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ABSTRACT

TRAVEL TIME PREDICTIONS UNDER DYNAMIC ROUTE

GUIDANCE WITH A RECURSIVE ADAPTIVE ALGORITHM

By

Chronis Stamatiadis

The key element of a dynamic route guidance system is the knowledge of the

travel times on the links in the network, for all time periods in a planning

horizon. In real time systems, where route guidance will be performed on-line,

the travel times required for the evaluation of alternative routes, have not yet

occurred. Therefore the ability to make predictions of such travel times with

reasonable accuracy is essential to the route evaluation process.

Many researchers have developed models to estimate future travel times with

the usage of traffic assignment models based on some equilibrium principal.

The efficiency of such models is based on the assumption that drivers will fol-

low the suggestions given by the guidance system, and that a large percentage

of traffic is equipped to receive such information from the system. These condi-

tions may be realistic if guidance systems have been proven efficient enough

to attract drivers to actually use them.

Thus, alternative models, that will still operate in real time, have to be

devised which will give us the capability of short term travel time predictions.

Such models will have to be based on historical data, and they must represent

the dynamics of travel times, including variations due to traffic incidents, with

sufficient accuracy to be used by the motorists. In this study we examined the



effectiveness of a route guidance system based on the travel time predictions

performed by such a model. Predictions are made through the application of a

recursive identification algorithm for all the links in the network. The predic-

tion model utilizes a recursive least squares (RLS) algorithm and its input

variables include both historical information of the travel time on the link

under consideration, and its average travel time in the current time period

based on observations from previous days. In addition, travel time informa-

tion from upstream and downstream links is incorporated so information

about evolving traffic waves is considered before such waves reach the link.

The prediction model is applied to a small network with 21 decision nodes and

38 links, and its performance is examined under normal and congested traffic

conditions. We consider different structures of the model for improving travel

time predictions especially in the case of congestion due to a traffic incident.

We also experimented with different frequency rates with which the system is

updating predictions on travel times. Obviously, there is a trade off between

the number of predictions that we can perform with some reasonable accuracy

and the rate with which we update such predictions. Finally different scenar-

ios for market penetration of route guidance systems are considered, for exam-

ining how travel time savings change as the percentage of equipped vehicles

increases.
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Chapter 1

 

Introduction

 

During recent decades, an enormous effort has been made to improve the

mobility of individuals, especially in urban areas where demand is concen-

trated and supply of transportation facilities is restricted. This effort included

massive expenditures for providing the means to satisfy such demand, like the

construction of the freeway system and the rapid transit system in most of the

major metropolitan areas. The hope. behind the implementation of such

immense projects was that demand will be accommodated by provision of

more highways. At the same time operational characteristics of vehicles are

greatly improved, regarding safety, emissions, efficiency, and performance.

The tramc management systems like traffic signal systems and ramp meter-

ing strategies, have also been improved so they respond to variations in traffic

demand and conditions.

However, travel demand has been increasing continuously due to socioeco-

nomic factors like the increase of car ownership - and therefore an increase in

access to a private automobile by more individuals - as well as the increased

need to travel in today’s urban areas where the spatial distribution of activi-
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ties is widely spread. In many metropolitan areas the growth of automobile

usage has already outpaced infrastructure investments, and in the near

future it is expected that this will also be the casein several other high growth

urban areas. Expected levels of delay are measured in billions of vehicle

hours, and the increased usage of automobile will result in an increase in the

number of traffic accidents (Grenzeback and Woodle 1992). The estimated

losses from such delays and accidents, are claimed to be a few hundred billion

dollars annually. Traffic congestion is regarded as one ofthe major problems of

urban areas and it is often compared with societal problems like crime, access

to health care, or housing.

On the other hand economic and environmental control policies place limits on

increasing the physical road capacity. Both social and environmental conse-

quences of such projects may be far more severe than their expected benefits.

In addition, congestion reliefbenefits may not last very long, due to the rate of

demand for even more mobility. These two contradicting phenomena - an

increase in demand and an inability to increase the capacity of traffic net-

works to serve this demand - contribute to the creation of traffic congestion,

especially on commuting corridors during peak periods.

For these reasons, the attention in transportation planning has turned to

studies of how to effectively use the existing capacity, rather than constructing

new freeways. The potential of using modern technologies, like advances in

communications and computers, as well as a higher level of sophisticated con-

trol systems and sensors, are greatly enhancing the possibility of success of

such an approach. The usage of such technologies in the transportation sys-

tem is housed under the term Intelligent Vehicle - Highway Systems (IVHS),
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and the technologies used are referred to as IVHS technologies.

IVHS includes the systems that use advanced technologies to control and

improve mobility on a traffic network. For example, traffic operations can be

improved when traffic management is based on processing of real time infor-

mation regarding the travel conditions on the elements of a network. VVrthout

real time information the decisions of individual travelers regarding the time

that they will realize their trip, the mode that they will use and the route that

will be followed are often based on information that is incomplete and not

accurate. When real time information is used, such decisions will approach

the optimal ones and the development and application of new and sophisti-

cated control strategies will be possible.

While IVHS as defined above is quite comprehensive, there are four sub-

systems that can be distinguished and are generally accepted:

(1) The Advanced Driver Information Systems (ADIS);

(2) The Advanced Traffic Management Systems (ATMS);

(3) The Commercial Vehicle Operations; (CVO); and

(4) The Advanced Vehicle Control Systems (AVCS);

Technologies included in the ADIS category are the ones that can navigate the

driver through a network, provide information about alternative routes and

congestion and reveal the location of service stations, restaurants, or rest

areas. Driver information systems can vary based on (Koutsopoulos and

Yoblanski 1991):

(1) the ability to provide real time information;

(2) the type ofinformation that they provide;
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(3) the ability to address a single vehicle or all the vehicles at a location on

the network; and

(4) the communication capabilities of the system linking the vehicles on

the road with the traffic control center, ranging from no communica-

tion, to one-way or two-way communication.

On the other hand, ATMS includes traffic management systems that operate

in real time, so the system will respond to changes in the traffic demand, or

even anticipate when and where such changes will occur and apply the appro-

priate strategy in order to avoid congestion.

Commercial vehicle operations are based on ATMS and ADIS but are eon-

cerned mostly with issues like weigh in motion, vehicle tracking, efficient

vehicle dispatching, and timely pickups or deliveries. These are operations

which can be performed more efficiently through IVHS. On the other, hand

advanced vehicle control systems (AVCS) will not make direct use of informa-

tion about traffic conditions, but they will improve safety and potentially the

capacity of a network by assuming partial or complete control of the vehicle.

AVCS includes systems that aim to help the driver in the task of driving, like

lane keeping systems, enhanced night vision systems, adaptive cruise control,

and so forth.

In this study we are concerned with the first subsystem which is closely

related with vehicle navigation and route guidance problems of traffic on a

network. The key element of a route guidance system, is the knowledge of the

“travel cost” on the links in the network, for all time periods in a planning

horizon. In real time systems, where route guidance will be performed on-line,
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these travel costs have not yet occurred. A reasonable assumption is that the

aspect that travelers will be willing to optimize in their trip is their travel

time. Therefore the ability to make predictions for such travel times with rea-

sonable accuracy is essential to the route evaluation process.

In the following a review of the existing literature relevant to the problem of

dynamic route guidance, and short term prediction of travel times is pre-

sented. In the next chapter the proposed travel time prediction model is dis-

cussed. In chapter 4, a traffic simulation program is presented, which will be

used for testing the prediction model. The structure of the prediction model is

examined in chapter 5, while the effectiveness of the model incorporated

within a route guidance system is presented in chapter 6. Finally chapter 7

presents the conclusions drawn from this research.



Chapter 2

 

Literature Review

 

2.1 Route Guidance Systems

Route guidance systems can be defined as those systems that, when the driver

provides the destination of his/her trip, are capable of guiding him/her

through the most desirable route. Depending on the way that the system rep-

resents traffic and the way it performs the routing, we can distinguish three

alternative route guidance systems (Chen and Underwood 1991):

(1) Static guidance systems, where the costs of the links of the network are

assumed to be independent of the time and the amount of traffic that

traverse them (constant link travel cost).

(2) Simple dynamic route guidance systems, where link costs are allowed to

vary with time but traffic is still routed through the network based on

a static approach to route selection. This is the case when the guided .

vehicle receives information only at the beginning of the trip regarding

current link costs.

(3) Dynamic route guidance systems, where the routing of a vehicle depends

not only on the time of departure but on the location of the vehicle as

well. In this class of guidance systems link costs vary with time and

the most desirable route is reexamined each time the vehicle reaches a

6



new decision node.

In addition to this classification, depending on the type of information that

guidance systems use as a base, route suggestions may be further classified to

responsive, in the cases that use real time data, and unresponsive if they use

only historical data obtained from previous days.

For the first two classes of route guidance systems, the determination of the

most desirable path can be obtained by using a fastest path algorithm, like the

Dijkstra’s algorithm, based on Bellman’s principal of optimality. In dynamic

route guidance systems, such static algorithms will not be sufficient. In this

case more complex, and consequently of higher computational effort, algo-

rithms are required, which are capable of finding the minimum path in

dynamic networks (Kaufman and Smith 1990).

The most probable scenario of implementing a dynamic route guidance system

is depicted in Figure 2.1 (Chen and Undewood 1991), which also follows the

market penetration scenario 'of such systems. Initially ADIS will serve only as

a navigation system. Such systems are already successfully in use, like the

Advanced Mobile Traffic Information and Communication Systems and the

Road Autonomous Communication Systems in Japan or the DEMETER in

Europe (French 1990). In this case, information is not provided in real time or

the informationsystem performs only “yellow pages” functions. Actual condi-

tions on the network are not known to the driver. Such systems often operate

by relating the current position of a vehicle obtained by either the Geographic

Position System (GPS) or by dead reckoning, with a digital map. The geo-

graphic information of the digital map is stored in a CD-ROM, and navigation

advice is often displayed on an in-vehicle monitor. Communications between
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the vehicle and the traffic control center at this level of systems is not

required.

In the next stage, where dynamic route guidance will be possible, information

will be broadcast by the system in real time. As is shown in Figure 2.1, at this

stage ADIS plays only an advisory role on which is the current optimal route.

When information about current and projected traffic conditions is used for

guiding traffic, this information has to be updated continually. In this case

communication links have to be established, so the information transmitted

by the traffic management center (system) will be received by the vehicles on

the network which are equipped with some special receivers. The system has

to be capable of collecting and processing information about the traffic condi-

tions continuously on the elements of the network and then broadcast the pro-

cessed information back to the traffic on the network.

In a route guidance system, information received by the equipped vehicles

may be either in the form of descriptions about the traffic conditions on the

elements of the network, in which case the driver will have to select the opti-

mum path based on his judgement, or in the form of suggestions on which is

the current optimum route to follow, or the best time to start the trip. While it

could be argued that guidance in the descriptive form is meaningless when

with a simple computing device prescriptive information can be obtained, such

guidance could be more helpful in the case where the driver wants to avoid a

part of the city for security reasons, or a driver wants to stay on the freeway

system.

Field tests of such systems are under way in the United States, Europe, and
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Japan. For example the Autoguide system in London is the first dynamic

route guidance system. Based on real time information, minimum travel time

routes are calculated and updated regularly by the traffic control center. This

information is transmitted to the network, so equipped vehicles can receive it

when they approach “decision nodes”. The decision nodes are intersections

equipped with electronic signposts which transmit directions to the equipped

vehicles, related with the movements of the intersection, i.e. straight ahead,

turn right or turn left. The optimum paths are selected based on average con-

ditions on the network for a specific time, day and weather conditions, as well

as current information regarding unusual events. This information is updated

in rather long time intervals (every 15 minutes), except in the case when an

incident has occurred, and in this situation the frequency of updating. the

transmitted information is increased. The operation of Autoguide is reactive

to traffic conditions, meaning that it will divert traffic only when congestion is

already evident. A similar system Ali-Scout (or as it is lately renamed to Euro-

Scout) is also under testing in the city ofWest Berlin, and soon it will be tested

in Oakland County, Michigan. This system combines the characteristics of

Autoguide with a digital map for displaying the vehicle location and the direc-

tions to be followed (Boyce 1989, French 1990).

Here it should be noted that the concept of such systems is not new; The idea

of alleviation of congestion based on guiding traffic had its origins back in the

1960’s. These efforts however were either not successful due to the limited

capabilities of the available technologies at that time or not feasible due to the

excessive cost ofimplementing them (Rosen et al., 1970).

In the last stage, dynamic route guidance systems will be coordinated with
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ATMS, through the use of traffic assignment models. The route guidance sys-

tems described in the advisory stage, in a situation with congestion, will

divert all equipped traffic to one single new optimum path. Without more

sophisticated coordination, which can be achieved through dynamic traffic

assignment models, congestion will be created on the alternative routes. This

is because there is no consideration of the effect of the diverted traffic on the

travel conditions of the new path. Such strategies will be effective only while

the percentage of the equipped vehicles is low. When a large number of vehi-

cles are equipped, everybody will be receiving the same information which will

result in the possible transfer of the congestion to another part of the network.

Such transfer of congestion is often referred as guidance system induced con-

gestion (Boyce 1989, Kaufman et a1. 1990). Although extensive research

results are available for the static situation, where traffic demand is consid-

ered constant, there are just a handful of theoretical configurations for the

dynamic approach.

2.2 Expected Benefits of IVHS

The main benefit expected from the implementation of IVHS is alleviation of

congestion that costs society and the environment a great deal. In addition,

new technologies are expected to contribute to improvements in safety and

productivity of the transportation system. IVHS and mostly AVCS are sup- '

posed to contribute to accident prevention in contrast to most accident coun-

termeasures applied currently, that aim to reduce the severity of traffic

accidents. Early detection of pending hazards, which is one of the promises of

AVCS, will result in providing the driver with the critical time required to

react and avoid the accident. Nevertheless potential opposite effects have to
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be acknowledged. There are some inherent risks of automated highways, and

possible distraction of the driver from current in-vehicle information devices

may jeopardize his/her safety.

2.2.1 Alleviation of Congestion

In the literature, two types of congestion are conveniently distinguished:

(1) Recurrent congestion that occurs during certain time periods of the day

or certain days of the year, due to a high demand that exceeds the

capacity of the elements of the network; and

(2) Non recurrent congestion that occurs due to unexpected circumstances

like traffic accidents or vehicle breakdowns, which can greatly affect

the capacity of the system. Such a reduction in capacity leads to con-

gestion, and it is time independent.

It is claimed that IVHS will reduce delays due to both recurrent and non

recurrent congestion. Up to date results suggest that benefits ofADIS systems

will be marginal under conditions of recurrent congestion (Al-Deek and

Kanafani 1991). However the benefits that will accrue in the case ofnon recur-

rent congestion are expected to be much more significant, since the occurrence

of such congestion is random, and thus its effects cannot be anticipated by the

unequipped driver. On the other hand, some of the effects of recurrent conges-

tion can be anticipated even without ADIS, when drivers have previous expe-

rience on the network. Provision of information about the development of

congestion to the drivers in real time can be used for diversion of traffic either

in space or in time. For example, drivers can be directed to either divert from

a congested link of the system to an alternative one with higher level of ser-

vice, or they can simply choose to postpone their time of departure. The basic



13

difference between the two diversion options lies in the time that they can be

implemented. While diversion in time has to be administered before the begin-

ning of the trip, diversion in space can be performed before or during the trip.

Here we consider the case where in the situation of congestion, appropriately

equipped vehicles will divert from the originally selected path, en-route, based

on “intelligent” suggestions made by the system. However, it should be noted

that in large metropolitan areas, congestion is a daily phenomenon not just for

a short time period but for several hours. In such areas congestion is spilled

even on beltways which were originally designed for through traffic in order to

avoid local effects. Before we appraise the benefits of IVHS it is useful to con-

sider if there is any capacity left on the network that is not used, and its usage

could improve the situation. If the answer is no, then information on traffic

conditions on the network, even in real time, will not contribute anything to

the travelers. Under this condition, the application of advanced technologies

may help to lead travelers to alternative modes like rapid transit or ride shar-

ing which will possibly qualify them to use HOV facilities.

2.2.2 Findings on Effectiveness of Route Guidance

Systems

The expected benefits of NHS, and more specifically of route guidance sys-

tems, will be a reduction in congestion. Several studies have dealt with the

effectiveness of route guidance systems, based mostly on simulation models.

Depending on the configuration of the route guidance system, reductions in

average trip time ranging from 2 to 50 percent were noted (G.A.O. 1991).

Although the possible effectiveness of route guidance systems has such a wide
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range, one aspect that all the studies which examined different levels of mar-

ket penetration agree is that for high market penetration levels, equipped

traffic does not get as much travel time improvement as at low levels.

The issue of reliability of the broadcast information was examined by Chen

and Mahmassani (1991), where the supplied travel time was compared to

actual travel times experienced in the network after the information was

broadcast. Because of the dynamic character of traffic on a network a recom-

mended path may actually be less than optimal as traffic congestion evolves.

Furthermore drivers may not switch from their current path unless they know

that the time savings from the alternative route are meaningful. VVrth a series

of simulations the authors examined various combinations from a set of vari-

ables:

(1) different scenarios of information sources including no information at

all, information only at the beginning of the trip, only enroute informa-

tion, or both;

(2) two different behavioral rules for drivers switching routes one where

drivers are willing to accept any improvement in their travel, regard-

less of how small (myopic rule) and one where the new path has to be

more than 20% better than the current path and at least one minute

less; and

(3) different levels of market penetration.

In their results it was found that reliability of information worsens as market

penetration increases when drivers behave myopically and both sources of

information are available. For the other cases the reliability of information is

better at 10% of market penetration than at 100%, but no trends are obvious

for the cases in between. Also at high market penetration, equipped traffic
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performs better than the rest of the traffic when the behavioral rule is

employed, a fact that is attributed to the less “unproductive” path switches

due to the indifference band of 20% improvement.

When the reliability of the broadcast information is high, users with access to

information experience meaningful travel time improvements. This is true

since information is reliable if there have not been many switches that would

result in congested routes. Similar results were reported by Hamerslag and

van Berkum (1991) where, after simulating a set of different urban networks,

it was found that the amount of car-kilometers traveled decreases as the

uncertainty of the information available to the drivers decreases.

In an extension of the same study by the authors (Mahmassani and Chen

1991) it was found that when both sources of information are used this has

positive results only at low levels of market penetration. These benefits

decrease rapidly as market penetration increases and often are less than

those obtained with one source of information only. Also home based informa-

tion only, at high levels of market penetration has negative effects, while ben-

efits due to en-route information appear to be more robust.

Koutsopoulos and Lotan (1989) investigated the effect of variables like level

and amount of information, level of congestion, spatial extent of information

and portion of informed drivers, on the system performance under a route

guidance system.The results from this study indicated that the total benefits

that will accrue from advanced driver information systems will be marginal.

Based on simulation results from a small network, the average travel time

benefits when perfect information is available was found to be only 4.4%. In



16

the study it was noted that as the level of available information increases, the

travel time of the shortest path also increases, since more drivers can make

more intelligent decisions; and thus the alternative routes become more

crowded. Also as traffic demand increases the benefits per driver (both

equipped and unequipped) increase moderately, until the volume over the

capacity ratio assumes values in the vicinity of 1.5. After this point, such ben-

efits start to decrease. The benefits experienced by equipped drivers appear to

decrease as the congestion level increases. Thus the value of the information

provided to the drivers decreases too, since the opportunity to identify better

paths is reduced. Also, when perfect information is available for the entire

network, travel times decreases by approximately 4% as compared to the case

when travel times are known only for the main routes.

Koutsopoulos and Yoblanski (1991) examined design aspects of a route guid-

ance system, with a low market penetration of IVHS. Variables included the

location of information nodes (locations where equipped vehicles can update

information), frequency of information updates made by the system, and the

intelligence of the system. The system was assumed to be of either low or high

intelligence. In the case of low intelligence, route suggestions by the system

were based on current traffic conditions on the network on the basis that such

conditions will not change and in the case of incident occurrences the system

would take into account only delays due to queues. In the case of high intelli-

gence, expected delays due to incidents are taken into account based on

expected time of arrival at the queue. Also in this scenario, minimum paths

were calculated based on projected traffic conditions.

Their results were based on a small network simulated with a microscopic
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simulation program. From their findings it is indicated that there are no sig-

nificant reductions in the average travel time of the network that was simu-

lated by the introduction of ADIS, except in the case of a traffic accident.

When the density of information nodes increases, the intelligence of the sys-

tem has little bearing on the average travel times of the equipped vehicles.

However the reliability of the trip (the standard deviation of the travel time)

is increased when each node is an information node. Also, a frequency of

updating information every 3 minutes was almost as good as updating infor-

mation immediately, while for longer than 3 minutes between information

updates, the route guidance system becomes less effective.

Al-Deek and Kanafani (1991) have examined the effect of diverting traffic on

the time savings for a small network with two alternative paths to a destina-

tion, in the case when an incident occurs on the higher capacity path. Parame-

ters like the capacity of the alternative path, the amount of traffic that arrives

at the decision point and the duration, severity and location of the incident

were considered. Based on this simple network, the authors found that travel

time savings of equipped traffic decreases rapidly once a queue starts forming

on the alternative route. When the proportion of diverted traffic exceeds a crit-

ical value - which depends on the demand arriving at the decision point and

the capacity of the alternative path - benefits to the equipped traffic decrease.

When the duration of the incident increases, the benefits from the route guid-

ance system also increase, but not in a linear manner. When incidents are

very long (in the example network over 60 minutes) the increase in benefits

vanishes, and for very short incidents (less than 15 minutes), there is no bene-

fit of a guidance system (Figure 2.2). The same pattern is true for the severity

of the incident, with severity defined as reduction of capacity. It is noted that



18

for severe incidents (with more than 60% reduction in capacity), and of short

duration, benefits are more sensitive to the duration than to the severity of

the incident. If the alternative route is very long it is never used, while when

the travel time of the alternative route has competitive free flow travel time to

the free flow travel time of the route with the incident, the benefits from the

system are maximized.

Halati and Boyce (1991) have also examined the effectiveness of various in-

vehicle navigation systems in the situation of a traffic incident, but on a real-

istic network (Irvine network, Orange County, California). They simulated dif-

ferent types of drivers, including drivers that are familiar or unfamiliar with

the network, drivers that are equipped or unequipped, and drivers that. are

compliant or non-compliant with the route suggestions supplied by the guid-

ance system. The guidance systems that were considered included two

descriptive systems, one with a static map and one with a map system and the

added capability of identifying congested segments of the network, and two

prescriptive systems where the best path was given to the driver. The two pre-

scriptive systems differ in the aspect that the more advanced one includes a

map display. The authors found that while there was no significant differences

between the first two systems, there was substantial improvement to the sys-

tem operations when the dynamic route guidance system was employed. The

incident occurred on a freeway section of the network, and the freeway speeds

were improved by 0.9%, 11.8% and 53% for 10%, 30% and 50% market pene-

tration of the guidance system respectively. The dynamic route guidance sys-

tem improved the performance of the surface network too, where the

improvements for the entire network were found to be 4.5%, 17.2% and 37.2%

for 10%, 30% and 50% market penetration levels (Table 2.1).
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Table 2.1: Percent of Speed Improvement with Market Penetration of Prescriptive

Route Guidance Systems.

 

 

 

 

 

   

Market Penetration

10% 20% 50%

Freeway Subsystem 0.9 11.8 53.0

Surface Street Subsystem 9.6 23.9 26.6

Entire Network 4.5 17.2 37.2   

In the more advanced system, where drivers also have a map display, it was

assumed that more drivers divert from the congested path but less drivers fol-

low the alternative route suggested by the system. The result was a slight

worsening for low levels of market penetration, while when 50% ofthe drivers

were equipped, the navigation system appears to compensate for the lower

compliance rate, and there is an improvement of approximately 4% over the

simple dynamic guidance system.

2.3 Prediction of Traffic Conditions

The problem that is recognized in the existing literature is that at least in the

last two stages of implementation of route guidance systems where dynamic

route guidance will be employed, the required optimum routes are based on

traffic conditions that vary with time, and in real time, these conditions have

not yet occurred. A more sophisticated handling of such situations will be to

guide traffic through a given network with a guidance system which is based
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not only on the current traffic conditions but also on expected conditions. In

other words, the route selection process must be based not only on where traf-

fic is currently, but where traffic will be - or more precisely where it is

expected to be - in the short term future. Such estimations of future traffic

conditions have to be based on a sophisticated prediction model which will

assess the impacts of traffic variations due to both recurrent and non recur-

rent congestion.

