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ABSTRACT

INDOOR ROBOT NAVIGATION USING A
SYMBOLIC LANDMARK MAP

By

Stephen John Walsh

This dissertation addresses the problem of a mobile robot autonomously estimat-
ing its location within an a priori map using sensed information. A 2D indoor robot
world is sparsely represented as a collection of vertical landmarks encoded as an at-
tributed edge graph. This map is matched to data obtained from a single image with
depth to feature information estimated by ultrasonic sensors.

The goal of this work is the rapid recovery of an estimated position within a pre-
viously mapped domain from an initial state of complete uncertainty. The structure
provided by indoor environments permit geometric assumptions that enable rapid
vertical landmark detection and classification. Pairs of vertical edges are extracted
from monocular images and candidate landmarks identified. Methods of fuzing ultra-
sonic estimated range data with extracted vertical edge features from a single image
are developed. Experiments have demonstrated that the proposed methods classified
vertical landmarks with 84 percent accuracy over a large library of domain data. Fur-

ther experiments lead to the definition of a footprint for accurate ultrasonic sensing.



Detailed composite error models for the ultrasonic and imaging systems are developed
and used to examine the performance of the proposed sensing geometries. Analysis
and experiments lead to the definition of a general navigation envelope that enhances
sensing accuracy while only mildly restricting travel and locomotion.

An independent suite of test data combined with the developed composite er-
ror models are used to conduct a large simulation study on the performance of this
methodology in real and synthetic domains. Several heuristic methods are proposed
for recovering from sensing errors. Simulation results show that a deterministic error
recovery approach outperforms the heuristic methods in measures of speed and ac-
curacy. In one large domain, position recovery is obtained in less than 12 seconds in
the absence of error and in less than 15 seconds with realistic modeled error; results
show 98 percent correct pose decisions. Similar time and accuracy performances are
observed in other domains. The time performance is limited not by the solution ap-
proach, but by the mechanical limitations of the robot base. Travel speeds up to 30

feet per second could be supported.
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CHAPTER 1

Introduction to the Problem

Robotics is a rapidly expanding field with a rich research landscape. Multisensor mo-
bile robots are navigating through academic and industrial buildings and ambitious
outdoor efforts are presently under study. A central requirement towards the devel-
opment of capable and flexible robotic systems is the ability to develop robust spatial
descriptions of their environment from sensory information, and to employ this infor-
mation in planning and solving application tasks. These capabilities enable the robot
to interact lucidly with its domain, both by interpreting its sensory data to draw
appropriate conclusions for near term decisions, and by diagnosing and maintaining
an adequate domain model for strategic planning and decisions. Systems with little
or no sensing capabilities are limited to fixed sequence operations in highly controlled
work areas, and cannot perform activities with any significant degree of autonomy or
adaptability.

To successfully achieve these capabilities in robotic systemns, several research issues
must be addressed. These include fusion of information from multiple, and dissimilar
sensors, problems in sensor interpretation, mapping and representing the navigator’s
domain, handling sensor uncertainity and errors, landmark identification, position
estimation, and registering a priori maps with sensed information. In this disserta-

tion we touch upon all of these issues to varying degrees in our approach to solving
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a particularly challenging robot navigation task - pose recovery. Pose recovery is the
estimation of the navigator’s position after initial, and complete disorientation within
its operating domain. A long term goal of the research presented in this dissertation
is the development of minimal, yet robust mapping and navigation tools for mobile
robots operating in and exploring structured domains.

In the following section, we will present an overview of the problem studied in this
dissertation. A brief discussion of robot navigation and an outline of the organization

of this dissertation close the chapter.

1.1 Problem Statement

To widen the application range and deployment of both industrial and research robots,
a key requirement is the development of systems with greater autonomy, able to
sense, plan and operate in structured environments with minimal prior knowledge.
To achieve this level of independence, the robot must not only be able to accurately
sense its domain, but must be able to accurately sense its pose in its domain. Pose
estimation is a base problem to all navigation tasks. Many different paradigms exist
for different applications, but all use some sensory information to overcome dead
reckoning error. To be robust in any environment, a robot navigator must know
where it is relative to major objects in its domain, to some degree of accuracy. This
task is known as The Where-am-I Problem.

The Where-am-I Problem : The autonomous recovery of an estimated position
within a previously known, or mapped operating domain, from an initial state of
complete translational and rotational uncertainity.

Solving the Where-am-I Problem is more difficult than maintaining an estimated
pose during navigation from an initial known position. However, a successful Where-

am-I Solution will also adequately address pose maintenance. The autonomous ability



to accurately sense, and represent an operating environment are pivotal for success-
fully addressing this problem. In this dissertation we present our solution to the

Where-am-I Problem for a class of indoor domains.

1.2 Robotic Navigation

A robotic navigator must have some mechanism for representing its surrounding en-
vironment. If not, it cannot truly navigate, but merely avoid obstacles, and its
application will be specialized and limited. Domain representations, or maps, do not
have to be provided as an a priori database, but may be constructed from sensory
information obtained by the robot. What domain features are important for navi-
gation, and how can they be encoded into a representation that enables self-location
in an operating domain such as the building in Figure 1.17 Building a mobile robot
application solely upon an a priori representation is considered fragile even within
structured, indoor domains, because it fails to accomodate the inherent environmen-
tal dynamics associated with people. At a minimum, applications employing a static
domain model must still sense to avoid unpredictable obstacles such as pedestrians
or temporary objects. But static domain approaches fail to update these dynamic
events into their representational schemes, and often fail in forgiving, but dynamic
domains such as a business office [56, 156]. We will discuss the opinions of static and
dynamic domain modeling in detail in the next chapter.

How much domain knowledge is necessary for navigation? This question is valid
whether employing a static or dynamic representation, or whether the application
constructs its own map or employs an a priori map. How can a priori domain features
such as the door in Figure 1.2 be extracted and represented? What sensors are best
suited for domain feature extraction? Can inexpensive sensors such as the ultrasonic

ranging system shown in Figure 1.3 reliably extract feature information? We were
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Figure 1.1. Sample indoor navigation domain: How should this be represented?

motivated by a sense of economy and desired to explore a minimalist approach. We
did not wish our solution to revolve around a highly accurate metric map, because
we did not feel this was necesary, and we desired real time performance using modest
hardware and sensors. Human navigation operates at a higher level, and is more
sensitive to feature landmarks than fine metric data [92]. Landmark based navigation
will be more closely examined in Section 2.3.

Robust sensing and dynamic representations are certainly desirable system at-
tributes. Many researchers would even argue that these attributes are indeed re-
quirements. Feature extraction, landmark classification, and error handling are often
employed in support of these goals. But these desirable sensing and matching capa-
bilities may sometimes oppose the rapid, accurate pose recovery that is our research
goal. These are some of the research issues that frame the work we present in this
dissertation. Many of these issues that arise are not dealt with exhaustively, and

much room for further research and exploration remains.



Figure 1.2. Door feature

opstacle

Figure 1.3. Ultrasonic sensing of distance to hallway walls



1.3 Organization of this Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 examines the at-
tributes and liabilities of commonly employed robotic sensors. A thorough discussion
on the performance and approach of several research efforts from the mobile robotic
literature, including both indoor and outdoor applications, will be presented. We
will also survey competing methodologies to pose estimation, and examine the local
efforts that preceeded our work.

In Chapter 3, we discuss the Where-am-I Problem and the various methodologies
that address it. An examination of several approaches to domain representation are
presented as well as StickRep, our chosen representation. Strengths and weaknesses
are compared with respect to our desired solution capabilities.

An examination of landmark sensing is presented in Chapter 4. We will discuss
the development of our vertical edge ribbon detector, including the performance of
our feature extraction methods and the landmark classification performed. The the-
ory of ultrasonic sensing and an exhaustive ultrasonic characteristics experiment are
presented. The need for an accurate ultrasonic sensing footprint is motvated from
these results.

In Chapter 5, we present two sensing geometries, Two Side and Short Side, that
perform as accurate sensing frameworks. We will see that these geometries offer real
time capability that extend beyond our present application to more general situations.
Extensive error analysis, Monte Carlo experiments and a large simulation study are
presented to define several composite error models for our data acquisition. These
results suggest that our Short Side Geometry is best suited for our solution approach.

Domain ambiguity and the representational challenges that it presents are dis-
cussed in Chapter 6. Large scale simulations are presented that illustrate the chal-

lenge of the Where-am-I Problem even without the presence of sensing error. Further



heuristic error recovery experiments are compared using the developed error models,
and our metric relaxation technique is discussed. Many of these heuristic approaches
offer adequate pose recovery, but our deterministic error recovery experiment demon-
strates the strongest solution performance in the chosen domain.

Chapter 7 concludes the dissertation by summarizing the contributions of our

work and offering suggestions for future exploration.



CHAPTER 2

Literature Background and

Motivation

To open up the scope of applications for both industrial and research mobile robots,
greater autonomy is needed. Unstructured environments present a difficult challenge,
and most application designers have responded by providing detailed a priori in-
formation to the mobile robot. Digital contour maps for outdoor applications [39],
or encoded infrared beacons [110], and bar-coded floor stripes for indoor robots [61],
are examples of providing reference information to enable the robot to determine its
location in the world. To gain greater independence, the robot must acquire an under-
standing of what’s around it, by capturing and developing an adequate environmen-
tal model. Robots with restricted sensing abilities are limited to highly structured,
and sequential operations. A variety of complimentary sensors and a mechanism for
extracting salient information have been widely successful in enabling autonomous
operations in structured environments. Determining the presence and location of
objects is a primary task in robotic navigation. Most of this sensory information
will have to be compiled from multiple sensors, and a world model then constructed.
This model can then serve as a basis for path planning, obstacle avoidance, landmark

identification, position estimation and other essential operations. Constructing such



a model starts with the complex task of determining range information from sensing
the world. Stereo vision is the most popular passive sensor with mobile robots, and
ultrasonic and infrared sensors are the most broadly used active sensors.

We will briefly examine the merits of the sensors most common in robotic applica-
tions, and then survey some of the latest research and industrial applications whose
results could most readily contribute to our local efforts. We will primarily focus on
vision-based systems, although most applications combine stereo vision with active

Sensors.

2.1 Sensor Overview

Ultrasound technology has been with us for some time, but few previous applications
built detailed maps. Ultrasonic sensors have now become widely used in mobile robot
applications. Their main attraction is their simplicity, low cost, and the fact that
distance measurements can be determined directly. A typical sensor has a useful
measuring range of 1 to 35 feet, with a beam width of 15 degrees, so an array, or belt
of sensors are often employed [52]. Early robotic applications include simple distance
measurements [63], localizing object surfaces [24], and determining the world position
of a robot [29]. In a later effort, ultrasonic sensors were used to determine a robot’s
position by comparing obtained distance measurements against an accurate map.
This approach didn’t account for the range errors that are typical in ultrasonic data
[111, 112]. A subsequent method also used an onboard map, but attempted to handle
noisy range data [45]. A more sophisticated effort pursued ultrasonic mapping and
navigation by using a narrow beam to build a line-based description of the robot’s
world [36, 37]. The ultrasound readings were interpreted by fitting line segments
to the detected points, and then comparing these to an a priori map. Noisy data

once again plagued the approach. A recent effort explicitly represents this inherent
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uncertainty [38]. It dynamically maintains a description of free space limits, and
matches observations to a world model. A major effort overcame these earlier troubles
by building its own map through a probabilistic fusion of successive readings [50]. No
a priori information was used. A controlling microprocessor selected and fired the
sensors, timed the returns and provided the corresponding range value. Other similar
systems are now maturing [91].

