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ABSTRACT

INDOOR ROBOT NAVIGATION USING A

SYMBOLIC LANDMARK MAP

By

Stephen John Walsh

This dissertation addresses the problem of a mobile robot autonomously estimat-

ing its location within an a priori map using sensed information. A 2D indoor robot

world is sparsely represented as a collection of vertical landmarks encoded as an at-

tributed edge graph. This map is matched to data obtained from a single image with

depth to feature information estimated by ultrasonic sensors.

The goal of this work is the rapid recovery of an estimated position within a pre-

viously mapped domain from an initial state of complete uncertainty. The structure

provided by indoor environments permit geometric assumptions that enable rapid

vertical landmark detection and classification. Pairs of vertical edges are extracted

from monocular images and candidate landmarks identified. Methods of fuzing ultra-

sonic estimated range data with extracted vertical edge features from a single image

are developed. Experiments have demonstrated that the proposed methods classified

vertical landmarks with 84 percent accuracy over a large library of domain data. Fur-

ther experiments lead to the definition of a footprint for accurate ultrasonic sensing.



Detailed composite error models for the ultrasonic and imaging systems are developed

and used to examine the performance of the proposed sensing geometries. Analysis

and experiments lead to the definition of a general navigation envelope that enhances

sensing accuracy while only mildly restricting travel and locomotion.

An independent suite of test data combined with the developed composite er-

ror models are used to conduct a large simulation study on the performance of this

methodology in real and synthetic domains. Several heuristic methods are proposed

for recovering from sensing errors. Simulation results show that a deterministic error

recovery approach outperforms the heuristic methods in measures of speed and ac-

curacy. In one large domain, position recovery is obtained in less than 12 seconds in

the absence of error and in less than 15 seconds with realistic modeled error; results

show 98 percent correct pose decisions. Similar time and accuracy performances are

observed in other domains. The time performance is limited not by the solution ap-

proach, but by the mechanical limitations of the robot base. Travel speeds up to 30

feet per second could be supported.
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CHAPTER 1

Introduction to the Problem

Robotics is a rapidly expanding field with a rich research landscape. Multisensor mo-

bile robots are navigating through academic and industrial buildings and ambitious

outdoor efforts are presently under study. A central requirement towards the devel-

opment of capable and flexible robotic systems is the ability to develop robust spatial

descriptions of their environment from sensory information, and to employ this infor-

mation in planning and solving application tasks. These capabilities enable the robot

to interact lucidly with its domain, both by interpreting its sensory data to draw

appropriate conclusions for near term decisions, and by diagnosing and maintaining

an adequate domain model for strategic planning and decisions. Systems with little

or no sensing capabilities are limited to fixed sequence operations in highly controlled

work areas, and cannot perform activities with any significant degree of autonomy or

adaptability.

To successfully achieve these capabilities in robotic systems, several research issues

must be addressed. These include fusion of information from multiple, and dissimilar

sensors, problems in sensor interpretation, mapping and representing the navigator’s

domain, handling sensor uncertainity and errors, landmark identification, position

estimation, and registering a priori maps with sensed information. In this disserta-

tion we touch upon all of these issues to varying degrees in our approach to solving
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a particularly challenging robot navigation task - pose recovery. Pose recovery is the

estimation of the navigator’s position after initial, and complete disorientation within

its operating domain. A long term goal of the research presented in this dissertation

is the development of minimal, yet robust mapping and navigation tools for mobile

robots operating in and exploring structured domains.

In the following section, we will present an overview of the problem studied in this

dissertation. A brief discussion of robot navigation and an outline of the organization

of this dissertation close the chapter.

1.1 Problem Statement

To widen the application range and deployment of both industrial and research robots,

a key requirement is the development of systems with greater autonomy, able to

sense, plan and operate in structured environments with minimal prior knowledge.

To achieve this level of independence, the robot must not only be able to accurately

sense its domain, but must be able to accurately sense its pose in its domain. Pose

estimation is a base problem to all navigation tasks. Many different paradigms exist

for different applications, but all use some sensory information to overcome dead

reckoning error. To be robust in any environment, a robot navigator must know

where it is relative to major objects in its domain, to some degree of accuracy. This

task is known as The Where-am-I Problem.

The Where-am-I Problem : The autonomous recovery of an estimated position

within a previously known, or mapped operating domain, from an initial state of

complete translational and rotational uncertainity.

Solving the Where-am-I Problem is more difficult than maintaining an estimated

pose during navigation from an initial known position. However, a successful Where-

am-I Solution will also adequately address pose maintenance. The autonomous ability



to accurately sense, and represent an operating environment are pivotal for success-

fully addressing this problem. In this dissertation we present our solution to the

Where-am-I Problem for a class of indoor domains.

1 .2 Robotic Navigation

A robotic navigator must have some mechanism for representing its surrounding en-

vironment. If not, it cannot truly navigate, but merely avoid obstacles, and its

application will be specialized and limited. Domain representations, or maps, do not

have to be provided as an a priori database, but may be constructed from sensory

information obtained by the robot. What domain features are important for navi-

gation, and how can they be encoded into a representation that enables self-location

in an operating domain such as the building in Figure 1.1? Building a mobile robot

application solely upon an a priori representation is considered fragile even within

structured, indoor domains, because it fails to accomodate the inherent environmen-

tal dynamics associated with people. At a minimum, applications employing a static

domain model must still sense to avoid unpredictable obstacles such as pedestrians

or temporary objects. But static domain approaches fail to update these dynamic

events into their representational schemes, and often fail in forgiving, but dynamic

domains such as a business office [56, 156]. We will discuss the opinions of static and

dynamic domain modeling in detail in the next chapter.

How much domain knowledge is necessary for navigation? This question is valid

whether employing a static or dynamic representation, or whether the application

constructs its own map or employs an a priori map. How can a priori domain features

such as the door in Figure 1.2 be extracted and represented? What sensors are best

suited for domain feature extraction? Can inexpensive sensors such as the ultrasonic

ranging system shown in Figure 1.3 reliably extract feature information? We were
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Figure 1.1. Sample indoor navigation domain: How should this be represented?

motivated by a sense of economy and desired to explore a minimalist approach. We

did not wish our solution to revolve around a highly accurate metric map, because

we did not feel this was necesary, and we desired real time performance using modest

hardware and sensors. Human navigation operates at a higher level, and is more

sensitive to feature landmarks than fine metric data [92]. Landmark based navigation

will be more closely examined in Section 2.3.

Robust sensing and dynamic representations are certainly desirable system at-

tributes. Many researchers would even argue that these attributes are indeed re-

quirements. Feature extraction, landmark classification, and error handling are often

employed in support of these goals. But these desirable sensing and matching capa-

bilities may sometimes Oppose the rapid, accurate pose recovery that is our research

goal. These are some of the research issues that frame the work we present in this

dissertation. Many of these issues that arise are not dealt with exhaustively, and

much room for further research and exploration remains.



 

Figure 1.2. Door feature

 

   

 

obstacle

 

Figure 1.3. Ultrasonic sensing of distance to hallway walls



1.3 Organization of this Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 examines the at-

tributes and liabilities of commonly employed robotic sensors. A thorough discussion

on the performance and approach of several research efforts from the mobile robotic

literature, including both indoor and outdoor applications, will be presented. We

will also survey competing methodologies to pose estimation, and examine the local

efforts that preceeded our work.

In Chapter 3, we discuss the Where-am-I Problem and the various methodologies

that address it. An examination of several approaches to domain representation are

presented as well as StickRep, our chosen representation. Strengths and weaknesses

are compared with respect to our desired solution capabilities.

An examination of landmark sensing is presented in Chapter 4. We will discuss

the development of our vertical edge ribbon detector, including the performance of

our feature extraction methods and the landmark classification performed. The the-

ory of ultrasonic sensing and an exhaustive ultrasonic characteristics experiment are

presented. The need for an accurate ultrasonic sensing footprint is motvated from

these results.

In Chapter 5, we present two sensing geometries, Two Side and Short Side, that

perform as accurate sensing frameworks. We will see that these geometries offer real

time capability that extend beyond our present application to more general situations.

Extensive error analysis, Monte Carlo experiments and a large simulation study are

presented to define several composite error models for our data acquisition. These

results suggest that our Short Side Geometry is best suited for our solution approach.

Domain ambiguity and the representational challenges that it presents are dis-

cussed in Chapter 6. Large scale simulations are presented that illustrate the chal-

lenge of the Where-am-I Problem even without the presence of sensing error. Further



heuristic error recovery experiments are compared using the developed error models,

and our metric relaxation technique is discussed. Many of these heuristic approaches

offer adequate pose recovery, but our deterministic error recovery experiment demon—

strates the strongest solution performance in the chosen domain.

Chapter 7 concludes the dissertation by summarizing the contributions of our

work and offering suggestions for future exploration.



CHAPTER 2

Literature Background and

Motivation

To open up the scope of applications for both industrial and research mobile robots,

greater autonomy is needed. Unstructured environments present a difficult challenge,

and most application designers have responded by providing detailed a priori in-

formation to the mobile robot. Digital contour maps for outdoor applications [39],

or encoded infrared beacons [110], and bar-coded floor stripes for indoor robots [61],

are examples of providing reference information to enable the robot to determine its

location in the world. To gain greater independence, the robot must acquire an under-

standing of what’s around it, by capturing and developing an adequate environmen-

tal model. Robots with restricted sensing abilities are limited to highly structured,

and sequential operations. A variety of complimentary sensors and a mechanism for

extracting salient information have been widely successful in enabling autonomous

operations in structured environments. Determining the presence and location of

objects is a primary task in robotic navigation. Most of this sensory information

will have to be compiled from multiple sensors, and a world model then constructed.

This model can then serve as a basis for path planning, obstacle avoidance, landmark

identification, position estimation and other essential operations. Constructing such



a model starts with the complex task of determining range information from sensing

the world. Stereo vision is the most p0pular passive sensor with mobile robots, and

ultrasonic and infrared sensors are the most broadly used active sensors.

We will briefly examine the merits of the sensors most common in robotic applica-

tions, and then survey some of the latest research and industrial applications whose

results could most readily contribute to our local efforts. We will primarily focus on

vision-based systems, although most applications combine stereo vision with active

SCHSOI‘S.

2.1 Sensor Overview

Ultrasound technology has been with us for some time, but few previous applications

built detailed maps. Ultrasonic sensors have now become widely used in mobile robot

applications. Their main attraction is their simplicity, low cost, and the fact that

distance measurements can be determined directly. A typical sensor has a useful

measuring range of 1 to 35 feet, with a beam width of 15 degrees, so an array, or belt

of sensors are often employed [52]. Early robotic applications include simple distance

measurements [63], localizing object surfaces [24], and determining the world position

of a robot [29]. In a later effort, ultrasonic sensors were used to determine a robot’s

position by comparing obtained distance measurements against an accurate map.

This approach didn’t account for the range errors that are typical in ultrasonic data

[111, 112]. A subsequent method also used an onboard map, but attempted to handle

noisy range data [45]. A more sophisticated effort pursued ultrasonic mapping and

navigation by using a narrow beam to build a line-based description of the robot’s

world [36, 37]. The ultrasound readings were interpreted by fitting line segments

to the detected points, and then comparing these to an a priori map. Noisy data

once again plagued the approach. A recent effort explicitly represents this inherent
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uncertainty [38]. It dynamically maintains a description of free space limits, and

matches observations to a world model. A major effort overcame these earlier troubles

by building its own map through a probabilistic fusion of successive readings [50]. No

a priori information was used. A controlling microprocessor selected and fired the

sensors, timed the returns and provided the corresponding range value. Other similar

systems are now maturing [91].

Stereo vision systems have been traditionally used to extract depth information

from two images [114]. The major difficulty of employing this technique in real world

environments is the intrinsic computational expense of extracting 3-dimensional (3D)

information from stereo-image pairs which limits the number of points that may be

tracked [2, 16, 17, 43, 113, 133]. Real time constraints have previously precluded dense

3D descriptions, but later approaches have obtained promising results [4, 23, 120].

Traditional stereo systems have relied on high-contrast edges or points that could

be easily tracked through several images [100, 115]. Most practical real world vision

navigation systems only build sparse depth maps as a result of this constraint [107,

114, 145]. They select points to be matched and tracked using an interest operator,

and handle 30 to 50 points, generating a 3D map in 30-50 seconds on a VAX 11 / 780.

It’s predicted that 25 percent of all robots sold this year will incorporate some type

of vision system [10].

Infrared (IR) sensors are another active sensor that can directly determine prox-

imity information. They usually complement other more capable sensors, but one

approach proposes encoded IR beacons to estimate position [110]. Signaling specific

pose information is not limited to the IR medium. Radio transponders costing just

$1 have now become available that may broadcast a specific domain location to a

navigator. Such a manufactured landmark can be used to provide pose information '

in difficult, ambiguous domains. More sophisticated transponders possess the mem-

ory to record the messages of passing navigators in an environment where multiple



ll

robots are operating. This emerging technology represents a low cost solution to our

problem in domains where their use is practical, and could be particularly attractive

to industry.

Laser range finders are an expensive answer to obtaining direct range information.

The maximum detectable phase shift limits typical range to 64 feet. A field of view

of 30 vertical degrees by 80 horizontal degrees has been achieved [39]. This sensor

class is maturing rapidly with many new sensors entering the market. Models with

finer resolution for indoor work are now available [10].

2.2 Navigation Survey

We will now examine in some depth the more interesting efforts of applied dynamic

path planning over the last couple of years. These summaries are divided into indoor

and outdoor environments. The structure provided by an indoor robot world greatly

simplifies the navigational challenges. Path planning and obstacle avoidance often

become a 2-dimensional (2D) problem. The additional tasks imposed by an outdoor,

3D robot world have been addressed by more complex navigational paradigms, but

have limited applicability to our present efforts at Michigan State.

2.2.1 Indoor Applications

Elfes’s Dolphin system is a major effort, perhaps the first to construct dense ultrasonic

maps without any a priori maps or feature data [50, 52]. He felt that the matching

errors typical in stereo vision applications were too serious a challenge to build a base

robotic navigation system upon. He was concerned about how ultrasound and laser

range finders were coarse and insensitive to surface characteristics. The ultrasonic

sensors that were available for mapping unstructured environments are quite noisy,

so he built a probabilistic occupancy system to facilitate the combination of multiple
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sensor readings on the same location. He designed a grid system that assigned a

probability of occupied or empty to each square. The grids could be as fine as 0.1

foot or as coarse as 1 foot square, but they were uniform throughout the robot world.

To derive a probability for each grid space given a particular ultrasonic reading, Elfes

defined:

P the grid cell of interest

R the range measurement returned by ultrasonic sensor

Ran-n the smallest range value accepted from ultrasonic sensor

6 the mean ultrasonic error

to the beam aperture

S the position of ultrasonic sensor

6 the distance from S to P

0 the angle between the acoustic axis and segment SP

The area illuminated by the ultrasonic beam is modeled as two regions with different

probability formulas for each:

Empty Region: points where 6 < R — e and 0 S %

Occupied Region: points where e < l R — 6 | and 0 S E;-

One probability is computed for angle and one for range. Whether the point of

interest is in the occupied or empty region, the angle probability is:

2

P4 =1" (13)

In the occupied region the range probability is:

P. = 1 — (a):

In the empty region the range probability is:

_ 6—Rmm 2

PC — 1 — (R‘s-Rmin)

The occupied or empty probability for each cell is calculated by multiplying its angular

by its range probability. Successive ultrasonic readings were additively combined with

previously collected data to capture an evolving picture of the world. He found that
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these ultrasonic maps were produced an order of magnitude faster than those from

stereo vision. He had great success in actual tests using this system, both inside and

outside. Michigan State’s Sparta system modified Elfes’ approach to better handle

rapidly changing situations, and an occasional bad ultrasonic return [134].

Matthies’ effort built upon the occupancy grid system to incorporate stereo vi-

sion [107]. Matthies liked the occupancy grid system because it uniformly treated

sensory data and handled the uncertainty of the robot’s position. However, ultra-

sound couldn’t see through clutter like stereo vision could. Ultrasound gives better

detection of broad object surfaces and indicates large empty areas, but gives less

definition to surface boundaries and fine surface structure. So he integrated a stereo

vision system onto the system pioneered by Elfes. He extracted near-vertical edges

using a Canny edge detector [28], and independently matched five scanlines centered

on the robot’s horizon looking for features that extend across all five. He used these

edges to constrain the range of the search. The result of this process is a set of edge

points on the horizon line of known depth. He joined these points with line segments

to create a depth profile that approximates the scene surface structure. Matthies

points out that combining these two sensor systems leads to one of three situations:

complementation, correction, or conflict. Ultrasound made strong statements about

emptyness of regions, but weaker statements about occupied areas. Stereo statements

can be weak or strong, depending on the distribution or distance to features. When

sensors conflict strongly about a region’s status, he marks the grid unknown, for later

determination. Maybe the most salient feature of the occupancy grid system is that

it provided a means to combine raw data of totally different natures. The sensor data

have qualitatively different information encoded in the range information they pro-

vide, and this prevents a simple analytic, or geometric integration approach towards

building a coherent world model.

