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ABSTRACT 

 

A STUDY OF SINGLE-LAP JOINTS 

 

By 

 

 Matthew Paul Lempke  

 

 

Single-lap joints are a widely-used and relatively strong and simple way joining two 

materials via an overlapping bond. With the growing use of composite materials in 

modern design practices, the need to join increasingly dissimilar materials has arisen. As 

such, knowledge concerning the behavior of single-lap joints with dissimilar adherends is 

essential. 

 

To investigate the behavior of single-lap joints as material and geometric properties are 

varied under tensile loading, an analytically verified finite element parametric study was 

conducted on both ideally and adhesively bonded single-lap joints, measuring the 

changes in stress value at points of critical stress concentrations. In order to correlate the 

finite element analysis with real-world lap joint behavior, digital image correlation was 

used to record the deformation of lap joint specimens under a tensile load. A finite 

element model was then developed, and compared, to the experimental results. 

 

With the results of the parametric study and experimental comparison, trends in stress 

changes were identified and explained, and design suggestions were made based on these 

trends. The results of the experimental finite element model were reasonably correlated, 

and several suggestions for improvements were made. 
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1 Introduction 

 

As composite materials become more prevalent in modern design, many situations arise 

in which they are needed in conjunction with traditional homogeneous materials. 

Namely, in vehicles and many other applications, metal to composite joining is necessary 

to increase the strength to weight ratio in modern structures. However, some difficulties 

arise in the joining of these dissimilar materials. Where one could presumably weld two 

metals together, or mix ceramic powders into the complicated shape desired, one cannot 

join polymeric composites to metal in such a strong manner. Other methods of joining are 

possible, such as mechanical fastening, or adhesive joining. The focus of this thesis is to 

investigate how the variation of dominant joint material and geometric parameters 

independently affect the critical stresses in adhesive single-lap joints as predicted by 

finite element analysis, and verify this analysis both analytically and experimentally. 

  

Lap joints, specifically the adhesive single-lap joint, have been studied thoroughly 

throughout the years. Analytic solutions date back as far as Volkerson [1] and his 

simplified solution in 1938 that is still more accurate than the current ASTM standards 

D1002-10 and D3983-98 used to determine shear strength and shear modulus, 

respectively. Goland and Reissner [2] built upon his solution, adding the influence of the 

eccentric loading angle and thus introducing the important influence of the edge moment 

by adding the bending moment factor, k. This factor is related to the bending moment M0, 

the adherend thickness t, and the load applied to the adherends T by equation 1.1. 
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Tt

M
k 02
  

 

(1.1) 

 

This bending moment factor is unity for small loadings for which no rotation of the joint 

itself results, and less than unity for higher loads. They found that maximum stresses 

occur at the ends of the overlap, which is to be expected. However, according to Adams 

[3], Goland and Reissner’s solution is not applicable to most practical joints, or joints 

including adherends of differing materials, as they neglect adherend shear strains He 

found that a geometrically non-linear finite element analysis is applicable to a wider 

range of lap joints. Tsai and Morton [4] performed an in depth comparison of the 

available analytic solutions in 1992, and found Hart-Smith’s [5] model the most accurate 

for determining the edge moment in short joints, and Oplinger’s [6] model the most valid 

for determining the edge moment in long joints. Goland and Reissner’s solution predicted 

a global sense of the adhesive stress distributions for both lengths most effectively, and 

was altogether more accurate than the other solutions for adherends of intermediate 

length. Tsai and Morton [4] defined long lap joints as those with a free adherend length to 

bonding length ratio of greater than 5 and short joints as those with a ratio of less than 

0.75. They also found that geometrically non-linear finite element analysis was still the 

most effective and accurate method of single-lap joint modeling. 

 

Carpenter [7] explored the effects of various mathematical assumptions on the adhesive 

stresses in single-lap joints, and found the predicted maximum adhesive shear and peel 

stresses were mostly unaffected by most assumptions, but neglecting shear deformation 
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of the adherends affects peel stress significantly. He again found that finite element 

methods yield results very close to those from lap joint theories such as Goland and 

Reissner [2] and Delale and Erdogan [13]. Cooper and Sawyer [8] further explored finite 

element analysis, comparing geometrically linear results to non-linear results. The results 

were then compared to Goland and Reissner’s analytical solution and photoelastic 

experiments, and it was shown that the geometrically non-linear Finite Element Analysis 

was accurate, and the non-linearity had a large effect on the stresses in the adhesive. 

Goland and Reissner’s solution was found to be sufficient for the prediction of stresses 

along the midline of the adhesive bond. 

 

Lap joints have also been thoroughly experimentally and numerically analyzed in a 

variety of forms and methods. Crocombe and Adams [9] explored the influence of a spew 

fillet on the stress distributions in a single-lap joint, and found that maximum adhesive 

stresses are usually much lower with the addition of the spew fillet rather than a square 

termination of the adhesive. Spew fillets are triangular adhesive fillets at the termination 

of the bond. More recently, Shin, Lee, and Lee [10] studied shear strength of co-cured 

single-lap joints subjected to tensile loads, and found that in most cases, the failure 

mechanism was partially cohesive failure, and the shear strength is significantly impacted 

by bond length and stacking sequence. Elaborating, the stacking sequence of the 

composite adherend greatly affects the shear strength of the joint due to the fact that the 

stacking sequence determines the difference in stiffness between adherends. Also, as 

bond length increases, so does the shear strength of the lap joint. Maglahaes, de Moura, 

and Gonclaves [11] explored the stress concentration effects in laminate composite 
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single-lap joints through two-dimensional Finite Element Analysis, and found critical 

stress locations near the ends of the overlap and discussed their role in damage initiation 

in composite lap joints. Grant, Adams, and de Silva [12] investigated experimental and 

numerical analysis of single-lap joints for the automotive industry, including tension, 

four-point, and three-point bending tests varying other parameters as well. They found 

three-point bending and tension tests yielded similar results in the adhesive, as they both 

induce a large bending moment and both initiate failure in the adhesive, while four-point 

bending did not cause any adhesive failure. The adherend material (steel) yielded before 

the adhesive, and they proposed a failure criterion. 

 

This work will first define lap joints and present an overview of several of the various lap 

joint geometries. Analytical derivation and verification is then presented, followed by a 

description and in-depth example of the parametric study conducted. The results are then 

presented, and discussed, followed by experimental work and validation, and both a 

conclusions and suggestions section. 
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2 Brief Overview of the Single-lap Joint 

 

A full single-lap joint is simply an anti-symmetric structure of two materials, known as 

adherends, bonded via an overlap, usually with adhesive, bolts, or both, where no 

material is removed at the bond. In other words, a full lap is like Figure 2.1, a simple 

single-lap joint. There is a full overlap with no adherend material altered at the joint. 

 

 

Figure 2.1 A single-lap joint 

 

Half lap joints can have material removed at the bond for symmetry, or to keep the 

surface smooth and without overlap. Double-lap joints are a full lap joint that simply has 

an additional adherend, as illustrated in Figure 2.2. A step lap is a half lap joint with a 

step-like interface, shown in Figure 2.3. There are many types of lap joints, such as  but 

in this thesis, only ideally bonded, a theoretical ideal in which no adhesive is used, and 

adhesively bonded single-lap joints with square adhesive termination are investigated. 

Square adhesive termination refers to the fact that there is no fillet at the edge of the 

adhesive. Fillets have been shown to increase failure stress in lap joints, as shown in the 

literature survey in chapter 1. 
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Figure 2.2 A double-lap joint 

 

 

Figure 2.3 A step-lap joint 

 

Several parameters influence the stress distributions and strength of single-lap joints. 

Important material properties include the various moduli and Poisson’s Ratios of each 

adherend and the adhesive. Geometrically, both the free length and bond length of each 

adherend, their thickness and the thickness of the adhesive also impact the stress 

distributions and overall displacement of the structure. The effects of these parameters is 

investigated and explained in chapter 5. 

 

Dissimilar joining, or joining two adherends of differing material property or geometry, is 

difficult. For instance, joining a composite adherend to a metal adherend presents several 

issues, as the adhesive may not bond to the dissimilar surfaces equally as well, and any 

holes drilled in the composite for mechanical fastening creates stress concentrations that 
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may initiate damage in the composite due to its non-homogeneous Young’s Modulus. 

The differing properties between the two materials could influence the stress distributions 

to be more intense than a homogeneous single-lap joint. Therefore, this thesis investigates 

the important parameters’ impact on the critical stress points in the adherends of single-

lap joints. 
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3 Theoretical Analysis 

 

In order to confirm the validity and accuracy of the finite element analysis presented later 

in this work, it was necessary to explore analytical solutions for the displacements in a 

single lap joint. While several were presented, Goland and Reissner’s [1] equations were 

found to be the most accurate for the parametric study conducted, and others, like Tsai 

and Morton [2], used this solution to validate their finite element analysis.  