Stereo vision systems have been traditionally used to extract depth information
from two images [114]. The major difficulty of employing this technique in real world
environments is the intrinsic computational expense of extracting 3-dimensional (3D)
information from stereo-image pairs which limits the number of points that may be
tracked [2, 16, 17, 43, 113, 133]. Real time constraints have previously precluded dense
3D descriptions, but later approaches have obtained promising results [4, 23, 120].
Traditional stereo systems have relied on high-contrast edges or points that could
be easily tracked through several images [100, 115]. Most practical real world vision
navigation systems only build sparse depth maps as a result of this constraint [107,
114, 145]. They select points to be matched and tracked using an interest operator,
and handle 30 to 50 points, generating a 3D map in 30-50 seconds on a VAX 11/780.
It’s predicted that 25 percent of all robots sold this year will incorporate some type
of vision system [10].

Infrared (IR) sensors are another active sensor that can directly determine prox-
imity information. They usually complement other more capable sensors, but one
approach proposes encoded IR beacons to estimate position [110]. Signaling specific
pose information is not limited to the IR medium. Radio transponders costing just
$1 have now become available that may broadcast a specific domain location to a
navigator. Such a manufactured landmark can be used to provide pose information
in difficult, ambiguous domains. More sophisticated transponders possess the mem-

ory to record the messages of passing navigators in an environment where multiple
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robots are operating. This emerging technology represents a low cost solution to our
problem in domains where their use is practical, and could be particularly attractive
to industry.

Laser range finders are an expensive answer to obtaining direct range information.
The maximum detectable phase shift limits typical range to 64 feet. A field of view
of 30 vertical degrees by 80 horizontal degrees has been achieved [39]. This sensor
class is maturing rapidly with many new sensors entering the market. Models with

finer resolution for indoor work are now available [10].

2.2 Navigation Survey

We will now examine in some depth the more interesting efforts of applied dynamic
path planning over the last couple of years. These summaries are divided into indoor
and outdoor environments. The structure provided by an indoor robot world greatly
simplifies the navigational challenges. Path planning and obstacle avoidance often
become a 2-dimensional (2D) problem. The additional tasks imposed by an outdoor,
3D robot world have been addressed by more complex navigational paradigms, but

have limited applicability to our present efforts at Michigan State.

2.2.1 Indoor Applications

Elfes’s Dolphin system is a major effort, perhaps the first to construct dense ultrasonic
maps without any a priori maps or feature data [50, 52]. He felt that the matching
errors typical in stereo vision applications were too serious a challenge to build a base
robotic navigation system upon. He was concerned about how ultrasound and laser
range finders were coarse and insensitive to surface characteristics. The ultrasonic
sensors that were available for mapping unstructured environments are quite noisy,

so he built a probabilistic occupancy system to facilitate the combination of multiple
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sensor readings on the same location. He designed a grid system that assigned a
probability of occupied or empty to each square. The grids could be as fine as 0.1
foot or as coarse as 1 foot square, but they were uniform throughout the robot world.
To derive a probability for each grid space given a particular ultrasonic reading, Elfes
defined:

P the grid cell of interest

R the range measurement returned by ultrasonic sensor

R..;»n the smallest range value accepted from ultrasonic sensor

€ the mean ultrasonic error

w the beam aperture

S the position of ultrasonic sensor

6 the distance from S to P

0 the angle between the acoustic axis and segment SP

The area illuminated by the ultrasonic beam is modeled as two regions with different
probability formulas for each:

Empty Region: points where § < R—¢ and <4

Occupied Region: points wheree < |R—6| and <%
One probability is computed for angle and one for range. Whether the point of

interest is in the occupied or empty region, the angle probability is:

Pr=1- (%)
In the occupied region the range probability is:
P.=1 - (s5)

In the empty region the range probability is:
— §—Rpin )2
Pe - 1 - (R-s‘Rmin)
The occupied or empty probability for each cellis calculated by multiplyingits angular

by its range probability. Successive ultrasonic readings were additively combined with

previously collected data to capture an evolving picture of the world. He found that
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these ultrasonic maps were produced an order of magnitude faster than those from
stereo vision. He had great success in actual tests using this system, both inside and
outside. Michigan State’s Sparta system modified Elfes’ approach to better handle
rapidly changing situations, and an occasional bad ultrasonic return [134].

Matthies’ effort built upon the occupancy grid system to incorporate stereo vi-
sion [107]. Matthies liked the occupancy grid system because it uniformly treated
sensory data and handled the uncertainty of the robot’s position. However, ultra-
sound couldn’t see through clutter like stereo vision could. Ultrasound gives better
detection of broad object surfaces and indicates large empty areas, but gives less
definition to surface boundaries and fine surface structure. So he integrated a stereo
vision system onto the system pioneered by Elfes. He extracted near-vertical edges
using a Canny edge detector [28], and independently matched five scanlines centered
on the robot’s horizon looking for features that extend across all five. He used these
edges to constrain the range of the search. The result of this process is a set of edge
points on the horizon line of known depth. He joined these points with line segments
to create a depth profile that approximates the scene surface structure. Matthies
points out that combining these two sensor systems leads to one of three situations:
complementation, correction, or conflict. Ultrasound made strong statements about
emptyness of regions, but weaker statements about occupied areas. Stereo statements
can be weak or strong, depending on the distribution or distance to features. When
sensors conflict strongly about a region’s status, he marks the grid unknown, for later
determination. Maybe the most salient feature of the occupancy grid system is that
it provided a means to combine raw data of totally different natures. The sensor data
have qualitatively different information encoded in the range information they pro-
vide, and this prevents a simple analytic, or geometric integration approach towards
building a coherent world model.

Matthies next tackled error modeling in stereo vision-based navigation [108]. His
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previous system, with stereo vision-based navigation that tracked landmarks, relied on
scalar models of triangulation measurement error. Here, he developed a 3D Gaussian
error model, using ellipsoids to describe the 3D geometry resulting from constant
probability of error contours. Scalar-weighted error models were motivated by the
fact that uncertainty grows with distance [154]. This corresponds to a spherical
model, but it doesn’t capture the skewness and orientation of the uncertainty. With
the ellipsoidal model, for nearby points, the contours will be almost spherical, but
as the points get farther away, the contours grow more eccentric. He experimented
with their robot using each model. He found that with the ellipsoidal model, the
robot estimated its final position to within two percent of distance traveled, and one
degree of orientation. Using the spherical model, accuracy was within eight percent
of distance traveled, and seven degrees orientation. This work addresses an area of
significant need; position uncertainty is a base problem for all navigation tasks.
Beckerman and Oblow modified the occupancy grid method to address the system-
atic nature of ultrasound errors [9]. Their thesis is that systematic errors are dominant
compared to random errors when using wide-angle ultrasonic sensors. They observed
that the occupancy grid, or stochastic approach, were local in character, reducing the
label for a pixel based on information pertaining only to the single pixel. Beckerman
and Oblow’s method is nonlocal in character, using information about neighboring
pixels and maintaining self-consistency between occupied and empty space. They

label grid cells with one of four labels:

E =FEmpty O = Occupied C = Conflict U = Unknown

Conflicts arise from different labels from two or more ultrasonic returns. Table 2.1

shows how labels are propagated through overlapping ultrasound scans. Beckerman

P g
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and Oblow implemented this cell-by-cell multiplication using the label representation

and then quickly evaluate the 16 binary products to determine the new cell label C

from intersecting labels A with B.

LANLE =L

if L3=L5=>LS=LS
else Lg:ijng mod 6

This logic facilitates rapid map construction and error attenuation. Figures 2.1 and
2.2, taken from [9] illustrate typical conflict resolution. Systematic errors are washed
through a conflict resolving relabeling scheme. Most of the new labels are obtained
by examining the characteristic patterns of conflict that result during scanning and
processing. Their results indicated that despite collecting 80 percent less data than a
stochastic method, the resolution of their maps was superior. The direct multiplica-

tion scheme updated cell labels much faster than the probabistic implementation of

LB
o|C U O E
c|i¢c C C ¢C
L4 U|C U O E
oO|jCc 0 O C
E{C E C E

Table 2.1. Logic for label combination



Figure 2.1. Plot of representative cell patterns. Heavily shaded cells denote occupied
cells, cross hatched cells have conflict label assignments

Figure 2.2. Corrected plot of representative cell patterns from previous Figure



17

an occupancy grid approach [50, 107, 114, 134, 151].

The work of Clark and his colleagues in developing the Harvard Head is also
of great interest [32]. He implemented a motion control system to provide modal
control of attention of a binocular vision head with seven degrees of freedom. He
noted that visual tasks require the movement of the eyes to closely examine areas of
interest for the particular task, paying little attention to the rest of the scene which
is viewed peripherally. A given visual task might require the corners of an object
to be detected, while another task may require that the object color be determined.
Each case needs different features attended to. He defines attentive visual control in
two parts: Decide where in the visual scene to attend on, and secondly, decide which
motions are required to redirect the visual sensors toward that location. The control
method is based on a two-level modal control technique proposed by Brockett [19].
The outer level controls the focus of attention, determining what features are going
to be used to determine where to look next. The inner level directly controls camera
pose through the driving motors. This is based on the human oculomotor control
system. Their feature detection and localization is done in a special image processing
system made by Datacube [123]. Their first experiment tracked blobs of a specific
intensity range. Objects 0.5 to 2 meters from the head were fixated on, to within
two pixels, and followed. The vision system could process five frames per second, but
with communication delays, only three frames per second were realized. Their next
experiment located geometric shapes by using the first three moments and intensity
value as features. The scene was segmented with a connected components routine
and then a saliency map was built. His present vision system is not yet optimized,
and it takes one to ten seconds to find and fixate on the most salient object. Krotkov
is now developing a similar system (89, 90].

Hung and his colleagues used multiple marks for determining 3D robot location

in a complex industrial setting [75]. They placed the marks so that at least one could
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be seen by the camera from any location. They integrated a pattern recognition
technique with the 3D geometrical transformations so that all viewing angles could
be handled. Their experimental results showed less than 3 percent average location
error. This concept of placing artificial landmarks is very simple and flexible in many
ap plications.

Frohn built VISOCAR, a mobile industrial robot, by breaking the navigational
tas Ik into a hierarchy of goals obtained by functionally independent modules [61]. He
corxastructed a hierarchy of capabilities, not a hierarchy of image processing steps.
He wased optical tracking of barcoded lane boundaries, and used the landmarks on
the 1ane boundaries to update his position estimate against his onboard landmark
may>. His lane tracker is a fast adaptive correlation algorithm based on a proposal by
Baxrxea [8]. He has an independent ultrasonic obstacle detector. The complete syst;em
Is controled by a M68000 microprocessor. VISOCAR appears remarkably similar to
Lit ton Industries’ Integrator.

ID avis and his colleagues at Maryland are investigating a class of vision-based
PrToblems on a Connection Machine [40]. Their RAMBO project is a testbed for
XpPlori ng efficient image processing and analysis, visual tracking, and visual planning.
Pose estimation is one of their current interests. The independent context in which
they-> xe tackling these problems warrants interest.

Sharir and his colleagues have extensively pursued geometric path planning algo-

than (135, 137]. Figure 2.3, taken from [137], illustrates the polygonal geometry.
They assume that complete information is known about a static environment char-
aCterized by bounding polyhedral surfaces and objects. In a 2D application they
have developed an O(n?logn) algorithm that guarantees to find the shortest path.
In 2p space this shortest path between start and goal must be a polygonal line
Whose vertices are the start, goal, and the corners of the polygonal obstacles. The

2D problem is solved using a visibility graph to determine which vertices are visible
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Figure 2.3. Shortest path in 2D polygonal space

from € Jae others and what the connecting edge length is. An optimal shortest path
routirae such as Dijkstra’s algorithm is then invoked to calculate the path. This is
one of mmany roadmap approaches to path planning, others are called retraction or
Vorom©i diagrams, freeway nets, and silhouette [96]. There is great research activ-
ity in <o rmmputational geometry, but it offers little advantage in a dynamic, uncertain
evironm rment.

