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ABSTRACT

DIRICHLET SPACES ON FINITELY CONNECTED DOMAINS
By
Young-Chae Nah

Suppose Q is a finitely connected nonempty domain in C such that no connected
component of 0Q is equal to a point.

In the second chapter we show that ©,(Mg), the essential spectrum of a
multiplication operator My, on the Dirichlet space D(R), is equal to cl(¢; 9Q), the cluster
setof ¢ on dQ. In order to prove this equality, we first show that, if Q has an analytic
boundary, then the set of rational functions in D(Q) whose poles are off Q is dense in
D(Q) and D(RQ2) is contained in B(X2), the Bergman space on €. And then we prove
6.(My) = cl(p; Q) when Q has an analytic boundary. By the conformal invariance of
6.(Mp) and cl(g; 9Q2), we have the desired equality.

The next chapter characterizes the finite codimensional closed invariant subspaces
of D(L2) under any multiplication operator when Q has an analytic boundary. We show
that those subspaces are of the form gD(2) where ¢ is a polynomial with all its zeros in
Q. To prove this we show that (z - A)D(RQ) is dense in D(Q) for any A in dQ when
Q has an analytic boundary. Here we use the result from Chapter 2; namely
R(Q)ND(R,zp) is a dense subset of D(R,z)) where R(Q) is the set of rational functions

whose poles are off Q.
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CHAPTER 1
PRELIMINARY

In this chapter, we will introduce some definitions, notations, and basic facts about
the Dirichlet space. Throughout this thesis, 2 will denote a domain, namely a nonempty

open connected set in the complex plane C, such that no connected component of dQ is

equal to a point.

The Bergman space B(Q2) is the Hilbert space of analytic functions f on € such
that AIfIZdA < oo, with the inner product

<f,g>8(0)= Lfg dA 1.1

where dA denotes the usual area measure on 2.

Let zo bein Q. The Dirichlet space D(R,z,) is the Hilbert space of analytic
functions f on Q such that i[)l f'2dA <o and fizg) =0, with the inner product

<f.8>pq)= !‘ f'g'dA. (1.2)

Changing the distinguished point z, gives a space that is obtained from the original
by subtracting a suitable constant from each function. We will use D(£2) instead of

D(Q,zp) if the distinguished point is irrelevant.
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The square of the Dirichlet norm of f is just the area of the image of Q under f,
counting multiplicity.

We will use Il fuf) todenote [ |f'2dA even when fe H(Q)\D(Q,z))
Q

(Q)
where H(Q) is the set of analytic functions on Q.

It is well known that point evaluation maps on B(£2) (see Conway [8], Chapter III,
Corollary 10.3) and D(S2) (see Taylor [14]) are bounded. Here we will prove the

boundedness of point evaluation of each derivative on D(X2).

Lemma 1.3: Let z€ Q and let ne NU{0}). Then the map A;,:D(RQ, zp) =
C defined by Ayn(f)=f")z) is a bounded linear functional.

Proof: Let ze Q. First assume n=0. We will use A, instead of A, Let I’
be a rectifiable pathin Q from z, to z. Then

AN =R = i‘f'(w) dw | < (lengthofI') sup{ If'Wl:we I'}). (14)
Since I' is a compact subset of £, there exists » > 0 such that the distance between I'

and JQ is bigger than . Let g e B(Q2) and let B(w,r) be the opendiskin C centered

at the point w with radius r. Foreach we I,

g S = [1g( 1) dAG) by the mean value property
T Bw.r)
L g inequali
s rr 8l qy by Hoélder’s inequality

Since f'e€ B(2), there is a constant K, which depends only on I' and K, such that



the right hand side of (1.4) < KIIf'IIB(Q)—K IlfIlD(Q)

Therefore the point evaluation map A, is bounded.

Now let n>1. Choose 8>0 such that B(z,5) c Q. Here B(z,5) denotes the
closure of B(z,8) in C. Since {A,: wedB(z,5)) is a subset of the dual space D(Q,zp)*
and sup{ | A,,(f)|:wedB(z,8)} < oo forall fe D(Q,z;), by the Uniform Boundedness
Principle, there is a constant K such that sup{ A, ll : w € 9B(z,5)} < K.

Hence Ifiw)l < 1A Wflpgy S KIflipqy forall fe D(RQ,zp) and for all
weoB(z,5). By the Cauchy Formula,

Aea(H)1=1 D)1 < 2 j—é—zlﬁ i < 2 KNflg,

forall fe D(Q,z5). Q.E.D.

Using the same argument as in the proof of the above lemma, we can prove that
every norm bounded subset of D(2,z) is uniformly bounded on each compact subset of
Q. In a normed vector space, every weakly convergent sequence is norm bounded. Hence
we get the following lemma by the normal family argument.

Lemma 1.5: Let ne NU{0}. If {f,,) is a sequence in D(Q,z;) converging
to f weakly, then f::')a ™ uniformly on compact subsets of Q as m — oo.
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Remarks: (@) If {fa},c s is a bounded net in D(2) such that f, converges to f

weakly, then we can still apply the normal family argument to prove that fé”) -f (n)
uniformly on compact subsets of Q forall ne N.
(b) A weaker version of the converse of the above lemma will be discussed in

Lemma 3.3.

An analytic function ¢ on Q is called a multiplier of D(Q,z) if @D(R,zp) C
D(Q,zp). We denote by M(D(R,z,)) the set of all multipliers of D(L,z,). For any
multiplier @, the linear transformation M‘p : D(Q,zp) » D(L2,zy) defined by Mg f=9f
is bounded; this follows from the Closed Graph Theorem and the boundedness of point
evaluation maps. Mq, is called a multiplication operator. Giving each function in
M(D(K,z;)) the operator norm of the corresponding multiplication operator makes
M(D(R2,zp)) into a normed space. Standard references for M(D(U)) are [13] and [14];
here U denotes the open unit disk in C.

If ¢ € M(D(R,zp)), then ¢ is in the set of bounded analytic functions H°°(Q)
with |1 @ ll, < Il Mll (see [10], Lemma 11). But the converse is not true. Actually
M(D(U)) is not even closed under |l - ll,, norm (see Axler and Shields [5], Theorem 10).

Lemma 1.6: If Q is bounded, then @' € B(Q2) and ¢-9(zy) € D(Q,z;) for
all ¢ e M(D(Q)).

Proof: Let ¢ € M(D(Q)). Since Q is bounded, z - z9 € D(£2). Thus [(z - zp)®]'
=@+ (z-29)¢' isin B(Q). Since @ is bounded, (z- zg)¢' isin B(2). Choose r>0
such that B(zp, r) € Q. Then



o> [ lz-zpRlp'RdA > [ lz-zRlp'2 dA + r2 | Ip'2dA.
Q B(zo,7) Q\B(zo, 1)

Hence | lp'RdA <. Since @' is bounded on B(zq,7), @' isin B(Q2). Now the
Q\B (20, f)
second assertion follows immediately. Q.E.D.