 

The several other solutions mentioned include Volkerson’s [3] famous equation presented 

in 1938, which was an improvement on the ASTM standard for shear strength 

determination (ASTM D1002-10) and modulus determination (ASTM D3983-98) for 

adhesives, still used today. In Tsai and Morton’s review, Volkerson’s solution was found 

to be inferior to the other solutions reviewed, and the solution itself can be found in his 

publication. Goland and Reissner’s [1] solution was the first to include the influence of 

the edge moment, the moment that arises at the edge of the overlap, which was an 

important step towards an accurate single lap joint model. Goland and Reissner found 

that this edge moment is the dominant factor in the stress development throughout the 

joint geometry, and its inclusion made their solution a leap ahead of Volkerson’s. Hart-

Smith [4] and Oplinger [5] also presented different models. Tsai and Morton found that 

Hart-Smith’s model was the most accurate in predicting the stresses in short single-lap 

joints, while Oplinger’s solution was found to be more accurate for long single-lap joints. 

Long and short joint cases are defined by Tsai and Morton as joints in which the ratio of 

l/c is greater than or equal to 10 or less than or equal to 1.25, respectfully. Joints falling 

between these bounds are considered adhesive joints of intermediate length. However, 
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Goland and Reissner’s solution was still found to be accurate in its prediction of 

deflection, and thus it is used for the validation of the following work. 

 

Figure 3.1 Analytical solution geometry and boundary conditions 

With reference to Figure 3.1, x1 being the region in the adherend bounded by zero and L, 

and x2 being the region in the adhesive bounded by zero and 2c, Goland and Reissner 

present the following general solution and boundary conditions:   
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Subject to simple support external boundary conditions and the internal boundary 

conditions including the continuous displacements and rotation angles and zero 

displacement at the anti-symmetric point: 
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The general solution to each equation is of the form: 
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(3.5) 

(3.6) 

 

 

Applying the boundary conditions and solving, the constants can then be found to be: 
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Due to homogeneity of materials and boundary conditions, one can plot the region from –

L to 0, and 0 to 2c, obtaining the analytic solution plot in Figure 2, below. 
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Figure 3.2 Analytical solution 

 

Of particular note in this analysis is the eccentric angle of loading, αn. Because of this, as 

loading increases, non-linear geometric effects occur. Therefore, any finite element 

analysis performed needs to include considerations for high nodal rotations and a 

sufficiently small (5-10% of the total simulation time) timestep. 

 

Performing a geometrically non-linear finite element analysis with ABAQUS and 
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problem statement for zero adhesive thickness, the appropriate displacements were 

obtained, and Figure 3.3 was plotted, which compares Figure 3.2 and the finite element 

transverse deflection results, measured along the centerline of the adherend as defined by 

the x1, w1 coordinate system, and the centerline of the adhesive as defined by the x2, w2 

coordinate system. The finite element analysis was performed on a typical short joint as 

dictated by Tsai and Morton, and a load of T = 400 N was applied as shown in Figure 

3.1. It is immediately obvious that ABAQUS accurately solves the model, with FE 

displacements extremely similar to analytical displacements, using an adequately fine 

mesh. 
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Figure 3.3 Analytical solution and FE solution 
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4 Finite element analysis of the Single-Lap Joint 

 

Due to the relative difficulty in obtaining analytical solutions for single-lap joints subject 

to various loading conditions, many instead use finite element analysis to study their 

stresses. For example, Tsai and Morton [1] evaluated analytical and finite element 

analysis solutions to single-lap joints. While several solutions were investigated, as 

presented in chapter three of this thesis, none were universally valid for all single-lap 

joints. They found that Hart-Smith’s [2] solution was most accurate in predicting stresses 

in short single-lap joints, and Oplinger’s [3] solution was the most accurate for long 

single-lap joints. However, Finite element analysis with non-linear geometrical effects 

included in the analysis is universally applicable to single-lap joints. Tsai and Morton 

performed two-dimensional plane-strain finite element analysis with material linearity 

and geometric nonlinearity in order to investigate the edge moment, analyze the state of 

stress in the adhesive layer, and evaluate the analytical solutions of Goland and Reisner 

[4], Hart-Smith [2], and Oplinger [3], reaching the conclusions listed above. 

 

Grant, Adams, and de Silva [5] experimentally and numerically studied single-lap joints 

in context of the automotive industry, and regarding finite element analysis, used a two-

dimensional plane-strain model with isoparametric elements. They found that the finite 

element results were very sensitive to mesh size, as mathematical singularities exist at the 

ends of the overlap at the adherend-adhesive interface. In order to combat this, they 

simply conducted comparisons through similar meshes. Adams [6] utilized finite element 

analysis in order to predict single-lap joint strength, and found that finite element analysis 

was the most efficient method for analyzing single-lap joints with their geometric 
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nonlinearity and possible corner rounding or complicated adhesive termination, like spew 

fillets. He commented that analytical techniques cannot be used to predict the strength of 

adhesively-bonded lap joints without an uncertainty factor, as they cannot adequately 

describe the real stress and strain conditions at the ends of the joint, where failure 

initiates. 

 

In order to adequately model single-lap joints and how their important parameters affect 

the stresses in the adherends and adhesive, two-dimensional plane-strain analysis with a 

consistent isoparametric mesh was conducted across all cases presented. [1] and [5] both 

encountered the issue of stress singularity at the sharp corners of a single-lap joint, and 

both combatted the issue with a consistent mesh; a mesh that measures stress from the 

same distance from the singularity. In the case of this thesis, stress was always measured 

at the same point across cases, and it was always measured at the centroid of the element, 

with 40 elements per basic case adherend thickness. This allowed for a comparison of 

stresses across cases, without danger of influence from the singularity. The good 

correlation between analytical deflection and finite element deflection in Figure 4.1, re-

presented below, verifies this mesh scheme. 
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Figure 4.1 Analytical solution and FE solution 

 

 

 Differing adherend Young’s Modulus, E, thickness, t, length, L, bond length, 2c, and 

adhesive thickness, η, were all investigated. All but the case of varying adhesive 
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Figure 4.2 Finite element boundary conditions in tension 

 

Figure 4.3 Finite element boundary conditions in three point bending 

 

Figure 4.2 outlines the dimensional symbols of the model, with L being adherend length 

beyond the overlap, c being half of the overlap length keeping with Goland and 

Reissner’s [1] convention, and t  being thickness of the adherend. Points A and B were 

found to be the points of critical stress concentration, and subsequently all instances of 

the parametric study had stresses measured at these points and compared to the stresses 

measured in the “basic case,” a homogeneous single-lap joint with zero adhesive 

thickness.  
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Regarding the basic cases, the input stress in the tension case, σ0, was unity, in order to 

make all results normalized with respect to this input stress. The input load, for the three-

point bending basic case, was unity as well, for the same reason. In both basic cases, L 

was 15 m, c was 1.5 m, and t was 1 m. Young’s Modulus and Poisson’s Ratio in each 

case was set to near that of aluminum, 70 GPa and 0.33 respectively. The mesh size used 

was the same uniform, isoparametric mesh used in the verification case, in order to hold 

the basic cases and parametric study cases to follow to that verification. As is illustrated 

in Figure 4.2, the far positive x face of the lower adherend was pinned at its midpoint, 

and the far negative x face, where the input stress was applied, was assigned a roller 

condition at its midpoint, again catering to the conditions in [1]. Contour maps of the 

critical region and tables of stress values at points A and B for these basic cases are 

shown below. Countour maps are rotated 90 degrees clockwise in order to maximize the 

size of the map in the allowable space on the page. A rotated coordinate system is 

transposed over the image for ease of understanding. The Von-Mises stress in ABAQUS 

is calculated according to equation 4.1, while the other stresses are simply the classic 

definition. 

 

 2222 3 xyyyyyxxxxvm    (4.1) 
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Table 4.1 Tensile basic case stress values at points A and B 

 A B 

σvm 4.996 7.317 

σxx 2.379 7.368 

σyy 3.927 1.962 

τxy -2.099 -1.813 
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Figure 4.4 Von-Mises stress contour map under unit tensile loading  

(For the interpretation of the references to color in this and all other figures, the 

reader is referred to the electronic version of this thesis) 
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Figure 4.5 X direction stress contour map under unit tensile loading 
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Figure 4.6 Y direction stress contour map under unit tensile loading 
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Figure 4.7 XY shear stress contour map under unit tensile loading 
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Table 4.2 Tensile basic case stress values at points A and B 

 A B 

σvm 31.15 98.10 

σxx 16.25 -98.04 

σyy 27.38 -55.74 

τxy -11.66 25.64 
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Figure 4.8 Von-Mises stress contour map under three point bending load 
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Figure 4.9 X direction stress contour map under three point bending load 
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Figure 4.10 Y direction stress contour map under three point bending load 
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Figure 4.11 XY shear stress contour map under three point bending load 

 

As can be immediately seen from the stress contours, there are two obvious concentration 

points on each adherend in an ideally bonded single-lap joint. The following chapters 

explore how these points’ stresses vary as various parameters are changed, and discuss 

why.   
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5 Results of the FEA Based Parametric Study 

 

5.1 Varied Adherend Thickness Under Ideal Bonding and a Tensile Load 

 

Several key parameters of the single-lap joint, Young’s Modulus, adherend thickness, 

bond length, free adherend length, and later adhesive thickness and Young’s Modulus, 

were varied in order to ascertain the stresses’ sensitivity and general behavior under their 

variation. The first parameter studied was Young’s Modulus, E, under tensile loading. 

