

n=0

The particular problem in equation (3.42) was further divided into three sim-

pler problems for each term on the right hand side of the equation. The gen-

eral solution for equation (3.39) in terms of the simpler problem’s solutions is

3

Tutx”) = 711,110+) + 2 TH,p,.(x+) (3.43)

i: l

where T”, h is the solution to equation (3.41) and T”, p, is the solution to

dT

——H—;p‘+NHTH.pI = NH{811T0”21201-4X1 (11",): )Yl (”'90)

+ 53‘ 20 (Bur, (an, 0) + cur3 (an, 0)]x2 (01”,?) } (3.44)

(i = 1, 2, 3) and 81‘ is the kronecker delta function as defined in equation (3.7)

3.2.2 Hot Fluid Solution

The homogeneous problem in equation (3.41) is solved giving

7'”, h (x*) = Dlexp (-N,,x*) (3.45)

where D1 is a constant that will be evaluated after assembling the complete

solution as shown in equation (3.43).

The particular solution was obtained by using standard variation of

parameter techniques. This method utilizes a general solution of functional

form similar to the nonhomogeneous term in the problem and then solves for

the unknown constants in this general solution. For the first particular solu-

tion (i=1) the general solution would be a constant

T”, p1 (x‘) = k = constant (3.46)

Substituting equation (3.46) into equation (3.44) and solving for the constant

gives
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TH,p1(x*) = r, (3.47)

The second particular solution (i=2) would be of the same functional form as

X, (x‘) , since all other terms in this summation are constants

1,”, (x3) = forl (x+)) = 2 bucosh (11,,L‘x’) + cusinh (unL'f) (3.43)

n = 0

Substituting equation (3.48) into equation (3.44) and solving for the unknown

constants, b, and c", equation (3.48) can be written as

 

0- e (BioNH— ”ZL‘Z) e

T (x*) = A 2L l - ", cosh L x")

H,p2 ago n {11, [ (Ni, " 14:1. 2) (”a

 

(atom, - nfiL’z)
+

” " (Ni—m”)

Finally, the third particular solution is of the functional form

:Isinh (unL’xt) } (3.49)

T“, (x+) = f(X2 (an, m) = 2 ancos (anx’) + dusin (anx+) (3.50)

n = 0

which after substituting into the differential equation and solving for the con-

stants can be written as

B' N 2

= 2 (1.4.1.14 '0 W1
":0 (Nz+a,2.)

 

BiN +012
+NH[ o H n

2 2
”11+“,

]sin (aha?) } (3.51)

Assembling the solutions to the simpler problems, equations (3.45), (3.47),

(3.49), and (3.51), using equation (3.43) the solution for the hot fluid energy

balance is



 

 

 

TH(X+) = 7

Applying th
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T”(x*) = To+Dlexp (-N”x")

 

" , (BioNH-nfiL’z) , +

+ 2A,.{ufiz [1- (N;_u:L,2) ]cosh(unL x )

n=0

 

(1310117,, — ufiL”)

+ H n inh L’ +
(Na-11:14.2) ]S (”n x)}

 

on B.” 2

+ 2 B +F—fC a 1-( 1° ”+a") cos(0t x+)

n=0 n L n II II
(N3, + 01%)

- 2
+N BroNH-Hxn

H N2+u2
H n

]sin (anxt) } (3.52)

Applying the boundary condition, equation (3.40a), gives the constant

 

(310111,, — ugL’z) 1

DI = TH,In-To- zAnugL [1- (N2 _uzLez)

H nn=0

_(BgNfi+ab
an

-2m—m()[ ls»
 

3.2.3 Cold Fluid Solution

For the cold fluid the ordinary differential equation describing the tem-

perature is slightly more involved due to the wall temperature being evalu-

ated at (y” = 1). This adds algebraic difficulty to the problem, but

procedurally the solution is obtained exactly as the hot fluid. For this reason,

only the final solution will be shown. All the details for this solution can be

found in Appendix B.

The solution for the cold fluid energy balance equation is
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Tc(x+) = To+Elexp (ch+)

" , NcBio + ij’2] .

+ A ’ unL 1+ , cosh (unL 1:”)

ago I! { [ [Viv-[12L 2

N i+ ZL‘2 ,

+NC[ C3" 5"” :lsinhan m}

NC-p'uL

 

" NCBio—az

+ 2 (B ’+C ’) {on [l+——-—"]cos(a x+)

"=0 " " " Ni”: "

N Bi -a2

+NC[-C_2°__2_"]sin(anx*) } (3.54)

Nc+onn

where the integration constant is

n=0

" _ NCBi +1121.” ,

151 = exp (-NC) [(TC’ m-To) — 2A"! {11.11 [1+ N2 0 “25.2 ]cosh(unL )

C- n

 

NcBiawfiL’z ,

+N , sinh(u L )

c[ Né-uib 2 "

" N B' - 2
.. z (Bn’+cn’) {anl:1+_ci_§2

cos(a)

”=0 Nico-on: ] "

N i-oz2

+NC iii—J sin(an) (3.55)
”6"“:

and the following constants were introduced to simplify the expressions:

An’ = A,I [uncos (1.1") + Bi”sin (un)] (3.56)

Bn’ = Bn[cosh (5—2) - Cusmh (:2 J] (3.57)

all all . all

Cn’ = C"[—. cosh (7) + BiHsmh (7 )] (3.58)

L L L
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3.3 Application of Nonhomogeneous Boundary Conditions

Having obtained the solution for the temperature of the fluids, the final

boundary conditions (nonhomogeneous) can now be applied. The boundary

conditions that need to be applied are the three nonhomogeneous boundary

conditions given in equations (3.6b-d). These boundary conditions only need

to be applied to the respective 6‘. solution, (i.e. equation (3.6b) applied to 6,,

equation (3.6c) to 92 and equation (3.6d) to 03 ). These three nonhomoge-

neous boundary conditions are
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——1 +BiLe,(1.y*) = Bun-T.) (3.59)

ax x’ :1

392

--—, +3510; (x+.0) = BingHu“) - To] (3.60)

By y, ___ o

as,

F +Bice3 (x+: 1) = Bic[Tc (x+) - To] (3.61)

y  
y’ =1

The difficulty with equations (3.59-61) is that the relationships are in terms of

an infinite series for 9." These series, from equations (3.29), (3.36), and

(3.37), are

61(x”,y+) = ZAnX1(“nvx+)Yr(lln:>’+) (3.62)

II

92(x*,y*) = ZBRY2(an’y+)X2(an’x+) (3.63)

n

63(x+,y*) = ECuY3(°‘.»Y+)X2(%x+) (3.64)

II

This means that theoretically an infinite number of constants will need to be

determined. Of course, experience with series solutions has shown that less

than an infinite number of terms (and constants) need to be considered since

the series converges after a finite number of terms; beyond which, the indi-

vidual terms are zero or negligible in comparison to the summation up to that

point and future terms decay further. However, the number of terms needed

for the series to converge is not known and must remain arbitrary and

assumed large.
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The procedure used to determine the constants that will satisfy the

nonhomogeneous boundary conditions involves applying orthogonality.

Using the orthogonality of the eigenfunctions, the constants will be deter-

mined. An appropriate mathematical statement of this property is

l

gwny,(u,.y*)Y1(u,..y*)dy* = { ”(fim) '21:: (3.65)

01'

1 3, + + 0 main

{3201(2me )X2(am,x )dx = { N(a,,,) m=n (3.66)

where wxy is a weighting constant, which for the Cartesian coordinate system

is equal to one. After substituting expressions for the temperatures and deriv-

atives of temperatures into the boundary condition in equations (3.59-61), the

equations will be multiplied by a second eigenfunction and integrated over

the boundary. Since the eigenfunctions have the property shown in equations

(3.65-66), the equations will be simplified and the unknown constants can be

determined.

3.3.1 Application of Boundary Condition at x = L

Beginning with the solution for (31 in equation (3.26) and taking the

derivative with respect to x+ and evaluating both expressions at the boundary

gives

91(1,y+) = A, [unL‘ cosh (puL‘) +Biasinh (unL')] *

=0

[u,,cos (my‘) + Biusin (11f) ] (3.67)

39 .-

5—103“) = ZAquiL’zsinhmuL') +BiopuL‘c6sh(an‘)]*
x

n=0

tu,cos my”) +Bigsin (u,y*)1 (3.68)

Substituting these expressions into the boundary condition, equation (3.59),

produces
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A, [pfir‘zsinh 61,13) + BionnL‘ cosh (uuL‘n *

- 0

[u,,cos my”) + BiHsin (u,y*)]

+ ML 2 A" [unL' cosh (unL’) +Biosinh (an‘)] *

n=0

[uncos (Hf) + BiHsin (unfll

The orthogonality of the eigenfunctions is used to determine the constants.

The eigenfunction for this problem is

Y (flu, y+) = uncos (any) + BiHsin (unf) (3.70)

and these eigenfunctions have the property shown in equation (3.65). There-

fore, equation (3.69) will be multiplied by a second eigenfunction Y(um, y”)

and integrated over the boundary. Because this integral is only nonzero for

m=n, only this term will remain from the summations. The integrals of each

term in equation (3.69) after multiplying by a second eigenfunction are

shown in Appendix C.

After applying orthogonality, equation (3.69) reduces to

A," [uiL‘zsinh (uML') + BiaumL‘ cosh (me‘) 1 N (pm) +

AmBiL [umL‘ cosh (umL') + Biosinh (me') 1 Mum) =

_ . BiH BiH

BIL (TL- To) [sm(|.1m) - T008 (um) + T] (3.71)

where all summations that were present in equation (3.69) have been reduced

to a single term through the application of orthogonality. Equation (3.71) can

now be solved for the unknown constant

. . Bin Bill
3'1, (TL‘ To) [8111(um) "' T608 (11".) + T]

A - "' "' (3.72)

"' - [(pfuL‘hBioaiL) sinhmML’) + (Bio+BiL)umL'cosh(umL')]N(um)
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The functional relationship for N (um) is

 N(u ) =1 ((12+Bi2) 1+ 8’" +Bi (373)

"' 2 "' ° ( (ufi,+BiL2)) ° '

This completes the solution of problem one, equation (3.62) could be evalu-

ated since A" is known from equation (3.72), noting that m is a dummy vari-

able.

3.3.2 Application ofBoundary Condition at y = 0

The difficulty in applying the boundary condition in equation (3.60) is

recognized by noticing that the right hand side contains the temperature of

the hot fluid. Using the solution for 62 from equation (3.30) and taking the

derivative with respect to y+ and evaluating both at the boundary gives

92 (x+, O) = 2 B" [ancos (an?) + Biosin (anx+)] (3J4)

n: 0

a62 0- an

——(x*, 0) = - z Bra-C, [ancos max”) +Biosin (anx*)] (3.75)

ay+ "=0 L

In addition, the hot fluid temperature is, from equation (3.52)

TH (x‘) = To + Dlexp (-NHx+)

- c (BioNH - “2L. 2) c

+ A (EL 1- '1 cosh (an x+)

"go n{ n [ (Nil-“fl 2) ]

 

 

 

 

Putting these three expressions into equation (3.60) yields
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" 0t

2 3,2,5; [ancos (of) + Biosin (63+)]

n = 0

+ Bi” 2 B" [ancos (0:31?) +Biosin (anx+)] =

n=0

BiH[Dl exp (—N,,x+)

 

" . (Rwy-uh”) .
+ A 2I. 1- '1 cosh( L 2:”)

n=0

 

 

.- B.” 2

+ 2 B +?—:C a 1-( to ”+059 cos(a x‘”)

u=0 l L n n n
(N3, + 6:)

BiN +02

+1)!" "2” " sin(0cnx*) (3.77)

NH+0ti

 

for which orthogonality will be applied. Each term in equation (3.77) will be

multiplied by the eigenfunction

X (an, x*) = aucos (uni?) + Bio sin (uni?) (3.78)

evaluated at term m, and integrated over the boundary. The eigenfunction has

the same property as discussed earlier, which is given in equation (3.66).

After applying orthogonality, equation (3.77) becomes

Bulk»: = -0)le - 2 An (pmn,1+pmn.2+pnm,3+pmn.4) -2(Bn+cni7)wmn(3'79)

n = 0 n

where the order of the terms in the two equations, equation (3.77) and equa-

tion (3.79), has been maintained, except the first two terms in equation (3.77)

have been combined into a single term in equation (3.79). Additional vari-

ables were introduced to represent the results of the integration, the variable

definitions and integration details are shown in Appendix C.

The complexity added by the hot fluid being the nonhomogeneous

term in the boundary condition is seen in equation (3.79), where summations
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are present after applying orthogonality. This was not the case for the appli-

cation of orthogonality to 01, where all summations reduced to a single term.

Because the summations in equation (3.77) that represent the hot fluid tem-

perature do not contain eigenfunctions, they were not reduced to a single

term. Also, equation (3.79) is a function of all three unknown constants (actu—

ally two since A” was just obtained). Nevertheless, the dependence of this

equation, which would only be a function of the constant 3,, if the hot fluid

temperature were not present in the boundary condition, is now coupled to

the other boundary condition, equation (3.61), through the constant C”.

3.3.3 Application of Boundary Condition at y = 5

The evaluation of the boundary condition given in equation (3.61) is

very similar to the previously discussed method for 62. Starting with the

expression for 63 in equation (3.31) and taking the derivative and evaluating

both at the boundary gives

+ a all an . an

93 (I . 1) = C" —;cosh (—,)+BiHsrnh (7) *

n= 0 L L L

[ancos (uni?) + Biosin (anx+)] (3.80)

EBB . an an an an

—(x", 1) = 2: c,—,[—,sinh [.7)+Bi,,cosh {—7)}-

ay“ n=0 L L L L

[ancos (an?) + Biosin (anx*)] (3.81)

and the temperature of the cold fluid, from equation (3.54), is



 

 

 

 

TC (1+) =
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TC (x+) = To + Elexp (ch+)

L, 1 + (BioNC + ufiL‘i)

"l N2 _ 2L‘2

( c 11,, )

 + ZAn’

n80

J cosh (an'x+)

 

 

(Bi N +n2L‘2) ,

+NC 02 C 2 ".2 sinh (unL 1:")

(NC-11,12 )

°‘ (Bi N —62

+ 2 (Bn’+ Cn’) {an[l + 02 C 2 ")Jcos (unit?)

":0 (NC-+0.")

Bi N —62

+NC[_°_2.C_2_'.'] sin (anx+) } (3.82)

Putting these temperatures into equation (3.61) gives

C n "sinh n B h n I B. . )1"2 n ,I , ( ,) lHCOS ( J, ancos (aux ) 108m (aux

“ 0t 0t 0t

+Bi C —:cosh(-—:)+Bi sinh(-—:')]‘

C210 "[L L ” L

[ancos (uni?) + Biosin (anx+)] =

Bic [El exp (ch+)

“ , (Bi N + 2L”)

"I uflL 1+ 02 C “'12

(NC " 11,2,L )

 ] cosh (unL' x")

 

(Bi N + 2L”) ,

+NC °2c ”'12 sinhutnL x“

(Ne-“zl‘ )

(BioNC-ag)

2

(NC+ 63)

(BiONC- a?!) . +

+NC[ (Ni-+ai) Jsrn (aux ) } J (3.83)

 ] cos (uni?)
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for which orthogonality will be applied. Each term in equation (3.83) will be

multiplied by the eigenfunction

X(au, x‘) = ancos (uni) + Biosin (an?) (3.84)

evaluated at term m and integrated over the boundary. The eigenfunction has

the same property as discussed earlier, which is given in equation (3.66).

After applying orthogonality, equation (3.83) becomes

Cm‘bm = Quiz, 4» 2A,} (PM 1 + PM 2 + PM 3 + PM 4) +Z (Bn’ + Cn’) \PM (3.35)

n I!

where the order of the terms has been maintained for the two equations, equa-

tion (3.83) and equation (3.85), except that the first two terms of equation

(3.83) have been combined into a single term in equation (3.85). Using a sim-

ilar procedure as the last boundary condition, new variables were introduced

to represent the results of the integration when orthogonality was applied. All

details of this step are shown in Appendix C.

Notice that the presence of the cold fluid temperature in equation

(3.61) had the same effect as the hot fluid in the previous boundary condition.

Summations exist after applying orthogonality and equation (3.85) is coupled

to equation (3.79).

3.3.4 Summary of Applying Orthogonality

After applying orthogonality to equation (3.59) a closed form solution

was obtained for the 01 constant, from equation (3.72)

 

. . Bin Bin
BIL(TL- To) [3m (51") - “—008 (11") + l1 ]

 

 

An = 2 .2 o at o (3'86)

[unL sinh(p.nL )+ (Bio+BiL)unL cosh (unL )]N(un)

where

_ l 2 . 2 BiL .

N(|.ln) - §[(fl,+3‘o ) (1+ (1134'3'12) )+Bro] (3.87)

Note that the subscript n was substituted for m in the form of the equations

shown since it is a dummy subscript.
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Application of orthogonality to equations (3.60-61) did not result in

the simple algebraic equation with one unknown as it did for equation (3.59).

The difference is the terms on the right hand side of the equations. For equa-

tion (3.59) this term is a constant, whereas for equations (3.60-61) the term is

a function (infinite series). These functions are TH (x”) and TC (x*) , and they

present two problems. First, they are not orthogonal functions; and therefore,

the series will not be reduced to a single term after orthogonality is applied.

Secondly, they contain both unknown constants, B” and C", which will result

in equations (3.60-61) being coupled after applying orthogonality. The cou-

pled equations given in equation (3.79) and equation (3.85), after some rear-

ranging, are

n+2 (313+ Cu(5;)wnm + 0)1:301 = -2Afl (pm, 1 + pm». 2 + pmn, 3 + pmn, 4) (3‘88)

1:

Cmcb"l — 2 (B; + Cn’) ‘PM - one, = 2.4,; (PM 1 +PM 2 +PM 3 +PM 4) (339)

II II

These equations represent a set of simultaneous equations to be solved

for the unknown constants B" and C" (n = 1, 2, 3 ....... ). Because summations

exist in the equations it is now required to truncate the series after a finite

number of terms (n = N). This gives 2N constants to be determined from the

two equations; however, both equations can be written for each eigenvalue,

hence the subscript m. Since there are as many eigenvalues as terms in the

series (m = N), this totals 2N equations to solve for the same number of con-

stants.

The unknowns in equations (3.88) and (3.89) are 3,, and C"

(n = 1, 2, ....N). The primed constants in equation (3.89), which are functions

of B, and C", need to be substituted for, giving a new variable for that term.

Also, D1 and E, are function of the unknown constants and will need to be

substituted. From equations (3.53) and (3.55), D1 and E1 are respectively

o[1_ (BioNH- pita]

(Nir nil-’2)

 

D1 = TH,in—To— ZAnuyzaL

n=0

B'N 2

' 2 (B,+%C,)a,.[l-( 1" flap] (3.90)

":0 (Ni-Fai)
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 E, = exp (-Nc) [(16, ,,-T,) - 2A,

n80

, NCBi,+u2L'2 ,

’ L 1+ ', cosh L )

{m [ Né-uiL 2 i m"

NCBio+nfiU2 ,

+N , sinh( L )

Ci Ive-nib 2 u"

a. N ' _ 2

- 2 (B,’+C,’) {a,[l +—C—B'°—fi]cos(a,)
2 2

”=0
”0+0."

N Bi -a2

+NC —c—2i——" sin(a,) (3.91)

Nee-or:

Introducing variables to represent the large terms in equations (3.90) and

(3.91) and converting B,’ and C,’ to B, and C, allows these equations to be

reduced to

 

D1 = (THM—T -2A,13,-2o,(B +C,2"”) (3.92)

1:30

151 = exp(-NC) (TQM-T0) - 231;»,— Z (B,a,+C,r,) (3.93)

n=0 =0

where all new variables are defined in Appendix D. Substituting for D1 and

El from equations (3.92) and (3.93) into equations (3.88) and (3.89) and

defining new variables to convert the primed constants gives

a

3,3, + 218nm. - 7.0)..) + ZCnL—i' W... - 7.9...) =

- 0),, (TH, in - To) - 2A1! (prom, 1 + puns, 2 + pm», 3 + pmn, 4-mmBn) (3'94)

1:

z [9,a,- (u’n) .....l B, + C,<r>, + 2 [0,},- (‘PC) ....J C, =

0,”); (-NC) (Tc, ,, - T,) + 2A,’ (PM 1 + PM +,,P,3 + P — 0,13,) (3.95)

n

mn,4

These equations are now in the form that they were solved for the

unknown constants. The equations are organized with functions of unknowns

to the left of the equal sign and known quantities to the right. Standard meth-

ods were employed to solve the set of simultaneous equations described by
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equations (394-95) and these methods are addressed in Appendix D. In

short, the two equations were separated into coefficient of B, and C, for each

eigenvalue and equation. These terms were put into a matrix and then solved

for the unknown constants using a partial pivoting scheme with the Gauss

method. Once the constants were determined, all solutions could be evalu-

ated.
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3.4 Computer Program AXCOND

The development of the solution to this problem has been completely

analytical up to this point. A closed form solution is not possible since a set

of simultaneous equations must be solved for series constants, which depend

on a truncation of the general series solutions obtained for the temperature of

the wall and fluids, as discussed in the previous section. With the solution

framework complete a computer program needed to be developed to perform

the evaluation of the analytical solution. The main functions of the program

were to:

1. Determine the eigenvalues from the transcendental equations.

2. Assemble the set of simultaneous equations and solve for B, and C,.

3. Evaluate the series to calculate the temperatures of the wall and fluids.

4. Check that the boundary conditions are satisfied and that energy is conserved.

A FORTRAN program was developed to perform these functions and a

listing of the program is given in Appendix F. In addition, a general flowchart

of the program is shown in Figure 3.2. It contains a main program that calls

subroutines to perform each of the individual tasks. There are nine subrou-

tines in the program: INPUTO, INPUT], ROOT, BUILD, GAUSS, PROFIL,

OUTO, OUTl, and OUPUT. Each of these will be briefly discussed to sum-

marize its function. In the program, variables were named to coincide with

the solution shown herein, and deviations from the variables in the solution

were noted.

The first two subroutines INPUTO and INPUTI, as there names imply,

import the data needed for a particular run. The former reads dimensional

data in and computes the dimensionless parameters needed for computation;

while the later reads in the dimensionless parameters, depending on the

option selected. In addition, INPUT] allowed for a particular input parameter

to be varied, with the first call to the subroutine reading in the data and the

parameter to vary and subsequent calls updating the selected parameter for

another computation. This option allowed for assessing the eflect of various

parameters on the solution by observing the results as one parameter is var-

ied.

Subroutine ROOT is used to locate positive roots of the transcendental

equation. It employs a marching scheme that searches for a change in sign of

the function then backs up to locate the zero crossing, i.e. the root. A great



 

 

 

 

 

deal of tin:

the large c1

tion and m

ASS(

constants 1

obtaining 2

partial piw

Tern

solutions ii

the derivat

lated. The t

ated in the

and X=L) t

Ewation (1

series. Usir

the fluid en

ditions On I

enabled a t!

two CheCks

Used ‘0 Sele

ity 0f the St



45

deal of time was spent to make this subroutine sufficiently robust to handle

the large changes in magnitude of the parameters in the transcendental equa-

tion and not skip roots of the equation.

Assembling the matrix of simultaneous equation to be solved for the

constants B, and C, was done in subroutine BUILD. This was the key step in

obtaining a solution. After building the matrix, the subroutine GAUSS used a

partial pivoting scheme to solve for the constants.

Temperatures for the wall and fluids were generated from the series

solutions in the subroutine PROFIL. In addition to computing temperatures

the derivatives of the temperatures with respect to the coordinates are calcu-

lated. The derivatives of the analytical series solutions were taken then evalu-

ated in the subroutine. Also, to calculate heat loss from the wall ends (x=0

and x=L) the integral of the heat flux over the ends was taken

1
8T

q'end = IKw r

0
 

dy+ (3.96)

and
31:

Equation (3.96) was determined analytically and programmed to evaluate the

series. Using the derivatives of temperature it was possible to check whether

the fluid energy balances equations were being met and if the boundary con-

ditions on the wall were being satisfied. The heat losses from the ends

enabled a total energy balance to be performed insuring conservation. These

two checks, conserving energy and satisfying the boundary conditions, were

used to select the number of terms to truncate the series and insure the valid-

ity of the solution.

The final three subroutines generate the output file for a run. Subrou-

tines OU'FO and OUTl correspond to the option listed earlier for the input.

The main difference is that OUTO produces the results of one computed run

while OUTl varies a particular parameter giving the results as a function of

the varied parameter, but not listing the unchanged parameters again. Subrou-

tine OUTPUT can write the fluid and wall temperatures as a function of posi-

tion if desired. These temperature are only written if a flag is set in the input

file and there are separate flags for the fluids and wall. Likewise, another flag

in the input file can check that the boundary conditions are satisfied and write

the results to the output file.
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Chapter 4

Results and Discussion

4.0 Identification of Input Parameters

In the formulation of the mathematical model for this problem certain

dimensionless groups appeared (Chapter 2). These dimensionless parameters

form a link between the mathematical model and the physical problem. The

dimensionless parameters needed to solve the wall conduction equation are

the wall aspect ratio

L
L - 5 (4.1)

and Biot numbers for each surface of the wall

B' h°L 42'0 - 7?: ( . )

B' hLL 43'L - T: ( - )

. M5

. has
BIC - —K: (4.5)

The parameters needed in the fluid energy balance equations were

I: Bi K L w

N, = _"A” = _”‘t’ (4.6)

Ca Ca

h Bi K L w

NC = _CAC = ___c... (4.7)

In addition to these dimensionless parameters the ambient temperatures at the

wall ends (T, and TL) and the initial or inlet condition for the fluids (TH, ,, and

Tc, ,,) need to be specified. \Vrth these eleven parameters the mathematical

model can be solved for the wall and fluid temperatures as functions of posi-

47
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tion. There are then eleven independent variables that may influence axial

conduction as the problem was formulated. The investigation of all eleven

parameters to determine their influence on axial conduction presents a diffi-

cult task. To reduce the number of independent variables, quantification of

axial conduction will be shown by evaluating the solution using eflecfive-

ness-NTU relationships. ‘

Presenting the solution in terms of the effectiveness eliminates the

dependence of the solution on any of the ambient or fluid temperatures,

assuming a constant ambient temperature (T, = TL); because the effective-

ness is based on temperature differences and scaled by the temperature differ-

ence at the fluid inlets. The NTU, which represents the physical and thermal

geometry of the heat exchanger, was earlier shown in Section 2.3 as

(4.8) NTU K” L’_ WT [
Bi”Bic

Biu+ BiHBiC+ Bic]

This equation introduces the need for specifying the thermal conductivity of

the wall and the minimum heat capacity; whereas for the mathematical

model, the thermal conductivity was accounted for in the Biot numbers and

the heat capacity accounted for in NC and NH and did not need to be explicitly

defined. It was decided that since the additional parameters of the wall ther-

mal conductivity and minimum heat capacity need to be specified for com-

puting NTU, they could also be used to compute NC and N,, from the other

parameters, as shown in equations (4.6) and (4.7). This allows for the more

physical parameter of heat capacity to be input.

The wall thermal conductivity and minimum heat capacity do not

independently affect the solution because they appear only as a ratio used to

compute the NTU in equation (4.8) and the parameters NH and NC in equa-

tions (4.6) and (4.7). It does not matter that the ratio in equations (4.6-7) con-

tains the individual heat capacities rather than the minimum. Since the

solution depends on the heat capacity ratio and the magnitudes of the heat

capacity will be set by the ratio of the wall thermal conductivity and mini-

mum heat capacity, the ratio will be accounted for in at least one of the equa-

tions. Therefore, the individual magnitude of these variables is not

significant.
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The appearance of the ratio of the thermal conductivity to the mini-

mum heat capacity provides sonre additional flexibility to this study. The spe-

cific properties of the wall and fluids do not need to be specified, and a

dimensionless analysis can be performed. Furthermore, this ratio can be

adjusted to provide the desired magnitude ofNTU. To present the ratio of

these variables, a new dimensionless variable will be defined to represent the

group of terms that are not dimensionless in the NTU in equation (4.8). This

variable will be the Mondt number, from Rohsenow [l 7]

wa

M, s , (4.9)

CminL

where the wall aspect ratio was included to be consistent with Rohsenow’s

definition. Substituting the Mondt number into equation (4.8) gives

 

 (4.10)NTU = M L‘2[ BiHBiC ]
0

Big-t- BiHBiC-t- Bic

The Mondt number will be used as the adjustable parameter in this study.

After specifying the fluid Biot numbers and wall aspect ratio, the Mondt

number is set to provide the desired NTU. The magnitudes of the Mondt

number can be looked at to correlate the conditions in which axial conduction

is important

TABLE 4.1. Input variables and dependency for determining heat exchanger performance

 

 

 

Input Parameters Mathematical Model NTU Effectiveness

L' L' L' L‘

Bi, Bi, Bic Bi,
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Presenting the results in an effectiveness-NTU format will reduce the

number of independent variables. The input parameters that were specified to

obtain a solution are shown in the first column ofTable 4.1. These parameters

were used to calculate the information needed for the mathematical model

and NTU shown in columns two and three in Table 4.1. This information

allows for the mathematical model to be solved and a NTU to be associated

with this solution. However, the solution, which will be in the form of effec-

tiveness, will depend only on the seven parameters shown in the last column

of Table 4.1.