Obviously, two fundamental characteristics of such prediction systems are

their operational speed and their responsiveness to actual traffic conditions.

Their speed should be at least as fast as the real tramc system, or even faster.

This is required, so there will be enough time for the prediction system to per-

form the predictions, and for the route guidance system to evaluate the alter-

native routes in real time. Nevertheless, the high speed of the prediction

system should not be achieved at the cost of the accuracy of the predictions. In

addition the prediction system must be able to respond to both expected and

unexpected changes in the traffic conditions, i.e. recurrent or non recurrent

congestion. This can be achieved only if the system is capable of collecting the

necessary data in real time, and processing such data with the required speed

and accuracy, so it will periodically update the information transmitted to the

drivers. This way the route guidance system itself will be responsive to such

changes in traffic conditions (Chen and Underwood 1991).

There are two strands followed in the development of prediction models, and

each may be best applicable at different levels of market penetration of

dynamic route guidance systems. The first is based on the traffic assignment

models, which are believed to be most efficient when the majority of the traffic
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will be equipped with such guidance system, while the second is based on

adaptive control theory.

2.3.1 Equilibrium Models

Lately, a lot of attention is concentrated on estimating future travel costs with

the use of dynamic traffic assignment models, based on some equilibrium

principal. The basic concept of the application of such models is that, in the

case when all trips are assigned to a network by the system in such a way that

some optimization condition is satisfied, the future traffic volumes on each ele-

ment of the network will be known, and future trips will be assigned in such a

manner that the optimization condition will remain valid. A fundamental dis-

crimination of such models can be made based on their objective function. The

value that is optimized may be either the delays experienced by each individ-

ual driver, in which case optimization is referred to as user optimum solution,

or the total delays experienced within the transportation system, in which

case optimization is referred to as system optimum. Generally these two opti-

mal conditions do not result in the same solution.

In system optimum modeling, the fundamental goal is to assign traffic so the

marginal costs for all alternative routes being used will be equal, under a

given demand function. Although it is not known how much the total delays

would be reduced in the system optimum case, we can speculate that in very

congested networks we may have significant savings, so even the longer

routes may be shorter than those obtained by the user optimum, Of course, in

this case the incentive for drivers to follow such routes is strong. However, the

inherent problem with such an approach is that it may advise drivers to follow
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extremely long routes in order to minimize total delays. In the case that the

route guidance system will be actuated by the driver and it will not be manda-

tory, drivers whose travel time is worse when using the system will choose not

to use it. Since one of the main reasons for deve10ping route guidance systems

is to reduce congestion, and therefore reduce the delays that individual driv-

ers are experiencing, improvements in the system performance should not be

obtained at the expense of individual drivers.

An alternative objective function can be obtained under the user optimum

approach. Based on the principal of optimizing each individuals travel cost,

which is often referred to as Wardrop’s first principal, traffic is assigned in

such a way that the travel cost for all the routes that are used is equal to the

minimal route travel cost. Under such a condition, no driver will use a route

from his origin to his destination if a shorter route exists. Therefore traffic

assigned on the network can no longer improve their cost by switching to

alternative routes (Sheffi 1985).

Most of the equilibrium models developed for modeling traffic assignment do

not consider the dynamics of the transportation system. For example, traffic

demand is assumed to be constant over the analysis period and consideration

of changes in the traffic conditions due to changes in traffic demand across

time is not present. Vehicles are assigned to a static route and therefore are

present on all the links of this route simultaneously. Of course such models

are not appropriate for route guidance systems since traffic demand is very

dynamic, especially during peak commuting periods. In addition, since guid-

ance systems have to be responsive to actual conditions on the network, they

have to be able to change the route while the trip is taking place if non recur-
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rent congestion occurs, a function which cannot be represented with static

modeling. Nevertheless the static formulation of the traffic assignment prob-

lem provides the framework for developing dynamic traffic assignment models

that may be used in dynamic route guidance systems (Boyce 1988).

In their pioneering work, Merchant and Nemhauser (1978), considered a

dynamic traffic assignment problem through mathematical programing for

optimizing the total delays in a network with many origins and one destina-

tion. The model was based on Wardrop’s second principal, which requires

equal marginal costs for all the used paths, which was generalized in order to

be applicable to a dynamic formulation. The planning horizon was divided into

equal time intervals, and the demand was assumed to be constant for each

time interval. The resulting model was a discrete time, nonlinear, non convex

mathematical programming problem, which proved to be a generalization of

the static system optimum model. The model does not include explicit capacity

restrictions for the links, since in the optimal solution there should not be any

large link volumes. The number of vehicles exiting a link during each time

interval is a function only of the volume of the link. However, this formulation

does not allow transmission of congestion from an already congested link to

other links upstream. In the same context, Carey (1987) has extended the

Merchant and Nemhauser model for multi origin multi destination networks,

and managed to reform it in a nonlinear, convex form.

Recently, the approach of optimal control theory is utilized where the problem

of Optimal traffic assignment is formulated as an equivalent continuous time

optimal control problem, and a performance index has to be optimized (Friesz

et a1, 1989, Ran et a1, 1992, Vlfie, 1990). For example, Wie (1990) formulated
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the dynamic user optimum traffic assignment model as an optimal control

problem for a single destination network, Wie et al. (1991) extended the same

model for multi destination networks. The optimality conditions are derived

based on Pontryagin minimum principal, and the optimal solution represents

the temporal evolution of traffic flows based on the dynamic generalization of

Wardrop’s first principal:

“If; at each instant in time, for each origin-destination pair; the instanta-

neous expected unit travel costs for all paths that are being used are

identical and equal to the minimum instantaneous expected unit path

cost, the corresponding time varying flow pattern is said to be user opti-

mized.”

These models describe the case where the driver has complete knowledge of

the current traffic conditions on all the alternative paths from the present

position to the destination, and route choices are based only on current condi-

tions. Still congestion is depicted by using exit functions only of the volume of

the link, and in the multi destination case, these functions have to be linear.

Also the erdstence and the uniqueness of an optimal solution based on this

model is not established.

So far, the relationship between travel cost and link flow in not represented

explicitly. For example, in the case where link travel cost is the travel time

required to traverse the link, such a representation is necessary so optimal

solutions will be realistic. As it is noted by Ran et a1 (1992), when the objective

function is optimized, the speed with which vehicles travel on the links may

assume unrealistic large values, with the extreme situation of traffic traveling

instantaneously. Therefore in their model formulation, Ran et a1 (1992), have

included constraints regarding the time that vehicles can arrive at any node

using the link free flow travel times. Similar to the model developed by Wie,

the instantaneous travel time between a decision node and the destination
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node is found based on the current link travel times, but here the dynamic

user optimum is defined as follows:

“Iffor each origin destination pair; at each instant of time,W-

Wthe travel times for all routes that are being used equal the

minimal instantaneous route travel time, the dynamic traffic flow over

the network is in a dynamic user optimum state.”

which is different from the definition in VVle’s model where route travel times

are equal at each instant in time while here, travel times are equal to the min-

imum instantaneous travel time only at each decision node. Their optimal

control problem is convex with respect to the control variables, so it provides a

unique optimal solution, and the model is implemented on a small network

with four links and four nodes and two alternative paths. The model was

reformulated as a discrete time non linear problem and the planning period

was divided into K=6 equal time intervals, in which the dynamic user opti-

mum was achieved.

Lafortune et a1 (1991) have approached the problem by modeling the traffic

network as a discrete time, integer valued dynamical system. The model

describes the state transition function which gives the possible states at time

t+1 as a function ofthe state at time t. The state ofthe system is defined as the

number ofvehicles on each link with the same destination and the same earli-

. est em‘t time from the links. The control variables correspond to the assign-

ment of such platoons of vehicles on the same link with the same destination 1

and the same exit time from the link on downstream links at the nodes of the

network. Constraints regarding the capacity of the links as well as headways

between vehicles are taken into account, so congestion can propagate on the

network, and vehicles cannot traverse the links rapidly. However the model

formulation is based on a-priori knowledge of the demand levels for all time
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periods for the entire planning horizon under consideration. As it is noted by

the authors, this allows representation of recurrent congestion only, while non

recurrent congestion due to unexpected events is not modeled, and thus the

model cannot be applied in real time route guidance systems.

Papageorgiou (1990, 1991) has studied the problem of dynamic macroscopic

traffic assignment for a multi destination network also via the optimal control

approach. As in the models developed by Wie et al (1991), Lafortune et al

(1990) and Ran et a1 (1992) traffic flows on the links consist of subflows with

different destination nodes. The behavior of the drivers is represented with

the “splitting rates” at each decision node, which are the control variables of

the optimal control problem, while a parameter reflecting the compliance rate

of drivers to suggested routes by the system is also incorporated. Optimal con-

ditions are derived through feedback regulation, so the model can be imple-

mented in real time route guidance systems. The model does not include any

present or future information about demand levels, and perturbations to the

system can be controlled via the feedback control. The modeling framework

can be applied for either a system optimum or a user optimum solution. It is

interesting to note that for the simple network that the model was tested on,

the system optimum solution was marginally better than the user optimum

one. Also a general formulation of the model is presented, so other control

measures such as traffic signals and ramp metering can be included, and opti-

mization can be performed for both splitting rates and control measures

simultaneously.

However, the model developed by Papageorgiou (1990) has not been tested on

congested networks, where the effectiveness of the feedback rule may not be
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as good. Route selection, based on the splitting rates, is based on current val-

ues of travel costs (travel times) and not future traffic conditions on the link.

In addition a feedback control is a good control approach for error actuated

systems. In dynamic route guidance systems though, a more s0phisticated

approach, based on anticipation of the future states of the system would be

more advantageous.

As has been noted, the purpose of the dynamic traffic assignment models is to

describe with a mathematical model the evolution of a control variable, like

link traffic flows, in a time varying system. In the case of high market pene-

tration of route guidance systems with the majority of the drivers who have

the system actually using it, the effectiveness of such models will be good. In

fact, if all drivers are equipped and follow exactly the suggested routes then

such models will be very accurate. However, as long as the percentage of

equipped drivers is small to medium, dynamic traffic assignment models seem

to be inappropriate, since they fail to describe the behavior of driver ‘s who do

not have knowledge of the optimum route. If drivers do not have perfect

knowledge of the traffic conditions on the network, or if all drivers do not have

uniform information, then they cannot chose the optimum route, which will

result not only in increasing their travel time, but the travel time of other

users who share the same route. In this case application of traffic assignment

models would not adequately model the evolution of traffic patterns, and their

predicting capability would be significantly reduced.

Another issue which must be taken into account is that the output of such

models is aggregated flows. Often in the user optimal model formulation and

under congested traffic conditions, there is more than one optimum path
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which can be followed. Since the route guidance system should not direct all

drivers to one path, to avoid guidance system induced congestion, the system

must be able to allocate drivers to the alternative equal cost paths. If such a

mechanism does not exist, then the decision making process in the selection of

a route to be followed in a specific trip, from the driver’s perspective, is not

improved at all.

2.3.2 Real Time Adaptive Forecasting

A different approach for obtaining predictions of traffic characteristics is by

treating traffic variables as stochastic processes. Instead of predicting the evo-

lution of traffic based on a deterministic model, traffic characteristics are

treated as random variables which change with time, and therefore they con-

stitute stochastic processes. The data needed to describe such variables con-

sist of time series data, since they are repeated observations of the same

variable over time. Then, models based on the characteristics of the time

series can be developed, with which predictions on the traffic characteristics

can be performed.

A difficulty that exists with time series models is that they often are based on

the assumption of stationarity of the stochastic process. A stochastic process

{X, , t e T}, where T is the time set where observations are made, is said to be

stationary if (Brockwell and Davis 1987):

(1) EIX,I2<°° VtET

(2) EX=m VIET

(3) Cov(X,,X,+,)=y(r) Vt,reT

Strictly speaking, traffic variables like traffic flow or travel time are not sta-



30

tionary stochastic processes, since such variables are related with the time of

the day and possibly the day of the week. Nevertheless, these variables can be

treated as asymptotically stationary with certain conditions. Such conditions

could be given time periods, locations and environmental conditions (Lu

1990). Alternatively, the process of a traffic variable can be transformed to a

stationary process with appropriate differencing.

Time series models have been used for specific applications such as incident

detection and freeway occupancy estimation. For example Ahmed and Cook

(1980, 1982) have deve10ped a technique to detect occurrences of traffic inci-

dents automatically by monitoring fiows on a network, based on a time series

model. Based on observation of flows on different freeways they found that

traffic flow time series were best represented by an autoregressive-moving

average model with integration (ARIMA) model of low order (0,1,3). With this

model formulation they perform predictions for the traffic flows and construct

the 95% confidence band for these predictions. When the actual observations

(collected in real time) were out of the 95% confidence band the alarm is acti-

vated for the existence of an incident. Because of reliability problems of traffic

detectors which may create data gaps, Davis and Nihan (1984) developed a

time series based model (ARMA) for detecting changes in traffic flow charac-

teristics, despite some missing data point.

Kyte et a1 (1989) examined the problem of modeling freeway traffic flow with

the use of a multivariate transfer function model. The relationship between

freeway occupancies of a roadway segment with occupancies at upstream and

downstream sections was demonstrated based on occupancy observations on a

series of adjusted freeway segments. One of the segments was representing a
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bottleneck condition, and the resulting congestion effects on upstream traffic

were examined. The speed with which traffic waves are transmitted from one

segment to another was represented with the cross correlation function of the

occupancies of the two segments. For example if the shock wave from the bot-

tleneck requires n time steps to propagate to the upstream segment, the cross

correlation function was found to have the form:

for k=na

Y“) -{0 for k¢n (2'1)

In regions without congestion, the model included only terms from upstream

traffic and a low order ARIMA model, while for congested regions terms from

both upstream and downstream traffic characteristics were included.

However, the main operation of time series models is as historical trend track-

ing models. The calculated parameters of such models are constant (not time

varying) and often computed off line. Therefore, the responsiveness of such

time invariant models to changes in the traffic characteristics is significantly

restricted, especially when unexpected variations occur. In dynamic route

guidance the models that will be used for predicting future traffic conditions

must be able to adapt to the dynamics of the transportation system. Methods

for allowing the parameters of the model to vary with time are available, and

they are included under the more general context ofadaptive prediction models.

An adaptive prediction model can be seen as a system which has structure _

that is adjustable and it is improved with a learning process through contact

with the environment of the system. Such models include, among others, the

Kalman filters and the adaptive filters.

A classic example of filtering in traffic science is given by Gazis and Knapp

(1971). They developed a method for estimating the number of vehicles on a
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roadway segment based on real time measurements of speed and flow at the

ends of the segment. The model consisted off:

(1) a part where the average travel time of vehicles was estimated periodi-

cally based on the time series of speeds;

(2) a “rough estimation” of the number of vehicles based on the travel time

estimation; and A

(3) a “sequential estimator” of the number of vehicles on the roadway seg-

ment.

The sequential estimator was an application of the discrete Kalman filter

where the estimations of the number of vehicles was obtained based on the

rough estimation from the second part of the model and the error of the previ-

ous estimate. The model was tested using data from three sequential links

consisting of the three sections of the Lincoln ’Ihnnel (downgrade, level and

upgrade sections). Speed measurements were obtained for every 5 and 10 sec-

onds for examining two different sampling rates, and it was found that the 10

second sampling period produced better results. The model was very accurate

and the percentage of the time that the errors between the estimated value of

number of vehicles and the actual one was less than 10% was greater than

99% for all three sections.

In the above example the model developed by Gazis and Knapp (1971) was

used for estimating flows at time I, based on observations of the input vari-

ables at the same time interval, and no prediction was performed. Neverthe-

less the same model could be utilized for performing predictions of traffic flows

in the short term future. For example, Okutani and Stephanedes (1984) devel-

oped two models based on the discrete the linear Kalman filter, for adap-

tively predicting traffic volumes on the links of a network. They used traffic
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data from three previous time intervals, and the input vector to the filter con-

sisted of:

(1) observations of traffic volumes on upstream links; and

(2) observations of traffic volumes on the link under consideration.

In one of their models they used observations of the same day for which the

predictions were performed, without any differencing. However, under the

assumption that traffic flow fluctuates in a similar fashion from day to day,

the parameters h(d,t) that were used in this model for the day ((1) and the time

interval (I) were updates of the parameters obtained at the same time interval

one week ago h(d-1,t):

h(d,t) = h(d-1,t)+e(d-l,t) (2.2)

where e(d-1,t) is some noise variable. In the second model, in order to assure

the stationarity of the time series, they difference the observed traffic volumes

at the day under consideration with the ones that were observed one week ago

at the same time interval. By doing so, variations due to both time of the day

and day of the week were eliminated.

The results obtained were compared with those when the UTCS-2 model

(Urban Traffic Control System-second generation) was used. Their results

were always at least 80% better than those of UTCS-2. The model that incor-

porated the one week differencing, always performed better than the one ‘with-

out differencing. In the same study it was found that there was no significant

improvement of the predictions when observations for more than three previ-

ous time intervals were used. The robustness of the models were indicated by

the fact that their performance was not significantly affected when predictions

for times longer than one time interval ahead were obtained.
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In an effort to explain the existing interrelationship between traffic control

strategies and the resulting traffic patterns, Stephanedes et a1 (1990) devel-

oped a model for predicting behavioral characteristics of traffic flow in real

time. Based on an extended (non linear) Kalman filter their method was used

for prediction of traffic demand at the entrance ramps of a freeway and predic-

tion of diversion of this demand. In this study two models were developed, one

for predicting arriving traffic at the entrance of a ramp, based on historical

information of the same variable, and a second model for predicting the pro-

portion of traffic that enters the ramp. From a previous study conducted by

the authors it was found that the factors that affect the decision of a driver to

divert from entering a freeway ramp are the rate with which vehicles enter

the ramp, the rate with which vehicles enter the freeway, and the numbier of

cars on the ramp. Socioeconomic characteristics of the driver did not appear to

be relevant. Therefore, the second model, which calculates the utility attrib-

uted by the drivers to enter the ramp, relates the entering proportion of traffic

to the ramp with the current freeway entering rate and the number of cars on

the ramp from the previous time interval.

The above models were applied on a freeway corridor in Minneapolis, where

flows approaching freeway ramps, and diversion of freeway demand was pre-

dicted in real time. After implementing the method for a typical weekday it

was found that the average error for the predictions of diverted traffic was

ranging from 5.4 to 8.8%, while the average error of the predictions of the

approaching traffic was ranging from 6.1 to 13.4%. The authors note that the

error of the second model would be smaller if in the model for predicting the

approaching traflic historical information of the upstream traffic was also

included as in Okutani and Stephanedes (1984).
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A requirement for implementing such adaptive models is knowledge of the

second order statistics of the stochastic process. In the case when no prior sta-

tistics are available, but the estimates must relay only on the available data,

we need to approach the problem of predicting traffic characteristics with dif-

ferent adaptive prediction models. In such models the statistics of the process

are learned by the adaptive processor while the prediction system is in opera-

tion (Papoulis 1984). For example, Lu (1990) used such an adaptive prediction

model for predicting traffic volumes on a road segment. The prediction model

was based on the least mean squares algorithm (LMS), where the estimation

ofthe coefficients of the linear model is made recursively and it is based on the

latest observations of the input variable (traffic volume) and the instanta-

neous error of the last prediction. The model searches for a set of coefficients

that will minimize the instantaneous error in the gradient direction by setting

to zero the first derivative of the expectation of the squared error, so it can be

seen as a “steepest decent algorithm”. Although this method is simple to apply,

due to the small number of computations, the convergence of the algorithm is

not very rapid in the case of a high perturbation (i.e. due to a traffic incident)

in the input variable.

Alternatively the Gauss-Newton method can be utilized for obtaining the esti-

mations of the parameters of the model that minimize the sum of the squared

errors. The Gauss-Newton method shows faster convergence and as it is

shown by Ljung and Soderstrom (1983) such methods can be more robust in

respect to design aspects of the model. In a different type of problem Nihan

and Davis (1987, 1989) have compared the Newton-Gauss method for estimat-

ing origin destination matrices for freeways segments or signalized intersec-

tions from input-output traffic counts. In their approach the parameters of the
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model represented the portions of traffic leaving a specific origin and destined

for a specific exit of the freeway segment or leg of the intersection. The param-

eters must obviously satisfy the constraints of non negativity and they must

total to unity. These constraints are not handled directly by the model, but the

estimated proportions are modified in a two stage process (estimation and

adjustment) so they will satisfy the required constraints. The results were

compared with the ones obtained from off line prediction models based on

maximum likelihood estimators, and the ordinary least squares methods. In

all cases the results obtained from the Gauss Newton algorithm were much

better. In comparing the results from two models based on the Gauss Newton

method, one with employing the constraints for the parameters and one with-

out, the models converged in the same proportions, a fact that indicates the

robustness of the method.

2.4 Summary of Literature Review

Due to the alarming rate of increase of traffic congestion in most of the major

metropolitan areas over the last decade, research is focused on procedures for

improving the performance of existing networks with technological means.

Such procedures include the development of route guidance systems.

Advanced route guidance systems should be able not only to navigate vehicles

through a network, but guide them through the most desirable path. A key '

issue, though, of such a system is that the computation of the most desirable

path is based on an estimation of future states of the network.

Several studies have tried to evaluate the benefits of dynamic route guidance

systems and the results range from marginal to improvements of travel time
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up to 50%. The majority of these studies show that route guidance systems

will not have a great effect on reducing recurrent congestion, but most of the

benefits will accrue during traffic incidents. Factors like traffic demand,

capacity of the roadway system, market penetration level and behavioral

characteristics of the drivers affect the performance of route guidance sys-

tems. Results are based on simulation models where traffic is assigned based

on a user equilibrium.

However, none of these studies have included a model for estimating the

future states of the network, but they try to maintain the status of the user

equilibrium by updating routing suggestions periodically. Models for estimat-

ing future states are based mainly on traffic assignment models, which. are

developed by extending static models to include the time dimension. Such

models treat traffic as aggregated volumes and usually they cannot distin-

guish between equipped and unequipped traffic, and assume that drivers

have uniform information, and thus react in a uniform manner to the prevail-

ing traffic conditions. Therefore it seems that such models will be best applica-

ble when the market penetration of route guidance systems will be relatively

high, and thus drivers will indeed have perfect information.

Alternatively, prediction models based on the time series of the traffic charac-

teristics can be used. Such models, dynamic by structure and readily applica-

ble in real time, have been used mostly for estimating and/or predicting traffic

volumes on roadway segments. Although the potentials of such models are

good, they have not been used in route guidance systems. In this study we con-

sider the application of such a model that can adapt its parameters depending

on input which consists of the current traffic conditions on the network.



Chapter 3

 

Prediction Model of Travel Times

 

3.1 Introduction

The general purpose of this study is to examine the potential of time adaptive

control techniques for predicting traffic characteristics in real time. More spe-

cifically we will attempt to develop a model formulation that is capable of pre-

dicting traffic characteristics under a variety of traffic conditions, i.e. normal

traffic conditions or congested conditions. Under the notion that a prediction

model is a system itself, adaptive control techniques characterize this system

by estimating the system parameters. The key elements of system identifica-

tion is first the structure of the model, and second the estimation of its param-

eters.

Because prediction based on the adaptive system will be performed in real

time, its operation has to be automatic. Therefore, it is essential to have a

good understanding of all aspects of the problem so the structure of the model

can be formulated. The structure of the model may not be readily identifiable,

either because of our limited knowledge of mechanisms describing the system

and the complexity of such mechanisms, or because the system is changing in

an unexpected manner, i.e. in the case of a traffic incident. In this case,

38
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observed changes in the value of the variables produced by the system can be

used to reconstruct the model. In this study we develop a model which is based

on the observed values of traffic characteristics.

3.2 Operating Framework

The framework for a model incorporating real time adaptive prediction of traf-

fic conditions consists of three subsystems (Figure 3.1):

(1) The traffic network that is equipped with appropriate devices for col-

lecting information regarding current travel conditions;

(2) The traffic control center that is capable of processing this information,

performing predictions for short term future traffic conditions, and

broadcasting this information back to the traffic on the network; and

(3) The vehicles that are equipped with some special device that enables

them to receive information and evaluate their path towards their des-

tination.