Tables 5.1 and 5.2 display the critical stresses and their stress concentration factor (SCF) 

with respect to the basic case, outlined in the previous chapter, at points A and B 

respectively, and Figures 5.2 and 5.3 show each SCF as the ratio of E to the basic case, 

E0, varies. In each case, ratios of 0.2, 0.5, 2, and 5 were considered. Figure 5.1 highlights 

the critical points and the varied parameters. Additional ratios were considered where 

more data was needed in certain cases. Again, all stresses are normalized with respect to 

their unit input load, and a uniform isoparametric mesh was used. This mesh has been 

verified in the previous chapter with reference to the analytical displacement calculated.  

 

Stresses were calculated at the centroid of each quadrilateral element at the critical points 

A and B. Take note that only the lower adherend’s properties were varied, and all stress 

measurements were taken from this lower adherend, unless otherwise noted. The ratios 

studied rendered checking both adherends redundant, because as the ratio is increased, 

the measured adherend played the roll of the fixed parameter adherend. 
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E
A B

E0

 

Figure 5.1 Ideally bonded Young’s Modulus variation critical points 

Table 5.1 Reference stress values and SCFs at point A with varying E/E0 

E/E0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.2 2.444 (0.489) 0.964 (0.314) 2.294 (0.584) -0.837 (0.399) 

0.5 3.917 (0.784) 1.943 (0.634) 3.446 (0.878) -1.457 (0.694) 

1.0 4.996 (1.000) 3.066 (1.000) 3.927 (1.000) -2.099 (1.000) 

2.0 5.967 (1.194) 4.512 (1.472) 3.561 (0.907) -2.697 (1.285) 

5.0 8.358 (1.673) 6.780 (2.211) 2.264 (0.577) -3.372 (1.607) 

 

Table 5.2 Reference stress values and SCFs at point B with varying E/E0 

E/E0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.2 9.290 (1.270) 9.214 (1.251) 2.817 (0.747) -2.755 (1.520) 

0.5 8.339 (1.140) 8.306 (1.127) 3.765 (0.999) -2.189 (1.207) 

1.0 7.317 (1.000) 7.368 (1.000) 3.769 (1.000) -1.813 (1.000) 

2.0 6.217 (0.850) 6.355 (0.863) 3.211 (0.852) -1.340 (0.739) 

5.0 5.028 (0.687) 5.206 (0.707) 2.119 (0.562) -0.776 (0.428) 
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Figure 5.2 SCFs as E/E0 varies at point A 

 

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

E/E
0

S
C

F

SCF at point A as E/E
0
 varies 

 

 


vm


xx


yy


xy



40 

 

 

Figure 5.3 SCFs as E/E0 varies at point B 

 

Observing the SCFs at point A, for each type of stress except the Y direction, they 

increase as the ratio E/E0 increases. At point B, however, the opposite is true. As the ratio 

increases, the SCFs decrease, although not as drastically. For both points, Y direction 

SCF increased up to a ratio of unity, and then decreased. X direction stress is the most 

sensitive to variations in adherend E at point A, while XY shear stress was the most 

sensitive at point B. Therefore, one should maintain an E/E0 ratio of unity across both 

adherends when constructing a single-lap joint for tensile loading. 
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Before commenting on why the various stresses behave in the manner that they do, one 

must comment on the definition of SCF in these cases. SCF is simply the ratio of current 

stress at the point in question to the stress measured in the basic, homogeneous case. 

Therefore, increasing SCF can be attributed to an increasingly tensile stress if basic case 

stress is positive, or increasingly compressive stress if basic case stress is negative. One 

must observe that Von Mises stress is always positive, and therefore is simply a way to 

visualize stress evolution across X, Y, and XY directions in a single value. In reference to 

varied Young’s Modulus, for Von Mises stress and SCF is always positive as expected. X 

and Y direction stresses and SCFs are also always positive. XY direction shear stress is 

always negative, but SCF is always positive, as expected. Therefore, for X and Y 

direction stresses, increasing SCF means an increasingly tensile stress, and decreasing 

refers to decreasingly tensile stress, or increasingly compressive stress. In regards to 

decreasing SCF, the stress is simply becoming less tensile if it approaches zero. If SCF 

crosses zero, the stresses are shifting from tensile to compressive. 

 

As single-lap joints are loaded according to the boundary conditions displayed in the 

previous chapter, in tension, the bonded region tends to rotate counter-clockwise due to 

the eccentric loading angle. Therefore, Y direction stresses at point A become 

increasingly tensile with increased transferred load, and at point B become increasingly 

compressive with increased load. The same holds true for X direction stress, although this 

is also influenced by the normal load applied to the upper adherend. Shear stress, due to 

sign convention, increases in negative intensity at point A, and decreases in negative 

intensity at point B, due to the direction of the load. 
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In reference to varied Young’s Modulus, all stresses are explained by this logic except for 

Y direction stress. At both points, it increases up to a Young’s Modulus ratio of unity, but 

then decreases as the ratio increases away from unity. At point A, this means it follows 

the previous logic up to a ratio of unity, and then diverges. At point B, this means it 

diverges from the previous logic up to a ratio of unity, and then converges. For ratios less 

than unity, the varied adherend, from which the stresses are measured, has a smaller 

stiffness than the unvaried adherend. This means that it will displace more, and 

experience less stress. For ratios greater than unity, the opposite is true. However, 

whether the ratio is less than or greater than unity, there is always one adherend that has a 

higher Young’s Modulus than the other, and therefore it has greater stiffness. This 

stiffness resists the rotation of the bonded region, and therefore, the moment caused by it, 

resulting in a lesser Y direction stress regardless of Young’s Modulus ratio, and the 

stresses were instead translated into X direction and XY shear stresses. In other words, Y 

direction stress is decreased because regardless of the Young’s Modulus ratio, except if 

unity, one adherend is always stiffer than the other. This stiffer adherend dictates the 

amount of central rotation, and the rotation is translated into axial deformation of the less 

stiff adherend. A ratio of unity is different, as the body is ideally bonded, and acts as a 

homogeneous structure. 
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5.2 Varied Adherend Thickness Under Ideal Bonding and a Tensile Load 

 

Varying adherend thickness was also investigated. Tables 5.3 and 5.4 show reference 

stress values and SCFs at points A and B under tensile loading, and Figures 5.5 and 5.6 

plot each stress’ evolution as the ratio of t/t0 is varied. Figure 5.4 highlights the critical 

points and parameter being varied in this case. 
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Figure 5.4 Ideally bonded thickness variation critical points 

 

Table 5.3 Reference stress values and SCFs at point A with varying t/t0 

t/t0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.2 2.692 (0.539) 1.918 (0.626) 1.645 (0.419) -1.207 (0.575) 

0.5 3.738 (0.748) 2.418 (0.789) 2.780 (0.708) -1.629 (0.776) 

1.0 4.996 (1.000) 3.066 (1.000) 3.927 (1.000) -2.099 (1.000) 

2.0 7.200 (1.441) 4.281 (1.396) 5.825 (1.483) -2.955 (1.408) 

5.0 13.890 (2.780) 7.930 (2.586) 11.610 (2.957) -5.527 (2.633) 
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Table 5.4 Reference stress values and SCFs at point B with varying t/t0 

t/t0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.2 50.320 (6.877) 52.400 (7.112) 19.79 (5.251) -9.168 (5.057) 

0.5 15.560 (2.127) 15.860 (2.153) 7.285 (1.933) -3.528 (1.946) 

1.0 7.317 (1.000) 7.368 (1.000) 3.769 (1.000) -1.813 (1.000) 

2.0 3.752 (0.513) 3.756 (0.510) 1.991 (0.528) -0.961 (0.530) 

5.0 1.217 (0.166) 1.245 (0.169) 0.420 (0.111) -0.252 (0.139) 

 

 

 

Figure 5.5 SCFs as t/t0 varies at point A 
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Figure 5.6 SCFs as t/t0 varies at point B 

Varied adherend thickness behaved much the same as varied Young’s Modulus. An 

increasing ratio of t/t0 resulted in increasing SCFs in all stresses at point A, and 

decreasing SCFs in all stresses at point B. All stresses at each point behaved roughly the 

same, however stresses at point B were impacted much more by smaller adherend 

thickness. As with the variation in E, a t/t0 ratio of unity is suggested for construction 

single-lap joints in tension. 

