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ABSTRACT

DIRICHLET SPACES ON FINITELY CONNECTED DOMAINS

By

Young-Chae Nah

Suppose Q is a finitely connected nonempty domain in C such that no connected

component of an is equal to a point.

In the second chapter we show that o¢(M¢), the essential spectrum of a

multiplication operator Mq, on the Dirichlet space 0(9), is equal to cl(<p; an), the cluster

set of (p on an. In order to prove this equality, we first show that, if Q has an analytic

boundary, then the set of rational functions in 0(9) whose poles are ofi‘ ,fi is dense in

D(Q) and 0(9) is contained in 8(0), the Bergman space on Q. And then we prove

o,(Mq,) = cl(q>; am when (2 has an analytic boundary. By the conformal invariance of

08(M¢) and cl(<p; 89), we have the desired equality.

The next chapter characterizes the finite codimensional closed invariant subspaces

of D62) under any multiplication operator when 9 has an analytic boundary. We show

that those subspaces are of the form qD(Q) where q is a polynomial with all its zeros in

0. To prove this we show that (z - 700(0) is dense in D(Q) for any I. in an when

Q has an analytic boundary. Here we use the result from Chapter 2; namely

R(Q)nD(Q,zo) is a dense subset of D(Q,zo) where R(Q) is the set of rational functions

whose poles are off KT.
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CHAPTER 1

PRELIMINARY

In this chapter, we will inu'oducc some definitions, notations, and basic facts about

the Dirichlet space. Throughout this thesis, (2 will denote a domain, namely a nonempty

open connected set in the complex plane C, such that no connected component of an is

equaltoapoint.

The Bergman space 3(0) is the Hilbert space of analytic functions f on (2 such

that Alflsz < co, with the inner product

<f’g>B(Q)= Lfg dA (1.1)

where (M denotes the usual area measure on Q.

Let 20 be in Q. The Dirichlet space D(Q,zo) is the Hilbert space of analytic

functions f on (2 such that Alf '|2M < co and flzo) = O, with the inner product

<f,g >061): L f' -g—' (M. (1.2)

Changing the distinguished point zo gives a space that is obtained from the original

by subtracting a suitable constant from each function. We will use 0(9) instead of

D(Q,zo) if the distinguished point is irrelevant.
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The square of the Dirichlet norm of f is just the area of the image of 9 under f,

counting multiplicity.

. 2
We Will use Ilflle)

where H(Q) is the set of analytic functions on Q.

to denote I If ' |2 (IA even when fs 11(9) \D(Q,zo)

0

It is well known that point evaluation maps on 3(0) (see Conway [8], Chapter III,

Corollary 10.3) and 0(9) (see Taylor [14]) are bounded. Here we will prove the

boundedness of point evaluation of each derivative on D(fl).

Lemma 1.3: Let 2 e 52 and let n e Nu{0}. Then the map Xusz, 20) —->

c defined by 1,,” (f) =sz) is a bounded linearfunctional.

Proof: Let 25 0. First assume n=0. Wewilluse 7., instead of 1,2,0, Let I‘

bearectifiablepathin Q from 20 to 2. Then

ll,(f)l=y‘(z)l=l {ftwmwl s (lengthofI‘) sup{ lf'(w)l:we r}. (1.4)

Since I‘ is a compact subset of 9, there exists r > 0 such that the distance between I‘

and 89 is bigger than r. Let g 6 3(9) and let B(w,r) be the open disk in C centered

atthepoint w withradius r. Foreach we I‘,

lg(w)l s 43 jlg< : )l dA(t) bythemeanvalue property

1|: r B(w,r)

s -1— II II - -Rr 8 8(0) by Holder's rnequahty

Since f ' 6 3(9), there is a constant K, which depends only on I“ and 9, such that



the right hand side of (1.4) s K Ilf'llB(a)—= K Ilf "0(a)

Therefore the point evaluation map 2., is bounded.

Now let n 2 1. Choose 5 > 0 such thatm C 9. Here m denotes the

closure of 3(z,5) in (3, Since {7.49: weBB(z,8)] is a subset of the dual space D(Q,zo)*

and sup{ l lw(f ) I : we BB(z,8)} < no for all fe D(Q,zo), by the Uniform Boundedness

Principle, there is a constant K such that sup{ llkwll : w e aB(z,8)} S K.

Hence lf(w)l s lawn ll f "mm s K II f "mm for all fe D(Q,zo) and for all

we 83(z,8), By the Cauchy Formula,

IA,,,(f)I=If<">(z)I sg—ifs-ig—Z-%+—lldwl sg—ixnfnmm

forall fe D(Q,zo). Q.E.D.

Using the same argument as in the proof of the above lemma, we can prove that

every norm bounded subset of D(Q,zo) is uniformly bounded on each compact subset of

Q. In a normed vector space, every weakly convergent sequence is norm bounded. Hence

we get the following lemma by the normal family argument.

Lemma 1.5: Let ne Nu{0]. If {fm} isasequence in D(£2,zo) converging

to f weakly, then fit") —>f('0 uniformly on compact subsets of Q as m —) co.
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Remarks: (a) If Va)“ A is a bounded net in D(9) such that fa converges to f

weakly, then we can still apply the normal family argument to prove that fé") -> f (n)

unifome on compact subsets of 9 for all n e N.

(b) A weaker version of the converse of the above lemma will be discussed in

Lemma 3.3.

An analytic function (I) on 9 is called a multiplier of D(9,zo) if (pD(9,zo) c

D(9,zo). We denote by M(D(9,Zo)) the set of all multipliers of D(9,zo). For any

multiplier (p, the linear transformation MlP : D(9,zo) -> D(9,zo) defined by Mq,f= (pf

is bounded; this follows from the Closed Graph Theorem and the boundedness of point

evaluation maps. Mq, is called a multiplication operator. Giving each function in

M(D (9.20)) the operator norm of the corresponding multiplication operator makes

M(D(9,zo)) into anormed space. Standard references for M(D(U)) are [13] and [14];

here U denotes the open unit disk in C.

If (p e M(D(9,zo)), then (p is in the set of bounded analytic functions H°°(9)

with H (p II... S II 114.," (see [10], Lemma 11). But the converse is not true. Actually

M(D(U)) is not even closed under ll - IL, norm (see Axler and Shields [5], Theorem 10).

Lemma 1.6: If 9 is bounded, then (p' e 3(9) and tp—<p(zo) e D(9,zo) for

all (p e M(D(9)).

Proof: Let (p e M(D(9)). Since 9 is bounded, z - 20 e D(9). Thus [(2 - zo)q)]'

= (p + (z - zo)<p' is in 3(9). Since (p is bounded, (z - zo)q)' is in 3(9). Choose r > 0

such that 3(20, r) c 9. Then



co > I lz-zolzltp'lsz > f lz-zolzlrp'l2 dA + r2 j lrp'l2 dA.