As travel conditions change throughout the duration of the trip, equipped

vehicles would use the latest information to reevaluate their routes at the end

of each link. Once a vehicle has entered a road segment defining a link of the

selected route it cannot divert from that specific link. When it is exiting the

link, it is considered to have a new origin and an optimum route for the

remainder of the trip is recalculated, based on the latest estimates and predic-

tions of travel conditions. Thus, vehicles can divert from the selected path en-

route, if a better path from their current position towards their destination is

calculated. Such diversion from the originally selected route could occur either

because of poor predictions of travel conditions .on the links, or because of the

occurrence of an unexpected incident on one of the downstream links after
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Figure 3.1: Operating Framework for Prediction Model of Travel Conditions on

the Network.
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departure.

3.3 Structure of Prediction Model

Let the traffic network be represented by a graph G{N ,° L}. The graph consists

by two subspaces, the subspace N that includes the set of vertexes (or nodes)

in the network, and the subspace L that includes the directed arcs of the net-

work, where each arc is represented by an ordered pair of points from the

space N (L c NxN). Nodes may represent either a junction of two roads or

highway segments, or points where the physical characteristics associated

with each arc change. Arcs represent the physical path (i.e. road or highway

segment) from one node to another, and they will be referred to as links. Obvi-

ously the property which apply to subspace L is:

(i,j)¢(j,i) Vi,jeN

If we assume that the traffic control center is collecting data regarding traffic

conditions on the links of the network in discrete time t=1,2,3, , then such

observations comprise time series data. If the observed value of a traffic vari-

able at time t, used in the prediction model is denoted by x(t), then the

sequence of such observations up to time t can be arranged in a vector:

x‘ = {x(t), x(t- 1), x(1)} (3.1)

Ifmore than one observable variable is used for the prediction ofthe state of a '

link, we denote such variables as x’1,x‘2, .The model describing the state

that a link (i,1) is in at time t can be parametrized in terms ofa set ofunknown

parameters which can be arranged in a vector 9. Then the model will have the

general form:

y(t) = fl6;x‘1,x‘2, ...)+£(t) (3.2)
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Figure 3.2: Block Diagram of Travel Conditions of a Link

where y(t) is the variable indicating the state of the link at time t, 80) is a

noise term of unspecified character, and f(.) is a known function of

xi, x‘z, and 9. This concept is illustrated in Figure 3.2.

The indicator variable y (t) ofthe state of the link has to be a variable that can

be directly related to the cost associated with traversing this road segment.

Under the assumption that the aspect that drivers want to minimize is their

travel time, the state of a link (iJ) at time I, will be expressed as the time

required to traverse this link at time t.

3.3.1 Input Variables to the Prediction Model

The input variables to the prediction model, 1:3, 1:3, , can be observations of

either travel times, speeds, or traffic volumes and densities. Measurement of

travel times has the inherent drawback of some delay, since estimations can

be obtained only after a vehicle exits the link. On the other hand volumes and

densities can be estimated as soon as a vehicle enters the link. However, in the

case of congestion, simple volume measurements are clearly not a good choice,

since their usage can be misleading. As is discussed by Mauro (1991), an inci-

dent near the entrance of the link will result in low occupancies but high
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travel times. In addition, if no traffic is flowing through the bottleneck, no esti-

mation of the travel time of the link will be possible either. Therefore proce-

dures detecting the existence and the length of traffic queues (i.e. image

processing devices) are necessary. Then, based on such information, the travel

time of the link can be estimated based on some impedance function. In the

following it is assumed that the system is capable of estimating current travel

times of all the links of the network.

The value of the parameter vector 6 of the model for a link (iJ) will be esti-

mated based on the information contained in vectors x}, with k=1,2,... . Let

Thu-)0) be the travel time of link (iJ) at time t to be predicted. The first input

variable to the model will be the past history of the travel time of the link

under consideration (iJ) until time (t-l), so x‘1 = 772,1) . This is under the

assumption that future states of the link are related to current and past states

of the same link.

In addition, there is obviously some relationship with upstream and down-

stream traffic conditions. Perturbations of traffic patterns either on upstream

or downstream links will be transmitted to the link under consideration. For

example upstream traffic events will affect downstream traffic patterns with

some time lag required by the vehicles on the upstream link to reach the

downstream link. Therefore, travel times on upstream links should affect

travel times on subsequent links. On the other hand when the capacity on a

downstream link is reduced below the prevailing demand as a result of a traf-

fic incident or due to recurrent congestion, a bottleneck is created. Such condi-

tions are known to affect traffic patterns not only on the link with the incident

but to the upstream links as well. Figure 3.3 and Figure 3.4 illustrate the rela-
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tionship between upstream and downstream traffic. In the first figure where

there are no incident occurences travel time on the downstream link depends

on travel times of the upstream link. In the second figure an incident occurs

on the downstream link at time 09:00:30.2 at which point the relation is

reversed until the end of the incident approximately 15 minutes later, and

downstream travel times affect travel times on the upstream link.

Finally there is a strong diurnal pattern which has to be taken into account.

This pattern is related to the demand level which varies not only by time of

day but by day of week as well. Therefore variable T(,J)(t) is related to some

variable that describes this diurnal pattern, for example the expected travel

time on link (ij) at time I, based on observations of T(i.j)(‘) fi-om previous days.

3.3.2 Model Formulation

For the sake of simplicity in the remainder of this section we shall denote

links with a single character i.e. l = (i J). Under the assumption that the model

for predicting the travel time of link I at time t is linear in its parameters, then

it can be written as:

A(q") . 1,0) = 28k(q‘1)-Tk(t)+ 2 Cp(q'1) - rp(:)+d- i,(:)+e(z) (3.3)

ke I p e 0

where l is the set oflinks ending at node i, 0 is the set of links starting at node

j, and T,(t) is the average travel time of link I for the time interval I, obtained

from previous days (Figure 3.5). This term is included to express the diurnal

pattern of travel times of link I. The noise term 80) is assumed to be a

sequence ofindependent random variables with mean value equal to zero. The

terms A, B and C are polynomials of the form:
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A(q") -_- 1+a,~q‘1+a2-q‘2+...+an'q’" (3.4.a)

Bk(q-l) = bkl ' q—l 4'ka q-2+ ... +bkmt'q-Mk (3.4.b)

and

C (4“) = c -q"+c -q‘2+ +c -q—" (34c)p p1 p2 ... Prp o o

and q’1 is the delay operator, for example (1'1 - T,(t) = T,(t— 1) . We will refer

to the first term of equation (3.3) which includes the past history of the travel

times from link I as the autoregressive term, to the term with the history of the

upstream links as the convection term, to the term with downstream link

travel times as the congestion term, while the term with the average travel

time of link I as the diurnal term.

Let 0={k,,k2,...,k0} and E={p,,p2,...,pE} be the elements of the link sets 0 and E

respectively. By introducing vector notation equation (3.3) reduces to:

73(1) = 0“. (p(t) + e(t) (3.5)

where 0 is the parameter vector:

 

Figure 3.5: Link Layout for Prediction Model of Link I - Equation (3.3)
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T _
8 _ {E21, an, bk,1’ ..., bklmk" bkol, ..., bkomto’ CP11’ ..., prl’

.00, p51, one, pErPE,c c d] (3.6)

and (0(t) is the vector with the observations:

(p (t) =[—T,(t- 1), -T,(t- n), Tk!(t— 1), Tkxa‘mh)’ Tk0(t- 1),

...,Tko(t—mko), T l(t- 1), Tp‘(t- rm)’ TPE(t- 1), TP£(t— rp2’% (3.7)

A natural guess of T,(t), denoted as Mr) , will be:

7‘10) = éT- (p(t) (3.8)

where, of course, we need some estimation 0 , of the parameter vector 0. -

Equation (3.8) gives the one step ahead prediction for the travel time of link I.

The t-step ahead predictions are obtained by successively using 1: one step

ahead predictions. Let T,(t+ 1| t- 1:0(t- 1)) be the t-step ahead prediction of

the travel time of link I at time (t + I) based on observations up to time (t - 1),

with the parameter vector 0(t - 1) estimated also based on observations up to

time (t - 1). The t-step ahead prediction will be calculated as:

m.» 1|: —1;é(:- 1)) = é(:-1)T-o(z+ r) (3.9)

where 60+ 1) will be similar to (3.7) but it will include observed values up to

time (t - 1) and expected values after this point. For example consider the sim-

ple case where the model (3.3) is given by:

A(q“) . 1,0) = e(:) (3.10)

then:

0T = [a,, ...,a] (p(t) = [ma-1), ...,-T,(:-n)] (3.11)
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Ift = 2 then (50+ 1) will be

7P (H 2) = [—T,(t+ 1| t— 1:6(t- 1)), —T,(t1 t- 1:0(t- 1)),—T,(t- 1), —T,(t— n + 2)]

3.4 Prediction Algorithm

The estimation. of travel times will have to be performed on line, so the most

recently observed data will be used by the model (3.8) for the most updated

predictions. Since travel conditions on a traffic network change continuously,

it is necessary to use an algorithm that will update the parameters of the

model as new data become available. Because observations of travel times will

consist of long data sequences, processing of such data by the prediction model

will have to be sequential. Such a procedure is referred to in the literature as

recursive identification or as adaptive algorithm. The significant advantage of

such recursive identification techniques is that computational and memory

storage demands do not increase with time. Available storage memory can be

utilized for the prediction model rather than for storing the data, since we

need to store only the latest data while older data can be discarded (Ljung and

deerstrém 1983).

3.4.1 Time Invariant Parameters

A recursive identification algorithm should be able to identify changes in

travel times as such changes take place by responding to the instantaneous

error defined as:

so) = r,(:)-i,(:) = T,(:)-(‘9T . (p(t) (3.12)

The majority of recursive identification algorithms update the estimation of

the parameter vector by adding some correction to its previous estimation.
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The correction depends on the discrepancy between the observed travel time

and the expected travel time for the same time interval, estimated based on

the previous estimation of the parameter vector: 1

6(1) = é0— 1) + 10). 17,0) — éTc- 1) - <p(z)1 (3.13)

where L(t) is the “gain” vector, which regulates the rate with which the predic-

tion error £0) contributes to the update of 0 .

A common technique for estimating the parameter vector is by using the least

square principle, where the sum of the squares of the differences between the

actually observed and the computed values is a minimum. If we introduce the

loss function VN(0):
Z

. 2 I

me) = 1%, (m) — 910(1)] (3.14)
t = 1

then VN(0) becomes minimum when:

N -1 N

0 = [2 (p(t) - 01(1)] - 2 (p(t) - T,(t) (3.15)

t = l t = 1

assuming that the inverse exists. Then with simple calculations we can

rewrite (3.14) in a recursive form:

00) = 130-1)»:— -R’1(t)-q)(t)- 11,0) - 010- 1) - (1:0)] (3.16.a)

R(t) = R(t- 0+;- [(p(t) - (pT(t)-R(t— 1)] (3.16.b)

where:

1

R0) = Z (p(s)-(pT(s) (3.17)

s = 1

given that the inverse ofR(t) exists. Equation (3.16.a) has the form of (3.13) for

the recursive estimation of the parameter vector 9 , but in each iteration we

will have to find the inverse of matrix R(t). By applying the matrix inversion
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lemma which states that:

[A+B-C-D]‘1 = A’l-A'l-B-[D-A’1.B+C'1]-1-D-A'l (3.18)

and with the transformation:

1
? .

we obtain the following equivalent recursive form for (3.16.a)-(3.16.b):

P0) = R"0) (3.19)

90) = é0-1)+L0)- [T,(z)—0T0— 1) - 00)] (3.20.a)

Pa - 1) - (>0)

1 + «9%) - F0. 1) - 0(1)

 L (t) = (3.20.b)

Pa— 1)-<p(r)-<pT(t)-P(z-1)
T (3.20.c)

1+0 0) - P(t— 1) - (9(1)

P(t) = P(t-1)- 

(See Ljung and deerstrém 1983, pages 17-21). The algorithm given by

(3.20.a)-(3.20.c) is the known recursive least squares algorithm (RLS).

3.4.2 Time Varying Parameters

In the previous paragraph the parameter vector was treated as time invari-

ant, with the prediction algorithm trying recursively to estimate the best esti-

mation of 6(1) at time t based on the observations up to time t, according to

criterion (3.14). However, the main reason why we need a recursive prediction

model for guiding traffic in real time, is because the dynamics of the system

are changing with time. Therefore we need to develop a technique to “track”

changes in the system, as such changes occur. Under criterion (3.14) the algo-

rithm given by (3.20.a)-(3.20.c) gives the average behavior of the system dur-

ing the period [0 , t]. In order to obtain an estimate that will be more

representative of the current traffic conditions on link I, we can modify crite-

rion (3.14) so older observations of travel times will have a discounted effect

on the optimum estimation of the parameter vector 6(t) at time t, while more
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recent ones will be weighted more heavily. An example of such a criterion

would be (Ljung and Stiderstrém 1983):

l

. 2

v,(e) = 2 00,1) [r,(s)-eT(p(s)] (3.21)

s = 1

where B(s,t) is a function that increases in s for given t. To incorporate criterion

(3.21) in a recursive algorithm we need a recursive formulation for function

[3(s,t). A typical function that is often used is:

B(s,t) = A(s)- B(s—1,t) = I; h MD] - B(t,t) (3.22)

j=s+l

where of course B(t,t) is the weight attributed to the latest prediction error,

and M1) s 1 for all j. In the case that Mi) = A then function (3.22) has an expo-

nential “forgetting pattern”: .

[3(5, 1) = it"s- B(t, t) (3.23)

since the weight that is given to older errors of the model is found by (3.23).

The parameter it is chosen so 0 < A S 1, and it is referred to as the forgetting

factor. Often the weight attributed to the most recent prediction error B(t,t) = B

is set equal to 1. Using the transformation:

1

R0) = 2 00,11») - (p(w) - (pT(w) (3.24)

w=l

we get the recursive form of (3.16.a)-(3.16.b):

00) = 00 - 1) + R“0) - (p(t) - 0- [7,0) - 0T0 - 1) - (1:0)] (3.25.a) '

R0) = 10) - R0— 1)+ (3 - (p(t) - (pT0) (3.25.b)

Again with P(t) = R'1(t) and in a similar fashion as for (3.20.a)-(3.20.c) we

can get:

00) = (“)0— 1) +10) [T,(t)—0T(t— 1) - 00)] (3.26.a)



52

P(t- 1) - (pa)
 

 

L t) = (3.26.b)

( Mt)/B+CPT(t)-P(t- 1) - @(t)

1 P(t- 1) - (0(1) - Wt) - P(t- 1)
p = __ . P _ 1 —

3.26.

(I) W) l (I ) 10)/[3+<pT0)-R0- 11%)] ( C)

which for Mt) = 1 and B = l coincides with (3.20.a)-(3.20.c). The effect of the for-

getting factor such that 0 < Mt) .<_ 1 is that the matrix P(t) in (3.26.c) will not

tend to zero. The consequence is that the gain vector L(t) will be kept large.

This means that the algorithm will always be alert so it will be able to track

changes in the dynamics of the travel times of link 1. However the compromise

for this alertness of the algorithm is that it becomes more sensitive to the ran-

dom disturbances e(t) of the measurements. For values of Mt) close to 0 the

algorithm will be very alert to changes in the system but also too sensitive to

the prediction errors, while for values of Mt) close to 1 the algorithm will

restrain its tracking capability and it will gain in insensitivity to noise.

3.4.3 Initialization of Prediction Algorithm

For the initialization of the recursive algorithm (3.26.a)(3.26.c) we need some

initial values for the parameter vector 0(t0) and the matrix P(to). Because we

were based on the assumption that the invert of matrix R(t) exists, the initial

value of R(to) corresponding to P(to) must also be invertible. Usually we can

start the algorithm with to = 0 and an invertible matrix P(0).

The importance of the initial values diminishes with time. This can be seen if

we set equations (3.26.a)-(3.26.c) in a non-recursive form:

t -1 ‘ t

00) = [P“1(O)+ 2 pumpkin] [P"1(0)0(0)+ 2 001310)] - (3.27)

19:] w=1
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where the effect of the values 6(0) and P(O) decays as the sums increase in

magnitude. Also as P'1(0) —90 the recursive estimation of 9(t) approaches

the off-line estimation of the parameter vector. Therefore a common choice for

initial values is

0(0) = 0 and P(O) = c-I (3.28)

where c is a large constant number.

3.5 Stochastic Interpretation of the RLS

Algorithm

If instead of criterion (3.14) we choose 0(t) so the variance ofthe noise term e(t)

is minimized at each iteration then the following criterion results:

1 AT 2

We) = 55 [71(1) - 9 (P(t)) (3.29)

where E[-] denotes expectation. The minimum of (3.29) will be:

d T «T

[76%)] = 130(1) 1T,(z)- 9 (pm) = o (330)

Because the distributions and the moments of T,(t) and (p(t) are not known we

cannot solve (3.30) analytically. An approximation can be obtained ifwe evalu-

ate expected values with sample means which will result in criterion (3.14).

Alternatively the Robbins and Monro recursive equation can be used where

the solution of the equation EQ (x, e(t)) = 0 is found by:

2(1) = 110— 1) +70) - Q (i(t- l), e(t)) (3.31)

where e(t) is a stochastic process of random variables with unknown distribu-

tion, x(t) is a chosen value by the user, Kt) is a sequence of positive numbers

tending to zero, and Q(x,e(t)) is a known function of e(t) and x(t). Applying
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(3.31) to (3.30) with x(t) = 6(t) we get:

(‘90) = 8(t-1)+y(t)-(p(t)- [T,0)-éT0-1)1p0)] (3.32)

which for 7(t) = 7 gives the least mean square (LMS) algorithm. This algorithm

can be seen as the parallel algorithm of a “steepest descent” algorithm for

numerical minimization. Ljung and Stiderstrém (1983) suggest that if we

replace the negative gradient direction:

T 2 ‘1 T
[”516qu with the Newton direction: -|:-a%2-V(0)] - [-%V(0)]

the efficiency of (3.29) is increased significantly. Then the natural variation of

the Robbins and Monro equation will be:

52(t) = 2(t— 1) +70) - V"(i(t — l), e(t))_l - Q(i(t- 1), e(t)) (3.33)

From (3.29) we get that:

2

fine) = 1510(1) - (9(1)) (3.34)

which is independent of 9, and is the autocorrelation matrix of the observation

vector. Then from (3.34) the autocorrelation matrix can be determined as the

solution R of:

51¢(t)~<pT(z)—R1 = o (3.35)

From Robbins and Monro equation we find that the estimate of gig—:WO), R0).

at time t will be:

R(t) = R(t- 1) + 7(1) - [00) - 010) -R0- 1)] (3.36)

and from (3.33) we get the stochastic recursive estimation of 00) based on the

Newton direction:

6(0 = 9(1—1)+y0)-R“0—1)-(p0)- [T,0)-éT0_1)(p(,)] (3.37)

The algorithm (3.36)-(3.37) is the stochastic Newton algorithm. For )(t) = 1/t
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we get the algorithm (3.16.a)-(3.16.b). If we introduce the transformation:

R0) = R(t)/YO) (3.38)

then algorithm (3.36)-(3.37) with simple calculations can be written as:

9(1) = (‘90-1)+R“0-1).(p0). [T,(t)—6T(t—1)(p(t)] (3-39.a)

 

 

R0) = K" ”RE; ”(0] .R0—1)+(p0)-(pT0) (3.39.b)

which for 1.0) = 1042301401 and s = 1 coincides with algorithm

(3.16.a)-(3.16.b).

The interpretation of the RLS algorithm as a stochastic Newton algorithm

reveals some powerful aspects of the method. Convergence is a measure of the

speed with which the algorithm converges or “identifies” the true value of the

parameter vector 0. It is well recognized that the stochastic Newton algorithm

derived here converges much faster than the stochastic gradient algorithm

(LMS), and it is generally more insensitive to the choice of the initial values.

Haykin (1986) reports that the RLS algorithm converges faster than the LMS

algorithm at least by an order of magnitude. By utilizing the inverse of the

autocorrelation matrix the RLS algorithm becomes self-orthogonalizing since it

decorrelates the successive tap inputs. Of course the compromise lays on the

considerably higher computational complexity of the algorithm as opposed to

the LMS one. The computational complexity of the RLS algorithm increases

with the size of the parameter vector M. The number of multiplications

required by this method is 3M(3+M)/2, while for the LMS algorithm it is only

2M+1.



Chapter 4

 

Simulation Model

 

4.1 Introduction

For evaluating the performance of the RLS filter, it was decided to use a simu-

lation model, where vehicular movements on a network would be modeled.

This approach was favored for two reasons: First because real world data of

travel times on a sequence of links for extended time periods were not avail-

able, and second because it was realized that the availability of real time

information about travel conditions (in terms of travel times) to a portion of

drivers will alter the travel patterns on the network .

For the later reason, it became obvious that testing the performance of the

travel time prediction model based on the RLS filter will require the predic-

tion model to be incorporated within the simulation model. Because the usage .

of an existing simulation package would require access to the source code of

the program, in order to make alterations to the path selection routines, as

well as to incorporate the prediction model, it was decided to develop the sim-

ulation model.

Never the less, models already developed were considered to some extent.

56
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From previous comprehensive studies of previously developed traffic simula-

tion programs (Van Aerde and Yagar 1988a, Underwood 1990), it was found

that the majority of the models were developed for a specific subsystem of the

transportation system, and none except the INTEGRATION model, were suit-

able for applications in IVHS technology. From this work it was determined

that integrated models, in the sense of incorporating different subsystems in

one model, has clear advantages. For example, individual subsystems could be

identified for the freeway system, the traffic signal controlled network, or the

mass transportation system. This is true since in integrated control, defined

as the simultaneous control of subsystems, each subsystem could augment the

weaknesses of the others, so the whole system would operate in a higher level

than if each subsystem was controlled independently (Yagar 1983). The inte-

gration of freeways and signalized arterials constitute the most plausible

application of such models, and in the INTEGRATION model these two sub-

systems are combined with the interactions between them modelled. (Van

Aerde and Yagar 1988a,1988b).

In the development of our model, integration would be desirable. However, its

complexity, especially when considering semiactuated or fully actuated sig-

nals (the case which tends to be the rule in real world traffic networks), made

it impossible due to time limitations and this task is reserved for the future.

In this simulation model the freeway system, including possibly major arteri-

als, but without consideration of traffic signals, is modelled. This is believed to

be adequate for the purpose of developing the model to examine the applicabil-

ity of adaptive algorithms in travel time predictions.

The option of using a simulation language for a model of this scope (like
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SLAM-II, or GPSS) was also rejected basically due to the limited capacity of

such packages in their personal computer version (i.e. size ofnetwork, number

of entities simultaneously on the network, etc.). Therefore the simulation

model was developed in FORTRAN computing language, so it can run on a

personal computer and includes a real time graphics module. In the following

paragraphs the basic concepts for the simulation model are given.

4.2 Modelling Elements

The basic elements of the system that had to be modelled are the network,

represented by a directed graph denoted as G{N;L} and the entities that

traverse the network.

4.2.1 Representation Of Network In The Simulation

Model

The graph representation of the network consists by the two subspaces, N , the

subspace of the nodes of the graph and L, the set of the links of the graph, as

in paragraph 3.3. In addition to the properties of subspace L, introduced at

that point: V

(1) (ij) :6 (Li) V ij 6 N

we introduce the following properties for the same subspace:

(2) (iJ)e L=>i¢jViJe N

(3) (ty) 6 L = there is only one pair of(ij) : (iJ) e L

Property (1) is necessary by the definition of the graph to be directed. Proper-

ties (2) and (3) are utilized for simplifying various procedures in the simula-

tion program, and it is believed that they do comply with the reality of traffic

networks. In case any of these restrictions has to be removed, this can be
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achieved by introducing a dummy node.

A sequence oflinks traversed by an entity defines a path, denoted by the set of

links traversed. For example a path with n links will be:

Pathi, —) 1'“, = {(11.12) .02, i3) (in, 5+0} (4,1)

The traffic network is represented to the simulation model through a matrix

graph G{N,’L} in terms of the adjacency of each vertex to any other vertex of

the graph. Such a matrix representation, denoted as A, is called vertex adja-

cency list of a graph G{N;L}, and is defined as:

(1) the rows of the matrix correspond to the vertices of G, and

(2) 0,7 = the f" adjacent vertex to the i‘" vertex if (i,j) 6 L.