 

The logic displayed after the case of varied Young’s Modulus still holds here, and 

explains the universal increase in SCF at point A and decrease in SCF at point B. 
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but effects the moment of inertia on a cubic level, and also increases or decreases the 

eccentricity of the load, and therefore the moment. Whether the varied adherend is 

thinner or thicker than the unvaried adherend, the eccentricity of the load is largely 

affected. This moment causing eccentricity has been shown to largely impact the edge 

moment in the bonded region, and as this is the dominant stress, it overshadows all other 

effects thickness may have. As a result, Y direction stress follows the same trends as all 

other forms of stress measured, and all stresses behave as expected under varied 

thickness. 
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5.3 Varied Free Adherend Length Under Ideal Bonding and a Tensile Load 

 

Free adherend length variation was then simulated. Tables 5.5 and 5.6 tabulate reference 

stress values and their associated SCFs as L/L0 varies, and Figure 5.8 and 5.9 illustrate the 

SCFs graphically. Figure 5.7 highlights the parameter under variation and the critical 

points investigated. 
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Figure 5.7 Ideally bonded free adherend length variation critical points 

Table 5.5 Reference stress values and SCFs at point A with varying L/L0 

L/L0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.2 8.530 (1.707) 5.062 (1.651) 6.907 (1.759) -3.499 (1.667) 

0.5 6.973 (1.396) 4.183 (1.364) 5.595 (1.425) -2.883 (1.374) 

1.0 4.996 (1.000) 3.066 (1.000) 3.927 (1.000) -2.099 (1.000) 

2.0 3.868 (0.774) 2.428 (0.792) 2.974 (0.757) -1.651 (0.787) 

5.0 2.327 (0.466) 1.550 (0.506) 1.663 (0.424) -1.036 (0.494) 
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Table 5.6 Reference stress values and SCFs at point B with varying L/L0 

L/L0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.2 0.692 (0.095) 0.550 (0.075) -0.291 (-0.077) -0.050 (0.028) 

0.5 4.242 (0.580) 4.287 (0.582) 2.027 (0.538) -1.016 (0.560) 

1.0 7.317 (1.000) 7.368 (1.000) 3.769 (1.000) -1.813 (1.000) 

2.0 9.074 (1.240) 9.128 (1.240) 4.765 (1.264) -2.268 (1.251) 

5.0 11.491 (1.571) 11.548 (1.567) 6.134 (1.628) -2.894 (1.596) 

 

 

Figure 5.8 SCFs as L/L0 varies at point A 
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Figure 5.9 SCFs as L/L0 varies at point B 

 

Under varied free adherend length, SCFs at points A and B behave with trends opposite 

that of varied Young’s Modulus or thickness. At point A, the SCFs decrease with 

increasing L/L0, and at point B, the SCFs increase. Although the stress’ behavior is 

opposite the varied E and t cases, one should still attempt to keep the two adherends in a 

single-lap joint of equal length in order to minimize overall adherend stress in tension. 

 

Free adherend length affects the eccentricity of the load, and therefore the edge moment, 

which dominates the bonded region’s stresses. When the ratio is less than unity, it greatly 

effects the eccentricity, but larger than unity, it effects it less and less. This is reflected, at 

0 1 2 3 4 5
-0.5

0

0.5

1

1.5

2

L/L
0

S
C

F

SCF at point B as L/L
0
 varies 

 

 


vm


xx


yy


xy



50 

 

both points A and B, by the large slopes for ratios less than unity, and smaller slopes at 

the ratio increases past unity. As free adherend length is shortened, point A’s stresses 

become more tensile, and point B’s stresses become less tensile. As expected, the 

opposite trend is observed as free adherend length is increased. 
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5.4 Varied Bonding Length Under Ideal Bonding and a Tensile Load 

 

Joint bonding length was also varied. Tables 5.7 and 5.8 display the reference stress 

values and SCFs at points A and B respectively, and Figures 5.11 and 5.12 display the 

evolving SCFs graphically. Figure 5.10 highlights the varied parameter and critical 

points. 

 

A B

2c

 

Figure 5.10 Ideally bonded bonding length variation critical points 

Table 5.7 Reference stress values and SCFs at point A with varying c/c0 

c/c0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.20 5.100 (1.021) 3.337 (1.088) 2.849 (0.726) -2.347 (1.118) 

0.50 4.789 (0.959) 3.083 (1.006) 3.558 (0.906) -2.089 (0.995) 

0.75 5.006 (1.002) 3.087 (1.007) 3.914 (0.997) -2.112 (1.006) 

1.00 4.996 (1.000) 3.066 (1.000) 3.927 (1.000) -2.099 (1.000) 

1.50 4.641 (0.923) 2.856 (0.932) 3.637 (0.926) -1.954 (0.931) 

2.00 4.599 (0.921) 2.841 (0.927) 3.592 (0.915) -1.942 (0.925) 

5.00 3.861 (0.773) 2.425 (0.791) 2.965 (0.755) -1.649 (0.786) 
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Table 5.8 Reference stress values and SCFs at point B with varying c/c0 

c/c0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.20 8.120 (1.110) 8.251 (1.120) 3.064 (0.813) -1.808 (0.997) 

0.50 7.424 (1.015) 7.514 (1.020) 3.491 (0.926) -1.760 (0.971) 

0.75 7.372 (1.008) 7.427 (1.008) 3.764 (0.999) -1.820 (1.004) 

1.00 7.317 (1.000) 7.368 (1.000) 3.769 (1.000) -1.813 (1.000) 

1.50 6.813 (0.931) 6.861 (0.931) 3.497 (0.928) -1.687 (0.931) 

2.00 6.785 (0.927) 6.837 (0.928) 3.458 (0.918) -1.672 (0.922) 

5.00 5.805 (0.793) 5.860 (0.795) 2.875 (0.763) -1.409 (0.777) 

 

 

Figure 5.11 SCFs as c/c0 varies at point A 
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Figure 5.12 SCFs as c/c0 varies at point B 

The varied bond length cases behave differently than the previously studied varied 

parameters. Prior to a ratio of 1.5, they seem erratic. The stresses with the most dramatic 

variation are X direction stress at point A and Y direction stress at point B. Following 

that, however, they seem to universally decrease with increased bond length. Therefore, 

one should try to maximize bond length in order to minimize overall stress in the single-

lap joint. 

 

Bonding length changes effect the SCFs differently than the other varied parameters. For 

ratios much less than unity, for the geometry used in these simulations, points A and B 

begin to affect each other. This is shown in Figures 5.7 and 5.8 by the seemingly strange 
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behavior at ratios less than unity. However, as ratios increase past unity, the two points’ 

stress states become more independent of each other, and stresses universally decrease at 

each point. This can be attributed to the simple fact that the load is dispersed across a 

larger amount of material, with a larger cross-sectional area. 
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5.5 Varied Young’s Modulus Under Ideal Bonding and a Three-Point Bending Load 

 

The same important lap joint parameters were also varied under a three-point bending 

load. Tables 5.9 and 5.10 display the reference stresses and SCFs at points A and B, while 

Figures 5.14 and 5.15 graphically present the change in SCF with respect to the ratio of 

E/E0. Figure 5.13 highlights the varied parameter and critical points. 

 

E
A B

E0

 

Figure 5.13 Ideally bonded Young’s Modulus variation critical points 

Table 5.9 Reference stress values and SCFs at point A with varying E/E0 

E/E0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.2 17.19 (0.552) 6.057 (0.373) 16.55 (0.605) -5.352 (0.459) 

0.3 20.60 (0.661) 7.95 (0.571) 19.55 (0.714) -6.579 (0.637) 

0.5 25.17 (0.808) 10.99 (0.676) 23.29 (0.851) -8.486 (0.728) 

0.75 28.75 (0.923) 13.92 (0.857) 25.89 (0.946) -10.33 (0.886) 

1.0 31.15 (1.000) 16.25 (1.000) 27.38 (1.000) -11.66 (1.000) 

2.0 36.27 (1.164) 22.56 (1.388) 29.50 (1.077) -14.68 (1.259) 

5.0 42.03 (1.349) 31.29 (1.926) 30.14 (1.101) -17.77 (1.524) 
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Table 5.10 Reference stress values and SCFs at point B with varying E/E0 

E/E0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.2 126.8 (1.293) -123.9 (1.263) -53.98 (0.968) 37.20 (1.451) 

0.3 121.35 (1.237) -118.9 (1.213) -57.20 (1.026) 34.52 (1.346) 

0.5 112.6 (1.148) -111.0 (1.132) -59.01 (1.059) 31.49 (1.148) 

0.75 104.4 (1.064) -103.7 (1.058) -57.94 (1.040) 28.26 (1.102) 

1.0 98.10 (1.000) -98.04 (1.000) -55.74 (1.000) 25.64 (1.000) 

2.0 82.80 (0.844) -84.24 (0.859) -46.44 (0.833) 18.86 (0.736) 

5.0 66.49 (0.678) -68.75 (0.701) -30.79 (0.552) 11.07 (0.432) 

 

 

Figure 5.14 SCFs as E/E0 varies at point A 
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Figure 5.15 SCFs as E/E0 varies at point B 

 

As can easily be seen, the results from the three-point bending case are very similar in 

behavior to the tensile case. At point A, the SCFs universally increase with an increased 

ratio of moduli, while at point B, they decrease overall. The same conclusion can be 

drawn as well: one should hold Young’s Moduli homogeneous across adherends in order 

to minimize overall stress.  

