LIBkiou?
Michigan State
University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

SEp 28 1994

MSU Is An Affirmative ActiornvVEqual Opportunity Institution
c\circ\datedus.pm3-p. 1

A MULTIPORT APPROACH TO MODELING AND
SOLVING LARGE-SCALE DYNAMIC SYSTEMS

By

Yanying Wang

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Mechanical Engineering Department

1992

ABSTRACT

A MULTIPORT APPROACH TO MODELING AND
SOLVING LARGE-SCALE DYNAMIC SYSTEMS

by

Yanying Wang

One of the major challenges in the simulation of Large-Scale Dynamic Systems (LSDSs)
is to increase the efficiency of computation while maintaining the desired accuracy of
solution. In particular, when repeated runs are made of the same model with varying
input conditions and parameter values, then the time required for simulation becomes a
very important factor. The simulation of a LSDS typically includes three steps:
generating a computer-based model, sorting the system equations for solution, and
solving the equations numerically. There is a great practical benefit to improve the

efficiency with which any of these steps is executed.

In this work the modeling of LSDSs by means of bond graphs is extended. Two new
system graph node types, the dynamic block and the dynamic multiport, are introduced.
Each node type is defined by a set of differential-algebraic equations. An implementation
of the new node types has been made in an existing software, namely, ENPORT. The
equations sorting algorithm has been extended to include the new node types. A path-

order matrix has been generated to assist in finding an efficient solution order and to

reduce the amount of calculation required to evaluate the Jacobian matrix.

Models that include dynamic nodes can be partitioned into several linked submodels, each
of which is itself a dynamic system. A plan has been made to assign to each dynamic
subsystem its own integrator (i.e., integration algorithm) and its own step size. Hence
it is possible to organize the system solution by assigning multiple integrators and
multiple step sizes to the complete model. The multiple step size feature has been
implemented in software. An example that illustrates the potential for increasing the

efficiency of simulations by using multiple step sizes is presented.

To my parents, Qihao Wang and Jie Shao.

iv

ACKNOWLEDGMENTS

The author wishes to express her deep appreciation to Dr. Ronald Rosenberg for his
advice, encouragement and support throughout the course of this research work as well

as guidance through the entire graduate program.

Special thanks are also due to the other members of the guidance committee Davor
Hrovat, Ford Motor Company, Hassan Khalil, Department of Electrical Engineering,
Michigan State University and Philip Fitzsimons, Mechanical Engineering Department,
Michigan State University for suggestions and taking an active part in the process of
completion of this dissertation. Their invaluable advice and suggestions are fully

appreciated.

Grateful acknowledgement is extended to Mechanical Engineering Department of
Michigan State University and Rosencode Associates Inc. for the financial support they

provided.

Finally, the author is most grateful to her husband, Ye Tian, who assisted in editing, her
daughter, Iris, and her son Eric. Their generous love, unlimited patience and endless
support brought her to the completion of the final chapter.

v

TABLE OF CONTENTS

LISTOFFIGURESt tittiettnennnnnennennnnn ix
LISTOF TABLES0ttt ennnanenennnnns xi
LIST OF ABBREVIATIONSttt iennnnnnnesns xii
ILLINTRODUCTION ittt eeneeeneeenaeennn 1
1.1 The Problem Statement 1

1.2 Literature Review0tttiuuunenn. 2

1.2.1 Modelingof LSDSscc0vuu.. 2

1.2.2 Computational Methods for Solving LSDSs 5

1.3 Dissertation Organization 6

2. DYNAMIC NODES IN SYSTEMGRAPHS 8
2.1 Generalizing Dynamic Node Types 8

2.2 Defining DBN and DMN as Modeling Tools 10

2.2.1 Dynamic Block Nodes(DBNs) 10

2.2.2 Dynamic Multiport Nodes (DMNs) 12

223 Equationsof DNSt unnnnn 13

2.2.4 Causal Considerationsc.00u0uu.n 16

2.3 Software Implementation 16

24 Anexample e 20

24.1 Model e e e 20

2.4.2 Simulation Comparisonc.000.. 24

3. ORGANIZING SYSTEM EQUATIONS FOR SOLUTION 26
3.1 The Computational Graph 26

3.2 Depth-First Search for Sorting
3.2.1 BasicAlgorithm,
3.22 AlgebraicLoopsciiiiiiii..
323 DynamicNodesouun.

3.3 Modified Breadth-First Search for Path Identification
33,1 BasicAlgorithm
332 SolvingOrderot tiineennns
3.33 Path-Order Matrixo vttt vneennnns

3.4 Generation of Jacobian Status Matrix

4, IMPROVEMENT OF COMPUTATIONAL EFFICIENCY FOR LSDSs

DESCRIBED BY BONDGRAPHSccuvu.
4.1 Solution of Sorted System Equations
4.1.1 Submodels i

4.1.2 Structure Decomposition

42 MultirateSolutionsottt
4.2.1 Direct SolutionMethods

4.2.2 MultipleIntegrators

4.3 Software Implementation 00
44 AnExamplet
5. EFFICIENT COMPUTATION OF ALGEBRAICLOOPS
5.1 ProblemDescription000itiiiiaeenn
5.2 Tterative Method00t

5.3 An Algorithm for Finding an Efficient Set of

Iteration Variable

6. CONCLUSION ittt ittt e ettt
6.1 Summary and Discussionof Results

6.2 Suggestions for Future Research

vii

APPENDIX A. BASICSYSTEMGRAPHS 92

Al BlockDiagramscciiitrtnnerrann 92
A2 BondGraphs 00ttt 96
APPENDIX B. AN EXAMPLE OF CAUSALITY ASSIGNMENT 99
APPENDIX C. LISTING OF SORTING SUBROUTINES 102
APPENDIX D. LISTINGOFMSSCODEt eeevennnnns 118

APPENDIX E. ALGORITHM FOR OBTAINING THE PATH-ORDER MATRIX 147

THE BIBLIOGRAPHY i i i it i i e e 151

LIST OF FIGURES

Figure page
2.1 Symbolof aDN ittt e e e e 10
2.2 Symbolofam-input,noutput DBN 11
23 Symbolofan-port DMNttitiinnnnnn. 12
2.4 Hierarchical structure of system graphs 14
2.5 List of function types in modified ENPORT 20
2.6 Anexampleof systemgraph withDNs 21
2.7 System graph with standardnodesc.... 23
2.8a Model with standard node typesc00 it 24
28 Model with DNS0.iiiiiiiiinniiennneeeens 25
3.1 Bond graph model of a power transmission system 27
3.2 Computational graph and its edge-node table 30
33 Anexample of SCC ittt ittt 32
3.4 Two-damper SPring SYSteMt o v v v vt oo v v s oo onnenens 33
3.5 Bond graph of two-damper spring system, 34
3.6 Computational graph of two-damper spring system 36
3.7 An example of standard computational graph 37
3.8 Characteristics of dynamicnodes i 38
3.9 Representation of DNSinCGsc.0iiiineennnns 39
3.10 SCG for power transmission SYStemo vt vttt vt o0 o 42
3.11 An example of path identification 45
3.12 Mechanical system and its bond graphmodel 50
3.13CGofamechanical systemccoutiennn. 52
4.1 Submodel structure of systemmodel 57
42 Structuremodel e e e e e 60
4.3 Flow diagram of sorting system equations 64
4.4 Diagram of multiple integrationapproach 67
4.5a Program flowchart, part 100tiiiierunnenn. 69
4.5b Program flowchart, part 2ttt 70
4.5c Program flowchart, part3, 1
4.6 Submodel structure of systemgraph 74
4.7 TIMETESPONSE i vttt e e e e e et te e et eaee s onnnnsns 77

ix

5.1 Anexample of SCCttt eeeeeeeeennnns 82

5.2 An example for finding the near-minimum independent set 85
A.1 Diagram of actual physicalelements 93
A.2 Block diagrams of input-outputrelation 94
A3 Basicmultiportfields i e 98
B.1 DMN used to explain causality assignment 99
E.1 Anacyclicdigraph00 innnenn. 148
E.2 Construction of solving order for an acyclicdigraph 149

LIST OF TABLES

Table page
2.1 Classification of equation structure for dynamicnodes 15
2.4 Causality and input-output relationship 25
3.1 Equation data listingofbondgraph 28
3.2 SCCs in a two-damper spring Ssystemcccoeeuunnnn 36
33 Listof SCC ... i i ittt ittt it ittt ittt ittt ittt eaannns 41
34 Listof system equationscuuooeeeeunnneeeannnnn 51
35 Output-input paths00ttt itttteeenneenn 53
4.1 Integration methods for

the ordinary-differential equations 65
42 CPUtimesforsolutiont eiuneennnn 76
5.1 List of independent setsinSCCc.0ctvu.. 86
A.1 Basic building blocks used for modeling systems 95
A2 Bondgraphatomnodes0tiiiieerennnnennnns 97
B.1 Causality and input-output relationship 100

BFS
CG
DFS
DBN
DMN
DN
GMM
LSDS

MSS
SCAP
SCC
SCG

LIST OF ABBREVIATIONS

Breadth-First Search

Computational Graph

Depth-First Search

Dynamic Block Node

Dynamic Multiport Node

Dynamic Node

Graph-defined Macro Multiports
Large-scale dynamic system

multiple integration algorithm method
multiple step sizes method

Sequential Causality Assignment Procedure
Strongly Connected Component
Standard Computational Graph

xii

1. INTRODUCTION

1.1 The Problem Statement

There is widespread interest in the analysis and simulation of large-scale dynamic
systems (LSDSs). For this reason, a large number of software programs have been
developed to perform simulation of such systems. Of particular interest are the so-called
"physical systems" which are discussed in this dissertation. Such systems have an energy
basis, e.g., electrical networks, rigid-body mechanical and fluid power systems. Since
such physical systems often include multiple energy domains, the bond graph technique
has proven to be a great help in modeling them. The modeling process with bond graphs
is straightforward and, furthermore, the bond graph also implies a complete set of system

equations with physically meaningful state variables.

When methods of LSDSs are used in iterative design processes, such as parameter
optimization and/or controller design, the time required for the simulation becomes an
important factor. Improvements in simulation of LSDSs that increase efficiency while
maintaining desired accuracy of solution are valuable to engineering practice. Such

improvements are the subject of this work.

It is useful to divide the simulation of LSDSs into three main steps. These are:

1

2
(1) Construct a computer-based model of the system to be simulated. From the

model derive a set of system equations.

(2) Sort the system equations into a solution order. Details of equation ordering
typically affect the solution efficiency.

(3) Perform a simulation of the response of the system by solving the equations

numerically.

Improvement in executing any of these three steps benefits engineers and scientists in a
wide variety of industries. Even small improvements have a large multiplier in terms of

engineering productivity.

1.2 Literature Review

1.2.1 Modeling of LSDSs

There are important challenges in the analysis and simulation of LSDSs. Since the
amount of computational effort required to analyze a LSDS usually grows at a rate
greater than the size of a system, simulating LSDSs may become very time-consuming
and possibly impractical. Many books have been written, research papers published, and
computing algorithms developed concerning the analysis and simulation of LSDSs
(Laddle, 1975; Siljak, 1978; DeCarlo and Saeks, 1981; Kobayashi et al., 1978,
Constantinescu, 1982; Wang and Jamshidi, 1982; William, 1983; Martinez-Benet and
Puigjaner, 1988). Problem solving by modeling and simulation is an iterative procedure

(Broenink, 1990). It can be described as follows:

(1). formulate a quantitative model;
(2). carry out a numerical simulation;
(3). check the results to see if they satisfy the desired requirements;

(4). if not, modify the model and repeat steps 1 through 3.

In order to deal with problems involving large size and complexity in a systematic and
efficient way, the manner of description of objects and processes is important. A model
to enhance our understanding of a problem can take several forms. Block diagrams often
are used to display mathematical models in a form that allows us to understand the
interactions occurring among system’s elements (William, 1983). A mathematical (i.e.,
equation) model, which is a description of mathematical relations among system
variables, is often found to be useful and is widely used, due to its generality.

Typically, there is a variety of mathematical descriptions that can be applied to a given
system, and engineers must be prepared to decide what form and level of complexity are
most consistent with the objectives of the study and the available solution resources. The
nature of system involved has a strong influence on the selection of modeling and
simulation methods. The process of using a mathematical model to determine certain
features of the cause-and-effect relationships of a system is referred to as ’solving the

model’ (Close and Frederick, 1978).

The bond graph is a modeling tool introduced by Paynter (1960). In bond graph

modeling information concerning the interconnection among components of a system is

4
given by the (power) bonds. The node symbols in the graph denote the action of

physical components and effects. A standard bond graph is composed of elements from
the basic set {C, I, R, Se, Sf, TF, GY, 0, 1}, which includes multiport capacitance,
inertia, dissipation, sources of effort and flow, modulated transformers and gyrators, and
the ideal junction elements 0 and 1, respectively (Rosenberg, 1971). Several texts
describe the fundamentals of bond graph modeling (Rosenberg and Karmnopp, 1983;

Karnopp and Rosenberg, 1975).

Many engineers and scientists have found it useful to apply the bond graph technique to
solve a variety of problems. For example, the application of bond graphs to mechanisms
shows two advantages. First, the analyst may consider a mechanism-dynamics problem
from a point of view that often provide new insights into the complex behavior of such
a device. Second, the kinematics and dynamics of a mechanism are represented in a
form that is currently being used in a wide range of both engineering and non-
engineering disciplines. A bond graph study can be made of the kinematics and
dynamics of a general mechanism treated as a component of a dynamic system. Once
the kinematic mechanism multiport is developed for a particular mechanism, a general
dynamic model can be constructed parametrically in the I-, R-, and C- matrices (Allen
and Dubowsky, 1977). Then the multiport can be reused. Bond graph modeling has
been used to simulate electro-hydraulic systems (Dransfield, 1979), large mechanical
systems (Bos and Tiernego, 1985), automotive power trains (Hrovat et al., 1985), and

electromagnetic actuators (Karnopp, 1985). A recent bibliography cites many

5
applications of bond graph modeling to engineering system problems (Filippo et al.,

1991).

1.2.2 Computational Methods for Solving LSDSs

Due to the complexity of LSDSs, considerable effort has been devoted to the
development of numerical techniques to solve them. Several approaches have been used
to simulate the transient response of LSDSs, while retaining a reasonable computational
accuracy. Three important approaches are the component connection method, the
perturbation method, and the diakoptics method. These are methods for model-order

reduction. Another important approach is to use multiple-time scales in the integration.

The component connection model of a dynamic interconnected system (DeCarlo and
Saeks, 1981) is a set of equations describing the dynamics of independent components
and a set of algebraic equations describing the interconnection properties. There are two
principal integration algorithms used to simulate this model, namely, the Sparse Tableau
algorithm and the Relaxation algorithm. Unfortunately, many important engineering

problems cannot be represented by this model.

Perturbation methods are useful for dealing with a system that can be approximated
effectively by a system of simpler structure. Perturbations are divided into two classes:
regular and singular perturbations. In regular perturbation (Kokotovic et al., 1969) the

system is connected by some weak connections. It can be decomposed into two (or

B!

6
more) completely independent sub-systems by ignoring the weak connections. In singular

perturbation there is a perturbation to the left-hand side (i.e., derivative term) of a
differential equation. Ignoring the perturbation term leads to a reduced "slow" sub-
system. The "fast" sub-system can be obtained by stretching the time scale. Therefore,
one has to solve the "slow" and the "fast” (or boundary-layer) models (Kokotovic et al.,
1986). The main difficulty is finding a form of the system equations from which the

standard form, with the "slow" and the "fast" variables separated, can be derived.

The original idea of diakoptics was suggested to solve a problem in two steps: (1) at sub-
system levels: tear a system apart into logical groups and solve the sub-systems
independently; and (2) at interconnection levels: combine these results with the
connection matrix to obtain an overall solution (Wu, 1976). This approach is applied

frequently in circuit analysis, but is not so useful for other types of models.

1.3 Dissertation Organization
This dissertation is devoted to a multiport approach to modeling and solving large-scale

dynamic systems with emphasis on improving computational efficiency in solution.

In Chapter 2 the modeling tool to be used is presented. Two new types of dynamic
nodes are defined, a block diagram element and a bond graph element. The forms of the
equation set that can be used to support the dynamic nodes are described. For bond

graph elements, the causal constraint at the system interconnection level are considered

7
and discussed. The standard method for formulating mathematical models from system

graphs is extended to include system graphs with dynamic nodes. Software

implementation is described and an example is given.

Chapter 3 presents the fundamentals of two algorithms in graph theory and their
application to organizing system equations for solution. The models can include
algebraic loops and dynamic nodes (DNs), which are identified from the system graph.
These effects need specific computational treatment. A path-order matrix is created to
establish the solution order. The use of a path-order matrix to find the Jacobian Status

Matrix is also described.

In Chapter 4 the definitions of structural submodels and structure decomposition are
presented. A graph-oriented decomposition method is applied. Based on the
decomposed model, a multiple step size method and a multiple integration algorithm
method are suggested to solve for system time response. A flow chart depicting the

algorithms is given in this chapter and an example is shown.
In Chapter 5 the digraph analysis method is extended to finding an efficient set of
iteration variables for algebraic loops. The algorithm is developed and its application is

explained by examples.

Chapter 6 concludes this dissertation with suggestions for future studies.

2. DYNAMIC NODES IN SYSTEM GRAPHS

2.1 Generalizing Dynamic Node Types

A multienergetic model described by eight types of basic block elements (listed in
Appendix A, Table A.1) and nine types of bond graph atom nodes (listed in Table A.2)
is referred to as a standard system graph. Such a combination of elements is useful in
modeling systems that contains control elements such as transfer functions. It is also

useful in showing nonlinear modulating effects.

To obtain a standard system graph, certain interconnection rules between blocks and
multiports have to be followed:
(1) For {C, I, R, TF, GY, Se, Sf} nodes, only input signals are allowed.

(2) For {0, 1} nodes, only output signals are allowed.

A standard system graph can be transformed into a mathematical (i.e., equation) model.
Equations of a mathematical model can be derived from the defining relations of the
blocks and nodes. Block diagrams are direct pictorial representations of equations, while
bond graphs represent the model equations but have no input/output details on them. To
generate an input/output set of system equations one can use the Sequential Causality
Assignment Procedure (SCAP, Rosenberg and Karnopp, 1983).

8

9
In standard bond graph and block diagram representations, the types of nodes are pre-

defined. The equation(s) corresponding to each node also has (have) specific form.
General approaches to simulation of physical systems are often effective, but when it
comes to model large-scale systems, difficulties arise. The process of aggregating parts
of a model into a single unit is one way to reduce complexity. To accomplish this, a

new atom type node and a new block element are developed in this section.

The Dynamic Node (DN) is a new modeling tool which is defined in the framework of
both block diagram and bond graph language. Similar to the graphic definition of
general nodes, a DN may have ports connected to it and may have signals in and signals
out. Itis worth mentioning that the -C and -I nodes are the special examples of DNs.
A graphical representation of DN is shown in Figure 2.1. The general DN has a set of
bonds (B) with an associated set of inputs (Ug) and outputs (Yg). There is a set of
signals in (S;) with variables U and a set of signals out (S,) with variables Y;. A state

vector X is associated with DN.

10

(X)
(Ys) —— N:*—z S,

(Ug) -
(Ys)

S (Us)

Figure 2.1 Symbol of a DN

2.2 Defining DBN and DMN as Modeling Tools
Depending upon coupling specifications with other elements, two types of DN can be

defined: the Dynamic Block Node (DBN) and the Dynamic Multiport Node (DMN).

