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ABSTRACT

CHARACTERIZATION OF THE INTERIOR
OF AN INHOMOGENEOUS BODY
USING SURFACE MEASUREMENTS

By

Mahmud Khodadadi-Saryazdi

In this study, the feasibility of characterizing the internal structure of an
inhomogeneous body using a discrete number of surface measurements is explored.
The inverse problem is formulated for steady state heat transfer and linear elasticity.
In the heat transfer portion of this study, the problem of determining the location,
size and thermal conductivity of an inclusion in a body of arbitrary shape using a
discrete number of surface temperature and/or heat flux measurements is examined.
In the elasticity portion, the estimation of the location, size, Poisson’s ratio and shear
modulus of the same inclusion using a discrete number of surface displacement
and/or traction measurements is investigated. The boundary element method is
adapted for application to this parameter estimation problem.

Several questions arise in this inverse application of the boundary element
method which have not been adequately addressed in previous investigations.
Among these are (1) does the "initial guess" for the unknown parameters have an
effect on the convergence to the correct parameters and, if so, what is this effect, (2)
how many surface measurements and what combination of measurements are required
to simultaneously estimate the unknown parameters, (3) how should the locations of
these surface measurement points be selected, (4) what effect will the inevitable
errors in experimental measurements have on the ability to estimate the sought
parameters, and (5) what effect does the size of the inclusion have on the estimation
of the unknown parameters? These questions will be systematically addressed using
the boundary element method coupled with the method of parameter estimation.
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Chapter 1

Introduction and Background

Material characterization is one of the fundamental tasks of engineering and
science. It involves the study of inverse problems which usually imply identification of
inputs from outputs. In this study, the feasibility of characterizing the internal structure
of an inhomogeneous body using a discrete number of surface measurements is
explored. In particular, we examine the problem of determining the location, size and
material properties of an inclusion in a body of arbitrary shape using a discrete
number of surface temperature and/or heat flux measurements and a discrete number
of surface displacement and/or traction measurements. The boundary element method

[1] is adapted for application to this parameter estimation [2] problem.

Other numerical techniques, most notably finite differences and finite elements ,
have been used to investigate various types of inverse problems. However , for the
nonlinear inverse problem investigated here, an iterative scheme is required . Thus the
boundary element method, which requires only the discretization of the boundary,

must be employed in order to avoid the costly and unnecessary task of grid generation
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for the entire multiply connected domain at each iteration.

Application of the boundary element method to the inverse problem of material
characterization is not entirely new. Murai and Kagawa [3] investigated the estimation
of the shape of an inclusion in a two-dimensional region using impedance
measurements on the domain surface. They considered the problem simply as the
interface boundary determination between two domains of different (but known)
conductivities, governed by Laplace’s equation. The boundary element method was
used in conjunction with a simple linearized estimation scheme. The authors did not
address any of the questions regarding convergence, measurement errors, or inclusion

size.

Ohnaka and Uosaki [4] utilized surface temperature measurements to
simultaneously estimate the diffusion constant of a homogeneous body as well as
discrete unknown internal heat sources. The mathematical formulation of the
identification problem was presented using the weighted residual expression and the
boundary element partition. The unknowns were identified using noisy or noise-free
state observations taken at points on the boundary by minimizing a certain criterion
function which is the sum of the squares of the relative errors. The maximum number
of temperature measurements used was 16. Two cases were considered : (1) the
internal source location is close to the boundary and (2) the source location is close to
the middle of the body. One set of noisy observation data with a standard deviation of
0.1 was considered. It was revealed that the accuracy of the identification results is
lower when the actual heat source is located close to the boundary. The influence of
the "initial guess" of the unknown parameters was not investigated, nor was the

question of measurement point selection.

Dulikravich [5] investigated the optimal sizes and locations of coolant flow
passages for a user-specified steady distribution of surface temperatures and heat

fluxes. The Laplace equation for steady conduction was treated using the boundary
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element method. If the temperatures on the boundary were given as the boundary
condition, then an error function based on a normalized least squares formulation for
the difference between the desired and computed surface heat fluxes was formed and if
the heat fluxes on the boundary were given as the boundary condition, an error
function based on a normalized least squares formulation for the difference between
the desired and computed surface temperatures was formed. This function was then
used in a constrained optimization routine to determine the new updated sizes and
locations of the coolant flow passages so that the difference between the desired and
the computed surface heat fluxes and/or temperatures was minimized. As in the other

investigations, questions regarding the convergence process were not addressed.

Kishimoto, et. al. [6] investigated inverse problems in galvanic corrosion. A
boundary element procedure was developed to estimate the densities across the anods
using potential values which were assumed to be known at several points in the
electrolyte. An approach associated with the single value decomposition of the
coefficient matrix and a criterion for determining its effective rank was presented. It
was concluded that the effective rank should be determined so that both the coefficient

matrix’s condition number and the square sum of the residuals

Q= Z ( q)inappl - ¢i.ncomp )2

took small values where @, represent applied potential values and Qipcomp the
values computed using the boundary element method. The authors assumed that the
potential values used as extra information were given in advance. Therefore they did
not address the errors involved if the potentials were to be measured experimentally.
The effect of the initial guesses of the densities on the estimation process and also the
question of how many potential values are needed and the potential corresponding to

what location points in the electrolyte are better to use, were not addressed.
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Tanaka and Yamagiwa [7] estimated the shape of an internal flaw using
elastodynamics with given eigenfrequencies. First the eigenfrequencies corresponding
to the assumed defect shape were computed using a boundary-domain element method,
i.e. discretization of the domain was also necessary. Then the boundary integral
equations were solved using the boundary element method to find the displacements
and tractions corresponding to the assumed defect shape. This procedure was repeated

until

do=(f-0*) 50

where ®F and w® were the eigenfrequencies corresponding to the exact and assumed
defect shape, respectively. It was revealed that the greater the number of additional
data (eigenfrequencies), the closer and faster the exact defect shape would be obtained.
The authors did not address the effect of the initial shape and size of the assumed flaw
on the ability to estimate it. Although the boundary eclement was used in this
investigation, the additional information, i.e. the eigenfrequencies, were not measured
on the surface boundary, but were computed using a boundary-domain element
method, at the interface. Therefore, the authors did not address the measurement errors
if the eigenfrequencies were measured experimentally. Also the question of how many
eigenfrequencies are needed, and what are the optimum locations at which to compute

them was not addressed.

Gao and Mura [8] utilized surface displacement data to evaluate the residual
stress field in the vicinity of a damaged region caused by a series of unknown
loadings. A relation between the residual surface displacements and plastic strains was
found. The residual surface displacements were relative and were defined as the
difference between before and after loading. Plastic strains were determined using the

measured residual surface displacement data and then the stress field on the boundary
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and outside the damaged area were computed. It was shown that the equivalent plastic
strains, though different from the actual ones, induced the actual stresses outside of the

equivalent damage domain.

Das and Mitra [9] found the location and size of a flaw using measured surface
temperatures. An algorithm for the detection of the flaw was employed in solving
several exmple problems. In all the calculations, the boundary element solution for the
real flaw was used as the experimental data. It was observed that for a satisfactory
detection of the flaw, the error in the measured temperatures should be less than

0.25% .

In the heat transfer portion of this study, a body of some arbitrary but given
shape is subjected to a steady thermal state, i.e. a specified temperature is applied to
one portion of the surface and a specified heat flux is applied to the remainder of the
surface. The body is assumed to contain an inclusion of circular shape but unknown
location, size and thermal conductivity. The simultaneous estimation of these
parameters is to be accomplished by measuring temperatures at surface locations
where the flux has been specified and/or measuring fluxes at selected surface locations

where temperature has been specified.

In the elasticity portion, a body of some arbitrary but given shape is subjected to
uniaxial tension. The body is assumed to contain an inclusion of circular shape but
unknown location, size, Poisson’s ratio and shear modulus. The simultaneous
estimation of these parameters is to be accomplished by measuring displacements at
surface locations where the traction has been specified and/or measuring tractions at

selected surface locations where displacement has been specified.

Several questions arise in this inverse application of the boundary element
method which have not been adequately addressed in previous investigations. Among
these are (1) does the "initial guess" for the unknown parameters have an effect on the

convergence to the correct parameters and, if so, what is this effect, (2) how many



surface measurements and what combination of measurements are required to
simultaneously estimate the unknown parameters, (3) how should the locations of these
surface measurement points be selected, (4) what effect will the inevitable errors in
experimental measurements have on the ability to estimate the sought parameters, and

(5) what effect does the size of the inclusion have on the estimation process?

The present investigation assumes a two-dimensional body containing a single
inclusion, but the method of analysis is not limited in principle. Extension to three-
dimensional problems and more complex internal structure is straightforward but the
additional question of how many parameters one can hope to determine simultaneously
requires further study. Nonetheless, the success of the technique demonstrated here

shows great promise for application in the area of non-destructive evaluation.




Chapter 2

Boundary Element Method

2.1) Heat Transfer

The differential equation representing steady state heat transfer through an

isotropic, homogeneous, two-dimensional region, Q , is

kV2T=0 in Q (2.1.1)

where T(x; , x,) is the temperature, k is the thermal conductivity of the material, and

9% 92

2 _

V—ax2 9x,2
1 2

The boundary conditions can be written as

T =Tg (s) onTI’, (2.1.2)
oT
q=k 55 =% (s) on I, (2.1.3)

where Ty(s) and qq(s) are specified functions and the boundary of region Q is given as
I'=T,+ T}, n is the outward normal direction to I', q is the heat flux in the n

7
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direction and s is a coordinate along the boundary as shown in Figure (2.1). Consider
now a weighting function W(x;,Xx,) which is assumed to be sufficiently
differentiable. Multiplying equation (2.1.1) by W( x;, X, ) and integrating by parts

twice, yields
jTkV2de1dx2+jWk—ds—jk———Tds_o 2.1.4)

In order to convert equation (2.1.4) into a boundary integral equation, a weighting
function which satisfies the Laplace equation and represents the field generated by a
unit point source acting at point (x;!, X,’) is used. The governing equation

representing this field is written as
kV2T =-8 (x; - x/1, % — %) (2.1.5)

where & (x; — x;', X, — X, ) is the Dirac delta function. The solution to equation

(2.1.5) is called the fundamental solution and is given by

T m( ln—- ) (2.1.6)

where
12
N2 iv2
r= [ (xl—xll) +(X2"X21) ]

Let us choose W=T" (x;, X, , X;', X,' ) and define,



Figure (2.1) - Plane Inhomogeneous Body .
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= 9T 2.1.7)
on

Then eq (2.1.4) at a point (xli , xzi) in Q becomes

Tx,', %) =[qT ds- [Tq"ds (2.1.8)
T r
where
. 1

q = ( plnl + p2n2 ) N (2.19)

B 2k

n; and n, are the components of the outward directed unit normal to I', and

"1"‘1i

Inserting equations (2.1.6) and (2.1.9) into equation (2.1.8), for (xli , x2i) in Q yields

: . 1 PN +P2Ny 1 1
T, x,}) = — T——ds+ — In(—) d . 2.1.10
(x1's xg) = — Jr. - s kgq n(—) ds ( )

Equation (2.1.10) is also applicable as (x;!, x,') goes to the boundary I' , but as the
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integration variables (x; , X;) go to (x;', X,), i.e. T goes to zero, the integrands of
equation (2.1.10) are singular. This is not a problem for the integral containing ln(%)
since this function is integrable but it is a problem for the integral containing % . To

avoid this singularity, we integrate around singular point (x,!, x,') as shown in Figure

(2.2). Thus
n{+P-n n{+p-n n{+p-n
jT'—)l—‘—pz—l ds =lim [ T2EP2 4o PP 400
T £-0 rl by £—0 I—_re T
where
n,+p-n . . .
limIdes=(2n—m‘)T(xl‘,le) (2.1.12)
€0 I,
and equation (2.1.11) at (x,, x,") on I" becomes
n,+p-Hn . . n;+p->n
fTBLITF)Z—stz(2n—m‘)T‘+jTMds (2.1.13)
r r

where the integral on the right hand side is interpreted in the Cauchy principle value
sense and ®' = @ ( X', x,' ) is equal to & if the boundary is smooth at ( x;', x,}) .

Inserting equation (2.1.13) into (2.1.10), yields
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r

Figure (2.2) Integration path around singular point.
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i P11 +Pony 1 1
o' T —i T————ds=+ i q In(—) ds (2.1.14)

for (x;', x,') on I" and T' = T(x,, x,') . Equations (2.1.14) are the "boundary-integral
equations” [1]. Since either T or q is specified at each point on I, i.e. T is specified on
portion I', and q is specified on portion Iy, equations (2.1.14) are employed to

determine Ton I'yandqon T, .