Matthies next tackled error modeling in stereo vision-based navigation [108]. His
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previous system, with stereo vision-based navigation that tracked landmarks, relied on

scalar models of triangulation measurement error. Here, he developed a 3D Gaussian

error model, using ellipsoids to describe the 3D geometry resulting from constant

probability of error contours. Scalar-weighted error models were motivated by the

fact that uncertainty grows with distance [154]. This corresponds to a spherical

model, but it doesn’t capture the skewness and orientation of the uncertainty. With

the ellipsoidal model, for nearby points, the contours will be almost spherical, but

as the points get farther away, the contours grow more eccentric. He experimented

with their robot using each model. He found that with the ellipsoidal model, the

robot estimated its final position to within two percent of distance traveled, and one

degree of orientation. Using the spherical model, accuracy was within eight percent

of distance traveled, and seven degrees orientation. This work addresses an area of

significant need; position uncertainty is a base problem for all navigation tasks.

Beckerman and Oblow modified the occupancy grid method to address the system-

atic nature of ultrasound errors [9]. Their thesis is that systematic errors are dominant

compared to random errors when using wide-angle ultrasonic sensors. They observed

that the occupancy grid, or stochastic approach, were local in character, reducing the

label for a pixel based on information pertaining only to the single pixel. Beckerman

and Oblow’s method is nonlocal in character, using information about neighboring

pixels and maintaining self-consistency between occupied and empty space. They

label grid cells with one of four labels:

E = Empty 0 = Occupied C 2 Conflict U = Unknown

Conflicts arise from different labels from two or more ultrasonic returns. Table 2.1

shows how labels are propagated through overlapping ultrasound scans. Beckerman
F
f
fi
n
'
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and Oblow implemented this cell-by-cell multiplication using the label representation

and then quickly evaluate the 16 binary products to determine the new cell label C

from intersecting labels A with B.

A B_ C

 

if L3=L5=>L3=Lg

else ngij-XLS mod6

This logic facilitates rapid map construction and error attenuation. Figures 2.1 and

2.2, taken from [9] illustrate typical conflict resolution. Systematic errors are washed

through a conflict resolving relabeling scheme. Most of the new labels are obtained

by examining the characteristic patterns of conflict that result during scanning and

processing. Their results indicated that despite collecting 80 percent less data than a

stochastic method, the resolution of their maps was superior. The direct multiplica-

tion scheme updated cell labels much faster than the probabistic implementation of

 

 

LB

0 C U 0 E

C C C C C

LA U C U O E

O C O O C

E C E C E

Table 2.1. Logic for label combination



 

Figure 2.1. Plot of representative cell patterns. Heavily shaded cells denote occupied

cells, cross hatched cells have conflict label assignments

 

Figure 2.2. Corrected plot of representative cell patterns from previous Figure
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an occupancy grid approach [50, 107, 114, 134, 151].

The work of Clark and his colleagues in developing the Harvard Head is also

of great interest [32]. He implemented a motion control system to provide modal

control of attention of a binocular vision head with seven degrees of freedom. He

noted that visual tasks require the movement of the eyes to closely examine areas of

interest for the particular task, paying little attention to the rest of the scene which

is viewed peripherally. A given visual task might require the corners of an object

to be detected, while another task may require that the object color be determined.

Each case needs different features attended to. He defines attentive visual control in

two parts: Decide where in the visual scene to attend on, and secondly, decide which

motions are required to redirect the visual sensors toward that location. The control

method is based on a two-level modal control technique proposed by Brockett [19].

The outer level controls the focus of attention, determining what features are going

to be used to determine where to look next. The inner level directly controls camera

pose through the driving motors. This is based on the human oculomotor control

system. Their feature detection and localization is done in a special image processing

system made by Datacube [123]. Their first experiment tracked blobs of a specific

intensity range. Objects 0.5 to 2 meters from the head were fixated on, to within

two pixels, and followed. The vision system could process five frames per second, but

with communication delays, only three frames per second were realized. Their next

experiment located geometric shapes by using the first three moments and intensity

value as features. The scene was segmented with a connected components routine

and then a saliency map was built. His present vision system is not yet optimized,

and it takes one to ten seconds to find and fixate on the most salient object. Krotkov

is now developing a similar system [89, 90].

Hung and his colleagues used multiple marks for determining 3D robot location

in a complex industrial setting [75]. They placed the marks so that at least one could
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be seen by the camera from any location. They integrated a pattern recognition

technique with the 3D geometrical transformations so that all viewing angles could

be handled. Their experimental results showed less than 3 percent average location

error. This concept of placing artificial landmarks is very simple and flexible in many

applications.

Frohn built VISOCAR, a mobile industrial robot, by breaking the navigational

task into a hierarchy of goals obtained by functionally independent modules [61]. He

constructed a hierarchy of capabilities, not a hierarchy of image processing steps.

He used optical tracking of barcoded lane boundaries, and used the landmarks on

the lane boundaries to update his position estimate against his onboard landmark

rnap- His lane tracker is a fast adaptive correlation algorithm based on a proposal by

Barnea [8]. He has an independent ultrasonic obstacle detector. The complete system

is controled by a M68000 microprocessor. VISOCAR appears remarkably similar to

Litton Industries’ Integrator.

IDiavis and his colleagues at Maryland are investigating a class of vision-based

problems on a Connection Machine [40]. Their RAMBO project is a testbed for

eXI)1(>l‘ing efficient image processing and analysis, visual tracking, and visual planning.

Pose estimation is one of their current interests. The independent context in which

they’ re tackling these problems warrants interest.

SIlarir and his colleagues have extensively pursued geometric path planning algo-

fit"1111s [135, 137]. Figure 2.3, taken from [137], illustrates the polygonal geometry.

They assume that complete information is known about a static environment char-

a“Qt-etized by bounding polyhedral surfaces and objects. In a 2D application they

have developed an O(n2 log n) algorithm that guarantees to find the shortest path.

In 2D space this shortest path between start and goal must be a polygonal line

Whose vertices are the start, goal, and the corners of the polygonal obstacles. The

2D problem is solved using a visibility graph to determine which vertices are visible



:30?

lCLl'



19

 

Figure 2.3. Shortest path in 2D polygonal space

from the others and what the connecting edge length is. An optimal shortest path

routine such as Dijkstra’s algorithm is then invoked to calculate the path. This is

one of many roadmap approaches to path planning, others are called retraction or

Voronoi diagrams, freeway nets, and silhouette [96]. There is great research activ-

ity in cOrnputational geometry, but it offers little advantage in a dynamic, uncertain

environment.

Llill'l'lmsslsky addresses the pose problem and develops a path planner with incom-

plete information [104. 105]. He felt that most applications are inherently dynamic,

and that. any strategy assuming complete or static environment information would

fail. He explored whether a richer sensor, like stereo vision, could be naturally in-

eluded in a path planning model to further enhance performance. He concludes that

major modifications of tactile algorithms must be made to take full advantage of

these additional sensing capabilities, without losing algorithm convergence. Efficient

orga-‘lization of feedback interaction between the subsystems gathering sensor data

and Path planning proved equally important.

Grandjean explores fuzing surface data from laser range finders with photometric

data from stereo vision to assist in building 3D geometric scene models [64]. Kalman
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filtering is used to fuze numeric features into higher level models, and to derive self-

calibration transforms. Explicit representation of data accuracy is propagated to

every level of his perception process. The two sensor types operate in harmony, with

the laser range finders flagging the presence of a surface while stereo edges determine

the surface’s location and extent. Final 3D scene modeling is done with a set of

planar faces. His experimental work indicates strong promise for this modeling to

assist higher-level robotic processes such as localization and scene interpretation.

2.2.2 Outdoor Applications

We now move our scope to outdoor systems. DARPA and NASA are fueling a great

deal of work in outdoor systems. We won’t attempt to cover subjects in any depth,

but outdoor systems have delivered some significant results. There are many lessons

in how these efforts approached their navigational challenges and what limitations

they reluctantly accepted.

The prototype legged vehicle that may someday explore the Martian surface, called

Ambler, completely avoids vision-based approaches [71]. Hebert and his colleagues

opted for active range sensors because of fewer necessary computations and insensitiv-

ity to illumination conditions. The interplanetary communication lag here mandates

fully autonomous operation and these researchers felt that vision was too expensive

computationally.

Intractability is a recurring theme, even in relatively massive, distributed, au-

tonomous land systems such as the ALV [48, 97, 157]. There is general difficulty in

getting real time sensor-based control in unstructured environments [39, 115]. Ad-

vanced modeling techniques such as temporal stability offer just the advantage that an

outdoor environment demands, but it aggravates the processing bottleneck [13]. Very

complex systems even predict the appearance and disappearance of landmarks using

dynamic mode] matching [117]. A knowledge-based landmark recognition system uses
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an a priori map, perceptual knowledge and spatial reasoning. Model—based vision

tries to reduce the computational complexity. Despite all the domain knowledge, ALV

video processing is still extremely challenging [39].

If a structured road is to be followed, a fast pipeline can be laid between sensing

and acting, creating a model of the perceived environment and then generating a

control plan [20, 69, 70, 122, 153]. Independent parallel processes have been used to

produce coherent behavior and faster response. Road modeling by spline functions

and edge detection by linear recursive filters have also been used successively, achiev-

ing processing rates of 14 seconds per frame on a VAX 11 /780 [25]. Other approaches

match road geometry [103], or intensity [41]. These methods lend themselves well

to parallel processing. Kluge makes a strong case for using strong explicit models to

achieve reliable recognition [85]. He feels that there still isn’t a reliable road track-

ing vision system despite vigorous research. Weak models with weak, or nonexistent

higher level processes make them brittle to lost features or illumination changes. His

thesis is that assumptions made in road modeling must be available for program ac-

cess and modification. The SCARF system is a color-based, domain-modeling bicycle

path follower. It proved quite reliant on known road shape, and was sensitive to illu-

mination changes. Kluge’s colleagues had trouble in constructing an explicit model

since there were few inherent features. Their latest system, FERMI, uses five trackers

to build explicit models with strong constraints. It uses higher level reasoning about

the road. There will be two techniques of tracker fusion in their developing effort.

Maryland’s system is arguably the best, and is based on using Hough transforms to

find and group edges. But even their methodology fails with strong, straight shadow

edges from trees and buildings, and it is sensitive to illumination changes [157]. The

VITS system has followed roads at speeds up to 20 kph and detected and avoided

obstacles. General capability was sacrificed for speed [152]. Dickmanns’ Mercedes

van ran as fast as 100 kph on the autobahn [44]. His extremely simple perception
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model uses a monochrome camera and a simple edge detector. The system attempts

to discard distracting edges, but the trackers can get fooled by shadows, puddles,

road imperfections and varying illumination.

One of the lessons that is being learned by navigating outdoors is that an un-

structured environment is extremely demanding on domain models, and processing

capabilities, even with complex, multisensory approaches. Current efforts are rich in

knowledge—based domain reasoning, parallel processing and direct ranging. All these

systems incorporate a massive degree of a priori information. Successful indoor sys-

tems have been realized without using any of these tools, but extending these early

indoor efforts may require adopting the discoveries from outdoor research.

2.3 Pose Estimation

Determining the position and orientation, or pose, of a robot camera is a problem

that has been examined by many researchers. It’s a pivotal problem since it’s diffi-

cult to navigate well with pose uncertainty. If dead-reckoning travel were error-free,

pose estimation wouldn’t be an interesting issue, but unfortunately, this is far from

the case. Pose estimation has become the cornerstone task in most mobile robotic

applications.

Fischler and Bolles published a watershed paper that initially examined the

Perspective-B-Point problem (P3P) [59]. In this problem the task is to determine

the point in 3D space from which an image of known landmarks was obtained. This

method seeks the correspondence between n image points and 11 control points, where

n = 3 is the smallest number of landmarks. They characterized the P3P problem

and provided a closed-form solution, but showed that it could yield as many as four

solutions. The issue of the maximum number of possible solutions for the P4P and

P5P problems remains open, but the authors proved that the P6P problem provides a
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unique solution. Their most important result was that the P4P problem yields a sin—

gle solution if the control points are coplanar. We shall examine some very interesting

work on the P4P problem due to Abidi later [1].

Krotkov follows and extends Sugihara’s work [143], pursuing location estimation

from a single image frame [88]. A motive for this approach is to avoid the difficult

reconstruction problem by using just one image. Here he matches rays to vertical

edges taken from the image to an a priori landmark model. This approach uses the

excellent angular resolution of CCD cameras, yet avoids 3D reconstruction issues and

feature correspondance. Image processing beyond edge detection is avoided to allow

more time to perform the landmark interpretation-tree search. Algorithm complexity

is O(n“) in time and O(n) in space. Noisy rays can be handled by giving up some

accuracy for the sake of robustness. Spurious landmarks are handled by introducing

a null model landmark. There is great potential for color here. Establishing color

correspondence before searching the interpretation tree would decrease the time com-

plexity by O(n). If two color landmarks were extracted, complexity would go down

O(nz).

Sarachik approaches the self-localization problem from a different angle [133].

She bases her work on three assumptions: rectangular rooms, inherent features at

wall/ceiling junction, and most importantly, flat, uniform-height ceilings. These as-

sumptions are reasonable in many indoor environments. Her uncalibrated stereo

cameras are mounted with the line of sight about 45 degrees above the horizon. She

is trying to take note of only those features that never change - the position of the

walls. Her approach starts with the robot spinning in place taking multiple images,

and using a single, composite image it determines where it is facing a wall head-on.

It then uses a 1-dimensional strip from each of the cameras to match edges, and

notes the vertical offset between the wall and ceiling. It is looking for the edge of

greatest depth. It then images the same ceiling-edge pair from many vantage points
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in the room and determines the upward tilt of each camera. This angle provides

enough data to calculate the dimensions of the room, scaled by the unknown, but

constant ceiling height. Performance of her robot yielded only 75 percent reliable self-

calibration, and thus had trouble consistently determining room size. The failures in

accurately determining the distance to the walls were the result of incorrect matches.

Improved robustness in matching, and an ability to prune bad data points are being

pursued to enhance results. The combination of redundant sensors and probabilistic

integration could yield large improvements. Sarachik’s method of navigation seems

quite appropriate in environments that are busy and dynamic. Room identification

by size or position of the door would be interesting to pursue.

Haralick developed a closed form solution to the P4P problem assuming both

coplanar rectangular marks and a known focal length [68]. The planar geometries

of the 2D perspective projection resulting from a rectangular mark determines the

camera viewing parameters in the 3D world. His approach’s only ambiguity in the

determination is whether the camera is looking up and seeing the rectangle from below

on one side, or whether the camera is peering down and seeing the target rectangle

from above on the other side.

Kite developed a similar closed-form geometric approach that also presumed a

coplanar target rectangle and a known focal length [83]. He combined the two solu-

tions using heuristics based on human vision and determined the unique 3D pose of

the camera.

Two other researchers with dissimilar applications represent different approaches

to the same pose estimation problem. Ray describes a model-based vision method

for tasks where approximate object position estimates are known [127]. Geometric

models for objects in a tight workspace and object position estimates are used to

predict where linear image features are expected to appear in each View. An object’s

pose is then estimated as the position which optimizes a figure-of-merit function which
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describes correspondence between the observed features and the features predicted

from the estimated position.

Han determines pose using tree annealing [67]. He formulates pose determination

as a nonlinear optimization problem. The criterion function will turn out to possess

local minima. and he deals with these by using a technique called tree annealing. His

simulations indicated that average computing times of around 150 seconds are to be

expected, so this method seems to offer little for real time applications.

Abidi introduced a new pose estimation technique based on the volume of the

tetrahedra formed by three corners from the rectangular target and the lens center.

Figures 2.4 and 2.5, taken from [1], illustrate the situation with the target on the

right, and summarize the algorithm stages. There are actually 12 ways to calculate

 

  

Figure 2.4. Viewing geometry for P4P problem

the focal length so all are found, and the median is used by the remaining algorithm

stages. The importance of this effort is that it doesn’t presume the focal length of the
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Figure 2.5. Algorithm steps to recover global pose and focal length
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camera. It uses the redundancy in the inherent geometry to minimize error in pose

recovery. The target dimensions are known and the only other inputs are the target

coordinates on the image plane. It calculates seven outputs, the 3D global position,

3D orientation, and the effective focal length. The geometry also yields 6 redundant

measures of distances to the target, and again the medians are used. A singularity

exists when the target is exactly parallel to the image plane. It has also been shown

to be sensitive to the exact coordinates of the image points. This sensitivity limited

capability as the distance from the target increased, so Abidi developed an enhanced

version that performed shape restoration using a conjugate gradient technique. The

ability to extract the effective focal length is important. It reduces the error from

assuming a fixed focal length, and can determine the effective focal length when using

an autofocus camera.