An additional input that is not listed in Table 4.1 was the number of

terms needed before the series is truncated, N. It was not included in the pre-

vious discussion because it lacks any physical significance, but it was not

overlooked in the analysis. The value of N must be sufficiently large to allow

the series solutions to converge. Taking this criteria a step further, the bound-

ary conditions on the wall were checked to ensure that they were being satis-

fied. Since these boundary conditions involve the wall and fluid temperatures,

applying this criteria is equivalent to having all three series solutions con-

verge. Another check performed was an overall energy balance of the solu-

tion. This checked that the solution conserved energy, i.e. the energy lost

from the hot fluid was accounted for in the cold fluid and/or lost by convec-

tion from the wall ends. Although magnitudes of N will not be shown in any

of the results, using those two criteria the value of N was chosen and the

validity of the solution assured for all results reported.

The influence of N was not investigated in any detail. In general, the

solution would converge based on an energy balance within 10-20 terms.

However, the boundary conditions would not be met until more terms were

considered; but the solution (a - NTU) did not change from the values seen at

a smaller number of terms. These results suggest it may be possible to obtain

simplified expressions for the solution, but this point was not pursued further.

4.0.1 Presentation of Results

It was anticipated that the effect of axial conduction could be demon-

strated through the seven variables upon which the effectiveness depends

(shown in Table 4.1). These variables were to be investigated to determine

their influence on the performance of the heat exchanger. In order to present
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these results it is useful to introduce a final variable that will describe the deg-

radation in the performance of a heat exchanger. It is called the ineffective-

ness, and it represents the amount that a heat exchanger’s performance is

reduced due to the effect of axial conduction. It is defined by

8 “-8

iC =M (4,11)

eNeg

8 "'6

i” = lit—l! (4.12)
8
Ne;

where 2",, is the effectiveness calculated neglecting axial conduction using

equation (1 .25), which assumes one-dimensional heat flow. The ineffective-

ness must be defined for both hot and cold fluids since the energy balances

may difi'er due to heat lost from the wall ends. For the case that there is negli-

gible heat loss from the ends of the wall, the two values for inefl'ectiveness

are equal

ic = inst for 8c = e” (4.13)

Note that when the ineffectiveness is zero there is no degradation in the

performance of the heat exchanger due to axial conduction, indicating that

axial conduction is negligible. In addition to showing when axial conduction

is not negligible, the ineffectiveness gives the magnitude that the effective-

ness would be over-estimated or in some special cases under-estimated, using

a standard effectiveness-NTU relationship which neglects axial conduction. It

is the percentage of error introduced from assuming that axial conduction is

negligible.
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4.1 Influence of Axial Conduction at a Constant NTU

To begin this parametric study the NTU will be held constant as other

parameters are varied. Through some initial computer runs it was seen that a

larger degradation in effectiveness was seen at higher values ofNTU. Hence,

aNTU of seven was chosen for the study. This allows the identification of the

more important parameters and will give insight into the conditions under

which axial conduction should not be neglected.

While maintaining a constant NTU, the Biot numbers are varied over a

range from .0001 to .1, the heat capacity ratios of 1, .75, .50, and .25 are

investigated, and the wall aspect ratio is also varied. Variation of the Biot

numbers will be done by grouping all four or grouping the ends and the hot

and cold side. Although grouping all the Biot numbers may be unrealistic, it

will provide insight for future more realistic cases.

4.1.1 Influence of the Wall Aspect Ratio (L‘)

A natural choice to begin this parameter study is with the wall aspect

ratio, which will address the physical dimensions for which axial conduction

should not be assumed negligible and may need further investigation. Also,

by beginning with the wall aspect ratio some bounds can be established on

the other parameters that need to be investigated. This is achieved by elimi-

nating ranges of the other parameters for which axial conduction only occurs

under unrealistic physical dimensions. All four wall Biot numbers were set

equal, and the magnitudes were varied beginning with .l and decreasing an

order of magnitude each run to the final value of .0001. The results, showing

ineffectiveness as a function of the wall aspect ratio, are presented for the dif-

ferent Biot numbers in Figures 4.1-4.4 with each figure depicting a different

heat capacity ratio.

Examination of the data, prior to plotting figures, showed a negligible

difference in the effectiveness based on the cold fluid and the effectiveness

based on the hot fluid (2,. = e”). For this reason, only one ineffectiveness was

plotted in Figures 4.1-4.4. There was a slight deviation from the two effec-

tivenesses being equal for very low magnitudes of the wall aspect ratio

(L' < 40). Because this effect is not related to axial conduction and merely

demonstrates the effect of the wall aspect ratio becoming very small, it was

not included in Figures 4.1-4.4.
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The results indicate that as the aspect ratio decreases, which physically

represents a thick wall or short heat exchanger, the ineffectiveness becomes

nonzero. Depending on the heat capacity ratio (CR), one finds a degradation

in the effectiveness from 20% at small C, to nearly 50% at C, equal to one.

The degradation is further enhanced as the wall Biot numbers decrease. A

maximum Biot number of .1 is shown in the figures, since for larger Biot

numbers the ineffectiveness only departs from zero for very small and unreal-

istic values of the wall aspect ratio.

The trend of increasing ineffectiveness with decreasing aspect ratio

can be explained by considering the thermal resistances across the heat

exchanger wall in the two principal directions

L

RStrearnwire = K (4’14)

#‘x

R - 8 (4 15)- — 0

normal K 4y

For a plane wall A, =-- w5 and A, = wL giving

L

RSrreaInwiu = K W (4-16)

to

 

l

waL.

It can then be noted that as L' becomes small, the streamwise thermal resis-

tance becomes small while the normal thermal resistance becomes large. This

will lead to a greater energy flow in the streamwise direction and ultimately a

larger degradation of the effectiveness.

 

Rnonnal = (4.17)

In considering the influence of the Biot number on the degradation of

the effectiveness, the increase in ineffectiveness with decreasing Biot number

is expected. Decreasing the Biot number results in a reduction in the convec-

tive heat transfer at the surface of wall and/or an enhancement of the conduc-

tive heat transfer within the wall, which is shown by considering the

definition of the Biot number

R 5/K

Bilxfl = __“fl = E]: (4.13)

convection y w
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Both these trends lessen the influence of axial conduction since energy moves

more freely from the surface while encountering more difficulty conducting

within the heat exchanger wall. This is further seen by observing the temper-

ature profile along the wall. These results are shown in Figure 4.5. Notice that

the temperature profile along the wall flattens as the Biot numbers decrease,

that is, the temperature at the ends of the heat exchanger becomes closer to

the temperature at the center of the heat exchanger as the Biot numbers

decrease. This is the effect of axial conduction moving energy along the

length of the heat exchanger wall. Coupling the effect of the Biot numbers to

the wall aspect ratio follows.

As the Biot numbers decrease, the alternate path of heat flow along the

wall becomes more influential. At the smaller Biot numbers the wall aspect

ratio has less influence because the convective resistance is so high. There-

fore, the wall aspect ratio requires a larger magnitude to reduce the normal

resistance or increase the streamwise resistance to the point that axial con-

duction will not occur. Hence the smoothing of the curves in Figures 4.1-4.4

as the Biot numbers decreased.

The final dependency that can be observed in Figures 4.1-4.4 is the

influence of the heat capacity ratio. To aid in this comparison, Figure 4.6 was

generated, which illustrates how the heat capacity affects the solution for a

Biot number of .001. This figure does not provide any new information, it

instead combines a curve from Figures 4.1 through 4.4 into a single figure. In

Figure 4.6 it is seen that, at a particular Biot number, the ineffectiveness

increases as the heat capacity ratio increases.This trend is not a physically

obvious result.

To better understand the effect, the dimensionless temperature profile

along the heat exchanger at a wall aspect ratio of 100 was generated as a

function of heat capacity ratio and is shown in Figure 4.7. In this figure the

median wall temperature shows little or no variation in shape with heat

capacity ratio, the curves increase a constant amount as the heat capacity

ratio decreased. This can be explained through the existence of a greater dis-

parity in the amount of energy per degree of temperature between the two

fluid streams as the heat capacity ratio decreases. The stream with the maxi-

mum heat capacity will undergo a smaller temperature change in the heat

exchanger than the fluid with the minimum heat capacity. Thus, the fluid with
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the maximum heat capacity can cause a larger terrrperature change in the fluid

with the minimum heat capacity while experiencing less of a temperature

change, as the heat capacity ratio decreases. Therefore, there exists more

energy to raise the temperature of the wall which results in a larger wall tem-

perature as the heat capacity ratio decreases. The elevated temperature of the

wall does not explain the decreased ineffectiveness, however; and further

examination is needed.

For more insight into the effect of the heat capacity ratio the dimen-

sionless temperature profiles of the hot and cold fluids were added to the

dimensionless wall temperatures and are shown in Figure 4.8, with a heat

capacity ratio of .75 omitted for clarity. This figure clearly demonstrates the

effect of axial conduction, which moves the energy along the length of the

heat exchanger within the wall. The magnitude ofwhich can be gauged by an

energy balance on the fluids. For negligible axial conduction

011:?! = Ccff (4.19)

However, if axial conduction is present there exist a local imbalance in the

energy exchange between the fluids and equation (4.19) becomes

  

  

d9 d9
H c

( dx+ ' dx” )°‘ qAxial (4.20)R

for CH2 CC, which can be rearranged to give

TABLE 4.2. Relationship between the slope of the hot and cold fluid’s temperature profile and the

heat capacity ratio

 

 

 

 

 

 

   

de,/dx+

c, ((19,!de

CR x+=0 x+=0.5 x+=l

1.0 15.68 1.“) 1/15.63

.75 15.53 1.28 1/11.58

.50 14.29 1.81 1n.75

.25 13.5 2.67 114.95    
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d9”1dis+

(c, (dOC/dx“ )

Using equation (4.21), axial conduction at different locations along the heat

exchanger can be assessed. To help quantify the differences in the slope of

the hot and cold fluid temperature profiles Table 4.2 was created, which

shows the ratio on the left hand side of equation (4.21) at various locations

and as a function of the heat capacity ratio. This ratio should be nearly one

for negligible axial conduction and considerably smaller or larger than one

when axial conduction is appreciable.

The data in Table 4.2 demonstrates that as the heat capacity ratio

decreases, axial conduction shows a local decrease at the ends of the heat

exchanger; while it increases near the center. Comparison of the magnitudes

shows the dominant effect at the x+ = 1 end of the heat exchanger, while the

x“ = 0 end and center show less significant change. This can also be seen in

Figure 4.8, more qualitatively, by a comparison of the slopes of the tempera-

ture profiles. The net effect on the heat exchanger is that axially conducted

heat and ineffectiveness decrease as the heat capacity ratio decreases, as dem-

onstrated in Figure 4.6 where ineffectiveness decreases with heat capacity

ratio.

-1)... 4“,, (4.21)

The difficulty with interpreting this case is that both solutions, includ-

ing and neglecting axial conduction, change with the heat capacity ratio.

Therefore, it is required to analyze why the solution more closely resembles

the case of neglecting axial conduction as the heat capacity ratio decreases.

There are two related reasons. The first is the change in the available energy

on opposite sides of the wall. Second is the change in the driving potential on

the hot side of the wall, which is the difference between the fluid and wall

temperatures.

The smaller heat capacity ratios were obtained by increasing the mag—

nitude of the hot fluid heat capacity while maintaining the heat capacity ofthe

cold fluid. Providing more energy per degree on the hot side of the wall than

on the cold side and this disparity in energy across the wall becomes larger as

the heat capacity ratio decreases. This situation was earlier shown to increase

the wall temperature.



j
'
{
'
s
'
fl
v

i
n
n
v
‘
a

'
u
'

 

tion‘

obse

hasl

pote:

ture.

incre

cons

enen

toth

iBecz

rafio

hste

ontl

ng

it in(

03133

853;

thei

the 1



57

The increased driving potential on the hot fluid side of the wall results

from the increase in the heat capacity of this fluid, which can be shown by

observing the describing equations for the hot fluid, from equation (2.15)

dT ,
CHE? +3:,,K,L w”, (15") - T,,(x",0)] = o (4.22)

The dimensionless parameter previously introduced in this equation (NH)

has been separated into components to isolate the heat capacity. The driving

potential balances the product of the heat capacity and slope of the tempera-

ture. Therefore, when the heat capacity increases, the driving potential must

increases to balance the equation since the slope of the temperature remains

constant.

The outcome of these two effects is that the cold fluid acquires more

energy at or near its inlet, due to the hot fluid havingmore energy to transfer

to the cold fluid and the increased driving potential to move more energy.

Because both these effects become more pronounced as the heat capacity

ratio decreases, the cold fluid will depend less on axial conduction to provide

its temperature rise and the ineffectiveness will decreases.

Having an understanding of the overall effect of the heat capacity ratio

on the performance of the heat exchanger, it is now possible to refer back to

Figure 4.6 and the influence of the wall aspect ratio can be addressed. In this

figure it is seen that the wall aspect ratio reduces the ineflecfiveness to zero as

it increases, and the convergence to zero is more pronounced at lower heat

capacity ratios. The increased convergence to zero is a consequence of the

effect of axial conduction already reduced by the heat capacity ratio, and then

the influence of the wall aspect ratio requires a smaller magnitude to decrease

the normal resistance and eliminate axial conduction.

The product of M,L‘2 is shown in the legend of Figures 4.1-4.4, from

which the Mondt number can be calculated. The use of the Mondt number in

this study was as a variable parameter, which could be adjusted to provide the

desired NTU as the other parameters were varied. In general, as the Biot num-

bers and wall aspect ratio increased; the Mondt number was decreased to

maintain a constant NTU, while the Mondt number was independent of the

heat capacity ratio because the minimum heat capacity remained constant.

Referring to equation (4.8) for NTU, as the wall aspect ratio and Biot num-
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bers were increased, the noted trend in the Mondt number was accomplished

by the ratio K, IC,,,, becoming smaller because the analysis was based on a

unit width.

The trends seen in the Mondt number to maintain a constant NTU are a

reaction to changes made in the wall aspect ratio and Biot numbers. In

essence, the Mondt number is compensating the wall (K,) and fluid (Cm)

properties to match the conditions (BiH, Bic, L‘ ). Therefore, it is fitting that

the Mondt number decreases as the wall aspect ratio and fluid Biot numbers

increase since more energy can be transferred for these conditions and must

be available. This outcome suggest that axial conduction may be described

by only the magnitude of the Mondt number. A point to be investigated later.
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4.1.2 Influence of the Wall End Biot Numbers (Bi, and BiL)

During the investigation of the wall aspect ratio it was determined that

convective loses from the ends of the heat exchanger wall are negligible if the

end Biot numbers are less than or equal to the fluid Biot numbers (hot and

cold side Biot numbers). This dependence will be further investigated for

cases that have end Biot numbers greater than the fluid Biot numbers. These

cases are physically possible since the end Biot numbers have the wall length

as its characteristic length and the fluid Biot numbers have the wall thickness

as the characteristic length, as shown in equations (4.2)-(4.5). Thus, the mag-

nitude of the end Biot numbers being greater than the magnitude of the fluid

Biot numbers does not require the same dependence on the convective heat

transfer coefficients, a case that would be unrealistic, because the characteris-

tic lengths proportionately increase the end Biot numbers.

Following a similar procedure as the previous section the NTU will be

held at seven while the end Biot numbers are varied. The same magnitudes of

the hot and cold side Biot number will be investigated at the four heat capac-

ity ratios for a prescribed wall aspect ratio of 100. The ineffectiveness as a

function of the end wall Biot numbers (Bi, = BiL) are shown for these condi-

tions in Figures 4.9-4.l2, with a different heat capacity ratio in each figure.

Notice for these figures that each curve has a starting point at approximately a

zero end Biot number, then is double valued for larger end Biot numbers. The

two values at each end Biot number are the inefl‘ectiveness based on the hot

and cold fluids. For a specified end Biot number, the cold ineffectiveness is

always greater than or equal to the hot ineffectiveness in absolute magnitude.

Observing Figure 4.9, which shows the ineffectiveness as a function of

the end Biot number for a heat capacity of one, the effect of the end Biot

number is seen. As the end Biot numbers increase 1', decreases while iC

increases, for all fluid Biot numbers investigated. This divergence of the per-

formance based on the hot and cold fluids is expected as the end Biot num-

bers increase because the heat lost by convection from the ends similarly

increases resulting in an energy imbalance between the fluids and a differ-

ence in the ineffectiveness based on the hot or cold fluid.

Recalling that an ineffectiveness of zero implies axial conduction can

be neglected, it is seen for smaller fluid Biot numbers that the performance of

the heat exchanger is actually enhanced, as noted by the inefl’ectiveness based
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on the hot fluid being negative. That is, the effectiveness calculated based on

the hot fluid is greater that the effectiveness calculated neglecting axial con-

duction. However, this enhancement of the performance based on the hot

fluid is at the cost of the performance based on the cold fluid, as seen by the

hot ineffectiveness being negative while the cold ineffectiveness approaches

one. This outcome exists because the heat that is acquired from the hot fluid

is lost from the wall ends and is not transferred to the cold fluid. The appro-

priateness of this result depends on the use of the heat exchanger. For remov-

ing heat from the hot fluid this outcome is beneficial, but for adding energy to

the cold fluid the results are discouraging. In systems which have one stream

as a waste stream, such as an automobile cooling system, this could be a use-

ful result.

The fluid Biot numbers affect both the starting point of the curve and

the amount that the ineffectiveness calculated based on the hot fluid diverges

from the ineffectiveness based on the cold fluid. Figure 4.9 shows that the

curves begin at a higher ineffectiveness and diverge a greater amount

between the two ineffectivenesses as the fluid Biot numbers decrease. Fur-

ther, the divergence of the two ineffectivenesses as the end Biot number

increase occurs at a faster rate at smaller magnitudes of the fluid Biot number.

There are three relevant observations to be made as the fluid Biot numbers

decrease 1) the starting ineffectiveness increases, 2) the magnitude of the

divergence of the two ineffectivenesses increases, and 3) the rate of the diver-

gence with respect to the end Biot number increases. These points will be

addressed in subsequent paragraphs.

The higher starting ineffectiveness of the curves at is a consequence of

the effect of axial conduction increasing as the fluid Biot numbers decrease.

The basis of this outcome was addressed in the previous section.

The magnitude of the divergence of the ineffectivenesses increasing as

the fluid Biot numbers decrease is also due to the effect of axial conduction

increasing as the fluid Biot numbers decrease. Since energy is more likely to

proceed along the heat exchanger as the fluid Biot numbers decrease, it fol-

lows that increasing end Biot numbers will result in more energy being

removed. The additional energy removed results in an increase in the magni-

tude of the divergence as the fluid Biot numbers decrease, which correspond-

ingly grows with the end Biot numbers.
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Finally, addressing the rate of the divergence with respect to the end

Biot numbers, which increases with the decreasing fluid Biot numbers, is

again linked to the increased effect of axial conduction at lower fluid Biot

numbers. With axial conduction being more prevalent at lower fluid Biot

numbers it is expected that the sensitivity to the end Biot numbers will be

greater at the lower fluid Biot numbers. With axial conduction more preva-

lent, a change in the end Biot number will have more effect than when axial

conduction is less and the effect of the end Biot number is diminished. This

sensitivity to the end Biot number is seen by the change in ineffectiveness as

the end Biot numbers change, which explains the change in rate of diver-

gence as the fluid Biot numbers decrease.

The influence of the heat capacity ratio requires a comparison of infor-

mation from Figures 4.9-4.12. To aid in visualizing this information Figure

4.13 combines the curve for a fluid Biot number of .001 from each of the four

figures, onto a single figure. In this figure the ineffectiveness is seen to

increase as the heat capacity ratio increases, which was covered in an initial

discussion of the heat capacity ratio, where this trend was also seen. How-

ever, as the heat capacity ratio varied; the end Biot number showed more

influence on the hot ineffectiveness.

At a heat capacity ratio of one the curve for ineffectiveness based on

the hot and cold fluids is symmetric. As the heat capacity ratio decreased, the

curve for the ineffectiveness becomes asymmetric, sloping more on the lower

leg. This leg of the curve represents the inefl’ectiveness based on the hot fluid.

The change with heat capacity ratio represents the performance of the heat

exchanger actually improving, as seen by the curving sloping more negative.

The effect is due to the increased driving force, or larger difference between

the hot fluid and wall temperature, on the hot side resulting in more energy

available to the wall. This additional energy is then lost from the wall ends

through convection.

For this case the Mondt number depends only on the hot and cold Biot

numbers, and therefore was constant with respect to the end Biot numbers.

For this reason little can be learned about the Mondt number by varying the

end Biot numbers.
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4.1.3 Influence of the Fluid Biot Numbers (Bifl and Bic)

To change the end Biot numbers requires the least effort without alter-

ing the operating conditions (flow rates or inlet temperatures) of the heat

exchanger. Assuming that the end Biot numbers can be reduced to the mini-

mum Biot number by reducing the convective heat transfer coefficient, the

fluid Biot numbers will be investigated. These Biot numbers should represent

the core of this study because the end effects require some unusual circum-

stances to become appreciable; and it is these fluid Biot numbers and the wall

aspect ratio that should characterize axial conduction.

Setting the NTU at seven with the end Biot numbers equal at a magni-

tude of .0001, the fluid Biot numbers are varied. The cold Biot number was

set and the hot Biot number varied over the range of interest. The cold Biot

number was then increased, and the hot Biot number varied over the same

range. This procedure was repeated for the four heat capacity ratios. Figures

4.14—4.17 shows the ineffectiveness as a function of the hot and cold Biot

numbers at each heat capacity ratio. With such small end Biot numbers cho-

sen, negligible end effects were seen and the ineffectivenesses based on

either fluid were equal (in = ic = i) .

Examining the results for a heat capacity ratio of one, Figure 4.14, the

insensitivity of the ineffectiveness to the hot Biot number is seen at larger

magnitudes of the hot Biot number. This result shows that beyond a certain

magnitude of the hot side Biot number the performance of the heat exchanger

depends minimally on this Biot number. This implies that the effect of axial

conduction depends on the minimum fluid Biot number and increasing the

other fluid Biot number does not improve matters significantly. To determine

the magnitude of the hot Biot number beyond which the ineffectiveness does

TABLE 4.3. Ineffectiveness as a function of fluid Biot numbers from Figure 4.14

 

 

 

 

 

 

 

           

Bi1,

BiC .0001 .0002 .0016 .0032 .0128 0256 .0512 .1024 .2048 .4096 .8192

.0001 .413 .408 .402 .402 .400 .402 .401 .401 .401 .401 .401

.001 .403 .383 .294 .276 .260 .257 .256 .255 .255 .255 .255

.01 .400 .378 .216 .155 .084 069 .062 .058 .056 .055 .055

.1 .401 .377 2% .136 .048 028 .017 .012 .009 .008 .007
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not change, Table 4.3 was created. This table shows the ineffectiveness as a

function of the fluid Biot numbers from Figure 4.14. In Table 4.3 it is seen

that for magnitudes of the hot Biot number less than the cold Biot number the

ineffectiveness shows a dependence on the hot Biot number. However, for

magnitudes of the hot Biot number greater than the cold Biot number the

ineffectiveness changes a maximum of 5% after the point of equal fluid Biot

numbers. If more accuracy is desired, it is possible to be within 1%, for Biot

numbers separated by one order of magnitude or more. These results show

that axial conduction is weakly dependent on the larger fluid Biot number.

This outcome is explained by realizing that an increase of one fluid

Biot number will improve the heat transfer between the wall and that fluid.

However, the increased thermal communication between the fluid with the

higher Biot number and the wall will not significantly affect the performance

of the heat exchanger because of conditions on the other side of the wall. On

the side where the Biot number is unchanged, any additional energy that

could be acquired by the increased Biot number cannot be handled on this

side. There can be some change in the amount of energy transferred between

the wall and the fluid with the minimum Biot number; through an increase in

the wall temperature, but the magnitude of this increase will be much less

than the energy change due to the increased Biot number on the other side. To

summarize, the wall is unable to transfer more energy between the fluids

when one Biot number is increased because it cannot increase the energy

transfer at the other side of the wall. The outcome is the wall not acquiring

any more energy even though one fluid Biot number is increased.

To assess the influence of the heat capacity ratio, Figure 4.18 was cre-

ated, which combines a curve from Figures 4.14-l7 on to a single figure for a

cold Biot number of .001. In Figure 4.18 the affect of the heat capacity ratio

is seen. The ineffectiveness increased as heat capacity ratio increased. How-

ever, little change in the shape of the curves is seen as the hot side Biot num-

ber varies. An interesting result, considering that the heat capacity was seen

to increase the driving temperature differential, as the heat capacity ratio

decreased, on the fluid with the maximum heat capacity, which was the hot

fluid for this case. Even with the increased driving force it is not possible to

move more energy while increasing only one fluid Biot number.
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For this case, each pair of hot and cold Biot numbers had a correspond-

ing Mondt number. Requiring a different Mondt number for each point on the

figures. Because the case of a constantNTUand L' = 100 is rather restrictive,

the influence of the Mondt number will be left for a more general case.
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4.1.4 Summary of Investigation with a ConstantNTU

Examination of the effect of axial conduction at a constant, relatively

high NTU has provided insight into the parameters that characterize condi—

tions that axial conduction will arise. There were also some possible simplifi-

cations that arose. These issues are now discussed.

The wall aspect ratio is an important parameter in describing axial

conduction. This parameter represents the physical dimensions of the heat

exchanger; and it was seen that for large values of the wall aspect ratio axial

conduction could be neglected, almost regardless of the Biot numbers. It was

still possible for axial conduction to exist at the larger wall aspect ratios, but

only for very small Biot numbers. A case simulating a nearly insulated wall
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(I: ~ 0) or an infinite wall thermal conductivity (Kw » In), both physically trivial

cases.

Having investigated the physical dimensions that axial conduction was

important, a wall aspect ratio was set to exhibit axial conduction; and the

influence of the wall Biot numbers could be investigated. The Biot numbers

on the ends and for the hot and cold fluids were grouped separately. This per-

mitted setting one group while varying the other, which reduces the possible

combinations to study.

The end Biot numbers cause energy loses from the wall ends through

convection and an energy imbalance between the fluids. However, this effect

was not significant for magnitudes of the end Biot numbers less than or equal

to the magnitude of the fluid Biot numbers. When the end Biot numbers

exceeded the fluid Biot numbers some interesting results were seen, with the

performance based on the hot fluid actually larger than the performance cal-

culated neglecting axial conduction. This was at the cost of the performance

based on the cold fluid, however.

Although the scaling used in the Biot numbers can result in the end

Biot numbers being larger than the fluid Biot numbers, the proportionate

amount that the scaling changes the Biot numbers, in comparison to the con-

vective heat transfer coefficients, is the wall aspect ratio. Making the end Biot

numbers greater than the fluid Biot numbers, in most cases, would require a

very large wall aspect ratio, based on the expected magnitude difference in

the convection coefficients; a case shown to result in negligible axial conduc-

tion. In addition, the effect of the end Biot numbers improves the effective-

ness in certain situations, and may not have any afiect on axial conduction.

For these reasons, the end Biot numbers will be assumed negligible and not a

factor in further investigation.

With the end Biot numbers eliminated from further scrutiny, they were

set to the minimum magnitude of the Biot number, the focus turned to the

fluid Biot numbers. Physically, the fluid Biot number can be thought of as the

fluid operating conditions. Describing the interface convection between the

fluid and the wall. As the fluid Biot numbers were varied, it was seen that the

results were fairly insensitive to the larger Biot number. This outcome simpli-

fies the task of characterizing axial conduction, which now may be shown to

be a function of the wall aspect ratio and the minimum fluid Biot number.
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The heat capacity ratio plays a role in the effect of axial conduction on

the performance of the heat exchanger. The heat capacity ratio was varied

during the investigation of all other parameters. It can alter axial conduction

by influencing the interaction between the fluid and wall. The efl’ect of axial

conduction is smaller as the heat capacity decreases. Therefore, to reduce

axial conduction the heat capacity ratio can be decreased.

Although the Mondt number was not covered for all cases it was

shown to be influential. The Mondt number was adjusted as other parameters

were varied to maintain a constant NTU. As the wall aspect ratio and Biot

number became larger the Mondt number became smaller and the effect of

axial conduction decreases, which is interpreted as the Mondt number adjust-

ing the properties of the fluids and wall to match the Operating conditions.

This parameter may be useful to describe the condition when axial conduc-

tion will be seen.

