
l
4
"
.
0
!
‘
l
.

.
(
A

<
0
.
I
n
c
l
.

'
.
t

x
.
.
.

I

.
1
.
I
t
.

2
;

._.
.

:
3
5
.
.
.
)

‘
.

A
r
m
a
n
d

r
e
f
?

.
1
Z
Z
Z
I

:
4
:
l
i
p
k
fi
v
b

,
I

I
.
‘

.
3

f
‘

9
0
"
“
-

I
t
k

..
”
a
n

L
.

:

‘
.

.
4
!
.
K
i
i
fi

1
:
2
:

.
v

,

‘

I
:

;

L
3
1
.
.
.

\

.

.

.
.
f
l
.

“
a
t
r
i
a
“
.
.
.

i
t
.

,

.
.

.

.
.

,
«
a
n
!

.
I
.

.
v
.

.
E

t
.
-
.
)

i
t

1
I
i
i
-
i
t
:

1
v
!
'
9
5
-
?
!
-

v
1
0
]
!
!
!
1
'

{
fi
v
i
s
i
l
l

V
.
o
J
c
I
O
.
.
D
I
D
!
‘
n
O
:
!

v
9
.
1
.
1
.
t
l

.
v
L
'
D
V
A
:

3
.
5
3
.

.
.
A
v
.

r
t

v
.

.
,
Y
-

.
l
o
.
3
\
t
o

.
~
.
f

t
i
.

‘

.
4
.
.
.
}
.
1

‘
‘

.
.
4
t
"
;

I
I
“
»

G
‘

v

,
.

.

y
v
i
‘
3
!

I

I
I
I
:

.
P

.
.

-
4
.
.

L
m
h
”
.

x
i

.
.

J
I
L
L

H
2
”
.
.
.
9
1
t
h
.

.
v
.

a
s

:
0

6
.

M
V
‘
5
6
:
.
.
2
5
.

P
a
;

p
f
9
1
9
.
.
.

a
(
I
:

l
-
l

..
v
v
l
.

:
5
;
.
.
.

1
4
1
.
9
0
%
“

1
"
.

'
‘

‘
_

..
.424...»

’
3
7
.
‘
-

Y
1
.

.

.
‘

.

I

.

I
.
“

.

‘

l
l
;
v
1
)
"

D
.
.
.
“

\
z
.

u
g
h
m

“
I
?

I.

.
.

.
.
(
9
1
"
1
1
1
'
2

o
0
"
.
.
.
l
r
n
o
‘
|
u
.
‘
¢
.

.
.

0
‘
:

I
'
l
l
.
.
‘
I

o
-
.
\

‘
l
u
‘

i
..

2
.
»
.

”Ma
‘

,
5

I
.
3

£
3
3
.
2
2

_
:

.

I
t

3
A

q
I
;

v
v

E
L
I
)
.

.

.
.
)
3
-
1
J
fi
3
l
£
.
:
’
t
.

v
.
3

.
I

.
0
!

9
.

I
I

1
‘

.

.
2
.

o
n
F

u
v

I
I
»

.
3
2
.
.
.
.

.
‘
9
1
:
.
.
1
.
’
5
3
:
2
3
:
1
3
.
:
3
J
1
.
.
.

2
.
3
?
!
1
A
!

.
.
7
£
2
5
.
:

.
‘

.
|

”
M
I
“

,
a

J
a
k
a
r
t
a
?
"
3

5
.
.
.
}
.

.
.
a
t
:

I
.

.

:
.

:
1
.
.
.

n
r
.

.
3
H
.

1
.
.
.

l
)

‘

i
f
.
.
.

,
.

.

a
.

.
.
:
3
a
n

l
i
v
v
n
v

t

v
.

l
c
l
‘
.
l
v
,
|

‘

.

I
l
’
a

,
‘
A
‘
D
>
.

I
.

“€315

Illillllllllllllllilllllllllllllllll L
3 1293 00899 2764

This is to certify that the

dissertation entitled

CONCEPTUAL RETRIEVAL FROM CASE MEMORY

BASED ON PROBLEM SOLVING ROLES:

A GENERIC TASK ARCHITECTURE

WITH APPLICATION TO

JUSTIFICATORY REASONING IN TAX LAW

presented by

Vernon Eugene Wallingford II

has been accepted towards fulfillment

of the requirements for

Doctor of Philosophy degreein Computer Science

6%
Major professor

way 9;);

MSU is an Alfirmuu'w- Action/Equal Opportunity Insn'lution 0-12771

F LIERARY

Michigan State

University

‘L A
‘—

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

firm ID 3 t ‘

+

/L‘

MSU Is An Affirmative Action/Equal Opportunity Institution

ammo-m

a

CONCEPTUAL RETRIEVAL FROM CASE MEMORY

BASED ON PROBLEM SOLVING ROLES:

A GENERIC TASK ARCHITECTURE

WITH APPLICATION TO

JUSTIFICATORY REASONING IN TAX LAW

By

Vernon Eugene Wallingford H

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

1992

ABSTRACT

CONCEPTUAL RETRIEVAL FROM CASE MEMORY

BASED ON PROBLEM SOLVING ROLES:

A GENERIC TASK ARCHITECTURE

WITH APPLICATION TO

JUSTIFICATORY REASONING IN TAX LAW

By

Vernon Eugene Wallingford 1]

Given an understanding of the domain and the data stored, how can one locate in an

immense data base only those records or documents semantically relevant to a particular

topic of interest? This question frames the conceptual retrieval problem. Rather than trying

to solve the conceptual retrieval problem solely in terms of general knowledge about a

domain, this research advances the view that knowing the use to which retrieved items will

be put provides guidance in developing more useful indexing vocabularies and retrieval

methods. This dissertation focuses on conceptual retrieval for the purpose of case-based

justification in tax law, in particular for the area of captive insurance taxation. In this

context, a theory of conceptual retrieval is presented that elaborates an index vocabulary

and organization based on the roles that cases can play in justification.

This dissertation describes three primary products of this research: (1) a

methodology for the Functional Representation of justifications, (2) a model of conceptual

retrieval —an index vocabulary, an index organization, and a retrieval method —— motivated

by this methodology for representing justifications, and (3) a conceptual memory of

arguments based on this model. This conceptual memory is integrated with a Generic Task

architecture for justifying legal classifications. Finally, these concepts are implemented in a

knowledge-based system called CRISTA.

This research addresses the conceptual retrieval problem from a task-specific

perspective. The result is the identification of an indexing methodology that is closely

related to a particular problem-solving task and a particular case representation. In essence,

this work unites a task-specific theory of problem solving with ideas from case-based

reasoning about indexing in order to achieve a more complete picture of conceptual

memory. To related disciplines, one of the important contributions of this research lies in

its description of how one can employ knowledge of a device and its teleology in

constructing more effective and efficient case memories.

Copyright by

VERNON EUGENE WALLINGFORD II

1992

To my dearest Mary.

If all I ever accomplish

is to be worthy of your precious love,

I will consider myself a successful man.

ACKNOWLEDGMENTS

I now understand why people always recognize the contributions of so many others to their

thesis work. This is a long and grueling process, and I certainly needed a lot of help and

support to make it this far. I thank Jon Sticklen, my advisor, for his guidance and

intellectual stimulation these last five years. So much of what I learned will never appear in

this document. Thanks also to my dissertation committee, Rich Hall, Bill McCarthy, and

Tony Wojcik. Each in his own way has left an indelible mark on my professional and

personal views. Special thanks are due to Bill, for finally convincing me that this problem > i

was worth attacking. He was right.

I owe so much to my parents, Vernon and Linda Wallingford, my brother Anthony, and

my sisters, Nancy and Cathy. They have always believed in me — even when I was not

so sure myself. Their love and support often urged to me to try harder, and I thank them

for their encouragement.

Finally, I thank my wife, Mary. I can truthftu say that, without her love, encouragement,

support, and occasional prodding, this dissertation would never have been completed. She

has buoyed my spirit during down times and brought me incomparable joy during up

times. She is my partner and best friend.

vi

TABLE OF CONTENTS

List of Tables .. xi

List of Figures ... xii

Chapter 1. Introduction .. 1

1.1 The Conceptual Retrieval Problem 1

1.1.1 Conceptual Retrieval for Legal Analysis 2

1.1.2 Conceptual Retrieval in Tax Accounting 3

1.2 Requisites of a Solution .. 4

1.2.1 The Context of Tax Law 6

1.3 Intellectual Influences ... 7

1.3.1 The Generic Task Approach 7

1.3.2 Toulmin’s Model of Argument 8

1.3.3 Functional Device Understanding 8

1.4 Research Toward a Solution ... 9

1.4.1 Objectives ... 9

1.4.2 Issues .. 10

1.5 A Synopsis of This Work ... 11

Chapter 2. The Conceptual Retrieval Problem: An Analysis 13

2.1 Introduction .. 13

2.2 The Traditional Solution: Key-Word Search 14

2.2.1 Conceptual Approaches to the Retrieval Problem 16

2.3. Information Retrieval .. 17

2.3.1 An AI-Based Model of Conceptual Retrieval 19

2.3.2 AI-Based Approaches and Their Significance 23

2.4 Cognitive Psychology .. 25

2.4.1 Memory Organization and Access 27

Retrieval Based on Surface Features 27

Retrieval Based on Abstract Features 28

2.5 Case-Based Reasoning ... 30

2.5.1 Issues in Case-Based Reasoning ' 31

2.5.2 Case Memory and the Indexing Problem 34

The Use of Low-Level Features 35

The Use of Abstract Indices 36

vii

2.6 Major Themes in Memory Organization

2.6.1 Case Retrieval for Human Reasoners

2.6.2 Simple and Abstract Features as Indices

2.6.3 Problem-Solving Goals as Abstract Indices

2.7 Conclusion ..

Chapter 3. Justificatory Reasoning in Tax Law: A Review of Past Work 43

3.1 Introduction ..

3.2 A1 Approaches to Legal Analysis

3.2.1 Rule-Based Approaches

3.2.2 Exemplar-Based Approaches

3.2.3 Case-Based Approaches

Ashley and Hypo ...

Branting and GREBE

3.2.4 Status of AI in Legal Analysis

3.3 Representing Justifications ..

3.3.1 The Structure and Content of Justifications

3.3.2 Strategic Argument Representation

3.3.3 Tactical Argument Representation

Ashley and Hypo ...

Branting and GREBE ..

3.4 A Legal Domain: The Taxation of Captive Insurance Arrangements .

3.4.1 Insurance ...

Risk Shifting ..

Risk Distribution ...

3.4.2 Captive Insurance Arrangements

3.5 Implications for Conceptual Retrieval

3.5.1 Integration of Problem Solving and Retrieval

3.5.2 Representation of Domain Concepts and Justifications

3.5.3 Organization of Case Memory by Problem-Solving Roles

3.6 Conclusion ..

Chapter 4. A Problem Solving Architecture for Legal Justification

4.1 Introduction ..

4.2 A Task Analysis of Legal Justification

4.2.1 The Subtask of Fact Abstraction

4.2.2 The Subtask of Case Retrieval

4.2.3 The Subtask of Precedent Application

4.2.4 A Control Strategy for Legal Justification

4.3 The Problem Solving Architecture

4.3.1 Components ...

4.3.2 Communication ..

4.3.3 Problem Solving Methods

Justification Generator

43

44

45

47

72

73

74

75

Fact Abstractor ... 83

Situation Data Base .. 86

Case Memory '........................ 86

4.4 Conclusion .. 86

Chapter 5. A Functional Representation of Justificatory Analysis 88

5.1 Introduction .. 88

5.2 Motivations .. 89

5.2.1 Toulmin’s Model of Argument 89

5.2.2 Functional Device Understanding 91

5.2.3 Viewing a Legal Case as a Device 94

5.3 Representing Legal Analysis in the FR 95

5.3.1 The Legal Case as a Device 95

Selection of Case Functions 96

Treatment of Multiple Opinions 97

5.3.2 Case Context as Device Annotation 98

5.3.3 Legal Issues as Function Identifiers 99

5.3.4 Justifications as Behaviors 102

5.3.5 A Complete Example of the Representation 105

5.4 Conclusion ... 109

Chapter 6. A Conceptual Memory of Justifications 113

6.1 Introduction .. 113

6.2 Index Vocabulary .. 115

6.2.1 Index Terms for Case Citation Queries 117

6.2.2 Index Terms for Justification Queries 118

6.2.3 Summary of Index Vocabulary 119

6.3 Index Organization .. 119

6.3.1 Index Organization for Case Citation Indices 119

6.3.2 Index Organization for Justification Indices 120

Viewing a Body of Case Law as a Whole 120

The Issue Composition Hierarchy (ICH) 122

The ICH as an Index into Case Memory 123

6.4 The Case Retrieval Algorithm .. 126

6.4.1 Match Knowledge in the ICH 128

6.4.2 Use of the Retrieval Algorithm for Automatic Indexing 129

6.5 Conclusion .. 131

Chapter 7. CRISTA: A Computer Program for Conceptual Retrieval 132

7.1 Introduction .. 132

7.2 The Implementation of CRISTA .. 133

7.2.1 The Software Environment 133

7.2.2 CRISTA: The Top Level 136

7.2.3 CRISTA: The Subagents 137

Situation Data Base .. 137

Fact Abstractor ... 140

Case Memory ... 147

7.3 Samples of CRISTA’s Problem Solving 152

7.3.1 Sample Problem #1 ... 153

7.3.2 Sample Problem #2 ... 157

7.4 Conclusion ... 159

Chapter 8. Comparisons to Related Work: Extensions and Elaborations 160

8.1 Introduction .. 160

8.2 A Functional Representation of Legal Justifications 161

8.2.1 Representation of Justificatory Arguments 161

Warrants ... 161

Function Specification 163

8.2.2 The Issue of Case Granularity 165

8.2.3 Potential Impact on Legal Practice 166

8.3 Conceptual Retrieval based on Problem-Solving Roles 166

8.3.1 The Use of Abstract Indices 167

8.3.2 Relationship to Goel and Hafner 168

Goel and Functional Indices 168

Hafner and Issue Discrimination 169

A Synthesis .. 169

8.4 Conclusion ... 171

Chapter 9. Conclusion ... 172

9.1 Introduction .. 172

9.2 Contributions of this Research .. 172

9.2.1 Modeling Justifications as Abstract Devices 172

9.2.2 Modeling Conceptual Retrieval

Based on Problem-Solving Roles 173

9.2.3 Extending Generic Task Theory 174

9.3 Avenues for Future Research .. 174

9.3.1 The Functional Representation of Cases 175

9.3.2 The Model of Conceptual Retrieval 176

9.3.3 The Problem Solving Architecture 176

9.3.4 Practical Matters ... 177

9.4 Final Discussion .. 178

Appendix A. Legal Case References 180

Bibliography ... 182

V
O
Q
Q
G
U
M
B
U
N
—
i

LIST OF TABLES

A RUBRIC Production Rule ...

A Control Strategy for Legal Justification

Channels of Communication in the PSA

Viewing a Legal as a Device in the FR

Language Grammar: A Legal Case ..

Language Grammar: Case Context ..

A Sample Case Context Frame —- Humana [1989]

Language Grammar: Case Issues ...

Language Grammar: Function ...

A Sample Issues Frame — Humana [1989]

Language Grammar: Justification ...

Language Grammar: Warrants ...

A Language for Representing Legal Analysis

A Complete Case Description — Humana [1989]

The FR for Legal Justifications ..

The FR for Legal Justifications and Toulmin

A Language for Representing Legal Analysis

A Case Retrieval Algorithm for Searching the ICI-I

A Case Indexing Algorithm ..

CRISTA’s Control Strategy — Abstract Level

CRISTA’s Control Strategy — Message-Passing Level

Channels of Communication in CRISTA

A Sample of CRISTA’s Fact Variables

A Sample Case from CRISTA — Humana [1989]

The Facts of Sample Problem 1 ..

Cases Returned by CRISTA on the First Pass of Sample 1

CRISTA’s Case Indexing Algorithm ..

The Case Description for Harper [1991]

H
e
m
q
a
m
a
u
u
.
‘

LIST OF FIGURES

A Sample Issue/Case Discrimination Tree 21

The Four Kinds of Issue Pointer into Case Memory 22

The Four Kinds of Link Pointer into Case Memory 23

Toulmin’s Model of Argument .. 55

The Task of Justification ... 72

The Analogical Method of Justification 73

The Task of Justification by Precedent 75

A Task Analysis of Legal Justification 76

A Problem Solving Architecture for Legal Justification 79

A Sample Structured Matcher ... 84

A Sample Hierarchical Classifier ... 85

Toulmin's Model of Argument ... 90

An Argument in Toulmin's Representation 91

A Fragment of an ER fora Clothespin 93

A Sample Justification — Humana [1989] 104

The Justification Define Insurance Standard — Humana [1989] 107

A Portion of the FR for the Clougherty Case 110

The Problem Solving Architecture for Legal Justification 116

Issue Decomposition: Insurance .. 121

A Sample Issue Composition Hierarchy 123

The Four Kinds of Issue Node Pointer into Case Memory 126

CRISTA’s Problem Solving Architecture 135

The Related Party Classifier ... 143

The Captive Insurer Classifier .. 143

The Insurance Provider Classifier .. 143

The Standard Contract Matcher ... 144

The Risk Diversity Matcher ... 144

The Insurance Risk Matcher .. 145

The Arm's Length Transaction Matcher 145

The Unavailable Commercial Coverage Matcher 146

The Business Purpose Matcher ... 146

CRISTA’s Issue Composition Hierarchy (Part 1) 150

CRISTA’s Issue Composition Hierarchy (Part 2) 151

gamers;

INTRODUCTION

1.1 The Conceptual Retrieval Problem

The arrival of the Information Age has radically changed how we do — and

conceive of doing — most knowledge-intensive tasks. With the widespread availability of

digital computers and expansive, inexpensive primary and secondary memory, industries

and individuals have accumulated vast stores of raw numeric data, full-text documents, and

interpreted knowledge. In many domains, such as molecular biology, the challenge

involves searching unrefined data for patterns that will lead to an understanding of the

domain itself. These fields require advances in database technology that will support

evolving and conflicting data models and the search for meaningful patterns. Other

domains, while sharing some of these concerns, face another primary challenge: given an

understanding of the domain and the data stored, how can one locate in an immense data

base only those records or documents relevant to a particular t0pic of interest? This

question frames the conceptual retrieval problem.

Traditional approaches to information retrieval (IR) have relied on syntactic

phenomena, employing key-word indices into a data base of full-text or structured-text

items. However, such key-word schemes cannot capture the rich semantic structure of

domains such as the law or medicine, and as a result efficient use of these tools can be

attained only by practitioners experienced in the creation of appropriate key-word queries.

In order to provide effective access to voluminous data for a broader array of users, these

domains require models of the data that incorporate semantic as well as syntactic

2

relationships. Users could then query the data base using the vocabulary of the domain and

rely on the conceptual model to identify documents relevant to the identified concepts;

Such a model will necessarily support a vocabulary that is abstract enough to reflect how

users conceptualize the domain but also is supported by a more concrete understanding of

domain relationships.

The problem of conceptual information retrieval parallels a human information-

processing problem that people solve routinely every day, that of episodic memory

retrieval. People continually face situations in which they are reminded of similar past

experiences; they can often use these experiences as aids for resolving the new situation.

While many such “remindings” involve experiences related only by surface features to the

current situation, other remindings reflect deeper conceptual relationships. This latter

phenomenon is especially marked in focused, problem-solving circumstances. Individuals

highly experienced in certain domains and tasks develop skill in identifying critical

conceptual similarities and differences among situations that determine how best to solve

new problems. Capturing this kind of knowledge about a domain would greatly enhance

the conceptual retrieval of information stored in computers.

1.1.1 Conceptual Retrieval for Legal Analysis

Nowhere is the problem of conceptual retrieval more important than in the task of

legal analysis. Given a description of a situation and a target classification desired for the

situation, one must generate a justification that supports the desired treatment. A

justificatory line‘of reasoning is an essential component of any legal classification. Without

substantiation, a legal claim carries no force in a legal system that is adversarial by design.

In a common law tradition, past classifications serve as the principal source of

justification for new classifications. Common law thus leads to a proliferation of case

records, which are then accumulated and organized for future reference. Specialists in

3

particular case law domains seem to organize their understanding of cases according to the

themes of prevailing lines of reasoning. That is. the use to which they put past cases

affects their understanding of the body of case law. Such specialists cannot themselves

remember all of the cases in a large domain, though, and must then turn to exhaustive

catalogs of past cases, whether in the printed literature or on-Iine computer data bases.

Legal analysis consists of two stages, and case research plays a role in each stage.

First, the researcher analyzes the current situation with respect to all sides of the law. The

goal of this stage is not to justify a particular classification but rather to consider all possible

treatments and lines of precedent. The researcher actively seeks out all past cases that could

reasonably bear on the outcome of the case at hand. From the assembled collection of

relevant statutes and case law, the researcher outlines potential conclusions regarding the

law and the grounds upon which such conclusions might be based. Second, the lawyer

evaluates these lines of the reasoning and writes a brief that justifies a particular treatment

of the case at hand. The brief will be written to emphasize elements of the most favorable

precedents and to downplay elements of the most unfavorable ones. It may also seek to

counter some of the arguments anticipated from the opposing counsel.

1.1.2 Conceptual Retrieval in Tax Accounting

Legal analysis plays a significant role in the practice of tax accounting. Tax

accountants have two primary concerns: the application of tax law in filing tax forms, and

the planning of future transactions to minimize tax effects. In unsettled areas of the law,

such as the taxation of captive insurance corporations, these tasks are made more difficult

by the uncertainty entailed in classifying new situations. Through legal analysis and case

research, the tax specialist can evaluate potential treatments of a situation or proposed

action. Consideration of past cases and the risk involved in adopting a particular

4

classification enables the accountant to make the best choices in the interest of his client,

within the bounds of the law.

Tax law offers an interesting domain in which to consider legal analysis. Like other

areas of the law, tax law evolves as new situations are considered and classified.

However, unlike most areas of the common law, taxation has a large body of statute that

defines and relates concepts in the domain. Tax law statute often does not rely on common-

sense notions of human relationships, as do “natural” law domains such as contracts and

torts. Rather, it creates a set of abstract entities and relations for the purpose of directing

tax policy. This abstraction makes the domain ideal for initial investigations of the legal

analysis task. By considering legal analysis in tax law first, one can focus on the task

itself,within the context of the artificial world in which tax law operates. The models of

legal analysis developed through study of tax law domains can then be applied to the law as

a whole, at which time one will be better equipped to focus on complexities native to more

natural legal domains.

1.2 Requisites of a Solution

Solving the conceptual retrieval problem will likely require moving beyond key-

word approaches to the modeling of semantic structure and task features in particular

domains. This type of domain modeling has long been one of the central themes of the

Artificial Intelligence (AI) community. Though AI research has often focused on the

development of problem-solving systems for tasks such as legal argumentation, some

researchers now believe that AI will make its greatest practical impact, at least initially, on

issues of information reuieval: “In the short run, Al’s principal contribution to society may

be to provide intelligent access to our vast data bases of information, in particular, helping

us to select and organize information that is relevant.” [Ashley 1990, page 6]

5

Yet such a contribution will likely profit from the understanding of task structures

gained through research on problem solving. This research aims to identify vocabularies

that are useful for describing and performing different types of problem solving. One of

the central advances of problem-solving research is the recognition that task-level terms

define particular roles for domain knowledge to play in performing the task. In this way,

these vocabularies provide leverage for organizing knowledge in the domain to support a

particular problem-solving task. The sheer volume of information to be searched in

domains such as the law demands the judicious use of such conceptual vocabularies as a

means for organizing computer memory.

Any useful model of conceptual retrieval will include three components: an index

vocabulary, an index organization, and an algorithm for retrieval. The index vocabulary

specifies the terms in which one formulates queries. In key-word systems, the index

vocabulary consists of all words appearing in a stored document. The index organization

specifies how terms in the vocabulary relate to one another. Key-word systems rely solely

on syntactic relations among words. Finally, the retrieval algorithm specifies how to

identify and select relevant items given a particular query. In key-word systems, search is

conducted using pre-built inverted files of words that point to their exact locations in

documents.

By making explicit the semantic relationships among index terms in a given

domain, one can tailor a retrieval algorithm that most effectively exploits the structure of

domain knowledge. Ideally, this sort of theory will generalize to the class of tasks and

domains characterized by the same types of knowledge structures. In order to support such

abstraction, the model must provide some mechanism for identifying appropriate index

terms in the domain and for identifying appropriate combinations of index organization and

search algorithm.

1.2.1 The Context of Tax Law

One such mechanism applicable to the task of legal analysis involves understanding

jusn'fications and the roles they play in the domain. Justifications serve not only to support

particular treatments of tax actions but also to implicitly define terms left unspecified in

statute. This latter role indicates that a justification may be relevant to queries about

concepts that are refined by it. In this way, justifications offer definitional content to a

domain’s concepts.

Likewise, justifications play a role in abstracting away detail from more settled

issues to allow closer examination of the critical issues at hand. By citing a relevant

precedent that establishes a particular classification, the new justification need not include

the detailed reasoning that supports the classification; it can focus on another issue that is

more problematic in the current case. This role also indicates how an understanding of tax

arguments can positively influence the selection of an index vocabulary. To support such

screening of detail, the index vocabulary should employ abstraction links among

justifications based on their conceptual relationships. In this way, an analysis of

justifications in the domain — coupled with an analysis of how domain specialists

understand the justifications - can provide significant guidance for organizing and

searching cases in a conceptually-organized data base.

Furthermore, knowledge of how specialists solve problems in a domain also guides

the development of effective case organization and retrieval schemes. This idea has

received considerable attention in the study of case-based reasoning, and the investigation

of problem-solving methods in conjunction with case memory offers new ideas for the

solution of the conceptual retrieval problem. The goals of a tax law specialist in classifying

a situation serve as valuable indicators of when certain past justifications will be of use.

Having an understanding of the structure of the problem-solving process itself furnishes

even more information about how cases can best be organized for efficient retrieval. Going

7

beyond design of index vocabularies to this sort of attention to index organization

represents a critical step in the realization of effective and efficient conceptual retrieval ‘

tools.

1.3 Intellectual Influences

This research reflects a variety of influences from a number of related fields, among

them knowledge-based systems, information retrieval, case-based reasoning, cognitive

psychology, AI in the law, and epistemology. The effects of these influences will appear

throughout this volume. However, a smaller number of ideas have had an important

impact on both the framing of the research problem and the conceiving of the proposed

solution. These pivotal ideas are described briefly below.

1.3.1 The Generic Task Approach

Chandrasekaran [1983, 1987, 1990] has advanced a task-specific theory of

problem solving founded on the notion of task/method/sub-task analysis of information

processing. For a given information processing task, characterized by its inputs and

outputs, one identifies different methods available for solving it. Each method is

characterized by a set of objects to be manipulated, a set of operators, and knowledge for

selecting and applying operators to objects. Some operators are not “primitive,” in the

sense that they establish sub-tasks to be solved by other means. This leads to a recursive

decomposition of tasks that halts upon reaching methods for which all operators are directly

applicable. In this sort of analysis, tasks correspond to steps in the solution of a problem,

and methods correspond to ways of realizing particular tasks, whether by decomposition or

by direct action.

The application of this methodology to a variety of real-world tasks and domains

has led to the identification of a set of ubiquitous methods for solving certain tasks that

8

arise in a variety of different circumstances. Chandrasekaran has termed these task/method

pairs generic tasks. Generic tasks have proven especially useful as models of problem-

solving types because they explicitly delineate (1) the types of domain knowledge required

for application of the method and (2) the nature of the control strategy for applying its

operators. Examples of generic tasks include hierarchical classification [Bylander and

Mittal 1986; Sticklen, Chandrasekaran, and Josephson 1987], routine design [Brown

1987], and structured matching [Bylander, Johnson, and Goel 1991]. These problem-

solving types play particular roles in the analysis of tax law argumentation proposed here.

1.3.2 Toulmin’s Model of Argument

A philosopher of science, Toulmin [1958] questioned the usefulness of traditional

work on logic and deductive inference for assessing the sorts of arguments actually made in '

most scientific fields. Recognizing that most argument did not correspond to the notion of

absolute proof, Toulmin abandoned mathematics as the foundation of logic and instead

adopted jurisprudence as his model. This move led to his extending the classical syllogism

to explicate more accurately the nature of persuasive argument — that is, to specify the

various roles that assertions can play in an argument and the relationships among these

roles. Touhnin’s model greatly enriches the vocabulary available for describing an

argument to include such natural terms as data, backing, warrant, qualification, and

conclusion. On this view, logic deals not with techniques of inferring but rather with

retrospective justification of a claim.

1.3.3 Functional Device Understanding

The Functional Representation (FR) of Sembugamoorthy and Chandrasekaran

[1986] provides a language for describing devices at multiple levels of abstraction based on

the device’s known functions or goals. In the FR, devices are decomposed into their

9

components, whose own functions can then be composed in order to understand the

functioning of the composed device. The causal behaviors of each device or sub-device are

indexed according to the functions they realize. Since functions of the higher-level device

can be expressed in terms of the functions of its components, the FR supports an

abstraction of behavioral detail between different levels of the device decomposition. This

sort of representation originally aimed at understanding physical devices but has since been

extended to the comprehension of “abstract” devices such as computer programs [Allemang

1990] and biological ecosystems [Sticklen and Tufankji 1992].

One can view a justification as an abstract device with the function of supporting

some claim given an initial set of assertions. Different components of the justification play

specific roles, such as to rebut a counterargument or to propose a hypothetical situation,

that in concert achieve the main goals of the justification. Considered this way, legal

analysis can be modeled with an FR in a way that is strongly reminiscent of Toulmin’s

model of argument. This functional representation can then serve as the basis for a scheme

to index a memory containing justifications and justification fragments. Goel [1989]

demonstrated the utility of using an FR as an index vocabulary for a case-based memory

used in a task of designing physical artifacts. However, he did not address the problem of

organizing and searching a large data base of designs. The great affinity between the FR

and Toulmin’s model of argument in large part inspired the work reported here aimed at

addressing that problem.

1.4 Research Toward a Solution

1.4.1 Objectives

This research focuses on conceptual retrieval for the purpose of legal analysis in

taxation, in particular, in the area of captive insurance corporations. In this problem-

10

solving context, a theory of conceptual retrieval will be presented that elaborates an index

vocabulary and organization based on the functional roles of justifications. This theory is

then generalized to the class of tasks for which it is appropriate. The present research has

four primary objectives:

(1) To develop a methodology for the functional representation of

justifications based on the ideas of Toulmin.

(2) To develop a model of conceptual retrieval —— index vocabulary,

index organization, and retrieval method — motivated by this

methodology for representing justifications.

(3) To design a conceptual memory of legal cases based on this model

and integrate it with a problem-solving architecture for justifying

classifications in the domain of tax law.

(4) To construct, as a proof of principle, a working knowledge-based

system based on these concepts.

1.4.2 Issues

Rather than trying to solve the conceptual retrieval problem solely in terms of

general knowledge of a domain, this project reflects the view that knowing how retrieved

items willibe used provides extra guidance in developing more useful indexing vocabularies

and methods. Such task-specific structures augment general-purpose indices with a richer

vocabulary for representing and retrieving information. Furthermore, vocabularies derived

from task structures can often elucidate the nature of the terms used in more general-

purpose indices. Certain theoretical questions arise concerning the relationship between

different models for conceptual retrieval, each based on different intuitions and principles.

11

To this end, this research proposes a view of conceptual retrieval that relates general-

purpose and task-specific models. -

The work presented here addresses several issues of importance to two related

research areas, Al in law and case-based reasoning. While this research does not propose a

new theory of legal analysis, it does formalize a view of legal analysis that is widely

accepted in the legal AI community. The generic-task problem-solving architecture thus

proposed embodies particular notions regarding the interaction between case memory and a

legal justification problem solver. The theory of conceptual retrieval advanced in this work

is relevant to many issues in the field of case-based reasoning, in particular the selection of

an index vocabulary, the organization of cases in memory, and the use of cases in problem

solving. With respect to these two research disciplines, the central contribution of this

work lies in its description of how one can employ lmowledge of a device and its teleology

in constructing more useful and efficacious case memories.

1.5 A Synopsis of This Work

The remainder of this volume describes in detail work undertaken to achieve the

objectives outlined above. The dissertation comprises three organizational sections:

problem analysis, problem solution, and theoretical discussion of the problem and solution.

Chapters 2 and 3 present the problem analysis. Chapter 2 analyzes the conceptual

retrieval problem itself and considers research aimed at resolving it from the information

retrieval, cognitive psychology, and case-based reasoning communities. Chapter 3 then

turns to the task of legal analysis in the domain of tax accounting. A review of several AI

approaches to legal classification and justification is given, followed by a conceptual review

of tax accounting and issues involving captive insurance corporations.

A solution to the conceptual retrieval problem in this context is described in

Chapters 4 through 7. Chapter 4 presents a generic-task problem solving architecture for

12

the task of legal analysis. Chapter 5 details a technique for analyzing and representing

justifications using a Functional Representation scheme based on the ideas of Toulmin;

Using this technique as a foundation, Chapter 6 develops a functional model of conceptual

retrieval, from the selection of index vocabulary to the organization and search of case

memory. Finally, this model is integrated with the problem-solving architecture, and

Chapter 7 describes CRISTAI, a computer program that embodies the model of conceptual

retrieval described here. Chapter 7 also presents examples of CRISTA’s problem solving,

focusing on its use of case memory.

Chapters 8 and 9 offer a theoretical discussion of this work. Chapter 8 evaluates

the work presented here with respect to other approaches and discusses how this work

might be united with work on some other active research issues in Al. Chapter 9 then

concludes the dissertation with a consideration of the work’s ultimate contributions and

significant avenues for future research.

1 For “Conceptual Retrieval In the Service of Tax Argumeutation."

CHAPTER 2

CONCEPTUAL RETRIEVAL: AN ANALYSIS

2.1 Introduction

In domains with large bodies of technical documents, computer-aided research has

become a standard practice. The law Offers an extreme example of this phenomenon. The

jurisprudential tenet stare decisis mandates that prior decisions be given precedence in

deciding new cases. This rule imparts great significance to the task Of legal research,

leading to the accumulation Of vast numbers Of case documents to be used in analyzing

subsequent cases. In this context, computer-aided research poses a serious challenge: how

can one locate in an immense data base just those records or documents relevant to a

particular topic of interest?