The following lemma can be proved using change-of-variables.

Lemma 1.7: Let Q, and Q, be two domains in C andlet zye Q, and
wo € Q,. Suppose V is a conformal mapping from S, onto Q, such that y(wg) =
zg. Then

(1) The composition map Cy;: D(R,,z9) = D(Q2,,wq) defined by CyH = v
is a unitary map.

(2) The composition map C,‘,: M(D(L2y,2g)) = M(D(S2y,w,)) defined by C",((p)

= Q- is an onto isometry.

For the open unit disk U in C, the spaces D(U,0) and B(U) can be described in

terms of Taylor coefficients using (1.1) and (1.2); namely

1f lpwoy=% X nla,?, (18)
ISl == P . (1.9)

where f(z) =E,oanz". Hence we have D(U,0) ¢ B(U). For a simply connected domain
Q, there are some equivalent conditions to D(Q2) c B(Q2) (see Axler and Shields [5],

Theorem 1).
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Denote the annular region in C centered at 0 with the inner radius >0 and
outer radius 1 by A,. Suppose fz)= X a z". Then I fnf,mr), I fufmr) can be
n=00
written in terms of the Laurent series coefficients similar to those which are in (1.8) and
(1.9). The formulae are given in the following lemma, which can be proved by direct
calculation.

Lemma 1.10: Suppose f(z) = i az"
=00
() If fe DA,Nr), then

1y =T 3 nla,1-r 21 (L.11)

) If fe B(A,), then

12

la
I fll;(Aﬂ:nnE—l —B(1-22) - 21 la | logr. (1.12)

If the infinite series (1.11) converges, then so does the series (1.12). Hence we
have D(A ,ﬁ/-;) c B(A,). Now, by the Closed Graph Theorem, the inclusion map
I:D(A,)) = B(A,) is bounded.

The next lemma establishes some equivalent conditions for D(2) < B(2) when Q
is a bounded doubly connected domain in C. These results can be proved as Theorem 1 in
[5]. Recall that any doubly connected domain is conformally equivalent to some annulus
(see, for example, Axler [1], Doubly Connected Mapping Theorem on page 255).
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Lemma 1.13: Let Q be a bounded doubly connected domain in C, and let z,

€ Q. Suppose Vv is a conformal mapping from A, onto Q for some r>0. Then the

Jfollowing are equivalent.

(1) D(Q,2) € B(Q)

(2) zD(R,z5) € D(Q,z;)

(3) ¥ DAy, ¥'l(z0)) c D(Ay, ¥ l(z9))
@) v'D(Ar, v'l(z9)) cB(A))

Remarks: (a) (1) and (2) are equivalent for any bounded domain €.

(b) (3) and (4) are equivalent for any bounded domain Q ; namely if y € H (Q2)
where Q is a bounded domain, the two statements y € M(D(L2)) and y'D(Q) c B(Q2)
are equivalent .

(c) Suppose Q in the previous lemma has an analytic boundary; namely Q has
two analytic curves as a boundary. Then Wy can be extended analytically up to dA, by
Schwarz Reflection Principle. (For the definition of an analytic curve and the analytic
extension of W, see page 12 of this thesis.) Hence W'l is bounded on A, and so
condition (4) in the above lemma is satisfied. Here we used the fact that D(A ,-,\/?) c
B(A,). Therefore we have D(Q) c B(Q), z isin M(D(Q,z)), and especially y e
M(D(A,)). In Chapter 2, we will see that D(Q2) c B(Q2) when Q is a finitely connected
domain with an analytic boundary.

(d) For any domain Q, if D(Q2) c B(f2), then the inclusion map I : D(Q)—B(Q2)
is bounded by the Closed Graph Theorem.



We do not know exactly when the inclusion map 7 :D(2) c B(2) is compact.
For simply connected domains, Axler and Shields got some results (see Axler and Shields

[S]). For doubly connected domains, we have the following lemma.

Lemma 1.14: Let Q be a doubly connected domain and let y be a conformal

mapping from A, onto Q for some r > 0. Then the following are equivalent.

(1) The inclusion map I : D(QQ) — B(K) is compact.
(2) The multiplication operator Mv' :D(A,) = B(A,) defined by
My'( f)=vf is compact.

Proof: Define an operator T : B(Q2) — B(A,) by T(g) = y'(g-y). Then, by
change-of-variables, T is isometry . Let h e B(A,). Itis easy to see that (“% h)wyl is
the preimage of h under T, again by change-of-variables. Hence T is a unitary map.
Note that M,'* CV =T+l on D(QQ) where CV is the composition map as in Lemma
1.7. Since C,', and T are both unitary, (1) is equivalentto (2). Q.E.D.

We proved that a point evaluation map on the Dirichlet space is bounded in Lemma
1.3. When Q is either U or A,, we can find A, explicitly by direct calculation.
Suppose Q=U and ze U. Then A, defined by

1

A, W) =1 log (1.15)

l-zw

is the point evaluation map at z on D(U,0).
When Q=A, and ze A,, A, defined by



Ly 0" A
W) =g Ty W " (1.16)

is the point evaluation map at z on D( A,-,\f; ). It does not seem possible to express the
infinite sum in (1.16) in closed form.



CHAPTER 2

ESSENTIAL SPECTRUM OF MULTIPLICATION OPERATORS

Recall that an operator T on a Hilbert space H is called Fredholm if the kernel of
T and H/TH are both finite dimensional vector spaces. These conditions imply that T
has closed range (see [6], Cor 3.2.5).

Suppose T is an operator on a Hilbert space H. The essential spectrum of T,
denoted ©¢(T), is defined to be the set of complex numbers ¢ such that T - ¢ is not
Fredholm. ©¢(T) is precisely the spectrum of T in the Calkin algebra L(H)/K(H) where
L(H) denotes the set of all bounded operators on H, and K(H) denotes the set of all
compact operators on H (see Douglas [9]).

If ¢ is an analytic function on Q, then the cluster set of ¢ on 9%, denoted
cl(@;09), is the set of complex numbers ¢ such that there exists a sequence {z,} in Q

such that z, tendsto dQ and f(z,) & c as n—> oo,

Suppose G is any open set in the complex plane C such that no connected
component of dG is equal to a point. On the Bergman space B(G), Sheldon Axler
showed that ce(Mq,) = cl(¢;0G) when @e M(B(G)) (see Axler [2], Theorem 23). No
result of this generality is known for the Dirichlet space. If Q is a bounded simply
connected domain, and if @ is a multiplier of D(S2), then ce(Mq,) = cl(9;0G) (see Axler
and Shields [S], Theorem 11). In this chapter, we will prove that the same conclusion
holds when Q is a bounded finitely connected domain (with an analytic boundary) and ¢
is a multiplier of D(Q).

10
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Suppose Q is bounded. If Mg, : D(Q.z9) & D(2.zy) is a multiplication operator
and ce(Mq,) = cl(@;0Q), then Mq, is also a multiplication operator on D(£2,z,) for any
2,€Q and has the same essential spectrum; namely the essential spectrum of a
multiplication operator on the Dirichlet space does not depend on the choice of the
distinguished point. Furthermore the essential spectrum of a multiplication operator is

conformally invariant in the following sense.