In closing, this section has allowed the characterization of axial con-

duction to be reduced to a function of four variables; which includes the wall

aspect ratio, minimum fluid Biot number, the heat capacity ratio, and Mondt

number. These variables will provide approximate estimates when axial con-

duction needs to be considered and to what extent the performance will be

altered if it is assumed negligible. Approximate, because only one variable is

considered for the fluid Biot numbers. In the next section these results will be

used to produce ineffectiveness curves as a function ofNTU for the parame-

ters of interest.
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4.2 Characterization of Axial Conduction as a Function ofNTU

Setting the NTU constant and varying the parameters revealed some

possible simplifications in the parameters needed to characterize the condi-

tions that axial conductions will arise. At the beginning of this chapter it was

shown that it requires eleven parameters to mathematically model this prob-

lem. Of the number of parameters needed to mathematically represent the

problem the solution presented in dimensionless form would be a function of

seven of these parameters. Which includes four Biot numbers, a wall aspect

ratio, the fluid heat capacity ratio, and Mondt number. Using the results of the

previous section the number of independent variables will be reduced.

The effect of the end Biot numbers was only seen for end Biot number

magnitudes greater than that of the fluid Biot numbers. Although this is pos-

sible, it is not seen as a plausible operating condition. Therefore, the end Biot

numbers will be assumed to be the lowest possible magnitude and play no

role. This reduces the parameters needed to characterize axial conduction to

five.

Another simplification that can be considered is the dependence of

axial conduction on the fluid Biot numbers. For a constantNTU it was shown

that the ineffectiveness depends mainly on the magnitude of the smaller of

the two fluid Biot numbers. However, these results were for a constant NTU

and wall aspect ratio of 100 and the dependence, or lack of, may differ with

these parameters variable. To explore this point, data were generated to pro-

duce ineffectiveness-NTU plots for a heat capacity ratio of one, which are

shown in Figure 4.19. The plots are shown as a function of the wall aspect

ratio and the maximum fluid Biot number, while the minimum fluid Biot

number remained constant. The minimum and maximum fluid Biot numbers

are

Bim

In Figure 4.19 the results of the previous section are supported for a wall

aspect ratio of 100 with less than a 1% change in the ineffectiveness as the

maximum fluid Biot number increased three orders of magnitude. However,

for larger wall aspect ratios the ineffectiveness shows a dependence on the

maximum fluid Biot number with as high as a 45% reduction in the inefl‘ec-

a = max (BiH,BiC) (423)
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tiveness. This reduction was at a maximum Biot number one order of magni-

tude larger than the minimum Biot number, for further increases in the maxi-

mum Biot number the ineffectiveness was not changed significantly.

Although Figure 4.19 shows a greater absolute change in the inefl’ectiveness

at a wall aspect ratio of 500 than it does at a wall aspect ratio of 1000, the rel-

ative change in the ineffectiveness, which gauges the magnitude of axial con-

duction, is larger for a wall aspect ratio of 1000 with a 45% reduction in the

ineffectiveness.
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It was shown earlier that axial conduction was greater for smaller wall

aspect ratios and fluid Biot numbers. For this reason, at lower wall aspect

ratio, the ineffectiveness is less sensitive to the fluid Biot numbers because

both parameters are at magnitudes that promote axial conduction. As the wall

aspect ratio increases, the solution becomes more sensitive to the fluid Biot

numbers because this parameter is more influential in promoting axial con-

duction with the wall aspect ratio larger. This results in the inefiectiveness

decreasing significantly as the maximum fluid Biot number is increased at

larger wall aspect ratios. However, the maximum fluid Biot number can only

improve the operating conditions so much, due to the limiting nature of the

conditions on the opposite side of the wall where the minimum fluid Biot

number remains unchanged. The outcome is less degradation in the perfor-

mance of the heat exchanger as the maximum fluid Biot number is initially

increased, but further change in the maximum fluid Biot number produces no

improvement.

A final observation that can be made concerning Figure 4.19 is the

increased ineffectiveness at lower values ofNTU as the maximum fluid Biot

number increased for a wall aspect ratio of 100, a result contrary to all other

cases, where ineffectiveness decreased as the maximum fluid Biot number

was increased. This is only seen for values ofNTU less than three, where

there is a crossing point and previous trends are seen, and only for this partic-

ular wall aspect ratio. This is due to the wall aspect ratio and minimum fluid

Biot number both being at magnitudes that promote axial conduction.

Increasing the maximum fluid Biot number is expected to decrease the

ineffectiveness because of the increased convection on one side of the wall.

In addition to increasing the maximum Biot number the Mondt number will

decrease to maintain the same NTU that existed when the fluid Biot numbers

were equal. The lower Mondt number also would be expected to decrease

axial conduction. But it is the decrease in the Mondt number that actually

causes the increase in the ineffectiveness at low NTU.

To decrease the Mondt number the ratio (Kw!Cm) must be decreased.

At lower values of the NTU, the magnitude of the minimum heat capacity is

relatively larger and decreasing the ratio Kw! Cm." will make it even larger.

Therefore, the limiting factor on the energy transfer will be the magnitude of

the wall aspect ratio and fluid Biot numbers. When the maximum fluid Biot
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number is increased, the corresponding increase in the Mondt number results

in the ineffectiveness increasing because the additional energy can not be

moved across the wall.

For larger NTU the heat capacity is relatively small and it becomes the

limiting factor on the energy transfer. For this case, the result is the ineffec-

tiveness decreases as the maximum fluid Biot number is increased.

The results in Figure 4.19 show, contrary to the previous section, that

in addition to the minimum fluid Biot number the maximum fluid Biot num-

ber must also be considered for magnitudes of the maximum fluid Biot num-

ber within one order of magnitude of the minimum fluid Biot number.

Increasing the maximum fluid Biot number further produces negligible

change in the results and does not need to be considered.

Because unequal fluid Biot numbers must be considered the relative

magnitudes of the heat capacities on the streams will also play a role. For

example, at a particular heat capacity ratio and for unequal fluid Biot num-

bers the results obtained when the fluid with the minimum heat capacity has

the minimum fluid Biot number will differ from the results obtained when the

minimum heat capacity is for the fluid with the maximum fluid Biot number.

To verify this point Figure 4.20 was created, which shows inefl’ectiveness-

NTU curves at various heat capacity ratios with the minimum heat capacity

associated with the minimum fluid Biot number and maximum fluid Biot

number. At lower magnitudes of the NTU the two cases vary greatly, while at

larger values of the NTU the two cases converge toward a common result and

the convergence occurs at a lower NTU for larger heat capacity ratios.

The two noted dependencies are due to the magnitude of the heat

capacities at the referenced NTU. At lower values ofNTU the minimum heat

capacity is relatively larger in comparison to the amount of energy that the

wall can transfer. For an opposite pairing of the extremes of heat capacity and

fluid Biot numbers the amount of energy transferred is dictated mainly by the

fluid Biot numbers. The larger heat capacity is limited by the smaller Biot

number on one side of the wall and similarly the larger Biot number is limited

by the smaller heat capacity on the other side of the wall. Producing an insen-

sitivity to the heat capacity ratio. However, if the pairing is changed to asso-

ciate extremes, the magnitudes of the heat capacity and fluid Biot number
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will not oppose each other and a dependence on the heat capacity ratio exists.

For larger values ofNTU the minimum heat capacity is smaller in com-

parison to the possible energy transfer through the wall; and the energy trans-

ferred is dictated mainly by the heat capacity ratios. The insensitivity to the

Biot number is shown by the two cases approaching the same result at larger

values of the NTU. The smaller heat capacity ratios requires a larger magni-

tudes of the NTU to converge to the same result because the larger differences

in the heat capacity across the wall make the result more sensitive to the Biot

numbers, which requires a largerNTU to insure that heat capacity is the limit-

ing parameter on the heat transfer and not the fluid Biot numbers.
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Between the limiting cases of a small NTU (where the heat transfer is

limited by the fluid Biot numbers) and a large NTU (where heat transfer is

limited by the heat capacity ratio) both parameters are important. In this

region a combination of the outcomes is seen.

The results of Figures 4.19 and 4.20 have shown that axial conduction

can now be characterized for all fluid Biot number combinations with mini-

mal error by two cases; the fluid Biot numbers equal (Bimx = Him) or the

maximum fluid Biot number an order of magnitude larger that the minimum

(Him = 1081‘,".1.)- For the case of unequal fluid Biot numbers, the minimum

heat capacity ratio must be considered to exist on the fluid with the minimum

fluid Biot number (C - Bind”) and with the maximum fluid Biot number

(Cm, - Rim“) separately, since the results will differ.

Encompassing the previous results, the operating conditions that axial

conduction will arise can now be identified with five parameters. A minimum

and maximum fluid Biot number, the wall aspect ratio, the heat capacity ratio,

and Mondt number. However, for the fluid Biot numbers only one order of

magnitude larger than the minimum needs to be considered for the maximum

fluid Biot number, greatly reducing the possibilities.

It is now possible to produce figures, which can be used to predict the

possibility of axial conduction affecting the performance of the heat

exchanger. To do this requires considering four minimum fluid Biot numbers

at four heat capacity ratios, giving sixteen figures. On each figure, two cases

for the fluid Biot number will be shown, fluid Biot numbers equal and maxi-

mum fluid Biot number ten times the minimum fluid Biot number. Further-

more, for unequal fluid Biot numbers both maximum and minimum Biot

numbers will be associated with minimum heat capacity. All of these cases

shall be shown at different wall aspect ratios.
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4.2.1 Ineffectiveness-NTU Results

4.2.1.1 Heat Capacity Ratio of l
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4.2.1.2 Heat Capacity Ratio of .75
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4.2.1.3 Heat Capacity Ratio of .50
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4.2.1.4 Heat Capacity Ratio of .25
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4.2.1.5 Discusdon of Results

In Sections (4.2.1.1-4.2.1.4) results were presented to give an indica-

tion of the operating conditions when axial conduction will exist and the

extent to which the performance of the heat exchanger will be affected. Much

of the information pertaining to the underlying physics was covered when the

NTU was held constant and therefore will not be covered in detail in this sec-

tion. Instead, the general trends in Figures 4.21-4.36 will be discussed.

Because the scope of this study was intended to be general, all magnitudes of

the describing parameters were considered for which axial conduction was

nonzero. However, only the figures that best demonstrate the trends will be

discussed.

The Mondt number is the only describing parameter that is not shown

on the figures because it was the adjustable parameter in this study. Equation

(4.10) shows that NTU is a function of the fluid Biot numbers, wall aspect

ratio, and the Mondt number. To vary the NTU the fluid Biot numbers and

wall aspect ratio was set and an appropriate magnitude of the Mondt number

selected to provide the desired NTU, which is analogous to adjusting the flow

rate of the fluids since the remaining terms in the Mondt number depend on

the properties of the wall and fluid. Thus, the NTU is indicative of the Mondt

number, and the two variables are linearly related for specified a wall aspect

ratio and fluid Biot numbers. Although the influence of the Mondt number

will be discussed in this section the real power of this variable is to predict

the presence of axial conduction, which is covered in the next section.

The wall aspect ratio and fluid Biot numbers display a similar influ-

ence on axial conduction. At smaller magnitudes of these parameters the

effect of axial conduction is more prominent. This is demonstrated in Figures

4.21 and 4.24. In Figure 4.21 for L‘ = 100 and Rim." = Him = 0.0001 the

ineffectiveness is over 40%, maintaining the same fluid Biot numbers the

ineffectiveness decreases to a maximum of 10% at a wall aspect ratio of

1000. In Figure 4.24 the fluid Biot numbers are increased to .1 while main-

taining the wall aspect ratio at 100 and the ineffectiveness decreases to 2%.

These trends are seen for the wall aspect ratio regardless of the fluid Biot

number and for equal fluid Biot numbers (Rim, = Bin“), but are not as uni-

versally true for unequal fluid Biot numbers. Since the maximum fluid Biot
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number introduces secondary effects as it is increased, a point to be discussed

later.

On a physical basis the smaller wall aspect ratios and fluid Biot num-

bers represent less thermal communication between the fluids because the

smaller wall aspect ratios increase the wall thickness or decreases the wall

length while the smaller Biot numbers decrease the convection between the

wall and the fluid. These changes result in a greater amount of energy flow

along the wall because the resistance to the energy flow in this direction is

less than the resistance to the flow across the wall, which increased due to the

changes in the wall aspect ratio and fluid Biot numbers.

In general, increasing the maximum fluid Biot number reduces the

effect of axial conduction. This is shown by the ineffectiveness decreasing by

as much as 40% in Figure 4.21 when the maximum fluid Biot number was

increased at a wall aspect ratio of 1000, which is explained by the resistance

to convection decreasing at the larger maximum fluid Biot number and axial

conduction having less influence with the lower resistance. An exception to

this outcome is seen for a combination of small magnitudes of the NTU, wall

aspect ratio, and fluid Biot numbers, where the ineffectiveness increased at

the larger maximum fluid Biot number, as shown in Figure 4.21 for L' = 100

and NTU<2.5. This is a result of the energy transfer switching from being

limited by the thermodynamic parameter (Cm) to the heat transfer parame-

ters (Bimx, Him, L' ). To show this, the effect of the Mondt number must first

be considered.

The Mondt number varies with NTU, fluid Biot numbers, and the wall

aspect ratio. To maintain a constant NTU at the larger maximum fluid Biot

numbers the Mondt number is smaller than it was for equal fluid Biot num-

bers, which means the minimum heat capacity must become larger with the

maximum fluid Biot number since all other parameters are constant in the

Mondt number for a specified wall and fluids. In addition, at small NTU the

Mondt number is relatively small in comparison to its magnitude at larger

values of the NTU. Therefore, the minimum heat capacity is larger for small

magnitudes of the NTU, and larger yet at the increased maximum fluid Biot

number; due to the reciprocal relationship between the Mondt number and

minimum heat capacity.
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With these arguments, at the small values of the NTU the energy trans-

fer is limited mainly by the minimum Biot number and wall aspect ratio since

the minimum heat capacity is large. Then increasing the maximum fluid Biot

number increases the inefl'ectiveness because the additional energy cannot be

moved across the wall. While at larger NTU the energy transfer is limited

mainly by the magnitude of the minimum heat capacity and when the maxi-

mum fluid Biot number is increased the additional energy can be moved

across the wall ineffectiveness decreases. Note that at larger minimum fluid

Biot numbers and wall aspect ratios this effect is not seen because the condi-

tions are not as limiting on the energy transfer, as shown in Figure 4.21 at

L' =500 and 1000 and for all wall aspect ratios at Bin," = 0.001 in Figure

4.22.

Because unequal fluid Biot numbers needed to be investigated, the

association between the magnitude of the heat capacity and fluid Biot num-

bers became an issue. Both possibilities are shown on all figures: minimum

heat capacity with maximum fluid Biot number and with minimum fluid Biot

numbers. The outcome of these two cases is straightforward. When like

extremes of the heat capacity and fluid Biot numbers are associated an

increase in the maximum fluid Biot number will improve conditions more so

than when opposite extremes are associated Since similar capabilities of

energy transfer are being matched in the former case, largest heat transfer

parameter with largest thermodynamic parameter. While for the later case the

opposite extremes limit the energy transfer because the heat transfer parame-

ter restricts the thermodynamic parameter or the thermodynamic parameter

limits the heat transfer parameter. The outcome is, associating like extremes

of heat capacity and fluid Biot numbers always has an equal or lower inefl‘ec-

tiveness compared to the case of opposite extremes associated.

The heat capacity ratio reduces the effect of axial conduction as it

decreases. Considering a wall aspect ratio of 100 and equal fluid Biot num-

bers of magnitude .0001, at CR = 0.25 the inefi’ectiveness if less than one-half

the ineffectiveness at CR = 1.0, in Figures 4.33 and 4.21 respectively. The

heat capacity ratio decreases the effect of axial conduction because there is

more energy available on one side of the wall and this increased amount of

energy causes a larger driving temperature potential between the wall and the

fluid. The improved energy transfer and larger amount of available energy
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reduces the effect of axial conduction and hence decreases the ineffective-

ness.

The heat capacity ratio also has some secondary effects that are related

to the maximum fluid Biot number and the association between the magni-

tudes of the heat capacity and fluid Biot numbers. For the minimum fluid heat

capacity associated with the maximum fluid Biot number the ineffectiveness

was shown to increase as the maximum fluid Biot number increased for small

magnitudes of the NTU, wall aspect ratio, and minimum fluid Biot number.

Comparing the results of Figures 4.21, 4.25, 4.29, and 4.33 at L' = 100

shows that the heat capacity ratio magnifies the amount that ineffectiveness

increases at the larger maximum fluid Biot number in comparison to the inef-

fectiveness at equal fluid Biot numbers. Also, the magnitude ofNTU at which

the crossing point is seen and the ineffectiveness decreases for larger maxi-

mum fluid Biot numbers moves to larger NTU as the heat capacity ratio

decreases.

Recalling that the larger ineffectiveness seen for small NTU as the

maximum fluid Biot number increases was due to the energy transfer being

limited by the magnitude of the wall aspect ratio and minimum fluid Biot

number. The larger maximum fluid Biot number resulted in additional energy

available, which could not be moved across the wall and hence the ineffec-

tiveness increased. This was seen until at larger NTU the minimum heat

capacity was smaller and the energy uansfer limited by the available energy.

In which case the ineffectiveness decreased at the larger maximum fluid Biot

number.

As the heat capacity ratio decreases, the energy disparity across the

wall grows. Mth opposite extremes of the heat capacity ratio and fluid Biot

numbers paired, the growing energy disparity results in a larger increase in

the ineffectiveness at the larger maximum fluid Biot number in comparison to

the ineffectiveness at equal fluid Biot numbers. In Figure 4.29 for L’ = 100

the ineffectiveness increases nearly 10% for C,. = 0.5 at the larger maximum

fluid Biot number and small NTU, while similar conditions produce an

increase of only 5% for CR = 0.75 in Figure 4.25. Note that the magnitude of

the ineffectiveness is greater at C,. = 0.75 than it is at CR = 0.5 for similar

conditions, but the change seen in the ineffectiveness as the maximum fluid

Biot number increased is larger for CR = 0.5.
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To summarize the results, the effects seen can be separated into two

groups: primary effects and secondary effects. The primary effects occur due

to changes in the wall aspect ratio, fluid Biot numbers, or heat capacity ratio.

Secondary effects occur due to changes in the Mondt number and minimum

heat capacity to maintain a constant NTU after varying the wall aspect ratio

or fluid Biot numbers. These effects are shown in Table 4.4.

The primary effects occur as a direct result of a change in the amount

of axial conduction. Table 4.4 shows that these effects decrease the amount of

axial conduction and the ineffectiveness. However, when the conditions

reach certain magnitudes; the secondary effects occur.

The secondary effects are the result of varying the NTU and show the

status of the interaction between the heat transfer and thermodynamics. For

small magnitudes of the NTU the minimum heat capacity is relatively large,

and the amount of energy transferred is dictated mainly by the heat transfer.

Whereas for larger magnitudes of the NTU, the minimum heat capacity is rel-

atively small; and the amount of energy transfer dictated by the thermody-

namics or available energy. Therefore, at small NTU the larger

ineffectiveness seen as the parameters were varied is not due to an increase in

axial conduction, instead it reflects that the limit of the energy transfer based

on the heat transfer parameters has been reached or exceeded. This produces

a larger ineffectiveness because the available energy increased as the parame-

ters were varied but no additional energy could be transferred; due to the

magnitude of heat transfer parameters(Bimw Rim, L' ). The secondary effects

demonstrate interactions between the heat transfer and thermodynamics that

are quite complex to analyze.

TABLE“ CIassiflcationofeffectsaeenastheNTUwasvar-led

 

 

 

 

PrimaryEffect SecondaryEffect

lnefl'ectivenessdecreasesatlarger L185“. Ineffectigeness ina'easesforsmallmagnitudes of

andBimu. NTU,L ,andBimmwheuBimisincreased.

IneffectivenessdecreasesatsmallerCR. lneffectiminaeasesforsmallmagnimdesof

NTU, L , Rim-n, when Bin“ isincrcasedand

theamountot‘theinereasegrowsas CRis

decreased.  
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4.3 Predicting the Presence of Axial Conduction with the Mondt number

Having shown that axial conduction can indeed adversely affect the

performance of the heat exchanger, the conditions at which this will occur

will now be analyzed. These operating conditions are represented in dimen-

sionless form by the minimum and maximum fluid Biot numbers, wall aspect

ratio, heat capacity ratio, NTU, and the Mondt number. Note that not all of

these condition can be independently specified, as seen in equation (4. 10).

The first five parameters are defined on all figures in Section 4.2.1. The

Mondt number however, is not shown on these figures because its magnitude

was calculated to provide the desired NTU. Hence, as the minimum and max-

imum fluid Biot numbers and wall aspect ratio were varied the Mondt num-

ber was changed. However, using the equation for NTU the Mondt number

can be calculated from the information on the figures

 

_ NTU[Bimax+BimaxBimin+Bimin:l (424)

M, - LU2 BiminBimax

Using equation (4.24) the information in Table 4.5 was created allowing the

Mondt number to be easily calculated as a function of the fluid Biot numbers,

wall aspect ratio and NTU. Note that the Mondt number, which was defined

earlier, is

wa

M0 = , (4.25)

CmiaL

and equation (4.24) is used to calculate the magnitude of the Mondt number

for a particular operating condition, not define it.

 

TABLE 4.5. Relationship among Mondt number, wall aspect ratio, NTU, and Fluid Biot numbers

 

 

 

 

 

 

M01."

W

Bing
Bin...” .0001 .001 .or .1 1

.0001 20001 11001 10101 10011 1W2

.001 2(01 1101 1011 Ian

.01 201 111 102

1 21 12
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Now the magnitude of the Mondt number as a function of the other

parameters can be investigated. This was done for equal minimum and maxi-

mum fluid Biot numbers.The results are shown in Figure 4.37 for the Mondt

number as a function of the NTU while varying the minimum fluid Biot num-

ber and wall aspect ratio. The legend identifies the correspondence between

the minimum fluid Biot number and line pattern and to the right of the legend

the wall aspect ratio for each curve is shown. Following upwards from a

curve the corresponding wall aspect ratio for that curve can be found then

moving horizontally from the wall aspect ratio the associated minimum fluid

Biot number can identified. The legend also allows the minimum Biot num-

ber to be identified directly from the curve, but when the curves overlap this

is difficult and the alternate method may be used. Also, the trends in the mag-

nitude of the wall aspect ratio can be visualized at the various minimum fluid

Biot numbers.

The information concerning the relationship among the Mondt num-

ber, NTU, fluid Biot number, and wall aspect ratio by itself is not very useful.

Using the information from Section 4.2.1 it was possible to draw the line

depicting the dividing line between axial conduction being present and negli-

gible. Ineffectiveness is negligible for parameters to the left of the line and

nonzero for parameters to the right. The significance of this line is that it

identifies the regions in terms of all the influencing parameters when axial

conduction needs to be considered, albeit for a heat capacity ratio of one and

equal fluid Biot numbers. After addressing the limitations on Figure 4.37 the

basis for axial conduction depending mainly on the Mondt number is dis-

cussed.

As noted, the line identifying where axial conduction becomes nonzero

is restricted to equal minimum and maximum fluid Biot numbers. However,

as shown earlier, only a maximum fluid Biot number one order of magnitude

larger than the minimum fluid Biot number needs to be considered since fur-

ther increases in the maximum Biot number do not result in significant

changes. Because the Mondt number changes with the maximum fluid Biot

number, this requires a shifting of the curve for a particular wall aspect ratio

and minimum fluid Biot number. The individual curve on Figure 4.37 needs

to be shifted an amount equal to the ratio of the values in Table 4.5.



waflupectnflmandminimumfluidniotnumber

FIGURE 4.37. Predicted region affected by axial conduction in terms of the NTU, Mondt number;
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To use the curves for equal fluid Biot numbers in Figure 4.37 when

fluid Biot numbers are not equal requires the Mondt number or NTU read

from the figure to be corrected. The Mondt number for unequal fluid Biot

numbers is

 

  

 

{MoL . . \

NTU (Brmx>Brmin)

Mawimwim) = M0(Bim=mm,n) .2 (4.26a)

MoL . .

k NTU (Blmax=Blmin) J

while the NTU is

w." . . 1
W(Blmax=Blmin)

NTU(Bimu>Bim-n) = NTU(Bim=Bi,,,,.,,) 2 (4.266)

MaL. . .

K-N—TIT (Blmax>BIm‘-n))  

where M0 (Bimx=Bim.n) in equation (4.26a) and NTU(Bimeimm) in equa-

tion (4.26b) are read from Figure 4.37 and the ratio on the right hand side is

obtained from Table 4.5 at the corresponding maximum and minimum fluid

Biot numbers. Equation (4.26a) corrects the Mondt number to correlate to the

NTU in Figure 4.37 for unequal fluid Biot number and equation (4.26b) cor-

rects the NTU to correlate to the Mondt number in Figure 4.37 for unequal

fluid Biot numbers. Only one of the variables (NTU or M) needs to be cor-

rected; the other can be read from the figure directly.

A final restriction to the dividing line in Figure 4.37 is that it applies

for a heat capacity ratio of one. Because this heat capacity ratio is the most

adversely affected, these results will be correct in predicting when axial con-

duction is negligible for smaller heat capacity ratios. However, the results

may indicate axial conduction is nonzero when in fact it is negligible at

smaller heat capacity ratios. To alleviate this restriction, the dividing line can

TDABIJEdJfi.thpflhmkaofdhddhmghimndtnunfiuususlhuunhnrofflue
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be shifted for smaller heat capacity ratios, where the effect of axial conduc-

tion is less, if all other conditions are the same. Table 4.6 gives the approxi-

mate Mondt numbers that divide axial conduction as a function of the heat

capacity ratio. Because the line does not shift very much, the additional lines

were not added to Figure 4.37.

The Mondt number varies with the wall aspect ratio, NTU and fluid

Biot numbers, as seen in equation (4.24). The Mondt number can be inter-

preted as the parameter that matches the properties of the wall and fluids (Kw

and Cm) to the operating conditions (Binm, Him, L', NTU). Figure 4.37 in

conjunction with the results of Section 4.2.1 shows that as the Mondt number

approaches zero the effect of axial conduction is negligible, while at larger

values axial conduction is present.

The smaller Mondt number results in less axial conduction because to

become smaller the product of the streamwise resistance and minimum heat

capacity must get larger, which is shown using equations (4.25) and (4.16)

Kw 1

M0=CWL'=C R

min
min streamwise

  (4.27)

A larger minimum heat capacity means the fluid retains its energy better, and

the energy that is transferred to the wall is hindered from conducting axially

by the large resistance in that direction. However, for larger Mondt numbers

the heat capacity is small, and the fluid gives up its energy easily. This energy

can then be conducted down the wall because of the smaller streamwise resis-

tance.

Physically the Mondt number represents the capabilities of the fluids

and wall, the fluid’s ability to carry energy and the walls ability to move

energy in the axial direction. Because the Mondt number varies with fluid

Biot number, wall aspect ratio and NTU it will reflect any changes seen in

these variables, which explains why it is possible to base the presence of

axial conduction on this parameter

The results in Figure 4.37 are intended to serve as a design guide to

predict if axial conduction will exist. A certain amount of caution must be

exercised in applying the results in Figure 4.37 and Table 4.6, however. The

line presented on the figure for a heat capacity ratio of one was estimated by

observing the ineffectiveness-NTU plots presented earlier, as were the magni-
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tudes listed in Table 4.6. The criteria was an ineffectiveness less than 1% was

negligible. For the regions near the dividing line, it is recommended to check

the magnitudes of the ineffectiveness on the appropriate figure in Section

4.2.1.

The corrections allowing Figure 4.37 to be applied for unequal fluid

Biot numbers in equations (4.26a) and (4.26b) will be in error for small val-

ues of the NTU, wall aspect ratio, and fluid Biot numbers if the relationship

between the heat capacity and fluid Biot numbers associates the opposite

exu'emes (Cm, - Bin“). This is due to the influence of the secondary effects

when the thermodynamic energy becomes large. Even though the Mondt

number is getting smaller the ineffectiveness increases, and this outcome

reaches larger values of the NTU as the heat capacity ratio decreases. It is rec-

ommended not to use the corrections for this association of the fluid Biot

numbers and heat capacity ratio.
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4.4 Application of the Results

Up to this point, all operating conditions of the heat exchanger have

been in terms of the Biot numbers, wall aspect ratio, heat capacity ratio, and

Mondt number. Also the material properties of the wall or fluids have not

been an issue since they were absorbed into dimensionless parameters. In this

section the dimensional variables will be presented to show specific operating

conditions (,i.e. flow rates, fluid types, and wall material) when the previ-

ously presented results will apply. The results of this section could be used to

establish experiments to verify the analytical solution.

The parameters that will be addressed in dimensional terms are the

wall aspect ratio

L
L=8

minimum and maximum fluid Biot numbers

where

heat capacity ratio

where

and the Mondt number

Bi in = min (Bic, Bi”)

Bi a = max (Bio Bi”)

 

Cm." = min (Co CH)

C
max = max(Co CH)

 

min

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)
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which were all defined earlier, but are shown again for discussion purposes.