2.4 Sparta and Rome

The Sparta system is the fruition of years of work by the Michigan State University

Departments of Electrical Engineering and Computer Science [151]. Sparta is based

on the occupancy grid system pioneered by Elfes, but incorporates a rotating sensor

head holding eight ultrasonic sensors. Figure 2.6, taken from [151], illustrate the

construction. The Transitions Research Corporation (TRC) Labmate base is capable

of speeds up to around 1 meter per second, and supports ultrasonic and infrared

sensors with an additional sensor board. The sensor board mates to a PC through

a serial port, and the sensors and locomotion are commanded by high level function

calls based on the work of Crowley [36, 37, 38]. Several computational enhancements

have been included to decrease the time necessary to scan and map its immediate

environment. Its path planning system is based on the work of Lumelsky [104, 105],

and it has demonstrated intraroom mapping and navigation capabilities. It presently
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Figure 2.6. Sparta

takes about 25 seconds to scan and update its occupancy map. Work is maturing

towards implementing a wall-following algorithm that will enable Sparta to navigate

at higher speeds down a known hallway [14. 15, 86]. IR sensors will be used to skip

down the side of a hallway at a standoff of 1.5 meters. Ultrasound will be used only to

avoid a frontal collision. There are no plans to incorporate vision. Present efforts are

aimed at achieving the best possible speed of travel and using only prudent sensing

to accomplish the task. No pose estimation is performed outside dead-reckoning.

The Sparta system represents an inexpensive platform for conducting both naviga-

tion and sensory research. lts design became the initial blueprint for the construction

of Rome, the hardware platform used in the examination of this dissertation. Rome,

illustrated in Figure 2.7, was designed to have an untethered, on board Zenith 386SX

laptop computer, and a static array of 24 Polaroid Instrument Grade ultrasonic sen-

sors around the perimeter of its sensor head. Decreasing the time necessary for range

acquisition, and the capability for monocular frame grabbing were the primary hard—

ware motivations. A Panasonic GP-KR202 color CCD camera mated to a 6mm lens

and a. Data Translation DT2803 black and white frame grabber were chosen. Our goal

with Rome was to provide a mobile sensor platform that Would enable us to pursue

landmark based navigation, and pose recovery, while simultaneously increasing the
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speed of travel and decisionmaking. As Rome matured as a hardware platform, its

role as an sensory testbed attracted other experimenters and approaches.

2.5 Summary

We have examined a broad variety of robotic navigators in this chapter. Each system

has its merits and liabilities, and each aids in framing the challenges we face in our

approach to landmark based navigation and pose recovery. Many efforts provide

insight into solving specific navigational tasks, and extend traditional methodologies

toward more general, and robust problem solving capabilities. A few central trends

have become apparent in robotic sensing. Computer vision is unique in offering surface

detail, and spatial resolution capabilities, but at a computational cost that restricts

real time applications. Ultrasonic sensors enable direct, real time ranging, but lack the

necessary angular resolution to independently solve high level problems without large

a priori databases. Multisensory approaches are becoming very common in robot

navigation, but methodologies to fuze dissimilar sensory information are just now

maturing. Pose estimation is the base task with respect to general robot navigation.

Progress in enabling the navigator to self-locate will rapidly open up its range of

applications. Most progress to date, observed with both indoor and outdoor systems,

has been in domains providing at least minimal structure to the navigator.

In the next chapter we will examine and define the task of independent, au—

tonomous localization. This discussion will expose some of the representational chal-

lenges whose solution both limits its domain and enables its utility.
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Figure 2.7. Rome



CHAPTER 3

The Where-am—I Problem

A core question in robot navigation is the robot’s ability to locate its pose relative to

a frame of reference. The immediate scope of the present work is indoor navigation

making the reference frame relative to a particular building coordinate frame. This

chapter presents the Where-am-I Problem; a key challenge for robot navigation ap-

plications. A robust solution to this problem provides the recovery of a lost pose, and

enables aggressive approaches to navigational tasks. We discuss the salient elements

of recovery from disorientation, focusing on connectivity and relational information.

We then present competing approaches to representation and propose a represen-

tion for the robot’s world. Instead of establishing a dense, computationally demanding

geometric model of the robot’s environment, we offer a sparse representational scheme

that requires strong symbolic matching, ambiguity resolution and error rejection ca-

pabilities. Our representation is built upon the novel idea of encoding extractable

environmental features as attributed edges in a sparse symbolic graph.

3.1 Navigating with a Map

A pivotal question in navigation is the robot’s ability to locate its pose relative to a

reference frame. The degree of accuracy that defines an accurate pose is relative to

31
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the application, and is correlated to the objects being manipulated. For industrial

manufacture, this accuracy may be less than % of an inch, but for navigation we

need less metric accuracy. The degree of pose accuracy might vary from task to task

within the same application. Six inch pose accuracy may be sufficient for hallway

travel, but is too coarse for entering a room through a threshold. If the robot has

some knowledge of a past landmark, it could use dead-reckoning to approximate its

current pose. Our Labmate is wheeled and has shaft encoders. In a perfect world with

no slip or slide between wheel and ground, readings from these encoders would give an

extremely accurate estimate of pose [147]. Unfortunately, wheels slip and slide with

magnitudes that are a function of wheel velocity and acceleration, particular ground

surface composition and shape, and wheel load. All these aspects can be modeled, but

the surface the robot travels upon must then be restricted and we can rarely control

the surface dirt and temperature well enough to avoid errors of the same magnitude

[21]. We don’t see much hope or portability in trying to overcome the uncontrollable

factors in a particular environment in order to construct a metric map to navigate

with. So what must be done is to construct a navigator that can be periodically

updated with an accurate pose taken from some passing landmark. This is similar

to the way humans travel through both familar and unknown surroundings. Humans

rarely possess an accurate metric map of an environment unless it is extremely familar.

Kuipers’ work supports a landmark-based cognitive model in humans [92, 93]. His

thesis is that during human navigation, decision points and landmarks encountered

constitute the cognitive map. Humans often construct a map based on topological and

geometric properties, not on metric information. When a biker gets lost in the Rocky

Mountains without a map, he doesn’t construct a metric map to navigate back to

civilization, but most likely searches for recognizable landmarks that provide a coarse

pose. Even with a pose provided only by the sun’s position, or the Big Dipper, a

hiker can intelligently navigate towards an anticipated river, road, or powerline. The
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hiker then can follow this feature using recalled topologies to a safe haven. It bears

emphasizing that the hiker is only completely lost if he has no metric, topological

or geometric information. Soon a handheld Global Position Satellite receiver will

provide our lost hiker his 3D pose to within 25 meters [130], but this is too coarse for

our application, and offers no advantage indoors.

Continuing the hiker analogy, the Where-am-I Problem occurs when the hiker

is placed in location with no dead-reckoning information. The hiker is free to look

around and extract feature data, and recall geometric and topological relations, but

the hiker is surrounded by what Brooks calls an uncertainty cylinder [21]. This is a

volume centered about an estimated position with radii corresponding to the posi-

tional uncertainities along various axes. Brooks’ approach is to build and maintain

a rubbery, relational map. His approach closely models the human manner of navi-

gation. A liability is that the farther the robot navigates, the larger the uncertainty

cylinder. After three right turns, it is even possible to be uncertain that it has trav-

eled at all. Without periodic pose fixes, a robot in any building would be paralyzed

with uncertainty. Elfes’ approach is to build an explicit 2D metric map of the robot

world. Using a probabilistic construct, this method yields a very useful map if the

robot knows where it is in the map . Sparta has already shown some weakness in dead-

reckoning despite a world limited to a single room. Litton Industry’s Integrator and

Frohn’s VISOCAR use optical floor markings to explicitly update the robot’s pose as

often as once a second, depending on its speed. This also represents an unacceptable

handicap, too much structure for any expected utility in our application.

Ultrasound can’t solve the Where-am-I Problem alone, it is too coarse in angular

resolution and is corrupted by reflections and specularities. Crowley even compared

sensing with ultrasound to trying to navigate through a dark house of mirrors with

only a flashlight [36]. A camera can accurately extract the landmarks needed to peri—

odically fix the robot pose. In this dissertation, we combine the metric and topological
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approaches using a hybrid map. This map is an attributed graph holding the topo-

logical properties of the building in its connectivity, and coarse metric information

in its attributed edges. McDermott and Davis pursued a massive artificial reasoning

project using a similar approach [109]. Each feature that can be extracted by ultra-

sonic, monocular vision, or by IR sensors could be an edge. A discrimination tree will

classify features by their properties to facilitate rapid correspondence. Fuzzy feature

data, most often from ultrasonic sensors, will be passed up to an executive routine

that will try to match to edge attributes within a limited uncertainty region. When

a high confidence feature match occurs, most likely from the camera, the accumu-

lated dead-reckoning error determining the radius of the uncertainity region can be

briefly reset. This periodic flushing of accumulated uncertainity is pivotal to having

any useful capabilities. The central interest in the Where-am-I Problem is recovering

from complete disorientation.

Complete disorientation, or as complete as this generation of robots will deal with,

occurs when the robot is completely uncertain of its position within its map. This

is probably the most important problem to conquer in order to build a more flexible

local capability. More challenging tasks can be tackled if our robot can gracefully

recover from complete navigational failure. Test pilots will try just about anything if

they have a parachute on their back. So in our application, the challenge occurs as

we startup the robot at some unspecified location within a chosen domain: the robot

has complete freedom to use its a priori map, but it could initially be anywhere

on this map. Unless we know the angle the acoustic axis forms with the reflecting

surface, ultrasound is not capable of a high confidence match with an edge attribute,

so the robot must register a match by other means. Humans might try to locate

themselves by reading room numbers, but .more often would seek a topological or

geometric feature such as a stairwell or hallway corner. So unless we spread enough

artificial visual landmarks to always have one within the camera’s field of view, the
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robot will wander around looking for a visual landmark. If the robot were within a

room at startup, it would first have to locate and navigate to the doorway and then

enter the hallway. Since a door is an edge on the graphical map, and the robot is

looking for a particular edge to fix its pose, it must traverse the nodes to seek another

edge unless it registers with its initial edge. A logical follow-on effort might be to

recognize a room by its dimensions with the method of Sarachik [133]. The robot

must be able to fix its pose within a reasonable amount of time. A performance time

goal of 1 minute seems reasonable, but this presumes that the Labmate base is capable

of a reasonable forward speed. Dulimarta’s exploratory work with the Labmate base

reveals that linear travel in excess of one meter per second will be difficult to achieve

with the current hardware [47].

3.2 Representation

The choice of representations for a building map pivot around issues including the

ability of holding information usable to the robotic navigator, flexibility in a dynamic

environment, and appropriateness as a path planning database. The key decision

strategy is to make the choice from the robot’s point of View, respecting its limited

sensing capability and coarse navigation skills. Adopting this perspective is what

cartographers would term a robot-level of use [27]. Cartographers are often challenged

to build different representations of the same region for different levels of intended

use. Another challenge is to separate the decision from our human skills, but not from

our cognitive experience. A human spy might desire to have a complete scale map of

a building, supplemented by color photographs of particular features. But this wealth

of data is only useful to humans because of their massive data compression ability,

and fast indexing skills. Humans need little metric information as long as they have a

sense of scale. Human experience records how wide doorways are, and what elevators
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look like. There are three major types of representational schemes that have been

employed by various researchers. They are dissimilar in approach, each with their

attributes and liabilities, and are presented in the next three sections.

3.2.1 Geometric Paradigm

Traditional approaches to robot sensor interpretation have mainly relied on the recov-

ery and manipulation of geometric world models. Low-level sensing processes extract

geometric features such as surface patches and line segments from sensor data to con-

strain the sensor interpretation process. The resulting deterministic geometric world

models are then used as the basis for robotic activities such as obstacle avoidance,

path planning, or planning assembly and grasping tasks. These approaches charac-

terize what Elfes has labeled the geometric paradigm in robotics and computer vision,

and have several shortcomings [51]. Elfes concluded that these approaches lead to

brittle and sparse world models. They require early decisions in the interpretation

of sensor data for the application of specific model primitives, and do not provide

adequate means for handling the uncertainity and error intrinsic in the sensory data.

These approaches rely heavily on the adequacy and accuracy of the prior world mod-

els and the heuristic assumptions made. This also introduces strong domain-specific

dependencies. Better environment descriptions are primarily derived from the appli-

cation of finer tuned prior models and further constraints to the available sensor data,

not from further active sensing. A consequence of these liabilities is the gap between

the two informational layers: the layer that corresponds to the imprecise and limited

data actually delivered by the sensor data and the layer of abstract geometric and

symbolic world models manipulated by the perception processes. If such a gap exists,

the mobile robot’s utility will be restricted to highly structured domains.
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3.2.2 Computational Geometry

Reducing the 2D world to a collection of polygonal lines and regions has been heav-

ily studied by the computational geometry community. Its modeling restrictions of

straight lines and convex polygons aren’t a severe restriction to the robot world.

The main attribute of this methodology is the existence of a tractable shortest path

algorithm. Sharir’s algorithm [137] has a complexity of O(nzlogn) which is not a

handicap here, but its assumption that the world is completely known and static is

a serious liability. Once a shortest path is computed, the robot begins travel, but if

a previously unknown obstacle blocks the path, the robot must recompute its path,

again at an O(nzlogn) cost. This approach also places the path through the vertex

corners of the confining polygonal regions, an area along the path very likely to con-

tain obstacles. Pursuing a retraction approach to constructing a Voronoi diagram

would move the path out through the centers of the tesselated regions, reducing the

probability of stumbling into corners due to poor gross navigation. This approach

also suffers from the assumptions of a known and static environment. Incorporating

environmental updates is also cumbersome with this method because a new vertex

may actually change the coordinates of its neighbors [135]. Floyd’s algorithm could

be used instead of Dijkstra’s since it adds robustness to the path planner by finding

a shortest path from any point to any other point. At an additional O(n) cost, this

would allow the navigator to immediately know the shortest way remaining to the

goal after dodging an unexpected obstacle. Representing features that are extractable

by the robot sensors within this methodology is unclear. To a robot, and indeed a

human as well, a visual landmark such as a colorful symbol or room number could be

more useful than geometric region boundaries. In our opinion, the computational ge—

ometry approach to mapping is inflexible, and too dependent on a static environment

to offer an advantage in our application.
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3.2.3 Occupancy Grid

Elfes pioneered the occupancy grid representation. This grid is a 2D array of square

cells representing a square of floor space, each cell being assigned a probability of

occupancy that can vary with time. This occupancy data is derived directly from

the ultrasonic returns, and the robot literally builds its world map as it travels,

with no a priori information. This approach can be tailored to the coarseness of

the robot’s sensing capabilities, and nicely supports a dynamic world. The robot

navigator can fall victim to false or reflected returns, and can even become trapped

by phantom obstacles, particularly in close quarters. The significant liability of this

method is one of scale. The robot needs a grid cell size of about a foot square

to support local navigation, but representing a large building this way is troubling.

Multiple scales are needed in the representation. Moreover, path planning to goals

outside the robot’s ultrasonic horizon will be cumbersome with this representation,

since there exists so many similar, but distinct cell trails to the goal. Local use

of this representation has shown the computational overhead to be significant, and

has motivated the pursuit of faster, IR-based strategies for hallway travel [151]. In

our opinion, the occupancy grid representation is too fine in detail for use outside

a locality such as a single room, and would seriously degrade the robot’s navigation

speed. The grid cell research community is very active and new approaches using this

methodology appear frequently.

3.3 A New Approach - StickRep

The structure of a large building is often dominated by long hallways. This structure

lends itself well to defining freespace as a 1%D map. The robot is most interested in

freespace, not obstacles. Travel on a single floor could be represented by abstractly

cutting and stretching out a hallway into a line with rooms hanging off the
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hallway line. Branch hallways are nodes on the line. Features along the hallway are

captured as edges between the physical nodes, with attributes describing informa-

tion of interest. The cartographic research community has built databases on very

similar concepts [27]. Highway segments are encoded as links and towns as nodes,

each with attributes, and networks are built upward from these primitives. Political

units, urban areas, and water bodies are modeled with a set of links forming a closed

polygon. These basic components may have connecting relationships defining the

overall topology. The building representation which we developed could be termed a

feature highway. Wall and door features are represented as a sequence of attributed

edges with nodes providing the topological connectivity. The robot navigator travels

along a feature highway either confirming anticipated feature edges, or updating new

information in the graph. We are motivated by economy; to investigate how well a

navigator can perform with minimal information.

The building map forms a database: the executive routine registers matches to the

inexact feature data acquired by the sensors. The type of features that are included in

the database are limited by the ability of the sensors to reliably extract these features.

