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ABSTRACT

OBTAINING GENERIC PARTS FROM

RANGE IMAGES USING A MULTI-VIEW

REPRESENTATION

By

Namyan Sriranga. Raja

We describe a system for obtaining a “generic” parts-based 3-D object represen-

tation. We use range image data as the input, obtaining a 3-D object representation

based on twelve geon-like 3-D part primitives as the output. The 3-D parts-based

representation consists of parts detected in the image, and their identities. Unlike

previous work, we do not make simplifying assumptions such as the availability of

perfect line drawings, perfect segmentation, or manual segmentation.

We propose a novel method of specifying “generic” 3-D parts, i.e., by means of

Surface Adjacency Graphs (SAGS). Using the SAGs, we derive an extremely compact

multi-view representation of the part primitives, consisting of a total of only 74 views

for all 12 primitives. Based on the multi-view representation of parts, we present

a method of performing part segmentation from range images, given a good surface

segmentation. This method for part segmentation is more general than common

approaches based on Hoffman and Richards’ “principle of transversality.”



We present two approaches for identifying the parts as one of the 12 3-D part

primitives. The first approach applies statistical pattern classification methods us-

ing parameters estimated by superquadric fitting. Five features derived from the

estimated superquadric parameters are used to distinguish between the 12 part prim-

itives. Classification error rates are estimated for k-nearest-neighbor and binary tree

classifiers, for real as well as synthetic range images. The second approach for part

identification draws inferences from the distribution of angles between surface normals

and the principal axis of a part.

We show that intensity data can be used to recover from some misclassifications

yielded by the purely range-based methods of part identification. A simple test is

applied to check the concavity or convexity of the part silhouette in the intensity

image. This serves as a reliable test of whether the part axis is straight or curved.

Results of part segmentation and identification are presented for real range images

of several multi-part objects. Our system successfully performs part segmentation and

identifies the parts.
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CHAPTER 1

Introduction

The basic goal of computer vision, posed in its most obvious form, is scene understand-

ing. That is, given a sensed 2-D array of picture elements of different brightnessee of

a 3-D scene, infer the presence, identity, position, and orientation of various “objects”

in it. Animal vision is an existence proof that the vision problem can be solved; as

Lowe [60] remarks, “without this proof of feasibility, it is hard to imagine that anyone

would even think of attempting to interpret the array of light intensities projected

from a scene onto a two-dimensional screen”.

Ullman points out [91] that visual object recognition by humans is based on several

distinct kinds of reasoning. Small dark blobs flying in an erratic, but characteristic

way are recognized as “flies” on the basis of their motion. A door-knob, even one

of a completely novel shape, can be recognized from its context and from “world

knowledge”. Trees can often be distinguished from one another on the basis of their

coloring and textural appearance. Nevertheless, like most of the computer vision

community, we will restrict ourselves to shape-based 3-D object recognition.

Computer vision research shares some fundamental assumptions with the rest

of Artificial Intelligence. First, it assumes that like other perceptual and cognitive

capabilities, the visual faculty consists of “computational” processes, in some sense,

or can at least be simulated by such processes. Second, it assumes that corresponding



computational processes can equally be implemented on non-biological physical media

(for example, using cameras and electronic hardware instead of eyes and nervous

tissue). Computer vision, in its present form, is doomed to failure (in duplicating

human visual capabilities) if these assumptions are invalid.

The overall paradigm which is dominant among students of object recognition,

both by humans and by computers, postulates that object recognition is a two-stage

process. Object recognition is assumed to proceed by first producing some internal

representation of the visual input, and then matching it against representations of

models known to the viewer. This is taken for granted by virtually all researchers.

Consequently, we can distinguish between, or classify, object recognition systems

according to (a) their representation scheme, and (b) their matching scheme.

1.1 Object Recognition

The problem of object recognition is generally equated to the process of finding that

representation (of a model) in memory that “best” matches the representation of an

object in the scene. Clearly, this can be viewed as an instance of a more general prob-

lem, i.e., finding a solution from a solution space. Given the solution space, i.e., the

set of representations of all known models, the best solution has to be located. (Under

good viewing conditions, humans can identify objects with very little uncertainty—

so much so, that it makes sense to talk of a “correct” solution versus “incorrect”

solutions, rather than just the “best” solution from a continuum of possibilities).

Many other problems in Al have also been formulated in terms of searching or

traversing a solution space. Examples are game-playing (e.g., find a “good” next

move when playing chess) and problem-solving (e.g., given the symptoms, diagnose

the patient’s illness(es)). These problems often deal with huge solution spaces and/or

search trees. Not surprisingly, therefore, they are hard problems if thus formulated.



While we do not know Of a better alternative formulation of the object recognition

problem at this point, it is worth remembering that the problem of adding 2 and 2

might also be difficult if our addition algorithm searched for a solution in the set of

all possible integers.

Algorithms to solve the general problem of “finding a solution from a solution

space” can be classified into several broad categories. Since the “matching” stage

of object recognition can be viewed as an instance of this more general problem, a

natural taxonomy of different “matching strategies” can be obtained by relating them

to these broad categories of algorithms.

1.2 Object Representation and Matching

An attempt to roughly quantify the problem of object recognition by search is very

useful in pinpointing the exact reason why it is so difficult. At present, computer-

based 3-D object recognition systems can cope with a few tens of models at most.

For the purpose of argument, suppose there are 1,000 possible models, and they

can only appear singly or in pairs in an image. Further, suppose that occlusion

is not allowed. The total number of possible combinations of models is, therefore,

011000 + 021000, which is approximately 500, 000. Object recognition requires searching

for the correct solution from among these possibilities. But searching a mere 500, 000

candidates sounds rather trivial! For example, even a PC can sequentially search

through 500, 000 numbers in a few seconds. Why, then, should the object recognition

task posed above (1, 000 models, unoccluded, either singly or in pairs) be far beyond

any object recognition system built so far? Why is searching a set of numbers so easy,

and searching a set of model objects so difficult?

There are two reasons for this, and they are closely related. Firstly, consider the

task of checking whether a particular candidate solution is correct or incorrect.



If we are searching a set of numbers to find the first instance of, say, the number 7,

we can easily determine whether a particular candidate is the correct solution or not.

Here, the criterion for “correctness” of a solution is very clearly defined—equality of

two numbers—and can be tested very quickly. By contrast, the analogous problem in

object recognition, i.e., “verification,” is neither easy to define nor to perform. Given

some object, suppose we are searching through the solution space of possible models.

Testing whether a particular candidate is correct or not is itself a difficult task. That

is, given some object, the question “Is it model #5, i.e., the cobra head?” itself is a

laborious one to answer given current techniques.

The reason is that answering this question could itself involve examining all the

possibilities in another search tree! This is the interpretation tree [39], which essen-

tially takes each component (e.g., 2-D or 3-D contours, or surface patches) of the

object and explores matching it against every component of the model being consid-

ered. (Various heuristics are used to prune the interpretation tree, but it is still not

a trivial operation). Testing whether a particular candidate solution is correct would

be much simpler if every object and model were bar-coded! The computer system in a

supermarket has no difficulty in performing its own form of visual object recognition,

given the laser-readable unique bar-codes attached to objects.

We cannot expect every object in the universe to be conveniently labeled in such

a manner. Nevertheless, this aspect of the object recognition problem has not been

viewed before from this perspective. In our opinion, it would be very interesting

to investigate and improve methods for checking candidate solutions. Ideally,

what is desired is a module which, when asked, say, “is this object a cobra head?”

could answer “yes” or “no” very rapidly. If such a module were available, searching

the solution space of models for object recognition would be as easy as searching a

set of numbers.

Secondly, there is the problem of how to organize the solution space itself.



Undergraduate courses in data structures and algorithms teach us that sorting and

indexing are invaluable for searching a large set. Searching a set of 500, 000 numbers is

easy, because a key and an ordering are easily defined. The set of numbers can be or-

ganized as a sorted array or as a search tree. Binary search can then explore this data

structure in logarithmic time. As usual, unfortunately, we do not have comparably

effective methods to organize the set of known models in object recognition.

To recapitulate, virtually all vision researchers assume that object recognition

involves producing an internal representation of the scene, and then matching it

against internal representations of known model objects. This formulation of object

recognition can be seen as an instance of “finding a solution from a solution space.”

Now, consider the standard methodologies for the general problem of finding a so-

lution from a solution space. They include exhaustive search (with various flavors

or refinements like depth-first search, breadth-first search, backtracking, alpha-beta

pruning, branch-and-bound, or dynamic programming), binary search of sorted

data, indexing methods, hashing schemes, the use of content-addressable mem-

ories, and various probabilistic algorithms. As expected, the common matching

schemes for object recognition can be related to these general solution methodolo-

gies. Due to the lack of effective sorting and indexing schemes, analogous matching

strategies for object recognition are not well-developed. Hypothesize-and—test and in-

terpretation tree methods [40, 51] are versions of exhaustive search. The generalized

Hough transform, pose clustering, and geometric hashing [18, 19, 45, 56, 85] can be

viewed as a type of parameter-based hashing, combined with voting. Artificial neural

networks for recognition are a kind of content-addressable associative memory.

With the possible exception of the RANSAC paradigm [32], the use of probabilistic

algorithms in machine vision has not been explored.



1.3 3-D Parts-based Representation

We presented a general framework within which various matching strategies for object

recognition fit quite naturally. While doing so, we emphasized two major difficulties

encountered during the matching step of object recognition, i.e., excessive number

of hypotheses which need to be verified, and the difficulty of verification itself. This

motivates an intelligent choice of the underlying representation scheme so that these

two difficulties can be minimized.

A 3—D parts-based representation is one which models objects in terms of a set

of 3-D part primitives together with the relative positions and orientations of the

parts. The appeal of 3-D parts-based representations arises in large measure because

they offer more sophisticated, yet natural ways to organize and index into the set

of object models. Geons are a set of qualitatively defined 3—D part primitives [8].

We believe that geon-like volumetric part primitives are an excellent choice for 3-D

object representation because they are useful for indexing and have considerable shape

discrimination capability. Geons are defined and discussed extensively in Chapter 2.

Although geons were originally proposed in the context of line drawings, their

utility for object recognition is not limited to one particular kind of input data. The

geon theory can be equally useful for object recognition from range images. Hence

the use of dense range image data to detect and identify geons is quite justifiable.

Assuming the use of a 3—D parts-based representation, computing this representa-

tion is the crucial first stage of object recognition. Over the last three decades, there

has been an enormous amount of research in scene understanding by computer. There

has been much success in solving specific problems under highly limiting assumptions.

However, almost every system reported in the literature is fragile, i.e., performance

degrades sharply if the very specific, often unrealistic, underlying assumptions are

violated.



In our view, a robust system for computing a 3-D parts-based representation,

capable of operating in a general setting (noisy, cluttered, and with possible occlu-

sion), can be reliably achieved only by integrating different kinds of information. This

information would include intensity data, imperfect line drawings, “intrinsic array”

data such as depth and orientation, as well as hypotheses about line labelings, surface

segmentation, part segmentation and part identities.

At any given time, each of these kinds of information might not be complete, but

only partial, imperfect, or hypothesized. The robust system (Figure 1.1) might consist

of a number of co-operating modules, each of which, given the current hypotheses

about all the above kinds of information, would output an improved version or better

hypothesis about one specific kind of information. (In Figures 1.1 and 1.2, rectangular

boxes represent modules for performing some computation, whereas round and oval

boxes represent information).

For example, the part segmentation module might take as input the intensity and

range data, current versions of the imperfect line drawing, hypothesized line labeling,

hypothesized segmentation into surfaces, hypothesized segmentation into parts, and

hypothesized identity of various parts. It would produce as output an improved

version of the part segmentation (Figure 1.2). Iterative refinement of the hypotheses

would continue till an acceptable 3-D part representation (i.e., segmentation into

parts and their identification as specific part primitives) is obtained.

To put this dissertation in perspective, the work described here can be viewed as a

partial implementation of two modules—part segmentation and part identification—

of the idealized, robust system described above for computing a 3-D parts-based

representation. Range image data are the only input information used for part seg-

mentation and part identification. There is no ongoing interaction between the two

modules, nor are the hypothesized part segmentations or part identifications improved

iteratively as in the design proposed in Figures 1.1 and 1.2.
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A block diagram of our work is shown in Figure 1.3. Surface segmentation is

performed by the method of Flynn [33], based on the earlier work of Hoffman and

Jain [50]. We have designed and implemented our own methods for part segmentation

and part identification. These are discussed in subsequent chapters.

1.4 Range Images

Most researchers in computer vision have used and continue to use intensity images

as the input. However, since the early ’80s there has been an increasing use of range

images [13]. With intensity images as the input, considerable research effort has been

devoted to various Shape-from-X computations such as shape from shading, shape

from texture, shape from stereo, shape from motion, etc. These efforts were aimed

at computing various kinds of 2.5 D information, especially the depth or range value

at each pixel.

With the development of various range sensors, there is an increasing tendency

to assume the availability of this 2.5 D data directly in the form of range images.

The advantage of using accurate range data is that it enables researchers to bypass

the difficult “lower-level” computations of 3-D depth and orientation values from

intensity values, and work directly on 3-D representation and later stages of 3-D

object recognition. Disadvantages are that sensors for acquiring high-quality range

images tend to be slower and much more expensive than the ordinary CCD cameras

used to acquire intensity images.

Another recent development is the use of fused range and intensity data for various

aspects of computer vision research [57, 65]. Registration, i.e., establishing the corre-

spondence of points in two separate images, is the major problem in fusing separately

acquired range and intensity data.

Flynn [33] describes 3-D sensing in more detail, while Brady et al. [13] give an
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overview of recent research using range imagery. We will give a brief description of

our range sensor, i.e., the 100X White Scanner from Technical Arts Corporation [88].

The 100X scanner is a structured-light range sensor. It projects a plane of laser

light which illuminates objects placed on the work stage. The shape of the resulting

light stripe is determined by the 3-D contour of the object onto which the laser light

has been projected. The light stripe is imaged by a CCD camera with a 240 x 240

sampling array. The stage can be moved past the plane of light by stepper motors

for the X and Y axes. An object of known 3-D dimensions is used to calibrate the

scanner so that for each point on the stripe of laser light, the X, Y, and Z values can

be computed.

Range data acquired by the 100X scanner are estimated to have a noise standard

deviation of less than 0.01 inch in the Z value. A range image takes 2 to 3 minutes

to acquire, and may be as large as 240 rows by 240 columns. Data are in the form of

X, Y, and Z values at each pixel.

For two reasons, we have chosen to use range images as the input to our system

for computing a 3-D parts-based representation. First, the problem of Obtaining a

3-D parts-based representation in terms of a distinct, fairly large set of geon-like

parts from range images has not been explored previously. Second, previous work on

obtaining a geon-based 3-D representation has made certain simplifying assumptions

such as the use of perfect line drawings, perfect part segmentation, and/or manual

segmentation. We hope that the use of range images may enable us to avoid these

unrealistic assumptions.

1.5 Contributions of this Thesis

This dissertation describes research on obtaining a “generic” parts-based 3—D object

representation. By “generic’ we mean that the part primitives are defined by qualita-
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tive shape properties and not by exact numerical measures. We use range image data

as the input, obtaining a 3-D object representation based on a small number (12) of

geon-like 3-D part primitives as the output. The 3-D parts-based representation con-

sists of parts detected in the image, and their identities. Previous work on obtaining a

3-D object representation in terms of geons or geon-like parts [8, 4, 3, 21, 22] assumed

perfect line drawings as the input, and/or performed segmentation manually. We do

not make any such idealized assumptions. Real range images are used as the input,

and a segmentation is computed automatically from the image.

Multiple views of the 3-D part primitives are stored in order to help segment

objects into component parts and identify those parts as being specific part primitives.

Large, “meaningful” surfaces of the part primitives determine the views to be stored in

the multi-view representation. Two approaches are described for identifying the parts

as one of the 12 3-D part primitives. The first approach applies statistical pattern

classification methods using parameters estimated by superquadric fitting. The second

approach draws inferences from the distribution of angles between surface normals

and the principal axis of a part. Intensity image data are used to recover from some

shortcomings of the method based only on range data.

The specific contributions of this dissertation are as follows:

0 We describe the first attempt (to our knowledge) to obtain, from range data, a

3-D parts-based object representation in terms of a specific, but fairly large set

of 12 geon-like 3-D part primitives.

e We propose a novel method of specifying “generic” 3-D parts, i.e., by means of

Surface Adjacency Graphs (SAGS). Using the SAGs, we derive an extremely

compact multi-view representation of the part primitives.

0 Based on the multi-view representation of parts, we present a method of per-

forming part segmentation from range images, given a good surface segmen-
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tation. This method for part segmentation is more general than common ap-

proaches based on Hoffman and Richards’ “principle of transversality” [47], i.e.,

the observation that parts usually come together with a concave crease at the

joint.

0 We describe two methods to perform the part identification of isolated parts.

In doing so, we attempt to relate two influential families of 3-D part primi-

tives, superquadrics and geons. We test the shape discrimination capability of

superquadric parameters under varying conditions of image resolution, model

elongation, and noise. Lastly, we show that intensity data can be used to re-

cover from some shortcomings of the purely range-image based method of part

identification.

1.6 Organization of this Thesis

In order to motivate and justify our design choices, it is necessary to review the

previous research on object representation and related issues. The following section

describes the organization of this report.

Chapter 2 classifies and discusses object representations. Chapter 3 describes

our choice of 3-D part primitives. It sets forth a very compact multi-view representa-

tion of the parts, and explains how this can be used for part segmentation. Chapter

4 presents our first approach towards identification of the parts previously isolated

by the segmentation algorithm. It also tests the shape discrimination capability of

superquadric parameters under varying conditions of image resolution, model elon-

gation, and noise. Chapter 5 presents a second approach towards part identification,

using the multi-view representation as well as the distribution of angles of surface nor-

mals with respect to the principal axis of a part. A method for using intensity data

to recover from some shortcomings of the purely range-based approach to part iden-
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tification is also described. Chapter 6 gives the results of part segmentation and part

identification for several multi-part objects. Finally Chapter 7 concludes, identifying

some unresolved issues and offering suggestions for future research.

1 .7 Summary

Object recognition is usually posed as a two—stage problem, i.e., representation fol-

lowed by matching. Object recognition systems can therefore be meaningfully classi-

fied and compared by identifying their representation schemes and matching strategies

within an coherent overall framework. Excessive number of hypotheses to be verified,

and the complexity of verification itself, are the main difficulties encountered during

the matching stage of object recognition. This motivates the choice of powerful geon-

like volumetric part primitives for 3-D object representation, in order to minimize

these two difficulties.

The research described in this dissertation is aimed at obtaining a parts-based 3-D

object representation, using range data as the input. We derive an extremely compact

multi-view representation of the part primitives, based on their large, “important”

surfaces. We use the multi-view representation to perform part segmentation, given

a good surface segmentation. Further, we develop two methods to perform the part

identification of isolated parts. We also attempt to relate two influential families of

3-D part primitives, superquadrics and geons. We test the shape discrimination capa-

bility of superquadric parameters under varying conditions of image resolution, model

elongation, and noise. Lastly, we show that intensity data can be used to recover from

some shortcomings of the purely range-based method of part identification.



CHAPTER 2

3-D Object Representation

Besl and Jain [6], Binford [10], Chin and Dyer [17], and Stockman [86] give broad

surveys of object recognition systems. Brady et al. [13] discuss the recent work in

object recognition using range data. This chapter briefly surveys some influential

schemes for 3—D object representation.

2.1 Introduction

Representation schemes can be classified in many different ways, of which two seem

most fundamental. First, they may be either viewpoint-independent or viewpoint-

dependent. Second, they may adopt either an object-intrinsic representation, or one

which is parts—based. Other important differences are whether a scheme involves

geometric modeling of the object, or instead uses some symbolic representation. In

the case of representations performing geometric modeling of 3-D objects, one can

also distinguish between volumetric (i.e., 3—D) and surface-based (i.e., 2.5-D) shape

primitives.

A wide variety Of representation schemes is available for 3-D object recognition.