The NTU is then

 NTU = M L‘2[ 31mm”, ] (4.37)
0 Bimx + BimmBim‘ + Bin,“

In the previous section it was shown for a Mondt number less than .01

axial conduction was negligible. Consequently, the Mondt number must be

larger to see axial conduction, and this is the parameter to begin the investiga-

tion of the dimensional quantities. Figure 4.38 gives an indication of the con-

ditions required on the wall and fluids (CminL‘Iw) as a function of the wall

thermal conductivity, that are needed to provide the required Mondt number.

Also, for the given wall thermal conductivity the product of the convective

heat transfer coefficient and wall thickness, calculated from equations (4.29-

32), are given as a function of the minimum fluid Biot number by the addi-

tional labelled axes.

The results in Figure 4.38 give insight into the magnitudes and trends

of the basic heat exchanger parameters required for axial conduction to exist.

The thermal conductivity that intuitively would improve the performance if it

were larger actually increases the possibility of axial conduction because the

value of (CmmL'lw) becomes larger as the thermal conductivity increases, as

does the product I15. The larger these two groups of parameters are the more

likely the chance they will be seen in a typical application. Noting that typical

magnitudes of the wall aspect ratio and minimum heat capacity are at mini-

mum 102 - 103, the required Mondt number will surely not be reached unless

a moderate thermal conductivity exist. This result gives an indication of the

conditions necessary for axial conduction to exist; it is not an ordinary occur-

rence.

To experience axial conduction when the wall aspect ratio is relatively

large (L’ > 1000), the heat capacity must be small or the wall width must be

large. These conditions require a fluid with a low specific heat (such as a gas),

a creeping flow to provide the small mass flow rate, or a large heat transfer

area with a correspondingly large wall width.

The wall thickness is present on both axis and produces opposite out-

comes for each. As the wall thickness becomes smaller, the wall aspect ratio

gets larger and the possibility of axial conduction decreases because the



104

 

 

10‘

10’

10‘

10’

C
m
L
/
d
w

102

10‘

 
 

   
 

10°

10-1 i

10-1 10° 101 102 10

KW

104 . ....qu . ....qu ....qu . '11‘70-

h6(Bim=.OOO1)

10-4 . --.-.wd . ”W104 . 113-1 . ””"100

h6(Bim=.001)

10-3 . "'"i'é-z . ...”;64 . .-....{bo . ......{10‘

h6(Bim=.01)

104 - ””104 . "'m1'0o . ......{b‘ . ......{b

h5(Bi...=-1)
 

FIGURE 4.38. Magnitude of pertinent heat exchanger operating conditions as a function of the
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required minimum heat capacity is very snmll. However, the convective heat

transfer coefficient on the horizontal axis becomes larger and more likely,

which is due to the scaling scheme on the fluid Biot numbers while, the

former effect of the wall thickness is due to its physical role.

From the previous discussion it is clear that to obtain the Mondt num-

ber necessary for axial conduction to exist requires one or more of the follow-

ing conditions:

1. High wall thermal conductivity

2. Small ratio of wall length to thickness

3. Larger heat transfer area and corresponding wall width

4. Low specific heat fluids

5. Small mass flow rates

TABLE 4.7. Operating conditions for axial conduction to exist

 

 

 

 

 

 

 

 

        

 

 

 

 

        

 

 

 

 

n'rL/w (kg/sec) h (W/mzK)

“it B' ' war

.01 .l l .0001 .001 .01 .1 Material

Air 1.5E—3 1.5E-4 1.5E-5 1.5 15 150 1500 Swel

Water 3.75E-4 3.75E-5 3.75E-6

Air 4.&-2 4.&-3 4.&-4 40 400 4000 40000 Copper

Water l.&-2 LOB-3 LOB-4

= .01

Air 1515-2 1513-3 1513-4 .15 1.5 15 150 Steel

Water 3.75E-3 3.75134 3.755-5

Air 4.&-l 4.&-2 4.&-3 4 40 400 4000 Copper

Water 1.&-l l.&-2 l.&-3

= .1

Air 1513-1 1515-2 1513-3 .015 .15 1.5 15 Steel

Water 35755-2 3.75E-3 3.75B-4

Air 4.0E+0 4.&-1 408-2 .4 4 40 400 Copper

Water 1.0510 1.&-1 l.&-2        
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Consider the conditions needed for axial conduction in a wall material of

steel (Kw ~ 15) or copper (Kw ~ 400) and fluids of water (Cp ~ 4000) or air

(Cp ~ 1000). The possible combinations of wall material and fluid type are

shown in Table 4.7 at various Mondt numbers and wall thicknesses. The

results shown in Table 4.7 are the mass flow rate combined with the wall

length and width and the convective heat transfer coefficient as a function of

the fluid Biot number. The fluids, wall materials, and wall thicknesses were

chosen to give a perspective over the range of the parameters that may be

encounter for typical applications. Even though a wall thickness of .1 is quite

extreme, it gives an indication of the magnitudes required for other parame-

ters to become reasonable.

It was not possible to reduce to only the mass flow rate because the

case would be too specialized. But noting that Llw is a minimum of one, and

most likely larger than one; the magnitude of the mass flow rate is even

smaller than the values shown for n‘rL/w in Table 4.7.

It is apparent from the data presented in Table 4.7 that small mass flow

rates and corresponding convection coefficients are required for axial con-

duction to exist. The required mass flow rate decreases as the Mondt number

increases while the convection coefficient decreases as the minimum fluid

Biot number decreases. Both trends demonstrate the requirement for axial

conduction to become larger since large Mondt numbers and small fluid Biot

numbers increase the effect of axial conduction on the performance of the

heat exchanger.

Recalling that the results predicting axial conduction were based solely

on the Mondt number, the results presented in Figure 4.38 and Table 4.7 do

not particularly depend on the magnitude of the convective heat transfer coef-

ficient. In essence, the magnitude of the convective heat transfer coefficient is

arbitrary as long as the requirement on the Mondt number is met. But for a

required Mondt number the magnitude of the convective heat transfer coeffi-

cient and wall dimensions will set the NTU. To obtain a particular NTU with

a prescribed Mondt number and convective heat transfer coefficient may

require unrealistic wall dimensions. Likewise, if the Mondt number and wall

dimensions are prescribed, unrealistic convective heat transfer coefficients

may be required. The magnitudes of the convective heat transfer coefficients

are intended to represent the range that axial conduction was shown to exist
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in physical situations. The range of the convective heat transfer coefficient,

however, may not be physically realistic for the entire range of Mondt num-

bers shown.
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4.5 Comparison to Published Results

All previous studies of the effect of axial conduction have been consid-

erable less general than the present work. For this reason, there is only one

specific case that can be compared to previously published results. This is the

case of balanced symmeuic flow in which the mass flow rates, heat capaci-

ties, and convective heat transfer coefficient between the fluid and wall are all

equal for the two fluids. Therefore, the heat capacity ratio is one (CR = 1) and

the fluid Biot numbers will be equal (Bi = Rim“).
min

For this case, Pan, Welch, and Head [15] derived a closed form expres-

sion for the effectiveness as a function of three variables

NL = U—C’.‘ = NTU (4.33)

Kw“ hA WK 2 .
”K = (—'E':) (a) = (_C—w) 3' (4.39)

l

2 2

p =(1+IVK) (4.40)

which are related to the variables of the present study as shown. Note that the

subscripts on heat capacity and Biot numbers have been dropped since the

conditions are the same on both sides of the wall. The effectiveness is then

given ([15] equation (34)) as

_ NL+ (NR/2p) tanh (pNL)

- NL+ (NK/Zp) tanh (pNL) + (NR/2) +1

Using equation (4.41) the effectiveness (and ineffectiveness) was cal-

culated and is shown in Figures 4.39-4.42 as a function ofNTU at various

minimum Biot numbers and wall aspect ratios. The results show excellent

agreement with the present work. The results (i - NTU) differ only beyond the

third decimal place, which can be attributed to computational round-off.

8
 (4.41)

The same restrictive case was investigated by Rohsenow [17]. How-

ever, he proposed the effectiveness as a function ofNTU and the Mondt num-

ber (Mo), which was earlier shown to be

KM... wa

C

M: = .

CL
0 L

  (4.42)
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and solved for the effectiveness at the extremes of the Mondt number, ([17]

equations (32) and (34))

M0 = o

NTU

8 " TIN??? “'4'”

Mo = ea

c = %(1-e'm”) (4.44)

Obviously, with M, = 0 the ineffectiveness is zero, since this is the case of

neglecting axial conduction by allowing the wall thermal conductivity to

shrink to zero; whereas, the wall conductivity becomes infinite for M0 = co.

Both of these cases are shown also in Figures 4.39-4.42, and they provide

bounds on the present results.
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Chapter 5

Conclusions and Recommendations for

Future Work

An exact solution for the analysis of the heat transfer occurring in a

counterflow heat exchanger including the effect of axial conduction has been

presented. In addition to the solution methodology a computer program to

evaluate the numerical aspects of the exact solution was given. The program

allowed for the investigation of the influential parameters in the solution and

verification of the solution’s validity. The role of all describing parameters

was investigated to determine their importance in affecting axial conduction.

The effect of axial conduction was quantified by the amount that the perfor-

mance of the heat exchanger was degraded in comparison to the case of

neglecting axial conduction.

The following results and conclusions are drawn from this investiga-

tion:

1. Axial conduction has less effect on the performance of the heat

exchanger at larger wall aspect ratios.

2. Axial conduction has less effect on the performance of the heat

exchanger at larger fluid Biot numbers.

3. Axial conduction is reduced at smaller heat capacity ratios.

4. The effect of the end Biot numbers on the performance of the heat

exchanger is negligible for magnitudes less than or equal to the magnitude

of the fluid Biot numbers.

5. Axial conduction is negligible for magnitudes of the Mondt number

less than .01.

6. High wall thermal conductivity promotes axial conduction.

7. Axial conduction is more likely for large heat transfer areas.

8. Applications with low heat capacity fluids promote axial conduction.

The most obvious continuation of this work would be to experimen-

tally verify the results presented herein. Although the efl’ect requires some
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atypical conditions, it was shown possible for common fluids. The applicabil-

ity of this solution to an experimental set-up, which would typically be con-

centric tubes, will require the set-up to be approximated by the model, a plane

dividing wall. Therefore, it must be possible to “cut and unroll” the concen-

tric tubes and represent them as parallel plane walls without incurring an

appreciable difference in the areas on opposite sides of the wall. In addition,

the issue of identifying the type of boundary condition to model the physical

problem at the ends of the wall will need to be addressed.

The computer program AXCOND could be coupled with existing ther-

mal design software to predict the performance of a counterflow heat

exchanger. Use of this program will be computationally expensive but will

only need to be used when certain conditions exist, otherwise the traditional

effectiveness-NTU relationships can be used. Incorporating the program into

existing software will require conversion of the main program into a subrou-

tine and consideration of the number of terms needed to produce a converged

solution. Also, if the required analysis is a sizing problem, solving for the

heat exchanger dimensions needed for a particular operating condition, an

iterative scheme needs to be implemented.

The issue of the number of terms needed to obtain an accurate solu-

tions could also be further investigated. The outcome of this additional work

may lead to possible simplifications if only a small number of terms are

needed. Furthermore, simplified equations may result under certain condi-

tions, which may allow for approximate solutions. In general, the complex

solution presented may be studied for possible simplifying cases.

The solution presented could also be modified rather easily to deter-

mine the performance of a parallel flow heat exchanger. The formulation of

the problem for the heat exchanger wall is exactly the same. The formulation

of the fluid energy balance equations will differ by a sign and the location of

the specified initial condition. The first difference will infiltrate the applica-

tion of orthogonality to apply the nonhomogeneous boundary conditions on

the wall and change one of the fluids temperature solution, but only by sign

change(s). Whereas the initial condition will change the form of the integra-

tion constant on one of the fluid temperature solution. The conversion may be

tedious, yet would require minimal computational efl’ort or programming

changes since the outline of the solution and program are given.
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APPENDIX A

A.l General Solution of the Wall Conduction Equation

Beginning with the partial differential equation for the wall and bound-

ary conditions that were derived in Chapter 2

 fl+Ltz 326” = O

ax+2 ay+2

30

”—7 +Bi00w(0,y+) = O

x o
x =0

 

W

+BiL0w(l,y+) = BiL(TL—To)

 

 

 

3):“ x. =1

30w

--—+' +3139”. (1+ao) = BiHITH(x+) -T0]
8y y’=0

aew , , . .

5? +B'c6..(x .1) = BthTcOc 14,1
y‘=1

(A.l)

(A.2a)

(A.2b)

(A.2c)

(A.2d)

The problem is split into three simpler problems each with only one nonho-

mogeneous boundary condition.

 

Problem 1

329‘ +L"‘2 9:31- = 0
ax+2 ay+2

301 '

-—+ +Bi001(0,y+) = o

81 {=0 

1
$7 +BiLe,(1,y*) = Brim-T.)

x’=l

301 . +

73—; +Bz,,el(x ,0) = 0

y ,.=0
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(A3)

(A.4a)

(A.4b)

(A.4c)
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+BiC01(x+, 1) = o

 

Problem 2

3792 3’92
2 ..

ax+2+Lit ay+2 - O

 

+ BiaG2 (0, y+) = 0

x’=0
 

+BiL02(l,y+) = o

 
x’=l

802

By"  

4191“,},02 (x*,0) = BiH[TH(x+) —To]

1" =0

892

 

+BiC02 (x", 1) = 0

y'=l

Problem 3

3’9, ”*2 at), = o

ax+2 ay+2

303

  

+Bi003(0,y+) = o

 

+BiL03(l,y+) = o

 

 

+Bi303 (x+,0) = 0

y’=0

__1

a)!“  

+3169, (x‘, 1) = Bianca“) -To]

11‘ =1

(A.4d)

(A.5)

(A.6a)

(A.6b)

(A.6c)

(A.6d)

(A7)

(A.8a)

(A.8b)

(A.8c)

(A.8d)

It can be shown by adding the three problems in Eq. (A.3-8) that the original

problem is obtained in Eq. (A.l-2). The solutions are related as follows:
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0“, (x+, y”) = 01(x+, y+) + 02 (x‘, y”) + 03 (x+, y+) (A9)

A.l.l Solution for Nonhomogeneous Boundary Condition at x“ = 1

(Problem 1)

Assuming a product solution for 61 of the form

61 = F(x”) G(y*) (A10)

Substituting into the partial differential equation and boundary conditions,

Eq. (A.3-4), gives

 

 

 

 

F , ,G+L’ZG , ,F = 0 (A.11)
x X y y

-GF . +BioGF(0) = 0 (A123)

x x’ =0

GFx, x. =1+BioGF(l) = BiL(TL- To) (A.12b)

-FG , +Bi,,FG(0) = 0 (A.12c)

y ’9 = o

my. +BiHFG(1) = o (A.12d)

r’ = l

with the following convention for representing derivatives used:

821“
ax” - Fee (A13) 

Rearranging Eq. (A. 1 l) to group similar variables and simplifying Eq. (A. 12)

gives

 

 

 

 

 

_L Ff” ._ _Gyir’ _ :l: 2 (A14)
Leg 1; - G - 11 °

—F, +BioF(0) = o (A.15a)

x 1‘ =0

3 =

-G , +Bi,,G(O) = 0 (A.15c)
y ’930

G , +Bi,,G(1) = 0 (A.15d)
Y y+ =1
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where a constant, 1:111, was introduced in Eq. (A. 14). With the left hand side

only a function of x“ and the right hand side only a function of y+ for equality

both sides must be equal to a constant, hence the introduction of the constant.

This key result allows for separation of the variables, reducing the single par-

tial difl‘erential equation to two ordinary differential equations. Before Eq.

(A. 14) can be separated however, a sign must be chosen for the constant. This

sign is chosen to produce an eigenvalue problem for the function that has two

homogenous boundary conditions to evaluate. The eigenvalue problem will

have a general solution in terms of sine and cosine functions for this cartesian

coordinate system. After choosing the sign, two ordinary differential equa-

tions can be written from Eq. (A.l4) with the appropriate boundary condi-

tions from Eq. (A.lS)

 

 

F , , -L'2u2F = 0 (A16)
x I

-F, +BioF(0) = 0 (A.l7a)

x x’ 80

G , , +1126 = 0 (A.l8)
Y y

-G, +BiHG(0) = o (A.l9a)
y y9=o

0y. . +Bi,,G(1) = o (A.l9b)

y =1
 

Note that Eq. (A.l6) only has one boundary condition, whereas Eq. (A.l8)

has two boundary conditions. The reason for this can be seen in Eq. (A.le),

which depends on both functions F and G and cannot be applied to either

function singularly. Thus, this boundary condition must be applied after

assembling the complete solution.

Eq. (A.l6) and Eq. (A.18) have easily obtainable general solutions.

The general solution for Eq. (A. 16) is

F(x+) = Alcosth’xU +A,sinh(u1.‘x+) (A20)

Applying the boundary condition, Eq. (A.l7a), gives a relationship for the

two constants
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A2=  "HA, (A21)

which can be substituted into Eq. (A.20) and rearranged giving the solution

F(x*) = A4 [pL‘ cosh (uL‘xt) +Biosinh (pL‘x*)] (A22)

The solution of Eq. (A.18) is

G (yi) = 4300801)”) +A4sin (10*) (A23)

Applying the boundary conditions in Eq. (A.l9a) solves for the relationship

between the constants

 

BiHA3

A = .244 u (A )

Substituting into Eq. (A23) and rearranging gives

60*) = A, [ucos (10*) +Biusin (uy*)] (A25)

Applying the final boundary condition, Eq. (A.19b), does not provide any

information about the constant A4 because the constant cancels, it does pro-

vide information about the constant p though, the equation simplifies to

 

("a + -BrHBrC)

To meet this boundary condition Eq. (A.26) must be satisfied for all values of

11". Eq. (A.26) is called a transcendental equation, it has an infinite number of

solutions, hence the subscript on 11, and will be solved to determine the possi-

ble values of u". The solution for the function G is then

(A.26)

G (11,. f) = 112111.003 (153”) + Biusin (u,y*)] (A27)

and 11" is given by the solution of Eq. (A.26).

Putting Eq. (A27) and Eq. (A.22) into Eq. (A.lO) will give the solu-

tion. However, since there exist many solutions to Eq. (A.27) all possible

solutions will be summed to obtain the final solution. Also, the undetermined

constants, A2 and A4’ will be grouped into one constant that will be deter-

mined later by evaluating the last boundary condition, Eq. (A.4b), which was

the boundary condition that did not separate and was not evaluated. The solu-

tion for problem one is
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(11 (x+,m = A, [unL' cosh (puff) + Biosinh (an‘x+)] *

n = 0

[11,c0s (mi) + Bigsin (11,?) 1 (A28)

and the eigenvalues are found from the solution of Eq. (A.26).

A.l.2 Solution for Nonhomogeneous Boundary Condition at y+ = 0

(Problem 2)

Using similar methods problem two can be solved. Defining an

assumed product solution

02 = F(x*)G(y*) (A29)

and substituting into the partial differential equation and boundary conditions

and choosing a sign to make the proper eigenvalue problem allows the partial

differential equation to be separated into two ordinary difierential equations

 

 

 

F . , +0121r = 0 (A30)
x x

"Fe +BioF(0) = 0 (A.3la)

x’ = 0

F. +BiLF(1) = o (A.31b)

x x‘ =1

G , , -azG = 0 (A32)

I y

G . +Bi,,G(1) = o (A.33a)
Y y. =1

The solutions are of the form, respectively

F(x*) = Blcos (ax‘) +stin (of) (A.34)

+ (I + - (l +

G(y ) = B3cosh(-Ey )+B4srnh (Ey ) (A35)

Applying the boundary conditions in Eq. (A.31a-b) to Eq. (A.33) gives

F (36‘) = Br [ancos (an?) + Biosin (anx*)] (A36)

where the values of an are obtained from the solution of the transcendental

equation
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(Bi, + 31,) an

(ah-mgr»

Applying the boundary condition given in Eq. (A.33a) to Eq. (A.35) gives

tan (01") = (A.37) 

G 0*) = B.[cosh (1%)“) -Csinh (ii-)0] (A.38)

where C is a constant, given by

fimflb +Biccosh (3;)

c = L L L (A39)

(1 a a

-;cosh (-—;) +Bi sinh (-;-)

L L C L

 

As before, putting the two solutions together and noting that the solution to

Eq. (A36) is the sum of all possible solution, and lumping undetermined

constants together allows the solution to problem two to be written as

" a a

02 (x+. yi) = 2 Bn[cosh (4f) - 9.8m (_fy‘P )] II:

n = o L L

[ancos max”) + Biosin (anx*)] (A40)

and the values of an are obtained fi'om the roots of Eq. (A.37).

A.1.3 Solution for Nonhomogeneous Boundary Condition at y+ = 8

(Problem 3)

Finally, applying the method again to solve problem three. Defining an

assumed product solution

03 = F(x") G (y”) (A41)

and substituting into the differential equation and boundary conditions and

choosing a sign to make the proper eigenvalue problem allows the partial dif-

ferential equation to be separated into two ordinary differential equations

 

F , ,+a’F = 0 (A42)
1 x

- F1, +BioF(0) = o (A43a)

x’ = 0

17‘, + BiLF(1) = o (A.43b)

xi = l
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G , , -—azG = 0 (A44)

)8

G . +Bi,,G (0) = o (A.45a)
y y. g 0

Realizing that Eq. (A4243) is exactly the same problem solved in the previ-

ous section, Eq. (A.30-31), the solution is

 

F(x+) = Cl [ancos (anx‘i) + Biosin (anx+)] (A46)

where the values of an are obtained from the solution of the transcendental

equation in Eq. (A37). The solution to Eq. (A4445) is

G(y) = C3[:—cosh(——y)-1-Bil,,sinh(i1y)] (A47)

Putting the two solutions together and noting that theLsolution to Eq. (A46) is

the sum of all possible solution, and lumping undetermined constants

together allows the solution to problem two to be written as

a

e (x+,y C,.L—gfcos(if):)+Bi sinh(—,y+)]*

3 )=n§0n Ly H L

[ancos (an?) +Biosin (auxin (A48)

and the eigenvalues are given by the roots of Eq. (A.37)

A.l.4 Summary of the Solutions

The solutions for the three problems without applying the final (nonho-

mogeneous) boundary conditions are:

01(x+,y+) = ZAnan‘coshan‘xt) +Biasinh(unL‘x+)]*

n=0

[u,cos (11,.y“) + Bigsin (11,301 (A28)

1)2 (1+,”.20"a"[cosh (L,y)- ;"m(%y+)]*

[ancos max“) +Biosin (anx*)] (A39)
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" a or a

0 xi, + = Cl:—1-'cosh(-';' *)+Bi sinh(—§ +)]*
3( y ) "go a L L y H L y

[ancos (013“) + Bio sin (anx*)] (A47)

where the eigenvalues u" and a" are given by the positive roots of the nan-

scendental equations

 

(Bi +31 )11

tan(11,,)= 2" , C, " (A26)
(nu-BrHBrc)

(Bi +Bi )(X

tan(an) = ° L " (A36) 

(a: + —BiLBi0)

The remaining boundary conditions to be applied to determine the con-

stants A", B", and C,., are Eq. (A.4b), Eq. (A.6c), and Eq. (A.8d) and they

depend on the fluid temperatures for B, and C,., therefore all will be applied

after the fluid temperatures are determined in Appendix B.

The solution for the wall conduction equation is given by Eq. (A.9) as

the sum of the three solutions and the unscaled temperature (needed to solve

for the fluid temperatures) is

T,,(X*.y*) = 9,,(x*.y+) +T, = 0103.)”) +92(x*.y+) +93(x+.y*) +7}. (448)



APPENDIX B

B.l Solution of Hot Fluid Energy Balance

Taking the describing differential equation for the hot fluid that was

derived in Chapter 2 and rearranging gives

d1” +

1,, (0) = 1,“, (B.2a)

The expression for the unscaled wall temperature (from Appendix A) is

1,, (x*,0) = 10+ 211,11" [unL'coshan’xU +Biosinh (an36)]

11:0

" 01

+ 2 (Bn+L—:Cn)[ancos(anx*) +Biosin (anx*)] (B3)

n-O

Putting this into the differential, Eq. (BI), and arranging gives

dTH - a a + . . t 4'

EMINT” = NH{T0+ 211,15.an cosh (an x )+Brosrnh(|.rnL x )1

11:0

" a

+ 2 (Bn+i-:C.)[ancos(anx*) +Biasin(anx+)] } (3,4)

n=0

To solve this problem it was first split into two problems, a homogeneous

problem

dTH, h

dx+

 +3131“ = o (8.5)

and a particular problem

(1TH, p

d1:+

 +~,,Tu.. = N..{T.+ 2'. .u.1u,.L‘cosh(u.L’x‘) +Bi.sinh(u.L'x*)l
n=0

.. an + - - +
+ 20(Bn+17cn)[ancos (crux )+Brosm(0(nx )] } (8.6)
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The particular problem in Eq. (B6) was further divided into three problems

for each term on the right hand side of the equation. The general solution for

Eq. (B. l) in terms of the simpler problem’s solutions is

3

7“,,(x+) = Tfl’h(x+) + z Tmp‘(x+) (13.7)

i=1

Where 7'”, p, is the solution to the problem

dTH, p,

+

 

+NHTH,pi = NH{5“T0

+ 52, 2 Ann" [u'L' cosh (unL’f) + Biosinh (11,5151

u=0

+53, 20(Bn+;§cn)[ancos(anx+) +Bi0sin(anx+)] } (13.3)

(i = l, 2, 3) and 5], is the kronecker delta function as defined in Eq. (3.7).

Superposition of the problems in Eq. (B8) and Eq. (B.5) will give the origi-

nally posed problem in Eq. (BA).

B.l.l Hot fluid Homogenous Solution

The homogenous problem in Eq. (B5) is solved giving

TH, ,, (x+) = Dlexp (N”x+) (13.9)

where D1 is a constant to determined after assembling the complete solution

as shown in Eq. (B.7).

B.l.2 Hot fluid Particular Solution 1

Solution of the particular problem in Eq. (B8) was obtained using

standard variation ofparameter techniques. This method substitutes a general

solution of functional form similar to the nonhomogeneous term in the prob-

lem then solves for the unknown constants in this general solution. For the

first particular solution (i=1) the general solution would be a constants,

TH,pl (xi) = f(To) = k = constant (B.lO)
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Substituting this into the difierential equation Eq. (B.8) yields

NH]: = NHTO (13.11)

and the solution is

T”, p, = To (13.12)

B.l.3 Hot fluid Particular Solution 2

The functional form of the second particular solution (i=2) is

T“, = 2 bacoshutnL'x") +cnsinh(|.tnL.x+) (13.13)

n=0

Substituting into the differential equation, Eq. (B.8), (note the summations

are not shown) gives

buan‘ sinh (11,133+) + cnunL. cosh (an‘xt)

NH [bucosh (unL‘xt) + cnsmh (unL'f) 1

= NHAnpn [unL' cosh (uuL‘xt) +Biasinh (an’x+)] (8.14)

For this particular solution to be correct equality must hold, which is accom-

plished through the constants b" and C,.. Grouping all constants for the sinh

and cash terms separately into two equations produces

bnunL' +111ch = NHAnunBio (13.15)

for the sinh terms and

cnunL‘ 1'”an = NflAnufiL’ (B.l6)

for the cash terms. Solving these two equations for the unknown constants

 

 

. (BiN - 2L‘z)

bn=AnufiL 1- "2” 5”,: (13.17)

(NH-111,14 )

(31011!” - ugL‘z) ]

c =ANHu , (3.18)

" " "i (Ni-113,“)

and substituting into Eq. (B.l3) gives the second particular solution
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" . (Bi N -u’L") . .
Tmnw) = 2A,,{ufiL [1- (52",,22‘2) :|cosh(ttnL x )

H— n

 

(BiaNH - 3:132)

(Nfi-ufiL")

 +Nflun|: ]sinh (unL’f) } (3.19)

B.l.4 Hot fluid Particular Solution 3

The functional form of the third and final particular solution (i=3) is

rm, (:6) = 2 aucos (anxt) + dnsin (an?) (3.20)

n = 0

Substituting into the differential equation

—a,,otnsin (anf) +dnaucos (an?) +NH[ancos (anf) +d,,sin ((1an

on

= NH[B,,+ i—an) [ancos (auf) + Biosin (anx+)] (B21)

then separating into two equations, the coefficients are

 

 

a

dud" + Nflan = NH (8,, + ZgC'J‘I" (3.22)

for the cos terms and

all .

- and" +N”d" = ”11(3): + Z;- C")Bto (B23)

for the sin terms. Solving for the unknown constants

(1 (Bi N + a2)

a" = (Bn+-£Cn)an[l- "2” 2" :l (3.24)

L (N”-1- an)

a Bi NH-t- a2

d = (B +—-f-C )N ° " (3.25)

" " L " ”[ N§,+ a:

and substituting into Eq. (B20) gives the particular solution
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" (1 (Bi NH-t-a’)

TH.” 0+) = 2 (Bn+i-§Cn){au[l- (13244;; ]cos (anx+)

H n

+N Bios/”+013,

H N2-1-0t2
H n

:lsin (any) } (B26)

Assembling the solutions to the simpler problems, Eq. (B.9), Eq. (B.12), Eq.