Many richer representational schemes have been developed, but most encode features

with more complexity than we can presently extract [3, 5, 6, 7, 9, 14, 15, 30, 35,

51, 57, 58, 60, 81, 84, 119, 160, 161]. Our modest experiment warrants a sparser

representational scheme. Since the angular resolution of the ultrasonic sensors are

poor, only coarse angular adjacency information is encoded into the database. The

StickRep representation scheme sparsely represents the 3D world, capturing only

topological connectivity, coarse metric data, and feature types. Such a scheme places

a greater burden on subgraph matching, ambiguity resolution, and error recovery

than do other more mature efforts [9, 12, 54, 87, 124].

We examined several candidate structures, and chose an attributed edge graph

to represent the a priori building data base. Planar physical domain features such
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as wall segments and doors are represented as attributed edges. Door jams and hall

corners are the junction of planar physical domain features, and are represented as

attributed nodes. StickRep is a departure from the majority of navigation representa-

tion schemes. Many previous efforts have been built on 2D representational structures

[9, 15, 49, 51, 66, 141, 158]. StickRep is a 1% dimensional structure that provides a

minimal representation for our robotic navigator. StickRep encodes sequences of

feature information. Each edge contains some or all of the following attributes:

type E {corner, doorway, elevator, hallway, pattern, stairwell}

metric 6 33+

prototype 6 {doorjam, wallsegment, pattern}

pattern 6 {‘, O, Q, Q7}

Nodes hold adjacency information of the incident feature edges and contain the

following attributes:

adjacency angle 6 {0, ...,360}

global coordinates E {XW, YW, ZW, a, fi, 7}

We illustrate this representation with an example in Figure 3.1. To more clearly

portray our representation, we have omitted the prototype edge attribute, and ac-

tually have drawn the edge adjacency angles to represent the angles present in the

physical domain. In all the domains we examined, sequences of features were rep-

resented as rings of adjacent edges. Since features on opposing sides of a hallway

are not physically adjacent, opposing features may be represented in separate rings,

depending on the hallway geometry of the domain. In Figure 3.1, the three graph

components illustrated are actually fragments from three separate feature rings.

Each ring is joined to another ring at only one artificial node, so a complex



41

domain is represented as an attributed graph with weakly connected components.

This representation proved fast and flexible when matching physical feature adjacen-

cies, but representing opposing features is more difficult, and was not pursued. This

representation was used to match sensed feature data to a priori domain information.

After a navigator determines its current pose, it must maintain this pose by periodic

updates. If a high confidence match is made between sensed data and the next an-

ticipated edge on the graph, within its current uncertainity circle, the current pose

estimate can be updated to this edge. If not, the robot will continue searching for

the anticipated feature edge until it reaches a tolerance limit that initiates complete

pose recovery. Chapter 6 examines the use of this representational scheme to support

extensive simulated navigation.

3.4 Summary

In this chapter we have presented the Where-am-l Problem. A solution to this prob-

lem provides the ability to recover pose, and enables aggressive approaches to naviga-

tional tasks because the executive routine is confident of recovery from disorientation.

We discussed the salient elements of disorientation recovery, focusing on feature con-

nectivity and relational information. We emphasize symbolic feature data, not metric

properties or relationships.

We then discussed competing approaches to representation as well as our proposal

for representing the robot’s domain. Instead of establishing a dense, computationally

demanding geometric model of the robot’s environment, we offer a minimal repre-

sentational scheme that requires symbolic matching, ambiguity resolution and error

rejection capabilities. Our representation is built upon encoding extractable environ-

mental features as attributed edges in a symbolic graph that sparsely models the 3D

world. Our representational scheme hinges on strong, inherent assumptions about the
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structure of an indoor navigation domain. In the next chapter, we will present our

methodology for extracting symbolic feature information from our structured domain.
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Figure 3.1. StickRep example



CHAPTER 4

Sensing Landmarks

In this chapter we will examine the capabilities and liabilities of monocular vision and

ultrasonic ranging as compared to the more traditional stereo vision. We will note

that stereo vision cannot. provide the ranging we desire rapidly enough for our real

time application. The use of monocular vision and ultrasound are not without their

own liabilities, and we will explore ultrasonic ranging error experimentally. The key

problem is the ability to accurately replace the depth information provided by stereo

ranging with a fuzed monocular vision and ultrasonic methodology.

The difficulties with stereo vision systems led us to investigate other promising

ranging systems [9, 15, 51, 87, 107]. We sought to combine the most capable attributes

of vision and active ranging approaches into a fuzed acquisition methodology using

a single camera and a suite of ultrasonic sensors. In this chapter we will present our

landmark sensing strategies and closely examine the capabilities of ultrasonic sensing.

In the following chapter we will formally present the geometric algorithms that use

these sensing strategies in a structured domain.

44
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4.1 Visual Sensing of Vertical Ribbons

Fine feature detail in the operating domain cannot be obtained through ultrasonic

range sensing. Ultrasonic range data is too coarse in an uncontrolled environment

and erroneous data is common. Ultrasonic sensing will be examined in detail in

Sections 4.2 and 4.3. We will now discuss the extraction of fine feature landmarks

from the domain using a monocular camera.

The requirement for real time processing restricts many common approaches.

Many researchers have pursued stereo vision methodologies, but they struggle to

overcome the computational complexity of stereo correspondance [33, 34, 87, 99, 116,

118, 121, 126, 129, 146, 149]. In the application of stereo ranging methodologies to

real world navigation, the intrinsic computational expense of extracting three dimen-

sional range data from stereo pairs limits the number of features that can be tracked.

Real time constraints have traditionally prevented the obtainment of dense 3D world

models [22, 26, 42, 65, 139, 142, 162]. Constant increases in computing power are now

begining to yield promising results [107, 120]. Practical stereo vision navigation sys-

tems have constructed sparse depth maps by matching high contrast points selected

by an interest operator or geometric features such as edges [108, 114, 145]. Additional

problems for robotic applications come from operating under available illumination

and in domains with unpredictable surface acoustic characteristics.

The depth information recovered by a stereo system is vital in robotic applica-

tions, but depth data can also be provided by active ranging. We chose to pursue

the extraction of symbolic features in our domain with single images fuzed with ul-

trasonic range data. Despite the avoidance of stereo correspondence, many powerful

algorithms, such as Canny edge dectection, also challenge real time implementation

[28, 78]. Our entire image processing suite was developed under this heavy real time

requirement. Many of the visual features in an indoor domain possess strong
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verticality. Doors, windows, and supports present striking vertical landmarks yielding

strong, long ribbons in images. We designed our approach to extract these vertical

ribbon edges and classify the observed features using a template scaled to the feature

range.

4.1.1 Feature Extraction

Before we examine visual edge sensing, we offer the following definition:

Vertical Edge Ribbon A physical domain feature that may produce two parallel

vertical intensity edges in an image. Both edges are capable of being simultaneously

seen within the field of view of the sensing camera. The lines containing the vertical

edge ribbon are normal to the floor of the domain.

A door is a common vertical edge ribbon found in indoor domains. Doors are

logical landmarks for human navigation and are consistent with the cognitive map

approach [92, 93]. A door often provides the strongest intensity edge in a domain

[77, 136]. Here doors are symbolic, they represent a common static feature, ex-

tractable under varied illumination throughout the structured domain. Posts are less

common in some domains, but could also be easily extracted. We experimented with

several standard edge detectors on training images examining the filtered images for

sensitivity to filter size, noise, and camera misalignment [95, 128]. We chose a ver-

tically oriented 5x5 Prewitt filter as the candidate that best extracted strong, long

intensity edges from the training data [125]. Kriegman pursued a larger mask to smear

images in a broader application [87]. Our filter not only rejected horizontal features,

but it also averaged vertical features. This averaging has the following desired effects:
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Horizontal edge ribbons vanish.

Slanted edge ribbons are blurred.

o The effect of small edge features and marks is attenuated.

e The effect of image noise on vertical edges is attenuated.

Ribbon length is a strong indicator of a large vertical feature. If we require vertical

persistence, we filter out finer vertical features and marks that clutter our domain. To

rapidly examine this attribute, we performed vertical integral projection. Let I(r, c)

be our filtered image. The vertical integral projection of I(r, c) can be defined as:

This column summing technique is similar to Kanade’s two dimensional work on

the recognition of human faces [80]. The results of the vertical integral projection re-

quired careful thresholding to properly segment the strongest vertical ribbons present

in the scene. Additionally we needed to recover the footprint of the vertical projec-

tions onto the floor of our modeled two dimensional domain. With this footprint we

could register fuzed ultrasonic range data to classify the landmark using the algo-

rithms to be developed in Sections 5.2 and 5.3. After thresholding to a binary image,

pixel column bins were clustered based on three nonempty bins within a five bin

window. Pincushion lens distortion caused edges one pixel wide to bow across seven

pixels at a viewing range of six feet. To accomodate this, footprints were determined

by calculating the center of mass of the bins. Using the sensing geometries to be

developed in the next chapter, we found that the subpixel accuracy obtained from

this bin clustering technique reduced measurement variance 39 percent in a controlled

experiment.
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Several adaptive thresholding techniques were pursued [31, 73, 79, 132]. Chow’s

technique of fitting a bimodal Gaussian model to the image histogram had been im-

plemented locally but it could not be adequately tuned to the crisp intensity gradients

common to man-made environments and the varied illumination present in the train-

ing images [74]. We reluctantly turned to absolute thresholding based on the library

of 157 training images taken over a four month time period in varied illumination. We

found that the door jams that constitute the vertical edge ribbons typically subtend

2.5% of the image scene as viewed from Rome. We set the absolute threshold level

at 5% to accept an equal degree of desired edge and accidental marks.

After we had completed the initial design that successfully identified features in

our filtered image, we sought to minimally sample rows from the image to both reduce

the computational load on our system, and to identify long edge ribbons. Returning

to our training suite of images, we empirically determined that five rows extracted

from the image were sufficient to capture vertical edge information from a door within

our field of view. Three of these sampled rows were near the vertical image center,

with the others toward the top and bottom. If the range to the door is six feet or less,

sampling these particular rows will always be sufficient to capture the full vertical

range of the feature. But our navigator may certainly view doors obliquely and at

greater distances. To accomodate this behavior, a range-based scale factor controls

which rows are sampled from the image as a function of the ultrasonic range data

obtained coaxial with the optical axis.

The image processing algorithm is summarized in Figure 4.1. It implemented

dynamic sampling of five rows as a function of range, Prewitt filtering, absolute

thresholding, vertical integral projection, and clustering of the vertical ribbon to a

footprint. A complete example of our processing algorithm is shown in Figure 4.2.

In Figure 4.2(b)-(c) the entire image is shown for clarity, but processing was only

performed on the five rows sampled. In Figure 4.2(d) the vertical projection has been
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smeared for ease of illustration. The dark pixels represent weights of confidence in the

feature footprint location, darker pixels representing areas of greater confidence. This

processing suite demonstrated excellent tolerance to the pincushioning produced by

the 6mm lens we used, and the camera misalignment often observed during Rome’s

travel. Clumping the vertical projection was the most significant component in the

attenuation of these undesirable effects. This clumping successfully recovered long

vertical ribbons with a misalignment angle as great as 10 degrees from vertical at a

distance of 12 feet. This result is strongly correlated to the maximum spread of the

center three sampled rows. It should be noted that roll axis camera misalignment

causes all vertical and horizontal feature edges to be smeared by the averaging fil-

ter, and, provided that the three center sampled rows are relatively close in vertical

proximity, their projected footprints will be successfully clumped.

(0) Dynamic sampling of five image rows based on range to ribbon

(1) Vertical 5x5 Prewitt filtering

(2) Thresholding to pass top 5%

(3) Vertical image projection

(4) Clumped vertical ribbon footprint to subpixel accuracy

(5) Output landmark candidates each with width and location

Figure 4.1. Vertical Edge Ribbon Extraction Algorithm
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Figure 4.2. Image processing suite example. (a) Original image (b) Vertical edge

image (c) Thresholded edge image (d) Smeared vertical projection with darkened

feature footprint
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4.1.2 Landmark Classification

The output of the first processing stage, described previously in Section 4.1.1, pro-

vided candidate footprint pairs, with confidence weights, to the landmark classifica-

tion stage. Despite the thresholding and filtering, several candidate pairs are often

passed forward for potential classification. In this stage, fuzed ultrasonic range data

is used to determine the estimated size of landmark candidate pairs. If a large depth

edge is noted across the ultrasonic horizon in an area corresponding to the candidate

feature, then a line fitting routine interpolates an estimated depth to the feature

by using only the flank depths. This occurred frequently in both the training and

test data sets because several doors were partially or completely open. Outward

opening doors left partially open were often ultrasonically sensed as a sharp convex

depth edge. Inward opening doors similarly were sensed as a sharp concave depth

edge. The structure of the hallway domain made the line fitting quite accurate in

recovering the depth to the closed door position. Open doors were more difficult to

accurately classify than closed doors, but this was mainly due to image clutter inside

the open door misleading the first image processing stage, and not due to ultrasonic

ranging shortcomings. We will discuss these results in Section 6.4.2.

Since door landmarks are only present in discrete metric sizes, their a priori prob-

abilities can be determined (see Tables in Chapter 6). A Bayes decision rule for

classifying candidate pairs were desired, so experiments were conducted to estimate

the class conditional probabilities [62]. Using the algorithms to be presented in Sec-

tions 5.2 and 5.3, data was collected and conditional probabilities were estimated at

an abscissa bin granularity of 0.05 inch. This estimation was necessary since observed

data came from a continuous metric spectrum. Posterior probabilities could then be

determined. Table 4.1 illustrates, in inches, the landmark classification boundaries

implemented using a Bayes decision rule.
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Landmark Low Boundary High Boundary

32 29.1 33.5

36 33.5 38.8

40 38.8 42.7

30/30 56.4 64.0

36/36 67.9 76.3    

Table 4.1. Landmark classification boundaries showing ribbon width in inches

The landmark candidate pair with the highest confidence weight assigned by the

initial processing stage will be classified using Table 4.1. If a candidate pair falls

outside these boundaries it is rejected, and the subsequent candidate pairs, above a

preset confidence threshold, are considered in turn. No tuning or training on the test

image suite was done. The test suite classification performance of the two processing

stages presented in the last two sections was encouraging. After we develop the

necessary sensing geometry in the next chapter, we will more thoroughly examine

these classification results in Section 6.4.2. In the next section we turn our discussion

to a more thorough examination of ultrasonic sensing.

4.2 Theory of Ultrasonic Sensing

One important application of an ultrasonic sensor sytem is active ranging. Ultrasonic

sensors use high frequency sound to determine the time of flight between the sensor

and an object. The acoustic beam propagates from an emitter through its medium

of travel as a mechanical wave and is reflected back to a receiver. The wavelength A

of the ultrasonic wave is:

>
4

ll

\
l
n



53

Here c is the speed of sound in the medium and f is the frequency of the emitter.

The speed of sound is not constant, even within a given medium, as temperature

and humidity are factors to consider. Typical frequencies for robotic applications

range from 20 KHz to 2 GHz. Our Polaroid Instrument Grade transducers operate

in the 60KHz range, with A = 5.7mm. A voltage pulse excites the transducer which

causes an acoustic pulse to be emitted. The echo reflected from an object may be

detected by the same sensor that emitted it. A typical time of flight system produces

a range value when the echo amplitude first exceeds a set threshold value. A range

measurement, do is determined from the round-trip wave travel time of flight t f by:

-22(10-,

Absorption of the ultrasonic wave by the prOpagation medium influences the at-

tentuation of the wave. The degree of this absorption depends on the medium and

the radiating frequency. Gaseous media attenuate ultrasonic waves significantly more

than solids or liquids, and this attenuation depends greatly on the particular fre-

quency used [51]. Currently most robotic applications employ ultrasonic systems

radiating into the atmosphere. The pressure amplitude of the acoustic wave decays

exponentially with distance. If p0 is the pressure amplitude of the planar acoustic

wave, and a is the absorption coefficient, then p is the pressure amplitude of the wave

at a distance d:

P = 1106‘“

The absorption coefficient a clearly determines the rate of attenuation [72]. The

extinction distance d..’ is defined to express this attenuation of the ultrasonic wave in

the atmosphere, d.3 = 1/a. At ambient temperature and humidity, with f = 60kHz,

d,3 = 17 meters [51].

Employing ultrasonic waves in the atmosphere is significantly less efficient than

radiating through a solid or liquid medium. This is not just due to the
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attenuation factor, but also because the impedance mismatch between the solid ultra-

sonic transducer and the air is much higher [82]. This translates to a high transmission

loss compared to the energy transfer across a lower impedance boundary such as a

liquid or a solid. But this same impedance mismatch on transmission becomes an

advantage upon wave reflection. This phenomenon causes strong reflections, and not

energy draining absorptions, by an object in air. The reflective behavior of a surface

in air depends on the object texture [18]. If the period of the texture is much greater

than the ultrasonic beam period, surface reflection is essentially specular. For robotic

applications, most object surfaces can be considered quite smooth, and the ultrasonic

beam reflection largely specular, with a small diffuse component.