Lemma 2.1: Suppose Q, and S, are domains in C and v is a conformal
mapping from K, onto K, such that y(zy) = wy. Suppose @ € M(D(Q,,wy)) and
Oe(Mg) = cl(p;02). Then @y € M(D(Ky,2p)) and Ce(Mpuy) = cl(@-y;0Q,).

Proof: Define composition operators C,, as in Lemma 1.7. Even though we are
using the same notation for two different composition operators, which one we mean will

be clear by the context. The fact that @-y € M(D(£2,,zy)) is the result of Lemma 1.7.
We will prove that

Oe(Mg) = Ce(Mg.y) (2.2)
and cl (¢;00)) =cl (p-y;0Q,). (2.3)
To prove (2.2),let A e C. Forall g e D(,,w),
(Cy*Mp—D) (8) = (Mguy—A)"Cy) (3)- (2.4)
Since Cv is a unitary map, (2.4) shows that ce(Mq,) = O'e(M(p-\y)-

Now, to prove (2.3), let A € cl (p-y;0Q,). Then there is a sequence {z,} in Q,

such that z, —0Q; and @-y(z,) > A as n — oo, Since {y(z,)} is a sequencein Q,,
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and y(z,) & 9, (maybe some subsequence of {y(z,)}), A € cl(9;0Q,). Hence
cl(@-y;0Q,) c cl(9;02,). The other inclusion can be proved similarly. Q.E.D.

By an analytic curve, we mean the image of the unit circle in C under a one-to-

one function analytic on a neighbourhood of the unit circle.

Lemma 2.5: Suppose Q is a bounded doubly connected domain with an
analytic boundary. Let ¢y be a conformal mapping from Q onto A, for some r.

Then ¢ and y ! can be extended analytically up to 0Q2 and J0A, respectively.

Proof: A well known extension of Jordan Curve Theorem (see, for example,
Koosis [11], page 53) says that y has a continuous and one-to-one extension up to 9.
Suppose dQ = I'gUI'; where Iy is the boundary of the unbounded component of
S2\ Q. Since I'; is an analytic curve, there exists a neighbourhood N; of oU and a
one-to-one analytic function ¢; on N; such that ¢,(0U) =I';. We may assume that
9,(UNN,) isin Q. Note that W@, is analyticon UNN; and continuous on U NNj.
Since hy+@,(z)| = r as z — 9U, by the Schwarz Reflection Principle, W@, has an
analytic extension up to dU. Suppose N;' is a neighbourhood of 9U on which .o, is
analytic. Then y-@;+@,’! is an analytic extension of Yy on @(N;NN;). Similarly we
can extend W analytically up to I'o.

Note that @, 1.y -1 is analytic on a neighbourhood in A, of {zeC:lzl=r) and
continuous up to {ze C: Izl =r}. Since lp; 1.y 1(z)l > 1 as lzI> r, by the Schwarz
Reflection Principle, @; 1.y -1 has an analytic extension up to {zeC: Izl =r). Suppose
N, is a neighbourhood of {ze C: Izl =r} on which @ l.y ! is analytic. Choose a
neighbourhood N;' of {zeC:lzl =r) such that No'c N3 and @, l-y 1(N2) c N;.
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Then @@, 1.y ! is an analytic extension of y-! on N,. Similarly we can extend
v ! analyticallyupto {zeC:lzl=1}. Q.E.D.

Suppose Q is a bounded simply connected domain in C (or an interior of the
complement in 82 of a bounded simply connected domain in C) with an analytic
boundary. We claim that each { in dQ belongs to a closed ball contained in the
complement of . (This condition is called the external ball condition.) Let y bea
conformal mapping from Q onto U. Then, by the above lemma, y can be extended
analytically to some neighbourhood G of Q. Define a function @ on y(G) by @(z) =
Iz2 - 1. Then @-y iscalleda C* defining function of Q; namely @-y is a real-valued
C> function on some neighbourhood O of dQ satisfying following three conditions: (i)
QNO=(ze Q:@y(2) <0); (ii) IR N O ={ ze Q: P-y(z) = 0}; (iii) the gradient
vector of @y on dQ is never 0. Note that the tangent line of dQ at { is perpendicular
to the gradient vector V @-y({). Now, to prove the claim, we may assume that 0 € dQ
and the tangent line of dQ at O is the real axis. Then near 0 in R, dQ is the graph
(x, A(x)) ofa C™ function A defined on a neighbourhood of 0 in R, where A'(0) =0;
this follows from the implicit function theorem. Since A'(0) =0, IA(x)l = O(xI2) as x—0
by Taylor's Theorem. Hence the external ball condition at 0 is satisfied. Actually the
external ball condition is satisfied when Q has a C2 boundary (see, for example, [4],
Chapter 10).

Let Q be a bounded domain in C whose complement (in S2) consists of exactly
m+1 nontrivial components where m is a positive integer. Then m+1 applications of the
Riemann Mapping Theorem produce a one-to-one holomorphic mapping of Q onto a
bounded domain whose boundary consists of m+1 mutually disjoint analytic curves.

Hence, as far as the essential spectrum is concerned, by Lemma 2.1 we may assume that
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Q is a bounded domain whose boundary consists of m+1 mutually disjoint analytic
curves.

Let Q be a bounded domain whose boundary consists of m+1 mutually disjoint
analytic curves. The following notation is used throughout this thesis. The m+1 mutually
disjoint analytic curves consisting of dQ will be denoted by Iy, I'y, -+ , I'y, where T
is the boundary of the unbounded component of S2\Q. Qq, or sometimes Uy, will be
used to denote the bounded component of SZ\I’O, and U; will be used to denote the
unbounded component of Sz\l‘j foreach j=1,..,m. And we will also denote
Qo Uj by Q; foreach j=1,.-,m.

Lemma 2.6: Suppose Q is a bounded domain in C whose boundary consists
of m+1 mutually disjoint analytic curves. Let zoe Q. If fe D(Q,zp), then there is
a function f; in D(Q_,-,zo) foreach j=1,2, . ,m, such that f=fo+ fi + -+ fn
on Q.

Proof: For simplicity, we will prove this lemma when m=2. Let ze Q, and
let 7, 7, and 7, be mutually disjoint smooth simple closed curves in Q so near I,
I';, and T, respectively that z is interior to 7, for each j=0, 1,2. (7, is oriented

counterclockwise, 7, and 7, are oriented clockwise.) By the Cauchy Formula,

1 £ 1 f@© 1 f@©
T 2mi { -2 @ + 2mi L -z d§+2m. L -z % @7
%o L6} 72
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We will denote the (j+1)th integral in (2.7) by 8j (z) foreach j=0,1,2. Then 8j (2)
is independent of the choice of 7 andisin H(U;). Let f;(z) =g;(2) - gj(zp). Then
fjisin H(Q;) and fj(zg) =0 for each j. Let Ag, A;, and A; be mutually disjoint
connected neighbourhoods of I'y,T";,and I, in Q respectively. Now we will prove
that |fy'l is square integrable on £ with respect to the usual area measure dA.