Ll-1t?l'lelsky addresses the pose problem and develops a path planner with incom-
Plete i Formation [104, 105]. He felt that most applications are inherently dynamic,
and thay any strategy assuming complete or static environment information would
fail. He explored whether a richer sensor, like stereo vision, could be naturally in-
cudeq in a path planning model to further enhance performance. He concludes that
MAJOT  modifications of tactile algorithms ﬁlust be made to take full advantage of

these additional sensing capabilities, without losing algorithm convergence. Efficient
organization of feedback interaction between the subsystems gathering sensor data
and path planning proved equally important.

Grandjean explores fuzing surface data from laser range finders with photometric

data from stereo vision to assist in building 3D geometric scene models [64]. Kalman
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filtering is used to fuze numeric features into higher level models, and to derive self-
calibration transforms. Explicit representation of data accuracy is propagated to
every level of his perception process. The two sensor types operate in harmony, with
the laser range finders flagging the presence of a surface while stereo edges determine
the surface’s location and extent. Final 3D scene modeling is done with a set of
planar faces. His experimental work indicates strong promise for this modeling to

assist higher-level robotic processes such as localization and scene interpretation.

2.2.2 Outdoor Applications

We now move our scope to outdoor systems. DARPA and NASA are fueling a great
deal of work in outdoor systems. We won’t attempt to cover subjects in any depth,
but outdoor systems have delivered some significant results. There are many lessons
in how these efforts approached their navigational challenges and what limitations
they reluctantly accepted.

The prototype legged vehicle that may someday explore the Martian surface, called
Ambler, completely avoids vision-based approaches [71]. Hebert and his colleagues
opted for active range sensors because of fewer necessary computations and insensitiv-
ity to illumination conditions. The interplanetary communication lag here mandates
fully autonomous operation and these researchers felt that vision was too expensive
computationally.

Intractability is a recurring theme, even in relatively massive, distributed, au-
tonomous land systems such as the ALV [48, 97, 157]. There is general difficulty in
getting real time sensor-based control in unstructured environments [39, 115]. Ad-
vanced modeling techniques such as temporal stability offer just the advantage that an
outdoor environment demands, but it aggravates the processing bottleneck [13]. Very
complex systems even predict the appearance and disappearance of landmarks using

dynamic model matching [117]. A knowledge-based landmark recognition system uses
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an a priort map, perceptual knowledge and spatial reasoning. Model-based vision
tries to reduce the computational complexity. Despite all the domain knowledge, ALV
video processing is still extremely challenging [39).

If a structured road is to be followed, a fast pipeline can be laid between sensing
and acting, creating a model of the perceived environment and then generating a
control plan [20, 69, 70, 122, 153]. Independent parallel processes have been used to
produce coherent behavior and faster response. Road modeling by spline functions
and edge detection by linear recursive filters have also been used successively, achiev-
ing processing rates of 14 seconds per frame on a VAX 11/780 [25]. Other approaches
match road geometry [103], or intensity [41]. These methods lend themselves well
to parallel processing. Kluge makes a strong case for using strong explicit models to
achieve reliable recognition [85]. He feels that there still isn’t a reliable road track-
ing vision system despite vigorous research. Weak models with weak, or nonexistent
higher level processes make them brittle to lost features or illumination changes. His
thesis is that assumptions made in road modeling must be available for program ac-
cess and modification. The SCARF system is a color-based, domain-modeling bicycle
path follower. It proved quite reliant on known road shape, and was sensitive to illu-
mination changes. Kluge’s colleagues had trouble in constructing an explicit model
since there were few inherent features. Their latest system, FERMI, uses five trackers
to build explicit models with strong constraints. It uses higher level reasoning about
the road. There will be two techniques of tracker fusion in their developing effort.

Maryland’s system is arguably the best, and is based on using Hough transforms to
find and group edges. But even their methodology fails with strong, straight shadow
edges from trees and buildings, and it is sensitive to illumination changes [157]. The
VITS system has followed roads at speeds up to 20 kph and detected and avoided
obstacles. General capability was sacrificed for speed [152]. Dickmanns’ Mercedes

van ran as fast as 100 kph on the autobahn [44]. His extremely simple perception
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model uses a monochrome camera and a simple edge detector. The system attempts
to discard distracting edges, but the trackers can get fooled by shadows, puddles,
road imperfections and varying illumination.

One of the lessons that is being learned by navigating outdoors is that an un-
structured environment is extremely demanding on domain models, and processing
capabilities, even with complex, multisensory approaches. Current efforts are rich in
knowledge-based domain reasoning, parallel processing and direct ranging. All these
systems incorporate a massive degree of a priori information. Successful indoor sys-
tems have been realized without using any of these tools, but extending these early

indoor efforts may require adopting the discoveries from outdoor research.

2.3 Pose Estimation

Determining the position and orientation, or pose, of a robot camera is a problem
that has been examined by many researchers. It’s a pivotal problem since it’s diffi-
cult to navigate well with pose uncertainty. If dead-reckoning travel were error-free,
pose estimation wouldn’t be an interesting issue, but unfortunately, this is far from
the case. Pose estimation has become the cornerstone task in most mobile robotic
applications.

Fischler and Bolles published a watershed paper that initially examined the
Perspective-3-Point problem (P3P) [59]. In this problem the task is to determine
the point in 3D space from which an image of known landmarks was obtained. This
method seeks the correspondence between n image points and n control points, where
n = 3 is the smallest number of landmarks. They characterized the P3P problem
and provided a closed-form solution, but showed that it could yield as many as four
solutions. The issue of the maximum number of possible solutions for the P4P and

P5P problems remains open, but the authors proved that the P6P problem provides a
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unique solution. Their most important result was that the P4P problem yields a sin-
gle solution if the control points are coplanar. We shall examine some very interesting
work on the P4P problem due to Abidi later [1].

Krotkov follows and extends Sugihara’s work [143], pursuing location estimation
from a single image frame [88]. A motive for this approach is to avoid the difficult
reconstruction problem by using just one image. Here he matches rays to vertical
edges taken from the image to an a priori landmark model. This approach uses the
excellent angular resolution of CCD cameras, yet avoids 3D reconstruction issues and
feature correspondance. Image processing beyond edge detection is avoided to allow
more time to perform the landmark interpretation-tree search. Algorithm complexity
is O(n*) in time and O(n) in space. Noisy rays can be handled by giving up some
accuracy for the sake of robustness. Spurious landmarks are handled by introducing
a null model landmark. There is great potential for color here. Establishing color
correspondence before searching the interpretation tree would decrease the time com-
plexity by O(n). If two color landmarks were extracted, complexity would go down
O(n?).

Sarachik approaches the self-localization problem from a different angle [133].
She bases her work on three assumptions: rectangular rooms, inherent features at
wall/ceiling junction, and most importantly, flat, uniform-height ceilings. These as-
sumptions are reasonable in many indoor environments. Her uncalibrated stereo
cameras are mounted with the line of sight about 45 degrees above the horizon. She
is trying to take note of only those features that never change - the position of the
walls. Her approach starts with the robot spinning in place taking multiple images,
and using a single, composite image it determines where it is facing a wall head-on.
It then uses a 1-dimensional strip from each of the cameras to match edges, and
notes the vertical offset between the wall and ceiling. It is looking for the edge of

greatest depth. It then images the same ceiling-edge pair from many vantage points
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in the room and determines the upward tilt of each camera. This angle provides
enough data to calculate the dimensions of the room, scaled by the unknown, but
constant ceiling height. Performance of her robot yielded only 75 percent reliable self-
calibration, and thus had trouble consistently determining room size. The failures in
accurately determining the distance to the walls were the result of incorrect matches.
Improved robustness in matching, and an ability to prune bad data points are being
pursued to enhance results. The combination of redundant sensors and probabilistic
integration could yield large improvements. Sarachik’s method of navigation seems
quite appropriate in environments that are busy and dynamic. Room identification
by size or position of the door would be interesting to pursue.

Haralick developed a closed form solution to the P4P problem assuming both
coplanar rectangular marks and a known focal length [68]. The planar geometries
of the 2D perspective projection resulting from a rectangular mark determines the
camera viewing parameters in the 3D world. His approach’s only ambiguity in the
determination is whether the camera is looking up and seeing the rectangle from below
on one side, or whether the camera is peering down and seeing the target rectangle
from above on the other side.

Kite developed a similar closed-form geometric approach that also presumed a
coplanar target rectangle and a known focal length [83]. He combined the two solu-
tions using heuristics based on human vision and determined the unique 3D pose of
the camera.

Two other researchers with dissimilar applications represent different approaches
to the same pose estimation problem. Ray describes a model-based vision method
for tasks where approximate object position estimates are known [127]. Geometric
models for objects in a tight workspace and object position estimates are used to
predict where linear image features are expected to appear in each view. An object’s

pose is then estimated as the position which optimizes a figure-of-merit function which
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describes correspondence between the observed features and the features predicted
from the estimated position.

Han determines pose using tree annealing [67]. He formulates pose determination
as a nonlinear optimization problem. The criterion function will turn out to possess
local minima, and he deals with these by using a technique called tree annealing. His
simulations indicated that average computing times of around 150 seconds are to be
expected, so this method seems to offer little for real time applications.

Abidi introduced a new pose estimation technique based on the volume of the
tetrahedra formed by three corners from the rectangular target and the lens center.
Figures 2.4 and 2.5, taken from [1], illustrate the situation with the target on the

right, and summarize the algorithm stages. There are actually 12 ways to calculate

Figure 2.4. Viewing geometry for P4P problem

the focal length so all are found, and the median is used by the remaining algorithm

stages. The importance of this effort is that it doesn’t presume the focal length of the
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camera. It uses the redundancy in the inherent geometry to minimize error in pose
recovery. The target dimensions are known and the only other inputs are the target
coordinates on the image plane. It calculates seven outputs, the 3D global position,
3D orientation, and the effective focal length. The geometry also yields 6 redundant
measures of distances to the target, and again the medians are used. A singularity
exists when the target is exactly parallel to the image plane. It has also been shown
to be sensitive to the exact coordinates of the image points. This sensitivity limited
capability as the distance from the target increased, so Abidi developed an enhanced
version that performed shape restoration using a conjugate gradient technique. The
ability to extract the effective focal length is important. It reduces the error from
assuming a fixed focal length, and can determine the effective focal length when using

an autofocus camera.

2.4 Sparta and Rome

The Sparta system is the fruition of years of work by the Michigan State University
Departments of Electrical Engineering and Computer Science [151]. Sparta is based
on the occupancy grid system pioneered by Elfes, but incorporates a rotating sensor
head holding eight ultrasonic sensors. Figure 2.6, taken from [151], illustrate the
construction. The Transitions Research Corporation (TRC) Labmate base is capable
of speeds up to around 1 meter per second, and supports ultrasonic and infrared
sensors with an additional sensor board. The sensor board mates to a PC through
a serial port, and the sensors and locomotion are commanded by high level function
calls based on the work of Crowley [36, 37, 38]. Several computational enhancements
have been included to decrease the time necessary to scan and map its immediate
environment. Its path planning system is based on the work of Lumelsky [104, 105],

and it has demonstrated intraroom mapping and navigation capabilities. It presently
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Figure 2.6. Sparta

takes about 25 seconds to scan and update its occupancy map. Work is maturing
towards implementing a wall-following algorithm that will enable Sparta to navigate
at higher speeds down a known hallway [14, 15, 86]. IR sensors will be used to skip
down the side of a hallway at a standoff of 1.5 meters. Ultrasound will be used only to
avoid a frontal collision. There are no plans to incorporate vision. Present efforts are
aimed at achieving the best possible speed of travel and using only prudent sensing
to accomplish the task. No pose estimation is performed outside dead-reckoning.
The Sparta system represents an inexpensive platform for conducting both naviga-
tion and sensory research. Its design became the initial blueprint for the construction
of Rome, the hardware platform used in the examination of this dissertation. Rome,
illustrated in Figure 2.7, was designed to have an untethered, on board Zenith 3865X
laptop computer, and a static array of 24 Polaroid Instrument Grade ultrasonic sen-
sors around the perimeter of its sensor head. Decreasing the time necessary for range
acquisition, and the capability for monocular frame grabbing were the primary hard-
ware motivations. A Panasonic GP-KR202 color CCD camera mated to a 6mm lens
and a Data Translation DT2803 black and white frame grabber were chosen. Our goal
with Rome was to provide a mobile sensor platform that would enable us to pursue

landmark based navigation, and pose recovery, while simultaneously increasing the
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speed of travel and decisionmaking. As Rome matured as a hardware platform, its

role as an sensory testbed attracted other experimenters and approaches.