Subdividing the boundary I into N segments, equations (2.1.14) become
N
> [qin(=)ds . (2.1.15)

To employ linear isoparametric elements, let :

s = 6 sTD 4 ¢, 5O
xp = 0 x50 + ¢, x,0
X = 01 %070 + 65 x,0 (2.1.16)
T = 6, T6D 4 ¢, TO

q=0; Q%D + ¢, q¥

on element j, where
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o=(1-8§)/2 (2.1.17)

0 =(1+E)/2

are linear shape functions and -1 <€ <1.

Then
ds = _1 S(j—1)+is(j) d&:idi (2.1.18)
2 2 2

where 1; is the length of the element j. Note that the temperature is assumed to be
piecewise linear and continuous whereas heat flux is assumed to be piecewise linear

and discontinuous. Equations (2.1.15) can now be written in the form

1
. . N 2 . .
o T- 3 F 62 [ i de =

1 1
=1 k=l | k

qE20 [ glide  (2.1.19)
-1

M=z
Mw

s
I
—
e
1}

1

where T? is taken to be T™ and h,J and g, are known functions. Equations (2.1.19)

are written in matrix form as :

] {of <[] {o 2120

where [ H ] has dimension NxN, and [ G ] has dimension Nx2N. The column matrix

{T} contains the values of temperature at the N boundary nodes and column matrix
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{q} contains two values of flux at each boundary node, i.e. the value of flux "before"

the node and the value of flux "after" the node.

For an inhomogeneous body, the domain 2 is divided into two subdomains
Q, and Q, , each having its own thermal conductivity and equations (2.1.20) are

applied to each subdomain. For two subdomains :

or

’_]. =
S——

[H], (0]
(0] [H],

(G]: [0]

}’= (0] [G]z‘{
Tr,

Equations (2.1.21) are then reduced by imposition of interface conditions on I7 , the

[ (2.1.21)

interface of the two subdomains. At a pointion I7:

T, =T, (2.1.22)

- . . :
gD = q,@ = - g,@D = — ¢,@

where continuity of heat flux at the interface nodes is assumed. Imposition of (2.1.22)

gives us:
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B
[H‘]# = [G‘]ﬁ * (2.1.23)
{T}I {Q} I

where the subscript " I " denotes the interface boundary and the subscript " 1-I "

denotes the outer boundary. The matrix [H" ] is (N; + 2N, ) x (N;+ N, ) and
[G"]is (2N; +4N,) x (2N; + N, ), where N; is the number of outer boundary
nodes and N, is the number of interface boundary nodes. Equations (2.1.23) can be

written as :

—

]
[H] *{ }I = [G] {q} 1 (2.1.24)

where the matrix [H™] is (N;+2N,)x (N;+2N, and [G™] is
( 2Ny + 4N, ) x ( 2N; ). Equations (2.1.24) are reordered based on known outer
boundary conditions i.e. all the known outer boundary temperatures in {T}m are

taken to the right hand side and all unknown outer boundary heat fluxes in {q} to

11
the left hand side. Then

[A){x} o] 2129
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which is solved for { X }, which contains the values of unknown temperatures and
heat fluxes at the outer boundary nodes as well as all temperatures and heat fluxes at

the interface boundary nodes .

Let us consider the example shown in Figure (2.3). A rectangular body with a
circular inclusion of radius 2 located at (3,3) is subjected to the boundary conditions
shown. The coefficient of thermal conductivity of the matrix material is 164 and that
of the inclusion is 73. The outer boundary and the interface boundary are each
divided into 24 linear elements of equal length as shown in Figure (2.4).The unknown

nodal temperatures and heat fluxes are computed and are presented in Table (2.1).



—_— y ———f

Figure (2.3) - Heat Transfer Example Problem.
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Figure (2.4) - Boundary Element Model .
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Table (2.1) Nodal Temperature and Heat Flux Values for Heat Transfer
Example Problem.

node # x-coord. y-coord. Temperature Flux "before" Flux "after”
1 0.00 6.00 0.00 -88.64 30.00
2 0.00 5.00 0.33 30.00 30.00
3 0.00 4.00 0.52 30.00 30.00
4 0.00 3.00 0.60 30.00 30.00
5 0.00 2.00 0.52 30.00 30.00
6 0.00 1.00 0.33 30.00 30.00
7 0.00 0.00 0.00 30.00 -88.64
8 1.00 0.00 0.00 -25.51 -25.51
9 2.00 0.00 0.00 -11.56 -11.56
10 3.00 0.00 0.00 241 241
11 4.00 0.00 0.00 -0.14 -0.14
12 0.00 5.00 0.00 -6.76 -6.76
13 0.00 6.00 0.00 -9.06 0.00
14 6.00 1.00 0.06 0.00 0.00
15 6.00 2.00 0.12 0.00 0.00
16 6.00 3.00 0.16 0.00 0.00
17 6.00 4.00 0.12 0.00 0.00
18 6.00 5.00 0.06 0.00 0.00
19 6.00 6.00 0.00 0.00 -9.06
20 5.00 6.00 0.00 -6.76 -6.76
21 4.00 6.00 0.00 -0.14 -0.14
22 3.00 6.00 0.00 241 241
23 2.00 6.00 0.00 -11.56 -11.56
24 1.00 6.00 0.00 -25.51 -25.51
25 3.00 5.00 -0.03 -10.81 -10.81
26 3.52 493 -0.03 -10.31 -10.31
27 4.00 473 0.00 -9.02 -9.02
28 441 441 0.05 -4.96 -4.96
29 4,73 4.00 0.13 1.67 1.67
30 493 3.52 0.19 8.17 8.17
31 5.00 3.00 0.22 10.99 10.99
32 493 248 0.19 8.17 8.17
33 4.73 2.00 0.13 1.67 1.67
34 441 1.59 0.05 -4.96 -4.96
35 4.00 1.27 0.00 -9.02 -9.02
36 3.52 1.07 -0.03 -10.31 -10.31
37 3.00 1.00 -0.03 -10.81 -10.81
38 248 1.07 0.00 -1145 -11.45
39 2.00 1.27 0.08 -9.64 -9.64
40 1.59 1.59 0.02 -2.30 -2.30
41 1.27 2.00 0.34 9.64 9.64
42 1.07 2.48 0.47 20.80 20.80
43 1.00 3.00 0.52 25.42 2542
44 1.07 3.52 047 20.80 20.80
45 1.27 4.00 0.34 9.64 9.64
46 1.59 441 0.20 -2.30 -2.30
47 2.00 4.73 0.08 -9.64 -9.64
48 2.48 493 0.00 -11.45 -11.45
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2.2) Elasticity

A linear elastic solid of uniform thickness h, and loaded in some manner, is

considered. The equations of equilibrium are :

90y . 901y

3%, + 3% =0 2.2.1)
80'12 8622

axl M aX2 =0

where Gy, 0y, Oy, are the in-plane components of stress and it is assumed there are

no body forces. The boundary conditions are :

u; = £ (s) on I, 2.2.2)

t =0y 0 h =g (s) on [y (2.2.3)

for i=1,2 and j=1,2, where u; is the component of displacement in the i direction, t; is
the component of traction in the i direction, n; and n, are the components of the
outward-directed unit normal to the boundary I, s is a coordinate along the boundary
as shown in Figure (2.1), and f; (s) and g; (s) are prescribed functions. To express
equation (2.2.1) and equation (2.2.3) in terms of displacements, Hooke’s law is used,

1.e.

ay, du,
oy = Cug;l‘ + C1za—x2 (2.2.4)




alll au'_)_

0y =Cy 3 3%,
aul aU2

012 = Ca3 ( o, T ox, )

where Cy;, Cy, Ci,, and Cs3 are material constants. Substituting equations (2.2.4) into

equations (2.2.1) , the equations of equilibrium are obtained in terms of displacements,

) au1 al12 2 au2 au1

ax1 (Cll ax1 + Ci2 ax2 ) + axz (C33 ax1 + C33a_x2 ) =0 (225)
0 al]2 aul 0 aul 8u2 _
ox, (33 ax; * O3 0x4 )+ ox, €12 ox; T n 0x, )=90

and substituting equations (2.2.4) into equations (2.2.3), the tractions in terms of

displacements are obtained,

au, du, Ju, oy,
L= (clla_xl + Clza_xl )I'll + (C33a_x1' + C33a_x2 )le (226)
8112 aul aul 8u2

ty = (C33—— + Cy33— )Ny + (Cjy— + Cyp— )
2 33axl 3sax2 1 128X1 2zax2 2

where c;; is equal to C;h . Consider now the weighting functions Wi( Xy , X ) and
Wy( Xy, Xp ) which are assumed to be sufficiently differentiable. Multiplying the first
of equations (2.2.5) by W, ( x;, X, ) and the second by W,( x; , X, ), and integrating

by parts twice yields
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[ 5 oW, oW, 5 . W, ow, | e (27
f’; ul | axl (011 axl + 012 aX2 ) + aX2 (033 axl + C33 aX2 )- 1 2 ( o )
5 . W, oW, 5 oW, oW, |
ol gy Yo Y ey g Y ou gy, )| St
oW, oW, oW, oW, |
- i[ u, (Clla_xl + Clza_xz )nl + (C33 ax1 + C33 ax2 )nz ds
[ oW, oW, oW, oW, | .
- 1'[ Uz_(css 3%, + C33 %, n; + (cp2 %, +Cn 5%, )ﬂz- s

+ Wit ds+ [Wyt,ds=0
r r

where the two expressions have been added. For an isotropic material:

2Gh
€1 =¢Cn = —( I-v) (2.2.8)

- 2v'Gh

C33 = Gh
wheré G is the shear modulus and

Y plane stress

plane strain
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where v is Poisson’s ratio. For simplicity let us denote x'=(x,',x,') as the

coordinates of the field point "i" and x = ( x; , X, ) as the coordinates of the source

point.

In order to convert equation (2.2.7) into a boundary integral equation, W;( x ) is

set equal to U;( x, x' ) and W,( x ) is set equal to Uy( x , x! ) such that

2 2
+ VU = -8 (X — Xy, X — X! i) (2.2.9
1I-v'| ox,2  oIx9xy 17 7Gh (X =X1', X = Xp' ) ey(x') (2.2.9)
2 2
+ V U — ——8 — 1 , _ 1 1
1-v axla);z aX22 2 Gh ( X1 X1 » X2 =X ) Cz( X )

where e;( x')and e,(x') are unit vectors in the x; and x,

8 (x; — x;', X, — x,' ) is the Dirac delta function, and

V2 = 02 02
axlz aX22
In addition

2 aUl 2V’ aU2 aUz aUl

T, = Gh + + +
! 1-v ox; MTTY 0X, & ox, 2 0x,
U oU » U oU
T, = Gh 2“1‘*‘ 1n1+ 2v 1n2+ 2 2
axl aX2 1-v aXl 1—-v aX2

|25)

1th)

-

directions,

(2.2.10)

are defined. Inserting equations (2.2.9) and (2.2.10) into equations (2.2.7), yields
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up( xtep(x') + up( xt ey x') = — [Ty (x, x' )uy(x ) ds (2.2.11)
r

— [Ty (x, x)uy(x ) ds + [Up (x, x))y(x) ds + [Uy (x, X )ip(x) ds
r r r

for (x')in Q . Now we can write

Uy(x,x1) =Up;(x, x)e;( x1) + Up(x, xey(xH) (2.2.12)
Uy(x, x1) = Uy x, x)e;( x1) + Up( x, x)ey(xh)
Ty(x, x') =Ty (x, x)e;(x) + T x, xHey( xH)

To(x,x1) = Ty x, x )ey( x') + Top( x, X ey( xH)

where U;; and U,; are the displacements and T;; and T,; are the tractions at a point x
in the infinite plane caused by a unit force in the x, direction applied at x' . Similarly
Uy, and U,, and T;, and T,, are the displacements and tractions at a point x due to a
unit force in the x, direction applied at x! . Inserting equations (2.2.12) into equations

(2.2.11) and equating coefficients of e;( x! ) and e,( x' ) , respectively, yields
1 2
g (x1) == [ Ty (x, x1) ue(x) dsx) + [ Uy (x, x1) 4(x) ds(x)  (2.2.13)
r r

where j=1,2 , k=1,2 and summation on k is implied. The Galerkin function, ®( x , x1),

is introduced such that
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1+v |30 3D

U =V2 o, - > 2 T o (2.2.14)
U,=V2o, - L ;v’ aiz?; + 32q>22
19X2 0x,
which is inserted into equations (2.2.9) to obtain
Gh V2 (V2®,)=-38(x; - x;', xp— X' ) g( x') j=12. (22.15)
The solution to equations (2.2.15) is
= g P ln {-1-] e, (2.2.16)

where
172
2 in2
r= [ (xl—xll) +(X2—X21) ]

Substitution of equations (2.2.16) into equations (2.2.14) yields

_ 1
Ui 81rGh{

(3-v')In % +(1+V )plz}e1 +(1+V)p P2 ez} 2.2.17)
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(3—v’)1n%+(1+v’)p22 e+ (1+V)p; pzel}

__1
V2= 81tGh{

where

Xy~ "1i

P1=

Xy — X9

P2 =
and substitution of equations (2.2.17) into equations (2.2.10) yields

1 ’ ’ ’
T=7x {[2( 1+V' )(ng pyP—ny py° )=( 1=V )ny py=( 3+V' )n, Pz}el

+[2<1+v'><nzpl3+n1 p2>) = (3+V )y py = (1+3v)n pz] Cz}

(2.2.18)

1 , , ’
Tz=m{[2( 1+V )y p+ 10y pp® )=(1+3v )0y py = (3+V )y 92}31

+[2(1+V')(n1p13—n2p23)—(3+v')n1 pl—(l—v')n2p2:|ez}.