Sophisticated signal processing of the ultrasonic wave allows a parametric evalu-

ation of the returning arc formed when the sensor is scanned across an object [18].

This approach permits the differentiation of planar surfaces, corners, and edges in a

specular domain. In nonatmospheric medium, higher ultrasonic frequencies may be

employed that permit ultrasonic imaging that achieves resolution comparable with

what can be achieved with optics in air [72]. Short of these application types, ultra-

sonic sensing systems provide a simple, low cost alternative for range data acquisi-

tion. Ultrasound operates independently of the environment lighting conditions and

the optical characteristics of the object surfaces. Current commercial systems for

atmospheric transmission still offer poor angular resolution and suffer from problems

associated from multiple reflections. In the next section we will experimentally ex-

amine some of these physical issues in an attempt to develop an operating envelope

supporting accurate and robust navigation.
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4.3 Ultrasound Studies

Ultrasonic sensors are widely used in mobile robot applications. A strong systemic

attribute is their simplicity, low cost, and the fact that distance measurements can

be determined directly. A typical sensor has a useful measuring range of 1 to 35 feet,

with a beam width of 15 degrees; so an array, or belt of sensors is often employed

[9, 15, 14, 24, 29, 38, 37, 45, 50, 51, 52, 53, 54, 63, 91, 111, 112, 131, 134, 140].

The more mature of these efforts use probabilistic models, redundant sampling, or

sampling histories to handle the range errors that are common to ultrasonic sensors.

Physically based ultrasonic sensor models are just now maturing [101]. One effort

elegantly and extensively characterizes a single sensor in a clean laboratory environ-

ment [18]. It notes, but doesn’t explore the signal error produced by sound absorbing

surfaces, specular surfaces, and surfaces sensed from oblique angles. It became ap-

parent that surrounding Rome there existed an area of reliable sensing, or a sensing

footprint, that varied with the type and orientation of the surrounding surfaces, and

the sensor type. This conclusion motivated an extensive examination of ultrasonic

sensor performance against various surface types at varied orientations. We will now

examine this phenomenon and develop an ultrasonic sensing footprint to support

accurate and robust navigation.

During preliminary navigation experiments, it was observed that Rome’s ultra-

sonic sensing system ranged surfaces very accurately when the acoustic axis and the

surface normal were approximately colinear. It was also observed that as the angle

between the surface normal and the acoustic axis increased, so did the ranging error.

Individuals wearing thick clothing often were not sensed at all, while at other times

the same individuals were accurately ranged. An experiment was designed to examine

the effect of surface characteristics on ultrasonic ranging. Three surfaces types were

presented to the ultrasonic sensor at various orientations to the acoustic axis. The
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hallway was initially chosen as the testing laboratory, not because we thought it was

a clean environment, but to include multiply reflected signals causing ranging error.

Multiple reflection error was not observed in this experiment, and the results strongly

followed a pilot study conducted in a acoustically isolated environment.

Concrete was chosen as a common domain feature surface, while polished wood

presented a much smoother ranging surface. A padded fabric wall partition was exam-

ined to characterize suspected energy absorption. One thousand ultrasonic samples

were taken from three surface types at four orientations each for a total of 12,000

samples. Let (t be the angle between the acoustic axis and the surface normal, with

45 = 0 corresponding to the sensor directly facing the surface. Table 4.2 summarizes

the percent range error observed. We repeated the entire experiment to increase the

confidence in our conclusions, obtaining the results summarized in Table 4.3.

For a given surface and orientation, only two to nine discrete range values would

occur. The histograms of the complete experiment are in Appendix A, and illustrate

the deterministic nature of the ranging error. A total of over 40 thousand samples

were taken to confirm these results. The polished wood and concrete surfaces ranged

quite accurately. Cloth surfaces also ranged accurately, but only if 45 = 0 (the surface

normal and the acoustic axis align). The standard deviation of the ranging error is

exceedingly small with useful error percentages.

These results are encouragingly similar to our initial experiment. We desired to

model the ultrasonic error Rome would typically encounter while navigating through-

out the operating domain. Cloth clearly is a challenging surface to accurately range.

If the acoustic axis and surface normal are not nearly colinear, then grossly inaccurate

range values can be expected. The other surfaces can be properly ranged if the ultra-

sonic sensing is only performed while within this accurate ranging footprint. Accurate

range acquisition can be obtained from concrete and wood if Rome’s sensing can be

controlled to maintain c5 S 15°. In the next chapter we will propose two competing



sensing geometries that support accurate ultrasonic sensing. Multimodal Gaussian

error models were developed from the ultrasonic sensing analysis presented in this

section. These error models will support extensive simulation experiments that we

will subsequently present.

4.4 Summary

In this chapter we have presented a fast technique for the sensing of vertical edge

ribbons using a single camera. We designed our approach to extract these verti-

cal ribbon edges and classify the observed features using a template scaled to the

feature range. Range data was obtained from ultrasonic sensing. Our final design

implemented dynamic sampling of five rows as a function of range, Prewitt filtering,

absolute thresholding, vertical integral projection, and clustering of the vertical rib-

bon to a footprint. The extraction and classification suite demonstrated excellent

robustness to the pincushioning produced by the 6mm lens we used, and the roll axis

camera misalignment often observed during Rome’s travel. We have also extensively

examined ultrasonic sensor behavior, and defined an accurate ranging footprint to

provide depth information to the monocular vision system. In the next chapter we

will propose two fuzed sensing geometries that build upon the sensing experiments

presented here. Unlike many competing methodologies, these sensing strategies sup-

port real time feature extraction and landmark classification.



Table 4.2. Experiment 1: Ultrasonic percent range error as a function of surface type

and angle

Table 4.3. Experiment 2: Ultrasonic percent range error as a function of surface type

and angle

58

 

 

 

 

<25 Cloth Wood Concrete

0 0.50 0.03 0.03 0.03 0.71 0.03

15 85 80 0.95 0.03 2.2 0.03

30 340 93 16 0.07 5 0.04
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45 Cloth Wood Concrete

0 0.53 0.03 0.04 0.03 0.6 0.03

15 100 95 1.2 0.04 1.5 0.03

30 390 84 8.9 0.06 4.3 0.02

45 ++ ++ 22 0.9 15 0.08
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CHAPTER 5

Sensing Geometries

In the preceeding chapter we discussed a visual sensing approach capable of extracting

vertical landmarks in real time and examined ultrasonic sensing towards the definition

of an accurate ranging footprint. What is now needed is a methodology that fuzes

these two sensing capabilities, enabling depth information to be attributed to an

extracted domain feature. Constructing a sensing geometry that casts vision and

ultrasonic sensing in roles where they can operate accurately, while simultaneously

supporting unrestricted real time navigation, is a challenging task. In this chapter we

will present two competing sensing geometries that strive towards this goal. These

sensing geometries provide a framework for navigation and sensing, ensuring that

sensing only occurs where the information is not only accurate, but useful to the

particular task right now. These sensing geometries strongly influence the overall

control plan of the navigating robot. The shortest path to a goal might not be the

best path if the feature sensing system can not accurately extract landmarks along

this route. A sensing geometry that does not restrict navigation control is a goal, but

we feel that sensing capability is more important than unrestricted navigation and

point to point speed. Furthermore, we desired a more general landmark extraction

solution.

Ultrasonic error models, derived from the experimental results of Section 4.3 will
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be presented in Section 5.4. These error models will be used in simulating the per-

formance of the competing sensing geometries. The performance of the best sensing

geometry, applied to several operating domains, will be examined in detail in Chap-

ter 6. We begin the present chapter with a generalization of our sensing situation.

5.1 Motivation

Our present sensing problem, extracting and classifying a vertical landmark from its

domain, is a common problem that is widely pursued. The sensing geometries to be

presented were designed to enable ultrasonic sensors to accurately provide depth to a

feature and assign absolute metric scale to the extracted landmark in real time. The

domain constraints required by the sensing geometries are:

0 C1) The landmark has parallel linear edges delineating the face to be measured.

0 C2) An intensity contrast exists between the landmark and its domain.

0 C3) The orientation of the optical axis relative to the ultrasonic array is known.

0 C4) The landmark to be measured presents a planar face to the image plane.

0 C5) The angle between the landmark surface normal and the optical axis is less

than 45°.

0 C6) The domain subset within the field of view is approximately planar.

0 C7) The focal length and angular field of view of the camera lens is known.

These constraints represent the domain assumptions we were required to make to

accurately assign depth to a landmark. Our goal was to provide as near an unre-

stricted navigation and sensing environment as could be engineered, but some con-

straints became necessary to reduce the complexity of the problem. It is important
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to note that there is no requirement for ultrasonic or camera calibration. Only the

mounting position of the camera relative to the ultrasonic sensing array and the cam-

era’s field of view are required. Sensing accuracy would improve with a decrease

in the angle of Constraint C5, and is tightly coupled to the experimental results of

Section 4.3. Continued advances in low cost ultrasonic sensors, would not remove

Constraint C5, but would improve sensing accuracy. If the angle of Constraint C5 is

known, then Constraint C6 can be removed. Constraint C4 implies that the sensing

geometries actually measure the projection of the landmark onto the image plane.

Nonplanar landmark faces would have their projection onto the image plane mea-

sured. We will examine the limits of each geometry’s accuracy envelope in detail in

Section 5.5.

The sensing geometries to be presented are certainly not alone in their ability to

measure objects in their constrained domain. Industrial applications have demon-

strated more accuracy, but gain this advantage from a predictable, and much more

structured domain. Less structured domain applications have yet to obtain real time

performance [87]. The sensing geometries presented in the following two sections offer

a robust, low cost, real time solution to problem instantiations occupying the middle

ground between a well structured, specialized industrial application, and a large scale

3D explorer.

5.2 Two Side Geometry

Ultrasonic sensors can provide accurate ranging within a sensing footprint. The

pivotal task of this sensing framework is to fuze the depth information obtained from

the ultrasonic sensors to extracted feature edge ribbons. In a monocular image from

an uncalibrated camera, the only gound truth references available are the edges of

the field of view. Constraint C3 in the preceeding section was established specifically



  

 

 

 
Figure 5.1. Field of view geometry

for this purpose. If a landmark is within the field of view, the sensing geometry must

determine the position of the landmark relative to the edges of the field of view, and

assess an absolute metric scale. If we know the angle of the optical axis relative to the

acoustic axes of the ultrasonic array, then we can determine the range to the edges of

the field of view. Figure 5.1 illustrates the geometry within the field of view (FOV).

Constraint C3 provides the necessary reference to assign the correct ultrasonic

range value to estimate RL and RR. Since we know the value of FOV for the appli-

cation lens, the Law of Cosines provides WL. the length of the domain context visible

within the field of view.
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WL = x/RL2 + RR2 — 2RLRR cos FOV

The candidate landmark footprint, as presented in Section 4.1.1, will partition the

domain context into the three annotated segments seen in Figure 5.1. Using similar

triangles and the Law of Sines we can calculate the length of the segments (IL and d3.

 

d _ RL sin ¢L

L — sin(7r — gbL - a)

dR = RR sin ¢R
 

sin(7r — ¢R + a)

Similar triangles with bases on the image plane and the domain context will

provide a means of determining 451, and am. We define LJ and RJ as the left and

right footprint of the verticle edge ribbon, respectively, It as the horizontal pixel width

in our CCD camera, in millimeters per pixel, and mid as half the number of horizontal

pixels across the image plane. With a camera lens of focal length, f, 45;, and 453 can

be calculated.

 

 

FOV 2h(mid — LJ)

(#1, = — — arctan

2 f

FOV (2h(RJ — mid))

(pa = —2— — arctan f

Combining these equations we present a composite formula for the observed land-

mark using the ranges RL and RR estimated by our ultrasonic sensors. RL and RR
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represent our two range sides of the sensing geometry, and the dependence on these

two sides led us to call this our Two Side Geometry.

 

  

Two Side Geometry
 

ribbonwidth =

 

\/RL2 + RIP — 2RLRR cos FOV

RL sin (5% — arctan {—L—Umfg—L“, D

o

‘ _
.

t.

Sln (7r — (Ir—2!- — arctan [J—Mm; I“) — arcsm ’1’qu FOV

7RL5+RR5—2RLRRcos FOV

- h RJ— ‘d
RR SlIl (Lg—l: — arctan [LL—1111])

. _ FOV __ 2thJ-mid2D) . RRsinFOV

31“ (FOV ( 2 “Clan [ f + ”(38111 JRL +RR —2RLRRcos FOV

 

 

This is an equation in four unknowns: RL and RR, the two estimated ranges

along the edges of the field of view; and LJ and R], the two candidate landmark

footprints classified by the image processing suite. This equation has been checked

against ground truth with a large suite of images, and its error analysis will be

presented in Section 5.4. In Section 5.5, we will examine the use of this geometry and

the accurate estimation of its four variables. We will see that the ability to obtain

accurate variables will define a navigation control envelope. In the next section we will

attempt to improve upon this sensing geometry, and present our Short Side Geometry.

We explored this geometric approach because it performed the same ranging function

as our Two Side Geometry, but only required the use of one ultrasonic range reading.

This motivation for economy led to an approach that eventually provided superior

accuracy.
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Angle with Surface

Look RL RR

90" 30° 30°

70° 45° 10°

50° 60° 10°

 

    

Table 5.1. Two Side Geometry acoustic angles

5.3 Short Side Geometry

In this section we will attempt to improve upon the Two Side Geometry presented in

the preceeding section. Our motivation was to more accurately obtain RL and RR

shown in Figure 5.1. We have seen in Section 4.3 that ultrasonic accuracy improves as

the acoustic axis approaches the surface normal. With a circular array of ultrasonic

sensors, one or two of the 24 sensors will be nearer the domain surface to be ranged

than the other remaining sensors. The Two Side Geometry does not use the most

accurate ultrasonic readings. In fact, if one of the side readings was very accurate,

the other range side is certain to be very inaccurate at most look angles. Table 5.1

illustrates acoustic axis angles with the ranged surface normal from arbitrary look

angles.

Noting the oblique acoustic angles that our Two Side Geometry utilizes, together

with the experimental results in Section 4.3, impressive metric accuracy should not be

expected. We postpone the examination of these results until Section 5.5. The moti-

vation for using the most accurate ultrasonic sensor reading led us to the development

of the Short Side Geometry.

We previously noted that when the acoustic axis aligned with the surface nor-

mal, ultrasonic ranging was most accurate. When a frame is acquired, the shortest

ultrasonic range obtained from sensors within the field of view sector corresponds
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to the sensor axis nearest the surface normal. Constraint C3 ensures that we know

the orientation of the camera relative to the ranging sensors, so we can geometrically

derive RL and RR from the shortest returned ultrasonic range. Let us annotate the

shortest range value, or the short side, as sdis, and the angle between the optical axis

and the surface normal as 9. Then the Short Side Geometry derives the two sides RL

and RR from 6 and sdis, and determines the landmark’s metric attribute using the

formula presented previously.

 

 

Short Side Geometry
  

sdis

sdis

(‘7‘ < . < 3)

This sensing geometry amends the Two Side Geometry and ensures that only

the most accurate ultrasonic range value is used. The Short Side Geometry reduces

expected ultrasonic error at the price of introducing error in 0. Since the ultrasonic

array is laid out along Rome’s perimeter in sectors of 15°, our uncertainty in which

sensor is indeed nearest to the surface is as great as 7.53". The sine function is sensitive

to error over portions of its domain, but overall we feel the Short Side Geometry is a

strong improvement, as we will note in the next section.
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5.4 Error Analysis

Overcoming error is a strong challenge for any robotic navigator. Some of this error

is due to systemic causes such as ultrasonic range error, and some error is due to a

methodological weakness towards a subset of the domain. StickRep was designed to

handle erroneous data and ambiguous domain features in an efficient manner, but

what is the nature of the composite error it must handle? We examined ultrasonic

sensor error in Section 4.3, but what methodological weaknesses exist in our sensing

geometries? Let us examine our sensing geometry in greater detail. Figure 5.2 revisits

our geometrical framework.

In this Figure, RL and RR retain their previous definition, but we have now

annotated the sensing and domain dynamics in finer granularity. Angle 6 represents

the angle between the optical axis, opax, and the surface. Rome’s ultrasonic sensor

locations are represented by tick marks around the perimeter, with r being the radius

of Rome’s sensing head. The ideal rays from Rome’s center through the ultrasonic

sensors are annotated as L and R. If the camera lens field of view (FOV) exactly

matched the sector defined by an integer multiple of ultrasonic sensors around the

perimeter, then L 2 RL and R 2 RR. In our application the sensors are placed every

15° around the perimeter, and our chosen lens possessed a field of view of 55.8170 so

RL and RR approximate the desired rays L and R along the edges of our field of view

in our geometry. This approximation is examined in the next section.