2.5 Summary

We have examined a broad variety of robotic navigators in this chapter. Each system
has its merits and liabilities, and each aids in framing the challenges we face in our
approach to landmark based navigation and pose recovery. Many efforts provide
insight into solving specific navigational tasks, and extend traditional methodologies
toward more general, and robust problem solving capabilities. A few central trends
have become apparent in robotic sensing. Computer vision is unique in offering surface
detail, and spatial resolution capabilities, but at a computational cost that restricts
real time applications. Ultrasonic sensors enable direct, real time ranging, but lack the
necessary angular resolution to independently solve high level problems without large
a priori databases. Multisensory approaches are becoming very common in robot
navigation, but methodologies to fuze dissimilar sensory information are just now
maturing. Pose estimation is the base task with respect to general robot navigation.
Progress in enabling the navigator to self-locate will rapidly open up its range of
applications. Most progress to date, observed with both indoor and outdoor systems,
has been in domains providing at least minimal structure to the navigator.

In the next chapter we will examine and define the task of independent, au-
tonomous localization. This discussion will expose some of the representational chal-

lenges whose solution both limits its domain and enables its utility.
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Figure 2.7. Rome



CHAPTER 3

The Where-am-I Problem

A core question in robot navigation is the robot’s ability to locate its pose relative to
a frame of reference. The immediate scope of the present work is indoor navigation
making the reference frame relative to a particular building coordinate frame. This
chapter presents the Where-am-I Problem; a key challenge for robot navigation ap-
plications. A robust solution to this problem provides the recovery of a lost pose, and
enables aggressive approaches to navigational tasks. We discuss the salient elements
of recovery from disorientation, focusing on connectivity and relational information.

We then present competing approaches to representation and propose a represen-
tion for the robot’s world. Instead of establishing a dense, computationally demanding
geometric model of the robot’s environment, we offer a sparse representational scheme
that requires strong symbolic matching, ambiguity resolution and error rejection ca-
pabilities. Our representation is built upon the novel idea of encoding extractable

environmental features as attributed edges in a sparse symbolic graph.

3.1 Navigating with a Map

A pivotal question in navigation is the robot’s ability to locate its pose relative to a

reference frame. The degree of accuracy that defines an accurate pose is relative to

3]
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the application, and is correlated to the objects being manipulated. For industrial
manufacture, this accuracy may be less than % of an inch, but for navigation we
need less metric accuracy. The degree of pose accuracy might vary from task to task
within the same application. Six inch pose accuracy may be sufficient for hallway
travel, but is too coarse for entering a room through a threshold. If the robot has
some knowledge of a past landmark, it could use dead-reckoning to approximate its
current pose. Our Labmate is wheeled and has shaft encoders. In a perfect world with
no slip or slide between wheel and ground, readings from these encoders would give an
extremely accurate estimate of pose [147]. Unfortunately, wheels slip and slide with
magnitudes that are a function of wheel velocity and acceleration, particular ground
surface composition and shape, and wheel load. All these aspects can be modeled, but
the surface the robot travels upon must then be restricted and we can rarely control
the surface dirt and temperature well enough to avoid errors of the same magnitude
[21]. We don’t see much hope or portability in trying to overcome the uncontrollable
factors in a particular environment in order to construct a metric map to navigate
with. So what must be done is to construct a navigator that can be periodically
updated with an accurate pose taken from some passing landmark. This is similar
to the way humans travel through both familar and unknown surroundings. Humans
rarely possess an accurate metric map of an environment unless it is extremely familar.
Kuipers’ work supports a landmark-based cognitive model in humans [92, 93]. His
thesis is that during human navigation, decision points and landmarks encountered
constitute the cognitive map. Humans often construct a map based on topological and
geometric properties, not on metric information. When a hiker gets lost in the Rocky
Mountains without a map, he doesn’t construct a metric map to navigate back to
civilization, but most likely searches for recognizable landmarks that provide a coarse
pose. Even with a pose provided only by the sun’s position, or the Big Dipper, a

hiker can intelligently navigate towards an anticipated river, road, or powerline. The
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hiker then can follow this feature using recalled topologies to a safe haven. It bears
emphasizing that the hiker is only completely lost if he has no metric, topological
or geometric information. Soon a handheld Global Position Satellite receiver will
provide our lost hiker his 3D pose to within 25 meters [130], but this is too coarse for
our application, and offers no advantage indoors.

Continuing the hiker analogy, the Where-am-I Problem occurs when the hiker
is placed in location with no dead-reckoning information. The hiker is free to look
around and extract feature data, and recall geometric and topological relations, but
the hiker is surrounded by what Brooks calls an uncertainty cylinder [21]. This is a
volume centered about an estimated position with radii corresponding to the posi-
tional uncertainities along various axes. Brooks’ approach is to build and maintain
a rubbery, relational map. His approach closely models the human manner of navi-
gation. A liability is that the farther the robot navigates, the larger the uncertainty
cylinder. After three right turns, it is even possible to be uncertain that it has trav-
eled at all. Without periodic pose fixes, a robot in any building would be paralyzed
with uncertainty. Elfes’ approach is to build an explicit 2D metric map of the robot
world. Using a probabilistic construct, this method yields a very useful map if the
robot knows where it is in the map . Sparta has already shown some weakness in dead-
reckoning despite a world limited to a single room. Litton Industry’s Integrator and
Frohn’s VISOCAR use optical floor markings to explicitly update the robot’s pose as
often as once a second, depending on its speed. This also represents an unacceptable
handicap, too much structure for any expected utility in our application.

Ultrasound can’t solve the Where-am-I Problem alone, it is too coarse in angular
resolution and is corrupted by reflections and specularities. Crowley even compared
sensing with ultrasound to trying to navigate through a dark house of mirrors with
only a flashlight [36]. A camera can accurately extract the landmarks needed to peri-

odically fix the robot pose. In this dissertation, we combine the metric and topological
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approaches using a hybrid map. This map is an attributed graph holding the topo-
logical properties of the building in its connectivity, and coarse metric information
in its attributed edges. McDermott and Davis pursued a massive artificial reasoning
project using a similar approach [109]. Each feature that can be extracted by ultra-
sonic, monocular vision, or by IR sensors could be an edge. A discrimination tree will
classify features by their properties to facilitate rapid correspondence. Fuzzy feature
data, most often from ultrasonic sensors, will be passed up to an executive routine
that will try to match to edge attributes within a limited uncertainty region. When
a high confidence feature match occurs, most likely from the camera, the accumu-
lated dead-reckoning error determining the radius of the uncertainity region can be
briefly reset. This periodic flushing of accumulated uncertainity is pivotal to having
any useful capabilities. The central interest in the Where-am-1I Problem is recovering
from complete disorientation.

Complete disorientation, or as complete as this generation of robots will deal with,
occurs when the robot is completely uncertain of its position within its map. This
is probably the most important problem to conquer in order to build a more flexible
local capability. More challenging tasks can be tackled if our robot can gracefully
recover from complete navigational failure. Test pilots will try just about anything if
they have a parachute on their back. So in our application, the challenge occurs as
we startup the robot at some unspecified location within a chosen domain: the robot
has complete freedom to use its a prior: map, but it could initially be anywhere
on this map. Unless we know the angle the acoustic axis forms with the reflecting
surface, ultrasound is not capable of a high confidence match with an edge attribute,
so the robot must register a match by other means. Humans might try to locate
themselves by reading room numbers, but more often would seek a topological or
geometric feature such as a stairwell or hallway corner. So unless we spread enough

artificial visual landmarks to always have one within the camera’s field of view, the
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robot will wander around looking for a visual landmark. If the robot were within a
room at startup, it would first have to locate and navigate to the doorway and then
enter the hallway. Since a door is an edge on the graphical map, and the robot is
looking for a particular edge to fix its pose, it must traverse the nodes to seek another
edge unless it registers with its initial edge. A logical follow-on effort might be to
recognize a room by its dimensions with the method of Sarachik [133]. The robot
must be able to fix its pose within a reasonable amount of time. A performance time
goal of 1 minute seems reasonable, but this presumes that the Labmate base is capable
of a reasonable forward speed. Dulimarta’s exploratory work with the Labmate base
reveals that linear travel in excess of one meter per second will be difficult to achieve

with the current hardware [47].

3.2 Representation

The choice of representations for a building map pivot around issues including the
ability of holding information usable to the robotic navigator, flexibility in a dynamic
environment, and appropriateness as a path planning database. The key decision
strategy is to make the choice from the robot’s point of view, respecting its limited
sensing capability and coarse navigation skills. Adopting this perspective is what
cartographers would term a robot-level of use [27]. Cartographers are often challenged
to build different representations of the same region for different levels of intended
use. Another challenge is to separate the decision from our human skills, but not from
our cognitive experience. A human spy might desire to have a complete scale map of
a building, supplemented by color photographs of particular features. But this wealth
of data is only useful to humans because of their massive data compression ability,
and fast indexing skills. Humans need little metric information as long as they have a

sense of scale. Human experience records how wide doorways are, and what elevators
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look like. There are three major types of representational schemes that have been
employed by various researchers. They are dissimilar in approach, each with their

attributes and liabilities, and are presented in the next three sections.