The matrix A is of dimension n*k where n is the number of nodes in the graph,

and k is the maximum number of adjacent nodes to any node of the graph.

Nodes are labeled with a unique label for each node number, and for simplicity

in the programming of the simulation model, the labels associated with each

node have to be in sequence starting from label 1.

There are three different types of nodes, generation nodes, destination or ter-

mination nodes, and transfer nodes. Vehicles are generated only at generation

nodes, and may exit the network only at destination nodes. Any node in the

network can be a generation or/and a destination node but the label of each

generation and destination node has to be identified to the model. Generation

and destination nodes form two new subspaces ofN defined as:

(1) 0 = {ii is a generation node A i e N}

(2) D = {i.‘i is a destination node A i e N}.

Each link of the network (iJ) i ,j e N, is described by a set of variables associ-
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ated with the traffic engineering properties of the link as well as aspects of

incident occurrences on the link. Links are numbered in the order that they

appear in the vertex adjacency list, for example link 1 is the link from node 1

to node 4, while link 7 is the link from node 5 to node 6.

4.2.2 Representation Of Traffic In The Simulation

Model

The entities that traverse the links of the network represent the vehicles on

the traffic network. Several macroscopic traffic simulation models (like CON-

TRAM or FREFLOW) or signal optimization models (like TRANSYT) repre-

sent traffic as packets of vehicles that move together as platoons, and instead

of tracing individual vehicles they trace the movement of whole platoons.

Another class of macroscopic models simulates traffic flow based on the fluid

flow analogy. Both of these classes of models examine the status of the net-

work and the development of traffic (platoons or fluid portions) in a sequence

of discrete points in time, equally spaced. The microscopic model NETSIM

simulates movements of individual vehicles in great detail, but individual

vehicles do not have specified destinations, and turning movements at the

nodes of the network are prescribed with percentages. The majority of both

macroscopic and microscopic models are able to model recurrent congestion

and reflect the impact of any bottlenecks and the spill back of congestion.

The modelling of traffic flow in a system operating within the IVHS technol-

ogy must be combined with a traffic routing component so traffic having a spe-

cific destination can be directed into the network realistically. Such a

component is present in a few models like INTEGRATION, CONTRAM and
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SATURN (Underwood 1990). In addition to this, it must be possible to model

traffic holdback due to bottlenecks caused by either excessive demand or traf-

fic incidents, so the interaction of traffic conditions on adjacent links can be

included in the model.

The development of this model was made under these constraints. The model

traces individual vehicles, and each vehicle maintains its identity throughout

the network. By keeping the identity of individual vehicles, it was possible to

assign specific attributes to each vehicle identifiable at any point, as well as to

collect statistics on individual trips. Such attributes include the destination of

the trip, the vehicle type, the generation time, and so forth.

From the point in time that a vehicle enters the network, it is assigned to a

destination node and to a vehicle category. The origin destination matrix,

denoted OD, from all origin nodes to all destination nodes is assumed to be a-

priori known, so each vehicle can be assigned to a destination node stochasti-

cally, based on the percentages supplied in the 0D matrix.

In this analysis two different vehicle categories are modelled, depending on

the type of information that they have available during their trip on the net-

work. The first category replicates the behavior of traffic that is not equipped

with any “smart” device for receiving information regarding the traffic condi-

tions on the network, but they base their decision on selecting their path on

experience they have acquired from past utilization ofthe network. Such vehi-

cles are characterized as “non-smart”, as opposed to the second category of

vehicles modelled, characterized as “smart”. These vehicles base their path

selection decision process on present as well as projected travel conditions on
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the network. This second category of vehicles replicates traffic that is

equipped with “smart” devices for receiving and processing such information.

The percentage of vehicles created from each category has to be given to the

model so each vehicle will be categorized as “smart” or “non-smart” at the time

of its entrance into the network.

4.3 Description Of The Simulation Model

The simulation model is discrete and event oriented, meaning that it describes

changes in the system that occur at discrete points in time. The isolated point

in time where the state of the system changes is the event time, and such

changes are dictated by the logic describing each event. Changes in the state

of the system have to occur in a time ordered sequence, and events occur at

prescribed times during the simulation. Therefore the primary function of a

discrete event simulation model is scheduling events in a “calendar” file, so

they will be processed in chronological order, and advance the simulation clock

at the time of the event in execution.

The general logic of the simulation model is depicted in Figure 4.1. The first

step of the model is to read the input data file, containing information about

the network, as well as the starting and ending time of the simulation run.

The run is initialized by setting the simulation clock to the starting time, .

which coincides with the time of the very first event in the calendar. Then the

first event is called for processing, and after it is executed it is removed from

the calendar. The simulation clock is advanced to the time of the next event in

the calendar, and this process is repeated till the simulation clock exceeds the

end time at which point the simulation run is completed.
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Figure 4.1: Flow Chart of Main Function of Simulation Program
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The simulation model is microscopic at the vehicle level. In-link movements of

vehicles are not modelled, but in essence vehicles wait on the link until their

travel time is expired, and then they are transferred to the subsequent link of

their path. In this level of modelling the events that were modelled are:

(1) Updating the minimum path tables of the network,

(2) A vehicle is entering the network,

(3) A vehicle is exiting a link to be transferred to another link, or exit the

network if it has reached its destination,

(4) Start a traffic incident,

(5) End a traffic incident.

Both vehicle types have to base their path selection process on some data base

containing travel time information for the links of the network categorized in

time intervals. While this data base for “smart” vehicles is created and

updated in real-time during the simulation run, for “non smart” vehicles such

information has to be known a-priori, to emulate the past experience concept.

In order to create such a data base, the simulation model is run twice. In the

first run, in which the data base is constructed, all vehicles are considered to

be “smart” and no traffic incidents are created. This concept is shown in Fig-

ure 4.1, where the first run is referred as the initialization run. The second

run is the regular run where vehicles can be from either category, and the pro-

cedure for creating traffic incidents is reactivated. For convenience, the initial

run can be skipped if data about average travel times are available (i.e. from

previous runs of the simulation model for the same network) to be used for the

travel time data base emulating the past experience information.
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4.3.1 Event 1: Updating The Minimum Path Tables Of

The Network

As was mentioned, the travel time data base for smart vehicles is created and

updated while the regular run is taking place. This process has to be accom-

plished in regular time intervals, referred to as time steps, at which point spe-

cific tasks have to be executed for the proper operation of the prediction

models. Therefore, the basic function of this event is that in each time step the

RLS filter updates the parameter vectors and then performs a prediction of

travel times on the network links, based on the most recent parameter vector.

The first step of this event (Figure 4.2) is to schedule in the calendar the next

call of itself, which will be exactly one time step ahead. Following this, the

average travel times, T031) (k) , on all the links of the network (ij) for the time

step that has just ended (k) have to be computed, so they can be utilized for

the structure of the input vectors to the RLS filter. The travel time of a link is

estimated by the system each time the status of the link is changed. The sta-

tus of the link is considered to be changing whenever:

(1) one vehicle enters the link,

(2) one vehicle exits the link,

(3) a traffic incident starts,

(4) a traffic incident ends and

(5) if there is a queue formation on the link, when the length of the queue

is altered.

During one time step k the average travel time of a link (i,i), 70.1) (k) is calcu-

lated as the weighted average of the values of the travel time that it assumes

due to changes in the link status, T031)“ - 1 +d,,,), where d,,, is the elapsed

time since the start of the last time step, when a new sample measurement
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Figure 4.2: Flow Chart of Event 1: Update the Minimum Path Tables
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was acquired. The weights used for the weighted average are the time lengths

for which each sample measurement of the travel time of the link was valid. If

we have M-l changes in the status of the link, this is expressed in the follow-

ing equations:

M

2 T(ij)(k- l +dm) . (dm+l-dm)

m=0 ’ (4.23)

 

TUE/)(k) = M

z (dm+ l — dm)

m=0

where:

M .

2 (drrH-l-dm)

m=0

lTime Step d0 = O dM = lTimeStep (4.2.b)

and

dm+ 1' 2 dm dm S lTime Step Vdm, m e [0, ..., M] (4.2.0)

The next step is to call the filter routine so the parameter vector of the predic-

tion model of each link will be calculated, so predictions for a number of time

steps in the future can be performed. With this information the simulation

model calls the minimum path routine, and constructs the minimum path

tables. The minimum path routine finds the minimum path from every node

in the network to all destination nodes, by considering only time “costs” and

“savings” over alternative paths. This is based on the assumption that drivers

are only interested in minimizing their travel time toward their destination.

It is recognized that other factors affect the final choice of the actual path that

each individual driver is going to follow - like safety considerations, familiar-

ity with the road system, trip purpose and so forth. While it would be possible

to include some of these behavioral aspects in the cost function (instead ofjust
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travel time), full account of the drivers decision making process would not be

completely modelled, due to the complexity of such a process. In addition to

this, and most important task in this analysis, the results of the simulation

regarding the performance of the RLS filter in predicting travel times with

adequate accuracy, would be clouded with possibly irrelevant information.

The minimum path routine examines all possible paths from a node i, to a

destination node in, ,. The travel time of each path is calculated by considering

the cost of each link for the entire downstream path, depending on the

expected time of arrival at the entrance of the link (starting node of link). For

example, for the path from node i, to destination node i“, as given in equation

(4.1), the cost of the path is calculated as:

C(‘l 4i...» = 2 T(ii’ii*l) (kj) (4.3.3)

I = 1

where:

k’l = O kIj+l = klj+T(i,.i,-.1) (k1) kj = [k2] +1 (4.3.b)

and 70,15”) (kj) is the expected travel time of link (1)-1,1,) at kj time steps

ahead. The brackets in (4.3.b) denote the integer part of a real number. Equa-

tion (4.3.a) takes into account the dynamic nature of the traffic network. For

“non smart” vehicles the cost of a path is calculated in the same manner, but

instead of using the expected travel time of the links included in the path, the

travel times as calculated in the initial run are used:

n

(hm...) = 2701-9.» (47) (4.4.3)
i=1

C

where:
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, _ CurrentTime , _ , — _ .

1 — Timelnterval qu - q1+T(‘r‘)o1)(qJ) q} _ [q1l+l (4.4.b)
 

and T U)» 1)..) (qj) is the average travel time on link (i,-,i,+,) at the q, time

interval. Here it should be noted that the time interval q has a different

length than the time step k used in equation (4.3.a). Thus, the value of q can

be large enough, so the classification of travel conditions on the links of the

network in the memory of the “non smart” driver would be reflected. Because

of the way path costs are calculated (equations (4.3.a) and (4.4.a)), static

shortest path algorithms (like Dijkstra’s or Dreyfus’ algorithms, the label cor-

rection method, the label reaching method or the recursive -fixing method)

could not be applied. This becomes obvious if we let YiJ be the minimum time

to travel from node i to j and T0,,” be the cost to travel link (kj). Note that Y,-,-,

and TM) are not dependent on the time that the vehicle starts the trip or it

enters the link, since in this case the network is considered to be static. In a

network with M nodes, the basic principal of such algorithms is (Romeijn and

Smith 1990, Hall 1986):

Y,- = min.I j¢l{ylk+T(k,j)} for k = l,...,M (4,5)

The underlying meaning of this principal is that the optimum path towards a

node - for example node j - is also optimum for the nodes contained in it - for

example node k (Kaufinan, and Smith 1990). However, in a dynamic network,

such as the one that we have to model, the fastest path to reach a node (k) may

not be the fastest path if the ultimate destination is a subsequent node (1),

since the cost of link (kJ) may be significantly larger if we reach (k) early than

if we reach it a few time units later. This is illustrated in Figure 4.3, where we

can reach node 4 via paths {(1,2),(2,4)} and {(1,3),(3,2),(2,4)}. Although the

shortest path to reach node 2 is {(1,2)} with cost 10 time units, the total cost to
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71

node 4 if we arrive at this point in time 10 is 40 while if we arrive 10 time

units later it will drop to 30.

In a more dynamic approach Cooke and Halsey (1966) tried to solve the prob-

lem by starting from the destination node and considering the shortest path to

reach it progressively towards the starting node. However, they still consid-

ered fixed travel time. Hall (1986) has suggested a method for networks with

time varying random travel times that are boundable from below, by combin-

ing a branch and bound technique with an M shortest paths algorithm (algo-

rithm that finds the M best paths between two nodes). This method would

only have advantages (in terms of computational effort) over an exhaustive

search if the computation of the expected travel times of paths is difficult. In

our model expected values of travel times are produced by the RLS filter any-

way.

Kaufman and Smith (1990) suggested a modification on Dreyfus’ algorithm so

it could be used in dynamic networks. This was achieved under the assump-

tion that each intermediate node of the optimum path has to be reached as

early as possible. In this algorithm costs are time variant, but they must sat-

isfy (under the assumption stated above) the following restriction:

where T,-,'(s) is the cost of link (iJ) at time s. This assumption is necessary to

avoid the case described in Figure 4.3. It is argued that it is not too restrictive

because driver behavior is not changing in such a dynamic pattern.

In order to avoid such assumptions which may not be valid in the case of non
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recurrent congestion, and to cover cases like the one described in Figure 4.3,

the only feasible solution appears to be an exhaustive search of the cost of all

possible acyclic paths from a node towards a destination node. The term acy-

clic path is used to indicate that paths where vehicles circle in a loop waiting

for the cost of a subsequent link to drop are not allowed. This is accomplished

by using a depth-first algorithm for identifying the possible paths, and as soon

as a path is identified its cost is computed with equations (4.3.a) or (4.4.a).

This cost is compared with the cost of previously identified paths towards the

same destination and if it is found to be smaller it replaces the old value. This

process continuous until all possible paths are evaluated at which point the

minimum paths in the dynamic network are found (Paull 1988).

After the establishment of a better path the two first nodes of the path,

excluding the starting node, are kept in memory. This is done for all the nodes

of the network for both vehicle categories, so two sets of minimum path tables

are constructed, on for each category. Each set of tables consists of (i) the first

node matrix, denoted Fc, with c=1,2 (for each vehicle category) and defined as:

(1) The rows of the matrix correspond to the nodes of the network, and the

columns correspond to the destination nodes,

(2) f},- with i 6 N and j e D, is the first node of the minimum path to be fol-

lowed if the trip starts at node i and has destination the node j,

and (ii) the second node matrix, denoted SC, and defined as:

(1) The rows of the matrix correspond to the nodes of the network, and the

columns correspond to the destination nodes,

(2) 3,,- with i e N and j e D, is the second node of the minimum path to be

followed if the trip starts at node i and has destination the node j.

These tables are used as reference during the following time step, and they
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are updated in each time step. While the significance of the first node is obvi-

ous since it indicates the link to be followed immediately after arriving at the

end of a link, the importance of the second node will be discussed later.

4.3.2 Event 2: Entrance Of Vehicle In The Network

The logic describing event 2 is shown in Figure 4.4. As soon as a vehicle enters

the network from one of the generation nodes, the next vehicle generation at

the same node is scheduled. In this way, the model does not need to keep in

memory all the entities to be created until the end of the simulation run, but

only those that are on the network.

To capture the dynamic nature of traffic networks, in terms of traffic demand,

a dynamic generation rate (rate with which vehicles will be entering the net-

work) was utilized. Such dynamic behavior was reflected in the modelling pro-

cess by utilizing generation rates that are dependent on the time of the day.

Arrivals are created according to a Poisson distribution (exponentially distrib-

uted interarrival times), with parameter based on the demand level at the

current time of the simulation clock, while the demand curve of each genera-

tion node is assumed to be known apriori.

Following the scheduling of the forthcoming vehicle from the current genera-

tion node, the entering vehicle was assigned to a link, thus increasing the

number of vehicles currently traversing this link. The selection of this link is

done by referring to the minimum path tables created in event 1. Based on the

vehicle category c, the entering vehicle is assigned to the link defined by the

entering node and the node f,,- from the first node matrix Fc, where i is the
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entering node and j is the destination node. In addition to this, the second

node of the current optimum path towards the destination j, 5,,- from the sec-

ond node matrix, is stored as an attribute of this vehicle.

As was mentioned earlier, the traversing of a link by a vehicle is simulated by

storing the vehicle on the link for a period of time equal to its travel time. The

remaining functions performed in this event have as a goal the computation of

travel time on the link. These functions are executed not only when a vehicle

enters the network but also each time it is transferred to a link from another

link. The calculation of the travel time is based on the Bureau of Public Roads

travel time function, shown in the following equation (TRB SR165):

 T -FFTT - 1+015- 11m) 4 (47)
(1.1) ‘ (1.7) - -

C (1.))

where TM) is the travel time of the link (iJ), FF77”,,-J) is the Free Flow Travel

Time of the link, and WC is the volume over the capacity ratio for the link. Free

flow travel time is defined as the time required by a vehicle to traverse the

link if this vehicle is the only one on the link.

To make the above equation usable for our purposes, we introduce two new

variables to replace v and c in equation (4.7). First the Occupancy (0CC(;J)(t))

of the link is defined as the number of vehicles traversing the link at a specific

point in time. Thus:

OCCW, (t) = v0.1) (t) - dt (4.8)

The second variable is the Free Flow Maximum Occupancy (FFM0(,-J)) of the

link, which is defined as the maximum number ofvehicles that can “fit” on the

link at any point in time, and have traffic still move freely. Since capacity (c) is

defined for a given time period, FFM0 can be regarded as the instantaneous
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capacity or:

From (4.8) and (4.9) equation (4.7) can be written as:

 

OCC ,- (t) 4

"” N (4.10)

Equation (4.10) does not take into account delays due to queuing, and it is

operational until traffic flows with some minimal speed. As the occupancy on

the link increases so does the travel time, and when the link approaches the

congestion state small increases in the occupancy result in significant

increases in the travel time (Figure 4.5). In order to prevent excessive travel

times due to unrealistic occupancies, it was assumed that the maximum occu-

pancy that a link can handle is twice the free flow maximum occupancy. As

shown in Figure 4.5, this will result in a travel time at capacity that is 3.40

times greater than the free flow travel time, while when the occupancy is

equal to the free flow maximum occupancy the travel time is increased by 1.15

times the free flow travel time. The factor which sets the ceiling in the occu-

pancy of the link, denoted as fm, is a parameter of the model and can be

altered by the user.

When a link is in the congestion status, it can exit only when the occupancy on

the link drops back to 1.70 times the free flow mardmum occupancy. This fac-

tor, denoted asfine, is also a parameter that can be altered by the user.

Therefore, the first step after a vehicle is assigned to a link is to determine

whether or not this vehicle will congest the link that it just entered. Ifit does,

then the link is assumed to be closed and no other vehicle is allowed to enter
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until the link leaves the congestion status.

The next step is to consider if the entering vehicle is about to create a traffic

incident. A traffic incident can be caused only by a vehicle, and if there are no

entities traversing a link, the probability of having an incident is zero.

Two types of traffic incidents are assumed to occur in this model (although

more types could be included): traffic accidents which result in the complete

blockage of the link, and vehicle breakdowns which result in partial blockage

of one lane of the link. The probability of a vehicle causing a traffic accident

Pa, the probability of causing a vehicle break down Pb, or the probability of not

causing any incident P0, along with the average duration of each incident type

are assumed to be known for each link of the network. Obviously Pa+Pb+P0=1.

In this analysis the probability that a vehicle will create an incident is

assumed to be 0.00010/lane-mile, from which 80% of the incidents that occur

are vehicle breakdowns and 20% traffic accidents. This ratio of traffic inci-

dents is obtained from the result reported by Guiliano for high volume urban

freeways (Guiliano 1989). The probabilities used are higher than real accident

rates, but this was done intentionally, so there will be some incident occur-

rences on the network within a single simulation run.

After the entrance of the vehicle in a link, a multinomial random variable

(Pa,°Pb,'Po) is constructed to determine if the vehicle will indeed cause an inci-

dent, and the type of the incident. If an incident is about to be initialized, the

point at which the vehicle causes the incident on the link (RLOC) as a percent-

age of the length of the link is found. This is also a random variable, uniformly

distributed with U[0,1]. The starting time of the incident depends on the per-
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centage of the length of the link that the vehicle has travelled before the inci-

dent. The average duration of each incident type is assumed to be different, as

vehicle breakdowns, although less serious in severity and capacity reduction,

may last longer due to lower priority for service by emergency units (Koutso-

poulos and Yabloski 1991). Due to the great variance in incident duration it

was thought reasonable to assume that the distribution of the duration of traf-

fic incidents is exponential, with parameter known. The start and the end of

the traffic incident are scheduled as separate events in the calendar of the

simulation. Because of the memory requirements, and the complexity of mul-

tiple queue formations on the same link, it was assumed that the occurrence

of two incidents of the same type on the same link simultaneously is not

allowed. This is not too restrictive, since the probabilities of having an inci-

dent is already very small.

If the occurrence of a traffic accident has been initialized on the link, the link

is assumed to be completely blocked, and a queue starts forming behind the

point where the accident occurred. Upon the entrance of a vehicle in the link,

in the case that a queue exists on the link, a check is made to determine

whether or not the vehicle will join the queue. If the vehicle is the one that

causes the accident then it will also be the one that initializes the formation of

the queue. After this vehicle, each vehicle that enters the link is checked to

determine if it will reach the end of the queue before the formed queue has

dissipated.

Ifthe vehicle entered the link at time t then the time required to reach the end

of the queue (TRQ) is calculated as a percentage of the free flow travel time of

the link, as if all vehicles entering before the one under consideration, have
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already joined the queue:

(4.11)
 

QUJ) (I) J

TRQ (1) = FFTTUJ) ’ (RLOCU'D - FFM00,-) 'fmax

where Q(,-J-)(t) is the length of the queue on link (ij) at time t. This technique

produces somewhat shorter travel times for the vehicles to reach the end of

the queue, but the differences are considered to be insignificant and it simu-

lates the worse (fastest) case scenario for reaching the end of the queue. Con-

sidering the time that the accident will end, the current time of the

simulation, and the time to reach the end of the queue we can determine if the

queue have started to disperse when the vehicle reaches the last car in the

queue. If the queue has started dissipating, we need to examine if, at the point

in time that the vehicle reaches the queue, there is any queue left. The time

required for the formed queue to be dissipated at time t, is calculated simply

as:

rd'Q(;,j)(I)

L (4.12)T44“) =
 

(‘31)

where rd is the queue dissipation rate. rd is a parameter defined by the user

and in this analysis is assumed to be equal to 4.8 sec/veh. By comparing the

time required to dissipate the queue with the time to reach the end of the

queue we can determine if the vehicle will join the queue or not. If the vehicle

is going to join the queue the queue length is increased by one.

In the situation of an accident on the link, the number of vehicles that occupy

the portion of the link behind the point where the accident occurred, is

checked to see whether it has reached the maximum capacity of this portion of

the link. If so, the link enters the congestion status and no other vehicle is
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allowed to enter the link.

After completing these checks, the travel time of the vehicle is calculated. As

was mentioned, the travel time calculated by equation (4.10) does not take

into account delays due to queueing or delays due to accidents, so these delays

have to be added to the travel time calculated by equation (4.10). When a vehi-

cle breakdown occurs, it is assumed that the only effect that it has is to reduce

the free flow maximum occupancy of the link (or equivalently the capacity of

the link) for the duration of the incident. If at time t there is a vehicle break-

down half a lane will be closed, so the fi-ee flow maximum occupancy of the

link will be reduced by a factor a(t), where:

 

(Lij — 0'5 ) if there is a vehicle break down on link (ty)

0 0) _ Li} ‘

. . . . . (4.13)

1 if there IS no vehicle break down on link (1,1)

Therefore, equation (4.10) takes the form:

7~ FFTT (1 015 OCC“) (I) 4)

+ Tacc([) + qu (t)
(4.14)

where Tacc(t) is the remaining duration of the accident at time t, if there is an

accident occurrence on the link. Note that Tacc(t) will be added to the travel

time of an entering vehicle even if the accident has not started yet, but a vehi-

cle that has already entered the link is about to cause the accident. In this

case the full duration of the accident is added. Further more, in order to con-

trol the rate with which vehicles exit the link the exit time form the same link

of the previous vehicle is recorded, and if the difference between the scheduled
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exit of this vehicle minus the scheduled exit time of the previous vehicle is

smaller than a threshold value w, the travel time is increased so this differ-

ence will be equal to w. Such a threshold value, which represents the headway,

is assumed to be fixed at one second per lane. Then the exit of the vehicle is

scheduled in the calendar of the simulation based on the current time of the

simulation clock and T(,-_j)(t):

P

T - =

a... , (4.15)

Tprevious + W If Tprevious—T(i,j) (t) - t < W

where Tan, is the exit time of the vehicle from link (ifl, and Tpmm, is the exit

time of the previous vehicle from the same link.