The underlying primitives or features for representation include 2-D or 3-D points,

such as polyhedral vertices or the center of a sphere; 2-D or 3-D contours such as

16
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intensity edges or 3-D jump edges or crease edges; 2.5 D features such as object wings;

surface patches of various types such as planar, concave, convex, etc; parametrized

surfaces such as quadrics or splines; and ultimately 3-D volumetric primitives such as

generalized cylinders, geons, superquadrics, and deformable models.

Assuming that objects have “internal representations”, the nature of the map-

ping between objects and representations is one point of divergence. Viewpoint-

independent schemes may lead to a one-to—one mapping. Viewpoint-dependent rep-

resentations can result in a one-to—many relationship between objects and their

internal representations. A many-to-one mapping could be produced when individ-

ual objects are lumped together into a single category. For instance, we often ignore

the unique shape of individual lampshades or shampoo bottles. Indeed, objects like

these are Often recognized by properties other than shape, such as context or function.

The same glass object which looks like a lampshade when attached to the ceiling may

appear like a fruit-bowl or flower-vase if placed on a table. Such categories might

be represented by a generic, prototypical model of a “typical-shaped” lampshade,

shampoo bottle, etc.

It would be quite reasonable to classify representation schemes according to, say,

their memory requirements or their degree of psychological plausibility. Two classifi-

cations, however, seem most fundamental: whether the representation is viewpoint-

independent or not, and whether it is “object-intrinsic” or parts-based. These distinc-

tions have immediate implications for other properties such as memory requirements.

The ultimate test of a representation scheme, of course, is its usefulness and ef-

fectiveness for object recognition. This being understood, having classified various

representation schemes, how can we compare them? Marr and Nishihara [62] pro-

pose three criteria for doing so. Firstly, the representation’s accessibility, i.e., can the

desired description be computed from an image, and can it be done relatively inex-

pensively? The second criterion is the representation’s scope and uniqueness. What
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class of shapes can the representation handle, and do the shapes in that class have

unique descriptions? For example, a representation intended for polyhedral objects

would have difficulty with curved surfaces. Also, to avoid the problem of deciding

whether two different representations describe the same shape, it is important that

shapes have unique descriptions as far as possible. Thirdly, there is the stability and

sensitivity of a representation. To be useful for recognition, the similarity between

two shapes must be reflected in their descriptions. At the same time it should be

possible to represent even subtle differences. For instance, when using stick figures

to represent animal shapes, stability might be increased by using larger sticks, while

smaller sticks would improve sensitivity by revealing finer details.

Dickinson ([20], pg. 4) also proposes several criteria along which representation

schemes differ. Firstly, there is the primitive complexity, ranging from the simplest

2-D points, through 3-D points and contours, to complex 3-D volumetric primitives.

Next, model complexity generally decreases as the primitive complexity increases,

since the same object can either be described using many simple features or a few

complex features. Thirdly, the large number of simple features may lead to higher

search complexity, i.e., the number of hypothesized matches between features in the

model and scene representations. Fourthly, simple features have less discriminatory

power and may increase the recognition procedure’s reliance on verification. Model

flexibility, i.e., sensitivity to changes in shape, is another important criterion. Lastly,

there is the issue of ease of recovery, i.e., the difficulty or otherwise of computing the

representation from an input image.
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2.2 Viewpoint-independent vs.

ViewPOint-dependent Representations

Mart and Nishihara [62] list some important choices to be made in the design of a

representation scheme. One of these, the choice of viewer-centered or object-centered

co-ordinate system, is rather similar to our distinction between viewpoint-independent

and viewpoint-dependent schemes. However, the latter is more general because it does

not assume that a representation must necessarily include a co-ordinate system.

For instance, some representation schemes may not perform geometric modeling at

all. An aspect graph representation cannot be said to use viewer-centered or object-

centered co-ordinates, but still captures a viewpoint-independent topological prop-

erty. In spite of this distinction, we will sometimes use terms like “viewer-centered”

and “object-centered” interchangeably with “viewpoint-dependent” and “vieWpoint-

independent” .

Representations which require geometric modeling of objects must have an as-

sociated co—ordinate system. Such schemes can be classified as viewer-centered if

locations are specified relative to the viewer, or as object-centered if locations are

specified in a co-ordinate system defined by the viewed object [62].

Since vieWpoint-dependent properties can be obtained directly from an input im-

age, viewer-centered representations may be easier to compute. The advantage is

that, unlike in an object-centered representation, one does not have to compensate

for the vantage point. However, different views of the same object may have to be

treated essentially as distinct objects. This may require a very large number of views

of each Object—potentially, every possible view of every possible object.

The other major alternative is to use an object-centered representation. Ideally,

just one canonical description, independent of the vantage point, would have to be

stored for each object. This is the approach favored by Marr and Nishihara [62] and
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many others. The disadvantage is that the representation can be difficult to compute

from the image. Not only does a unique co-ordinate system have to be defined for

each object, but this has to be identified from the image before constructing the

description. This can be a problem when the object has several plausible natural

axes. Further, the effects of perspective projection haVe to be corrected for.

Other shape representation schemes have also been explored by cognitive psychol-

ogists [46]. For instance, objects might have a single viewpoint-dependent representa-

tion corresponding to a “canonical upright” position. A “mental rotation” operation

would transform an input shape into the canonical orientation before memory and in-

put are compared. Experiments suggest that shapes may be represented by a limited

number of viewer-centered descriptions, corresponding to a variety of orientations at

which the object is likely to be observed. Work by Hinton and Parsons [46] indicates

that people may use scene-based representations in some shape comparison tasks.

These are descriptions relative to some larger salient object in the scene, such as a

room, table-top, blackboard, or page. When subjects were asked to decide whether

two objects (at different lines of sight from the viewer) were identical or mirror im-

ages, they often physically rotated one of the objects till it had the same relationship

to the table-top (and room) as the other Object.

2.3 Object-intrinsic vs. Parts-based Representa-

tions

This distinction has to do with the “unitary-ness” and organization of the information

in a representation scheme. It is closely related to the distinction between statistical

and structural approaches in pattern recognition. Ullman [91] makes a very similar

distinction between invariant properties methods and parts-decomposition methods

for object recognition. An object-intrinsic representation consists of some overall in-
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variant features or properties characteristic of the object as a whole. It does not

model an object as a compound entity consisting of its “parts” arranged in some

spatial configuration. Examples of object-intrinsic representations range from sim-

plistic schemes like template-matching, through spatial Fourier-domain descriptions

or representation by a suitable set of features. We would even classify a fairly recent

and sophisticated approach like aspect graphs as an object-intrinsic representation

scheme.

A “parts-based” representation, on the other hand, considers an object as having

one or more meaningful parts which are put together in a particular spatial configu-

ration, and which may possibly have further detailed descriptions of their own. This

is quite similar to structural description theories of shape recognition. A structural

description is a data structure which can be thought of as a list of propositions,

whose arguments correspond to parts of the object, and whose predicates correspond

to properties of the parts and spatial relationships among them [63, 73]. A structural

description is a more general extension of a parts-based description, since it allows

for representation of non-visual and non-spatial information as well.

Marr and Nishihara [62] list the organization of shape information about an

object as one of the important design choices for a representation. In the simplest

case, all the elements in a description have the same status, and no organization

is imposed. Alternatively, primitive elements of the description could be organized

into modules, in order to distinguish certain subgroupings of the primitives. Thus

they can be referenced efficiently, and properties can also be associated with them. A

modular organization might be particularly useful for recognition because it can make

“stability” and “sensitivity” differences explicit, by arranging that all constituents of

a given module lie at roughly the same level of stability and sensitivity [62].

The explicit representation of spatial relationships of parts, i.e., geometric mod-

eling in some sense, is a key aspect of parts-based descriptions. This distinguishes
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them from “unitary” feature-based descriptions which may very well be based on

geometrical parts (e.g., holes, corners), without modeling the spatial relationships

between those features themselves. Thus, it appears that parts-based descriptions

must necessarily have (one or more) associated co-ordinate systems.

By representing different parts of an object as separate modules, we may be able

to break up the recognition process into simpler subprocesses [73]. We may, for

instance, merely need to be able to visually recognize a small number of part and

attribute primitives. Additionally, if logical and spatial predicates can coexist in the

representation, structural descriptions can differentiate between parts that must be

present in an object, parts that may be present with some probability, and parts

that must not be present. Another advantage is that some visual information in a

structural description may be useful for non-visual reasoning. Conversely, non-visual

information about objects or parts (i.e., their uses, typical situations where they are

found) may be used to aid segmentation and recognition in a top-down manner.

It is, indeed, generally agreed that a parts-based approach seems more natural

for realistic, complicated scenes. One of the main problems with this representation,

however, is the lack of a firm basis on which to decide a set of primitives to be used,

and to justify why they are necessary, sufficient, or appropriate. This is even more true

for the predicates (properties) than for the part primitives. The very generality of this

representation lends it a certain vagueness. Another crucial issue is the accessibility

of all the primitives (in the sense mentioned by Mart and Nishihara [62] ) from the

input image. Problems of uniqueness of the description, and of part segmentation

also naturally arise.
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2.4 Examples Of Object-intrinsic Representations

Among well-known examples of object-intrinsic representations, Templates and

Fourier representations are traditional 2-D shape representations described in cog-

nitive psychology textbooks [73]. Feature-based approaches are more commonly used

for 2-D than for 3—D object representation. Aspect graphs are a relatively new concept

and have attracted considerable interest over the last few years.

2.4.1 Feature-based Approaches

An object is represented by a list or vector of numerical .and symbolic values, the

features [73, 86]. Typical numeric features might be the object’s perimeter, moments

of area, or the number of holes or right-angled corners in it. One can also use symbolic-

valued features like the color of the object, or test for the presence of specific “salient”

features (say, a 60° corner formed by a circular arc and a straight line segment). The

representation is simply an aggregate of such features. There is no attempt to describe

the spatial relationships (e.g., relative locations) between different geometric features.

Given the feature representation of an object, a variety of standard statistical

pattern recognition methods [23, 35] are available to classify it into a known category.

For instance, one might use discriminant functions, a k-nearest-neighbor (knn) classi-

fier, or a hierarchical (tree) classifier. Discriminant functions define decision surfaces,

bounding different regions in the feature space. A knn classifier makes its decision

based on the categories of the unknown object’s k nearest neighbors in the feature

space. The object is assumed to belong to the same category as the majority of its

lc nearest neighbors. With an infinite number of training samples, it is known that

the knn rule approaches the optimal Bayes decision rule as the number k of nearest

neighbors to be considered tends to infinity. A hierarchical classifier is basically a

decision tree. It may be able to make decisions and arrive at a classification, based
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on just a subset of the features. This could be particularly useful when some of the

features are difficult or impossible to compute (e.g., due to occlusion).

The advantages of a feature representation are its extreme compactness as com-

pared to other representations, and the existence of the large body of statistical pat-

tern recognition theory which can be used to perform'the classification and estimate

the classification error rate. Further, the classifier can be “trained” from examples.

It may even be possible to use clustering techniques and discover distinct categories

of Objects which are naturally separated in the feature space [52]. A “reject” option

can easily be provided to take care of ambiguous cases.

The disadvantages of this representation are, firstly, that the object cannot be

recreated or modeled accurately from the features. Secondly, it is difficult to estab-

lish a suitable set of features for general 3-D objects. Thirdly, it may be difficult

to compute the feature representation of an object from a single 3—D view, or when

multiple objects with occlusion are present. (A Viewsphere or property sphere ap-

proach can extend the applicability of feature representations to 3—D objects. A large

number (e.g., 200 or more) of covering viewpoints is selected, and the feature vector

is computed for the projection onto 2-D from each viewpoint [24, 54]). Fourthly,

an object might be confused with a totally different object which has the same fea-

tures, but arranged differently—e.g., an unsymmetrical object and its mirror image.

Lastly, a feature representation achieves compactness at the cost of discarding a lot

of potentially useful information about the object.

2.4.2 Aspect Graphs

Aspect graphs are an example of the multiple-view approach to 3-D object represen-

tation. The aspect graph concept was first proposed by Koenderink and van Doorn

[53] as a possible mechanism involved in human vision. They described a graph struc-

ture called the “visual potential” of an object. Each node of this graph represents a
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different aspect of the object. An aspect is a “stable view” of the object as seen from

some maximal connected region or cell of the viewpoint space. (It could be thought of

as a specific collection of faces and edges visible from any viewpoint within that cell).

Nodes are connected by arcs indicating “visual events” where the observer transits

from one such cell to another and the aspect of the object changes. “Thus the visual

potential represents in a concise way any visual information an observer can obtain

by looking at the object when traversing any orbit through space” [53], (pp. 214).

For example, Figure 2.1 shows the aspect graph of a tetrahedron.

Callahan and Weiss [15] have proposed an object representation called the viewing

data or viewing graph, which is closely related to the aspect graph. The viewing data

of an object is the partition of the viewing sphere (corresponding to different aspects),

together with the view from each region, edge, and vertex of the partitioned sphere.

The aspect graph of an object could very well, for example, be combined with

an exact 3-D model of the object, thus getting the completeness of a viewpoint-
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independent representation as well as the simplicity of a viewpoint-dependent one.

It seems, therefore, that aspect graphs are potentially very useful for 3—D object

recognition. A major problem is that complicated objects can have aspect graphs

with millions of nodes. Appropriate heuristics have to be established to arrive at

reasonably “stable” aspect graphs of manageable size. Following the original paper

by Koenderink and van Doorn [53], aspect graphs have in fact been the subject of

very active research [12, 15, 16, 27, 29, 37, 38, 44, 51, 54, 55, 74, 82, 83, 84, 93].

Computing the aspect graph for an arbitrary object is itself an unsolved problem.

Much work has been devoted to solving this problem for progressively more general

classes of objects, starting with convex polyhedra. These efforts can be classified

according to the way they partition the viewpoint space.

A basic distinction in computing an aspect graph is whether an orthographic or

perspective projection is assumed. If orthographic projection is assumed, then the

“cell” of viewing space associated with a node of the aspect graph corresponds to a

surface area on a unit sphere [27, 37, 38, 44, 51, 54, 55, 74, 82]. The advantage is that

an approximate aspect graph can be computed by uniformly tessellating the viewing

sphere and then merging facets which see the same aspect. However, this orthographic

projection aspect graph only captures changes in the aspect due to changes in the

viewing orientation. Relatively less progress has been made in computing the more

general perspective projection aspect graph [26, 74, 83, 84, 93], in which cells correspond

to volumes of the viewing space. It should be noted that some of these algorithms

for finding aspect graphs have never been implemented because of computational

difficulties.

Gigus et al. [37, 38] have developed an algorithm to find the so-called “viewing

data” (closely related to the orthographic projection aspect graph) for line drawings

of arbitrary polyhedral Objects. They also provide a full catalog of the visual events

that can occur for such objects. Eggert and Bowyer [27] and Kriegman and Ponce [55]
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have independently developed algorithms to find the orthographic projection aspect

graph for solids of revolution.

Rieger [78] cataloged some of the visual events which can occur for an object con-

sisting of smooth surfaces which meet in smooth curves (i.e., piecewise smooth, curved

objects). Sripradisvarakul and Jain [82] have extended this catalog and presented an

algorithm to find the aspect graph under orthographic projection for arbitrary piece-

wise smooth, curved objects.

Stewman and Bowyer [84], Watts [93], and Edelsbrunner et al. [26] independently

developed methods to compute the perspective projection aspect graph for convex

polyhedral objects. Stewman and Bowyer [83] further extended this for arbitrary

polyhedra.

A number of researchers have used methods based on or similar to aspect graphs to

build object recognition systems. Perhaps the earliest such work is that of Dudani et

al. [25], who store rotation- and scale-invariant moment features from several different

vieWpoints to perform identification of aircraft types. Chakravarty and Freeman

[16] use characteristic views to represent objects. They use heuristic constraints

(on the orientation of the object with respect to the camera) to select a subset of

views as the representation. The aspects and the partition of viewing space are done

manually. Ikeuchi [51] also uses aspect graphs, with aspects being defined by the

faces detectable by photometric stereo. Hebert and Kanade [44] use the aspect graph

approach for recognizing polyhedral objects in range images. Aspects are defined by

the set of occluding edges in the image. Both Ikeuchi [51] and Hebert and Kanade

[44] approximate the exact partition of the viewing sphere by performing a uniform

tessellation and then merging neighboring regions which view the same aspect. Fekete

and Davis [29] propose the use of “property spheres” which encode “geometrical and

topological properties of orthographic images as a function of vieWpoint”. Viewpoints

are Obtained by approximating a spherical surface by planar patches and using the
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center ofeach patch as a viewpoint. Korn and Dyer [54] tessellate the unit sphere in

a manner similar to Fekete and Davis. Facets with a similar view are then merged

into larger regions. Bowyer et al. [12] have also implemented an object recognition

system for convex polyhedral objects. According to them, aspect graphs can be useful

in generating initial estimates and avoiding local minima of rotation and translation

parameters in systems which use non-linear optimization as a strategy for recognition.

2.5 Examples of Parts-based Representations

In this section we discuss the best-known schemes for parts-based representation or

recognition. Much vision research has been devoted to obtaining 2.5 D information,

i.e., local surface characteristics (shape from shading, texture, stereo, etc.) in the

form of image arrays. However, reliable and general procedures to compute such

image arrays from the local image information are not available. In fact, according to

Pentland, “these recovery techniques have been sufficiently unimpressive that many

researchers now believe that it is simply not possible to compute accurate, object-

centered representations from arrays of locally derived estimates Of surface properties,

as was originally envisioned” ([69], pg. 143). Pentland also points out that even

if depth maps and other maps of intrinsic properties could be reliably and densely

computed, it is still merely an array of numbers which by itself suffices only for simple

applications like obstacle avoidance. It must be segmented and interpreted if it is to

be used for more sophisticated tasks ( [69], pg. 143). This motivates the idea that

the initial task of perception is not to produce local descriptions of images, surfaces

or volumes, but rather to recognize instances of simple, generic real-world modeling

primitives.

If we accept this view, it remains to discover such a set of generic primitives,

describe how they combine to form objects, recognize these primitives and their com-
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binations from the image, and use this description to interpret or recognize the image

content. Hoffman and Richards propose that the visual system segments objects into

constituent parts by detecting part boundaries rather than the parts themselves [48].

This decomposition depends on a regularity of nature called transversality, i.e., the

observation that when two arbitrarily shaped surfaces interpenetrate, they usually

meet in a contour of concave discontinuity of their tangent planes. In other words,

part boundaries are marked by a concave crease at the joint. Hoffman and Richards

argue that people use this part decomposition rule, along with spatial relations and

part descriptions, to perform the first indexing into the database of known objects.

Generalized cylinders or cones, geons, and superquadrics are the best known mod-

eling primitives for 3-D shape description or recognition. They are discussed in the

following subsections.

2.5.1 Generalized Cylinders or Generalized Cones

Generalized cones were introduced by Binford [9] and have been used in the

ACRONYM system [14] for recognizing airplanes from aerial photographs. General-

ized cylinders were proposed by Marr and Nishihara [62] as the modeling primitives

in their theory of object-centered hierarchical representation and recognition. We will

discuss both these methods in subsequent sections.

Marr and Nishihara’s Theory of Recognition

Marr and Nishihara’s theory of 3—D object representation, together with Marr’s ideas

about the stages by which such a representation is computed, is definitely among the

most influential body of ideas in vision research [61, 62]. Marr and Nishihara point

out that a representation does not have to reproduce a shape’s surface in order to

describe it adequately for recognition. For instance, animal shapes can be portrayed

quite effectively by “stick figures” (figures which Show the arrangement and relative
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sizes of a small number of sticks).

The simplicity of this stick figure representation is due to the correspondence be-

tween the sticks and the natural or “canonical” axes of the shapes described. Mart

and Nishihara propose an object-centered co-ordinate system together with the use

of volumetric primitives (generalized cylinders) of various sizes, and a modular, hier-

archical representation.

The notion of stick-figure-like representation is not original to Matt and Nishihara.