2.2.1 Dynamic Block Nodes (DBNs)
In some cases all the connections between a dynamic submode! and the rest of the system

carry no power information. Thus they can be represented by signals. The term DBN

11
is used for this type of submodel.

Definition
* A DBN is a block node with m input signals and n output signals. The input
and output variables, together with a state vector, are related by a set of ordinary

differential equations and a set of algebraic output equations.

The graphical symbol for a DBN is a block, defined as type DBN, with one or more
signal inputs and one or more signal outputs. An example is shown in Figure 2.2.

The state vector is implicit. The block label is arbitrary.

(X)
BN [

Figure 2.2 Symbol of a m-input, n-output DBN

12
2.2.2 Dynamic Multiport Nodes (DMNs)

The node type DMN used here should be distinguished from the macro type of multiport,
which is defined by a set of bond graph atom nodes {C, I, R, SE, SF, TF, GY, 0, 1}
and their connections. The properties of Graph-defined Macro Multiports (GMM) are

derived from the details of their node sets.

Definition
* A DMN is a multiport node with n ports and m signals in. The effort and flow
variables at the ports, together with a state vector X, are related by a set of

ordinary differential equations and output equations.

e €n-1

—~DMN /——————

/ e

Figure 2.3 Symbol of a n-port DMN

13
The graphical symbol for a DMN is a multiport, defined as type DMN, with as many

ports and input signals as needed. Figure 2.3 shows an example of a n-port DMN with
m signals.

2.2.3 Equations of DNs
Based on the discussion in 2.2.1 and 2.2.2, the concept of system graph with newly
developed DBNs and DMNSs is established. The hierarchical structure of the system

graph is summarized in Figure 2.4.

The equation forms supporting DNs are independent of the type of elements, DBN or
DMN, provided the DMNs are causally oriented. Therefore, the equations can be
described in general format. Four classes of equations characterizing DN models are

listed in Table 2.1.

14

Dynamic
{ Swic _TREN
Dynesic {
_ Blocks Extended { DBN
Static
Macros
System Graph i
nodes Dynamic
sondet |
Static
Am‘[Dynamic - DMN
~ Multdports Extended
M Static

Figure 2.4 Hierarchical structure of system graphs

Table 2.1

15

Classification of equation structure
for dynamic nodes

D.E. explicit D.E. implicit
Output X, =0oX,t,U) 0=9X,1,U,X)
explicit ¥, t U,) Y, = ¥(X, ¢ U)
Output X, =0X_,t,U) ®X,,t, U, X)
implicit 0=-¥YX,tU,7Y) 0=YX,tU,Y)

In Table 2.1 the following definitions are used:

and

From the functional point of view, DN is different from other dynamic nodes (e.g., C
and I elements) in that its equations are not predefined. The order of differential
equations and the class of equation structure may vary. In later chapters, we discuss how
the newly defined DNs can bring efficiency and flexibility to modeling and solving the

whole system.

X,, is state vector of the node,
U, is input vector to the node,
Y, is output vector from the node,

t is time (independent variable).

16
2.2.4 Causal Considerations

For DBNs the input and output variables are defined explicitly by the graph, since they
are signal related. On the other hand, the inputs and outputs related to the ports of a

DMN can not be determined prior to causality assignment.

A mathematical model can be derived from standard system graphs by means of a
standard formulation method (Karmnopp and Rosenberg, 1975). In this process the
causality of all bonds must be specified. During causality assignment in bond graph
modeling, according to the SCAP, causality is assigned to all sources and storage
elements, and extended as far as possible into junction structures. Note that among atom
nodes, some (such as SE, SF, 0, 1) are constrained with respect to possible causalities,
some (such as C and I) have preferred causalities, and some (such as R) are indifferent
to causal orientation. The causal orientation of a DMN must be consistent with its

equation definitions. An example is presented in Appendix B.

2.3 Software Implementation
The existing ENPORT software for system graph modeling and simulation has been
extended to include the new node types DBN and DMN. Modeling details are described

at the graph level and at the equation level.

(1) Graph implementation

DBN and DMN nodes are created in the system graph in either line code or

17
graphic form. Required data are: node name, node type, connector names,

connector types, and connector orientations. One more piece of information
needs to be known for DMNE, i.e., the causality requirements at the ports. The
causality is defined by asking the user to answer the following question for each

port:

Enter ‘E’ if input is effort, ‘F’ if input is flow, ‘N’ if input is indifferent.
Bond - 1 (N): F <ret>

Bond - 2 (N): E <ret>

Subsequently, the program will analyze the causality of a whole system to check
whether there exists a causality conflict. If there is, the program will give a clear

error message and stop.

(2) Equation specification
Each DMN is defined by a FORTRAN subroutine. An example is shown below.
The executable statements associated with DOF, NUML, and DESC are text that
can be displayed during execution to remind the user of the meaning of the
particular DN definition. The executable statements in the rest of the subroutine
define the state vector size, and they evaluate the state derivative vector and the
output vector. Note that the dimensions of the input and output vectors are

known from the graph.

18

CON>>>>>3>3>>3>>3>33>3>>>>>3>>>>>>>>>>>
c
SUBROUTINE DN(TIME,X,P,NSX,SX,DSX,Y,DOF,NUML,DESC)

C

C---- PROGRAMMING: Your name. The date.

C

C---- DESCRIPTION: Short description of subroutine.
C

C---- INPUTS: TIME, current time

C X, input values

P, parameter values

SX, state variables

DOF, =.TRUE. if description requested,
=.FALSE. if evaluation requested.

C

C

C

C

C

C---- OUTPUTS: Y, output values

C NSX, no. of state variables
C DSX, derivative of state variables

C NUML, number of lines in description
C DESC, description of function

C

C

---- DECLARATIONS:
CHARACTER DESC(20)*72
DOUBLE PRECISION TIME, X(20), SX(20), DSX(20), P(20), Y(20)
INTEGER NUML, NSX
LOGICAL DOF
g...DN’Q#"lfi'lI'Q.Q.Q.Qll!iliil'Qiliii!i!l.lll!ill!liii’il
(o
IF (DOF) THEN
C------ Description section (max 20 lines)
NUML= 5
DESC(1)=' DN: set as 1st order differential equation.’
DESC(2)="' DSX(1)= -(5.0/0.1)*SX(1)-(1.0/0.25)*SX(2)’
DESC(3)=' DSX(2) =(1.0/0.1)*SX(1)-(0.3/0.25) *SX(2)-X(2)’
DESC(4)=' Y(1) = SX(1)/0.1’
DESC(5)=" Y(2) = SX(2)/0.25’'

C
ELSE
C
C------ Set the number of state variables
NSX= 2
C

C------ Evaluation section

19

DSX(1)= -(5.0/0.1)*SX(1)-(1.0/0.25)*SX(2)
DSX(2) =(1.0/0.1)*SX(1)-(0.3/0.25) *SX(2)-X(2)

o
Y(1) = S$X(1)/0.1
Y(2) = $X(2)/0.25
Cc
ENDIF
c
RETURN -
END

C>>>>353>>3>>>>>>>>>>>>>>>>>>>>>>>>>>>>

These subroutines should be compiled and linked with the main program for the

complete definition of DNs in software.

Modifications have been made to ENPORT in graphical modeling and equation
definition. In the graphical modeling DBNs and DMNs are defined with the same
manner as other nodes. Equations to support DNs are collected in a file of such
subroutines. Each distinct routine is named ZZDN; (i =0, 1, ...,9;j = 1, 2, ..., 9).
Up to 99 sets of ordinary-differential-output equations are allowed in this file. The use
of these subroutines is similar to the use of User_Defined_Subroutines, ZZSUj,, in
ENPORT (see Rosenberg, 1990, and Appendix B for details). As a result, the function

types in ENPORT are enhanced, as shown in Figure 2.5.

20

{ 4 J
PFenction Libeary Ussr_Defined_Sulwoutines User_Defined_Dynsmic_Subroutines
Zzsu ZZDN
WV I I | l I |
Predefined
fanctios 01 02 .. 9 0102 .. 99

Figure 2.5 List of function types in modified ENPORT

2.4 An Example

2.4.1 Model

A system graph containing DBNs and DMNs has been built in Modified ENPORT and
is shown in Figure 2.6. This model includes one DBN and one DMN. Equations for
DBN1 model a feedback controller and equations for DMN1 model a motor. These

equations are listed as Equations (2.1) and (2.2) respectively.

21

Figure 2.6 An example of system graph with DNs

The equations for the DBN are:

“1. .
-20x + u,

x
y

where x denotes THETA, u, denotes W1, u, denotes S1, and y denotes S2.

@.1)

22
The equations for the DMN are:

X, =u -50x -40x,
%L =10x -12x, - 4,
y, =10 x,
»=4x

n

2.2)

where x, denotes P.E2, x, denotes P.M2, u, denotes E.1, u, denotes E.2, y, denotes F.1,

and y, denotes F.2.

The load, composed of an inertia (I) and a friction effect (R), is driven by the motor
through a stiff shaft (C). The input voltage to the motor is generated by node SE. The
feedback controller takes in the desired position S1 and the load velocity W1 and outputs

an actuator signal S2.

An alternative system graph with more details is given in Figure 2.7. Each DN has been
expanded into a set of standard nodes. The DBNI1 is defined by the standard block atoms
{SUM, GAIN, INT}. The DMNI is defined by the standard multiport set {R1, 1A, I1,
GY, R2, 1B, I2}. The physical parameters of the standard nodes were used to derived
the DBN1 and DMN1 equation details. Parameters chosen for the physical components
are as follows:

bl =5.0(0) resistance

L = 0.1 (Henry) inductance

23

b2 = 0.3 (N.s/m) friction coefficient
m2 = 0.25 (Kg) motor inertia

= 10.0*s3 feedback gain
s2 = sl-s4 negative feedback
sl =1.0) reference position

k = 100.0 (N.m/rad) shaft stiffness

m = 1.0 (Kg.m? load inertia

b3 = 0.5 (N.m.s/rad) rotational friction coefficient
= 1.0*sl actuator voltage gain

SRC

S1

L)

ASVAREA

11 Rl R2 c I R

Figure 2.7 System graph with standard nodes

24
2.4.2 Simulation Comparison

A simulation run is made from initial time (0) to final time (8 seconds). Figure 2.8
shows the behavior of the load velocity W1 and the load position THETA. The load
velocity is adjusted by controller to have the load approach a constant position. Results
obtained using the DBN1 and DMN1 match those obtained by the model with standard

node types.

SCALING

Wl T -- T==-=-
1.31E-01 \ e

-5.87E-03

THETA I
5.23E-01 \
0.00E+00

.
.
’
g
.
g
0
.
y
O
’
.
.
.
.
’
’
.

0.00 0.20 0.40 0.60 0.80 1.00
' TIME *10E 1

LEGEND: W1 —— THETA - -

Figure 2.8a Model with standard node types

25

SCALING

Wl R ===
1.318-01
-$.878-03
THETA . :
5.232-01 Ay
0.00E+00

.
.
.
.
g
B
0
o
.
0
o
.

0.00 0.20 0.40 0.60 0.80 1.00
TIME *10E 1

LEGEND: W1 — THETA --

Figure 2.8b Model with DNs

3. ORGANIZING SYSTEM EQUATIONS FOR SOLUTION

3.1 The Computational Graph

A directed graph can be constructed to represent the structure of the system equations
derived from a bond graph model. This computational graph (CG) has system input
variables and state variables as starting nodes and derivatives of state variables and
system outputs as ending nodes. The construction of the graph can be done as described

when the bond graph model contains integral causalities.

Suppose we have a power transmission system as depicted in Figure 3.1. This is a
model of an inertial load driven by a motor through a slipping clutch. Bond M is the
shaft connection from the motor to the clutch on the upstream side and bond L is the
shaft connection of the clutch to the load on the downstream side. The motor is modeled
by a torque source (SEM) and an internal equivalent resistance (RM). The clutch is
modeled by a viscous friction coupling (RC). The load is modeled by a rotational inertia

(IL) and friction effect (RL).

For a given system graph model, a complete set of system equations can be developed.
The list of such equations, specified as relations between input-output variables, is given

in Table 3.1 for the example of Figure 3.1. In the table, "E" refers to effort, "F" refers

26

27

to flow, and "P" refers to momentum. The suffixes represent the names of bonds.

SEMéllM}——AOCQHL

A

IL RL

Figure 3.1 Bond graph model of a power transmission system

28

Table 3.1 Equation data listing of bond graph

of equation | Output vbl name | Function type | Input vbl name
1 E.M1 CON --
2 F.M1 ASGN F.M2
3 E.M2 SUM E.M1

E.C
4 F.M ASGN F.M2
5 F.M2 GAIN E.M2
6 E.M ASGN E.C
7 F.C SUM F.M2

F.L1
8 E.L ASGN E.C
9 E.C GA2N F.C
10 F.L ASGN F.L1
11 E.L1 SUM E.L2

E.C
12 F.L2 ASGN F.L1
13 F.L1 ATT P.L1
14 P.L1 INTEG E.L1
15 E.L2 GAIN F.L1

29
Figure 3.2 depicts the input-output relationships in a CG. Each directed edge represents

an entry in the input list. Each node represents an equation and its associated output.
The node numbers in Table 3.1 correspond to equation numbers in Figure 3.1. The

variable labels are shown only for ease of interpretation.

The problem of sorting the system equations into a suitable order for sequential solution
is transformed into the problem of finding a precedence order for associated CG. There

are two distinct situations to consider.

(1) The CG has no cycle (i.e., directed loops). This case is relatively simple and can
be treated by any one of several search algorithms.

(2) The CG contains one or more cycles. Each such cycle must be identified (e.g.,
as a strongly connected component) and a reduced CG generated. Then the case

is that of (1) above.

Edge Nada Node,

TR L LI

[[+ e

avuwavwhew e
YT LY T

Figure 3.2 Computational graph and its edge-node table

3.2 Depth-First Search for Sorting

3.2.1 Basic Algorithm
The Depth-First Search (DFS) technique is a method of scanning a finite graph (Even,

1979). For the development of sorting algorithms, the basic idea and definitions of DFS

are briefly summarized in this section.

31
Definition 1:

A finite directed graph G(V,E) consists of a finite set of vertices V={v,,v,,*--v,}
and a finite set of edges E= {e,,e,,*-¢,}; each edge e is incident to the elements

of the ordered pair of vertices (u,v), from u to v.

(A directed graph is often referred to as a digraph). With DFS, let us select and visit
a vertex a, and then visit a vertex b adjacent to a, and then continue with a vertex ¢
adjacent to b (but different from a), and then an "unvisited" d adjacent to c, and so forth.
As we go deeper into the graph, we will eventually visit a vertex y which has no
unvisited neighbors. When this happens, we return to the vertex immediately preceding
y in the search and continue the procedure. If the particular search terminates, then a
new starting vertex is sought and the procedure starts again. If vertices are labeled

sequentially as they are visited, then the labels can be used to derive a searching order.

One of the very useful application of DFS is for identifying strongly-connected

components in a digraph.
Definition 2:
Let G(V,E) be a finite digraph. G. is a strongly-connected component of G if

given (u,v e V (G,)), there exists a directed path from u to v and from v to u.

An example is given in Figure 3.3. The vertices a, b, c belong to a SCC of the digraph.

32
The vertex d belongs to a SCC of the digraph.

Figure 3.3 An example of SCC

3.2.2 Algebraic Loops
An algebraic loop arises in a system model when the value of a variable depends on
itself. A simple example of a system which contains an algebraic loop is given in Figure

3.4. The bond graph with causality is shown in Figure 3.5.

33

R1 K R2

F(t) X

Figure 3.4 Two-damper spring system

Figure 3.5 Bond graph of two-damper spring system

For this example the equations of the system are

x=f (3.1)
h=h
h=15 (3.2)
fo =5

€ =¢ -6 - ¢ (3.3)

35

e, = F(1) (3.4)
e, = & (1) 3.5)
e, = ¢.(x) (3.6)

fy = b, (&) 3.7

where "f" is velocity, "e" is force, and "x" is displacement.

From equations (3.1) - (3.7), we can derive

fy = bx, (F(0) - &y () - &.(x)) (3.9)

Equation (3.8) is the mathematical representation of an algebraic loop. In the general

nonlinear case one has to use an iterative method to find f;, given x and t,.

Figure 3.6 depicts the CG of the two damper spring system that represents the system
equations (3.1) - (3.7). It can be seen easily that path ®»@>3»(® is a directed loop.
Therefore, the node set S, = {5,6,3} is a strongly-connected component. By applying
the algorithm stated in section 3.2.1 we can discover all of the SCCs in Figure 3.6.

They are listed in Table 3.2. It should be noted that the simplest SCC is a single node

36

of the CG.
X} E3 FC
® 5 6 Ye2
O—=3a @® @
q4 EA F.2 F.1 q4 (F4)

Figure 3.6 Computational graph of two-damper spring system

Table 3.2 SCCs in a two-damper spring system

37
By taking each SCC as a node the CG can be reconstructed. Such a CG, which does not

include any algebraic loops, is referred to as a standard computational graph (SCG).
Figure 3.7 is an example of a SCG derived from the CG of Figure 3.6. The node labels
in the SCG are different from those of the CG because they are the labels of the SCCs,

as given in Table 3.2.

Figure 3.7 An example of standard computational graph

3.2.3 Dynamic Nodes
The sorting algorithm described previously must incorporate the system equations derived

from models that include DNs. Each DN contributes a node to the CG, since it relates

38
a set of inputs (u) to a set of outputs (y). In addition, it must be classified as a node that

generates derivatives of the state variables. Figure 3.8 shows the algebraic structure of

the DNs.

[

1€ M-

]

109 1™
~—

=~ 13

)
-
|

Figure 3.8 Characteristics of dynamic nodes

In general a DN has multiple inputs and multiple outputs. For a particular DN with m
inputs and n outputs a single node will be created in the CG, as shown in Figure 3.9.
The sorting algorithm recognizes nodes with multiple outputs and processes them

accordingly.

39

Figure 3.9 Representation of DNs in CGs

3.3 Modified Breadth-First Search for Path Identification

For a typical LSDS there is a great amount of calculation carried out in the simulation.
It is desirable to organize the equations in a way that reduces the computational work to
the minimum necessary to achieve the desired results. To increase solution efficiency
a modification to the existing sdrting algorithm was made. The main idea of this

algorithm comes from a Breadth-First Search (BFS) approach.

40
3.3.1 Basic Algorithm

Consider the case of a finite directed graph E, in which two vertices s and t are
specified. The goal is to find a path from s to t, if there is any, which uses the least
number of edges. The algorithm is as follows (Even, 1979).

1 Label vertex s with 0.

2 ie0.

3 Search all unlabeled vertices adjacent to at least one vertex labeled i. If

none are found, stop.
4 Label all the vertices found in (3) with i+1.
5 If vertex t is labeled, stop;

If not, i « i+1; go to (3).

The index i is referred to as the BFS number. If a vertex is labeled with A(v) = k, then
there is a path of length k from s to v. Now, the BFS number has another meaning, the
length from s to v. On the path from s to t, if A(v) < A(w), we know that in order to
reach w, vertex v has to be visited first. If A(q@) = A(p) < A(w), vertices q and p have
to be visited before reaching w. Thus, the BFS number also gives the order of vertices

to be visited on the path.