9 3(20, r) 9\B(zo, r)

Hence I Itp'PdA < co. Since (p' is bounded on 3(20, r), (p' is in 3(9). Now the

(“(20, I)

second assertion follows immediately. Q.E.D.

The following lemma can be proved using change-of-variables.

Lemma 1.7: Let 9, and 92 be two domains in C and let zoe 91 and

wo e 92. Suppose \v is a conformal mappingfrom 92 onto 91 such that \y(wo) =

20. Then

(1) The composition map CV: D(91.zo) -) D(92,wo) defined by CV0) =f-\|I

is a unitary map.

(2) The composition map CV:M(D(91.zo)) -+ M(D(92,wo)) defined by Cw(q>)

= (pow is an onto isometry.

For the open unit disk U in C, the spaces D(U,O) and 3(0) can be described in

terms of Taylor coefficients using (1.1) and (1.2); namely

 

flinging)”; n Ianlz, (1.8)

.. l I2

n f '53!) = 1: 3:30 :21 . (1.9)

where flz) =n§oanz". Hence we have D(U,O) c 3(U). For a simply connected domain

9, there are some equivalent conditions to D(9) c 3(9) (see Axler and Shields [5],

Theorem 1).
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Denote the annular region in C centered at 0 with the inner radius r > O and

outer radius 1 by A,. Suppose 1(2) = 2‘, anz". Then "jug“ ), nfufiu ) can be
W r r

written in terms of the Laurent series coefficients similar to those which are in (1.8) and

(1.9). The formulae are given in the following lemma, which can be proved by direct

calculation.

Lemma 1.10: Suppose flz) = E anz".

M

(1) If fe D(A,,\lr ), then

IIfII12,(Ar)= n "Eon lanlz (1- r 2n). (1.11)

(2) If fe 301,), then

lo I2

":1 (1-r2n+2) - 2n Ia_1|2 log r. (1.12) mg“), = 1: "£1

If the infinite series (1.11) converges, then so does the series (1.12). Hence we

have D(Arnl—r) c 3(Ar). Now, by the Closed Graph Theorem, the inclusion map

I : D(Ar) —> 3(A,) is bounded.

The next lemma establishes some equivalent conditions for D(9) c3(9) when 9

is a bounded doubly connected domain in C. These results can be proved as Theorem 1 in

[5]. Recall that any doubly connected domain is conformally equivalent to some annulus

(see, for example, Axler [1], Doubly Connected Mapping Theorem on page 255).
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Lemma 1.13: Let 9 be a bounded doubly connected domain in C, and let 20

e 9. Suppose w is a conformal mappingfrom Ar onto 9 for some r > 0. Then the

following are equivalent.

(1) man) c 8(a)

(2) 2 061.20) c 0(on

(3) w D(Ar. Wen» c D(Ar.\ll'1(lo))

(4) w'D(Ar.\v'1(zo)) c 3(Ar)

Remarks: (a) (1) and (2) are equivalent for any bounded domain 9.

(b) (3) and (4) are equivalent for any bounded domain 9; namely if \u e H (9)

where 9 is a bounded domain, the two statements \y e M(D(9)) and \y‘D(9) c 3(9)

are equivalent .

(c) Suppose 9 in the previous lemma has an analytic boundary; namely 9 has

two analytic curves as a boundary. Then \y can be extended analytically up to 8.4, by

Schwarz Reflection Principle. (For the definition of an analytic curve and the analytic

extension of w, see page 12 of this thesis.) Hence lw'l is bounded on Ar and so

condition (4) in the above lemma is satisfied. Here we used the fact that D(A"‘17) c

3(A,). Therefore we have D(9) c 3(9), z is in M(D(9,zo)), and especially ‘I’ e

M(D(Ar». In Chapter 2, we will see that D(9) c 3(9) when 9 is a finitely connected

domain with an analytic boundary.

(d) For any domain 9, if D(9) c 3(9), then the inclusion map I : D(9)—)3(9)

is bounded by the Closed Graph Theorem
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We do not know exactly when the inclusion map I :D(9) c 3(9) is compact.

For simply connected domains, Axler and Shields got some results (see Axler and Shields

[5]). For doubly connected domains, we have the following lemma.

Lemma 1.14: Let 9 be a doubly connected domain and let \(t be a conformal

mapping from A, onto 9 for some r > 0. Then the following are equivalent.

(1) The inclusion map I : D(9) —) 3(9) is compact.

(2) The multiplication operator Mv' :D(A,) -> 3(A,) defined by

Mv'(f ) = wf is compact.

Proof: Define an operator T :3(9) -> 3(A,) by T(g) = \v'(g-\|I). Then, by

change-of-variables, T is isometry . Let h e 301,). It is easy to see that ($17 h )out'1 is

the preimage of h under T, again by changeeof-variables. Hence T is a unitary map.

Note that Mv' - CV = T - I on D(9) where CV is the composition map as in Lemma

1.7. Since CW and T areboth unitary, (l) is equivalent to (2). Q.E.D.

We proved that a point evaluation map on the Dirichlet space is bounded in Lemma

1.3. When 9 is either U or A,, we can find 2., explicitly by direct calculation.

Suppose 9 = U and z e U. Then 2., defined by

l
 7., (w) = % log (1.15)

1 -?w

is the point evaluation map at 2 on D(U,0).

When 9=Ar and zeAr, h, definedby



 

=1 rho/7)" _ .
Mw) “€0,104,” M (47)] (1.16)

is the point evaluation map at z on D( Aral—1:). It does not seem possible to express the

infinite sum in (1.16) in closed form.



CHAPTER 2

ESSENTIAL SPECTRUM OF MULTIPLICATION OPERATORS

Recall that an operator T on a Hilbert space H is called Fredholm if the kernel of

T and H/TH are both finite dimensional vector spaces. These conditions imply that T

has closed range (see [6], Cor 3.2.5).

Suppose T is an operator on a Hilbert space H. The essential spectrum of T,

denoted 03(7), is defined to be the set of complex numbers c such that T - c is not

Fredholm. oe(T) is precisely the spectrum of T in the Calkin algebra L(H)/K(H) where

L(H) denotes the set of all bounded operators on H, and K(H) denotes the set of all

compact operators on H (see Douglas [9]).

If (p is an analytic function on 9, then the cluster set of (p on an, denoted

cl(q);39), is the set of complex numbers c such that there exists a sequence {2"} in 9

such that 2,, tends to 39 and f(z,,)—)c as n—ioo.

Suppose G is any open set in the complex plane C such that no connected

component of 80 is equal to a point. On the Bergman space 3(G), Sheldon Axler

showed that oe(Mq,) = cl(q>;BG) when rpe M(3(G)) (see Axler [2], Theorem 23). No

result of this generality is known for the Dirichlet space. If 9 is a bounded simply

connected domain, and if (p is a multiplier of D(9), then oe(Mq,) = cl(q>;BG) (see Axler

and Shields [5], Theorem 11). In this chapter, we will prove that the same conclusion

holds when 9 is a bounded finitely connected domain (with an analytic boundary) and (p

is a multiplier of D(9).