(B.l9), and Eq. (B26), using the relationship given in Eq. (B.7), the solution

for the hot fluid energy balance is

TH (15*) = To + Dlexp (-NHx+)

“ , (BiaNH-ng'z) , +

+ 2A,,{ufiL [1- (Nil-113132) :lcoshutnL x ) 

(Hwy-w”) .
N inh L +

+ ””"[ (Na-nit”) ]8 ('1’ U}

“ B'N 2

+ 2 (Bn+a—2Cn){au[l-( to H+a")]cos(anx+)

(N3, + 01;)

BiaNH+ a:

+ N” 2 sin (our) (3.27)

NH-t- a:

Applying the boundary condition, Eq. (B23), the constant is

 

 

 

 

°' , (BioNH— (12132)

D=T.—T- AuzL 1- ",
1 H.111 a Z n n [ (Ni-“:1! 2)

11:0

- a. (3:01)!“ 0:3)

- 3 —c 1 - .23

ago( "+1: a)“,.[ (N31441:) ] (B )
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B2 Solution of Cold fluid Energy Balance

The differential equation that was derived in chapter 2 for the cold

fluid, after rearranging is

are +
-;: +NCTC = NCTW (x ,1) (B29)

TC(1) = TC, 1.. (B.30a)

The wall temperature solution (from appendix A) is

1,, (x+, 1) = To+ 2 Anan'coshan'f) +3iosinh(an‘x+)] *

n=0

[uncos (11,.) + Biysin (L1,) ]

+§:~[wsn(:—r)-c~m(%)]=~
[ancos (mg?) + Biosin (anx+)]

”Canha" B’sinha"*+ — -— + —

.20 "[L‘ M (L) '” (13)]

[ancos (an?) +Biosin (anx+)] (B31)

Defining the following constants:

A” = A" [uncos (1.1") + BiHsin (“11) ] (B32)

on on

3,; = 3,,[cosh {—2) — Cnsmh (4')] (3.33)
L L

a a or.

Cn’ = Cn[—: cosh (4) + Bi”sinh (—f )] (B34)

L L L

simplifies the expression for 1,, (x”, 1) to

Tw(x*, 1) = 10+ ZAn’mnvcoshan‘x“) +Biosinh(unL'x+)]

1380

+ 2 (Bn'+C,,') [ancos (an?) +Biosin (anx+)] (3.35)

n=0



131

Putting this into the differential Eq. (B29) and arranging gives

dTC . , O 3 + o . . +‘E'HVCTC = NC{T0+ 211nm}. cosh(|.tnL x )+Btosmh (unL x )1

11:0

+ 2 (3,; + c,') [ancos (uni?) + Biosin ((13+)) } (3.36)

n = 0

To solve this problem it was first split into two simpler problems, a homoge-

neous problem

are
(hf +NCTC’,, = 0 (3.37) 

and a particular problem

dTC’ p

+

+ NCTC’ p = NC {To + Z A,’ [11,13 cosh (11.13:?) + BioSinh muff“
n=0

 

+ 2 (Bn’+ Cn’) [ancos (anf) +Biosin (anx+)] } (B38)

3 = 0

The particular problem in Eq. (B38) was further divided into three problems

for each term on the right hand side of the equation. The general solution for

Eq. (B29) in terms of the simpler problem’s solutions is

3

raw) = Tc,,.(x*) + 2 Tam-(f) (3.39)

i=1

Where Tc, p, is the solution to the problem given as

”Q“ NT -N 51‘
17+ cc,p:- c{1:,

+ 52, X A,’ [unL' cosh (unL'f) + Biosinh (an31“) 1

n=0

+5”; (3,,'+c,,') [ancos(anx+) +Biosin(ocnx+)] } (3.40)

n=0

(1' = 1, 2, 3) and 5;.- is the kronecker delta function as defined in Eq. (3.7)
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B2.l Cold fluid Homogenous Solution

The solution to the homogeneous problem in Eq. (B37) is

T0,). (x+) = Elexp (NC?) (B41)

and E1 is a constant to be determined, after assembling the complete solution.

Superposition of the problems in Eq. (B40) and Eq. (B.37) will give the orig-

inally posed problem in Eq. (B36).

B22 Cold fluid Particular Solution 1

Assuming the first particular solution (i=1) is a constant and substitut-

ing into the differential equation Eq. (B.40)and solving for the magnitude of

the constant gives

TC,,1 (x*) = To (3.42)

B23 Cold fluid Particular Solution 2

The form of the second particular solution (1'=2) is

Tamer) = 2 bucoshan'f) +cnsinh(ttnL’x+) (3.43)

n=0

substituting into the differential equation Eq. (B.40) (with summations not

shown) gives

bnan‘ sinh (uuL'JF) + enunL‘ cosh (puff)

- Nc[bncosh (fluff) + cnsinh (unL'x+)]

= —NCA,,'[unL‘cosh (30L?) +Biasinh (unL.x+)] (3.44)

and the coefficients of the sinh terms and cash terms are, respectively

bnunL’ -Nccu = -NCA,’Bia (3.45)

canal: - NCbn = 'NCAn’unL. (13°46)

Solving for the unknown constants
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. N 1' +11%”

b" =An'flnL [1+ Cf" 2".2 ] (3.47)

NC—unL

N Bi +1121."

c" = An’NC[ C2 ° 2",2 J (B.48)

NC-uflL

and substituting into Eq. (B.43), the second particular solution is

 

" , IVCBi~1-|.12L"'2 ,

Tcfloc”) = 2A,;{an [1+ N2:u2£'2 ]cosh(|.1nL x+)+

C11:0 11

 

[NCBio + 33L”

C
Né—uzL’z ]sinh(unL x*) } (3.49)

II

B.2.4 Cold fluid Particular Solution 3

The last particular solution is of functional form

Tc’p3(x+) = Z ancos(anx*) +dnsin(anx+) (3.50)

n = 0

The resulting equation after substituting into the differential equation (with-

out summations shown) is

(-anan) sin (anf) + dnancos (uni?) - NC [ancos (an?) + dnsin (anx+)]

= —NC (Bn’ + Cn’) [ancos (an?) + Biosin (anx+)] (B.51)

Separating into coefficient equations for the sin and cos terms

- and." - Ned, = -NC (Bn’ + C,.’) Bio (352)

dud" - Ncan = -NC (Bn' + C,.’) an (3.53)

and solving for the unknown constants

 

(13.54)

N '- 2

an: (Bn’+Cn’)an[l+ CBIO an]
2 2

”CHI,
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d (B ’ C ’)N "emf“: (355)= + —— .
n n u C N2- + a:

and substituting into Eq. (B50) gives the final particular solution

+ ” I I Neat-0 - a: +

TC,p3 (x ) = "go (Bu +C,. ) {an[l + $441: ]cos (aux )

New, - (xi

+ NC ‘7‘“?- sin (of) (3.56)

NC+ on"

Assembling the simpler problem’s solutions, Eq. (B.41) Eq. (B.42),

Eq. (B49), and Eq. (B.56), using Eq. (B39) the'solution for the temperature

of the cold fluid can be written as

TC(x+) = T0+Elexp (New?)

 

 

" , NCBio-t-p’L'z] ,

+ A’ 11L 1+ '1 cosh(uLx+)

ago 8{ n I: ”El-“1211‘ 2 II

NCBio+p§L‘2 ,

+N . sinh( Lx")

C[ ”is-nil- ” p”

r N Bi -a2

+ 2 (B,'+C,,’) an l+—CE°—-2—" cos(anx+)
"=0 Nc'HI.

 

NCBio - a: . +

+NC[ Ni. +01: :lsm(anx ) (3.57)

By applying the boundary condition in Eq. (B30a) the unknown constant B,

can be determined
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" . NCBio-i-uiL'z .

E, = exp(-NC) (Tm—To) - 2A,; uuL 1+ 2 2 ,2 cosh(|.tnL )

11:0 71

N Bi +32L’2 ,

+Nc[ 02° 2",2 ]sinh(unL)}
NC-uflL

 

" N ' -ot2

- 2 (Bn’+C,,’){an[l+ 2131:“: ":lcosmn)

C uit: 0

Nana-a3] . H
+ NC[ sm (an) (3.58)

2 2
Nc+an
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B3 Summary Energy Balance Solutions

This section does not provide any new information it instead summa-

rizes the solutions obtained in this appendix. The equation numbers will aid

in locating the details of these solutions.

B3.1 Hot Fluid Energy Balance Solution

Solution for the hot fluid temperature is

THO?) = To-t-Dlexp (-NHx+)

0- . (BioNH - ”3L. 2) :l e

+ A 32L 1- , cosh(uLx+)

.20 "{ " [ (373,—ng 2) "

 

(BioNH - ufiL‘Z)

(Nfi-ufiL'z)

.- B. N 2

+ 2(Bn+g;cn){an[1-( I" "+a")]cosm,,x*)

(N3, + 01%)

 +NH"..[ ]Sinh (lint?) }

 

BioNH + (:2

"Jsin (anf) } (3.27) +N

"[ ”31+“:

where

 

(BioNH - 33L”) ]

D1=TH‘-T— AuZL‘[1 ,

"' ° .21. " " (Ni-3,2,1. 2)

 

" a. (3i,N,,+ afi)

- 3 —c 1 - .

Ell " + L‘ ")a”[ (N§,+ 3;) ] (B 28)



137

B32 Cold Fluid Energy Balance Solution

The solution for the cold fluid temperature is

Tc(x+) = T0+Elexp (ch+)

" , N i+ ZL‘2 ,

+ZA,'{IJ,,L [1+ CB” 11,, Jcoshut'L x‘)

N26 - 113,1."

 

71:0

 

Name + 331.”

+ NC N2 _ 21:2

C ”I!

Jsinh (anti?) }

 

" NCBio-afi

+ (B ’+C ’) a 1+ cos (a x+)

Eu ~ {'1 was] ~

NcBio - a:

+No 2 sin (of) (3.57)

NC+ a:

 

where

NCBi, + 33L”

N3 - #3132

 

E1 = exp (-NC) [(TC,in - To) - Z An’{uul‘. [1 + :ICOSh flint.)

n=0

 

NCBio+u:L'2

+NC 2 2 '2
NC-unL

]sinh(u,L‘) }

 

- E B +C, a + COS on

n=0 II n n ”Cl “,2; n

N 3i -on2

+NC C2" 2" sin(01n) (3.53)
Nc+an

 



APPENDIX C

C.1 Application of Nonhomogeneous Boundary Conditions

In Appendix A the solution of the wall conduction equation describing

the temperature distribution in the wall was solved to the point of applying

the nonhomogeneous boundary condition for the three simpler problems that

the original problem was split into, because two of the three boundary condi-

tions depended on the temperature of the fluids. With the solutions for the

fluid temperatures complete (Appendix B) the final boundary conditions can

be applied.

C.1.1 Application of Orthogonality at x” = 1

The solution for 61 up to the point of applying the nonhomogeneous

boundary condition, and the boundary condition (Appendix A Eq. (A28) and

Eq. (A.4b)) are

91(x+,y*) = 2An[uuL'cosh(ttuL'x+) +Biosinh(|.tnL'x+)]*

n80

[u,cos (u,y*) + BiHsin 01,3”) 1 (c1)

36

57: +3561 (1, y+) = BiL(TL- To) ((2.23)

x’ =1

Taking the derivative of Eq. (Cl) and evaluating the expression and it deriv-

ative at the boundary gives

91(1,y+) = ZAuan'coshwnL‘)+3iosinh(unL‘)]*

u=0

[11,cos (15)”) + Biysin (u,y*)] (C3)

391 -+ _ 2.2. t . t c *

—(1..V ) - A, [11,14 sinhan )+Bloll,,L 00511 (11,1! )1...

ax n=0

[11,008 My") + Bigsin (u,y*)l (CA)

138
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Substituting these expressions into the boundary condition, Eq. (C2a), pro—

duces

A, [ufiL‘zsinh (unL') + BiouuL' cosh (unL’) 1 i

- 0

[woos (11.3“) + Biysin (15.3”) ]

+ BiL 2 A, [unL' cosh (unL') + Biosinh (unL')] *

11:0

[11,608 (113*) + Biysin (113*)1

= BiL(TL- To) (05)

The orthogonality of the eigenfunctions was used to solve for the constants,

A". The eigenfunction for this problem is

Y (11,. y*) = mm (11.3”) + Bigsin (11,,y“) (C6)

and these eigenfunctions have the property that

0 natm

l

£iii.,,Y(u,,.y*)Y(u,,..y*)dy+ = { N01,.) n=m ((2.7)

where wxy is a weighting constant and for the Cartesian coordinate system it

is equal to one. Therefore, Eq. (C.5) will be multiplied by a second eigen-

function Y (um, y*) and integrated over the boundary. Because this integral is

only nonzero for m=n that is the only term that will remain from the summa-

tion. The integrals for each of the three terms in Eq. (C5) are

l a

I { 2 A» [ufiL’zsinh (unL’ ) + BiouuL. cosh (unL’ )] *

0 11:0

[11,608 (15.1”) + Bigsin (u,y*)] [15,608 (umf) + BiHsin (umy+)] }dy+ __-

A,” [uiL’zsinh (me‘) + BioumL' cosh (umL‘ ) ] N (3",) ((2.3)
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l -

j {BiL 2 A, [unL’ cosh (nut) +Biosinh (n_L‘)] *

0 n=0

[uncos (113*) +BiHsin(u,,y*)] [umcoswmyfi +19i1,,sin(tl,,,y*)]aly+ } =

AmBi’L [me‘ cosh (umL‘) + Biosinh (umL') 1 N (3,") (C9)

1

Biz. (TL- T,)j[u,,,cos (umf) +Biusin (11,,y“)l ally+ =

0

_ . BiH BiH

BIL (TL - To) [3m (um) - E—cos (11”) + T] (C.10)

After applying orthogonality Eq. (C5) is

A," [niL'2sinh (umL') + BioumL' cosh (umL' ) 1 N01") +

AmBiL [umL' cosh (umL' ) + Biosinh (me‘) ] N (11...) =

. Bin 32“,,
Eli (TL- To) [8m (11,") - T608 (um) + r] (C.11)

which can be solved for the unknown constant Am

B ' B'

BiL(TL— To) [8111(11 )- JEcos (u )+ it]
III ”In In “In

A _
(C.12) 

- [ (3:2‘2 + BiaBiL) sinh (umL') + (3i, + BiL) umL‘ cosh (nmL‘ ) ] N (pm)

The functional relationship for N01,") is

 N(|.1) = l[(uerBiz) 1+ Bi" +Bi (C13)

"‘ 2 "' ° ( (1133832)) °] '

Having this information everything is completely known for evaluat-

ing 91. It would be possible to substitute Eq. (C.l3) into Eq. (C.12) and this

result into Eq. (CI) to obtain a closed form solution for 01, but because the

expression would be algebraically cumbersome this will not be done.
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C.l2 Application of Orthogonality at f = 0

The equation and boundary condition to be applied for determination

of the unknown constants (Appendix A Eq. (A.40) and Eq. (A.6c)) are

" a a

02(x+,y+) = ZBn[cosh(-7"y+)-Cnsinh (4y+]]*

n=0 L L

[ancos (an?) +Biosin (anx+)] (C.14)

 

+Bifie2 (x‘, 0) = BiH[T,,(x*) - To] (C.lSa)

y‘ = 0

The difficulty in applying this boundary condition is recognized by noting the

right hand side contains the temperature of the hot fluid. The needed temper-

ature expressions for evaluating Eq. (C. 15a) are:

92 (x+, 0) = B,I [ancos (anf) + Biosin (anx+)] ((3.16)

11:0

392 " an

—(x”, O) = - E Bn—Jn [ancos (01f) +Biosin (anx+)] (C.17)

3)” n = o L

TH 0:“) = To + Dlexp (-N,,x+)

~ . (B.,~,-,.;L-2, ..
+ 24,,{33L [1- (N; #13132) ]cosh(p.an) 

 

 

 

Putting these expressions into Eq. (C.lSa)
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" a

Z ism—ft" [aflcos (any?) + Biosin (uni?) 1

n=0

+ Bi” 2 B" [ancos (an?) + Biosin (anx+)] =

n=0

" , (BiN - 2L’2) ,

+ 2A,,{33L [1— ”2” 5",: cosh(tluL x+)

"=0 (NH-1131' )

 

 :lsinh (unL'f) }

a. B. N 2

+ 2 (Bn+a_:cn){an[l-( 1° "+a")]c08(a,,xi)
2 2

(”n+“n)

Bi N +a2

+NH[ 1:2: 2"]sin(anx+) }] (C.19)

H a).

for which onhogonality will be applied. Each term in Eq. (C. 19) will be mul-

tiplied by the eigenfunction

 

 

X (an,x*) = ancos (an?) +Bi'osin (our) (C20)

evaluated at term m and integrated over the boundary. The eigenfunction has

the same property as discussed earlier, which is given in Eq. (C.7). Each of

the integral will be listed separately and evaluated starting with the first term

in Eq. (C.l9) and proceeding to the last term.

1 a.

a

J { 2 3,—;§,[ancos(anx*) +Biasin(aux+)] *

0 n=0 L

[amcos(amx*) +Biasin(amx*)] }ch+ = Bm%CmN(am) (C21)
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1 to

j {Big 2 3,, [ancos (an?) +Biosin (anx+)] *

0 n=0

[amcos (an?) +Biosin(amx*)] }dx+ = BiHBmNmm) (C22)

1

33,01] {exp (-N,,x+) [amcos (amf) +Biosin (amx+)] }dx* =

0

 

 

BiHDl {(N +B' )a + -N”[ (N +B° )a cos(a )+l e "' l
(”31+a'2n) H a m H 0 m m

(afi-NHBia) sin (am) ] } (C23)

1 co - 2 .2

t (BIONH-unl‘ ) t

{3i 11,331. 1- , cosh(ttnL x+)*

{ ”Eu [ (Nib-nil- ”) ]

[amcos (an?) +Biasin(amx*)] }dx* =

. . t2

2 11,3;”a," 2 , _ NHBIO - 321.

(3,2132 + 3,2") " 312,- 32.132

  ] {sinh (unL’) unL' cos (01,”)

11:0

+ cosh (unL‘) amsin (am) }

+ i AnBiHBio “2 , 1_NHBio-u:L

(nfiL‘2+a;) " Ng-ufiL”
n=0

  

2

] {sinh (11,13) u,L‘ sin (0,.)

-cosh (unL‘) amcos (01,”) + am } (C24)
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1 c- . 2 02

(BloNH-Ll'L )

B ° A N ]sinh(u,L‘x+)*

0 11:0

1a~m(anx+) +Bi,sin (anx+)] }dx+ =

  

i A,Bi,,a, NHBi', - 33L”

(11,2,L’2 + (1,2,) l4, H N}, - ufiL"
n30

] {cosh (unL’) unL' cos (am)

+ sinh (u,L')amsin (am) ‘11,}; }

  

" A,Bi,,Bi, NHBi,- p2L

) n H

+ 2 N},-:

"=0 (11:1..24-(1: 22,]{0081104L ) 11,,L sin(am)

-sinh (u,L’) amcos (am) } (C25)

The remaining integrals depend on whether n=m.

(Bi,N,,+ a2) +

I“; £11,200?+_L'1C")a"[l - (N},+ 01%) Jcos (“"x )*

[amcos (an?) +Bi’0sin (amx+)] }dx” =

 

For n=m

" B' N 2

Biflz (B"+E;C")anl:l-
( '02H+:n):l*

"=0 L
(NH+an)

(1m 1 2

[Tm+43in(an127f)+

 

Bi,

sin (a,9] (C26)

Fornstm

Bi” i (Bu-t- %Cu)a,[l _ (BiaNu+ 01%)] {am|:8in(a’"-a”) + sin (“n+“n)]

n=0 (Ni-#01:) 2 (am-0%,) 2 (am+a,)

   

 

+ Bi,[l - COS (05,— an) 1- cos (am+ an)

2(am-an) + 2(am+an) ]} (€27)
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(Bi,N,,+a§) . +

j{Bi,,2(B,+—c,JNH[ (N},+a§) ]sm(a,x )2

n=0

[amcos (an?) +Biosin (amx+)] }dx+ =

For n=m

 

. u an (BioNH+a121) Bio Bio . 1 .

Bl” 2 (Bu '1' PC")NH[ (Nil... (13) ]|:T - 33:83] (2am) + 581112 (am)] ((3.28)

n=0

Fornaem

. " on,l (BioNH-i-ai) . sin(am-an) sin(am+oc,)

B'”.§o(”"*?'cn)"”[ (N§;+a:) ]{B'°[ 2(a..-a..> " 2(a,+a,)]

1- cos (am - an) 1- cos (am + at")

+“[ Nam-an) + 2(a,,+a,)

   

  

] (C29)

Instead of substituting these large expression into the Eq. (C.l9) some new

variables are defined. For Eq. (C23) let

“{(N+Bi”)0: +eN”[- (N,,+Bi,)a,cos(am) (0MB N2:

+ (mi-NHBio) sin (am) ] } ((2.30)

In Eq. (C2425) define:

  

B’ N B' - 2L’2

[Ham ) 2L'[l- H 10 ll, ]{sinh (unL') unL'cos (am)

 
 

5

pm“ (ngL‘2+a,2, N§,-n,2,L“2

+cosh(n,L‘)a,,sin(a,,) } (C31)

BiHBio 2L! 1 NHBio_u:L.2 {. ( L.) L. . ( )

p a , - , smh ll Ll sm 0:

"'2 (nthag) 33-392 " " "'

-cosh (unL') amcos (am) + am } (C32)
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Biuam [NHBio -n§L‘2

pm" within)” " Nii-uiL" ]{608h(""L ) ”"1“ com")

+ sinh (unL' ) on," sin (am) -nnL‘ } (C.33)

  

BiHBio NHBiO " "3L” { sh ( L.) L" - (a )a co sm
pmn,4 (uiL'2+a:) n H [Vii-11:14.2 “I! "a m

-sinh (nut) amcos (am) } (C34)

and for Eq. (C.26-29), for m=n

  

 

   

_ . (BioNH+a:) an: 1 . Bio . 2

wmn-Btuau 1" (N§+a:) [7+zm(2am)+2am81n (am)]

(BioNHWi) Bio Bio . 1 . 2
+NH (N;l+a:) [T ”Ia—MSU! (2am) +5811! (am):| (C35)

and for man:

_B. 1 (Bi,N,,+a§) sin(am-au) sin (am-+05.)

“'"m’ '”°"' ’ (N§,+a:) "i 2(a...-a..> “ mung]

  

. 1-cos(am-an) 1-cos(am+an)

+B‘°[ Ham-an) + 2(am+an) ]

   

(BioNH + oi) . sin (an - on") sin (am + an)

+NH[ (N21411:) '0': 2(am-an) - 2(am+an) :|

  

+am[l-cos (am-an) 1-cos(am+an)

Nam—oi”) + 2(am+an) ] ((336)

Using the newly defined variables given in Eq. (C.30-36) in the integrals of

Eq. (C.21-29); Eq. (C.l9) after applying orthogonality, can be written as
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an . ”

BMFCmNfllm) + BmB'HNuxm) = (0le + Z A” (plan. 1 + pm”. 2 + pm": 3 + pm", 4)

n=0

" a

+ 2 (Egg-[gym (C.37)

n=0

where the orthogonality relationship is

N(a) 1 (a:+3 2) +——-Bic +B' (C38)= _ i” l .

[ (w) H]
Defining one last variable

a

A,” = -[Z?cm+BiH]N(am) ((3.39)

and rearranging the equation gives

B",A" +20”(B+Cgm)wm+toD1: ~21! (pm’l+pm,2+pm’3+pmm4)

n=0

(C.40)

where the sign changes were introduced (in A," and Eq. (C.40)) so that the

variables are exactly as programmed in the computer program used to evalu-

ate the problem (in Appendix F).
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C.l.3 Application of Orthogonality at y” = 1

The equation and boundary condition to be applied for determination

of the unknown constants (Appendix A Eq. (A.48) and Eq. (A.8d)) are

93(X+.)’+) = ZCn[%cosh(%
gy*)+3iflsin

h(%y+)]*

n=0

[ancos (uni?) + Biosin (anx+)] (C41)

803

a— +BiC63 (K, 1) = BiC[TC(x+) - To] ((2.423)

y .
y = l

The evaluation of this boundary condition is very similar to the previously

discussed method for 62, except the algebra is a little more involved because

the boundary condition is evaluated at y“ = 1 instead of O. The needed tem-

perature expressions for evaluating Eq. (C.42a) are

 

u a" all . an

9303.1) = 2 Cn[—,cosh (7) +BiHsmh (7)] *

n g 0 L L L

[ancos (anf) + Bio sin (anx*)] (C43)

89 " a on a a

—3-(x+.l) = ZCn-§[—fsinh(—:)+Biucosh(—§)]*

ay+ ":0 L L L L

[ancos (uni?) + Biosin (anx+)] (C.44)
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TC (x‘) = To + Elexp (NC?)

 

(Ni-nib”)n=0

on B. N 2Lt2

+ 2A.’{uuL‘[l+( 1" Cw" )]cosh(unL'x+)

 

(BiN + 2L”) .

+NC ”2C 5"” :|sinh(unL m}

(NC-“"1! )

" B'N — 2

n = 0

BioNC — a:

+ ”c 2 sin (of) (C45)

NC+ a:

 

 

Putting these expressions into Eq. (C.42a) gives

“ an an on" an

E C,.-7 [—, sinh (7) + BiHcosh (—, II [ancos (anx+) + Biosin (anx*)]

n: o L L L L

+Bic i C,[%cosh (;§)+Biusinh (2.3)]:-

n=0

[ancos (uni?) +Biosin (a,x")] =

Bic [El exp (ch)

" , (BioNc+ ngL‘z) .

+ A ’ L l + . cosh L x+ 

 

(BioNC+u:L'2) .

+N , sinh( L 1:”)

C[ (NE-uiL 2) ""

“ (BiONC-ag)

B ’ C ’ l+ n§0( n+ n){an[ + (Né+a:)

+N (Rifle-ab ' ( +) (C46)(1 .

Ci (Ni-mi) is” "x ]

 :l cos (aux?)
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for which orthogonality will be applied. Each term in Eq. (C.46) will be mul-

tiplied by the eigenfunction

X(an,x*) = aucos (of) +Biosin(anx*) (C.47)

evaluated at term m and integrated over the boundary. The eigenfunction has

the same property as discussed earlier, which is given in Eq. (C.7). Each of

the integral will be listed separately and evaluated starting with the first term

in Eq. (C46) and proceeding to the last term.

{Ca"a"inha” 3 ha I B. ( )1...

I 2 nL.[L.S (U) tycos (21)] aNcos(ax) lsin ax

[amcos (an?) +Bi’0sin (amx+)] }dx+ =

am am am an

Cm—. [—;— sinh(—T)+ BIHCOSh(-—?)]N (am) (C.48)

L L L L

an an

3,131.020Cng—t[0031‘ (L—f )+B‘33inh (f: [I [ancos (an?) +Biosin (anx+)] *

[amcos (amf) +Biasin (amx+)] }dx" =

am am am

31'ch[— cosh()+ BiHsinh(—)flN(am) (C.49)

L L L

1

Rick“!1 {exp (ch+) [amcos(amx*) +Biosin(0tmx+)] }dx+ =

0

BicEi
N2 :{(Bi -Nc)am +eN‘[(NC-Bi)amcos(am)+ 

(0:,+Nc3i,)sin(am) ] } (C.50)
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l 0- ° 2 ‘2
. (310Nc+ll,.L )

{Bi An’u 1. 1+ ,

i C 2 " [ (Ni-nil- 2)n=0

]cosh (unL'f) *

[amcos (uni) + Biosin (amx*)] }dx* =

 
 

" Au’BiCamunL' (BioNcwfiL'z)

2 -2 1+ 2 .2
(1131. mi.) (NC-nil. )

n=0

] {sinh (nnL‘) an" cos (am)

+ cosh (unL') amsin (am) }

 

 

+ i An’BicBiouuL’ 1+ (BioNC+|.t:L'2)

with 0:3,.) (N3 wil-'2)
n=0

] {sinh (11,.L‘) 11,13 sin (am)

-cosh (uuL') amcos (am) + am } (c.51)

 

1 .. - 2 ‘2
(BloNC-i-ll L ) .