The influence functions are determined by comparing equations (2.2.17) and equations

(2.2.18) to equations (2.2.12), i.e.
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1 7 1 ’
1 ’
Up= ey (1+V')p; py

1 ,
U21=81tG_h(1+v )P1 P2

1
Uns =
227 8rGh

(3—v’)1n%+(1+v’)p22}

and

1 ’ ’ g
Tn=4—m[2(1+v Yy p® =y pP )= (1=Vnypp—(3+vV )nzpz}

1 [ , , ’
le—m | 2(1+v Yy pP + 1y P ) = (3+V)mypp— (1+3v )H1P2]

1 [ ’ ’ ’
Tzl=m | A T1+v Yy p3 +10y p%) = (3+V )y py — (1 +3v )“192}

1 [ ’ 7 ’
T22=—4—njr- _2(1+V X0y PP =0y p? )= (3+V ) p - (1-v )nzp2]-

Recall that equations (2.2.13) are valid at any point x' in Q. They are also applicable

as x' goes to the boundary T but, as x goes to x,ie.r goes to zero, the integrands

are singular. Here Ty; varies as 1 and Uy; varies as In ( —1-) . The first of these
r T

requires special treatment. As before, we integrate around x! and write
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uji = —liji uki - I qu Uy ds + j Uk} e ds (2.2.19)
r r

where uji =y ( xi ) and

\iji = ;1;136 II Tk_] ds

e

where € and Iy are shown in Figure (2.2). The first integral on the right hand side of
equations (2.2.19) is interpreted in the Cauchy principle value sense. Equations

(2.2.19) can be rewritten as

akji Uki + J Tk] Uy ds = J Ukj tx ds Xi onI’ (2.2.20)
r r

where cxkji=8kj+‘iji and & is the Kronecker delta. Equations (2.2.20) are the
"boundary integral equations” .

Subdividing the boundary I into N segments, equations (2.2.20) become

L N . N .
ol u'+ Y [u(x) Tg(x,x)ds=3 [ (x)Ugx,x')ds. (2221)
=1 I, =1 I,

To employ linear elements, we introduce
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5= 015D + 6, 50
X1 = ¢y ;"D + 0, %@
X = 01 %%V + 0 %, (2.2.22)
up =0y 5y + 0, uy®
up = 01 " + 6y w®
=01 4@ + 0, 4@

— 2r-1 2r
ty = 0 L&D + ¢, 1,
on element r, where

o1=(1-8)/2

d=(1+&)/2

are linear shape functions and -1 < & <1 . Note that the displacements are assumed
to be piecewise linear and continuous whereas tractions are assumed to be piecewise

linear and discontinuous. Equation (2.2.21) can now be written in the form

1 1

L N 2 . N 2 .

akjl Ukl + Z Z uk("“zﬂ’) j hpu dE_, = Z Z tk(2r_2+p) J. gpuda (2223)
=1 p=1 -1 r=1 p=1 -1

where uk(o) is taken to be uk(m and hpi" and gpi’ are known functions. Equations

(2.2.23) are written in matrix form as :



] {s}=[o]{:} 2228

where [ H ] has dimension 2Nx2N, and [ G ] has dimension 2Nx4N. The column
matrix {u} contains the values of displacements in the x; and x, directions at the N
boundary nodes and column matrix {t} contains four values of tractions at each
boundary node, i.e. the value of tractions in the x; and x, directions "before" the node

and the values of tractions in the x; and x, directions "after” the node.

As before, for an inhomogeneous body, the domain Q is divided into two
subdomains €2, and €2, , each having its own Poisson’s ratio and shear modulus and

equations (2.2.24) are applied to each subdomain. For two subdomains :

or

[(H], (0]
(0] [(HI],

[ |[G1. [0]

ﬁ{} =| (o] [G]z{{} f. (2.225)
ufr o tro
~ J

Equations (2.2.25) are then reduced by imposition of interface conditions on Iy , the

interface of the two subdomains. At a point i on I7:
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ully=utly (2.2.26)
ul lp =uyt |,
(@D | =@ | = - @D |, = - @) |,

@D || = )@ || = = @D | = - @ |,

where continuity of tractions at the interface nodes is assumed. Imposition of (2.2.26)

gives us:

EN

({u} 1-1 r{t} 1-1
[w]ﬁ =[d]ﬁ r (2.2.27)
W)

. 7 .~ 7

where the subscript " I " denotes the interface boundary and the subscript " 1-1 "
denotes the outer boundary. The matrix [ H* ] is ( 2N; + 4N, ) x (2N; + 2N, ) and
[G” ] is (4N; + 8N, ) x (4N; + 2N, ), where N; is the number of outer boundary
nodes and N, is the number of interface boundary nodes. Equations (2.2.27) can be

written as :




[H] *{“}I f [ G™ ] {t} -1 (2.2.28)

where the matrix [H™] is (2N;+4N,)x (2N; +4N,) and [G™] is
(4N; + 8N, ) x (4N; ). Equations (2.2.28) are reordered based on known outer
boundary conditions i.e. all the known outer boundary displacements in {u}l_I are
taken to the right hand side and all unknown outer boundary tractions in {t}l_I to the

left hand side so that

[a){x} 3] 2229

which is solved for {X}, which contains the values of unknown displacements and
tractions at the outer boundary nodes as well as all displacements and tractions at the

interface boundary nodes .

Let us consider the examples shown in Figures (2.5), (2.6), and (2.7). A
rectangular body with a circular inclusion of radius 2 located at (3,3) is subjected to
the boundary conditions shown in each figure. The shear modulus and Poisson’s ratio
of the matrix material are 3.0 x 10° and 0.3 respectively, and those of the inclusion are
1.0 x 10° and 0.2 . The outer boundary and the interface boundary are each divided
into 24 linear elements of equal length as shown in Figure (2.4). The unknown nodal
displacements and tractions are computed and are presented in Tables (2.2), (2.3), and

(2.4).
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A
S

Figure (2.5) - Elasticity Example Problem #1.
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Table (2.2) Nodal Displacement and Traction Values for Elasticity
Example Problem #1.

node # (x,y) u; u, 4 ty ty ty
coord. "before"  "before" "after" "after"

1 (0.00,6.00) 0.11E-04 0.11E-02 0.00 1000.00 0.00 0.00

2 (0.00,5.000 -0.22E-04  0.92E-03 0.00 0.00 0.00 0.00

3 (0.00,4.00)0 -0.99E-04 0.75E-03 0.00 0.00 0.00 0.00

4 (0.00,3.00) -0.16E-03  0.52E-03 0.00 0.00 0.00 0.00

5 (0.00,2.000 -0.11E-03  0.29E-03 0.00 0.00 0.00 0.00

6 (0.00,1.000 -0.33E-04  0.12E-03 0.00 0.00 0.00 0.00

7 (0.00,0.00)0 -0.73E-06 0.00E+00 0.00 0.00 0.00 -876.69

8 (1.00,0.00) -0.35E-04 0.00E+00 0.00 -1142.70 0.00 -1142.70

9 (2.00,0.00) -0.37E-04 0.00E+00 0.00 -984.68 0.00 -984.68
10 (3.00,0.000 0.00E+00  0.00E+00 0.00 -866.64 0.00 -866.64
11 (4.00,0.000 0.37E-04 0.00E+00 0.00 -984.68 0.00 -984.68
12 (0.00,5.00) 0.35E-04 0.00E+00 0.00 -1142.70 0.00 -1142.70
13 (0.00,6.00) 0.73E-06 0.00E+00 0.00 -876.69 0.00 0.00
14 (6.00,1.00) 0.33E-04 0.12E-03 0.00 0.00 0.00 0.00
15 (6.00,2.000 0.11E-03 0.29E-03 0.00 0.00 0.00 0.00
16 (6.00,3.00) 0.16E-03 0.52E-03 0.00 0.00 0.00 0.00
17 (6.00,4.00) 0.99E-04 0.75E-03 0.00 0.00 0.00 0.00
18 (6.00,5.00) 0.22E-04 0.92E-03 0.00 0.00 0.00 0.00
19 (6.00,6.00) -0.11E-04 0.11E-02 0.00 0.00 0.00 1000.00
20 (5.00,6.00) 0.30E-04 0.10E-02 0.00 1000.00 0.00 1000.00
21 (4.00,6.00) 041E-04 0.11E-02 0.00 1000.00 0.00 1000.00
22 (3.00,6.00) -0.30E-09 0.11E-02 0.00 1000.00 0.00 1000.00
23 (2.00,6.000 -041E-04 0.11E-02 0.00 1000.00 0.00 1000.00
24 (1.00,6.000 -0.30E-04  0.10E-02 0.00 1000.00 0.00 1000.00
25 (3.00,5.00) -0.83E-10  0.99E-03 0.00 675.65 0.00 675.65
26 (3.52,493) 0.35E-04 0.97E-03 56.35 637.87 56.35 637.87
27 4.00,4.73) 0.72E-04 0.92E-03 118.08 542.15 118.08 542.15
28 (4.41,441) 0.12E-03 0.84E-03 194.65 41403 194.65 414.03
29 (4.73,4.000 0.17E-03 0.74E-03 294.19 269.61 294.19 269.61
30 (4.93,3.52) 0.22E-03 0.64E-03 406.34 124.97 406.34 124.97
31 (5.00,3.000 0.25E-03 0.52E-03 469.11 -10.77 469.11 -10.77
32 (4.93248) 0.23E-03 0.40E-03 422,61 -144.76 42261 -144.76
33 (4.732.00) 0.19E-03 0.30E-03 317.40 -286.99 317.40 -286.99
34 (4.41,1.59) 0.14E-03 0.20E-03 227.22 42993 22722 -429.93
35 (4.00,1.27) 0.95E-04 0.13E-03 165.04 -543.00 165.04 -543.00
36 (3.52,1.07) 0.50E-04 0.89E-04 96.04 -602.36 96.04 -602.36
37 (3.00,1.00) 0.12E-10 0.74E-04 0.00 -616.90 0.00 -616.90
38 (2.48,1.07) -0.50E-04  0.89E-04 -96.04 60236  -96.04 -602.36
39 (2.00,1.27) -0.95E-04  0.13E-03 -165.04 -543.00 -165.04  -543.00
40 (1.59,1.59) -0.14E-03  020E-03  -227.22 42993 22722  -429.93
41 (1.272.00) -0.19E-03  0.30E-03 -317.40 -28699  -31740  -286.99
42 (1.07248) -0.23E-03  0.40E-03 422,61 -14476 42261 -144.76
43 (1.00,3.00) -0.25E-03  0.52E-03 469.11 -10.77 469.11 -10.77
44 (1.07,3.52) -0.22E-03  0.64E-03 -406.34 124.97 406.34 124.97
45 (1.274.00) -0.17E-03  0.74E-03 -294.19 269.61 -294.19 269.61
46 (1.59441) -0.12E-03  0.84E-03 -194.65 414.03 -194.65 414.03
47 (2.004.73) -0.72E-04  0.92E-03 -118.08 542.15 -118.08 542.15
48 (2.48,493) -0.35E-04 0.97E-03 -56.35 637.87 -56.35 637.87