On Q)\Ay, fy' is bounded. On Ay, If', If;'l, and |f,'| are square integrable and f{'
=f"'-fi'-f2'. Hence |fy'| is square integrable on €, and so f, is in D(Ly,z0).
Similarly we can prove that f; € D(Q,,z;) and f, € D(£,,25). Q.E.D.

Remark: Since D(Q) is conformally invariant, Lemma 2.6 is true when Q is any finitely

connected domain.

Corollary 2.8: Suppose Q is a bounded domain whose boundary consists of
m+1 mutually disjoint analytic curves. Then D(2) c B(2) and z € M(D(X2)).

Proof: Let fe D(Q). By Lemma 2.6, f=fo+f1 ++fm where fje D(Q;).
Since each €); is either a simply connected domain with an analytic boundary or a doubly
connected domain with an analytic boundary, by remark (c) following Lemma 1.13, f;
isin B(L;) for all j. Hence fe B(2). Now z e M(D(S2)) follows from remark (a)
following Lemma 1.13. Q.E.D.

Let P(S2) be the set of polynomials. Then (1.8) shows that P(U)ND(U,0) is a
dense subset of D(U,0). Also, from (1.11), we can see that

n n
{ X ag/: neNU(0},aje Cforallj=0,%1, ..., +n, Sazd=0}) (2.9)
Jj=-n Jj=-n
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is a dense subset D( A,z;). For a finitely connected domain € with an analytic
boundary, we will prove, in the following theorem, that the set of rational functions in
D(Q,z;) whose poles are off Q is a dense subset of D(Q,z;). Let R(Q) denote the set

of rational functions whose poles arein S\ Q2.

Theorem 2.10: Suppose Q is a bounded domain whose boundary consists of
m+1 mutually disjoint analytic curves. Let zp be in Q. Then R(Q)ND(,zp) is a
dense subset of D(R2,zq). If Q is simply connected, then P(Q)ND(L,z,) is dense in
D(Q,zy).

Proof: Let fe D(Q,zp). By Lemma 2.6, there is fje D(Qj,zo) for each j=0,

1, ,m suchthat f=fo+f, + +f, on Q Let €>0. For €, there is a conformal
mapping W, from €, onto U such that y(z;) =0. By Lemma 1.7,

fo'¥a € D(U,0).

Since P(U)ND(U,0) is dense in D(U,0), there is a polynomial p € P(U)ND(U,0) such
that

- €
1 for¥o =P gy <3ty

By Lemma 1.7, the composition map Cy,, is a unitary map from D(U,0) onto D(,20).

Hence

/o~ PWollp(gy=! (for¥p - P¥lpg =1 fo¥y - Plipgy < 2(%1) . (2.11)
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Since I’y is an analytic curve, y, extends to be analytic to a simply connected
neighbourhood G of the closure of €2, by Lemma 2.5. Hence p-y, is analytic on G.
By Runge's Theorem, there is a sequence of polynomials {p,} that converge to p-y,
uniformly on compact subsets of G. Therefore p,' converges to (p+y,)' uniformly on
the closure of €, and so p, convergesto p-y, in D(£,zo). We may assume p,(zq)
=0 for all n, by replacing p,(z) by p,(2) - pp(zp) if necessary, because the constant
term does not contribute to the Dirichlet norm. Hence there is a polynomial p, in

D(L4,z) such that

I I _£_
P*VYo-Po D(Qy) < 2m+l)

By the triangle inequality and (2.11), Il fo- pO"D(Qo) < i—l- . Note that this proves the
second part of theorem.

Now fix j=1,2,,m. Since ; is doubly connected, there is a conformal
mapping ; from £; onto A, for some r. Let wp=V;(z0). By Lemma 1.7,

fi* V€ D(Apwo).

Denote the setin (2.9) by R(A,,zp). Since R(A,wp) is dense in D(A,,wp), there is
hje R(A,wp) that is analytic on a neighbourhood of the closure of A, such that

-1 €
1552 ¥] - hillpga y < 30msy

By Lemma 1.7,

-1 -1 €
15-by* Wilpg,y =1 (5 ¥ - ) Wflp oy =1 1= ¥ = hilpqa,) < gy (2.12)
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Since dQ; =I'oLI; and Io,I; are analytic curves, y; extends to be analytic to some
neighbourhood G of the closure of £; by Lemma 2.5. Choose a compact subset K; of
G such that Sz\Kj has two connected components and

the closure of Q; C the interior of K; < K

Then, by Runge's Theorem, there is a sequence {r,} of rational functions whose poles
are off Kj suchthat r, convergesto h;\; uniformly on K;. Hence r,' converges to
(hj* ;)" uniformly on the closure of €; and so r, converges to h;*V; in D(Q;).
Again r,(zp) may be assumed to be O for all n. Therefore we can choose a rational

function r; whose poles are off K; such that

€
W ke - rj ||D(0j)< ZmeD)

_€
m+1l°

Hence, by the triangle inequality and (2.12), Iif; - r; IID(Q. )<
J
After choosing r; foreach j, let r=po+ ry+--+ r,. Then r isin

R(Q)ND(£2,zp) and
hf-r IID(Q) < lljo-po "D(Qo) + lfi-n "D(Ql) +eot Nfp-Tm "D(Qm) < E
Hence R(Q)ND(L2,zy) is a dense subset of D(Q,z;). Q.E.D.
Now we are ready to prove our main theorem of this chapter.

Theorem 2.13: Suppose Q is a bounded domain whose boundary consists of
m+1 mutually disjoint analytic curves and let zye Q. Let ¢ € M(D(K,zp)). Then
Ge(Mg) = cl(;0Q).
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Proof: By Lemma 2.1, we may assume that I'g= oU. We first will show that
cl(9;0Q) < 6e(Mg). It suffices to show that if 0 € cl (¢;0Q), then M ¢ isnmota
Fredholm operator. Suppose 0 € cl(9;dQ2) and Mgy is Fredholm. Let (z,} bea
sequence in Q such that z, — dQ and ¢(z,) = 0. Then thereisa j such that z,— I.
(Use a’subsequence of {z,}, if necessary.) Suppose y; is a conformal mapping from
U onto Uj. Let 0=V (z). Then &ty — U and Q(Wj{0)) = P(z,) = 0 as n — oo,
Let A, be the point evaluation map at z on D(U,0). Then, by (1.15),

1
] Ul D) = <Xz M>D(U) = kz(Z) = logl 12

Hence

A "D(UO)—)oo as n — oo,

By the Uniform Boundedness Principle, there is a function fe D(U,0) such that

supl <f,A D(UO)

Therefore there is a subsequence of {c,}, for which we will use the same notation {c,},
such that

hm|<f7\.