Bi A ’N '1 sinh L 15* *

1‘ C20 " C[ (Ni-11:1. 2) ] (11,. )

[amcos (amf) + Biosin (amx*)] }dx+ =

 

i An’BicamNC (BioNC+n§L’2)

(ufiL’zwi) (Ni-uiL")n=0

] {cosh (unL’) unL' cos (am)

+ sinh (11,13) amsin (am) —u,,L" }

 

- An’BiCBiONC [ (BioNc+ 1131-”)

"’ 2 2 ’2 2 2 2 ‘2
(11,1. +a,,,) (AL—11,1. )n=0

] {cosh (nnL‘) unL' sin (am)

-sinh (unL') amcos (am) } (C52)
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The remaining integrals depend on whether n=m

(BioNc - a3)

(Ni.+ (1:)

 

1 .-

jw ic 2 (B,'+ Cn’)an[l +

0

:lcos (an?) *

n80

[amcos (uni) + Biosin (amx*)] }dx+ =

for n=m

  

. on I I (BioNC-a'z') a". 1 . Bio . 2

BIC 2 (Ba + Ca )anl:1+ (Né+a2) [—2— + Zsm (2am) + 2“ sm (am)](C.53)

fl
n=0 m

f0rn¢m

   

" B'N — 2 - _ -

Bicz (Bn’+cn’)an[l+ ( to C (1')] ”[8111(am an) sm(am+an)]

  

 

"-0 (Né+a:) “am-“..) + 2(am-I-an)

, l-cosmm-an) l-cos(am+an)

+314: 2(am-an) + 2(am+an) ]} (€54)

1 ' ~ I I (BioNC-ai) . + at
{{Blcn=o(Bu +C,)Nc[ (Né-l-az) ]sm(anx)

[amcos (amf) +Biasin (amx*)] }dx+ =

forn=m

  Bic 2 (B; + (2;) NC sin (2“...) + 1 sin2 (0%)] (C55)
74:: 2

[ (BiONc - a3.) ] [Bio Bi,

2 2 -
(NC + an)

fornaem

   

(BioNC-a:)] .[sinmm-an) sin(am+an)]

Bic-2 (Bn’+Cn')Nc[ (Né'Hli) 2(am-an) - 2(am+a'n)
u=0

  

441,,[1- cos (am-an) 1- cos (am+an)

Nam-an) + 2(“m+°‘n) ] (C56)
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Instead of substituting these large expression into the Eq. (C.46) some new

variables are defined. For Eq. (C50) let

Bic
‘

fl 2 2

NC-o-am

{ (Bio - NC) on" + eNcl (NC - Bio) amcos (am) 

+ (a; —NHBi0) sin (am) ] } (C57)

In Eq. (051-52) define:

  

. t . .2

P __ BicamunL [ +(BroNC+u:L )

= sinh L‘ L‘mn,l (uiL‘2+a:) (Né-Ilzla.2) :|{ (11,, ) l1" COS (am)

+cosh(unL‘)amsin(am) } (C58)

P   

BicBiaunL’ (BioNC + ugL‘z)

a 2 '2 2 1+ 2 2 '2

(u,L +a,,.) (NC-it}. )
mu, 2

] {sinh (unL') an’ sin (am)

—cosh (unL‘) amcos (am) + am } (C59)

P 

a BicamNc [(BioNcng‘z)

mn,3

(11.2.1324'0‘9 (NZC-ufiL‘z) ]{°°‘°’h (”nl‘ ) ”nL C05 (am)

+ sinh (unL‘) amsin (am) -an‘ } (C450)

 

BiCBiaNC [ (BioNC+ ugL")
h 0 l .

”“2 (uiL‘2+a;) (Né-ufiL”) Jms (“"LN'JJ 8mm")

—sinh (unL') amcos (am) } (C.6l)
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and for Eq. (C.53-56) define

for m=n

  

[ (Rifle—ab] an 1 Bio 2

‘1'” 'Bicau l + [— + -sin (2am) + sin (am)]

  

 
  

(N%+T%) 2 4 2am

(BioNc- a3.) Bi, Bio _ 1 ,

+NCI: (”3“. (1:) “:7 - 4°". 81!) (2“...) + -2- sm2 (am)] (C.62)

for m it n

. (BioNC — a3.) sin (an — an) sin (am + an)

ngmca" 1+ (N§+a§) "'[ 2(“m'“n) + 2(“m+°‘n) ]

  

. l—cos(am-an) l—cos(am+an)

+B'°[ Mam-an) + Nam-tan) ]

 
  

(BiaNC-az) . sin(am-an) sin(am+an)

+"C[ (N§,+afi) ] B‘°[2<a..-a..> ‘ 2(am+a,)]

  

+ (1,,[1 - cos (am-0t") 1— cos (am+an)

2(am-au) + 2(am+an) ] (C63)

Using the newly defined variables in the expressions for the integrals, Eq.

(C.46) after applying orthogonality is

C — [—,sinh (1)4- BiHcosh—;-]N(am)

L L L

ML.

am am am

+ BiCCm[—;- cosh (T) + BiHsinh—;:|N (am) =

L L L

anal + Z 14,;me +PM 2 +PM 3 +PM ‘) + Z (a; + 0,5) ‘1’” (C64)

n=0 n=0

Defining a final variable

 

052.. . . . a... . . a...
(bill = [(14.2 +BICBIHJSlnh (F)... (BIH+BIC) COSh (FHNUIH') (C55)

and substituting into Eq. (C64) and rearranging gives
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Cmom -2 (B; + Cn’) ‘Pm — 9,51 = 2A,; (PM 1 +PM 2 +PM 3 + P ) (C66)

I! l

mu, 4
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C.2 Summary of Applying Nonhomogen. Boundary Conditions

The final boundary conditions were applied and simplified using the

orthogonality of the eigenfunctions. This procedure produced a close form

solution for the constant A, in 63 since the nonhomogeneous term in the

boundary condition was a constant

, 3 Bi” Bi”

B'L(TL" To) [sm (um) - -u—cos (um) + T]

 

 

Am = 2 .2 . o . o c ((112)

[(umL +BiaBiL)smh(umL )+ (31346313me cosh(ttmL )]N(um)

where

_ _1_ 2 - 2 Bi!— -

However, for the constants B3, in 63 and C,. in 03 the boundary condi-

tions to be applied have nonhomogeneous terms that are functions containing

the unknown constants B, and C,.. These functions are contained in the solu-

tions for the fluid temperatures. Thus, in applying the boundary conditions

and orthogonality the resulting equation is simplified, yet still contains sum-

mations and is a function of both unknown constants B3, and C,.. The equa-

tions to be solved to determine these constants are

B,”).“4620,,(3 +C,—2:1,”)wm+m03:

" 2 An(Pm,1+ Pm, 2 + PM 3 + pm, 4) (C40)

n=0

Cmtbm - Z (33% Cn’)‘1’,..,.

13:0

05,:

2A,’(PM3+PM +Pmm3+P3M4) (c.41)

These two equations represent a set of simultaneous equations that need to be

solved for the unknown constants B" and C,I (n= 1,2.......N) . The terms on the

left hand side contain unknown constants and the right hand side contains all

known information for two equations. The solution of these equations is

given and discussed in Appendix D.



APPENDIX D

D.l Solution for Constants B3 and (:3

After evaluating the final nonhomogeneous boundary conditions and

applying orthogonality two equations were derived to solve for 13,3 and C3,

(Appendix C Eq. (C40) and Eq. (C.66), which are

B33313. +20"(B +C,,:Z-MJVMR'i-O)DI: -221“le+pM3+pM3+pM4XDJ>

u=0

C334)" - 2 (B3'+ c3') \PM- 93353 = 2 .4; (PM 3 +PM3+PM3 +P3M4) (D2)

n=0 n=0

where all the greek variables are defined in Appendix C and the expressions

for E1 and D1 are (from Appendix B Eq. (B25) and Eq. (B.52))

o 1 (BiaNH-flila.2)

" N2_ 2L'2

H "a

 

D1: Titan-To- 2"»sz

n=0

.- B. N 2

-2 (B3+%Cn)an[l- ( t°2H+a")] (D.3)

n=0

2
NH+a3

 

 

" 3 3 (Bi NC+ an”) 3

E1 = exp (-NC) [(Tc,in" To)- 2 A,. {unL [1+ 02 2 "32 cosh (unL )

n=0 Nc‘llnL

(BiN +p2L’2) . 3

+Nc[ ”3C 2’32 ]smh(u3L)}
NC-u'nL

 

 

“ B'N — 2

-2 (B3'+C3'){a3[1+ 1" c a"]cos(a3)+
2 2

":0 ”CH!"

N (BiaNC—afi) . ( ) 4

[ ~i+ai 18“" 1““

 

Defining the following variables:
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(Bi N”- fl")
2 t - 0 n

B, a (11,,L ) [I N}, __ ”31:2 (D.5)

(BioNH + (:33)

Y..'°‘..[1' ”3,53“; (v.6)

ll

_ . (BiN wil-‘2) .
Date Ncfl‘lnl‘ [1+ £2.qu.2 ]c08h(}.lnL) 

 

(BioNC+ ufiL‘z)

+NC 2 2 ‘2
NC- ”EL

_3, a3 a3 (BiaNC - afi) ‘

an?" C[cosh(—3)-Cnsinh(—;)] {an|:1+ 2 2 cos (an)

L L NC+ an _

(BioNc - a3) ‘

+ NC 2 2

NC + an

Jsinh (unL‘) } (v.7)

 

 

 
sin ((13) } (D8)

 

_3, an an an (BiaNc- oi)

Inge C[_.cosh (—;)+Biusinh (7)] an[1+ ]cos (an)

L L L

 

N3: + a:

(BioNC- on?) 3

+ NC 2 2 sm (an) (D.9)

NC + an

and substituting into Eq. (D.3-4) gives

a Q a

D1 = (T3,, 3.3 - To) - 2 A3153 — 2 (8,, + c,,-f)Y3) (13.10)

I: = o n = o L

E, = exp (-NC) (TC, ,3- 120243331) - 20 (B36 + C331 (13.11)

where Eq. (D.8-9) contain the necessary constants to convert 33’ and C3’ to

13,3 and C33. Defining two last variables, to convert all unknown constants to a

form without a superscript prime

(VB)M = ‘PM [cosh (g) — Cusinh (E; )] (v.12)
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a a a

NC)” = ‘l’m|:—§ cosh (4)4-Bihsinh (4)] (p.13)

L L L

Introducing Eq. (D.lO-13) into Eq. (DJ-2) and rearranging gives

" " a

2 B.<v,....-v..w...> + 2 c,_ <w.....-v..m,..> =
n=0 n=0

-mm(THJfl—T0) - 2Al(pmn,l+pmn,2+pmn,3+pmn,4-mmfln) (1114)

n=0

2 [annou- (YB) mu] 3,, + Cm¢m + 2
[flm1n_ (WC) mu] C" ___

n=0

Qm‘xp(‘ c) (Taiu‘To) + zAn’u’nm.1+Pmm2+Pmm3+Pmm4-Qmun) (13°15)

n = 0

These two equation represent a set of simultaneous equations to be solved for

the constants Bnand C,. To accomplish this the series must be truncated at a

value n=Ngiving 2Nconstants to solve for (B, and Ci i = 1, 2..... N).There are

only two equations, however these equations can be written for each eigen—

value; hence the subscript m denotes the eigenvalue considered. Therefore,

since there are m=Neigenvalues and two equations for each eigenvalue the

total number of equations are 2N to solve for the same amount of constants.

For illustrative purposes consider a matrix representation of the equa-

dons

[ME] = [f] (D.16)

where [K] is the coefficient matrix of order (2Nx2N) and [f] is the forcing

vector (2le) and the unknown constant vectors given as



 
I
r
i
x
l
i
v
i

:
1
1
:
-
.
7
?
n
g
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81 Cl

32 C2

LB] = LC] = - (D.l7)

_B~_ _CNJ

Further, the coefficients matrix can be quartered and the forcing vector

halved

K K

[K] = " 1 " 2 (DIS)

[1. .J

F:
[F] = (13.19)

[a]
Each quarter of the coefficient matrix is a square matrix of order (MW) and

half the forcing vector is of length (NxI). Referring to Eq. (D. 16) the simulta-

neous equations can be represented as

[§:§:]E’J=[§;]
This shows where the terms that need to be put into the coefficient matrix and

forcing vector will come from. The rows in the coefficient matrix in Eq.

(D20) represent the coefficients of B, and C,. for each equation. Row one

corresponds to Eq. (D.l4) and row two to Eq. (D.lS). Similarly, the entries in

the forcing vector correspond to Eq. (D. 14) for row one and Eq. (D.lS) for

row two. Presenting the equations in this form, Eq. (D20), makes it possible

to write out some of the terms of the matrices to show the developing pattern

and indicate where these terms originate. The individual matrices and forcing

vectors that form Eq. (D.18) and Eq. (D.l9) are listed below.
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(A, +vu -11co,) (Wu-72ml) .. (Wm-won

(V21 "' 7102) (1.2 + V22 " 7202) - - (W21)! — YNmz)

[K1] = (0.21)

(VNI - 710)”) (VNZ — 720)”) . . (2%” + VNN -' meN)

P T

a, a2 a

((V11'71m1)27) ((vrz’yzmr)f) '°((W1N-7le)zg)

  

((v vana‘) ((v vanaz) (( )a")21‘12'7 22‘227 -- W'Y‘D'T
[K2] = L L 2N N 2 L

(( - (0)11) (( - (0)93) a”WM 71 N L‘ Wm 72 N L' -- ((WNN'YNmN)Zr-)

(D22)

(gran-(Wmu) (aloz—(WB) 12) . . (91°N‘(‘FB)1N)

(9201-(“959 (azaz-(WB)22) . . (ozoN-(WB) 2N)

[.Kg] =

(Owl-(WM) (flNaz-(WB)N2) .. (QNoN-(WB)NN)   
(D23)
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P

 

  

 

(d>l+nlrl-(‘FC)11) 0112-0?le . . film-(WC) 1N

fiztl-(‘I’Q21 (¢2+erZ—(‘I‘C)22) . . 0211f- PFC)”,

[K4] =

flNtl-(‘I’Om QNIZ—(‘I’O N2 . . (¢N+QNrN-(‘I’C)NN)

(D24)

"‘91 (TH,rn"Ta) "2’41. (pln,1+pln,2+pln,3+pln,4)
fl

’ ‘02 (TH,in " To) " 2A» (92», r + Pzn, 2 + Pzn,3 + 92:“)

[£1] = n ([125)

L-mN(TH,in-'To) "'zAu(pltlu,1"I.pNn,2+pNn,3+pNn,4)_i

" W
...N ’

n

.N ’

‘ CQZ(TC,in-To) +2An (1,211.1+P2m2+P2m3+P2n,4—02Dn)

[F2] = "

.N ’

 
(13.26)

The indices, row-i and column-j, of the coefficient matrix can be inter-

preted as the coefficient of the constant B] (or C!) for the it” eigenvalue. That

is, a row corresponds to a single eigenvalue and a column to a single con-

stant.

 d



APPENDIX E

El Derivation of Effectiveness-NTU Relationship for a

Counterflow Heat Exchanger Neglecting Axial Conduction

Consider a double pipe heat exchanger geometry as shown in Figure

E], with the energy balances on the fluids as shown. For the fluids, the

energy balances give

(me) CTCL = (me) CTCIHAx+dq (E.1)

(ch) ”Tulx = (mCP) HTH|,,A,+"9 (132)

In addition to the fluid energy balances over the differential length a thermal

circuit can be analyzed for the heat exchanger wall. The thermal circuit for

this heat exchanger is shown in Figure E.2, neglecting any fouling. The heat

transfer over a differential element of length Ax is

dq = UP(T,,-TC)Ax (12.3)

where

 

insulatio .
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Figure E.1. Double i heat exch er come and the cue balance for a

difl’er'entga?eelement offinggflrg Ax try 1'8!
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  1,, —/wv~ w W— Tc

1 In (do/d1.) 1

nap” szu hCPC

  
 

Figure E1. Thermal circuit for heat exchanger wall

1 In (do/d1) 1

up - [_hflpu.» 2M... + thc] (5.4)

Substituting Eq(E.3) into Eq(E.2) and Eq. (El) gives

[ (mc,) Jet...“- (mC,) cTclx]

 

 

 

- Ax = UP (TH- TC) (E5)

[(mC) TI -(mC) Tl]_ p H ”“2; p H ”x = UP(TH-TC) (E.6)

Introducing the heat capacity

C a me (12.7)

and taking the limit as Ax -> 0, Eq. (E5) and Eq. (E6) can be written as

are
_ 7x. = _(Ii-(TH Tc) (E8)

dry
.. 7x. : _U:-(T” Tc) (E9)

Subtracting Eq. (E9) from Eq. (E8) gives

d l 1

dx H C CH Cc ” C

This equation can be separated and integrated over the length of the heat

exchanger

idfl'fl- Tc) 1
L

1
(Tu- Tc) =-UP( )J‘dx (12.11)

ETC—c o

 

giving
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zn(r,,- TC)|o=-UP(C—H --C—C) .43 (12.12)

Evaluating the terms and rearranging Eq. (E.12), provides a solution in terms

of the operating conditions of the fluids and the heat exchanger wall design

(TH, out - TC,in)_1

(TH, in _ TC, out): exp-[-UA (ClH -CC)] (E.13)

The transformation of Eq. (E.13) into a dimensionless form will begin

by subtracting and adding the inlet temperatures of the fluids to the numerator

and denominator on the left hand side of the equation

 

 

(TH, in - TC, in) - (TH, in - TH, out) 1

(TH, in — TC, in) - (TC, out _' TC, in) = €xp["-UA (El-H- CC ] (13.14)

Next, each term of on the left hand side will be divided by the temperature

difference at the fluid inlets, (TH, in — TC. in)’ and the numerator multiplied by

(CHICH) and denominator by (CC/CC)

 

 

 

  

 

-1 _ 311(THJn — TH,out)1

C (T - T ) 1
L H H in C in .1

_ ' ' = ex -UA(-—— —— ] (5.15)

1 _ CC (TC, out - Tails)1 P[ CH CC

CC (TH, in — TC, in) ..

Defining the effectiveness as

e = ‘1 (E.16)

Carin (TH, in — TC, in)

where

C
min = min (Co CH) (13.17)

and q is the actual heat transfer that occurs over the length of the heat

exchanger, which was derived in chapter 1 using an energy balance on the

fluid, and is written as

q = CC (TC, out - TC, in) = CH (TH, in — TH, out) (5’18)

The effectiveness could be substituted into Eq. (E.15) if it was know which

fluid had the minimum heat capacity, for the sake of generality all possibili-

ties will be considered. Two of three possible expressions for Eq. (E.15) can

be written as follows, the third will be addressed later:
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For Cm = CH

[ ”‘( C”)]
—— = exp -— 1-— (E19)

1- E’ e C” CC

Cc

For Cm." = CC

1- (J3):

CH UA Cc

—..e -«»1-.—.(-.—,.))
Solving Eq. (E. 19) and (E20) for the effectiveness, after introducing the

number of transfer units

 

 

NTU - UA (E.21)

Carin

and the heat capacity ratio

(3 .
CR = mm (E22)

CM“

into the equations gives the same solution for both Eq. (E.19) and Eq. (E20),

which is

_ l- exp[-NTU(1- CR”

‘ 1- 5Rexp [-NTU (1 - 511)]

This provides results for C,., at CC, however, if the heat capacity ratios are

equal, which1s the third possibility that was mentioned previously, Eq. (E23)

is indefinite (% ). For this case L’Hosprtals rule can be applied to determine

the limit as the heat capacity ratio goes to 1 giving

(E23) 

1 + NTU
e -W (E24)
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E2 Solution of Fluid Temperatures for a Counterflow Heat

Exchanger Neglecting Axial Conduction

E2.1 Unequal Heat Capacities (Cu at CC)

Solving for the general solution of the differential equation in Eq.

(E10) for the temperature difference between the hot and cold fluid gives

TH-TC = Clexp[-(Ina-I - C811] (5.25)

where Cl is a constant. Substituting Eq. (E25) into the individual differential

equations for the fluids, in Eq. (E8) and (E9), gives the equations to be

solved for the temperatures of the fluid, with appropriate initial conditions

H” C U-PK = -C-_: 18Xp[- (El; " 61"?)X] (E26)

TH(0) = 711,111 (E2621)

”1: UP 1
—d—x— - ~55 Clexp[-UP(C1CH —E;)x] (E27)

TC(L) = TC,“ (E2721)

These two equations, Eq. (E26) and (E27), are easily solved for the temper-

atures of the hot and cold fluids

 

 

TH = 1C1 1 exp[--UP (C—IH - C—C) X] '1' C2 (E28)

“‘6; ‘ c—c’

TC = 1C1 l exp[-UP1(—C "' -Cl—)X] + C3 (E29)

CC‘Q'E’ ”' c

where C2 and C3 are constants, but noting that Eq. (E25) must holds gives

C4: C2 = C3 (530)

Incorporating Eq. (E30) and rearranging Eq. (E28) and (E29) gives

 exp[-UP(——l--——)x] (E31)

CHCC

C

T" (x): (1- CHICC)
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 Tc(x) = C,- —UP(-1— 1 )x] (E32)
1

(1— CC/CH) “”[ CH " E";

which can be solved for the unknown constants using the initial conditions in

Eq. (E263) and (E.27a). Applying these conditions to the equations for the

hot and cold fluids produces

 

 

Cl

Tilda = C4+ (l-CHICC) (E33)

C

Tc: =C‘- 1 exp -UP(—l---L)L (E34)

a set of two equations with two unknowns. Solving, the two unknown con-

stants are

(TH, in ‘ TC, in) (CC ‘ CH)
 

C1 = C C UP( 1 1 )L
c' H“?[" — '— ]

CH CC (15.35)

1 1

C4 = H C (E36) 

1
Cc- CH‘XP['UP(51; - EQL]

If C” > CC and the heat capacity ratio is used CR = CC/C”, Eq (E35) and Eq.

(E36) become

(7.11.17: ' Tc, in) (CR '1)

C1 = ER-exp [-UP/CC(CR-1)L]

 (E37)

_ CRTC’ m - 73,1119” [--wD (CR - 1) L]

‘ - CR-exp[-UPICC(CR-1)L]

Substituting Eq (E35) and (E36) into the solutions for the hot and cold flu-

ids, Eq. (E31) and (E32), gives

(E38) 
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CCTC,iu “TH,1nCH¢xP[’UP(Z~l—"C—)L]

1,,(x) = C +

C -C x -UP(— —)L]
C- He pl: C1” -CC

 

(TH, in - TC, in) (CC - CH)

(1 - CHICC) {Cc— CHexp[-UP(EI; - —1— L]}

exp[-UP(-— ..Cl- )x](E(E39)

C ) CH C

C

CCTC m— TH inCHexp[-UP(— - —)L]

Tc(x) = CH CC —

CC- Cuexp[-UP(— -—)L]

CH CC

”min" Tam) (CC' CH)

exp ”PFC-l- --)x (13.40)

(l-CCJCH){Cc—CHexp[—UP(£;—EIE)L]} [ Cu Cc ]

For the case of CH> CC Eq. (E37) and (E38) can be used in place of Eq.

(E35) and (E36) giving the following expression for the hot and cold fluid

temperatures:

 

 

+ - -
.—

THO‘ ) ' CR-exp[-UP/CC(CR-1)L]

(TH,in-TC,in) CR

CR- exp [—UPICC(CR- 1)L] ”‘1’ [‘UP (CR ’1)“ “‘14”

T (x+) = CRTC,“in-TH,in:xp[-UPI_CC(CR-1)L]
_

C
 

(TH, in - TC, in)

CR - exp I-UIVC‘E (CR ‘1)L] exp l-UP (CR -1)” 05.42)

Nondimensionalizing the length scales by the total length of the heat

exchanger

 

+-§
x -L (13.43)

and introducing the number of transfer units (NTU)
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UPL

C
min

 NTU = (13.44)

the final equations for the hot and cold temperatures become

- CRTC, in "' TH, mexp ["NTU(CR - 1)]

H- CR-exp[—NTU(CR-1)L]

_ (TH, in "' TC, in) CR

CR-exp [-NTU(CR- 1)]

 

 

“P [‘NTU (CR - 1)x*] (E45)

T = CRTC, in " Tn, inexp [-NTU (CR - 1)]

C CR-exp[-NTU(CR— 1)]

(Tu, m' Tam)

CR - exp [-NTU(CR -1)]

 

exp [-NTU(CR - l)x+] (E46) 

Note that Eq. (E45) and (E46) apply for C” > CC, which could easily be con-

verted if the opposite were true.

E.2.2 Equal Heat Capacities (CH = 0,)

If the heat capacity ratio of the two fluids are equal the solution of the

differential equation, in Eq. (E.10), for the temperature difference between

the fluids is a constants.

Which upon substituting into Eq. (E8) and (E9) give the following differen-

tial equations and initial conditions for the temperatures of the hot and cold

fluids, respectively.

CT” -UP

7; — WC, (E48)

T” (0) = T", in (E.483)

dTC -UP

TC (L) = Tan. (E49a)

The general solution of these differential equations is
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-UP
TH(x) = C—Clx-l-C2 (E50)

1!

Tc(x) = Z-Cl—J-I—iclx-l-C3 (13.51)

C

where C2 and C3 are constants, giving a total of three constants to be deter-

mined. The initial conditions in Eq. (E483) and (E.49a) provide two condi-

tions and the third condition comes from Eq. (E25). Applying these three

conditions gives the following set of equations to be solved for the unknown

constants.

T”, M = C2 (15.52)

TC, in = -g—:+:C_L+C3 (13.53)

The solution for C2 is obvious, solving forethe other constants gives

 

 

 

 

(Tu, u. - Tc 5..)

C1 " (1 +_UPL (355)

CC

UPL

TC,’in + TH,inCC

C3 = (1+___UPL (13.56)

Cc

which can be rewritten using Eq. (E44) as

(TH, in - TC, in)

CI " 1+ NTU (13.57)

Tc, in + T”. “NTU

C3 ' 1 +NTU (E'SB)

Substituting Eq. (ES?) and (E58) into the general solutions, Eq. (ESO) and

(E51), the expressions for temperature of the hot and cold fluids are

_ UP (TH, in - TC, in)

CH“ +NTU)

 

711(1) = x + T”, in ([559)
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UP(THtu"Tc:u) (TCin+TH,inNTU)
Tc(x) = — ’ ' x+ ’

CC(1+NTU) 1+NTU

If length dimensions are scaled according to Eq. (E43), expressions for tem-

perature become

(E60)
  

NTU (Tu, :. - Tarn)

(1+ NTU)

NTU (TH, in ' Tc, in) x” + (Tc, in "' TH, inNTU)

(1+NTU) 1+NTU

 TH (x) = - x” + T”, in (E.61)

TC (1:) = (E62)  

 



APPENDIX F

Program AXCOND

BOUNDRY CONDITIONS OF THE THIRD KIND

ORTHORGONALITY APPLIED WITH COSINE AND SINE FUNCTION

ASSUMING To = Tl (CONSTANT AMB TEMP)

LAST MODIFIED 4127/92

i
'
I
-
‘
I
-
‘
I
-
‘
I
‘
I
-
‘
I
‘
I
-
‘
I
-
‘
I
'
i
-
i

implicit double precision (a-h,o-z)

character para*10,runfil*60

integer size,size2

double precision len,Nc,Nh,Kw,Lstr,mu,NTU

parameter (size=200,size2=50)

dimension coeff(size,size+l),BC(size),A(size),

+ Tcold(size2),Thot(size2),Twall(size2,size2),

+ mu(size),alph(size),

+ chold(size2),dThot(size),dexxO(size2),dexx1(size2),

+ deyy0(size2),deyy1(size2)

common delta,len,Lstr,Nc,Nh,Bic,Bih,Bio,Bil,Tcin,Thin,To,'l‘l

it

** INPUT DATA

*1-

” delta - wall thickness (m)

** len - total lenth (m)

""" Cc - heat capacity cold stream (WIK)

** Ch - heat capacity hot stream (WIK)

*" hc - convection coeff cold side (W/m**2 K)

** hh - convection coefl“ hot side (Wlm**2 K)

*"' Kw - thermal conductivity of wall (W/m K)

** ho - convection coefl‘ to ambient at x=0 (W/m**2 K)

** hl - convection coefl‘ to ambient at x=L (Wlm**2 K)

** To - Temp of ambient at x=0 (C)

** Tl - Temp of ambient at x=L (C)

*"' Tcin - temp of cold fluid at x=L

** Thin - temp of hot fluid at x=0

** Lx(L) - scale length for x-direction
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I”

13*

it

it

it

it

it

*4!

*II

it

II"!

it

*1!