For instance, Blum [11] studied a similar classification scheme for 2-D silhouettes

based on a brushfire technique, while Binford [9] proposed the use of “generalized

cones” for 3-D objects. The difference is in the modular organization of information in

Mart and Nishihara’s scheme. In Blum’s or Binford’s scheme, for example, each part

of a human arm would be represented by a single primitive. In Marr and Nishihara’s

scheme, it is possible to have both a single stick corresponding to the whole arm, as

well as three smaller sticks corresponding to the upper arm, forearm, and hand. The

hand, in turn, can be represented at a finer level of detail with individual sticks for

each of the fingers.

This overall representation method is reasonably effective for some classes of ob-

jects, i.e., those which have a canonical co-ordinate system (since the description is

object-centered) and a natural decomposition into component axes. However, Mart

and Nishihara did not develop a generally applicable way of deriving this 3-D model

description from an image. They used points of deep concavity on an object contour

as segmentation points. Heuristics were used to connect them with other segmenta-

tion points, giving the decomposition into parts.

The overall recognition process functions by first selecting a model from the cata-

logue, based on the distribution of components along the length of the principal axis.

This model then provides relative orientation constraints that help to determine the

absolute orientations (relative to the viewer) of the component axes in the image.
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This can be used to compute their relative lengths. This new information can then

be used to disambiguate shapes at the next level Of specificity.

Generalized Cones and the ACRONYM System

Generalized cones [9] describe 3-D volumes. A generalized cone is specified by a curve

through space, called the spine, along which a 2-D shape, called the cross-section, is

swept. The cross-section is kept at a constant angle to the tangent of the spine, and

may be deformed according to a deformation function called the sweeping rule.

The particular domain of the ACRONYM system [14] is aerial photographs of

airplanes. In ACRONYM, the generalized cones are restricted to having straight line

segments or circular arcs as spines, cross-sections bounded by straight lines or circular

arcs, and sweeping rules which are linear magnification functions about the spine, or

linear in two orthogonal directions about the spine. The input to ACRONYM consists

of aerial photographs with a number of airplanes in view.

Given certain classes of geometric models (of airplanes), the goal is to identify

their instances in the image, along with their location and orientation. ACRONYM

muSt also make any possible subclass identifications, determine 3-D parameters of

the objects, and determine the location and orientation of the camera, if not known

a priori.

A description of the image is extracted in terms of ribbons and ellipses. Ellipses

are described by the lengths of their major and minor axes. Ribbons (2-D analog

of generalized cones) are suitable for describing images generated by the generalized

cones themselves, while ellipses are suitable for describing the shapes generated by

the ends of generalized cones.

Even with noisy data, ACRONYM produces fairly accurate interpretations in

terms of 3—D models, by the combined use of geometric and algebraic constraints.

However, the top-down approach of ACRONYM, which predicts the projected ap-
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pearance in the image of the parts of a specific model using complex quantitative

constraints, make it unsuitable for general 3-D object recognition with a large num-

ber of models which may or may not be present in a scene.

2.5.2 “Geons” and Recognition By Components

The fundamental assumption in Biederman’s theory of “Recognition By Components”

(RBC) [8] is that there exists a small number (i.e., 36) of fundamental part primi-

tives, whose combinations can represent more complicated objects for the purposes

of “primal access”.

An analogy is drawn with speech perception, in which only about 55 phonemes are

needed to represent virtually all the millions of words in all of human speech. Further,

Biederman proposes that these 36 basic “geometric ions” or geons can be identified

by using non-accidental properties of edges in an image, i.e., curvature, collinear-

ity, symmetry, parallelism, and co-termination. Recognition occurs by detecting the

identity and spatial arrangement of an object’s component geons.

Like Marr and Nishihara’s theory [62], Biederman’s scheme also does not do de-

tailed geometrical modeling of object surfaces. Biederman’s scheme avoids the prob-

lem of computing 2.5 D information by working directly from 2-D edges. The‘ 3-D

representation is obtained from easily observable non-accidental features in the line

drawing. Thus, Biederman’s theory provides an elegant link between perceptual

organization (recognition of “low-level” structure) and 3-D object representation (de-

scription in terms of “high-level” structure). Detection of low-level structure helps to

identify the geons, and geons with their combination identify the object.

RBC is a theory of so-called “primal access” in humans, i.e., “the first contact

of a perceptual input from an isolated, unanticipated object to a representation in

memory” ( [8], pg. 178). Typically, humans recognize the object quickly, even when it

is viewed from novel orientations, with moderate levels of visual noise, when partially
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occluded, or when it is a new exemplar of a category. This requires a quick procedure

which does not need very precise quantitative computations. RBC assumes that an

object is recognized through the following subprocesses: first an edge extraction stage

provides a line drawing of the object. From this, non-accidental properties of edges

are detected. The object is parsed into parts, primarily at concave regions. The non-

accidental properties are used to constrain the identity of the components. (Stages

up to and including the identification of components are assumed to be bottom-

up). Finally, the arrangement of components is matched against representations in

memory.

The primitive components or geons hypothesized in the RBC theory are simple

generalized cones without sharp concavities. They are classified into 36 basic types

on the basis of 4 attributes (Figure 2.2). Three of the attributes describe character-

istics of the cross section: its shape (straight or curved), symmetry (asymmetrical,

reflection, or reflection and rotation), and size as it is swept along the axis (constant,

increasing, or increasing and decreasing). The fourth attribute describes the shape of

the axis (straight or curved).

The values of these four generalized cone attributes can be directly detected as

differences in non-accidental properties, e.g., collinearity, curvilinearity, symmetry,

parallelism, and co-termination (Figure 2.3). Further, these non-accidental properties

are rapidly identifiable from a line drawing, and are quite invariant to viewpoint and

noise.

A set of geon relations is also proposed. The relations between any pair of geons

includes verticality, i.e., whether the first geon is above, below, or to the side of the

second one; relative size, i.e., whether the first geon is much larger than, much smaller

than, or approximately the same size as the second; centering, i.e., whether the point

of attachment on a geon’s surface is centered or off-centered; and surface size at join,

i.e., whether a geon is joined at a large surface or a small one. Altogether, there are
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almost 60 possible combinations of relations that can hold for a pair of geons.

Biederman argues that 36 geons apparently have sufficient representational power

to express humans’ capacity for basic visual categorization. Figure 2.4 shows some

multi-part 3-D objects which can supposedly be represented using geons. Note that

although the decomposition of some objects into geons seems obvious (e.g., watering-

can, table-lamp, flashlight, and knife), others are not very obvious (e.g., telephone

handset, head of the elephant). Biederman states that there are less than 3,000

common basic-level categories such as “chairs” and “elephants” in a typical human

language (e.g., English). Liberally assuming an average number of 10 distinguishable

exemplars for each category, this gives an estimate of 30,000 readily discriminable

objects. By contrast, the combination of 2 geons can give over 70,000 possible objects

(36 x 36 possible geon combinations, multiplied by about 60 geon relations for each

combination). Similarly, 3 geons can be combined in over 150 million ways.

Biederman’s experiments indicated that line drawings of objects with only 2 or 3 of

their components could be accurately identified from a single 100—ms exposure. These

simple line drawings were identified almost as rapidly as full-color, detailed, textured

slides showing all the components. It appears that neither the full complement of an

object’s geons, nor its color, texture, or full bounding contour need be present for

rapid identification.

Bergevin and Levine [4, 3] have built a computer vision system based on geons,

called PARVO (Primal Access Recognition of Visual Objects). PARVO introduces a

new intermediate representation not present in the original RBC theory, i.e., faces of

parts. First, the parts are identified as belonging to one of 11 generalized solid types,

based on the first three attributes of geons (curved or straight edges, curved or straight

axis, and constant, increasing, or increasing-and-decreasing sweeping function). The

symmetry attribute is inferred later, giving the complete identity of the geon.

The system was tested with a variety of complete as well as imperfect line drawings
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Figure 2.4. Complex objects represented using geons (taken from [1])
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of common man-made objects. PARVO was usually able to segment the line drawings

into component parts, identify each part as a geon, compute a coarse spatial structural

description of the object, and match it to coarse models. Disadvantages include the

use of perfect line drawings and the assumption that pairs of matched segmentation

points (i.e., points of concave discontinuity) can always be found.

Recently, Dickinson et al. [21, 20, 22] have built a system called OPTICA (Object

recognition using Probabilistic Three-dimensional Interpretation of Component As-

pects). OPTICA computes a 3-D object representation based on 10 geon-like parts.

The most significant contribution of Dickinson et al. is the idea of combining the

“parts-based” and “viewpoint-dependent” ideas. They put forward the excellent idea

of using a multi-view representation only for the limited number of 3-D part primitives

rather than for entire complex 3-D objects composed of these parts.

Storing characteristic views of only the part primitives has two advantages. Firstly,

the number of views is much smaller. Secondly, even with a different set of part

primitives, it may be possible to use the same scheme for recognition by using the

multi-view representation of the new set of primitives. Constructing the multi-view

representation of the chosen generic part primitives is an off-line process that has to

be performed only once.

OPTICA has been tested with perfect line drawings of 3-D objects. Segmentation

into parts is performed manually. Methods have been outlined for computing the line

drawing from an input intensity image and for performing segmentation, as well as for

recovering from segmentation errors. However, these are not completely implemented.

2.5.3 Superquadrics

Superquadrics are an extension of basic quadric surfaces. They are a family of para-

metric shapes discovered by the Danish designer Piet Hein [36]. Superquadrics have

been used or proposed for use as shape representation primitives for computer graph-
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ics [2], and recently, for computer vision [71]. Depending on the parameter values,

superquadrics can take different shapes (e.g., ellipsoids, cylinders, parallelepipeds,

pyramids, cones, as well as round-edged shapes intermediate between these standard

shapes). Thus, they are versatile part primitives, and can be deformed and “glued”

together into realistic-looking models as in Pentland’s Supersketch graphics system

[71].

Superquadrics are described by the following equation (using the notation,

cos(n) = Cn,sin(w) = 5w):

ax-C51-Cj,’

flaw): a,.C,;1-S;2 , —§SnS%, -7r$w<1r

b az.5:’l d  

where 2? (men) is a 3-D vector that sweeps out a surface parametrized in latitude 17

and longitude to in an object-centered co-ordinate system. The parameters a,” a", and

a, affect the size of the superquadric along the x, y, and z axes, respectively. The

relative shape parameters £1 and £2 affect the relative shape of the superquadric in

the latitudinal (xz) and longitudinal (xy) directions, respectively. When all these five

parameters are unity, the shape of the superquadric is the unit sphere. When a relative

shape parameter (6.1 or 62) is equal to l, the cross-section along the corresponding

(i.e., latitudinal or longitudinal) direction is an ellipse. As 6 approaches 0, the shape

becomes progressively more rectangular; as e approaches 2, the cross-section changes

from an ellipse to a diamond shape. When 6 is greater than 2, the shape becomes

“pinched”, approaching a cross as e approaches infinity. The effect of e on shape is

shown in Figure 2.5, in which one of the 6 parameters is held constant at 1.0, while

the other is varied between 0.0 and 3.0.

After Pentland’s paper [71] which first proposed the use of superquadrics as part

representation primitives for computer vision, most of the subsequent literature on
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superquadrics has dealt with estimation methods and error-of-fit measures for recov-

ering the parameters from real or synthetic range data [1, 41, 42, 72, 81]. Issues of

segmentation are avoided and range data is taken from the isolated, unoccluded su-

perquadric whose parameters are to be estimated. Only Ferrie et al. [30] report some

results from range image segmentation and the actual use of superquadrics as part

primitives for complex multi-part Objects.

Besides the three extent parameters (a,, a”, a.) and two relative shape parameters

(61,62), an additional three parameters are needed to represent displacement of the

superquadric from the origin, and another three more for its orientation. Hence, a

total of 11 parameters have to be estimated for a superquadric at arbitrary location

and orientation.

Pentland [71] originally suggested an analytic solution using the parametric equa-

tions of the position vector and normal vector at each point on the surface. Using

linear regression, and starting with information from 2-D contours and shading, a

best-fit estimate was to be computed. This approach turned out to be too compli-

cated and was not fully implemented. Pentland’s second approach [72] was based on

search through the entire superquadric parameter space. For each 3-D range image

point, the parameter space is searched for the best fit to the immediately surrounding

area. This method is too expensive computationally, unless perhaps implemented on

a parallel architecture.

Bajcsy and Solina [1] suggested a faster (iterative) solution technique, i.e., mini-

mizing an error-of-fit function by the Levenberg-Marquardt method [75] for non-linear

least squares. Their error measure favors the superquadric of smallest possible vol-

ume that closely fits the data points. Poisson “jitter” is introduced to escape local

minima in the space of 11 parameters. Gross and Boult [41] compare the effective-

ness of different error-of-fit measures for Bajcsy and Solina’s technique. According to

their experiments (with superquadrics centered at the origin and aligned along the
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co-ordinate axes), an error measure based on Euclidean distance between each data

point and the surface of the estimated superquadric performs better than the one

proposed by Bajcsy and Solina. In particular, use of the Euclidean distance error

measure leads to faster convergence and yields better estimates from sparse range

data. It also gives better estimates when only partial range data are available (e.g.,

from only 1, 2, or 4 octants instead of all 8). However, Ferrie et al. [30] report that

while Gross and Boult’s Euclidean distance error measure generally fit the range data

well, the volume of the estimated superquadric tended to become very large, espe-

cially when the surface patch was flat. According to them, the minimum-volume error

measure motivated by Bajcsy and Solina [1] produced “more intuitive” results.

Solina and Bajcsy [81] have proposed a formalism for expressing deformations of

superquadrics (specific kinds of tapering, bending, and cavities). They are able to

estimate all the parameters by incorporating appropriate extensions in their original

technique. Gupta, Bogoni and Bajcsy [42] argue that both qualitative and quantita-

tive measures should be used to evaluate the fit of an estimated superquadric. They

propose two global, quantitative measures (Bajcsy and Solina’s original goodness-of-fit

measure [1], and a mean-distance criterion derived from Gross and Boult’s Euclidean

distance measure [41]). They also introduce three local, qualitative evaluation criteria.

The Min-distance map is produced by mapping the magnitude of the shortest Eu-

clidean distance of individual points from the model surface. The Contour-diference

map compares the apparent contour formed by the model in the viewing direction,

with the object’s occluding contour. Lastly, the Z-distance map shows the distance

between the points in the range image and the model surface in the viewing direction.

These three measures complement the earlier two, and, in conjunction with them, can

suggest improvements in object segmentation or model deformation.
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2.5.4 Other Part Primitives

Yet another part representation for man-made objects (e.g., chairs), using sticks (long,

thin objects), plates (flat, wide objects), and blobs (objects with 3 significant dimen-

sions) has been proposed by Shapiro et al. [80].

Terzopoulos et al. [90] have proposed a 3-D part model similar to generalized

cylinders, with additional deformation parameters to control the elasticity of the

main axis and walls of the cylinder. With human interaction to set constraints on

parameters, they are able to recover the models from 2-D silhouettes. Later work

by Terzopoulos and Metaxas [89] proposes a representation which combines the local

degrees of freedom of Splines (which makes them useful for surface reconstruction)

with the global shape parameters of a superquadric (which makes them useful for

shape recognition). Results of fitting are provided for both intensity and range data.

Initial segmentation into parts is done manually by the user.

Pentland and Sclaroff [68] propose a very interesting 3-D deformable model rep-

resentation based on the Finite Element Method (FEM) and the FEM technique of

Modal Analysis. The model consists of a large number of finite‘elements, with prop-

erties such as mass, stiffness, and damping which govern their dynamic behavior

when the model is deformed. The input data are treated as constraints forcing the

deformable model to assume a shape that closely fits the data. The complex deforma-

tion undergone by the model is decomposed into the superposition of various simple

deformations corresponding to the free vibration modes of the FEM equilibrium equa-

tion. This is similar to a Fourier representation where a complicated waveform can

be. represented by the combination of independent simple (sinusoidal) waveforms of

different frequencies.

The vector of coefficients corresponding to the lowest order vibration modes (say

the 30 lowest order vibration modes) are used to represent the fitted shape. Two
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shapes can be matched simply by finding the normalized dot product of the corre-

sponding modal representations. The use of this representation for tracking motion

is also described by Pentland and Horowitz [67].

2.6 Summary

We presented a brief survey of 3-D object representation schemes. These were clas-

sified as either vieWpOint—dependent or vieWpoint-independent, and either object—

intrinsic or parts-based. A parts-based approach has the advantages of flexibility and

modularity. Selection of an appropriate set of part primitives, and part segmentation

(decomposition of an image corresponding to the separate parts) are the crucial issues

in a parts-based approach.

We are primarily interested in somewhat “meaningful” part primitives, i.e., volu-

metric models with a considerable degree of capability for shape discrimination. As

mentioned earlier, this choice simplifies later steps in the recognition process (repre-

sentation of a 3-D object is more compact and “meaningful,” fewer hypotheses need

be generated for matching, and verification is much less essential). The price to be

paid is that segmenting and identifying these parts from an image is more difficult.

For our 3-D object representation scheme, we intend to use a small set of 3-D

volumetric parts based on geons. The choice of these primitives, as well as a method

for part segmentation (i.e., decomposition into separate parts), are discussed in the

following chapter.



CHAPTER 3

Parts and Part Segmentation

This chapter is organized as follows: first, we explain our choice of parts for the 3-D

parts-based object representation. Next, we put forward a novel method of specifying

“generic” 3-D parts, i.e., by using Surface Adjacency Graphs (SAGS). Then we derive

an extremely compact multi-view representation of the part primitives, based on

their SAGs. Finally, we present a method of performing part segmentation from

range images, given a good surface segmentation. Some of the work described here

has been presented earlier in [76].

3.1 Choice Of Part Primitives

Many of the 3-D object recognition systems described in the literature share some

common problems: firstly, they cannot cope with a large number of known objects,

say even 100 models. This problem is particularly acute when models are not stored

hierarchically, but are put all together in a “flat” knowledge base. This makes efficient

indexing much more difficult, which in turn makes the recognition strategies imprac-

tical when the number of models is large. Secondly, most of them use features or

modeling primitives which are too “weak,” such as line segments, angles, and surface

patches. This means that every object yields a large number of such features or prim-

44
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itives, making for an unconvincing representation scheme which leads to too many

hypotheses and too much “branchiness” of the search tree if the matching scheme is

based on search. Chapter 1 discussed this point in considerable detail.

In order to resolve these issues, a good object representation scheme should have

the following features:

0 It should use more powerful modeling primitives, yielding a compact and “mean-

ingful” representation scheme. Specifically, we would like to use a 3-D parts-

based representation.

0 The representation scheme should lend itself naturally to efficient indexing when

matching object and model descriptions, so that a model-based recognition

system built on top of it would be able to cope with a large number of models.

a It should facilitate efficient segmentation/matching routines, by using

vieWpoint-dependent representations. But the number of such views should

be small and the choice of views should be “natural” and justifiable at least to

some extent.

We are interested in powerful part primitives, i.e., volumetric models with a consid-

erable degree of capability for shape discrimination. As we saw, this choice simplifies

later steps in the recognition process. It makes the representation of a 3-D object

more compact, fewer hypotheses are generated for matching, and verification is much

less essential.

Many 3-D parts-based representations have been proposed in the object recogni-

tion literature. The most influential 3-D part primitives are generalized cylinders,

superquadrics, and geons. Geons, since they are capable of satisfying the criteria

listed above, and due to the evidence (from visual perception literature) for their

plausibility as a shape indexing mechanism, are an attractive choice as 3-D part

models.
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Of the four geometrical properties that characterize the 36 different geons, some

are more useful than others as important shape attributes. Straightness or curvedness

of the axis, as well as nature of the “sweeping function” of the cross-section along

the axis, seem to be important attributes. Straightness or curvedness of the cross-

sectional edge is an attribute which can be difficult’to extract from images: firstly,

there may be objects which do not show distinct “faces” where the cross-sectional

edges are easily observable (e.g., a cucumber or a rectangular block with smoothened

edges). Secondly, this distinction becomes blurred in the case of, say, an octagonal

prism approximating a cylinder.