3.3.2 Solving Order
As an example, we inspect the power transmission system shown in Figure 3.1 again.

The CG is given in Figure 3.2. There exists one algebraic loop. After applying DFS

41
to the SCG, the algebraic loop is identified as a SCC and all of the simple nodes are also

identified as SCCs. Thus the SCG shown in Figure 3.10 is constructed based on
redefined SCCs. The SCG nodes are related to the original equation nodes as listed in
Table 3.3. The result in Table 3.3 was obtained by running the sorting program on the

example (see Appendix C for a listing of the sorting program).

Table 3.3 List of SCC

Name of SCC SCC pointer Equation nodes

PmoVONAND WLWN K~

Definition
Source vertices - vertices which have only owtward edges

Sink vertices - vertices which have only inward edges.

The source vertices in Figure 3.10 are 7 and 12. The sink vertices are 1, 2, 3, 4, §, 8,

and 9.

42

Figure 3.10 SCG for power transmission system

Each vertex in the SCG represents a variable or a group of variables because it
represents an equation (or possibly a set of equations). To find the solving order for a
sink vertex is to identify the directed paths to that sink vertex from all source vertices,

including the ordering of vertices to reach the sink vertex along these paths.

3.3.3 Path-Order Matrix
A path-order matrix can be developed from a SCG that is acyclic, i.e., an SCG which

by definition has no direct cycles. Recall that the basic concept of a path is a sequence

43
of vertices and directed edges from a source vertex s to a sink (or target) vertex t. The

source vertex is defined to be at layer 1; subsequent vertices are assigned to layers
according to when they are reached. The path-order matrix is a convenient form to use

for deriving solution order information by computer.

So far, we have defined the solving order of an output variable. The directed path from
the output t to all related inputs from a directed tree with root at t. On this tree, vertices
having same indices are defined to be at the same layer. A mathematical notation is

adopted to record sets of paths from all outputs to related inputs.

Definition
A Path-order matrix is a matrix whose entries are positive integers (includes 0).
It has n rows, corresponding to the n source vertices. It has m columns,
corresponding to the m sink vertices. The vertices are associated with a SCG. If

Py = k, then vertex i is in layer k on the path to sink vertex j.

An algorithm to derive the path-order matrix for a SCG is given in Appendix E.

The FORTRAN program implementing the algorithm is listed in Appendix C. An
example is presented to give some insight into the discussion of path matrix. For
convenience, the power transmission system in Figure 3.1 is considered again. Its SCG

is shown in Figure 3.10. From Figure 3.10 we see that the sink vertex set S is {1, 2,

44
3, 4,5, 8, 9}, the source vertex set T is {7, 12}, and the number of vertices in the SCG

is 12.

Applying the path-finding algorithm to this graph, we identify all paths from the sink
vertex set to the related source vertex set, as given in Figure 3.11. Column headings in

italic denote layers.

(i@
li—@

G

()

(&—
(10—()—(12)

i

{5 @
®
©

@

H—{

O,

ample of path identifi

Figure 3.11 An ex

46
According to the information in Figure 3.11, a 12 by 7 path-order matrix can be

developed as follows:

--- Sink vertices ---

Vertices 1 2 3 4 5 8 9
1 1 o o0 o o0 o0 o
2 0 1 o o0 o o o
3 o o0 1 O 0 o0 o0
4 O 0 o 1 o o0 O
5 o 0 o o 1 o o
6 2 2 2 2 2 o0 O
7 4 4 4 4 4 0 O
8 o 0 o0 o0 o 1 0
9 o 0 o0 o o o 1
10 o 0 o o 2 o0 o
11 3 3 3 3 3 2 2
12 4 4 4 4 4 3 3

From the computational point of view for equation solving, the solving process starts
from input vertices. In other words, it starts from the highest layer of a path. To obtain
the desired results we reverse the layer numbers of each path to make inputs the lowest

layer and outputs the highest layer. The final form of the path-order matrix is:

47

--- Sink vertices ---

Vertices 1 2 3 4 5 8 9
1 4 0 0 O o0 o0 o
2 O 4 0 0 0 O0 o0
3 o 0 4 0 0 O0 O
4 o 0 0O 4 0 O0 O
5 O 0 O o 4 O0 O
6 3 3 3 3 3 o0 o0
7 1 1 1 1 1 0 O
8 o 0 o0 o o 3 o0
9 o o0 o0 o o o0 3
10 o o0 o0 o 3 o0 o
11 2 2 2 2 2 2 2
12 1 1 1 1 1 1 1

For example to find the output variable associated with vertex § we first solve the
equations associated with the vertices 7 and 12, then solve the equations associated with

the vertices 11, 10 and 6, as well as 5.

As we discuss in more detail in the next section, an important aspect of the path-order
matrix is that it provides the basis for a method to sort equations and get the Jacobian

in an efficient way.

48
3.4 Generation of Jacobian Status Matrix

For an implied set of explicit differential equations of the form

% = f (x, u) (3.9)
the Jacobian is defined as follows:
J = [J] (3.10)
where
J - %» JILEN @3.11)

In the solution of nonlinear differential equations most numerical integration algorithms
make use of the local Jacobian repeatedly. One way the Jacobian can be estimated is to
use a difference approximation to the derivatives. This is relatively easy to implement
and quite general, but it is computationally costly. An increase in solution efficiency will

result if the cost of evaluating the Jacobian can be reduced.

A FORTRAN computer program JAC has been developed to generate the analytical state
equations of a system along with its system Jacobian matrix using the bond graph
representation of the system model (Hamilton, 1984; Sobhi, 1985). A symbol

manipulation technique was used in the program JAC. Availability of the Jacobian in

49

symbolic form increases the efficiency of the system analysis.

Here we introduce a status matrix associated with the Jacobian, SJ = [SJ;], whose
elements are either 0 or 1. In the calculation of a Jacobian, there are three possible types
for each entry: always zero, always constant, or a state-dependent or time-varying

function. Interpretations are made below.

If J; is zero, then the j-th input does not affect the i-th output.

If J; is constant, the i-th output changes proportionally to the j-th input; those entries
have to be calculated only once.

If ; is a function of the state or time, then the i-th output varies in response to the j-th
input according to the test state so that these entries have to be updated

continuously (at every time step).

Each entry of the status matrix of a Jacobian, SJ;, is defined as follows:

SJ; =0: when Jj is zero or constant,

SJ; =1: when J; is a function of state or time.

First we consider models whose CGs are acyclic (SCGs). The idea is that if the paths
from each output to each input are identified, then we can trace the path to identify the

vertices along this path. Since each vertex refers to a function with local input and

50

output, by testing the type of functions we can obtain the status matrix of the Jacobian.
This idea has been implemented in the ENPORT package. In ENPORT the function for
each vertex in the CG derives from one of two sources: the standard function library or

user-defined subroutines.

SE

1

4 < 2
N —>] —1 1 —— C
m

WA | Ry T,

y

R

Figure 3.12 Mechanical system and its bond graph model

Fact 1: For the i-th outpwt, if there is no path to the j-th input, then J, is = 0 and
s,g = o.

Fact 2: For the i-th output, there exists a path to the j-th input. If the function

51
types of the path vertices are all proportional, then J is constant and SJ;
= 0.
Fact 3: For the i-th output, the path exists to the j-th input. If any of the path
vertices has a non-linear function type, then J; is a function of state or

time and SJ; = 1.

Table 3.4 List of system equations

of Eqn | Output Input | Function type
1 E.1 time SIN
2 E.4 E.1 SUM

E.2

E.3
3 Q.2 F.2 INTEG
4 E.2 Q.2 ATT
5 P.4 E.4 INTEG
6 F.4 P.4 ATT
7 F.3 F.4 ASGN
8 F.2 F.4 ASGN
9 E.3 F.3 DIODE

Let us consider a mechanical system and its bond graph model shown in Figure 3.12.
The system equations of this model are listed in Table 3.4 in abstracted forms. The
function types are all members of the standard library. A CG is constructed based on
these system equations (Figure 3.13). With the application of the modified BFS

algorithm to this SCG, the paths from P.4 and Q.2 to P.4 and Q.2 can be identified

52
(Table 3.5).

F2 @2

Figure 3.13 CG of a mechanical system

Since only one node, 9 (representing E.3), contains a nonlinear function, the status

matrix associated with the Jacobian

[oP4 3P4
;.| ®s 02

] (3.5)
02 22
| P4 3Q2

53

is

s.r=[10] (3.6)

Table 3.5 Output-input paths

input/output 8
5 2+9-+7+6-+5 8+6-—+5
3 2+4-3 0

Now we turn our attention to bond graph models which contain algebraic loops and/or
DNs. It has been pointed out previously that algebraic loops and DNs can be treated as
simple nodes (SCCs) for sorting purposes. To calculate the status matrix, we assume
that CG vertices corresponding to algebraic loops and DNs are nonlinear, since algebraic
loops have a group of equations which can not be decoupled explicitly in general and

DNs have an arbitrary set of differential-algebraic equations.

The method to simulate this type of bond graph model is similar to that used to simulate
standard bond graph models. The actual procedure includes the following steps:

. construct a CG for the bond graph model;

54
identify algebraic loops and DN;
condense the CG to form a SCG;
find SCG paths from each output to each input;
check function types; and

generate SJ by the standard method.

4. IMPROVEMENT OF COMPUTATIONAL EFFICIENCY
FOR LSDSs DESCRIBED BY BOND GRAPHS

Much of the literature on simulation of LSDSs is concerned with numerically solving
large sets of differential-algebraic equations. A common purpose of much of the
research reported in the literature is to reduce the amount of computational work. The
engineering design problems with which we are concerned usually are not one-time
simulation runs. Typically they require repeated runs of the same model with varying
input and parameter conditions. For such problems there is great practical benefit to
reducing the computation time. In addition to the progress made on computer hardware
and operating system technology, two major innovations have had profound impact on
the study of LSDSs by computational methods. These are methods for model-order
reduction and methods that use multiple-time-scales. We will not discuss model-order

reduction methods in this work. We will discuss multiple-time-scales methods.

Thus far we have assumed implicitly that, given a set of differential-algebraic equations,
a particular numerical integration algorithm will be selected and used during the entire
simulation process. As was pointed out by Chua and Lin (1975), "under this assumption,
the step size for each time step may be optimized by choosing the largest possible value

of h for which the local truncation error remains bounded below the user-specified

55

56

maximum allowable error, and for which the algorithm remains numerically stable. For
large systems of equations, the amount of computation does not increase substantially
when the order of the algorithm is increased. Consequently, it often turns out to be more
efficient to vary both the order and the step size during each time step.” Here order

might refer to order of a Runge-Kutta algorithm.

Consider the system graph models we have discussed previously. It is desirable to
develop an efficient computational method to simulate them in a production mode (i.e.,
for multiple solution runs). In this chapter we consider the increases in computational
efficiency achievable by selecting the integration algorithm and by selecting the step size
for each dynamic submodel. We shall refer to this as a multiple-integration-algorithm

method. We shall also include multiple-step-sizes as a tool.

4.1 Solution of Sorted System Equations

4.1.1 Submodels

Structural decomposition of a system is based on the graphical description and the
detailed model equations. Graph theory has been applied to CGs derived from the model
to sort the system equations and arrange them in a suitable calculation order. According
to the equation structure of each vertex in the CG we consider three types of nodes in

a system model. For illustration see Figure 4.1.

57
For given inputs and outputs submodels provide specific information about the status of

submodel equations. For instance, standard_node submodels have a set of explicit
algebraic equations, algebraic_loop submodels are represented by sets of implicit
algebraic equations, and DN submodels are described by a set of differential-algebraic
equations. The differences among the equation structure of these submodels are

significant. They will lead to different handling strategies at the solution stage.

Computational
graph
Alﬁc Differefl‘:‘talgebnic Algebraic loops

Figure 4.1 Submodel structure of system model

58
It helps us to understand the characteristic of submodels by recalling how they are

constructed in the Modified ENPORT program. The construction of submodels occurs

in two ways:

(1) User_constructed: Sets of differential-algebraic or algebraic equations are
group-coded in a FORTRAN file which is linked with the main program.
Each subroutine in this file determines a dynamic or algebraic submodel.
(2) Program_constructed: After the whole model is declared in Graph option
and equations relate to the model are defined in Equation option, the
algorithms embedded in the program are activated to identify simple nodes

and algebraic loops.

It is possible for a DN node to be included as part of an algebraic-loop set, based on its

algebraic input output structure. This is not the usual case.

4.1.2 Structure Decomposition

The above definitions of submodels can be extended to obtain a structure decomposition,
where a complete model is decomposed into an interconnection of submodels. In
general, each submodel interacts with the rest of a model in the same way as external

input, and output variables.

For numerical efficiency reasons it is often profitable to handle DNs and the rest of a

59
model separately. Recall the definition of DNs given in subsection 2.2.3. Detailed types

of equations were listed in Table 2.1. At this point we discuss DNs as part of a
complete system. A system may be decomposed into an interconnected set of submodels.

Each submodel contains exactly one DN, or it contains all of the remaining nodes.

Without loss of generality, let us consider a system with three dynamic nodes, as
depicted in Figure 4.2. For consistency in notation DNi (i>0) is used to represent the

explicit dynamic nodes, while DNO is used to represent the rest of system.

Each submodel i has an input vector made up of two subvectors, namely, U; and U,.
U, represents inputs from other submodels. U, represents external (system) inputs. Each
submodel i has an output vector mode up of two subvectors, namely, Y; and Y,;. Y;
represents outputs to other submodels. Y,; represents external (system) outputs. Figure
4.2 shows that a submodel output component may not be feedback to its input. From

Figure 4.2 we can write the following equation sets:

DN, has the equations

xo = ¢1(x09 Uo: Uw)
YO = *O(XO’ UO’ Uw) (4°1)
Yy = ¥,0(Xp Ups Uy)

Uso

Sl
U —

Us1

(X2)

Figure 4.2 Structure model

61
DN, has the equations

Xl = ¢,(X,, U, U,))
Y, =9, U, U,)

4.2
Y, =v%,X,U,U,) @2
DN, has the equations
xz = ¢2(x29 Uz, U,z)
Y2 = *2(x1’ Uz’ Un) (4.3)

Y,z = ’g(xzs Uz: U,g)

Furthermore, each U,; is composed of elements from Y, j #i.

The three structural submodels are connected with each other by following relationship,

Uo Woo WOI Worz Yo
Un = Wlo Wn sz Yl
Uz Wzo sz sz Yz

where W; is a matrix of 0 and 1 elements. A "1" appears if an element of Y; appears

as a member of U; else W is 0.

62

The numerical solution of such a decomposed but interconnected system consists of
integrating sets of equations over a desired time interval. This is most commonly done
by discretizing the time interval into intervals marked by time-points t,, k=1,2,..., k.
Without loss of generality let us consider a time-point at the time t,=t,. At this time

point, equations (4.1), (4.2) and (4.3) can be expressed as

xo (to) = ¢o (xo(to)9 Uo(‘o)s Ug(to))
Y, (1) = ¥y (Xo(8), Uy(ty), Uy(2y)) (4.4)
Ym (to) = ¥y (xo(‘o)s Uo(‘o)’ U,o(to))

xl (to) = ‘bl (xl(to)’ Ul(‘o): U,)(to))
Y, (1) = ¥, (X,(8), Uy(8), Uy(5)) 4.5)
Y,I (to) = *,1 (xg(to)a U](to)’ U,}(to))

xz (to) = ¢2(x2(‘0)t Uz(’o)a U,z(to))
Y, (1) = ¥,(X,(8), Up(8,), Uy (5)) (4.6)
Y, (8) = ¥,(X,(1,), Uy(8), Uy,(2,))

According to the definition of a SCG as given in section 3.1, the starting vertices of the

CG consist of X; and U,, and the ending vertices consist of X; and Y,.. Therefore, the

63
CG is a composition of static structure submodels at a certain time-point. The term

"static” is used here because the computations involved in reaching ending vertices are
algebraic. Numerical integration methods have to be used to obtain X(t;,,), X,(t;,,), and

X,(t;,) from the values of X(t), X;(t), X,(t), and U(t) G <i+1).

4.2 Multi-rate Solutions
4.2.1 Direct Solution Methods
In the case of a system graph with explicit integration implied everywhere, the state-

space and output equations of the model can be written as

X = F(X, U, t)

4.
Y, = G(X, U, ?) @7

Figure 4.3 indicates a procedure for organizing the system equations for solution. The

properties of differential-algebraic equations typically encountered in LSDSs are:

large: high order of X exists.

9(F, G)

. sparse: most entries of the matrix 3,)

are zero.

Input node equations

|

Construct the first level
computational graph
(Ca)

|

Identify DNs and algebraic loops

|

Construct the standard
computational graph
(SCG)

|

Generate the path-order matrix

Figure 4.3 Flow diagram of sorting system equations

65
. stiff: there are greatly differing time constants present.

One complication that can occur in some problems is that same components X; of the
derivative vector X appear implicitly in Equation (4.7). If we restrict each DN’s
equations to be explicit, however, this complication does not occur in system graph
analysis since the derivatives are explicit as well. We note that DN, must also be explicit

in X. Thus, derivative causality in the bond graph part of DN, is not permitted.

A wide variety of algorithms are available for direct integration of Equation (4.7). The

most commonly used ones are listed in Table 4.1.

Table 4.1 Integration methods for ordinary-differential equations

Explicit Runge-Kutta

Adam Bashforth
Runge-Kutta-4
Adams-Moulton

Explicit Multi-step
Implicit One-step

Implicit Multi-step | Backward-Difference
Formulas

When all parts of a model have a similar time scale, it is usually possible to find an

efficient time step for solution that meets accuracy requirements.

4.2.2 Multiple Integrators

The main motivation to apply multiple integrators to solve the mathematical equations
listed in Equations (4.7) is the reduction of solution computational effort. In particular,
multiple integrators can be used to benefit models that have DNs, by taking advantage

of their distinct features.

In the prior discussion the differential equations for system graphs with DNs were
restricted to be purely explicit. To better show the advantage of the multiple integrator
method, the explicit restriction on DN equations is relaxed in this section. That is, any

DN may have implicit differential equations.

The basic idea of the multiple integrator approach is described in Figure 4.4. From the
computational point of view, there are two decisions to be made for each DN in the
system. They are (1) what step size to use for computation and synchronization, and (2)

what integrator to use.

Decisions about step size we refer to as MSS (Multiple Step Sizes).

Decisions about integration we refer to as MIA (Multiple Integration Algorithms).

For instance, the MSS method can be used in stiff but partitionable linear systems, which
contain some DNs with rapid dynamics compared to others. It is typically necessary to

use the smallest integration time step globally to obtain the solution of this type of model.

67
On the other hand, the MIA method can be applied when some DNs of a system have

large nonlinearities while others do not.

DNo

MSS

Main
controller

DN1

/

MIA

DN>

Figure 4.4 Diagram of multiple integration approach

Some solution properties of the DN equations (e.g., linear or nonlinear, explicit or
implicit) can be derived from modeling phase. Some properties derived from values of
parameters (stiff or non-stiff) are often not known in advance of solution. Nevertheless,
a direct solution method can be used to make a test run, so as to get some insight into

the solution properties of various parts of the system.

68
Figure 4.5 shows a flow diagram for solving LSDSs using a multiple-integration

approach. In this diagram, the subscript index "0" refers to equations not associated with
explicit DNs. In general, subscript "i" refers to DN,. Part 1 of Figure 4.5 shows the
initial setup. In block 3 "t," denotes initial time for solution, "T" denotes final time,
"X,(to)" is the initial condition vector, and "at," is the step size for reporting for DN,.
Part 2 of Figure 4.5 shows the detailed procedure if a single integration (INTO) is used
for all DN, but solution step size varies for each DN;, i=0. Part 3 of Figure 4.5 shows

details if multiple integrators are used.