10
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Suppose 9 is bounded. If Mq, : D(9,zo) —> D(9,zo) is a multiplication operator

and oe(Mq,) = cl(tp;a9), then Mq, is also a multiplication operator on D(9,zl) for any

zle 9 and has the same essential spectrum; namely the essential spectrum of a

multiplication Operator on the Dirichlet space does not depend on the choice of the

distinguished point. Furthermore the essential spectrum of a multiplication operator is

conformally invariant in the following sense.

Lemma 2.1: Suppose 91 and 92 are domains in C and ‘l’ is a conformal

mapping from 91 onto 92 such that w(zo) = wo. Suppose (p e M(D(92,w0)) and

oe(Mq,) = cl(q>;a9,). Then (pow e M(D(9l,zo)) and 0e(quy) = cl(<p-\y;a91).

Proof: Define composition operators CV as in Lemma 1.7. Even though we are

using the same notation for two different composition operators, which one we mean will

be clear by the context. The fact that (pow e M(D(91,zo)) is the result of Lemma 1.7.

We will prove that

0e(M¢p) = 0e(Mq).(y) (2-2)

and cl (@891) = cl ((p~\)t;391). (2.3)

To prove (2.2), let 1 e C. Forall g e D(92,wo),

(CV'(M(p-7\)) (8) = «M(P'V-M' \y) (g). (2.4)

Since CV is a unitary map, (2.4) shows that oe(Mq,) = oe(Mq,.‘l,).

Now, to prove (2.3), let he cl (qr-w;a9l). Then there is a sequence {2"} in 91

such that 2,, —> 891 and (1)-wan) —) A as n —) 00. Since {w(z,,)} is a sequence in 92,
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and ut(z,,) —) 89»; (maybe some subsequence of {w(zn)}). A. e c1((p;892). Hence

cl(tp-\tt;89l) c: cl(q>;a9,). The other inclusion can be proved similarly. Q.E.D.

By an analytic curve, we mean the image of the unit circle in C under a one-to-

one function analytic on a neighbourhood of the unit circle.

Lemma 2.5: Suppose 9 is a bounded doubly connected domain with an

analytic boundary. Let V be a conformal mapping from 9 onto A, for some r.

Then w and \V ‘1 can be extended analytically up to 39 and 8A, respectively.

Proof: A well known extension of Jordan Curve Theorem (see, for example,

Koosis [11], page 53) says that \II has a continuous and one-to-one extension up to 39.

Suppose 89 = TOUT] where To is the boundary of the unbounded component of

Sz\ 9. Since 1‘1 is an analytic curve, there exists a neighbourhood N1 of EU and a

one-to-one analytic function (p1 on N1 such that (pl(aU) = I}. We may assume that

q>1(UnN1) isin 9. Note that wool is analytic on Uan and continuous on 77an.

Since Nt-(p1(z)l —) r as z —) 3U, by the Schwarz Reflection Principle, \|t-(p1 has an

analytic extension up to EU. Suppose N1' is a neighbourhood of EU on which \lt-tpl is

analytic. Then \lt-tpl-tpl'l is an analytic extension of \v on q)(N1nN1'). Similarly we

can extend ‘l’ analytically up to To.

Note that (pl'low '1 is analytic on a neighbourhood in A, of [ze C: Izl = r] and

continuous up to {ze C: Izl = r}. Since ltpl'l-V '1(z)| -> 1 as Izl—i r, by the Schwarz

Reflection Principle, (pl‘low '1 has an analytic extension up to {ze C: Izl = r}. Suppose

N2 is a neighbourhood of {ze C: Izl = r] on which (p1‘1.\|t '1 is analytic. Choose a

neighbourhood N2' of {ze C: Izl = r] such that Nz' CN2 and (pl'low '1(N2') c N1.
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Then (p1.(pl’1.\|t '1 is an analytic extension of \lt'l on Nz'. Similarly we can extend

\ll‘l analytically upto {ze C: Izl = 1}. Q.E.D.

Suppose 9 is a bounded simply connected domain in C (or an interior of the

complement in 82 of a bounded simply connected domain in C) with an analytic

boundary. We claim that each C in 39 belongs to a closed ball contained in the

complement of 9. (This condition is called the external ball condition.) Let ‘V be a

conformal mapping from 9 onto U. Then, by the above lemma, t]! can be extended

analytically to some neighbomhood G of 9. Define a function (p on \|t(G) by (p(z) =

Izl2 - 1. Then (pow is called a C” defining function of 9; namely (pow is a real-valued

6'" function on some neighbourhood 0 of 39 satisfying following three conditions: (i)

9 n 0 = [ z e 9 : (p-w(z) < 0]; (ii) 39 n 0 = { ze 9: (p-ut(z) = 0}; (iii) the gradient

vector of (pout on 89 is never 0. Note that the tangent line of 39 at C is perpendicular

to the gradient vector ViP'WQ- Now, to prove the claim, we may assume that 0 e 89

and the tangent line of an at O is the real axis. Then near 0 in R, an is the graph

(x, A(x)) of a C” function A defined on a neighbourhood of 0 in R, where A'(O) = 0;

this follows from the implicit function theorem. Since A'(O) = O, |A(x)l = 0(lxl2) as x-)O

by Taylor's Theorem. Hence the external ball condition at 0 is satisfied. Actually the

external ball condition is satisfied when 9 has a C2 boundary (see, for example, [4],

Chapter 10).

Let 9 be a bounded domain in C whose complement (in 82) consists of exactly

m+1 nontrivial components where m is a positive integer. Then m+1 applications of the

Riemann Mapping Theorem produce a one-to-one holomorphic mapping of 9 onto a

bounded domain whose boundary consists of m+l mutually disjoint analytic curves.

Hence, as far as the essential spectrum is concerned, by Lemma 2.1 we may assume that
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9 is a bounded domain whose boundary consists of m+1 mutually disjoint analytic

curves.

Let 9 be a bounded domain whose boundary consists of m+1 mutually disjoint

analytic curves. The following notation is used throughout this thesis. The m+1 mutually

disjoint analytic curves consisting of 89 will be denoted by T0, T1, , 1“,", where I},

is the boundary of the unbounded component of S2 \ 9. 90, or sometimes U0, will be

used to denote the bounded component of S2 \ To, and U,- will be used to denote the

unbounded component of 82 U} for each j = 1, , m. And we will also denote

900 U} by 9]- foreach j=1,«- ,m.

Lemma 2.6: Suppose 9 is a bounded domain in C whose boundary consists

of m+1 mutually disjoint analytic curves. Let zoe 9. If fe D(9,zo). then there is

a function f}- in D(9)-.20) for each j = l, 2, , m, such that f=fo+ f1 + + fm

on 9.