Cross-section symmetry is somewhat problematic. It is harder to compute, as well

as less “obviously important” than the others as a shape attribute useful for object

recognition. It is worth noting that much other RBC-inspired research also ignores

cross-section symmetry, and uses a smaller set of parts either as the complete set of

primitives, [20, 64] or as an intermediate step towards computing the entire set of 36

geons [4].

Ignoring the symmetry distinctions leads to a reduced set of only 12 geon-like

3-D parts. We select these 12 geon-like parts as the 3-D modeling primitives for 3-D

object representation.

3.1.1 Notation

We will use the following notation to specify the 12 geon—like 3—D parts: axis shape

is either bent (b) or straight (s); cross-section edges are either curved (c) or straight

(s); cross-section size is either constant (co), increasing-&-decreasing (id), or tapered

(t). Any of the 12 parts can therefore be specified by a triplet for axis shape, cross-

section edge, and cross-section size. For example, b-c-co indicates a part with bent

axis, curved cross-section edges, and constant cross-section. s-s-id indicates a part

with straight axis, straight cross-section edges, and increasing-decreasing cross-section
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Table 3.1. Notation for specifying the 12 parts

 

 

    
 

Notation Axis Cross-sectional edges C.S. size along axis

b—c-co bent curved constant

b-c-id bent curved incr.-&-decr.

b-c-t bent curved tapering

b-s-co [l bent straight constant

b-s-id bent straight incr.-&-decr.

b-s-t bent straight tapering

s—c-co straight curved constant

s-c-id straight curved incr.-&-decr.

s-c-t straight curved tapering

s-s-co straight straight constant

s-s-id I straight straight incr.-&-decr.

s-s-t straight straight tapering

s-s-co b-s-co

Figure 3.1. Parts with straight edges and constant cross-section

size.

 

Table 3.1 lists the 12 parts using this notation, and the parts themselves are shown

in Figures 3.1 through 3.6.

3.2 Surface Adjacency Graphs

Previous work on geons is based on line drawings, i.e., it uses edges derived from

intensity images as the input. Consequently, methods for identifying the geons have

also used perceptual properties of edges in the line drawing.

We pointed out earlier that ours is the first attempt to recover a specific, reasonably
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b-s-t

Figure 3.2. Parts with straight edges and increasing cross-section

 

s-s-id

Figure 3.3. Parts with straight edges and incr.-and-decr. cross-section

’@
s-c-co b-c-co

Figure 3.4. Parts with curved edges and constant cross-section

s-c-t b'C't

Figure 3.5. Parts with curved edges and increasing cross-section
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s-c-id b'C'id

Figure 3.6. Parts with curved edges and incr.-and-decr. cross-section

rich set of geon-like 3-D parts from range data. Generally speaking, when working

with range data it is natural to deal with surfaces and their properties rather than

with edges. Hence, we would like to specify the part primitives by using their surface

properties. Also, this has to be done in a way that captures the “generic” nature of

the parts, i.e, the fact that they are defined by qualitative shape properties and not

by specific numerical shape measures.

We use the Surface Adjacency Graph (SAG) as a fundamental representation

throughout this chapter. This representation has many advantages. It can be used

to precisely define the generic parts in terms of their surfaces. Next, it yields a multi-

view representation of the parts in a very natural manner. Given a good method for

surface segmentation, the SAG can be easily obtained from range data. The same

representation can be used for part segmentation by comparing the SAG of the scene

with our multi-view representation of parts. Gupta [43] has independently proposed

the use of SAGS, and their use for segmenting a data set by breaking concave edges

of the SAG. Our segmentation method is more general.
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3.2.1 Surface Classification by Curvatures

Given a surface S, at each point P on the surface there is a tangent direction along

which the surface curves most, as well as a tangent direction along which the surface

curves least. Except in degenerate cases, these directions are orthogonal. They

are called principal directions; the corresponding maximum curvature and minimum

curvature are together referred to as the principal curvatures. For example, on a.

cylindrical surface, the curvature is zero along the tangent direction parallel to the

axis of the cylinder; this is the minimum curvature. The curvature is greatest (in

absolute value) along the surface tangent direction perpendicular to the axis of the

cylinder; this is the maximum curvature. Planes and spheres are special cases because

the curvature on a planar or spherical surface is independent of the direction of travel

along the surface. Curvature of a plane is zero in all directions. For a sphere, the

curvature is the inverse of the radius and is also constant in all directions.

The actual sign of a curvature depends on the way the surface curves with respect

to the positive Z axis. For our range images, the positive X axis corresponds to

the direction of increasing column numbers, the positive Y axis is in the direction

of decreasing row numbers, and the positive Z axis points out of the XY image

plane. Hence, the range image of a convex spherical cap would show a surface curving

downwards with respect to the positive Z axis, and so it would have negative principal

curvatures. However, in our terminology we reverse the signs and refer to a “convex”

curvature as positive. Similarly, the concave “in-side” of a sphere would be referred

to having a negative curvature.

Mean curvature (H) and Gaussian curvature (K) are defined as the average and

the product, respectively, of the principal curvatures. Based on the signs (positive,

zero, or negative) of H and K, we can perform a qualitative classification of surfaces

into 8 possible surface types [5]. We use a qualitative classification based on the
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Table 3.2. Curvature-based classification into 5 surface types

 

 

Max. curvature Min. curvature

+ +

+ 0

+ _

0 0 .

— 0    

principal curvatures. Restricting ourselves to a situation where the “inside” surfaces

of part primitives are never visible, some surface types never occur. Based on the

signs of principal curvatures, we can then distinguish between five kinds of surfaces,

as shown in Table 3.2.

We compute curvature by the method implemented by Flynn [33]. At each point

on a surface, a bicubic surface is fitted to the point and its neighbors. Principal

curvatures and directions are then computed from the coefficients of the fitted bicubic

surface. A threshold of 0.2 is used for qualitative classification of principal curvatures

as positive, zero, or negative. A curvature measure for a surface is taken to be positive

if its median value is greater than 0.2. It is taken to be negative if the median value

is less than -0.2. If the median value is between -0.2 and 0.2, the curvature measure

is taken to be zero. (A curvature value of 0.2 is the same as that of a sphere of radius

1/0.2, i.e, 5 inches).

3.2.2 SAGS of Part Primitives

The Surface Adjacency Graph (SAG) is a graph in which the nodes represent surfaces,

while an edge between two nodes indicates that the corresponding surfaces are adja-

cent. Nodes as well as edges may have attributes. Node attributes can represent any

property of the corresponding surface, say its type (planar, convex, concave, etc.) or

area. In our case a node has only one attribute, i.e., the “type” of the corresponding

surface as determined from its principal curvatures. An edge has only two attributes,
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Right angle

oeoooooooeooooeooo Acuteangle

— Zero angle

Figure 3.7. Coding scheme for SAG edge attribute

both concerning the angle between the surfaces corresponding to the two nodes con-

nected by the edge. The first attribute describes whether the angle is concave or

convex. The second attribute describes whether the angle is acute, right, obtuse,

or zero. The node attribute (i.e., surface type) as well as edge attributes (i.e., con-

vex or concave adjacency, acute/right/obtuse/zero angle) can also be “don’t-care,”

indicating that the attribute may take any of the possible values.

Figures 3.8 through 3.19 show the SAG representations of our 12 geon-like parts.

Figures 3.8 through 3.13 Show SAGS for parts with straight-edged cross-sections, while

Figures 3.14 through 3.19 shows SAGS for parts with curved-edged cross-sections.

Each node is labeled according to the signs of the principal curvatures of the corre-

sponding surface. For our 12 parts, adjacencies between surfaces are always convex,

so the convex/concave attribute is not shown for any of the edges. The other SAG

edge attribute, i.e., acute/right/obtuse/zero angle, is coded as in Figure 3.7.



 

  

 

  

 
Figure 3.9. SAG for the part b-s-co
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Figure 3.10. SAG for the part s-s-t

 
Figure 3.11. SAG for the part b-s-t



 

 
 

 

  

 
Figure 3.13. SAG for the part b-s-id

 

Figure 3.14. SAG for the part s-c-co
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Figure 3.15. SAG for the part b-c-co

m.------..................

Figure 3.16. SAG for the part s-c-t

 
Figure 3.17. SAG for the part b-c-t

Figure 3.18. SAG for the part s-c-id
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Figure 3.19. SAG for the part b-c-id

3.3 Multi-view Representation Of Parts

We stated our intention to use viewpoint-dependent representations for part segmen-

tation and as an aid towards part identification. In the last few years, under the name

of “aspect graphs” or “characteristic views,” there has been a flurry of research activ-

ity on viewpoint-dependent representations. This was briefly reviewed in the previous

chapter. We will now explain the details of our own multi-view representation.

3.3.1 Catalog of Part Views

Recently, the geon-inspired literature has also dealt with the issue of a multi-view,

viewpoint-dependent representation. A viewpoint-dependent representation for gen-

eral 3-D objects would cause two major difficulties: firstly, for a general, complicated

3-D object, no analytical method is known for computing the aspect graph. Sec-

ondly, the number of aspects would be too large (the literature on aspect graphs finds

hundreds of aspects even for simple objects).

Dickinson et al. [21, 20, 22] overcome these difficulties by combining the “parts-

based” and “vieWpoint-dependent” ideas. That is, there is a small number of 3-D part
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models. Dickinson et al. put forward the idea of using a multi-view representation

only for this limited number of 3—D parts rather than for entire complex 3-D objects

composed of these parts. By using an empirical viewsphere approach and making use

of part symmetries, they obtain 688 views for their entire set of 10 part primitives.

As mentioned earlier, storing characteristic views of only the part primitives has

two advantages. Firstly, the number of views is much smaller. Secondly, even with

a different set of part primitives, it may be possible to use the same scheme for

recognition by using the multi-view representation of the new set of primitives. Con-

structing the multi-view representation of the chosen generic part primitives is an

off-line process that has to be performed only once.

Following the idea proposed by Dickinson et al. , we will use multi-view represen-

tations of the part primitives, and not of entire multi-part objects. The expectation

is that a multi-view representation of parts will be useful in segmenting objects into

component parts, as well as towards identifying those parts as instances of specific

part primitives.

What views are “natural” to use for the vieWpoint-dependent representation of

the 3-D part primitives? When we look at simple objects (such as our 12 3-D part

primitives), we can generally distinguish a few large, “meaningful” surfaces oriented

in a particular way with respect to one another. The surfaces usually make sense,

like “the top of the coke can,” “the side of the monitor,” etc. Usually, if we want to

draw the object, we can do so unambiguously by drawing its important surfaces.

We may be able to extract large, “meaningful” surfaces from an image by looking

at perceptually important 2-D features such as long curves, co-terminating lines, and

parallel lines. These might have been obtained from an intensity image. But these

features can also be found from range images. The point is that this multi-view SAG

representation (in terms of large, “meaningful” surfaces) can be easily obtained for

the part primitives. It need only be computed once, and can in fact even be done



59

manually and off-line. On the other hand, for a scene image, the SAG representation

can easily be computed if a good surface segmentation is available.

In our case, the catalog of possible views of parts is based only on surface config-

urations. We are concerned only with the types of visible surfaces, their adjacencies,

and angles between them. We are not interested in every possible aspect, but only

those in which the surface types, adjacencies, and/or angles differ. Unlike the usual

definition of an aspect, which takes into account qualitative changes in the vertices,

edges and surface identities, we define a simpler kind of characteristic view, the sur-

face aspect (s-aspect). The S-aspect of an object is the set of all possible views for

which the surface types, adjacencies, and angle attributes are the same. Our multi-

view representation will contain not the aspects (in the usual sense), but rather all

possible s-aspects of the part primitives. So our multi-view representation of the part

primitives, i.e., our catalog of views, turns out to be much smaller and simpler than

the usual “aspect graph.”

There are a number of ways to construct the catalog of views. Given the complete

aspect graph of a part, we could obtain the multi-view representation by combining all

those aspects in which the number, types, adjacencies, and angles of the surfaces is the

same. A simpler alternative would be to make use of the fact that for our purposes, a

part is completely characterized or defined by its attributed SAG. Hence, all possible

views of a given part can be determined by finding all possible connected subgraphs

of the part’s attributed SAG, and removing duplicates and impossible views.

This method results in a total of 161 views for all 12 parts. However, many of

these views can never be obtained in reality, e.g., a view of a rectangular block in

which all 6 surfaces are visible.

It is easy to show that any subgraph that includes two oppositely oriented planar

surfaces corresponds to a configuration of surfaces that can never be seen from any

viewpoint. (When we say that a configuration of surfaces can be seen from a point,



60

we mean that every surface in that configuration can be seen from that point).

Surfaces of part primitives are considered to have two sides, i.e., an “inner” side

and an “outer side.” Surface normals on the outer side of a part surface point out

of the volume occupied by the part. For a point P on a part surface to be visible

from a point Q in space, the outward-pointing surface normal at P must make a

positive projection on the vector from P to Q. Given two “oppositely oriented” planar

surfaces 5'1 and 52 (i.e., planar surfaces whose outward-pointing surface normals are

oppositely oriented), obviously there exists no vector in space such that a pair of

outward-pointing surface normals, one from 5'1 and one from 3;, both have a positive

projection on it. Hence, there is no point Q in space such that from Q, the outer

sides of both 51 and 52 are visible.

We showed that if a subgraph includes two oppositely oriented planar surfaces,

then it corresponds to a configuration that can never be seen from any viewpoint

in space. However, the converse is not true. There are many surface configurations

without two oppositely oriented planar surfaces, but which still cannot be seen from

any viewpoint in space. For example, no two surfaces of a tetrahedron are oppositely

oriented. Nevertheless, there is no vieWpoint from which the “outer” sides Of all four

surfaces of a tetrahedron are simultaneously visible.

We obtained the multi-view part representation empirically, because, as mentioned

earlier, a large number of “impossible” views are included in the catalog found by

the exact approach (based on enumerating all distinct connected subgraphs of the

attributed SAG of each part). We constructed CAD models corresponding to the 12

shape classes using GEOMOD, a geometric CAD solid modeling package. GEOMOD

is one component of I-DE'AS (Integrated Design and Engineering Analysis System)

[87]. The 12 CAD models are shown in Figures 4.1 and 4.2.

We then viewed the CAD model of each of the part primitives from a large number

(100) of random viewpoints on the surface of a viewsphere and noted the different
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0.0 o o

0’0 0,0 ’

0,0

Figure 3.20. S-aspects of a rectangular block

aspects. Figure 3.20 illustrates the simplicity of our multi-view representation of a

rectangular block (one of the 12 basic geons), which has just 3 s-aspects. Note that

the true aspect graph of even a Simple cube would have 26 aspects. Figure 3.29 shows

the multi-view representation of a bent cylinder, another of the 12 basic geons. This

part has only 7 s-aspects. In fact, the entire set of 12 geon-like shapes (as defined by

the SAGS shown earlier) has only 74 different views or s-aspects!

The surfaces in Figures 3.20 through 3.31 are labeled according to the signs of the

maximum and minimum curvatures, which may be positive (+), zero (0), or negative

H.

The multi-view representation of parts contains the following information: for

each characteristic view of each of the chosen generic parts, it describes the surface

types, their adjacencies, and the angle attribute (concave or convex) between adjacent

surfaces. This information is stored in the form of attributed SAGS, one for each view

in the multi-view representation. At present, we do not take into account whether

the angle between two surfaces is acute/right/obtuse.
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Figure 3.21. S—aspects of an increasing-decreasing rectangular block
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Figure 3.22. S-aspects of a tapering rectangular block

0 I ‘.,o

\O 3/
Figure 3.23. S-aspects of a cylinder
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Figure 3.24. S-aspects of an increasing—decreasing cylinder

Figure 3.25. S-aspects of a tapering cylinder
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Figure 3.26. S-aspects of a curved—axis rectangular block
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Figure 3.27. S-aspects of a curved—axis, increasing-decreasing rectangular block
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Figure 3.28. S-aspects of a curved-axis, tapering rectangular block
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Figure 3.29. S-aspects of a curved-axis cylinder

For our 12 geon-like parts, the angles between surfaces are always convex. Hence,

in this case the multi-view representation of parts simply amounts to a catalog of

adjacencies of attributed surfaces, with surface adjacencies always being convex. Note

that if we selected a different set of generic part primitives, for which some surface

adjacencies were concave (say “L” or “T” shaped primitives), then concave angles

would appear in the catalog of part views.

3.4 Part Segmentation from Surface Segmenta-

tion

Object recognition and surface classification methods based on differential geometric

measures such as curvatures are common in the literature [5, 7, 28, 34, 92]. Curvature
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Figure 3.30. S-aspects of a curved-axis, increasing—decreasing cylinder
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Figure 3.31. S-aspects of a curved-axis, tapering cylinder
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measures (such as principal curvatures, or mean and Gaussian curvatures) have been

used to distinguish between spheres, cones, cylinders and cubes [7, 59]. Hence it

seems natural to propose the use of similar measures to aid in part segmentation

and identification for our somewhat larger set of part primitives. Since curvature

estimates are noisy, we use only the signs (positive, zero, or negative) of the median

values of principal curvatures on each surface.

3.4.1 Surface segmentation and classification

First we segment the range image into surfaces of different types. Surface segmen-

tation is performed by the method of Flynn [33]. Flynn’s algorithm in turn begins

with a preliminary segmentation obtained by Hoffman and Jain’s “split-and-merge”

method [50]. Hoffman and Jain apply the CLUSTER program to get an initial sur-

face segmentation. A squared-error clustering procedure finds up to 16 clusters in

the 6-dimensional space consisting of 6 local surface features, i.e., the three compo-

nents of the normal vector at each point on the surface, along with the co-ordinates

of that point. The result is usually oversegmented. Hoffman and Jain then obtain

their final surface segmentation by merging adjacent surface patches which meet a

“similarity” criterion. Using this as the preliminary segmentation, Flynn classifies

individual surfaces into the following types: planar, spherical, cylindrical, and un-

known. Appropriate geometric parameters are estimated for each surface. Finally,

adjacent surface patches are merged if they are of the same type and have similar

parameters. In most cases, this gives a good surface segmentation.

After surface segmentation, we begin construction of the SAG by classifying each

surface according to the distributions of curvature measures on the surface. From the

signs of the maximum and minimum curvatures (within appropriate thresholds), we

can distinguish between 5 surface types, as shown in the first two columns of Table

3.3, and draw some inferences about the part primitive to which they belong.



72

Table 3.3. Some inferences of part shape based on surface type

 

 

Max. curv. Min. curv. Inference

+ + Curved edges & bent axis, OR

Curved edges & c.s. size incr-decr

+ 0 Curved edges & straight axis, OR

Straight edges & curved axis

+ — Curved edges & bent axis

0 0 End face of any part, OR

Straight edges & straight axis

— 0 Straight edges & bent axis       

3.4.2 Using the Catalog of Part Views

The main problem of parts-based representation is part segmentation, i.e., how to

segment an arbitrary object into instances of the part primitives. We will use com-

parison of the surface types and adjacencies in the image with those stored in the

multi-view representation (catalog of aspects or views) of the part primitives for part

segmentation as well as an aid towards part identification.

Good surface segmentation is crucial to our method for part segmentation. After

surface segmentation and classification, the image consists of a set of surfaces, with

their adjacencies, types, and angles between adjacent surfaces. Like the views in the

catalog, this is also represented as an attributed SAG. Surfaces of insignificantly small

area are ignored after taking their connectivity into account, i.e., if such a surface

connects two larger surfaces, it is removed from the graph after ensuring that the

nodes corresponding to the two larger surfaces are connected to one another.

It is assumed that a single surface in the SAG belongs to exactly one part. Every

edge in the SAG, therefore, is potentially an adjacency between surfaces belonging to

two different parts. Hence, each edge in the SAG is examined to see whether the multi-

view representation can account for two adjacent surfaces of those particular types,

being adjacent with those particular angle attributes. (Currently, concave/convex is

the only angle attribute used). If not, the surfaces must belong to different parts, so
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the edge is removed. Note that we could have chosen more complicated generic part

primitives (for example a “T” or “L”), in which some adjacent surfaces meet along a

concave crease even though they belong to the same part.