The idea of systems that index and retrieve information using semantic knowledge

of a domain has been termed conceptual retrieval (CR). This chapter discusses the CR

problem and research aimed at solving it. The remainder Of the chapter consists Of five

main parts. Section 2 describes the traditional approach to information retrieval, key-word

search, and its principle shortcomings. Sections 3 through 5 consider three prominent lines

of interdisciplinary work that Offer potential solutions for CR — information retrieval,

cognitive psychology, and case-based reasoning. Drawing on results from these research

areas, Section 6 outlines the contributions that each approach offers toward the realization

of conceptual retrieval systems. Finally, in the conclusion, the common themes that guide

the work described in the rest Of this dissertation are presented.

13

14

2.2 The Traditional Solution: Key-Word Search

Conventional information retrieval (IR) systems implement the “key word in

combination” (KWIC) method introduced by Horty [1962] and his colleagues.1 In the

KWIC approach, the retrieval system creates an index on the full text Of a document that

lists the exact location of each significant word in the document.2 Queries to the system

consist Of one or more text words connected using simple Boolean and adjacency

Operators, and the system retrieves all documents in which the specified words appear in

the combination specified by the query. Thus, this approach defines its index vocabulary,

index organization, and retrieval algorithm in purely lexical terms — the index vocabulary

equals the set Of significant words appearing in the document, the organization Of these

terms consists in an inverted file on these words, and documents are retrieved when they

contain the words specified in the query.

Despite its simplicity, the KWIC method produced an important breakthrough in the

field of information retrieval. KWIC made possible the construction of large IR systems

consisting Of thousands Of pages of text. In addition, it spawned a wealth Of research

activity focused on the efficient generation and use of index files from text files. A large

majority Of the information retrieval research community still devotes its primary efforts to

improving the utility of KWIC approaches.

However, systems based on this methodology suffer from one crucial problem:

there is no necessary connection between a word and the meaning ofa text in which the

word appears or does not appear. This truth follows from the duality of expressiveness

and ambiguity in natural language [Krovetz 1985]. Generally, one can express a concept in

1 See also the work of Kehl, Horty, Bacon, and Mitchell [1961]. For a general discussion of early retrieval

systems, see Buchanan and Headrick’s seminal paper on Al applications in the law [1970. pages 41-46] .

2 Only words such as articles, auxiliary verbs, and prepositions are considered “insignificant.”

15

many different ways, and each word may have multiple meanings. These semantic

ambiguities can be resolved only in the context of a particular usage.

The result of this problem for KWIC is a nearly inevitable trade-off between

precision (the relevance of retrieved documents) and recall (the retrieval of relevant

documents). A query specific enough to insure that most documents retrieved will be

relevant often leaves many relevant items unretrieved, but a query general enough to insure

high recall will usually also lead to the retrieval of many irrelevant documents. Even in a

field characterized by technical discourse, such as the law, this problem persists. Blair and

Maron [1985] found that attorneys using key-word retrieval systems perceived that recall

from their queries exceeded 75% when only 20% of the relevant items were actually

retrieved.

This shortcoming of the KWIC approach gives rise to a number of practical

problems in its use. Hafner [1981] described the infeasibility of specifying all possible

word combinations that could express a legal issue or relation, thus indicating the difficulty

of achieving nearly-complete recall in practice. On the other end of the spectrum, Bing

[1978] found that lawyers tend to make critical errors in specifying complex key-word

queries. These errors typically involve the incorrect combination of AND, OR, and NOT

operators. The results of Bing’s study dispel hopes for a high degree of precision.

Other practical problems arise, too. If a new legal decision or statute coins a phrase

in discussing a particular issue, relevant cases decided thereafter will likely contain the

phrase, but relevant earlier cases will not. Or one may wish to retrieve documents that only

partially match a given fact pattern, for instance, in trying to find a larger body of

potentially relevant precedent for a new concept. Generating a useful key-word query for

this situation will be difficult, if not impossible. Key words either appear in a document,

or they do not; there is no room for gradation.

l6

Ultimately, these difficulties can be traced to the fact that key-word systems force

users to focus on syntactic phenomena— the lexical details of documents — rather than on '

the meaning of the documents they seek. The user must not only understand the domain

and its semantics but also know how to translate such understanding into lexical queries of

the data base. By placing this burden on the user, the key-word system serves only as a

mechanized index to a body of documents, providing little additional assistance for the task

of computer-aided research.

The rapid growth in the number of documents to be searched, the importance of the

research task in many professions, and the documented shortcomings of KWIC systems,

however, all indicate a clear need for systems that go beyond text search to information

retrieval based on the semantics of the domain and its documents. Such an “intelligent”

research assistant would mediate between the conceptual vocabulary of the user and the

lexical vocabulary of stored items. In doing so, the system would subsume much of the

implementation knowledge involved in generating queries.

2.2.1 Conceptual Approaches to the Retrieval Problem

Researchers from a variety of disciplines have investigated issues relevant to

solving the CR problem. Three prominent lines of this interdisciplinary research are:

0 information retrieval, which has applied its own lessons and some

of those from Al to the particular problem of legal information

retrieval;

0 cognitive psychology, which through its investigation of analogical

reasoning has identified important aspects of how humans retrieve

and use past experiences in solving new problems; and

17

' case-based reasoning. which has developed a large body of results

on how computer systems can index, store, retrieve, and use past

cases in problem solving.

Each of these research tracks addresses the conceptual retrieval problem in its own context,

and consideration of their different perspectives offers a more complete picture of the

problem. By combining their individual contributions, one can arrive at an informed

strategy for constructing CR systems.

2.3 Information Retrieval

A number of researchers in the information retrieval community have pursued the

notion of conceptual retrieval systems. Focusing on particular domain needs, these lines of

study seek either to extend the traditional model of text-based retrieval with knowledge-

based constructs or to develop new techniques for addressing n'aditional problems. Legal

information retrieval has provided an especially fertile area of study because of its great

practical importance and its archetypal nature. Case law encompasses the full range of

natural language problems inherent in full-text retrieval while also resting on a well-

developed and continually evolving body of conceptual knowledge. In addition,

researchers in Al have long been interested in legal problem solving, thus providing

background for representing and manipulating legal knowledge.

Researchers interested in extending the traditional IR model have typically

investigated the utility of front-end tools that assist the user and then create key-word

queries for a full-text system. Bing [1987] has proposed a “norm-based thesaurus”

approach in which the user traverses a hierarchy of norms (legal rules) and identifies

concepts relevant to the situation at hand. From the selected nodes, the system would

automatically generate a key-word query that incorporates different senses of each concept.

For example, the concept spouse can be elaborated to include expressions such as husband,

18

wife, and married. While acknowledging that such a system would still be limited to

providing synonym support, Bing suggests that the use of formalized legal rules will at

least allow automatic generation of some complex queries.

Another system of this sort, RUBRIC, was first developed as a general intelligent

retrieval methodology [Tong and Shapiro 1985] and was then applied to the problem of

legal document retrieval (Tong, Reid, Crowe, and Douglas 1987]. Using a hierarchy of

production rules to represent conceptual relationships such as implication and synonymy,

RUBRIC allows for “fuzzy” definition of concepts in terms of domain text. An example of

a RUBRlC production rule appears in Table l.

Table 1. A RUBRIC Production Rule (Adapted from Tong et al. [1987])

(EVIDENCE financing-condition

((OR (PHRASE “obtain” “sufficient” “funds”)

(PHRASE “sufficient” “financing” “obtained”)

(PHRASE “arrange” “sufficient” “funds”)

(PHRASE “availability” “sufficient” “funds”)

)

0.8))

This rule states that the concept of afinancing condition is considered very relevant

(0.8 on a 0-1 scale) in the presence of any of the standard legal phrases supplied. Given a

query in natural-language text, RUBRIC can use such rules to identify concepts relevant to

the query. The system then retrieves documents from memory that have been tagged by the

requested concepts.3 RUBRIC’s builders argue that the user must still work hard to

generate a good query, but at least retrieval is based on concepts rather than text.

3 The numeric “relevancy factors” are manipulated in much the same way as MYClN’s certainty factors.

They allow RUBRIC to combine concepts and text expressions based on Boolean operators.

19

2.3.1 An AI-Based Model of Information Retrieval

Hafner [1981] conducted the earliest effort to develop techniques grounded in Al

specifically to address the traditional problems of information retrieval. Hafner’s “Legal

Information Retrieval System” (LIRS) employed a model of legal classification knowledge,

in the form of a restricted semantic network, defined on the area of negotiable instruments

law. This domain model consisted of a network of approximately three hundred objects —

agents, events, and various negotiable instruments, their components, properties, and

roles. Connecting these nodes were links denoting membership, constituency, property,

and event-condition relationships.

From this model, Hafner developed a situation description language (SDL) for

describing documents in the data base and for expressing data base queries. The SDL

allowed simple binary relationships among objects and properties and included primitives

for expressing negation of relationships, a particularly well-developed result of this project.

The LIRS data base contained entries for approximately 200 statutes and 200 cases, as well

as entries for official comments on the statute by legal authorities. Each item in the data

base was represented by a set of SDL descriptors and full legal citations. An entry’s

descriptors denoted information regarding legal setting, concept definition, and legal

issues. In order to facilitate retrieval, each concept in the domain model held a set of

pointers to data base items related to the concept in a particular way (for example, by

presence or absence).

LIRS took a query, determined the indices corresponding to the concepts in the

query, composed an appropriate descriptor based on the index types and the referred

concepts, and compared this composed descriptor to the those, of items indicated by the

concepts index list. Entries matching the query descriptor were then returned by the data

base. Complex queries — those including conjunction or disjunction operators — were

decomposed into primitive queries, and the results of processing the primitive queries were

20

then re-combined according to the complex operators. In addition, the data base would

match queries to documents at varying levels of semantic complexity, as specified by the

user. These match types included an exact match as well as direct and inferred extensions

of the query.

While the LIRS project addressed important questions regarding legal knowledge

representation and conceptual retrieval, the project did not directly tackle the issue of how

to organize the data base for efficient retrieval. Hafner [1987] subsequently refined and

extended the LIRS approach to incorporate an issue/case discrimination tree for indexing a

memory of legal cases. In this extended approach, individual case descriptors consist of

constellations of concepts, drawn from a model of domain knowledge and assembled

according to the legal roles they play in the case. Each concept in the domain has an

associated set of decision rules that specifies the conditions under which the concept is

present These rules also constitute the primitives for representing the justifying theory of

the case, one of the critical components of a case descriptor.4

Cases in memory are indexed by an issue/case discrimination tree (Figure l), which

depicts normative relationships among legal issues and relevant domain facts. Issue nodes

denote legal conclusions to be drawn in deciding a case, and factor nodes denote types of

facts that may influence the process of drawing a conclusion. Influence links connect

issues to sub-issues and to factors relevant in deciding the issue. Each link reflects a

positive or negative relationship between the connected concepts.

4 The theory of a case decision demonstrates how the legal issues of the case relate to the case‘s

background facts (which define the situation being considered) and the holdings of the court (the decision itself).

One can view the theory of a case as a simple justification of the decision. with little elaboration of the inference.

21

Broker is liable

for buyer damages

‘

Broker breached

duty to give

correct information

Broker had

a duty to

disclose

Condition of

property was

misrepresented

Broker had

actual knowledge

Reliance on

broker was justified

Buyer had an

opportunity

to discover

0 Factor Node

Issue Node

 Influence Link

Figure 1. A Sample Issue/Case Discrimination Tree

22

The issue was decided

Positively Negatively

Reliance was justified,

and the case was

Reliance was not

justified, yet the case

Plaintiff decided for was decided for

Case was the plaintiff. the plaintiff.

decided

for

Reliance was justified, Reliance was not

Defendant yet the 0886 justified, and the case

was decided

for the defendant.

was decided

for the defendant.
Figure 2. The Four Kinds of Issue Pointer into Case Memory

From this structure, two kinds of index into the case memory can be established.

First, each node in the tree has a compound link to the case law collection (Figure 2). This

link points to the set of all cases in which the issue or factor played a role. For example,

the node forjustified reliance points to all cases in which the buyer claims to have been

justified in relying on the broker’s presentation of facts. This set of cases is segregated into

four groups, based on how the issue was decided and on how the case was ultimately

decided. This kind of link relates how an issue was decided to the set of cases in which the

issue was important. ‘

Second, each link in the tree also has a compound pointer to the cases in which the

influence relationship was relevant to disposition of the case. This set of cases is also

divided into four groups, along two dimensions: (1) the presence or absence of the factor

or sub-issue in the case, and (2) the effect its presence or absence had on the resolution of

23

the issue. Figure 3 depicts the division of the case set for a particular influence link, the

link between the issue duty to disclose and the factor broker had actual knowledge. This

type of organization allows the system to provide meaningful answers to very specific

queries, such as “In what cases did the broker have actual knowledge of a defect and yet

the court decide that there was no duty to disclose?” Given this sort of link, the system can

answer queries referring not only to relevant concepts but also to the relevance of the

relationships among concepts in a case.

With respect to the issue, the factor or (sub—issue) was

Relevant Irrelevant

Broker had actual Broker had actual

Present knowledge, and knowledge, yet this

this resulted in a ' did not result in a

The factor duty to disclose. duty to disclose.

(or subissue)

was

Broker did not have Broker did not have

Absent actual knowledge actual knowledge

and so had no and yet had a

duty to disclose. duty to disclose.
Figure 3. The Four Kinds of Link Pointer into Case Memory

2.3.2 AI-Based Approaches and Their Significance

Hafner’s model demonstrates the power of pattern matching (through abstraction to

domain concepts) for conceptual information retrieval. This idea is an old one, dating at

least back to Raphael [1968] and his SIR program, and finds application in a variety of

24

forms. Zarri [1985] has proposed a methodology for intelligent information retrieval in

which data in the memory are represented as frames composed of sentences from a case

grammar that defines the domain. Queries are then decomposed along the dimensions of

the cases in the grammar, and each access to the memory is guided by the semantic content

of the classes of patterns associated with the case. From an entirely different perspective.

Rose and Belew [1989, also Belew 1987] propose a connectionist approach to conceptual

retrieval. In this approach, the retrieval system begins with a network constructed from an

initial representation of the documents it contains, linking nodes that are instances of the

important classes of objects in the domain. As users interact with the system, it

automatically refines the weights on the network’s connections to account for the utility of

retrieved documents and to reflect the addition of new documents.

AdOpting a view of conceptual retrieval that rests foremost on principles of Al

garners advantages unavailable to the approaches that rely primarily on traditional IR

techniques. Tools such as those proposed by Bing [1987] and Tong [with Reid, Crowe,

and Douglas 1987] suffice because of the nature of the domains in which they were used.

RUBRIC succeeds because it is applied to a case law domain in which concepts are

characterized by complex permutations of a relatively small number of text patterns. In a

domain where concepts might be expressed with a broader range of text patterns,

RUBRIC’s production rules would quickly become too large and too numerous for the

approach to be feasible. Bing’s norm-based thesaurus succeeds because it is applied within

the European model of law, with its strict adherence to statute and not case law. One may

be able to express all the synonyms for a concept that might appear in statute, but the text of

case decisions is typically too diverse for a purely synonym-based approach to offer much

advantage.

These tools remain too faithful to traditional IR to avoid its principal problems. A

text- or synonym-based approach makes generating queries involving relationships among

25

concepts nearly impossible, given the combinatorial explosion of different phrases that

might be used to express the concepts and the relatiOnship. For this reason, Hafner [1987]

argues that the greatest promise for CR in the law lies in (1) understanding how legal

experts remember and classify cases, and (2) converting this domain knowledge into

appropriate data structures and algorithms.

2.4 Cognitive Psychology

Much work in cognitive psychology deals directly or indirectly with the retrieval of

information from semantic memory. Studies of concept formation and recognition involve

determining whether, and under what conditions, a given item in memory will be evoked in

the presence of some input. From the time of Aristotle, concepts were defined by sets of

necessary and sufficient conditions that characterized instances of the concepts. Classic

psychological studies, such as those reported by Rosch [1975], describe a shift from this

Aristotelian notion to a view in which concepts are characterized by prototypical instances.

Related instances are linked to the prototypes according to the degree of similarity, with

more similar instances “closer” than less similar instances.

In order to explicate this sort of theory, cognitive psychologists have been forced to

consider the mechanism that enables one concept to evoke another. Similarly, research on I

how humans understand and resolve experience (for example, using scripts of typical

events) and how they behave in the presence of incomplete knowledge has offered insights

into how memory is organized and accessed. An especially interesting area of psychology

influenced in this way has been the study of analogical reasoning.

Solving problems by analogy — recognizing that an already-solved problem is

similar to a current one, and adapting the old solution to the new situation — plays an

important role in many domains. One can apply old solutions in a variety of ways:

0 by transferring the solution directly,

26

0 by modifying the solution to account for differences between the

problems,

' by transferring the method used to derive the solution and applying

it to the new situation, or

0 by creating an abstraction of the problem and solution and applying

this generalization to the new situation.

According to Greeno [1978], analogies can be characterized more generally as problems of

inducing structure: take the givens of an Old situation, determine the structural relationship

among its elements, and apply this relationship to the new situation. Analogy, then,

requires that an appropriate analog be available before its structure can be induced and

applied in a new situation. Under contrived conditions, such as in standardized testing, the

analog is typically provided to the problem solver. Studies have shown that people are

often quite adept at solving problems by analogy when given an appropriate analog from

which to induce a structural relationship [Gentner 1989, Stemberg 1977]. More generally,

though, a problem solver must remember or otherwise actively retrieve an analog for use.

It is in remembering useful analogs that people have difficulty. Gick and Holyoak

[1980] sought to determine how to overcome this difficulty. They found that hints

consisting of key phrases, such as “divide and conquer,” promote the retrieval of relevant

past experiences for use in a new situation. Along similar lines, Gentner and Toupin

[1986] conducted studies in an attempt to discover the source of difficulty in recognizing

analogs (in this case, stories). They found that subjects had difficulty recognizing the

utility of a past story when it was not presented — or not understood — in a systematic

way. This condition was most readily observable when the causal relationships among

elements of the story were not clear. Thus, one of the central goals for understanding

analogical reasoning involves determining what types of systematicity characterize the

organization of human memory and best facilitate the retrieval of relevant analogs.

27

2.4.1 Memory Organization and Access

Two schools of thought exist among cognitive psychologists regarding memory

organization. One group holds that memory is indexed only by surface features and that all

retrieval is driven by sensory input. On this view, any use of higher-level concepts occurs

after retrieval of analogs sharing similar surface features. The second camp proposes that

concepts do play a role as indices into memory. Members of this camp argue that the use

of such “abstract” features is directly tied to the kind of higher-level cognitive processes

which have traditionally’been hard to isolate in experimentation. The following sections

discuss these two views of memory in greater detail.

Retrieval based on Surface Features A large body of evidence supports the view that,

without outside facilitation of some sort, people generally access analogs based only on

relatively simple surface feature similarities.5 As a result, some researchers have proposed

highly parallel models of memory that emphasize syntactic and low-level semantic

similarity. Thagard and Holyoak [1989] offer a theory of retrieval based on the

simultaneous satisfaction of three types of constraints on memory: semantic similarity,

structural consistency, and pragmatic centrality. These constraints are not necessary

requirements on retrieval but rather pressures that operate on the memory to different

degrees. Waltz [1989] argues that massive parallelism over very low-level syntactic

features best accounts for human behavior. From this viewpoint, concept-level indices are

outputs of, not inputs to, the retrieval process. The point of such architectural models of

memory access is, Waltz says, that people “can retrieve deep, evaluative features rapidly,

given only readily extractable surface features.” [page 41]

In order to account both for ample experimental evidence of retrieval based on

simple features and for experimental and anecdotal indications that higher-level conceptual

5 Gentner [1989] describes a variety of such studies, in addition to those cited above.

28

features affect retrieval, some researchers have proposed theories that operate on two

levels. Forbus and Gentner [1991] offer such a theory in their MAC/FAC6 cognitive

architecture. This approach was motivated by the insufficiencies of competing types of

models for memory organization. Al models of memory have tended to be based on clever

indexing methods that seem unlikely to scale to the demands placed on a large, evolving

memory. Conversely, models of memory from cognitive psychology have typically

employed simple representation schemes, such as feature vectors, that allow tractable large-

scale search but which do not reflect the richness of the semantic features that people

possess and use.

MAC/PAC blends the strengths of these types of model in a two-stage computation.

First, the MAC stage uses a flat feature representation to retrieve a set of potential analogs

at little computational cost. This kind of blanket search is often very imprecise, resulting in

the retrieval of many inaccurate items.7 Second, the PAC stage attempts to match the input

“query” with these items based on their structure and higher-level semantic content.

Forbus and Gentner assert that this model strikes a compromise between “seemingly

incompatible intuitions about memory: Access tends to be governed by surface properties,

while inference tends to be governed by relational matches.” [page 68] These and other

researchers, including Gentner [1983] and Burstein [1989], have long been investigating

the nature of the structural and relational mapping necessary for the second stage of such a

bicameral process.

Retrieval based on Abstract Features Despite these claims that readily extractable low-

level features serve as the keys to human memory retrieval, other research has shown that

6 For “Many are called. but few are chosen.”

7 By erring on the side of imprecision. this type of search tends to have very high recall. However. as

Martin [1989] points out, even such a broad retrieval strategy cannot be guaranmd to retrieve all relevant items.

29

retrieval is also strongly influenced by pragmatic features, such as the processing task at the

time of storage. Seifert [1988] has conducted a long line of experiments whose results

support this view. These experiments show that the retrieval of stories from memory is

facilitated by attending to the processing goals present when the story was initially

encountered. Motivated in part by Schank’s view that “remindings”8 reveal the way in

which an event was understood, Seifert has investigated the conditions under which such

remindings occur.

Her experiments indicate that encoding a new story does not always activate

thematically similar stories. Rather, similar stories are activated only when the encoding

context presents a functional or strategic purpose for doing so. Cognitive goals thus form a

critical part of the context in which encoding and retrieval operate. Seifert’s studies indicate

that such goals are particularly active in problem solving tasks such as planning and

argumentation [page 365]. In some sense, these results countermand Schank’s emphasis

on automatic remindings, especially if one defines the notion of intentional reminding

broadly, to include not only the consciously intended but also retrievals that occur due to

cognitive biases in processing.

Seifert [1988] and Gentner [1989] argue that processing goals play a role in

retrieval by affecting the features that are most attended to in the process of determining the

similarity between items in memory. On this view, the mind attends to particular features

of a new story based on the cognitive goals active in working memory at the time of

encoding. Stories encoded under similar conditions are likely to be activated in the

process. Interestingly, many past psychological experiments may have obscured this

phenomenon by setting up simplistic contexts in which only one processing goal is

8 Schank [1982] coined the term “reminding" to refer to the spontaneous remembering of past experiences

based on a current situation. He also uses the term to denote the result of such remembering, a past episode.

30

present.9 This kind of experiment allows the goal to be implicitly encoded as part of the

story’s representation in memory. (On the other hand, AI studies of problem solving

generally involve tasks with many different processing goals, thus making memory access

based on goals a natural consequence of system building.)

That psychological models of memory organization should account for high-level

features as indices remains a controversial yet active empirical issue. Researchers who

adopt this view believe that it can be reconciled with simple feature-based approaches by

developing theories that explain how and when high-level features participate in

remembering. Such theories typically focus on how strategic purpose affects what is

considered “relevant” in a given situation. Burstein [1989] investigates how queries of

different forms affect the mapping techniques involved in arriving at a suitable analogy.

(For example, he has compared queries that involve determining the functional organization

of a device given its behavior to queries that involve finding a component capable of

performing a particular behavior given a functional specification.) Viewing analogy as a

matter of inducing structure ultimately leads to the idea that such structures, and the features

that may play a role in mapping structural similarities, can serve as useful components in a

theory that explains the phenomena of memory retrieval.

2.5 Case-Based Reasoning

Case-based reasoning (CBR) refers to a general methodology in which previously-

encountered situations are used as aids in interpreting or solving new problem cases. The

motivation for this methodology is to avoid the computational cost of re-solving problems

from scratch each time they arise by caching solutions to each problem confronted; if a new

situation closely resembles a past situation, the problem solving from the past situation may

9 Seifert points to the work of Gick and Holyoak [1983], who found in later studies that controlling for

problem-solving context had a material effect on the performance of memory retrieval. See Seifert [1988] for a

detailed discussion of this point.

31

provide a “short cut” in addressing the new situation. Fundamentally, CBR views problem

solving as remembering, as a memory process rather than a deliberative one: “Finding the ‘

right [story of past experience] is what we mean by understanding.” [Schank 1982]

Remembering a similar prior case can not only save recomputation of a right answer but

can also help avoid past failures by recognizing the conditions that led to a failure in an

earlier case.

Though consistent with much that cognitive psychologists have observed regarding

human problem solving in natural settings, CBR research typically places less emphasis on

exact replication of human memory behavior. Rather, CBR emphasizes discovery of the

principles that underlie reasoning with cases and building useful computer programs to

perform tasks in real-world domains. However, in two general senses, CBR reflects the

nature of how people solve problems. First, case-based systems can typically find a good

but not optimal solution to a problem rather quickly, with less risk of a wildly wrong

answer than systems that do not use past cases.10 Tasks that lend themselves to a case-

based approach, then, are typically characterized by multiple solutions in which trade-offs

and the ability to compare solutions are more important than optimization and correctness.

Second, each new problem solved increases the knowledge of the system, either by noting

the success of a solution or by recognizing a failure in the presence of particular domain

conditions.

2.5.1 Issues in Case-Based Reasoning

The process of case-based reasoning can be portrayed as consisting of the

following steps [Riesbeck and Schank 1989]:

l. Characterize the current situation.

2. Retrieve previous cases similar to the situation.

10 The truth of this claim critically depends on the ability of a case-based system to recognize similar past

cases effectively. Producing this ability is one of the central research aims of CBR.

32

3. Determine the best match to the situation among the retrieved cases.

4. Adapt the selected case(s) into a solution for the current situation.

5. Apply the solution. If it is satisfactory, assign indices to the new case

based on the goals it achieves; if it fails, use the reasons for failure

to identify indices of the situation predictive of the failure.

6. Store the situation and solution as a case in memory.

Case retrieval and storage constitute the memory processes of CBR, the reactive interface

between case memory and the system. These steps rely specifically on the generation of

indices provided by situation characterization and solution application. At the other extreme

is case adaptation, a deliberative process that employs task- and domain-specific knowledge

to modify a past solution for use in a new situation. The character of the other tluee steps

in the methodology remains a part of active research. Some view these steps as extensions

of the memory (for example, Waltz [1989] and Ashley [1990]), while others recognize that

substantive problem solving may be required to perform these tasks (most notably,

Hammond [1986], Koton [1988], and Kolodner [1991]). This dispute, as it relates to

indexing, is discussed further below. .

Researchers have generally applied this methodology in a number of ways. Some

use the process as a “weak method,”1l seeking to discover knowledge structures

appropriate for applying its steps to various problem-solving tasks [Hammond 1986,

Kolodner. 1991, Birnbaum et al. 1991]. This style emphasizes case adaptation, as prior

cases are used to derive and apply a solution to a new problem instance. In another branch

of work, often called precedent-based CBR, the method uses cases to classifyior evaluate a

new situation based on the treatment of past similar situations. This approach, common

especially in legal and diagnostic domains, de-emphasizes adaptation and stresses the

l 1 A weak method is a search technique that employs no domain-specific knowledge to guide the search.

33

ability to characterize and select cases based on similarity [Ashley 1990, Branting 1991,

Bareiss 1989].

Much of the focus of CBR research has been placed on issues of adaptation. Since

differences between the past and current cases may have significant effects on how the

problem should be solved, adapting a case requires complex task- and domain-specific

knowledge to ensure that the new solution will adequately account for the differences.

Generally, this knowledge has been represented in the form of causal rules that define how

to achieve particular goals and how changes to the solution will affect other parts of the

solution [Hammond 1986]. One notable approach at developing a theory of how case

adaptation can be performed involves the use of model-based reasoning. Koton [1988,

1990] and Goel and Chandrasekaran [1989] have described approaches in which device

models, which capture causal understanding of how a device’s structure contributes to its

behavior, provide a principled means for adapting a solution to a new situation. This

approach also assists in the evaluation of case differences by offering recourse to the model

in deciding the effects that particular features have on the functioning of the device.

The other primary focus of case-based reasoning research is indexing. Whatever

can be made of the differences between problem-solving CBR and precedent-based CBR,

or of the differences among CBR approaches to various problem-solving tasks, they all

share an essential dependence on case retrieval and storage [Kolodner 1991]. One of the

goals of CBR is to avoid the need to do deliberative problem solving by remembering and

employing past solutions. For this reason, the design of a case-based system should

minimize the extent to which the system must rely on “compiled knowledge” to adapt and

repair its solutions. The way to minimize deliberative problem solving in such matters is to

retrieve the best possible past case — where “best” means the one that is most uSeful for

dealing with the new situation. As the reasoner experiences more and more situations, it

becomes increasingly better equipped to use past solutions with little or no modification.

34

How the memory of cases is organized and what features the reasoner can use to access the

memory are critical issues both in building useful systems and in understanding the

phenomenon of reasoning with cases.

2.5.2 Case Memory and the Indexing Problem

Most researchers agree on the basic issues underlying the indexing problem

[Kolodner 1991]. Indices should be predictive of a case’s utility in achieving an outcome.

They should be abstract enough to indicate useful cases that are related to but different from

one another, and yet concrete enough to be recognizable without extensive and

counterproductive computation. Each case may have several indices associated with it,

depending on the various roles the case might play in future problem solving (for example,

combinations of factors responsible for or descriptive of its outcome, or combinations of

factors that describe intermediate steps of note in the problem-solving process).

In addition, many researchers (in particular, Hammond [1989] and Birnbaum

[1989]) have noted that an important trade-off exists between the cost and utility of

different forms of index. That is, indices that can be derived from standard input at a low

cost will tend to describe only a very narrow set of cases, while indices that maximize

descriptiveness are likely to be computationally expensive to generate. Given this trade-

off, an indexing vocabulary must strike a practical and cost-beneficial compromise.

With respect to case retrieval, the issue of indexing introduces a set of related issues

[Domeshek 1991a]:

' determining index content and structure,

0 matching indices,

0 organizing and searching case memory, and

0 generating probes to query the memory.

35

Any proposed indexing methodology must ultimately account for how to do each of these

tasks. Not all of these issues have been formally examined in the literature, but the issue of

index content has been the subject of considerable theoretical discussion. Such research

has focused on this question: should abstract, high-level indices be used and, if so, what

sorts of abstractions will offer the greatest power and utility for retrieval? Some

researchers advocate the use of only simple, low-level features taken directly from system

input. However, tracing back to CBR’s roots in the work of Schank, the dominant view of

indices has stressed the use of functional indices, ones defined somehow in terms of the

system’s problem-solving goals. The next two sections discuss these two primary

approaches to the issue of index content.

The Use of Low-Level Features A small but active group of researchers continues to

investigate the utility of surface features as indices for case memory. Waltz [1989] has

argued that “indexing” is the wrong way to think about memory retrieval. His claim has

two major points. One, indices are not needed for tractability, since memory retrieval is

done in parallel. Two, most memory processes use only surface features and basic

experiential context for retrieval. Thus, complex indices may be useful for describing

problem solving, but they are not necessary to a theory of memory retrieval. He cites the

traditional results from cognitive psychology mentioned above as evidence for his theory of

“memory-based” reasoning.l2

Using the Connection Machine, Waltz and his colleagues at Thinking Machines

Corporation have demonstrated the utility of this approach for tasks such as learning to read

text [Stanfill 1988] and predicting protein structure [Zhang and Waltz 1989]. Others have

employed the approach of retrieval based on surface features, albeit on serial machines, for

similar sorts of tasks. Especially interesting work has been done by Lehnert [1987] and

12 However. as noted above, these results may have been flawed in that they failed to control for problem-

solving context [Seifert 1988].

36

Golding and Rosenbloom [1991] on word and surname pronunciation, respectively. This

use of surface features not only eliminates the need to compute indices for queries and ‘

storage but also enables the application of a case-based approach to large, existing data

bases.

But the approach also lacks a degree of complexity often required in performing and

explaining problem solving. Ashley [1990] offers a partial compromise in the form of

dimensions, relatively low-level factors that affect a legal claim. Dimensions are not

surface features of a situation but rather are simple fact abstractions. However, the value of

each dimension can be computed from system input data using a single production rule.

Each case in memory is then indexed by the dimensions that characterize it Thus,

dimensions preserve the spirit of retrieval based on surface features, while also enabling the

use of simple domain abstractions in organizing cases meaningfully.l3

The Use of Abstract Indices The foundation of case-based reasoning research has been

organization of memory according to thefunctional features of stored cases [Schank 1982].

These functional features denote the utility of a case in future situations. Schank discussed

several types of functional feature, including expectation failures, processing goals, and

abstractions (such as the morals of stories). Hammond [1986] describes a theory of

memory closely tied to the processing goals of a planner. In CHEF, Hammond’s system,

past planning episodes are indexed by the goals they satisfied and by explanations of

failures. Failure explanations consist of features of the situation causally responsible for

the plan’s inadequacy. Such features may be direct input or abstractions computed in the

course of the planning process.

13’ Ashley asserts that the nature of legal domains precludes the use of abstractions at a higher level than

dimensions, due to the open-ended evolutionary character of legal concepts. Chapter 3 discusses Ashley’s model

of legal argument and the role of dimensions play in greater detail .

37

Hammond [1989] argues that the computational cost of using such complex

features is, in fact, nil, since they must be generated in the course of problem solving

anyway. Going further, Birnbaum [1989] contends that, even if a complex index must be

computed outside the course of problem solving, the cost of this computation must be

offset against the computational savings realized in using the index. If use of the index

results in better case selection, and hence in less computation being required to adapt

retrieved cases, then derivation of the index may prove to be cost-beneficial. This situation

can occur only when there exists an abstract index vocabulary that is likely to result in the

retrieval of more appropriate cases. Research aimed at identifying efficacious task-specific

vocabularies (such as that described by Hammond [1989] and Birnbaum et al. [1991] for

the task of planning) becomes crucial when considered from this perspective.

An even stronger claim is made by Martin [1989], who studied natural language

analogies. Martin considered stories that share a common theme and found that, while the

relational structures of the stories could be mapped effectively [Gentner 1983], the stories

shared no common surface features. These examples demonstrate that “indexing on the

basis of simple features in the hope that a subsequent structural match will have less

work to do cannot handle examples that rely on purely structural constraints.” [page 295,

emphasis added] Thus, on this view, abstract index vocabularies are necessary to the

recognition of some relevantly similar cases.