To simulate the way that the system control center is measuring the travel

time of the link, (so the average of the travel time in each time step utilized by

the prediction model can be calculated) equation (4.14) has to be modified.

Under the assumption that the network system is equipped with detectors

and counters, so current occupancies, length of queues and vehicle break-

downs are detectable immediately, the only variable that will still contain

some uncertainty in equation (4.14) is the remaining duration of the accident.

The remaining duration of the accident will be calculated as the conditional

expectation of the duration of the accident, given that it has not ended yet. .

Under the assumption that this duration is exponentially distributed the

expected remaining time is equal to the mean of the distribution. This is due

to the well known “memoryless property” of the exponential distribution (Ross

1985). Thus for the calculation made by the system control center, T4660) will

be replaced by its expected value, denoted with a tilde:
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E [d ( ,1.) ] accident has started and has not ended yet

Tmm = .
(4.16)

0 otherwrse

where E[d(,-J-)] is the expected duration of an accident for link (i,j). If the acci-

dent has not started yet then 7'0“. is equal to zero (no effect before the start of

the accident).

4.3.3 Event 3: Exit OfA Vehicle From A Link

After the completion of the travel time of a vehicle on a link, the vehicle is

transferred to a subsequent link towards its destination node. When a vehicle

is about to exit its current link there are several functions to be executed to

check if the vehicle is able to leave this link, and to determine which link it

will be transferred to.

As was described in event 2, queues can be formed because of an accident.

Besides accidents, recurrent congestion can cause formation of queues on the

network, and this aspect has to be included in the model. Generally, when a

vehicle tries to exit from its current link to another one, and the new link is

blocked, then this vehicle will start the formation of a queue right at the exit

point of its link. Such a queue is discriminated from a queue created due to

accidents which can start at any point on the link, and thereafter will be

referred to as congestion queues.

The procedures followed in this event are depicted in Figure 4.6. Before the

vehicle exits the link a check is made to’determine if there is a congestion

queue on the link, and if the exiting vehicle belongs to this queue. If it does,
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then the exit is rejected and the vehicle joins the end of the congestion queue.

In this case the exit time of the vehicle from the current link is reevaluated as:

I“

d

Tnewexit : Tprevious+ L(- _) (4.17)

1,}

where the second term takes into account delays due to dissipation of the vehi-

cles from the queue, and Twig“, is the exit time of the vehicle in front of it in

the congestion queue. If the vehicle belongs in the congestion queue then it

may be allowed to exit, if the new link that it will be assigned to is not in the

congestion status.

In the case that the vehicle exits the link, then the occupancy of the link is

reduced by one. If the link that the vehicle just left was congested and/or if

there was a congestion queue on this link, then these variables are also

reduced by one. In the case that the link is in the congestion status the

reduced occupancy is checked to see whether it is low enough to terminate the

congestion status on the link. Following the exit from the current link a check

is made to see if the vehicle has arrived at its destination node. If the current

node is not the destination of the vehicle then is assigned to a new link, and

the second part of event 2 is executed for this vehicle and the new link. On the

other hand, if the vehicle has arrived at its destination, statistics regarding its

travel time are collected and the vehicle is removed from the network and

deleted from the simulation calendar. Information on the path that the vehicle

followed is not collected because of the large requirements for memory.

If the new link that the vehicle is assigned to is already in the congestion sta-

tus then the vehicle cannot exit its current link, and it starts forming a con-

gestion queue. In such a case there are two possible situations: (1) The old link
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does not currently have a congestion queue, and (2) The old link already has a

congestion queue. In the first case the exiting vehicle will start the formation

of a congestion queue and it will reschedule its exit, depending on the time

that the link to which it was assigned to, but could not enter, will exit the con-

gestion status. For example, if the vehicle was on link (ij) and it is assigned to

link (j,k) which is congested, then the new exit time of the vehicle from link

(i,j) is calculated as:

rd

T = TQM/rec + L— (4.18)newexit . .

(u)

where T(j.k)free is the time that link (j,k) will exit the congestion status. In the

second case the exiting vehicle will trigger the rescheduling not only ofits_own

exit from the link, but the exit of all the vehicles from the current link as well.

Again the exit time of the first vehicle in the queue will be calculated by equa-

tion (4.18), while subsequent vehicles will be scheduled to exit based on equa-

tion (4.17).

Each time that a vehicle exits a link the status of the link is changed. There-

fore, the current travel time of the link has to be reevaluated so it can be uti-

lized in the calculations of the average travel times. Two additional terms

have to be added to equation (4.14), so delays due to congestion queues and

delays due to congestion on successor links will be taken into account. Delays

due to congestion queues are calculated in a similar fashion as in equation

(4.12). For the calculation of delays due to congestion in a subsequent link, the

time that the new link will exit the congestion status is utilized, as in equation

(4.18). Thus, for the calculation of the current travel time of a link (ij) as the

system control center perceives I},- (t) , it will be given by the following

expression:
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4

,, 0CC(,-,,-)(t) ..

TQM!) = FFTTWY 1+0.15- (FFMOW) e(t)) +Tacc(t)+ 

+ qua) + chdu) + TC (1'. k) (I)
(4.19)

where 7244(1) is the delay due to congestion queues and de,k)(t) is the delay due

to congestion to the successor link (j,k) at time I. These variables have value if

there is a congestion queue on the link.

In the case that the vehicle is allowed to exit from its current link (there is no

congestion queue on the link or the vehicle is in the top of the queue if such a

queue exists) the model has to decide to which successor link the vehicle will

be assigned. The selection of the remaining path towards its destination node

is made in a time adaptive fashion. This means that, each time the vehicle

reaches a new node, new information is acquired, so its path towards its desti-

nation is reevaluated. The decision process of selecting the next link of the

path is depicted in Figure 4.7 .

A first indication of a possible next link is acquired from the first node matrix

Fc for the appropriate vehicle category, from the minimum path tables of the

network. The link defined by the end node of the current link i and the node f,-,-

of the matrix FC, where j is the destination node of the vehicle, will be referred

to as the new link for simplicity. If the new link has entered the congestion -

status in the last time interval, then the minimum path from node i to node j

is reevaluated and the first and second nodes of the new minimum path

replace the corresponding elements of matrices Fc and Sc. This step is applied

for both vehicle types, since it is assumed that even “non smart” vehicles are

able to detect if the next link of their path is blocked. This way vehicles will
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not start forming congestion queues if there is an alternative path more

attractive than the one with the congested link.

Vehicles should not change paths for very small gains in their travel time. If

vehicles always followed their minimum path, then the new link would be the

one to which a vehicle would be assigned. But, the assumption that drivers are

willing to change paths along their way in pursuit of any gain, no matter how

insignificant, is too extreme, and as suggested by Mahmassani and Chen

(1991), the driver’s switching behavior exhibits a rather bounded rational

character anchored in his current path. In this model a relative indifference

band similar to the one developed by Mahmassani and Jayakrishan (1990)

will be utilized:

1 if Yold- Ynew>max{0t' Yawn}

8 = (4.20)

0 otherwise

where Yold is the travel time from the old minimum path, I’m is the travel

time of the new minimum path, otis the relative indifference band as a per-

centage of its remaining travel time from the old path to its destination, and ‘C

is the minimum gain over the old path travel time, required to change from

the old path to the new. The vehicle will switch to the new path if 8 is equal to

1, and it will not if 8 is equal to 0. Parameters a and ‘t can be specified for each

vehicle category individually, but for simplicity in the application runs of the

model they were kept equal.

The prevailing requirement for rule (4.20) to be applicable is knowledge of the

old minimum path. Because of memory restrictions, the entire path selected

at each node for each vehicle in the network, could not be kept in memory.
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Therefore it was assumed that if the first link of the new path is the same as

the second link of the old path, the two paths are equal. In the case where

these two links are not the same, it is obvious that the two paths are not the

same.

Thus, the new link will be compared with the link defined by the nodes fi'j and

3,}- which the vehicle had kept as attributes when it entered the link that it just

traversed. If these two links are the same then it is assumed that there is no

change in the path and the vehicle is assigned to the new link. If the two links

are different then rule (4.20) is utilized to define if the time saving from the

new path is significant.

4.3.4 Events 4 & 5: Start& End OfA Traffic Incident

A traffic incident is defined as any event that causes non recurrent congestion

or a reduction in the flow rate. The effects of traffic incidents may vary signifi-

cantly from complete blockage of a link to vehicle breakdowns blocking only a

portion of a lane. The duration of such incidents depends on the severity of the

incident, as well as the placement of emergency units. The importance of sim-

ulating traffic incidents is evident, if we consider that benefits ofADIS will be

greatest during the occurrence of such events.

As was described in event 2, when a vehicle enters a link it is examined to see

if it will cause the initialization of a traffic incident. In the case that it does

initialize an incident, the incident will not start immediately but after some

random portion of the vehicles’ travel time has elapsed. At the point in time

that the incident starts the parameters of the link on which the incident
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occurs have to change. Depending on the type of the incident, the effect is

reflected in the travel time equation, as reductions in the free flow maximum

occupancy (by the factor a(t)) in the case of a vehicle break down, or as delays,

that are additive to the travel time of the link (delays due to queues qu(t)) in

the case of a traffic accident.

When the incident ends, the free flow maximum occupancy assumes its origi-

nal value in the case of a vehicle break down, or in the case of a traffic accident

the process for dissipating the queue formed behind the location of the acci-

dent is initialized. In the case that the queue formed behind the location at

which the accident had blocked the link, the link is in congestion status. In

this case the new length of the queue is examined to see whether it is short

enough for the link to exit the congestion status.

The basic modelling protocol of traffic incidents on the link of the network is

as random events. To be able to compare the results of two different runs of

the simulation model with different model parameters, it was necessary to be

able to create traffic incidents at exactly the same points in time in both runs.

Thus in addition to the random traffic incident occurrences, the model also

has the capability to preschedule traffic incidents from the beginning of the

run. In the case that the option of random traffic incidents is selected, the

characteristics of the incident (starting and ending time, link on which it

occurs, type of incident, and location of incident along the link) are written in

an output file. If the prescheduled incidents option is selected the random gen-

eration of incidents is disabled, and the start and end of the incidents are

scheduled in the model calendar from the beginning of the model.



92

4.4 Conclusions from the Development of the

Simulation Model

The development of the traffic simulation model for testing travel time predic-

tion models was presented. The model is a microscopic event oriented simula-

tion model, where individual vehicles are traced throughout their traverse on

the network. The model is developed in modular structure, so the various

model components can be accessed independently, and additional extensions

of the model will be relatively easy. This is especially true for the travel time

prediction component of the model, where different models can be tested by

simply supplying the appropriate routine that includes the prediction algo-

rithm.

Traffic enters the network through generation nodes, and is directed to move

toward a destination node, prespecified for each vehicle. Along their trip, vehi-

cles reevaluate their path at the nodes of the network, based on the most

recent information about traffic incidents, delays due to queues or congested

links. This way traffic is assigned on the network based on the most recent

minimum path toward their destination. By reevaluating the path of each

vehicle at each node based on updated travel time data, a continuous dynamic

equilibrium network is emulated. Currently all the nodes of the network are

regarded as decision nodes where vehicles can divert from the originally cho-

sen path toward their destination. An option that is reserved for future exten- I

sions of the model is to have only specific decision nodes (i.e. signalized

intersections where the installations of broadcasting devices for the predicted

travel times is more likely). This could be helpful, especially in the first steps

of implementation of IVHS technology, when the infrastructure will be more

scattered.
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Each vehicle may be one of the two vehicle categories, “smart” and “non

smart”, that are currently modeled. Depending on the category that the vehi-

cle belongs to, it has access to a different data base of travel times on the net-

work. If the vehicle is “smart” then it has access to real time information

regarding travel conditions on the network. Otherwise the vehicle has access

to information built in an initial run of the simulation model, reflecting the

experience that such drivers acquire by using the network. “Non smart” vehi-

cles though are allowed to divert to better routes when links are blocked.

Currently drivers are assigned to paths by utilizing an indifference band for

shifting to a better path from their original path. The path that a vehicle fol-

lows is defined as a sequence of only two links, the one that is assigned to,’ and

the one right after. Instead of the indifference band, the two or three best

paths could be found with an M-shortest path algorithm, and a utility function

used to randomly assign vehicles to one of these paths.

Although the model is considered to be adequate for this research effort, a

number of modelling aspects remain to be further validated and calibrated.

Such aspects include the factors for entering and/or exiting the congestion sta-

tus on a link and the queue dissipation rate.



Chapter 5

 

Application of the Prediction

Model

 

5.1 Introduction

As was mentioned previously, the purpose of this study is to examine the

potential of the recursive prediction model presented in Chapter 3 when

applied in a real time route guidance system. The performance of the predic-

tion algorithm will be measured by the error of the predictions for one as well

as many steps ahead, for a variety of traffic conditions. The simulation model

presented in Chapter 4 will be utilized where a portion of the simulated traffic

will be guided toward its destination based on the on-line predictions per-

formed by the travel time prediction routine. The rest of the traffic chooses

their routes based on past experience on travel through the network.

Because of the interrelations between traffic patterns in a traffic network and

availability of traffic information regarding future travel times, the prediction

algorithm will be tested for a variety of percentages of traffic with access to

the predicted travel times. In addition, different time intervals between

updates of forecasted travel times will be utilized, to examine the effect of the

94
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frequency of updating information on travel times and the reliability of pre-

dicted travel times.

5.2 Test Network

The network that was utilized for testing the prediction algorithm is shown in

Figure 5.1 with the respective node and link labels. Table 5.1 presents the

adjacency list for the network. The network consists of three parallel arterials

representing an urban corridor consisting of a freeway and two major arteri-

als, connected with several crossing links.

Traffic arrives at the generation nodes 1, 2, and 3 and it is destined to nodes

19, 20, and 21. Therefore, according to the previous notation 0={1,2,3} and

D={19,20,21}. The crossing links provide a number of alternative routes from

the origin nodes and the intermediate nodes to the destination nodes. The

arrival pattern of traffic at the generation nodes is shown in Figure 5.2. This

pattern was based on examples from the 1985 TRB Highway Capacity Manual

(TRB SR209). Vehicles arriving at each generation node may have any desti-

nation from set D. The percentage of traffic from each generation node

towards each destination node, used for all the experiments conducted in this

study is given in Table 5.2.

The only difference among the three parallel arterials of the network is the

speed limit. The speed limit is 55 mph. for the freeway facility, and 45 mph.

and 35 mph. for the two arterials, while the crossing links are assumed to

have a speed limit of 40 mph. The speed limit represents the maximum speed

with which vehicles can travel on the facilities, and is utilized for calculating
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Table 5.1: Adjacency List of Test Network
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1 4 O O

2 5 0 0

3 6 0 0
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5 4 6 8
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Figure 5.2: Traffic Generation Pattern at Nodes l, 2, and 3.

 



Table 5.2: Origin - Destination Matrix

 

 

 

 

 

To 19 To 20 To 21

From 1 50% 40% 10%

From 2 20% 70% 10%

From 3 10% 20% 70%    
 

Table 5.3: Lengths, Free Flow Maximum occupancies and Free Flow travel Times

 

 

 

 

 

 

 

   
     

of Links of Network.

Length Max. Free Flow Travel Time (seconds)

Occup.

Link (miles) (vehicles) 362$ 1:41-56:1ng $632113

1, 2, 3 0.50 66 30 40 50

5, 8, 10 1.50 198 100 120 155

12, 15, 17 2.00 264 130 160 205

19, 22, 24 1.80 244 120 150 185

26, 29, 31 2.00 264 130 160 205

33, 36, 38 0.50 66 30 40 50

Connectors 1.00 66 90
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the free flow travel time. The free flow travel time, along with the length of

each link are given in Table 5.3.

All three arterials are two lane facilities, while the crossing links are one lane

(for each direction) facilities. Table 5.3 also shows the values of the free flow

maximum occupancies of each link utilized in the following experiments. The

free flow maximum occupancies were calculated based on the value of 66 vehi-

cles/mile/lane, given in the 1985 HCM for level of service D, which represents

the transient phase fiom free flowing traffic to congested traffic (TRB

SR209).Therefore, according to the assumptions made in paragraph 4.3.2,

when the occupancy of a link is greater than double the free flow maximum

occupancy, thus 132 vehicles/mile/lane, the link is considered congested. ‘

The first step, prior to application of the prediction model to the route guid—

ance system, was to establish the experience data base, for use in routing the

non smart vehicles through the network. Because these data are to represent

the travel time experience of non equipped drivers, a rough classification of

link travel time is required. For this reason, in the initialization run of the

simulation model the five-minute mean link travel time was collected, which

was then smoothed by averaging each value with the previous and the next

five-minute mean value, i.e.:

I,(t—1)+I,(t) +1‘,(t+1)

3 (5.1)T1“) =
 

where T, (I) is the observed five-minute mean value of the link I travel time at

time t, and T10) is the smoothed five-minute mean value for the same time

interval. In Figure 5.3 are illustrated the smoothed five-minute mean travel
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times of links 19 and 22, which are typical for all the links of the three arteri-

315.

5.3 Structure of the Prediction Model

The first step in the application of the model was to find the optimum struc-

ture of the prediction model given by equation (3.3). The procedure that was

followed was to experiment with different model structures on given

sequences of link travel times under two different scenarios of traffic condi-

tions: normal traffic conditions, where there was no congestion induced by a

traffic incident, and congested traffic conditions due to a traffic accident where

a link is completely blocked. The various model structures differed not only in

the number of components (time series) included but also in the order (the.

number of past values of a time series in the model) of each component.

Because predictions yielded from the RLS algorithm are not bounded, the pre-

diction model was applied in such a way that if the predictions obtained

exceeded some reasonable limits then the predictions assumed these limits. Of

course the lower limit of the predictions should be the free flow travel time of

the links, while the upper limit was set to be fifteen times the free flow travel

time of the link.

The measures of performance used were:

(1) the mean absolute relative error E which is a measure of the percent

expected error, and is defined as:

- 1 Inn-fld

e = [vi—fir (5.2)
l

(2) the square root of the mean square relative error E, which gives more
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weight to the larger errors, and is defined as:

.. 2

_ _ 1 T(t)-T(t)

6.. - 1V - (El—Tm] (5.3)
I L

 

(3) the maximum absolute error em defined as:

In» - rml
em = max, { _—T(f)—} ' (5.4)

where T0) is the predicted travel time and T(t) is the observed travel time for

the time interval 1, and N is the number of observations in the time period that

the performance of the prediction model is examined. These error measures

were compared with the corresponding error measures for the case where no

predictions were performed, and the current travel times were used to obtain

the minimum paths.

For this phase of the study the traffic operations on the network were simu-

lated with 30% smart vehicles and the time interval between information

updates regarding traffic conditions was set at 60 seconds. The time series

consisted of 2880 observations (two days), with the first day free of any traffic

incidents. The occurrence of a traffic accident was simulated on link 19 that

started at time 08:34:10.2 and was cleared at time 08:50:21.5 in the second

day of the simulation run.

Shortly after the accident occurrence, the link is blocked by traffic that had

entered the link before the incident, and by traffic that does not know about

the traffic conditions of the link (i.e. non smart traffic). Meanwhile, smart

vehicles are diverted to link 18. After link .19 is completely blocked, all traffic

is diverted to link 18. Because of this diverted traffic link 18 becomes con-
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gested and after a few minutes a queue is formed on link 12.

During the accident, the simulation model assumes that the observed travel

time of the link with the accident is equal to the expected duration of the acci-

dent plus the travel time of the link based on the current length of the queue

and the current volume of the link. The expected duration of an accident on

link 19 was set at 1000 seconds. After the accident ended, the queue from link

12 feeds link 19 with a steady rate, one vehicle from each lane every 2.8 sec-

onds. The queue formed on link 19 starts dissipating after the end of the acci-

dent at the same rate of 2.8 seconds per vehicle per lane. Because, the rate

with which the queue on link 19 dissipates is equal to the rate of incoming

traffic, the travel time on link 19 is almost constant until the demand is

decreased around 10:00 am. At that time the queue on link 12 is gradually

dissolved completely, and then, the queue on link 19 is also dissolved, and the

travel time on the link returns to normal levels.

5.3.1 Autoregressive Models

First the performance of a number of prediction models with just the autore-

gressive component in equation (3.3) were examined:

73(2) = 2 a‘-(t— 1) - T,(t—1') +20) (5.5)

1: 1

so the relation of future travel times of a link with the past history of the

travel time of the same link were studied. The error measures were computed

for the one, five and ten step ahead predictions, which represent prediction of

the link travel time for one, five and ten minutes ahead. Models with different

autoregressive order (value of n) were tested with the order ranging from one
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to fifty. Initially the forgetting factor A was set equal to 1.00.

5.3.1.1 Normal Traffic Conditions

For the situation of normal traffic operations (no traffic incident occurrence)

the travel time series for link 15 is illustrated. The error measures given by

equations (5.2), (5.3), and (5.4) were computed for two time periods of the sec-

ond simulated day, the morning period from 6:00 to 11:00 and the afternoon

period from 14:00 to 19:00. These two time periods were used because for the

rest of the time, link travel time, for almost all links, remains very close to the

free flow travel time of the link.

The mean relative error, the mean square error and the maximum error pro-

duced by a series of autoregressive models for the morning and evening peri-

ods are given in Table 5.4 and Table 5.5 respectively. In almost all cases the

resulting prediction errors from the models were smaller than the ones result-

ing if no predictions were performed. Only in the evening period and for the

models AR(3) and AR(5) the mean relative error and the mean square error of

the five and ten steps ahead are larger than those produced by the no predic-

tions case. As can be seen from the results ofthese experiments, the prediction

error is getting smaller for higher order models (order of 10 and higher) for

both the morning and evening time periods.

However, the large number ofvariables It used in the prediction model has the

adverse effect that the resulting parameter vector of the model is probably

overfitted to the data. The model, although it is large enough to include the

system describing the link travel time, is overparameterized and individual
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parameters are not affecting the predictions. The effect of old observations

that most likely do not correlate as well as more recent ones with the current

and the near future travel times is carried for a long time (i.e. for as long as

these observations are in the model), and if sudden changes in the travel time

occur, the result would be a dramatic increase in the error. For the same rea-

son, the filter is not kept sufficiently alert to follow the most recent changes in

the tramc conditions on the link. The low correlation of the older observations

to the most recent ones can be seen by studying the parameters of the autore-

gressive models as n increases. From Table 5.6 we can see that observations

older than five time steps do not contribute significantly to the predictions (as

compared to the contribution of observations from one to four time steps old).

From the same results, we can observe that as expected, one step ahead pre-

dictions have less error than five step ahead predictions which are better than

the 10 step predictions. The one step and ten step ahead predictions with an

autoregressive model of order three, for the morning period are shown in Fig-

Table 5.6: Parameters for Autoregressive Models at the End of the Evening Period

(19:00) of the Second Simulated Day (A I: 1.00).

 

 

 

 

 

 

 

       

AR 01 02 a3 a4 a5 a6

1 1.000 -- -- -- -- --

2 1.354 -0.355 -- -- -- --

3 1.340 -0.301 -0.041 -- .. --

4 1.347 -0.249 -0.267 0.169 -- --

5 1.346 -0249 -0.266 0.165 0.003 --

6 1.347 -0.249 -0.265 0.166 -0.004 0.004
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ure 5.4 and Figure 5.5 respectively. Figure 5.6 and Figure 5.7 show the predic-

tions obtained with an autoregressive model of order five for the evening

period. In both cases it can be seen that while the one step ahead predictions

are very close to the observed data, the ten step ahead predictions almost rep-

licate a shift of the observations ten time steps ahead. This can also be

deduced by comparing the error measures of these models with the no predic-

tion case. In Table 5.7 and Table 5.8 the percent difference between the error

of each model and the no predictions case is given. Values in parentheses indi-

cate the relative ranln'ng of each error measure for the given prediction, while

in the column under the heading "I‘otal Rank’ the sum of the ranks along with

the relative rank of these figures is given. From these results we can see that

the AR(l) model in both the morning and the evening periods score the lowest,

while the AR(2) and AR(4) models are the best. Nevertheless, improvements

over the no predictions case are too small to be considered significant.