Every edge of the graph is examined in this manner to get a set of hypothesized

part segmentations. The graph is thus divided into connected, attributed subgraphs,

each consisting of surfaces hypothesized to belong to the same part. Time complexity

of this part segmentation method is proportional to the number of edges in the SAG.

Each connected subgraph is then examined to verify whether it can be accounted

for by one or more part views from the multi-view representation, i.e., whether there is

some view of some part, such that the subgraph partially matches the corresponding

SAG.

This is worth doing because of the current fragility of surface segmentation and

curvature-based surface classification. By comparing the subgraphs with the catalog

of part views, in some cases it is possible to determine immediately that there have

been errors in surface segmentation and classification, because the subgraphs do not

partially match any view of any part in the catalog. Each subgraph for which we are

able to find one or more partial matches in the catalog corresponds to a hypothesized

part and one or more possible interpretations of what the part identity might be.

This method of part segmentation is in some ways more general than common ap-

proaches which, in one way or another, make use of Hoffman and Richards’ “principle

of transversality” [47]. This principle states that when two arbitrarily shaped sur-

faces interpenetrate, they usually meet in a contour of concave discontinuity of their

tangent planes. However, Figures 3.32 and 3.33 show intersecting parts which do not

meet along concave creases. Part segmentation techniques which depend solely on

concavity would fail in these cases. However, our method would still work because ir-

respective of the angle between the surfaces, our catalog of part views cannot account

for two adjacent cylindrical surfaces belonging to the same part.
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Figure 3.32. Two parts which meet along a convex crease
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Figure 3.33. Two parts which meet along a “mixed” crease
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Figure 3.34. L-shaped object for which part segmentation fails

Our part segmentation method also has some major limitations. Firstly, it is to-

tally dependent on reliable surface segmentation and reliable curvature-based surface

classification. But in reality, surface segmentation as well as curvature-based surface

classification are often incorrect.

Secondly, the method does not use any information about shape of the object,

relying instead solely on surface properties. Hence, it fails when two parts come

together in such a way that the adjacency of the corresponding surfaces is not directly

visible, even though in many such cases the intensity or occluding contour data clearly

indicates the joining of two parts. For example, consider a view of an L-shaped object

in which only a single surface, i.e., the L-shaped surface, is visible (Figure 3.34).

The occluding contour clearly suggests the presence of two parts. Nevertheless, our

method cannot segment this object into two parts from such a vieWpoint. The SAG

consists of a single node, and there are no SAG links to be broken.

Additionally, for this example (the L-shaped object), even if two surfaces belonging

to different parts had been visible (Figure 3.35), part segmentation would have been

incomplete. The reason is that the single L-Shaped surface is itself produced by the

coming together of two parts, and our part segmentation method has no way to
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Figure 3.35. Another view of the L-shaped object

break up a single surface into pieces belonging to different objects. Many other such

examples can be found.

3.4.3 Part Identification: Two Approaches

We used the catalog of part views to perform part segmentation by breaking SAG links

of the given scene image. The following chapters discuss two methods for identification

of the isolated parts thus obtained.

The first method does not make any further use of the catalog of part views. The

isolated parts are classified based on features derived from estimated parameters of

the best-fitting superquadric. This approach is described in Chapter 4.

The second method uses the catalog of part views to hypothesize which parts could

possibly account for each of the subgraphs isolated by part segmentation. A direct

test of one geon attribute (cross-section size) is then applied to eliminate some of the

possibilities and determine the part identity. A direct test of another geon attribute

(axis shape) using intensity image data is also developed in order to partially recover

from some shortcomings of the method. Further details are given in Chapter 5.
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3.5 Summary

In this chapter, we first explained our choice of parts for the 3-D parts-based ob-

ject representation. A set of 12 geon-like “generic” parts was arrived at by ignoring

the cross-sectional symmetry attribute of geons. Next, we introduced the notion of

Surface Adjacency Graphs (SAGS), i.e., attributed graphs in which nodes represent at-

tributed surfaces and edges represent attributed surface adjacencies. We put forward

a novel method of specifying “generic” 3-D parts, i.e., by specifying their SAGS. After

a brief overview of aspect graph (i.e., vieWpoint-dependent representation) research,

we derived an extremely compact multi-view representation of the part primitives,

based on their SAGS. We presented a method of performing part segmentation from

range images, given a good surface segmentation. Lastly, we pointed out that the

catalog of part views can also be used to detect errors in surface segmentation and

curvature-based surface classification.

After part segmentation, the next step is part identification, i.e., the parts that

have been isolated must be identified as instances of the 12 part primitives. The

following two chapters examine two approaches towards part identification.



CHAPTER 4

Geons from Superquadrics

In the previous chapter, we presented a method for part segmentation, given surface

segmentation. The next step is to classify the isolated parts into one of the 12 geon-

like shape classes. The research described below has two goals. Firstly, it attempts

to perform this part identification of isolated parts. Secondly, in doing so, it tests the

shape discrimination capability of superquadric parameters under varying conditions

of image resolution, model elongation, and noise.

We will now attempt to relate two influential families of 3—D shape primitives, su-

perquadrics and geons. As mentioned previously, superquadric surfaces have attracted

considerable interest recently as part models for representation of 3-D objects. Here,

we explore their utility for a different purpose, i.e., for shape discrimination. We in-

vestigate how well the estimated superquadric parameters can reflect certain intuitive

geometric attributes of elongated objects, such as axis shape (straight or bent), type

of cross-sectional edges (straight or curved), and variation of cross-section size along

the axis (constant, tapered, or increasing-and-decreasing). Parameters of the best-

fitting superquadric are estimated for real as well as synthetic range images, obtained

from a large number of vieWpoints, of models belonging to 12 shape classes based on

the above geometric attributes.

Five features derived from the estimated superquadric parameters are used to

78
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distinguish between these 12 shape classes. Classification error rates are estimated

for k-nearest-neighbor and binary tree classifiers. The effects of varying the range

image resolution, noise level, and the model elongation are also investigated. The

results indicate that existing methods of superquadric parameter estimation are quite

sensitive to noise in range values, and also do not wOrk well for “rough,” coarse-

surfaced objects. However, for low-noise real range images of objects with “smooth”

surfaces, numerical features derived from estimated superquadric parameters can be

used with a binary tree classifier to infer qualitative shape properties with almost 80

‘70 reliability. Some of the work described here has earlier been presented in [77].

4.1 Motivation

As mentioned earlier, superquadric surfaces, as well as geons, are recent additions to

the set of 3-D part primitives proposed for object modeling. Aside from this fact,

however, the two differ in almost every possible way. For instance, superquadrics

are precisely defined parametric surfaces, whereas geons are specified by qualitative

geometric properties; superquadrics are usually estimated from range images, while

geons are obtained from line drawings; superquadrics are “fitted” by minimizing some

error-of-fit criteria, whereas geons are recognized from their non-accidental geometric

properties, and so on. Nevertheless, superquadrics and geons have strengths which

mutually complement one another, making it advantageous to relate the two repre-

sentations.

While it seems clear that superquadrics provide a compact, versatile representation

for modeling and visualization (CAD/graphics), their use for 3-D object recognition is

almost unexplored. Since obtaining reasonable estimates of superquadric parameters

is computationally laborious, using the superquadric representation seems worthwhile

only if it can offer significant advantages for object recognition (e.g., by serving as a
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good basis for indexing into the object database).

The above reference to indexing suggests a natural connection with another in-

fluential class of shape primitives, i.e., geons, which are supposed to discriminate

between classes of 3-D shapes. It seems, therefore, that a good test of superquadrics

for shape discrimination (as opposed to just representation) would be to see whether

they can distinguish between geons.

Establishing such a link would be valuable because the superquadric and geon

representations have some mutually complementary strengths. For example, the su-

perquadric representation by itself provides no advantage from the point of view of

indexing into a large database of objects. However, if superquadrics could be classi-

fied into shape categories similar to geons, they would have all the strengths of the

geon representation in indexing into a database. Similarly, a weakness of the “pure”

geon representation is that it does not perform precise geometric modeling, e.g., does

not store size information which would allow it to distinguish between, say, a human

being and a doll. On the other hand, a superquadric representation would capture

these “numerical” shape differences and produce a precise geometric model.

The superquadric representation by itself cannot distinguish between all the sym-

metry attributes relevant to geons. This is because undeformed superquadrics have a

cross-section with at least reflection symmetry, and deformations such as tapering or

bending do not distort the cross-section. Hence, we have tried to at least discriminate

between a set of only 12 geon classes (ignoring symmetry). This leaves 3 geometric

properties to be detected: edge shape, axis shape, and type of cross-section sweeping

function.

This chapter does not deal with part segmentation, which is a separate issue

[31, 70], and has been discussed in Chapter 3. Rather, it focuses on a possible subse-

quent step, i.e., classifying the individual parts into one of 12 geon-like shape classes.

We are concerned with the sensitivity to shape property of estimated superquadric
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parameters, i.e., their capability to reliably discriminate between shape properties of

the isolated parts.

The existing literature on superquadrics does not address this issue, and it is

not at all obvious that such shape discrimination can in fact be done. For instance,

estimation methods may yield superquadric parameters which minimize some error

criterion (e.g., least squares), and which may appear even visually to be a “good”

overall fit. Yet, the sensitivity of one or more of the estimated parameters to the

qualitative shape properties may be too low (or too high) for their successful use

as features for reliable shape classification. Besides attempting shape classification

based on the estimated parameters, this is also the first study which performs an

analysis of superquadric parameter estimation over a large number of range images

taken from many different viewpoints, while varying three other relevant factors (noise

level, object elongation, and image spatial resolution).

The remaining parts of this chapter are organized as follows: Section 4.2 dis-

cusses the relationship between superquadrics and geons. Section 4.3 justifies the

choice of features to be used by the statistical classifiers, and explains the design

and methodology of experiments performed. Section 4.4 presents the results of our

classification experiments, and Section 4.5 discusses conclusions which can be drawn

from the experimental results and summarizes this chapter.

4.2 Relating Superquadrics and Geons

As argued earlier, it would be advantageous to relate superquadrics and geons. But,

do the superquadric parameters contain enough information, at least theoretically, to

distinguish between the shape attributes relevant to geons? The answer, in general,

is negative, because not all geons can be modeled by superquadrics (with possible

bending and tapering). All elongated, convex superquadrics are geons, but not all
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geons. are superquadrics. (Non-convex superquadrics, with shape parameters 6 > 2,

would more naturally be modeled as a Boolean combination of simpler geons). Both

superquadrics and geons are classes of generalized cylinders, but the specification of

a geon is less restrictive. Superquadrics are precisely defined mathematical shapes,

whereas the description of a geon, by intention, specifies only 4 qualitative (non-

numerical) shape attributes and is indifferent to other details.

For example, a geon with unsymmetrical cross-section cannot be modeled by a

superquadric. Cross-sections of undeformed superquadrics are necessarily symmetric

at least with respect to reflection. If their :1: and y dimensions (a; and a,) are equal,

they are also symmetric with respect to 90° rotation. Bending and linear tapering

are two deformations commonly applied to superquadrics, which affect the symmetry

attributes of the object as a whole. However, these operations do not affect the

symmetry attributes of the cross-section. We could try to formalize more complex

deformations, such as warping, shearing, etc. in order to distort the cross-sections

themselves, and thus to model a larger variety of geons. But this would increase the

number of parameters which need to be estimated from range data to fully specify

the deformed superquadric.

Since every elongated, convex superquadric is a geon, whereas not every geon can

be modeled by a superquadric, it is clear that elongated, convex superquadrics are a

subset of geons. Consequently, in general, the superquadric parameters will not suf-

fice to model or discriminate between all geons. Nevertheless, deformed superquadrics

can model most of the geons that are commonly encountered in industrial and house

hold objects. For this reason, it is still worth exploring the utility of superquadric

parameters for Shape discrimination.
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4.3 Experiments in Shape Discrimination

The Objective in these experiments is, primarily, to evaluate the utility of the su-

perquadric representation for discriminating the 12 classes of 3-D parts shown in

Figures 3.1 through 3.6. We attempted to do this by-first estimating parameters of

superquadrics which best fit the object in the given range image, deriving a set of

features from the estimated parameters, and then using standard statistical pattern

recognition methods (k-nearest-neighbor and binary tree clasSifiers) for classifying the

given shape into one Of the known categories. We also tested the effects of (a) using

range images of different resolutions to estimate the superquadric parameters, and (b)

using objects which are ”elongated” to different extents. Our initial experiments with

real range images used hand-carved objects with rough, “noisy” surfaces. In order to

understand/explain the results of these experiments, we also studied the effect of (c)

adding varying levels of noise to the range images.

4.3.1 Choice of Features

FolloWing the formalism of Solina and Bajcsy [81], 15 parameters must be estimated

from a range image of a bent, tapered superquadric at arbitrary location and orien-

tation. Of these, only 8 are relevant for the purposes of shape discrimination: the

dimensions along x, y, and z axes, a,, a,,, and a,; the shape parameters 61 and 62; co-

efficients for linear tapering, k; and Icy; and the radius of bending, r. Of the remaining

7 parameters, 6 specify the estimated position and orientation of the superquadric,

which is irrelevant to its shape. The seventh unused parameter estimates the angle of

bend in case of superquadrics deformed by bending. However, we can detect bending

using other parameters, as explained below.

By convention, the object is oriented with its longest dimension along the z-axis. It

is clear that the ratio r/a, indicates the extent to which the superquadric is bent. The
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parameter 62 determines whether the cross-sectional edges are straight or curved. The

nature of the cross-section sweeping function is more complicated, depending on 61,

It,” and Icy. In the absence of tapering, the object has almost “constant” cross-section

size if q is close to zero. As 6, increases, the cross-section size becomes “increasing-

and-decreasing”. The cross-section size is “increasing” (or “decreasing”) if 61 is zero

and at least one of the tapering coefficients is non—zero. Hence, a set of 5 features

is selected from the superquadric parameters for our 12—class shape discrimination

problem: r/az, 61, 62, k,, and It”.

The superquadric representation is non-unique in the sense that the same shape

may be represented by more than one set of parameters. For example, a “square”

cross-section (e = 0) can also be interpreted as a “diamond-shaped” cross-section

(e = 2), rotated by 45°. Such ambiguities do not arise here because the estimation

procedure always yields 5 parameters within the range [0, 1].

4.3.2 Design of Experiments

Experiments were performed using synthetic as well as real range images. The syn-

thetic images are useful because they are taken from objects designed with a CAD

modeling system, allowing exact control over the elongation and other shape at-

tributes. Ignoring the symmetry attribute, there are 12 shape classes corresponding

to the “collapsed” set of geons.

Each classification experiment was repeated with l-nearest neighbor (l-nn), 3-

nn, 5-nn, and binary tree classifiers. K-nearest-neighbor classifiers determine the 1:

training patterns that lie closest in the feature space to a test pattern, and assign it to

the category with the largest number of representatives among those neighbors [23].

The binary tree classifier is based on the method proposed by Sethi and Sarvarayudu

[79]. It hierarchically partitions the feature space, at each stage using hyperplanes

parallel to the feature axes. A single feature is used at each nonterminal node of the
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decision tree. The feature to be used at each node, and the corresponding threshold,

are determined by maximizing an information-theoretic measure, the “average mutual

information gain.”

Error rates for the k-nearest—neighbor as well as binary tree classifiers were ob-

tained using the “holdout” method [23], in which part ”of the available patterns (90%

in our case) are used for training, and the remaining part is held back for testing the

classifier. This method is known to yield a pessimistic estimate of classification error.

Experiments with Synthetic Range Images

We constructed models corresponding to the 12 shape classes using GEOMOD, a ge-

ometric CAD solid modeling package. GE0MOD is one component of I-DEAS (Inte-

grated Design and Engineering Analysis System) [87], which, besides object modeling,

also has finite element analysis, database manipulation, and drafting capabilities. Fig-

ures 4.1 and 4.2 show synthetic range images of the 3-D shapes modeled using IDEAS.

For ease of viewing, the range images are rendered as pseudo-intensity images.

Three models of different “elongations” were constructed for each of these 12 shape

classes. The “axis bent” shapes are actually piecewise linear, as seen in Figure 4.2.

By “elongation”, we mean the ratio of the longest axial dimension (by convention,

oriented along the z-axis) to the larger dimension along either of the other two axes

(x or y) at the mid-point. The three models for each shape class have elongations of

1:2, 1:4, and 1:6. 90 synthetic range images are generated, corresponding to viewing

each of these models from 30 different viewpoints. (For each viewpoint, range images

are taken at resolutions of 64 x 64, 128 x 128, and 256 x 256). This gives a total

of 270 viewpoints for each shape class, 90 from each of the 3 models. One can also

categorize this data as 90 images from each of the three resolutions.

Given these 270 synthetic range images for each of the 12 shape classes, we first

estimated the superquadric parameters for each image using Solina and Bajcsy’s
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Figure 4.1. Synthetic range images: shapes with straight axes
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Figure 4.2. Synthetic range images: shapes with bent axes
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method. In practice, this procedure does not always quickly converge. In such cases,

we used the current estimate after 100 iterations. We then performed classification

experiments as follows:

1. Overall shape discrimination: Using all the 270 pattern vectors for the 12 shape

classes, attempt to discriminate between:

(a) parts with straight and curved axes

(b) parts with straight and curved cross-sectional edges

(c) parts with constant, increasing, and increasing-decreasing cross-sections

(d) all twelve parts

2. Effect of range image resolution: Perform the same four experiments as in (1),

separately for the patterns derived from 64 x 64, 128 x 128, and 256 x 256

range images (90 patterns for each resolution are available for each of the 12

parts).

3. Eflect of object elongation: Perform the same four experiments as in (l), sepa-

rately for the patterns derived from parts with elongations of 1:2, 1:4, and 1:6.

(90' patterns for each elongation are available for each of the 12 parts).

Preliminary experiments with real range images led us to realize that surface im-

perfections (“roughness”) have a very significant effect on the quality Of superquadric

parameter estimates. Consequently, we attempted to study the effect of surface im-

perfections by modeling them as “noise.” The experiments described earlier all made

use of noise-free synthetic images. We then studied the mean and standard deviation

of the estimated parameters with two different levels of zero-mean additive Gaussian

noise. Noise was added to the z-component of the synthetic images. The standard

deviations of the two levels of noise were 2.5 and 5.0 (about 1.0% and 2.0%, respec-

tively, on a scale of 255. Range values in the images were quantized between 0 and
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255). These experiments with noisy images were done only for the “best” condition

of the other factors, i.e., for objects of elongation 1:6 and image resolution of 256 x

256.

Experiments with Real Range Images

Each of the 12 parts was constructed using easily carvable material such as potatoes

and sweet potatoes (Figure 4.3). No attempt was made to achieve a very smooth and

even surface finish, since geons are not supposed to be sensitive to such details.

Range images were then obtained by viewing each of these 12 parts from 20

arbitrary vieWpoints using a Technical Arts 100X White scanner [88]. Figure 4.4

shows typical range images of these parts, obtained with the White scanner. Since

the White scanner obtains depth maps by the principle of triangulation, it cannot

compute the depth at points where the laser stripe is invisible to the camera, whether

due to occlusion or due to the intensity of the reflected laser stripe being insufficient

at some surface orientations. Such points on the object are displayed as black pixels

in Figure 4.4. From some viewpoints, entire surfaces of the models may thus be

missing, reducing the amount of depth data available for estimating the superquadric

parameters.

These real range images are of resolution 240 x 240. Parameters were estimated as be-

fore for the best—fitting superquadrics, and classification experiments were performed

to discriminate between:

1. parts with straight and curved axes

2. parts with straight and curved cross-sectional edges

3. parts with constant, increasing, and increasing-decreasing cross-sections

4. all 12 parts
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Figure 4.3. Hand-carved geons with “rough” surface finish
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Figure 4.4. Real range images of “rough” hand-carved geons
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As mentioned earlier, surfaces of these hand-carved objects were not of smooth

finish. Further, over the 2 days when imaging was in progress, the surface quality

became somewhat rougher due to drying out of the vegetable material, resulting in

uneven surface deformations. Based on the poor results of these initial experiments

with real range data, we surmised that surface coarseness or roughness, as well as

“missing” data (due to the reflected laser stripe being insufficiently intense at some

orientations) substantially reduced the accuracy of estimated superquadric parame-

ters.