 

Under a three-point bending load, the edge moment is much more pronounced. The same 

Y direction stress phenomena observed under tensile variation of Young’s Modulus can 

be seen in this case at point B. And at point A, rather than Y direction stress decreasing 
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past unity, it simply levels off. The same logic used to explain stresses under a tensile 

load can be used here as well, because both three-point bending and tensile loading 

induce an edge moment on the bond, which has been shown to be the dominant load 

contributing to stress in single-lap joints. 
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5.6 Varied Adherend Thickness Under Ideal Bonding and a Three-Point-Bending 

Load 

 

Tables 5.11 and 5.12 display the reference stress values and associated SCFs for varied 

t/t0 and figures 5.17 and 5.18 graphically display the evolving SCFs with respect to 

varied adherend thickness ratio. Figure 5.16 highlights the varied parameter and critical 

points. 

A B

t0

t

 

Figure 5.16 Ideally bonded thickness variation critical points 

Table 5.11 Reference stress values and SCFs at point A with varying t/t0 

t/t0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.2 21.14 (0.679) -15.25(-0.939) -11.61(-0.424) 9.331(-0.800) 

0.5 22.81 (0.732) 12.53 (0.771) 19.30 (0.705) -8.956 (0.768) 

1.0 31.15 (1.000) 16.25 (1.000) 27.38 (1.000) -11.66 (1.000) 

2.0 24.79 (0.796) 12.07 (0.743) 22.59 (0.825) -8.752 (0.751) 

5.0 10.78 (0.346) 4.764 (0.293) 10.17 (0.371) -3.527 (0.303) 
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Table 5.12 Reference stress values and SCFs at point B with varying t/t0 

t/t0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.2 1290 (13.150) -1343 (13.70) -539.0 (9.670) 242.1 (9.442) 

0.5 294.0 (2.997) -298.0 (3.040) -154.1 (2.765) 70.65 (2.756) 

1.0 98.10 (1.000) -98.04 (1.000) -55.74 (1.000) 25.64 (1.000) 

2.0 33.39 (0.340) -33.07 (0.337) -19.83 (0.356) 9.130 (0.356) 

5.0 10.62 (0.123) -10.32 (0.105) -7.055 (0.127) 3.151 (0.123) 

 

 

Figure 5.17 SCFs as t/t0 varies at point A 
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Figure 5.18 SCFs as t/t0 varies at point B 

For the three-point bending load cases, varied thickness resulted in different SCF 

behavior than it did in tension. At point A, the SCFs increased up to a ratio of unity, and 

then decreased, while at point B, they universally decreased. However, this does not 

mean that one should maximize thickness. The SCFs of a ratio of less than unity, at least 

at point B, still suggest one should keep a ratio of unity, as any nonhomogeneity would 

increase the stress in the adherend with the smallest thickness. Also, the changing 

thickness greatly changes the stiffness and moment of inertia of the varied adherend, 

resulting in a much different state of stress at the lower ratios. 
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The apparent odd behavior of stresses at point A can be explained by the fact that stresses 

simply changed direction as compared to the other cases. This is indicated by the 

negative SCFs. Von Mises stress, being always positive, shows the general stress 

behavior regardless of sign, and they fit the general trend at point A. Stress there 

increases up to a ratio of unity, and then decrease. However, it is apparent from the SCFs 

that stresses at point B are much more critical, with SCFs reaching over 13. They 

decrease as thickness increases because of the increased cross-sectional area and moment 

of inertia. The behavior of stresses at point A for ratios less than unity is quite apparently 

attributable to a shift from tensile to more compressive stresses. The compressive stresses 

are still of appreciable magnitude at point A, and can be considered to increase in 

compressive strength, just as point B increases in tensile strength, for ratios less than 

unity. 
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5.7 Varied Free Adherend Length Under Ideal Bonding and a Three-Point-Bending 

Load 

 

Varied length was also investigated under three point bending. Tables 5.13 and 5.14 

display reference stress values and their associated SCFs, while Figures 5.20 and 5.21 

graphically track the changing SCFs with respect to the ratio L/L0. Figure 5.19 highlights 

the varied parameter and critical points. 

A B

L0

L

 

Figure 5.19 Ideally bonded free adherend length variation critical points 

 

Table 5.13 Reference stress values and SCFs at point A with varying L/L0 

L/L0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.2 4.171 (0.134) 2.127 (0.131) 3.705 (0.135) -1.537 (0.132) 

0.5 13.12 (0.421) 6.691 (0.412) 11.66 (0.426) -4.830 (0.414) 

1.0 31.15 (1.000) 16.25 (1.000) 27.38 (1.000) -11.66 (1.000) 

2.0 49.88 (1.601) 26.65 (1.640) 43.30 (1.581) -18.98 (1.628) 

5.0 99.47 (3.193) 55.34 (3.406) 84.35 (3.081) -38.96 (3.341) 
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Table 5.14 Reference stress values and SCFs at point B with varying L/L0 

L/L0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.2 0.069 (7E-4) -0.024 (2E-4) 0.056 (-0.001) 2E-4 (1E-4) 

0.5 38.42 (0.392) -38.16 (0.389) -22.80 (0.409) 10.37 (0.404) 

1.0 98.10 (1.000) -98.04 (1.000) -55.74 (1.000) 25.64 (1.000) 

2.0 136.0 (1.386) -136.0 (1.387) -76.96 (1.381) 35.39 (1.381) 

5.0 174.1 (1.775) -174.0 (1.775) -99.59 (1.787) 45.50 (1.775) 

 

 

Figure 5.20 SCFs as L/L0 varies at point A 
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Figure 5.21 SCFs as L/L0 varies at point B 

As is immediately apparent, with increased L, all SCFs universally increase. This is an 

intuitive response as three-point bending induces a large edge moment, and increased 

length increases the moment arm, therefore increasing the stress. 

 

This behavior is easy to explain. As free adherend length is increased, the moment arm is 

increased, and therefore stresses at A and B are increased across the board.  
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5.8 Varied Bonding Length Under Ideal Bonding and a Three-Point-Bending Load 

 

Bond length was then investigated. Tables 5.15 and 5.16 present reference stress values 

and SCFs as bond length varies, and figure 5.23 and 5.24 graphically track varying SCFs 

with varying bond length. Figure 5.22 highlights the varied parameter and critical points. 

A B

2c

 

Figure 5.22 Ideally bonded bonding length variation critical points 

Table 5.15 Reference stress values and SCFs at point A with varying c/c0 

c/c0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.2 151.9 (4.876) 45.27 (2.786) 153.7 (5.614) -36.87 (3.162) 

0.5 43.81 (1.406) 19.80 (1.219) 40.97 (1.496) -14.64 (1.256) 

1.0 31.15 (1.000) 16.25 (1.000) 27.38 (1.000) -11.66 (1.000) 

2.0 29.52 (0.947) 15.37 (0.946) 25.96 (0.948) -11.03 (0.946) 

5.0 31.29 (1.005) 16.18 (0.996) 27.62 (1.009) -11.64 (0.998) 
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Table 5.16 Reference stress values and SCFs at point B with varying c/c0 

c/c0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.2 182.8 (1.863) -170.5 (1.739) -161.1 (2.890) 61.55 (2.401) 

0.5 111.9 (1.141) -111.2 (1.134) -67.95 (1.219) 30.29 (1.181) 

1.0 98.10 (1.000) -98.04 (1.000) -55.74 (1.000) 25.64 (1.000) 

2.0 89.81 (0.916) -89.74 (0.915) -51.13 (0.917) 23.49 (0.916) 

5.0 91.81 (0.936) -91.79 (0.936) -51.91 (0.931) 23.92 (0.933) 

 

 

Figure 5.23 SCFs as c/c0 varies at point A 
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Figure 5.24 SCFs as c/c0 varies at point B 

 

As is immediately apparent an obvious and intuitive, all stresses universally decrease 

with increasing bond length. Increasing bond length essentially increases the thickness of 

the central of the single-lap joint, which is most effected by the bending moment 

imparted by the three point bending load. With a higher thickness, and therefore a higher 

moment of inertia, the stresses decrease. 

 

Varied bond length stress behavior is also very easy to explain. The cross-sectional area 

and moment of inertia of the bonded region is increased as bonding length is increased, 

and therefore, stresses due to the dominant moment are decreased universally. 
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5.9 Varied Adhesive Thickness Under Adhesive Bonding and a Tensile Load 

 

While ideal bonding cases are important to understand the behavior of the adherends 

under common loading cases, it is important to understand how the adhesive used in 

bonding real-world single-lap joints effect the adherends as well. Figure 5.25 displays a 

diagram of the boundary conditions and additional parameters involved in the adhesively 

bonded single-lap joint parametric study. 

 

 

Figure 5.25 Finite element boundary conditions and parameters 

 

First, adhesive thickness was studied using the original tensile basic case’s dimensions 

and properties. Base adhesive thickness was 0.1 m. Ec and vc were 28 GPa and 0.4 

respectively, which is considered a moderately stiff adhesive. Tables 5.17 and 5.18 

display the reference stress values and their associated SCFs as adhesive thickness was 

varied, and Figures 5.27 and 5.28, graphically illustrate the changing SCFs with respect 

to η/η0 at points A1 and B2, the critical points on each adherend displayed in Figure 5.17. 
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Points A2 and B1 are shown in the following section to always be less critical than those at 

points A1 and B2. Figure 5.26 highlights the varied parameter and critical points. 