In the following, the forgetting factor was set to values smaller than 1.00, so

the parameters of the models will be allowed to vary with time, and less

weight will be given to prediction errors encountered in the distant past. For

example, in the case where 71.: 0.975, the weight attributed to the error of the

prediction made one time step before is 0.975 while the weight attributed to

the error of the prediction 20 time steps before is only 0.402. In Figure 5.8 and

Figure 5.9 the parameters of the model AR(3) for 10:1.000 and H.975 are ’

shown. As can be seen from these figures, in the case ofhLOO the parameters

are converging to constant values, while in the case of#0975 the parameters

of the model are allowed to vary with time. .

The prediction errors for forgetting factor equal to 0.990, 0.975 and 0.90 are
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Table 5.7: Percent Difference of Prediction Error of Autoregressive Models with No

Predictions case for Morning Period (06:00-11:00)

 

 

 

 

 

 

 

           

AR 1 Step Ahead1 5 Step Ahead 10 Step Ahead Total

Predictions Predictions Predictions Rank2

82 82, 82,, 82 82, 82,, 82 82,. 82,,

1 0.0 0.0 0.1 -1.1 0.0 +0.5 —0.5 -2.4 ~55 36

(5) (5) (5) (2) (4) (4) (5) (4) (2) (5)

2 -6.8 -7.5 -17.5 -l.6 ~3.9 -6.2 -1.3 -3.4 -3.2 18

(1) (2) (3) (1) (2) (3) (2) (1) (3) (1)

3 -S.7 -7.5 -26.7 +0.6 —4.7 -10.8 -0.9 -2.9 -1.7 25

(4) (2) (2) (5) ( 1) ( 1) (3) (3) (4) (3)

4 -5.9 -7.2 -16.7 -0.8 +0.4 2.1 -0.9 -3.3 -6.0 30

(3) (4) (4) (3) (5) (5) (3) (2) (1) (4)

5 -6.8 -100 -28.1 0.3 -3.9 -8.6 -1.1 -24 -1.4 ' 21

(1) (1) ( 1) (4) (2) (2) ( 1) (4) (5) (2)

 

 
1. Numbers in parentheses denote relative rank.

2. Cell numbers indicate the sum of ranks, and numbers in parentheses indicate relative rank of the

sums.

shown in Table 5.9 and Table 5.10 for the morning and evening periods respec-

tively. As can be seen from these tables, the error measures get worse as the

forgetting factor is set to smaller values. The smaller the value of the forget-

ting factor the better the tracking capability of the model which is trying to

find not only the optimum values ofthe parameters, but its optimum values at

each point in time (see Figure 5.8 and Figure 5.9). This is achieved though, at

the expense of the sensitivity of the model to the prediction errors. Obviously

and as it was discussed in paragraph 3.4.2 there is a trade off which has to be

made between the tracking ability of the model and its sensitivity to the pre-

diction errors. This is especially evident for the ten step ahead predictions

where the mean absolute relative error is almost double the corresponding
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Table 5.8: Percent Difference of Prediction Error of Autoregressive Models with No

Predictions case for Evening Period (14:00-19:00)

 

 

 

 

 

 

 

        

AR 1 Step Ahead 5 Step Ahead 10 Step Ahead Total

Predictionsl Predictions Predictions Rank2

82 82, 82,, 82 82, 82,, 82 82, 82,,

1 0.0 0.0 +0.2 -1.9 0.0 0.4 -2.3 -1.6 -5.1 31

(5) (5) (5) (2) (3) (5) (2) (2) (2) (4)

2 -3.9 -2.2 -13.1 0.0 -0.8 -4.6 -0.6 -0.5 -3.7 27

(4) (4) (2) (3) (2) (3) (3) (3) (3) (2)

3 -5.3 -4.4 -12.7 +1.9 0.0 -5.7 +1.3 0.5 -1.2 31

(3) (1) (3) (5) (3) ( 1) (4) (4) (5) (4)

4 -6.4 -4.2 -14.0 -25 -1.1 -4.9 -3.3 -2.7 -5.9 12

(1) (3) (1) (1) (1) (2) (1) (1) (1) (1)

5 -5.6 -4.4 -12.7 +1.7 0.0 -4.6 +1.3 +0.5 -2.1 ' 28

(2) (1) (3) (4) (3) (3) (4) (4) (4) (3)    
 

1. Numbers in parentheses denote relative rank.

2. Cell numbers indicate the sum of ranks, and numbers in parentheses indicate relative rank of the

sums.

error of the no prediction situation (i.e. for the morning period, 0.02288 and

0.01114 respectively). In the case of 1:0.990 and 1:0.975 the one and five step

predictions have not deteriorated too much, and the AR(3) model give the best

results, which still are only marginally better than the no predictions case (i.e.

for the morning period with h=0.975, 0.01227 and 0.01238 respectively).
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5.3.1.2 Congested Conditions Due to Traffic Accident

For the situation of congested traffic operations due to a traffic accident the

series of travel time observations on link 19 were considered. A traffic accident

occurred on link 19 at time 08:34:10.2 and ended at time 08:50:21.5. Autore-

gressive models of order ranging from one to five were tested and the forget-

ting factor was set to four different values: 1.00, 0.99, 0.90 and 0.80. The error

measures obtained by these models for a time period that includes the inci-

dent and its aftermath (starting at 8:00 and ending at 10:30) are shown in

Table 5.11.

The performance of the autoregressive model is depicted in Figure 5.10 and

Figure 5.11 where the one step and the ten step ahead predictions respectively

obtained with an autoregressive model of order one and with 1:1.00 are

shown. As can be seen in these figures, like in the normal conditions situation,

predictions are almost only a shift ofthe observations. In Figure 5.12 and Fig-

ure 5.13 the same predictions with an autoregressive model of order one and

with 1:0.80 are shown. Due to the smaller forgetting factor in the later set of

figures, the model is in a more alert condition, and thus response to the

change of the travel time is more extreme. Obviously, the one step predictions

are worse, at least in the beginning of the accident, but the ten step predic-

tions are better than in the no predictions case. In the case where 22:0.80, the

model reacted to the large error at the beginning of the incident, and predic-

tions reached the ceiling of the allowable range of the travel time predictions

for one time step. After the end ofthe incident the model also responded to the

abrupt drop of the travel time of- the link, and especially close to the end ofthe

aftermath of the incident 10 step predictions return to observation values

more rapidly than in the case where 1:1.00.
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This is shown more clearly in Table 5.11 where the error measures for these

traffic conditions and for different values of the forgetting factor are shown.

For larger order models and for small values of the forgetting factor the model

reacts too spasmodically as it can be deduced by the value of the maximum

error, which reaches a high of 13.85 for 1:080 and 71:4. Generally, for all the

values of the forgetting factor, models with smaller autoregressive order n (i.e.

n=1 or 2) gave better results than models of larger order, and this was espe-

cially apparent when fewer past prediction errors of the algorithm were con-

sidered in the computation of the parameters of the model with the forgetting

factor set at 0.90 and 0.80. For example, for n=1 the mean square relative

error of the five step ahead predictions is 0.02149 for k=1.00 and 0.02107 for

12:0.99, which represent a 3.5% and 5.4% reduction over the no prediction

case. On the other hand, the same error is 0.02007 for 1:0.9 and 0.01883 for

1:0.80, which represent a 9.9% and 15.5% reduction respectively.

While the mardmum error is decreasing for larger order models, the mean rel-

ative error and the mean square error have their best values when n=l. For

the models with n=1, the five step and ten step ahead predictions obtained

with models with the forgetting factor equal to 0.90 are better by almost 5%

than those obtained by the models with a forgetting factor of 1.00, and the

same predictions obtained with models with a forgetting factor of 0.80 have

improved the error measures roughly by an additional 10%. However, the

error measures for the one step prediction becomes worse as the forgetting fac-

tor is set to smaller values.
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5.3.2 Autoregressive Models Including the Average

Travel Time of the Link

The next set of models that tested were those that include both the autore-

gressive component and the average travel time of the link for the correspond-

ing time interval. Thus, the general form of these models was:

1,0) = 2 2,0- 1) - 7,0 - 1') + d- 7'",0) + e(t) (5.6)

i: 1

Again the error measures are computed for the one, five and ten steps ahead

predictions for models of different autoregressive order, and they were com-

pared to the no prediction case. The average travel time of each link used in

this set of prediction models were the travel times used as a basis for routing

“non-smart” vehicles, defined by equation (5.1).

5.3.2.1 Normal traffic Conditions

For evaluating the performance of the prediction models defined by equation

(5.6), the travel time series oflink 15 was used. The error measures were com-

puted for the same two time periods as in the previous section, the morning

(06:00 to 11:00) and evening (14:00 to 19:00) period. Table 5.12 and Table 5.13

show the values of the error measures obtained when the average travel time

of the link for the corresponding time step is included, along with the autore-

gressive component. The results are for models with order of the autoregres-

sive component ranging fi'om one to ten, and for different values for the

forgetting factor: 1.00, 0.99, 0.975 and 0.90.

Similar to the models with just the autoregressive component, when the for-

getting factor }. is set to unity, and thus all previous prediction errors encoun-
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tered are considered in the calculation of the parameters a,- and d, the

resulting errors are smaller than the ones obtained when k is set to smaller

values. This is true for both time periods, for all predictions, the one, five and

ten steps ahead, and for all three error measures, the mean absolute relative

error, the mean relative square error and the maximum error. As A is set to

smaller values the error measures increase as we move further into the

future, i.e. for the ten step ahead predictions. In fact, for the cases that l is

equal to 0.975 and 0.90 the error measures became worse than the no predic-

tions case. For example in the case where n=1 and for the five step ahead pre-

dictions, the mean square error for 7L=1.00 is 0.00106 while for l=0.80 the

same error of the same model is 0.00143. This happens for the same reason as

explained in the case ofthe simple autoregressive models concerning the trade

offbetween the sensitivity to noise and the tracking ability of the model.

Ten step ahead predictions are approximately 20% worse than five step ahead

predictions which are approximately two to three times worse than the one

step predictions. The one step and ten step ahead predictions for the morning

period obtained with a model containing an autoregressive component oforder

3 and the average link travel time are shown in figure 5.14 and Figure 5.15.

The same predictions for the evening period are shown in Figure 5.16 and Fig-

ure 5.17. As can be seen in these figures, the one step prediction is very close

to the observed travel time, while the ten step ahead prediction follows the

general pattern of the observed values, but they are more smoothed, since

they are more affected by the average values. For example, this can be seen if

we consider that for the model depicted in these figures, the two step ahead

prediction at time I, To + 2) is based on the one step ahead prediction which is

already based on the average travel time at time t+1, the average travel at
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Figure 5.15: 10 Step Ahead Predictions of navel Times of Link 15 with

Autoregressive Model of Order 3, Including the Average Travel Time - 1:1.00 -

Normal Operating Condition - Morning Period
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time t+2 and the observed values at times t and t-l:

i0+ 2) = ali'(t+ 1) +02T(t) +a3T(t- 1) +dT(t+ 2) =

(of + a2) 70) + (a3 + azal) 70- 1) +ala3T(t- 2) +di0+ 2) +da17'(t+ 1)

Since the average link travel times are given in five minute intervals, the

effect of the same value for the average travel time is magnified further into

the future predictions.

The relative improvement of these models over the no prediction case when 1

is set to 1.00 and 0.99 is shown in Table 5.14, and Table 5.15 for the morning

and evening periods respectively. In the case where 1 is set to 1.00 the

improvement for both time periods are close to 20% and 35% for the mean rel-

ative error for the five and ten step predictions respectively, while the maxi-

mum error is reduced by approximately 30% and 44%. The one step

predictions do not show such dramatic improvements but the errors associ-

ated with the one step predictions are already very small. When 1. is set to val-

ues smaller than one, the maximum error deteriorates. Even when 1 is set to

0.99 there are instances, at least for the ten step ahead predictions, with a

larger error than in the no prediction counterpart. In the same table, the

ranking of the models is shown for values of 1. equal to 1.00 and 0.99. The

model with an autoregressive component of order three appears to give the

best results, for both time periods. The models with autoregression order 1 as

well as those of order 10 gave the worst results, which indicates that in the

first case the model was too “small” to include the system, while in the later

case the model is overparametrized.
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Table 5.14: Percent Difference of Prediction Error of AR Models Including the

Average Link '11-avel Time Term from the No Predictions Case - Morning Period

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(06:00-11:00)

1 Step Ahead 5 Step Ahead 10 Step Ahead

g Predictions1 Predictions Predictions is

AZ AZ, Aem A}? A2, A8,, A2 A2, Aem

1 -5.4 -3.6 +0.1 -17.8 ~18.2 -28.3 -36.2 -36.0 -45.8 40

(6) (6) (6) (3) (3) (3) (6) (6) (1) (5)

2 -1l.7 -11.3 -18.1 -18.0 -l9.9 -30.2 -36.3 -37.8 -44.6 24

(1) ( 1) (5) (2) (2) (2) (5) (2) (4) (2)

3 -l 1.5 -11.4 21.4 -18.2 -20.5 -30.1 -36.5 -38.0 44.6 16

§ (2) (1) (1) (1) (1) (1) (4) (1) (4) (1)

ll 4 -10.5 -11.0 -19.1 -17.2 -l6.9 -27.8 -36.9 -37.2 «44.7 38

‘< (5) (5) (4) (5) (5) (4) (3) (4) (3) _(4)

5 -10.7 -11.3 -l9.9 -17.8 -l7.4 -27.8 -37.4 -37.5 -44.8 25

(4) (1) (2) (3) (4) (4) (2) (3) (2) (3)

10 -109 -112 -19.7 -17.1 -153 -24.8 -37.8 -36.9 44.4 40

(3) (4) (3) - (6) (6) (6) (1) (5) (6) 1(5)

1 -2.9 -2.3 +1.4 -8.4 -5.0 -7.4 -20.5 -6.4 +20.5 51

(6) (6) (6) (5) (6) (6) (5) (6) (5) (6)

2 -8.9 -9.9 -22.2 -10.3 -11.9 -19.5 -23.5 -14.5 +108 27

( 1) (2) (5) (4) (3) (3) (4) (3) (2) (3)

8 3 -7.1 -9.7 29.3 -l6.1 -19.5 -35.2 -29.2 -22.1 +1.2 16

q (2) (4) (4) (1) (l) (1) (1) (1) (1) (1)

fi 4 -6.6 -9.8 -42.6 -l4.5 -ll.3 -16.7 -27.3 -l3.3 +161 29

K (4) (3) (2) (2) (4) (4) (2) (4) (4) (4)

5 -7.3 -ll.3 -47.8 -11.5 -15.4 -27.9 -25.8 -l7.9. +127 20

(3) (1) (1) (3) (2) (2) (3) (2) (3) (2)

10 -3.6 -5.4 -37.0 -7.1 -8.4 - 16.4 - 19.5 -10.4 +25.4 46

(5) (5) (3) (6) (5) (5) (6) (5) (6) (5)           
 

1. Numbers in parentheses denote relative rank.

2. Cell numbers indicate the sum of ranks, and numbers in parentheses indicate relative rank of the

sums.
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Table 5.15: Percent Difference of Prediction Error of AR Models Including the

Average Link Travel Time Term from the No Predictions Case - Evening Period

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

(14:00-19:00)

1 Step Ahead 5 Step Ahead 10 Step Ahead

g Predictions1 Predictions Predictions big

:3

A2 A2, Ae,,, A2 A2, A2,, A2 A2, Aem “

l -2.1 -2.2 -l6.9 -17.7 -16.0 -30.2 -34.2 -32.3 -42.1 37

(6) (3) (5) (5) (6) (1) (5) (5) (1) (4)

2 -6.6 -6.6 -3l.7 -19.2 -19.7 -29.9 -35.8 -35.4 -39.6 28

(5) (2) (2) (4) (3) (3) (3) (2) (4) (3)

o 3 -7.1 -6.7 -31.8 - 19.3 -20.6 -30.1 -36.2 -35.9 -38.9 20

8 (4) (1) (1) (3) (1) (2) (2) (1) (5) (1)

7f 4 -8.8 45.7 -30.8 -19.6 -18.3 -28.3 -35.7 35.1 -39.8 _28

‘< (3) ( 1) (3) (2) (5) (5) (4) (3) (2) (3)

5 -8.9 ~6.7 -30.8 -19.2 -18.8 -28.5 -35.8 -34.9 -39.7 28

(2) (1) (3) (4) (4) (4) (3) (4) (3) (3)

10 — 10.1 -6.7 -28.8 -20.3 - 19.8 27.9 -36.4 -35.4 -39.6 22

(1) (1) (4) ( 1) (2) (6) (1) (2) (4) (2)

l -1.8 0.0 -1. 1 -8.2 +2.4 +7.1 -17.9 +2.2 +27.l 43

(6) (2) (6) (5) (5) (4) (6) (5) (4) (6)

2 -6.6 -4.4 -5.9 -10.3 0.0 +5.9 -l9.8 0.0 +268 29

(2) (1) (5) (3) (3) (3) (5) (4) (3) (3)

8 3 -5.0 -4.4 ~13.4 -12.0 -5.3 -2.0 -25.0 -8.9 +13.4 14

q (5) (1) (1) (2) (1) (1) (1) (1) (1) (1)

o

It 4 -5.7 -4.4 -11.8 -13.1 -4.3 +2.4 -24.9 -5.9 +2l.7 18

K (4) (1) (2) (1) (2) (2) (2) (2) (2) (2)

5 -7.0 -4.4 6.0 -8.1 +4.5 +13.7 -21.1 +3.7 +428 40

( 1) (1) (4) (6) (6) (6) (4) (6) (6) (5)

10 -6.1 -4.4 -6.2 -9.7 +0.8 +10.4 -2 l .4 -0.4 +34.9 31

(3) (1) (3) (4) (4) (5) (3) (3) (5) (4)

 

1. Numbers in parentheses denote relative rank.

2. Cell numbers indicate the sum of ranks, and numbers in parentheses indicate relative rank of the

sums.
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5.3.2.2 Congested Conditions Due to a Traffic Accident

In the case where the prediction model was applied when a traffic accident

had occurred, predictions demonstrated similar behavior as those obtained

with models containing just the autoregressive component. This was expected

since the average link travel time does not contain much information related

to the trafic conditions governing the link in the case of a traffic accident. The

error measures for this set of models for the congested conditions for the time

period from 8:30 to 10:00 are shown in Table 5.16.

When 1 was set to one, the mean relative and mean square errors produced by

this set of models were almost the same as those obtained with the models

including the autoregressive component alone. The maximum errors' are

smaller due to the smoothing effect of the average link travel time term that is

included in the model. For smaller values of the forgetting factor, i.e. 0.90 and

0.80, the maximum error is increased up to 13.98 for the ten step predictions

when the autoregressive component of the model is of order higher than 2.

However, for larger values of the forgetting factor, the mean errors are similar

or even worse than those produced by the no predictions case, while for

smaller values of 1 both mean errors become smaller. When n=1 the mean rel-

ative error is decreased by 24% and 33% for the five step predictions and the

ten step prediction respectively, and the mean square error by 20% and 31%

respectively for the same predictions. This improvement of the mean predic- '

tion errors can partially be attributed to the fact that predictions during the

first 34 minutes (from 8:00 to 8:34 when the accident started) made with this

models are of better quality than those obtained with the autoregressive com-

ponent alone, as was shown in the previous paragraph.
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5.3.3 Models Including the Convection Term

Based on the findings so far, models including an autoregressive component of

order up to four, and the average link travel time for the corresponding time

interval have given the best results, at least in the normal traffic operations

case. In the following models, including the convection term will be examined

to determine if further improvements can be made to the quality of the link

travel time predictions. According to equations (3.3) and (3.4.b), the general

form of these models will be:

1,0) = Z a,0—1)-T,0-i)+ 2 20,,0—1).T,,0—))+D.7",0)+e0) (5.7)

i=1 Ice Ij=1

where I is the set of links k that end at the starting node of link 1. Because no

cycling is allowed in the network (vehicles looping in a sequence oflinks), set I

will have up to three elements, one link from one of the major arterials of the

test network and one or two connector links.

The number of variables in the autoregressive component will be held con-

stant and equal to three, since the combination of this AR component with the

average travel time gave the best results in the previous step. Furthermore,

for simplicity we will assume that the number of variables mk used in the

model from each connector link It ending at the entrance ofthe link under con-

sideration I, will be the same and equal to me, unless it is otherwise specified.

The error measures given by equations (5.2), (5.3) and (5.4) will be computed

for a set of models with different values for ma, where a is the previous major

link, and the results will again be compared to the no prediction case.
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5.3.3.1 Normal Traffic Conditions

For normal traffic conditions the series with travel time observations from

link 15 was used again. In this case, the set I consists of the links {8, 11, 16}.

The error measures for the morning and evening time periods, given by this

set of models are shown in Table 5.17 and Table 5.18. Since the results that

have been found so far indicate the performance of the prediction model dete-

riorates for values of the forgetting factor smaller than one, only the results

for 1:100 and 1:0.99 are shown in these tables. Different values for the num-

ber of the past values of each link fi'om set I included in the model, ranging

from one to five, were tested.

When the number ofpast link travel times included in the model from the 'con-

nector links, me, was greater than 2 the model became unstable and the error

increased rapidly. This happens because links 11 and 16 are empty most ofthe

time, and therefore their travel time remains equal to their free flow travel

time for long periods. When light volumes occur this creates a big shock to the

system, especially when 1:0.99. The RLS prediction algorithm tries to identify

the true values of the respective parameters, which should be close to zero.

When more than one such parameter exists in the model, the algorithm may

assign values to the parameters such that the total contribution made by the

connector links to the predictions of the travel time oflink 15 is zero or close to

zero. This is illustrated in Figure 5.18, where the sum of the parameters

(hurt-bug) and (bmJ-t-bmg) are approximately equal so they cancel each other,

since the travel time on both links 11 and 16 is equal to their free flow travel

time, 100 seconds. At the end of the second simulated day, and for the case of

1:100, all parameters corresponding to the connector links converge to zero.

However, when 1 is set to values smaller than one, even though the sum ofthe
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parameters b11.j and bum still tend to zero, the individual parameters may

assume large values, and even very small differences in the travel time of the

connector links will introduce large errors to the predictions made by the alg0o

rithm. As it is noted by Ljung and Siiderstriim (Ljung and Stiderstrtim 1983,

page 203) this is a natural result, since those parameters, or linear combina-

tion of parameters, which are not affecting the predictions, cannot be esti-

mated by input-output data, and in such instances the correlation matrix R(t)

becomes singular. Therefore, in all experiments described in the following the

variable me will be set at 0.

In Figure 5.19 the parameters bad, j=1,2,3 are also shown. These parameters

correspond to the values of the travel time of link 8 that are used in the pre-

diction model. As can be seen, bu and b3; are close to zero, while bu has a

larger value. This time lag represents the time required for upstream traffic to

reach downstream links. The travel time oflink 8 is 120 seconds, and thus the

effect of upstream traflic on downstream travel conditions is lagged by two to

three time steps. Actually the convection wave propagates to the downstream

link somewhat faster than the speed of the vehicles traversing links 8 to enter

link 15, which is indeed in accordance with the findings ofKyte et. al. (Kyte et.

a1. 1989).

As can be seen from the results in Table 5.19 and Table 5.20 the model with ma

equal to two gives the best results for the morning period for both 1.=1.00 and

1:0.99. For the evening period the model with ma equal to three is slightly bet-

ter than the model with ma equal to two, while for both time periods including

a larger number ofvariables into the model increases the error. The ranking of

the models for the morning and evening time periods is shown in Table 5.19
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and Table 5.20 respectively. In the same table the improvement of these mod-

els over the no predictions case is also shown. As can be seen, all models give

significant improvements over the no predictions case. In the morning period

error reductions reach up to 60% for the maximum error, when 1:1.00, while in

the evening period reductions of the same error exceed 70%. While for the one

step predictions, the maximum error is getting worse, the mean relative and

the mean square errors are up to 30% better. However this is not too serious

since prediction errors for the one step ahead predictions are already very

small. On the other hand, all the error measures for the five and ten step

ahead predictions for both time periods are significantly better than the no

predictions case. From all the models that were tried the ones with ma=1 gave

the worst results in both time periods, while the errors produced fi-om the 'rest

of the models were similar. This is explained by the fact that the one step back

travel time values of the upstream links do not contain any information for

the downstream tramc conditions, since it has not yet started affecting these

conditions.