Proof: For simplicity, we will prove this lemma when m = 2. Let 2 e 9, and

let 70, 71, and 72 be mutually disjoint smooth simple closed curves in 9 so near 1‘0,

1‘1, and 1‘2 respectively that z is interior to 7]. for each j = O, 1, 2. ( 70 is oriented

counterclockwise, 71 and 72 are oriented clockwise.) By the Cauchy Formula,

f(z)= -—1—. J %(_c—:—d§

 

_1_ f(§)dC+§1,5 %:C_:_d§+§l5 J%%d§ (2.7)

70
71

72
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We will denote the (i+l)th integral in (2.7) by gj (z) for each j =0, 1, 2. Then gj (z)

is independent of the choice of y}. and is in H( Uj ). Let 1;- (z) = gj (z) - gj- (20). Then

fj- isin H( 91-) and 13(20) = 0 for each j. Let A0,A1, and A2 be mutually disjoint

connected neighbourhoods of To , I‘l , and 1‘2 in 9 respectively. Now we will prove

that lfo'l is square integrable on 90 with respect to the usual area measure dA.

On 90\Ao, fo' is bounded. On A0, If 'I, | fl'l, and lf2'l are square integrable and fo'

=f ' -f1' -f2'. Hence I fo'l is square integrable on 90 and so f0 is in D(9o,zo).

Similarly we can prove that f1 e D(91,zo) and f2 e D(92,zo). Q.E.D.

Remark: Since D(9) is conformally invariant, Lemma 2.6 is true when 9 is any finitely

connected domain.

Corollary 2.8: Suppose 9 is a bounded domain whose boundary consists of

m+1 mutually disjoint analytic curves. Then D(9) (:3(9) and z e M(D(9)).

Proof: Let f e D(9). By Lemma 2.6, f =fo+f1 +-~-+f,,, where f1 e D(9j).

Since each 9,- is either a simply connected domain with an analytic boundary or a doubly

connected domain with an analytic boundary, by remark (c) following Lemma 1.13, f,-

is in M9,) for all j. Hence fe 3(9). Now 2 e M(D(9)) follows from remark (a)

following Lemma 1.13. Q.E.D.

Let 3(9) be the set of polynomials. Then (1.8) shows that P(U)nD(U,O) is a

dense subset of D(U,0). Also, from (1.11), we can see that

nn

{ )3 ajzi: neNU{0},aje Cforallj=0,il,...,in, ajzai=01 (2.9)

‘ -nJ=-n 1=
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is a dense subset D( A,,zo). For a finitely connected domain 9 with an analytic

boundary, we will prove, in the following theorem, that the set of rational functions in

D(9,zo) whose poles are off 9 is a dense subset of D(9,zo). Let R(9) denote the set

of rational functions whose poles are in sz\17.

Theorem 2.10: Suppose 9 is a bounded domain whose boundary consists of

m+1 mutually disjoint analytic curves. Let 20 be in 90. Then R(9)nD(9,zo) is a

dense subset of D(9,zo). If 9 is simply connected, then P(9)nD(9,zo) is dense in

D(9,zo).

Proof: Let fe D(9,zo). By Lemma 2.6, there is fie D(9j,zo) for each j = 0,

1, ,m such that f=fo+fl + +fm on 9. Let 8>0. For 90, there is aconformal

mapping W0 from 90 onto U such that \lt(zo) = 0. By Lemma 1.7,

fo-w'o‘ e D(U,0).

Since P(U)nD(U,0) is dense in D(U,0). there is a polynomial p e P(U)nD(U,0) such

that

- e
nfour; - p "0(a) <m.

By Lemma 1.7, the composition map CW0 is a unitary map from D(U,0) onto D(90,zo).

Hence

- - g A

Ilfo-p-wollbmo): ll(f0-\|Iol -p)-\VOIID(QO)=II fo-wol mum!) < 5631? . (2.11)
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Since To is an analytic curve, ‘l’o extends to be analytic to a simply connected

neighbourhood G of the closure of 90 by Lemma 2.5. Hence patio is analytic on G.

By Runge's Theorem, there is a sequence of polynomials {pn} that converge to p-tyo

uniformly on compact subsets of G. Therefore pn' converges to (patio) uniformly on

the closure of 90, and so p" converges to P'Wo in D(9O,zo). We may assume p,,(zo)

= 0 for all n, by replacing pn(z) by pn(z) - pn(zo) if necessary, because the constant

term does not contribute to the Dirichlet norm. Hence there is a polynomial pa in

D(90,zo) such that

8

llp-Wo-po "06%) < m .

By the triangle inequality and (2.11), llfo- poll”(90)< . Note that this proves the

second part of theorem.

Now fix j = 1, 2, , m. Since 9]- is doubly connected, there is a conformal

mapping w,- from 9}- onto A, for some r. Let wo=tltj (zo). By Lemma 1.7,

g-v'j‘e D(pro).

Denote the set in (2.9) by R(Apzo). Since R(A,,wo) is dense in D(Aflwo). there is

hj e R(Aflwo) that is analytic on a neighbourhood of the closure of A, such that

e

" ff ' “’1' hi "D(A,)< 2(m+l) ‘

By Lemma 1.7,

'1

”ft hj'VJDmf'HUl'Wjw>VJD(n-)="5'Vj'hillD(A,)<—_)'"(212)
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Since 89,- = TOUT,- and To, I) are analytic curves, v,- extends to be analytic to some

neighbourhood G of the closure of 9,- by Lemma 2.5. Choose a compact subset Kj of

G such that Sz\K,- has two connected components and

the closure of 9,- c the interior of K; c K];

Then, by Runge's Theorem, there is a sequence {rn} of rational functions whose poles

are off K,- such that r,I converges to hj - qt,- uniformly on K,- . Hence r,,' converges to

(hj- ‘Vj )' uniformly on the closure of 9,- and so r,. converges to hj- V} in M9,).

Again r,,(zo) may be assumed to be 0 for all n. Therefore we can choose a rational

function r,- whose poles are off K,- such that

8

II hj'Wj -rj "D(Qj)<m .

L

m+1 °

Hence, by the triangle inequality and (2.12), II ff - rj "0(0) <

1

After choosing rj for each j, let r = pa + r1 + + r,,, . Then r is in

R(9)r\D(9,zo) and

II f - r “0(0) < Ilfo-po IID(00)+ llfl- r1 IID(01)+ + llfm-rm "D(Qm) < 6.

Hence R(9)nD(9,zo) is a dense subset of D(9,zo). Q.E.D.

Now we are ready to prove our main theorem of this chapter.

Theorem 2.13: Suppose 9 is a bounded domain whose boundary consists of

m+1 mutually disjoint analytic curves and let 20 e 9. Let (p e M(D(9,zo)). Then

0e(Mq)) = datum).
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Proof: By Lemma 2.1, we may assume that To = 8U. We first will show that

cl((p;a9) c oe(Mq,). It suffices to show that if 0 e cl (tp;39), then Mq, is not a

Fredholm operator. Suppose 0 e cl(<p;a9) and Mq, is Fredholm. Let [2,.) be a

sequence in 9 such that 2,, -9 89 and q>(z,.) -> 0. Then there is a j such that z,,-> 1"}.