In general, one can view the kind of abstract index vocabulary typically used in

CBR as being based on the goals satisfied by the generated solution. For example, in

CHEF, indices are computed from the functioning of the plan, either from gOals that the

plan can achieve or from features predictive of goal failures. More recently, researchers

have moved a step further, with the use of explicit models of the solution serving as a

source of the index vocabulary. Goel [1989, also with Chandrasekaran 1989] has

described an approach in which designs are described by the functions they realize. These

38

functions then serve as indices for design cases stored in memory. Use of such an abstract

index not only facilitates efficient retrieval but also expedites identifying the part of a

retrieved case that will be most useful in the current situation, since the functions can also

index the behaviors that allow the device to perform each of its functions. Following a

similar strategy, Sycara and Navinchandra [1991] use behavioral abstractions to organize

memory according to the utility of designed components.

2.6 Major Themes in Memory Organization

Drawing on research in information retrieval, cognitive psychology, and case-based

reasoning, one recognizes that each field is experimenting with the same continuum of

approaches to memory organization. This continuum ranges along the dimension of index

complexity. One end of the spectrum consists of approaches that advocate the use of little

or no indexing at all, relying instead on a content-addressable memory to match purely

syntactic features over massively parallel hardware. At the other end of the spectrum,

complex indexing schemes are based on problem-solving goals and relations. Given this

range of approaches, one can also recognize common themes that pervade all the disciplines

and indicate promising directions for further work toward the goal of conceptual retrieval

systems:

- the need to provide case retrieval support to human reasoners,

0 the need for both simple and abstract features as indices, and

e the utility of problem-solving goals as abstract indices.

2.6.1 Case Retrieval for Human Reasoners

Each of these disciplines is addressing the need to provide useful analogs to human

problem solvers. This research interest results from an understanding that people are often

competent at reasoning with precedents but are not always good at remembering

39

appropriate ones in the first place. Legal information retrieval research is driven by the fact

that the volume of legal cases far outstrips the capabilities of legal researchers to remain

abreast of case law development in all domains [Hafner 1987, Bing 1987, Zarri 1985].

Cognitive pSychologists have ample empirical evidence that this characteristic holds even in

the presence of far fewer episodes [Stemberg 1977, Greeno 1978, Gick and Holyoak

1980]. In the line of case-based reasoning research exemplified by Goel et al. [1991] and

described more generally by Kolodner [1991], the notion of augmenting human memory

by providing cases at appropriate times for human use in a broader problem-solving context

has become a primary goal.

Case-based reasoning offers a pragmatic suggestion in the attempt to solve the

conceptual retrieval problem: index cases first by their utility, and only then by their surface

similarity. Systems that retrieve the most useful cases will presumably be more useful both

as assistants to human problem solving and as components of larger computer systems

capable of performing difficult information-processing tasks.

2.6.2 Simple and Abstract Features as Indices

In the debate over low-level and high-level features as indices, each discipline

seems to reach the conclusion that both are necessary in any realistic model of memory.

The results of Seifert [1986, 1988], McDougal, Hammond, and Seifert [1991], and

Gentner [1983, also with Toupin 1986] demonstrate that human memory incorporates

elements of both surface and abstract features in the course of storing and retrieving

episodes. Indeed, Ashley’s [1990] use of dimensions could be considered an

implementation of Forbus and Gentner’s [1991] MAC/PAC cognitive architecture. Cases

are indexed by relatively low-level domain features and then retrieved en masse based on

direct feature matching. The retrieved cases are then sifted and selected according to the

implicit roles they can play in the assembly of arguments. Sirnoudis and Miller [1991] also

40

employ such a strategy but use a form of model-based validation to select the causally

relevant cases from among those retrieved. ‘

Hafner’s [1987] issue/case discrimination tree uses abstract factors to structure a

collection of legal cases according to important domain concepts and their relationships.

This structure provides access to cases at varying levels of conceptual and relational

abstraction. However, Hafner also notes that access to cases via purely syntactic surface

features — the text in the stored documents — will always be needed. As legal theory

evolves, researchers will require the ability to retrieve cases dealing with new concepts and

with new senses of existing concepts. These concepts, at least initially, will not be in the

issue/case discrimination tree. Thus, the user will need access to documents containing

particular text phrases that are known to characterize the new concepts.

2.6.3 Problem-Solving Goals as Abstract Indices

Finally, a principal theme running through studies of memory organization holds

that problem solving context, especially goals, in large part determines which features are

salient in any given situation [Seifert and Hammond 1989]. In cognitive psychology,

research offers only a vague idea of the nature and source of these goals, and consequently

the theme is still interpreted rather broadly [Gentner 1989, Seifert 1988]. Experience

derived in building case-based reasoning, however, has provided clearer indications of the

character of these goals. In particular, understanding the structure and behavior of the

intended solution seems to provide valuable information for retrieving useful cases later.

This has been the focus of several different lines of research, including Hammond’s [1986]

theory of planning, Domeshek’s [1991a, 1991b] theory of social advice, and the use of

model-based reasoning by Goel [1989] and Koton [1988, 1990]. Ultimately, these

approaches all support the general notion that problem-solving goals serve as an important

key to understanding and remembering cases.

41

Goel et al. [1991] present a thorough analysis of the sorts of indices that should be

used to organize a conceptual memory for the task of conceptual design in architecture. '

This kind of analysis could be applied to any task and domain. Indeed, their short

discussion of memory organization offers the seeds of a methodology for designing

conceptual retrieval tools in different domains and for different tasks. Goel et al. address

the question of how the subtasks that a conceptual designer performs — such as design

adaptation and evaluation — affect and mutually interact with case memory structures.

Unfortunately, they do not generalize their approach to other tasks or domains. A need for

such a generalization clearly exists in regard to conceptual retrieval tools.

2.7 Conclusion

Researchers in several disciplines have investigated issues relevant to the notion of

conceptual retrieval, and several common themes characterize their results. These themes

suggest that one of the vital open issues for further research is to identify appropriate index

vocabularies for describing cases in memory. However, Domeshek [1991a] reminds

researchers that such a theory must address not only index content but also the organization

and search of the index space. Developing abstract index vocabularies in isolation leaves

system builders to identify the principles of data base organization and search that typify a

vocabulary each time it is applied in a new domain. Ad hoc methodologies also offer little

justification for believing that constructed systems will be useful or robust.

Among the most important of these themes is the idea that problem-solving goals

can serve as especially useful indices for organizing a conceptual memory. Many

researchers have focused their efforts on the development of index vocabularies for

particular problem-solving tasks, but few have taken advantage of the contributions made

by knowledge-based systems research into the nature of problem solving. The rest of this

dissertation outlines a principled theory of indexing — vocabulary, organization, and

42

search — for the task of legal analysis. This research is done within the context of the

Generic Task Approach to knowledge-based systems, which offers a set of languages that

describe particularly useful problem-solving tasks and methods. By basing the theory of

indexing on such a task-specific approach, case memory can be organized and searched

according to the specific needs of a problem solver performing a particular task.

CHAPTER 3

JUSTIFICATORY REASONING IN TAX LAw:

A REVIEW OF PAST WORK

3.1 Introduction

Conceptual retrieval does not take place in a vacuum, but rather in the context of

some Other mental activity. Such activity, whether story understanding or directed problem

solving, establishes the goals that retrieval must satisfy. As discussed in Chapter 2,

research in cognitive psychology and case-based reasoning indicates that this phenomenon

is especially true for complex problem-solving tasks: Problem-solving goals play an

important role in how problem solvers understand problems and solutions and in how they

organize their memories. This dissertation examines conceptual retrieval in the context of a

particular problem-solving task, the task ofjustificatory reasoning in the domain of tax law.

In particular, the taxation of captive insurance arrangements is considered.

. The remainder of this chapter consists of four main parts. Section 3.2 examines

several AI techniques that have been proposed for the task of legal analysis, which involves

the justification of a legal classification. In section 3.3, several approaches to representing

justifications are reviewed. Section 3.4 presents a summary of a particular taxation issue,

that of captive insurance corporations, and its place in the tax law domain. This domain

serves as the test bed for developing a theory of conceptual retrieval based on problem-

solving roles. The purpose of these reviews is to establish the task and domain knowledge

with respect to which conceptual retrieval is considered in later chapters. Finally, section

43

44

3.5 discusses the implications for the idea of conceptual retrieval to be found in this

analysis of a specific task and a specific domain.

3.2 A1 Approaches to Legal Analysis

Legal reasoning consists, in large part, of two tasks, analysis and planning.

Analysis involves the classification of a situation1 as an instance of one or more legal

concepts. This classification must be then be justified by identifying relevant statutes and

case precedent that support the proposed categorization. In planning, the lawyer views the

client’s situation prospectively and recommends actions that satisfy the client’s goals while

minimizing the risk of unfavorable legal consequences. According to Buchanan and

Headrick [1970], the analysis task is essentially one of argument formation, and planning

consists of argument formation followed by risk assessment. In this sense, the two tasks

of legal reasoning interrelate in a fundamental way and share many of the same subtasks.

Researchers in Al have long recognized the law as an attractive domain for study.

The legal profession offers a tradition of examining its own reasoning processes, in the

specialty of jurisprudence, as well as a stylized method for problem solving, in the form of

stare decisis. Furthermore, the law offers a large volume of accessible and well-structured

text to serve as a source of experimental data. AI research in the law (AIL) has typically

addressed analytic problems — those of classification and justification — in an effort to

identify useful representation and problem-solving techniques that can later be applied to

more difficult planning problems. This body of research has evolved through several

stages of techniques, from rule-based approaches, through exemplar-based approaches, to

case-based approaches that more accurately reflect the legal enterprise.

1 The situation is often termed a fact situation. to emphasize that the situation is defined by the basic facts

that characterize it.

45

3.2.1 Rule-Based Approaches .

The earliest computer programs aimed at autOmating parts of the legal analysis task

were systems that represented legal knowledge primarily as rules. Popp and Schlink

[1975] described a prototypical system of this generation, Judith, which assisted in the

decomposition of legal issues. Given a legal issue, Judith provided a set of propositions

that define the issue. For each such subissue, the lawyer could either assert a truth value or

ask Judith to decompose the subissue recursively into its constituent propositions. If the

analysis “bottomed out” by reaching a subissue for which the lawyer desired more

information but the system had no decomposition knowledge, Judith generated a simple

query to a legal information retrieval system based on the propositions considered during

the current session. Other systems of the day employed similar approaches and embodied

similar motivations. For example, CORPTAX [Hellawell 1980] determined whether a

stock redemption qualified for favorable tax treatment under a particular provision in the tax

law, and Sprowl’s [1979] program used a decomposition of a statute to create a simple

legal form generator.

Though interesting as initial research vehicles, these early projects suffered from the

serious limitations of their basic approach. Responsibility for all of the significant legal

analysis lay with the system’s programmer and user. Hellawell’s work required an

exhaustive decision-tree analysis of stock redemption and attribution provisions in the

Internal Revenue Code, and Sprowl’s document drafting system required a similar level of

analysis by the user to decompose a statute and to produce “boilerplate” text. Judith did

offer a more flexible goal/subgoal representation of legal rules but was limited by its

inability to provide any assistance in searching the goal hierarchy. The only problem-

solving method it possessed was the “weak method”2 of issue decomposition (a user-

directed mixture of depth- and breadth-first search).

2 A weak method is a search technique that employs no domain-specific knowledge to guide the search.

46

Attempts to overcome these limitations within the rule-based framework produced

two notable systems, McCarty’s TAXMAN [1977] and Meldman’s legal analysis system -

[1977]. TAXMAN analyzed corporate stock reorganization transactions. Given a set of

high-level assertions about a corporation, its stock ownership, and stock transfers,

TAXMAN generated as output the proper tax classification for the transaction.3 McCarty

wrote TAXMAN in MicroPLANNER, a predicate logic-based language with general

procedural programming power. By encoding heuristic search rules in MicroPLANNER,

McCarty was able to give TAXMAN the ability to perform efiicient conceptual abstractions

based on experiential knowledge from taxation law. In a similar fashion, Meldman

implemented a network of assault-and-battery concepts in a predicate logic language,

creating a system that was able to classify fact situations as one or more types of intentional

tort. Meldman sought to explicitly represent different forms of legal knowledge —

concepts, rules, and generalized cases — using predicate logic rules as the epistemic

primitive.

From a Generic Task viewpoint, both McCarty’s and Meldman’s work can be

described as simple forms of hierarchical classification. TAXMAN consisted of a set of

small classification hierarchies, where each class was represented as a sub-class of its

parent type with additional constraints. These additional constraints constituted the

category’s establishment knowledge and was implemented as a set of structured pattem-

matching rules for abstracting input data into appropriate taxation concepts. Meldman’s

system also employed a classification hierarchy of tort types and sets of ordered pattem-

matching rules for determining the applicability of the type to the current facts at hand. In

both systems, the pattem-matching rules closely resemble the generic task of structured

matching, providing for a “bottom up” matching of fact patterns to the specifications of

more abstract concepts.

3 According to Chapter I, Subchapter C, of the Internal Revenue Code of 1954.

47

The notion of encoding legal concepts and heuristic search knowledge as rules for

classificatory analysis of a situation has been adopted by a variety of researchers and

practitioners in a variety of tasks and domains.4 The idea of matching fact situations

against templates of event and state classes, with instantiation of variables across relations,

permits these systems to address concepts beyond the scope of earlier propositional

systems. Yet McCarty [1983, 1987] argued that TAXMAN, the most highly developed

example of this approach, could not deal with basic concepts in particular domains of the

law because it lacked recourse to a deeper “understanding” of the domain. This limitation

follows from the fact that general legal rules abstract too much detail away from concept

instances, with aresulting inability to recognize fundamental differences between two fact

situations. This criticism led to a second generation of legal analysis systems stressing the

representation of legal concepts at a more basic level.

3.2.2 Exemplar-Based Approaches

Through case analysis, builders of early rule-based systems realized that the rule-

based approach would be insufficient for representing amorphous legal concepts. These

systems relied on logical templates for expressing concepts, but the domains in which they

operated were generally characterized by well-structured semantic relations. This feature

was especially present in the tax domains that were chosen. Areas of developing law,

though, resist this sort of formulation. Instead, they require an approach based on

reasoning from examples.

Levi [1949] presents the classical statement of a legal concept as a set of mappings

4 In the general law, these include two systems for determining defendant liability and litigation value.

LDS [Peterson and Waterman 1985] and SAL [Waterman, Paul, and Peterson 1986]. and a system for the assembly

of routine wills and revocable trusts, EPS [Schlobohm and Waterman 1987]. In the tax law. the approach has been

applied to the identification of compliance issues with respect to the inclusion of prizes and awards in gross

income [MacRae 1985], the determination of constructive ownership of stocks [Schlobohm 1985], and a system

for the analysis of prospective pension plans [Grady and Patil 1987]. The most publicized system implemented

for use in actual tax practice was ExperTAX. a program that identifies tax accrual, compliance. and planning issues

described by Shpilberg, Graham and Schatz [1986].

48

between fact patterns and a prototypical instance.5 On an exemplar-based theory, one

seeks to show that a situation is an instance of a particular concept by demonstrating a set

of value-preserving mappings from the instance to a known instance of the concept. In

order to accomplish this kind of reasoning in a computational manner, one requires a

scheme for efficiently and adequately representing concept exemplars and the mappings that

can be applied to them. This kind of approach holds great promise for the non-

computational legal theorist as well, since it enables the development of formal models for

the evolution of legal concepts and for the process of analogical reasoning in the law.

Work on the exemplar-based approach quickly focused on the development of

languages for representing primitive legal concepts. McCarty’s [1983] TAXMAN II

project aimed to create a language for describing legal fact patterns in terms of the rights

and obligations of the parties involved. One result of this project has been LLD, a deontic

logic that supports the representation and manipulation of mappings between fact patterns

[Mch 1985]. Using LLD, situations can be represented as collections of assertions

about the rights and obligations of involved parties, and mappings can be represented as

transformations that change certain features of a situation while maintaining other critical

features. Mappings can be decomposed into more finely-grained mappings along relevant

dimensions in the domain.6 The conceptual distance between two situations then depends

on the number and type of mappings (or “deformations”) needed to transform one into the

other. Finally, important concepts in the domain are represented as prototypical fact

patterns.7

5 Such a theory of legal construction was offered at least as early as the turn of the century by both Oliver

Wendell Holmes and Benjamin Cardozo. eminent legal scholars of the time.

6 In taxation domains. these dimensions might include concepts such as liquidity. risk. and control.

7 McCarty terms his approach “prototype and deformation.” Along similar lines, Cross and deBessonet

[1985, also deBessonet 1983] have developed a language called CCLIPS for representing mappings that involve

the primitive legal notion of causality.

49

Exemplar-based approaches have been tried in a variety of legal domains.

Schlobohm [with McCarty 1989] has developed a program, EPS II, that creates estate

plans tailored to a client’s goals. EPS II selects a prototype plan and then effects a series of

mappings from the prototype to a fully-instantiated plan, with each mapping preserving

features important to the client. These mappings are expressed in LLD using the primitive

relations of right and obligation. Gardner [1985, 1987] describes a legal analysis system

that uses generalized fact patterns to assist in classifying situations from contract law. In

essence, these generalized fact patterns correspond to exemplars of particular concepts,

such as offer, acceptance, and counteroffer, which can be instantiated based on the facts of

an input situation. This system has been used to classify typical situations from a first-year

law school contracts course.

The use of exemplars in legal analysis overcomes much of the brittleness found in a

purely rule-based approach. Mapping fact situations to prototypical instances of a concept

enables a more flexible consideration of a situation’s facts. However, some problems

remain. Exemplars, while possessing more detail than a single generalized rule, still

abstract away details from each instance of the concept. Levi’s [1949] discussion of

reasoning from examples in the law actually deals with particular cases that have (or have

not) been adjudged to be instances of a concept. As a concept evolves, different sets of

facts may become relevant to determining whether a situation is an instance of the concept.

Abstraction, however painstakingly done, may omit facts of a situation that could later be

relevant in classifying an instance.

3.2.3 Case-Based Approaches

Motivated by this concern, the current generation of AI research modeling the legal

analysis task has focused on case-based reasoning. Ironically, this move to the

representation of low-level instances has also enabled legal analysis systems to augment

50

their classifications with justifications. These justifications conform to legal standards by

citing relevant case precedent. This line of research is best characterized by the work of

Ashley [1990] and Branting [1989, 1991].

Ashley and Hypo Like other legal analysis systems, Hypo takes as input a set of facts

that define a particular legal situation (in this case, in trade secret law). As output, Hypo

generates one or more “three-ply arguments” to support different classifications of the

situation. These arguments are based on the favorable and unfavorable precedents that

most closely match the input situation. To assist the user with other aspects of legal

analysis, Hypo’s output also includes a complete list of all precedent cases that are relevant

to the situation at hand. These cases are stored in a library according to the facts that

characterize them.

The input situation is analyzed in terms of dimensions, abstract legal concepts

relevant to arguing the legal merits of a claim. Each dimension contains knowledge of a

particular domain factor, the values it can take, and rules that test whether the factor applies

to a situation. These dimensions play a variety of roles in the conduct of argument:

0 they characterize situations,

0 they index the memory of cases according to their presence or

absence from the case,

0 they differentiate among cases in determining the most relevant of

the cases retrieved from memory, and

0 they serve as the keys in constructing arguments and in generating

useful hypothetical situations.

For Hypo, arguments consist, quite simply, of citations to relevant cases. The first

ply of an argument involves citing the case that shares the greatest number of dimensions

51

with the input situation. The second ply of the argument consists of a response, made on

behalf of the opposing party, that takes advantage of some weakness in the mapping '

between the case cited and the input situation.8 Finally, the third ply offers a rebuttal on

behalf of the original party, countering the response made by the opponent in ply two.

Hypo generates such a three-ply argument for each case in memory that shares a maximal

subset of dimensions with the input situation.9

By maintaining a full set of cases from the domain, Hypo can classify a situation by

reference to specific precedent. This approach conforms to stare decisis and permits

analysis in domains having few or no generalized classification rules. However, Hypo

does all classification by case precedent. All the classificatory knowledge in the system

resides in the dimensions — they ultimately determine what features of a situation are

considered relevant in the domain. To the extent that Hypo is given a complete set of

dimensions and a complete set of cases, the system can provide adequate classification by

analogy. But Ashley offers no recourse to other classification knowledge.

Branting and GREBE Branting [1989, 1991] attempted to flexibly integrate rule-based

and case-based knowledge in a single legal analysis system. His program, GREBE, takes

an input fact situation and generates as output a single classification, justified by reference

to appropriate statutory (or common law) rules and precedent cases. A justification

generated by GREBE consists of a chain of reasoning from (some subset of) the input facts

to a legal classification of the situation. Each inference in the chain is annotated by the rule

or case that justifies the concluding assertion.

3 For example. by citing a case that shares a larger number of dimensions with the input situation but that

was decided for the opposing party.

9 That is, no other case has a set of facts that subsumes the set of facts shared by the input situation and the

case in question.

52

Rules and cases complement each other in the justification process. For example,

the use of a rule to justify a particular inference may be impossible if one of the rule’s

preconditions is a generalized predicate. Such a generalized predicate will likely not appear

as one of the base facts describing the situation. But if a precedent case exists in which the

input situation is classified as an instance of the generalized predicate, then the case may be

used to show the applicability of the rule to the situation. Thus cases may operationalize

abstract predicates from legal rules.

Conversely, a precedent case might be useful for supporting a particular inference,

except that the facts of the precedent do not match the facts of the current situation closely

enough. GREBE could use a legal rule to derive a required fact from the known facts of

the situation, thus facilitating a case analogy. Or there may exist a rule that shows one or

more of the situation’s facts to be a manifestation of a missing abstract term. This term

could then be used as a fact about the situation, again facilitating application of case

precedent. Branting terms this use of rules case elaboration. (He also describes the use of

rules for term reformulation, another means by which the use of cases is made possible

through use of a rule application.)

3.2.4 Status of AI in Legal Analysis

Case-based approaches such as Ashley’s [1990] and Branting’s [1989, 1991]

enable legal analysis that relies on specific facts of past classifications. The idea of using

multiple forms of knowledge (rules, exemplars, and cases) in legal classification is an old

one, tracing back to Meldman [1977] and McCarty [1977]. But only with the advent of

case-based analysis systems has the use of particular instances of past classifications been

implemented. The move from purely abstract knowledge to a mix of abstract and concrete

classification knowledge is essential for doing legal analysis that meets domain standards.

This move has also enabled these systems to provide more adequate justification of their

53

analyses by referring to case precedent when appropriate. As a consequence, interest in the

representation and manipulation of justifications has attracted more attention in the AIL

community.

Of course, even a case-based approach cannot circumvent the ultimate problem of

abstraction. Each case corresponds to specific classification instance and thus contains

every fact used to describe its legal situation. However, every case representation abstracts

from the “real” situation by including only a subset of the facts that characterize the

situation (that subset considered relevant by the encoder). This is true even of full-text

opinions generated by the courts. One can take the greatest care in describing a case within

some formalism, but there can be no guarantee that the description will be considered

complete in some later context. This problem is not specific to legal analysis, though, since

it applies to all representation. All other things being equal, cases provide an extra level of

detail over more general classificatory knowledge in the law.

3.3 Representing Justifications

With the development of more sophisticated techniques for automated legal analysis

has come a corresponding growth in interest in the generation of justifications for legal

classifications. Legal analysis must ultimately be supported by citation of relevant statute

or case precedent. In a very important sense, these justifications —— more so than the

classifications they suppOrt— are the key products of analytic problem solving in the law.

Several researchers have proposed techniques for representing justifications or justificatory

arguments. Though these researchers do not always offer precise methods for

manipulating justifications, their investigations provide insight into how different

representations promote the understanding and use ofjustifications. .

These approaches fall into two natural classes. In the f'nst, research is aimed at

capturing the content and structure of justifications — what kinds of assertions compose

54

justifications, and how these assertions are related. Such work generally seeks to broaden

understanding of human argumentation in various domains. In the second class of

approaches, justifications are represented so as to facilitate a particular computational

method in which justifications play a role. This class can be further subdivided according

to the type of argument being investigated:

0 tactical argument, concerned with moves that achieve specific

argument goals, and

0 strategic argument, concerned with moves that establish goals and

direct the flow of the argument.

3.3.1 The Structure and Content of Justifications

One of the most thorough and influential analyses ofjustifications was performed

by the philosopher of science Toulmin [1958].10 Toulmin wished to model scientific

arguments from a variety of disciplines, but he found the traditional tools of logical analysis

inadequate for the task. To remedy this problem, Toulmin devised a model ofjustificatory

argument in which the roles played by particular assertions could be made explicit.

Furthermore, this model also made explicit the nature of the relationships among these

roles. Figure 4 depicts Toulmin’s structural model ofjustifications.

This model defines specific roles that assertions may play in a justification:

° ' the data that characterize a state of the world,

0 the claim to be concluded,

- the warrant that justifies the inference,

0 the backing that supports applicability of the warrant,

- a qualification on the inference, and

10 See Chapter 5 for another discussion of Toulmin’s work. in the context of a computational

representation of justifications.

55

<DATA> b so <QUALIFIER> <CLAIM>

since unless

<WARRANT> <REBUTFAL>

on account of

<BACKING>

Figure 4. Toulmin's Model of Argument
- a rebuttal that contradicts the claim, under the conditions of the

qualifier.

These roles either explicate the classical syllogism (by requiring that the nature of the

premises be stated explicitly as data, warrant, or backing) or extend it (by providing slots

for roles not directly filled by the syllogism’s propositions). Such a structure allows one to

capture a greater amount of the semantic content carried in a justification.

Several researchers interested in characterization of and computational support for

legal analysis or argumentation have adopted Toulmin’s rich model as the basis of their

approach. Marshall [1989] proposes a general framework that integrates Toulmin’s

representation of the logical structure ofjustification with apragmatic structure of argument

goals and methods for achieving them. Within such a framework, justifications can be

represented and manipulated in terms of case facts and argument goals.ll Lutomski [1989]

11 Unfortunately, Marshall only outlines the integration of logical and pragmatic structures within her

framework. Her paper instead offers an excellent description of the use of Toulmin structures for representing

chains of inference and for annotating arguments with explanatory comments. This paper provided one of the

initial motivations for the work described in this dissertation.

56

argues that the use of Toulmin’s structure, with its focus on the functional roles of

assertions, provides a principled method for assimilating statistical evidence into complex

abductive arguments in the law. This approach also facilitates the teaching of the use of

statistical evidence to novice lawyers. Others who have employed Toulmin structures

include Lowe [1985] and Dick [1987]. The generality and completeness of Toulmin’s

model makes it widely applicable.

3.3.2 Strategic Argument Representation

Birnbaum’s [1982] argument molecules were an early attempt to model strategic

relationships among argument assertions. This approach arose out of research in natural

language processing aimed at building a computer program that could understand and

engage in arguments. In this approach, arguments consisted of networks of propositions

connected by support and attack relations. The goal of the approach was to identify

commonly- occurring patterns of support/attack relations and to investigate their use in

planning justificatory discourse. Once useful argument molecules were cataloged, the

program could use them to guide its selection of processing strategies. When the program

recognized a particular molecule in the course of understanding an argument, it could

generate an appropriate response based on its knowledge of the structure.

An example of an argument molecule was the contrastive positions structure. This

relation centers on a mutual attack relation between the two main propositions that sum up

alternative viewpoints of the arguers [Flowers, McGuire, and Birnbaum 1982]. Upon

recognizing a contrastive positions structure, the program could focus the selection of its

strategy based on knowledge of the structure. One of two goals would be established:

strengthening the program’s main assertion or undermining the opponent’s.12 In this way,

the molecule plays a role in understanding the arguments in which it appears.

12 In either case, the “net strength” of the mutual attack relations would be shifted in favor of the program‘s

key assertion. either by addition or by subtraction.

57

Argument molecules reflect the strategic roles played by assertions in justifications.

By adding strategic content to Toulmin-like structures, each molecule can initiate

expectations regarding the meaning of prior assertions and the utility of possible future

assertions. Additionally, Birnbaum, Flowers, and McGuire [1980] maintain that these

structures, and the expectations they engender, provide a useful way to organize case

memory in support of argumentation. Indexing cases by the expectations that they fulfill or

disappoint provides the arguer with a way to retrieve cases at times most advantageous to

their use in an argument. This enables cases to assist the user in achieving argument goals

indicated by the expectations and in avoiding potential pitfalls based on the opponent’s

opportunities.

3.3.3 Tactical Argument Representation

The work of both Ashley [1989, 1990] and Branting [1988, 1991], discussed

above, involves tactical arguments —— the assembly of a justification that achieves a given

goal, to classify a situation. Rissland [1985] and Ashley [1.985, 1990] describe a set of

moves that an arguer can make in the course of tactical argument:

0 citing the most similar favorable precedent case,

0 citing a counter-example,

° distinguishing a case, by claiming that a difference between a fact

situation and a precedent case justifies a different classification for

the situation, or

0 shifting the focus of argument, by presenting a related hypothetical

situation whose classification depends on a factor more favorable to

the arguer.

These moves, like Birnbaum’s argument molecules, provide knowledge about arguments

that is required for constructing justifications in a domain.

58

Ashley and Hypo In Ashley’s model, justifications consist merely of citations to cases

that share one or more dimensions with the input situation. Each case consists only of a set

of dimensions to which an outcome (a classification) has been assigned. Thus, Hypo

employs a trivial Toulmin structure, with base data connected to a conclusion via a case

warrant. This lack of structure suffices for two reasons. First, Hypo is intended only as a

first-level research assistant; all reasoning needed to flesh out the argument will be done by

the system’s attorney-user. Second, Hypo incorporates significant domain-specific

knowledge for comparing fact situations and for selecting the best cases to cite based on a

given fact situation. Most of this knowledge resides in the dimensions themselves, in the

form of rules for evaluating the magnitude and value of relevant factors.

However, this approach limits Hypo to drawing simple factual analogies between

two cases, since arguments carry no structural information as to why a particular outcome

follows from a particular set of facts. Hypo’s arguments are “flat” — they do not explicitly

reflect the inferential relationships among constituent assertions. While Hypo can generate

argument moves that achieve particular goals, it cannot represent or manipulate goals

explicitly. Nor can Hypo delineate the warrants that authorize specific conclusions in the

. domain.

Branting and GREBE Branting’s approach more closely parallels that of Touhnin than

Birnbaum’s or Ashley’s. In GREBE, justifications are networks of assertions in which

links carry citations to rules or cases that warrant the corresponding inference. As GREBE

attempts to construct a justification, rules or cases may be used to decompose a target

inference into a chain of simpler inferences, or they may be used to facilitate the inference

by mediating levels of abstraction. A case in memory consists, in part, of the justification

for the case situation’s classification. These justification structures can be used explicitly in

generating new classifications.

59

In many ways, GREBE represents the most advanced research system for legal

analysis. It incorporates multiple forms of knowledge and uses them all in each step of the

classification process. By explicitly representing the justifications, Branting is able to gain

maximum leverage from prior classifications in addressing new fact situations. The use of

Toulmin-like graphs facilitates the use of methods for justification construction that most

accurately reflect reasoning in the domain.

3.4 The Taxation of Captive Insurance Arrangements

While the law has provided a fruitful domain for Al research, a particular area of the

law — taxation — has proven especially attractive and fertile. Tax laws permeate all

business dealings. The financial effects of taxation play a such a large role in the long-term

profitability of businesses that many accounting and legal resources are devoted to tax

compliance and planning. In addition, the complexity and abstractness of taxation law

make it an important topic of legal research. McCarty [1983] argues that taxation is a

suitable initial target for AI precisely because of its complexity and abstractness. Its

artificiality allows AI researchers to investigate important issues germane to legal reasoning

without having to tackle the full breadth of human experience. Other areas of the law, such

as torts and contracts, rely almost wholly on the understanding of human relationships.13

As in other areas of the law, claims for a particular tax classification must be

justified by citation of relevant statute and case law. The need to justify tax classifications

becomes most acute for unsettled concepts, since each new case offers a potentially new

circumstance to be classified. One area of the tax law actively undergoing definition within

the courts at this time concerns the issue of captive insurance arrangements, in which

subsidiaries purport to provide insurance coverage to companies that hold substantial

13 Conversely, McCarty notes, law students are taught topics such as torts and contracts first. saving more

complex areas such as commercial and corporate law for later. This approach allows new students to rely on their

common sense understanding of the world as they obtain a solid foundation in legal principles.

60

ownership interest in them. Investigation of the issues raised by such corporations and

their tax classification has also led the courts, more generally, to refine many of their

conclusions regarding what does and does not constitute “insurance.” The work presented

here, in considering conceptual retrieval for the task of justificatory reasoning in tax law,

focuses further on the taxation issue of captive insurance arrangements and the body of

case law that is currently evolving around it.

3.4.1 Insurance

Insurance is a social device for accumulating reserves to meet uncertain losses. The

insured party (the “insured”) shifts the risk of a loss to the insurer by paying a fixed

premium in exchange for coverage in the event of a loss. The insurer assumes the risk of

many independent individuals under the assumption that the total losses suffered by the

body of insureds will be less than the total premiums paid. To this end, a vast and diverse

insurance industry has developed. The concerns of insurers are like those of any

businessmen: to sell their products (assumption of casualty risks) at a price (premium) that

enables the insurer to make a reasonable profit (the difference between total premiums and

total losses).

Because of the potential negative impact of catastrophic loss, the United States tax

code allows for the deduction of insurance premiums as a business expense [Duer,

Horvitz, and Coberly 1988]. Section 162(a) of the Internal Revenue Code offers the only

statutory provision regarding insurance. In part, it states:

“[T]here shall be allowed as a deduction all the ordinary and necessary

expenses paid or incurred during the taxable year in carrying on any trade or

business...”

Tax Regulations Section l.l62-l(a) then states that included among these ordinary and

“

necessary business expenses are ...insurance premiums against fire, storm, theft,

61

accident, or other similar losses in the case of a business...” While these pieces of statute

make clear that insurance premiums are deductible as business expenses, the Code goes no

further in defining what counts as an “insurance premium.”

A body of case law has evolved to better define what does and does not count as

insurance and insurance premiums. For example, it is an established matter of law that

payments made into a reserve against contingent losses constitute self-insurance but do not

constitute deductible insurance premiums [Spring Canyon Coal Co. versus the

Commissioner of Internal Revenue 19301.14 The notion of self-insurance contravenes the

tax accounting principle that the liability underlying a deductible expense must be both fixed

and ascertainable [Tax Regulations Section l.461-1(a)(2)]. In the case of an insurance

contract, while the expense is taken in anticipation of an expected loss, the insurance

contract fixes the liability to the amount of the premium15 and eliminates the possibility of a

greater loss. Since self-insurance lacks this important feature, the courts have held that

such payments are not deductible.

Other court cases have provided positive criteria for the presence of insurance. In

Le Gierse versus Helvering [1941], the Supreme Court held that insurance exists when

premiums are paid pursuant to the exchange of an “insurance risk”:

“Historically and commonly insurance involves risk-shifting and risk-

distributing.... That these elements of risk-shifting and risk-distributing

are essential to [an] insurance contract is agreed by courts and

commentators.” (Emphasis added.)