3.2.1 Geometric Paradigm

Traditional approaches to robot sensor interpretation have mainly relied on the recov-
ery and manipulation of geometric world models. Low-level sensing processes extract
geometric features such as surface patches and line segments from sensor data to con-
strain the sensor interpretation process. The resulting deterministic geometric world
models are then used as the basis for robotic activities such as obstacle avoidance,
path planning, or planning assembly and grasping tasks. These approaches charac-
terize what Elfes has labeled the geometric paradigm in robotics and computer vision,
and have several shortcomings [51]. Elfes concluded that these approaches lead to
brittle and sparse world models. They require early decisions in the interpretation
of sensor data for the application of specific model primitives, and do not provide
adequate means for handling the uncertainity and error intrinsic in the sensory data.
These approaches rely heavily on the adequacy and accuracy of the prior world mod-
els and the heuristic assumptions made. This also introduces strong domain-specific
dependencies. Better environment descriptions are primarily derived from the appli-
cation of finer tuned prior models and further constraints to the available sensor data,
not from further active sensing. A consequence of these liabilities is the gap between
the two informational layers: the layer that corresponds to the imprecise and limited
data actually delivered by the sensor data and the layer of abstract geometric and
symbolic world models manipulated by the perception processes. If such a gap exists,

the mobile robot’s utility will be restricted to highly structured domains.
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3.2.2 Computational Geometry

Reducing the 2D world to a collection of polygonal lines and regions has been heav-
ily studied by the computational geometry community. Its modeling restrictions of
straight lines and convex polygons aren’t a severe restriction to the robot world.
The main attribute of this methodology is the existence of a tractable shortest path
algorithm. Sharir’s algorithm [137] has a complexity of O(n?logn) which is not a
handicap here, but its assumption that the world is completely known and static is
a serious liability. Once a shortest path is computed, the robot begins travel, but if
a previously unknown obstacle blocks the path, the robot must recompute its path,
again at an O(n?logn) cost. This approach also places the path through the vertex
corners of the confining polygonal regions, an area along the path very likely to con-
tain obstacles. Pursuing a retraction approach to constructing a Voronoi diagram
would move the path out through the centers of the tesselated regions, reducing the
probability of stumbling into corners due to poor gross navigation. This approach
also suffers from the assumptions of a known and static environment. Incorporating
environmental updates is also cumbersome with this method because a new vertex
may actually change the coordinates of its neighbors [135]. Floyd’s algorithm could
be used instead of Dijkstra’s since it adds robustness to the path planner by finding
a shortest path from any point to any other point. At an additional O(n) cost, this
would allow the navigator to immediately know the shortest way remaining to the
goal after dodging an unexpected obstacle. Representing features that are extractable
by the robot sensors within this methodology is unclear. To a robot, and indeed a
human as well, a visual landmark such as a colorful symbol or room number could be
more useful than geometric region boundaries. In our opinion, the computational ge-
ometry approach to mapping is inflexible, and too dependent on a static environment

to offer an advantage in our application.
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3.2.3 Occupancy Grid

Elfes pioneered the occupancy grid representation. This grid is a 2D array of square
cells representing a square of floor space, each cell being assigned a probability of
occupancy that can vary with time. This occupancy data is derived directly from
the ultrasonic returns, and the robot literally builds its world map as it travels,
with no a priori information. This approach can be tailored to the coarseness of
the robot’s sensing capabilities, and nicely supports a dynamic world. The robot
navigator can fall victim to false or reflected returns, and can even become trapped
by phantom obstacles, particularly in close quarters. The significant liability of this
method is one of scale. The robot needs a grid cell size of about a foot square
to support local navigation, but representing a large building this way is troubling.
Multiple scales are needed in the representation. Moreover, path planning to goals
outside the robot’s ultrasonic horizon will be cumbersome with this representation,
since there exists so many similar, but distinct cell trails to the goal. Local use
of this representation has shown the computational overhead to be significant, and
has motivated the pursuit of faster, IR-based strategies for hallway travel [151]. In
our opinion, the occupancy grid representation is too fine in detail for use outside
a locality such as a single room, and would seriously degrade the robot’s navigation
speed. The grid cell research community is very active and new approaches using this

methodology appear frequently.

3.3 A New Approach - StickRep

The structure of a large building is often dominated by long hallways. This structure
lends itself well to defining freespace as a 11D map. The robot is most interested in
freespace, not obstacles. Travel on a single floor could be represented by abstractly

cutting and stretching out a hallway into a line with rooms hanging off the
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hallway line. Branch hallways are nodes on the line. Features along the hallway are
captured as edges between the physical nodes, with attributes describing informa-
tion of interest. The cartographic research community has built databases on very
similar concepts [27]. Highway segments are encoded as links and towns as nodes,
each with attributes, and networks are built upward from these primitives. Political
units, urban areas, and water bodies are modeled with a set of links forming a closed
polygon. These basic components may have connecting relationships defining the
overall topology. The building representation which we developed could be termed a
feature highway. Wall and door features are represented as a sequence of attributed
edges with nodes providing the topological connectivity. The robot navigator travels
along a feature highway either confirming anticipated feature edges, or updating new
information in the graph. We are motivated by economy; to investigate how well a
navigator can perform with minimal information.

The building map forms a database: the executive routine registers matches to the
inexact feature data acquired by the sensors. The type of features that are included in
the database are limited by the ability of the sensors to reliably extract these features.
Many richer representational schemes have been developed, but most encode features
with more complexity than we can presently extract (3, 5, 6, 7, 9, 14, 15, 30, 35,
51, 57, 58, 60, 81, 84, 119, 160, 161]. Our modest experiment warrants a sparser
representational scheme. Since the angular resolution of the ultrasonic sensors are
poor, only coarse angular adjacency information is encoded into the database. The
StickRep representation scheme sparsely represents the 3D world, capturing only
topological connectivity, coarse metric data, and feature types. Such a scheme places
a greater burden on subgraph matching, ambiguity resolution, and error recovery
than do other more mature efforts [9, 12, 54, 87, 124].

We examined several candidate structures, and chose an attributed edge graph

to represent the a priori building data base. Planar physical domain features such
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as wall segments and doors are represented as attributed edges. Door jams and hall
corners are the junction of planar physical domain features, and are represented as
attributed nodes. StickRep is a departure from the majority of navigation representa-
tion schemes. Many previous efforts have been built on 2D representational structures
[9, 15, 49, 51, 66, 141, 158]. StickRep is a 1% dimensibnal structure that provides a
minimal representation for our robotic navigator. StickRep encodes sequences of

feature information. Each edge contains some or all of the following attributes:

type € {corner,doorway, elevator, hallway, pattern, stairwell}
metric € R

prototype € {doorjam,wallsegment, pattern}
pattern € {&#,O,#,0}

Nodes hold adjacency information of the incident feature edges and contain the

following attributes:

adjacency angle € {0,...,360}

global coordinates € {XW YW, ZW «o,B,v}

We illustrate this representation with an example in Figure 3.1. To more clearly
portray our representation, we have omitted the prototype edge attribute, and ac-
tually have drawn the edge adjacency angles to represent the angles present in the
physical domain. In all the domains we examined, sequences of features were rep-
resented as rings of adjacent edges. Since features on opposing sides of a hallway
are not physically adjacent, opposing features may be represented in separate rings,
depending on the hallway geometry of the domain. In Figure 3.1, the three graph
components illustrated are actually fragments from three separate feature rings.

Each ring is joined to another ring at only one artificial node, so a complex
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domain is represented as an attributed graph with weakly connected components.
This representation proved fast and flexible when matching physical feature adjacen-
cies, but representing opposing features is more difficult, and was not pursued. This
representation was used to match sensed feature data to a priori domain information.
After a navigator determines its current pose, it must maintain this pose by periodic
updates. If a high confidence match is made between sensed data and the next an-
ticipated edge on the graph, within its current uncertainity circle, the current pose
estimate can be updated to this edge. If not, the robot will continue searching for
the anticipated feature edge until it reaches a tolerance limit that initiates complete
pose recovery. Chapter 6 examines the use of this representational scheme to support

extensive simulated navigation.

3.4 Summary

In this chapter we have presented the Where-am-1 Problem. A solution to this prob-
lem provides the ability to recover pose, and enables aggressive approaches to naviga-
tional tasks because the executive routine is confident of recovery from disorientation.
We discussed the salient elements of disorientation recovery, focusing on feature con-
nectivity and relational information. We emphasize symbolic feature data, not metric
properties or relationships.

We then discussed competing approaches to representation as well as our proposal
for representing the robot’s domain. Instead of establishing a dense, computationally
demanding geometric model of the robot’s environment, we offer a minimal repre-
sentational scheme that requires symbolic matching, ambiguity resolution and error
rejection capabilities. Qur representation is built upon encoding extractable environ-
mental features as attributed edges in a symbolic graph that sparsely models the 3D

world. Our representational scheme hinges on strong, inherent assumptions about the
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structure of an indoor navigation domain. In the next chapter, we will present our

methodology for extracting symbolic feature information from our structured domain.
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Figure 3.1. StickRep example



CHAPTER 4

Sensing Landmarks

In this chapter we will examine the capabilities and liabilities of monocular vision and
ultrasonic ranging as compared to the more traditional stereo vision. We will note
that stereo vision cannot provide the ranging we desire rapidly enough for our real
time application. The use of monocular vision and ultrasound are not without their
own liabilities, and we will explore ultrasonic ranging error experimentally. The key
problem is the ability to accurately replace the depth information provided by stereo
ranging with a fuzed monocular vision and ultrasonic methodology.

The difficulties with stereo vision systems led us to investigate other promising
ranging systems [9, 15, 51, 87, 107]. We sought to combine the most capable attributes
of vision and active ranging approaches into a fuzed acquisition methodology using
a single camera and a suite of ultrasonic sensors. In this chapter we will present our
landmark sensing strategies and closely examine the capabilities of ultrasonic sensing.
In the following chapter we will formally present the geometric algorithms that use

these sensing strategies in a structured domain.

44
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4.1 Visual Sensing of Vertical Ribbons

Fine feature detail in the operating domain cannot be obtained through ultrasonic
range sensing. Ultrasonic range data is too coarse in an uncontrolled environment
and erroneous data is common. Ultrasonic sensing will be examined in detail in
Sections 4.2 and 4.3. We will now discuss the extraction of fine feature landmarks
from the domain using a monocular camera.

The requirement for real time processing restricts many common approaches.
Many researchers have pursued stereo vision methodologies, but they struggle to
overcome the computational complexity of stereo correspondance [33, 34, 87, 99, 116,
118, 121, 126, 129, 146, 149]. In the application of stereo ranging methodologies to
real world navigation, the intrinsic computational expense of extracting three dimen-
sional range data from stereo pairs limits the number of features that can be tracked.
Real time constraints have traditionally prevented the obtainment of dense 3D world
models [22, 26, 42, 65, 139, 142, 162]. Constant increases in computing power are now
begining to yield promising results [107, 120]. Practical stereo vision navigation sys-
tems have constructed sparse depth maps by matching high contrast points selected
by an interest operator or geometric features such as edges [108, 114, 145]. Additional
problems for robotic applications come from operating under available illumination
and in domains with unpredictable surface acoustic characteristics.

The depth information recovered by a stereo system is vital in robotic applica-
tions, but depth data can also be provided by active ranging. We chose to pursue
the extraction of symbolic features in our domain with single images fuzed with ul-
trasonic range data. Despite the avoidance of stereo correspondence, many powerful
algorithms, such as Canny edge dectection, also challenge real time implementation
(28, 78]. Our entire image processing suite was developed under this heavy real time

requirement. Many of the visual features in an indoor domain possess strong
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verticality. Doors, windows, and supports present striking vertical landmarks yielding
strong, long ribbons in images. We designed our approach to extract these vertical
ribbon edges and classify the observed features using a template scaled to the feature

range.

4.1.1 Feature Extraction

Before we examine visual edge sensing, we offer the following definition:

Vertical Edge Ribbon A physical domain feature that may produce two parallel
vertical intensity edges in an image. Both edges are capable of being simultaneously
seen within the field of view of the sensing camera. The lines containing the vertical
edge ribbon are normal to the floor of the domain.

A door is a common vertical edge ribbon found in indoor domains. Doors are
logical landmarks for human navigation and are consistent with the cognitive map
approach [92, 93]. A door often provides the strongest intensity edge in a domain
[77, 136]. Here doors are symbolic, they represent a common static feature, ex-
tractable under varied illumination throughout the structured domain. Posts are less
common in some domains, but could also be easily extracted. We experimented with
several standard edge detectors on training images examining the filtered images for
sensitivity to filter size, noise, and camera misalignment [95, 128]. We chose a ver-
tically oriented 5x5 Prewitt filter as the candidate that best extracted strong, long
intensity edges from the training data [125]. Kriegman pursued a larger mask to smear
images in a broader application [87]. Our filter not only rejected horizontal features,

but it also averaged vertical features. This averaging has the following desired effects:
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Horizontal edge ribbons vanish.

Slanted edge ribbons are blurred.

e The effect of small edge features and marks is attenuated.

The effect of image noise on vertical edges is attenuated.