(Use a'subsequence of {2"}, if necessary.) Suppose w,- is a conformal mapping from

U onto 11,-. Let a, = we.) Then (tn-9 30 and cp(ty,(ot,,)) = tp(z,,) —> o as n —> a.

Let 2,z bethe point evaluation map at z on D(U,0). Then, by (1.15),

1
II2¢IID(U) = <2. 290(0) = 2.,(2) = 1;_1og1——Izl, .

Hence

|| 2.an."D(UO)-’°° as n-)oe.

By the Uniform Boundedness Principle, there is a function fe D(U,0) such that

supl <f, 2.a...>D(U0)I=

Therefore there is a subsequence of {an}, for which we will use the same notation {an} ,

such that

hm = lim f l = oo. 2.14
n:—)co| (ft x(kW) n_)°°| (an) ( )

Let 9* = W}1(9). Let k, be the point evaluation mapping at z e 9* on D( 9*,wo)

where wo =tv'j‘(zo). Since flu... -j(wo) e D( 9*,wo),

I flan) - f(wo) I = I < flu. -f(wo), lizfiomo' 5 IIflD(U) ll Ian"D(Q*)- (2.15)
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By (2.14) and (2.15), ll hill -> oo as n -) co. Define a function f" by
lD(9"')

k
an

II kan"o(n*)

 

for each n e N. We claim that f" —) 0 weakly in D( 9*,wo). We must show that

<f,, , g >D(n*) —> O for all g e D( 9*,wo) as n -> oo. Let g e D( 9*,wo). By

Theorem 2.10, there is a sequence [rm] of rational functions in R(9*) ('1 D( 9*,wo)

such that rm—> g in D( 9*,wo). Forall ne N and me N,

I <f,,, g>D(m)l s I <f,,,g-r,,,>D(m)l + I <f,,,r,,,>D(m)l

S Ilfnlle.) llg-rmllD(Q,) + I <f,, ,r,,,>D(9,)I.

Let e>0. Chooseapositive integer K1 such that lIg-rMIID(n,)< 5'2- if m 2K1. Fix

mZKl. Note that

l <f,. ,m.) | _._ MALI- .

”“1" II k II
an D(9*)

Since r", is bounded on 9 and II lfinl

K2 such that

ID(0,)-)oo as n —> oo, there is a positive integer

e
|<f,,,r,,,>D(m)l < f

if nZKz. Hence <f,,,g -)0 andsowe have f,,-)0 weaklyin D( 9*,wo) as
>D(9"')

n —> oo. Since we assumed that Mq, is a Fredholm operator on D( 9,20), M‘P-‘Vj is a

Fredholm operator on D( 9*,wo) by Lemma 2.1. Hence there is a compact operator T
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on D( 9*,wo) such that 1 - M(P-Vj T is compact. Since f,, -) 0 weakly in D( 9*,wo),

we have N (1- M‘P-Vj T )(fn) l —) 0. Therefore
ID(Q")

1 ' (‘P'Wj )(an) < T(frDsfn >D(Q*) = <fn " ((p°‘llj) T(ftr) 9 fn >D(Q*)

= < (1 - M(Wj T )0.) , f,, >D(Q*) —) o. (2.16)

But, since ((p-Wann) -+0 and |<T(f,,) ,f,,> 5 HT" IInt = IITII, the left
D(fl*)| ID(Q*)

hand side of (2.16) approaches 1. This contradiction shows that M¢ is not Fredholm.

Hence cl(q>;89) c: oe(M¢).

To prove the converse inclusion, suppose that 0 e cl((p;89), i.e. (p is bounded

away from 0 near 89. Let :1, , 2,, be the distinct zeros of (p in 9. Assume first

that zjatzo forall j. Let m(zj) bethe multiplicity ofthezeroof (p at zj. Let E bethe

subspace of D(9,zo) consisting of all functions f in D(9,zo) such that f vanishes on

{ 2,, ,2.) with multiplicity bigger than or equal to tn(z,-) at each 2). Let fe 5. Then

L L -(P e H(9) and q, (20) - 0.

To see g is in D(9,zo). observe that

(5f =(f'Ip-fo')/q>2.

By the remark (b) following Lemma 1.13, the numerator is square integrable on 9.

Since (p is bounded away from 0 near 89,

ée mono).
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Hence f is in the range of Mq, and so E is containedin the range of M9 Note that

E=n{Ker 2.2),]: : j=l,~--,n and k=0,---, m(zj)-l }.

Being an intersection of the kernels of finitely many linear functionals, E has a finite

codimension. Since Ker M9 = [0}, Mt, is Fredholm.

Now suppose there is j = l, , n, such that z; = 20, say 21 = 20. Then redefine

m(zl) to be (the multiplicity of the zero of (p at 21) + 1, and define E as before. Then,

by the same argument, we can conclude that M9 is Fredholm. Thus oe(Mq,) c cl(<p;a9).

Q.E.D.

Remark: Note that to prove oe(Mq,) c cl((p;39), we used neither the analytic boundary

condition nor the finite connectedness of 9, but the fact that D(9) c 3(9). Hence

oe(M¢) c cl(q>;89) is true when (p is a multiplier of D(9) on bounded domains 9 in

C such that D(9) (2 3(9).

By Lemma 2.1 and Theorem 2.13, we have the following corollary.

Corollary 2.17: Suppose 9 is a finitely connected bounded domain in C.

Let (p e M(D(9)). Then oe(M,,) = cl(<p;a9).



CHAPTER 3

CLOSED FINITE CODIMENSIONAL INVARIANT SUBSPACES

In this chapter we will study finite codimensional invariant closed subspaces of the

Dirichlet space of a finitely connected domain with an analytic boundary. A

characterization of those subspaces of the Bergman spaces defined on a large class of

bounded domains in C was obtained by Axler and Bourdon in [3]. Also Chan

characterized those spaces on D(9) when 9 is a circular domain; see [7]. In his paper,

Chan used a Laurent series expansion to prove his characterization, which cannot be

applied on noncircular domains. In this chapter, we will establish the same characterization

of finite codimensional invariant closed subspaces of D(9) when 9 is a finitely

connected domain with an analytic boundary. Recall we assumed that no component of

39 is equal to a point.

We start this chapter with the Bergman norm estimation of certain class of functions

on U that will be used repeatedly throughout this chapter.

r-12. ThenLemma 3.1: For r> l,define afunction g, on U by g, =_(-:t_I_r—)_

sup { llg, "Ba/)1 r>1}<oe.