Hence, the above experiments were also repeated with real range images taken

from models with relatively smooth, even surface quality. Some of these were “man-

ufactured” objects, while others were carved by hand from soap bars. The advantage

of using this material was that surfaces could be made smooth and even by washing

the finished model in water. Range images were then obtained by viewing each of

these 12 models from 10 arbitrary vieWpoints using the White scanner. Figure 4.5

shows typical range images of these models.

4.4 Experimental Results

We report the results of superquadric parameter estimation, as well as shape classi-

fication based on features extracted from the estimated parameters.

4.4.1 Parameter Estimation

As described earlier, 5 features were chosen with the expectation that their values

would reflect the three shape attributes of interest, i.e., axis shape, type of cross-

section edges, and variation of cross-section size along the principal axis of a part.

In this subsection, for each of the 12 parts, we will discuss the “ideal” values of

the 5 features, and present the values actually obtained by superquadric parameter
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Figure 4.5. Real range images of some “smooth” geons
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estimation.

“Proper” Values for Features

It would be useful to indicate the “proper” values for each of the five features which

have been derived from superquadric parameter estimates. The parameter £1 gov-

erns the shape of the superquadric along longitudinal planes, i.e., for planes passing

through the principal axis. The primary effect of this parameter, therefore, is on the

variation of cross-section size along the principal axis. For constant cross-section ob-

jects, 61 should be close to 0.0, indicating a rectangular profile in longitudinal planes.

At the same time, It, and I:,, should also be close to 0.0. For objects with tapering

cross-section, 61 should be close to 0.0, but either 1:3, or Icy, or both, should be signif-

icantly higher than 0.0. By experience, we have observed that estimates of 61 which

are less than 0.3 can be considered “close to 0.0,” i.e., they correspond to a more or

less rectangular profile in longitudinal planes. “High” estimates of £1 (closer to 1.0)

indicate an increasing-and-decreasing profile in longitudinal planes, corresponding to

an increasing-and-decreasing cross-section size along the principal axis. Estimates

of It; and It,, less than about 0.25 or 0.3 can be considered “close to 0.0,” i.e., they

correspond to non-tapering longitudinal profiles.

The parameter 6; governs the shape of the superquadric along latitudinal planes,

i.e., for “cross-sectional” planes perpendicular to the principal axis. This parameter

primarily affects the nature of the cross-sectional edges, i.e., straight-edged or curved-

edged cross-section. Again by experience, we have observed that estimates of 62 which

are less than 0.3 can be considered “close to 0.0,” i.e., they correspond to a more or

less straight-edged profiles in cross-sectional planes.

The feature r/a, governs the straightness of the principal axis. By experience,

we have observed that estimates of r/a, less than about 6.5 correspond to bent-axis

objects.
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Actual Values of Estimated Features

For each of the 12 parts, listed using the above notation, Tables 4.1 through 4.5 show

the mean and standard deviation for estimates of the five features 61, 62, It,” Icy, and

r/a,, respectively. These statistics are presented for real range images as well as for

synthetic range images with varying levels of noise. It is useful to view these tables in

conjunction with the confusion matrices presented in Tables 4.12 through 4.14, which

indicate the nature of misclassifications for each of the 12 parts. “Unexpectedly” low

or high values of the parameter estimates (shown in Tables 4.1 through 4.5) explain

several of the striking kinds of misclassifications.

Table 4.1 shows the mean and standard deviation for estimates of the superquadric

parameter Q. The first three columns give statistics from synthetic range images with

additive Gaussian noise of standard deviations (a) 0.0, 2.5, and 5.0, respectively.

The last two columns show statistics from real range images of the hand-carved and

“smooth”-surfaced objects, respectively. Tables 4.2 to 4.5 show similar statistics for

the other four features, i.e., 62, kt, Icy, and r/az.

In general, superquadric parameter estimates for synthetic images with low values

of noise a (0.0 and 2.5) are similar, and close to the values we would expect. The

standard deviations are quite large, indicating that parameter estimates vary consid-

erably depending on the viewpoint. For example, in column 2 of Table.4.l (0:0.0),

standard deviations for the Shape classes b-c-id and b-s-id are quite large. This is

because from certain viewpoints, these shapes (with increasing-and-decreasing cross-

section size) are mistaken for shapes with a bent axis and constant cross-section size.

On the other hand, in the same column, the standard deviation is almost zero for

objects with a straight axis.

The superquadric parameter estimates are poorer for synthetic images with a

higher noise a (5.0), as well as for real range images from the “rough” objects. This



96

Table 4.1. Mean and standard deviation of estimates of £1 for the 12 parts

 

 

 

 

      

Shape class Synthetic data with difErent noise levels Real data

a = 0.0 o = 2.5 a = 5.0 Hand-carved “Smooth”—

Mean, SD. Mean, SD. Mean, SD. Mean, SD. Mean, SD.

b-c-co 0.10, 0.02 0.13, 0.07 0.19, 0.20 0.16, 0.08 0.12, 0.03

b-c-id 0.49, 0.42 0.66, 0.43 0.23, 0.29 0.33, 0.23 0.86, 0.10

b-c-t 0.17, 0.12 0.17, 0.11 0.28, 0.30 0.14, 0.13 0.20, 0.03

b-s-co 0.11, 0.04 0.10, 0.00 0.16, 0.19 0.17, 0.13 0.10, 0.00

b-s-id 0.35, 0.26 0.23, 0.17 0.27, 0.29 0.49, 0.33 0.32, 0.03

b-s-t 0.19, 0.11 0.16, 0.14 0.26, 0.29 0.34, 0.29 0.21, 0.04

s-c-co 0.10, 0.00 0.11, 0.02 0.13, 0.05 n 0.21, 0.20 0.10, 0.00

s-c-id 1.00, 0.00 0.97, 0.07 0.21, 0.22 0.77, 0.25 1.00, 0.00

s-c-t 0.10, 0.02 0.12, 0.10 0.14, 0.07 0.39, 0.28 0.27, 0.17

s-s-co 0.11, 0.07 0.10, 0.01 0.12, 0.05 0.23, 0.24 0.10, 0.00

s-s-id 1.00, 0.00 0.96, 0.16 0.28, 0.35 0.70, 0.27 0.33, 0.28

s-s-t 0.11, 0.04 0.13, 0.11 0.12, 0.04 0.29, 0.27 0.13, 0.05  
 

gives a forewarning that part identification based on these parameter estimates will be

poor for the higher-noise synthetic images as well as for the real images of hand-carved

objects with “rough” surfaces. In fact, classification error rates for the higher-noise

(a = 5.0) synthetic range images are similar to those for real range images of the

“rough” surfaced objects.

For most of the parts, parameter estimates from real range images of their

“smooth” models are generally similar to those from the low-noise synthetic images.

Ideally, the parameter 51 should be close to zero for objects whose cross-section

size is constant or tapering along the axis, and larger for objects with increasing-and-

decreasing cross-section size. The mean values of £1 for low-noise synthetic images

generally conform to this expectation, as can be seen from Table 4.1. Empirically, if

61 > 0.3, the superquadric cross-section has a distinctly “increasing-and-decreasing”

appearance.

The parameter 6; should ideally be close to zero for objects with “straight” cross-

section edges, and close to 1.0 for objects with “curved” cross-section edges. As can
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Table 4.2. Mean and standard deviation of estimates of £2 for the 12 parts

 

 

 

 

Shape class Synthetic data with different noise levels J] Real data _‘

a = 0.0 o = 2.5 0 = 5.0 Bland-carved “Smooth”

Mean, SD. Mean, SD. Mean, SD. Mean, SD. Mean, SD.

b—c-co 0.72, 0.39 0.71, 0.36 0.33, 0.18 0.20, 0.18 0.28, 0.36

b-c-id 0.91, 0.16 0.84, 0.08 0.37, 0.21 0.45, 0.35 0.95, 0.05

b-c-t 0.57, 0.39 0.68, 0.31 0.31, 0.20 0.50, 0.28 0.94, 0.05

b-s-co 0.10, 0.00 0.10, 0.00 0.19, 0.16 0.21, 0.21 0.10, 0.00

b-s-id 0.10, 0.00 0.10, 0.00 0.17, 0.17 0.47, 0.40 0.14, 0.02

b-s-t 0.11, 0.03 0.13, 0.10 0.16, 0.11 0.27, 0.28 0.19, 0.09

s-c-co 1.00, 0.00 0.92, 0.07 0.42, 0.15 0.84, 0.14 0.98, 0.03

s-c-id 0.99, 0.05 0.83, 0.10 0.37, 0.21 0.83, 0.13 0.84, 0.08

s-c-t 0.98, 0.06 0.85, 0.18 0.39, 0.17 0.78, 0.18 0.93, 0.07

s-s-co 0.10, 0.00 0.10, 0.00 0.26, 0.30 0.28, 0.27 0.10, 0.00

s-s-id 0.10, 0.00 0.10, 0.00 0.21, 0.24 0.60, 0.39 0.15, 0.03

s-s-t 0.13, 0.16 0.10, 0.00 0.26, 0.32 0.30, 0.35 0.18, 0.07       
be seen from columns 2 and 3 Of Table 4.2, this expectation is borne out quite well

for synthetic images with low or no noise.

Estimates for k: and k,, should ideally be close to zero for non-tapering parts,

and distinctly higher for tapering parts. The deterioration in estimates of these two

parameters is particularly striking as the noise level increases (columns 4 and 5 of

Tables 4.3 and 4.4).

For the feature r/az, low values indicate a bent-axis part, while high values indicate

a straight axis. While estimates of this feature are best for the low noise images, it is

in fact estimated quite well even for the higher noise synthetic images and real images

of the hand-carved models.

4.4.2 Part Discrimination

Using all 5 features together, the 12-category classification results using binary tree

classifiers and k-nearest-neighbor (k-nn) classifiers were strikingly different. In gen-

eral, the binary tree classifier performed much better. This is expected, since it
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Table 4.3. Mean and standard deviation of estimates of k, for the 12 parts

 

 

 

 

 

Shape class Synthetic data with different noise levels Real data 91—]

o = 0.0 o = 2.5 a = 5.0 Hand-carved “Smooth

Mean, SD. Mean, SD. Mean, SD. Mean, SD. Mean, SD.

b-c-co 0.07, 0.09 0.06, 0.08 0.27, 0.16 0.32, 0.35 0.17, 0.14

b—c-id 0.13, 0.11 0.11, 0.11 0.38, 0.30 0.26, 0.20 0.06, 0.04

b-c-t 0.18, 0.09 0.21, 0.11 0.30, 0.21 0.28, 0.21 0.29, 0.13

b—s-co 0.04, 0.07 0.09, 0.13 0.22, 0.18 0.25, 0.32 0.04, 0.03

b-s-id 0.08, 0.08 0.10, 0.08 0.25, 0.19 0.43, 0.31 0.06, 0.06

b-s-t 0.23, 0.26 0.33, 0.25 0.35, 0.29 0.36, 0.36 0.35, 0.24

s-c-co 0.07, 0.06 0.04, 0.07 0.24, 0.20 0.24, 0.22 0.29, 0.17

s-c-id 0.30, 0.21 0.22, 0.17 0.60, 0.34 0.27, 0.10 0.55, 0.27

s-c-t 0.51, 0.05 0.39, 0.10 0.31, 0.20 0.45, 0.21 0.32, 0.09

s-s-co 0.03, 0.05 0.06, 0.15 0.30, 0.20 0.30, 0.33 0.05, 0.02

s-s-id 0.30, 0.25 0.26, 0.21 0.60, 0.28 0.41, 0.26 0.15, 0.08

s-s-t 0.46, 0.09 0.37, 0.18 0.32, 0.21 0.49, 0.29 0.23, 0.24     
 

Table 4.4. Mean and standard deviation of estimates of It, for the 12 parts

 

 

 

 

 

Shape class Synthetic data with different noise levels Real data

a = 0.0 a = 2.5 o = 5.0 Hand-carved “Smooth”-fl

Mean, S.D. Mean, SD. Mean, SD. Mean, SD. Mean, SD.

b-c-co 0.07, 0.11 0.09, 0.12 0.36, 0.21 0.35, 0.28 0.19, 0.15

b-c-id 0.13, 0.10 0.11, 0.11 0.35, 0.24 0.22, 0.25 0.15, 0.08

b-c—t 0.20, 0.10 0.20, 0.10 0.26, 0.20 0.37, 0.30 0.27, 0.13

b-s-co 0.05, 0.08 0.07, 0.11 0.25, 0.20 0.35, 0.34 0.02, 0.01

b-s—id 0.10, 0.12 0.09, 0.09 0.31, 0.24 0.36, 0.30 0.14, 0.10

b-s-t 0.35, 0.33 0.27, 0.27 0.40, 0.36 0.30, 0.30 0.17, 0.17

s-c-co 0.12, 0.08 0.04, 0.05 0.39, 0.19 0.26, 0.22 0.21, 0.19

s-c-id 0.33, 0.19 0.24, 0.18 0.58, 0.25 0.15, 0.10 0.46, 0.31

s-c-t 0.49, 0.06 0.34, 0.10 0.29, 0.18 0.39, 0.23 0.27, 0.13

s-s-co 0.05, 0.13 0.02, 0.02 0.33, 0.19 0.15, 0.21 0.06, 0.04

s-s-id 0.28, 0.24 0.21, 0.21 0.49, 0.35 0.30, 0.24 0.24, 0.23

s-s-t 0.45, 0.09 0.42, 0.20 0.29, 0.16 0.27, 0.26 0.41, 0.21      
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Table 4.6. Overall classification error rates (in %) for synthetic range data

100

 

 

 

Experiment l-nn 3-nn Tree

Axis - straight or curved? 7.1 6.8 6.8

0.3. edges — straight or curved? , 23.1 24.4 7.4

C.S. size - const., tapered, or incr.-&-decr.? 33.6 38.0 10.0

12-class 49.1 53.1 13.8     
 

Table 4.7. Classification error rates (in %) by range image spatial resolution

 

 

 

         

 

   

Experiment 64 x 64 128 x 128 256 x 256

1-nn 3-nn Tree 1-nn 3-nn Tree 1-nn 3-nn Tree

Axis 17.6 13.9 7.9 4.6 5.6 7.6 1.9 1.9 5.1

CS edges 29.6 28.7 8.8 19.4 17.6 7.5 20.4 22.2 4.3

CS sweep 39.8 43.5 11.6 41.7 38.9 9.5 38.9 44.4 10.6

12-class 60.2 66.7 15.9 50.0 55.6 13.2 50.9 50.9 13.7
 

 

discriminates the 12 classes hierarchically instead of performing a one-shot classifi-

cation like the k-nn classifiers. Classification error rates for synthetic data (models

constructed using IDEAS) were estimated using the holdout method. Error rates

were higher (or comparable) for 5-nn classifier, and are therefore not reported. Table

4.6 shows the overall error rates using all the 270 patterns for each of the 12 parts. It

can be seen that axis shape (straight or curved) is by far the most reliably discrimi-

nated shape attribute. 12-category classification using the tree classifier is quite good

(86.2% correct), and is far better than the performance of k-nn classifiers.

The effect of range image spatial “resolution” on classification error is shown in

Table 4.7. We would expect the features derived from lower-resolution images to have

a higher error rate, both because less range data are available for estimating the best-

fitting superquadric, as well as because the range values themselves are less precise.

The results do generally conform to this expectation. Estimates of the parameters 1:,

and k, seem to be particularly sensitive to the image spatial resolution. Overall, the

results are not very different for images of resolution 128 x 128 and 256 x 256. Both
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Table 4.8. Classification error rates (in %) by model “elongation”

 

 
 

  

           

Experiment 1 : 2 1 : 4 1 : 6

1-nn 3-nn Tree l-nn 3-nn Tree l-nn 3-nn Tree

Axis 13.9 8.3 7.5 6.5 5.6 6.2 6.5 0.9 3.5

CS edges 19.4 19.4 7.2 32.4 28.7 6.8 25.9 27.8 8.1

CS size 30.6 29.6 10.3 43.5 46.3 10.9 38.0 34.3 9.8

12-class 48.1 46.3 14.8 60.2 62.0 i 13.5 51.9 52.8 13.3
 

Table 4.9. 12-class error rates (in %) for tree classifier

 

 

  

128 x 128 256 x 256

Elongation 1:4 12.5 12.8

Elongation 1:6 12.8 12.2  
 

 

of these cases are noticeably better than for resolution 64 X 64.

As the elongation of the parts increases, we would expect to obtain a better fit of

superquadric surfaces to the “increasing-and-decreasing” class of parts. Hence, error

rates should decrease with increasing elongation. Further, the axis shape (straight

or bent) should also be more reliably estimated. These predictions are borne out, on

the whole, by the data in Table 4.8. The results are quite similar for models with

elongations of 4 and 6 units.

It is clear that the tree classifier performs much better than the k-nn classifiers, and

that error rates decrease with increasing image resolution and increasing elongation

of the models. Hence, Table 4.9 shows only the overall (12-category classification)

results for the tree classifier, using only the data from images of resolutions 128 x 128

and 256 x 256, and model elongations 1:4 and 1:6. Even with our rather simple

choice of features, correct classification of about 87% can be achieved for the l2—class

problem.

For the real range images, Table 4.10 shows the error rates for classification of the

rough-surfaced objects. Table 4.11 gives the corresponding results for the “smooth-
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Table 4.10. Overall classification error rates (in %) for real range data from “rough”

 

 

 

models

Experiment l-nn 3-nn Tree

Axis - straight or curved? 15.4 12.5 12.5

C.S. edges - straight or curved? 33.8 32.1 33.3

C.S. size - const., tapered, or incr.-&-decr.? 53.3 58.3 50.0

12-class ' 64.2 67.1 70.8    
 

Table 4.11. Overall classification error rates (in %) for real range data from “smooth”

 

 

 

models

Experiment l-nn 3-nn Tree

Axis - straight or curved? 8.3 13.3 15.0

C.S. edges - straight or curved? 28.3 36.7 11.7

C.S. size - const., tapered, or incr.-&-decr.? 28.3 31.7 20.0

12-class 43.3 55.0 23.3    
 

 

 

surfaced” objects. The real data itself was used both for training and testing, and the

error rate is estimated by the “holdout” method, as before. The error rate is much

higher for the rough-surfaced objects than for the synthetic data. Classification error

is considerably less for the smooth-surfaced objects, though still higher than for the

synthetic images.

4.4.3 Confusion Matrices

Table 4.12 gives the confusion matrix for 12-category classification of the synthetic

images. For each row in the confusion matrix, the leftmost column shows the true

part identity. The remaining 12 columns show the percentage of cases where that part

was classified as each of the 12 parts. The most striking fact is that classification is

much better for parts with straight axis. In fact, we get 100% correct classification for

4 of the 6 straight-axis objects. For the bent—axis parts, most of the misclassifications

are with respect to variation of cross-section size along the axis. The other two shape

attributes are much less often misclassified.
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Table 4.13 shows the confusion matrix for real range images of the rough-surfaced

models. As in the case of synthetic images, classification is distinctly better for the

straight-axis objects. Much of the misclassification still tends to be with respect

to variation of cross-section size, though this effect is not so pronounced as for the

synthetic images.

Table 4.14 shows the same statistics for range images of the “smooth-surfaced”

models. Some strange effects can be noticed here. The b-c-co part is very poorly

classified; most of the misclassification is in the straight-edged/curved-edged cross-

section attribute. For this part, whose visual appearance is unmistakably curved-

edged, Table 4.2 does indeed show a very low estimate for the parameter 6:. In fact,

the b-c-co part accounts for most of the error in the entire 12-category classification

for all the images. If we eliminate this part, ll-category classification with real data

" can be achieved with about 89% accuracy.