Also in Table 5.21 are shown the relative improvement ofthe performance of

the model including the convection term with ma=2 over the no prediction

case, the simple autoregressive model and the model consisting of only the

autoregressive component and the average travel time of the link. As can be

seen, the improvement to the one step predictions are of the order of 20% for

the morning and 30% for the evening period. The five step ahead predictions

also show significant improvements over the models that include the average

travel time of the link: approximately 30% for both the morning and the

evening time periods for the mean relative absolute error, 36% for the mean

square error and above 40% for the maximum error. The ten step ahead pre-
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Table 5.19: Percent Difference of Prediction Error of Models Including the

Convection Term from the Case of No Predictions - Morning Period (6:00-11:00)

 

 

 

 

 

 

 

 

 

 

 

 

            

1 Step Ahead 5 Step Ahead 10 Step Ahead

so Predictions1 Predictions Predictions fig

A2 A2, A8,, A2: A2, Ae, A2 A2, A8,, °‘

1 -18.1 -20.0 84.1 41.9 -48.8 -60.8 41.0 87.5 49.7 34

(5) (4) (1) (3) (5) (1) (5) (5) (5) (5)

2 —28.7 -27.5 +3.1 42.1 81.2 -60.5 42.2 88.6 82.1 15

(3) (1) (3) (1) (1) (2) (1) (1) (2) (1)

g 3 -28.3 -25.0 +2.7 42.1 81.2 -60.1 42.2 88.6 82.1 17

u (4) (2) (2) (1) (1) (3) (1) (1) (2) (2)

‘7 4 81.4 -225 +38.4 86.9 47.3 85.7 41.3 88.2 82.1 32

(1) (3) (4) (5) (4) (5) (4) (4) (2) (4)

5 80.1 -200 +41.0 87.8 48.8 87.8 41.6 88.6 82.3 28

(2) (4) (5) ~ (4) (3) (4) (3) ( 1) (2) (3)

1 -143 45.0 88.8 -32.1 89.5 42.6 -28.3 42.5 +6.8 36

(5) (5) (1) (4) (4) (3) (5) (4) (5) (5)

2 81.4 80.0 -19.3 84.1 43.4 49.4 86.4 45.4 8.9 15

8 (4) (2) (2) (1) (2) (1) (1) (1) (1) (1)

g 3 85.7 82.5 -1.2 82.9 -42.6 42.9 80.4 44.3 +1.6 22

u (3) (1) (3) (2) (1) (2) (3) (3) (4) (2)

T 4 86.4 -27.5 +16.3 82.4 41.1 42.4 80.6 44.6 +1.0 26

( 1) (3) (5) (3) (3) (4) (2) (2) (3) (3)

5 86.4 -275 +160 81.3 86.4 87.9 -29.1 42.5 -2.1 29

(1) (3) (4) (1) (5) (5) (4) (4) (2) (4)

 

1. Numbers in parentheses denote relative rank.

2. Cell numbers indicate the sum of ranks. and numbers in parentheses indicate relative rank of the

sums.
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'Ihble 5.20: Percent Difference of Prediction Error of Models Including the

Convection Term from the Case of No Predictions - Evening Period (14:00-19:00)

 

 

 

 

 

 

 

 

 

 

 

 

      

1 Step Ahead 5 Step Ahead 10 Step Ahead

Eu Predictions1 Predictions Predictions (154

- -- — — -- -- M

Ac Ac, A8,, Ae Ae, A8,, Ae ' Ae, A6,,

1 44.6 45.6 87.3 44.4 81.1 -60.5 85.3 87.6 43.0 38

(5) (5) (5) (2) (1) (5) (5) (5) (5) (5)

2 87.7 85.6 83.2 43.3 80.4 -723 86.5 88.6 43.6 24

(4) (3) (4) (3) (3) (1) (3) (1) (2) (4)

g 3 88.3 85.6 84.3 43.9 81.1 -72.1 86.5 88.6 43.7 19

.. (3) <3) (3) (1) <1) <3) (3) <1) (1) (1)

T 4 41.1 87.8 85.2 88.3 46.6 88.8 86.6 88.1 43.4 22

(1) (1) (1) (4) (4) (4) (1) (3) (3) (2)

5 40.2 -37.8 85.0 88.1 46.6 42.2 86.6 88.1 43.4 23

(2) (1) (2) (5) (4) (2) (1) (3) (3) (3)

1 43.9 41.1 47.7 85.3 87.4 85.2 -270 -233 -27.6 37

(5) (5) (5) (5) (5) (4) (4) (2) (2) (5)

2 88.4 -35.6 49.2 43.9 48.1 85.9 -28.5 -243 -27.4 20

(4) (4) (3) (1) (1) (2) (1) (1) (3) (1)

g 3 42.0 40.0 89.5 42.6 ' 47.3 -61.9 -274 -222 -20.5 28

.. (3) (3) (1) <5) (2) (1) (3) (5) (5) (4)

“ 4 46.0 42.2 80.0 42.8 46.6 47.9 -27.5 -23.3 -24.8 23

(2) (1) (2) (4) (3) (3) (2) (2) (4) (2)

5 47.4 42.2 42.6 42.9 45.0 80.8 -26.8 -233 -29.8 26

(1) (1) (4) (3) (4) (5) (5) (2) (1) (3)      
 

1. Numbas in parentheses denote relative rank.

2. Cell numbers indicate the sum of ranks, and numbers in parentheses indicate relative rank of the

sums.
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Table 5.21: Percent Difference of Prediction Errors of Models Including the

Convection Component Over the No Predictions Case, Autoregressive Models and

Models Including the Average 'Ii’avel Time

 

 

 

 

 

 

 

 

1 Step Ahead 5 Step Ahead 10 Step Ahead

Predictions Predictions Predictions
Model

A2 A2, A2,, A2 A2, A2,, A2 A2, Ae,

No Predic- -28.7 -27.5 +3.1 42.1 81.2 80.5 42.2 88.6 82.1

E tions

12 AR(Z) -235 -21.6 -201 41.0 46.8 88.2 40.2 40.8 48.0

a

'g AR(3)& 49.2 49.4 49.5 —29.2 85.9 43.8 -7.4 -7.8 -9.2

g Diurnal

Term

No Predic- 87.7 85.6 83.2 43.3 80.4 -72.3 86.5 88.6 43.6

E tions

a AR(Z) 83.5 82.6 45.6 41.8 49.6 -70.8 84.3 86.6 40.1

g AR(3)& 83.0 81.0 81.3 -297 87.5 80.3 -0.4 4.1 -7.7

,5 Diurnal

Term              
dictions, although better, are not significantly improved. The maximum error

shows improvement of approximately 8% for both periods. However the mean

relative error, at least for the evening period does not show any significant

improvements over the later model. The poorer performance ofthis set ofmod-

els for predictions further into the future can be explained because such pre-

dictions are based not only on previous predictions of the travel time of the

link that is under consideration, but also on predictions of the main arterial

link(s) that ends at the entrance node of the link, i.e. link 8. The improve-

ments over the no predictions case and the simple autoregressive models are

significant and always greater than 20% for the one step predictions, 40% for
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Figure 5.20: 1 Step Predictions and Observed Values of Travel Times of Link 15 -

Model Including the Convection Component - Normal 'Ihfllc Conditions - Morning
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Figure 5.21: 10 Step Predictions and Observed Values of Travel Times of Link 15 -

Model Including the Convection Component - Normal 11‘affic Conditions - Morning
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the five step predictions and 35% for the ten step predictions.

The one and ten step ahead predictions for the morning period obtained with

these models are shown in Figure 5.20 and Figure 5.21. Also in Figure 5.22

and Figure 5.23 are shown the same predictions obtained for the evening

period for the case with 121.00. As can be seen in the figures corresponding to

the 10 step ahead predictions, the effect of the average travel time is lessened,

and predictions follow future travel times more closely than when the model

with just the autoregressive component and the average travel time is used.

This is shown more clearly in Figure 5.24 where the five step predictions

obtained with a model including the average travel time (o) and those

obtained by a model that in addition includes the convection term (+) are plot-

ted. This is explained also by examining the value of the parameter corre-

sponding to the average value of the travel time of the link. While in the

former model the parameter stays above 0.08 for the entire second simulated

day of the simulation run, for the model that includes the convection term it

stays very close to zero for the entire day. At the beginning of the simulated

day these two parameters are 0.0929 and 0.0021 respectively, whileat the end

they become 0.0855 and 0.0072. This means the contribution of the average

link travel time is less in the models that contain the convection term, at least

by one order ofmagnitude. However, when the average travel time is excluded '

from the model, the five step and ten step ahead predictions became worse

than when this term is included in the model. The behavior of these two

parameters is shown in Figure 5.25 where d", is the parameter corresponding

to the model without the convection term, and dc to the one with it.
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5.3.3.2 Congested Conditions Due to 'h'affic Accident

In the case where the link under consideration is experiencing a traffic acci-

dent, demand originating from upstream links will determine the level of con-

gestion in terms of the duration of the aftermath of the accident. The travel

time data from link 19 were used in this experiment, and thus links {12,20}

comprise set I. The speed with which the queue of link 12 is dissolved will

directly affect the speed with which the queue of link 19, which has started

dissipating after the end of the accident, will dissolve. Therefore, the travel

time of link 19 should be related to the traffic demand on link 12. Again the

error measures are calculated for the time period starting at 8:00 and ending

at 10:30.

The results obtained in the case when the congested link (link 19) was the one

for which the predictions are performed, are shown in Table 5.22. As can be

inferred from these figures, there is no improvement in the quality of the pre-

dictions made with this model configuration. In all cases, predictions made

with the models including just the autoregressive component along with the

average link travel time give better quality predictions.

This was expected during the first minutes of the accident, since trafic condi-

tions of upstream tramc do not affect the occurrence of the incident. The one

and ten step ahead predictions obtained with these models are shown in Fig-

ure 5.26 and Figure 5.27, for the case where 1=1.00 and in Figure 5.28 and

Figure 5.29 for the case where 1:0.80. The predictions shown are obtained

with a model with ma=1 including an autoregressive component of order n=2

and the link average travel time.
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The erratic behavior of the model during these first minutes is due to the

inclusion of the convection term into the model, which creates a delayed

response to the rapid increase of the travel time by a few time steps, as com-

pared with the response ofthe models without the convection component. This

occurs because the relationship of the travel times oflinks ending at the start-

ing node of the link under consideration has been established by the model,

and when the incident occurs the parameters associated with the convection

term still have large values, thus greatly affecting the predictions. This is also

the reason the maximum error, even when m, is larger than 2 and the forget-

ting factor is set to small values, does not get such high values as it did in the

previous models. During the incident though, this relationship is reduced and

the prediction model behaves much like the models without the convection

term.

When 1:1.00, and after the incident has ended the model underestimates the

predictions for the five and ten steps ahead, because of the strong shock to the

system during the accident (travel time increased almost by a factor of 10) and

because of the long memory of the model, due to which the parameters associ-

ated with the convection term diminishes much slower. In the case of 1:080

the shock is overcome fast and predictions during the period of the dissipation

of the queue are close to the real values. Also, immediately after the queue is

dissipated, ten step predictions return to normal values.
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Figure 5.26: 1 Step Predictions of Travel Times of Link 19 with Model Including the

Convection Term - Congested 'IIaffic Conditions - 1:1.00
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Figure 5.28: 1 Step Predictions of Travel Times of Link 19 with Model Including the

Convection Term - Congested Traffic Conditions - 1:0.80

 

  

 

1200 . , + ,

1

10m _ ObsavedValue _

. L1 ‘ PredictedValue

800 4 _

 
 
 

L
i
n
k
T
r
a
v
e
l
T
i
m
e
(
S
e
c
o
n
d
s
)

        
  

400 - ,

200 4 _

0 1 J 1 1 1

8. 8.5 9 9.5 10 10.5

Time of Day (Hours)

Figure 5.29: 10 Step Predictions ofTravel Times of Link 19 with Model Including the
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5.3.4 Models Including the Congestion Term

In the last part of this portion of the study we examine the effect on the link

travel time predictions of the information fi'om downstream links. For this

reason, the congestion term was included in the model, which will have the

form:

7,0) = 212,0- 1)-T,(t-1')+ 2 213,10- 1)-7,0-1)+

l=1 kelj=1

+ 2 2' cp,0- 1) - 7P0 — h) + d- 7,0) + 20) (5.8)

peOh=1

where 0 is the set of links p that start at the exit node of link 1. Again, due to

the geometry of the network that is examined, set 0 will consist of one or' two

connector links and one link of one of the major arterials. As was discussed in

paragraph 3.3.2, the congestion term is included in the model in order to cap-

ture the efl‘ect of traffic shock waves travelling in the opposite direction of the

traffic. Such shock waves may be produced either due to excessive demand or

due to a traffic incident.

In the following experiments, the number of variables from each link in the

congestion term that will be used into the prediction model is examined. Again

for reasons of simplicity, the number of variables used fi-om the connector

links rc will be equal to the number of variables used from the link belonging

to the arterial rd. The order of the autoregressive term is kept constant and

equal to three, and the diurnal term is also included in all models.
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5.3.4.1 Normal Traffic Conditions

In the case of normal traffic conditions the travel time series of link 15 was

considered, and set 0 consisted of the links {20, 21, 22}. The mean relative

error, the mean square relative error and the maximum relative error for the

predictions obtained by these models are shown in Table 5.23 and Table 5.24

for the morning and the evening periods respectively.

The models examined included the convection term with ma=2 (for link 8),

along with the autoregressive and the diurnal terms. In all cases the resulting

errors are slightly worse than those obtained with the respective model con-

sisting only by the autoregressive, the convection and the diurnal terms. This

was expected since there was no traffic wave traveling backwards (i.e. from

link 22 towards link 15). Therefore, current travel times of the link under con-

sideration should not be correlated to the current or past values of the travel

times ofdownstream links. Indeed the parameters associated with the conges-

tion term, in the case of normal tramc operations are converging to zero. This

is illustrated in Figure 5.30 where the parameters associated with link 22 are

plotted for the second simulated day. After each peak period the parameters

are decreased in a stepwise manner. This happens because the rest ofthe time

travel times of both the link for which the predictions are performed and the

downstream link are inactive and no change on their relationship can be

detected. The contribution of the congestion term:

2 z c,,,(:- 1) . 7,,0- h)

p e 011 = l

to the one step ahead predicted travel times of link 15 is shown in Figure 5.31

where as it can be seen it converges to zero with the same stepwise manner as

the corresponding parameters.
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5.3.4.2 Congested Conditions Due to Traffic Accident

In the case of congested traffic conditions, the travel time observations of link

12 will be examined. In this case set 0 consists of the links {18, 19} and the

way that the shock wave produced on link 19 due to the accident affects the

travel times oflink 12 will be investigated.

First the results obtained with a model consisting of the autoregressive com-

ponent only, the one consisting of the autoregressive term and the diurnal

term, and the one including the convection term are shown in Table 5.25. As is

shown from these results, analogously to the case oflink 19 on which the acci-

dent occurred, the simple autoregressive models produces errors similar to the

no predictions case when the forgetting factor is equal to 1.00 or 0.99.‘ For

smaller values of 1, the model is exited more easily which result in large val-

ues of the maximum error. This also results in a large mean square error

value although the mean average error is improved slightly. When the diurnal

term is added into the model, the results are similar to the ones obtained with

only the autoregressive term. When 1 was set to 1.00 or 0.99 the resulting

errors were worse than the no predictions case while for smaller values of 1

the errors are smaller for the ten step ahead predictions but worse for the rest

of the predictions. This occurs because at the beginning in the creation of the

queue the model reacts too erratically to the sudden increase in the travel

time, and it reaches the allowable ceiling value, and then goes back to the

allowable floor value once or twice until it stabilizes close to the observed

travel times. The result is a few gross errors at the beginning ofthe creation of

the queue which deteriorate the values of the error measures. However, in the

ten step predictions this “bang-bang" effect is not so obvious due to the

smoothing effect ofthe average value. The same is also true for the predictions
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obtained with the model including the convection term.

The results of the prediction models including the congestion term are shown

in Table 5.26. When the forgetting factor is set at 1.00 or 0.99 the resulting

errors for all the models that were tested were greater than the errors result-

ing from the no predictions situation. However, the errors of the model with

ra=10 gave the smallest errors for both 1:100 and 1:099 and for all the pre-

dictions, the one, five and ten step ahead. In the case when 1 is set to the

smaller values of 0.90 and 0.80 the prediction errors of all models was worse

except the model with r,=10, for which the error is smaller. In the case of

1:090 the resulting error from this model was smaller than that obtained

without any predictions performed or those obtained by any other model. -

This was expected because there is a delay of approximately 8 time steps (8

minutes) between the time the incident occurs on link 19 and the start of the

queue on link 12. Therefore there is a time lag before travel time on link 19

starts affecting the travel time of link 12. This time lag represents the time

required for the shock wave to be transferred from link 19 to link 12. Thus

models with r, smaller than 8, i.e. 1,2 and 5, fail to capture the relationship

between the travel times of links 19 and 12, and the contribution of the con-

gestion term to the predictions” is relatively small most of the time (Figure

5.32). On the other hand, when r, is equal to 10 the contribution ofthe conges-

tion term to the prediction of the travel time of link 12 is more significant, as

is depicted in Figure 5.33. When ra=10 the total contribution of the congestion

term gains not when the accident starts, but when the queue on link 12 starts

building up, and draps to a lower value atthe end of the incident and decays

as the queue generated by the incident is dissolved.
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The one and ten step ahead predictions obtained with the model including the

congestion term with rd: 10 and for 1:1.00 are shown in Figure 5.34 and Fig-

ure 5.35. As can be seen in these figures, the effect of the long travel time of

link 19 due to the queue that is formed on it is carried for a long time on the

ten step ahead predictions, thus increasing the error. On the other hand when

1:0.90 (Figure 5.36 and Figure 5.37) the predicted values are not affected too

much by the queue on link 19, and remain closer to the observed travel times.
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5.3.5 Discussion of the Results and Further

Developments

From the previous analysis it can be concluded that the models including the

autoregressive, the diurnal and the convection terms are the most appropriate

for the prediction of the link travel times. Models including the convection

term did not give acceptable results. A probable reason for this is due to the

low influence for long time periods ofthe input data from the downstream link

on the travel times ofthe link under consideration. For the same reason model

that included information from connector links in the convection term pro-

duced larger errors when a small change occured on the travel time ofthe con-

nector link. Therefore, in the following analysis the models that will be used

will include the autoregressive, the diurnal and the convection terms with

order mc=0 and ma depending on the length of the upstream link.

It is obvious that the prediction model works best under normal traffic Opera-

tion with the forgetting factor set at one. The fact that the results are better in

the case of the normal operation than in the case ofthe trafic accident are not

a surprise, since when the accident occurs there is a strong shock to the sys-

tem and the RLS algorithm operates efficiently only while the parameters of

the model are not changing too fast.

Because the environment in which the filter operates is not stationary, even

during normal Operations - since the stochastic process ofthe link travel times

which is followed by the filter has variations which are time dependent - it

was expected that the model would give better results when the forgetting fac-

tor, 2. was set to values less than one. When such values are assigned to the

forgetting factor, the adaptation of the model to the prevailing trafic condi-
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tions is fast, but at the expense of an increase in the mean relative error. This

is obviously a trade off that has to be made between the tracking ability of the

model and its sensitivity to the prediction errors. When the forgetting factor is

set to values smaller but very close or equal to 1.00, the result is smaller

errors due to the large amount of data that are used for the computation ofthe

parameter vector, since old and recent prediction errors contribute equally to

the loss function (3.21).

An important feature of the prediction model that includes the diurnal term,

can be used for the justification of the usage of a large value for the forgetting

factor under normal traffic condition. The inclusion of the average travel time

into the model has as an effect that the link travel time process approximates

a stationary one. Of course, the difference [T, (t) -T, (t)] is not really station-

ary, since during non peak periods the value approaches zero since both vari-

ables T, ( t) and T, (t) are very close to the free flow travel time, while during

peak periods where there is much higher variation in T, (t) the difference

[T, ( t) -T, (t)] oscillates around zero. Note that this would be true even if we

would apply differencing of one day on T, (t) , i.e. if the process that was mod-

eled was

2 (t) = 7,“) (z) —T,“" 1’ (t) _ (5.9)

where 1,“) (t) is the observation at time t of the day d. Without attempting to

prove this here, we can assume that for given time periods, smaller than a

peak period, the above difference becomes asymptotically stationary. For this

reason and when the diurnal term is included in the model it is suitable to use

a forgetting factor k=1.00.

However, when traffic conditions suddenly change from normal to congested,



174

then the model needs to employ its tracking characteristic. The results

obtained with small values of A such as 0.90 and 0.80 under such conditions

demonstrate this need. Of course, such small values for the forgetting factor

would have an adverse effect on the prediction errors for the periods when the

system is not excited as much due to the increased sensitivity to even small

errors. Furthermore, the best results in the case of congested conditions due to

the traffic accident were obtained with a model of different structure than the

one which gave the best results for the normal operations situation. Since the

prediction model will have to be implemented so it will operate automatically,

a trade off will have to be made, so the model will operate satisfactory while

either normal or congested conditions are in effect.

Therefore, we need to device a mechanism that would employ small values to

the forgetting factor only when appropriate, while for the rest of the time the

model should operate in a close to stationary environment. Until now we have

assumed a constant value for 2.. However, there is nothing to prohibit a time

varying value. Such a time varying function for 1, Mt) should assume small

values when there is a strong excitation to the system, and return to values

close to one when conditions are reinstated to normal. An appropriate trigger

to induce the reduction of the value of Mt) would be the prediction error e(t),

defined in equation (3.12). Such a function could be defined as:

A. if |é(t)|2§,l(t—1) <9»
0

r s _ _ (5.10)

Mt): 10+21,M.t1) if t>s,A(t-1)<l_

i=1

2. otherwise

where sis the time at which a large prediction error is observed, § is the pre-
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diction error threshold, to is a small initial value for the forgetting factor such

as 0.80. The function defined in (5.10) allows the usage of a general value for

the forgetting factor 0» S 1.00),while when prediction errors occur that exceed

g, Mt) is set to a small initial value 10, and afterwards it approaches 1.00

asymptotically, until it reaches the value of the forgetting factor, k. VVrth

proper selection of the threshold 5, equation (5.10) will nOt affect the predic-

tions performed by the RLS algorithm in the case of normal traffic conditions.

Such a value is selected to be double of free flow travel time of the link,

(i = 2 xFFTT,). In the case of the congested traffic conditions the modified

fimction for Mt) was examined on link 19.

The model that was used consisted of the autoregressive term with n=3', the

diurnal term and the convection term with ma=2, since this is the model that

gave the best results for the normal traffic conditions. The initial value 10 was

set at 0.80. Smaller values were examined but they gave worse results. The

error measures obtained with this prediction model and with the forgetting

factor as defined in equation (5.10) are shown in Table 5.27, while in Figure

5.38 and Figure 5.39 the one and the ten step ahead predictions obtained with

the same model are shown.

In the sar'ne table the percent differences of these errors from the no predic-

tions case, and the errors obtained from the same model in the case that the

forgetting factor, is constant and equal to 1.00 and 0.80 are shown. The errors

of the one step predictions of the model with the varying forgetting factor are

still worse than the no predictions, but better than those obtained by the

model with 1:0.80. On the other hand, five and ten step ahead predictions are

of better quality than the no predictions case and the case with k=1.00. The  
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mean square error for the five step predictions is 14.9% and 13.8% smaller

than same errors obtained from the no predictions case and the case with

1:1.00. Compared to the model with 1:0.80 five step predictions are almost

the same (slightly better with the mean square error just 3.1% lower) while

ten step predictions are worse by as much as 12.8% for the mean relative

error. It should be noted though, that the most crucial predictions are the one

step ahead, since errors to further predictions will affect vehicles which are

not at the entrance of the congested link, and thus, such vehicles may still

have the opportunity to divert to alternative paths.
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5.4 Effect of Time Step Length on Predictions

In the following we will examine the effect of the length of the time interval

between sampling the link travel times of the network. To that end, the mod-

els that suggested good performance under normal and/or congested traflic

conditions will be utilized for examining the different time intervals. From the

previous paragraph we have seen that the RLS algorithm works efficiently

when traffic conditions are not disturbed by incidents which produce large and

abrupt anomalies to the system. In the situation where the system is dis-

turbed by a traffic accident, the algorithm gives acceptable results when the

forgetting factor is set to small values, so the large errors which occur at the

start and at the end of the incident will not affect the travel time predictions

of the links for a long time.