In the upper portion, or left sensing side of Figure 5.2, the dashed sector delimits

the 23.6“ sensing cone of a typical ultrasonic sensor. When an ultrasonic wavefront

reflects back and is captured by the sensor, its range value is directly related to the

sensor’s distance from the nearest object within its sensing cone. Unless the ideal ray

L or R is normal to the surface, the ultrasonic wavefront will first strike the surface

adjacent to the point where the ideal ray meets the surface. This introduces another
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Notwsale - \

Figure 5.2. Rome’s sensing geometry
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source of sensing error. In Figure 5.2 (11, and d3 represent the range value actually

returned by a particular ultrasonic sensor. In the left sensing side, the surface normal

intersecting the sensor location lies within the sensor’s cone, in the right sensing

side, the surface normal intersecting the sensor lies outside the sensor’s cone, and

(13 represents the range along the left sensing cone limit of the reflected wavefront.

A third geometric case is when the surface normal intersecting the sensor location

again lies outside the sensing cone, but in this case, it lies outside the WL-L-R sensing

triangle. Note that in all three cases, the returned range value dL or d3 is not the

desired range along the ideal ray L or R. This error, exaggerated in the Figure, is a

portion of the error we examined empirically in Section 4.3, and will be compounded

by the gross error observed at oblique acoustic angles. We shall develop a worst case

model of this behavior, and combine it with our geometric approximation error in

Section 5.4.2.

5.4.1 Error Analysis of Geometric Approximation

There are three separate cases of geometric approximation error in our sensing frame-

work. These cases were introduced in the previous section and were derived from

Figure 5.2. This approximation error corresponds to the difference between the ideal

rays L and R, and the rays RL and RR defined by the actual edges along the field of

view. Case 1 occurs when the surface normal to the sensor location lies within the

sensor’s cone, that is, 48° 3 6 < 72°. Case 2 occurs when the surface normal to the

sensor location lies outside the sensing cone, but within the WL-L-R sensing triangle;

72° 3 6 __<_ 90". Case 3, 6 < 48", is when the surface normal to the sensor location

again lies outside the sensing cone, but also lies outside the WL—L-R sensing trian-

gle. These angular based case definitions are symetric about 90°, and were developed

Using similar triangles and the Law of Sines. We now present the actual geometric

definition of RL and RR that we have approximated in our Short Side and Two Side
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Geometries with the returned range values (11, and (13 plus the head radius, r.

 

[Case 1, 48° _<_ 6 < 72"]
 

dL sin(150 - 6)

RL : sin (6 + 51%!) sin (6 + F_(2)_V_) r

  

  

 

 

  

  

 

 

  

RR _ (IR sin(6 — 30) r

' ' sin (180 — 6 + 51,31) sin (180 — 6 + %V—)

[Case 2, 72" S 6 S 90"]

sin(18 + 6) sin(150 — 6)

BL = d 1‘

sin (6 + 6%) L sin (6 + %)

RR = . sm(198F;‘6) (112 + ' sm(6 :33) r

8111(180 + T — 6) 8111(180 + '2— — 6)

[Case 3, 6 < 48"]

RL : sin(138 — 6) sin(150 — 6) d sin(150 —— 6)

sin(6 + 30) Sin (5 + FOTV) L sin (6 + FOTV) r

sin(6+%K-72)sin(6-60+Fg—V) +sin(6—60+Egy—)

sin (240 — 6 — 501-) sin(210 — 6) R sin(210 — 6)

_—

—

  

2

If the look angle, 6, were known by Rome, then we could enhance our metric

accuracy by calculating range values using these formulas. In the next section, we
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6 L—>RL R——+RR (IL—>L dR—iR

90" 2.0% 2.0% 4.3% 5.1%

70° 4.1% 0.57% 15% 2.1%

50" 9.1% 0.72% 21% 1.5%

 

    
 

Table 5.2. Composite ranging error summary

will evaluate our approximation to these formulas in the worst case, and combine it

with the ultrasonic error summaries we presented in Section 4.3.

5.4.2 Composite Range Error Model

Rome experiences ultrasonic ranging errors of two distinct types. The first type

is the ranging error we observed in Section 4.3 with particular weaknesses on soft

surfaces and at oblique acoustic axis angles. The second error type is due to the

approximations our Short Side Geometry must make to the exact ranges presented

in the previous section. In Table 5.2, we have evaluated this approximation error in

the worst case, and summarized the empirical results we obtained in Section 4.3 at

three arbitrary look angles.

Table 5.2 summarizes the composite ultrasonic error models we used to drive

the extraction simulations to be discussed in Section 5.5. These error models were

developed from empirical range experiments in a real domain together with a worst

case analysis of our approximation to the theoretically correct range. In the next

section we present a linear first order error approximation of range extraction and

landmark metric inference using our sensing geometries.
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5.4.3 Linear First Order Error Model

We desired to get a quantitative approximation for the percent error we might ob-

serve using the Short Side and Two Side Geometries, prior to implementing these

approaches. Starting with the geometric formulas presented in Sections 5.2 and 5.3,

we derived a partial derivative evaluated at a particular look angle and multiplied it

by a worst case measurement error factor as shown in Figure 5.3.

 

Two Side Geometry]
 

('3 8 6 6

6RL’ ERR’ BLJ’ BRJ

 Ametric z ( ) I...” . (ARL, ARR, ALJ, ARJ)

 

[Short Side Geometry]
 

8 6 8 6
. t ' z —-— —— —— —

Am ”C (Bsdz’s’ 60’ aLJ’ aRJ
) lawn. - (Asdis, A0, ALJ, ARJ)

Figure 5.3. Linear first order error model

The complete partial derivatives were obtained, but due to their length, we present

them graphically in Appendix B. We evaluated these approximation error models at

three arbitrary look angles, or stares. Worst case error in 0 was 7.50, as discussed

earlier. Empirical experiments supported a worst case error for A LJ and A RJ to be

five pixels. Table 5.3 summarizes this linear first order error approximation for both

sensing geometries at three stares. Table entries are the worst case landmark metric

error, in inches, using the linear first order estimate.

The sensitivity of the Short Side Geometry to error in 0 can be seen particularly

at the more oblique stares. The Two Side Geometry appears more robust at oblique
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Geometry 90" 70° 50°

Two Side 2.4 3.9 4.7

Short Side 0.40 5.5 12

 

    

Table 5.3. Worst case landmark error using linear first order estimate

 

6 90° 70° 50°

Ametric 0.28 3.2 6.6

 

    

Table 5.4. Accuracy resulting from reducing A0 to 3.750 using Short Side Geometry

stares, but its accuracy is still moderate at a 90° stare. We doubted the ability to

perform inexact matching with this level of expected metric accuracy. The Short Side

Geometry appeared to offer the absolute accuracy that could be pivotal to a landmark

classification scheme. A control envelope was developed to take advantage of the

accuracy obtained at 90° stares by the Short Side Geometry, while simultaneously

discouraging oblique stares by a cost function.

Prior to selecting the Short Side Geometry for implementation, we again used the

linear approximation of Figure 5.3 to explore classification and robustness questions.

If we installed twice as many ultrasonic sensors, reducing A0 to 3.750, what benefit in

worst case performance would be observed when employing the Short Side approach?

Table 5.4 summarizes the answer. The advantage gained from the extra hardware

appears to be insufficient to justify the effort.

Another question concerned how much A0 error the Short Side Geometry could

handle and still deliver accuracy at an arbitrary benchmark, say two inches. Table

5.5 summarizes the results at arbitrary stares. It appears very tolerant at blunt look

angles, but sensitive at oblique angles.
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6 A0

900 S 57.00

70" S 1.80

50" S 05°  

Table 5.5. Short Side 0 tolerance for error within two inches

These results motivated us to explore large scale simulations of' landmark classi-

fication employing the Short Side Geometry. With a supporting navigation control

scheme, accurate metric inference could be obtained. In the next section we will

present our simulation results of landmark measuring using the Short Side and the

Two Side Geometries. We will see that these simulation results are consistent with

the error models we have explored in the previous sections.

5.5 Monte Carlo Experiments

We were very interested in the behavior of the two sensing geometries in the presence

of the error models we developed in Section 5.4.2. The Short Side Geometry appeared

to promise the most capability, but we were concerned about its sensitivity to 0 error.

Both Schneider and Wang had concluded that rotational, or angular uncertainity was

the most sensitive parameter in their applications [134, 155], and we have already seen

evidence to support this conclusion in our problem. Uncertainity is often a function

of measurement errors that have additive effects, but their work found that angular

uncertainity had multiplicative effects.

We conducted over 100 thousand Monte Carlo trials to examine the percent of

metric error in measuring landmarks of known sizes using either of our proposed sens-

ing geometries. Ten thousand trials at a given optical axis orientation were obtained

using each sensing geometry and the error models developed in the last chapter. The



 

75

 

 

0 Prob(:t 5.55%)

90° 0.92

70° 0.41

50° 0.16    

Table 5.6. Probability of Short Side Geometry measuring within 2 inches

following six Figures illustrate with histograms the performance of both geometries

at selected arbitrary look angles.

As expected the Short Side Geometry delivered accuracy superior to the Two Side

Geometry. The effect of the uniformly distributed A0 can be seen in the wide shape of

the Short Side results. The Two Side results have the characteristic Gaussian shape,

and the offset bias varied with the camera orientation. Useful accuracy is only seen

with the orthogonal look angle of the Short Side Geometry. In our domain, landmark

classes are often separated by two inches, or less, in their metric attribute. Table 5.6

summarizes the probability that the Short Side Geometry measured the landmark

with two inches, or 5.55%, at three arbitrary look angles.

From these results we concluded that the Short Side Geometry offered better

performance in a general domain than the Two Side Geometry, and that a control

envelope should be defined to ensure that sensing occurs when the data extracted

from the sensors is most likely to be accurate. Obtaining range data from sharp look

angles promised the highest accuracy, so an optical axis orthogonal to the axis of

motion would be a good design for very fine metric work.
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Figure 5.4. Short Side Geometry, 0 = 90°
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Figure 5.5. Short Side Geometry, 0 = 70°
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Figure 5.6. Short Side Geometry, 0 = 50°
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Figure 5.7. Two Side Geometry, 0 = 90°
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Figure 5.8. Two Side Geometry, 0 = 70°
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Figure 5.9. Two Side Geometry, 0 = 50°
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5.6 Summary

In this chapter we have presented two sensing geometries that support landmark clas—

sification in a structured domain. These methodologies fuze the sensing capabilities of

a monocular camera and an array of ultrasonic transducers. This geometric approach

enables depth information to be attributed to an extracted domain feature. These

geometries successfully cast vision and ultrasonic sensing in roles where each can op-

erate accurately, while simultaneously supporting real time navigation. While these

sensing frameworks each led to an overall sensing footprint, and a navigation control

envelope, locomotion and path planning issues have not been overly constrained. We

developed detailed composite error models that were injected into landmark classifi-

cation simulations that demonstrated the potential of both these sensing geometries.

The Short Side Geometry displayed the greater accuracy potential and will be exten-

sively employed in the studies of the next chapter.

Both of these original sensing geometries offer a more general landmark classifi—

cation solution to other applications. It is noteworthy that neither sensing geometry

requires ultrasonic or camera calibration, and both offer real time performance, at

very affordable hardware costs.



CHAPTER 6

Inexact Graph Matching

The developments presented in the previous chapters provide the representational

model and the sensing strategy to perform autonomous pose recovery in a structured

domain. In the following sections we will discuss the symbolic feature ambiguity

inherent in operating domains, and the representational challenges that the repre-

sentation must handle. Inexact feature attributes, particularly sensed metric data,

present difficult matching challenges. Heuristic and deterministic algorithms for error

recovery will be presented along with simulation results obtained using realistic error

models. These simulations explore different approaches toward developing a robust,

working solution to the Where-am-I Problem. Performance trade-offs between various

heuristics will be studied. The results show that our approach can provide accurate

pose recovery in a short period of time.

6.1 Representation

In Sections 3.2 and 3.3 we examined representations used in mobile robotics and pre-

sented the StickRep structure. We saw that StickRep was a 1% dimensional structure

that provided a minimal representation for our robotic navigator. Each edge contains

some or all of the following attributes:
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type 6 {corner, doorway, elevator, hallway, pattern, stairwell}

metric 6 32+

prototype E {doorjam, hallsegment,pattern}

pattern 6 {fi, 0, Q, C7}

Nodes hold adjacency information of the incident feature edges and contain the

following attributes:

adjacency angle 6 {0,...,360}

global coordinates E {XW,YW,ZW,a,,B,7}

StickRep is implemented as a doubly linked list of records. These records encode

sequences of feature data. If we view the database and the sensed feature data as

a one dimensional sequence of attributed edges, then feature matching becomes a

string matching problem with each attributed edge corresponding to a terminal in

our edge type alphabet. The sensed feature map under construction becomes a graph

of attributed terminal symbols [46]. This design greatly simplifies the mechanics

of the matching and a string matching scheme was modified to handle ambiguous

metric information [94]. The pattern field is a dynamic entry which attempts to

capture feature information that is supplemental to the feature type. For example, a

poster on a door is often sensed as a pattern within a larger feature that is strongly

conjectured to be of edge type door. This feature information is attributed to a

door edge for subsequent disambiguation and confirmation. Feature information is

dynamic, so expanding the context may provide greater confidence in a potential

match. In the next section we will discuss how StickRep, together with our matching

scheme, handled symbolic feature ambiguity.
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A = 90° door30 door32 door36 door40 wall

door30 0 0 0 0 0

door32 0 0 0 0 0

door36 0 0 0 0 0

door40 0 0 0 0 0

wall 0 0 0 0 1 15    
 

Table 6.1. Domain ambiguity: Number of edge pairs with adjacency angle of 90°

 

 

A= 180" door30 door32 door36 door40 wall

door30 1 1 0 0 0 11

door32 0 0 0 0 4

door36 0 0 28 0 183

door40 0 0 0 0 1 1

wall 10 4 181 1 1 0    
 

Table 6.2. Domain ambiguity: Number of edge pairs with adjacency angle of 180°

6.2 Ambiguity

Despite the structure provided by our assumed domains, great feature ambiguity still

exists even without the confusion injected by sensor error. Complete knowledge of

the edge types, and the adjacency angles between the edges, is insufficient for unique

identification. Ambiguity can be strong without larger context. The third floor of

the Engineering Building is just one of the domains we examined, but it provides an

illustrative example of ambiguity, and is portrayed in Tables 6.1 - 6.9. Each Table

contains the number of occurrences of a particular edge sequence on the building’s

third floor. For example, Table 6.2 shows that there exist 28 instances of adjacent,

coplanar 36 inch door pairs. Table 6.5 shows that there are 152 instances of a 36 inch

door with coplanar wall surfaces on both adjacent sides. Strong ambiguity exists,
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1: 270° door30 door32 door36 door40 wall

door30 0 0 0 0 0

door32 0 0 0 0 0

door36 0 0 0 0 1

door40 0 0 0 0 0

wall 0 0 2 0 98    
 

Table 6.3. Domain ambiguity: Number of edge pairs with adjacency angle of 270°

 

 

A= 180° door30 door32 door36 door40

door30 4 0 4 2

door32 0 0 1 0

door36 5 2 I 18 3

door40 0 0 4 4    
 

Table 6.4. Domain ambiguity: Three Edges: (door)(wall)(door), adjacency angles of

180°

particularly involving edges representing the most common door width of 36 inches.

Tables 6.8 and 6.9 illustrate the variety of door and wall edges within their re-

spective edge types. Metric information is often necessary to disambiguate candidate

subgraphs during matching. For example, Table 6.9 indicates that only 62 of the 431

wall edges occuring on the Engineering Building’s third floor are 160 inches or greater

 

  

door30 0

door32 4

door36 152

door40 1 1  

Table 6.5. Domain ambiguity: Three Edges: (wall)(door)(wall), adjacency angles of

180°
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A= 180° door30 door32 door36 door40

door30 0 0 1 2

door32 0 0 0 0

door36 0 2 1 14 3

door40 0 0 2 4    
 

Table 6.6. Domain ambiguity: Four Edges: (door)(wall)(door)(wall), adjacency

angles of 180°

 

 

A = 180° door30 door32 door36 door40

door30 0 0 0 0

door32 0 0 1 0

door36 5 1 109 2

door40 0 0 4 4    
 

Table 6.7. Domain ambiguity: Four Edges: (wall)(door)(wall)(door), adjacency

angles of 90°

in length.

The Where-am-I Solution will be examined within this ambiguous operating do-

main. Feature ambiguity and sensing error present difficult obstacles for our solution.