B2

A1

η

 

Figure 5.26 Adhesively bonded adhesive thickness variation critical points 

Table 5.17 Stress values and SCFs as η/η0 varies at point A1 

η/η0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.2 7.323 (0.942) 7.370 (0.943) 3.795 (0.932) -1.819 (0.937) 

0.5 7.491 (0.964) 7.538 (0.964) 3.899 (0.958) -1.866 (0.961) 

1.0 7.772 (1.000) 7.817 (1.000) 4.072 (1.000) -1.942 (1.000) 

2.0 8.332 (1.072) 8.374 (1.071) 4.417 (1.085) -2.095 (1.079) 

5.0 10.01 (1.288) 10.04 (1.284) 5.448 (1.338) -2.552 (1.314) 

 

Table 5.18 Stress values and SCFs as η/η0 varies at point B2 

η/η0 σvm (SCF) σxx (SCF) σyy (SCF) τxy (SCF) 

0.2 7.323 (0.942) 7.370 (0.943) 3.795 (0.932) -1.819 (0.937) 

0.5 7.491 (0.964) 7.538 (0.964) 3.899 (0.958) -1.866 (0.961) 

1.0 7.772 (1.000) 7.817 (1.000) 4.072 (1.000) -1.942 (1.000) 

2.0 8.332 (1.072) 8.374 (1.071) 4.417 (1.085) -2.095 (1.079) 

5.0 10.01 (1.288) 10.04 (1.284) 5.448 (1.338) -2.552 (1.314) 
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Figure 5.27 SCFs as η/η0 varies at point A1 
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Figure 5.28 SCFs as η/η0 varies at point B2 

As adhesive thickness increases, the stresses at points A1 and B2 universally increase. 

This is easily explainable, and is attributed to the increased eccentricity of the loading 

angle, thereby increasing the edge moment force on the bonded region. 
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5.10 Varied Young’s Modulus Under Adhesive Bonding and a Tensile Load 

 

In order to study adhesive effects on a single-lap joint with dimensions similar to that of 

the experimental analysis in chapter six, the dimensions were changed to 6.35 mm by 

155.575 mm adherends with a bonding length of 38.1 mm. The single-lap joints studied 

prior to this were of a different ratio of length to thickness, and therefore behave slightly 

differently. Young’s Modulus and Poisson’s Ratio are still 70 GPa and 0.3 respectively 

for the adherends, and are still 28 GPa and 0.4 respectively for the adhesive. A unit input 

stress was also applied, in order to keep the resulting stresses normalized with respect to 

its input. 

 

For the purpose of comparing this geometry with ideal bonding with that of adhesive 

bonding, Table 5.21 displays the various stresses at the critical points on each adherend 

without any adhesive and with ideal bonding, and Table 5.22 displays the various stresses 

at each of the critical points with the aforementioned adhesive added, and their SCF with 

respect to the values in Table 5.21. 

 

Table 5.19 Stress values of the basic model without any adhesive 

  A1 B1 A2 B2 

σvm 5.798 4.309 4.310 5.798 

σxx 7.150 2.923 2.923 7.150 

σyy 2.791 3.842 3.842 2.740 

σxy -2.037 -2.317 -2.317 -2.037 
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Table 5.20 Stress values of the basic model with adhesive, SCFs compared to table 1 

  A1 B1 A2 B2 

σvm (SCF) 2.712 (0.367) 0.876 (0.203) 0.876 (0.203) 2.712 (0.367) 

σxx (SCF) 3.376 (0.472) 0.561 (0.192) 0.561 (0.192) 3.376 (0.472) 

σyy (SCF) 1.311 (0.470) 0.618 (0.161) 0.618 (0.161) 1.311 (0.470) 

σxy (SCF) -0.842 (0.413) -0.473 (0.147) -0.473 (0.147) -0.842 (0.413) 

 

As is immediately apparent, the addition of the adhesive increases the stresses across the 

board, if it changes them at all. Most notably, shear stress is increased significantly at 

points A1 and A2. However, the stresses at points A1 and B2 are always much higher than 

at the other two points. Therefore, only these two critical points will be investigated. 

 

Following this initial comparison, adherend Young’s Modulus was once again varied. 

Tables 5.23, and 5.24 tabulate the stresses and associated SCFs with the variation, and 

Figures 5.30, and 5.31 plot SCFs at each respective critical point as Young’s Modulus is 

varied. Figure 5.29 highlights the varied parameter and critical points. 

E0

E
B2

A1

 

Figure 5.29 Adhesively bonded Young’s Modulus variation critical points 
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Table 5.21 Stresses and SCFS at point A1 as E/E0 varies 

E/E0 σvm (SCF) σxx (SCF) σyy (SCF) σxy (SCF) 

0.2 3.919 (0.946) 4.970 (0.948) 1.317 (0.779) -0.882 (0.803) 

0.5 4.044 (0.976) 5.131 (0.979) 1.595 (0.944) -1.026 (0.934) 

1 4.143 (1.000) 5.241 (1.000) 1.689 (1.000) -1.098 (1.000) 

2 4.225 (1.020) 5.324 (1.016) 1.675 (0.992) -1.133 (1.032) 

5 4.303 (1.039) 5.394 (1.029) 1.543 (0.914) -1.140 (1.038) 

 

Table 5.22 Stresses and SCFS at point B2 as E/E0 varies 

E/E0 σvm (SCF) σxx (SCF) σyy (SCF) σxy (SCF) 

0.2 5.049 (1.216) 6.159 (1.171) 1.738 (1.050) -1.667 (1.492) 

0.5 4.560 (1.098) 5.709 (1.086) 1.757 (1.061) -1.408 (1.261) 

1 4.153 (1.000) 5.259 (1.000) 1.656 (1.000) -1.117 (1.000) 

2 3.812 (0.918) 4.820 (0.917) 1.376 (0.831) -0.822 (0.735) 

5 3.515 (0.847) 4.352 (0.827) 0.926 (0.559) -0.500 (0.448) 
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Figure 5.30 SCF at point A1 as E/E0 varies 
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Figure 5.31 SCF at point B2 as E/E0 varies 

Varying Young’s Modulus on this single-lap joint with moderate length adherends has 

some interesting effects on the stresses at its critical points. Point A1 follows the same 

trends in Y direction stress and all other stresses, and point B2 follows the Y direction 

stress trend and all other stresses as the case with no adhesive, only with less magnitude. 

This is due to the addition of the adhesive, and its ability to hold some of the stress that 

was previously transferred directly from on adherend to the other. 

 

 

0 1 2 3 4 5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E/E
0

S
C

F

SCF at point B
2
 as E/E

0
 varies 

 

 


vm


xx


yy


xy



78 

 

5.11 Varied Adherend Thickness Under Adhesive Bonding and a Tensile Load 

 

Tables 5.27, and 5.28 display the reference stress values and SCFs associated with varied 

adherend thickness, and Figures 5.33, and 5.34 plot the SCF versus the varying thickness 

ratio. Figure 5.32 highlights the varied parameter and critical points. 

B2

A1

t0

t

 

Figure 5.32 Adhesively bonded adherend thickness variation critical points 

Table 5.23 Stresses and SCFS at point A1 as t/t0 varies 

t/t0 σvm (SCF) σxx (SCF) σyy (SCF) σxy (SCF) 

0.2 3.565 (0.861) 4.488 (0.856) 1.029 (0.609) -0.771 (0.702) 

0.5 3.523 (0.850) 4.449 (0.849) 1.289 (0.763) -0.880 (0.802) 

1 4.143 (1.000) 5.241 (1.000) 1.689 (1.000) -1.098 (1.000) 

2 5.553 (1.340) 7.031 (1.342) 2.450 (1.450) -1.534 (1.398) 

5 9.838 (2.374) 12.46 (2.379) 4.728 (2.799) -2.847 (2.593) 

 

Table 5.24 Stresses and SCFS at point B2 as t/t0 varies 

t/t0 σvm (SCF) σxx (SCF) σyy (SCF) σxy (SCF) 

0.2 19.93 (4.799) 23.68 (4.503) 4.118 (2.487) -2.531 (2.266) 

0.5 8.956 (2.157) 11.47 (2.181) 2.938 (1.773) -2.022 (1.810) 

1 4.153 (1.000) 5.259 (1.000) 1.656 (1.000) -1.117 (1.000) 

2 2.121(0.511) 2.661 (0.506) 0.933 (0.564) -0.632 (0.566) 

5 0.922 (0.222) 1.149 (0.218) 0.420 (0.253) -0.285 (0.256) 
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Figure 5.33 SCF at point A1 as t/t0 varies 

  

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

t/t
0

S
C

F

SCF at point A
1
 as t/t

0
 varies 

 

 


vm


xx


yy


xy



80 

 

 

Figure 5.34 SCF at point B2 as t/t0 varies 

 

With varied adherend thickness, the SCFs at point A1 increase and at point B2 decrease as 

t/t0 increases, exhibiting the same behavior as in the ideally bonded case. The same 

explanation holds. 