EI S
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Figure (2.6) - Elasticity Example Problem #2.
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Table (2.3) Nodal Displacement and Traction Values for Elasticity

Example Problem #2.
node # x,y) U [+ 5) 18} t t 19)
coord. "before”  "before” "after” "after”

1 (0.00,6.00) 0.94E-05  0.11E-02 0.00 1000.00 0.00 0.00

2 (0.00,5.00) -0.29E-04  0.95E-03 0.00 0.00 0.00 0.00

3 (0.00,4.00) -0.11E-03  0.79E-03 0.00 0.00 0.00 0.00

4 (0.00,3.00) -0.17E-03  0.55E-03 0.00 0.00 0.00 0.00

5 (0.002.00) -0.11E-03  0.32E-03 0.00 0.00 0.00 0.00

6 (0.00,1.00) -0.29E-04  0.15E-03 0.00 0.00 0.00 0.00

7 (0.00,0.00) 0.94E-05  0.27E-04 0.00 0.00 0.00 -1000.00
8 (1.00,0.00) -0.31E-04 0.46E-04 0.00 -1000.00 0.00 -1000.00
9 (2.00,0.00) -041E-04 0.23E-04 0.00 -1000.00 0.00 -1000.00
10 (3.00,0.00) 0.00E+00  0.00E+00 0.00 -1000.00 0.00 -1000.00.
11 (4.00,0.00) 0.41E-04 0.23E-04 0.00 -1000.00 0.00 -1000.00
12 (0.00,5.00) 0.31E-04 0.46E-04 0.00 -1000.00 0.00 -1000.00
13 (0.00,6.00) -0.94E-05  0.27E-04 0.00 -1000.00 0.00 0.00
14 (6.00,1.00) 0.29E-04 0.16E-03 0.00 0.00 0.00 0.00
15 (6.00,2.00) 0.11E-03 0.32E-03 0.00 0.00 0.00 0.00
16 (6.00,3.00) 0.17E-03 0.55E-03 0.00 0.00 0.00 0.00
17 (6.00,4.00) 0.11E-03 0.79E-03 0.00 0.00 0.00 0.00
18 (6.00,5.00) 0.29E-04 0.95E-03 0.00 0.00 0.00 0.00
19 (6.00,6.00) -0.94E-05 0.11E-02 0.00 0.00 0.00 1000.00
20 (5.00,6.00) 0.31E-04 0.11E-02 0.00 1000.00 0.00 1000.00
21 (4.00,6.00)0 0.41E-04 0.11E-02 0.00 1000.00 0.00 1000.00
22 (3.00,6.000 0.00E+00  0.11E-02 0.00 1000.00 0.00 1000.00
23 (2.00,6.000 -041E-04 0.11E-02 0.00 1000.00 0.00 1000.00
24 (1.00,6.00) -0.31E-04 0.11E-02 0.00 1000.00 0.00 1000.00
25 (3.00,5.00) -0.30E-08  0.10E-02 0.00 669.62 0.00 669.62
26 (3.52,493) 0.38E-04 0.10E-02 60.68 632.64 60.68 632.64
27 (4.004.73) 0.79E-04 0.94E-03 126.79 538.56 126.79 538.56
28 (441441) 0.13E-03 0.87E-03  208.39 41249 208.39 412.49
29 (4.73,4.00) 0.18E-03 0.77E-03 313.39 27123 313.39 271.23
30 (4.93,3.52) 0.23E-03 0.67E-03  427.85 131.19 427.85 131.19
31 (5.00,3.000 0.26E-03 0.55E-03  485.14 0.00 485.14 0.00
32 (493248) 0.23E-03 0.44E-03  427.85 -131.19 427.85 -131.19
33 (4.732.00) 0.18E-03 0.33E-03 313.39 -271.23 313.39 -271.23
34 (441,1.59) 0.13E-03 0.25E-03  208.39 41249 208.39 412.49
35 (4.00,1.27)  0.79E-04 0.16E-03 126.79 -538.56 126.79 -538.56
36 (3.52,1.07) 0.38E-04 0.11E-03 60.68 -632.64 60.68 -632.64
37 (3.00,1.00)  0.30E-08  0.86E-04 0.00 -669.62 0.00 -669.62
38 (2.48,1.07) -0.38E-04  0.11E-03 -60.68 -632.64 -60.68 -632.64
39 (2.00,1.27) -0.79E-04  0.16E-03  -126.79  -538.56 -126.79 -538.56
40 (1.59,1.59) -0.13E-03  0.24E-03  -208.39 41249 -208.39  412.49
41 (1.272.00) -0.18E-03  033E-03 -313.39  -271.23 -313.39 -271.23
42 (1.07248) -0.23E-03  044E-03 42785  -131.19 42785 -131.19
43 (1.00,3.00) -0.26E-03  0.55E-03  -485.14 0.00 485.14 0.00
44 (1.07,3.52) -0.23E-03  0.67E-03  427.85 131.19 -427.85 131.19
45 (1.274.00) -0.18E-03 0.77E-03  -313.39 271.23 -313.39 271.23
46 (1.59441) -0.13E-03  087E-03  208.39 412.49 -208.39 412.49
47 (2.004.73) -0.79E-04  0.94E-03  -126.79 538.56 -126.79 538.56
48 (2.484.93) -0.38E-04  0.10E-02 -60.68 632.64 -60.68 632.64

§ T e
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Figure (2.7) - Elasticity Example Problem #3.
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Table (2.4) Nodal Displacement and Traction Values for Elasticity
Example Problem #3.

node # x.y) Uy Uy 4 t 18] t
coord. "before” "before" "after” "after”

1 (0.00,6.00) 0.00E+00  O0.10E-02 -219.37 658.79 0.00 0.00

2 (0.00,5.000 -0.36E-04  0.91E-03 0.00 0.00 0.00 0.00

3 (0.004.000 -0.16E-03  0.75E-03 0.00 0.00 0.00 0.00

4 (0.00,3.00)0 -0.24E-03  0.50E-03 0.00 0.00 0.00 0.00

5 (0.00,2.00) -0.16E-03  0.25E-03 0.00 0.00 0.00 0.00

6 (0.00,1.00) -0.36E-04  0.93E-04 0.00 0.00 0.00 0.00

7 (0.00,0.00)0 0.00E+00  0.00E+00 0.00 0.00 -219.37 -658.79

8 (1.00,0.00) 0.00E+00  0.00E+00 172.16 -1081.03 172.16 -1081.03

9 (2.00,0.00) 0.00E+00  0.00E+00 191.67 -1059.01 191.67 -1059.01
10 (3.00,0.00)0 0.00E+00 0.00E+00 0.00 -961.46 0.00 -961.46 .
11 (4.00,0.00)0 0.00E+00 0.00E+00 -191.67 -1059.01 -191.67 -1059.01
12 (0.00,5.00) 0.00E+00 0.00E+00 -172.16 -1081.03 -172.16  -1081.03
13 (0.00,6.00) 0.00E+00 0.00E+00  219.37 -658.79 0.00 0.00
14 6.00,1.00) 0.36E-04 0.93E-04 0.00 0.00 0.00 0.00
15 (6.002.000 0.16E-03 0.25E-03 0.00 0.00 0.00 0.00
16 (6.003.00) 0.24E-03 0.50E-03 0.00 0.00 0.00 0.00
17 (6.00,4.000 0.16E-03 0.75E-03 0.00 0.00 0.00 0.00
18 (6.00,5.00) 0.36E-04 0.91E-03 0.00 0.00 0.00 0.00
19 (6.00,6.00)0 0.00E+00  0.10E-02 0.00 0.00 21937 658.79
20 (5.00,6.000 0.00E+00  0.10E-02 172.16 -1081.03 172.16 -1081.00
21 (4.00,6.000 0.00E+00  0.10E-02 191.67 -1059.01 191.67 -1059.01
22 (3.00,6.00) 0.00E+00  0.10E-02 0.00 -961.46 0.00 -961.46
23 (2.00,6.000 0.00E+00 0.10E-02 -191.67 -1059.01 -191.67 -1059.01
24 (1.00,6.00) 0.00E+00 0.10E-02 -172.16 -1081.03 -172.16  -1081.03
25 (3.00,5.000 -0.69E-11  0.92E-03 0.00 620.83 0.00 620.83
26 (3.52,493) 04SE-04 0.90E-03 69.23 598.37 69.23 598.37
27 (4.004.73) 0.96E-04 0.86E-03 137.63 523.43 137.63 52343
28 (441441) 0.16E-03 0.79E-03 221.16 393.49 221.16 393.49
29 (4.734.000 0.23E-03 0.71E-03 355.67 240.15 355.67 240.15
30 (4.93,3.52) 0.31E-03 0.61E-03 52344 106.42 523.44 106.42
31 (5.00,3.00)0 0.34E-03 0.50E-03 609.45 0.00 609.45 0.00
32 (493,248) 0.31E-03 0.40E-03 523.44 -106.42 523.44 -106.42
33 (4.732.000 0.23E-03 0.30E-03 355.67 -240.15 355.67 -240.15
34 (441,1.59) 0.16E-03 0.21E-03 221.16 -393.49 221.16 -393.49
35 (4.00,1.27) 0.96E-04 0.14E-03 137.63 -523.43 137.63 -52343
36 (3.52,1.07) 0.45E-04 0.98E-04 69.23 -598.37 69.23 -598.37
37 (3.00,1.00) 0.37E-11 0.84E-04 0.00 -620.83 0.00 -620.83
38 (2.48,1.07) -0.45E-04 0.98E-04 -69.23 -598.37 -£69.23 -598.37
39 (2.00,1.27) -0.96E-04 0.14E-03 -137.63 -523.43 -137.63 -523.43
40 (1.59,1.59) -0.16E-03 0.21E-03 -221.16  -393.49 -221.16 -393.49
41 (1.27,2.00) -0.23E-03 0.30E-03 -355.67  -240.15 -355.67 -240.15
42 (1.07248) -0.31E-03 0.40E-03 -523.44 -106.42 -523.44 -106.42
43 (1.00,3.00) -0.34E-03 0.50E-03 -609.45 0.00 -609.45 0.00
44 (1.073.52) -0.31E-03 0.61E-03 -523.44 106.42 -523.44 106.42
45 (127,4.000 -0.23E-03 0.71E-03 -355.67 240.15 -355.67 240.15
46 (1.59,441) -0.16E-03 0.79E-03 -221.16 393.49 -221.16 393.49
47 (2.004.73) -0.96E-04 0.86E-03 -137.63 523.43 -137.63 523.43
48 (248,4.93) -045E-04  0.90E-03 -69.23 598.37 -£69.23 598.37




Chapter 3

Inverse Problem and Parameter Estimation

In the previous chapter the use of the boundary element method to solve the
direct steady state heat transfer and linear elasticity problems for homogeneous and
inhomogeneous bodies was demonstrated. In the direct problems, the goveming
equation, geometry, material properties and the boundary conditions are given and the
unknnown boundary data is computed. In the inverse problem some of the geometric
features and/or material properties are unknown, but some of the unknown boundary
data can be measured and used as additional information necessary to estimate the

unknown input parameters.

3.1) Heat Transfer

Let us investigate the simplest case of estimating one parameter, i.e. the thermal
conductivity of the circular inclusion, Q,, using temperatures measured on the outer
boundary I'y. Let Y; denote the measured boundary temperatures, T; denote the
boundary temperatures corresponding to a guess of the unknown parameter, computed
using the boundary element method, and k, the sought thermal conductivity of the

inclusion. The sum of the squared differences between Y; and T; is

Z= 2 (Y, - Ty ? (3.1.1)

i=1

40
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where n is the number of boundary temperature measurements used to estimate the
unknown parameter. In order to find the best estimate of k,, Z is minimized by setting

its derivative with respect to k, equal to zero. Note that

dZ _ n dTl( k2 )
Iz——zhzl[Tz][Yi—Ti(kz)J . (312)
Let us define
dT; (k; )
Xi(ky )= —o—— 2 (3.1.3)
2

where X, are called the sensitivity coefficients. Since temperature is a nonlinear
function of k,, X; will be nonlinear functions of k,. Inserting equations (3.1.3) into

equations (3.1.2) and setting it equal to zero, yields
ZXi(kz)[Yi—Ti(kz)]=0 (3.1.4)
i=1

which gives the value of k, at which Z is minimized. Note that equation (3.1.4) is
nonlinear in k,. Suppose T has a continuous first derivative in k,. Then using the first

two terms of a Taylor Series for T (k,) about k, which is an estimate of k,, i.e.