I”

**

iii

IMF

ill

**

It'll

It'll

C

*
I
-
I
'
i
-
‘
I
-
‘
I
i
‘
I
-
‘
I
-
‘
I
-
‘
I
-
‘
I
‘
I
'
i
-
‘
I
'
I
-
M

*
1
-
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Ly(delta)- scale length for y-direction

CALCULATED DATA

Lstr -Lley

Nc -thch/Cc

Nh -thth/Ch

Bio - ho Lx I Kw all variables dimensionless

Bil -h1Lx/Kw

Bic -thy/Kw

Bih -thy/Kw

read the input data in and define looping method

iopt - 0 -input raw data (dimensional)

1 -input Non-dimensional data

iloop = 0

irun = 1

continue

READ IN NEXT RUN FILE NAME AND BEGIN CALCULATIONS

if(irun.eq.l)runfil='[dowding.thesis.rundata]Bih.one'

if(irun.eq.2)runfll='[dowding.thesis.rundata]Bih.low'

if(irun.eq.3)runfil='[dowding.thesis.rundata]Bio.one'

if(irun.eq.4)runfll='[dowding.thesis.rundata]Bil.one'

if(irun.eq.5)runfil='[dowding.thesis.rundata]BihBic.one'

if(irun.eq.6)runfll='[dowding.thesis.rundata]BioBil.one'

if(irun.eq.7)runfll=’[dowding.thesis.rundata]Lstr.one'

if(irun.eq.l)runfil='[dowding.thesis.rundata]crl.low'

if(irun.eq.2)runfll='[dowding.thesis.rundata]cr75.low'

if(irun.eq.3)runfil=‘[dowding.thesis.rundata]cr50.low'

if(irun.eq.4)runfil='[dowding.thesis.rundata]cr25.low’

if(irun.eq.l2)runfll=’[dowding.thesis.rundata]nterm.one'

if(irun.eq.5)go to 300

print *,'running data set ',irun

open(20,status=‘unknown',file=runfil)

read(20,'(i10)')iopt

print *,'enter ioption O-single run l-vary parameter 2-stop'

I'ead("'.'(il)')iOPt
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if(iopt.eq.2)go to 300

100 continue

*
i
i
i
i

{
i
i
-
1
"

*
*
'
I
-
*

if(iopteq.0)then

call input0(Cc,Ch,Kw,wid,nterrn,ibound,ifluid,iwall,ider,

deltax,deltay,istop)

elseif(iopt.eq. l)then

iloop=iloop + 1

call inputl(Cc,Ch,Kw,wid,ntenn,ibound,ifluid,iwall,ider,

deltax,deltay,istop,iloop,para,ipara,del,parmax)

endif

Nc = Bic*Kw*I.su*widICc

Nh = Bih*Kw*Lstr*wid/Ch

print *,' read in input'

if(istop.eq.l)go to 200

SOLVE FOR THE EIGENVALUES

print *,'going to calculate eigenvalues‘

SOLVE FOR ALPHA AND MU

call root(alph,size,Bio,Bil,nterm)

call root(mu,size,Bic,Bih,nterm)

if(alph(l).gt.3.l41592654)then

write(10,"')alph(l),' eigen troubles'

go to 300

endif

if(mu(l).gt.3.l41592654)then

write(10,*)mu(l),' eigen troubles'

go to 200

endif

print *,' calculated eigenvalues'

BUILD MATRDK OF UNKNOWN COEFFCIENTS

call build(mu,alph,coefl',nterm,size,A)

print *,' built matrix'

SOLVE THE COEFF MATRIX FOR THE NEEDED CONSTANTS

call gauss(coefl‘,size,nterrn,BC)

print *,' solved matrix '

CALCULATE THE FLUID AND WALL TEMPERATURES

call profll(BC.A,size,size2,nterrn,deltax,deltay,Thot,
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+ Tcold.Twall,chold,dThot,mu.alph,d'I‘dxx0,dexx1,

+ deyyO,deyyl,qx0,qxl)

print ‘3' solved for temperatures '  
CALCULATE THE EFFECI'IVNESS AND NUMBER OF TRANSFER UNITS

WITH AND WITHOUT AXIAL CONDUCTION INCLUDED

*
§
*
*
§

n = nint(lldeltax) + 1

m = nint(lldeltay) + 1

if(Cc.le.Ch)then

Cmin = Cc

Cr = Cc/Ch

else

Cmin = Ch

Cr = Cthc

endif

 

NTU = (Bic*Bih"Kw*Lsu'*wid)/(Cmin*(Bih+Bic*Bih+Bic))

effc = Cc*(Tcold(1) - Tcold(n))/(Cmin*(’I'hot(l)-Tcold(n)))

effh = Ch*(Thot(l) - 'Ihot(n))l(Cmin*('Ihot(1)-Tcold(n)))

* write(*,*)'NTU ',N'IU

if(Cr.eq.1)then

eff = NTU/(1.0 + NTU)

else

eff = (1-exp(-NTU*(l-Cr)))/(1-Cr*exp(-NTU*(l-Cr)))

endif

print *,' calculated Effect and NTU '

CALCULATE THE HEATFLUXED AND INSURE THATENERGY IS CONSERVED

*
*
*
*
*

qhot = Ch "' (Thot(l) - Thot(n))

qcold = Cc * (Tcold(l) - Tcold(n))

qu = -wid"‘Kw/Lstr‘qx0

qxl = -wid*Kw/Lstr'"qxl

*write(10,*)'heat fluxes'

*write(10,*)'qx0 =',qx0

*write(10,*)'qxl =',qxl

*write(10,*)'qhot =',qhot

I"write(10,"')'qcold =',qcold



*
*
§
*
*
*

4:
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qtot = (qhot - qcold + qu - qxl)/(rnin(qhot,qcold))

print ‘, ' calculated heat fluxes '

GENERATE THE OUTPUT FILE OF THE TEMPERATURE DISTRIBUTIONS OF THE

FLUIDS AND WALL AND CHECK THATTHE BOUNDRY CONDITIONS ARE MET

if(iopt.eq.0)then

call output(deltax,deltay,size2,dexxO,dexx1,deyyO,

+ deyyl,Thot,Tcold,Twall,iwall,ifluid,ibound,

+ idenponplxpoymly)

call out0(NTU,efl',efl'c,eflh,nterm,Kw,Cc,Ch,qtot,p0x,p1x,

+ P0y.ply)

else

call output(deltax,deltay,size2,dexxO,dexx1,deyy0,

+ deyyl,ThoLTcold,Twall,iwall,ifluid,ibound,

+ ider,p0x,p1x,p0y,ply)

call out1(NTU,efl'pfl‘c,eflh,nterm,Kw,Cc,Ch,para,qtot,p0x,p1x,

+ p0y,ply,iloop,ipara)

endif

print *, ' Generated output files '

if(iopt.eq.0)close(10)

goto 100

200 continue

if(iopLeq. l)then

close(10)

close(40)

irun=irun+l

ismp=0

iloop=0

go to 50

endif

300 continue

a:

t

a.

Stop

end

DATE 3105/92

SUBROUTINE TO GENERATE THE OUTPUT FILE FOR OPTION 0
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‘
I
'

- SINGLE DATA FILE OPTION VARYING SOME PARAMETER

*

subroutine out0(NTU,efl,effc,eflh,nterm,Kw,Cc,Ch,qtot,

+ Pokplwomly)

implicit double precision(a-h,o-z)

double Precision NTU,Nc,Nh,len,Lstr,Kw

common deltaJen,I..str,Nc,Nh,Bic,Bih,Bio,Bil,Tcin,'I‘hin,To,Tl

1
"
}

WRITE THE NONDIM DATA AND INLET PARAMETERS USED IN CALCULATION

write(10,"')"

write(10,*)' Nondimensional Data'

write(lO,'(a,f12.5)')' L“ =',Lstr

 

wfite(10,'(a,f12.5)')' Hot side(Bih) =',Bih

write(10,'(a,f12.5)')' Cold side(Bic) =',Bic

write(10,'(a,f12.5)')' Wall End(Bio) =',Bio

write(10,'(a.f12.5)')' Wall End(Bil) =',Bil

write(10,‘(a,f12.5)')' 'ntu" hot (Nh) =',Nh

write(10,'(a,f12.5)')' 'nm" cold(Nc) =',Nc

write(10.*)' '

write(10,*)' Fluid and Wall conditions '

write(10,'(a,fl2.5,a)')' Wall Conductivity(Kw) =',Kw,’ W/mAZK'

write(10,'(a,f12.5,a)')' Heat Cap cold (Cc) =',Ch,‘ W/K'

write(10,'(a,fl2.5,a)')' Heat Cap hot (Ch) =',Cc,‘ W/K'

write(10,'(a,f12.5,a)')' Inlet Temp cold (Tcin) =',Tcin,‘ C'

write(10,'(a,f12.5,a)')' Inlet Temp hot (Thin) =',Thin,’ C'

write(10,*)' '

write(10,*)'Ambient Temperatures '

write(10,'(a.f12.5)')' At x=L (Tl) =',Tl

write(10,'(a,f12.5)')' At x=0 (To) =',To

write(10,"‘)"

write(10,'(a,iZ,a)')' Summations terminated at ',nterm,' terms'

write(10,"')"

write(lO,'(l7x,a,5x,a,4x,a,4x,a)')'I-lot',’Cold',

+ 'Negl', 'Eng Boundry Condition err Bi'

write(l0,'(5x,a,8x,a,6x,a,5x,a,5x,a)')'NTU','Efl‘,'Efl‘,'Efl‘,

+ 'Bal Bio Bil Bih Bic'

write(10,'(2x,t7.4,2x,3f9.4,lx,e8.2,4f7.4)')NTU,effh,

+ efic,efl’,qtot,p0x,plx,p0y,ply

return

end

* DATE 3/05/92
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SUBROUTINE TO GENERATE THE OUTPUT FILE FOR OPTION 1

- OPTION VARYING SOME PARAMETER

subroutine outl(NTU,efl‘,efl'c,efl‘h,nterm,Kw,Cc,Ch,para,qtot,

pOx.p1x.pOy.ply.iloop.ipara)

implicit double precision(a-h,o-z)

double Precision NTU,N'IUlam.Nc,Nh,len,Lstr,Kw

character para" 10

common delta,len,Lstr,Nc,Nh,Bic,Bih,Bio,Bil,Tcin,Thin,To,Tl

WRITE THE NONDIM DATA AND INLET PARAMETERS USED IN CALCULATION

if(iloop.eq.1)then

write(10,*)' '

write(lO,"')' Nondimensional Data'

write(10,'(a,f12.5)')' L“ =',Lstr

write(10,'(a,f12.5)')' Hot side(Bih) =',Bih

write(10,'(a,f12.5)')' Cold side(Bic) =',Bic

write(10,'(a,f12.5)')' Wall End(Bio) =',Bio

write(10,'(a,f12.5)')' Wall End(Bil) =',Bil

write( lO,'(a.f12.5)')' "ntu" hot (Nh) =',Nh

write(10,'(a,f12.5)')' ”ntu" cold(Nc) =',Nc

write(10.*)' '

write(10,*)' Fluid and Wall conditions '

write(10,'(a,f12.5,a)')' Wall Conductivity(Kw) =‘,Kw,‘ W/m"2K'

write(10,'(a,f12.5,a)')' Heat Cap cold (Cc) =',Cc,’ W/K'

write(10,'(a,fl2.5,a)')' Heat Cap hot (Ch) =',Ch,‘ W/K'

write(10,'(a,fl2.5,a)')' Inlet Temp cold (Tcin) =',Tcin,’ C'

write(10,'(a,f12.5,a)')' Inlet Temp hot (Thin) =',Thin,‘ C‘

write(lO,‘)' '

write(lO,‘)’Ambient Temperatures '

write(10,'(a,f12.5)')' At x=L (Tl) =',Tl

write(10,'(a,f12.5)')' At x=O (To) =',To

write(lO,*)' '

write(10,'(a,i3,a)')' Summations terminated at ',nterm,' terms'

write(10,*)' '

write(10.'(a.a)')' varying parameter 29m

write(10,*)' '

write(lO,'(3x,a9,l6x,a,5x,a,4x,a,4x,a)')para,'Hot','Cold',

'Negl', 'Eng Boundry Condition'

write(lO,'(l9x,a,6x,a,5x,a,5x,a,5x,a)')'NTU',

'Efl‘, 'Efl‘,'Efi‘,'Bal max error'

endif
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BCerr = max(p0x,plx,p0y,p1y)

uneff = (efl‘ - (effh+effc)l2)leff

Cmin = min(Ch,Cc)

Cmax = max(Ch,Cc)

NTUlam a Kw*Lstr/Cmin

if(iparaeq.l)then

write(10,'(3x,f7.2,5x,f8.3,1x,3f8.5,lx,e8.2,3x.f7.5)')

+ Isu',NTU,eflh,efl'c,eff,qtot,BCerr

write(40,'(lx,f10.3,lx,f4.2,2f10.6,2x,4f9.5)')Lstr,Cmin/Cmax,

+ Cmin,NTU,eflh,efl'c,eff,unefl‘

return

elseif(ipara.eq.2)then

write(10,'(3x,f7.4,5x,f8.3,lx,3f8.$,1x,eB.2,3x,f7.5)')Bih,NTU,

+ eflh,effc,efl',qtot,BCerr

write(40,'(1x,1f10.6,lx,f4.2,2f10.6,2x,4f9.5)')Bih,Cmin/Cmax,

+ Cmin,NTU,eflh,effc,eff,uneff

return

elseif(ipara.eq.3)then

write(10,'(3x,f7.4,5x.f8.3,lx,3f8.5,1x38.2,3x.f7.5)')Bic,NTU,

+ efl'h,efl'c,eff,qtot,BCerr

 

write(40,'(lx,f10.6,1x,f4.2,2f10.6,2x,4f9.5)')Bic,Cmin/Cmax,

+ Cmin,NTU,effh,efl'c,efl‘,uneff

return

elseif(ipara.eq.4)then

write(10,'(3x,f7.4,5x,f8.3,lx,3f8.5,lx,e8.2,3x,f7.5)')Bio,NTU,

+ effh,effc,efl‘,qtot,BCerr

write(40,'(lx,f10.6,lx.f4.2,2f10.6,2x,4f9.5)')Bio,Cmin/Cmax,

+ Cmin,NTU,eflh,efl'c,eff,uneff

return

elseif(ipara.eq.5)then

write(10,'(3x,f7.4,5x,f8.3,1x,3f8.5,1x,e8.2,3x,t7.5)')Bil,NTU,

+ eflh,effc,efl',qtot,BCcrr

write(40,‘(1x,f10.6,1x,f4.2,2fl0.6,2x,4f9.5)')Bil,Cmm/Cmax,

+ Cmin,NTU,eflh,efl’c,eff,uneff

return

elseif(ipara.eq.6.and.Ch.lt.Cc)then

write(10,'(3x,f7.4,5x,f8.3,lx,3f8.4,lx,e8.2,3x.t7.5)')Cthc,NTU,

+ efl‘h,efl'c,eff,qtot,BCerr

write(40,'(1x,f4.2,1x,2fl0.6,2x,4f9.5)')Cmin/Cmax,Cmin,NTU,eflh,

+ efl'c,eff,unefl‘

return

elseif(ipara.eq.6.and.Ccle.Ch)then

write(10,'(3x,f7.4,5x,f&3,1x,3f8.5,lx,e8.2,3x.f7.5)')Cc/Ch,NTU,
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eflh,efl'c,eff,qtot,BCerr

write(40,'(1x,f4.2,1x,2flO.6,2x,4f9.5)')Cmin/Cmax,Cmin,NTU,effh,

efl'c,eff,unefl‘

return

elseif(ipara.eq.16.and.Cc.le.Ch)then

write(10,'(f7.4.f8.2,f8.3,lx,3f8.5,lx,e8.2,3x,f7.5)')Cc/Ch,LsU,NTU,

eflh,efl‘c,eff,qtot,BCerr

return

elseif(ipara.eq.l6.and.Ch.lt.Cc)then

write(lO,‘(t7.4,fB.2,f8.3,lx,3f8.5,lx,e8.2,3x,fl.5)')Ch/Cc,lsu,NTU.

efl‘h,effc,efl‘,qtot,BCerr

return

elseif(ipara.eq.23)then

write(10,'(3x,t7.5,5x,f&3,lx,3f8.5,1x,e8.2,3x,f7.5)')Bih,NTU,

eflh,effc,efl',qtot,BCerr

write(40,'(lx,2f8.5,lx,f4.2,lx,f8.4,lx,f$.2,4f8.5)')Bic,Bih,

Cmin/Cmax,Cmin,NTU,eflh,effc,efl‘,unefl‘

return

elseif(ipara.eq.45)then

write(10,'(lxfl.5,lx,f7.5,f8.3,1x,3f8.5,1x,e8.2,3x,t7.5)')Bio,

Bil,NTU,efl'h,efl'c,efl',qtot,BCerr

write(40,'(1x,2f8.5,lx,f4.2,1x,f8.4,lx,f5.2,4f8.5)')Bio,Bil,

Cmin/Cmax,Cmin,NTU,eflh,efl‘c,efl',unefl’

return

elseif(ipara.eq.8)then

write(10,'(3x,i5,7x,f8.3,lx,3f8.5,1x,e8.2,3x,f7.4)')nterm,NTU,eflh,

efl‘c,eff,qtot,BCerr

write(40,'(lx,3i,f10.6,2x,4f9.5)')N,NTU,efl'h,

efl'c,eff,uneff

return

endif

end

DATE 2/17/92

SUBROUTINE TO OPEN FILE AND READ IN RAW DATA

subroutine input0(Cc,Ch,Kw,wid,nterm,ibound,ifluid,iwall,ider,

deltax,deltay,istop)

implicit double precision (a-h,o-z)

double precision len,Lx,Ly,Kw,Nc,Nh,Lsu'
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character outfll‘60.infil*60

common deltalenlsu',Nc.Nh,Bic,Bih,Bio,Bil,Tcin,Thin,To,Tl

print ‘,Enter the input file'

read(*.'(a)')infil

print ‘,Enter the output file'

read(*.'(a)')outfil

CHECK IF EOF FLAG TO TERMINATE THE PROGRAM HAS BEEN READ IN

if(outfll.eq.'eof')then

close(20)

istop = 1

return

else

istop=0

endif

READ IN THE RAW DATA

open(10,status='new',file=outfil)

0pen(40,status='new',flle=outfil)

open(50,status='new',filwoutfil)

open(30,status='unlrnown',file=infll)

read(30,'(l7x,i20.0)')l..str

read(30,'(l7x,f20.0)')Bih

read(30,'(l7x,f20.0)')Bic

read(30,'(l7x,f20.0)')Bio

read(30,'(l7x,i20.0)')Bil

read(30,'(l7x,f20.0)')Kw

read(30,’(l7x,i‘20.0)')Ch

read(30,'(l7x,f20.0)')Cc

read(30,'(l7x,f20.0)')'lhin

read(30,'(l7x,f20.0)')Tcin

read(30,'(l7x,f20.0)')To

read(30,'(l7x,f20.0)')'1'l

read(30,'(l7xf20.0)')wid

read(30,'(l7x,i20)')nterm

read(30,'(l7x,i20)')ibound

read(30,'(l7x,iZO)')ifluid

read(30,'(l7x,i20)')iwall

read(30,'(l7x,i20)')ider

read(30,‘(l7x,i20.0)')deltax

read(30,'(l7x,i20.0)')deltay

close(30)
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return

end

DATA 3105/92

SUBROUTINE TO OPEN FILE AND READ IN RAW DATA

subroutine inputl(Cc,Ch,Kw,wid,nterm,ibound,ifluid,iwall,ider,

+ deltax,deltay,istop,iloop,para,ipara,del,parmax)

implicit double precision (a-h,o-z)

double precision len,Lstr,Nc,Nh,Kw

character outfil*60,para* 10,infil*60

common deltaJeanu;Nc,Nh,Bic,Bih,Bio,Bil,Tcin,Thin,To,Tl

if(iloop.eq. l)then

READINPARAMETERTOVARYJNCREMENTANDMAXVALUETHENTHERAW

DATA FILE NAME AND PERTINENT DATA

print *,'enter the para to vary'

l'ead("‘.'(i10)')il>fim

print *,'enter the del'

read(*,'(f20.0)')del

print*,'enter the max value'

read(*,'(f20.0)')parmax

print ‘,‘enter the input file name'

read(*.'(a)')infil

print *,'enter the output file name'

read(*.'(a)')outfil

open(40,status='new',file=outfll)

Open(10,status='new',file=outfil)

open(30,status='unhiown',file=infil)

read(30,'(l7x,f20.0)')Lstr

read(30,'(l7x,f20.0)')Bih

read(30,'(l7x,i20.0)')Bic

read(30,'(l7x,i20.0)')Bio

read(30,'(l7x,f20.0)')Bil

read(30,'(l7x,f20.0)')Kw

read(30,'(l7xfl0.0)')Ch

read(30,'(l7x,i20.0)')Cc
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read(30,'(l7x,i20.0)')Thin

read(30,’(l7x,i20.0)')Tcin

read(30,'(l7x,i20.0)')To

read(30,'(l7x,i20.0)')Tl

read(30,'(l7x,i20.0)')wid

read(30,'(l7x,iZO)’)ntenn

mad(30,‘(17x520)')ibound

read(30,'(l7x,i20)')ifiuid

read(30,'(l7x,im)')iwall

read(30,'(l7x,i20)')ider

read(30,'(l7x,f20.0)')deltax

read(30,'(l7x,f20.0)')deltay

close(20)

close(30)

 

OTHERWISE INCREMENTTHE PARAMETER THAT IS BEING VARIED AND SEND

DATA BACK TO PROGRAM

endif

if(iparaeq.l)then

para = 'Lstr'

if(iloop.eq. l)then

Cmin = min(Cc,Ch)

Cr = Cchh

ratio = Lstr/Cmin

else

Lsu' = Lstr + del

write(*,"')'Lstr ',Lstr

Cmin = Lstr/ratio

if(Cc.le.Ch)then

Cc = Cmin

Ch = Cc/Cr

else

Ch = Cmin

Cc = Cr " Ch

endif

endif

istop = 0

if(I.str:gt.parmax)istop=l

return

elseif(ipara.eq.2)then

para = 'Bih'

istop = O

if(iloop.eq. l)then

Cmin = min(Cc,Ch)

Cr = Cchh
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ratioi = Lstr/Cmin“(Bih"Bic*Kw*wid/

(Bih + Bic‘Bih + Bic))

else

Bih = Bih * del

ratio = Lstr *(Bih*Bic*Kw*widl

(Bih + Bic*Bih + Bic))

Cmin = ratio/ratioi

if(Cc.le.Ch)then

Cc = Cmin

Ch = Cc/Cr

else

Ch = Cmin

Cc = Cr " Ch

endif

endif

if(Bih.gt.parmax)istop=l

return

elseif(ipara.eq.3)then

para = 'Bic'

istop = 0

if(iloop.eq. l)then

Cmin = min(Cc,Ch)

Cr = Cc/Ch

ratioi = Lstr/Cmin*(Bih*Bic*Kw*widl

(Bih + Bic*Bih + Bic))

else

Bic = Bic * del

ratio = Lstr *(Bih*Bic*Kw*widl

(Bih + Bic‘Bih + Bic))

Cmin = ratio/ratioi

if(Cc.le.Ch)then

Cc = Cmin

Ch = Cc/Cr

else

Ch = Cmin

Cc = Cr * Ch

endif

endif

if(Bic.gt.parmax)istop=l

return

elseif(ipara.eq.4)then

para = 'Bio'

kmp=0

if(iloop.gt.1)Bio = Bio * del

if(Bio.gt.parmax)istop=l

return

elseif(ipara.eq.5)then
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para = 'Bil'

istop = 0

if(iloop.gt.l)Bil = Bil * del

if(Bil.gt.parmax)istop=l

return

elseif(ipara.eq.6)then

para = ‘Cr'

istop = 0

Cr = Cthc

if(iloop.gt.l)Ch = Ch 4» del

if(iloop.gt.l)Cc = Cthr

if(Cc.ngarmax)istop=1

return

elseif(ipara.eq. l6)then

para = ‘Cr & L*'

istop = 0

Cmax = max(Cc,Ch)

Cmin = min(Cc,Ch)

if(iloop.eq.1)then

ratio = Lsu'lCmin

deLsu' = del * (parmax-Lstr)

delCr = del "' ratio/(Cmax - Cmin)

write(*,*)'delCr delLstr =',delCr,deLstr

else

if(Ch.le.Cc)then

Lsu' = Lsu' + deLstr

Ch = Ch + delCr

else

Lstr = Lsu' + deLstr

Cc = Cc + delCr

endif

endif

if(Lsu'.gt.parmax)istop = 1

return

elseif(ipara.eq.23)then

para = 'Bih & Bic'

istop = 0

if(iloop.eq. l)then

Cmin = min(Cc,Ch)

Cr = Cc/Ch

ratioi = Lstr/Cmin*(Bih*Bic*Kw*wid/

(Bih + Bic‘Bih + Bic))

else

Bih = Bih + del

Bic = Bic + del

ratio = Lstr *(Bih*Bic*Kw*wid/
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+ (Bih + Bic‘Bih + Bic))

Cmin = ratio/ratioi

if(Cc.le.Ch)then

Cc = Cmin

Ch = Cc/Cr

else

Ch = Cmin

Cc = Cr "' Ch

endif

endif

if(Bih.gt.parmax)istop = 1

return

elseif(ipara.eq.45)then

para = 'Bio & Bil'

istop = 0

if(iloop.eq. l)then

Bioi=Bi0

Bili=Bil

else

Bio = Bioi "‘ del

Bil = Bili "‘ del

Bioi = Bio

Bili = Bil

endif

if(Bio.gt.parmax)istop = 1

return

elseif(ipara.eq.8)then

para = 'N'

kmp=0

if(iloop.gt.1)nterm = nterm "' del

if(nterrn.gt.parmax)istop=l

return

endif

end

date 2109/92

SUBROUTINE TO BUILD THE MATRIX OF UNKNOWN COEFF

*
i
-
i
i
-
I
'
l
’
l
-

subroutine build(mu,alph,coefl',nterm,size,A)

implicit double precision (a-h,o-z)

integer size
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double precision 1en,Nc,Nh,mu,mulsq,rnul,Lstr,Ncsq,Nhsq,1am,musq

common deltalen,Lsu',Nc,Nh,Bic,Bih,Bio.Bi1,Tcin,Thin,To,Tl

dimension coefl‘(size,size+1),mu(size),alph(size)

dimension A(size)

GENERATION OFTHE MATRIX, ORDER WILL BE (2*NTERM X 2*NTERM +1)

SET CONSTANTS AND INITIALIZE THE PARAMETERS

pi = 1141592654

Ncsq = Nc * Nc

Nhsq = Nh "' Nh

rhsl = 0.0

rhs2 = 0.0

rhsB = 0.0

rhs4 = 0.0

exch = dexp(-Nc)

BEGIN COMPUTTIN MATRIX -i CORRESPONDS TO ROW NUMBER

do 10 i=1,nterm

mul = mu(i)*Lstr

mulsq = mul "' mul

musq = mu(i) * mu(i)

alpl = alph(i) I Lstr

alphsq = 81111116)“ alph(i)

alplsq = alpl * alpl

hsin = sinh(alpl)

hcos = cosh(alpl)

sine = sin(alph(i))

cosin = cos(alph(i))

zeta = (alpl*hsin + Bic‘hcos)l(Bic*hsin + alpl*hcos)

orth =((alphsq+Bio**2.0)*(1.+Bill(alphsq+Bil**2.))+Bio)l2.0

orthmu =((musq+Bih"2.0)*(l.0+Bicl(musq+Bic**2.0))+Bih)/2.0

lam = -(alp1*zeta + Bih) "' orth

if(Nh.lt.100)then

0mg = Bih/(Nhsq+alphsq)*((Nh+Bio)*alph(i)+dexp(-Nh)*

((alphsq-Nh‘BioY’sine - (Bio+Nh)*alph(i)*cosin))

else

omg = Bill/(Nhsq+alphsq)*(Nh+Bio)*alph(i)

endif

 

 



189

cphi =((alplsq+Bic*Bi11)*hsin+(Bic+Bih)"'a1pl*hcos)*orth

‘
I
'

ABSORBED EXP(-NC) INTO COMG FROM LOADING OF THE MATRIX

if(Nc.lt.100)then

comg = Bic/(Ncsq+alphsq)‘(exch*(Bio-Nc)*alph(i)+

+ ((alphsq+Bio*Nc)*sine + (Nc-Bio)*alph(i)*cosin))

else

comg = Bic/(Ncsq+alphsq)*((alphsq+Bio*Nc)*sine +

+ (Nc-Bio)*alph(i)"'cosin)

endif

I
-

j CORRESPONDS TO COLUMN NUMBER

 

do 20 j=1,nterm

alphi = alph(i)

alpl = alph(i)/Lstr

alphsq = alph(i) " alph(i)

musq = mu(i) "' mUG)

mul = mu(j)*Lstr

mulsq = mul*mul

* hsinmu = sinh(mu1)

"' hcosmu = cosh(mul)

hsinal = sinh(alpl)

hcosal = cosh(alpl)

sinal = sin(alph(i))

cosal = cos(alph(i))

sinmu = sin(mu(i))

cosmu = cos(mu0))

chl = (Nh*Bio-mulsq)/(Nhsq-mulsq)

ch2 = (Nh*Bio+alphsq)/(Nhsq+alphsq)

ccl = (Nc‘Bio+mulsq)/(Ncsq-mulsq)

* cc2 = (Nc*Bio-alphsq)l(Ncsq+alphsq)