Read in equation solution
ordei%rom SCG

l

Choose integrator (INT)
for DN o

|

Read in to, T, XS (t0)9
and Aty

l

Select MSS or MIA
for each DN

s \m
B

Figure 4.5a Program flow chart, part 1

70

A
|

Given X (ty), at,

- i | .
Atj ZAto?
A.‘ A‘.
— =1 —-—

ato atj

i=0] [i=0

Briote U, 3
=t * at, ta= 4 ¥ afy
Evaluste Y, (t,) Evaluate Y, t)
yos
" X (1= atp—-=
3 (1) Evaluste X, (t) o
et 1 Evaluate X, (t)
i=i+ f X, (40
Bvalnate o LM -
Sotve for X, (er) U &) [:j X, ()
tim ™ tl + At,
Solve for X, ()
Evaluste Y, (1), X, (t,) —
Bvaluate Y, (t), X, (t)
Solve for
t,=T? — ™
= N
Stop e
Stop

Figure 4.5b Program flow chart, part 2

!

B
|

Given X ; (to), at; = ato

Choose integrator for DN;
(NT;))

i=0

Evaluate U, (t;) |-~

Y
ta=t, + At,
Use INT, ® solve X, (,.,)
i=i+1

Evaluste Y, (t), X; (t,) Evaloate U, ¢,..)

v
Evaluate Y, (t,), X, (t,)

- no Use INT, to Solve

LT " for X (tuy)
yes
Stop

Figure 4.5¢ Program flow chart, part 3

4.3 Software Implementation

A software design was made for implementing both the MIA and the MSS methods. The
host simulation software chosen to imbed the implementation was ENPORT. ENPORT
provides a well-tested base that supports bond graph and block diagram modeling and has
a suitable equation sorting procedure. We described earlier the implementation of DNs

within ENPORT.

In this dissertation the author did not implement the entire multiple integrator approach
operationally. However, the MSS method is implemented. As an example, integrator
RK-4 was chosen to illustrate the MSS method and several subroutines for DNs were
coded in FORTRAN. These subroutines were then incorporated into the ENPORT

simulation package.

The MSS program contains four subroutines. These subroutines are discussed briefly

below. Listings of these subroutines is provided in Appendix D.

1. Subroutine MCDDRYV --- the main driver for MSS solution phase.
The purpose of this subroutine is to control the selection of computation step sizes

for each DN.

2. Subroutine MCDINT --- control the integration process.

MCDINT uses the Runge-Kutta method to compute the state variables of DN

73

from a given initial time, t_, to a final time t, at DTMJ intervals. It stores results

at DTSTR intervals.

3. Subroutine RKMCD --- perform integration with Runge-Kutta method.
The inputs to the subroutine include the DN equations, computation time step,
current time and the state variables at current time. The subroutine provides the

values of state variables at the new time.

4. Subroutine INIMCD --- get the initial conditions from user for a typical DN.

4.4 An Example

Next, an example is shown which uses the MSS method to obtain simulation results. The
position control model presented in Chapter 2 is considered again. The system graph,
which contains a set of standard nodes and connectors, is depicted in Figure 2.7. In this
example, the dynamic block node DBN1 is defined by the standard block atoms {SUM,
GAIN, INT}. The dynamic multiport node DMN1 is defined by the standard multiport
set {R1, 1A, I1, GY}. The MACRO is defined by {1B, R2, 12, 0A, C, 1C, I, R}. The
rest of the system (DN,) is defined by {MACRO, SE, SRC}. The model consists of
three submodels, according to the previous discussion of structure decomposition. They
are DBN1, DMNI1, and DN,. The submodel structure of this system is illustrated in

Figure 4.6.

74

SRC

DNy
DBN1

=B~

Figure 4.6 Submodel structure of system graph

More detailed information on the generation of this particular graph model with modified
ENPORT is contained in Chapter 2, in which all the required parameters and equations
are specified. Given the detailed data, modified ENPORT proceeds to analyze and solve

the problem to obtain the time response.

Equations for each submodel can be derived according to the information available to the

system. For DBN1, with x;, = THETA, we get equation (4.8)

75

dx,/dt = wl
52 = -2.0%x, + sl 4.8
8 =1x,

For DMN1, where x,= P.E2, we get equation (4.9)

dx,/dt = -50.0+x, + E1 - 1.0«F.M1
F.1 = 10.0*x, 4.9)
EMI1 = 10.0%*x,

For the rest of the system (DN,), where x,= P.M2, x,= Q.3, and x;= P.5, we get
equation (4.10)

dx,/dt = -1.2#x,-100.0*x, + EMI

dxjdt = 4.0*x, - x,
dxJdt = 100.0%x, - x, (4.10)
FMI = 40%x,

It is known from a frequency analysis of the entire system that the state variables in DN,
show a high frequency component of same importance. The MSS methods is employed
so that a smaller step size is used to integrate this part of the model. The CPU time is
recorded for integration runs from O to 10 seconds when various step sizes for the

submodels are used. The time responses are shown in Figure 4.7. They show strong

76
overall similarity of behavior. Comparing the results obtained with different step sizes,

we can see that the accuracy is within the bound of 0.45%. The CPU times for solution

are listed in Table 4.2.

Table 4.2 CPU times for solution

Submodels | Calculation time CPU time
step size (second)

Table 4.2 shows that the computation cost for comparable accuracy is reduced by more
than 50% when at for DBN1 and DMN1 is increased by a factor of four. It should be
noted that for production runs, i.e., repeated simulations, the aggregate computation time
can be greatly reduced. This is a small size problem, but even so it shows the

possibilities for a gain in solution efficiency with the MSS approach.

SCALING
™ema
5.502-01 X L

0.302+00 Fad
"
1.408-01
-3.902-0) H

0.40 0.60 0.80 1.00
*10E 1

0.00 0.20
TIME

LEGEND: THETA — W1 .-
TIME STEP 0T=0.0125

SCALING

™ETA
3.30e-01
0.008+00

L]

wl
1.408-01
+$.90¢-0)

1/ - L s
20 0.40 0.60 0.80 1.00
*10E 1

0.00 0.2
TIME

LEGEND: THETA — Wl.-.
TIME STEP 0Te0.02%

SCALING
THETA

3.50€-01 e

0.30€000 AN L]

w
1.408-01 k /

-3.902-0)
: 4

/

0.20 0.40 9.60 0.80
*10e 1

0.00 .
TIME

1.00

LEGEND: THETA — W1 ..
TIME 372? 2T+0.0%

Figure 4.7 Time response

5. EFFICIENT COMPUTATION OF ALGEBRAIC LOOPS

5.1 Problem Description

Systems containing algebraic loops arise quite naturally in many applications. The
existence of algebraic loops in equations of a physical system may not be detected until
the equation sorting process starts in most conventional simulation approaches. The

definition of an algebraic loop is a set of algebraic equations of the form

Y = G(X, U, Y) .1)

where it is not possible to reorder or solve the equations into the modified explicit form

Y = H(X, U) 5.2)

After algebraic loops are identified during the process of sorting into SCCs in the CG,
the next important step is to obtain solutions to each SCC. Unfortunately, the task for
algebraic loops can not always be accomplished easily. The computation usually

demands a large amount of computer-time. There are two commonly used approaches

78

to reduce computer-time.

)

@

5.2

Modify the system model to avoid implicit algebraic equations. Burreto and
Leferre (1985) introduced two methods to handle this situation: (a). imposing
restrictions in the set of admissible solutions; and (b). preparing a model to
simulate the system with explicit methods. These two methods require a lot of
mathematical handling and model partitioning. Granda (1984) proposed a method
that an algebraic loop can be broken by introducing a parasitic physical element
into bond graph model. This method, however, may introduce stiffness to

system differential equations.

Use iterative numerical methods to solve the algebraic loops directly. Meanwhile

try to improve the computational efficiency within implicit solutions.

Iterative Methods

Consider the mathematical representation of an algebraic loop, as stated previously, and

repeated bellow:

5.3)

At a certain time t;, X(t), U(t) are known, and Y(t) is to be fond. The principal steps

of using iterative methods to solve Y (t) are as follows:

80
(1) make an initial guess of Y®(t) (predictor);

(2) use a pre-chosen formula for calculating Y®(t) (corrector);
(3) calculate r = G(Y®(t)) - G(YP());
4 check |r| <14

if |r] > r, let YO@) = YO(t), go to (2);

if |r] < 1, YO) = YO(), stop.

In step (4) r, is the desired accuracy.

When this iterative method is applied to solving algebraic loops, the vector Y is an
iteration vector F. Generally speaking, for nonlinear systems the higher the dimension
of Y, the higher the order of F. The higher the F dimension, the more computation will
be needed. In the case of a linear system (for which an analytical solution can be
generated), however, this is not true. In general, can we find a minimum set of iteration
variables for F to solve the iteration problem for Y? If the answer is "yes", then how

can this be achieved? If the answer is "no", then what are the alternative methods?

Some research has been conducted on this subject. Rules have been developed to assign
causality to R-fields in bond graph models (Zhou, 1988). With these rules, the minimum
set of iteration variables of an algebraic loop can be found. This approach, which has
been applied to bond graph models directly, has been limited by the structure of bond

graphs (e.g., one-port or multiport, internal or external bond, junction structure). Such

81
approaches also do not cover loops involving blocks and signals.

In this chapter, the above questions are discussed from the perspective of directed

graphs. An algorithm has been developed by author to implement the new method.

§.3 An Algorithm for Finding an Efficient Set of Iteration Variables

From the previous discussion, it is known that a SCC is a digraph representation of an
algebraic loop (including the limit case of one equation, a simple SCC). In order to
discuss the algorithm we introduce definitions of some elementary concepts and

terminology which are commonly used in digraph theory.

Definitions:

Reachability: If a directed path leading from vertex x; to vertex x; exists, we say
that x; is reachable from x;.

Acyclic digraph: If a digraph has no cycle (i.e., it does not contain two mutually
reachable vertices), then it is referred to as an acyclic digraph.

Cyclic edge: A edge is cyclic if and only if it lies on a cycle.

A minimum independent set. A set of cyclic edges in a SCC is an independent set
if removing these edges leads the SCC to become
an acyclic digraph. A minimum independent set is

an independent set which contains the minimum

82
numbers of edges.

An example is given in Figure 5.1 to illustrate how a set of iteration variables can be

obtained with the aid of digraph theory,

Figure 5.1 An example of SCC

Assume that the SCC in Figure 5.1 is identified from the CG of a system model. It
represents an algebraic loop. The simplest way to solve this problem is to take all nodes
as starting variables and begin the iteration process. This is not an efficient method, but

it is organizationally simple.

Assume that an initial iteration set F contains only node (2). An iteration process cannot

83
be carried on. This is because information from both nodes (O and (2) is required to make

) knowable. Therefore, it is natural to add node Q) into the iteration set F so that the
algebraic loop is solvable. It will be discussed later, however, that the size of this

iterative set is not minimum.

Now let us investigate this problem from a graph theory point of view. In this example,
there exist two cydles. One is (U+(3)+(4)+(1) and the other is (D+(2)+(3)+()+(D. Letus

consider the first choice of iteration set which contains node @ Removing the edge
incident on node (2), say E1 or E2, the cycle (D-+(2)+»(3)+(@)-+(D is broken but the cycle
(D+@-+@-@in the SCC is left unaffected. To make the SCC solvable, one method is to
add another node to the iteration set, for example, node @ Hence, after the edges
incident on @ and @, i.e., E4 and E1 or E2, are removed, both cycles are broken. The
digraph remaining becomes acyclic. The size of the iteration set, however, is still not
minimum. Let us consider other possible choices of iterative sets, namely, {1}, {3}, or
{4}. Starting from any one of these three iteration sets, variables on each node can be
solved. It is also expected that removing edges incident on the iteration set, E3 or E4,
the SCC becomes acyclic. From the discussion in this example, we can reach a

conclusion as follows:

Identifying a minimum set of iteration variables in an algebraic loop is equivalent
to finding a minimum independent set in the SCC associated with the algebraic

loop.

84

Finding a minimum independent set for SCCs is NP-complete (Even, 1979). However,

algorithms to find a near-minimum independent set can be developed.

The DFS (depth-first search) technique, a very useful algorithm for scanning a finite
graph, was introduced in Chapter 3. In the example in Chapter 3, DFS was performed
on a SCC to identify back edges (Even, 1979). An arbitrary vertex as a starting node
in SCC is chosen and DFS is applied to obtain a set of back edges. Such a set of edges

is an independent set.

The following procedure describes a proposed algorithm for finding a near-minimum

independent set.

1) Start from each vertex of a SCC and apply the DFS algorithm repeatedly to
identify back edges as well as the number of back edges. For each scanning,
store the back edges and the number of back edges in V; and N; respectively.

2) Compare the N; to get the smallest one, say N;. The V; is the near-minimum

independent set.

An example is given in Figure 5.2 to show the application of the algorithm.

85

Figure 5.2 An example for finding the near-minimum independent set

The results described above are listed in Table S.1.

86

Table 5.1 List of independent sets in the SCC

Independent set Near-minimum |
independent set

{ed, €8, €5, el0}
{el, €5, €8, el0}
{e3, e7, €8, el0}
{e2, el0}

{e3, e6, €8, €10}

Comparing all the independent sets, a near-minimum independent set can be obtained.
From the results listed in Table 5.1 we know that the near-minimum independent set in

a SCC is not unique.

The algorithm to determine a near-minimum set of iteration variables of an algebraic loop
has been developed based on the use of computational graphs and SCC concepts. This
algorithm can be applied to the solution of the algebraic loops. Reducing the number of
iteration variables will contribute to improving computational efficiency for large scale

non-linear dynamic systems.

A computer program to realize the algorithm is coded in FORTRAN; this file is listed
in Appendix C. This subroutine and some other subroutines which are used to sort

equations are saved in one file and named SORTCG.FOR.

6. CONCLUSION

6.1 Summary and Discussion of the Results

A new tool to improve flexibility and generality in modeling LSDSs was defined and
developed. Two new system graph element types, the DB (Dynamic Block) and the DM
(Dynamic Multiport), were introduced. Each new node is defined by a set of
differential-algebraic equations. A system graph simulation environment containing the

new modeling tools has several advantages over one without it. They are:

(1) a complex subsystem can be represented in a compact graphical fashion, due to

the assignment of multiple equations to a single node;

(2) the graphical complexity of a system model can be reduced further, since the new

node type can be incorporated in macroelements; and

(3) models of subsystems which have been developed only in equation form can be
included as single nodes, thus avoiding the potentially difficult task of expressing

the system as a set of standard nodes and their functions.

The CG (computational graph) is constructed from the node equations of system graphs,

87

88
which may include DBs and DMs. A systematic approach to the sorting of model

equations for solution was developed. For the SCG (standard CG), each algebraic loop
(SCC) and DN was identified as a specific vertex. Finding a SCC in a digraph is
equivalent to finding an algebraic loop in the system equations. For DNS the relationship

of connections with other vertices is algebraic and gets incorporated into the CG.

A path-order matrix was introduced, associated with the CG. The entries of the matrix
show the order to reach sink vertices from source vertices in the CG. An algorithm to
generate the path matrix was developed and explained. Two types of CGs were
considered, CGs containing no acyclic sub-digraph and CGs containing acyclic sub-
digraphs. With the help of the path matrix, the state equations can be organized for

numerical solution at setup in a highly efficient manner.

The path-order matrix also provided a way to evaluate the Jacobian status matrix. The
status indicates what entries of the Jacobian have to be calculated once and which have
to be calculated every time step during the solution. For large-scale non-linear systems,
reducing the calculations of Jacobian in the whole simulation process can make a valuable

contribution to the increasing solution efficiency.

Based on the new modeling tools developed in this work, some system computational
aspects, such as graph-oriented decomposition and multiple methods of integration, were

addressed. A construction of structure submodels was suggested. This model

89
decomposition provided a method to deal with DNs and the rest of system in parallel.

An improved strategy for solving large sets of equations involved in system graphs with
DNs was presented. The proposed strategy is based on multiple independent but
synchronized integrators. Two types of methods were proposed. They were the multiple
step size (MSS) method and the multiple integration algorithm (MIA) method. The

advantages of the computational method are

(1) acomplex system with different local dynamic properties can be decomposed into
several dynamic submodels;

(2) improved solution efficiency can be obtained by applying suitable integration
methods to different submodels; and

(3) improved solution efficiency can be achieved by selecting suitable solution step-

sizes to different submodels.

As another contribution to improving the solution of LSDSs, an algorithm was developed
to identify a near-minimum set of iteration variables for algebraic loops. This algorithm
uses concepts of graph theory to search for a set of edges to break all the cycles in the
loop. A program implementation of the algorithm was presented. The combination of
implemented new methods was shown to produce significant reduction in solution time

for comparable accuracy in an example.

9%
6.2 Suggestions for future research

(1) In the discussion of structuring issues in modeling, we made the assumption that
equations of each DN are a fixed set which we cannot modify or perhaps even access in
detail. In that sense, a given DM may require a specific causal orientation, like a Se or
Sf node does. But if the port of a DM has a R-type causality and the local environment
does not assign a specific causality under the SCAP, then the DM belongs to an algebraic
loop. Since the DM is described mathematically by a set of differential-algebraic
equations, the integration has to be operated with each iteration step. A computational

iteration method is needed to handle this situation.

(2) The mathematical models to describe the DNs are limited to explicit state
equations in this work. Since some theoretical work has been done on the development
of Lagrangian bond graphs, from which Lagrange’s equation can be derived, the author
recommends that the representation of mathematical models of DNs be extended to allow
Lagrangian form. Thus system graphs with DNs can be used for the formulation

equations of motion for dynamic systems in a more general way.

3) The Jacobian status matrix provides a reference rule for whether or not to
calculate each term of the Jacobian matrix at the several time steps. Now, a complete
computational scheme for calculating the Jacobian should be implemented. A study
should be done to investigate how much the solution efficiency can be improved by using

the status matrix.

91

(4) The software implementation of multiple step size methods is still in its infancy
and therefore needs time and work to mature into a reliable piece of software. A
program implementation for the multiple integration algorithm method can be developed
according to the flow diagram shown in Figure 4.5. These two pieces of software can

be combined and tested with many models to make it more user friendly.

(5) Itis suggested that the path method and the solving order be used to derive a set
of symbolic system equations. The description could be output to symbolic manipulation
programs. The advantage of symbolic manipulation systems is that they allow engineers

to analyze systems both parametrically and numerically.

(6) It is suggested that effort be made to integrate the modeling, sorting and solving
algorithms for general equations of system graphs, and the method of finding a set of
near-minimum iteration variables for algebraic loops, into a simulation framework. The
ENPORT software could be modified accordingly, to improve the overall efficiency and

make it a more powerful tool for engineers.

APPENDICES

APPENDIX A. BASIC SYSTEM GRAPHS

A.1 Block Diagrams
A block diagram is a graphical presentation of equation information. It is often used to
display a system model in a form that allows us to understand interactions occurring

between the system’s elements.

A physical system is consist of a number of elements and input-output relationships, each
of them can be represented by a functional block. The transfer functions of these
elements are usually entered in corresponding blocks, which are connected by arrows to
indicate the direction of the flow of signals. Note that signals can only pass in the

direction of arrows.