The other striking fact is that two straight-axis parts, s-c-id and s-s-id, tend

to be mistaken for their curved—axis counterparts. We can see from Table 4.5 that

mean values of the parameter r/az are very low for these two parts, explaining the

misclassification.

4.5 Summary

The research presented in this chapter had two goals: firstly, to develop a method to

identify the parts previously isolated by performing part segmentation; and secondly,

to test the utility of superquadric parameters for part discrimination. Superquadrics,

as well as geons, have recently been proposed as 3—D part primitives for object rep-

resentation. In the case of superquadrics, most of the literature has been devoted to

formalizing various deformations, estimating the parameters reliably, and formulating

measures of goodness-of-fit.
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The amount of computational effort required to estimate the superquadric pa-

rameters leads us to desire that they should be useful not merely for the accurate

and concise representation of 3-D objects, but also towards their recognition. As a

possible step in this direction, we have tried to use superquadrics for shape discrimi-

nation. Specifically, we represented 3-D parts by the best-fitting superquadrics, and

attempted to use the superquadric parameters to classify the part into one of 12 broad

classes of shapes similar to geons. Relating superquadrics to geons is advantageous

because of the complementary strengths of these two representations.

The experimental results indicate that qualitative shape attributes can be inferred

from superquadric parameters quite reliably (about 87% accuracy for synthetic im-

ages; about 77% for real images) using a hierarchical (binary tree) classifier, even with

a rather simple choice of features. In fact, 11-category classification of the “smooth-

surfaced” real models (with only 11 shape types) could be done with about 89%

accuracy! The worst-case time complexity of this classifier is a constant, depending

on the depth of the decision tree constructed using the training patterns. Estimates

of superquadric parameters are highly dependent on the viewpoint. Estimates may

be very poor for parts with “rough” surfaces, or if the range values contain even a

small amount of noise.

The future of superquadrics as part primitives for 3-D object representation de-

pends on their effectiveness in facilitating object recognition or indexing. We have

suggested a possible method of using superquadric parameters for this purpose. Build-

ing a system which performs generic classification of objects using a parts-based su-

perquadric representation would be an interesting goal for future research. In the

next chapter we will present another method for performing part identification.



CHAPTER 5

Direct Tests of Shape Attributes

Chapter 3 described a method to perform part segmentation by using the catalog of

part views, and Chapter 4 presented one approach for classifying isolated parts as

one of the 12 part primitives. Here we will examine an alternative method for part

identification.

Having constructed the attributed SAG of a sensed image and performed part

segmentation by referring to the catalog of part views, we are left with a number of

hypothesized parts as well as hypotheses about their identity. Hypotheses about part

identity are obtained when a subgraph of the scene SAG partially matches any view

of any part in the catalog. We can eliminate the incorrect hypotheses about part

identity by directly testing shape attributes of the part.

It would therefore be very useful to develop tests to directly check the shape at-

tributes which define our 12 geon-like generic parts. We saw that features derived

from estimated superquadric parameters can be used with fairly high accuracy to

determine the three shape attributes of our 12 geon-like parts. Nevertheless, the con-

fusion matrices in Chapter 4 indicate some consistent types of misclassification of part

identity. For example, the b-c-co part is consistently misclassified as b-s-co. Similarly,

the s-s-id and s-c-id parts tend to be misclassified as their curved-axis counterparts.

For this reason we would like to develop tests for directly testing shape attributes,
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which are independent or at least partially independent of the superquadric-based

method.

We have developed two such tests which directly check two of the three shape

attributes which define our set of 12 geon-like parts, i.e., axis shape and cross-section

size along the axis. The third shape attribute, i.e., type of cross-sectional edges, is

obtained implicitly by determining the other two shape attributes and accordingly

ruling out hypotheses about part identity.

5.1 Variation of Cross-section Size

To test cross-section size variation along the axis, we compute the histogram of the

angles of the surface normals with respect to the axis direction. The angle values

range from 0° to 180°.

In the case of constant cross-section, this distribution should be concentrated

near 90°, since normal directions should be mostly perpendicular to the axis. In the

case of objects with increasing cross-section, the angles should be concentrated some

distance away from 90° (either greater than or less than 90°). “Finally, for objects of

increasing-decreasing cross-section, the angles should be spread along both sides of

90°). The rationale behind this heuristic is illustrated in Figure 5.1.

Figures 5.2 through 5.4 show three parts with constant, tapering, and increasing-

decreasing cross-sections, respectively. From Figure 5.2, it is visually apparent that

normal directions on the side surfaces of this constant cross-section part are close to

90° with respect to the principal axis (direction along which the part is elongated).

Similarly, the tapering part in Figure 5.3 shows one entire side surface for which

normal directions are clearly at a non-perpendicular angle with respect to the principal

axis. Lastly, Figure 5.4 shows that the part with increasing-and-decreasing cross-

section has one entire side along which the normal directions spread from less than
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Figure 5.1. Directions of principal axis and surface normals



111

 
Figure 5.2. Part with constant cross-section. (a) Range image of the part; (b) Normal

directions on surfaces of the part.

90° to greater than 90° with respect to the principal axis.

These observations about angle directions are not valid for the “end” surfaces of

parts. Hence, it is important that only the side surfaces (not the end surfaces) should

be considered for the histogramming of surface normal directions described above.

Hence we use a heuristic which ignores normal directions less than 45° or greater

than 135° with respect to the axis, since they may belong to end surfaces.

The following thresholds are used: if at least 80% of the angles are either between

45° and 90°, or between 90° and 135° (i.e, they are concentrated on one side, either

less than or greater than 90°), the cross-section is assumed to be increasing. Else, if

at least 80% of the angles lie within 80° and 100° (i.e., they are concentrated near

90°, the cross-section is assumed to be constant. Else, the cross-section is assumed to
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Figure 5.3. Part with increasing cross-section. (a) Range image of the part; (b)

Normal directions on surfaces of the part.
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Figure 5.4. Part with increasing-and—decreasing cross-section. (a) Range image of the

part; (b) Normal directions on surfaces of the part.
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be increasing-and—decreasing. The percentages mentioned are over only those points

whose normals are not ignored due to the heuristic.

5.1.1 Principal Axis Orientation

As described above, our direct test of cross-section size variation requires first identi-

fying the principal axis of the part. We find the principal axis of a part by estimating

the best-fitting superquadric model for it. The advantage of finding the axis by this

method is that it can be performed for bent-axis as well as straight-axis parts. Hence,

the principal axis can be estimated even if it is not straight. The disadvantage is that

a superquadric fit is usually not very reliable if only a few small surface patches are

present. A reliable superquadric fit requires general vieWpoint as well as the visibility

of a large fraction of the object being fitted.

Once the best~fitting superquadric is estimated, orientation of the principal axis

can be found from the estimated orientation parameters, i.e., the Euler angles 45, w,

and 1/2. The superquadric estimation software uses Z—Y—Z Euler angles. The Z—Y—Z

Euler angles relating two co-ordinate frames A and B with the same origin are defined

as follows: we start with the two co-ordinate frames A and B coincident. Then, we

first rotate B about Z3 by the angle 03, then rotate the new B about the new Y3

by the angle w, and finally rotate the new B about Z3 by the angle t/I. Using the

notation

008015) = Caasinw) = 54

cos(w) = Cw,sin(w) = 5,,

cos(¢) = C¢,sin(1/)) = 3,1,,

the co-ordinates of a point in frame B, PB, can be related to the co-ordinates of that

point in frame A, PA, by the transformation P3 = T - PA, where T is defined by:
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q

C¢°CW'C¢—S¢'S¢ S¢'Cw°C¢+C¢'S./, -Sw°C¢

—C,.C.,.s..—s,.c, arm-swore, 3,6,,

C¢°Sw S¢°Sw Cw

  .. .l

The superquadric estimation software aligns the principal axis with the Z direc-

tion. Hence, the principal axis is parallel to the new Z axis. We are not concerned

with its exact location in space but only with its orientation, since we use it only to

compute the angle between surface normals and the principal axis.

The cross-section variation attribute of the part primitives (cross-section size along

the axis—constant, increasing, or increasing-decreasing) can then be determined from

the angle of the normal direction at each point on the side surfaces, with respect to

the axis direction.

For straight-axis parts, this angle can be directly computed by taking the dot-

product of a unit normal vector with a unit vector oriented along the principal axis.

However, for bent-axis parts the axis direction is different at different points along

the axis. Having computed the normal direction at a given point on the surface,

we would need to know the principal axis direction at that location along the axis.

This is difficult to compute. Instead, we first “straighten” the bent-axis parts by

inverting the bending transformation [81] estimated during the superquadric fit. If

the co-ordinates of a point are (X, Y, Z), its co-ordinates after applying the inverse

bending transformation are given by:

a:=X—cos(a)-(R—r)

y=Y-sin(a)-(R—r)

z=7/k.

where a and k are bending parameters of the fitted superquadric, and R, r, and 7
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are quantities computed from the bending parameters and the initial co-ordinates

(X, Y, Z).

After applying this inverse bending transformation, the angle computation for

bent-axis parts is the same as for straight-axis parts. The decision as to whether a

part has a straight or bent axis is taken by applying the hierarchical tree classifier

with the set of five features described in Chapter 4.

5.2 Axis — straight or bent?

We pointed out that using features derived from superquadric parameters, the s-s-id

and s-c-id parts are often confused with their curved-axis counterparts. Since we

use superquadric fitting to determine the principal axis, obviously the axis estimate

also becomes erroneous because the fitting procedure finds “bent” axes for these two

parts. We have therefore explored the use of intensity data to decide whether the

axis is indeed straight or bent.

Lee and Stockman [58] have developed a method for capturing fused range and

intensity images using the 100X White Scanner. A pair of range and intensity images

is sensed separately and the two are brought into registration by applying a transfor-

mation matrix. The transformation is estimated by initially calibrating the system

using a known object and manually entering the correspondence of several pairs of

image points.

For our experiments we captured 5 pairs of range and intensity images of the

“smooth” models of each of the 4 parts involved in the misclassification of axis shape,

i.e., s-s-id and s-c-id, and the corresponding bent-axis parts, b-s-id and b-c-id. How-

ever, we did not apply the fusion procedure to put the range and intensity images

into registration, because we do not use fused data at any time, i.e., we do not simul-

taneously need registered range and intensity values in the scene.
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The intensity images alone are used to determine whether the part axis is straight

or bent, as follows: first the intensity image is thresholded to get its silhouette. Edges

are detected from the thresholded image, and line segments are fitted to the silhouette

to get a polygonal approximation of the part contour. The silhouette is broken into

pieces at points where the change in direction between adjacent line segments is

“large” (greater than 20°). This breaks the silhouette into several components.

The following simple test for “concavity” of the silhouette is then applied: we

join the end-points of each component and check whether the mid-point of the line

joining the end-points lies inside or outside the object silhouette. If the mid-point

lies outside the silhouette, that component is taken to be concave. If more than 10%

of the total length of the silhouette is thus classified as concave, the entire silhouette

is classified as concave, i.e., the part has a bent axis. Otherwise, the part is assumed

to have a straight axis.

Figure 5.5 shows a straight-axis part and the extracted silhouette. Figure 5.6

shows the polygonal approximation of the silhouette. Similarly, Figure 5.7 shows a

bent-axis part and the extracted silhouette, while Figure 5.8 shows the corresponding

polygonal approximation.

We now briefly explain the polygonal approximation algorithm described by

Pavlidis [66], which we adapted in our implementation. This suboptimal algorithm

divides the data points into groups and approximates each group by a side of a

polygon. For simplicity, the algorithm draws the side of the polygon between the

endpoints of each group rather than searching for the optimal approximation. The

algorithm is essentially a split-and-merge type algorithm. Each time the algorithm

examines a small group of points of size k0, called the hop distance. The algorithm

keeps track of a current line L1, and a new line L2, fitted to two groups of points. If

the angle between L1 and L2 is “small,” the two groups are merged and a line is fitted

to the new larger group. On the other hand, a group of points is divided (split) into
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(b)

Figure 5.5. Intensity image and silhouette of a straight-axis part. (a) Intensity image

of the part. (b) Extracted silhouette of the part.
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Figure 5.6. Polygonal approximation of the straight-axis part.
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Figure 5.7. Intensity image and silhouette of a bent-axis part. (a) Intensity image of

the part. (b) Extracted silhouette of the part.
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Figure 5.8. Polygonal approximation of the bent-axis part.
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smaller groups if the maximum deviation, measured by distance from the fitted line

divided by the length of the line, is “large.” The tolerances for angle and deviation

are specified by parameters A0 and Ad, respectively.

We used kg = 7, A0 = 20°, and Ad = 0.2 in our implementation. These values

were determined by trying different values for the three parameters and visually

evaluating the polygonal approximations for selected images.

Each part description consists of a set of line segments with following attributes:

(I. y, a, I).

where a: and y are the coordinates of the midpoint, a is the angle with respect to

positive x—axis, and l is the length of the segment. We break the contour into separate

components at points where the direction change between successive line segments is

greater than 20° .

5.3 Experimental Results

Initial hypotheses about part identity arise when subgraphs of the scene SAG partially

match part views in the catalog of views. Incorrect hypotheses are then eliminated

by directly testing the variation of cross-section size of our geon-like parts. We have

tested our method using 10 real range images of each of the “smooth”—surfaced parts

described in the previous chapter.

To get the initial hypotheses about part identity, we need to construct the at-

tributed SAG for each image of the “smooth” parts. However, we already pointed

out that surface segmentation and curvature-based surface classification are not ro-

bust. In many cases, the surface segmentation is so poor as to be totally unusable.

Hence, in order to test our method of part identification, we assumed perfect sur-

face segmentation and surface classification of the smooth models, giving a set of

hypothesized part identities for each image. This is assumed as the input data for the
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experiments. Thereafter we tested the cross-section variation as described in Section

5.1.

Table 5.1 shows the confusion matrix for 10 range images of each of the 12 parts.

In general, except for the s-c-id and s-s-id parts, the overall classification performance

is comparable to the superquadric-based approach described in Chapter 4. However,

parts with increasing-and-decreasing cross-section size are sometimes mistaken for

tapering parts. This is probably because of self-occlusion or shadowing, where only

some portion of the side surfaces is visible. A striking improvement over the hierar-

chical tree classifier approach to part identification is that the b-c-co part is identified

much more accurately. Actually, this is true even without assuming perfect surface

segmentation and surface classification, because for this part, surface segmentation

and classification are correctly performed in most cases. Identification is noticeably

more accurate for straight-axis parts than for bent-axis parts.

The s-s-id and s-c-id parts have a very high misclassification rate. This is because

the superquadric estimation method confuses them with their bent-axis counterparts,

leading to error in estimation of the principal axis. We obtained 5 range and intensity

image pairs for each of these two parts and their bent-axis counterparts. The views

were chosen so that for bent-axis parts the silhouette was distinctly concave. Using

the method described above, we then attempted to determine from the intensity image

whether the part axis is really bent or straight. This could be done correctly in all 20

cases. While this by itself does not suffice to determine the actual part identity, it does

provide an indication when the superquadric estimation routine mistakes straight-axis

parts for bent-axis ones.
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5.4 Summary

We described an alternative method for determining part identities by directly testing

the variation of cross-section size along the principal axis. This method succeeds

in identifying 10 of the 12 parts. The main cases. of misclassification occur when

parts with straight axis and increasing-and-decreasing cross-section are mistaken for

bent-axis parts by the superquadric fitting routine. For other 10 parts, classification

performance is comparable to the method based on the use of superquadric parameters

in conjunction with a hierarchical tree classifier. We are able to use intensity image

data successfully to decide whether the axis is really bent or straight.

Chapters 4 and 5 presented two alternative methods of determining part identi-

ties. Both the methods were unreliable for the parts s-s-id and s-c-id, because the

superquadric estimation confused these two parts with the corresponding bent-axis

parts. However, the confusion matrix shown in Table 4.14 reveals that a simple

heuristic can improve the reliability of the first method (which is based on the use of

superquadric parameters in conjunction with a hierarchical tree classifier). If a given

part is classified as b-c-id or b-s-id, we can use the intensity image to check whether

the axis is really bent, as described earlier in this chapter. If in fact the axis is not

bent, we can classify the part as s-c-id or s-s-id, respectively. No such simple heuris-

tic is available for the second method. Hence, we will use the first method (which is

based on the use of a hierarchical tree classifier), together with the above heuristic,

as the procedure for part identification.

The flowchart of our complete system for obtaining a 3-D parts-based object

representation is shown in Figure 5.5. The next chapter presents the results obtained

by our system when tested with several real range images.



126

 

 

   

 

 
  

 

 

 
 

 

 

       

 
 

 

 
 

   
 

Range

image Compute Merge

surface “similar"

normals patches

SURFACE SEGMENTATION

Catalog of

part Vich

Construct Delete Classify Examine

e SAG "small" surfaces SAG

Range surfaces
links

image

PART SEGMENTATION

Fit U“

a superquadric tree

Range classifier

image

Intenstty 5

image

 

   

PART IDENTIFICATION

Figure 5.9. Complete system for obtaining parts and their identities



CHAPTER 6

Obtaining Parts-based

Representation

The previous chapters presented methods for part segmentation and part identifica-

tion. We pointed out that part segmentation relies on good surface segmentation, and

fails if the surface segmentation is poor. It also fails in cases when two parts come

together in such a way that the adjacency of the corresponding surfaces is not directly

visible. Similarly, for part identification we presented confusion, tables indicating some

consistent types of misclassification.

This chapter shows the results of part segmentation as well as part identification

for 12 real range images of various 3—D objects. The images include isolated geon-

like objects as well as complicated multi-part objects with occlusion. The choice of

objects was dictated by two considerations: firstly, major surfaces should be separated

by distinct creases (in order to get a good surface segmentation and subsequent part

segmentation). Secondly, the individual parts should be fairly elongated and not too

thin (in order to obtain a good superquadric fit).

In all the examples, results of surface segmentation (from which the initial sur-

face adjacency graph is derived) are shown in color. Nodes in the SAG are labeled

“A,” “B,”, “C,” and so on. Throughout all the examples, the above alphabetical

127



 
Figure 6.1. Correspondence between colors in the surface segmentation and alpha-

betical labels in the Surface Adjacency Graph.

labels always correspond to the same color shown in the surface segmentation. The

correspondence between colors and the alphabetical labels is shown in Figure 6.1.

Different views of the most complicated object for which we have successfully

performed part segmentation and identification are shown in Figures 6.3a, 6.10a, and

6.11a. This is a manufactured object consisting of five cylindrical parts. One major

part is attached to the main body at an oblique angle, and an additional cylindrical

part is attached to each of the three remaining ends of the two major parts. This

object yielded three different 3-D parts-based representations, corresponding to the

three different part segmentations obtained.

Part segmentation was performed by the method described in Chapter 3. Part

identification was performed by two different methods. The first method used a

hierarchical tree classifier with five features derived from estimated superquadric pa-

rameters, as discussed in Chapter 4. The second method applied tests for directly

checking axis shape and cross-section variation along the axis, as described in Chapter
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6.1 Test Image 1

Figure 6.2a shows the range image of an object made‘up of a cylinder and a rectangular

block.

6.1.1 Part Segmentation

Figure 6.2b shows the surface segmentation, and Figures 6.2c and 6.2d show the initial

and final surface adjacency graphs, respectively. As can be seen from Figure 6.2d,

the surface adjacency graph of Figure 6.2c is correctly broken into two subgraphs,

corresponding to two parts, i.e., the rectangular block and the cylinder.

6.1.2 Part Identification

We fit superquadrics to these parts and extract the five statistical features. The

hierarchical tree classifier correctly identifies the rectangular block as part s-s-co and

the cylinder as s-c-co.

Part identification can also be performed successfully by the second method. The

subgraph corresponding to the rectangular block can be accounted for (from the

multi-view representation) as a straight-axis, straight—edged part of either constant

or increasing cross-section. The other part can be accounted for either as a straight-

axis, curved-edge part of constant or increasing cross-section, or as a straight-axis,

straight-edged part of increasing-decreasing cross-section.