 

0 1 2 3 4 5
0

1

2

3

4

5

t/t
0

S
C

F

SCF at point B
2
 as t/t

0
 varies 

 

 


vm


xx


yy


xy



81 

 

5.12 Varied Adhesive Young’s Modulus Under Adhesive Bonding and a Tensile 

Load 

 

Tables 5.26, and 5.27display the stresses and SCFs associated with varied adhesive 

Young’s Modulus, and Figures 5.36, and 5.37 plot the changing SCF as adhesive 

Young’s Modulus changes. Figure 5.35 highlights the varied parameter and critical 

points. 

B2

A1 Ec

 

Figure 5.35 Adhesively bonded adhesive Young’s Modulus variation critical points 

Table 5.25 Stresses and SCFS at point A1 as Ec/Ec0 varies 

Ec/Ec0 σvm (SCF) σxx (SCF) σyy (SCF) σxy (SCF) 

0.2 3.632 (0.877) 4.512 (0.861) 1.104 (0.654) -0.600 (0.547) 

0.5 3.883 (0.937) 4.897 (0.934) 1.463 (0.937) -0.861 (0.785) 

1 4.143 (1.000) 5.241 (1.000) 1.689 (1.000) -1.098 (1.000) 

2 4.467 (1.078) 5.617 (1.072) 1.811 (1.072) -1.351 (1.231) 

5 4.966 (1.199) 6.125 (1.169) 1.831 (1.084) -1.664 (1.515) 

 

Table 5.26 Stresses and SCFS at point B2 as Ec/Ec0 varies 

Ec/Ec0 σvm (SCF) σxx (SCF) σyy (SCF) σxy (SCF) 

0.2 3.633 (0.875) 4.523 (0.860) 1.086 (0.656) -0.612 (0.548) 

0.5 3.888 (0.936) 4.912 (0.934) 1.437 (0.867) -0.877 (0.785) 

1 4.153 (1.000) 5.259 (1.000) 1.656 (1.000) -1.117 (1.000) 

2 4.480 (1.079) 5.636 (1.071) 1.774 (1.071) -1.371 (1.228) 

5 4.980 (1.199) 6.140 (1.167) 1.852 (1.118) -1.679 (1.503) 
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Figure 5.36 SCF at point A1 as Ec/Ec0 varies 
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Figure 5.37 SCF at point B2 as Ec/Ec0 varies 

 

As far as adherend stress is concerned, it is clear that the smallest adhesive Young’s 

Modulus is best. Stresses at both critical points increase in intensity as the Young’s 

Modulus of the adhesive increases, which is to be expected. A stiffer adhesive causes 

more deformation and stress in the adherends. 
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5.13 Design Recommendations via Parametric Study 

With a basic understanding of the effect each individual parameter has on the stresses in 

the single-lap joint, one can develop recommendations concerning single-lap joint design. 

Of course, the ideally bonded cases shed little light on “real world” lap joints, but the 

corresponding cases simulated with an adhesive often held similar results, so design 

recommendations based on the ideally bonded cases would be identical to those based on 

the adhesively bonded cases. 

 

1. As adhesive thickness increases, the stresses at the critical points A1 and B2 

universally increase. Therefore, one should minimize the thickness of the 

adhesive used in single-lap joint design. 

2. Inspecting both varied Young’s Modulus and adherend thickness with an adhesive 

bond, one sees that stresses at point A1 increase with an increase in each 

parameter, and the stresses at point B2 decrease with an increase in each 

parameter. Therefore, in order to keep stresses optimal, it is hypothesized that one 

should keep the product of Young’s Modulus and adherend thickness, more 

specifically the flexural rigidity, constant across adherends.  

3. Concerning adhesive Young’s Modulus, as far as adherend stress is concerned, 

one should minimize the adhesive Young’s Modulus, as the stresses at both 

critical points increased with increasing adhesive Young’s Modulus. However, in 

design, one must also consider the strength of the adhesive. 
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4. As bonding length increased, the stresses at both critical points decreased. 

Therefore, it is recommended that one maximizes the bonding length of single-lap 

joints within reason. 

5. Concerning free adherend length, one should keep it constant across adherends. 

The stress in the longer adherend was always found to be greater than that in the 

shorter adherend. 
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6 Experimental Validation 

 

Using an Instron 1321 tensile testing machine and load cells capable of measuring plus or 

minus 100 kN load, two single-lap joint specimens were constructed of 6061 Aluminum 

and FM-94 adhesive. One adherend was approximately twice the thickness of the other 

adherend, as detailed in the measurements presented later. Due to the limited space in the 

grips of the testing machine, some material was removed from the thicker adherend, 

resulting in an exacerbated lateral deformation, also discussed later. 

 

Digital Image Correlation (DIC) was used in order to track the full-field displacement of 

the bonded region throughout tensile testing. A random black and white speckle pattern 

was painted onto the bonding region which is used to track the movement of assigned 

squares. The DIC software does this by assigning greyscale values to smaller regions that 

the software discretizes the area of interest into. Each square contains a specified number 

of pixels, and the greyscale values assigned to those pixels generates a unique pattern that 

can be recognized and tracked by the Dantec software from image to image, allowing for 

the generation of displacement data. 

 

Figure 6.1 diagrams the approximate shape of the adherends, with letters assigned to each 

side length and dimension in order to tabulate the dimensions of the two specimens in 

Tables 6.1 and 6.2. 
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Figure 6.1 Diagram of the dimensions and shapes of the experimental specimens 
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Table 6.1 Dimensions of specimen 1 

A 7.65 mm 

B 35.00 mm 

C 157.00 mm 

D 6.46 mm 

E 7.68 mm 

F 151.66 mm 

G 3.24 mm 

H 11.00 mm 

I 3.04 mm 

J 26.00 mm 

K 38.21 mm 
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Table 6.2 Dimensions of specimen 2 

A 7.80 mm 

B 28.60 mm 

C 151.54 mm 

D 6.37 mm 

E 7.94 mm 

F 147.80 mm 

G 3.23 mm 

H 2.77 mm 

I 3.22 mm 

J 25.83 mm 

K 38.76 mm 

 

Dimensions were measured to the best estimate possible, but some dimensions, like the 

adhesive thickness, were so thin that incredible accuracy was impossible. For both 

specimens, the best estimate possible was 0.003 mm. Several points were compared in Y 

direction and X direction displacement for each specimen. These comparisons were made 

at step 120 in DIC recording, with each step equating to 0.5 seconds. In the process of the 

DIC software discretizing the area of interest, the outter edges of the area are cut off. In 

order to account for this, points were chosen in reference to the adhesive, which is easy 

enough to see in the DIC images. In the end, a decent correlation between DIC results 

and finite element analysis results was possible. 
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Ideal bonding between adhesive and adherend was assumed, as well as 100% density of 

both adherend and adhesive. Perfect square edges were also assumed, as well as a perfect 

square termination of the adhesive. The same 40 element per thickness as verified in 

previous sections was used, with biquadrilateral quadratic isoparametric plane strain 

elements, with a measured thickness of 25.55 mm prescribed as the plane strain 

thickness. The specimen was simulated vertically, as it was placed in the testing machine. 

Upon inspection of the tested specimens, it was clear that the grips only gripped a portion 

of the end tabs of the adherends. Therefore, an assumption of 80% tab length was made, 

and on this length, the movement of the adherends was restricted to vertical movement 

only. The top adherend’s top most corners were pinned. Finally, a central concentrated 

load, measured by the testing machine’s load cell at step 120 was applied to the center of 

the lower adherend’s bottom most face. A linear material model was used, but non-linear 

geometry was taken into account. 

 

Readily available material data states that the Young’s Modulus and Poisson’s Ratio of 

6061 Aluminum are 68.9 GPa and 0.33, respectively. There is very limited data available 

concerning the material properties of FM-94 adhesive, but [1] states that the Young’s 

Modulus and Poisson’s Ratio of FM-94 are 1.9 GPa and 0.52, respectively. Both 

materials were treated as elastic. 

 

Curiously, preliminary results showed similar displacement in the Y direction, but were 

off in the X direction. The only logical conclusion, was that the testing machine’s grips 

were not perfectly centered. The DIC results made this apparent, by the location of a low 
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displacement semi-circle in the displacement magnitude contour plots. Therefore, a 

lateral shift of 0.35 mm was applied to the bottom grip’s simulated boundary conditions. 

When a lateral displacement was prescribed to the simulated lower grip, the results were 

much closer to those of the DIC. 

 

Because DIC outputs displacement, X and Y direction displacements were compared for 

each specimen, at the points detailed in Figure 5.17, the thicker adherend’s points 

denoted by subscript 1, and the thinner adherend’s points denoted by subscript 2. Table 

6.3 displays the displacement values for specimen 1, and Table 6.4 displays the 

displacement values for specimen 2. Figures 6.2, 6.3, and 6.4 display the specimen 1 

finite element and DIC contours for displacement magnitude, X displacement, and Y 

displacement respectively. Figures 6.5, 6.6, and 6.7 display the specimen 2 finite element 

and DIC contours for displacement magnitude, X displacement, and Y displacement 

respectively. 