Thus, whenever one can ascertain that the risk of loss has been shifted and distributed, one

can claim that insurance exists. This two-prong test leaves open the question of what

constitutes risk shifting and risk distribution.

14 All case references appear as a separate bibliographic listing, Appendix A.

15 And perhaps a deductible of a fixed amount.

62

Risk Shifting Again, subsequent court decisions have refined the definition of these open

terms (for example, Steere Tank Lines versus the United States [1978] and Commissioner

of Internal Revenue versus Treganowan [1950]). Risk shifting typically involves at least

three elements:

- . the risk of loss is transferred from the insured to the insurer,

- a premium is paid from insured to insurer that is less than the

amount of the prospective loss, and

0 the insurer possesses the financial capacity to bear the risk and

indemnify the insured from loss.

In the analysis of risk shifting, the focus lies on the insured party and its contract with a

legitimate insurer. Factors indicating that the insured party no longer bears the risk of a

prospective loss provide positive evidence of risk shifting.

Risk Distribution The criterion of risk distribution focuses instead on the insurer and its

ability to share risk across a large number of parties (that is, to fulfill the social function of

insurance). Generally, risk distribution involves three features [O’Brien and Tung 1973]:

0 mass — The group of insured parties has sufficient exposure to risk for

the “law of large numbers” to take effect.

0 homogeneity — The exposures are sufficiently similar that the risk of loss

for each is approximately equal.

' independence — Each exposure is distinct enough from the others that the

probability of a single event resulting in losses for many insureds is

small.

Under these conditions, the law of large numbers holds that the risk borne by the insurer is

less than the sum of the risks borne by the insured parties. This property guarantees that

63

the individual risks of the insureds will be shared among the pool of insureds through the

medium of the insurer.

3.4.2 Captive Insurance Arrangements

For a variety of reasons, the cost and availability of adequate business insurance

coverage have become more unfavorable over the last twenty years. “[I]nsurance costs

now rival payroll and occupancy as the largest operating expenses for any business.”

[Duer, Horvitz, and Coberly 1988] One potential solution to this problem is to establish a

captive insurance arrangement. In this strategy, a business either purchases an existing

insurance company or incorporates a new insurance company for the purpose of obtaining

insurance coverage from the “captive” insurer. Such a captive insurance company may also

handle part or all of the insurance needs of other related companies, such as other

subsidiaries of the captive’s parent.

The range of possible captive arrangements is quite broad. The captive may be

owned by a single parent corporation or by a group of corporations, or a large portion of its

stock may be owned by a single parent with the rest distributed among many third-party

shareholders. The captive may insure only the parent, the parent and other related

companies, or both related companies and third-party customers. The captive may be

incorporated as a US corporation, perhaps in a state with Special captive insurance

laws16, or as a foreign corporation. Behind all such arrangements, the unifying theme is

the same: the parent company is now able to obtain (reasonably priced) insurance coverage

that would otherwise be unavailable.

The advantages of captive insurance can be significant. First and foremost, the

availability of insurance preserves the deductibility of premiums and provides a tax benefit.

If the captive is incorporated in a foreign jurisdiction, the captive may also pay little or no

“5 Such as the Colorado Captive Insurance Act. C.R.S. Section 10-6-101-130. 1973.

64

tax on premium revenue.17 The non-tax benefits of such arrangements are also attractive.

The company can obtain insurance that is not available in commercial markets, whether due

to excessive or unusual risks or just to an unfavorable past claims history. By preserving

the deductibility of premiums, the company can stabilize its reported earnings over the long

term.18 Furthermore, the captive’s status as a bona fide insurance company may allow it

access to reinsurance markets in which coverage is less expensive than direct insurance.

Access to lower-cost coverage can result in lower total insurance costs for the parent and its

related companies. Finally, a captive arrangement enables the parent corporation to retain

control over the defense of claims made against the firms. Otherwise, independent counsel

hired by the insurer decides how and when to defend claims of damage brought by outside

parties.

Historically, the Internal Revenue Service (IRS) has viewed captive insurance

arrangements with a high degree of skepticism. Its central concern involves the similarity

between captive arrangements and self-insurance in which the reserve against losses has

been incorporated as a separate entity. Ifthe substance of a captive arrangement does not

differ materially from that of self-insurance, then the IRS will eliminate the tax advantages

of the arrangement. These advantages are significant enough that corporations have been

eager to defend their captive arrangements in the courts. Their main goal is to distinguish

the arrangements from self-insurance.

The criteria for the existence of insurance outlined in Le Gierse stand as the basic

test of captive insurance. New factors come into play, though, in determining whether risk

has been shifted or distributed. For many years, the IRS argued that a captive insurer was

17 Indeed, many countries. such as Barbados and Bermuda, have created lax tax laws for the express purpose

of attracting foreign capital in the form of insurance premiums.

13 Without insurance, the (potentially large) expense of a casualty loss will fall in a single taxable year. or

perhaps in a small number of years. With insurance, the cost of such risks is spread over all taxable years in the

form of a fixed insurance premium. The result is that the company’s net profit will be stable with respect to the

cost of such losses.

65

part of the same “economic family” as its parent and sibling corporations. Under this

economic family concept, all risk of loss remains within the family and so, by definition,

risk could not be shifted. Thus, payments made to a captive insurer, whether by parent or

sibling, were not deductible as insurance expense. The courts were sympathetic to this

argument for some time. The decisions in Beach Aircraft Corporation versus the United

States [1986] and Steams-Roger Corporation versus the United States [1985] were based

largely on acceptance of the economic family argument.

More recently, the courts have begun to recognize that this argument in effect

violates the Corporate Entity Doctrine, first enumerated in Moline Properties versus the

Commissioner of Internal Revenue [1943]. This doctrine holds that corporations having a

legitimate business purpose are to be treated as separate entities for the purposes of

taxation. Following this doctrine, the determination of a captive’s validity must be based

on a consideration of the captive as a separate corporate entity; the existence of an

ownership relationship between a captive and a related company should not be used, a

priori, to deny the existence of insurance between the companies. A recent spate of cases

has seen the courts broaden their definition of insurance along these lines.

In Humana versus the Commissioner of Internal Revenue [1989], the court ruled

that premiums paid by a sibling corporation to a captive are deductible since, relative to

these two entities, risk can be shifted and distributed. This decision still disallowed the

deductibility of premiums paid by the parent to the captive, on the grounds that the parent

still bore the ultimate financial risk of a loss. Thus, risk was not shifted from parent to

captive. However, in Sears, Roebuck, and Co. versus the Commissioner of Internal

Revenue [1991] the court acknowledged that in practice risk could be shifted from parent to

captive under the right conditions. These conditions require attention to the basic elements

of risk shifting and risk distribution. If the elements for risk distribution are satisfied, then

66

the captive’s status as a bonafide insurer can play a role in determining whether risk of loss

has shifted from the parent insured to the pool of companies insured by the captive.

On this new line of reasoning, the determination of a captive’s validity must be

based on substantive issues regarding the existence of risk shifting and distribution. These

issues are numerous, but the courts have pointed to several factors of particular interest.

Among these are:

0 the nature of the insurance contract between the insured party and

the captive insurer,

' the degree of ownership interest held by the parent in the captive,

0 the adequacy of the captive’s capitalization for meeting potential

losses,

0 the captive’s history as a bona fide insurance provider,

0 the volume of unrelated company risks that are insured by the

captive.

These factors have been identified through the consideration of new fact situations that have

incrementally extended those considered in precedent cases. As the court argued in

Clougherty Packing Company versus the Commissioner of Internal Revenue [1987], at

some point along the dimensions that define these factors, the term “captive” may no longer

be appropriate to describe these arrangements. Thus, decisions regarding the validity of

captive insurance arrangements ultimately depend on the law’s standing view of insurance

itself.

3.5 Implications for Conceptual Retrieval

Chapter 2 describes the importance of understanding task and domain features for

conceptual retrieval. As Hammond [1989] argues, “Memory retrieval is a subtask of other

methods. First, we analyze the task and its functional needs, and then we determine the

67

role of memory in these terms.” [page 52] The preceding examination of the task of legal

analysis and the domain of captive insurance taxation suggests three key requirements on

conceptual retrieval for this task and domain: (1) integration of problem solving and

retrieval, (2) representation ofjustification structures, and (3) organization of case memory

according to the roles cases play in problem solving.

3.5.1 Integration of Problem Solving and Retrieval

With great foresight, Popp and Schlink [1975] declared that “the future of

information retrieval systems for the legal profession seems to require that they form an

important part of a more complex legal information system rather than being a research tool

in their own right.” [page 305] Their system, Judith, integrated legal analysis with

information retrieval by allowing a user to generate a data base query from the context of an

analysis session. Not only did this approach take advantage of the focus provided by the

analysis tool, but it also released the attorney-user from having to generate a complex key-

word query. Judith could generate a query that was directly “on point” with the analysis

done by the attorney thus far, while successfully managing the complexity that leads to the

pitfalls described by Bing [1978].19

McCarty [1983, 1987] has also argued forcefully for the idea that knowledge-based

systems in the law should ideally be hybrids that incorporate analysis, planning, and

information retrieval components. He offers two reasons for this integration. First, the

information retrieval component will have access to problem-solving knowledge and

patterns of inference in the domain, thus permitting more [concise and robust retrieval.

Second, the problem-solving components will have direct access to case materials that are

necessary to justify their conclusions. Given the evolutionary nature of the law, the

conceptual retrieval system should ultimately be integrated with both a problem-solving

'9 See Section 2.2 for a discussion of Bing’s findings.

68

system and with a full-text system, since the latter permits access to the most detailed

representation of the facts and reasoning that characterize past cases.

3.5.2 Representation of Domain Concepts and Justifications

Yet integration alone cannot insure adequate problem solving and retrieval skills.

Many of the rule-based legal analysis systems would still prove to be inadequate because of

limitations in the types of knowledge that they possess. Truly robust legal systems will

require, in some sense, an explicit representation of legal concepts and relationships among

them [Cross and deBessonet 1985]. This realization was one of the impetuses for the

move to exemplar-based systems, with their notion of prototype and content-preserving

mappings to other fact situations. A legal analysis or retrieval system in the domain of

captive insurance taxation would require some representation of concepts such as

insurance, risk distribution, and unrelated risks in order to efficiently reason about and

retrieve situations in which the concepts were relevant.

Due to the critical standards of problem solving in the law, legal analysis systems

must justify their classifications. And, as Branting [1988, 1991] showed, performing the

task of legal classification requires access to the justifications of past classifications. Thus,

conceptual retrieval systems must provide access to representations of the justifications

underlying precedent cases. Furthermore, such systems will almost certainly need to use

such representations in order to perform efficient, focused retrieval. This lesson led to the

recent generation of case-based approaches to legal analysis and has engendered a more

useful kind of analysis system — one that uses and produces justifications as a part of its

problem solving.

69

3.5.3 Organization of Case Memory by Problem-Solving Roles

The desire for a case memory of past justifications leads to a final implication: the

need to organize that memory according to the problem-solving roles that the justifications

can play in later justifications. This realization has arisen from work on argument both in

the law and in other domains. Research into argument molecules [Birnbaum, Flowers, and

McGuire 1980; Birnbaum 1982] was directed at natural language understanding and

processing of arguments in various domains. One of its key results was that assertions and

groups of assertions play particular roles in the conduct of argument and that these roles are

useful for indexing memory in a way that enables arguments to be retrieved at the most

opportune times — when they are relevant to understanding or generating a later argument.

The work of Ashley [1990] and Branting [1989, 1991] supports this notion as well

in the legal domain. Ashley argues that propositions and their meanings should be

interpreted in the context of their force in justifying claims. Branting’s GREBE system

relies directly on the ability to retrieve cases when they will be most useful in constructing a

new justification. However, Hypo and GREBE employ only feature-based indices. The

next step in this progression is to take advantage of such roles in indexing memory. This

approach would facilitate direct retrieval of cases according to their utility in problem

solving and make for a more coherent organization of memory. These roles are already

part of the vocabulary of the problem solver and thus offer a natural source of indices into

memory. In the end, this kind of memory organization offers increased support for

realistic justificatory problem solving in many domains.

3.6 Conclusion

In order to establish a problem-solving context for conceptual retrieval, this chapter

examines three distinct but related topics:

' Al techniques for the task of legal analysis,

70

0 the representation ofjustifications, and

0 the domain of captive insurance taxation.

The first of these three topics introduces many of the task features that characterize legal

analysis and justification. The second describes approaches for representing the content

and structure of justifications that can be used to support problem solving and information

retrieval. Finally, the domain review delineates important concepts and lines of reasoning

that typify reasoning about captive insurance cases.

The chapters that follow draw from these reviews in order to offer a theory of

conceptual retrieval for justificatory reasoning. Chapter 4 expands on the discussion of

legal classification, offering a full task analysis of legal justification and describing a

problem-solving architecture for the task. Chapter 5 then expands on the discussion of

representing justifications, offering a formalism for representing justificatory arguments

that directly supports conceptual retrieval in the context of the problem-solving architecture

from Chapter 4. Finally, Chapter 6 describes a case memory based on the formalism from

Chapter 5, using the domain of captive insurance taxation as a testbed for the case memory

methodology.

CHAPTER 4

A PROBLEM SOLVING ARCHITECTURE

FOR LEGAL ANALYSIS

4.1 Introduction

The previous two chapters establish a context in which to consider the conceptual

retrieval problem. Chapter 2 defines the problem and considers work in three disciplines

aimed at solving it. From this work arises the unifying theme that memory can fruitquy be

organized according to the roles that stored items might fill in problem solving. Chapter 3

then analyzes past work on the task of legal justification, in which conceptual retrieval

plays an integral part. Also described in Chapter 3 is the taxation issue of captive insurance

arrangements, a developing area of the tax law that serves as an interesting experimental

testbed for the conceptual retrieval problem.

This chapter proposes a problem solving architecture, in the technical sense of

Sticklen [1990], for the task of legal justification. In this architecture, Generic Task

problem solvers are integrated with a case memory organized by the roles that past

justifications can play in assembling future justifications. The remainder of the chapter

consists of two parts:

a a task analysis [Chandrasekaran 1990] of legal justification, and

0 a problem solving architecture derived from this task analysis.

Discussion in this chapter focuses on components of the architecture other than the case

memory, which will be described more completely in following chapters. The focus here

is on the task of legal justification and, in particular, the functional requirements that this

process places on case memory.

71

72

4.2 A Task Analysis of Legal Justification

The task of justification poses a straightforward information processing problem:

given the facts of a situation and an assertion about the situation, produce a justification for

believing the assertion1 (Figure 5). Ordinarily, one expects the justification to establish an

inferential chain leading from (some subset of) the facts to the assertion. Such an

inferential chain consists of a sequence of true assertions, each linked to its antecedents in

the chain by a warrant [Toulmin 1958] that justifies its inference. In different domains of

discourse, different types of warrant and backing are considered “valid”, that is, as leading

to acceptable conclusion. Methods of generating and evaluating justifications depend

largely on the nature of warrants and their backing.

A set of facts An assertion

describing a situation about the situation

Justify

Assertion

A justification for

believing the assertion

Figure 5. The Task of Justification

1 In practice. this task becomes one of creating multiple (and competing) justifications for the assertion

[Ashley 1990. Branting 1991]. These justifications can then be evaluated and ranked by their persuasiveness.

This project considers the specific task of generating and evaluating a single justification. If desired, knowledge

of the type described by Ashley and Branting could be added to this analysis for consideration of the more general

problem.

73

In the law, past cases serve as the primary warrants and backing for new

justifications, and so the standard method for justification is based on analogy [Levi 1949,

Ashley 1990]. This method sets up three subtasks: abstract the facts into appropriate legal

terms, retrieve relevant cases from memory, and use the precedents to justify the target

assertion (Figure 6). Ashley describes a control regime for this method that is essentially

linear — abstract, retrieve, and apply — but typically these subgoals can be interleaved in

complex ways. For example, in applying a precedent, the problem solver may find that a

portion of the precedent’s justification fails for the current situation. This difficulty can be

addressed by retrieving another past case and using its justification.

Abstract facts Retrieve Use precedent

TASK

Justification

METHOD

Analogy

J
I I I

SUBTASK SUBTASK SUBTASK

precedents

Figure 6. The Analogical Method of Justification

4.2.1 Fact Abstraction

The subtask of fact abstraction takes as input a set of data and gives as output one

or more abstractions of the data. For the domain of tax law, these data correspond to facts

describing a situation. Abstraction of facts is critical to the justification task. The power of

74

a justification lies in its ability to persuade. The appropriate use of a domain’s technical

vocabulary increases the precision and conciseness of the argument, thus making the

justification more persuasive. Additionally, the retrieval of relevant cases may depend on

the availability of important abstractions (Chapter 2).

One method for this task often used in the law involves matching patterns of facts to

abstractions that characterize the patterns [Meldman 1977, McCarty 1977]. To employ this

method, a problem solver must possess knowledge in the form of D1, D2, Dn —> A

rules, where the Dis are data and A represents an abstract term. A variation on the method

uses precedent cases in place of pattern match rules [Branting 1991]. In this variation, the

problem solver retrieves past situations that share features with the current situation and

notes the abstractions that characterized these precedents. Branting refers to this variation

as “operationalizing” abstraétions. This variation proves especially useful when a problem

solver requires an abstraction in order to use some other knowledge but lacks the compiled

pattern match rules needed to infer the abstraction.

4.2.2 The Subtask of Case Retrieval

The subtask of case retrieval can be characterized as follows: given a set of data,

produce a set of relevant cases. In Chapter 2, several different views of this task are

described and methods for performing it are presented. The input data can include facts,

abstractions of the facts, or goals of the problem solver (such as an assertion to be

justified). One family of methods for performing case retrieval relies on an associative

memory that requires no search knowledge. However, the methods most studied in Al use

explicit indices to organize memory. To use these methods, a problem solver requires

knowledge for differentiating among (classes of) cases based on the features that

characterize them.

75

A set of facts Abstractions An assertion One or more

describing a situation of these facts about the situation precedents

Use

Precedent

Justifications

A justification for

believing the assertion

Figure 7. The Task of Justification by Precedent

4.2.3 The Subtask of Precedent Application

Finally, the subtask of using precedent justifications produces a justification for the

target assertion (Figure 7). This subtask can be performed by adapting an input

justification so that it applies to the current situation. Such a case adaptation method

requires knowledge for evaluating justifications, determining the rcason(s) for a

justification’s inadequacy, and modifying a justification to overcome its weaknesses. In

the law, one might accomplish this modification subtask by applying another past

justification as a “patch” to the inadequate portion of the justification being modified.

Figure 8 depicts the full task analysis for legal justification, including possible methods and

their subtasks.

I

S
U
B
T
A
S
K

A
b
s
t
r
a
c
t
f
a
c
t
s

I
I

I

M
E
T
H
O
D

M
E
T
H
O
D

A
p
p
l
i
c
a
t
i
o
n

C
o
m
p
a
r
i
s
o
n

o
f
D
o
m
a
i
n
R
u
l
e
s

t
o
P
a
s
t
C
a
s
e
s

T
A
S
K
:

J
u
s
t
i
fi
c
a
t
i
o
n

M
E
T
H
O
D

A
n
a
l
o
g
y

|

S
U
B
T
A
S
K

R
e
t
r
i
e
v
e
p
r
e
c
e
d
e
n
t
s

M
E
T
H
O
D

M
E
T
H
O
D

A
s
s
o
c
i
a
t
i
v
e

I
n
d
e
x
S
p
a
c
e

M
e
m
o
r
y

S
e
a
r
c
h

I

S
U
B
T
A
S
K

U
s
e
p
r
e
c
e
d
e
n
t

M
E
T
H
O
D

C
a
s
e
A
d
a
p
t
a
t
i
o
n

 I
i

l

S
U
B
T
A
S
K

S
U
B
T
A
S
K

E
v
a
l
u
a
t
e

C
r
i
t
i
q
u
e

p
r
o
p
o
s
e
d

p
r
o
p
o
s
e
d

j
u
s
t
i
fi
c
a
t
i
o
n

j
u
s
t
i
fi
c
a
t
i
o
n

F
i
g
u
r
e
8
.
A
T
a
s
k
A
n
a
l
y
s
i
s
o
f
l
e
g
a
l
J
u
s
t
i
fi
c
a
t
i
o
n

S
U
B
T
A
S
K

M
o
d
i
f
y

p
r
o
p
o
s
e
d

j
u
s
t
i
f
i
c
a
t
i
o
n

76

77

4.2.4 A Control Strategy for Legal Justification

Given a task/method/subtask analysis of the justification task, one can develop a

control strategy for generating justifications. Table 2 displays one such strategy, which

generalizes the method proposed by Ashley [1990]. This control strategy does not give a

complete picture of the problem-solving process, since each step involves further problem-

solving. But specification of the high-level strategy provides some guidance in

understanding legal justification, as well as guidance for building a knowledge-based

system to perform the task.

Table 2. A Control Strategy for Legal Justification

1. Request assertion to be justified and initial data describing the

situation.

Identify relevant legal abstractions of the data.

Identify relevant past justifications (cases).

Select the best match among the available cases, and propose it as a

solution.

Evaluate the proposed solution. If it suffices to justify the assertion,

then output an appropriate citation and halt.

Critique the proposed solution to identify individual inferences

responsible for the justification’s insufficiency.

For each inference identified, modify the inference chain so that it

holds for the current situation.

Go to Step 5.0
0

\
l

0
‘

U
!

#
U
J
N

4.3 The Problem Solving Architecture

Following this task analysis, one can develop a problem solving architecture (PSA)

for an agent that performs the task of legal justification. The description of the PSA given

here follows the treatment of Sticklen [1990] and as such specifies three necessary features

of the agent:

78

0 the component problem solvers (sub-agents) which comprise the agent,

0 the channels of communication among the sub-agents, and

0 the problem-solving method employed by each.

These features are determined in large part by the decomposition of the analogy method

presented in the preceding task analysis. They depend directly on its subtasks and the

domain knowledge available for solving each.

Figure 9 presents a PSA for legal justification. The following sections describe the

components of this architecture, the communication channels among them, and the problem-

solving methods they employ. These task-specific agents are implemented as instances of

Generic Task problem solvers. Detailed discussion of how the Case Memory performs its

task appears in Chapters 6 and 7. For now, it is important to describe only the functional

requirements that the legal justification architecture places on the conceptual memory

component.

4.3.1 Components

The architecture consists of four sub-agents. The Justification Generator directs the

activities of all the other agents and embodies the use precedent to justify subtask. The Fact

Abstractor and Case Memory correspond to the two subtasks abstract facts and retrieve

precedents, respectively. Finally, the Situation Data Base serves as a shared blackboard for

the other agents. All facts and fact abstractions for the current situation reside in this

database, which facilitates efficient communication among system components.

Furthermore, the Situation Data Base manages all interaction between the system and the

user.2

2 More generally. the Situation Data Base could manage interaction with other external sources as well.

such as external data bases. See Chapter 9 for a brief discussion.

J
u
s
t
i
fi
c
a
t
i
o
n
G
e
n
e
r
a
t
o
r

J
u
s
t
i
fi
c
a
t
i
o
n

f
o
r
t
h
e

P
a
s
t

A
s
s
e
r
t
i
o
n

R
o
u
t
i
n
e

J
u
s
t
i
fi
c
a
t
i
o
n
s

¢
D
e
s
i
g
n
e
r

‘

A

A
s
s
e
t
"
.
.
.

m
a
m
a

F
a
c
t
A
b
s
t
r
a
c
t
r
o
n
s

C
a
s
e
M
e
m
o
r
y

A
s
s
e
r
t
i
o
n
,
F
a
c
t
s
,

H
i
e
r
a
r
c
h
i
c
a
l

F
a
c
t
A
b
s
t
r
a
c
t
i
o
n
s

C
l
a
s
s
i
fi
e
r

1

+
.

I
n
t
e
l
l
i
g
e
n
t

$
D
a
t
a
B
a
s
e

H
i
e
r
a
r
c
h
i
c
a
l

C
l
a
s
s
i
fi
e
r
m

A
s
s
e
r
t
i
o
n
,

F
a
c
t
s

<

F
a
c
t

S
t
r
u
c
t
u
r
e
d

M
a
t
c
h
e
r

1

S
t
r
u
c
t
u
r
e
d

M
a
t
c
h
e
r

n

A
b
s
t
r
a
c
t
i
o
n
s

S
i
t
u
a
t
i
o
n
D
a
t
a
B
a
s
e

F
i
g
u
r
e

9
.
A

P
r
o
b
l
e
m
S
o
l
v
i
n
g
A
r
c
h
i
t
e
c
t
u
r
e
f
o
r
L
e
g
a
l
J
u
s
t
i
fi
c
a
t
i
o
n

F
a
c
t
A
b
s
t
r
a
c
t
o
r

79

80

4.3.2 Communication

Agents in the architecture communicate based on the input-output services each

provides. Communication follows a message passing model: when an agent needs a piece

of external data, it sends a message to the agent that can provide the data. Interactions

among the agents are limited to the repertoire of messages each can handle, along fixed

communication paths.

Table 3 depicts the communication channels present in the proposed PSA. Of

special interest are the paths to and from the Case Memory. The Justification Generator

sends requests to the Memory in the course of its problem solving. These requests may be

for cases similar to a particular situation, or they may be for cases that can play a certain

role in assembling a justification. In order to fill these requests, the Memory may need to

refer to the facts of the current situation. A request is then sent to the Situation Data Base,

which provides this information.

4.3.3 Problem Solving Methods

From the task analysis above, one can identify individual generic tasks

[Chandrasekaran 1983, 1987] that play a role in legal justification. Each agent in the

problem-solving architecture (Figure 9) can be viewed as composed of one or more

Generic Task problem solvers. This section describes each PSA agent in terms of the

generic method it employs and the knowledge it possesses.

Analysis of a variety of “real world” tasks and domains has led to the identification

of what Chandrasekaran has termed generic tasks (GTs). Each GT is a problem-solving

method that has been found useful for solving a particular task in a variety of domains.

GTs have proven especially beneficial as models of problem-solving types because they

explicitly delineate:

81

Table 3. Channels of Communication in the PSA

Justification Generator

Input:

Requested From:

Input:

Requested From:

Output:

Requested By:

Fact Abstractor

Input:

Requested From:

Output:

Requested By:

Case Memory

Input:

Requested From:

Output:

Requested By:

Situation Data Base

Input:

Requested From:

Input:

Requested From:

Output:

Requested By:

Assertion, Facts, Fact Abstractions

Situation Data Base

Past Justifications

Case Memory

Justification for the Assertion

< System User >

Assertion, Facts, Fact Abstractions

Situation Data Base

Fact Abstractions

Situation Data Base

Assertion, Facts, Fact Abstractions

Situation Data Base

Past Justifications

Justification Generator

Assertion, Facts

< System User >

Fact Abstractions

Fact Abstractor

Assertion, Facts, Fact Abstractions

< All Three Problem Solvers >

82

0 the types of domain knowledge required to apply the method, and

0 the nature of the control strategy used to perform the task.

These elements of a GT's definition constitutes an epistemic vocabulary for describing

problem solvers independent of their implementation technology.

Justification Generator The top-level agent for generating new justifications performs

the generic task of a routine design [Brown 1987, also with Chandrasekaran 1986]. This

kind of problem solving develops when a designer works on a problem many times, each

time with different but substantially similar requirements. In routine design, the designer

decomposes the task into a number of subproblems and then solves each in turn. For each

subproblem there exists a relatively small number of well-understood operators to apply.

A routine design problem solver consists of a hierarchy of design specialists, each ‘

concerned with a particular feature of the problem solver’s output. The lowest-level

specialist is the design step, which makes one design decision (such as selecting the value

of a parameter). Aggregations of steps compose a design task, and a number of tasks

constitute a design plan. A plan specialist embodies a method for producing a design or a

part thereof. At any point in a plan or task, a constraint specialist may test the design to

insure that it satisfies a necessary condition. If the constraint specialist identifies a

problem, afailure handler is invoked to repair the design.

Viewing a justification as an artifactto be designed, the Justification Generator can

be viewed as a routine designer.3 The designer’s top-level plan corresponds to the control

strategy given in Table 2. Each operation in the strategy represents a task to be performed

in generating a new justification. The first three tasks require no design knowledge per se;

rather, they involve invocation of the Situation Data Base and Case Memory. Tasks 4

3 This is not to say that case-based justification is necessarily a routine process. The tasks of justification

and argumentation may be quite non-routine — as in the creation of a novel analogy. In domains with some

settled rules of law and large bodies of precedent. though, many new cases can be handled using routine

knowledge. The approach outlined here addresses this more restricted situation.

83

through 7, though, embody the Generator’s knowledge for creating new justifications from

existing ones. This process may entail further requests to the Case Memory. When a new

inference must be made, or when an existing inference in the proposed justification must be

supported, the Generator asks the memory for another precedent that can fill this role.

Methods for selecting, evaluating, critiquing, and modifying justifications employ

similar forms of knowledge across most legal domains. Chapter 3 reviews several

computational methods for these tasks, in particular the work of Ashley [1990] and

Branting [1989, 1991]. One common approach that can span the four subtasks involves

the generation of hypothetical examples. A useful hypothetical might share all of the facts

with some base situation except for one, or the value of a fact may differ slightly. Such

hypotheticals can be used to evaluate a proposed justification (e.g., by testing a “slippery

slope”) or to critique a proposed justification (e.g., by pointing to a weak inference

therein). Ashley explicates a set of rules for generating a hypothetical and another set for

using them in justification.

Fact Abstractor A set of structured matchers and hierarchical classifiers constitutes the

fact abstraction component of the architecture. The generic task of structured matching

[Bylander, Johnson, and Goel 1991] addresses the problem of selecting one item from a

small number of distinct alternatives. In this component, this task may involve selecting

one abstraction from a set of abstractions or recognizing the presence of a single

abstraction. In the course of making such a decision, the problem solver may partition its

task into simpler decisions, make the simpler decisions, and then combine these

“subdecisions” to make its assigned decision. This is the central motivation for structured

matching.

84

Insurance Risk Exists

l 7

Insurer is Parent Control

Indemnified of Funds

by Parent

1 l I

Parent Parent Parent Is

Guarantees Provides Obligated

Coverage Security by Contract

Figure 10. A Sample Structured Matcher

Figure 10 depicts a simple example from the domain of captive insurance law. This

structured matcher determines whether the abstraction of insurance risk is present in the

current situation. To make this decision, the matcher first makes decisions regarding

whether the insurer is indemnified by the parent and whether the Parent retains control of

the premium funds. It then uses these abstractions in deciding whether insurance risk

exists. Each node in this hierarchy contains an ordered set of rules mapping patterns of

data to decision alternatives. For leaf nodes, these patterns refer only to facts of the

situation; for internal nodes, patterns may also refer to the decisions made by its subnodes.

Partitioning patterns in this manner provides both computational efficiency and an explicit

identification of subdecisions that are meaningful in the domain.4

4 Note also that such subdecisions may themselves represent meaningful fact abstractions in the domain.

If so. their results can be made available to problem solvers other than the structured matcher (for instance, to the

routine designer).

85

Some fact abstractions can be organized as a generalization hierarchy. In these

cases, the Fact Abstractor employs the generic task hierarchical classification [Sticklen,

Chandrasekaran, and Josephson 1987]. This GT selects one or more abstractions from the

hierarchy of abstraction specialists using an establish-refine control strategy. When a

specialist determines that its abstraction accurately describes the situation (that is, the

specialist “establishes”), it attempts to refine the classification by allowing its subordinates

in the hierarchy to attempt to establish themselves. Classification typically begins at the top

of the hierarchy, with the most general abstraction, and then proceeds until one or more

leaf-level abstractions have established.

Figure 11 depicts a hierarchical classifier from the captive insurance domain. The

knowledge that each abstraction specialist uses in its attempt to establish can take a variety

of forms. In the Fact Abstractor, though, the establishment task is achieved by structured

matching over sets of pattern-mapping rules. For each specialist, there is a dedicated

structured matching problem solver to recognize the presence of the specialist’s abstraction.

Such structured matchers and hierarchical classifiers allow the Fact Abstractor to identify

abstractions along multiple dimensions of domain importance. They may be invoked either

individually or en masse by request from the Situation Data Base. On an en masse request,

the Fact Abstractor initiates the matching and classification agents in a pre-defined order.

Insurance Provider

I 1

Insurance Company Mutual Association

Figure 11. A Sample Hierarchical Classifier

86

Situation Data Base The Situation Data Base is an instance of the intelligent database

generic task [Mittal, Chandrasekaran, and Sticklen 1984]. An intelligent data base manages

situational, case-specific data using knowledge about data objects and relationships among

them. The behaviors that an intelligent data base can be expected to produce include:

0 the ability to obtain the value of a data object, whether from the

system user or from some other source, and

0 the ability to answer queries about data objects, retrieving either data

values or abstractions on data values.

As conceived in the context of the problem solving architecture, the Situation Data

Base provides only a subset of these capabilities. The Data Base maintains two types of

data objects, facts and fact abstractions. For each fact, it has a slot for the fact’s value and

a method for obtaining a value from the user. For each fact abstraction, it has a slot for the

abstraction’s value and a pointer to the Fact Abstractor agent capable of determining its

value. Thus, all abstraction behavior resides outside the data base, as does all

representation of data relationships.

Case Memory A detailed description of the organization and problem-solving methods

used by the Case Memory appears in Chapter 6.

4.4 Conclusion

A task analysis of legal justification leads to an appropriate problem solving

architecture for generating justifications from precedent cases. Several of the subtasks

established by this method, including data abstraction and routine design, are well

understood in the law and in Al. Consequently, one can describe problem solvers that

perform these subtasks using knowledge available in the domain.

87

Less well understood is the subtask of case retrieval. The PSA defines a task-

specific context in which to perform retrieval, placing particular functional requirements on

the case memory. Two open issues remain:

How are justifications represented in memory? This representation determines

not only the content of the case memory but also the low-level detail of the routine designer

that generates justifications.

How is the case memory organized and searched? In order to support conceptual

retrieval, the case memory must be able to retrieve cases based not only on situation

features but also on the role the case will play in problem solving.

These issues are closely related. Tax accountants and lawyers understand new

justifications based largely on their relationship to past cases. Thus, a representation of

justifications should take such relationships into account. These relationships also reflect

the roles that past cases play in generating justifications, and so they should provide

guidance for structuring case memory effectively. The next two chapters describe answers

to these open questions that take advantage of the connection between case understanding

and memory organization.