Four different sampling intervals will be examined: sampling every 1, 2, 5,

and 10 minutes. For evaluating the effect of the length of the time interval,

the simulation program was utilized in four separate runs where the time step

between updates of the link travel times and the evaluation of the minimum

paths in each run was set respectively to 1, 2, 5 and 10 minutes. Of course,

predictions ofs time steps ahead are not comparable among the different runs,

since 3 represents a different length of time in each run. For this reason, and

in addition to the average travel time of the link in every time interval, the

one minute average travel time of each link was recorded so the results of the '

prediction model can be compared with the “real” travel time which will be

approximated by the one minute discrete observations. The performance of

the prediction model under the different time intervals h, will be based on the

error ofthe estimation ofthe travel time ofthe link under consideration k min-

utes into the future where k=1,2,...15, which is defined as:
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ek(t) = T,(t+ k) - 7),“, r) (5.11)

where T,(t + k) is the one minute sample of the travel time of the link at time

(t + k) and Th(s, r) is the r-step ahead prediction of the travel time of the link,

obtained at time (s-h), and with a model utilizing a sampling time step 1:,

where s is given as s = [é] , and r is given as r = [’3‘] , where the brackets

denote the integer part of the fraction. It must be brought to the attention that

the results of each different run cannot be compared with the results obtained

by the run with the one minute time interval, because the routing ofthe traffic

is different due to the more sparse updates ofthe traffic conditions on the net-

work, as the time step h increases.

Based on the errors defined by (5.11), and parallel to the measures defined in

paragraph 5.3, the measures of comparison among the models with different

time steps will be:

(1) the mean absolute error given as:

-(k) _ 1

e - W - Z|ek(t)| (5.12)

(2) the mean square error:

2,“) = %- /;[ek(t)]2 (5.13)

and

(3) the maximum error:

ejf’ = max,{|ek(t)|} (5.14)

where N is the number ofone minute observations in the period that the above

errors are evaluated. The effect of the different time intervals will be tested

under the two different traffic conditions: the normal traffic operations and

the congested ones due to the traffic accident. All simulation runs were made

with 10% smart vehicles in the network and the simulation program was run

for two simulated days.
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5.4.1 Effect of Time Interval under Normal Traffic

Conditions

The effect of the length of the time between sampling the travel time of the

link on the predictions performed with the RLS algorithm was tested with the

results from link 15. The model that was used in all cases consists of the

autoregressive term with n=3, the diurnal term and the convection term with

ma depending on the length of the upstream link and mc=0, and with the for-

getting factor set to 1.00. The errors defined by equations (5.12) to (5.14) are

calculated for the time period starting at 06:00 and ending at 19:00 of the sec-

ond simulated day.

The mean absolute errors and the mean square errors calculated for this time

period are shown in Figure 5.40 and Figure 5.41 respectively. Also their values

for k minutes into the future with k=1,2,...,15 are shown in Table 5.28. As can

be seen from Figure 5.40 and Figure 5.41 the algorithm gives consistently bet-

ter results when sampling on the travel times ofthe link is most frequent. For

the predictions of the travel times for one to four minutes ahead the shorter

the time interval the better they appear to be in terms of the mean square

error. Only in the case where the time step h was five minutes, predictions of

three minutes or further ahead appear to be worse than those obtained in the

case of h=10 minutes. Nevertheless, predictions for one and two minutes

ahead get consistently worse as h increases.

The quality of the predictions obtained with small time steps deteriorates

faster than those obtained with large time steps, at least for the first 8 to 10

minutes, while after this point the quality of the predictions is tempered. This

is due to the increasing effect of the diurnal term on predictions k time steps
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ahead as k increases, as was explained previously. On the other hand, the

mean error of the predictions obtained in the case of h=10 minutes is almost

constant for the first ten minutes, and increases after this point. This consis-

tency in the quality of the predictions when large time steps are used is due to

the fact that such predictions are obtained with one or two time steps ahead

predictions, while for the case ofh=1 this would require ten successive predic-

tions, with the obvious results of the pr0pagation of the errors.

The errors produced in the case of h=10 and h=5 are remarkably small, espe—

cially for predictions around the ten minutes ahead (one or two step ahead

predictions). In fact, predictions for eight to ten minutes ahead obtained with

h=5 appear to be slightly better than those obtained in the case of h=1, while

they are clearly better than the case of h=2. In addition, predictions beyond

ten minutes appear to have some reduction in their error, instead of an

increase. Figure 5.42 illustrates the quality of the two step ahead predictions

obtained in the case of h=10, and as it can be seen, predicted values are close

to the one minute observations.

This behavior is understood when we examine the parameters of, the model

when such large time steps are utilized. The total gains of each term in the

case of h=10 are shown in Figure 5.43. The importance of the autoregressive

term is minimized, while the importance of the other two components of the '

prediction model is magnified. This is especially true for the diurnal term

which throughout the simulated day retains a value close to 0.5, and at the

end of the simulated day assumes a value of 0.4981, thus affecting greatly the

one and even more the two step ahead (10 and 20 minutes ahead) predictions.

This occurs due to the limited sampling of the travel time of the link itself
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which changes values more rapidly than in the case of h=1, and thus the RLS

algorithm cannot eficiently track the states of the autoregressive component.

Instead, it identifies the relationship of the link travel time with the diurnal

term, and therefore, it attributes large values to parameter d. The same gen-

eral trends of the mean error are observed for the mean square error as well,

indicating that many of the prediction errors are smaller than one second.

Overall, from the above results it can be concluded that short term predictions

in the time range of one to five minutes ahead are of very good quality when

they are obtained with smaller time steps. For predictions further into the

future, all time steps that were examined appear to give comparable results,

although the smaller time step tested was consistently better. However, longer

time steps are translated to lower operational cost, since information will have

to be predicted and broadcasted fewer times than in the case of small time

steps. When the results ofthe cases h=10 and h=5 are compared with those for

h=2 it is more obvious that for longer term predictions, long time steps give

better results. First because they depend more heavily on the average travel

time of the link and second because they are obtained with fewer step ahead

predictions.

5.42 Efl'ect of the Time Interval under Congested

Traffic Conditions

For the situation of the congested traffic conditions the performance of the

RLS algorithm under different time steps was evaluated based on the results

of link 19, on which the accident occurred. The model that was used for the

prediction of the travel times of this link consisted of the autoregressive term
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with order n=1 and the diurnal term and the forgetting factor that was set at

l.=0.90. The errors were computed for the period of time starting at 8:00 and

ending at 12:00.

The results are summarized in Figure 5.44 and Figure 5.45 where the sensi-

tivity of the prediction algorithm to the length of the time step in terms of the

mean absolute error and the mean square error is shown. As was expected,

the shorter the time step, the smaller the resulting error, since the estimation

of the travel time of the link at the beginning and at the end of the incident

which contain large errors, were in effect for longer times. This was true for

predictions of the travel time of the link for all times that were tested. In con-

trast to the case of normal operations where errors of the predicted values

were tempered after the first few minutes, here it was clear that predictions

further into the future contain more error, with almost a linear relationship.

As is revealed from Figure 5.44, the mean error of the predictions are consis-

tently worse as the time step increases by almost a constant amount.

When a large time step is used the adaptation of the model to the sudden

increase of the travel time is hampered even more due to the limited number

of observations, and thus the resulting errors are worse. On the contrary, in

the case of small time steps, changes of travel time are perceived by the algo-

rithm as being more gradual and thus adaptation is more successful, and pre-

dictions even further into the future are of better quality than those obtained

in the case of longer time steps.
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Chapter 6

 

Effectiveness of Route Guidance

System

 

6.1 Introduction .

In this section of the study we assess the impact that the route guidance sys-

tem utilizing the prediction algorithm has on the throughput of the network.

Of course, poor predictions may have a negative impact on the performance of

smart vehicles, with possibly negative effects on the rest of the traflic as well.

On the other hand, good predictions should improve the travel times of smart

vehicles more than if smart vehicles had information only on current traffic

conditions and not on predicted ones. The performance of the system was

examined at different levels of market penetration of smart vehicles. In all

instances of market penetration and route guidance schemes, the same tramc

demand patterns were used. Also in all runs an accident was simulated on .

link 19 starting at time 08:34:10.2 and lasted till time 08:50:21.5.

189
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6.2 Effectiveness of Route Guidance System at

Different Levels of Market Penetration

The hourly average travel time for smart and non smart vehicles for the route

guidance schemes utilizing the prediction model and at five different levels of

market penetration are illustrated in Figure 6.1 through Figure 6.5. As can be

seen from these figures, for time periods other than the one where operations

are affected by the traffic accident, travel times of smart vehicles and non

smart vehicles are almost identical. They differ only by a few seconds, and

smart vehicles do not always have shorter average travel time than non smart

 

vehicles.

The above observation is explained if we consider the definition of the' non
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smart vehicles. Actually, in the case of normal operations, non smart vehicles

do not differ from smart vehicles. This is true for two reasons: first, the infor-

mation on which they base their route choice, the smoothed average travel

time of the link for the current five minute interval, is a relatively good

approximation of the actual travel time. Second, the actual travel time of any

given path (under normal traffic conditions) is not that much worse than non

smart drivers perceive it to be, so no alternative route would be suggested to

smart vehicles. This is further reinforced by the fact that vehicles do not

change routes for very small gains in their travel time, but only if the gains of

the new path exceed a minimum threshold value. Therefore, when there is no

congestion due to an unexpected event, smart and non smart vehicles chose

the same route toward their destination, even if the perception of the travel

time is more accurate for smart vehicles. In this case any differences in the

average travel time between the two vehicle categories is random and not due

to any intelligent routing strategy. Of course this behavior of smart and non

smart vehicles is very much dependent on the layout of the network, and the

threshold (in terms of time) applied to vehicles shifiing fi'om one route to an

other. For example, if drivers could alter their route with very small penalty in

the travel time, which would results from shifting from the original path, it is

believed that the savings of the smart vehicles would be evident.

On the other hand in the case of the traffic accident smart vehicles know ofthe

occurrence of the incident when the incident occurs. In addition they have

information regarding the expected time of duration of the incident, and as

soon as the incident ends they receive this information as well. Due to this

information, smart vehicles are guided to alternative paths and thus are able

to improve their travel times, when such alternative routes exist. Therefore,
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the actual time savings (in the case of the given network) for smart vehicle

accrue from their route choices during the period that operations on the net-

work are affected by the accident on link 19. However, even in the case of the

incident, non smart vehicles employ a quite intelligent routing strategy: they

enter the link till the link is filled, and after this point they reevaluate their

route toward their destination based on the fact that link 19 is congested.

A prominent difference though is observed among the average travel times of

both smart and non smart vehicles for the different market penetration levels

during the incident. Figure 6.6 illustrates the profiles of the average travel

time of smart and non smart vehicles during the incident for the different pen-

etration levels. For low penetration levels the average travel time ofthe smart

vehicles is much lower than the one for non smart vehicles (from 26.3% to

16.1% lower average travel times for smart vehicles at levels of market pene-

tration of 10% and 30% respectively - Table 6.1). However this difi‘erence is

diminished for higher percentages of market penetration and for a penetra-

tion level as high as 90% it is even inverted in favor ofthe non smart vehicles.

The total throughput of the network is also shown in Figure 6.6. As can be

seen in this figure, for low levels of market penetration the overall perfor-

mance of the network improves until the 50% level, while after this point, it

starts a slow decline. Thus, the route guidance system appears to reduce the -

effect of the incident on the overall performance of the network at all levels of

market penetration.

The accident on link 19 is triggered by a vehicle which has traveled almost

75% of the link before it createsthe incident. Therefore, a large portion of the
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Figure 6.6: Travel Time Profile for Different Levels of Market Penetration '
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Table 6.1: Travel Times and Percent Differences of Smart and Non Smart

Vehicles for Different Market Penetration Levels.

 

 

 

 

 

 

    

Market Smart Non Smart Difference Weighted

Penetration (seconds) (seconds) % Average

10% 767.09 1041.26 26.3 1013.9

30% 791.23 943.01 16.1 897.5

50% 797.28 913. 13 12.7 855.2

70% 851.22 868.38 1.9 856.4

90% 881.76 867.52 -1.6 880.4    
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high travel time of both smart and non smart traffic, is due to the vehicles

from each category that are traversing link 19 before the start of the incident

and have entered the link after the entrance of the vehicle that will cause the

incident (such vehicles that join the queue in link 19 will have to wait until

the end of the incident and thus their travel time is increased by approxi-

mately 950 seconds, the duration of the incident). Since smart vehicles will

stop entering link 19 right after the start of the incident, while non smart

vehicles will enter until the link is completely congested, their average travel

time never reaches the high levels of the travel time of the non smart vehicles

in the cases of market penetration of 10% and 30%.

However, at high levels of market penetration, and due to the long duration of

the incident, smart traffic which is aware of the congestion, in order to bypass

the congested link, starts diverting to alternative routes which soon become

congested because of the large number of vehicles that divert to these paths.

Thus, equipped vehicles which still have the opportunity start diverting to

new alternative paths from further upstream. On the other hand, non smart

vehicles improve their average travel time as the market penetration

increases, since at higher levels of market penetration the formed queues are

shorter. This results in faster dissipation of the formed queues on the links

that become congested, with the subsequent result of shorter waiting times in

such queues.

In the case where there was no incident in the network the average travel

time of smart vehicles at the same time period (from 9:00 to 10:00) was almost

the same for all levels of market penetration ranging form 665.6 to 667.4 sec-

onds. The same was true for non smart vehicles with average travel times for
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the same period ranging from 665.8 to 667.5 seconds. Smart vehicles have

higher travel times as compared with the travel times at the no incident case

for two reasons. First traffic that is diverted to alternative routes is forced to

follow longer paths than what it would follow if the incident had not occurred.

Second, some smart vehicles are trapped in the queues created due to the inci-

dent as explained above.

Due to the time lag between the inspection of the congestion, and the time this

information is broadcast to the traffic, equipped vehicles will start diverting to

alternative routes only after the system updates the information regarding

the current travel conditions on the links. Until then, even smart vehicles will

follow the directions of the system from the last time step. However, such

directions may lead them to routes which already are becoming congested dur-

ing the last time step. Of course, the shorter the time between updates of

information regarding link trafic conditions during congestion periods, the

less severe the effects ofthe congestion.

This is demonstrated in Figure 6.7 where the average travel time for smart

and non smart vehicles are plotted in the case that the link travel time infor-

mation is updated and broadcast every 30 seconds. From these results it

becomes obvious that higher frequency of information update improves the

performance of smart vehicles significantly for all levels of market penetra-

tion. Of course this is also associated with the fact that predictions of link

travel times are also ofbetter quality for smaller time steps, as was discussed

in paragraph 5.4.2. The percent gains of the average travel times for the

period after the accident of each vehicle category, as well as of the throughput

of the network are listed in Table 6.2. The effectiveness of the shorter time
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Table 6.2: Travel Times of Smart and Non Smart Vehicles for Different Market

Penetration Levels when Information is Updated Every 30 Seconds

 

 

 

 

 

 

 

       

Market Smart Non Smart Weighted % Reduction 0f Delay 1

Penetration (seconds) (seconds) Average Smart Non Smart Overall

10% 762.54 1038.55 1010.9 4.6 0.7 0.8

30% 783.04 917.22 877.0 6.6 9.3 8.9

50% 792.12 896.68 844.4 4.0 6.7 5.7

70% 803.34 847.36 816.5 26.0 10.5 21.0

90% 825.99 820.83 825.5 26.0 23.3 25.7

 

l. Delays are calculated as the difference of the average travel times between the case of prediction

update every 30 seconds and every 60 seconds reduced by 667 seconds which is approximately the

travel time of both smart and non smart traffic in the case of no incident for all market penetration

levels.
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interval increases with the level ofmarket penetration. This indicates that the

importance of having the correct information as soon as possible, is more cru-

cial when a large percentage of the traffic has access to this information, so

congestion to the alternative paths which are suggested by the system (or cal-

culated by the on board computers based on the information provided by the

system) will be avoided. At penetration levels of 90% smart vehicles still have

longer average travel time than the non smart vehicles. However, the differ-

ence between their travel time is reduced almost to one third the value in the

case of 60 second updates, while at 70% penetration, this difference is much

larger, from 17.2 to 44.0 seconds.

When the penetration level is only 10% frequent update of information about

link conditions does not appear to have a strong impact on the average travel

time of the non smart vehicles and the overall performance of the network,

while for smart vehicles there are moderate improvements. On the other

hand, when broadcast information is affecting a large percentage of traffic,

this tramc moves more eficiently with more frequent information updates. In

addition the overall performance of the network is greatly improved (Table

6.2).

 



Chapter 7

 

Summary and Conclusions

 

From the literature review it become apparent that models designed to esti-

mate future travel conditions based on current ones all have limitations. How-

ever, models of this type are needed in the development and application of

IVHS technologies, and more specifically in ADIS. A significant level of

research is concentrated on extending equilibrium models for this purpose,

but such models are only applicable when the market penetration is rather

high.

In this study we examined the use of a recursive identification model for pre-

dicting travel time on the links of a tramc network in real time, when the

input signal to the model is comprised of current and past information regard-

ing traffic condition on the network. The main reason for using a recursive

algorithm is to provide the adaptive characteristics required, to respond to

evolving traffic conditions. The proposed prediction algorithm is not new, but

is an existing methodology applied to the specific problem ofpredicting travel

times on the links of a network. Similar algorithms have been successfully

used in the past, mostly for predicting tramc volumes. However, the use of

200
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these models in route guidance systems, where the availability of real time

information to drivers may affect the traffic patterns on the network, has not

been tested until now.

Due to the lack of real world data from a system where drivers (or a portion of

drivers) have access to real time information regarding traffic conditions, it

was decided that the prediction model would be tested on simulated data. Fur-

thermore, due to lack of access to the source code of simulation programs that

could be modified for simulating such a network-driver system it was necce-

sary to construct such a traffic simulation program. The simulation program

is microscopic at the vehicle level, and was developed so any shape ofnetwork

could be simulated. A certain percentage of the traffic has access to real and

predicted information, and routing of traffic is performed under the properties

of dynamic networks.

The prediction algorithm was tested under normal traffic conditions where

traffic operations were not afl‘ected by any unexpected event such as a traflic

accident, and under congested traffic conditions where the operating condi-

tions were greatly influenced by the occurrence ofa traffic accident on a link of

the network. The input data to the link travel time prediction model consid-

ered in this study included the time series of the travel times of the link that

is under consideration, as well as information from those links ending at the

entrance node of this link and the ones emanating from the exit node of the

link. In addition the time dependent average travel time on the link observed

during previous days, was included as well. The measures of efi'ectiveness

used were based on the errors produced by each model. The magnitude of the

error was compared with the errors produced when the only information avail-
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able to equipped drivers was the current travel time on the link.

When the model includes only the autoregressive term, the predictions were

only marginally better than the no predictions case. When a large order model

was used, the performance ofthe algorithm improved, but it is recognized that

such models overparametrize the system, with the result that many of the

parameters do not afi'ect the predictions. When the model was modified to uti-

lize different weights for the prediction errors, by means of a forgetting factor

A, to discount errors in the distant past, the model performance was expected

to improve. However, when the forgetting factor was set to values smaller

than 1.00, so the tracking capability of the model would be used, the predic-

tion errors increased.

When a diurnal term was included in the model, predictions were better than

those obtained with the autoregressive term alone. This improvement

increases for predictions further in the future, mainly because such predic-

tions are smoothed by the increasing effect of the diurnal component. For

example one, five and ten step ahead predictions have approximately 10%

20% and 35% less error than the no prediction case. By comparison, when only

the autoregressive term was used, the one step predictions were approxi-

mately 7% better and five and ten step ahead predictions were only margin-

ally better.

The inclusion of information from upstream links in the model enhanced the

performance of the model even more. The expected errors of these prediction

models were reduced up 31% and 37% for the one and five step ahead predic-

tions respectively, while ten step ahead predictions gained only an additional
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8%. In this model, the effect of a forgetting factor set at 0.99 was positive, and

one step ahead predictions were better when 1:1.00, and five step ahead pre-

dictions where almost equal. These results were obtained when information

from links that were rarely used was excluded. This was necessary since such

information does not affect the predictions, and very small changes in the

travel time of such links resulted in large prediction errors.

Using the same model, it was detrmined that the number of past observations

in the convection term represents the time lag required for the tramc wave to

travel downstream. For example, in the case examined two parameters (bu

and bag) were included when using a 60 seconds time step since traffic waves

needed approximately 120 seconds to reach from the upstream link to the link

under consideration. The parameter b“ was approaching zero, and exclusion

of it fiom the model may have improved the results.

While these results were obtained for the normal traffic conditions, when a

traffic accident occurs , the model performed worse than the case of no predic-

tion when the forgetting factor A was set to one. However, when the parame-

ters of the model were not assumed to be fixed, and the forgetting factor was

set to relatively small values such as 0.80, the model gave predictions that

were better for five and ten steps ahead. The one step ahead predictions still

contained more error than the no prediction case. When information fi'om

downstream links was included in the model, predictions under normal trafic

conditions deteriorated, while for the link that is upstream from the one

where the accident occurred, predictions were improved when the congestion

term with a large order was included. It was expected that such input would

improve the predictions for this link since it contains information about the
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shock wave which is traveling backwards. However, due to the alternative

paths available, this relationship was not manifested as early as the shock

wave reached the exit of the link with the accident, and thus the large order

congestion term had to be used.

Since information regarding the time and location of a traffic accident is not

predictable, since traffic accidents are random events with very small proba-

bility, it is not possible to operate the prediction model with the structure and

the forgetting factor that would give good predictions only under congested

conditions. Therefore, to obtain good results it was neccesary to develop a time

varying weighting function to replace the forgetting factor. While further

development is required for such a function, a function was designed for this

study which would assume small values when large prediction errors occur,

while the rest of the time A would remain close to one. The results obtained

were not as good as those obtained during the congestion period by the models

with a small forgetting factor, but they were better than those obtained with

the forgetting factor set at 1.00 or 0.99.

With the model containing the autoregressive the diurnal and the convection

terms, the sensitivity of the prediction algorithm to the size of the interval

between recursions of the algorithm was examined. It appears that the

smaller the interval, the better the predictions ofthe travel time on the link in ‘

the immediate future. For predictions further in the future it was observed

that the algorithm is relatively insensitive to the length of the interval, and

predictions obtained with large intervals were surprisingly good. This result

means that in the selection of the time step, the length of the links in the net-

work should be taken into account. If very short term (i.e. 1 minute) predic-
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tions are not needed, a larger time step may be used, which would result in

less operational cost. However, in the case of a traffic accident, it was clear

that the larger the time step the greater the error in the predictions.

The effectiveness of the route guidance system with the prediction model was

examined at different levels of market penetration. From the result of this

part of the study, it is obvious that benefits of such systems will accrue mostly

during unexpected congestion (such as congestion induced by traffic incidents)

when non equipped vehicles are not aware of the downstream congestion.

Benefits during recurrent congestion are greatly dependent on the network

layout, as well as the behavior of non equipped vehicles. Nevertheless during

accident induced congestion, equipped vehicles do significantly better than

non equipped vehicles, at least at market penetration levels lower than 50%.

At higher levels of market penetration equipped traffic appears to congest the

alternative routes, and at levels as high as 90% their travel time is even

higher than the travel time of non equipped vehicles. This is tempered when

the time step is decreased from 60 to 30 seconds.

Along with the performance of the equipped traffic the performance of the

entire system also appears to improve as market penetration increaSes until it

reaches 50% for the 60 second time step, and until it reaches 70% for the 30

second time step. At lower levels ofmarket penetration the performance ofthe

model appears to be insensitive to the length of the time step while for higher

levels the benefits are significant. This result indicates that during congested

periods accurate information regarding traffic conditions is essential when

such information affects the routing decisions of a large portion ofthe traflic.
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Although the effectiveness results are dependent on the network used, the

principles underlying the prediction model will be applicable to more general

networks as well. While further research is necessary to improve the predic-

tion model, particularly during incident induced congestion, the proposed

model appears to perform very well especially during normal trafic condi-

tions. Improvement of the performance of the model may be achieved by filter-

ing the input data and/or the predictions, so gross errors that may occur

during the first time steps of an incident, which are also the most critical, are

minimized.
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