. dT (k,) -
T(k2)=T(k2)+T—(k2—k2) (3.1.5)

2

and approximating X; as function of 122, ie.

o
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- dT; (k
Xi(ky) = 1(- 2) ,
dk,
equation (3.1.4) becomes
n i~
ZXa[Yi-Ti-Xi(kz—kz)]=0 (3.1.6)

i=1

where X, and T; are functions of k,. Note that now equations (3.1.6) are linear in k, .

To indicate an iterative procedure let

k2 = 1-(2 M) N k2 = I(z M+1) s T = T(M) s X = X(M)

so that equations (3.1.6) become

n
> XM [Yi - T (M)]

kM) = (M) B - (3.1.7)
T

M

1

-
Il

where iteration on M is required. It is possible to estimate thermal conductivity by
only one measurement of the temperature on the boundary. For this case, equation

(3.1.7) simplifies to

=

T M+1) _ 7 M)
k2 = kz + X(M)

(3.1.8)

To estimate k, using heat flux measurements, the same procedure is used to obtain :

V A

y

omas
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5 XM [ Q-q )

M) = (M) B - (3.1.9)
Z [Xi (M)]
=1
where
. dg; (k
Xi( k2 ) —_ _iz_)_
dk,

and Q; denote the measured boundary heat fluxes and q; denote the boundary heat
fluxes corresponding to a guess of the unknown parameter, computed using the
boundary element method. For the case that only one boundary measured heat flux is

used to estimate k,, equation (3.1.9) simplifies to

Q-q(M’J

kM Z D [ o (3.1.10)

Next let us discuss the estimation of thermal conductivity, location, and size of
the inclusion shown in Figure (2.1) using temperatures measured on I'y and/or heat

fluxes measured on [, .
Let us introduce the following column matrices :
{T}c = a column matrix containing m measured boundary temperatures,

{T}C = a column matrix containing the same m boundary temperatures,

computed using the boundary element method,
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{Cl}e = a column matrix containing n measured boundary heat fluxes,

{q}c = a column matrix containing the same n boundary heat fluxes,

computed using the boundary element method,

and

(B}=1, |

which contains the thermal conductivity of the inclusion, k,, the coordinates of the

center of the circular inclusion, (X; , y.) , and the radius of the inclusion, R, .

The sum of the squared differences between measured and computed

temperatures and heat fluxes is :

Z={(T}e—{T}C}T{{T}e—(l‘}c}+{{q}e (q} {{q {q}} (.1.11)

where the superscript T indicates the transpose of the matrix, and {T}C and {q} are
Cc

functions of {B} . In order to find the best estimate of the unknown parameters,

function Z is minimized by setting its derivative with respect to {B} equal to zero.

The matrix derivative of Z with respect to {B} is :

{ aﬁ)z =-2 [{ aB}(ch TH{T} T}C} -2[{83}{q)¢ H q}c} (3.1.12)

S v
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where {BB} is the matrix derivative operator,

)= 5 1

Let us define

[ X ] =[{BB}{T}C T] T (3.1.13)
[ Xq] =[{ag}{(1}c T] T

where [ Xt ], which is mx4, and [ Xq ] ,which is nx4, are both functions of {B}, and

are called sensitivity matrices. The "ij" components of the sensitivity matrices are

called the sensitivity coefficients. [ Xt ] contains the sensitivities of temperatures with
respect to {B} and [ X4 ] contains the sensitivities of heat fluxes with respect to {B}.
Since the temperatures and heat fluxes are nonlinear functions of {B} , the sensitivity

coefficients are also nonlinear functions of {[3} Inserting equations (3.1.13) into

equations (3.1.12) and setting {aB} Z =0, yields

. ————
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[ Xt 1T{{T}e—{T}c} +[ X, JT{{q}e—{q}c} =0 (3.1.14)

which gives the value of {P} at which Z is minimized. Note that equations (3.1.14)

are nonlinear in {B} Therefore the first two terms of a Taylor series in matrix form

for {T}c and {q}c about {B} are used, where {PB} is an estimate of {B}, and
approximate [ Xt ] and [ X, ] as functions of {B}. i

{r}e (BP ={T} {BP + 1 Xr 1 ({B} -{BD (3.1.15)
{a}e 48b ={a}e B + 1% 1 {B}{BD> - G116

Substituting equations (3.1.15) and (3.1.16) into equation (3.1.14), yields

[ X 1T

ir}. Azl —[Xrl{{ﬁ}—{B}H + (3.1.17)

[ X 1T

{a}. -{al —[qu{{ﬁ}—{B}H -0 .

Note that now equations (3.1.17) are linear in {B} .

To indicate an iterative procedure we let :

=l (my=(ppoe

{T}e={T} ™  (Xr1=(%q)™
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fafe={g} ™ 1x1=0%0%

and obtain four equations for the four parameters, i.e.

( YM+) M)
ko ky
xc xc

3 e =1 F o+ (3.1.18)
Ye Ye
R, R,

where

[P:|:[[[XT]T[XT]](M)+[[Xq]T[Xq]](M)]

Iterations stop when the following criteria are satisfied :

R M+1)_r M
|Bj( + )“Bj( )|

BMl+ 5,

<9d forj=1,..,4 (3.1.19)

where & and 9§, are small numbers. Here, following [2], & is set equal to 107*, and

81 = 10._10 .
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3.2) Elasticity

In this section, a body that is known to contain a circular inclusion but its
location, size and mechanical properties are unknown is considered. We wish to
determine these unknown parameters by using the measurements of displacements on
the portion of the boundary where tractions are prescribed and/or tractions on the

portion of the boundary where displacements are prescribed.

Let us introduce the following column matrices :

{U}e = a column matrix containing m measured boundary displacements,

——
=

(—;
]

a column matrix containing the same m boundary displacements,

computed using the boundary element method.

—
Lo d

[y
]

a column matrix containing n measured boundary tractions,

——
-

[
Il

a column matrix containing the same n boundary tractions,

computed using the boundary element method.

and

where G, is the shear modulus of the inclusion, v, is the Poisson’s ratio of the
inclusion, (x. , y.) are the coordinates of the center of the circular inclusion, and R_ is

the radius of the inclusion.
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Following the same procedure as in section 3.1, an equation is obtained to

estimate the five unknown parameters in {B} using the displacements measured on I'y

and/or tractions measured on I',, i.e.

[ T M+1)

7

[+

where

L

N

J

M)

>+ 3.2.1)

[ Xy ]‘M‘{ {u}. —{u}gM)} + X, ]<M>{ {t}e _{t}C(M)H

{P]:I:[[XU]T[Xu]](M)+[[X[]T[Xl]](M)]

Iterations stop when the criteria indicated in equations (3.1.19) are satisfied. Note that

estimation of the parameters using equations (3.1.18) and (3.2.1) involves computing

[ P 17! which requires [ P ] to be non-singular.
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3.3) Sensitivity Coefficients

Sensitivity coefficients are very important in the parameter estimation method.
They indicate the magnitude of change of the responses such as temperature, heat flux,
displacement, or traction due to a small change in the values of the unknown
parameters. There are some cases for which it is not possible to uniquely estimate all
parameters from the measurements, but it is possible to estimate certain functions or
ratios of the parameters. The sensitivity coefficients can provide insight into the cases
for which parameters can or cannot be estimated. Parameters can be estimated if the
sensitivity coefficients over the range of the observations are not linearly

dependent [2]. Linear dependence occurs when

qT, 3T

. IT; aT,
R

1
—_— —_——
+ G 3. Cy 3R,

i

C —_—
! ox,

0 (3.3.1)

is true for all i measurements, and not all C; ’s equal zero. One way to check linear
dependence is to find the determinant of the matrix [ P ], and see how close it is to
zero. In order to uniquely estimate all parameters in the parameter vector {B} , it is

necessary that the determinant of the matrix [ P ] not be equal to zero.



51

Finite differences are used to approximate the sensitivity coefficients, i.e.

OT;  T; (By By + 8 BinBa) = T ( By sBynsBe)

X Yo = —t =
( T )l.l aBJ 8 BJ
(X, )= 9gi _ % (By By +3 ByBo) - ai (By oByBo)
q /] aBj 5 BJ
(3.3.2)
_ 0w u(By B+ 8BBs) —w (B BBy
( Xu )1_] Yy = =
aB; d B
( Xt )U _ atl - t'1 ( Bl ,..,Bj + 8 Bj""BS) - tl ( Bl ""Bj""BS)

ap; 5 B;

which are the sensitivities of the i temperature, i™ heat flux, i displacement, and i®
traction with respect to the j®* parameter, respectively. Note that equations (3.3.2) lead
to difficulty if the initial value of Bj is chosen to be zero or if it approaches zero.
There are two kinds of errors which contribute to inaccuracies in computing the
sensitivity coefficients. The first kind is the rounding error which is found when two
close values of temperature or heat flux are subtracted and the second kind is the
truncation error which is due to the inexact nature of the finite difference method. In
order to reduce the truncation error the difference & in equation (3.3.2) is made small.
However, if it is too small, then the rounding error becomes important. The central
difference method which is more accurate could also be used, but it requires twice as

many values of temperature to be calculated as does forward difference.
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3.4) Coupling of the Boundary Element Method and Parameter Estimation Method

A computer program has been developed which employs the boundary element
method as a subroutine. A first guess of the unknown parameters is made and the
boundary element subroutine is called to compute the boundary data corresponding to
the guessed parameters. Then, using the parameter estimation technique, the computed
data at selected locations are compared with their measured values taken at the same
locations, and "corrected" values of the parameters are found. Using equations (3.1.18)
for the heat transfer problems or equations (3.2.1) for the elasticity problems the
unknown parameters are estimated. The iterations continue until the criteria indicated
in equations (3.1.19) are satisfied. Figure (3.1) shows the schematic representation of
the estimation method. Complete listings of the computer programs are given in

Appendix A and Appendix B.
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Step 1.

Make the first guess of the unknown parameters.

J > 1 Step 2.

Compute the temperatures and heat fluxes or displacements and
tractions corresponding to the guessed values of the parameters,
and calculate the sensitivity coefficients.

l Step 3.

Find the correction in the values of the guessed parameters and
compute the new values of the parameters.

Step 4.

Check for the three groups, i.e. Yes
groups (1), (2), (3), which IR STOP

cause divergence. *
1 No

Check if the criterion for Yes
convergence is satisfied. 7 STOP

lNo

Go back to step 2, and
use the new values of the
parameters.

* These three groups will be discussed in the next chapter.

Figure (3.1) Schematic Representation of The Estimation Process.



Chapter 4

Results and Discussion

4.1) Heat transfer

The first problem investigated is the estimation of only one parameter, i.e. the
thermal conductivity of the inclusion shown in Figure (2.3), by using one temperature
measured at a location on the portion of the outer boundary where heat flux has been
specified or one heat flux measured at a location on the portion of the outer boundary
where temperature has been specified. The exact value of the inclusion’s thermal

conductivity is equal to 73.

Table (4.1) shows the results when one temperature measured at different
locations on I3, is used and Table (4.2) shows the results when one heat flux measured

at different locations on I', is used to estimate k, .

It is observed that it is possible to estimate the thermal conductivity of the
inclusion using only one measurement of temperature or heat flux. It is also observed
that the first guess of the parameter could be very far from the exact value and still
convergence is possible. Initial guesses of 1 and 100 are considered. With the initial
guess of k, = 100, all cases converged. However for the initial guess of k, = 1, the
cases involving nodal locations 2, 3, 4, 5, 6, 8§, 11, 21 and 24 diverged due to the fact
that the estimated thermal conductivity became negative during the estimation process.
Since the inclusion is assumed to be located at the center of the body, the heat fluxes
are symmetric about the x; axis, and thus the heat fluxes measured at the nodal
locations 8, 9, 10, 11, and 12 give the same results as the nodal locations 20, 21, 22,
23, and 24. Figure (4.1) shows the sensitivity of the temperatures with respect to k,
and Figure (4.2) shows the sensitivity of heat fluxes with respect to k,. Note that

sensitivity coefficients are nonlinear functions of the unknown parameters and the plot
54



55
Table (4.1) Estimating k, Using One Temperature Measurement

Case # Nodal Location Numbers Converged Diverged
Iteration # Due to
First Guess of k, = 1.0

1 2 Unrealistic Value of ko
2 3 Unrealistic Value of k,
3 4 Unrealistic Value of k;
4 5 Unrealistic Value of kj
5 6 Unrealistic Value of k,
6 14 3

7 15 3

8 16 3

9 17 3

10 18 3

First Guess of k, = 100.0

11 2 4

12 3 4

13 4 4

14 5 4

15 6 4

16 14 3

17 15 3

18 16 3

19 17 3
20 18 3
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Table (4.2) Estimating k, Using One Heat Flux Measurement.