CHAPTER 5

A FUNCTIONAL REPRESENTATION

OF JUSTIFICATORY ANALYSIS

5.1 Introduction

Tax accountants organize their understanding of legal justifications in a way that

relates the justification to other justifications they already understand and to the accepted

principles of tax accounting. This method of understanding results fiom the need to justify

conclusions in terms of past decisions and existing statute. Thus, the use to which

justifications are put affects not only how cases are organized in memory but also how

cases are represented. One of the central contributions of this work is to Show the intricate

relationship between case representation and organization that follows from consideration

of how justifications are used.

This chapter proposes a representation ofjustificatory analyses that is based on the

Functional Representation (FR) of devices [Sembugamoorthy and Chandrasekaran 1986].

Extending the intuitions of Toulmin [1958], this representation captures the relationships

among justifications used as warrants for drawing conclusions. The rest of the chapter

includes:

0 description of the motivations underlying this work, and

0 specification of a functional representation for justificatory analyses.

The latter of these sections adapts and extends the vocabulary of the FR to the

representation of legal cases that embody justifications. In the chapter’s conclusion, this

representation is related back to the issue of case organization.

88

89

5.2 Motivations

The initial motivation for this work came from the work of Toulmin [1958], a

philosopher of science who questioned the utility of traditional logic as a tool for analyzing

scientific argument. Toulmin developed a model ofjustificatory argument that explicitly

identifies the roles that assertions can play in justifying a claim. This model is reminiscent

of the FR, which expresses device behavior in terms of the mechanisms by which behavior

is understood. The affinity between Toulmin’s model and the FR has motivated this

research aimed at understanding legal analyses as abstract devices.

5.2.1 Toulnrin’s Model of Argument

On Toulmin’s view, logic deals not with techniques of inferring but rather with

retrospective justification of Claims. Traditional work in logic has focused on the types of

proofs found in mathematics; Touhnin recognized that most arguments do not correspond

to this notion of absolute proof. Instead, he set out to extend the classical syllogism to

incorporate practical issues of justification. Abandoning mathematical proof, he adopted

jurisprudence as the foundation of his model of logical argument. Jurisprudence stresses

the persuasive nature of argument — “making the case” by providing appropriate evidence

and citing the warrant that justifies inference.

This approach led Toulmin to greatly enrich the vocabulary available for describing

arguments. Figure 12 reproduces the template for justifications he proposed. In this

model, terms such as data, backing, and warrant characterize assertions as playing

particular roles in the justification, in particular relationship to other assertions. The model

extends the classical syllogism in at least two ways. First, its vocabulary more precisely

explicates the roles filled by assertions (both explicitly stated and implicitly intended) in the

justification. Second, this form of argument permits a homogeneous representation of

different types ofjustifications, whether deductive, inductive, or abductive.

90

<DATA> so <QUALIFIER> <CLAIM>

since unless

<WARRANT> <REBU'1'I'AL>

on account of

<BACKING>

Figure 12. Toulmin's Model of Argument

Figure 13 depicts a typical argument in the classical syllogism and in Toulmin’s

representation. This example demonstrates how Toulmin’s vocabulary enables one to state

clearly the purpose of each assertion in the syllogism and the specific relationship among

assertions. While the classical syllogism confounds the nature of the two premises,

Toulmin’s model shows that the former serves as an assumption and the latter as the

warrant for the inference.

By representing justificatory roles unambiguously, the model facilitates

development of criteria for judging the quality ofjustifications in different domains. For

example, warrants express the force of a conclusion and are typically domain-independent.

The warrant in Figure 13 could be used in any domain of discourse, from law to sociology.

But the nature of the backing, which supports application of the warrant to the data, varies

across domains. In the law, the backing must usually appeal to case precedent or statute,

whereas in other domains category definition or statistical evidence are more appropriate.

91

Petersen is a Swede.

! S I . l . l B C l 1'

Petersen is almost certainly not a Roman Catholic.

Petersen is . > SO almost Petersen is not

a Swede. certainly, a Roman Catholic

SINCE

A Swede can be taken

to be almost certainly

not a Roman Catholic.
UNLESS

He is an immigrant.

ON ACCOUNT OF

The proportion of Roman Catholic

Swedes is less than 2%.

Figure 13. An Argument in Toulmin's Representation

5.2.2 Functional Device Understanding

Toulmin’s model of justificatory argument calls to mind the Functional

Representation of Sembugamoorthy and Chandrasekaran [1986]. The FR provides a

language for describing devices based on their known functions or goals. A number of

intuitions underlie the FR, including [Allemang 1990]:

92

0 Devices have functionsl

0 A device may consist of component subdevices, in which case the

device achieves its functions by coordinating the functionality of its

components.

0 How a device achieves its functions is irrelevant to understanding its

role as a component in another device.

In the FR, a device is decomposed into its components, whose own functions are

then composed to achieve the functions of the device. The causal behaviors of each device

or component are indexed according to the functions they realize. Since the functions of a

device can be expressed in terms of component functions, the FR supports abstraction of

behavioral detail across levels of the device decomposition. This feature allows the

descriptions of a device and its components to be written in languages at different levels of

absn'action.2

Figure 14 gives an example of the FR for a simple device, the ordinary household

Clothespin. The behavior Open Arm presents a sequence of causally related states that

illustrates how the function Open is achieved. The label on each link refers to the

mechanism understood to be responsible for the state transition, given that the preceding

state was reached. These labels may point to basic knowledge of the world, such as one of

Newton’s laws, which lies outside the FR itself. However, they may also point to a

function of some component of the device responsible for achieving the state change. To

see a more detailed description of how the state change is achieved, one can refer to the

behaviors implementing the component’s function.

1 “This is taken as the defining characteristic of a device; a device is something which has a known

function.” [Allemang 1990, page 2]

2 For example. one could describe a transistor radio in terms of transistor circuits. radio signals. or tuning

frequencies. Each level of description would be appropriate under different circumstances.

93

Device Clothespin

Components Arm, Pivot, Spring

Functions Open, Close, Hold

Function Open Of Device Clothespin

Given: Force applied at Pivot > Restoring Force

Make: Increase Distance between Arms

By: BEHAVIOR Open Arms

Behavior Open Arms

Force applied at pivot > Restoring Force

By Function Transmit Force Of Pivot

Set Force on Spring > Restoring Force

By Knowledge Of Newton's Second Law

Increase Distance between Arms

Figure 14. A Fragment of an FR for a Clothespin

94

The FR was originally intended for describing physical devices that had been

designed with particular functions in mind [Sembugamoorthy and Chandrasekaran 1986];

Later work demonstrated its utility for describing other physical systems, such as human

body physiology [Sticklen 1987], to which one can ascribe functional characteristics.

These uses of the FR are teleological in this sense: functions correspond to behaviors that

either

0 support a designer’s goals, or

' offer some analytic advantage in understanding a system.

Adopting this sense of teleology, researchers have extended the FR for use in describing

abstract devices such as computer programs [Allemang 1990] and ecological systems

[Sticklen and Tufankji 1992].

5.2.3 Viewing a Legal Case as a Device

One can view a legal case as an abstract device with the function of supporting a

claim, given an initial set of assertions. Different parts of the case play specific roles, such

as to rebut a counterargument or to propose a hypothetical situation, that in concert achieve

the case’s primary goal(s). Considered this way, a legal case can be modeled using the FR

in a way strongly reminiscent of Toulmin’s view of justification. The graph used by

Toulmin to depict a justification corresponds to a behavior in the FR, a “causal” line of

reasoning that delineates inference relationships among assertions.

Warrants conespond to link annotations in the FR. They may appeal to knowledge

of the world or to empirical data, as Toulmin’s backings do, or they may refer to the

function of another case capable of supporting the inference link. Such layering of

justifications, though not discussed explicitly by Toulmin, reflects the spirit ofjustification

that he sought to capture: Claims that are challenged can be supported by appeal to more

detailed arguments. This intuition of the affinity between Toulmin’s ideas and the FR

95

motivates the representation proposed here. Table 4 shows the basis for a mapping

between Toulmin’s terminology and that of the FR.

Table 4. Viewing a Legal as a Device in the FR

FR Terminology Toulmin’s Terminology

Device (legal case)

Function ' (Legal issue)

Behavior Justification

Preconditions Data

Link annotation Warrant

< None > Backing

Postconditions Claim

5.3 Representing Legal Analysis in the FR

In the domain of taxation law, justifications reside within the bodies of legal cases.

Each case includes not only the justifying chain of inference but also contextual information

that defines the situation to which the justification applies. Thus, an adequate portrayal of

legal justifications should account for both the case context and the chain of inference. This

section describes a language for representing legal justifications, based on the Functional

Representation, that accounts for both.

5.3.1 The Legal Case as a Device

A case corresponds to a device in the FR (Table 5). Case descriptions consist of

three elements:

0 an identifier,

0 a case context description, and

96

0 one or more issue descriptions.

The identifier serves as the name by which other devices may refer to the case. The case

context description includes information necessary for understanding and reasoning about a

case in the domain. Finally, the case is characterized by the issues that it addresses. These

issues identify the functions that the case might play in analysis. Both the case context and

issue descriptions are discussed in greater detail below. But first, several device-level

issues must be addressed.

Table 5. Language Grammar: A Legal Case

<CASE> ::= Case identifier

<CASE CONTEXT)

<CASE ISSUES>

Selection of Case Functions Since the FR is a language for describing, not defining,

' devices, every possible function of the case need not be included in its description. One

would initially include only those functions intended for the case by the justification’s

designer. In legal domains, the designer is typically the attorney who prepares an argument

for the court or the judge who writes the court’s opinion for a case. These functions will

correspond to the significant legal issues raised by the case that the court must resolve.

Later, if the body of case law evolves in such a way that the case is used for some other

purpose, then other functions can be added to the case’s description.3

3 This would almost certainly be done by a legally-trained system user. not by the system itself. At this

point. no provision has been made for the memory to learn new concepts and classify instances of them.

97

Such a situation occurred in the case of Helvering versus Le Gierse [l94l]4. The

Le Gierse case dealt with a claim that the proceeds from a life insurance policy should be

excluded from the decedent’s estate, as prescribed by law. On this issue, the court held

that the proceeds must be included in the estate, because the insurance policy was

accompanied by an annuity contract that essentially negated the risk inherent in insurance.

The court’s justification thus relied on an inference that, in Le Gierse’s circumstances, true

insurance did not exist. As the case law surrounding issues of insurance grew, this

argument came to be used as a precedent in many cases involving the existence of

insurance. This justification now constitutes one of the more important functions of

Helvering versus Le Gierse in tax law.

Treatment of Multiple Opinions In some situations, different judges hearing a case will

reach different conclusions regarding an issue. Similarly, two judges may reach the same

conclusion but differ significantly in their lines of reasoning. The result is multiple

opinions for the case5. In this representation, each opinion that offers a different line of

reasoning constitutes a separate function of the case. This feature reflects the different roles

a case may play as a precedent in later justifications, based on which opinion is cited. Only

the majority opinion is controlling, in the sense that future decisions are bound by its

reasoning, but the other opinions can often be used in particular contexts as persuasive

evidence.

4 All case references appear as a separate bibliographic listing, Appendix A.

5 Cases may contain three types of opinion. The majority opinion presents the court’s holding and its

justification for this conclusion. One or more concurring opinions agree with the majority holding but present

different lines of reasoning for reaching the conclusion. Finally, one or more dissenting opinions may disagree

with the majority’s holding and offer a line of reasoning to justify a different conclusion.

98

Table 6. Language Grammar: Case Context

<CASE CONTEXT> ::=

Context

Legal Documentation

Plaintiff plaintifiname

Defendant defendant name

Citation official citation

Date date ofdecision

Procedural Context

Setting court hearing the case

location ofdecision in appellate chain

Outcome decision

relationship to prior/later cases

Facts

<ASSERTION> {<ASSERTION>] *

5.3.2 Case Context as Device Annotation

The case context description includes background information that characterizes the

situation at issue. This information consists in three parts (Table 6): legal documentation,

the procedural context, and the facts of the situation. Legal documentation essentially

defines the case for reference in the legal literature. Of greater semantic importance is the

procedural context frame. The case setting determines the pedigree of the decision, its

importance as cited evidence in different venues. Naturally, the outcome of the case and its

relationship to other cases in the appellate chain will also have a major impact on when and

how the case is useful as backing.

The facts of the case define the state of the world in which a justification is offered.

These facts may include only those held to be relevant by the court, but more generally they

will include other assertions as well. Facts stipulated by both parties and facts presented by

99

one party as relevant to the case can often provide a more complete context for creating and

evaluating a justification. Table 7 presents a sample case context frame, for the case of'

Humana, Inc., versus the Commissioner of Internal Revenue [1989]. The language for

representing facts is discussed in more detail in the following two sections.

5.3.3 Legal Issues as Function Identifiers

Just as devices in the FR are characterized by their functions, cases in the law are

characterized by the issues they address. Each case addresses at least one legal issue (Table

8). The issue can be expressed as a legal question, raised either by a party to the case or by

the court, to be resolved. For each issue, the court declares a holding, an answer to the

question in the context of relevant case facts. Such a holding will generally be afi'rrmative

(for the plaintiff) or negative (for the defendant). The question and holding define the

endpoint to which the court’s analysis must aim — a justification of the holding with

respect to the question. In this representation, this corresponds to a function of the case.

A function is specified as a precondition/postcondition pair (Table 9). One or more

preconditions serve as the assumptions upon which the justification is based. The

postcondition is the claim made by the court, composed from the legal question and holding

that define the issue. In this sense, the issue identifies a function of the case and

corresponds to the postcondition of the function. The By slot points to a justification (as

described below) that conveys the chain of inference which Concludes the claim Given the

assumptive facts of the case.6

6 Other expressions of the Functional Representation [Sembugamoorthy and Chandrasekaran 1986.

Allemang 1990] have also allowed an optional Provided slot. This slot would indicate a state or predicate that

must hold in order for the function to be “meaningful." Such a predicate can be thought of as a special

precondition for the function, not directly involved in the causal behavior realizing the function, that defines a

relevant context for the function. The Provided slot could fruitfully be added to the representation outlined here.

(See the discussion of this topic in Chapter 8.)

100

Table 7. A Sample Case Context Frame — Humana [1989]

Case Humana-89

Context

Legal Documentation

Plaintiff Humana, Inc.

Defendant Commissioner of Internal Revenue

Citation 89-2 USTC ‘19453

Date July 7, 1989

Procedural Context

Setting US. Court of Appeals.

Plaintiff appeals ruling of the Tax

Court that none of its intra-family

insurance premiums are tax-

deductible as business expenses.

Outcome Affirms, reverses, and remands

88 TC 197, in parts.

Facts

Plaintiff unable to obtain liability insurance at fair price.

Plaintiff incorporated wholly-owned insurance subsidiary.

Subsidiary meets all statutory and regulatory requirements.

Subsidiary provides insurance to plaintiff and its affiliates.

Subsidiary was fully capitalized at creation.

Plaintiff deducted all intra-family premiums as

ordinary and necessary business expense.

Table 8. Language Grammar: Case Issues

<CASE ISSUES> ::= Issues <lSSUE> { <lSSUE> }*

<lSSUE> ::=

Question legal question raised by case

Holding court's answer to the question

<FUNCTION>

101

Table 9. Language Grammar: Function

<FUNCTION> ::=

Function identifier

Given <ASSERTION> { <ASSERTION> }*

Conclude <ASSERTION>

B y <JUSTIFICATION>

<ASSERTION> ::= predicatefrom the domain

Table 10. A Sample Issues Frame — Humana [1989]

Question Are payments made by an entity to its wholly-owned

subsidiary deductible as insurance premiums?

Holding N0.

Function Classify Parent Payments

Given Parent pays premium to a subsidiary.

Conclude Payment is not deductible.

B y Conclude No Parent Insurance

Question Are payments made by an entity to a sibling

deductible as insurance premiums?

Holding Yes.

Function Classify Subsidiary Payments

Given Sibling pays premium to a sibling.

Conclude Payment is deductible.

B y Conclude Sibling Insurance

102

The assertions that fill the Given and Conclude slots are specified in a state

language that is independent of the FR. Here, assertions consist of domain predicates

taken from the semantics of tax accounting. These predicates may originate in descriptions

of factual situations in the domain or as abstractions of fact patterns. As a result, the

language for expressing assertions in the issue description of a case is also used to express

the facts of the case in its context description. An example of an issue description, again

from the Humana case, appears in Table 10.

5.3.4 Justifications as Behaviors

Each function points to the justification that supports its claim. The justification

(Table 11) embodies the chain of inference connecting case facts to the holding of the court.

That is, the function specifies a claim made by the case as an input/output relation, and the

justification specifies the reasoning that justifies the claim. In this representation, the

justification also carries a slot for additional commentary, to allow further textual

explanation of the justification. This commentary may refer to case citations not directly

part of the inference chain7 or to comments explaining the justification.

The justification definition corresponds to a behavior in the FR. A behavior is

described as an annotated directed graph with assertions serving as nodes. Each link in the

graph carries an annotation that indicates the warrant for the inference. As described in

Table 11, the graph must constitute a chain, an alternating sequence of assertions and

warrants. In general, though, each step in the inference may draw on additional

preconditions.8

7 Such as related or distinguished cases. See discussion of Ashley in Chapter 3.

8 Allemang [1990] has also extended the notion of a behavior to include simple cycles and multiple-link

edges between nodes.

103

Table 11. Language Grammar: Justification

<JUSTIFICATION> ::=

Justification identifier

Comment explanatory text

Definition

<ASSERTION> { <WARRANT> <ASSERTION> }*

A warrant carries one of three possible annotations (Table 12). A By Knowledge

warrant refers to knowledge outside of the Functional Representation. In the domain of

taxation, such knowledge could be of an accepted economic definition or of a statute.9 A

By Function warrant cites the function of another case as the backing for an inference.

This is the central feature of the representation for legal analyses described here: the ability

to cite particular issues and justifications from other cases in the domain as backing for

inferences in later cases. Finally, a By Justification warrant indicates that the detailed

inference between two assertions is suppressed in the current graph. The inference is

described in a separate justification. This annotation corresponds to a By Behavior link in

the FR.

Figure 15 depicts a simple example of a justification represented as a behavior. One

additional element of the representation remains, the notion of a hypothetical. A

hypothetical is an argument or justification that invokes a conjecture: what if a certain

circumstance arises? Hypotheticals comprise an important class of arguments in the law,

since they enable exploration of the reasonableness of a claim in potential scenarios. In this

9 Of course, such knowledge may itself be describable using the FR. This is especially true of statutes in

taxation law. One might represent a statute as a device, with the function of supporting a particular class of

claims. The BY KNOWLEDGE link could then be replaced with a BY FUNCTION OF STATUTE

link. This possibility is not pursued further here.

104

Table 12. Language Grammar: Warrants

<WARRANT> ::=

By Knowledge Of identifier |

By Function identifier] Of Case identifierZ I

By Justification identifier

Justification Conclude No Parent Insurance

Comment: This justification relies on the hypothetical

scenario proposed in Carnation to argue that no parent

can insure with its own subsidiary.

Definition

Parent pays premium to a subsidiary.

By Function Conclude Risk Not Shifted

Of Case Clougherty-87

Risk is not shifted.

By Justification Define Insurance Standard

Payment is not deductible.

Figure 15. A Sample Justification —— Humana [1989]

105

representation, hypothetical “facts” posed as preconditions in a justification are

distinguished as hypothetical. This distinction alerts users of the justification that this fact

need not hold in a situation in order for the justification as a whole to hold.10

5.3.5 A Complete Example of the Representation

Table 13 outlines the full language for representing a legal analysis. This language

enables one to depict an analysis and its justification in a way that captures domain

relationships among elements of the analysis and among different cases. Consider the case

of Humana, Inc., versus the Commissioner of Internal Revenue [1989]. In Humana, the

US. Court of Appeals had to resolve whether payments Humana and its subsidiaries made

to a wholly-owned insurance subsidiary were legally deductible as insurance premiums.

On the issue of payments made by Humana itself, embodied in the function Classify Parent ‘

Payments, the court justified its holding that the payments were not deductible by citing

both the tax code and a precedent case. These citations provided evidence for particular

steps in the court’s reasoning. Table 14 shows the case and issue descriptions for

Humana, while Figures 15 and 16 present the line of reasoning used in resolving the issue

of parent payments.

‘0 The next section includes an example of a hypothetical.

106

Table 13. A Language for Representing Legal Analysis

<CASE> ::= Case identifier <CASE CONTEXT> <CASE ISSUES>

<CASE CONTEXT> ::=

Context

Legal Documentation

Plaintiff plaintifl‘name

Defendant defendant name

Citation official citation

Date date ofdecision

Procedural Context

Setting court hearing the case

location in appellate chain

Outcome decision

relationship to prior/later cases

Facts <ASSERTION> [<ASSERTION> }*

<CASE ISSUES> ::= Issues <lSSUE> [<ISSUE>"' }

<lSSUE> ::= Question legal question raised by case

Holding court ’s answer to the question

<FUNCTION>

<FUNCTION> ::= .

Function identifier

Given <ASSERTION> { <ASSERTION> }*

Conclude <ASSERTION>

By <JUSTIFICATION>

<ASSERTION> ::= predicatefiom the domain

<JUSTIFICATION> ::=

Justification identifier

Comment explanatory text

Definition <ASSERTION> {<WARRANT><ASSERTION>}*

<WARRANT> :=

By Knowledge Of identifier |

By Function identifier] Of Case identifierz I

By Justification identifier

107

Justification Define Insurance Standard

Comment: This justification adopts the definitional test

of Helvering versus Le Gierse [1941] as the legal

standard for the existence of insurance.

Definition

Risk is shifted & Risk is distributed

By Function Define Insurance

Of Case LeGierse-4l

Insurance exists.

By Knowledge Of

Case Data (Payments in question)

Payment is an insurance premium.

By Knowledge Of

Tax Regulation §l.l62-l(a) — 1954

Payment is an ordinary and necessary business expense.

By Knowledge Of

Internal Revenue Code §162(a) — 1954

Payment is deductible.

Figure 16. The Justification Define Insurance Standard

— Humana [1989]

l ()8

Table 14. A Complete Case Description — Humana [1989]

Case Humana-89

Context

Issues

Legal Documentation

Plaintiff Humana, Inc.

Defendant Commissioner of Internal Revenue

Citation 89-2 USTC 19453

Date July 7, 1989

Procedural Context

Setting US. Court of Appeals.

Plaintiff appeals ruling of the Tax Court that

none of its intra-family insurance premiums

are tax-deductible as business expenses.

Outcome Affirms. reverses and remands

88 TC 197, in parts.

Facts

Plaintiff unable to obtain liability insurance at fair price.

Plaintiff incorporated wholly-owned insurance subsidiary.

Subsidiary meets all statutory and regulatory requirements.

Subsidiary provides insurance to plaintiff and its affiliates.

Subsidiary was fully capitalized at creation.

Plaintiff deducted all intra-family premiums as

ordinary and necessary business expense.

Question Are payments made by an entity to its wholly-owned

subsidiary deductible as insurance premiums?

Holding No.

Function Classify Parent Payments

Given Parent pays premium to a subsidiary.

Conclude Payment is not deductible.

By Conclude No Parent Insmance

Question Are payments made by an entity to a sibling

deductible as insurance premiums?

Holding Yes.

Function Classify Subsidiary Payments

Given Sibling pays premium to a sibling.

Conclude Payment is deductible.

B y Conclude Sibling Insurance

109

In order to examine in greater detail why the court concluded that no insurance

existed, one can refer to the case cited in support of this conclusion, Clougherty versus the

Commissioner of [ntemal Revenue [1981]. A portion of the FR for Clougherty appears in

Figure 17. The Court applied a line of reasoning that proposed a hypothetical scenario:

suppose that the parent suffered an insured loss. Analysis of the resulting reimbursement

indicates that the risk of loss has not been shifted from the “insured” party. According to

the legal precedent of Le Gierse versus Helvering [1941], risk shifting is a necessary

condition for insurance to exist. Hence, the conclusion that true insurance does not exist is

justified by precedent.

Again, if desired, one could examine the backing for this conclusion in greater

detail by referring to the justification offered in Le Gierse. This justification “bottoms out”

in the sense that all of its backings refer to working knowledge of the business domain and

not to prior arguments. The function of Le Gierse cited in Clougherty is an example of a

function ascribed retrospectively to a case based on its use in justification. This function

would likely not have been part of an FR description of Le Gierse in 1941; only subsequent

use of the case as a precedent in insurance cases would lead one to consider defining

insurance to be one of Le Gierse’s functions.

5.4 Conclusion

This chapter presents a functional representation for justificatory analysis,

motivated by the work of Toulmin. In doing so, new emphasis is placed on particular

elements of the influencing representations.

Functional Representation The FR is applied to a new sort of abstract device, a

justificatory analysis. Each such device can be considered as a component of a top-level

device that corresponds to the body of case law as a whole. This corpus of cases consists

llO

Case Clougherty-87

Function Conclude Risk Not Shifted

Given: Parent pays premium to a subsidiary.

Conclude: No insurance exists.

By : Hypothetical Loss Scenario

Justification Hypothetical Loss Scenario

Comment: This justification adopts the definitional test of Helvering

versus Le Gierse [1941] as the legal standard for the

existence of insurance.

Definition

Parent pays premium

to a subsidiary. Parent sufi’ers a loss.

I l

* By Knowledge Of Case Data (insurance contract)

Subsidiary pays on claim.

¢ By Knowledge Of Accounting

Value of subsidiary's assets falls.

¢ By Knowledge Of Accounting

Value of subsidiary's stock falls.

$ By Knowledge Of Accounting

Value of parent's assets falls.

‘ By Knowledge Of Economics

Parent bears economic burden of loss.

¢ By Knowledge Of Theory of Insurance

Risk is not shifted.

Figure 17. A Portion of the FR for the Clougherty Case

111

of individual analyses combined to support claims in the domain. The functions of the

device comprise all the functions of its constituent devices. This type of analysis is

possible precisely because cases have roles (functions) in justifying the reasoning in other

cases.

Table 15 shows the mapping between the traditional FR and the FR for

justifications described here. In this use of the FR, a behavior (justification) does not

consist of a causal chain of device states but rather denotes an inferential chain of assertions

about the situation being described. Each level of description — device, function, and

behavior — carries additional commentary that explains the analysis and the context to

which it applies.

Toulmin ’s Model The citation of past cases as backing for a new inference elaborates

Toulmin’s notion of a warrant. Each inference can invoke a prior justification as evidence

to back its conclusion, until reaching the point at which a justification relies on assumed

Table 15. The FR for Legal Justifications

The FR for Legal Justifications Traditional FR

Case Device

Issue Component

Function Function

Justification Behavior

Assertion State

Assumptions Preconditions

' Postcondition

Warrant Link annotation

By Knowledge pointers By Knowledge

By Function pointers By Function

By Justification pointers By Behavior

112

domain knowledge. By casting the model in computational terms, the representation

described here provides a meaningful way to integrate justifications — according to the

functions they play. Use of the FR also explicates how assertions at different levels of

abstraction relate to one another. Justifications at different levels can be related, again,

according to the functions they play (that is, according to their pre-lpost-condition

specifications). Table 16 shows the mapping of Toulmin’s terminology to elements of the

new functional representation.

By indexing justifications according to the issues they address, this representation

offers the starting point for a case indexing methodology. The use of case citation links in

justifications comprises the most direct form of indexing, from case to case. The hope

embodied in this representation, though, is that such indexing can be generalized to the

body of case law as a whole, based on relationships among issues in the domain. This

generalization constitutes the topic of the next chapter.

Table 16. The FR for Legal Justifications and Toulmin

The FR for Legal Justifications Toulmin’s Terminology

Case < Legal case >

Issue < Legal issue >

Function < None >

Justification Argument or justification

Assertion Assertion

Assumptions Data

Claim Claim

Warrant Warrant

By Knowledge pointers Backing

By Function pointers < None >

By Justification pointers < None >

CHAPTER 6

A CONCEPTUAL MEMORY or JUSTIFICATIONS

6.1 Introduction

In Chapter 4, a problem—solving architecture for justificatory legal analysis was

presented. One component of this architecture, the case memory, provides access to past

justifications for use in the course of constructing new classifications. The remaining

elements of the architecture specify the functional requirements placed on case memory.

Chapter 5 offers a functional representation for justifications that creates the possibility of

conceptual retrieval based on the roles that justifications can play in problem solving. By

applying the principles behind the Functional Representation, one can conceive of an

organization of case memory that promotes focused access to cases based on the inferences

that they make and support.

This chapter proposes a model of conceptual retrieval that is motivated by the

functional representation ofjustifications. The model capitalizes on the idea of a functional

decomposition to organize the memory of cases according to the issues for which they are

relevant in justifying future cases. The remainder of the chapter describes:

- the index vocabulary for the model,

0 a particular index organization, called an issue composition

hierarchy, that relates functional indices and partitions case memory,

and

0 the retrieval algorithm by which the memory is searched for relevant

C8868.

113

114

Table 17. A Language for Representing Legal Analysis

<CASE> ::= Case identifier <CASE CONTEXT> <CASE ISSUES>

<CASE CONTEXT> ::=

Context

Legal Documentation

Plaintiff plaintijfname

Defendant defendantname

Citation official citation

Date date ofdecision

Procedural Context

Setting court hearing the case

location in appellate chain

Outcome decision

relationship to prior/later cases

Facts <ASSERTION> { <ASSERTION> }*

<CASEISSUES> ::= Issues <lSSUE> { <lSSUE> }*

<lSSUE> ::= Question legal question raised by case

Holding court’s answer to the question

<FUNCTION>

<FUNCTION> ::=

Function identifier

Given <ASSERTION> { <ASSERTION> }*

Conclude <ASSERTION>

By <JUSTIFICATION>

<ASSERTION> ::= predicatefrom the domain

<JUSTIFICATION> ::=

Justification identifier

Comment explanatory text

Definition <ASSERTION> { <WARRANT> <ASSERTION> }*

<WARRANT> := By Knowledge Of identifier I

By Function identifier] Of Case identifierz I

By Justification identifier

115

The last of these sections also addresses the notion of how the case retrieval algorithm can

be adapted to provide automatic indexing of cases into the issue composition hierarchy as

cases enter the conceptual memory.

6.2 Index Vocabulary

An index vocabulary consists of those terms from which the user may construct

queries to the memory. In traditional key-word systems, this vocabulary is defined as the

set of all significant words appearing in a stored document. These terms are then combined

using Boolean and adjacency operators to identify syntactic patterns of words in

documents. Thus, the nature of the index terms, and the queries formed from them, is

based directly on how items in the data base are stored — as full-text documents in natural

language.

In one sense, the approach to conceptual retrieval proposed herein applies a similar

notion: the index vocabulary arises from case representation. Cases in memory are

represented using the functional notation described in Chapter 5 (Table 17). This notation

serves as the source of index terms by explicating particular conceptual roles for

justification statements to fill — most notably, warrants and claims. In capturing these

basic elements of justificatory reasoning, such a memory can provide responses to queries

generated in the course of problem-solving activity, queries that deal with particular steps in

the process of justification.

In this respect, however, the index vocabulary proposed here differs from the

general-purpose lexicons such as KWIC. The problem-solving architecture in which the

conceptual memory resides places particular functional requirements on the content of its

performance (Figure 18). Queries are sent to the memory in the course of problem solving.

These requests may be for specific cases, or they may be for any cases that can play a

certain role in assembling a justification. In order to fill these requests, the memory may

J
u
s
t
i
fi
c
a
t
i
o
n
G
e
n
e
r
a
t
o
r

J
u
s
t
i
fi
c
a
t
i
o
n

f
o
r
t
h
e

P
a
s
t

A
s
s
e
r
t
i
o
n

R
o
u
t
i
n
e

J
u
s
t
i
fi
c
a
t
i
o
n
s

‘
D
e
s
i
g
n
e
r

t

A

A
s
s
e
r
t
i
o
n
,
F
a
c
t
s
,

F
a
c
t
A
b
s
t
r
a
c
t
i
o
n
s

A
s
s
a
m
“
,

F
a
c
t
s
,

F
a
c
t
A
b
s
t
r
a
c
t
i
o
n
s

C
a
s
e
M
e
m
o
r
y

A
s
s
e
r
t
i
o
n
,
F
a
c
t
s
,

H
i
e
r
a
r
c
h
i
c
a
l

F
a
c
t
A
b
s
t
r
a
c
t
i
o
n
s

C
l
a
s
s
r
fi
e
r

1

I
n
t
e
l
l
i
g
e
n
t

$
-

D
D
a
t
a
B
a
s
e

-

A
s
s
e
r
t
i
o
n
,

.
.

F
a
c
t
s

‘
H
i
e
r
a
r
c
h
i
c
a
l

C
l
a
s
s
i
fi
e
r
m

F
a
c
t

A
b
s
t
r
a
c
t
i
o
n
s

116

S
t
r
u
c
t
u
r
e
d

M
a
t
c
h
e
r

1

S
t
r
u
c
t
u
r
e
d

M
a
t
c
h
e
r

n

S
i
t
u
a
t
i
o
n
D
a
t
a
B
a
s
e

F
i
g
u
r
e

1
8
.

T
h
e
P
r
o
b
l
e
m
S
o
l
v
i
n
g
A
r
c
h
i
t
e
c
t
u
r
e
f
o
r
L
e
g
a
l
J
u
s
t
i
fi
c
a
t
i
o
n

F
a
c
t
A
b
s
t
r
a
c
t
o
r

117

refer to the facts of the current situation. This architecture, together with the functional

representation for justifications, provides strong guidance in identifying an appropriate

index vocabulary for the conceptual memory. The memory’s task is focused, which

focuses the types of queries to which it must respond.

This chapter describes the domain knowledge and problem-solving method that

comprise the case memory black box in Figure 18. This description begins with a

specification of the kinds of query that the memory can answer. Queries to the case

memory can be of two typesl:

° a request for a particular case and function, by citation, or

0 a request for any cases that addresses a particular issue.

Together, these can be viewed as requests based on a specific sort of abstract feature: the

ability to help justify a particular assertion. Each of these two types of query is

characterized by a particular set of index terms that shapes the search space of cases.

Furthermore, each type of index can be traced back to a particular element of the functional

case representation. This synergy between representation and vocabulary is addressed

further below.

6.2.] Index Terms for Case Citation Queries

The simplest form of query requests a particular case. The case representation

supports a direct form of case-to-case retrieval through the explicit use of case citations as

warrants. In the course of problem solving, the justification generator may wish to obtain

1 Chapter 4 also mentions a third type of query to conceptual memory — a request for cases that share a set

of surface features with the current fact situation. Such “surface features” consist of the facts and fact abstractions

that characterize the situation. Research on retrieval of this type has been conducted in several disciplines (see

Chapter 2). Meldman [1977]. N1ch [1977], Hafner [1981, 1987], and Ashley [1990] have all offered potential

approaches to this problem. Retrieval based on surface features is a general-purpose retrieval strategy, not tied in

any direct way to a particular problem-solving task or method. Since this thesis is concerned with conceptual

retrieval for a task-specific problem solver, retrieval based on surface features will be deferred until it can be

discussed in the context of taskodirected retrieval.