n—eo D(U 0) hm | floey) | = oo (2.14)

Let Q* = \v'jl(ﬂ). Let k, be the point evaluation mapping at z€ Q* on D( Q*,w)
where wo=\|fj‘(zo). Since flge - fiwo) € D(Q*,wy),

IR, - Awp) 1 =1 <f|n., - flwo), I&n >D(Q*)| < "f|D(U) I I&"ID(Q*) (2.15)
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By (2.14) and (2.15), |l ﬁ“l —> o0 as n — oo, Define a function f, by

ID(ﬂ")

k

Qn

fa=

kg lp ey

foreach n € N. Weclaim that f, & 0 weakly in D( Q*,wp). We must show that
<fn,8 >D(Q,,) — 0 forall ge D(Q*,wg) as n > oo, Let ge D(Q*,wo). By
Theorem 2.10, there is a sequence (r,} of rational functions in R(2*) N D( Q*,wq)

such that r,,— g in D(Q*,wg). Forall ne N and me N,

| <fn, 8>D(n*)| S | <f,.,g-r,,,>D(O,,,)I + | <f,..r,,,>D(Q,)I

< lf, IID(Q,) Il g-ry "p(g-) + |l <fy ”m>p(g-)"
Let €>0. Choose a positive integer K; such that |l g-7,, "D(g-)< % if m 2 K,. Fix
m 2 K;. Note that
' <f'l ’rm> l = ﬁﬂ.&gﬂu_ .
DAY ik
o, D(Q*)

Since r,, is boundedon Q and |l I&HI —>co as n — oo, there is a positive integer

K5 such that

lD(Q")

€
I<f,,,r,,,>D(n,)l < 35

if n2Kj,. Hence <f,, g8 — 0 and so we have f, = 0 weakly in D( Q*,wg) as

>D@Q)

n — oo, Since we assumed that My is a Fredholm operator on D( Q,2q), M -V isa

Fredholm operator on D( Q*,wp) by Lemma 2.1. Hence there is a compact operator T
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on D( Q*,wp) such that 1 - M(P-\l’j T is compact. Since f, — 0 weakly in D( Q*,w),
we have |l (1- M(M,j T ) IID(Q,)—) 0. Therefore
1- ((p'% )(0n) <T(fn), fn >D(Q"') = <fa- ((p°\|’j YT s fa >D(Q"')

= <=My ) + fa >pgey = 0. (2.16)

But, since (¢-y;)(@n) >0 and | <T(fy) ,fn> DY) I S UTHIf, IID(Q,) = I T ll, the left
hand side of (2.16) approaches 1. This contradiction shows that Mg is not Fredholm.
Hence cl(9;0Q) c 0e(Mo).

To prove the converse inclusion, suppose that 0 ¢ cl(9;0Q), i.e. ¢ is bounded
away from 0 near dQ2. Let z;,--,z, be the distinct zeros of @ in Q. Assume first
that z;jzo forall j. Let m(z;) be the multiplicity of the zeroof @ at z;. Let E be the
subspace of D(£2,zp) consisting of all functions f in D(,zg) such that f vanishes on

{ z1, ... ,z» } with multiplicity bigger than or equal to m(z;) ateach z;. Let fe E. Then
L L =
e H(Q) and v (z0) =0.

Tosee L isin D(Qz), observe that
LY =(f'o-fo')/ ¢

By the remark (b) following Lemma 1.13, the numerator is square integrable on Q.

Since @ is bounded away from 0 near 0Q,

ée D(Q,zp).
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Hence f is in the range of Mg, and so E is contained in the range of M. Note that
E=nN { Ker AZJ"‘ :j=1,~,n and k=0,-, m(z)-1}.

Being an intersection of the kernels of finitely many linear functionals, E has a finite
codimension. Since Ker Mg = {0}, My, is Fredholm.

Now suppose there is j =1, -, n, such that z;=2p, say z; =2o. Then redefine
m(z;) to be (the multiplicity of the zero of ¢ at z;) + 1, and define E as before. Then,
by the same argument, we can conclude that My, is Fredholm. Thus ©e(Mg) C cl(g;0Q).
Q.E.D.

Remark: Note that to prove Ge(Mg) C cl(9;0L2), we used neither the analytic boundary
condition nor the finite connectedness of €2, but the fact that D(2) < B(€2). Hence
Ce(Mg) C cl(9;0Q) is true when @ is a multiplier of D(2) on bounded domains Q in
C such that D(Q2) c B(Q).

By Lemma 2.1 and Theorem 2.13, we have the following corollary.

Corollary 2.17: Suppose Q is a finitely connected bounded domain in C.
Let @ € M(D(Q)). Then Ge(Mg) = cl(9;09).



CHAPTER 3
CLOSED FINITE CODIMENSIONAL INVARIANT SUBSPACES

In this chapter we will study finite codimensional invariant closed subspaces of the
Dirichlet space of a finitely connected domain with an analytic boundary. A
characterization of those subspaces of the Bergman spaces defined on a large class of
bounded domains in C was obtained by Axler and Bourdon in [3]. Also Chan
characterized those spaces on D(2) when Q is a circular domain; see [7]. In his paper,
Chan used a Laurent series expansion to prove his characterization, which cannot be
applied on noncircular domains. In this chapter, we will establish the same characterization
of finite codimensional invariant closed subspaces of D(£2) when Q is a finitely
connected domain with an analytic boundary. Recall we assumed that no component of

0Q is equal to a point.

We start this chapter with the Bergman norm estimation of certain class of functions
on U that will be used repeatedly throughout this chapter.

Lemma 3.1: For r> 1, define a function g, on U by g, =—— 12. Then

(z-r)
sup { Il g, "B(U): r>1}) <eo,

Proof: Let r> 1. Note that

1y mlo,
(z-r)2 n-z__or'l+2z

where the series converges uniformly and absolutely on U.
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Also
©0
=3 2 o121 3.2)
(1-7)? =0 7
z
Hence
©o
+
g uf,(w_ n (r-1)2 zoj’(‘jlm by (1.9)
n=
=xr-4 (r-1)2 ; ntl =nr-4 (r-l)ZL by (3.2)
) n=o’® (r2-1)?2 s
T .1
=+ 12 <z QED.
The following lemma is well known in general function spaces. For later use, we
state it explicitly.

Lemma 3.3: Suppose that {(foa},.4 is a norm bounded net in a closed

subspace H of D(K). which converges to f pointwise on Q. Then fe H.

Proof: By the Banach-Alaoglu Theorem, any closed ball of D(£2) is weak* (hence
weak) compact. Therefore {fy},., has a weak convergent subnet 'f%}Be g Say fap
— g weakly in D(Q2). Hence, by remark (@) following Lemma 1.5, fap(z) - g(2)
pointwiseon Q andso f=g and fap - f weakly in D(Q). But the norm topology
and the weak topology have the same closed convex sets (see, for example, Rudin [12],
Theorem 3.12). Since H is a (norm) closed convex set, fe H. Q.E.D.