We observed that the subgraph corresponding to the rectangular block can be

accounted for as a straight—axis, straight-edged part of either constant or increasing

cross-section. The principal axis of this part is estimated by fitting a superquadric,

and the histogram of angles of surface normals with respect to the axis direction is
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(01)

Figure 6.2. Object made up of a cylinder and a rectangular block. (a) Range image of

the object. (b) Surface segmentation showing 6 surfaces. (c) Surface adjacency graph

(initial). (d) Surface adjacency graph (final). The small surface B has been removed,

and the edge between the side of the cylinder and the top of the block (D—C) broken.
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constructed. The 80% threshold is exceeded neither in the interval between 45° and

90°, nor in the interval between 90° and 135°. Hence the object is not inferred to have

an increasing cross-section. Next, it is found that for 87% of the side surface points

the angle between the surface normal and the axis direction is between 80° and 100°.

Since the percentage is above the threshold of 80%, it is inferred that the part has

a constant cross-section along the axis. From the surface types and the multi-view

representation, this part was already known to have a straight axis and straight edges.

Hence the part identity is known unambiguously because all three shape attributes

are known.

Similarly, by fitting a superquadric to the other part (cylinder), we estimate its

principal axis and construct the histogram of the angles of surface normals with

respect to the axis direction. Once again, the object does not exceed the thresholds

for increasing cross-section. However, 82% of the side surface points have a normal

between 80° and 100° with respect to the axis. Hence this part is also inferred to have

a constant cross-section. This information eliminates two of the three possibilities

obtained earlier for the part identity. It must be a part with straight axis, curved

edge, and constant cross-section.

6.2 Test Image 2

Figure 6.3a shows the range image of a complicated object made up of five cylindrical

parts. This is the most complicated object for which we have so far performed part

segmentation and part identification successfully.

6.2.1 Part Segmentation

Figure 6.3b shows the surface segmentation, and Figures 6.3c and 6.3d show the initial

and final surface adjacency graphs, respectively. The surface surface segmentation is
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fairly good but not perfect, as can be seen from Figure 6.3b. The initial SAG has as

many as four small surfaces which arise due to imperfect surface segmentation. These

can be removed while retaining connectivity of the SAG. The remaining 5 “large”

surfaces are all classified as having positive maximum curvature and zero negative

curvature. The catalog of part views shows no example of two adjacent surfaces of this

type. Hence, interestingly, the corresponding SAG links can be removed without even

referring to the angles between these surfaces. This gives a correct part segmentation

into 5 parts.

6.2.2 Part Identification

By fitting superquadrics to the five cylindrical parts and deriving the same 5 features,

we are able to identify the parts as being of type s-c-co by using the hierarchical tree

classifier.

Similarly, we are also able to identify the 5 parts correctly by using the distribution

of normal directions with respect to the principal axis. Each of the parts can be

accounted for (from the catalog of part views) either as a straight-axis, curved-edge

part of constant or increasing cross-section, or as a straight-axis, straight-edged part

of increasing—decreasing cross-section. The distribution of normal directions with

respect to the principal axis eliminates the other possibilities, and we conclude that

all 5 parts are of type s—c-co.

6.3 Test Image 3

Figure 6.4a is a scene with three separate objects which partially occlude one another.

Surface segmentation (Figure 6.4b) results in an initial SAG with 7 nodes (Figure

6.4c). Note that the SAG is already unconnected because from the range values,

the cube and cylinder are recognized as being separate non-touching objects. The
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Figure 6.3. Complicated object made up of 5 cylindrical parts. (a) Range image of

the object. (b) Surface segmentation showing 9 surfaces. (c) Surface adjacency graph

(initial). (d) Surface adjacency graph (final). Four small surfaces (C,E,H,I) have been

removed, and edges between cylindrical surfaces broken.
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small object below the cube as well as a small surface on the cylinder are discarded

since each of them is below 5% of the total surface area. This gives the final part

segmentation into two objects (Figure 6.4d).

Part identification using either of the two methods is also successful. The cube is

identified as s-s-co, and the cylinder as s-c-co.

6.4 Test Image 4

The object consists of two cylindrical parts. The surface segmentation of this ob-

ject produces two small spurious surfaces which are discarded. Once again the part

segmentation can be performed without referring to the angle between the two cylin-

drical surfaces, because the catalog of views has no example of two adjacent cylindrical

surfaces in any single part.

Both part identification methods are also successful in determining that the parts

are of type s-c-co.

6.5 Test Image 5

Figure 6.6a shows the range image from a pair of registered range and intensity

images of a common household object, i.e., a bulb [58]. We simply use the range

image. Surface segmentation gives just one surface (Figure 6.6b). The initial and

final SAGS are identical (Figures 6.6c and 6.6d).

Both methods of part identification lead to the conclusion that that part is s-c-id.

6.6 Test Image 6

The funnel shown in Figure 6.7a is also the range image of a registered range—intensity

pair. Surface segmentation (Figure 6.7b) leads to a correct part segmentation into
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Figure 6.4. Scene with occlusion, containing three objects. (a) Range image of the

scene, showing a cube, a cylindrical object, and (at top left) a small object used to

support the cube. (b) Surface segmentation showing 7 surfaces. (c) Surface adjacency

graph (initial). ((1) Surface adjacency graph (final). Two small surfaces (C,E) have

been removed.
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Figure 6.5. Object made up of two cylindrical parts. (a) Range image of the object.

(b) Surface segmentation showing 5 surfaces. (c) Surface adjacency graph (initial).

(d) Surface adjacency graph (final). Two small surfaces (C,E) have been removed.
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Figure 6.6. Everyday object: a bulb. (a) Range image of the object. (b) Surface

segmentation showing 1 surface. (c) Surface adjacency graph (initial). (d) Surface

adjacency graph (final).
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Figure 6.7. Funnel made up of a cone and a cylinder. (a) Range image of the object.

(b) Surface segmentation showing 2 surfaces. (c) Surface adjacency graph (initial).

(d) Surface adjacency graph (final). The edge between the conical and cylindrical

parts has been removed.

two parts (Figures 6.7c and 6.7d).

Part identification using either of the two methods is also performed correctly for

both the parts. The cylinder is identified as s-c-co, and the cone as s-c-t.

6.7 Test Image 7

Figure 6.8 is another object made up of a rectangular block and a cylinder. Surface

segmentation gives 4 surfaces (Figure 6.8b), of which one (the long, thin side surface
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Figure 6.8. Object made up of a cylinder and a rectangular block. (a) Range image of

the object. (b) Surface segmentation showing 4 surfaces. (c) Surface adjacency graph

(initial). ((1) Surface adjacency graph (final). The edge between the rectangular block

and the cylinder has been removed.

of the rectangular block) is misclassified as a kind of saddle surface with negative

maximum curvature and positive minimum curvature. Since the the catalog of part

views has no such surface from any view of any part, the corresponding SAG edge is

left unbroken.

Part identification is successful for both parts, using either method. The rectan—

gular block is identified as s-s-co, and the cylinder as s-c-co.
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Figure 6.9. Another view of the funnel. (a) Range image of the object. (b) Surface

segmentation showing 1 surface. (c) Surface adjacency graph (initial). ((1) Surface

adjacency graph (final).

6.8 Test Image 8

Figure 6.9a shows another view of a funnel. In this case, surface segmentation (Fig-

ure 6.9b) completely eliminates the small cylindrical part. The part segmentation

therefore finds just one part (the cone).

This part is identified successfully as s-c-t by both methods.
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6.9 Test Image 9

Figure 6.10a shows a second view of the complicated object discussed in Section 6.4.

Shadowing caused the non-availability of range data between the leftmost part and

the main body of the object. The leftmost part therefore is treated as a separate

object. Surface segmentation gives 5 surfaces as seen in Figure 6.10b, and as men-

tioned earlier, the initial SAG (Figure 6.100) is itself unconnected because of the

non-availability of range information. The final SAG (Figure 6.10d) shows three un-

connected nodes. Note that the same object that was earlier interpreted as having 5

parts (in test example 2) is now interpreted as two different objects, one of which has

2 parts.

All three parts are correctly identified as s-c-co by either of the two methods.

6.10 Test Image 10

Yet another view of the same complicated object is shown in Figure 6.11a. Surface

segmentation finds 7 surfaces (Figure 6.11b). Of these, 4 are small surfaces. Figure

6.11c shows the initial SAG, and the final SAG (Figure 6.11d) segments the object

into 3 parts.

Either of the two methods is able to correctly identify each of the three parts as

8-C-CO.

6.11 Test Image 11

An object resembling a table-lamp is shown in Figure 6.12a. Surface segmentation

finds 4 surfaces (Figure 6.12b). Figures 6.12c and 6.12d show the initial and final

SAGs, respectively. The three parts are disjoint even in the initial SAG.

Both methods are able to correctly identify each of the three parts. The three
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Figure 6.10. Complicated object made up of 5 cylindrical parts: second view. (a)

Range image of the object. (b) Surface segmentation showing 5 surfaces. (c) Surface

adjacency graph (initial). (d) Surface adjacency graph (final). One small surface has

been removed, and edges between cylindrical surfaces broken.
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Figure 6.11. Complicated object made up of 5 cylindrical parts: third view. (a)

Range image of the object. (b) Surface segmentation showing 7 surfaces. (c) Surface

adjacency graph (initial). ((1) Surface adjacency graph (final). Four small surfaces

have been removed, and edges between cylindrical surfaces broken.
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parts are identified as s-s-co, s-c-co, and s-c-t.

6.12 Test Image 12

Figure 6.13a shows a view of a coffee-mug. Surface segmentation finds 2 surfaces

(Figure 6.13b). Figure 6.13c shows the initial SAG. The surface corresponding to the

curved handle is very small. It is removed in the final SAG, which is shown in Figure

6.13d.

Both methods are able to correctly identify the one remaining part as a cylinder

(soc-co).

6.13 Summary

Results of part segmentation and part identification for several real range images

showed that our methods are quite successful in cases where occlusion by the same

or a different object is not too severe.

In general, we have observed that part segmentation is successful whenever a good

surface segmentation, together with a view of the adjacent surfaces where different

parts join together, is available.

Part identification is the most reliable part of our system. Two methods were

developed for part identification, and their performance is comparable. Assuming

a “good” view where several large surfaces are visible, 10 of the 12 parts can be

identified with high accuracy (close to 90% for real range images). A heuristic was

also developed for recovering from misclassification of axis shape property by the

binary tree classifier.

Two parts (s-c-id and s-s-id) have straight principal axes, but are often mistaken

for their curved-axis counterparts by the superquadric estimation routines. We de-
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Figure 6.12. View of an object resembling a table—lamp. (a) Range image of the

object. (b) Surface segmentation showing 4 surfaces. (c) Surface adjacency graph

(initial). ((1) Surface adjacency graph (final). The initial and final SAGS are identical.
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Figure 6.13. View of a coffee-mug. (a) Range image of the object. (b) Surface

segmentation showing 2 surfaces. (c) Surface adjacency graph (initial). ((1) Surface

adjacency graph (final). One small surface (corresponding to the handle) has been

removed.
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veloped an intensity-based method for checking whether the principal axis is in fact

straight or curved. This heuristic can be used to correct misclassification of the axis

shape property. If the intensity-based heuristic indicates that the axis is straight, we

assume that the axis is indeed straight even if the binary tree classifier decides that

it is a bent-axis part.



CHAPTER 7

Conclusions and Future Research

In this dissertation, we described our work on obtaining a “generic” parts-based 3-D

object representation. We used range data as the input, obtaining as the output a

3-D object representation based on 12 geon-like 3-D part primitives.

Multiple views of the 3-D part primitives were stored in order to help segment

objects into component parts and identify those parts as instances of specific primi-

tives. Major surfaces of the part primitives determined a small number of views to

be stored in the multi-view representation.

The shape discrimination capability of superquadric parameters was tested under

varying conditions of image resolution, model elongation, and noise. Two approaches

were presented for identifying the parts subsequent to part segmentation. The first

approach applied a hierarchical tree classifier using features derived from estimated

superquadric parameters. The second approach drew direct inferences about shape

attributes of the geon-like part primitives, using properties computed from the range

image or the associated intensity image.

Results of part segmentation and identification were presented for several images.

Generally, given a good surface segmentation, part segmentation is successful in cases

where the adjacency of surfaces from two parts coming together is visible. Part

identification is quite accurate for 10 of the 12 geon-like parts. The two remaining
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parts have straight axes but are often mistaken for their bent-axis counterparts. We

developed a heuristic to correct such misclassifications by directly checking from the

intensity image whether the axis is straight or curved.

Other research on obtaining a 3-D representation using geon-like parts [3, 22]

has made simplifying assumptions such as the use of perfect line drawings, perfect

part segmentation, and/or manual part segmentation. Our work, on the other hand,

uses real range images as the input and computes the part segmentation. Part seg-

mentation is often successful even if surface segmentation is imperfect; further, part

identification is often successful even if part segmentation is imperfect.

One of the real objects for which we performed part segmentation and identifica-

tion (the object made up of 5 cylindrical parts) is more “difficult” than any object for

which Bergevin et al. [3] or Dickinson et al. [22] have presented results. Conversely,

given a good view, we believe that our method would be successful for most objects

dealt with by Bergevin et al. or Dickinson et al.

7.1 Contributions of the Thesis

Contributions of this thesis are as follows:

0 We presented the first attempt (to our knowledge) to obtain, from range data,

a 3-D parts-based object representation in terms of a specific, but fairly large

set of geon-like 3-D parts.

0 We proposed a method of specifying “generic” 3-D parts, i.e., by using Surface

Adjacency Graphs (SAGS). Based on their SAGs, we derived a very compact

multi-view representation of the part primitives. We presented a method of

performing part segmentation from range images, given a good surface segmen-

tation. This method for part segmentation has some advantages over approaches
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that, in one form or another, make use solely of Hoffman and Richards’ “prin-

ciple of transversality” [47]. It can perform part segmentation in some cases

where two parts coming together meet at a convex or “mixed” crease rather

than a concave one.

e We proposed two methods to perform the part identification of isolated parts.

We tested the shape discrimination capability of superquadric parameters under

varying conditions of image resolution, model elongation, and noise. Lastly, we

showed that the associated intensity image can be used to recover from some

shortcomings of the purely range-image based method of part identification.

7.2 Shortcomings

0 Part segmentation is not robust. Good surface segmentation is crucial for the

success of our part segmentation method. But the surface segmentation (that

of Flynn, based in turn on the earlier work of Hoffman) [33, 49] is purely data-

driven, and often gives a surface segmentation which is so far from ideal that

our subsequent methods fail completely. Part segmentation is indeed successful

even in the presence of minor surface segmentation errors—but no mechanism

exists for recovering from an unacceptably poor surface segmentation. Further,

even if a perfect surface segmentation were available, part segmentation would

fail in some cases—as pointed out below.

0 Our part segmentation method does not use intensity data. Nor does it use

information about shape of the occluding contour. Hence, it fails when two

parts come together in such a way that the adjacency of the corresponding

surfaces is not directly visible, even though in many such cases the intensity or

occluding contour data clearly indicates the joining of two parts. In Chapter
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3, we gave the example of an L-shaped object in which only a single surface,

i.e., the L—shaped surface, was visible. The intensity image or occluding contour

clearly suggested the presence of two parts. Nevertheless, our method cannot

segment this object into two parts from such a viewpoint. Additionally, for this

object, as mentioned in Chapter 3, even if two surfaces belonging to different

parts had been visible, part segmentation would have been incomplete. The

reason is that the single L-shaped surface is itself produced by the coming

together of two parts, and our part segmentation method has no way to break

up a single surface into pieces belonging to different objects. Many other such

examples can be found.

The part identification method gives only part identities and nothing more. It

does not give complete details of the identified parts and their adjacency, e.g.,

“the small end of the tapered cylinder is attached to the side surface of the

rectangular block,” and so on.

7.3 Recommendations for Further Work

In our opinion, the most useful as well as most interesting problem for future

work would be to develop top-down (part-model-based) methods for recovering

from imperfect surface segmentations, and to successively improve the surface

segmentation. Another crucial contribution would be to enhance our part seg-

mentation algorithm to use overall shape or contour information instead of

relying solely on surface adjacencies.

Flynn, [33] as well as Hoffman [49], have taken an almost entirely bottom-up,

data-driven approach to surface segmentation using range data alone. However,

the present availability of fused range and intensity data adds a valuable new
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dimension of local information. Further, the recent work on MRF-based edge de-

tection [65] and wing detection [57], provides additional low-level model-based

evidence regarding surface types and the correct locations of boundaries be-

tween surfaces. It should be interesting to combine this with the earlier, purely

bottom-up approach with the aim of getting more reliable surface segmentation.

An even higher—level model-based approach towards obtaining better surface

segmentation might be to use the surface properties of initially detected surface

patches to hypothesize about the part primitive to which they belong. We saw

that surface type provides strong clues regarding part identity. This might be

used to generate hypotheses about parts which may be present in the scene.

Moreover, curvature values and curvature directions on surface patches give

strong evidence about the likely orientations and parameters of parts, e.g., the

radius of curvature and directions of the principal axes. Hypotheses about parts

might in turn be used to predict which surface patches belong to the same

surface of the same part, and might hence be good candidates for merging.

An essential improvement to our part segmentation method would be to make

use of intensity, or at least occluding contour shape information. Range data has

been useful in developing a method for part segmentation based on surface and

angle attributes at surface adjacencies. However, as explained earlier, surface

adjacency by itself does not suffice to detect the joining of two parts in some

cases where it would be obvious from the shape, e.g., from the intensity image

or occluding contour.

We presented two different methods for part identification. Tests were applied

to directly test some shape attributes such as axis shape and variation of cross-

section size along the part axis. Integrating these semi-independent judgements

about part identity and about specific shape attributes would be very useful in
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improving the final reliability of part identification.

Lastly, building an object recognition system for range images using an en-

hanced version of this 3-D parts-based object representation module does seem

practicable. The use of shape information as a criterion for part segmenta-

tion, rather than surface adjacencies alone, [would be a particularly valuable

enhancement.
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APPENDIX A

Parameters

A number of empirically-determined parameters are used in various modules and

algorithms described in the thesis. We list these parameters in the order in which

they are mentioned in the text.

A.1 Surface Classification

This topic is discussed in Section 3.2.1. A threshold value of 0.2 is used to determine

whether the median principal curvatures are “close to zero.” If the median curvature

is less than -0.2, it is taken to be negative; if it is greater than 0.2 it is taken to be

positive; else it is taken to be zero.

A.2 Constructing the SAG

Surfaces whose area is less than 5% of the total surface area are ignored after taking

their connectivity into account.
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A.3 ’D‘ee Classifier

The binary tree classifier is described in Section 4.3.2. A maximum error rate of 2.0%

is used when constructing the decision tree using training data.

A.4 Direct test for Cross Section size

This material is presented in Section 5.1. If the angle between a surface normal and

the principal axis is less than 45° or greater than 135°, it is not taken into account

for finding the distribution of angles. If at least 80% of the angles are either between

45° and 90°, or between 90° and 135°, the cross-section is assumed to be increasing.

Else, if at least 80% of the angles lie within 80° and 100°, the cross-section is assumed

to be constant. Else, the cross-section is assumed to be increasing-and-decreasing.

The percentages mentioned are over only those points whose normals are not ignored

due to the heuristic.

A.5 Polygonal Approximation

Details of the polygonal approximation algorithm are given in Section 5.2. The follow-

ing parameters are used for constructing the polygonal approximation: Hop distance

k0 = 7, tolerance for distance deviation Ad = 0.2, tolerance for angle deviation

A0 = 20°.

A.6 Direct test for Axis shape

This topic is discussed in Section 5.2. The silhouette is broken into separate compo-

nents at locations where the angle change between successive line segments is greater

than 20°. The line joining the end-points is computed for each separate component.
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If the mid-point of this line lies outside the silhouette, the component is classified as

concave. If more than 10% of the total length of the polygonal approximation belongs

to components classified as “concave,” the entire silhouette is taken to be concave,

i.e., the part has a bent axis.
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