* CONSTANTS 01.62.03.04 AND cps HAVE A COSH FACTORED OUT OF THEN WHICH

"' CANCELS WITH THE COSH FACTORED OUT OFTHE CONST AG) WHEN MULT

:- TOGET'HER WITH rho AND crho IN RHS CONSTANTS AS COMPARED TO SOLUTION

c1 = tanh(mul)*mu1*cos(alphi)

+ + alphi*sin(alphi)

c2 = tanh(mul)*mul*sin(alphi)

+ - alphi‘cos(alphi) + alphi

 

 



+
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c3 = mul*cos(alphi)

+ tanh(mul)*alphi*sin(alphi) - mul

c4 = mul‘sin(alphi)

- tanh(mul)*alphi*cos(alphi)

denoml = mulsq + alphi*a1phi

zeta = (alpl‘hsinal + Bic*hcosal)l

(Bic‘hsinal + alpl*hcosal)

rhol = Bih*alphildenoml‘musq*Lstr*(l-chl)*cl

rh02 = Bih‘Bio/denoml*musq*Lsu'*(1-chl)*c2

rh03 = Bih‘Nh/denoml*mu(i)*alphi*chl*c3

rho4 = Bih*Nh*Bio/denom l*muG)*chl*c4

crhol =Bic‘alphildenoml*mul*(1+ccl)*cl

crh02 =Bic*Bio/denom1*mul*(l+ccl)*c2

crho3 =Bic*Nc/denoml*alphi*ccl*c3

crho4 = Bic*Nc*Bio/denoml*ccl*c4

beta = (l-ch1)*musq*Lstr

8am = (l-ch2)‘alph(i)

eps = (l+ccl)*mul+ Nc*ccl*tanh(mul)

sig = (hcosal-zeta*hsinal)*((1+cc2)*alph(j)*cosal

+ Nc*cc2*sinal)

tau =(alpl*hcosal+Bih*hsinal)*((1+cc2)*alph(j)*cosal

+ Nc*cc2*sinal)

ammn = alphi - alph(i)

ampn = alphi + alph(i)

anmm = alph(i) - alphi

anpm = alph(i) + alphi

if(i.eq.j)then

psi = (.5+1/(4*alphi)*sin(2*alphi))*(l-ch2)*alphsq

+ ((Bio*(l-ch2) + Nh*ch2)l2) *(sin(alphi))**2

+ (.5-1/(4‘alphi)*sin(2*alphi))*Nh*Bio*ch2

cpsi = (.54-ll(4*alphi)*sin(2*alphi))*(1+cc2)*alphsq

+ ((Bio*(1+cc2) + Nc*cc2y2) *(sin(a1phi))*"'2

+ (.5-1/(4‘alphi)*sin(2*alphi))*Nc‘Bio‘ch
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else

sinlm = sin(ammn)/(2*ammn)

sinlp = sin(ampn)l(2"'ampn)

cos2m = cos(arnmn)l(2*ammn)

cos2p = cos(ampn)/(2*ampn)

cos3m = cos(anmm)l(2*anmm)

cos3p = cos(anpm)l(2*anpm)

argl = sinlm + sinlp

arg2 = -cos2m - cosZp + l/(2*ammn) + ll(2*ampn)

arg3 = -cos3m - cos3p + 1/(2*anmm) + ll(2*anpm)

arg4 = sinlm - sinlp

psi =arg1‘a1ph(j)*alphi*(1-ch2)

+ arg2‘alph(i)*(l-ch2)*Bio

+ arg3*ch2*Nh*a1phi + arg4’ch2*Nh*Bio

cpsi =arg1’alph(i)*alphi*(l+cc2)

+ arg2*a1ph(i)"'(l+cc2)"‘Bio

+ arg3‘cc2‘Nc‘alphi + arg4*cc2*Nc*Bio

endif

psiB = psi * Bih

psiC = psi * Bih * alpl

cpsiB = cpsi "' Bic * (hcosal - zeta "‘ hsinal)

cpsic = cpsi * Bic * (alpl‘hcosal + Bih*hsinal)

LOAD THE MATRIX, LOADING IS DONE IN QUARTERS(i.e.TOP LEFT,

top right, bottom left......) but concurrently

lST EQUATION LOADING - TOP LEFT AND TOP RIGHT

coefl‘(i,j) = -omg*ga1n + psiB

coefl‘(iJ+nterm) = -omg*gam"'alpl + psiC

2ND EQUATION LOADING - BOTTOM LEFT AND BOTTOM RIGHT

coeff(i+nter1n,j) = comg‘sig - cpsiB

coefl'(i+nterrn,j+ntenn) = comg*tau - cpsiC

if(i.eq.j)then

coeff(i,j) = coefl'(i,i) + lam

coeff(i+nterrn,j+ntenn) = coefl‘(i+nterm,j+ntenn) + cphi
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endif

CONSTANT AG) HAS A COSH FACTURED OUT OF THE DENOMINATOR THAT

IS CANCELLED BY THE COSH FROM C1..C4 WIEN MULTIPLIED BY rho AND

crho IN TIE RHS CONSTANTS CALCULATIONS

*
‘
I
'
O
‘
I
'
fi

if((Tl-To).ne.0)then

A0) = (Bil"(Tl-To)*(sin(mu(i))—Bih/mu(i)*cos(mu(i))

+ +Bihlmu(j))) l(orthmu"'

+ ((mulsq+Bil*Bio)*tanh(mul)+(Bil+Bio)*mul))

Aprm = A(j)*(mu(i)*cosmu + Bih’sinmu)

else

A0) = 0.0

Aprm = 0.0

endif

rhsl = (rhol+rho2+rho3+rho4)*A(i) + rhsl

rth = (crhol-+crho2+crh03+crho4)*Aprm + rth

rhs3 beta*A(j) + rhs3

rhs4 eps‘Aprm + rhs4

LOADING TIE RHS CONSTANTS - DONE FOR EQUATION 1 THEN EQ 2

*
*
'
I
-
*

if(i.eq.nterm)then

coefl‘(i,2"'nterm+1) = -rhsl + omg’rhs3 - omg*(Thin-To)

coeff(i+ntenn,2*ntenn+l)=rhs2 - comg*rhs4

+ + comg'CTcin-To)

endif

20 continue

rhsl = 0.0

rhs2 = 0.0

rhs3 = 0.0

rhs4 = 0.0

10 continue

return

end

DATE 5/12192

*
I
'
i
'
i
'
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SUBROUTINE TO CALCULATE EIGENVALUES FROM TIE TRANSCENDENTAL

EQUATIONS. USING A SCHEME THATMARCHES OUT UNTIL TIE FUNCTION

CHANGES SIGN THEN BACKSTEPS TO TIE ROOT

subroutine root(eigen,size,B1,B2,ntenn)

implicit double precision(a-h,o-z)

integer size

double precision Nc,Nh,len,Lsu'

common deltalenJAu',Nc,Nh,Bic,Bih,Bio,Bil,Tcin,Thin,To,Tl

dimension eigen(size)

func(x) = tan(x) - (x*(B l+B2))/(x**2-B1*B2)

irep = 0

delin = .5d+0

ndel = 2

pi = 4.0d+0*atan(1.0d+0)

eps = 1d-8

ep = 1d-1O

del = delin/ndel

K = O

arg =sqrt(Bl*B2)

idenom = 0

CHECK IF FUNCTION CHANGES SIGN DUETO CHANGE OF SIGN IN DENOM-

INATOR OF THE FUNCTION. (X<B132 ON TIE INTEVAL ) IDENOM

SIGNALS LEG WIERE DENOM CHANGES SIGN HAS BEEN PASSED

continue

if(arg.1t.(k+l)*pi .and. idenom.eq.0)then

if(arth.(2*(k+l).l)*pi/2)then

= 3’8 + 61)

del = ((2d+0"'(k+ld+0)-ld+0)*pil2d+0 - x)lndel

ileg = 1

else

= (2d+0*(k+1d+O)-ld+0)*pil2d+0 + ep

del = (arg -(2d+0*(k+1d+0)-1d+0)*pi/2d+0)/ndel

ileg = 1

endif

idenom = 1

else
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IF DENOMINATDR DOESN'TCHANGE SIGN OD INTERVAL [K*P1,(K+1)*PI]

SEARCH FOR ROOTON TIE PROPER LEG OF FUNCTION

*
*
§
*

ileg = O

if(idenom.eq.0)then

x = (2d+0*(k+1d+0)—1d+0)*pil2d+0 4» ep

del = delin/ndel

else

x = k "' pi + ep

del = delin/ndel

endif

endif

10 continue

if(irep.gt.10)go to 100

fx = func(x)

 

* CIECK SIGN OF TIE FUNCTION

12 if(fx)13,13,15

l3 n=0

i=n

got020

15 n=1

i=n

* INDEX X AND MARCH FORWARD

20 x=x+del

hx=func(x)

* CHECK SIGN AT NEXT STEP

if(hx)23.23.25

23 n=0

go to 30

25 n=l

*

"' CHECK IF SIGN CHANGED. IF NO SIGN CHANGE CONTINUE MARCHING

* IF CHANGED GO BACK AND TAKE A SMALLER STEP FORWARD.

1|:

3O if(i-n)40,20,40

fl

* CIECK FOR CONVERGENCE
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a:

40 if(eps-de1)45,51,51

45 x = x - del

del = del/2d+0

go to 20

51 k = k + l

eigen(k)=x

* CIECKEEIGENVALUEWAS MISSED _E 80 DECREASE STEP SIZE AND REPEAT

if(lr.gt.l)then

if((eigen(k)—eigen(k-l)).gt.pi)then

ndel = 2*ndel

ep = ep/2.0d+0

k = k—l

if(ileg.eq.l)idenom=0

irep = irep + 1

go to 5

endif

else

if(eigen(k).gt.pi)then

ndel = 2*ndel

ep = ep I 2.0d+0

k = k-l

idenom = 0

irep = irep + 1

go to 5

endif

endif

up

* CHECK IF NEED TO COMPUTE MORE ROOTS

4.

if(k-nterm)5,60,60

100 continue

write(10,*)'eigenu'oubles; irep =',irep

write(10,*)'cigen funct =',x,fx

60 continue

return

end

*

* date 2/09/92

1:

* SOLVES THE MATRIX USING A PARTIAL PIVOTING SCHEME

*

SUBROUTINE GAUSS(A,SIZE,N,X)

-
I
-

"' A - SQUARE MATRIX TO SOLVE WIHT ADDITIONAL RHS CONSTANTS



196

N - NUMBER OF TERMS IN THE SERES (A IS ORDER (2N X 2N+l)

SIZE - DECLARED MAX SIZE OF A IN MAIN PROGRAM

X - SOLUTION

{
*
I
'
f
'
l
-

implicit double precision (a—h,o-z)

double precision MULT

INTEGER SIZEPIVOT

DIMENSION A(SIZE,SIZE+1),X(SIZE)

N=2*N

I
-

GAUSSIAN ELIMINATION USING PARTIAL PIVOTING

DO 70 I=1.N

IF(A(I,I).EQ.0) THEN

PIVOT=0

J=J+l

3O IF((PIVOT.EQ.O). AND .(J.LE.N)) THEN

IF(A(J,I).NEO) PIVOT = J

J=J+l

GO TO 30

ENDIF

IF(PIVO‘T.EQ.0) THEN

STOP 'SINGULAR MATRIX'

ELSE

t

* INTERCHANGE ROWS
a:

DO 40 J=1,N+1

TEMP = A0,!)

A0,!) = A(PIVOTJ)

A(PIVOT‘J) = TEMP

40 CONTINUE

ENDIF

ENDIF

up

* ELIMINATE TIE ITH UNKNOWN

*

DO 60 I: I + l, N

MULT = -A(I,I)IA(I,I)

DO 50 K=I,N+l

A(I,K) = A(I,K) + MULT " A(I,K)
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6O

70

up

a:

1|.

8O

*
‘
l
r
‘
I
‘
i
‘
I
-
‘
I
'
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CONTINUE

CONTINUE

CONTINUE

FIND SOLUTION

X(N) = A(N.N+l)/A(N.N)

DO 90 J=N-1,1,-1

X(J) = A(J,N+1)

DO 80 K = J+l,N

X0) = X0) - A(I,K) * X(K)

CONTINUE

X0) = XU) / A(JJ)

CONTINUE

N=Nl2

RETURN

END

date 2/16/92

SUBROUTINE TO CALCULATE THE FLUID TEMPERATURES

AND WALL TEMPERATURES ALONG WITH TIEIR DERIVATIVES

subroutine profil(BC,A,size,size2,nterm,deltax,deltay,

Thot,Tcold,T\vall,chold,dThot,mu,alph,dexxO,

dexx1,deyy0,deyy1,qx0,qx1)

implicit double precision (a-h,o-z)

double precision 1en,Nc,Nh,mu,musq,mulsq,mulx,Ncsq,Nhsq,Lstr,

muy,mul

integer size,size2

common delta,len,Lsu',Nc,Nh,Bic,Bih,Bio,Bil,Tcin,Thin,To,Tl

dimension BC(size)A(size),Tcold(size2),Thot(size2),

+ d'Tcold(size2),dThot(size2),TWall(size2,size2),

+ mu(size).alph(size),dTdxx0(size2),dTdxx1(size2),deyy0(size2),

+ deyy1(size2)

pi = 11415926535



*
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n = nint(l/deltax) + 1

m = nint( lldeltay) + 1

Nhsq = Nh * Nh

Ncsq = Nc * Nc

CALCULATING FLUID TEMPERATURES

NOTE: ONLY A FUNCTION OF X

do 10 i=l,n

sumhl =0.0

sumh2 = 0.0

sumcl =0.0

sumc2 = 0.0

sumdhl = 0.0

sumdh2 = 0.0

sumdcl =0.0

sumdc2 = 0.0

if(i.eq.l)sumD1=0.0

if(i.eq.l)sumEl=0.0

do 20 j=1,nterrn

mul = mu(i)*I.str

musq = mu(i)*mu(i)

mulsq = mul*mul

mulx = mu(i)*Lsu'*(i-1)*deltax

alphl = alph(i)/Lsu

alphx = alph(j)*(i-1)"‘deltax

alphsq = alph(i)*alph(i)

chl = (Nh*Bio-mu1sq)l(Nhsq-mulsq)

0112 = (Nh*Bi0+flPhsq)/(Nhsq+alph8®

col = (Nc*Bio+mulsq)/(Ncsq-mulsq)

cc2 = (Nc*Bio-a1phsq)/(Ncsq+alphsq)

zeta = (alphl‘sinh(a1phl)+Bic*cosh(alphl))/

(Bic*sinh(alphl) + alphl‘cosh(alphl))

if(AG).ne.0)then

Apr = A(i)lcosh(mul)*(mu(i)*cos(mu(i))+Bih*sin(mu(i)))

else

Apr = 0.0

endif

Bpr = BCG)*(cosh(alphl)-zeta*sinh(alphl))

Cpr = BC(i+nterm)*(alphl‘cosh(a1phl)+Bih*sinh(alphl))  
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if(i.eq.1)then

if(A(i).ne.O)then

sule = A(i)/cosh(mul)*musq*Lsu'*(l—chl)+(BC(i)+

BC(j+nterrn)"'alphl)"(1-ch2)*alph(i) + st1

else

st1 = (BCG)+

BC(i+nterrn)*alphl)*(l-ch2)"'alph(i) + st1

endif

if(AG).ne.0)then

sumEl = Apr*(mul*(1+cc1)*cosh(mul)+Nc*cc1*sinh(mul))

+ (Bpr+Cpr)*((l+cc2)*alph(i)*cos(alph(i))

+ Nc‘cc2‘sin(alph(i))) + sumEl

else

sumEl = (Bpr+Cpr)*((l+c02)"‘a1ph(i)*cos(alph(j))

+ Nc‘cc2*sin(alph(i))) + surnEl

endif

endif

if(AG).ne.0)then

sumhl = A(i)lcosh(mul)*((l-ch1)*musq*Lsu'*cosh(mulx)

+Nh*mu(i)"'chl"sinh(mulx)) + sumhl

else

sumhl = 0.0

endif

hot2 =(1-ch2)*alph(i)*cos(alphx)

+ Nh‘ch2‘sin(alphx)

sumh2 = (BCG)+BC(i+nte1m)*alphl)*hot2 + sumh2

if(A(j).ne.0)then

sumcl =Apr‘((l+ccl)*1nul*cosh(mulx)

+ Nc*cc1*sinh(mulx)) + sumcl

else

sumcl = 0.0

endif

sumc2 = ((1+cc2)*alph(i)*cos(alphx)+Nc‘cc2*sin(alphx))

*(Bpr + Cpr) + sumc2

if(AG).ne.O)then

sumdhl = A(j)/cosh(rnul)*((1-ch1)*musq*mul*Lstr

*sinh(mulx) + Nh*musq"'Lsu-*chl*cosh(mulx)) +sumdhl

else

sumdhl = 0.0

endif

dhot2 =(-1+ch2)*alphsq*sin(alphx)
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200

+ Nh’ch2‘alph(j)*cos(alphx)

sumdh2 = (BCG)+BC(i+nterrn)*alphl)*dhot2 + sumdh2

if(AG).ne.0)then

sumdcl = Apr"((l+cc1)*mulsq*sinh(mulx)

+Nc*ccl*mul*cosh(mulx)) + sumdcl

else

sumdcl = 0.0

endif

sumdc2 = (-(cc2+1)*alphsq*sin(alphx)

+Nc*cc2*alph(i)*cos(alphx))*(Bpr+Cpr)+sumdc2

continue

if(i.eq.1)then

D1 = (Thin-To) - sule

E1 = (Tcin-To-sumEl)

endif

if((Nh*(i-l)*de1tax).1t.100)then

Thot(i) = D1*Dexp(-Nh*(i-1)*deltax) + To + sumhl + sumh2

dThot(i)= -D1*Nh*dexp(-Nh*(i-1)*deltax) +sumdh1 +sumdh2

else

Thot(i) = To + sumhl + sumh2

dThot(i)= sumdhl + sumdh2

endif

if((-Nc*(l-(i-l)*de1tax)).lt.100)then

Tcold(i)= E1A*Dexp(-Nc*(1-(i-1)*deltax)) + To + sumcl + sumc2

chold(i) = E1*Nc*Dexp(-Nc*(l-(i-1)*deltax)) + sumdcl + sumdc2

else

Tcold(i)= To + sumcl + sumc2

chold(i) = sumdcl + sumdc2

endif

continue

COMPUTE TEMPERATURES IN THE WALL

SUMWl-THETAl SUMW2-THETA2 SUMW3-THETA3

TWALL=THETAI +THETA2 +THETA3 +To

if(iwall.eq.0)go to 100
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dex1=0.0

dex2=0.0

dex3=0.0

dey1=0.0

dey2=0.0

dey3=0.0

Q1 =o.o

Q2 =o.o

Q3 =o.o

i X—DIRECTION MARCHING

do 30 i=1,n

j Y-DIRECTION MARCHING

do 40 j=1,m

sumwl = 0.0

sumw2 = 0.0

sumw3 = 0.0

k SUMMATION OVER THE N-TERMS

do 50 k=l,nterrn

alphl = alph(k)lLsu'

mul = mu(k)*Lstr

mulx = mul‘(i-1)*deltax

alphx = alph(k)*(i-l)*deltax

muy = mu(k)*(i-1)*deltay

alphy = alphl*(i-1)*deltay

zeta =(alphl*sinh(alphl)+Bic*cosh(alphl))

/(Bic*sinh(alphl)+alphl*cosh(alphl))

if(A(j).ne.0)then

sumwl = A(k)/cosh(mul)*(mul‘cosh(mulx)+Bio

*sinh(mu1x))*(mu(k)*cos(muy)+Bih*sin(muy))+ sumwl

else

sumwl = 0.0

endif

sumw2 = BC(k)*(cosh(alphy)-zeta*sinh(alphy))*

(alph(k)*cos(alphx)+Bio*sin(alphx)) + sumw2

sumw3 = BC(k+nter1n)"'(alphl*cosh(alphy)+Bih

*sinh(alphy))*(alph(k)*cos(a1phx)+Bio"'

sin(alphx)) + sumw3
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if(i.eq.l.or.i.eq.n)then

if(A(j).ne.0)then

dex1 = A(k)lcosh(mul)*mul*(mul*sinh(rnulx)+Bio*

cosh(mulx))*(mu(k)*cos(rnuy)+Bih*sin(muy)H dexl

else

dex1 = 0.0

endif

dex2 = BC(k)*(cosh(alphy)—zeta*sinh(alphy))*

(~alph(k)*sin(alphx)+Bio*cos(alphx))*a1ph(k)

+ dex2

dex3 = BC(lr+nterm)*(alphl*cosh(alphy)+Bih

*sinh(alphlm*(-alph(k)*sin(alphX)+Bi0*

ms(alphx))*alph(k) + dex3

if(A(j).ne.0)then

Q1 = A(k)/cosh(mul)*mul*(mul"‘sinh(mulx)+Bio*

cosh(mulx))*(sin(mu(k))-Bih/mu(k)*cos(mu(k))+

Bih/mu(k» «1» Q1

else

Q1 = 0.0

endif

Q2 = BC(k)*Lsu"(sinh(alphl)-zeta*cosh(alphl)+zeta)*

(~a1ph(k)"'sin(a1phx)+Bio*cos(alphx))

+ Q2

Q3 = BC(k+nterrn)*Lstr*(alphl*sinh(alphl)+Bih

*cosh(a1phl) -Bih)*(-alph(k)*sin(alphx)+Bio*

cos(alphx)) + Q3

endif

if(i.eq.1.or.j.eq.m)then

if(A(i).ne.0)then

dey1 = A(k)lcosh(mul)*(mul‘cosh(mulx)+Bio*

sinh(mu1x))*(-mu(k)*sin(muy)+Bih*cos(muy))*mu(k) + deyl

else

dey1 = 0.0

endif

dey2 = BC(k)"‘alphl"(sinh(alphy)-zeta*cosh(alphy))*

(alph(k)*cos(alphx)+Bio*sin(alphx)) + dey2

dey3 = BC(k+nterm)*(alphl*sinh(alphy)+Bih

*cosh(alphy))*alphl*(alph(lr)"cos(alphx)+Bio
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*sin(alphx)) + dey3

endif

continue

Twall(i,j) = sumwl + sumw2 + sumw3 + To

if(i.eq.1)then

dexx00)= dex1+dex2+dTdx3

dexl=0.0

dex2=0.0

dex3=0.0

qx0 =Q1+Q2+Q3

Q1 = 0.0

Q2 = 0.0

Q3 = 0.0

endif

if(i.eq.n)then

dexle)= dexl+dex2+dex3

dex1=0.0

dex2=0.0

dex3=0.0

qx1=Q1+Q2+Q3

Q1 = 0.0

Q2 = 0.0

Q3 = 0.0

endif

if(i.eq.1)then

deyy0(i)=deyl+dey2+dey3

dey1=0.0

dey2=0.0

dey3=0.0

endif

if(i.eq.m)then

deyyl(i)= deyl+dey2+dey3

deyl=0.0

dey2=0.0

dey3=0.0

endif

continue
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30 continue

100 continue

return

end

date 3/05/92

SUBROUTINE TO GENERATE TIE OUTPUT OF TIE RUN

*
*
*
*
‘
I
-
*

subroutine output(deltax,deltay,size2,dexx0,dT‘dxx1,deyyO,

+ deyyl,Thot,Tcold,T\vall,iwall,ifluid,ibound,

+ ider,p0x,p1x,p0y,ply)

implicit double precision(a-h,o-z)

integer size2

double precision Nc,Nh,len,Lstr

common deltaJen,Lsu',Nc,Nh,Bic.Bih,Bio,Bil,Tcin,Thin,To,Tl

dimension dexx0(size2),dexxl(size2),deyy0(size2),

+ deyyl(size2),Thot(size2),Tcold(size2),TWall(size2,size2)

n = nint( lldeltax) + 1

m = nint( lldeltay) + l

k = mlS

if(ifluid.eq.0) go to 100

WRITE OUT THE FLUID TEMPERATURES - E ELUID=1

*
i
-
‘
I
'
I
-

write(10,*)' '

write(lO,‘)' '

do 10 i=1,n

x=(i-1)*deltax

if(i.gt. 1) go to 15

write(10,"')' x"‘ Tc" Th"l '

15 write(10,'(f4.2,3x,2f15.8)')x,Tcold(i),

+ Thot(i)

write(40,'(f4.2,3x,2fl5.8)')x,(Tcold(i)-Tcin)/(Thin-Tcin),

+ (Thot(i)-Tcinyahin-Tcin)

10 continue

write(10,*)' '

write(10,*)' '
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100 continue

if(iwall.eq.0)go to 200

* WRITEOUTT‘HEWALLTEMPERATURE- IFIWALL=1

*

write(lO,‘)'Wall temperatutes '

do 20 1:1,]:

y=(i-1)*deltay*5

memory y*'

write(10,'(a,5fl2.3)')' x“,y,y+deltay,y+2"‘deltay,y+3*deltay,

+ y+4*deltay

do 25 ii=1,n

x=(ii-l)*deltax

write(lO,‘(1x.fS.2,5fl2.7)')x,((Twall(ii,i+(k-1)*5)-Tcin)

+ lClIrin-Tcin),j=1,5)

write(50,'(1x55.2,5f12.7)')x,(('1\vall(ii,j+(k-l)*5)-Tcin)

+ I(Thin-Tcin),i=1,5)

25 continue

write(10,*)"

20 continue

200 continue

* PRINTTHE DERIVATIVES AT THE WALL ENDS. IF IDER=1

if(ider.eq.0)go to 250

write(10,*)' '

write(10,*)'dTWIdx*(x"‘=0)'

write(10,*)' '

x=0.0

write(10,'(1x,f4.2,3x,6f1 1.6)‘)x,(dexx0(i),i=1,m)

write(lO,‘)' '

write(10,*)' '

write(10,*)'dT\v/dx*(x*=l) '

write(10,*)' '

x=(n-l)*deltax

write(10,'(1x,f4.2,3x,6f1 l.6)')x,(dexx1(i),j=1 ,m)

write(10,")' '

250 continue

if(ibound.eq.0)go to 300

1|:

4:
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CIECK BOUNDRY CONDITIONS- E IBOUND= 1 OR 2

dT/dx"(0.y"') = Bio ('I‘W(0.y"') - T0)

-dl‘ldx"'(l.y”) = BiL (“(1.1") - TL)

-dT/dy"'(x"',0) = Bih (11101“) - TW(X"'.0))

-dT/dy"'(x"'.1) = Bic ('I\v(x*,l) - TC(X"'))

dif1m = 0.0

dif2m = 0.0

dif3rn = 0.0

dif4m = 0.0

if(ibound.eq.2)then

write(10,*) ' '

write(10,*) ' '

write(10,*)‘ Check of Boundry Conditions'

write(10,*)' In the Y-diretion BCy0 - y*=0 BCyl - y*=1'

write(10,‘)' x" BCy0 BCyl '

endif

do 30 i=2,n-1

x=(i-l)‘deltax

difl = -deyy0(i)/('1'hot(i)-Twall(i,l))

difZ = -deyyl(i)/('Nall(i,m)—Tcold(i))

if(abs(dif1-Bih).ge.ahs(dif1m))then

dif1m=dif1-Bih

iml = 1

endif

if(abs(dif2-Bic).ge.abs(dit2m))then

dif2m=dif2-Bic

i1n2 = i

endif

if(ibound.eq.2)write(10,'(1x,f4.2,3x,2f1 8.9)')x,dif1 ,dit2

continue

if(ibound.eq.2)then

write(10,*) ' '

write(10,*) ' '

write(10,*)' In the X-diretion BCxO - x*=0 BCxl - x*=l'

write(10,*)' y"' BCx0 BCxl '

endif

do 40 j=2,m-1

FG-ll‘deltay

difl = d'dex0(i)l('TWall(l,i)-To)

W=-dexx1(i)/Wall(nJ)-Tl)
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if(abs(dif1-Bio).ge.abs(dif31n))then

dif3m=dif1-Bio

im3 =J'

endif

if(abs(dif2-Bil).ge.abs(dif4m))then

dif4m=dif2~Bil

im4 =J'

endif

if(ibound.eq.2)write(10,'(1x,f4.2,3x,2f18.9)')y.dif1,difZ

40 continue

p0y = diflmlBih

ply = dif2mlBic

p0x = dif3m/Bio

plx = dif4m/Bil

if(ibound.eq. l)then

write(10,*)"

write(10,*)"

write(10,*)'Max Errors in the boundry conditions and locations '

write(10,'(a,f5.2,f12.6)')'x* = 0 y" = ',(jm3-l)*de1tay,p0x

write(10,'(a,fS.2,f12.6)')'x* = 1 y" = ',(im4-l)*deltay,plx

write(10,'(a,f5.2,f12.6)')'y* = 0 x" = ',(iml-l)*de1tax,p0y

write(10,'(a,f5.2,f12.6)')'y“' = 1 x"' = ',(im2-l)*deltax,ply

endif

*
*
*
*
*
*
*
*
*

300 continue

retum

end



"IT'TITTTTTTITTT  