Remark: A sequence version of the above lemma is still true. We only need to prove that a
bounded sequence in D(€2) has a weak convergent subsequence. Define an operator
T:D(Q2)—B(Q2) by T(f)=f'. Then T is an isometry. Now, 'since B(Q) is separable,
so is D(€2). Hence any closed ball of D(2) with the weak topology is a metrizable
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compact set (see, for example, Rudin [12], Theorem 3.16) and so any bounded sequence
in D(Q2) has a weak convergent subsequence.

Suppose Q is a bounded domain such that D(QQ) c B(Q). If A isin Q, then
(z - A)D(R,29) is a closed proper subspace of D(Q,zg) that is invariant under
multiplication by z. If ¢ is a polynomial that has all of its zeros in €2, then we will see in
Proposition 3.12 that ¢gD() is a finite codimensional closed subspace of D() that is
invariant under multiplication by z. If A e C\ﬁ, then (z-A)D(Q,z9) = D(Q,29). We
will prove in the following two theorems that (z - A)D(£2,2¢) is dense in D(L,zp) if Q
is a finitely connected domain with an analytic boundary and A € dQ2. These theorems are
key steps toward obtaining a characterization of finite codimensional invariant closed

subspaces of D(£2) on finitely connected domains with an analytic boundary.

By a wedge W) in C, we mean the convex hull of a point A (called the vertex of
the wedge) and an arc of a circle centered at A. We mentioned in Chapter 2 that, if Q has
an analytic boundary, then each boundary point satisfies the external ball condition.
Hence, for each A € 01, there is a. wedge W) in C\Q with vertex at A. Actually, in
order to satisfy this "wedge condition”, 9Q need only be a C! boundary by the implicit

function theorem and Taylor's Theorem.

Theorem 3.4: Let Q be a simply connected domain with an analytic

boundary. Then (z-A)D(Q,20) is dense in D(Q,zp) for every A € 0SQ.

Proof: Let Aed2. We know that P(Q)ND(R,zp) is dense in D(,z9) by
Theorem 2.10. Hence it suffices to show that P(Q)ND(Q,zg) € (z - A)D(LQ,2p), the
closure of (z-A)D(R,z9) in D(Q,z).
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Assume that z-zp € (z- A)D(Q,z9). Then, since (z - A)D(Q,zp) is invariant
under multiplication by a polynomial, and each p € P(Q)N\D(£2,zp) is of the form
q(z - z9) where g € P(Q2), we would have P(Q)ND(2,z9) < (z - A)D(L,z) as desired.

To prove z-2z9€ (z-A)D(,2g) , we first assume that A=1€9dQ. Since 0Q is
an analytic curve, there exists a wedge W, in C\Q with vertex at 1. Assume that there

exist ae(0, 1) and e (0, 45) such that
W, ={zeC:lz-11<2a,-2d <arg(z-1) < 23}.

Let Gi={zeC: | z- (1-a)l < a},
Gy={zeC:lz-bl<a)
where b is the point which is obtained from 1 - a rotating by 8--;— around 1,
and let Gi3={zeC:z € Gy ).
Let re (1, 14 a). Define a function g, by g,(2) = (z 1)7’—13 Then g, (2)
isin (z- 1)D(Q,25). Note that

r(i-r) r-1
(z-r)2 oGz

g&'=1+ 3.5)
Hence, by Lemma 3.1, sup{ll g, "D(Gl)1 re (1,14a)} <o since Gyc U. For ze
G,, let w be the point obtained from z rotating by % -d around 1. Then we G,
Let O =arg (z-1). Then

lwert _ w - 11 + (r - 1)2- 2 Iw - 11(r - 1)cos(6+ 5 - )
lz-ri2 lz-124+(r-1)2-21z-1I(r - 1)cos 6

by Law of Cosines

(1z-114(r-1))2

since Iw-1l=lz-1| and cosd>cosO
lz-1124+(r-1)2-2Iz-11 (r-1) cosd
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(lz-114+(r-1))2
Max { | z-1125in5 (r - 1)2sin?8 }

3.6)

If 1z- 1127 - 1, then the numerator of the right hand side of (3.6) is less than or equal to
41z-1R. When r-12I|z- 1|, the numerator of the right hand side of (3.6) is less than
orequal to 4 (r - 1)2. In any cases, we have

the right hand side of (3.6) < 4 . 3.7

sin%8

Hence there is a constant K such that

[ &r "D(G?_) = | g,' "B(Gz)

SNT + (P2 1)/ (z- r)liggy +z(r-1)/(z-r)lgg, by (3.5

Sﬁ"'s—ifg["(’2")/(2"')2“8(61) +Ilzo(r-l)/(z-r)2IIB(Gl)]
by change-of-variables and (3.7)
<K. by Lemma (3.1)

Therefore sup{ll g, ||D(Gz) :re (1,14+a)) <eo. Sup{llg, "D(G::,) :re (1,1+4a)} <o can
be proved similarly.
On the other hand, note that | z- r | is bounded away from O forall re (1, 1+a)
and for all ze Q\(G; U G2 U G3). Hence sup(ll g, "D(Q) :re (1,14a) ) <eo.
Consider {g},e(1,14q) 2s @ netin D(Q). By the Banach-Alaoglu Theorem,

{8r },e(1,14q) has a weak convergent subnet {g, },., where A is some index set. Note

that 8r, converges to z - 2o pointwise on . Since {8“,‘]‘,‘,E A4 € (z-1)D(Q,20) ,
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8ra(2) = (z - z9) pointwise, and (z - 1)D(,z¢) is a closed subspace of D(£2,2¢), z - 29
isin (z - 1)D(R,29) by Lemma 3.3.

For general A € K, suppose there exist e C,a€ (0,1),and S (0,7 ) such
that Wj={zeC: 1z-11< 2a, arg(tg-A)-20 < arg(z-1) < arg(fp - A) + 23).
Let L={(te C: It-1l<a, arg(t-A)=arg(to-A) }. Define a function g; by

8@ = (-2

foreach te L. Then {g,} < (z - A)D(R,z0), and

t(A-1) zo (2-A)
(z-1)2 " (z-1)?°

& =1+ (3.8)
Let G be the region obtained from Q by rotating and translating so that 1 € dG
corresponds to A and W; corresponds to Wj. For each ¢ in L, there is the unique r in
(1,1+a) suchthat N(A-2)/(z-¢)?lgqy= N (1-r)/(z-r)llgc). By (3.8)
and by the same argument as in case of A =1, sup{ Il g;lip(q): 1€ L} <co. Again, by the

same argument as in case of A =1, (z- z9) € (z - A)D(£2,20). Q.ED.

In the following theorem, we will generalize Theorem 3.4 to the case where Q isa
bounded finitely connected domain with an analytic boundary. The fact that R() N
D(Q, zp) is dense in D(S2, z9) plays a crucial role.