118

more detail about the justification for an assertion in an already—retrieved case. This need

corresponds to the expansion of a By Function of Case... warrant. Queries of this

type involve requesting the case cited in the warrant, and in particular the function

responsible for the inference. The index vocabulary for such queries consists of the set of

all case identifiers in the memory.2

6.2.2 Index Terms for Justification Queries

The second kind of query focuses on a specific assertion to be supported. In order

to justify the assertion, the justification generator can request precedent cases that have

justified the same assertion (or a similar one). This sort of retrieval comprises the main

contribution of representing cases in the FR — the ability to retrieve cases based on the

justifications they support. Assertions of this type appear as postconditions of functions,

in the By slot of a case’s Function frame. The index vocabulary for issue justification

queries consists of assertions to be justified, in the form of domain predicates.

Additionally, the justification generator may desire precedents that justify the

assertion from one or more specific facts as assumptions. In this situation, the generator

may also include in its query the facts of the current case (or a subset of them). These facts

may appear as preconditions of a function, in the Given slot of a case’s Function frame,

or as Facts in the Context frame. Like assertions to be justified, these facts are also

predicates from the domain, either facts input to the system or fact abstractions derived in

problem solving. Thus, the full index vocabulary for this class of queries consists of

domain-predicate assertions.

2 Note that this is not the same as the full legal citation stored in the Citation slot of the Legal

Documentation frame of the case, but rather is a system-dependent name assigned to the case for internal

reference. In traditional KWIC systems, one can request individual cases by specifying the legal citation in a

query. This is not because such citations are used as case identifiers but because the legal citation appears in the

text of the stored document. Thus, KWIC systems maintain a consistency of index vocabulary by including in the

free-text data base all information that a user is likely to request. However, care must be taken in specifying the

query so as not to retrieve all cases in which the target case is merely mentioned. for instance, as a citation or

sidebar.

119

6.2.3 Summary of Index Vocabulary

These query classes yield two distinct components of the index vocabulary: case

identifiers and assertions about afact situation. The case memory must be able to retrieve

cases characterized by each of these classes of index terms. Furthermore, retrieval of cases

based on assertions must handle two circumstances: assertions to be justified in the context

of a given fact situation, and assertions that characterize the situation in which an assertion

is to be justified.3

6.3 Index Organization

An index organization specifies the relationship among terms in an index

vocabulary. Such an organization is closely tied to the development of efficient algorithms

for searching the index space. This section describes index organizations of the vocabulary

for case citation and justification queries. The research contribution made here is the

introduction of the issue composition hierarchy. This hierarchy relates assertions based on

their roles as preconditions for justifying other assertions in the domain, thus providing a

mechanism for organizing indices for justification queries.

6.3.1 Index Organization for Case Citation Indices

The index vocabulary for case citation queries consists of case identifiers,

specifically those that appear in the By Function Of Case slot of any

justification warrant. These indices provide for a “direct look-up” of cases and functions.

Cases can be organized in any suitable data base format (for example, a flat table or a B-

tree), and the identifier provided in the query can be used as the key in a standard data base

3 One can also conceive of retrieval based on other attributes of the representation. For example, one may

wish to retrieve all cases that cite a particular case. This type of query could be supported by the representation,

through indexing of By Function warrants according the case cited. KWIC systems support such retrieval by

searching for text references to the target case. This and other such queries are not considered further in this work.

120

search. In this situation, the case organization and the retrieval algorithm are trivially

defined: given a case citation index, retrieve the case by look-up.4

Such a direct look-up is one of the central features of the functional representation

for legal justifications: whenever a case is cited directly in support of an assertion, then that

case may be relevant in justifying a similar assertion in a later situation. The FR for cases

makes the retrieval of such a case a trivial matter of table access. Once the case has been

retrieved, the target function can also be retrieved directly, using the function identifier

appearing in the warrant. This kind of direct indexing of behaviors (here, justifications)

according to the functions they denote was one of the central features of the original

Functional Representation for devices.

6.3.2 Index Organization for Justification Indices

Viewing a Body ofCase Law as a Whole The cases that make up a body of law — for

example, the body of case law surrounding captive insurance arrangements — comprise a

set of justifications. These cases classify fact patterns as positive or negative instances of

important domain concepts, such as insurance. Each classification, an assertion regarding a

particular fact situation, is supported by a justificatory line of reasoning. In justifying a

classification, a case decision may refer to other issues in the domain as part of its

justification. For example, the courts have found that the presence of risk shifting and risk

distribution can be determinative of the presence of insurance. One can thus support a

claim that insurance is present by showing that risk was both shifted and distributed. In

4 One can also conceive of a case citation query that requests a particular case and all cases cited therein.

Such a query might be useful in a situation where the problem solver wishes to adapt all phases of the requested

case‘s justifications to the situation at hand. The case memory would then have to recursively expand all case

citation warrants in the requested case. More generally, though, the problem solver can request the specific case

first and then request each individual expansion as desired. This approach leaves the specification of expansion

knowledge to the external problem solver, making the case memory’s interface with such problem solvers simpler

and more general.

121

this sense, the issue of insurance has been “decomposed” into two subissues, risk shifting

and risk distribution (Figure 19).

Insurance exists.

Risk was shifted. Risk was distributed.

Figure 19. Issue Decomposition: Insurance

Cases are characterized by the issues they address. For each such issue, the case is

assigned a function that denotes the line of reasoning that supports the case’s conclusion

regarding the issue. Thus, the issues of the domain can be characterized by the various

case functions that address them. This connection between issues in the domain and

functions in the case representation indicates an extra utility in considering issues as the

defining features of the case law. Not only do issues capture the important classifications

made in the domain, but they also provide direct links to the functions of individual cases.

The body of case law is characterized by the issues addressed in its cases. These

issues are further related along the dimension of composition. If an assertion about issuez

can be used as a precondition for justifying an assertion about issue 1, then a justification of

the former assertion can be used as a component in justifying the latter assertion. In this

case, issuel is composed of issue;. The composition relation is not a necessary one; it

denotes only that issue; may be used in support of issue;. This way of relating assertions

and the issues to which they refer facilitates an organization of the case law that directly

supports justification of assertions, via reference to case functions.

122

The Issue Composition Hierarchy The index vocabulary ofjustification queries consists

of domain assertions: the memory is given a query in the form of an assertion to be

justified. These indices are related in a directed acyclic graph called an issue

composition hierarchy (ICH). This hierarchy consists of two elements:

0 Nodes correspond to issues from the domain. In the domain of

captive insurance, these might include insurance, risk shifting, and

risk distribution.

0 Edges reflect the composition relation. For nodes N1 and N2, there

exists an edge (N1,N2) if and only if justification of an assertion

regarding N2 can be used as a precondition for justifying an

assertion regarding N1.

The graph is directed and acyclic because legal issue composition is both antisymmetric and

acyclic.5 Such a hierarchy is rooted at the central concept of the domain. In the case of

captive insurance arrangements, this is the concept of insurance. All other issues in the

domain relate back to the concept of insurance via composition links. Figure 20 presents a

partial issue composition hierarchy for the domain of captive insurance.

The ICH may not be a true hierarchy. For instance, in Figure 20, an assertion that

the alleged insurer is a legitimate provider of insurance can be used as data in justifying that

risk was both shifted and distributed.6 Consequently, the node for legitimate provider of

insurance is linked to two parent nodes, risk sharing and risk distribution. This feature of

the ICH reflects the interrelated nature of legal concepts. The definition of the ICH’s edges

5 That is, if classification as an instance of one issue is potentially a precondition for classification as an

instance of another, the latter issue cannot also be a precondition of the former. This is true for a single edge

(antisymmetric) or for multiple edges (acyclic).

6 See Sears, Roebuck, and Company versus Commissioner of Internal Revenue [1991].

123

Insurance exists.

/\

Risk is shifted. Risk is distributed.

Payment is made

to related company.

Insurer is a legitimate

insurance provider.

Payment is made Payment is made

to a subsidiary. to a sibling.

Figure 20. A Sample Issue Composition Hierarchy
also permits the notion of a negative correlation. A justification for the assertion that the

payment is made to a related company will be useful for justifying the assertion that risk is

not shifted. Conversely, a justification for the assertion that the payment is not made to a

related company will be useful for justifying the assertion that risk is shifted. The critical

relationship that defines the ICH is that assertions regarding the child issue may be useful

in justifying assertions about the parent issue.

The ICH as an Index into Case Memory The connection between issues and case

functions makes the ICH an effective and efficient index into case memory. Each issue

124

node contains a pointer to the cases that deal with the issue, in particular, to the case

functions that justify the corresponding assertions. Thus, cases are organized, at the level

of the body of case law, according to their defining features — the functions they play in

justifying domain assertions. Just as individual cases are defined by their functions, the

body of case law is organized according to these functions. In one sense, then, one can

view the body of case law as a device, with its individual cases as component subdevices.

The top-level device has no independent functions except those of its components. The

issue composition hierarchy comprises a device-level index of these constituent functions

(and the corresponding justifications).

However, this single stage of indexing will be insufficient for providing adequate

retrieval of cases for justificatory reasoning. At most nodes in the hierarchy, there will be

several cases that deal with the issue. When constructing a new justification, the problem

solver will certainly desire a finer grain of distinction among the cases. In each case, the

issue will have been decided positively or negatively.7 Further, in each case, the decision

favored either the related group of companies or the Internal Revenue Service. These

features of the case play an important part in the problem solver determining whether or not

the case will be useful for the purpose at hand. For example, a case in which the issue was

decided negatively may be of little use if the problem solver needs to justify a positive

classification.

At this point in the indexing process, the use of case features to guide retrieval also

becomes critical. Retrieval of cases based solely on their feature similarity provides little

direct support for the task of justificatory reasoning. However, in the context of

justification roles, case features themselves can become useful in choosing the most

relevant items from a set of cases judged to be useful for the task at hand. If two cases can

provide assistance in justifying the claim that risk shifting has occurred, but the facts of one

7 That is, classification of the case’s fact situation was either justified or unjustified.

125

of the cases more closely matches the current situation’s facts than the other, then the more

similar case will likely be more persuasive in a justification. Thus the salience of a case’s

features is determined only in the context of a particular task and its goals.

For these reasons, the conceptual memory requires a second stage of indexing. At

each node, there exists a fact similarity matcher that maps the facts of the situation against

those of the cases indexed by the node. This matcher segregates cases first according to

issue resolution and case outcome and then according to facts and critical fact abstractions.

The fact similarity matcher at each node provides a function similar to that of the compound

pointer introduced by Hafner [1987].8 This compound pointer consisted of four separate

pointers, based on the cross product of two dimensions, issue resolution and case

outcome. Figure 21 depicts such a pointer, for the issue of risk sharing. In effect, the

structured matcher proposed here incorporates these two dimensions but also takes into ‘

account important fact patterns that characterize the cases. This second stage permits the

case memory to provide even more focused retrieval, within the context of justifying a

particular assertion.

Thus, the two stages of index organization provided by the ICH are:

0 At the level of the body of case law, case functions are segregated

by the issues they address. A case can be retrieved at any node

corresponding to an issue with which the case deals. Nodes are

linked by edges that reflect the composition relation among issues.

0 At the level of the issue node, a fact similarity matcher segregates

cases according (1) to issue and case outcome and (2) characteristic

fact patterns. Each case indexed by the node will appear in exactly

one of the equivalence classes defined by the similarity matcher.

8 See Chapter 2 for a discussion of Hafner and her model of legal information retrieval.

126

The issue was decided

Positively Negatively

Risk was shifted, Risk was not

and the case was shifted, yet the case

Related group decided for was decided

Case was the related group. for the related group.

decided

for

Risk was shifted, Risk was not

IRS yet the case was shifted, and the case

decided for was decided

the IRS. for the IRS.

Figure 21. The Four Kinds of Issue Node Pointer into Case Memory

6.4 The Case Retrieval Algorithm

Case memory will be searched using one of two algorithms, depending on the

' nature of the query. Case citation queries provide ease identifiers as indices into memory,

and (as introduced above) a standard table look-up or B-tree traversal suffices as the

retrieval algorithm. Justification queries provide assertions as indices into the memory, and

thus they require search of the issue composition hierarchy. This algorithm is outlined in

Table 18.

This “match and decompose” algorithm is a variation of the establishcand-refine

method of hierarchical classification [Bylander and Mittal 1986; Sticklen, Chandrasekaran,

and Josephson 1987]. At each node in the ICH, the algorithm attempts to’match the

assertion against the node’s issue. Three possible values can be returned by the match

process: exact match, subissue match, and no match. Any exact match indicates that the

127

Table 18. A Case Retrieval Algorithm for Searching the [CH

GWEN: An assertion to justify

An issue node (initially, the root of the ICH)

1. Match the assertion against the issue at the current node.

2. If there is an exact match: Determine which of the cases at the

cunent node is most similar to the situation at hand. Return the set

of cases so indicated. Halt.

3. If there is no match: Return in failure.

{Otherwise, the match signifies a potential subissue match}

4. For each subnode of the current node, call the case retrieval

algorithm with the subnode.

5. If there are no subnodes, or if all subnodes return in failure: Return

in failure.

assertion deals directly with issue at hand. A subissue match indicates that the assertion

deals with a subissue of the current issue. Finally, no match indicates that the assertion has

no semantic connection at all to the current issue and thus has no connection to any of its

subissues.

Any time an assertion exactly matches an issue node, the set of cases pointed by the

node are directly relevant to justifying the assertion. In this situation, the algorithm invokes

the structured matcher that selects among the node’s cases and returns the resulting case

set. Any time there is no match at all, the subgraph of the ICH rooted at the cunent node

can be ignored; none of the issues in that subgraph are related to the assertion. In the

situation of a “partial” subissue match, the node has recognized that the assertion is not

directly related to the issue at the current node but may be related to one of its subnodes.

So the current issue is decomposed into its subissues, and the “match and decompose”

algorithm is called recursively for each subissue node. This recursive decomposition

continues until one of two conditions is met: If an exact match is found, the relevant cases

pointed to by the matching node are returned as the result, and processing halts. If the

128

whole ICH has been explored and no exact matches have been found, then the algorithm

returns no cases and halts.

The idea behind this algorithm is a simple one: the issue composition hierarchy

reflects relationships among issues in the domain. By traversing the ICH in a match-and-

decompose fashion, only those parts of the hierarchy that are potentially relevant to the

target issue are explored. As soon as a node recognizes that the assertion is not relevant to

its issue, exploration of that portion of the hierarchy can be terminated. Eventually, the

assertion is matched against the issue with which it deals, and the cases pointed to by that

issue’s node can be sent to the problem solver.

Only two situations exist in which an assertion will find no match in the hierarchy.

First, the assertion may be a new one in the domain, never having been addressed in a prior

case. This situation, which calls for an extension of the hierarchy, is considered in the

following section. Second, the knowledge necessary for recognizing an exact match is

missing in the appropriate node. This situation is primarily a problem of language. If the

input to the case memory were an assertion in natural language, it is quite plausible that a

query having an exact'match in the ICH could find no match, since the assertion could be

phrased in a novel way. However, in the context of the problem-solving architecture

presented in Figure 18, queries to the case memory consists of formalized domain

predicates handled by the justification generator and situation data base. This limited

representation enables a more complete enumeration of the (kinds of) assertions that are

relevant to any given issue.

6.4.1 Match Knowledge in the ICH

The case retrieval algorithm does not specify the nature of the match knowledge

possessed by the nodes in the hierarchy for determining the issue’s relevance. In

hierarchical classification, establishment knowledge typically consists of compiled fact

129

patterns that characterize the classification category. A structured matcher compares

situation data with these fact patterns, returning a confidence value for the hypothesis that

the situation is an instance of the category. A similar strategy suffices for the match of an

assertion to an issue node in the ICH. Indeed, the ICH node matching problem will often

be simpler than the hierarchical classification scenario. Match knowledge must identify an

assertion as an exact or partial match. Since an assertion consists of a formal domain

predicate, the match process can directly compare the predicate for an exact match. A

subissue match will be indicated whenever the assertion matches an assertion known to

relate to a particular subissue, or when the assertion is a specific instance of a more general

predicate related to a subissue. This latter form of partial match can often be accomplished

by sending a request to the situation data base regarding the predicate in question.

6.4.2 Use of the Retrieval Algorithm for Automatic Indexing

In order for the issue composition hierarchy to grow as new cases are decided,

some mechanism must exist for indexing cases as they are added to the conceptual

memory. The case retrieval algorithm offers a potential mechanism for automatic indexing

of new cases. Table 19 offers an adaptation of the retrieval algorithm aimed at this goal.

Given a case represented in the FR, the indexing algorithm adds the case to the case citation

index (Step 2) and then attempts to add each function of the case to the issue composition

hierarchy (Step 3). To achieve the last step, the match-and-decompose technique of the

case retrieval algorithm is called in an attempt to find the proper node for indexing each

function of the case.

However, this search may fail, for one of two reasons: the proper node does not

have adequate match knowledge to recognize that the assertion justified by the function

should be indexed there, or there is no matching node. In the former situation, some

outside agent— perhaps a human user— must instruct the memory to index the case at the

130

Table 19. A Case Indexing Algorithm

GIVEN: A case represented in the FR

1. Add the case to memory.

2. Add the case identifier, and a pointer to the case, to the case

citation index.

3. For each function of the case:

a. Apply the match-and-decompose algorithm to find an

exact match in the issue composition hierarchy.

b. If an exact match is found, then add the case and function

'to the set of cases indicated by the matching node’s fact

similarity matcher. ,

c. If no exact match is found, then ask the user whether

(1) the function should be stored at an existing node or

(2) thefunction represents a new issue.

1. If the function should be stored at an existing node,

store the case and function as in Step 3b.

ii. If the function represents a new issue, create a new

node as directed by the user, and store the case and

function as in Step 3b.

appropriate node. (The agent should then, if possible, also augment that node’s match

knowledge so that the node will recognize the assertion on later attempts.) The latter

situation signifies that the ICH is incomplete, that a new issue decomposition should be

added to the hierarchy. At the node or nodes which were unable to decompose themselves

further, the algorithm can add an appropriate subissue node and index the new case at that

point9

9 Another possibility exists: no exact or subissue match succeeds at any node. In this scenario, the

algorithm requires outside assistance in indexing the new case. Furthermore, the outside agent should examine

this case, the ICH, and the match knowledge in the hierarchy to determine the ultimate source of the algorithm‘s

failure.

131

6.5 Conclusion

The functional representation for legal analysis makes possible a memory indexing

strategy that reflects the utility of cases in justificatory reasoning. This chapter presents a

model of conceptual retrieval, based on the FR for cases, for use in a problem solving

architecture for this task. This model — which specifies how cases are requested, how

they are indexed and organized, and how they are retrieved — employs the advantages

inherent in a functional representation for indexing knowledge about abstract devices. In

essence, the model consists of two interrelated indices:

' the case citation index, for when the problem solver knows of a

particular case and function that can help to justify a particular

assertion, and

0 the issue composition hierarchy, for when the problem solver needs

cases that can help to justify an assertion but does not already have a

direct reference to a particular case.

This two-part model relies directly on features of the functional representation of

'cases for its indexing and organization scheme. The use of case citations as warrants for

justifications and the indexing ofjustifications according to the role they play in the case are

fundamental attributes of this FR, and they capture basic elements of legal reasoning. In

this way, the representation of cases is closely tied to the organization of cases in memory,

and both follow from domain-specific and task-specific understanding of how justifications

are used.

CHAPTER 7

CRISTA: A COMPUTER PROGRAM

FOR CONCEPTUAL RETRIEVAL

7.1 Introduction

The previous three chapters outline the elements Of a legal analysis problem solver.

Chapter 4 presents a problem solving architecture (PSA) for justificatory legal analysis in

terms Of Generic Task problem solvers. In Chapter 5, a functional representation for legal

cases is developed. Finally, Chapter 6 proposes a model of conceptual memory that is

based on the functional representation Of cases. This model is designed to serve as the case

memory component in the problem solving architecture of Chapter 4. These chapters

provide an abstract description Of a case-based justificatory reasoner, with examples taken

from the tax law.

This chapter describes CRISTA, a computer program that implements a portion of

the problem solving architecture for the domain Of captive insurance taxation. In particular,

CRISTA embodies the model Of conceptual memory described in Chapter 6. Cases in

CRISTA’s data base are represented using the FR for cases and are retrieved via an issue

composition hierarchy for the domain. The chapter consists Of two main sections:

0 discussion Of the CRISTA program and its implementation, and

- presentation of two samples problems solved by CRISTA, focusing

on its use of case memory.

132

133

7.2 The Implementation of CRISTA

The computer program CRISTA implements a portion Of the problem solving '

architecture outlined in Chapter 4. In order to describe this implementation in more detail,

three issues must be addressed:

° the software environment in which CRISTA was constructed,

0 the top—level organization and algorithm Of CRISTA, and

0 the sub-agents of CRISTA and their implementation.

7.2.1 The Software Environment

CRISTA is specified as an architecture Of Generic Task problem solvers. In

addition to providing an analytic theory Of problem-solving types, the Generic Task

approach [Chandrasekaran 1983, 1987] also Offers a basis for constructing programming

languages that embody these types. Each generic task specifies a particular problem-

solving method. Such a method delineates the types of domain knowledge it requires and

the control strategy for applying this knowledge. As a result, one can construct for each

generic task a programming language that incorporates the abstract method and its control

strategy. This kind of language can be thought of as a programming “shell,” in which the

user enumerates domain knowledge of a particular type, for a particular task.

In the AI/KBS Laboratory at Michigan State University, a software environment

consisting of the Generic Task languages has been developed. The foundation for this

environment is ParcPlace’s Objectworksm, a full-featured implementation of the Object-

oriented language Smalltalk. Smalltalk was selected as the infrastructure for the AI/KBS

environment in large part because of its pure message-passing model Of Object interaction.

Use Of such a model follows natrually from the Generic Task notion Of an intelligent agent

as a community of cooperating knowledge specialists. Furthermore, ObjectworksTM Offers

a number of other features important to a research software environment, including

134

complete compatibility of source code and compiled images across hardware platforms as

well as compatible graphics support

The basis of the AI/KBS Lab’s Generic Task environment is SNOl, a set of

Smalltalk classes that provides basic support for named Objects and Object relations. The

SNO language was implemented largely by Dr. Jon Sticklen, with assistance from the

author and other graduate students in the Lab. SNO ftunishes primitives for the assembly

Of individual Generic Task languages and for the combination Of multiple agents (built from

these languages) into a problem-solving architecture Of the type described in Chapter 4. In

essence, SNO extends ObjectworksTM by adding primitives that support the Generic Task

languages.

The Generic Task software environment consists, at this time, of four generic task

languagesZ:

° HC, for the GT of hierarchical classification [Bylander and Mittal

1986; Sticklen, Chandrasekaran, and Josephson 1987],

0 SM, for the GT Of structured matching [Bylander, Johnson, and

Goel 1991; Sticklen, Chandrasekaran, and Josephson 1987],

0 DS PL, for the GT Of routine design [Brown 1987, Brown and

Chandrasekaran 1986], and

' FM, for the functional representation of devices [Sticklen 1987,

Sembugamoorthy and Chandrasekaran 1986].

The author of this thesis wrote HC and SM. Other graduate students in the Lab, Ahmed

Karnel and Kurt Patzer, were the principal builders Of DSPL and FM, respectively. These

languages now comprise a “tool bench” of GT shells from which one can construct Generic

1 For “Spartan Named Object."

2 Each of these languages was originally implemented in Lisp environments at the Laboratory for AI

Research at the Ohio State University. The corresponding languages — CSRL, HYPER, DSPL, and FR — are

described in the cited works.

P
a
s
t

J
u
s
t
i
fi
c
a
t
i
o
n
s

C
a
s
e
M
e
m
o
r
y

¢

I
s
s
u
e

C
a
s
e

C
o
m
p
o
s
i
t
i
o
n

C
i
t
a
t
i
o
n

H
i
e
r
a
r
c
h
y

I
n
d
e
x

t
A
s
s
e
r
t
i
o
n
,
F
a
c
t
s
,

F
a
c
t
A
b
s
t
r
a
c
t
i
o
n
s

A
s
s
e
r
t
i
o
n
,

F
a
c
t
s

A
s
s
e
r
t
i
o
n
,
F
a
c
t
s
,

H
i
e
r
a
r
c
h
i
c
a
l

F
a
c
t
A
b
s
t
r
a
c
t
i
o
n
s

C
l
a
S
S
I
fi
e
r

1

m
p
.

I
n
t
e
l
l
i
g
e
n
t

D
a
t
a
B
a
s
e

H
i
e
r
a
r
c
h
i
c
a
l

¢
C
l
a
s
s
i
fi
e
r
m

F
a
c
t

S
t
r
u
c
t
u
r
e
d

M
a
t
c
h
e
r

l

S
t
r
u
c
t
u
r
e
d

M
a
t
c
h
e
r

n

A
b
s
t
r
a
c
t
i
o
n
s

S
i
t
u
a
t
i
o
n
D
a
t
a
B
a
s
e

F
i
g
u
r
e
2
2
.

C
R
I
S
T
A
’
s
P
r
o
b
l
e
m
S
o
l
v
i
n
g
A
r
c
h
i
t
e
c
t
u
r
e

F
a
c
t
A
b
s
t
r
a
c
t
o
r

 135

136

Task problem solvers in an integrated environment. It is from this tool bench that CRISTA

was built.3 Any extensions to the basic languages are described when appropriate below.

7.2.2 CRISTA: The Top Level

CRISTA was designed and implemented to test the idea Of functional case

representation and the model of conceptual retrieval based on this representation. As such,

it embodies a large portion of the problem-solving architecture for justificatory analysis

outlined (Figure 22). CRISTA’s architecture includes three Of the agents from the legal

analysis architecture: the Fact Abstractor, the Situation Data Base, and the Case Memory.

These agents constitute the basic requirements for conceptual retrieval in the model detailed

in Chapter 6. The Data Base manages all data and data acquisition for the Case Memory.

The Fact Abstractor generates fact abstractions for use by the Case Memory, on request

from the Data Base. Finally, the Case Memory retrieves cases based on their ability to

assist in justifying assertions provided by the user.

Table 20. CRISTA’s Control Strategy — Abstract Level

1. Request an assertion to be justified and the initial data that describe

the legal situation.

2. Identify relevant legal abstractions Of the data.

3. Identify relevant past justifications (cases).

4. GO to Step 1.

3 SNO also provides a primitive form of the inferencing data base described by Mittal. Chandrasekaran.

and Sticklen [1984]. This incomplete version of the intelligent data base generic task is sufficient to implement

the Situation Data Base of the architecture discussed below.

137

The omission of the Justification Generator agent from the full justification

architecture means that CRISTA must have a top-level control strategy for directing its

components in the task Of case retrieval. Indeed, CRISTA’s control strategy (Table 20)

follows that Of the proposed Justification Generator with respect to the retrieving of past

cases. This control strategy is implemented as a sequence of message exchanges among

the agents and system user. Table 21 expands the control strategy to demonstrate the

messages that are exchanged. The reader will note that, while the architecture itself is

fixed4, the number and sequence Of requests made in retrieving cases is dynamic.

Requests are made only when an agent requires particular facts or fact abstractions in the

course of addressing a given legal situation. Thus, the control strategy for CRISTA as a

whole is driven solely by interactions among its individual agents.

7.2.3 CRISTA: The Subagents

CRISTA consists of three subagents. Each Of these subagents embodies a specific

problem-solving method and possesses specific forms Of domain knowledge. This section

describes the domain knowledge and particular implementation details that characterize each

of these subagents: the Situation Data Base, the Fact Abstractor, and the Case Memory.

Situation Data Base The Situation Data Base provides a subset of the capabilities

found in an instance Of the intelligent database generic task (Footnote 2). Its two primary

responsibilities are to manage the situational data that describe a case and to manage all

interaction with the system user. In CRISTA, the Data Base is an instance of the class

AbstractionDataBase, which is a subclass Of the standard SNO data base. This subclass

extends the SNO data base to allow direction of data variables to fact abstraction agents.

4 That is, the paths of communication among the agents are fixed at program design time. See Table 3.

138

Table 21. CRISTA’s Control Strategy — Message-Passing Level

System user initiates a session with CRISTA by requesting a legal

justification from the Case Memory.

Case Memory requests an assertion from the Situation Data Base,

which forwards the request to the user.

On the first such request, Data Base also asks the user for the initial

data that describe the legal situation.

The assertion is returned to the Case Memory.

In the course of retrieving relevant justifications, the Case Memory

may request relevant legal abstractions Of the case data from the

Situation Data Base.

In the course of filling this request, the Situation Data Base may

request (a) additional case data from the user and (b) new fact

abstractions from the Fact Abstractor.

In the course of identifying relevant legal abstractions, the Fact

Abstractor may request additional case data from the Situation Data

Base.

The Case Memory answers the initial request (Step 1) by sending

relevant past justifications to the system user.

GO to Step 1.

139

Table 22. Channels of Communication in CRISTA

Fact AbstractOr

Input:

Requested From:

Output:

Requested By:

Case Memory

Input:

Requested From:

Output:

Requested By:

Situation Data Base

Input:

Requested From:

Input:

Requested From:

Output:

Requested By:

Assertion, Facts, Fact Abstractions

Situation Data Base

Fact Abstractions

Situation Data Base

Assertion, Facts, Fact Abstractions

Situation Data Base

Past Justifications

< System User >

Assertion, Facts

< System User >

Fact Abstractions

Fact Abstractor

Assertion, Facts, Fact Abstractions

Fact Abstractor, Case Memory

140

The Data Base maintains two types of data variables, facts and fact abstractions.

For each fact, it has a slot for the fact’s value and a method for Obtaining a value from the

user. For each fact abstraction, it has a slot for the abstraction’s value and a pointer to the

Fact Abstractor agent capable Of determining its value. When the Data Base receives a

request for a fact or abstraction, it first checks to see if the requested item has a value in the

current case. If so, the Data Base returns that value to the requestor. If not, it sends a

request to the appropriate source agent, either a specific fact ahstractor or the system user,

to determine a value. It then stores the value and sends it to the requestor.

The Situation Data Base has one variable for each fact and one variable for each fact

abstraction. The fact abstraction agents are described below. For the domain of captive

insurance taxation, CRISTA maintains approximately thirty fact variables. These are

variables are Of several types:

0 numeric variables, such as PercentOfRevenuesFromOutsideRisks

and NumberOflndependentBuyers,

0 binary variables, such as IsInsurerFullyLicensed, and

0 qualitative variables, such as NatureOfl’remiumTerms.

Several of these fact variables are listed in Table 23. The number of qualitative variables is

smaller than that for the other two types. Typically, qualitative variables require some

domain knowledge in order to abstract a qualitative value from a non-qualitative value.

CRISTA’s few qualitative variables require little judgment (leaving abstraction for the Fact

Abstraction agents), instead calling for “multiple choice” answers from observables.

Fact Abstractor A set Of structured matchers and hierarchical classifiers constitutes the

fact abstraction agent of CRISTA. Each structured matcher generates an individual

abstraction, and each hierarchical classifier generates an abstraction within a generalization

hierarchy. In order to generate an abstraction, each fact ahstractor may request the values

141

Table 23. A Sample Of CRISTA’s Fact Variables

Numeric Variables

PercentOtRevenuesFromOutsideRisks

NumberOflndependentBuyers

PercentOwanershipInterest

PercentParentRisks

PercentSiblingRisks

PercentOfIndependentBuyers

PercentOfRiskReinsuredThroughThirdParty

NumberOfJurisdictionsLicensed

AmountOflnsurersCapital

AmountOfInsurersExposure

Binary Variables

IsInsurerFullyLicensed

IsInsurerRegulated

IsThereACapitalizationAgreement

AreThereOtherRelatedContracts

IsPaymentAFixedExpense

DoesParentDirectlyOwnSubsidiary

DoesSubsidiaryInsureSiblings

IsRiskReinsuredThroughThirdParty

Qualitative Variables

NatureOfPremiumTerms

JurisdictionOfInsurer

142

for data variables (either for facts or for other abstractions) from the Situation Data Base.

The structured matchers are written in the language SM, and the hierarchical classifiers are

written in the language HC. These languages directly implement the generic tasks of

structured matching and hierarchical classification as described in Chapter 4.

For the domain of captive insurance taxation, CRISTA’s fact abstractors supply

two kinds of knowledge. First, matchers demonstrate hierarchical relationships among fact

patterns for evaluating the value of a specific abstraction. Second, classifiers exhibit

hierarchical relationships among abstractions in the domain. Each classification specialist

possesses a structured matcher whose task is to determine the value of that specialist’s

abstraction. If this abstraction is present in the case data, then the specialist’s children in

the hierarchy — which represent more specific types of the abstraction — are explored.

CRISTA’s fact ahstractor consists of approximately five classifiers and twelve

matchers. Together, these agents represent approximately fifteen classifier abstractions and

thirty-five matcher abstractions. In total, these agents provide all the necessary fact

abstractions for use in selecting relevant cases from the Case Memory. Figures 23 through

25 depict three of CRISTA’s classifiers, and Figures 26 through 31 present six of

CRISTA’s matchers. These problem solvers are typical of the fact abstraction agents in

CRISTA.

One may note that each of these agents is relatively small in comparison to

classifiers and matchers in other domains (for example, in diagnostic medicine or biological

taxonomy). In such domains, a single classification hierarchy might have dozens of

classification specialists, with each specialist holding a structured matcher consisting of

several simple matchers. The modest size of CRISTA’s agents can be traced to two

causes. Some agents are small because not all of the available domain knowledge has been

143

Insure Related Party

| |

Insure Parent Company Insure Sibling Company

Figure 23. The Related Party Classifier

Captive Insurer

| f l

Wholly-Owned Captive Partially-Owned Captive

Figure 24. The Captive Insurer Classifier

Insurance Provider

Insurance Company Mutual Association

Figure 25. The Insurance Provider Classifier

144

Standard

Insurance

Contract

| l | I |

Standard Standard Standard Standard Standard

Contract Contract Contract Contract Contract

Execution Authorization Modification Performance Renewal

‘ Figure 26. The Standard Contract Matcher

Diverse Pool of Risks

I - 1

Diverse Customer Base Diverse Coverage Base

Figure 27. The Risk Diversity Matcher

145

Insurance Risk Exists

| I l

Insurer Indemnified Parent Control

by Parent of Funds

I l I

Parent Parent Parent

Guarantee Security Contract

Obligation

Figure 28. The Insurance Risk Matcher

Arm's Length Transaction

Figure 29.