Ribbon length is a strong indicator of a large vertical feature. If we require vertical
persistence, we filter out finer vertical features and marks that clutter our domain. To
rapidly examine this attribute, we performed vertical integral projection. Let I(r,c)

be our filtered image. The vertical integral projection of I(r,c) can be defined as:

nrows

V(c) = z_: I(r,c)

This column summing technique is similar to Kanade’s two dimensional work on
the recognition of human faces [80]. The results of the vertical integral projection re-
quired careful thresholding to properly segment the strongest vertical ribbons present
in the scene. Additionally we needed to recover the footprint of the vertical projec-
tions onto the floor of our modeled two dimensional domain. With this footprint we
could register fuzed ultrasonic range data to classify the landmark using the algo-
rithms to be developed in Sections 5.2 and 5.3. After thresholding to a binary image,
pixel column bins were clustered based on three nonempty bins within a five bin
window. Pincushion lens distortion caused edges one pixel wide to bow across seven
pixels at a viewing range of six feet. To accomodate this, footprints were determined
by calculating the center of mass of the bins. Using the sensing geometries to be
developed in the next chapter, we found that the subpixel accuracy obtained from
this bin clustering technique reduced measurement variance 39 percent in a controlled

experiment.
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Several adaptive thresholding techniques were pursued [31, 73, 79, 132]. Chow’s
technique of fitting a bimodal Gaussian model to the image histogram had been im-
plemented locally but it could not be adequately tuned to the crisp intensity gradients
common to man-made environments and the varied illumination present in the train-
ing images [74]. We reluctantly turned to absolute thresholding based on the library
of 157 training images taken over a four month time period in varied illumination. We
found that the door jams that constitute the vertical edge ribbons typically subtend
2.5% of the image scene as viewed from Rome. We set the absolute threshold level
at 5% to accept an equal degree of desired edge and accidental marks.

After we had completed the initial design that successfully identified features in
our filtered image, we sought to minimally sample rows from the image to both reduce
the computational load on our system, and to identify long edge ribbons. Returning
to our training suite of images, we empirically determined that five rows extracted
from the image were sufficient to capture vertical edge information from a door within
our field of view. Three of these sampled rows were near the vertical image center,
with the others toward the top and bottom. If the range to the door is six feet or less,
sampling these particular rows will always be sufficient to capture the full vertical
range of the feature. But our navigator may certainly view doors obliquely and at
greater distances. To accomodate this behavior, a range-based scale factor controls
which rows are sampled from the image as a function of the ultrasonic range data
obtained coaxial with the optical axis.

The image processing algorithm is summarized in Figure 4.1. It implemented
dynamic sampling of five rows as a function of range, Prewitt filtering, absolute
thresholding, vertical integral projection, and clustering of the vertical ribbon to a
footprint. A complete example of our processing algorithm is shown in Figure 4.2.
In Figure 4.2(b)-(c) the entire image is shown for clarity, but processing was only

performed on the five rows sampled. In Figure 4.2(d) the vertical projection has been
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smeared for ease of illustration. The dark pixels represent weights of confidence in the
feature footprint location, darker pixels representing areas of greater confidence. This
processing suite demonstrated excellent tolerance to the pincushioning produced by
the 6mm lens we used, and the camera misalignment often observed during Rome’s
travel. Clumping the vertical projection was the most significant component in the
attenuation of these undesirable effects. This clumping successfully recovered long
vertical ribbons with a misalignment angle as great as 10 degrees from vertical at a
distance of 12 feet. This result is strongly correlated to the maximum spread of the
center three sampled rows. It should be noted that roll axis camera misalignment
causes all vertical and horizontal feature edges to be smeared by the averaging fil-
ter, and, provided that the three center sampled rows are relatively close in vertical

proximity, their projected footprints will be successfully clumped.

(0) Dynamic sampling of five image rows based on range to ribbon
(1) Vertical 5x5 Prewitt filtering

(2) Thresholding to pass top 5%

(3) Vertical image projection

(4) Clumped vertical ribbon footprint to subpixel accuracy

(5) Output landmark candidates each with width and location

Figure 4.1. Vertical Edge Ribbon Extraction Algorithm
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(d)

Figure 4.2. Image processing suite example. (a) Original image (b) Vertical edge
image (c) Thresholded edge image (d) Smeared vertical projection with darkened
feature footprint
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4.1.2 Landmark Classification

The output of the first processing stage, described previously in Section 4.1.1, pro-
vided candidate footprint pairs, with confidence weights, to the landmark classifica-
tion stage. Despite the thresholding and filtering, several candidate pairs are often
passed forward for potential classification. In this stage, fuzed ultrasonic range data
is used to determine the estimated size of landmark candidate pairs. If a large depth
edge is noted across the ultrasonic horizon in an area corresponding to the candidate
feature, then a line fitting routine interpolates an estimated depth to the feature
by using only the flank depths. This occurred frequently in both the training and
test data sets because several doors were partially or completely open. Outward
opening doors left partially open were often ultrasonically sensed as a sharp convex
depth edge. Inward opening doors similarly were sensed as a sharp concave depth
edge. The structure of the hallway domain made the line fitting quite accurate in
recovering the depth to the closed door position. Open doors were more difficult to
accurately classify than closed doors, but this was mainly due to image clutter inside
the open door misleading the first image processing stage, and not due to ultrasonic
ranging shortcomings. We will discuss these results in Section 6.4.2.

Since door landmarks are only present in discrete metric sizes, their a priori prob-
abilities can be determined (see Tables in Chapter 6). A Bayes decision rule for
classifying candidate pairs were desired, so experiments were conducted to estimate
the class conditional probabilities [62]. Using the algorithms to be presented in Sec-
tions 5.2 and 5.3, data was collected and conditional probabilities were estimated at
an abscissa bin granularity of 0.05 inch. This estimation was necessary since observed
data came from a continuous metric spectrum. Posterior probabilities could then be
determined. Table 4.1 illustrates, in inches, the landmark classification boundaries

implemented using a Bayes decision rule.
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Landmark | Low Boundary | High Boundary
32 29.1 33.5
36 33.5 38.8
40 38.8 42.7
30/30 56.4 64.0
36/36 67.9 76.3

Table 4.1. Landmark classification boundaries showing ribbon width in inches

The landmark candidate pair with the highest confidence weight assigned by the
initial processing stage will be classified using Table 4.1. If a candidate pair falls
outside these boundaries it is rejected, and the subsequent candidate pairs, above a
preset confidence threshold, are considered in turn. No tuning or training on the test
image suite was done. The test suite classification performance of the two processing
stages presented in the last two sections was encouraging. After we develop the
necessary sensing geometry in the next chapter, we will more thoroughly examine
these classification results in Section 6.4.2. In the next section we turn our discussion

to a more thorough examination of ultrasonic sensing.

4.2 Theory of Ultrasonic Sensing

One important application of an ultrasonic sensor sytem is active ranging. Ultrasonic
sensors use high frequency sound to determine the time of flight between the sensor
and an object. The acoustic beam propagates from an emitter through its medium
of travel as a mechanical wave and is reflected back to a receiver. The wavelength A

of the ultrasonic wave is:

|0
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Here c is the speed of sound in the medium and f is the frequency of the emitter.
The speed of sound is not constant, even within a given medium, as temperature
and humidity are factors to consider. Typical frequencies for robotic applications
range from 20 KHz to 2 GHz. Our Polaroid Instrument Grade transducers operate
in the 60KHz range, with A = 5.7mm. A voltage pulse excites the transducer which
causes an acoustic pulse to be emitted. The echo reflected from an object may be
detected by the same sensor that emitted it. A typical time of flight system produces
a range value when the echo amplitude first exceeds a set threshold value. A range

measurement, dy is determined from the round-trip wave travel time of flight ¢; by:

(lo'—"c—tz‘L

Absorption of the ultrasonic wave by the propagation medium influences the at-
tentuation of the wave. The degree of this absorption depends on the medium and
the radiating frequency. Gaseous media attenuate ultrasonic waves significantly more
than solids or liquids, and this attenuation depends greatly on the particular fre-
quency used [51]. Currently most robotic applications employ ultrasonic systems
radiating into the atmosphere. The pressure amplitude of the acoustic wave decays
exponentially with distance. If py is the pressure amplitude of the planar acoustic
wave, and a is the absorption coefficient, then p is the pressure amplitude of the wave

at a distance d:

p = poe™*

The absorption coeflicient a clearly determines the rate of attenuation [72]. The
extinction distance d. is defined to express this attenuation of the ultrasonic wave in
the atmosphere, d. = 1/a. At ambient temperature and humidity, with f = 60kHz,
d. = 17 meters [51].

Employing ultrasonic waves in the atmosphere is significantly less efficient than

radiating through a solid or liquid medium. This is not just due to the
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attenuation factor, but also because the impedance mismatch between the solid ultra-
sonic transducer and the air is much higher [82]. This translates to a high transmission
loss compared to the energy transfer across a lower impedance boundary such as a
liquid or a solid. But this same impedance mismatch on transmission becomes an
advantage upon wave reflection. This phenomenon causes strong reflections, and not
energy draining absorptions, by an object in air. The reflective behavior of a surface
in air depends on the object texture [18]. If the period of the texture is much greater
than the ultrasonic beam period, surface reflection is essentially specular. For robotic
applications, most object surfaces can be considered quite smooth, and the ultrasonic
beam reflection largely specular, with a small diffuse component.

Sophisticated signal processing of the ultrasonic wave allows a parametric evalu-
ation of the returning arc formed when the sensor is scanned across an object [18].
This approach permits the differentiation of planar surfaces, corners, and edges in a
specular domain. In nonatmospheric medium, higher ultrasonic frequencies may be
employed that permit ultrasonic imaging that achieves resolution comparable with
what can be achieved with optics in air [72]. Short of these application types, ultra-
sonic sensing systems provide a simple, low cost alternative for range data acquisi-
tion. Ultrasound operates independently of the environment lighting conditions and
the optical characteristics of the object surfaces. Current commercial systems for
atmospheric transmission still offer poor angular resolution and suffer from problems
associated from multiple reflections. In the next section we will experimentally ex-
amine some of these physical issues in an attempt to develop an operating envelope

supporting accurate and robust navigation.



55
4.3 Ultrasound Studies

Ultrasonic sensors are widely used in mobile robot applications. A strong systemic
attribute is their simplicity, low cost, and the fact that distance measurements can
be determined directly. A typical sensor has a useful measuring range of 1 to 35 feet,
with a beam width of 15 degrees; so an array, or belt of sensors is often employed
[9, 15, 14, 24, 29, 38, 37, 45, 50, 51, 52, 53, 54, 63, 91, 111, 112, 131, 134, 140].
The more mature of these efforts use probabilistic models, redundant sampling, or
sampling histories to handle the range errors that are common to ultrasonic sensors.
Physically based ultrasonic sensor models are just now maturing [101]. One effort
elegantly and extensively characterizes a single sensor in a clean laboratory environ-
ment [18]. It notes, but doesn’t explore the signal error produced by sound absorbing
surfaces, specular surfaces, and surfaces sensed from oblique angles. It became ap-
parent that surrounding Rome there existed an area of reliable sensing, or a sensing
footprint, that varied with the type and orientation of the surrounding surfaces, and
the sensor type. This conclusion motivated an extensive examination of ultrasonic
sensor performance against various surface types at varied orientations. We will now
examine this phenomenon and develop an ultrasonic sensing footprint to support
accurate and robust navigation.

During preliminary navigation experiments, it was observed that Rome’s ultra-
sonic sensing system ranged surfaces very accurately when the acoustic axis and the
surface normal were approximately colinear. It was also observed that as the angle
between the surface normal and the acoustic axis increased, so did the ranging error.
Individuals wearing thick clothing often were not sensed at all, while at other times
the same individuals were accurately ranged. An experiment was designed to examine
the effect of surface characteristics on ultrasonic ranging. Three surfaces types were

presented to the ultrasonic sensor at various orientations to the acoustic axis. The



56

hallway was initially chosen as the testing laboratory, not because we thought it was
a clean environment, but to include multiply reflected signals causing ranging error.
Multiple reflection error was not observed in this experiment, and the results strongly
followed a pilot study conducted in a acoustically isolated environment.