Case # Nodal Location Numbers Converged Diverged
Iteration # Due to
First Guess of ky = 1.0

1 8 Unrealistic Value of k,
2 9 4

3 10 6

4 11 Unrealistic Value of k;
S 12 2

6 20 2

7 21 Unrealistic Value of k,
8 22 6

9 23 4

10 24 Unrealistic Value of k,

First Guess of k, = 100.0

11 8 4

12 9 3

13 10 4

14 11 4

15 12 3

16 20 3

17 21 4 .

18 22 4

19 23 3
20 24 4




57

of sensitivity coefficients presented here, Figure (4.1) through Figure (4.8),

correspond to the exact values of the parameters.

Again consider the problem shown in Figure (2.3). This time the location, the
radius, and the thermal conductivity of the circular inclusion are not known a priori
and the estimation of these four parameters simultaneously is desired by measuring (a)
at least four temperatures on the portion of the boundary where heat fluxes are
specified, (b) at least four heat fluxes on the portion of the boundary where
temperatures are specified, or (c) some combination of measured temperatures and heat

fluxes.

The "experiment" is simulated as follows. The body is analyzed by the boundary
element method using the exact values of the four parameters and the unknown
boundary temperatures and heat fluxes are computed. These computed values are then

used as the "experimental” results.

The first question addressed is the influence of the initial guesses on convergence.
A total of 32 sets of initial guesses were examined and "experimental values" were
used for all boundary nodal points. Convergence was defined in accordance with
equations (3.1.19). Results for the 32 cases are given in Table (4.3). Note that 82.0%
of the cases converged to the correct values of the parameters whereas 18.0% of the
cases diverged. The reason for divergence becomes apparent after one or two iterations
and can be classified into one of three groups: (1) the determinant of [ P ] for an
iteration is zero; (2) the estimated values of (x.,y.) and R. for an iteration are
unrealistic, i.e. the estimated inclusion does not lie entirely within the matrix domain;
(3) the estimated value of the inclusion thermal conductivity for an iteration is greater
than (less than) the thermal conductivity of the matrix material but the actual thermal
conductivity of the inclusion is less than (greater than) that of the matrix. All the
above three groups can be identified after one or two iterations and the program will

stop if any of the above situations occurs. Table (4.3) shows that 3.0% of the cases
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diverged due to (1), 9.0% of the cases diverged due to (2), and 6.0% of the cases
diverged due to (3). Figure (4.1) through Figure (4.8) show the sensitivities of
temperatures and heat fluxes with respect to the four parameters. Figure (4.1) and
Figure (4.7) show that the sensitivities of temperatures with respect to k, and R, are
very similar in shape which indicates linear dependence of the columns corresponding
to the above parameters in the [P] matrix. Similarly Figure (4.2) and Figure
(4.7) reveal the same observation about the sensitivities of the heat fluxes with respect
to k, and R.. This is the reason that most of the cases in Table (4.3) which diverged
were because k, or R_ did not converge and went in the wrong direction until the
condition indicated by groups (2) or (3) were observed and the program stopped.
Figures (4.3), (4.4), (4.5), (4.6) show that the sensitivities of temperatures and heat
fluxes with respect to the location of the inclusion (X , y.) are not similar in shape but
at some boundary nodal locations are very small or zero, and thus the measurement of
temperature or heat flux at those locations is not good. Since the initial guess given by
case #24 resulted in the most rapid convergence, this guess is used in addressing all of

the following questions.

The second question addressed is the number and combination of surface
measurements required to simultaneously estimate the unknown parameters. The
minimum number of measurements needed is four. We considered 20 different
combinations of four temperature locations and 20 different combinations of four heat
flux locations on the boundary. The results are presented in Table (4.4). These results
show that convergence can be achieved using four measurements. When four
temperature measurements were used, 20% of the cases considered converged, 5.0% of
the cases diverged due to (1), 25.0% of the cases diverged due to (2), 10.0% of the
cases diverged due to (3), and 40.0% of the cases diverged due to (2) and (3). The
number of iterations ranged from 4 to 7. When four heat flux measurements were

used, 10.0% of the cases considered converged, 20.0% of the cases diverged due to
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Table (4.3) Influence of the Initial Guesses on Convergence (Heat Trasfer).

Initial guesses -
Case # ky (Xc > ¥o) R, Converged Diverged
Iteration # Group #
1 50.0 (2.52.5) 1.6 7
2 60.0 (2.52.5) 1.6 7
3 85.0 2525) 1.6 6
4 100.0 2.52.5) 1.6 7
S 50.0 2.52.5) 1.8 5
6 60.0 (2.52.5) 1.8 5
7 85.0 (2.52.5) 1.8 6
8 100.0 (2.52.5) 1.8 6
9 500 (2.52.5) 2.2 6
10 60.0 (2.5,2.5) 22 6
11 85.0 (2.5.2.5) 2.2 8
12 100.0 (2.52.5) 2.2 2)
13 50.0 (2.5,2.5) 24 7
14 60.0 (2.5,2.5) 24 8
15 85.0 (2.5,2.5) 24 )
16 100.0 (2.5,2.5) 24 9
17 50.0 (3.53.5) 1.6 0))
18 60.0 (3.53.5) 1.6 3)
19 85.0 (3.53.5) 1.6 3)
20 100.0 (3.53.5) 1.6 6
21 50.0 (3.53.5) 1.8 9
22 60.0 (3.53.5) 1.8 7
23 85.0 (3.5,3.5) 1.8 5
24 100.0 (3.53.5) 1.8 4
25 50.0 (3.5,3.5) 2.2 6
26 60.0 (3.53.5) 2.2 6
27 85.0 (3.53.5) 22 6
28 100.0 (3.53.5) 22 7
29 50.0 (3.5,3.5) 24 7
30 60.0 3.53.5) 24 7
31 85.0 (3.5,3.5) 24 2)
32 100.0 (3.53.5) 24 9
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Table (4.4) Estimating the Unknown Parameters Using Four Temperature or Four
Heat Flux Measurements.

Case # Nodal Location Numbers Converged Diverged
Iteration # Group #

Four Temperature Measurements

1 2,3,14,15 6

2 2,3,15,16 2
3 2,3,16,17 2, (3
4 2,3,17,18 V)
5 3,4,14,15 1
6 3,4,15,16 PHNE))
7 3,4,16,17 4

8 3,4,17,18 2
9 4,5,14,15 2,3
10 4,5,15,16 3
11 4,5,16,17 2, ®3)
12 4,5,17,18 5

13 5.6,14,15 2. (3
14 5,6,15,16 2
15 5,6,16,17 7

16 5,6,17,18 )
17 2,3,4,5 (ANE)
18 3,4,5,6 2,3
19 14 ,15,16, 17 3
20 15,16,17, 18 2, 3

Four Heat Flux Measurements

21 8,9,20,21 1
22 8,9,21,22 3)
23 8,9,22,23 2
24 8,9,23,24 (VANE))
25 9.,10,20,21 (1)
26 9,10,21,22 (PHNE))
27 9,10,22,23 3)
28 9,10,23,24 2.3
29 10,11,20, 21 )
30 10,11,21,22 3)
31 10,11,22,23 (PHNE))
32 10,11,23,24 ), 3)
33 11,12,20, 21 )
34 11,12,21,22 3
35 11,12,22,23 6))
36 11,12,23,24 6

37 8,9,10, 11 ¢))
38 9,10,11,12 ()]
39 20 21,22,23 2

40 21 22,23,24 6
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(1), 25.0% of the cases diverged due to (2), 20.0% diverged due to (3), and 25.0%
diverged due to (2) and (3). Table (4.5) shows the results when five temperature
measurements or five heat flux measurements were used. When five temperature
measurements were used, 65.0% of the cases considered converged, 5.0% of the cases
diverged due to (1), 20.0% diverged due to (3), and 10.0% diverged due to (2) and
(3). The number of iterations ranged from 5 to 8. When five heat flux measurements
were used, 41.0% of the cases considered converged, 4.5% of the cases diverged due
to (2), 41.0% of the cases diverged due to (3), and 13.5% of the cases diverged due to
(2) and (3). The number of iterations ranged from 5 to 6. For the case of five
temperature measurements, it is observed that the locations on the top are better than
those on the bottom, and for the case of five heat flux measurements, it is observed
that the locations on the right side are better than those on the left side. This is
because the first guess of the inclusion location is close to the top-right comner and the
sensitivity coefficients of the top and right side nodal locations are thus higher than
those of the bottom and left side as shown in Figure (4.9) and Figure (4.10). Table
(4.6) shows the results when six temperature measurements were used. It is observed
that 70.0% of the cases considered converged, 20.0% of the cases diverged due to (3),
and 10.0% of the cases diverged due to (2) and (3). The number of iterations ranged

from S to 7.

Table (4.7) shows the results when two temperatures and two heat fluxes were
used. It is observed that when this combination of temperatures and heat fluxes was
used, 40.0% of the cases converged, 26.0% of the cases diverged due to (2), 22.0% of
the cases diverged due to (3), and 12.0% of the cases diverged due to (2) and (3). The
number of iterations ranged from 5 to 10.

The next question addressed is the effect that the inevitable errors in experimental

measurements will have on the ability to estimate the sought parameters. For this case,

the "experiment" is simulated as follows. The body is first analyzed by the boundary
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Table (4.5) Estimating the Unknown Parameters Using Five Temperature

or Five Heat Flux Measurements.

Case # Nodal Location Numbers Converged Diverged
Iteration # Group #
Five Temperature Measurements

1 2,3,4,5,14 7

2 2,3,4,5,15 2
3 2,3,4,5,16 7

4 2,3,4,5,17 3
5 2,3,4,5,18 2), (3)

6 3,4,5,6,14 7

7 3,4,5,6,15 8

8 3,4,5,6,16 3)
9 3,4,5,6,17 3
10 3,4,5,6,18 3
11 14,15,16,17,2 5

12 14,15,16,17,3 5

13 14,15,16,17 ,4 6

14 14,15,16,17,5 6

15 14,15,16,17,6 6

16 15,16,17,18,2 5

17 15,16,17,18,3 5

18 15,16,17,18,4 6

19 15,16,17,18,5 7

20 15,16,17,18,6 7

21 14,15,16,17, 18 2), 3)

Five Heat Flux Measurements

22 8,9,10,11,20 2), (3)

23 8§,9,10,11,21 3)
24 8,9,10,11,22 3)
25 8,9,10,11,23 3)
26 8§,9,10,11,24 3)
27 9,10,11,12,20 3)
28 9,10,11,12,21 )
29 9,10,11,12,22 3)
30 9,10,11,12,23 3)
31 9,10,11,12,24 2), 3)

32 20,21,22,23,24 5

33 20,21,22,23, 8 5

34 20,21,22,23, 9 3)
35 20,21,22,23,10 6

36 20,21,22,23,11 5

37 20,21,22,23,12 3)
38 21,22,23,24, 8 5

39 21,22,23,24, 9 6

40 21,22,23,24,10 5

41 21,22,23,24,11 6

42 21,22,23,24,12 5

43 8,9,10,11,12 2), 3
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Table (4.6) Estimating the Unknown Parameters Using Six Temperature

Measurements.
Case # Nodal Location Numbers Converged Diverged
Iteration # Group #
Six Temperature Measurements
1 2,3,4,5,6,14 7
2 2,3,4,5,6,15 7
3 2,3,4,5,6,16 A3)
4 2,3,4,5,6,17 3)
5 2,3,4,5,6,18 @), 3
6 14,15,16,17,18,2 5
7 14,15,16,17,18,3 5
8 14,15,16,17,18 ,4 6
9 14,15,16,17,18,5 7
10 14,15,16,17,18,6 6




74

Table (4.7) Estimating the Unknown Parameters Using Two Temperature

and Two Heat Flux Measurements.