The diagrams in Figure A.l represent some actual physical elements. They are an
electrical resistor (a), a mechanical spring (b) and a moving mass (c) driven by an
external force. The Figure A.2 depicts block diagram presentations of some physical
elements and mathematical processes. Figure A.2 (a) represents a resistor with an input
v (voltage) and an output i (current). They are related by a constant 1/R. Figure A.2

(b) represents a spring whose resisting tensile force f is proportional to its extension x

92

93

— 8
—_V k —]V—x

o—i_’/\/\/_o A
ST T T T
, 7

(a) (b) (©

Figure A.1 Diagram of actual physical elements

so that f = kx. Figure A.2 (c) shows the relationship between the input force to an
object and the output acceleration. The governing function, in this case, is Newton’s
law, f = ma. Not only can block diagrams be used to describe actual physical elements,
but also can they be used to display mathematical processes. Two examples of this are

shown in Figure A.2 (d) and 2.2 (e). If we integrate an acceleration, a, over time, the

velocity v is obtained as v = f adt . Similarly, integration of velocity over time

94

produces displacement x, * f vt Thus, in a block diagram presentation symbols

in boxes represent operations that must be performed on inputs to obtain outputs.

¥ He X e Ham

(a) (b) (9]

AONTE- L{INTH

(d) (e)

Figure A.2 Block diagrams of input-output relation

To model a multiport system by considering each element which has force and velocity

as input and output, the number of directed lines connecting each block will be two.

Table A.1

Basic building blocks used for modeling systems

Function ement Equation
[Distributor u Dls-r—"zl yy=u
y; = U4
| u
[Function [FCN}— Y = Fu)
ain K v Y = KU
*{INT }—v
ntegrator Y = f Udt
V)
ignal Sink ——SINK no output equation
| EE@—" Y= U tu tiu

fSummer

ITransfer Function
\

96
Therefore, block diagram provides us an explicit way to show the power flow paths.

There are eight basic building blocks are commonly used in block diagrams for modeling

systems. They are listed in Table A.1.

A.2 Bond Graphs

A bond graph is composed of a set of basic multiport nodes. They are the atoms of bond
graphs. In this dissertation, the term atom will be used due to its un-splitted property.
Table A.2 gives a list of the nodes used in bond graph. The first two atom types are
called dynamic nodes because an integral or a derivative equation describes these nodes.
The third atom type models the energy dissipation, the fourth and fifth atom types model
external inputs. The last four atom types model junction structures which enforce a
power-conserving constraint. Consider a dynamic system in bond graph form. We can
partition a graph into these four major groups mentioned above. This idea is represented
in Figure A.3, where dots represent set of all bonds that join junction structure to a given
field. Bonds that connect fields to junction structures are referred to as external bonds,
and bonds that joint one element of a junction structure to another are referred to as

internal bonds.

Table A.2 Bond graph atom nodes

Name Node Equation
Capacitance e \ e = F(9
f ¢ i=f
Inertance : N pf:?p)
Resistance —:—LR ;‘:I;(Me)
Effort Source e SE e = Fo
f
Flow Source f=F0@
o —%SF
Transformer 0, \ 1‘::,: 0, \ ¢ = me,
i f<| fl ﬁ:ztl)
| Gyrator 0, \ - 0,\ e, = mf,
f‘ GY f: ezgm
Junction —_— h=h=h
| e, +e, +e,=0
Junction -0 — e, =6 =e
I h+h+h=0

98

Source

Se, Sf
(o : 0,1, TF, GY : R
Storage Junction, Structure Dissipation

Figure A.3 Basic multiport fields

APPENDIX B. AN EXAMPLE OF CAUSALITY ASSIGNMENT

A simple DMN is considered and its equations are written in explicit algebraic-
differential format to illustrate the idea of assigning causality to DNs. Figure B.1 is used
as an example to explain the assignment of causality of a DMN. Figure B.1 depicts a
bond graph presentation of a DMN and its associated equations are presented in Equation

B.1.

—= DMN —

Figure B.1 DMN used to explain causality assignment

X=f(X, U
Y=g 1 U (B.1)

Any input and output variable chosen for this DMN has to be one of the four definitions

listed in Table B.1.

100

Table B.1 Causality and input-output relationship

101

If there is no requirement for assigning inputs and outputs, the DMN becomes indifferent

to causality. In summary, the rules to assign causalities to DMNs are

(1) use equations as constraint to assign causalities to each bond. Therefore,

causalities are fixed like SE and SF nodes.

(2) If there is no constrain, treat assigned causalities as R nodes.

Now, let us consider a system graph with DMNs. When the process of assigning
causality results in causal conflicts at bonds of DMNSs, the model is regarded as being
ill posed. When the second rule is applied to assign causalities to DMNSs, that is, a
causality can be chosen arbitrarily, it results in an algebraic-differential loop. Simulation
of this type of models needs special skill, which is beyond the coverage of this

dissertation.

APPENDIX C LISTING OF SORTING SUBROUTINES

CFILE:SORTCG

C

C---- PURPOSE: Sorting procedures for solution module.

C

C-—--- CONTENTS:

REDCMG Redefine the computational graph based on SCC
listing

REDATA Called by REDCMG and ALYSCC
(tempararily define SCC data)

MBFSLB Find the path from given output to
related inputs

IDENUY Called by MBFSLB. Identify the input nodes
and output nodes in new CG in such an order
that [X(i), U]’ and [dX(i)/dt, Y)'.
Identify the type of each node.

GENJAC Generate the Jacobian Status Matrix

ALYCMG Generate the sub-computational graph of SCC

NSTRIN Count the length of a string

WRTSTR Write a string on screen

ALYSCC Seach a near-minimun set of variables as the
initial guesses of the solution for each
algebraic loop

FINSRT Final sort for solution efficiency

OO0000O0OOOOOOOOOO0O00

C --- Last Modification: Aug. 12, 1991. YyW
CEOFH:SORTCG-

C>>>>>

o
COO>>>
(o

C Wriiten by: Yanying Wang, 04/10/91

C Last change: Yanying Wang, 04/12/91

C
C
SUBROUTINE REDCMG
C
C--- PURPOSE: Redefine the computational graph including Strongly
C Connected Components. Replace each SCC by a single node.
C The modified computational graph should be ready to be
C applied the modified Breadth-First-Search algorithm.
C

102

103

C--- INPUTS: Computational graph data base,

C Strongly Connected Components data base.

C

C--- OUTPUTS: Modified computational graph (NE, EOT(i), EIN{i))
C

INCLUDE ’SIZEBK.CBK'
INCLUDE 'BFSMBK.CBK'’
INCLUDE 'CPGFBK.CBK’

INTEGER 10, 11, J, LWK
CHARACTER DFILE®*6
C
EXTERNAL REDATA
CREDCMG....Q...O....0.Q..QQ.Q...Q..Q....O.........0.0..0.......0...
C
WRITE(6,’(3X,’’Enter your input data file name please:’’)’)
READ(5,’(A6)’') DFILE
OPEN(UNIT = 1, NAME = DFILE//'.CMG’,FORM ='FORMATTED’,STATUS ="UNKNOWN’)
OPEN(UNIT =3,NAME =DFILE//'.RCM’,FORM ='FORMATTED’,STATUS ="UNKNOWN’)
C
I=0
110 1= 1+1
READ(1,100,END =99) NE, EOTII), EIN(}
C TYPE*®,EOT(1),EIN(I)
GOTO 110
99 CONTINUE
100 FORMAT(3i4)
C
TYPE®, 'NE="',NE
CALL REDATA
TYPE®*,'NSCC=", NSCC
C
C--- Rename the EOT(i) with the new node index in SCC data base.
o
DO 1010= 1, NE
DO 2011 =1, NSCC
L1= SCCP(I1)
L2= SCCP(I11+1)-1
DO 25J =1L1,L2
IF(EOT(10).EQ.SCCL({J)) THEN
NEWEO(I0) = 11
GOTO 10
ENDIF
25 CONTINUE
20 CONTINUE
10 CONTINUE
C
C--- Rename the EIN(i) with the new node index in SCC data base.
DO 3010= 1, NE
DO 3511 = 1, NSCC
L1 = SCCP(I1)

104

L2= SCCP(I1 +1)-1
DO40J = L1, L2
IF(EIN(10).EQ.SCCL(J)) THEN
NEWEI(I0) = 11
GOTO 30
ENDIF
40 CONTINUE
35 CONTINUE
30 CONTINUE
C
C--- Exclude the edges having identical input and output nodes.
o
LWK = NE
DO 45 1= 1,NE
50 IF(NEWEO(1).EQ.NEWEI(l)) THEN
NEWEO(l) = NEWEO(LWK)
NEWEI(I) = NEWEI(LWK)
LWK = LWK-1
GOTO 50
ENDIF
IF(1.LEQ.LWK) GOTO 55
45 CONTINUE
C
55 CONTINUE
NOE= LWK
NON = NSCC
C
C--- 1 did it!
C
C--- Write the new CMG data into a file.
WRITE(3,’(’’ The new computational graph:’’)’)
WRITE(3,’(3X)’)
WRITE(3,1010) NON, NOE
WRITE(3,’(3X)’)
WRITE(3,("’ NE EO EI''))
WRITE(3,’(3X)’)
DO 65 10= 1,NOE
WRITE(3,300) 10, NEWEO(I0), NEWEI(I0)
65 CONTINUE
300 FORMAT(3X,316)
1010 FORMAT(2X,’ NON =’, 14,'NOE =',14)
C

WRITE(B,’ ("’ New computational graph generated.’’)’)
C RETURN

END
CEND:REDCMG << <K<K
C
C>>>>>>>3>3>3>>>>33>3>3333>3>>>>>>>>>>>>>>>>>>>
C
C Wriiten by: Yanying Wang, 04/12/91

C Last change: Yanying Wang, 04/12/91

SUBROUTINE REDATA

C
C--- PURPOSE: Prepare the Strongly Connected Component data for the use
C of redefining new CMG.
C Called by REDCMG.FOR
C
C--- OUTPUTS: NSCC, SCCP, SCCL
C

INCLUDE 'SIZEBK.CBK'’

INCLUDE 'CPGFBK.CBK’

INCLUDE 'BFSMBK.CBK’
gREDAT SOOIV 00000002000000000300003000000000000000000000
C

NSCC= 12

SCCP(1)= 1

SCCP(2)= 2

SCCP(3)= 3

SCCP(4)= 4

SCCP(5)= 5

SCCP(6)= 6

SCCP(7)= 10

SCCP(8)= 11

SCCP(9)= 12

SCCP(10)= 13

SCCP(11)= 14

SCCP(12)= 15

SCCP(13)= 16

SCCL(1
SCCL(2

SCCL(5
SCCL(6
SCCL(7
SCCL(8
SCCL(9)
SCCL(10) =
SCCL(11)= 10
SCCL(12)= 12
SCCL(13)= 15
SCCL(14)= 13
SCCL(15)= 14

)

)

)
SCCL(4)

) 1

)

)

)

[A O T I (I
D ONOAW=00OLN

RETURN
END

106

CEND:REDATAC < << <C<CLKLKLCKLCLLCLCLLLLLLLLLLLKLLKLCLKLKLKLKLCLCLKLK<LL
Cc
C>>5>33333>>3>>>3>>>3333>33>>>3>3>333>>>>>>>>>>
(o

C Wriiten by: Yanying Wang, 02/18/91

C Last change: Yanying Wang, 04/15/91

C
C
SUBROUTINE MBFSLB
C
C--- PURPOSE: Find the path from given outputs to related inputs, label
C the nodes with level number so that the output can be
C obtained by tracing the level index starting at 1.
C The idea of the algorithm comes from Breadth-First-Search.
C
C--- INPUTS:
C--- OUTPUTS:
C
INCLUDE 'BFSMBK.CBK’
INCLUDE 'SIZEBK.CBK’
INCLUDE 'SOLNBK.CBK'’
C
PARAMETER (NOE=12,NON=12)
CHARACTER DFILE®*6
INTEGER 1A(NON), IB(NON), IC(NOE), QUE(NOE)
C
EXTERNAL GENJAC, IDENUY
C
CMBF&_BQ....O..00.0.00..0"0...00.09000.0.0.000000..0.00.000000000..0
C
C--- Read in node number from computatinal graph
C
WRITE(6B,’(3X,’’Enter your input data file name please:’’)’)
READ(5,'(A6)’) DFILE
OPEN(UNIT = 1,NAME =DFILE//'.CMG',FORM ='FORMATTED’,STATUS ="UNKNOWN’)
OPEN(UNIT =2,NAME =DFILE//'.OUT’,FORM ='FORMATTED’,STATUS ="UNKNOWN’)
C
1=0
10 1= 1+1
READ(1,100,END =99) NOE, NEWEO(l), NEWEL(I)
GOTO 10
99 CONTINUE
100 FORMAT(314)
C
DO 81= 1,NON
DO 7J= 1,NON
LEVILJ)I=0
7 CONTINUE
8 CONTINUE
o

CALL IDENUY

107

Cc
DO 500 IT= 1,10
KO = IOVR(IT)
DO 20 1= 1,NON
IAh=0
IB()=0
20 CONTINUE
DO 30 1= 1,NOE
QUEN=0
ICh=0
30 CONTINUE
(of
C--- Fill IA, 1B, IC arrays
(of
IPT= 1
IA(KO) = IPT
DO 35 1=1,NOE
IFINEWEI(I).EQ.KO) THEN
IC(IPT) = NEWEO(I)
IPT= IPT+1
ENDIF
35 CONTINUE
IB(KO) = IPT
(o4
IQUE= 1
ILEV= 1
DO 40 J= 1,NOE
JJ= IC(J)
IF((JJ.NE.O).AND.(IA(JJ).EQ.0)) THEN
KO= JJ
IA(JJ) = IPT
DO 45 1= 1,NOE
IF(NEWEL(1).EQ.KO) THEN
IC(IPT) = NEWEO(I)
IPT= IPT+1
ENDIF
45 CONTINUE
IB(KO) = IPT
IF(IA(KO).EQ.IB(KO)) THEN
IB(KO)=0
QUE(IQUE) = KO
IQUE= IQUE +1
LEV(KO,IT) = 1
ENDIF
ENDIF
40 CONTINUE
Cc
12= IQUE
DO 50 11 = 1,NOE
IF(12.GT.11) THEN
KO = QUEI(I1)

108

CcC 11=11+1
DO 55 J=1, NON
IF(IB(J).GT.IA(J)) THEN
J2= IB(J)-1
DO 60 J1 =1A{),I1B(J)-1
IF(IC(J1).EQ.KO) THEN
IC(J1) = IC(J2)
1B(J)= J2
ENDIF
60 CONTINUE
ENDIF
IF((IA(J).EQ.1B(J)).AND.(IB(J).NE.O)) THEN
IBJ)= 0
LEV(J,IT)= LEV(KO,IT) +1
QUE(12)= J
12=12+1
ENDIF
55 CONTINUE
ENDIF
50 CONTINUE
Cc
500 CONTINUE
o
C--- Finish all of the paths searching...
C
WRITE(2,’("’ The output nodes are:'’)’)
WRITE(2,200) (IOVRI(I),I=1,10)
WRITE(2,'(3X))
WRITE(2,’("’ The input nodes are:’’)’)
WRITE(2,200) (IIVR(I),1=1, lIN)
WRITE(2,’(3X)’)
WRITE(2,’("* The output-input path index matrix:’’)’)
IOP=10+1
DO 65 10= 1,NON
WRITE(2,200) 10, (LEV(I0,J), J=1,10)
65 CONTINUE
200 FORMAT(2014)
C
CcC CALL GENJAC
RETURN
END
CEND:MBFSLBC € €< <<
C
C
CGENJAC>>>>>>>>>>>>>>>>>>> Last changed: 03/25/91 YyW
C
SUBROUTINE GENJAC
Cc
C--- Purpose: Find Jacobian Status Matrix. The difinition of
Cc Jacobian matrix here is JAC(ij) = DDX(i)}/DX(j).
Cc

109

C-—-- INPUTS: LEV(i,j), output-input path index matrix

C NO, number of output variables

C NIN, number of input variables

C

C--- OUTPUTS: JACSTAIi,j) =0 if JAC(i,j) =0

C JACSTA(i,j) =1 if JAC(i,j) = something else
C

INCLUDE 'SIZEBK.CBK'
INCLUDE 'SOLNBK.CBK'’
INCLUDE 'BFSMBK.CBK'

INTEGER NODEP, JACSTA(3,8)
LOGICAL LINFLG
o
CQ.....Q...00....Q.QQ.....'IQQO..'Q'.....l."....’...0'..."..0..0.0.0..
(o
TYPE®*, '10=",10, 'lIN=", lIN
OPEN(UNIT =9,NAME ="JACSTA.OUT',FORM ='FORMATTED’,STATUS ="UNKNOWN’})
DO 20 1= 1,10
DO 15J= 1,IIN
JACSTA(LJ) = 1
15 CONTINUE
20 CONTINUE
(o
C--- Find the fixed zeros (only take first NX| terms).
C
DO 30 1= 1,NXI
DO 25 J= 1,NXI
NODEP = IIVR{J)
IFILEV(NODEP,I).EQ.0) JACSTAI(lILJ)= 0
25 CONTINUE
30 CONTINUE
C
DO 351=1, NXI
WRITE(9,1000) (JACSTA(LJ), J=1,NXI)
35 CONTINUE
1000 FORMAT(1X,8(1X,12))
o
RETURN
END
CEND:GENJAC<C<C<<C<KCLCLCLCLCLCLLCLCLLLLCLLLCLCLLLCLLLCLLLLLCLCLKLKLLKL
C
C
COO>5>>>5>335>235>223>323D>D>3>>3333535>>>>>>>>>>>
C
C Wriiten by: Yanying Wang, 04/10/91
C Last change: Yanying Wang, 06/24/91
C

C
SUBROUTINE IDENUY
C .

110

C--- PURPOSE: Identify the starting vertices from computational graph

C in such an order IIVR(i) = [X{i), Ul'.

C Identify the ending vertices from computational graph
C in such an order IOVR(i) = [DX(i)/DT, YJ'.

C

C--- INPUTS:

C--- OUTPUTS:

Cc

INCLUDE 'BFSMBK.CBK’

INCLUDE ’SIZEBK.CBK'’

INCLUDE 'SOLNBK.CBK’
C

c‘DENUY......Q..Q..Q..Q...Q.O..Q...O..............O...Q.............