Theorem 3.9: Suppose that Q be a bounded domain in C whose boundary
consists of m + 1 mutually disjoint analytic curves and let zye Q. Then

(z - A)D(R,20) is dense in D(Q,2) for all A € Q.
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Proof: For simplicity, assume m=2. Let A € dQ. By Theorem 2.10, it suffices
to show that

R(Q) NnD(Q,29) c (z - A)D(R,20) (3.10)

The proof of the previous theorem shows that P(Q) N D(Q, zp) € (z - A)D(Q,zp).

Hence, in order to prove (3.10), it suffices to show that

1 1
(z-w)r  (z0-w)"

€ (z-A)D(R,20) (3.11)

where we C\Q and ne N.

Since dQ is an analytic curve, there exists a wedge W, in C\Q with vertex at
A. To prove (3.11), without loss of generality, assume that A =1 and the wedge W, is
of the form {ze C: 1z-11<2a,-20 <arg(z-1) <28} for some g in (0, 1) and J in

(O,Z—:-). And we also may assume that w € C\ﬁ;.

We will show (3.11) by induction. Let n= 1. Define a function A on Q by

__1 1
(z-w) (z0-w)

Then he D(Q,zp). Let r bein (1,1 +a). Since D(Q) c B(Q2), h/ (z - r)e D(RQ,zp).

Note that {(z- 1)h/(z-r)} convergesto h pointwise on Q as r — 1. Hence, in order

to prove that A isin (z - 1)D(Q,z¢) , by Lemma 3.3, it suffices to show that

sup { Il (z- l)rhrllp(n):re (1,1+a)} <oo.
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Note that
Lh . hQ1-P (z - DA’
[(z'l’z ]"(z-r)z oy
1 Qa-n 1 (a-n z-1
T (z-w)(z-1)2 (zo-w)(z-r2  (z-r)(z-w)?
1 1 r-1

= @owz e el * wom Gont
Hence sup { I (z- l}z{'—rllp(a):re (1,L1+a) )} <eo by Lemma 3.1.
Therefore h= — l ¢« @-DD®@Quzg) as desired.

(z-w) ~ (z0-w)

Now assume that (3.11) is true when n=k with we C\Q; and A=1. Let
{§i) beasequencein C\Q; such that §; convergesto w, For cach j, define a function
gj on Q by

1 1 1 1 1

wot; GRS (ZO’W)")-((Z-C;')" TG

&; @)=

Then , by induction hypothesis, 8; isin (z- 1)D(R,z9) forall j. Note that

sup{lig/ll, : je N} <eo
J

since Iz - wl is bounded away from zero and inf{lz - {;I: jeN} >0. Hence

sup {11 g;lipiq): je N} <ee.

Note that 8; (z) converges to
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1 1
k[(z-w)k+l - (zo-w)"+1]

pointwise as j — oo since

(z-Ci)1+ (z-Cj)F2(z-w)+...+(z-w)k!

(z-w)k(z-Cj)k

gj(z) =

(20-8;) 1+ (z0- §; ) 2(z0- W) + ... +(z0- w)k- ! .
(zo- w)k (zo0- §;)*

Therefore, by the remark following Lemma 3.3, (3.11) holds when n =k + 1. By

induction we are done. Q.E.D.

Proposition 3.12: Suppose Q is a bounded domain such that D(Q)cB(Q).
Let q be a polynomial that has all its zeros in Q. Then ¢qD(R,z¢) is a finite
codimensional closed subspace of D(R,zg) that is invariant under multiplication by

2. Furthermore the codimension of qD(2,20) in D(K,zg) is the degree of q.

Proof: Suppose ¢ is a polynomial that has all its zeros in €. Let the degree of ¢
be n andlet z, -, z, be the distinct zeros of g. Denote the multiplicity of the zero of ¢

at zj by k; for each j.
Let E=0 (Ker Ay 0 k=0, k- 1if z#20 k=1,~,k if z=2].

j=1

Then, obviously, ¢D(£2,z9) € E. To see the other inclusion, assume that fe E. Then

L Loy =
g€ H(Q2) and q(zo) =0.
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Since D(Q) c B(Q) and q is bounded away from O near 3Q, 5 e D(Q,z). Hence f
€ gD(Q,z9) and so gD(Q2,zg) = E. Being an intersection of n closed subspaces whose
codimension is 1, gD(,zg) is a closed subspace of D(Q,zp) with codimension < n.
Since gD(£,z¢) is invariant under multiplication by 2z, we proved the first part of this
proposition.

In order to prove that gD(£2,zg) has a codimension n in D(£,zp), we must show
that the set of n bounded linear functionals H defined by

3

H= 61 (Agjok : k=0, k-1 if 2520 k=1, ,k if z=z0)
J=

is linear independent in D(£2,zg)*. To prove that H is a linearly independent subset of
D(R,z¢)*, it suffices to show that, for each T in H, there is a function f in D(Q,zp)
such that T()=1and S()=0 forall S in H\(T}.

Let T € H. Without loss of generality, we may assume that T = A"n”‘ where k is
ecither a fixed element in {1, -, k1 }(if z; = zp), or a fixed elementin {0, -, k; -1 } Gif

2y # 29). We first assume that z; =zp. Let f=gp where

82)=[(z-2)(z-23)(z-2m) ]?

and P(2) = 04(z - 21) + = + O, (z - )M

where o, -, Oy, are constants to be determined so that S(f) =0 forall S in H \{T}
and T(f) = 1. From the definition of f, it is easy to see that 7»:,-1 (H=0 forall j=2, -,
m_and corresponding /'s. So we want to find @, -, o, satisfying fU)(z;) =0 for
all /in (1,2, ,k)}\{k) and f(®)(z;) = 1. By direct calculation, we can see that this
problem is equivalent to solving a k; by k; linear system of the form

M [alo a2, -, akl] = [ 0’ Y O, 1, 0, oo yO] (3.13)
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where [ -] is a column vector in Ck 1 the 1 in the right hand side vector of (3.13) is

inthe kth slot,and M isa k; by k; matrix with
idet MI=ky!-(ky-1)-2!. (g(zl))kl # 0.
Hence the linear system in (3.13) has the unique solution and so H is linear independent

in D(Q,zp)*.

Now assume z; # zy. Let f=gp where

82)=[(z-2)(z-23)(z-2z) 1"

and  p(2) = 04(z-21) + - + gy (2 - )" - @y(20- 21) - - @, (z0- 2!
where @, -, oy, are constants to be determined so that S(f) =0 forall S in H\{T}

and T(f) = 1. As before, this problem is equivalent to solving a k; by k; linear system

of the form
M [a,, 0y, -, akl] =[0,-,0,1,0,-,0] 3.149)

where [ -] is a column vector in Ck 1 the 1 in the right hand side vector of (3.14) isin

the (k+1)th slot,and M isa k; by k; matrix with
Idet M= (ky - 1)! - (ky - 2)! = 2! - (g(z))F! - (29-z1)K1 = 0.