Case # Nodal Location Numbers Converged Diverged
Iteration # Group #
Two Temperatures,and Two Heat fluxes
1 2,3, 8,9 3)
2 2,3,9,10 3)
3 2,3,10,11 )
4 2,3,11,12 7
5 3,4,8,9 (3)
6 3,4,11,10 2)
7 3,4,11,12 9
8 3,4,12,13 7
9 4,5,8,9 10
10 4,5,9,10 )
11 4,5,10,11 8
12 4,5,11,12 7
13 5.6,8,9 3)
14 5,6, 9,10 ?2)
15 5,6,10,11 3)
16 5,6,11,12 )
17 14 ,15,20, 21 2. 3)
18 14 ,15,21,22 9
19 14 ,15,22,23 6
20 14 ,15,23,24 3)
21 15,16,20,21 2), 3)
22 15,16,21,22 6
23 15,16,22,23 5
24 15,16 ,23,24 2), 3)
25 16 ,17,20, 21 2), 3)
26 16 ,17,21,22 2)
27 16 ,17,22,23 )
28 16 ,17,23,24 5
29 17,18, 20, 21 )
30 17 ,18,21,22 6
31 17,18 ,22,23 3)
32 17,18 ,23 ,24 6
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element method using the exact values of the four parameters. Then random errors are
added to the computed boundary temperatures and/or heat fluxes, and these are taken
to be the "measured” data. The statistical assumptions regarding the introduced errors
are that they are additive, non-correlated, normally distributed and have zero mean and
constant variance. These errors are generated following a procedure discussed in [2].
Table (4.8) shows the results when ten temperature measurements with 0.0%, 0.5%,
1.0%, and 2.0% random errors or ten heat flux measurements with 0.0%, 0.5%, 1.0%,
and 2.0% random errors are used. Comparing the results of Table (4.8) shows that
when heat fluxes are used, convergence is much faster and leads to more accurate
values of the unknown parameters. The case of six temperature measurements with
0.0%, 0.5%, 1.0%, and 2.0% random errors to estimate the four unknown parameters
is also considered. It is very interesting to note that better results are obtained here
using six temperature locations than when ten locations were used. When five heat flux
measurements with 0.0%, 0.5%, 1.0%, and 2.0% random errors are used to estimate
the four unknown parameters, the results are not as good as when ten locations were
used. It should be noted that all the results in Table (4.8) are rounded off to one
significant figure. Thus, the results for cases 6, 7 and 8 are not exact but are correct

when rounded to one decimal place.

The final question addressed is the effect of the inclusion size on the
convergence. Table (4.9) shows the results when the size of the actual inclusion
decreases. The sensitivities of temperatures and heat fluxes decrease as the the size of
the inclusion decreases. Figure (4.11) and Figure (4.12) show that the scnsiﬁvity of
temperature and heat flux become very small as R; decreases to the value of 0.5, but it
is interesting to note that it is possible to estimate the unknown parameters
corresponding to a very small circular inclusion with R, =0.1 . The number of

iterations increases as the inclusion size decreases.
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Table (4.8) Influence of Experimental Errors on the Estimations ( Heat Transfer).

Case # % Error Nodal Location Numbers Iteration #, and Converged Parameter
Ten Temperature Measurements
1 0.0 2,3,4,5,6,14,15,16,17,18 4, k,=73.0, (X , ¥o)=(3.03.0), R.=2.0
2 0.5 2,3,4,5,6,14,15,16,17,18 7, k=799, (X. , ¥o)=(2.9,3.0), R;=2.0
3 1.0 2,3,4,5,6,14,15,16,17,18 9, k,=84.7, (X. , ¥o)=(2.9.2.9), R.=1.9
4 20 2,3,4,5,6,14,15,16,17,18 10, kp=89.7, (X¢ , ¥o)=(2.8,2.8), R=1.9
Ten Heat Flux Measurements
5 0.0 89,10,11,12,20,21,22,23,24 4, k=730, (X¢ , ¥c)=(3.0,3.0), R;=2.0
6 0.5 89,10,11,12,20,21,22,23,24 4, k,=73.0, (X. , ¥o)=(3.0,3.0), R.=2.0
7 1.0 8,9,10,11,12,20,21,22,23,24 4 ,k,=73.0, (X¢ , ¥c)=(3.0,3.0), R.=2.0
8 2.0 8,9,10,11,12,20,21,22,23,24 4, k=730, (X¢ , ¥)=(3.0,3.0), R.=2.0
Six Temperature Measurements
9 0.0 14,15,16,17,18,2 5, k=730, (x¢ , ¥-)=(3.0,3.0), R.=2.0
10 0.5 14,15,16,17,18,2 5, k=751, (X¢ , ¥c)=(3.03.1), Re=2.0
11 1.0 14,15,16,17,18,2 5,ky=773, (X , ¥o)=(3.0,3.1), R.=2.0
12 2.0 14,15,16,17,182 5, k=821, (X¢ , ¥)=(29.3.2), R.=2.0
Five Heat Flux Measurements
13 0.0 20,21,22,23,24 5,k,=73.0, (x¢ , Yo)=(3.0,3.0), R.=2.0
14 0.5 20,21,22,23,24 5,kp=742, (X , ¥o)=(3.03.1), R.=2.0
15 1.0 20,21,22,23,24 5,ky=754, (x¢ , yc)=(3.03.1), R;=2.0
16 2.0 20,21,22,2324 5, k=778, (Xx¢ , ¥c)=(3.03.2), Re=1.9
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Table (4.9) Influence of the Inclusion Size on the Estimation.

Initial guesses
Case # ks, (Xc » ¥eo) R,  Actual Converged
Inclusion size Iteration #
1 73.0 (3.0,3.0) 1.8 2.0 4
2 73.0 (3.0,3.0) 1.3 1.5 4
3 73.0 (3.0,3.0) 0.8 1.0 5
4 73.0 (3.0,3.0) 0.7 0.5 5
5 73.0 (3.0,3.0) 0.5 0.3 6
6 73.0 (3.0,3.0) 0.3 0.1 8
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4.2) Elasticity

Consider the problem shown in Figure (2.5). The location, the radius, the shear
modulus and the Poisson’s ratio of the circular inclusion are to be estimated
simultaneously using the displacements measured on the portion of the boundary
where traction is specified and/or the tractions measured on the portion of the
boundary where displacement is specified. The "experiment" is simulated as described

in the previous section.

The first question addressed is the influence of the initial guesses on convergence.
The first attempt was to estimate all five parameters, but it failed despite many
different choices of the first guess of the unknown parameters and induced boundary
conditions. Next the estimation of four parameters was attempted and it was observed
that estimation of any combination of four of the five parameters is possible. A total of
40 sets of initial guesses were examined and "experimental values" at all the boundary
nodal locations were used. Convergence was defined in accordance with equations
(3.1.19). The first problem investigated is shown in Figure (2.5). Estimation of the
location, shear modulus and Poisson’s ratio of the circular inclusion with known size,
using all measured displacements in the x; and x, directions and tractions in the
x; and x, directions is attempted and as is shown in Table (4.10). Note that 15.0% of
the cases considered converged whereas 85.0% of the cases diverged. The reason for
divergence becomes apparent after 3 or 4 iterations and can be classified into one of
three groups: (1) the determinant of [ P ] for an iteration is zero; (2) the estimated
values of (x.,y.) and R, for an iteration are unrealistic, i.e. the estimated inclusion
does not lie entirely within the matrix domain; (3) the estimated value of the inclusion
Poisson’s ratio for an iteration is less than zero or greater than 0.5. All the above
three groups are identified during the estimation process and the program will stop if

any of the above situations occurs. For the above problem 40.0% of the cases diverged
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Table (4.10) Influence of the Initial Guesses on Convergence Using
Displacement and Traction Measurements (Elasticity Example Problem

#1).
Initial guesses
Case # G, ) (Xc > ¥Yo) Converged Diverged
Iteration # Group #

1 2.0E+06 0.30 (2.5,2.5) 1)
2 1.5E+06 0.30 (2.5,2.5) 15

3 1.2E+06 0.30 (2.5,2.5) )
4 0.8E+06 0.30 (2.5,2.5) )

5 0.5E+06 0.30 2.5,2.5) ¢))
6 2.0E+06 0.25 (2.5,2.5) ®)
7 1.5SE+06 0.25 (2.5,2.5) 3

8 1.2E+06 0.25 2.5,2.5) 3)
9 0.8E+06 0.25 (2.5,2.5) 8

10 0.5E+06 0.25 (2.5,2.5) 1)
11 2.0E+06 0.15 (2.5,2.5) ?)
12 1.5E+06 0.15 (2.5,2.5) 14

13 1.2E+06 0.15 2.5,2.5) 1)
14 0.8E+06 0.15 (2.5,2.5) (1)
15 0.5E+06 0.15 (2.5,2.5) ¢))
16 2.0E+06 0.10 2.5,2.5) )
17 1.5E+06 0.10 (2.5,2.5) 3)
18 1.2E+06 0.10 (2.5,2.9) 9

19 0.8E+06 0.10 (2.5,2.5) 1)
20 0.5E+06 0.10 (2.5,2.5) (1)
21 2.0E+06 0.30 (3.5,3.5) 2)
22 1.5E+06 0.30 (3.5,3.5) 12

23 1.2E+06 0.30 (3.5,3.5) )
24 0.8E+06 0.30 (3.5,3.9) )
25 0.5SE+06 0.30 (3.5,3.9) 3)
26 2.0E+06 0.25 (3.5,3.9) 1)
27 1.5E+06 0.25 (3.5,3.5) 10

28 1.2E+06 0.25 (3.5,3.5) 3)
29 0.8E+06 0.25 (3.53.5) 3)
30 0.5E+06 0.25 (3.5,3.5) 3)
31 2.0E+06 0.15 3.5,3.5) (1)
32 1.5E+06 0.15 (3.5,3.9) 1)
33 1.2E+06 0.15 (3.5,3.9) 2)
34 0.8E+06 0.15 (3.5,3.5) 1)
35 0.5E+06 0.15 (3.5,3.5) 1
36 2.0E+06 0.10 (3.5,3.9) 2)
37 1.5E+06 0.10 (3.5,3.5) )
38 1.2E+06 0.10 (3.5,3.5) )
39 0.8E+06 0.10 (3.5,3.5) 1)
40 0.5E+06 0.10 (3.5,3.5) )
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due to (1), 27.5% of the cases diverged due to (2), and 17.5% of the cases diverged
due to (3). The number of iterations ranged from 8 to 15. The same problem was
investigated using only the displacement measurements at all nodal locations where
traction was specified and, as is shown in Table (4.11), 67.5% of the cases converged,
27.5% of the cases diverged due to (1), and 5.0% of the cases diverged due to (2).
The number of iterations ranged from 5 to 20. As the result of this observation,
another problem with fewer displacement boundary conditions, shown in Figure
(2.6), was examined. 18 displacements in the x; direction and 18 displacements in the
X, direction were used and, as is shown in Table (4.12), 90.0% of the cases
converged. 2.5% of the cases diverged due to (1), and 7.5% of the cases diverged due
to (3). A third problem, shown in Figure (2.7), with an equal number of displacement
boundary conditions and traction boundary conditions, was investigated. All the cases
involving different first guesses of the unknown parameters diverged. It is concluded
that if the body under investigation has more traction boundary conditions, the
estimation of the unknown parameters is more successful. The sensitivity of traction in
the x, direction with respect to parameters G, and v, is shown in Figure (4.13). It is
observed that the sensitivity coefficients of t, with respect to Poisson’s ratio and shear
modulus are identical in shape and are linearly dependent. This would lead to
difficulty when simultanious estimation of these two parameters is attempted by using
the measurements of t, as extra information. Figure (4.14) shows the sensitivity of t,
with respect to the location of the circular inclusion and it is observed that the

sensitivity coefficients corresponding to x. and y, are not linearly dependent.

Since the second problem, shown in Figure (2.6), resulted in the best
convergence, it is used to investigate the remaining issues. Figure (4.15) through
Figure (4.24) show the sensitivity of displacements in x; and x, directions with
respect to the four parameters being estimated. They correspond to the exact values of

the parameters. Figure (4.15) and Figure (4.17) show that the sensitivities of u; with
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Table (4.11) Influence of the Initial Guesses on Convergence Using
Displacement Measurements (Elasticity Example Problem #1).