(o
NON= NSCC
DO 6!= 1,NSCC
IIVR(Hh= 0
6 IOVR(l)= 0
I0=0
IN=0
o
C--- Identify the inputs from Computational Graph.
C--- Count the state variables first.
DO 50 I1=1, NXI
MP= XIX(l)
DO 55 J=1, NSCC
JJ = SCCL(SCCP(J))
IF(VOTP(JJ).EQ.MP) THEN
C--- State variable found here

VTYPU) = 'IN’
C
IIN=IlIN+1
IIVR(IIN) = J
GOTO 50
ENDIF
55 CONTINUE
50 CONTINUE
C

C--- Then count the other starting vertices.
DO 191=1, NSCC
NEQS = SCCL(SCCP(D)
DO 21 J=1,NEWNE
IF(I.EQ.NEWEI(J)) GOTO 19
21 CONTINUE
IF(FNI2C(FNTP(NEQS)).NEQ.’INTEG’)
C--- System input found here
VTYP(l)= 'V’
Cc
IIN= IlIN+1
HVR(IIN) = |

111

19 CONTINUE
C
C--- Identify the outputs from the computational graph.
C--— Put the derivative of state variables at the first.
DO 181= 1, NXI
MP= DXIX(I)
DO 19J= 1, NSCC
JJ= SCCL(SCCP(J))
IF(VOTP(JJ).EQ.MP) THEN
C--- Derivative of state variable here

VTYPUJ)= 'OV’
c
I0=10+ 1
IOVR(IO)= J
GOTO 18
ENDIF
19 CONTINUE
18 CONTINUE
C

C--- Append the other outputs.
DO 51=1, NSCC
DO 2 J=1,NEWNE
IF(I.LEQ.NEWEO(J)) GOTO 5
2 CONTINUE
DO 7K= 1, NXI
IF(l.LEQ.IOVR(K)) GOTO 5
7 CONTINUE
C--- System output found
VTYP(l)= "Y'
I0=10+1
IOVR(I0) = |
5 CONTINUE
C
C--- Identify the algebraic loops
DO 60 1=1, NSCC
J= SCCP(l+ 1)- SCCP{l)
IF(J.GT.1) VTYP(l)= 'AL’
60 CONTINUE
C--- Rest of vertices must be simple
DO 65 1=1, NSCC
IF(VTYP(I).EQ." ###') VTYP(l) ='SIM’
65 CONTINUE
C
C--- MACRO node identification is not ready yet !!
C
RETURN
END
CEND:IDENUY<C < <K<K LCLCLCLCLCLCLCLCLCLLCLLLLLCLCLCLCLCLLCLCLCLKLCLKLKLKL
C
C
COO>O23>>35>>5>>>5>>>>>>>>>>>>>3>>>>>>>>>>>>>>>>

112

C
C Wriiten by: Yanying Wang, 06/04/91
C Last change: Yanying Wang, 06/23/91

C
C
program ALYCMG
C
C--- PURPOSE: Identify each SCC sub-graph from Computational Graph. The
C SCC sub-graph is different with SCC in that it contains
C not only vertices also edges.
(o Called by ANAALG.FOR
C

C--- INPUTS: Old computational graph data base and SCC data base.
C

C--- OUTPUTS: NQTL(.) with index of algebraic loop defined
ALNE(NALPS) number of edges in each algebraic loop
ALEO(l,J) leaving vertices in Jth Al-loop

ALEI(1,J) ariving vertices in Jth Al-loop

NALPS number of algebraic loops

O0O0O0O0

INCLUDE ’'SIZEBK.CBK'
INCLUDE 'CPGFBK.CBK’
INCLUDE 'BFSMBK.CBK'’

INTEGER |, J K, NQTL(MAXVOT)

D INTEGER ALEO(10,10), ALEI(10,10), ALNE(10), NALPS
CHARACTER MESSAGE*40, DFILE*6
LOGICAL OKAY

(o
EXTERNAL REDATA, WRTSTR
Cc
CALYCMG.......O.......Q.....QQ....0.Q..'QQ.....Q....00..0....0.0...
(o
C--- Initialize
DO 121=1, NE
NQTLIh = 0
DO 14 J=1, MAXALP
ALEO(l,LJ)= O
ALEI(L))= 0
ALNE(J) = 0
14 CONTINUE
12 CONTINUE
(o
WRITE(6,’(3X,’’Enter your input data file name please:’’)’)
READ(S,’'(A6)’) DFILE
OPEN(UNIT = 1, NAME =DFILE//'.CMG’,FORM = 'FORMATTED’,STATUS ="UNKNOWN')
(o
1=0
5 I=1+1

READ(1,100,END =99) NE, EOT(l), EIN(I)
GOTO 5

113

99 CONTINUE
100 FORMAT(314)
C
CALL REDATA
C--- Identify the algebraic loops
NALPS = O
DO 101 =1, NSCC
11 = SCCP(I+ 1) - SCCP(l)
IF(11.GT.1) THEN
IF(INALPS.EQ.MAMAI) THEN
CALL WRTSTR(’ *** Too many algebraic loops’)
OKAY =.FALSE.
CcC RETURN
ENDIF
NALPS = NALPS + 1
DO 20 1l = SCCP(l), SCCP(I+1)-1
N= SCCL(I)
NQTL(N) = NALPS
20 CONTINUE

ENDIF
10 CONTINUE
C TYPE®, 'NALPS=’, NAPLS

C
C--- Identify the sub-graph which including the algebraic loop
DO 25 1= 1, NSCC

ALNE()= 0
25 CONTINUE
c
DO 40 K= 1, NALPS
DO 301I=1,NE
N1= EOT(l)
N2 = EIN(I)
IF(NQTL(N1).EQ.K.AND.NQTL(N2).EQ.K) THEN
ALNE(K) = ALNE(K) + 1
ALEO(ALNE(K),K) = N1
ALEI(ALNE(K),K) = N2
ENDIF
30 CONTINUE
40 CONTINUE
C

C--- Print the results on screen
DO 50 I=1, NALPS
DO 60 J= 1, ALNE(l)
WRITE(6,1020) J, ALEO(J,I), ALEI(J,I)
60 CONTINUE
50 CONTINUE
1020 FORMAT(2X,315)
C
STOP
END
o

114

CENDALYCMG<C <K<K LKCLCLCLCLCLCLCLLCLLLCLCLLCLCLCLCLCLLKCLKCLKCLKCLKCLKLKLKLKKL
C
C
CNSTR'N (XXX ZXZ XXX XL REE AR R R RS A X R X X K & X J I-a‘t change: 10/02/99 Y-wang
Cc
FUNCTION NSTRIN(STRING)
C
C--- NSTRING FINDS AND RETURNS THE NUMBER OF CHARACTERS IN
C STRING WHICH PRECEDE ANY TRAILING BLANKS. INTERNAL BLANKS
C ARE COUNTED AS CHARACTERS.
C
CHARACTER*(*) STRING
LOGICAL BLANK
INTEGER NSTRIN, LENGTH

INTRINSIC LEN

--

--- GET ACTUAL LENGTH OF STRING AND INITIALIZE BLANK

00000 O
Z
-
P
Z

LENGTH =LEN(STRING)

BLANK =.TRUE.
C
C--- SCAN BACK FROM END OF STRING FOR FIRST NON-BLANK CHARACTER
c

10 CONTINUE
IF(STRING(LENGTH:LENGTH).NE.’ ’) THEN
BLANK =.FALSE.
ELSE
LENGTH =LENGTH-1
ENDIF
IF((BLANK).AND.(LENGTH.GT.0)) GO TO 10
C
NSTRIN =LENGTH
C
RETURN
END

CEND:NSTRINC € € << <<<LLCLCLLCLLLLLCLLLLLLCLLLLLKLLKCLKLLKLKLKLKKL
C
C
CWRTSTROQQQQQ00.00..0000.000000000..0.009 Last change: 10/04/90 Y.WANG
(o

SUBROUTINE WRTSTR(STRING)
C

CHARACTER®*(*) STRING

INTEGER LSTRNG, NSTRIN

EXTERNAL NSTRIN

115

C
LSTRNG = NSTRIN(STRING)
IF (LSTRNG.GT.0) THEN
WRITE(6,’(A)')STRING(1:LSTRNG)
ELSE
WRITE(B,"(3X)’)
ENDIF
Cc
RETURN
END

CEND:WRTSTRC €< <K<K LLCLCLLCLLLCLLLLCLLLCLCLLLLCLLKCLCLLKL

o

c
C>>>>>>>>>>>>>>>>>3>>>>>>>>>>>>>>>>>>>>>>>>>>
Cc

C Wriiten by: Yanying Wang, 06/19/91

C Last change: Yanying Wang, 06/24/91

C
C
SUBROUTINE ALYSCC
C
C--- PURPOSE: For each complex SCC, apply Depth-First Search on it and
C find the minimum number of back edges. Those variables on
C the back edges are starting nodes for solving the
o algebraic loops.
C
C--- INPUTS: Computational graph structure of SCC.
C
C--- OUTPUTS: NOB number of back edges
o BiX(l,J) name of outword vertices related to the
C back edges for the Jth Al-loop
(o
C--- NOTATION: K(V), DFS index of vertex V
C F(V), father of vertex V
C L(V), lowerpoint of vertex V
Cc VONS(V), location of V on stack S (=0 if not on S)
C ET(E), edge type of edge E
C
INCLUDE 'SIZEBK.CBK'’
INCLUDE 'CPGFBK.CBK'’
INCLUDE ‘BFSMBK.CBK'’
C
INTEGER LS, VX, EX, V, INI, U, BX, BEGX(MAXALP)
INTEGER K(MAXEQN), F(MAXEQN), LIMAXEQN), S(MAXEQN)
INTEGER ET(MAXVOT), VONS(MAXEQN)
LOGICAL OKAY
C

CALYSCC..'Q...QQQOQOQQQ.Q.Q..00.0.....0.0000.0000000.00.0..000....0.

(o
INI= 0
DO 5 I= 1, NALPS

116

NOB(l) = 0
DO 6J=1, NE
6 BIX(J,)) = 0
5 CONTINUE
C ,
C--- Repeatly perform DFS by starting from each vertex
DO 999 10=1, NSCC
BX =0
11 = SCCP(10+ 1) - SCCP(I0)
IF(11.GT.1) THEN
INI= INI +1
DO 995 VX = SCCP(I0), SCCP(I0O + 1)-1
C--- Initialize
DO10I=11
K() =0
Fil) =0
Ln =0
VONS(l) = 0
10 CONTINUE
DO 15 EX=1, ALNE(INI)
15 ET(EX)= 0

=20
LS=0
V= SCCL(VX)

100 LL=LL+ 1
K(V) = LL
Lv) = LL
LS= LS+ 1
S(LS)=V
VONS(V)= LS
110 CONTINUE
C
C--- Check unused incident edges
DO 30 EX= 1, ALNE(INI)
ETX= ET(EX)
IF(ALEO(EX,INI).EQ.V.AND.ETX.EQ.0) THEN
U= ALEI(EX,INI)
GOTO 35
ENDIF
30 CONTINUE
GOTO 200
35 CONTINUE
IF(K(U).EQ.O) THEN
C--- Tree edge here
ET(EX) = 1
FlU) =V
v=U
GOTO 100
ENDIF

117

IF(K(U).GE.K(V)) THEN
C--- Forward edge here
ET(EX)= 2
ELSE
IF(VONS(U).GT.0) THEN
C--- Back edge here
BX= BX+1
L(V) = MIN(L(V),K(U))
ET(EX)= 3
C--- Relate the edge to the outward vertex
BEGX(BX) = ALEO(EX,INI)
ELSE
C--- Must be a cross edge
ETIEX)= 4
ENDIF
ENDIF
GOTO 110

200 IF(F(V).GT.0) THEN
L(F(V)) = MIN(L(F(V)),L(V))
V= F(V)
GOTO 110
ELSE
DO 40 NIX= SCCP(I0), SCCP(I0+1)- 1
IF(K(NIX).EQ.O) THEN
V= NIX
GOTO 100
ENDIF
40 CONTINUE
ENDIF

IF(BX.GT.NOB(INI)) THEN
DO 50 1= 1,BX
50 BIX(l,INI) = BEGXI(I)
NOB(INI) = BX
ENDIF
995 CONTINUE
ENDIF
999 CONTINUE
RETURN
END
CEND:ALYSCC<C<K<KCKCLCLLCLLLCLLLLLLLCLLLCLCLCLKLCLCLCLKCLKLKLKCLKLKLKLKLKKL
o
o

APPENDIX D. LISTING OF MSS CODE

CFILE:MCDSOL -MCDSOL
C

C--- PURPOSE: Direct the system to obtain a solution of Macro_dynamic_
Cc node.

C

C--- CONTENTS: MCDDRYV main driver for solution phase
C MCDINT controls integration

C RKMCD oversees Runge-Kutta integration
C INIMCD sets initial conditions

C

C--- INDEX:

o INIMCD

(o MCDDRC

C MCDINT

o RKMCD

C _

C--- Last revision: January 27,1992. Y-Y.WANG

C

CEOFH:MCDSOt:
gMCDDRV>>>>>>>>>>>>>>>>>>>>>>>> Last Change: 01/23/92 YyW
¢ SUBROUTINE MCDDRV(DTCALC,NCALC)

g--- PURPOSE: Controls the selection of computation steps for M_C_D

g--- INPUT: DTSTR, storage time interval for whole system

C NSAV, number of storage intervals

C

C--- OUTPUT: DTM, computation time interval for M_C_D
C MCALC, no. of steps per system interval

C SOLMCD, flags to see the results on screen

C OPT4M, option of selection

C

INCLUDE 'SIZEBK.CBK'
INCLUDE 'SOLNBK.CBK’
INCLUDE ‘MCDCBK.CBK'’

CHARACTER STRING*70, FNAM*8, CH1*1, FNI2C*8

LOGICAL PROCFG, FULL, NEWLIN, ENDLIN, E7YORN
INTEGER INDEX, |, NC2I, NSMCD

118

119
REAL DTCALC, LO, HI, DTMT, DTMTEM, ABSDTM, DTHI, DTLO

EXTERNAL BLNKLN, WRTSTR, PROMPT, GETANS, INVOPT
EXTERNAL GETIN, CONTUE, EZYORN, INIMCD, FNI2C
INTRINSIC INDEX
Cc
DATA OPT4M/'T'/
(o
C...MCDDRV...OQ.O..O..QQ.....0000..0.0.......0...0.0..0..0.0..Q....
(o
OVFLCH = .FALSE.
FULL =.TRUE.
TIMADV = NCALC*DTCALC
Cc
C---- Select the integration method
50 CONTINUE
DO 20 N= 1,NQONS
FNAM = FNI2C(FNTP(N))
IF (FNAM(1:4).EQ."'ZZDS’) THEN
C
C---- Check if valid M_C_D-type name (ZZDSO1 ... ZZDS99)
NF = NCHARS(FNAM)
IF (NF.EQ.5) THEN
CH1 = FNAM(5:5)
FNAM(5:6) ="0"//CH1
NF= 6
ENDIF
IF (NF.EQ.6) THEN
N1 = INDEX('0123456789', FNAM(5:5))
N2 = INDEX('0123456789’,FNAM(6:6))
IF (N1.EQ.0.OR.N2.EQ.0) THEN

NC2i=0
ELSEIF (N1.EQ.1.AND.N2.EQ.1) THEN
NC2I= 0
ELSE
NC2i= 10*(N1-1) +(N2-1)
ENDIF
ENDIF
CALL BLNKLN
WRITE(STRING, 1024) FNAM
CALL WRTSTR(STRING)
1024 FORMAT(’ ***',AB,’***')
C
C-------- Ask user for the number of state vbl
CALL BLNKLN

NSMCD = NXMCD(NC2I)
WRITE(STRING,1025) NSMCD
1025 FORMAT(’ Enter the number of state variables (’,
1 12,'):")
CALL PROMPT(STRING)
NEWLIN =.TRUE.

120

CALL GETIN(NSMCD,0,20,NEWLIN,ENDLIN)
NXMCD(NC2I) = NSMCD

C
C-------- Agk user for the initial conditions
C
CALL INIMCD(NC2I)
C
123 DTM(NC2Il)= DTCALC

CALL BLNKLN
WRITE(STRING,1030) DTM(NC2I)
1030 FORMAT(’ Enter the calculation interval (',
1 1PE12.4,'):)
CALL PROMPT(STRING)
LO= DTSTR/10000.0
Hi= DTSTR
NEWLIN =.TRUE.
DTMT = DTM(NC2I)
CALL GETRL(DTMT,LO,HI,NEWLIN,ENDLIN)
DTM(NC2l)= DTMT

MCALC(NC2I) = NINT(DTSTR/DTMT)

DTMTEM =DTSTR/ABS(MCALC(NC2I))
DTHI= ABS(DTMTEM) + 0.1E-06
DTLO = ABS(DTMTEM)-0.1E-06
ABSDTM = ABS(DTMT)
IF ((ABSDTM.GT.DTHI).OR.(ABSDTM.LT.DTLO)) THEN
STRING =’ The MCD Dt must be the value of storage '
CALL WRTSTR(STRING)
WRITE(STRING,2100) DTSTR
2100 FORMAT(’ time (',
1 1PE12.4,’) devided by an interger. Please try again’)
CALL WRTSTR(STRING)
GOTO 123
ENDIF
ENDIF
20 CONTINUE
o
CALL BLNKLN
DO60I= 1,3
60 SOLMCD(l) =.FALSE.
SOLMCD(1)= E7YORN(’' Do you want to watch results on the ’
1 //'screen?’,.FALSE.)
IF (SOLMCD(1)) THEN
SOLMCD(2) = E7YORN(’ The state variables?’,.TRUE.)
SOLMCD(3)= E7YORN(’ The output variables?’,.TRUE.)
ENDIF
OVFMCD = E7YORN(’ Do you want solution range checking?’,.FALSE.)
C
C---- Last chance for user to change mind
CALL CONTUE(PROCFG)

121

IF (.NOT.PROCFG) THEN

GOTO 50
ELSE

CALL BLNKLN

CALL WRTSTR(' integration for M_C_D will commence’)
ENDIF

RETURN
END
C>>>>>
C
CMCDINT >>>>>>>3>>5>>>>>>>>>>>>>>>>> Last Change: 01/27/92 YyW
C
SUBROUTINE MCDINT(IFTP,TIME, X,P,Y,NUMOT)

(o

C--- PURPOSE: Computes X(t) from TIN to T2SOLV at DTCALC intervals.
C Stores results at DTSTR intervals.

C Uses Runge-Kutta method.