The Arm's Length

Transaction Matcher

146

Unavailable Commercial Coverage

Figure 30.

The Unavailable

Commercial

Coverage Matcher

Legitimate Business Purpose

l I

Viability Bona Fide Insurer

Capitalization

Figure 31. The Business Purpose Matcher

147

supplied to them. The Business Purpose matcher (Figure 31) could be decomposed to

include other constituent abstractions from the domain, such as the role of current financial

position in determining the insurer’s viability. This kind of knowledge has been left out of

CRISTA because it was not necessary to demonstrate the case memory facility of the

program. More importantly, though, abstractions in this domain do not seem to consist of

several levels Of subdecisions. Adding more abstraction knowledge to CRISTA would

more likely involve adding new, relatively independent matching and classification agents.

Case Memory CRISTA’s Case Memory embodies the model of conceptual retrieval

described in Chapter 6. The Memory accepts requests of two types. One can request the

case indicated by a particular case identifier, or one can request cases that may help in

justifying a particular assertion. The implemented Case Memory consists of three basic

elements: the body Of cases, the case citation index, and the issue composition hierarchy

for the domain of captive insurance.

The cases themselves are implemented as devices in the language FM. This

language was extended to allow two features of the FR for cases. First, the case

representation supports legal documentation at the level of the case (device), issue

(function), justification (behavior), and warrant (behavior links). Consequently, a subclass

of each of these FM objects was created and augmented with slots to hold the appropriate

documentation notes. Second, any precondition to a justification can be tagged as a

“hypothetical” fact, which indicates that the fact need not be present in order for the

justification to be applicable to a fact situation. An example of a case stored in CRISTA’s

memory appears in Table 24. In total, CRISTA contains 25 cases from the domain of

captive insurance taxation.

The case citation index provides a direct mapping from case identifiers to cases.

This index is implemented as a dictionary in Smalltalk, a data structure that consisting of

148

Table 24. A Sample Case from CRISTA — Humana [1989]

Case Humana-89

Context

Legal Documentation

Plaintiff Humana, Inc.

Defendant Commissioner of [ntemal Revenue

Citation 89-2 USTC ‘19453

Date July 7, 1989

Procedural Context

Setting US. Court of Appeals.

Plaintiff appeals ruling of the Tax Court that

none of its intra-family insurance premiums

are tax-deductible as business expenses.

Outcome Affirms, reverses, and remands

88 TC 197, in parts.

Facts

Plaintiff unable to obtain liability insurance at fair price.

Plaintiff incorporated wholly-owned insurance subsidiary.

Subsidiary meets all statutory and regulatory requirements.

Subsidiary provides insurance to plaintiff and its affiliates.

Subsidiary was fully capitalized at creation.

Plaintiff deducted all intra-family premiums as

ordinary and necessary business expense.

Issues

Question Are payments made by an entity to its wholly-owned

subsidiary deductible as insurance premiums?

Holding No.

Function Classify Parent Payments

Given Parent pays premium to a subsidiary.

Conclude Payment is not deductible.

By Conclude No Parent Insurance

Question Are payments made by an entity to a sibling

deductible as insurance premiums?

Holding Yes.

Function Classify Subsidiary Payments

Given Sibling pays premium to a sibling.

Conclude Payment is deductible.

B y Conclude Sibling Insurance

149

ordered key-value pairs. The case identifier serves as a key into the dictionary, which

retrieves the associated value, which in CRISTA is the case itself. All the cases that appear

in CRISTA’s library are listed in Appendix A, along with the case identifiers that act as the

keys in the case citation index.

The issue composition hierarchy organizes cases according to the roles they play in

justifying assertions. In CRISTA, this hierarchy is implemented as a specialization of the

hierarchical classifier provided by the language HC. This specialization embodies two

special features Of the' ICH. First, HC is specialized to incorporate the match-and-

decompose case retrieval method (in lieu of the standard establish-and-refme classification

method) and the adapted case insertion method. Second, each node in the hierarchy

requires two types of match knowledge. The issue specialist must have knowledge for

determining whether an input assertion pertains to the issue. This knowledge corresponds

to the “establish” knowledge of the standard classification specialist. Once the issue

specialist has matched the assertion, it then needs additional knowledge for selecting

relevant cases from the cases to which it points. This knowledge corresponds to the fact

similarity matcher described in Chapter 6 — it selects cases based on the resolution Of the

issue and outcome of the case. Both Of these forms of match knowledge are implemented

in CRISTA as structured matchers, in the language SM.

Since CRISTA operates in the domain of captive insurance, its issue composition

hierarchy captures relationships among assertions in the domain of insurance taxation. In

Figures 32 and 33, the ICH that indexes CRISTA’s Case Memory is given.5 This index

consists of eighteen nodes, which collectively point to the thirty-five functions that

comprise the cases in CRISTA’s memory. The nodes at the top of the hierarchy denote

more general assertions about the domain, and so they point to a larger number of cases

5 The issue of risk shifting has been investigated in much greater detail by the courts. and as a result the

portion of the ICH rooted at the node, “Risk is shifted.” is considerably more developed than other parts of the

hierarchy.

I
n
s
u
r
a
n
c
e

e
x
i
s
t
s
.

A
r
e
l
a
t
e
d

R
i
s
k

i
s

R
i
s
k

i
s

c
o
n
t
r
a
c
t
e
x
i
s
t
s
.

S
h
i
f
t
h
.

d
i
s
t
r
i
b
u
t
e
d
.

C
o
n
t
i
n
u
e
d
i
n

F
i
g
u
r
e
1
2

T
h
e

i
n
s
u
r
e
r

i
s

a
l
e
g
i
t
i
m
a
t
e

i
n
s
u
r
a
n
c
e
p
r
o
v
i
d
e
r
.

I
n
s
u
r
a
n
c
e
r
i
s
k
e
x
i
s
t
s
.

T
h
e

1
1
1
8
“
?
e
r
h
a
s

a
s
u
f
fi
c
r
e
n
t
l
y

d
i
v
e
r
s
e
c
l
i
e
n
t
b
a
s
e
.

T
h
e

i
n
s
u
r
e
r

i
s
a

T
h
e

i
n
s
u
r
e
r
h
a
s
a

m
u
t
u
a
l
a
s
s
o
c
i
a
t
i
o
n
.

l
o
n
g
h
i
s
t
o
r
y
a
s

a
b
o
n
a
fi
d
e

i
n
s
u
r
e
r
.

F
i
g
u
r
e
3
2
.

C
R
I
S
T
A
’
s

I
s
s
u
e
C
o
m
p
o
s
i
t
i
o
n
H
i
e
r
a
r
c
h
y
(
P
a
r
t

1
)

150

I
n
s
u
r
a
n
c
e

e
x
i
s
t
s
.

R
i
s
k

i
s

s
h
i
f
t
e
d
.

T
h
e

i
n
s
u
r
e
d

i
s
o
b
l
i
g
a
t
e
d

t
o
c
a
p
i
t
a
l
i
z
e

t
h
e
i
n
s
u
r
e
r
.

T
h
e
i
n
s
u
r
e
r

i
s

i
n
d
e
m
n
i
fi
e
d

a
g
a
i
n
s
t
l
o
s
s
.

T
h
e
i
n
s
u
r
e
d
a
n
d
i
n
s
u
r
e
r

P
a
y
m
e
n
t

i
s
m
a
d
e

a
r
e
s
e
p
a
r
a
t
e
e
n
t
i
t
i
e
s
f
o
r

t
o
r
e
l
a
t
e
d
c
o
m
p
a
n
y
.

t
h
e
p
u
r
p
o
s
e
o
f
t
a
x
a
t
i
o
n
.

T
h
e
i
n
s
u
r
e
d

r
e
t
a
i
n
s
c
o
n
t
r
o
l

o
f
a
l
l
p
r
e
m
i
u
m

f
u
n
d
s
.

151

a
.

.
e

.
0

P
a
y
m
e
n
t

r
s
m
a
d
e

P
a
y
m
e
n
t

r
s
m
a
d
e

T
h
e

i
n
s
u
r
e
r
s
e
r
v
e
s

T
h

i
n
s
u
r
e
d
a
n
d
i
n
s
u
r
e
r

.
.

.
.

a
l
e

i
t
i
m
a
t
e

h
a
v
e
n
o
o
w
n
e
r
s
h
i

t
o
a
s
u
b
s
r
d
r
a
r
y
.

t
o
a
s
r
b
l
r
n
g
.

b
u
s
i
n
e
f
s
p
u
r
p
o
s
e
.

r
e
l
a
t
i
o
n
.

p

F
i
g
u
r
e
3
3
.

C
R
I
S
T
A
’
s

I
s
s
u
e
C
o
m
p
o
s
i
t
i
o
n
H
i
e
r
a
r
c
h
y
(
P
a
r
t
2
)

152

and case functions. At this point, the ICH is relatively stable; addition of the four cases

most recently decided in the domain to the Case Memory resulted in the addition of only

one new node to the hierarchy. Unless the courts adopt a radically new course in deciding

captive insurance issues, the existing ICH will likely remain as an accurate model of issues

in the domain.

The division between assertions that need to be justified and assertions which can

be abstracted using “compiled” domain knowledge is not always distinct. Several of the

fact abstraction agents in CRISTA — for instance, the matchers for the existence of

insurance risk and legitimate business purpose — are also still the subject of debate in die

domain of captive insurance. For each of these issues, there exists some compiled

knowledge for identifying the particular instances of the abstraction in case data. This

knowledge is incomplete, in the sense that it is inconclusive in some fact situations and still

unsettled for other classes of situations. Consequently, some cases justify assertions

regarding these abstractions as if they were any other issue in the domain. CRISTA

accounts for this duality by including fact abstractors for these concepts as well as nodes

corresponding to the concepts in the ICH. Thus CRISTA is able to rely on compiled

knowledge for recognizing the abstractions when appropriate while retaining recourse to

case-based justifications when they are more appropriate.

7.3 Samples of CRISTA’s Problem Solving

Given this summary description of CRISTA, its knowledge content, and the

pertinent details of its implementation, one can now consider how the program functions in

the context of specific problems. This section follows two traces of CRISTA in action. In

the first, CRISTA interacts with a user who presents a case similar to Humana versus the

Commissioner of Internal Revenue [1989]. This trace demonstrates CRISTA’s behavior in

153

a relatively simple interaction. In the second, CRISTA adds a new case to its case

memory, The Harper Group versus the Commissioner of Internal Revenue [1991].

Note that these samples are not intended to provide an all-inclusive view of

CRISTA’s capabilities. The full specification of these appears in Chapters 4 through 6, in

terms of the Generic Task problem solvers from which CRISTA is built. Additionally,

implementation-specific details for CRISTA appear in the preceding section. Rather, these

samples aim to illustrate CRISTA’s behavior in two typical circumstances involving

conceptual retrieval.

7.3.1 Sample Problem #1

The first sample problem involves a case very similar to Humana (Table 24). It

differs from Humana in the presence of two additional facts: the captive insurer is

incorporated in Bermuda, and it is licensed as an insurer in only three states. These facts

may weaken the plaintiff’s case in that they shed doubt on the belief that the captive insurer

has a legitimate business purpose outside of tax avoidance. The user seeks cases that will

support the claim that insurance exists between the captive subsidiary and its sibling

companies, the other subsidiaries of the captive’s parent. This trace follows the steps of

the control strategy outlined in Table 21. 7

The user initiates a session with CRISTA (Step 0) by requesting cases that will

support an assertion. The Case Memory forwards this request to the Situation Data Base

(Step 1), which is responsible for interaction with the user. The Data Base requests the

specific assertion, InsuranceExists(Sib1ing, Captive), and the initial case data. The user

enters the data listed in Table 25 by selecting the appropriate questions from a menu and

then selecting or typing the answers. At this point, the desired assertion is returned to the

Case Memory.

154

Table 25. The Facts of Sample Problem 1

ClientRole Plaintiff

DoesParentDirectlyOwnSubsidiary Yes

PercentOwanershipInterest 100

DoesSubsidiaryInsureSiblings Yes

PercentOfRevenuesFromOutsideRisks O

IsInsurerFullyLicensed Yes

IsInsurerRegulated Yes

IsThereACapitalizationAgreement No

NumberOfJurisdictionsLicensed 3

JurisdictionOflnsurer Bermuda

Since the query is for a justification, the Memory invokes its match-and-decompose

method for the ICH (Step 2). The assertion, InsuranceExists(Sib1ing, Captive), matches at

the root node of the hierarchy. The node’s similarity matcher identifies six cases in the _ O

memory in which the decision favored the plaintiff and in which insurance was found to

exist (that is, in which the issue was decided positively). These six cases, listed in Table

26, are made available to the user in a browser window, from which any Of the cases’

functional representation may be viewed (Step 3).

Table 26. Cases Returned by CRISTA on the First Pass of Sample 1

AMERCO versus the Commissioner of Internal Revenue [1991]

Crawford Fitting Company versus the United States [1985]

The Harper Group versus the Commissioner of Internal Revenue [1991]

Humana versus the Commissioner of Internal Revenue [1989]

Sears and Roebuck versus the Commissioner of Internal Revenue [1991]

Weber Paper Company versus the United States [1962]

However, in the course of retrieval, the node’s fact similarity matcher further

distinguishes Crawford from the current case, because it does not involve insurance among

siblings. Likewise, it distinguishes Weber, because it involves a mutual insurance

155

arrangement, and AMERCO, Harper, and Sears on the basis of the degree of ownership

and outside risks present in those cases. Each of these distinctions relied on a fact

abstraction. When the similarity matcher came to such an abstraction, it requested a value

for the abstraction from the Situation Data Base. Since these abstractions had not yet been

computed in the cunent case, the Data Base sent requests to the appropriate fact abstraction

agents seeking their values.

The user sees that only Humana was not significantly distinguished from the

current situation. The selection of Humana as the most similar relevant case is denoted

explicitly in the browser’s presentation of the cases. The differences between the Humana

case and the current case are deemed by the similarity matcher to be less serious than the

differences from the other five cases. The user examines the top-level justification of

Humana with respect to sibling insurance. In the Humana case, the target assertion is

justified by reliance on the claim that the risk of loss was both shifted and distributed in the

Humana fact situation. Thus, the user decides to find cases that will help show the

presence of risk shifting and risk distribution in the current case.

The user asks CRISTA to retrieve cases that will help to justify the assertion, that

risk is shifted in the current situation (Step 1). Invocation of the match-and-decompose

method on this iteration finds that the root node of the ICH returns only a subissue match.

The node Insurance exists cannot exactly match the query RiskShifted(Sibling, Captive)

because the query does not deal directly with the existence of insurance. However, the

node’s match knowledge recognizes the predicate RiskShifted as being relevant to one of

its subissues. So the node decomposes itself and asks its subnodes to try to match the

query. Working from left to right in the hierarchy, the node A related contract exists first

tries to match the query but fails. Then the node Risk is shifted tries and achieves” an exact

match (Step 2).

156

CRISTA reports that five of the previously-retrieved cases (all but Weber) are again

relevant to the target assertion. And, once, again, the Humana case is judged to be the

most similar of the relevant cases. The five cases are displayed in a browser window, with

Humana highlighted as the most similar case (Step 3). Examination of the Humana case’s

justification for the claim of risk shifting reveals that all its preconditions are either facts of

the current case (for example, DoesSubsidiaryInsureSiblings = Yes) or abstractions of

those facts (for example, OwnershipRelation(Insurer,lnsured) = None). As a result, this

justification can be applied to the situation at hand. A similar sequence of requests and

retrievals follows the user’s request for cases to help justify the assertion that risk is

distributed in the current situation.

Table 27. CRISTA’s Case Indexing Algorithm

GIVEN: A case represented in the FR

1. Add the case to memory.

2. Add the case identifier, and a pointer to the case, to the case citation

index.

3. For each function of the case:

a. Apply the match-and-decompose algorithm to find an exact

match in the issue composition hierarchy.

b. If an exact match is found, then add the case and function

to the set of cases indicated by the matching node’s fact

similarity matcher.

c. If no exact match is found, then ask the user whether (1)

the function should be stored at an existing node or (2)

the function represents a new issue.

1. If the function should be stored at an existing node,

store the case and function as in Step 3b.

ii. If the function represents a new issue, create a new

node as directed by the user, and store the case and

function as in Step 3b.

157

7.3.2 Sample Problem #2

In the second sample problem, CRISTA adds a new case to its case memory,

Harper Group versus the Commissioner of [ntemal Revenue [1991]. This trace follows

CRISTA’s case indexing algorithm (Table 27), first introduced in Chapter 6. This

algorithm takes as input a case represented in the FR for cases. Table 28 presents the FR

case description for Harper.

The first two steps of the algorithm are trivial. In CRISTA, whenever a functional

representation of a case is created, this FR object becomes an item in the CRISTA’s

Smalltalk image. Thus, having created the FR for Harper means that the case is now in

memory (Step 1). Adding Harper to the case citation index (Step 2) merely requires that a

new key-value pair be added to the Smalltalk dictionary that implements the index. The key

is Harper-91, the case identifier, and the value is a pointer to the FR object that represents

Harper.

Step 3 of the algorithm involves the addition of Harper’s three functions to the issue

composition hierarchy. For each function, indexing proceeds in a similar fashion. First,

apply the match-and-decompose algorithm to find the appropriate issue node. Each of

Harper’s functions will find an exact match in the ICH — at nodes Insurance exists, Risk

is shifted, and Risk is distributed, respectively. Second, invoke the node’s fact similarity

matcher to determine the category of cases in which Harper most appropriately belongs. If

the pattern matcher finds a match at a high enough level of confidence, index Harper in that

group of cases; otherwise create a new case group and a new fact pattern in the matcher.6

The indexing of Harper at this second stage depends on the current state of CRISTA’s case

memory. Ifeither of two cases — AMERCO [1991] or Sears [1991] — is already a part of

the case memory, then Harper’s functions are placed in the same group of cases. If

6 The creation of an appropriate fact pattern and the corresponding update to the fact similarity matcher

requires the assistance of a knowledgeable user. The system has no facility for identifying the most predictive or

relevant facts from which to form a “good” patt

158

Table 28. The Case Description for Harper [1991]

Case Harper-91

Context

Legal Documentation

Plaintiff The Harper Group and includible subsidiaries

Defendant Commissioner of Internal Revenue

Citation 96 TC No.4

Date January 24, 1991

Procedural Context

Setting U.S. Tax Court

Plaintiff challenges deficiencies assessed on

payments to a wholly-owned captive insurer.

Outcome In favor of plaintiff.

Facts

Plaintiff owns insurer indirectly through subsidiaries.

Subsidiary meets all licensing and regulatory requirements.

Subsidiary provides insurance to plaintiff and its affiliates.

Subsidiary provides insurance to rmrelated parties.

Subsidiary provides variety of insurance coverages.

Subsidiary was fully capitalized at creation.

Premium rates determined by industry-standard pricing.

Percentage of revenue from unrelated companies = 30%.

Percentage of revenue from sibling companies = 25%.

Issues

Question Do payments made by an entity and its subsidiaries

to a wholly-owned subsidiary constitute deductible

insurance premiums?

Holding Yes.

Function Determine Insurance

Given Risk is shifted & Risk is distributed.

Conclude Payment constitutes insurance.

By Detemrine Insurance Justification

Function Determine Risk Shifting

Given Subsidiary was fully capitalized at creation...

Conclude Risk is shifted.

By Determine Risk Shifting Justification

Function Determine Risk Distributing

Given Percentage of unrelated revenue = 30%.

Conclude Risk is distributed.

By Determine Risk Distributing Justification

159

neither of these cases is already in memory, then a new group of cases is created for

Harper. In the latter case, subsequent addition of AMERCO or Sears to CRISTA will

result in their being indexed into Harper’s case set.

7.4 Conclusion

This chapter describes CRISTA, a computer program that implements the ideas

proposed in the preceding chapters. CRISTA embodies a model of conceptual retrieval

based on the roles that prior cases can play in justifying assertions. The functionality and

content of the case memory are guided by two central ideas: the problem solving context in

which the case memory will be used, and the functional understanding of past justifications

as abstract devices. These ideas have, in turn, greatly affected design decisions made

during the development of CRISTA.

w

COMPARISONS TO RELATED WORK:

EXTENSIONS AND ELABORATIONS

8.1 Introduction

The preceding four chapters introduce an approach to conceptual retrieval based on

the idea that justifications can be understood as abstract devices. Those chapters propose:

- a problem solving architecture, in the technical sense of Sticklen

[1990], for the task of case-based legal justification,

0 a representation for justifications based on the Functional

Representation of devices [Sembugamoorthy and Chandrasekaran

1986], and

- a model of conceptual retrieval for the task of justification that is

based on this representation.

These proposals are made in the context of two analyses — an investigation of various

approaches to the problem of conceptual retrieval (Chapter 2), and an examination of the

task ofjustificatory legal analysis in taxation (Chapter 3).

This chapter evaluates the ideas proposed in this thesis with respect to related

research in Al and other disciplines. Particular attention is paid to how this work extends

and elaborates ideas found in existing approaches. The remaining sections of the chapter

are organized according to the two central contributions proposed in this work: a functional

representation of legal justifications, and a task-directed model of conceptual retrieval.

160

161

8.2 A Functional Representation of Legal Justifications

In large part, the use of the Functional Representation to model legal justifications

was motivated by two ideas. First, specialists in the law seem to organize their

understanding of legal cases in a way that relates new justifications to past cases, to the

main uses of cases in precedent-based reasoning, and to the concepts and statutes of a

particular domain. This idea was one of the original intuitions underlying the development

of the Functional Representation, in the context of understanding engineering devices

[Sembugamoorthy and Chandrasekaran 1986]. Second, the work of Toulmin [1958] on

the characterization of justificatory arguments bears a strong resemblance to the graphical

representation of behaviors in the FR. This idea provided an explicit bridge to the use of

the FR for understanding legal cases as abstract devices.

The case representation proposed in Chapter 5 raises several issues of interest.

Two such issues are discussed here: the representation ofjustificatory arguments, and the

issue of the appropriate level of granularity in case representation.

8.2.1 Representation of Justificatory Arguments

Warrants With the syntactic extensions to the FR outlined in Chapter 7, the

representation of legal cases follows closely the principles that underlie the FR. The

distinguishing feature of the case representation is its use of behavior links to embody

justificatory warrants.

The idea of warrants is also central to many other approaches for representing

arguments. Toulmin [1958] first sought to explicitly identify warrants and the other roles

that an assertion can play in justification. Other researchers adopted his terminology and

sought to identify classes of warrants that operate in various forms of argument Birnbaum

[1982] catalogued a small number of “argument molecules” that incorporated warrants for

162

particular beliefs in an adversarial argument Branting [1989, 1991] has used his notion of

cornplerrrentary warrantsl to gain leverage in automating justificatory legal analysis. Other

researchers who have focused on the explicit representation of warrants in the law include

Marshall [1989], Lutomski [1989], and Dick [1987].

Toward this end, the functional representation of cases offers a principled way to

classify justificatory warrants in the legal domains. The three types of link pointer in the

case representation are:

0 By Knowledge of <some world knowledge>,

0 By Justification <justification identifier), and

0 By Function <function identifier) of Case <case identifier>.

The first type allows reference to various forms of knowledge about the world. In the law,

this might refer to a statute or regulation, a generalized legal rule, or a piece of common-

Sense knowledge outside the law. The second type allows reference to another justification

in the case. Such indirection makes it possible to hide the technicalities of a justification

until such time as one wishes to examine the warrant in greater detail. Finally, the third

type allows direct citation of another case, and in particular direct citation of a specific line

of reasoning adopted in the case.

These three types of warrant encompass those proposed by previous researchers.

Birnbaum’s argument molecules corresponded to By Knowledge pointers in the FR.

While Branting recognized the need for explicit case citation in the law, his theory of

complementary warrants does not differentiate among the various justificatory roles that a

single case might play. Thus there is no precise sense of a case’s different issues or lines

of reasoning, and thus no sense of case’sfunction.

1 Legal rules and legal cases are complementary in the sense that they can support each other in such a way

that assertions not justifiable using only one type of warrant are justifiable using both in concert. More

generally, Branting’s complementary warrants denote compiled classification knowledge and episodic

recognition knowledge.

163

Indeed, the richness of the FR’s warrants affords further latitude in identifying

meaningful citation types. One can conceive of decomposing the class of By Knowledge

using other forms of legal knowledge. For instance, pointers to statutes could be

segregated into a class of By Statute links. This link type would allow the user of the

represented case to make direct use of the case citation in retrieving the statute from a data

base. Furthermore, such a link would also facilitate access to a structured representation of '

the statute (perhaps using an FR-like formalism), thus enabling the representation and use

of a case’s reasoning in even greater detail.

Function Specification In the FR for cases, functions are specified as a ternary relation:

Given assumptions

Conclude assertion

B y justification

But in the original Functional Representation [Sembugamoorthy and Chandrasekaran

1986], functions were defined as a four-tuple:

If preconditions

To Make goals

Provided meaningful context (optional)

B y causal behavior

The Given/Conclude/By triple corresponds to Ifl'I‘oMake/By in the standard FR. But

what of the Provided clause? Roughly, this clause specifies conditions on the state of the

device that must be true in order for performance of the function to be meaningful. That is,

it specifies a set of “semantic” preconditions. These conditions are not strictly necessary

for the causal behavior to be performed, but they are necessary for the achieved state to be

meaningful in the domain.

This clause could be used to great effect in representing justifications in the law and

many other domains. Typically, a justification refers only to those assumptions that are

salient to the issue in dispute. Yet any given justification will be meaningful only in a

164

particular context Agertions so specified would serve as super-preconditions, in that they

would have to hold in order for the justification to be persuasive. For example, in the case

Humana versus the Commissioner of Internal Revenue [1989], the function Conclude

Insurance might be defined as follows:

Function Conclude Insurance

Given Risk is shifted AND Risk is distributed

Conclude Insurance exists

B y Conclude Insurance Behavior

There are, however, a number of other assertions that may have to hold in order for this

justification to apply. The recipient of the risk may, in a tax domain, have to be a licensed

and regulated insurer.

Whether a necessary assertion is classified as an assumption or as part of the

semantic context of the case depends largely on the domain. In the law, this classification

will also depend on the particular state of the domain, that is, the existing body of case law.

As case law evolves, different case features become more or less salient and more or less

the subject of adversarial debate. This shift is a necessary property of the law. Features

that were once considered contextual are challenged, thus becoming part of the argument

discourse as explicit assumptions (e.g., sibling companies cannot purchase insurance from

one another). Conversely, features once considered part of the argument discourse as

explicit assumptions become settled matters of law and thus part of the legal context (e.g.,

the features of risk shifting). An FR for justifications must ultimately account for this

interplay, perhaps treating preconditions and contextual states identically, except for

providing notational distinctions that benefit human users. This remains an interesting

problem for future research.

165

8.2.2 Relationship to the Issue of Case Granularity

An important open question in the field of case-based reasoning involves '

determining the appropriate granularity for representing cases in memory. Past case-based

systems have demonstrated the difficulties to be found in representing complete problem-

solving episodes, from the initial problem to the computed solution, as individual cases.

Often, only a small fragment of the problem solving done on the case will be relevant in a

later situation. Representing the whole case as a single item in memory means that the

whole case will have to be retrieved in the later situation, with the related computational

cost of fmding the appropriate fragment for application in the new situation. This approach

also leads to difficulties in generalizing from comparable experiences that constitute

elements of individual cases.

In order to address this problem of large case granularity, several researchers have

investigated ways of decomposing cases into more appropriately-sized fragments. Sycara

and Navinchandra [1989, 1991] approached this problem as one generating indices that

point directly to a particular fragment within a unitary case. Redmond [1989, 1990]

attacked the problem more directly, proposing a theory of case decomposition based on

problem-solving goals for case-based diagnosis. Each resulting case fragment, termed a

“snippet,” carries knowledge of its problem-solving context, its goal, and the way the goal

was achieved. These snippets are then indexed individually for retrieval when they will be

most useful.

The functional representation of cases proposed here offers many of the same

advantages of Redmond’s snippets. Like Redmond’s approach, the case FR allows direct

access to case fragments — in the FR, functions and behaviors — based on the goals they

achieve. Furthermore, the FR also facilitates generalization based on the goals that each

case function achieves. Cases are accessible as a whole, but they can also be thought of as

distributed throughout memory and accessible as functional fragments. The FR provides

166

some distinct advantages over Redmond’s approach, though. Explicit use of the known

functions of a device focuses the selection of appropriate case fragments. One would not

wish to create a fragment for each assertion in the justification, but the functional approach

eliminates this possibility, instead focusing on fragments that achieve particular design

goals for the device. In physical domains such as Redmond’s automotive trouble shooting,

the FR provides the additional benefit of allowing model—based simulation of the device.

This capability enables the use of mechanisms such as Sticklen’s [1987] compilation of

classificatory knowledge through model-based consequence finding.

8.2.3 Potential Impact on Legal Practice

Finally, the functional representation for cases could have a positive impact on legal

practice. The FR offers a systematic means to critique a justification. By implementing

Toulmin’s role-based model of argument in a computational manner, the representation

makes explicit commitments to the roles that assertions play in a justification. This

facilitates annotation of the case’s reasoning at the level of the case itself, or at the level of

individual issues, justifications, and warrants. In the situation of a court deciding a case,

the majority opinion of the court would be issued as the court’s holding. Judges wishing

to author concurring or dissenting opinions would have two options available. They could

issue a functional representation of their reasoning, but they could also generate specific

criticisms of the majority opinion by annotating the court’s FR of that opinion. Indeed, a

similar notion has been described by Lowe [1985] in the context of a user-organized

information system.

8.3 Conceptual Retrieval based on Problem-Solving Roles

In Chapter 2, the problem of conceptual retrieval was analyzed, and past research

aimed at understanding and solving the problem was evaluated. One of the central goals of

167

the research described in this dissertation is to propose and evaluate a model of conceptual

retrieval based on problem-solving roles. Chapter 6 proposes such a model, in particular

focusing on the issue composition hierarchy (ICH). In this section, the model is appraised

with respect to the important issues that it addresses.

8.3.1 The Use of Abstract Indices

Underlying most work on conceptual retrieval is the notion of an abstract index.

Such an index corresponds to some abstract feature that characterizes a case. This feature

is predictive of the case’s future utility; that is, the case will likely be useful in future

situations characterized by the same feature. Typically, in case-based reasoning, abstract

indices have consisted of “task-related goals and features of the world causally relevant to

the status of these goals” [Domeshek-1991a]. Much of the research on abstract indexing of

case memory has been aimed at specifying more concretely the nature and content of these

two index types.

The model of conceptual retrieval implemented by CRISTA offers one approach:

indices consist of assertions to be justified. Cases are organized across these indices based

on their functions, their abilities to justify assertions. This approach supports Hammond’s

[1989] claim that abstract indices — though often objected to because they require

computational resources to generate them —— may already be present in the vocabulary of

the problem-solving agent CRISTA is designed as a component of a larger problem-

solving architecture for legal justification. This problem solver places particular functional

demands on the performance of case memory, including the need to access cases by their

functions. No additional computation is expended in generating these indices, since they

correspond directly to necessary elements of the problem solver’s vocabulary.

168

8.3.2 Relationship to Goel and Hafner

The two primary motivations for the model of conceptual retrieval proposed here

were Hafner’s [1987] issue/case discrimination tree and Goel’s [1989] use of functions in

the FR as indices into a memory of design cases.

Goel and Functional Indices Goel indexed memory by the functions that each design

case could deliver. In this way, cases could be retrieved when they would be most useful

in generating a new design — when they were capable of fulfilling a design need.

Retrieval was accomplished by matching the functional specifications of a desired design

against the functional specifications of all cases in memory. The case that matched most

closely was then adapted to the cunent need. If multiple cases matched partially, then the

problem solver applied deliberative design knowledge in ordering the cases for adaptation.

The matching process itself was what Goel called “intuitive”, an associative, qualitative

match against every case in the memory.

While this approach outlines an index vocabulary, it did not specify an index

organization or an associated retrieval algorithm sufficient for handling large case

memories. The computational cost of matching a structured design specification against

that of every case in a large memory would soon become unacceptable. Goel suggested

two possible approaches to the organization/retrieval issue. A component hierarchy of

designs would capture relationships among devices and their components. A generalization

hierarchy of designs would organize cases in terms of the specificity of case features along

multiple dimensions of domain interest

CRISTA’S index vocabulary was motivated by Goel’s use of design knowledge

about devices. Once the notion of representing justifications as abstract devices developed,

through consideration of Toulmin’s work, the notion of using device functions — the

ability to justify assertions — developed naturally. However, the tax law domain in which

169

CRISTA was to operate was far too large to consider the use'of a total-memory retrieval

algorithm. This fact led to the integration of an existing idea to make conceptual retrieval a

reasonable goal.

Hafner and Issue Discrimination CRISTA’s index organization was influenced most

directly by Hafner’s [1987] issue/case discrimination tree (Section 2.3.1). This mechanism

related important issues in a legal domain (broker liability) according to the influence that

one issue had on another in the outcome of a case. Cases in memory were organized

according to the issues that characterized them and according to how these issue related to

one another. Hafner’s model was intended as an information retrieval mechanism, not as a

component in a larger problem-solving system. As such, there was no retrieval algorithm

to speak of, since retrieval was driven by a human user.

A Synthesis The model of conceptual retrieval proposed here merges these two lines of

research. Given an index vocabulary based on case functions, the model required a means

for organizing case memory in order to provide efficient and task-directed case retrieval.

The idea of the issue/case discrimination tree was adapted to take into account the functional

representation of cases. Analysis of the domain was now guided by the consideration of

issues as the targets for justification. Thus, issues in the index organization — now called

an issue composition hierarchy — were related by their specific justificatory relationships

in past cases.

Because this hierarchy also resembled Goel’s design component hierarchy, his

proposed retrieval method — match and refine — was adapted to the ICH, in the form of

the match-and-decompose algorithm of Chapters 6 and 7. This adaptation also incorporates

elements of Hafner’s issue discrimination method, in which issue resolution and case

outcome segregate the cases stored at any issue node.

170

One important difference between the ICH model and those of Hafner and Goel lies

in the details of case retrieval. For Hafner, discrimination between cases at each node'

involves attention only to the contextual factors of issue resolution and case outcome: there

is no consideration of the similarities and differences between fact situations. In CRISTA’s

case retrieval algorithm, these contextual factors are used as the last filter on the retrieved

cases, but only after an intermediate step in which cases are filtered based on their factual

similarity to the situation at hand. This step is necessary to insure that factual similarity —

a crucial element in the persuasiveness of legal arguments — is provided by the case

memory. However, unlike approaches that emphasize factual similarity to the exclusion of

functional utility in argument, this algorithm concentrates on factual similarity only in the

context of task requirements.