Concrete was chosen as a common domain feature surface, while polished wood
presented a much smoother ranging surface. A padded fabric wall partition was exam-
ined to characterize suspected energy absorption. One thousand ultrasonic samples
were taken from three surface types at four orientations each for a total of 12,000
samples. Let ¢ be the angle between the acoustic axis and the surface normal, with
¢ = 0 corresponding to the sensor directly facing the surface. Table 4.2 summarizes
the percent range error observed. We repeated the entire experiment to increase the
confidence in our conclusions, obtaining the results summarized in Table 4.3.

For a given surface and orientation, only two to nine discrete range values would
occur. The histograms of the complete experiment are in Appendix A, and illustrate
the deterministic nature of the ranging error. A total of over 40 thousand samples
were taken to confirm these results. The polished wood and concrete surfaces ranged
quite accurately. Cloth surfaces also ranged accurately, but only if ¢ = 0 (the surface
normal and the acoustic axis align). The standard deviation of the ranging error is
exceedingly small with useful error percentages.

These results are encouragingly similar to our initial experiment. We desired to
model the ultrasonic error Rome would typically encounter while navigating through-
out the operating domain. Cloth clearly is a challenging surface to accurately range.
If the acoustic axis and surface normal are not nearly colinear, then grossly inaccurate
range values can be expected. The other surfaces can be properly ranged if the ultra-
sonic sensing is only performed while within this accurate ranging footprint. Accurate
range acquisition can be obtained from concrete and wood if Rome’s sensing can be

controlled to maintain ¢ < 15°. In the next chapter we will propose two competing



sensing geometries that support accurate ultrasonic sensing. Multimodal Gaussian
error models were developed from the ultrasonic sensing analysis presented in this
section. These error models will support extensive simulation experiments that we

will subsequently present.

4.4 Summary

In this chapter we have presented a fast technique for the sensing of vertical edge
ribbons using a single camera. We designed our approach to extract these verti-
cal ribbon edges and classify the observed features using a template scaled to the
feature range. Range data was obtained from ultrasonic sensing. Our final design
implemented dynamic sampling of five rows as a function of range, Prewitt filtering,
absolute thresholding, vertical integral projection, and clustering of the vertical rib-
bon to a footprint. The extraction and classification suite demonstrated excellent
robustness to the pincushioning produced by the 6mm lens we used, and the roll axis
camera misalignment often observed during Rome’s travel. We have also extensively
examined ultrasonic sensor behavior, and defined an accurate ranging footprint to
provide depth information to the monocular vision system. In the next chapter we
will propose two fuzed sensing geometries that build upon the sensing experiments
presented here. Unlike many competing methodologies, these sensing strategies sup-

port real time feature extraction and landmark classification.



Table 4.2. Experiment 1: Ultrasonic percent range error as a function of surface type

and angle

Table 4.3. Experiment 2: Ultrasonic percent range error as a function of surface type

and angle
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CHAPTER 5

Sensing Geometries

In the preceeding chapter we discussed a visual sensing approach capable of extracting
vertical landmarks in real time and examined ultrasonic sensing towards the definition
of an accurate ranging footprint. What is now needed is a methodology that fuzes
these two sensing capabilities, enabling depth information to be attributed to an
extracted domain feature. Constructing a sensing geometry that casts vision and
ultrasonic sensing in roles where they can operate accurately, while simultaneously
supporting unrestricted real time navigation, is a challenging task. In this chapter we
will present two competing sensing geometries that strive towards this goal. These
sensing geometries provide a framework for navigation and sensing, ensuring that
sensing only occurs where the information is not only accurate, but useful to the
particular task right now. These sensing geometries strongly influence the overall
control plan of the navigating robot. The shortest path to a goal might not be the
best path if the feature sensing system can not accurately extract landmarks along
this route. A sensing geometry that does not restrict navigation control is a goal, but
we feel that sensing capability is more important than unrestricted navigation and
point to point speed. Furthermore, we desired a more general landmark extraction
solution.

Ultrasonic error models, derived from the experimental results of Section 4.3 will
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be presented in Section 5.4. These error models will be used in simulating the per-
formance of the competing sensing geometries. The performance of the best sensing
geometry, applied to several operating domains, will be examined in detail in Chap-

ter 6. We begin the present chapter with a generalization of our sensing situation.

5.1 Motivation

Our present sensing problem, extracting and classifying a vertical landmark from its
domain, is a common problem that is widely pursued. The sensing geometries to be
presented were designed to enable ultrasonic sensors to accurately provide depth to a
feature and assign absolute metric scale to the extracted landmark in real time. The

domain constraints required by the sensing geometries are:

e (C)) The landmark has parallel linear edges delineating the face to be measured.

e () An intensity contrast exists between the landmark and its domain.

C3) The orientation of the optical axis relative to the ultrasonic array is known.

C4) The landmark to be measured presents a planar face to the image plane.

Cs) The angle between the landmark surface normal and the optical axis is less

than 45°.

Cs) The domain subset within the field of view is approximately planar.

C7) The focal length and angular field of view of the camera lens is known.

These constraints represent the domain assumptions we were required to make to
accurately assign depth to a landmark. Our goal was to provide as near an unre-
stricted navigation and sensing environment as could be engineered, but some con-

straints became necessary to reduce the complexity of the problem. It is important
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to note that there is no requirement for ultrasonic or camera calibration. Only the
mounting position of the camera relative to the ultrasonic sensing array and the cam-
era’s field of view are required. Sensing accuracy would improve with a decrease
in the angle of Constraint C5, and is tightly coupled to the experimental results of
Section 4.3. Continued advances in low cost ultrasonic sensors, would not remove
Constraint Cs, but would improve sensing accuracy. If the angle of Constraint Cj is
known, then Constraint C¢ can be removed. Constraint C4 implies that the sensing
geometries actually measure the projection of the landmark onto the image plane.
Nonplanar landmark faces would have their projection onto the image plane mea-
sured. We will examine the limits of each geometry’s accuracy envelope in detail in
Section 5.5.

The sensing geometries to be presented are certainly not alone in their ability to
measure objects in their constrained domain. Industrial applications have demon-
strated more accuracy, but gain this advantage from a predictable, and much more
structured domain. Less structured domain applications have yet to obtain real time
performance [87]. The sensing geometries presented in the following two sections offer
a robust, low cost, real time solution to problem instantiations occupying the middle
ground between a well structured, specialized industrial application, and a large scale

3D explorer.

5.2 Two Side Geometry

Ultrasonic sensors can provide accurate ranging within a sensing footprint. The
pivotal task of this sensing framework is to fuze the depth information obtained from
the ultrasonic sensors to extracted feature edge ribbons. In a monocular image from
an uncalibrated camera, the only gound truth references available are the edges of

the field of view. Constraint C3 in the preceeding section was established specifically



Figure 5.1. Field of view geometry

for this purpose. If a landmark is within the field of view, the sensing geometry must
determine the position of the landmark relative to the edges of the field of view, and
assess an absolute metric scale. If we know the angle of the optical axis relative to the
acoustic axes of the ultrasonic array, then we can determine the range to the edges of
the field of view. Figure 5.1 illustrates the geometry within the field of view (FOV).

Constraint Cs pfovides the necessary reference to assign the correct ultrasonic
range value to estimate RL and RR. Since we know the value of FOV for the appli-
cation lens, the Law of Cosines provides W . the length of the domain context visible

within the field of view.
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Wy = VRL? + RR2? — 2RLRR cos FOV

The candidate landmark footprint, as presented in Section 4.1.1, will partition the
domain context into the three annotated segments seen in Figure 5.1. Using similar

triangles and the Law of Sines we can calculate the length of the segments dy, and dg.

4 = RL sin ¢,
L7 sin(r - ¢L — @)

de — RR sin ¢r
R sin(m — ¢r + @)

Similar triangles with bases on the image plane and the domain context will
provide a means of determining ¢; and ¢r. We define LJ and RJ as the left and
right footprint of the verticle edge ribbon, respectively, h as the horizontal pixel width
in our CCD camera, in millimeters per pixel, and m:d as half the number of horizontal
pixels across the image plane. With a camera lens of focal length, f, ¢ and ¢g can

be calculated.

FOV 2h(mid — LJ)

¢, = — — arctan | —888
2 f

FOV 2h(RJ — mid)
oRr = 5 arctan I

Combining these equations we present a composite formula for the observed land-

mark using the ranges RL and RR estimated by our ultrasonic sensors. RL and RR
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represent our two range sides of the sensing geometry, and the dependence on these

two sides led us to call this our Two Side Geometry.

Two Side Geometry

ribbonwidth =

VRL? + RR? — 2RLRR cos FOV
RLsin (% — arctan [—(—)-2" mi}i—LJ ])

sin (7r - (IV;_V — arctan [2h "n}i—LJ ])) — arcsin RRsin FOV

VRLZTRRZ—2RLRR cos FOV
. h(RJ-mid
RR sin (% — arctan [2—(1—""2])

: _ (Fov _ 2h(RJ—mid)])) . RRsin FOV
Sim (F ov ( 2 arctan [ 7 + arCsI R AT S RLRR s FOV

This is an equation in four unknowns: RL and RR, the two estimated ranges
along the edges of the field of view; and LJ and RJ, the two candidate landmark
footprints classified by the image processing suite. This equation has been checked
against ground truth with a large suite of images, and its error analysis will be
presented in Section 5.4. In Section 5.5, we will examine the use of this geometry and
the accurate estimation of its four variables. We will see that the ability to obtain
accurate variables will define a navigation control envelope. In the next section we will
attempt to improve upon this sensing geometry, and present our Short Side Geometry.
We explored this geometric approach because it performed the same ranging function
as our Two Side Geometry, but only required the use of one ultrasonic range reading.
This motivation for economy led to an approach that eventually provided superior

accuracy.
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Angle with Surface

Look | RL RR
90° |[30° 30°
70° | 45°  10°
50° | 60°  10°

Table 5.1. Two Side Geometry acoustic angles

5.3 Short Side Geometry

In this section we will attempt to improve upon the Two Side Geometry presented in
the preceeding section. Our motivation was to more accurately obtain RL and RR
shown in Figure 5.1. We have seen in Section 4.3 that ultrasonic accuracy improves as
the acoustic axis approaches the surface normal. With a circular array of ultrasonic
sensors, one or two of the 24 sensors will be nearer the domain surface to be ranged
than the other remaining sensors. The Two Side Geometry does not use the most
accurate ultrasonic readings. In fact, if one of the side readings was very accurate,
the other range side is certain to be very inaccurate at most look angles. Table 5.1
illustrates acoustic axis angles with the ranged surface normal from arbitrary look
angles.

Noting the oblique acoustic angles that our Two Side Geometry utilizes, together
with the experimental results in Section 4.3, impressive metric accuracy should not be
expected. We postpone the examination of these results until Section 5.5. The moti-
vation for using the most accurate ultrasonic sensor reading led us to the development
of the Short Side Geometry.

We previously noted that when the acoustic axis aligned with the surface nor-
mal, ultrasonic ranging was most accurate. When a frame is acquired, the shortest

ultrasonic range obtained from sensors within the field of view sector corresponds
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to the sensor axis nearest the surface normal. Constraint C3 ensures that we know
the orientation of the camera relative to the ranging sensors, so we can geometrically
derive RL and RR from the shortest returned ultrasonic range. Let us annotate the
shortest range value, or the short side, as sdis, and the angle between the optical axis
and the surface normal as §. Then the Short Side Geometry derives the two sides RL
and RR from 6 and sdis, and determines the landmark’s metric attribute using the

formula presented previously.