Cc

C--- INPUTS: IFTP, function type index
TIME, current time

X, inputs

P, parameters

NUMOT, number of outputs
DTM, caculation interval

--- OUTPUTS: Y, outputs of M_C_D

OO0OO0OOOO0O0

INCLUDE ’'SIZEBK.CBK'’
INCLUDE 'SOLNBK.CBK'’
INCLUDE 'UTILBK.CBK’
INCLUDE 'MCDCBK.CBK’

INTEGER IFTP, NBUFR, NSX
CHARACTER STRING*80, DES(20)*72
DOUBLE PRECISION TMCD, TINM
DOUBLE PRECISION X(20), P(20), Y(20)
DOUBLE PRECISION SX(20), DSX(20)
LOGICAL DOF

EXTERNAL RKMCD, WRTSTR, BLNKLN

EXTERNAL ZZDS01, ZZDS02, ZZDS03, ZZDS04, ZZDS05
EXTERNAL Z2ZDS06, ZZDS07, ZZDS08, 2ZDS09, ZZDS10
EXTERNAL ZZDS11, ZZDS12, ZZDS13, ZZDS14, ZZDS15
EXTERNAL Z2ZDS16, ZZDS17, ZZDS18, ZZDS19, ZZDS20
EXTERNAL ZZDS21, ZZDS22, ZZDS23, ZZDS24, ZZDS25
EXTERNAL Z2ZDS26, ZZDS27, ZZDS28, ZZDS29, ZZDS30
EXTERNAL ZZDS31, ZZDS32, ZZDS33, ZZDS34, ZZDS35
EXTERNAL ZZDS36, ZZDS37, ZZDS38, ZZDS39, ZZDS40
EXTERNAL ZZDS41, ZZDS42, ZZDS43, ZZDS44, ZZDS45
EXTERNAL ZZDS46, ZZDS47, ZZDS48, ZZDS49, ZZDS50

122

EXTERNAL ZZDS51, ZZDS52, ZZDS53, ZZDS54, ZZDS55
EXTERNAL ZZDS56, ZZDS57, ZZDS58, ZZDS59, ZZDS60
EXTERNAL ZZDS61, ZZDS62, ZZDS63, ZZDS64, ZZDS65
EXTERNAL ZZDS66, ZZDS67, ZZDS68, ZZDS69, ZZDS70
EXTERNAL ZZDS71, ZZDS72, ZZDS73, ZZDS74, ZZDS75
EXTERNAL ZZDS76, ZZDS77, ZZDS78, ZZDS79, ZZDS80
EXTERNAL ZZDS81, ZZDS82, ZZDS83, ZZDS84, ZZDS85
EXTERNAL ZZDS86, ZZDS87, ZZDS88, ZZDS89, ZZDS90
EXTERNAL ZZDS91, ZZDS92, ZZDS93, ZZDS94, ZZDS95
EXTERNAL ZZDS96, ZZDS97, ZZDS98, ZZDS99
g...McD'NT......................................Q...................
Cc
NC2I = -(IFTP +99)
IFTT = -(IFTP+ 99)
TINM = TIME- TIMADV
NSX = NXMCDI(NC2l)
IF (TIME.EQ.TIN) THEN
DO 21=1, NSX
SX(l) = XOMCD(NC2l,))
2 CONTINUE
TINM = TIME
GOTO (8001,8002,8003,8004,8005,8006,8007,8008,8009,8010,
8011,8012,8013,8014,8015,8016,8017,8018,8019,8020,
8021,8022,8023,8024,8025,8026,8027,8028,8029,8030,
8031,8032,8033,8034,8035,8036,8037,8038,8039,8040,
8041,8042,8043,8044,8045,8046,8047,8048,8049,8050,
8051,8052,8053,8054,8055,8056,8057,8058,8059,8060,
8061,8062,8063,8064,8065,8066,8067,8068,8069,8070,
8071,8072,8073,8074,8075,8076,8077,8078,8079,8080,
8081,8082,8083,8084,8085,8086,8087,8088,8089,8090,
8091,8092,8093,8094,8095,8096,8097,8098,8099),IFTT

CONDOOOALWN=

C

8001 CALL ZZDSO1(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8002 CALL ZZDSO02(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8003 CALL ZZDSO3(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8004 CALL ZZDSO4(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8005 CALL ZZDSO5(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8006 CALL ZZDSO6(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8007 CALL ZZDSO7(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8008 CALL ZZDSO8(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8009 CALL ZZDSO09(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

123

8010 CALL ZZDS10(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8011 CALL ZZDS11(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8012 CALL ZZDS12(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8013 CALL ZZDS13(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8014 CALL ZZDS14(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8015 CALL ZZDS15(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8016 CALL ZZDS16(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8017 CALL ZZDS17(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8018 CALL ZZDS18(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8019 CALL ZZDS19(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8020 CALL ZZDS20(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8021 CALL ZZDS21(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8022 CALL ZZDS22(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8023 CALL ZZDS23(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8024 CALL ZZDS24(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8025 CALL ZZDS25(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8026 CALL ZZDS26(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8027 CALL ZZDS27(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8028 CALL ZZDS28(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8029 CALL ZZDS29(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8030 CALL ZZDS30(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8031 CALL ZZDS31(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8032 CALL ZZDS32(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8033 CALL ZZDS33(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8034 CALL ZZDS34(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8035 CALL ZZDS35(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)

124

GOTO 8100

8036 CALL ZZDS36(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8037 CALL ZZDS37(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8038 CALL ZZDS38(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8039 CALL ZZDS39(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8040 CALL ZZDS40(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8041 CALL ZZDS41(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8042 CALL ZZDS42(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100 :

8043 CALL ZZDS43(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8044 CALL ZZDS44(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8045 CALL ZZDS45(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

80468 CALL ZZDS46(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8047 CALL ZZDS47(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8048 CALL ZZDS48(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8049 CALL ZZDS49(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8050 CALL ZZDS50(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8051 CALL ZZDS51(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8052 CALL ZZDS52(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8053 CALL ZZDS53(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8054 CALL ZZDS54(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8055 CALL ZZDS55(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8056 CALL ZZDS56(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8057 CALL 2ZDS57(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8058 CALL ZZDS58(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8059 CALL ZZDS59(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8060 CALL ZZDS60(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

125

8061 CALL ZZDS61(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8062 CALL ZZDS62(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 8100

8063 CALL ZZDS63(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8064 CALL ZZDS64(TINM,X,P,NSX,SX,DSX,Y,DOF, NBUFR, DES)
GOTO 8100

8065 CALL ZZDS65(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 8100

8066 CALL ZZDSB6(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8067 CALL ZZDSB7(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 8100

8068 CALL ZZDSB8(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8069 CALL ZZDS69(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8070 CALL ZZDS70(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 8100

8071 CALL ZZDS71(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8072 CALL ZZDS72(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 8100

8073 CALL ZZDS73(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8074 CALL ZZDS74(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 8100

8075 CALL ZZDS75(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 8100

8076 CALL ZZDS76(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8077 CALL ZZDS77(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 8100

8078 CALL ZZDS78(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8079 CALL ZZDS79(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8080 CALL ZZDS8O(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 8100

8081 CALL ZZDS81(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 8100

8082 CALL ZZDS82(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8083 CALL ZZDS83(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 8100

8084 CALL ZZDS84(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 8100

8085 CALL ZZDS85(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8086 CALL ZZDS86(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)

126

GOTO 8100
8087 CALL ZZDS87(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8088 CALL ZZDS88(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8089 CALL ZZDS89(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8090 CALL ZZDS80(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8091 CALL ZZDS91(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8092 CALL ZZDS92(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8093 CALL ZZDS93(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8094 CALL ZZDS94(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8095 CALL ZZDS95(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8096 CALL ZZDS96(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8097 CALL ZZDS97(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8098 CALL ZZDS98(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8099 CALL ZZDS99(TINM,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
C
8100 DO 81=1, NSX
XTMCDINC21,I) = SX(l)
XDTMCD(NC2i,1) = DSX(I)
8 CONTINUE
TMCD = TINM
GOTO 999
ELSE
DO 91=1, NSX
SX(l) = XTMCD(NC2lI,1)
DSX(l)= XDTMCD(NC2l,1)
9 CONTINUE
ENDIF
C
C---- This loop for computing SX and DSX
TMCD = TINM
DO 150 NC= 1,MCALC(NC2I)
TMCD= TMCD + DTM(NC2I)
CALL RKMCD(TMCD,IFTP,X,P,NSX,SX,DSX,Y)
150 CONTINUE
C
DO 151 I=1, NSX
XTMCD(NC2L,1) = SX(l)
XDTMCD(NC2i,1) = DSXI(I)
151 CONTINUE

127

Cc
C-------Dump to the screen upon request
999 CONTINUE
IF (SOLMCD(1)) THEN
CALL BLNKLN
C---- Write the values
IF (SOLMCD(2)) THEN
WRITE(STRING,9810)NC21,TMCD,(XTMCD(NC2L,1),1 =1,NSX)
CALL WRTSTR(STRING)
9810 FORMAT(" 2ZDS’,12,":(X)’,6(2X,1PE12.4))
9820 FORMAT(’ Z2zDS’,12,’:(Y)',6(2X,1PE12.4))
CALL WRTSTR(STRING)
ENDIF
IF (SOLMCD(3)) THEN
WRITE(STRING,9820) NC21,TMCD.,(Y(}, I =1,NUMOT)
CALL WRTSTR(STRING)
ENDIF
ENDIF
Cc
C
C---- Goodbye and all that
C
C---- Error section
RETURN
END
C>>>>>
Cc
C
CRKMCD >>>>>>>>>>>>>>>>>>>>>>>>> Last Change: 01/20/92 YyW
(o
SUBROUTINE RKMCD(TMCD,IFTP,X,P,NSX,SX,DSX,Y)

C
C--- PURPOSE: Perform integration by Runge-Kutta method.
C
C--- INPUTS: DTM, computation time step
C TMCD, current time (TCALC)
C SX, SX at current time
C
C--- OUTPUTS: SX, at the new time
C IERRF, error flag (=0 if no errors)
C
INCLUDE 'SIZEBK.CBK’
INCLUDE 'SOLNBK.CBK'
INCLUDE 'UTILBK.CBK’
INCLUDE ‘MCDCBK.CBK'
C

CHARACTER DES(20)*72

INTEGER N, NBUFR

DOUBLE PRECISION TMCD, TCALC, TIME, TXX

DOUBLE PRECISION K3(20),K0(20),K1(20),K2(20), DSX(20)
DOUBLE PRECISION SX(20), X(20),P(20),Y(20), XSV(20)

128
LOGICAL DOF

EXTERNAL ZZDS01, 2ZDS02, ZZDS03, ZZDS04, ZZDS05
EXTERNAL ZZDS06, 2zDS07, ZZDS08, ZZDS09, ZZDS10
EXTERNAL ZZDS11, ZZDS12, ZZDS13, ZZDS14, ZZDS15
EXTERNAL ZZDS16, ZZDS17, ZZDS18, ZZDS19, ZZDS20
EXTERNAL Z2ZDS21, 2ZDS22, ZZDS23, ZZDS24, ZZDS25
EXTERNAL ZZDS26, ZZDS27, ZZDS28, ZZDS29, ZZDS30
EXTERNAL Z2ZDS31, ZZDS32, ZZDS33, ZZDS34, ZZDS35
EXTERNAL ZZDS36, ZzZDS37, ZZDS38, ZZDS39, ZZDS40
EXTERNAL ZZDS41, ZZDS42, ZZDS43, ZZDS44, ZZDSA45
EXTERNAL ZZDS46, ZZDS47, ZZDS48, ZZDS49, ZZDS50
EXTERNAL ZZDS51, ZZDS52, ZZDS53, ZZDS54, ZZDS55
EXTERNAL ZZDS56, ZZDS57, ZZDS58, ZZDS59, ZZDS60
EXTERNAL ZZDS61, ZZDS62, ZZDS63, ZZDS64, ZZDS65
EXTERNAL Z2ZDS66, ZZDS67, ZZDS68, ZZDS69, ZZDS70
EXTERNAL ZZDS71, ZZDS72, ZZDS73, ZZDS74, ZZDS75
EXTERNAL ZZDS76, ZZDS77, ZZDS78, ZZDS79, ZZDS80
EXTERNAL ZZDS81, ZZDS82, ZZDS83, ZZDS84, ZZDS85
EXTERNAL ZZDS86, ZZDS87, ZZDS88, ZZDS89, ZZDS90
EXTERNAL ZZDS91, ZZDS92, ZZDS93, ZZDS94, ZZDS95
EXTERNAL ZZDS96, ZZDS97, ZZDS98, ZZDS99
C

COQORKMCDQQQ0.0.....O.................0.....Q.O.......QQ..Q.Q...0.0Q

C------ Save the current SX values
IFTT= -(IFTP+ 99)
TCALC= TMCD
DO 105 N= 1,NSX
XSV(N) = SX(N)
105 CONTINUE
C
C------ Makae initial estimate for XI|
DO 110 N= 1,NSX
KO(N) = DTM(IFTT)* DSX(N)
110 SX(N) = XSV(N) +0.5*KO0(N)
Cc
C------ Make midpoint correction based on new DXI
. TXX= TCALC +0.5°*DTM(IFTT)
TIME= TXX
GOTO (9001,9002,9003,9004,9005,9006,9007,9008,9009,9010,
9011,9012,9013,9014,9015,9016,9017,9018,9019,9020,
9021,9022,9023,9024,9025,9026,9027,9028,9029,9030,
9031,9032,9033,9034,9035,9036,9037,9038,9039,9040,
9041,9042,9043,9044,9045,9046,9047,9048,9049,9050,
9051,9052,9053,9054,9055,9056,9057,9058,9059,9060,
9061,9062,9063,9064,9065,9066,9067,9068,9069,9070,
9071,9072,9073,9074,9075,9076,9077,9078,9079,9080,
9081,9082,9083,9084,9085,9086,9087,9088,9089,9090,
9091,9092,9093,9094,9095,9096,9097,9098,9099),IFTT

OCONOONLEWN=

129

9001 CALL ZZDSO1(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9002 CALL ZZDSO2(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9003 CALL ZZDSO3(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9004 CALL ZZDSO4(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9005 CALL ZZDSOS(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9006 CALL ZZDSOB(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9007 CALL ZZDSO7(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9008 CALL ZZDSOB(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9009 CALL ZZDSO9(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9010 CALL ZZDS10(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9011 CALL ZZDS11(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

8012 CALL ZZDS12(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9013 CALL ZZDS13(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9014 CALL ZZDS14(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9015 CALL ZZDS15(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9016 CALL ZZDS16(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9017 CALL ZZDS17(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9018 CALL ZZDS18(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9019 CALL ZZDS19(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9020 CALL ZZDS20(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9021 CALL ZZDS21(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9022 CALL ZZDS22(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9023 CALL ZZDS23(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9024 CALL ZZDS24(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

8025 CALL ZZDS25(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9026 CALL ZZDS26(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)

130

GOTO 9100
89027 CALL 2zDS27(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9028 CALL ZZDS28(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9029 CALL ZZDS29(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9030 CALL ZZDS30(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9031 CALL ZZDS31(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9032 CALL ZZDS32(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9033 CALL ZZDS33(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9034 CALL ZZDS34(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9035 - CALL ZZDS35(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9036 CALL ZZDS36(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9037 CALL ZZDS37(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9038 CALL ZZDS38(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9039 CALL ZZDS39(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9040 CALL ZZDS40(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
. GOTO 9100
9041 CALL ZZDS41(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9042 CALL ZZDS42(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9043 CALL ZZDS43(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9044 CALL ZZDS44(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9045 CALL ZZDS45(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9046 CALL ZZDS46(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9047 CALL ZZDS47(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9048 CALL ZZDS48(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9049 CALL ZZDS49(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
9050 CALL ZZDS50(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100
8051 CALL 2ZDS51(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

131

9052 CALL ZZDS52(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9053 CALL ZZDS53(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9054 CALL ZZDS54(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9055 CALL ZZDS55(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9056 CALL ZZDS56(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9057 CALL ZZDS57(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9058 CALL ZZDS58(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9059 CALL ZZDS59(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9060 CALL ZZDS60(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9061 CALL ZZDS61(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9062 CALL ZZDS62(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9063 CALL ZZDS63(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9064 CALL ZZDS64(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9065 CALL ZZDS65(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9066 CALL ZZDS66(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9067 CALL ZZDS67(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9068 CALL ZZDS68(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9069 CALL ZZDS69(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9070 CALL ZZDS70(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9071 CALL ZZDS71(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9072 CALL ZZDS72(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9073 CALL ZZDS73(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9074 CALL ZZDS74(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9075 CALL ZZDS75(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9076 CALL ZZDS76(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9077 CALL ZZDS77(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)

132

GOTO 9100

9078 CALL ZZDS78(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9079 CALL ZZDS79(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9080 CALL ZZDS8O(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9081 CALL ZZDS81(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9082 CALL ZZDS82(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9083 CALL ZZDS83(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9084 CALL ZZDSB84(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9085 CALL ZZDS85(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9086 CALL ZZDS86(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9087 CALL ZZDS87(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9088 CALL ZZDS88(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9089 CALL ZZDS89(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9090 CALL ZZDS90(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9091 CALL ZZDS91(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9092 CALL ZZDS92(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9093 CALL ZZDS93(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9094 CALL ZZDS94(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9095 CALL ZZDS95(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9096 CALL ZZDS96(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9097 CALL ZZDS97(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 9100

9098 CALL ZZDS98(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 9100

9099 CALL ZZDS99(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)

Cc

9100 DO 120 N= 1,NSX

K1(N) = DTM(IFTT)* DSXI(N)
120 SXIN)= XSV(N)+ 0.5*°K1(N)

C------ Make final‘estimate based on new DSX
TXX= TCALC +0.5*DTMI(IFTT)

133

TIME= TXX
GOTO (7001,7002,7003,7004,7005,7006,7007,7008,7009,7010,

1 7011,7012,7013,7014,7015,7016,7017,7018,7019,7020,
2 7021,7022,7023,7024,7025,7026,7027,7028,7029,7030,
3 7031,7032,7033,7034,7035,7036,7037,7038,7039,7040,
4 7041,7042,7043,7044,7045,7046,7047,7048,7049,7050,
5 7051,7052,7053,7054,7055,7056,7057,7058,7059,7060,
6 7061,7062,7063,7064,7065,7066,7067,7068,7069,7070,
7 7071,7072,7073,7074,7075,7076,7077,7078,7079, 7080,
8 7081,7082,7083,7084,7085,7086,7087,7088,7089,7090,
9 7091,7092,7093,7094,7095,7096,7097,7098,7099),IFTT
c
7001 CALL ZZDSO1(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7002 CALL ZZDSO2(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7003 CALL ZZDSO3(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7004 CALL ZZDSO4(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7005 CALL ZZDSO5(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
70068 CALL ZZDSOB(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 7100
7007 CALL ZZDSO7(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7008 CALL ZZDSO8(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7009 CALL ZZDSOS(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7010 CALL ZZDS10(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7011 CALL ZZDS11(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7012 CALL ZZDS12(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7013 CALL ZzDS13(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7014 CALL ZZDS14(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7015 CALL ZZDS15(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 7100
7016 CALL ZZDS16(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7017 CALL ZZDS17(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 7100
7018 CALL ZZDS18(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7019 CALL ZZDS19(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7020 CALL ZZDS20(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)

134

GOTO 7100
7021 CALL ZZDS21(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7022 CALL ZZDS22(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7023 CALL ZZDS23(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7024 CALL ZZDS24(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7025 CALL ZZDS25(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7026 CALL ZZDS26(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7027 CALL ZZDS27(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7028 CALL ZZDS28(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7029 CALL ZZDS29(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7030 CALL ZZDS30(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7031 CALL ZZDS31(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7032 CALL ZZDS32(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7033 CALL ZZDS33(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7034 CALL ZZDS34(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7035 CALL ZZDS35(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7036 CALL ZZDS36(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
- GOTO 7100
7037 CALL ZZDS37(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7038 CALL ZZDS38(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7039 CALL ZZDS39(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7040 CALL ZZDS40(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7041 CALL ZZDS41(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7042 CALL ZZDS42(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7043 CALL ZZDS43(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7044 CALL ZZDS44(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7045 CALL ZZDS45(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

135

7046 CALL ZZDS46(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 7100

7047 CALL ZZDS47(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 7100

7048 CALL ZZDS48(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7049 CALL ZZDS49(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7050 CALL ZZDSS5O(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7051 CALL ZZDS51(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7052 CALL ZZDS52(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7053 CALL ZZDS53(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7054 CALL ZZDS54(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 7100

7055 CALL ZZDSS5(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 7100

7056 CALL ZZDS56(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7057 CALL ZZDS57(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 7100

7058 CALL ZZDSS58(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 7100

7059 CALL ZZDS59(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7060 CALL ZZDSBO(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7061 CALL ZZDS61(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7062 CALL ZZDSB2(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 7100

7063 CALL ZZDSB3(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7064 CALL ZZDSB4(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100 ,

70685 CALL ZZDS65(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7066 CALL ZZDS66(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7067 CALL ZZDS67(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7068 CALL ZZDSB8(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 7100

7069 CALL ZZDSB9(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7070 CALL ZZDS70(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7071 CALL ZZDS71(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)

136

GOTO 7100

7072 CALL ZZDS72(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7073 CALL ZZDS73(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7074 CALL ZZDS74(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7075 CALL ZZDS75(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7076 CALL ZZDS76(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7077 CALL ZZDS77(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7078 CALL ZZDS78(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100 ,