Proof: Let r> 1. Note that

___l_ _°° 11:1...
(z-r)2 "Earns-22

where the series converges uniformly and absoluwa on U.
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Also

1 °° n+1

12 = 2 z" forlz|>l. (3.2)

(1.?) n=0

Hence

°° n+1

|lg,ll§(m= n (r-1)2n§=;o r 2“, +2) by (1.9)

=ttr°4 (r-l)2 E n+1 =1tr°4 (r-l)2r—- by (32)
"=0 r2" (r2-1)2 '

115 it
-(r+1)2 <4 Q.E.D.

The following lemma is well known in general function spaces. For later use, we

state it explicitly.

Lemma 3.3: Suppose that Ugh“ is a norm bounded net in a closed

subspace H of D(9). which converges to f pointwise on 9. Then fe H.

Proof: By the Banach-Alaoglu Theorem, any closed ball of D(9) is weak“ (hence

weak) compact. Therefore {fa}asA has a weak convergent subnet {fat} 66a , say fan

—> g weakly in D(9). Hence, by remark (a) following Lemma 1.5, fap(z) —-) g(z)

pointwise on 9 and so f= g and for, -)f weakly in D(9). But the norm topology

and the weak topology have the same closed convex sets (see, for example, Rudin [12],

Theorem 3.12). Since H is a (norm) closed convex set, fe H. Q.E.D.

Remark: A sequence version of the above lemma is still true. We only need to prove that a

bounded sequence in D(9) has a weak convergent subsequence. Define an operator

T:D(9)—-)3(9) by T(f) =f '. Then T is an isometry. Now, “since 3(9) is separable,

so is D(9). Hence any closed ball of D(9) with the weak topology is a metrizable
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compact set (see, for example, Rudin [12], Theorem 3.16) and so any bounded sequence

in D(9) has a weak convergent subsequence.

Suppose 9 is a bounded domain such that D(9) c 3(9). If 2 is in 9, then

(2 - 2)D(9,zo) is a closed proper subspace of D(9,zo) that is invariant under

multiplication by 2. If q is a polynomial that has all of its zeros in 9, then we will see in

Proposition 3.12 that qD(9) is a finite codimensional closed subspace of D(9) that is

invariant under multiplication by 2. If 2 e C\9_, then (2 - 2. )D(9,zo) = D(9,zo). We

will prove in the following two theorems that (z - 2)D(9,zo) is dense in D(9,zo) if 9

is a finitely connected domain with an analytic boundary and 2 e 39. These theorems are

key steps toward obtaining a characterization of finite codimensional invariant closed

subspaces of D(9) on finitely connected domains with an analytic boundary.

By a wedge W), in C, we mean the convex hull of a point 2 (called the vertex of

the wedge) and an arc of a circle centered at 2. We mentioned in Chapter 2 that, if 9 has

an analytic boundary, then each boundary point satisfies the external ball condition.

Hence, for each 2 e 89, there is a wedge W), in C \ 9 with vertex at 2.. Actually, in

order to satisfy this "wedge condition", 39 need only be a Cl boundary by the implicit

function theorem and Taylor's Theorem.

Theorem 3.4: Let 9 be a simply connected domain with an analytic '

boundary. Then (2 - 2 )D(9,zo) is dense in D(9,zo) for every 2 e 89.

Proof: Let 2e 39. We know that P(9)nD(9,zo) is dense in D(9,zo) by

 

Theorem 2.10. Hence it suffices to show that P(9)nD(9,zo) c: (z - 2)D(9,zo). the

closure of ( z - 2 )D(9,zo) in D(9,zo).
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Assume that z - 20 e (z - 2)D(9,zo). Then, since (z - 2)D(9,20) is invariant

under multiplication by a polynomial, and each p e P(9)nD(9,zo) is of the form

q(z - 20) where q e 3(9), we would have P(9)nD(9,zo) c (z - 2)D(9,z) as desired.

 

 

To prove z - 20 e (z - 2)D(9.zo) , we first assume that 2=1e 39. Since an is

an analytic curve, there exists a wedge Wl in C\9 with vertex at 1. Assume that there

exist as (o, 1) and 8e (0, 45) such that

W1 ={zeCzIz-l|52a,-255arg(z-1)525}.

Let Gl=lzeC: lz- (1-a)|<a},

G2={zeC :Iz-b|<a]

where b is the point which is obtained from 1- a rotating by 8 “12-:- around 1,

andlet G3={zeC:?eG2}.

Let re (1, 1+ a). Defineafunction g, by g,(z)=(z-1)—zz—:-Z;Q. Then g,(z)

isin (z- 1)D(9,zo). Note that

g,'=1+ J—L’1' ' ——-’‘1 (3.5)
(z-r)2”°(z-r)2'

Hence, by Lemma 3.1, sup{ll g, "D(Gfi‘ re (1,1+a)} <oo since G1: U. For ze

G2, let w bethe pointobtainedfrom z rotating by 325 -8 around 1. Then we GI,

Let 0=arg(z-1). Then

lw-rl2 'W-1'2+(r-1)2-2Iw-1I(r-1)cos(e+’%-5)

'z"'2 - 'z-1|2+(r-1)2-2Iz-1I(r-1)cose

 

by Law of Cosines

(lz-ll-I-(r-1))2
since Iw—ll=lz-1l and cos8>cos0

lz -1|2 + (r - l)2 - 2|z-ll(r-1)cos$



27

(lz-ll-I-(r-1))2

Max { lz-llzsin25'(r-1)zsin28 } .

 

(3.6)

If lz- 1|2r- l,then the numeratorof the right hand side of (3.6) is less thanorequalto

4lz-112. When r-lle-ll,thenumeratoroftherighthandsideof (3.6) islessthan

orequalto 4(r-1)2. Inanycases,wehave

the right hand side of (3.6) s .42 . (3.7)
srn 8

 

Hence there is a constant K such that

H g, "D(Gz) = H gr. "3(62)

5417+ ll(r2- r)/(z- r)2||3(62) +llzo(r- l)/(z-r)2l|B(Gz) by (3.5)

 

S‘f1?.*-sir‘:28["(rz-r)/(z.r)2"B(GI) +l|zo(r-1)/(z-r)2IIB(Gl)]

by change-of-variables and (3.7)

< K. by Lemma (3.1)

Therefore sup{llg, "D(Gz) : re (1,1+a)] <oo. Sup{llg, "0(63) : re (1, 1+ a )} <oo can

be proved similarly.

Ontheotherhand,notethat lz-rl isboundedawayfrom 0 forall re (l,1+a)

and forall z e 9\(G1UG2UGg). Hence sup{llg, "D(9) : re (1, 1+ a) } <oo.

Consider {g,},e(1.1+a) as a net in D(9). By the Banach-Alaoglu Theorem,

(g, Lead“) has a weak convergent subnet {gra}a£A where A is some index set. Note

 

that gm converges to z - zo pointwise on 9. Since {gra}a.eA e (z - 1)D(9,zo) ,
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g,a(z) —> (z - zo) pointwise, and (z - 1)D(9,zo) is a closed subspace of D(9,zo), z - 20

is in (z - 1)D(9,zo) by Lemma 3.3.