Short Side Geometry

sdis

sdis
Rl = sin (% - 0)
(5 <0<3)

This sensing geometry amends the Two Side Geometry and ensures that only
the most accurate ultrasonic range value is used. The Short Side Geometry reduces
expected ultrasonic error at the price of introducing error in 8. Since the ultrasonic
array is laid out along Rome’s perimeter in sectors of 15°, our uncertainty in which
sensor is indeed nearest to the surface is as great as 7.5°. The sine function is sensitive
to error over portions of its domain, but overall we feel the Short Side Geometry is a

strong improvement, as we will note in the next section.
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5.4 Error Analysis

Overcoming error is a strong challenge for any robotic navigator. Some of this error
is due to systemic causes such as ultrasonic range error, and some error is due to a
methodological weakness towards a subset of the domain. StickRep was designed to
handle erroneous data and ambiguous domain features in an efficient manner, but
what is the nature of the composite error it must handle? We examined ultrasonic
sensor error in Section 4.3, but what methodological weaknesses exist in our sensing
geometries? Let us examine our sensing geometry in greater detail. Figure 5.2 revisits
our geometrical framework.

In this Figure, RL and RR retain their previous definition, but we have now
annotated the sensing and domain dynamics in finer granularity. Angle é represents
the angle between the optical axis, opax, and the surface. Rome’s ultrasonic sensor
locations are represented by tick marks around the perimeter, with r being the radius
of Rome’s sensing head. The ideal rays from Rome’s center through the ultrasonic
sensors are annotated as L and R. If the camera lens field of view (FOV) exactly
matched the sector defined by an integer multiple of ultrasonic sensors around the
perimeter, then L = RL and R = RR. In our application the sensors are placed every
15° around the perimeter, and our chosen lens possessed a field of view of 55.817° so
RL and RR approximate the desired rays L and R along the edges of our field of view
in our geometry. This approximation is examined in the next section.

In the upper portion, or left sensing side of Figure 5.2, the dasﬁed sector delimits
the 23.6° sensing cone of a typical ultrasonic sensor. When an ultrasonic wavefront
reflects back and is captured by the sensor, its range value is directly related to the

Sensor’s distance from the nearest object within its sensing cone. Unless the ideal ray
L or R is normal to the surface, the ultrasonic wavefront will first strike the surface

a.djacent to the point where the ideal ray meets the surface. This introduces another
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Figure 5.2. Rome’s sensing geometry
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source of sensing error. In Figure 5.2 dj, and dr represent the range value actually
returned by a particular ultrasonic sensor. In the left sensing side, the surface normal
intersecting the sensor location lies within the sensor’s cone, in the right sensing
side, the surface normal intersecting the sensor lies outside the sensor’s cone, and
dr represents the range along the left sensing cone limit of the reflected wavefront.
A third geometric case is when the surface normal intersecting the sensor location
again lies outside the sensing cone, but in this case, it lies outside the W -L-R sensing
triangle. Note that in all three cases, the returned range value dy or dg is not the
desired range along the ideal ray L or R. This error, exaggerated in the Figure, is a
portion of the error we examined empirically in Section 4.3, and will be compounded
by the gross error observed at oblique acoustic angles. We shall develop a worst case
model of this behavior, and combine it with our geometric approximation error in

Section 5.4.2.

5.4.1 Error Analysis of Geometric Approximation

There are three separate cases of geometric approximation error in our sensing frame-
work. These cases were introduced in the previous section and were derived from
Figure 5.2. This approximation error corresponds to the difference between the ideal
rays L and R, and the rays RL and RR defined by the actual edges along the field of
view. Case 1 occurs when the surface normal to the sensor location lies within the
sensor’s cone, that is, 48° < § < 72°. Case 2 occurs when the surface normal to the
sensor location lies outside the sensing cone, but within the W;-L-R sensing triangle;
72° < § < 90°. Case 3, 6§ < 48°, is when the surface normal to the sensor location
again lies outside the sensing cone, but also lies outside the Wi -L-R sensing trian-
gle. These angular based case definitions are symetric about 90°, and were developed
using similar triangles and the Law of Sines. We now present the actual geometric

definition of RL and RR that we have approximated in our Short Side and Two Side
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Geometries with the returned range values d; and dg plus the head radius, r.

Case 1, 48° < 6 < 72"]

dp sin(150 — )

il = in (5 + £2%) " Gin (5+ £92)"

dr sin(§ — 30)
RR = .
sin (180 — & + £9¥) * sin (180 — 6 + £2¥)
Case 2, 72° < § <90°
sin(18 + ) sin(150 — &)

RL = -.—dL + — o~ T

sin (5 + FC;—V) sin (5 + Eg——‘ﬁ)
RR = sin(198 — §) dn + sin(é6 — 30)

sin (180 + FO¥ _g) " sin(180+f%—5)r

Case 3, 6 < 48°

sin(138 — 8) sin(150 — &) sin(150 — 6)
= r
sin(8 +30) sin (8 + F2¥) " " sin (6 + £OY)

sin(5+¥—72)sin(5—60+£%‘1) N sin(6—60+"‘2—v)
sin (240 — 6 — £9¥)sin(210 - 6)  sin(210 — §)

If the look angle, §, were known by Rome, then we could enhance our metric

accuracy by calculating range values using these formulas. In the next section, we
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6 |L-RL R—->RR|d,—-L dr—R
90° 2.0% 2.0% 4.3% 5.1%
70° 4.1% 0.57% 15% 2.1%
50° 9.1% 0.72% 21% 1.5%

Table 5.2. Composite ranging error summary

will evaluate our approximation to these formulas in the worst case, and combine it

with the ultrasonic error summaries we presented in Section 4.3.

5.4.2 Composite Range Error Model

Rome experiences ultrasonic ranging errors of two distinct types. The first type
is the ranging error we observed in Section 4.3 with particular weaknesses on soft
surfaces and at oblique acoustic axis angles. The second error type is due to the
approximations our Short Side Geometry must make to the exact ranges presented
in the previous section. In Table 5.2, we have evaluated this approximation error in
the worst case, and summarized the empirical results we obtained in Section 4.3 at
three arbitrary look angles.

Table 5.2 summarizes the composite ultrasonic error models we used to drive
the extraction simulations to be discussed in Section 5.5. These error models were
developed from empirical range experiments in a real domain together with a worst
case analysis of our approximation to the theoretically correct range. In the next
section we present a linear first order error approximation of range extraction and

landmark metric inference using our sensing geometries.
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5.4.3 Linear First Order Error Model

We desired to get a quantitative approximation for the percent error we might ob-
serve using the Short Side and Two Side Geometries, prior to implementing these
approaches. Starting with the geometric formulas presented in Sections 5.2 and 5.3,
we derived a partial derivative evaluated at a particular look angle and multiplied it

by a worst case measurement error factor as shown in Figure 5.3.

Two Side Geometry I

0 0 a 0
ORL’ ORR’ OLJ’ ORJ

Ametric = ( ) |stare - (ARL,ARR,ALJ,ARJ)

Short Side Geometry l

9 9 9 9
dsdis’ 90’ 9LJ’ ORJ

Ametric ~ ( ) |stare - (Asdis, AO,ALJ,ARJ)

Figure 5.3. Linear first order error model

The complete partial derivatives were obtained, but due to their length, we present
them graphically in Appendix B. We evaluated these approximation error models at
three arbitrary look angles, or stares. Worst case error in § was 7.5°, as discussed
earlier. Empirical experiments supported a worst case error for A LJ and A RJ to be
five pixels. Table 5.3 summarizes this linear first order error approximation for both
sensing geometries at three stares. Table entries are the worst case landmark metric
error, in inches, using the linear first order estimate.

The sensitivity of the Short Side Geometry to error in 8 can be seen particularly

at the more oblique stares. The Two Side Geometry appears more robust at oblique
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Geometry | 90° 70° 50°
Two Side | 2.4 3.9 4.7
Short Side | 0.40 5.5 12

Table 5.3. Worst case landmark error using linear first order estimate

é 90° T0° 50°
A metric | 0.28 3.2 6.6

Table 5.4. Accuracy resulting from reducing A6 to 3.75° using Short Side Geometry

stares, but its accuracy is still moderate at a 90° stare. We doubted the ability to
perform inexact matching with this level of expected metric accuracy. The Short Side
Geometry appeared to offer the absolute accuracy that could be pivotal to a landmark
classification scheme. A control envelope was developed to take advantage of the
accuracy obtained at 90° stares by the Short Side Geometry, while simultaneously
discouraging oblique stares by a cost function.

Prior to selecting the Short Side Geometry for implementation, we again used the
linear approximation of Figure 5.3 to explore classification and robustness questions.
If we installed twice as many ultrasonic sensors, reducing Af to 3.75°, what benefit in
worst case performance would be observed when employing the Short Side approach?
Table 5.4 summarizes the answer. The advantage gained from the extra hardware
appears to be insufficient to justify the effort.

Another question concerned how much A# error the Short Side Geometry could
handle and still deliver accuracy at an arbitrary benchmark, say two inches. Table
5.5 summarizes the results at arbitrary stares. It appears very tolerant at blunt look

angles, but sensitive at oblique angles.
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6 Al
90° < 57.0°
70° < 1.8°
50° < 0.5°

Table 5.5. Short Side @ tolerance for error within two inches

These results motivated us to explore large scale simulations of landmark classi-
fication employing the Short Side Geometry. With a supporting navigation control
scheme, accurate metric inference could be obtained. In the next section we will
present our simulation results of landmark measuring using the Short Side and the
Two Side Geometries. We will see that these simulation results are consistent with

the error models we have explored in the previous sections.

5.5 Monte Carlo Experiments

We were very interested in the behavior of the two sensing geometries in the presence
of the error models we developed in Section 5.4.2. The Short Side Geometry appeared
to promise the most capability, but we were concerned about its sensitivity to 8 error.
Both Schneider and Wang had concluded that rotational, or angular uncertainity was
the most sensitive parameter in their applications [134, 155], and we have already seen
evidence to support this conclusion in our problem. Uncertainity is often a function
of measurement errors that have additive effects, but their work found that angular
uncertainity had multiplicative effects.

We conducted over 100 thousand Monte Carlo trials to examine the percent of
metric error in measuring landmarks of known sizes using either of our proposed sens-
ing geometries. Ten thousand trials at a given optical axis orientation were obtained

using each sensing geometry and the error models developed in the last chapter. The
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9 Prob(+ 5.55%)
90° 0.92
70° 0.41
50° 0.16

Table 5.6. Probability of Short Side Geometry measuring within 2 inches

following six Figures illustrate with histograms the performance of both geometries
at selected arbitrary look angles.

As expected the Short Side Geometry delivered accuracy superior to the Two Side
Geometry. The effect of the uniformly distributed Af can be seen in the wide shape of
the Short Side results. The Two Side results have the characteristic Gaussian shape,
and the offset bias varied with the camera orientation. Useful accuracy is only seen
with the orthogonal look angle of the Short Side Geometry. In our domain, landmark
classes are often separated by two inches, or less, in their metric attribute. Table 5.6
summarizes the probability that the Short Side Geometry measured the landmark
with two inches, or 5.55%, at three arbitrary look angles.

From these results we concluded that the Short Side Geometry offered better
performance in a general domain than the Two Side Geometry, and that a control
envelope should be defined to ensure that sensing occurs when the data extracted
from the sensors is most likely to be accurate. Obtaining range data from sharp look
angles promised the highest accuracy, so an optical axis orthogonal to the axis of

motion would be a good design for very fine metric work.
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Figure 5.5. Short Side Geometry, § = 70°
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Figure 5.6. Short Side Geometry, § = 50°
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Figure 5.7. Two Side Geometry, 8 = 90°
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5.6 Summary

In this chapter we have presented two sensing geometries that support landmark clas-
sification in a structured domain. These methodologies fuze the sensing capabilities of
a monocular camera and an array of ultrasonic transducers. This geometric approach
enables depth information to be attributed to an extracted domain feature. These
geometries successfully ca<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>