For Goel, the retrieval process consists in matching the functional specification of

the desired component with that of each case in memory. In CRISTA, cases are first

matched on their goal assertion, not on their preconditions, and are then matched according

to factual similarity and contextual factors. This omission of the preconditions reflects the

nature of legal argument. AS discussed in Section 8.2.1, there is often a large degree of

ambiguity in which facts and assertions constitute the assumptions of a justification and

which constitute domain context Rather than rely on uncertain assumptions, search of the

ICH considers only the target assertion and the facts of the case. Distinctions based on the

preconditions of an argument can be made by the problem solver.

Ultimately, the proposed model of conceptual retrieval elaborates the ideas of Goel

and Hafner. The model investigates some of the issues left open by Goel with regard to

memory organization and retrieval. Moreover, the model provides a principled means for

generating Hafner’s issue/case discrimination tree. Though the notion of case functionality

is not made explicit, Hafner’s approach implicitly reflects compositional relationships

among domain issues. These relationships deal with the ability of a case to assist in

171

justifying similar assertions in a new circumstance. The issue/case discrimination tree docs

incorporate more general semantic relationships among its issues nodes than does the ICH,

but this is mostly a result of developing the model outside the context of a specific problem-

solving task.

8.4 Conclusion

This chapter compares the research results reported in Chapters 4 through 7 to

related work in Al and information retrieval. The functional representation ofjustifications

provides its greatest contribution in elaborating the idea of a warrant for inference. By

extending the notion of warrants to explicit citation of device functions and behaviors, this

representation establishes the basis for a case memory that is organized according to roles

in justification. This FR also offers some answers to questions regarding the most

appropriate granularity of case representation. Finally, one shortcoming in the

representation is discussed: the lack of a function definition slot to hold assertions that are

necessary in order for the justification to be meaningful. This shortcoming points to a

potential avenue for extending this work.

Second, the model of case memory is shown to be a synthesis of ideas from

Hafner’s work on issue/case discrimination trees and Goel’s work on the representation

and indexing of designs in a case memory using a Functional Representation. This

synthesis extends both lines of research toward the idea of conceptual retrieval by

specifying an index vocabulary, index organization, and retrieval algorithm based on the

functional representation of cases.

CHAPTER 9

CONCLUSION

9.1 Introduction

This chapter concludes the dissertation with a discussion of the contributions made

by this work and avenues for future research. The final section of the dissertation offers a

few remarks regarding the ultimate impact of this research.

9.2 Contributions of this Research

In short, the primary goal of this research was to develop a theory of conceptual

retrieval from a problem-solving perspective —— how do capable problem solvers, with their

knowledge of a task and a domain, retrieve cases relevant to a problem-solving situation?

Efforts aimed at answering this question have led to contributions in three broad areas:

0 the modeling of legal justifications as abstract devices,

° the development of a model of conceptual retrieval based on this

view ofjustifications, and

0 the extension of Generic Task theory.

Contributions in each of these areas are discussed further below.

9.2.] Modeling Justifications as Abstract Devices

Viewing a justification as an abstract device offers insight into the understanding of

both justifications and the Functional Representation. Toulmin recognized the benefit of

explicating the roles that assertions can play in justificatory argument, and the functional

172

173

representation of cases makes these roles explicit. The FR provides greater benefit,

though, in its treatment of case citation and warrants. Through case citation, justifications

can be represented at multiple levels of detail. This sort of layering is a natural part of

argumentation in many domains, but its nature is made transparent in the functional

representation of arguments. By providing a well-developed set of link types, the FR

offers a rich vocabulary for expressing and manipulating warrants.

Furthermore, the application of the FR to the modeling of legal justifications can

also contribute to the understanding of the Functional Representation itself. Considering

the demands of new types of devices on the FR forces re-examination of representational

commitments. Concepts such as hypothetical preconditions can be incorporated into the

language only after determining their meaning within the framework of the FR.

9.2.2 Modeling Conceptual Retrieval Based on Problem-Solving Roles

This research contributes three new ideas in the area of conceptual retrieval. First,

the representation ofjustifications as devices facilitates the development of a methodology

for indexing and organizing case memory. This methodology relies both on the case

representation and on an understanding of how cases in the domain relate to each other, in

terms of their functionality in justifications. Second, this model of conceptual retrieval is

integrated with a problem solving architecture for generating legal justifications. Indeed,

the model owes much of its analytic power to the fact that it was developed with the

problem solver in mind, allowing the functional demands of the task to shape and guide the

development of the index organization and retrieval algorithm. Third, this theory integrates

indexing on the basis of surface features with indexing based on abstract functional

features. This integration benefits from the utility of feature-based retrieval but only within

the context of providing retrieval in support of a particular problem-solving goal.

174

9.2.3 Extending Generic Task Theory

This research extends Generic Task theory in two ways. The integration of a case

memory with a problem solving architecture of Generic Task agents demonstrates the

natural relationship between the deliberative problem solving of generic tasks, on the one

hand, and the recognition and retrieval of past cases, on the other. By incorporating case

memory with other forms of “compiled” problem-solving knowledge, systems built of

Generic Task agents are capable of providing a wider range of problem-solving behaviors.

The application of Generic Task analysis to the general method of case-based

reasoning begins to illustrate the utility of GT constructs in explaining and building case-

based systems for routine tasks. This research attempts to understand how Generic Task

problem solvers can be used to model the subtasks of case characterization and adaptation.

More to the point, the proposed model of conceptual retrieval relies directly on the problem-

solving roles established by a Generic Task problem solver. The abstract vocabulary of

task-specific problem solving offers clear advantage over ad hoc methods for explaining the

relationship among problem-solving type and memory organization.

9.3 Avenues for Future Research

Even with its diverse contributions, the research reported here raises as many new

questions as it answers. These new questions form the basis of a diverse program of

research aimed at extending contributions in various directions and overcoming some of the

difficulties that arise in applying current results. These avenues for future research are

outlined with respect to the results from which they derive: the functional representation of

cases, the model of conceptual retrieval based on problem-solving roles, and the problem

solving architecture for legal justification.

175

9.3.1 The Functional Representation of Cases

Research into the use of the Functional Representation for modeling justifications ‘

has certainly not been completed here. At least three important issues with regard to the FR

language remain to be addressed. First, this version of FR for cases treats several types of

By Knowledge link in the same manner, when in fact the indicated knowledge differs

significantly across type. In particular, one could imagine representing statutes and tax

regulations using the FR, thus enabling a more meaningful use of such citations. A new

kind of link, By Statute, could be given independent status and used in a way analogous

to the use of the By Function of Case link. It is an open question whether the FR

would provide the same benefits for representing legal statutes as it does for representing

legal justifications. Intuitively, though, similar benefits seem possible.

Second, the idea of negation is poorly developed in this version of the FR. Under

what conditions can one use the negative of an assertion (say, “Risk is not shifted”) as

evidence for justifying the negation of another assertion (say, “Insurance does not exist”)?

The issue composition hierarchy relates assertion types based on their utility for justifying

other types, but this formalism makes no commitments regarding negative states or

negative assertions. Hafner [1981] proposed a particularly well-developed sense of

negation in her Legal Information Retrieval System. A similar approach applied to the FR

might greatly increase its robustness across different scenarios.

Third, as noted in Chapter 8, the FR for cases does not include a slot for semantic

preconditions of the meaningfulness of functions. The Provided slot available in the

original FR may or may not be useful in a legal domain, since the fluidity of domain

concepts might mean a shift over time in what is considered contextual information and

what is considered assumptive information. An attempt to apply the Provided clause in

such a domain could offer great insight into the nature of legal concepts and their evolution.

176

9.3.2 The Model of Conceptual Retrieval

The methodology for indexing, organizing, and retrieving cases based on the roles

they can play in problem solving is a new one and has only been applied to the abstract

device ofjustification. One can argue for the generality of such a methodology across tasks

and domains, but only by applying it to various tasks and domains can one gain a true

sense of the power or ineffecriveness of the methodology. Thus, one potential avenue of

research available is the one that has been applied to all the generic tasks: apply the model

under a variety of conditions. These conditions might include application to other domains

in which the FR has proven analytically useful, such as engineering devices, human body

physiology, and ecological biosystems. One particularly important question involves the

scalability of the approach to larger case law domains. In Chapter 7, it was argued that the

issue composition hierarchy of approximately twenty nodes would likely be sufficient to

account for many more cases in the domain of captive insurance. This claim was based on

analysis of twenty-five cases from the domain. Empirical evidence for the scalability of the

ICH methodology will produce a more persuasive claim.

9.3.3 The Problem Solving Architecture

The CRISTA program implemented only three of the four modules in the proposed

Generic Task architecture for legal justification. Many interesting research issues involve

the routine designer for justification assembly. The nature of the knowledge required for

evaluating, critiquing, and modifying a candidate justification was specified in Chapter 4,

but the exact content of this knowledge remains open. Furthermore, testing CRISTA’s

case retrieval performance more carefully would be facilitated by having a predictable and

capable problem solver available for experimentation.

One experiment of particular interest would be to test CRISTA’s case memory

against alternative methodologies. One can conceive of building a copy of Ashley’s HYPO

177

program and measuring its retrieval performance on the cases in CRISTA’s memory.

These measurements could then be compared to CRISTA’s performance on the same case

set. Such an experiment could be run under varying conditions (the density of cases at

each node in the ICH, the number of dimensions available to HYPO, etc.) that would

permit some judgment regarding the programs’ respective strengths and weaknesses.

9.3.4 Practical Matters

In addition to the theoretical issues that surround various elements of this research,

several practical issues also arise. To the extent that the model of conceptual retrieval

proposed here provides access to relevant cases in memory based on problem-solving

goals, the memory should also prove useful as a research tool for human problem solvers.

One practical issue of importance is the question of how best to provide human users with

access to the system. The issue composition hierarchy itself offers a starting point, being a

graphic representation of the issues of the domain and one relevant relation among them.

However, as Kolodner [1991] argues, many ergonomic and interface factors play a role in

determining how useful a computer-aided memory will be for expert problem solvers as

they perform their tasks. Research aimed at discovering the best way to provide such

assistance would add greatly to the practical utility of this model of conceptual retrieval.

Of graver concern is the problem of creating a realistic case memory. For a small

legal domain, such as that of captive insurance, historic cases can be encoded by hand into

the functional representation. And a relatively small number of cases (say, one hundred)

would suffice for many knowledge-based systems applications in narrow domains. But

for more complete coverage of the law — if one wished to extend CRISTA from one

hundred cases to thousands of cases — the approach of hand-encoding cases becomes

untenable. The same problem arises in trying to encode new cases as they are generated by

the courts.

178

Research addressing this problem could take one of two forms. First, one could

provide assistance to the human encoder, whose job is one of abstracting a case into the FR

notation. This form of assistance is already a part of many legal reporting services, such as

Westlaw, in which cases are presented with “headnotes” or other external documentation.

Support for the encoding task might take the form of an interactive but constrained dialogue

with the case memory, which guides the user in filling a“template” for FR notation. The

functional representation is considerably more complex than typical headnotes, though, and

so providing encoding support may require more sophisticated techniques than those

currently available.

Second, and more speculative, is the idea of providing a “sketchy parser” [DeJong

1979] capable of parsing legal cases from full-text into the FR format. Even for restrictive

domains such as captive insurance taxation, this approach is far removed from current

natural-language processing capabilities. A sketchy parser would still require some human

involvement in the encoding process, but it could perform some of the more tedious and

routine parsing tasks. Ultimately, if approaches to conceptual retrieval requiring special-

purpose knowledge representations are ever to become practical, this sort of research must

first be explored.

9.4 Final Discussion

The arrival of the Information Age has indeed changed how we approach many

knowledge-intensive tasks. Yet the problem of conceptual retrieval — the problem of

locating in a large data base only those items relevant to a particular semantic topic of

interest — stands as an impediment to the efficient use of large computer memories. This

research has sought to address the conceptual retrieval problem from a task-specific

perspective. The result has been the identification of an indexing methodology that is

intimately tied to a particular problem-solving task and a particular case representation. In

179

essence, this work marries a task-specific theory of problem solving with case-based

reasoning ideas about indexing to achieve a more complete picture of conceptual memory.

The two major results of this work are a functional representation of justifications

and a model of conceptual retrieval based on this representation. With respect to other

related disciplines, the central contribution of this research may lie in its description of how

one can employ knowledge of a device and its teleology in constructing more effective and

efficient case memories.

APPENDIX

APPENDIX A

LEGAL CASE REFERENCES

AMERCO-9l. AMERCO and Subsidiaries, Republic Western Insurance Company,

versus Commissioner of [ntemal Revenue (1991), 96 TC 18.

ASMG-85. Anesthesia Service Medical Group, Inc., versus Commissioner of Internal

Revenue (1985), 85 TC 1031

Beach-86. Beach Aircraft Corporation versus United States (1986), 86-2 USTC 9601,

797 F.2d 920 (10th Circuit)

Carnation-81. Carnation Company versus Commissioner of [ntemal Revenue (1981),

81-1 USTC 9263, 640 F.2d 1010 (9th Circuit)

Clougherty-87. Clougherty Packing Company versus Commissioner of Internal

Revenue (1987), 87-1 USTC 9204, 811 F.2d 1297 (9th Circuit)

Consumers-60. Consumers Oil Corporation of Trenton, New Jersey, versus United

States (1960), 188 F.Supp. 796, 61-1 USTC 9124 (DC. New Jersey, 1960)

Crawford-85. Crawford Fitting Company versus United States (1985), 85-1 USTC

9189, 606 F.Supp. 136 (ND. Ohio 1985)

Gulf-87. Gulf Oil Corporation versus Commissioner of Internal Revenue (1987), 89 TC

1010 '

Gulf-90. Gulf Oil Corporation versus Commissioner of [ntemal Revenue (1990), 90-2

USTC 50,496, 914 F.2d 396 (3rd Circuit)

Harper-91. The Harper Group and Includible Subsidiaries versus Commissioner of

Internal Revenue (1991), 96 TC 45

Humana-87. Humana, Inc., versus Commissioner of Internal Revenue (1987), 88 TC

197

Humana-89. Humana, Inc., versus Commissioner of Internal Revenue (1989), 89-2

USTC 9453, 881 F.2d 276 (6th Circuit) ‘

LeGierse-41. Helvering versus Le Gierse (1941), 312 US. 531, 41-1 USTC 10,029

Mobil-85. Mobil Oil Corporation versus United States (1985), 85-2 USTC 9585, 8

Cl.Ct. 555

180

181

Moline-43. Moline Properties, Inc. versus Commissioner of [ntemal Revenue (1943),

319 US. 436, 43-1 USTC 9464

Natharbide-48. Commissioner of [ntemal Revenue versus National Carbide

Corporation (1948), 167 F.2d 304, (2nd Circuit)

Natharbide-49. National Carbide Corporation versus Commissioner of [ntemal

Revenue (1949), 336 US. 422, 49-1 USTC 9223

Ocean-91. Ocean Drilling & Exploration Company versus United States (1991), 90-

80T.

Sears-91. Sears, Roebuck, and Co., and Affiliated Corporations versus Commissioner

of [ntemal Revenue (1991), 96 TC 61.

Spring-30. Spring Canyon Coal Co. versus Commissioner of Internal Revenue (1930),

. 43 F.2d 78, 2 USTC 574 (10th Circuit)

Stearns-84. Stearns-Roger Corporation versus United States (1984), 84-1 USTC 9165,

557 F.Supp. 833 (10th Circuit)

Stearns-85. Steams-Roger Corporation versus United States (1985), 85-2 USTC

9712, 774 F.2d 414 (10th Circuit)

Steere-78. Steere Tank Lines, Inc. versus United States (1978), 78-2 USTC 9605, 577

F.2d 279-280 (5th Circuit)

Treganowan-50. Commissioner of Internal Revenue versus Treganowan (1950), 183

F.2d 288, 50-1 USTC 10,770 (2nd Circuit)

Weber-62. Weber Paper Company versus United States (1962), 204 F.Supp. 394, 62-1

USTC 9423 (W.D. Missouri)

BIBLIOGRAPHY

BIBLIOGRAPHY

Allemang, D. (1990)Undmtandmg_fimgmmmue1m§.Ph. D., Ohio State University.

Ashley, K. D. (1985). Reasoning by Analogy. A Survey of Selected AI Research with

Implications for legal Expert Systems. In C. Walter (Eds),

me.105-127). St. Paul, Minnesota. West Publishing Co.

Ashley, K. D. (1989). Toward a Computational Theory of Arguing with Precedents:

Accomodating Multiple Interpretations of Cases. In

,1 (pp. 93-102). Vancouver, British Columbia:

ACM Press.

Ashley, K. D. (1990).

Hypotheticals. Cambridge, Massachussetts: MIT Press.

Bareiss, R. (1989).5W.San Diego: Academic Press.

Belew, R. K. (1987). A Connectionist Approach to Conceptual Information Retrieval. In

WW1(pp 116-126)Wm

Boston, Massachussetts: ACM Press.

Bickford, H. C. (1956).MW(3rd ed.). Englewood Cliffs, NJ:

Prentice-Hall Inc.

Bing, J. (1978). Legal Information Retrieval Systems: The Need for and Design of

Extremely Simple Retrieval Strategies.W1(2), 379-401.

Bing, J. (1987). Designing Text Retrieval Systems for Conceptual Searching. In E1151

1 (pp. 43-51). Boston,

Massachussetts: ACM Press.

Birnbaum, L. (1982). Argument Molecules: A Functional Representation of Argument

Structure InW1 (pp 83-85)

Pittsburgh, Pennsylvania: Morgan Kaufmann.

Birnbaum, L. (1989). Panel Discussion on Indexing Vocabulary. InW

W1 (pp. 46). Pensacola Beach, Florida: Morgan Kaufmann.

Birnbaum, L.,Collins, G.,,Brand M.,,Freed M.Kru,lwich, B, & Pryor, L. (1991). A

Model-Based Approach to the Construction of Adaptive Case-Based Planning

Systems111W1 (pp 215-224) Washington. DC:

Morgan Kaufmann.

182

183

Birnbaum, L. F,lowers, M, & McGuire, R. (1980). Towards an Al Model of

ArgumentafionMWWW1(pp 313-315)

Stanford University. Morgan Kaufmann. '

Blair, D. C. & Maron, M. E. (1985). An Evaluation of Retrieval Effectiveness for a Full-

TextDocument Retrieval System.WW28(3), 289-299.

Branting, L. K. (1989). Representing and Reusing Explanations of Legal Precedents. In

' ,1 (PP 103-

110). Vancouver, British Columbia: ACM Press.

Branting, L. K. (1991). Exploiting the Complementarity of Rules and Precedents with

Reciprocity and Fairness. InW,1 (pp. 39-50).

Washington, DC: Morgan Kaufmann.

Brown, D. C. (1987). Routine Design Problem Solving. In J. Gero (Eds.), mm

WReading, Massachusetts: Addison-Wesley.

Brown, D. C., & Chandrasekaran, B. (1986, July 1986). Knowledge and Control for a

Mechanical Design Expert System.Wp.

Buchanan, B. G., & Headrick, T. E. (1970). Some Speculation about Artificial

Intelligence and Legal Reasoning.WM23(1), 40-62.

Burstein, M. H. (1989). Analogy versus CBR: The Purpose of Mapping. Inmmn

Wm1 (pp. 133- 136). Pensacola Beach, Florida: Morgan

Kaufmann.

Bylander, T.,Johnson, T. R., & Goel, A. (1991). Structured Matching: A Task-Specific

Technique for Making Decisions.WM,3, 1-20.

Bylander, T., & Mittal, S. (1986, CSRL: A Language for Classificatory Problem Solving

and Uncertainty Handling. Magazine, p. 66-77.

Chandrasekaran, B. (1983). Towards a Taxonomy of Problem Solving Types. A1

W40), 9-17.

Chandrasekaran, B. (1987). Towards a Functional Architecture for Intelligence Based on

Generic Information Processing Tasks. InWon

,2 (pp. 1183- 1192). Milan, Italy: Morgan Kaufmann

Publishers.

Chandrasekaran, B. (1990, Design Problem Solving: A Task Analysis. ALMagazjng, p.

59-71.

Cross, G. R., & deBessonet, C. G. (1985). Representation of Legal Knowledge for

Conceptual RetrievalWHO)35-44

deBessonet, C. (1983). An Automated Intelligent System Based on a Model of a Legal

System.WW12(1). 31-58.

184

DeJong, G. F. (1979). A New Approach to Natural Language Processing. Cognitive

mac). 155-170.

Dick, J. P. (1987). Conceptual Retrieval and Case Law. In

onArfifiQiaL

Eirstlmemationamenfetense

W,1(pp. 106-115). Boston, Massachussetts: ACM

Press.

Domeshek, E. A. (1991a). Indexing Storiesas Social Advice. InWon

WW,1 (pp. 16-21). Philadelphia. Morgan Kaufmann.

Domeshek, E. A. (1991b). What Abby Cares About. InW

Reasoning, 1 (pp. 13-24). Washington, D.C.: Morgan Kaufmann.

Duer, W. M.,Horvitz, J. S., & Coberly, J. W. (1988, Captive Insurance Companies:

Deductions for Premium Expenses.Wp. 218-232.

Flowers, M.,McGuire, R., & Birnbaum, L. (1982). Adversary Arguments and the Logic

of Personal Attacks. In W. G. Lehnert & M. H. Ringle (Eds),W

MW(pp. 275-294). Hillsdale, New Jersey: Lawrence

Erlbaum.

Forbus, K. 1)., & Gentner, o. (1991). Sirnilarity-Based Cognitive Architecture. 5mm '

Bulletin. 2(4). 66-69. '

Gardner, A. v. d. L. (1985). Overview of an Artificial Intelligence Approach to Legal

Reasoning In C Walter (EdS)MW(PP 247-

274). St. Paul, Minnesota: West Publishing Company.

Gardner A v d L (1987)ALWW:

Cambridge: lvflT Press.

Gentner, D. (1983). Structure-Mapping: ATheoretical Framework for Analogy. Cognitixe

We1(2), 155-170.

Gentner, D. (1989). Finding the Needle: Accessing and Reasoning fiom Prior Cases. In

W ,1 (pp. 137-143). Pensacola Beach, Florida:

Morgan KaufmannPublishers.

Gentner, D., & Toupin, C. (1986). Systematicity and Surface Similarity in the

Development of Analogy. QngmmSQiean, L0, 277-300.

Gick, M. L., & Holyoak, K. J. (1980). Analogical Problem Solving. Cognitiye

W12, 306-355.

Goel, A. (1939) ..-° °

. A .P.h D, Ohio State University, Department of

Computer and Information Science.

Goel, A, & Chandrasekaran, B. (1989). Using Device Models1n Adaptation of Design

Cases InW1 (PP 100- 109) Pensacola

Beach, Florida: Morgan Kaufmann.

185

Goel, A.,Ko,lodner J. L.Pearce, M.,Billington, R., & Zimring, C. (1991). Towards a

Case-Based Tool for Aiding Conceptual Design Problem Solving. In

W1 (pp. 109- 120). Washington, DC. Morgan Kaufmann.

Golding, A. R. & Rosenbloom, P. S. (1991). Improving Rule-Based Systems through

Case-Based Reasoning InNanonalLonferenmnAmficraUmelhgence 1(PP 22-

27). Anaheim, California. Morgan Kaufmann.

Grady, G., & Patil, R. S. (1987). An Expert System for Screening Employee Pension

Plans for the Internal Revenue Service. InW

Anifieiallntelligeneennim (PP 137- 144) Boston: ACM Press.

Greeno, J. G. (1978). Natures of Problem--Solving Abilities. In W. K. Estes (Eds.),

(pp. 239-270). Hillsdale, New

Jersey: Lawrence Erlbaum.

Hafner, C. D. (1981). ' '

. Ann Arbor, Michigan: UMI Research Press.

Hafner, C. D. (1987). Conceptual Organization of Case Law Knowledge Bases. In Eiist

WWWMW1 (PP 35-42) Boston

Massachussetts: ACM Press.

Hammond, K. J. (1986) °

.Ph.D., Yale University, Department of Computer Science.

Hammond, K. J. (1989). On Functionally Motivated Indexing Vocabularies: An Apologia.

In - ' 1 (pp. 52-56). Pensacola Beach, Florida:

Morgan Kaufmann Publishers.

Hellawell, R. (1980). A Computer Program for legal Planning and Analysis: Taxation of

Stock Redemptions.W80(7), 1363-1398.

Horty, J. F., Jr. (1962, March 1962). The 'Key Word In Combination' Approach.

WWP54-64

Kehl, W. B.H,orty, J. F, Jr.,B,acon C., R. T, &Mitchell, D. S. (1961, September

1961). An Information Retrieval Language for Legal Studies.WW

WP380-389

Kolodner, J. L. (1991). Improving Human Decision Making through Case-Based Decision

Aiding-We.12(2). 52-68.

Koton, P. (1988). Reasoning about Evidence in Causal Explanations. In National

ConfemomAnifieiaUmemgense 1 (pp 256-261). St. Paul MN: Morgan

Kaufmann.

Koton, P. A. (1990). A Method for Improving the Efficiency of Model-Based Reasoning

Systems. In W. Horn (Eds.),MW(pp. 273-282). New York:

Hemisphere Publishing Corporation.

186

Krovetz, R. (1985). The Use of Knowledge Representation Formalisms1n the Modeling of

Logal Concepts In C Walter (Eds.)WM

275-317). St Paul, MN: West Publishing Company.

Lehnert, W. (1987). Case-Based Problem Solving with a Large Knowledge Base of

Ieamed Cases InWW1 (PP 256-261)

Seattle, Washington: Morgan Kaufmann.

Levi, E. H. (1949).WWW.Chicago: University of Chicago

Press.

Lowe, D. G. (1985). Co-operative Structuring of Information: The Representation of

Reasoning and DebateW2397-111

Lutomski, L. S. (1989). The Design of an Attorney's Statistical Consultant. In Simona

WWW1 (PP 224-233)

Vancouver, British Columbia: ACM Press.

MacRae, C. D. (1985). Tax Problem Solving with an If-Then System. In C. Walter

(EdS) WWWOP 595-620) St Paul

Minnesota: West Publishing Company.

Marshall, C. C. (1989). Representing the Structure of a Legal Argument. In Smond

1 (PP 121-127).

Vancouver, British Columbia: ACM Press.

Martin, C. (1989). Complex Indices: A Metaphorical Example.MW

,1 (pp. 295-299). Pensacola Beach, Florida. Morgan Kaufmann

Publishers.

McCarty, L. T. (1977). Reflections on TAXMAN: An Experiment in Artificial Intelligence

and legal Reasoning.BMW.20. 837-893.

McCarty, L. T. (1983). Intelligent Iegal Information Systems: Problems and Prospects.

W.2(2). 265-294.

McCarty, L. T. (1985). Permissions and Obligations. In C. Walter (Eds.), Computing

WW(pp. 573-594). St. Paul, Minnesota: West Publishing

Company.

McCarty. L. T. (1987).WWW(Technical

Report No. LRP-TR-20). Department of Computer Science, Rutgers University.

McCarty, L. T. ,Sridharan, N. S.., & Sangster, B. C. (1979).Wot

Report No. LRP-TR-2). Laboratory for Computer Science Research, Rutgers

University.

McDougal, T.,Hammond, K., & Seifert, C. (1991). A Functional Perspective on

Reminding. InWW1 (pp. 63-76). Washington.

D.C.: Morgan Kaufmann.

187

Meldman, J. A. (1977). A Structural Model for Computer-Aided Legal Analysis. Rotgm

Warnings6. 27-71 ~

Mittal, S.,Chandrasekaran, B., & Sticklen, J. (1984, Patrec: A Knowledge-Directed

Database for a Diagnostic Expert System.Wp. 51-58.

O'Brien, & Tung (1973). Captive Off-Shore Insurance Corporations.Won

When. 11. 665.

Owens, C. (1989). Plan Transformations as Abstract Indices. In

Roasoning, 1 (pp. 62-65). Pensacola Beach, Florida: Morgan Kaufmann

Publishers.

Peterson, M. A, &Waterman, D. A. (1985). An Expert Systems Approach to Evaluating

Product Liability Cases. In C. Walter (Eds.,)

Ronsoning(pp. 627-659). St. Paul, Minnesota. West Publishing Company.

Popp, W. G., & Schlink, B. (1975). Judith, A Computer Program to Advise Lawyers in

Reasoning a Case. Inning-noon, 15(4), 303-314.

Raphael, B. (1968). SIR. A Computer Program for Semantic Information Retrieval. In M.

Minsky (Eds.) Semantiflnfonnatinnlmssing (PP 33-145) Cambridge

Massachussetts: The MIT Press.

Redmond, M. (1989). Learning from Others' Experience: Creating Cases from Examples.

InW1 (PP 309-312) Pensacola Beach

Florida: Morgan Kaufmann.

Redmond, M. (1990). Distributed Cases for Case-Based Reasoning: Facilitating Use of

Multiple Cases InWW.1 (PP 304-309)

Boston. Morgan Kaufmann.

Riesbeck, C., & Schank, R. (1989).W.Hillsdale, NJ:

Lawrence Erlbaum Associates.

Rissland, E. L. (1985). Argument Moves and Hypotheticals. In C. Walter (Eds.),

Com ' LlegaLReasnning (pp. 129-143). St. Paul, Minnesota: West

Publishing Co.

Rissland, E. L. (1990). Artificial Intelligence and Law: Stepping Stones to a Model of

15881 ReasoningWill.22(8). 1957-1981.

Rosch, E. H. (1975). Cognitive Representations of Semantic Categories. .[ournaLof

WM199.. 192-233.

Rose, D. E., & Belew, R. K. (1989). Legal Information Retrieval: A Hybrid Approach. In

1 (PP 138-

146). Vancouver, British Columbia: ACM Press.

Schank, R. C. (1982). Remindings and Memory. InWCambridge,

England: Cambridge University Press.

188

Schlobohm, D. A. (1985). TA— A Prolog Program which Analyzes Income Tax Issues

under Section 318(a) of the Internal Revenue Code. In C. Walter (Eds.,)

(pp. 765-815). St. Paul, Minnesota. West-

Publishing Company.

Schlobohm, D. A, & McCarty, L. T. (1989). EPS 11: Estate Planning with Prototypes. In

WIntelligenoeaniLerM (PP 1-

10). Vancouver, British Columbia: ACM Press.

Schlobohm, D. A., & Waterman, D. A. (1987). Explanation for an Expert System that

Performs Estate Planning InWWW

Intelligengoengu‘afl, (pp. 18-27). Boston: ACM Press.

Seifert, C. M. (1988). Goals in Reminding.MW,1

(pp. 357-369). Clearwater Beach, Florida: Morgan Kaufmann.

Seifert, C. M., & Hammond, K. J. (1989). Why There's No Analogical Transfer. In

W - ' , 1 (pp. 148-152). Pensacola Beach, Florida:

Morgan Kaufmann Publishers.

Seifert, C. M.,McKoon, G.,Abelson, R. P. & Ratcliff, R. (1986). Memory Connections

Between Thematically Similar Episodes. Emhoiogg;

W.12. 220-231

Sembugamoorthy, V., & Chandrasekaran, B. (1986). Functional Representation of

Devices and Compilation of Diagnostic Problem-Solving Systems. In J. Kolodner

& C Riesbeck (Eds.,)WOP47-73)

Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Shpilberg, D.,Graham, L. E., & Schatz, H. (1986, July 1986). ExperTax: An Expert

System for Corporate Tax Planning.Wp. 136-151.

Simoudis, E., & Miller, J. S. (1991). The Application ofCBR to Help Desk Applications.

InWW.1 (pp 25-36) Washington. DC:

Morgan Kaufmann.

Sprowl, J. A. (1979). Automating the Legal Reasoning Process: A Computer that Uses

Regulations and Statutes to Draft Legal Documents.WM

Wei.1912(1). 1-81.

Stanfill, C. (1988). Learning to Read. A Memory-Based Model. InW

W,1 (pp. 402-413). Clearwater Beach, Florida. Morgan Kaufmann.

Stemberg, R. J. (1977). '

Hillsdale, NJ: Lawrence Erlbaum Associates.

Sticklen. J. (1987)WWWPh.D.. The Ohio

State University.

Sticklen, J. (1990). Problem Solving Architecture at the Knowledge Level. Jonmnlof

WWW.1(3). 1-52

189

Sticklen, J. ,,Chandrasekaran B. & Josephson, J. R. (1987). Modularity of Domain

KnowledgeW.I.

Sticklen, J., & Tufankji, R. (1992). Utilizing a Functional Approach for Modeling

Biological SystemsW.1.6. 145-160

Sycara, K. P., & Navinchandra, D. (1989). Index Transformation and Generation for

Case Retrieval. InW1 (PP- 324-328).

Pensacola Beach, Florida: Morgan Kaufmann.

Sycara, K. P., & Navinchandra, D. (1991). Influences: A Thematic Abstraction for

Creative Multiple Use of Cases. InWW1 (PP-

133-144). Washington, D.C.: Morgan Kaufmann.

Thagard, P., & Holyoak, K. J. (1989). Why Indexingrs the Wrong Way to Think about

Analog Retrieval InWWI“. 1 (PP- 3640)

Pensacola Beach, Florida: Morgan Kaufmann.

Tong, R. M.,Reid, C. A.,C,rowe G. J., & Douglas, P. R. (1987). Conceptual Legal

Document Retrieval Using the RUBRIC System. InW

WM1 (PP 28-34) Boston. Massachussetts: ACM

Press.

Tong, R. M, & Shapiro, D. G. (1985). Experimental Investigations of Uncertaintyin a

Rule-Based System for Information Retrieval.MW

Mechmzfimrires. 22. 265-282

Toulmin, S. E. (1958).MWCambridge: Cambridge University Press.

Walter, C. (Ed.). (1985).W.St. Paul, MN: West

Publishing Company.

Waltz, D. L. (1989). Is Indexing Used for Retrieval? In -

Reasoning, 1 (pp. 41-44). Pensacola Beach, Florida: Morgan Kaufmann.

Waterman, D. A.,Paul, J., & Peterson, M. (1986, October 1986). Expert Systems for

Legal Decision Making.Wp. 212-226.

Zarri, G. .P. (1985). Inference Techniques for Intelligent Information Retrieval. In C.

Walter (Eds.).WW(pp. 215-246). St. Paul.

MN: West Publishing Company.

Zhang, X., & Waltz, D. L. (1989). Protein Structure Prediction Using Memory--Based

Reasoning: A Case Study of Data Exploration. In

Reasoning, 1 (pp. 351-355). Pensacola Beach, Florida. Morgan Kaufmann.