Initial guesses
Case # G, v, (X » Yo Converged Diverged
Iteration # Group #
1 2.0E+06 0.30 2.525) 9
2 1.5E+06 0.30 2.5.2.5) 20
3 1.2E+06 0.30 (2.5.2.5) 6
4 0.8E+06 0.30 (2.5,25) 6
5 0.5E+06 0.30 (2.5,2.5) @
6 2.0E+06 0.25 (2.525) 9
7 1.5E+06 0.25 (2.5,2.5) 11
8 1.2E+06 0.25 2.52.5) 6
9 0.8E+06 0.25 2.52.5) 6
10 0.SE+06 0.25 2.52.5) [6))
11 2.0E+06 0.15 2.525) [¢))
12 1.5E+06 0.15 2.525) 8
13 1.2E+06 0.15 2.52.5) 6
14 0.8E+06 0.15 2.52.5) [6))
15 0.5E+06 0.15 (2.52.5) (]
16 2.0E+06 0.10 25.25) 7
17 1.5E+06 0.10 (25:2.5) 9
18 1.2E+06 0.10 @2.52.5) 3
19 0.8E+06 0.10 2.5.2.5) 7
20 0.5E+06 0.10 2.525) (Y]
21 2.0E+06 0.30 (3.53.5) )
22 1.5E+06 0.30 (3.53.5 15
23 1.2E+06 0.30 (3.53.5) 11
24 0.8E+06 0.30 (3.53.5) 6
25 0.5E+06 0.30 (3.53.5) 1
26 2.0E+06 0.25 (3.53.5) )
27 1.5E+06 0.25 (3.53.5) 7
28 1.2E+06 0.25 (3.5.3.5) 11
29 0.8E+06 0.25 (3.53.5) 6
30 0.5E+06 0.25 (3.53.5) [6))
31 2.0E+06 0.15 (3.53.5) 15
32 1.5E+06 0.15 (3.5.3.5) 6
33 1.2E+06 0.15 (3.53.5) 6
34 0.8E+06 0.15 (3.5,3.5) 9
35 0.5E+06 0.15 (3.53.5) [¢Y)]
36 2.0E+06 0.10 (3.53.5) )
37 1.5SE+06 0.10 (3.53.5) 6
38 1.2E+06 0.10 (3.53.5) 9,
39 0.8E+06 0.10 3:53.5) 6

40 0.5E+06 0.10 (3.5,3.5) 1)
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Table (4.12) Influence of the Initial Guesses on Convergence (Elasticity Example

Problem #2).
Initial guesses
Case # G, ) (Xxc»y)  Converged  Diverged
Iteration # Group #
1 2.0E+06 0.30 (2.5,2.5) 12
2 1.5E+06 0.30 (2.5,2.5) 7
3 1.2E+06 0.30 (2.5,2.5) 5
4 0.8E+06 0.30 2.5.2.5) 5
5 0.5E+06 0.30 (2.5.2.5) 6
6 2.0E+06 0.25 2.5,2.5) 7
7 1.5E+06 0.25 2.5,2.5) 7
8 1.2E+06 0.25 (2.5,2.5) 5
9 0.8E+06 0.25 (2.5,2.5) 5
10 0.SE+06 0.25 (2.5,2.5) 7
11 2.0E+06 0.15 (2.5,2.5) 1)
12 1.5E+06 0.15 (2.5,2.5) 9
13 1.2E+06 0.15 (2.5,2.5) 6
14 0.8E+06 0.15 (2.5,2.5) 6
15 0.5E+06 0.15 (2.5,2.5) 8
16 2.0E+06 0.10 (2.5,2.5) 3)
17 1.5E+06 0.10 (2.5,2.5) 7
18 1.2E+06 0.10 (2.5,2.5) 6
19 0.8E+06 0.10 (2.5,2.5) 6
20 0.5E+06 0.10 2.5,2.5) 9
21 2.0E+06 0.30 (3.5,3.5) 18
22 1.5E+06 0.30 (3.5,3.5) 8
23 1.2E+06 0.30 (3.5,3.5) 5
24 0.8E+06 0.30 (3.5,3.5) 6
25 0.5E+06 0.30 (3.5,3.5) 8
26 2.0E+06 0.25 (3.5,3.5) €))
27 1.5E+06 0.25 (3.5,3.9) 7
28 1.2E+06 0.25 (3.5,3.5) 5
29 0.8E+06 0.25 (3.5,3.5) 6
30 0.5E+06 0.25 (3.5,3.5) 8
31 2.0E+06 0.15 (3.5,3.5) 11
32 1.5E+06 0.15 (3.5,3.5) 11
33 1.2E+06 0.15 (3.5,3.5) 5
34 0.8E+06 0.15 (3.5,3.5) 6
35 0.5E+06 0.15 (3.5,3.5) 9
36 2.0E+06 0.10 (3.5,3.5) €))
37 1.5E+06 0.10 (3.5,3.5) 9
38 1.2E+06 0.10 (3.5,3.5) 6
39 0.8E+06 0.10 (3.5,3.5) 6
40 0.5E+06 0.10 (3.5,3.5) 9
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Figure (4.13) - Sensitivity of boundary t, values with respect to Gz and v, (elasticity

example problem #1).
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Figure (4.15) - Sensitivity of boundary u; values with respect to G, .
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Figure (4.16) - Sensitivity of boundary u, values with respect to G,.
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Figure (4.17) - Sensitivity of boundary u; values with respect to v, .
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Figure (4.18) - Sensitivity of boundary u, values with respect to v, .
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Figure (4.21) - Sensitivity of boundary u; values with respect to y. .
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Figure (4.23) - Sensitivity of boundary u; values with respect to R, .
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respect to G, and v, are very similar in shape. Similarly Figure (4.16) and Figure
(4.18) reveal the same observation about the sensitivities of u, with respect to G, and
Vv, . Also Figure (4.20) and Figure (4.21) show that the sensitivty of u, with respect
to x. is similar in shape to the sensitivity of u; with respect to y, . All of these
combinations lead to the problem of linear dependence of the columns corresponding
to the above parameters in the [P] matrix. Comparing the sensitivities of temperature
with respect to the sought parameters in the heat transfer problem and the sensitivities
of displacement with respect to the sought parameters in the elasticity problem shows
that the temperature sensitivities are much larger in magnitude than the displacement
sensitivities. The implication of this is apparent when the number of cases which
diverged because the determinant of [P] becomes zero, group #(1), in the heat transfer
and elasticity problems are compared. It is found that in the elasticity problem, the
determinant of [P] becomes zero more frequently. Since the initial guesses given by
case #3 of Table (4.12) resulted in the most rapid convergence, they are used in

addressing all of the following issues.

The second question addressed is the number and combination of surface
displacements required to simultaneously estimate the four unknown parameters, i.e.
shear modulus, Poisson’s ratio, and location of the inclusion. The minimum number of
measurements needed to estimate the above four parameters is 20. We considered five
different combinations of ten displacements in the x; direction and ten displacements

in the x, direction and, as is shown in Table (4.13), only one case converged.

Estimation of only two parameters, i.e. shear modulus and Poisson’s ratio of the
circular inclusion with known location and size is investigated next. Table
(4.14) shows that by selecting the right locations on the surface of the boundary, it is
possible to estimate the above two parameters by measuring only eight displacements.
This requires analyzing the plots of the sensitivity coefficients, Figure (4.15) through

Figure (4.18), and selecting the nodal locations with the highest value of u; and u,
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Table (4.13) Estimating the Unknown Parameters Using 10 Measured Displacements
in the x; Direction and 10 Measured Displacements in the
x5 Direction (Elasticity Example Problem #2).

Case #

Nodal Location Numbers Converged Diverged
Iteration # Group #
1 u; at234,5,6,14,15,16,17,18 5
u, at2,34,5,6,14,15,16,17,18
2 u; at2,34,5,6.8.9,11,12,16 2
u, at 2,34,5,6.8.9,11,12,16
3 u; at2,3,4,5,6,20,21,23,24,16 2)
u, at2,34,5,6,20,21,23,24,16
4 u; at 14,15,16,17,18,20,21,23,24,4 2)
u, at 14,15,16,17,18,20,21,23,24,4
5 u; at 14,15,16,17,18,8,9,11,12.4 @)

u, at 14,15,16,17,18,8,9,11,12,4
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Table (4.14) Estimating G, and v, Using Displacement Measurements

(Elasticity Example Problem #2).

u, at 14,15,22

Case # Nodal Location Numbers Converged Diverged
Iteration # Group #
1 u; at2,3,4,56,20,21,23,24 6
u; at2,3,4,5,6,20,21,23,24
2 u; at2,34,56,89,11,12 (1)
u, at2,3,4,56,89,11,12
3 u; at 14,15,16,17,18,20,21,23,24 6
u, at 14,15,16,17,18,20,21,23,24
4 u; at 14,15,16,17,18,8,9,11,12 (1)
u, at 14,15,16,17,18,89,11,12
5 u; at 89,11,12,20,21,23,24 (1)
u, at 89,11,12,20,21,23,24
6 u; at3.4,16,17 6
u, at 14,15,22,23
7 u; at3,45,15,16,17 (1)
U, at 22
8 u; at 34,16 (1)
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sensitivities with respect to the two parameters. Table (4.14) shows that even with 18
displacement measurements, if the locations are not selected carefully, the estimation
will diverge (cases #2 and #4). Estimation of G, and v, using less than eight

measurements was not successful.

The final question addressed is the effect that the inevitable errors in experimental
measurements will have on the ability to estimate the sought parameters. For this case,
the "experiment" is simulated as follows. The body is first analyzed by the boundary
element method using the exact values of the four parameters. Then random errors are
added to the computed boundary displacements, and these are taken to be the
"measured” data. The statistical assumptions regarding the introduced errors are the
same as described in the previous section. Table (4.15) shows the results when 18
displacements in the x; direction and 18 displacements in the x, direction, with
different percent errors were used to estimate the four unknown parameters. It is
observed that as the %error increases, the number of iterations also increases, but it is
possible to estimate the unknown parameters with experimental errors as high as 4.0%.

All the results in Table (4.15) are rounded off to three significant figures.
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Table (4.15) Influence of Experimental Errors on the Estimation (Elasticity Example

Problem #2).
Nodal Locations where u; and U, Are Measured
27314v5:6’8v9511912,14,15,16’17,18720721)2312A

Case # % Error Iteration #, And Converged Values of Parameters
1 0.0 5, G,=1.000E+06, V,=0.200, (X, , Y.)=(3.00,3.00)
2 0.5 8 , G=1.015E+06, V,=0.195, (X, , y.)=(3.00,3.00)
3 1.0 10, G,=1.029E+06, V,=0.190, (X, , ¥.)=(3.01,2.99)
4 2.0 13, G,=1.049E+06, V,=0.183, (X, , ¥.)=(3.03.2.97)
5 3.0 22, G,=0.966E+06, V,=0.217, (X, , ¥.)=(3.03,3.01)
6 4.0 32, G,=0.96TE+06, Vv,=0.217, (X, , ¥.)=(3.03,2.99)







Chapter 5

Conclusions and Recommendations

A technique has been proposed which couples the boundary element and

parameter estimation methods for the purpose of characterizing the interior of an

inhomogeneous body utilizing surface measurements only. The parameter study

presented here addressed several questions which arise regarding implementation of

this technique in the heat transfer and elasticity problems. Although the technique does

not always converge, the cases which do converge give excellent results. Also, the

method never converges to an incorrect solution. Based on the results of this

investigation, the following conclusions are drawn.

1.

It is possible to estimate the four unknown parameters simultaneously using only

four measurements in the heat transfer problem.

It is better to use two temperature and two heat flux measurements than four

temperature or four heat flux measurements.

As the number of measurements increases, the percentage of cases which

converge increases.

Heat flux measurements with experimental errors give better results than

temperature measurements with experimental errors.
It is possible to estimate parameters corresponding to a very small inclusion.

Better results are obtained for elasticity problems using more displacement

measurements.

Estimating the unknown parameters in the heat transfer problem appears to be

easier than in the elasticity problem.
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8. More success was achieved in estimating only the shear modulus and Poisson’s

ratio of the inclusion in the elasticity problem.

9. It would appear that the best procedure would be to estimate the thermal
conductivity, size, and location of the circular inclusion using the boundary
temperature and/or heat flux measurements and then, taking the location and size
of the inclusion as known, to estimate the mechanical properties of the inclusion

using the boundary-measured displacements.

It should be emphasized that for this nonlinear inverse problem, the sensitivity
coefficients depend on the current guess of the parameters. Thus if one wants to use
the sensitivity coefficients as a predictor of "best" measurement locations, one must
recognize that these best locations will change from one iteration to the next. One
possible approach would be to test various initial guesses and corresponding sensitivity
coefficients a priori and to select the initial guesses based on optimal initial
sensitivities.

Several additional questions need to be addressed. In particular, the effectiveness
of this technique for characterizing more complex situations such as several inclusions
or inclusions of unknown shape needs to be examined. Also extension to anisotropy
and/or three-dimensional problems would be of practical interest. However, based on

the results obtained so far, the method shows considerable promise.
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Computer Program : Elasticity
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