The robot navigator must extract a vertical ribbon edge feature and classify the land-

mark candidate while continuing forward motion. It will attempt to match a classified

landmark to its domain map, but due to the great feature ambiguity in this domain,

multiple matches are almost guaranteed. Additional landmarks must be obtained, ex-

panding context so that a unique match can be found. Suppose the robot navigator

were to start at a random location and orientation on the third floor, autonomously

aligning its motion vector down the hallway axis. Figure 6.1 illustrates, for every

possible starting location, the number of adjacent edges the navigator would have to

accurately sense and classify, before the assembled subgraph of edges would uniquely
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blank old window no window new window 2 new windows poster

door30 22 0 0 0 0 0

door32 4 0 0 0 0 0

door36 212 54 10 3 104 29

door40 11 11 0 0 0 0    

Table 6.8. Domain ambiguity: Door type census

 

)0 212 216 232 248 264 280 296 2112 2128 2160

wall 431 415 370 328 223 202 160 121 102 88 62

 

    

Table 6.9. Domain ambiguity: Wall type census

match a starting location in the master building graph. Maximum ambiguity occurs

at several starting locations that correspond to 36 inch doors embedded in a highly

regular metric feature sequence. These starting locations represent the areas that

would require the most context before the robot navigator could determine its pose.

This disambiguation becomes much more complex in the presence of sensing error

and noise. We will examine this issue in detail in subsequent sections.

Ambiguity could be reduced by designing the edge type definitions much finer

in granularity. Subdividing the door and wall edge types into multiple edge types

would yield matching subgraphs with considerably less context. This corresponds to

encorporating many of the attributes directly into the edge definitions and classifi-

cation schemes. Although this methodology appears attractive, its implementation

may quickly reveal an inability to accurately sense the features necessary for robust

classification. The necessity of real time processing further restricts the ability to

extract fine feature detail [102, 106, 138, 148].
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Figure 6.1. Starting location ambiguity of MSU Engineering Building
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6.3 Simulations

Over 80,000 simulated navigation runs were conducted using the StickRep model

database presented, under various simulated conditions. For each simulation, Rome

was initially placed at a random location and orientation in the hallway freespace.

The following assumptions were made throughout the simulation experiments:

A1) Rome has a valid StickRep database of the operating domain.

A2) Rome’s ultrasonic and monocular sensors behave as modeled in Chapters 4 and

5.

A3) Rome has the capability to autonomously align its forward motion vector to

within a few degrees of the ultrasonically sensed hallway axis. This assumption

is based on the exploratory work demonstrated by Dulimarta [47].

A4) Rome has the capability to autonomously center, within a few inches, its position

in the hallway freespace and maintain this centering during forward motion

without significant oscillation. Again, this assumption is based on the empirical

work of Dulimarta using only ultrasonic sensing.

Rome may commence travel either left to right or right to left relative to the

orientation of the camera. Each simulation experiment consisted of a suite of 10

independent trials, with each trial consisting of 1000 different random starts. The

experiment was implemented with a sliding window along the chosen surface of the

hallway freespace. Frames were acquired each 0.2 seconds, retaining only frames

containing a vertical edge ribbon. The matching process took a worst case time

of only 40 milliseconds per frame acquired, and the image processing described in

Section 4.1 consumed another 100 milliseconds. Conservatively then, Rome only

requires 0.2 seconds between frames to solve this problem. All these times were taken
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from simulations performed on a Sparc 1 workstation. Upgrading Rome’s computer

from the 38GSX laptop to a Sparc 1, sans monitor, is currently underway. To ensure

that feature overlap exists with this field of view, a subsequent frame acquired 0.2

seconds later enforces a maximum velocity of 30 feet per second. This is well over the

maximum Labmate base speed of 2.6 feet per second so pursuing this approach to

the Where-am-I Problem is limited by the mechanical capability of Rome’s Labmate

base, and not by implementation of our approach. Any hallway navigator cruising

at speeds in the neighborhood of 30 feet per second would very likely be viewed

as a safety hazard, particularly since this is well beyond the reaction horizon using

our current ultrasonic sensors (and close to world record sprinting time). Figure 6.2

describes the simulation we conducted. In the next section we will discuss how step

(2) in Figure 6.2 was implemented using the error models developed in Section 4.3.

6.4 Error

Error is inherent in any robotics application. The Where-am-I Problem is challenging

not just due to ambiguity in a dynamic operating domain, but also due to unavoidable

sensing errors. If we had domain ambiguity, but no error, then shaft-encoded wheels

could support accurate dead reckoning and there would be no pose uncertainity once

our navigator had disambiguated its correct pose. In the presence of sensing error,

navigation and control become more difficult because we can never have complete

confidence in our sensed data. We assume that our navigator does not possess its

initial pose so any sensed data that is consistent with some location in its building

database has to be accepted as long as it remains consistent with any previously

sensed data.

In the next section, we will explore our Where-am-I solution in the operating

domain assuming no error. In Section 6.4.2 we will develop a empirically based fuzed



(0) Receive random starting location

(1) Index actual StickRep edge from database

(1.1) Establish ground truth location

(2) Inject modeled error onto actual StickRep edge

(2.1) Ultrasonic error

(2.2) False positive error

(2.3) Missized true postive error

(2.4) False negative error

(3) Determine sensed StickRep edge

(4) Concatenate into sensed subgraph

(5) Index sensed subgraph from building database

(5.1) Assemble set of possible locations from matches with database

(6) Examine possible location set

(6.1) If more than one possible location

(6.1.1) Increment metric travel indicator

(6.1.1.1) Inject mechanical wheel error

(6.1.2) Goto (1) for next edge

(6.2) Else, if one possible location

(6.2.1) Propose symbolic pose

(6.2.2) Compare proposed pose with ground truth

(6.3) Else, if zero possible locations

(6.3.1) Raise sensing error flag

Figure 6.2. Simulation Algorithm
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error model that will be supplemental to our model of Section 4.3 in simulating the

injected error of step (2) in Figure 6.2.

6.4.1 No Error

Examining our Where-am-I Solution in a perfect sensing domain illustrates the am-

biguity in the feature space, and presents a best-case situation. This simulation

experiment, like the other five we will examine later, consisted of a suite of 10 in-

dependent trials, with each trial composed of 1000 simulated navigation runs from

random starting locations and orientations. Figure 6.3 is a representative histogram

illustrating the number of edges acquired before context disambiguation resolved a

single possible match to the building database. In all cases, the proposed pose was

the correct actual pose, as expected without any sensing error.

Frames were acquired and assembled into StickRep edges. When complete domain

features were assembled into a candidate subgraph, it was indexed into the building

database. The average number of edges acquired before convergence to a unique pose

was 5.28. The average StickRep edge in the operating domain had a metric average

of 67.64 inches, so the average distance Rome travelled before acquiring its pose was

29.76 feet. We saw in the previous section that computationally we could acquire this

average pose fix in just over one second, but Rome’s Labmate base is the limiting

constraint. Using the present hardware, this Where-am-I Solution would require an

average of 11.45 seconds. Let us again emphasize that this simulation result was

without sensing error.

This experiment was designed to evaluate the viability of the StickRep model in

representing a large building. It also examined the feature ambiguity of the operating

domain. These experimental results provide a comparative baseline for the evaluation

of the subsequent simulation experiments. In the next section we will discuss the

development of our fuzed sensor error models.
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Correct Classifications 83.87 %

True Positives 83.67 %

True Negatives 84.10 %

Misclassifications 16.13 %

False Positives 15.91 %

Missized True Positives 10.20 %

False Negatives 6.12 %    

Table 6.10. Empirical Based Error Model

6.4.2 Empirical Based Error

In Sections 4.3 and 5.4 we discussed the modeling of individual sensor error. What was

needed to construct a realistic simulation was a fuzed sensor error model; a model that

explains how the Short Side feature extraction algorithm developed in Section 5.3 fails

with respect to both vertical ribbon detection and ultrasonic ranging. The Short Side

Algorithm was trained on five different suites of coordinated image/ultrasonic frames

totalling 157 fuzed sensor readings. It was then tested on a fuzed image/ultrasonic

suite of 94 fuzed sensor readings. These data were acquired using the actual Rome

platform under various illumination conditions during a 9 month time period. Recall—

ing our individual ultrasonic sensor error model from Section 4.3 we define our control

envelope within the domain as a position within 1 foot of the hallway freespace axis,

with the optical axis within 75° of the surface feature normal. A significant amount

of this evaluation data was taken from outside this control envelope, so we feel that

these results are conservative. Table 6.10 presents the summary of the Short Side

Algorithm’s performance on this large library of data. These results constitute the

injected error model for the remainder of the simulation experiments as shown in step

(2) in Figure 6.2. For classification purposes, recall from Section 4.1 that the vertical

ribbon detector was looking for doors, and classifying them into one of six legal sizes.
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We feel that these results could be further improved by tuning the parameters of

the feature extractors, but our main interest here is exploring the performance of our

Where-am-I Solution, not in tuning the sensor suite to an individual problem domain.

In the next section we will discuss how the symbolic StickRep model was used to

match subgraphs to the building database despite the inexact feature metric attributes

that were the result of sensor error.

6.5 Metric Relaxation Matching

Fuzzy set theory and fuzzy control theory have active, maturing research communi-

ties. Much work has been done since Zadeh’s pioneering work in 1965 [159]. The

task of interest here is developing the capability to accurately infer a match between

a deterministically derived metric attribute and a sensed metric attribute that may

or may not contain sensing error. Many applications in fuzzy control handle vary-

ing inputs by representing the inputs by their fuzzy membership values [76, 144].

Other image processing applications develop sufficient and c-sufficient statistics [11],

or ranking procedures [150] to perform fuzzy pattern classification. An implementa-

tional weakness of these approaches revolves around the class membership definition.

In our application, although a door type edge must be a member of one of six metric

classes, a wall type edge has no such restriction on the metric attribute. How do we

define our wall type edge class membership? Lee suggests that relaxation is a much

simpler approach in this situation, and may actually yield superior results [98]. We

implemented a metric relaxation approach.

If no sensing error were present, a metric relaxation approach would not be nec-

essary. However, significant error is not always present, particularly when Rome

operates within the defined control envelope. The presence of significant error can

only be noted when sensing a known feature, or when the sensed feature fails to match
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(0) Subgraph fails to match any region of building database

(1) If relaxation = 0%, set relaxation = 10%

(2) If relaxation = 10%, set relaxation = 20%

(3) If relaxation = 20%, FAIL

Figure 6.4. Metric Relaxation Heuristic

a feature edge in the building database. When this matching failure occurs, Rome’s

executive knows that a sensing error has occurred, but it does not know what edge,

or edges, in the assembled subgraph contain significant error. To ensure that the

assembled subgraph is without error, the entire sensed subgraph must be discarded.

We were concerned that such a decision strategy would threaten our real time con-

trol requirements. We will revisit this issue in Section 6.7. We initially developed a

stepped metric relaxation heuristic that is invoked when the executive routine notes

that significant error has produced a failure to match condition. Figure 6.4 illustrates

the heuristic that operates on the feature metric attribute in the building database.

Note that after step (2) the relaxed granularity is coarser than the metric accuracy

delivered within the specified operating envelope. If our assembled subgraph fails to

match despite an arbitrary 20 percent relaxation in metric attributes, the executive

routine registers a sensing failure. During the simulation experiments, this heuristic

was used in conjunction with other heuristics and when such a failure was noted the

attempted pose fix was labeled a failure. We will discuss these experiments in detail

in the following section.
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43.80% of frame sequences contain error

0.00% of erroneous frame sequences recovered pose

41.70% of frame sequences did not converge

57.30% Correct Poses

1.00% Incorrect Poses    

Table 6.11. Performance without heuristics

6.6 Heuristic Error Recovery Experiments

In this section we will discuss in detail the extensive simulations that were conducted

using the StickRep Solution to the Where-am-I Problem. We conducted these heuris-

tic error recovery experiments on only one domain - the third floor of the Engineering

Building. We felt that this domain offered the most general, and varied real environ-

ment. The deterministic method to be developed in the next section will be examined

by multiple domains. These experiments were conducted according to the assump-

tions in Section 6.3. Rome can only react to sensing errors if it knows that an error

has occured. Thus, the executive routine invokes a heuristic only if the subgraph

matcher has failed to produce any pose candidates. These heuristic invocations are a

modification to step (6.3.1) in our general simulation algorithm presented in Figure

6.2. We emphasize that no heuristic is invoked until a matching failure occurs. Using

the error model from Table 6.10 for step (2), we initially conducted an experiment

without heuristics to examine the performance of the algorithm under simulated er-

ror. Table 6.11 summarizes the results of the median trial of 1000 attempts from the

suite of 10 such trials.

The results presented here represent the probability of Rome correctly determining

its symbolic pose in the presence of sensing and navigation error. The first line of

Table 6.11 illustrates the percent of the simulated frame sequences that contained
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error before a pose was concluded, or matching was abandoned due to error. The

second line shows the percent of frame sequences that did contain error, zero here,

that subsequently converged to a match and a pose was concluded. The third line

indicates the percentage of frame sequences that did not converge to a unique match

due to error, and were abandoned. In the fourth line the percent of correct poses

concluded is noted, and the last line shows that Rome incorrectly determined its pose

a small percent of the time because sensing error in its assembled subgraph accidently

matched a region of the building database. We feel that this behavior, corresponding

to a situation of false pose confidence, could represent a dangerous situation. Unless

this false pose is subsequently corrected by expanded context, undesired behavior

certainly could result. The percent of incorrect poses clearly is a figure to watch

closely.

6.6.1 First Frame Error

Here we examine StickRep’s performance enhanced by the decision to restart the

data acquisition process if an error is noted from a matching failure, but only if this

error occurs in the first acquired frame. This approach foreshadows the discussion

in the next section. The results in Table 6.12 summarize our solution’s performance.

Statistical variation among the 10 trials in this experiment were minor, and were

correlated to the injected error rate. The median error rate trial is given. Only a

mild overall improvement in performance was observed.

6.6.2 False Door Error

In this experiment we examined a recovery heuristic that was developed to overcome

the most common error in our empirical error model. The reason that false doors are

observed is due to spurious edge features in the operating domain and an aggressive
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43.30% of frame sequences contain error

15.70% of erroneous frame sequences recovered pose

34.80% of frame sequences did not converge

63.50% Correct Poses

1.70% Incorrect Poses   

Table 6.12. Performance with First Frame Heuristic

 

43.67% of frame sequences contain error

40.30% of erroneous frame sequences recovered pose

23.40% of frame sequences did not converge

74.00% Correct Poses

2.60% Incorrect Poses   

Table 6.13. Performance with False Door Heuristic

vertical ribbon detector. Here our heuristic removed the door type edges in our

assembled subgraph that corresponded to the door type whose a priori probability

was the lowest. Referring to Table 6.8, in this domain, the 32 inch door is the least

likely to be sensed. This deletion occurs sequentially arbitrarily starting with the

most recently sensed door, backwards in time. Between each door edge removal, a

matching occurs, attempting to recover candidate poses. Again, statistical variation

was minor among the 10 trials, and Table 6.13 summarizes performance. A significant

performance improvement was observed, but at a cost of almost tripling the dangerous

incorrect poses.

6.6.3 Mis-sized Door Error

Here we isolate our examination of metric feature relaxation as discussed in the previ-

ous section. The desired performance enhancement is to recover from the mis-sizing,
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44.30% of frame sequences contain error

28.37% of erroneous frame sequences recovered pose

31.90% of frame sequences did not converge

66.90% Correct Poses

1.20% Incorrect Poses   

Table 6.14. Performance with Mis-sized Heuristic

 

42.20% of frame sequences contain error

62.80% of erroneous frame sequences recovered pose

8.20% of frame sequences did not converge

84.30% Correct Poses

7.50% Incorrect Poses   

Table 6.15. Performance with Full Heuristic Suite

or misclassification of door type edges. An actual door was sensed, and correctly

identified as a door, but was misclassified as a door type edge of incorrect width.

Table 6.14 presents the performance summary. This heuristic was unimpressive when

not used in conjunction with other heuristics, but only mildly increased the number

of incorrect poses.

6.6.4 Full Recovery Suite

In Table 6.15 we summarize our solution’s performance when all three heuristics are

used in combination. An 84.3 percent error recovery rate was observed, but a signifi-

cant percentage of false poses was observed. A 20 percent increase in matching time

was observed, but this 8 milliseconds per frame is not significant in our application.

The correct pose performance noted in Table 6.15 is impressive, but we felt that

the incorrect pose percentage represented a significant risk. Reducing the risk of
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incorrect pose estimation without degrading correct pose performance would yield a

solution approach with strong potential. In the next section we will discuss just such

an approach.