Thus the linear system in (3.14) has the unique solution and so the linear independency of
H in D(Q)* is proved. Q.E.D.
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Proposition 3.12 is true when Q is a bounded domain with an analytic boundary
by Corollary 2.8. Furthermore we will prove in next theorem that all of the finite
codimensional closed subspaces of D(S2) that are invariant under multiplication by z are

of the form ¢gD(£2), where ¢ is a polynomial with all of its roots in Q.

Theorem 3.15: Suppose Q2 is a bounded domain whose boundary consists of
m+1 mutually disjoint analytic curves. Let E be a finite codimensional closed
subspace of D(Q) that is invariant under multiplication by z. Then there is a

polynomial q that has all of its zeros in Q such that E = qD(Q).

Proof: Define an operator T:D(Q)/E - D(Q2)/E by T(f+E)=zf+E. The
invariance of E implies that T is well defined. Since T is an operator on a finite
dimensional space, there is a nonzero polynomial A, with degree at most dim (D(2) / E),
such that A(T) =0. Since W(T)(f+ E)=hf+E forall f in D(Q), hD(Q) c E. Factor
h as h=qgk where g is a polynomial that has all of its zeros in Q and k isa
polynomial that has all of its zerosin C\Q.

We claim that kD(Q) is dense in D(2). Note that (z - A)D(Q) is D(Q) if A
eC\Q, and (z-A)D(Q) is dense in D(RQ), by Theorem 3.9, if A e 9Q. Let A; and
A, be two roots of k. We will show that

(z - M)(z - A2)D(R) = (z-A)D(Q) . (3.16)

The inclusion (z-A1)(z-A2)D(Q) < (z-A1)D(RQ) is obvious since z e
M(D(Q)).

In order to prove the other inclusion, let €>0 and let sup{lz-4;l: ze Q } =K.
Let fe D(Q)= (z - A;)D(R2) . Then there is a function g € D(Q) such that
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H(z-A)g-f Ipq) < % . For g e D(Q) = (z-A2)D(RQ) , there is a sequence of
functions { g, ) in D(Q) such that ll (z-A3)g,- g ip@) = 0 as n — oo. Since the
inclusion map from D(Q) into B(2) is bounded, we have |l (z - A2)g, - g “B(Q) —0 as

n — oo, Hence there is a function gy in D(Q) such that
Il (z - A2)go- 8 "D(Q)<3£K and Il (z-2A2)g0- 8 llpiq) < § .
Therefore Il (z - M)(z - A2)go - f ip() <
Il (z- A1) [(z-A2)go- 8] lip) + 1 z-A1)g - f lipq) <

Il (z-A2)80- & lipa) + K1 (z- A2)go- 8 lipay + I (z-A1)g - f lpqy) < &

Thus f isin (z- A1)(z - A2)D(Q) and so we proved (3.16). Since k has only
finitely many zeros, we can conclude that kD(Q) = D(Q) by repeating a similar argument.

Suppose f isin gD(Q)=¢q (kD(Q)). Then f=qg for some g in D(RQ). For g,
there is a sequence of functions {g,} in D(Q2) such that llk g, - g p)—0 as n— 0.

Hence
I gk g~ flipiy) = 11 gk 8 - 98 ) = N1 gk g, - 8) lp()
Slqkgy-8)+ qkg,-2) lpgq) (3.17)
Since ¢ and ¢q' are bounded on £, and the inclusion map from D(2) into B(Q) is

bounded, the right hand side of (3.17) approaches 0 as n — 0. Hence ¢q(kD(Q))c
qkD(2) . Therefore
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gD(Q) = q (kD(Q)) c qkD(Q) = hD(Q) c E. (3.18)

Hence dim ( D(Q) /gD(RQ) ) = degree of ¢ by Proposition 3.12
Sdegreeof h < dim (D(Q)/E) by the choice of A

< dim (D(Q) / gD(Q) ). by (3.18)

Hence dim (D(Q) / ¢D(Q)) = dim (D(2) / E) and so, by (3.18), E =¢D(Q2). Q.E.D.

Cor 3.19: Let E be a finite codimensional closed subspace of D(S2) where
Q is a finitely connected bounded domain with an analytic boundary. Then the

following are equivalent.

(1) zECE
(2) QE CE for all 9 e M(D(Q))
(3) E =gD(Q2) where q is a polynomial with all of its zeros in Q.

Proof: (1) implies (3) by Theorem 3.15. (3) implies (2) since QE = @gD(Q2) =
q9D(QQ) ¢ gD(Q) =E. And (2) implies (1) trivially. Q.E.D.

Hence we can conclude this chapter as follows: Suppose € is a finitely connected
bounded domain with an analytic boundary. If E is a finite codimensional closed
subspace of D(S2) that is invariant under any multiplication operator Mg, then E is of
the form gD(S2) where ¢ is a polynomial with all its zeros in Q.
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We conclude this thesis by raising a few questions. For which domain Q is
D(Q2)cB(£2)? Is Corollary 2.17 true for any domain Q in C? Suppose Q is a bounded
domain in C such that no connected component of 9Q is equal to a point. Then the finite
codimensional invariant closed subspaces B(2) are of the form gD(Q2) where ¢ isa
polynomial with all of its zeros in €; see [4], Theorem 5. Can Theorem 3.15 be
generalized as in case of Bergman spaces?



BIBLIOGRAPHY



BIBLIOGRAPHY

[1] S. Axler, Harmonic Functions from a complex analysis viewpoint, Amer. Math.
Monthly 93(1986), 246-258.

[2] _______, Multiplication operators on Bergman spaces, J. Reine Angew. Math.
336(1982), 26-44.

[3] and P. Bourdon, Finite codimensional invariant subspaces of Bergman
spaces, Trans. Amer. Math. Soc. 306(1988), 805-817.

[4] ______, P. Bourdon, and W. Ramey, Harmonic Function Theorey, Springer-
Verlag, New York, to appear.

[5] ______ and A. L. Shields, Univalent Multipliers of the Dirichlet space, Mich.
Math. J. 32(1985), 65-80.

[6] S.R. Caradus, W. E. Pfaffenberger, and B. Yood, Calkin algebras and algebras of
operators on Banach spaces, Dekker, New York, 1974.

[71 K. C. Chan, On the Dirichlet space for finitely connected regions, Trans.Amer.
Math. Soc. 319(1990), 711-728.

[8] J. B. Conway, Subnormal operators, Pitman, London, 1981.

[9] R. G. Douglas, Banach Algebra Techniques in Operator Theorey, Academic Press,
New York, 1972.

[10] P. L. Duren, B. W. Romberg, and A. L. Shields, Linear functional on HP spaces
with 0 < p < 1, J. Reine Angew. Math. 288(1969), 32-60.

[11] P. Koosis, Introduction to Hp spaces, Cambridge Univ. Press, Cambridge, 1980.
[12] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.

[1539] D. A. Stegenga, Multipliers of the Dirichlet space, Lllionis J. Math. 24(1980), 113-

[14] G. D. Taylor, Multipliers on D o, Trans. Amer. Soc. 123(1966), 229-240.

38



[