 

Table 6.3 Comparison of displacements for specimen 1 

 Ux,FEA (Ux,DIC) (mm) Uy,FEA (Uy,DIC) (mm) Ux Error Uy Error 

A1 -0.181 (-0.196) -0.255 (-0.320) 7.65% 20.31% 

B1 0.811 (1.020) -0.287 (-0.339) 20.49% 21.53% 

A2 -0.182 (-0.193) -0.266 (-0.335) 5.70% 20.60% 

B2 0.811 (1.020) -0.299 (-0.358) 20.49% 16.48% 
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Figure 6.2 Finite element (left) and DIC (right) displacement magnitude specimen 1 
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Figure 6.3 Finite element (left) and DIC (right) X direction displacement specimen 1 
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Figure 6.4 Finite element (left) and DIC (right) Y direction displacement specimen 1 

  



95 

 

Table 6.4 Comparison of displacements for specimen 2 

 Ux,FEA (Ux,DIC) (mm) Uy,FEA (Uy,DIC) (mm) Ux Error Uy Error 

A1 0.155 (0.192) -0.252 (-0.319) 19.27% 21.00% 

B1 -0.842 (-0.964) -0.286 (-0.466) 12.66% 38.63% 

A2 0.156 (0.194) -0.263 (-0.339) 19.59% 22.42% 

B2 -0.842 (-0.964) -0.299 (-0.481) 12.66% 37.84% 
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Figure 6.5 Finite element (left) and DIC (right) displacement magnitude specimen 2 
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Figure 6.6 Finite element (left) and DIC (right) X direction displacement specimen 2 
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Figure 6.7 Finite element (left) and DIC (right) Y direction displacement specimen 2 
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As can be seen, under the assumptions made for the finite element models, the 

quantitative error between finite element and DIC results was about 20% for each 

specimen, and qualitatively, the colormaps correlated fairly well. However, in specimen 

2’s case, there were two points near 40% error. The same points, under similar load and 

identical assumptions, in specimen 1, had an error of about 20%. Looking more at the 

actual displacement values, the error is often less than 15 tenths of a millimeter. In the 

case of the two largest percent errors, the difference is about 19 tenths of a millimeter. 

 

These errors can be attributed to a variety of factors. The limited data on FM-94 adhesive 

leaves the possibility of less than completely accurate material model. The assumption of 

linear material behavior may be a contributing factor as well, but without time and more 

samples, a nonlinear material model could not be obtained. In the case of the largest 

percent errors, under similar loading, the finite element results were similar, but the DIC 

results were significantly different. This leads one to believe the results obtained for Y 

direction displacement obtained by DIC may have been affected other factors. For 

example, the grips may have applied uneven pressure, the adhesive may have been less 

than 100% dense, or the specimen may have slipped in the grip. A multitude of factors in 

the experimental setup could have affected the DIC results, and testing more specimens 

under higher levels of observation would shed light on this. A 100% density assumption 

on the adhesive, along with the ideal bonding could also slightly effect the results. 

 

DIC also grants some insight into the initiation of specimen failure. Applying the loads 

associated with specimen failure, 22 kN for specimen 1 and 21.7 kN for specimen 2, the 



100 

 

values in Tables 6.4 and 6.5 were obtained at the critical points identified in the 

parametric studies conducted on adhesively bonded single-lap joints in chapter 5.  

 

Table 6.5 Failure stress predictions for specimen 1 

 
σvm (MPa) σxx (MPa) σyy (MPa) τxy (MPa) 

A1 599.143 319.029 711.610 -116.803 

B2 758.960 369.960 916.931 -126.375 

 

Table 6.6 Failure stress predictions for specimen 2 

 
σvm (MPa) σxx (MPa) σyy (MPa) τxy (MPa) 

A1 606.161 372.254 723.762 117.287 

B2 792.588 326.845 939.834 130.468 

 

As can be seen, under similar but slightly different geometry and loading, the stresses 

measured are very similar at each point, with less than 10% difference in all stresses. 

While reading the DIC images for failure initiation is not obvious or easy, a relatively 

close estimate can be made, and the failure loads calculated for specimen are very 

similar. If one were to obtain the failure stress of FM-94 adhesive, the material that fails 

first during tensile testing with aluminum adherends, and find that this failure stress was 

close to 900 MPa, one could verify that this simulation in fact accurately simulates the 

specimen and can be used to predict failure in other simulated specimens. 
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7 Conclusions 

For each of the following conclusions, the reader is referred to the figures in chapter 5 for 

the location of the critical points referenced. 

 

1. Varied adherend Young’s Modulus, in both ideally bonded and adhesively bonded 

single-lap joints with a tensile load applied, yielded increasing stress values as Young’s 

Modulus increased at point A, and decreasing stress values as Young’s Modulus 

increased at point B, except in reference to Y direction stress. Ratios anything different 

than unity resulted in reduced Y direction stress as one adherend was always stiffer than 

the other, and this caused the usual central bond rotation to be translated into axial 

deformation of the less stiff adherend. 

 

2. Varied adherend thickness, in both ideally bonded and adhesively bonded single-lap 

joints with a tensile load, yielded varied stress values that increased with increasing 

adherend thickness at point A, and stress values that decreased with increasing adherend 

thickness at point B. While variations in adherend thickness varied stiffness in this case 

as well as the case of varied Young’s Modulus, the eccentricity of the load and moment 

of inertia of the varied adherend were also affected. This caused Y direction stresses to 

follow the same trends as the other measured stresses, rather than following the 

phenomena resulting from the varied Young’s Modulus case. 

 

3. Free adherend length variation yielded different results than varied thickness or 

Young’s Modulus. With increasing free adherend length, the stresses decreased in 
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intensity at point A and increased in intensity at point B. Its variation greatly affects the 

eccentric loading angle for ratios less than unity, and affect it less and less as ratios 

increase up past unity, which greatly affects stresses for the former, and less so for the 

latter, a phenomena that was observable by increasing or decreasing slope in the SCF 

plots. 

 

4. Varied bonding length exhibited the expected behavior for ratios greater than unity; the 

stresses at both critical points decreased as the ratio increased. For ratios much less than 

unity, the stresses at each point began to affect the stresses at the other point, resulting in 

seemingly strange results in the stresses. For ratios greater than unity, there was a 

uniform decrease in all measured stresses as bonding length increased. 

 

5. Varied adherend Young’s Modulus and bonding length under a three point bending 

load exhibited the same behavior as under a tensile load. This is to be expected; 

increasing Young’s Modulus yielded an increasing adherend stiffness, and increasing 

bonding length increased the moment of inertia and general thickness of the member near 

the application of the bending load, resulting in the same universal reduction in stress 

intensity observed in the tensile loading case. 

 

6.  Varied adherend thickness under a three-point bending load produced much the same 

results that varied bonding length produces; stresses decrease at both points under 

increased thickness because there is a greater cross-sectional area and moment of inertia 

as a result of this increased thickness. The variation in the right hand boundary 
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condition’s location could cause the increasing compressive intensity, rather than tensile 

intensity, for ratios less than unity at point A. 

 

7. Free adherend length variation under a three-point bending load behaved much as was 

expected; increasing length increases the lateral moment arm of the applied force, and 

therefore universally increases the stresses at both critical points. 

 

8. The addition of an adhesive over the ideally bonded cases had one most notable effect; 

it made the stresses at the point formerly designated B the most intense, and made those 

at point A small to the point of unimportance. 

 

9. As adhesive thickness increases, the stresses at both critical points increases. This is to 

be expected, as it increases the eccentricity of load, and therefore the dominant force on 

the central bonding region of the single-lap joint. 

 

10. Increasing adhesive Young’s Modulus increases the stresses at both critical points, as 

the adhesive increases in stiffness, deforms less, and forces more deformation and stress 

on the adherends. 

 

11. Using a linear material model and nonlinear geometry, along with approximate but 

near accurate measurements and boundary condition mimicry and a verified mesh 

density, one can predict the deformation of a single-lap joint in a tensile test with an 
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average of 20% error. This error can be reduced by a more accurate material model, more 

accurate measurements, more accurate testing comparison, and a more ideal testing setup. 

 

12. As one can simulate deformation of an experimental single-lap joint, they can also 

predict the failure stress with a finite element model reasonable accurately. With accurate 

indications as to the initiation of adhesive failure and more accurate testing, one can 

improve the accuracy of this prediction. 
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8 Suggestions for Future Research 

 

1. In order to more deeply understand the affect varied material and geometric 

parameters have on the critical points’ stresses, one vary more than one parameter 

at once, to understand how each parameter interacts with the other. 

 

2. One could also more deeply understand single-lap joints if they were to study 

exceedingly long and exceedingly short lap joints, rather than the joints of 

intermediate length studied in this thesis. 

 

3. In order to increase the accuracy of the experimental finite element model, one 

can do several things: 

a. Develop a more accurate strain-dependent material model for both the 

adherend material and adhesive material. 

b. Take steps to assure that the testing grips apply equal pressure to each 

clamped region and that they are as perfectly aligned as possible. 

c. Assure that the DIC setup is not disturbed during the experiment’s 

duration, and assure that the camera used is as perfectly aligned as 

possible. 

d. Ensure that all dimensional measurements are as accurate as possible, and 

that any machining that is needed is as accurate as possible, and that the 

gripped regions can be perfectly aligned vertically. 