6.7 Deterministic Error Recovery

Table 6.15 shows the best heuristic performance towards error recovery. While the

applied heuristics were powerful in reducing the percentage of frame sequences that

did not converge, incorrect poses occured frequently. Table 6.16 summarizes results

from an experiment where no heuristics were used. Here we discard the entire sensed

subgraph if an error is noted by a failure to match the building database, and sim-

ply construct another sensed sequence. The observed multi-sequence performance

exceeded the accuracy of all previous experiments. The matching was fast enough

that despite a large increase in the number of matching requests precipitated by this

approach, the absense of heuristics allowed this experiment to actually run faster than

the experiments using heuristics. Figure 6.5 is a histogram illustrating the number

of frames sensed before a final pose was determined using this approach. Table 6.17

summarizes the comparison of our solution’s average performance with, and with-

out modeled error. The average number of edges required before convergence to a

unique pose was observed to be 6.84, or 38.55 feet travelled before acquiring its pose.

Using the present hardware, this Where-am-I Solution would require an average of

only 14.83 seconds to acquire its pose. That pose would be accurate 97.80 percent

of the time. This performance compares very favorably with the results we observed

without sensing error in Section 6.4.1.
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6.8 Examining Additional Domains

Our examination of error recovery approaches in the previous sections led us to con-

clude that our deterministic recovery approach was superior to the heuristic methods.

The deterministic error recovery performance was summarized in Tables 6.16 and 6.17.

We now will examine the performance of our solution applied to additional domains.

We felt that although the Engineering Building domain is very large, many other

domains, while smaller in scale, possess even greater feature ambiguity that will fur-

ther challenge our approach. We conducted the examination of these other domains

with only our deterministic error recovery algorithm and used the composite error

model we developed for our previous domain. The performance summaries presented

represent the median trial of 1000 attempts from a suite of 10 such trials. We will

discuss one additional real, one manufactured, and two synthetic domains:

0 MSU Engineering Building, Third Floor: 3 mile hallway with both lab and

office areas and varied features. Domain previously discussed.

0 MSU Wells Hall, Seventh Floor: Office building roughly 15 percent the scale of

the Engineering Building with strong feature regularity.

0 Synthetic regular polygon with 46 sides and only one unique feature provides a

very ambiguous domain.

0 Synthetic storefront 115 mile long as viewed from the street provides a structured

outdoor domain.

0 MSU Wells Hall, Seventh Floor: Modified by introducing a single artificial

vertical edge ribbon at the feature edge location farthest from existing reference

landmark.
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The next application domain was the seventh floor of Wells Hall as shown in

Figure 1.1. This domain is roughly 15 percent the scale of the Engineering Building

domain, but contains regular feature sequences that demand a much larger context

to enable an accurate match. The major feature sequence ring contains a single

feature landmark to provide reference context for all other ring features. Table 6.18

summarizes the observed accuracy. The ambiguous domain demanded long frame

sequences for reference context and these sequences were thus more likely to contain

an sensing error.

We next constructed two synthetic domains to explore particular performance

questions. The regular polygon was arbitrarily chosen as a difficult domain with a

single reference feature placed to avoid complete ambiguity. The storefront sequence

is comparable to the feature sequence viewed during hallway navigation. We assume

that street navigation is safe and possible, and designed our simulation to recover

pose in a domain scaled to a city block. Real storefronts were used to guide the

construction of this domain. Tables 6.19 and 6.20 summarize the accuracies observed

in these two domains.

We returned to the Wells Hall domain to explore the potential of disambiguating

the domain with the addition of a reference landmark. We introduced a single arti-

ficial vertical ribbon edge at the feature edge location most distant from the existing

reference landmark. We hoped that this feature manufacturing would decrease the

scope of the context searching observed in the actual domain. Table 6.21 illustrates

the observed mild improvement in accuracy performance. but the time performance

is a more important summary figure.

In Table 6.22 we summarize the time performance observed in all five domains.

The regular polygon was clearly a difficult navigation domain even without sensing

error, and our approach appears unsuitable for applications of this type. Wells Hall,

despite its smaller size, was observed to be a more difficult. domain for pose recovery
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than the Engineering Building. The artificial landmark placed in Wells Hall improved

pose recovery performance significantly from the existing domain, particularly when

sensing error is considered. Although this manufactured domain provides only a

single example, it demonstrates the potential for improving domain performance with

a small degree of domain tailoring. The synthetic storefront provides an example for

the application of our solution approach in structured outdoor domains, provided that

locomotion and safety issues can be overcome. An outdoor environment still offers

insufficient structure for navigation of this nature to be currently practical. If special

situations, such as hazardous materials handling, were to remove human dynamics

from this domain, then useful pose recovery would become possible. Advances in

locomotion hardware could improve these results significantly before the applications

approached a real time processing constraint.
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41.50% of frame sequences contain error

94.70% of erroneous frame sequences recovered pose

0.00% of frame sequences did not converge

97.80% Correct Poses

2.20% Incorrect Poses   
 

Table 6.16. Performance of deterministic recovery in Engineering Building

 

 

   

No Error Modeled Error

Edges 5.28 6.84

Distance (ft) 29.76 38.55

Time (sec) 11.45 14.83

Accuracy (%) 100.00 97.80 
 

Table 6.17. Overall performance summary

 

69.70% of frame sequences contain error

90.82% of erroneous frame sequences recovered pose

0.00% of frame sequences did not converge

93.60% Correct Poses

6.40% Incorrect Poses   
 

Table 6.18. Performance of deterministic recovery in Wells Hall

 

96.00% of frame sequences contain error

97.92% of erroneous frame sequences recovered pose

0.00% of frame sequences did not converge

98.00% Correct Poses

2.00% Incorrect Poses   
 

Table 6.19. Performance of deterministic recovery in regular polygon
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47.40% of frame sequences contain error

93.15% of erroneous frame sequences recovered pose

0.00% of frame sequences did not converge

96.10% Correct Poses

3.90% Incorrect Poses  
 

Table 6.20. Performance of deterministic recovery along synthetic storefront

 

 

62.40% of frame sequences contain error

91.35% of erroneous frame sequences recovered pose

0.00% of frame sequences did not converge

94.60% Correct Poses

5.40% Incorrect Poses  
 

Table 6.21. Performance of deterministic recovery in a modified Wells Hall

 

 

 

 

 

 

 

 

 
 

 

 

Domain Error Type Edges Distance (ft) Time (sec) Accuracy (%)

Engr None 5.28 29.76 11.45 100.0

Bldg Modeled 6.84 38.55 14.83 97.8

Wells None 13.72 69.97 26.91 100.0

Hall Modeled 37.05 188.96 72.68 93.6

Modified None 12.61 64.31 24.74 100.0

Wells Modeled 14.76 75.28 28.95 94.6

Regular None 46.00 383.33 147.44 100.0

Polygon Modeled 66.62 555.19 213.54 98.0

Store- None 14.28 73.76 28.54 100.0

front Modeled 18.04 92.19 37.88 96.1     
 

Table 6.22. Comparison of domain performance
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6.9 Summary

This chapter has presented the simulation results of our StickRep Solution to the

Where-am-I Problem. We have seen that in a domain with great symbolic feature

ambiguity, StickRep provides a strong representational framework to determine the

pose of a robot navigator. We have examined several heuristic schemes to recover from

sensing error, but all these heuristics fall short of the performance of our deterministic

approach. Metric relaxation of ambiguous feature attributes were matched using

the StickRep representation. Even under the influence of realistic noise models, our

solution converged to a pose only 30 percent slower than under ideal, error-free sensing

conditions. Furthermore, even with significant error, our solution converges to an

accurate pose in a short period of time. We feel that this solution approach is robust,

and provides strong performance even on low cost hardware navigators like Rome.

No competitive solution to this problem has appeared in the literature.

Capable, but low cost sensors and navigation platforms have opened up the sc0pe

of applications for both industrial and research mobile robots. Our solution method-

olgy enables these systems to become more autonomous and to pursue more chal-

lenging applications when provided the structure of an indoor environment. StickRep

enables less ambitious tasks to be pursued in a structured outdoor environment. Our

Where-am-I Solution does not rely on fast or specialized hardware, so it can grow in

performance as advances in hardware continue. With such a strong solution in hand,

more ambitious navigational tasks can be attempted since the robot possesses the

capability to autonomously recovery its pose.



CHAPTER 7

Summary, Conclusions and

Recommendations for Future

Research

7.1 Summary and Conclusions

The research addressed in this dissertation dealt with robotic navigation and pose

recovery using a symbolic landmark map. Sensory information was obtained from

an ultrasonic sensing system and a monocular camera to form a vertical landmark

model. This model served as a basis for pose estimation, a key challenge for mobile

robot applications. Our solution to the Where-am-I Problem enables map-based path

planning, obstacle avoidance, landmark identification and other essential navigation

operations.

Constructing such a model starts with the complex task of determining range

information from the robot’s sensing suite. We presented alternative approaches to

representing the robot’s sensory world, but instead of pursuing a dense, computa-

tionally demanding geometric model, we offered a sparse representational scheme

that required strong symbolic matching, ambiguity resolution and error rejection

110
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capabilities. Our StickRep representation was built upon the idea of encoding ex-

tractable environmental features as attributed edges in a sparse symbolic graph. Our

StickRep representation hinges on strong assumptions about the structure of an in-

door domain. Visual landmarks in this domain must be sensed, and a real time image

processing requirement restricts many approaches. We chose to pursue the extraction

of symbolic features in our domain with a single intensity image fuzed with ultrasonic

range data. Many visual features in an indoor environment possess strong verticality.

We developed a processing suite that extracted vertical edge ribbons, and classified

symbolic landmark candidates using the fuzed sensory data. These experiments also

led to the definition of an ultrasonic sensing accuracy footprint.

Constructing a sensing framework that casts vision and ultrasonic sensing in roles

where each can operate accurately, while simultaneously supporting unrestricted real

time navigation was our goal. We presented two sensing frameworks, our Two Side

and Short Side geometries, that strove towards this goal. These geometries were de-

veloped and trained with a fuzed image/ultrasonic suite of 157 real sensor readings,

and over 100 thousand Monte Carlo experiments. Detailed composite error mod-

els were determined from lengthy experiments employing these sensing geometries.

Both geometries have a more general application, but extensive error analysis and

simulations revealed that the Short Side Geometry was best suited for our task. To

accurately establish its pose, our navigator must acquire its sensory information at

instances where particular sensor error is near its minimum. We defined an accu-

rate navigation envelope that enhances sensing accuracy while only mildly restricting

travel and locomotion.

Using the StickRep representation and a test suite of 94 real fuzed sensor readings,

extensive simulations were conducted to examine the performance of our approach

in domains containing great feature ambiguity. Metric attributes were often required

to successfully disambiguate among, and classify candidate landmarks. We presented
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a stepped metric relaxation scheme to enable feature matching to proceed despite

significant metric sensing error. From over 80,000 simulated navigation runs we de-

termined that from a random initial and unknown pose, our navigator could recover

its pose in less than 12 seconds in the absense of error and in less than 15 seconds

with realistic modeled error in a large domain. Other domains also illustrated strong

results, and the introduction of artificial landmarks offer to further improve perfor-

mance in difficult domains. This time performance was limited not by our solution

approach, but by the mechanical limitations of the robot base. Our solution would

support implementation in a navigation system traveling at speeds up to 30 feet per

second using a Sparc 1 processor. A battery of heuristic based pose recovery experi-

ments were presented, but the overall performance of our deterministic error recovery

approach exceeded the former results in all measures of speed and accuracy.

7.2 Contributions

The primary contribution of this research is a solution to the Where-am—I Prob-

lem in the examined domains. Our solution was examined using 94 real, fuzed test

image/ultrasonic readings with over 80,000 simulated navigation trials. An accurate

pose was recovered in 97.8 percent of the attempts in a large, varied domain. Accu-

rate and rapid solution performance was also obtained in experiments with additional

domains. We observed accurate and rapid pose recovery performance with a naviga-

tor constructed with low cost hardware. A Where-am-I Solution enables navigation

systems to become more independent and to pursue more difficult applications in a

structured, indoor environment.

Our Short Side and Two Side Geometries measure vertical edge ribbon fea-

tures in real time with an uncalibrated camera. These sensing frameworks

represent real time solutions to the more general problem of object measuring.
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Provided the objects have at least two parallel linear edges, and are viewed with a con-

trastng background, their primary dimension may be determined without expensive,

specialized hardware or a customized measurement jig.

We have presented StickRep, a 1% dimensional structure that supports

rapid symbolic matching with minimum a priori information. StickRep

sparsely represents the 3D world. This representation supports fuzing ultrasonic

range data to images of symbolic features from the mapped domain. StickRep suc-

cessfully handled inexact feature attributes in ambiguous feature domains throughout

our extensive simulations. This representation reduced feature matching to an O(n)

string matching problem, and supports dynamic feature attributes. StickRep avoids

massive domain databases and the limiting assumption of a static environment.

We presented a real time vertical edge ribbon detector using available

illumination. This detector was robust to rotational misalignment of the camera,

and correctly extracted and classified almost 84 percent of the landmark candidates

from a suite of 94 real test images. This detector only required inexpensive sensing

hardware and computational support with processing speeds comparable to a Sparc

1.

Another contribution is the definition of an accurate ultrasonic sensing

footprint. Forty thousand ultrasonic samples were obtained from various ranging

surfaces and orientations. Definite limitations were observed that motivate acquisition

strategies to ensure accurate ranging. Poor angular resolution has plagued ultrasonic

sensing applications in the literature, but no sensing footprint has been established.

Such a footprint led to the design of an overall navigation envelope that protects

methodologies from frequent spurious ranging data.

A small contribution was made towards the physical construction of two

robotic navigators to serve as testbeds for future experiments. They can

serve as testbeds for theoretical work and simulations, and stimulate further studies.
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Rome and Sparta represent mature hardware platforms well prepared for future sen-

sory and navigation experiments. Future designers will be relieved of a majority of

the hardware concerns and instabilities inherent in robotic applications. Rome now

possesses a stable power backplane, ready for evaluation and experimentation of sys-

tems such as transputers, or a Sparc 1 system box. Rome forms the initial backbone

for more mature work, pursuing more ambitious tasks.

7.3 Recommendations for Future Research

We presented a large simulation study of our Where-am-I Solution in Chapter 6.

We examined two real and three synthetic domains. While these domains are large,

and contain varied, and ambiguous features, expanding the simulation domains to

include other buildings could be illuminating. It would be desirable if generalizations

could be made linking navigation capabilities with building types, but the existence

of sensing error will precipitate observations that are probabilistic in character. No

performance guarantees can be made. We might expect pose recovery to be more

rapid in some smaller buildings, since they would require less matching attempts

than in our domains. But this presumes that feature ambiguity would not be great.

Successfully extending our solution into limited outdoor domains would also be

very useful. As we discussed in Section 2.3.2, many efforts are pursuing structured

outdoor applications, and adapting StickRep’s sequential feature representation to

support more general image vieWpoints would greatly empower autonomous naviga-

tion. Such an effort would be more general than past outdoor navigators at Michigan

State [55], and at many other research centers. Unlike most published approaches,

our effort is limited, not enabled, by the hardware on which it is implemented. Per-

formance certainly may be degraded by an outdoor generalization, but strong perfor-

mance
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potential exists.

An enhancement to an indoor navigator would be using two cameras with opposing

optical axes to search both hallway walls for features. Our matching routine could

be tasked to match two separate landmark candidates and then search for a domain

location where these symbolic sequences occur on opposing walls. StickRep must be

carefully modified to encode the domain relationships to include an opposing feature

edge. Feature matching would resemble two dimensional string matching. Although

this expansion of domain context may greatly decrease pose recovery times, it might

rather become computationally intense due to the more complex edge adjacencies

that may exist at a feature node. This approach could prove useful, and certainly

warrants exploring.

We presented our vertical edge ribbon detector in Section 4.1. While this de-

tector was fast, and tolerant to roll axis misalignment of the camera, it produced

false positives on blank walls. A better detection procedure to eliminate these false

positives represents a good opportunity for increased performance. Several attempts

were made to implement more adaptive thresholding, but the crisp, uniform inten-

sity histograms typical of a man made environment caused bimodal Gaussian fitting

to be problematic and poor in performance. Other adaptive thresholding techniques

should be explored. A successful adaptive thresholding technique that operated under

natural, and varied illumination, would enhance the robustness of our detector.
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APPENDIX A

Ultrasound Histograms

The following histograms are summarized in Tables 4.2 and 4.3 in Section 4.3. 1000

ultrasonic samples were obtained from each of three surface types at three or four

orientations each. The indicated angle is the angle between the acoustic axis and the

surface normal. The choice of angles was arbitrary, and the following histograms are

representative of the results observed.
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Figure A.2. Concrete surface, 30°
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Figure A.9. Cloth surface, 30°
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APPENDIX B

Partial Derivatives from Sensing ]

Geometries

In Section 5.5.3 we presented the first order linear error model for our landmark

measuring geometries. The closed form representation of these partial derivatives

surpassed four pages in length each I We present the following figures to summarize

the behavior of the partial derivatives for each of the two sensing geometries. Note

that as the arbitrary look angle increases, the nonlinear gain portion of the curve

approaches the linear region of the curve that we are operating on.
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Two Side Geometry
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Short Side Geometry
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