 

For general 2e 89, suppose there exist toe C, ae (0,1), and 8e (mg) such

that W;={zeC: Iz-lls 2a, arg(to-2)-26 S arg(z-1)S arg(to-2)+28}.

Let L={te C: lt-1|<a, arg(t-2.)=arg(to-2) }. Defineafunction g, by

g. (z) = (z - M—f—j—Zf

for each t e L. Then {g,} c: (z - 2)D(9,zo). and

t(2-t) 200-2)

g"=l+(z-t)2
(z-t)2'

(3.8)

Let G be the region obtained from 9 by rotating and translating so that l e 8G

corresponds to 2. and W1 correspondsto W1. For each t in L, there is the unique r in

(1.1+a) suchthat ll(2-t)/(z-t)2||3(m = ll(1-r)/(z-r)2IIB(G). By (3.8)

and by the same argument as in case of 2 = 1, sup{ ll g, "D(9): t e L} < co. Again, by the

 

same argument as in case of 2 = 1, (z - 20) e (z - 2)D(9,20). Q.E.D.

In the following theorem, we will generalize Theorem 3.4 to the case where 9 is a

bounded finitely connected domain with an analytic boundary. The fact that R(9) n

D(9, 20) is dense in D(9, 20) plays a crucial role.

Theorem 3.9: Suppose that 9 be a bounded domain in C whose boundary

consists of m + 1 mutually disjoint analytic curves and let 20 e 9. Then

(2 - 2)D(9,zo) is dense in D(9,zo) for all 2 e an.
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Proof: For simplicity, assume m = 2. Let 2 e 39. By Theorem 2.10, it suffices

to show that

 

R(9) n D(9,zo) c (z - 2)D(9,zo) (3.10)

 

The proof of the previous theorem shows that 3(9) n D(9, 20) e (z - 2)D(9,zo).

Hence, in order to prove (3.10), it suffices to show that

__1__ ,_ _L_

(z-W)" (zo-W)"

 

e (z - 2)D (9,zo) (3.11)

where we C\9 and ne N.

Since 39 is an analytic curve, there exists a wedge W; in C\9 with vertex at

2. To prove (3.11), without loss of generality, assume that 2 =1 and the wedge W1 is

oftheform {ze C: Iz-ll<2a,-25<arg(z-l)<26} forsome a in (0,1) and 8 in

(0%). Andwealsomay assumethat we C\9—1.

We will show (3.11) by induction. Let n = 1. Define a function h on 9 by

1 l

h“) = (2177' W

Then h e D(9,zo). Let r be in (1, l + 0). Since D(9) :3(9), h / (z - r)eD(9,zo).

Note that {(z - l)h / (z - r)] converges to h pointwise on 9 as r -> 1. Hence, in order

 

to prove that h is in (z - l)D (9,20) , by Lemma 3.3, it suffices to show that

sup { ||(z- 1)z—f’—rIID(Q):re (1, 1 +a) } <oo.
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Notethat

h-(l r)+ (z -1)h'

[(7'- l)-——_-]=(z- r)2 z-r

_ 1 (l—r) _ 1 (l-r) _ z-l

- (z-W) (z-r)2 (Io-W) (z-r)2 (z-r)(z-W)2

_ l 1 r - 1

- (z- W)2 [ “(22 r w)(z-02] (lo-W) (z-r)2'

Hence sup { II (z- 1% "0(0): re (1,1 +a) ) <.. by Lemma 3.1.

Therefore h= 1 l e (z - 1)D(9,zo) as desired.

(Z-W) - (lo-W)

Now assumethat (3.11) istruewhen n=k with we C\9-1 and 2=1. Let

{Q} be a sequence in C\91 such that g, converges to w, For each j, define a function

gj on 9 by

l 1l

g,-(z>= w—_—-Cj ((049),. - (zo-w)*"((z-;,.)t - (zo_§j)k)]

 

Then , by induction hypothesis, gj is in (z - 1)D(9,zo) for all j. Note that

sup{llgj'll” :je N}<oo

since lz - wl is bounded away from zero and inf{|z — C,- I:j eN) > 0. Hence

sup [ llngIDm): je N ] <oo.

Note that gj (z) converges to
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[ 1 1 ](z-w)k+l " (zo-w)"+1

  

pointwise as j—) co since

(Z'Cj)k°l+(Z-Cj)k'2(Z'W)+...+(Z-W)k'l

(2 - W)"(z - CH"

 

31°01):

(20 - C1)" 1 + (20- C} )"' 2(20- W) + + (Zo - W)"'1 .

(Zo- W)"(Zo- Cj )"

Therefore, by the remark following Lemma 3.3, (3.11) holds when n = k + 1. By

induction we are done. Q.E.D.

Proposition 3.12: Suppose 9 is a bounded domain such that D(9)c3(9).

Let q be a polynomial that has all its zeros in 9. Then qD(9,zo) is a finite

codimensional closed subspace of D(9,zo) that is invariant under multiplication by

2. Furthermore the codimension of qD(9,zo) in D(9,zo) is the degree of q.

Proof: Suppose q is a polynomial that has all its zeros in 9. Let the degree of q

be n and let zl, , 2", be the distinct zeros of q. Denote the multiplicity of the zero of q

at 21- by It} for each j.

Let E= ("2 {Ker Azj,k:k=0,°",kj-1if Zj¢20; k=l,"°,kj if Zj=Zo}.

j=1

Then, obviously, qD(9,zo) c E. To see the other inclusion, assume that fe E. Then

i l _
q e H(9) and q(20) -O.
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Since D(9) :3(9) and q is bounded away from 0 near 89, *5 e D(9,zo). Hence f

e qD(9,zo) and so qD(9,zo) = E. Being an intersection of it closed subspaces whose

codimension is l, qD(9,zo) is a closed subspace of D(9,zo) with codimension S n .

Since qD(9,20) is invariant under multiplication by 2, we proved the first part of this

proposition.

In order to prove that qD(9,zo) has a codimension n in D(9,zo), we must show

that the set of n bounded linear functionals H defined by

H= jg I 2,1”), : k=0, ---,k,-- 1 if zjezo; k= 1, -.-,k,- if zj=zo}

is linear independent in D(9,zo)*. To prove that H is a linearly independent subset of

D(9,zo)*, it suffices to show that, for each T in H, there is a function f in D(9,zo)

such that T(f)= l and S(f)=0 forall S in H\{T}.