7079 CALL ZZDS79(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7080 CALL ZZDS80(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7081 CALL ZZDS81(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7082 CALL ZZDS82(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7083 CALL ZZDS83(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7084 CALL ZZDS84(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7085 CALL ZZDS85(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7086 CALL ZZDS86(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7087 CALL ZZDS87(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7088 CALL ZZDS88(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7089 CALL ZZDS89(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7090 CALL ZZDS70(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7091 CALL ZZDS91(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7092 CALL ZZDS92(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7093 CALL ZZDS93(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7094 CALL ZZDS94(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7095 CALL ZZDS95(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

7096 CALL ZZDS986(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100

137

7097 CALL ZZDS97(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7098 CALL ZZDS98(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 7100
7099 CALL ZZDS99(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
7100 DO 130 N= 1,NSX
K2(N) = DTM(IFTT)*® DSX(N)
130 SX(N) = XSV(N) +K2(N)
TXX= TCALC +DTM(IFTT)
TIME= TXX
GOTO (8001,8002,8003,8004,8005,8008,8007,8008,8009,8010,

1 8011,8012,8013,8014,8015,8016,8017,8018,8019,8020,
2 8021,8022,8023,8024,8025,8026,8027,8028,8029,8030,
3 8031,8032,8033,8034,8035,8036,8037,8038,8039,8040,
4 8041,8042,8043,8044,8045,8046,8047,8048,8049,8050,
5 8051,8052,8053,8054,8055,8056,8057,8058,8059,8060,
6 8061,8062,8063,8064,8065,8066,8067,8068,8069,8070,
7 8071,8072,8073,8074,8075,8076,8077,8078,8079,8080,
8 8081,8082,8083,8084,8085,8086,8087,8088,8089,8090,
9 8091,8092,8093,8094,8095,8096,8097,8098,8099),IFTT
c
8001 CALL ZZDSO01(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8002 CALL ZZDSO2(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8003 CALL ZZDSO3(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8004 CALL ZZDSO4(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8005 CALL ZZDSO5(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
80068 CALL ZZDSO6(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8007 CALL ZZDSO7(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8008 CALL ZZDSO8(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8009 CALL ZZDSO9(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8010 CALL ZZDS10(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8011 CALL ZZDS11(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8012 CALL ZZDS12(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8013 CALL ZZDS13(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8014 CALL ZZDS14(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8015 CALL ZZDS15(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

138

8016 CALL ZZDS16(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8017 CALL ZZDS17(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8018 CALL ZZDS18(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8019 CALL ZZDS19(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8020 CALL ZZDS20(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8021 CALL ZzDS21(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8022 CALL ZZDS22(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8023 CALL ZZDS23(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8024 CALL ZZDS24(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8025 CALL ZZDS25(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8026 CALL ZZDS26(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8027 CALL ZZDS27(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8028 CALL ZZDS28(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8029 CALL ZZDS29(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8030 CALL ZZDS30(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100 :

8031 CALL ZZDS31(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8032 CALL ZZDS32(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8033 CALL ZZDS33(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8034 CALL ZZDS34(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8035 CALL ZZDS35(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8036 CALL ZZDS36(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8037 CALL ZZDS37(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8038 CALL ZZDS38(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8039 CALL ZZDS39(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8040 CALL ZZDS40(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8041 CALL ZZDS41(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)

139

GOTO 8100

8042 CALL ZZDS42(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8043 CALL ZZDS43(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8044 CALL ZZDS44(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8045 CALL ZZDS45(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8046 CALL ZZDS46(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8047 CALL ZZDS47(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8048 CALL ZZDS48(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100 :

8049 CALL ZZDS49(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8050 CALL ZZDS50(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8051 CALL ZZDS51(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8052 CALL ZZDS52(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8053 CALL ZZDS53(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8054 CALL ZZDS54(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8055 CALL ZZDSS55(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8056 CALL ZZDSS56(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8057 CALL ZZDS57(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8058 CALL ZZDS58(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8059 CALL ZZDS59(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8060 CALL ZZDS60(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8061 CALL ZZDS61(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8062 CALL ZZDS62(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8063 CALL ZZDS63(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8064 CALL ZZDS64(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8065 CALL ZZDS65(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8066 CALL ZZDS66(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

140

8067 CALL ZZDS67(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8068 CALL ZZDS68(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8069 CALL ZZDS69(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8070 CALL ZZDS70(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
-GOTO 8100
8071 CALL ZZDS71(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8072 CALL ZZDS72(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8073 CALL ZZDS73(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8074 CALL ZZDS74(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8075 CALL ZZDS75(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8076 CALL ZzZDS76(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8077 CALL ZZDS77(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8078 CALL ZZDS78(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8079 CALL ZZDS79(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8080 CALL ZZDS8O0(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8081 CALL ZZDS81(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8082 CALL ZZDS82(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8083 CALL ZZDS83(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8084 CALL ZZDS84(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8085 CALL ZZDS85(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8086 CALL ZZDS86(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8087 CALL ZZDS87(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8088 CALL ZZDS88(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8089 CALL ZZDS89(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8090 CALL ZZDS8O(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8091 CALL ZZDS91(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100
8092 CALL ZZDS92(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)

141

GOTO 8100

8093 CALL ZZDS93(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8094 CALL ZZDS94(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8095 CALL ZZDS95(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8096 CALL ZZDS96(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8097 CALL ZZDS97(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8098 CALL ZZDS98(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 8100

8099 CALL ZZDS99(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)

c _

8100 DO 140 N= 1,NSX

K3(N)= DTMI(IFTT)* DSX(N)

140 SX(N)= XSVI(N) +(KO(N)+2.0*(K1(N)+K2(N)) + K3(N))/6.0

Cc

C------ Update the DSX vector

GOTO (6001,6002,6003,6004,6005,6006,6007,6008,6009,6010,
6011,6012,6013,6014,6015,6016,6017,6018,6019,6020,

- 6021,6022,6023,6024,6025,6026,6027,6028,6029,6030,

6031,6032,6033,6034,6035,6036,6037,6038,6039,6040,
6041,6042,6043,6044,6045,6046,6047,6048,6049,6050,
6051,6052,6053,6054,6055,6056,6057,6058,6059,6060,
6061,6062,6063,6064,6065,6066,6067,6068,6069,6070,
6071,6072,6073,6074,6075,6076,6077,6078,6079,6080,
6081,6082,6083,6084,6085,6086,6087,6088,6089,6090,
6091,6092,6093,6094,6095,6096,6097,6098,6099),IFTT

CONOOTOHLWN =

c

6001 CALL ZZDSO01(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6002 CALL ZZDSO2(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6003 CALL ZZDSO3(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100 ‘

6004 CALL ZZDSO4(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100 ’

6005 CALL ZZDSOS5(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6006 CALL ZZDSO6(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6007 CALL ZZDSO7(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6008 CALL ZZDSOS8(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)

- GOTO 6100

6009 CALL ZZDSO9(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6010 CALL ZZDS10(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

142

6011 CALL ZZDS11(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6012 CALL ZZDS12(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6013 CALL ZZDS13(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6014 CALL ZZDS14(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6015 CALL ZZDS15(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6016 CALL ZZDS16(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6017 CALL ZZDS17(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6018 CALL ZZDS18(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6019 CALL ZZDS19(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6020 CALL ZZDS20(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6021 CALL ZZDS21(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6022 CALL ZZDS22(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100 :

6023 CALL ZZDS23(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6024 CALL ZZDS24(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)

-GOTO 6100

6025 CALL ZZDS25(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6026 CALL ZZDS26(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6027 CALL ZZDS27(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6028 CALL ZZDS28(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6029 CALL ZZDS29(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6030 CALL ZZDS30(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6031 CALL ZZDS31(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100 :

6032 CALL ZZDS32(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6033 CALL ZZDS33(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6034 CALL ZZDS34(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6035 CALL ZZDS35(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6036 CALL ZZDS36(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)

143

GOTO 6100

6037 CALL ZZDS37(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6038 CALL ZZDS38(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6039 CALL ZZDS39(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6040 CALL ZZDS40(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6041 CALL ZZDS41(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6042 CALL ZZDS42(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6043 CALL ZZDS43(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6044 CALL ZZDS44(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6045 CALL ZZDS45(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6046 CALL ZZDS46(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100 ,

6047 CALL ZZDS47(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6048 CALL ZZDS48(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6049 CALL ZZDS49(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6050 CALL ZZDS50(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6051 CALL ZZDS51(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6052 CALL ZZDS52(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6053 CALL ZZDSS53(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6054 CALL ZZDSS4(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6055 CALL ZZDS55(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6056 CALL ZZDS56(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6057 CALL ZZDS57(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6058 CALL ZZDSS58(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6059 CALL ZZDS59(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6060 CALL ZZDSBO(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR, DES)
GOTO 6100

6061 CALL ZZDSB1(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

144

6062 CALL ZZDSB2(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6063 CALL ZZDS63(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6064 CALL ZZDS64(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6065 CALL ZZDS65(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6066 CALL ZZDSG66(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

60687 CALL ZZDS67(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6068 CALL ZZDSB8(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6069 CALL ZZDSB9(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6070 CALL ZZDS70(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6071 CALL ZZDS71(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6072 CALL ZZDS72(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6073 CALL ZZDS73(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6074 CALL ZZDS74(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6075 CALL ZZDS75(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6076 CALL ZZDS76(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6077 CALL ZZDS77(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6078 CALL ZZDS78(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6079 CALL ZZDS79(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6080 CALL ZZDS80(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6081 CALL ZZDS81(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6082 CALL ZZDS82(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6083 CALL ZZDS83(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6084 CALL ZZDS84(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6085 CALL ZZDS85(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6086 CALL ZZDS86(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6087 CALL ZzZDS87(TIME, X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)

145

GOTO 6100

6088 CALL ZZDS88(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6089 CALL ZZDS89(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6090 CALL ZZDS90(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6091 CALL ZZDS91(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6092 CALL ZZDS92(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100 '

6093 CALL ZZDS93(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6094 CALL ZZDS94(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6095 CALL ZZDS95(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6096 CALL ZZDS96(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6097 CALL ZZDS97(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6098 CALL ZZDS98(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)
GOTO 6100

6099 CALL ZZDS99(TIME,X,P,NSX,SX,DSX,Y,DOF,NBUFR,DES)

C------ Every thing is alright here
6100 IERRF=0

RETURN
Cc

END
C>>>>>
Cc
(o

CINIMCD >>>>>>>>>>>>>>>>>>>>>>>> Last Change: 01/08/92 YyW
(o
SUBROUTINE INIMCD(NC2I)

(of
C--- PURPOSE: Get the initial conditions from user for a typical
(o4 MCD node.
C
C--- INPUTS: NC2|, index of ZZDSij
C
C--- OUTPUTS: XOMCD(NC2l,1), initial conditions
o
INCLUDE 'SIZEBK.CBK'’
INCLUDE ‘'SOLNBK.CBK'’
INCLUDE 'MCDCBK.CBK'’
C

REAL RLO, RHI, RVAL
CHARACTER STRING*72
INTEGER N, NC2I|

146

LOGICAL NEWLIN,ENDLIN
(of
EXTERNAL BLNKLN, WRTSTR, VI2CS, NCHARS, PROMPT, GETRL
g...lNIMCDO....0...O..Q’......O0.0.........OO...O...Q.....'OQO...Q......
C
RLO =-1.E25
RHI=1.E25
CALL BLNKLN
STRING = ’ Enter the initial conditions:’
CALL WRTSTR(STRING)
1200 FORMAT(" X{’,12,’) ?',T15,(",1PE12.4,'):")
C
DO 10 1=1, NXMCD(NC2l)
WRITE(STRING, 1200) I, XOMCD(NC2I,1)
CALL PROMPT(STRING)
RVAL =XOMCDI(NC2I,1)
NEWLIN =.TRUE.
CALL GETRL(RVAL,RLO,RHI,NEWLIN,ENDLIN)
XOMCD(NC2l,1) = RVAL
10 CONTINUE
Cc
RETURN
END
C>>>>>
Cc
Cc

APPENDIX E. ALGORITHM FOR OBTAINING
THE PATH-ORDER MATRIX

Path-Order Matrix
The path-order matrix is built only when all the paths have been identified. From a

graphical point of view, the problem can be stated as follows:

Case 1: SCG does not contain acyclic sub-digraph.

Definition:
If two directed paths have the same start and end vertices, this digraph is referred
to as acyclic.

An example of an acyclic digraph is given in Figure E.1

Here, one path is V, Sl V,3 % Vs and another is V, % \'A 93 V. Both paths share the

same start and end vertices.

To find path matrix, select a vertex and put it on an initially empty queue of vertices to

be visited. We repeatedly remove the vertex t at the head of the queue. Check incident

147

148
edges and then place onto the queue all the vertices adjacent to t.

Figure E.1 An acyclic digraph

Case 2: SCG contains acyclic sub-digraphs.

Let us continue our discussion with finding paths and labeling layers from outputs to

related inputs in SCG containing acyclic sub-digraphs.

149

As shown in Figure E.2, we take V, as an output, V, and V, as inputs.

© *@-—{% oS

OB {y

Figure E.2 Construction of solving order for an acyclic digraph

It is noticed that V; is on both layer 4 and §. It is resolved by removing the vertex
having smaller layer number, and the vertices following it. The method can be explained
by looking at the solving order of the output variable V5. Given V, and V,, we can
obtain V;. From Vj;, V; is obtained, then V, and V,. Knowing V, and V,, V; is reached

and further V; is reached.

150

The algorithm designed to obtain the path matrix is as follows:

1)
2)

3)

4)

3)

6)

8)

Reverse the direction of each edge inEG to obtain EG.

Put all source vertices into a set S.

If there is no unlabeled sink vertex, STOP; otherwise, choose a unlabeled sink
vertex t, put t into a set V, set i equal to 0.

Leti = i+1 and give i as index of v, veV.

If there is a v (eV), so that veS, delete this v from V; if V is empty, goto 3).
Through directed edge, search all vertices u incident to v that veV.

If there are some u’s which are labeled, erase the old labels.

Put all u’s into V; goto 4).

It must be emphasized that the above algorithm works only on digraph containing no

circuit and self loops. Recall that SCG has every SCC as a vertex (discussed in section

3.2.2.). The SCG satisfies the restriction and, thus, the algorithm can be applied on to

it.

BIBLIOGRAPHY

THE BIBLIOGRAPHY

Allen, R.R., Dubowsky, S., 1977, Mechanisms as Components of Dynamic Systems: A
Bond Graph Approach, Trans. ASME J. Engineering Industry, Vol 99, No.1, pp104-
111.

Bos, A.M., Tiemmego, M.J.L., 1985, Formula Manipulation in the Bond Graph Modeling
and Simulations of Large Mechanical Systems, J. Franklin Institute, Vol 319, No.1/2,
ppS1-66.

Broenink, J.F., 1990, Computer-Aided Physical Systems Modeling and Simulation: A
Bond Graph Approach, Febodruk, Enschede.

Burreto, J., and Lefevre, J., 1985, R-fields in The Solution of Implicit Equations, J.
Franklin Inst., Vol.319, No.1/2, pp227-237.

Chua L. O. and P. Lin, 1975, Computer-Aid Analysis of Electronic Circuits: Algorithm
and Computational Techniques, Prentice-Hall Inc.

Close, C.M., Frederick, D.K., 1978, Modeling and Analysis of Dynamic Systems,
Houghton Mifflin Company.

Constantinescu, J., 1982, Study of the Transient Processes in Large-Scale Power
Systems, Rev. Roum. Sci. Techn-Electrotechn et Energ., Vol.27, No.2, pp211-227.

DeCarlo, R.A., Saeks, R., 1981, Interconnected Dynamical Systems, New York, Mrcel
Dekker.

Dransfield, P., 1979, Using Bond Graphs in Simulating an Electro-Hydraulic System,
J. Franklin Institute, Vol.308, No.3, pp175-182.

Even, S., Graph Algorithms, 1979, Computer Science Press.

Filippo, J.M., Delgado, M., Brie, C. and Paynter, H., 1991, Survey of Bond Graph
Theory, Application and Programs, J. Franklin Institute, Vol.328, No.5/6, pp 565-606.

Granda, J.J., 1984, Bond Graph Modeling Solutions of Algebraic Loops and Differential
Causality in Mechanical and Electrical Systems, Proc. Applied Simulation and Modeling,

151

152
pp188-193, IASTED Conference, San Francisco, CA.

Hamilton, P.S., 1984, Derivation of the algebraic system Jacobian matrix from bond
graph using a symbol manipulation technique, Ph. D. dissertation, The University of
Texas at Austin.

Hrovat, D., Tobler, W., Tsangarides, M., 1985, Bond Graph Modeling of Dominant
Dynamics of Automotive Power Trains, Dynamic Systems: Modeling and Control,
ASME DSC-Vol.1,

Kamopp, D.C., Rosenberg, R.C., 1975, System Dynamics: A Unified Approach, Wiley,
New York.

Karnopp, D.C., 1985, Bond Graph Models for Electromagnetic Actuators, J. Franklin
Institute, Vol.319, No.1/2, pp173-182.

Kobayashi, H., Muto, S., Tamura, Y., Narita, S., 1978, Decomposition Algorithm for
Determining Sensitivity Constants of Large-Scale Power Systems, Electrical Engineering
in Japan, Vol.98, No.1, pp45-51.

Kokotovic, P.V., Perkins, W.R., Cruz, J.B., and D’Ans, G., 1969, e-coupling Method
for Near-optimum Design of Large-scale Linear Systems, Proc. IEE 116, pp887-892.

Kokotovic, P.V., Khalil, H., O’Reilly, J., 1986, Singular Perturbation Method in
Control: Analysis and Design, Academic Press Inc., Orlando, Florida.

Laddle, G.S., 1975, Variational Comparison Theorem and Perturbations of Nonlinear
Systems, Proceedings of the American Mathematical Society, 52, pp181-187.

Martinez-Benet, J.M., Puigjaner, L., 1988, A Powerful Improvement on The
Methodology for Solving Large-Scale Pipeline Networks, Computational Chem. Engng.,
Vol.12, No.2/3, pp261-265.

Paynter, N.M., 1960, Analysis and Design of Engineering Systems, M.I.T. Press,
Cambridge, Massechuset.

Rosenberg, R.C., 1971, State-Space Formulation for Bond Graph Models of Multiport
Systems, ASME J. Dynamic Systems, Measurement, and Control, Vol.93, No.1, pp35-
40.

Rosenberg, R.C., Kamopp, D.C., 1983, Introduction to Physical System Dynamics,
McGraw-Hill, New York.

153

Rosenberg, R.C., 1990, The ENPORT Reference Manual, Rosencode Associates Inc.,
Lansing, Michigan.

Siljak, D.D., 1978, Large-Scale Dynamic Systems, North-Holland, New York.

Sobhi, A., 1985, Symbolic derivation of the state equations and system Jacobian using
bond graph, M.S. thesis, The University of Texas at Austin.

Wang, C.M., Jamshidi, M., 1982, A Computational Algorithm for a Class of Large
Scale Nonlinear Time Delay Systems, IEEE, 1982 Large Scale Systems Symposium.

William, J.P., 1983, Modeling, Analysis, and Control of Dynamic Systems, John Wiley
& Sons, Inc.

Wau, F.F., 1976, Solution of Large-Scale Networks by Tearing, IEEE Transactions on
Circuits and Systems, Vol.CAS-23, No.12, Dec.

Zhou, T., 1988, Ph. D. dissertation, Michigan State University.

MICHIGAN STATE UNIV. LIBRARIES
IR
31293008992798