Let T e H. Without loss of generality, we may assume that T = 221,), where k is

either a fixed element in {1, , k1}(if 21 = 20), or a fixed element in [0, , k1 - 1 } (if

21 at 20). We first assume that z; = 20. Let f= g p where

8(2) = [ (z - 22)(z - 23H: - ztn) ]"

and p(z) = a1(z - 21) + + ak1(z - 21)"1

where all, , (1" are constants to be determined so that 50‘) = 0 for all S in H\{T}
1

and T(f) = 1. From the definition of f, it is easy to see that 221.4(1) = O for all j = 2, ,

m and corresponding I '8. So we want to find all, , (1k satisfying f (’ )(zl) = 0 for
1

all I in [1, 2, ,kl} \ [k l and f(”(21) = 1. By direct calculation, we can see that this

problem is equivalent to solving a k1 by k1 linear system of the form

M [a], a2, ... 9 akI] = [ 0, ... 9 or 19 0: ... ,0] (3°13)
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where [ ...] is a column vector in C"1 , the l in the right hand side vector of (3.13) is

inthe It:th slot, and M isa k1 by k1 matrixwith

ldet M l = h! - (k1 - 1)! 2! - (g(21))k1 1.- 0.

Hence the linear system in (3.13) has the unique solution and so H is linear independent

in D(Q,zo)*.

Now assume 21¢ 20. Let f= g p where

8(2) = [ (Z - 22)(Z - 23)°"(Z - 2m) l"

and D(Z) = 01(2 - 21) + 4" o11:1(1 - 22)"l - 011(20- 21) - - o0:1(20' 1’2)"1

where 011, , “*1 are constants to be determined so that S(f) = O for all S in H\{T}

and T0) = 1. As before, this problem is equivalent to solving a k1 by k1 linear system

of the form

M [“19 “29 "° 9 akll = I: 09 "° 9 09 19 O9 ... 90] (3014)

where [---] isacolumn vectorin 61,111: 1 inthe right hand side vector of (3.14) is in

the (k-i-l)th slot, and M is a 1:1 by [:1 matrix with

ldetM|=(k1 - 1)! -(k1 -2)! 2! - (g(zl))k1 - (20-29161 :2 0.

Thus the linear system in (3.14) has the unique solution and so the linear independency of

H in D(Q)* is proved. Q.E.D.
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Proposition 3.12 is true when 9 is a bounded domain with an analytic boundary

by Corollary 2.8. Furthermore we will prove in next theorem that all of the finite

codimensional closed subspaces of D(9) that are invariant under multiplication by z are

of the form 40(9), where q is a polynomial with all of its roots in 9.

Theorem 3.15: Suppose Q is a bounded domain whose boundary consists of

m+1 mutually disjoint analytic curves. Let E be a finite codimensional closed

subspace of D(9) that is invariant under multiplication by 2. Then there is a

polynomial q that has all of its zeros in Q such that E = qD(Q).

Proof: Define anoperator T:D(Q)/E —)D(Q)/E by T(f+E) =zf+E. The

invariance of E implies that T is well defined. Since T is an operator on a finite

dimensional space, there is a nonzero polynomial h, with degree at most dim (D(9) IE),

such that 120') = 0. Since h(T)(f + E) = hf+ E for all f in D(Q), hD(Q) c E. Factor

h as h=qk where q is apolynomial that has all ofits zerosin Q and k isa

polynomial that has all of its zeros in C \Q.

We claim that [:D(Q) is dense in D(Q). Note that (z - l)D(Q) is D(9) if h

eC\-£_2-, and (z - l)D(Q) is dense in D(9), by Theorem 3.9, if k e an. Let M and

2.2 be two roots of k. We will show that

  

(2 - MXZ - 12)D(Q) = (z - 100(9) - (3.16)

  

The inclusion (z - 2.1)(2 - 12)D(Q) c (z - 11)D(Q) is obvious since 2 e

M(D(9)).

Inordertoprove the otherinclusion, let e>0 and let sup{lz-MI: 26 Q } =K.

 

Let fe D(9) = (z - 100(9) . Then there is a function g e D(9) such that



35

 

u (z - mg -f "D(9) <%. For g e D(Q) = (z - Mom) ,there is a sequence of

functions { gn } in D(9) such that ll (2 - 2.2)gn - g "D(Q) —) 0 as n -9 co. Since the

inclusion map from D(9) into 3(0) is bounded, we have ll (2 - 1mg" - g "3“» -) O as

n —) co. Hence there is a function go in D(Q) such that

u (z - 1.2)g0- g "0(a) <33]? and n (z - k2)go - g "3(a) < g .

Therefore 11 (z - klxz - 1.2)“ 4110(0) 5

N (Z - 3«1) [(2 - 3&80' 8] "0(0) + ” (Z ' A4).? -f "D(9) 5

N (Z - 1.2)80 - g "3(9) + K ll (2 - Mgo- g "Dan-1' ll (2 - 3.93 -f "D(Q) < 8.

 

Thus f is in (z - 2.1)(2 - 2.2)D(fl) and so we proved (3.16). Since k has only

finitely many zeros, we can conclude thatm=0(0) by repeating a similar argument.

Suppose f isin qD(Q)=q (kl—5823). Then f= qg for some g inD(Q). For g,

there is a sequence of functions {gn} in D(Q) such that ll k g" - g "D(9)—m as n -—> 0.

Hence

" 4k 8n'fl'om) = " 4k 8;. ' 48 "0(0) = " 406 8;. ' 8 ) "D(9)

S ll q' (k gn- g ) + q (k g" - g )' "3(9). (3.17)

Since (1 and q' are bounded on Q, and the inclusion map from D(9) into 8(9) is

bounded, the right hand side of (3.17) approaches 0 as n -) 0. Hence q(kD(Q) ) c

qu(Q) . Therefore
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thn)= (NW) C W= 1272223") c E. (3.18)

Hence dim (D(9) 140(9) ) =degree ofq by Proposition 3.12

Sdegreeofh Sdim(D(Q)/E) bythechoiceofh

s dim (D(9) /qD(Q) ). by (3.18)

Hence dim (D(9) /qD(Q)) = dim (D(Q) IE) and so, by (3.18), E = qD(Q). Q.E.D.

Cor 3.19: Let E be a finite codimensional closed subspace of D(9) where

Q is a finitely connected bounded domain with an analytic boundary. Then the

following are equivalent.

(1) 2E c E

(2) tpE c E for all (p e M(D(9))

(3) E = qD(Q) where q is a polynomial with all of its zeros in 9.

Proof: (1) implies (3) by Theorem 3.15. (3) implies (2) since tpE=tqu(Q)=

qtpo) c qD(Q) = E. And (2) implies (1) trivially. Q.E.D.

Hence we can conclude this chapter as follows: Suppose Q is a finitely connected

bounded domain with an analytic boundary. If E is a finite codimensional closed

subspace of D(9) that is invariant under any multiplication operator Mg» then E is of

the form qD(Q) where q is a polynomial with all its zeros in Q.
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We conclude this thesis by raising a few questions. For which domain (2 is

D(Q)CB(Q)? Is Corollary 2.17 true for any domain 0 in C? Suppose Q is a bounded

domain in C such that no connected component of 80 is equal to a point. Then the finite

codimensional invariant closed subspaces R(9) are of the form qD(Q) where q is a

polynomial with all of its zeros in (2; see [4], Theorem 5. Can Theorem 3.15 be

generalized as in case of Bergman spaces?
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