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ABSTRACT

FINITE ELEMENT METHOD APPLIED TO DEFORMATION OF

METALLIC GLASS RIBBON REINFORCED GLASS - CERAMIC MATRIX

COMPOSITE MATERIAL

BY

John Dung Ninh

The deformation characteristics of ceramic

composite material was studied numerically with the

objective of investigating the dependence of bending

properties on size, shape and distribution of the ribbon

reinforcing phase.

The model chosen for comparision was metallic

glass ribbon reinforced glass ceramic matrix composite.

The overall constitutive response of the composite and

the evolution of stress and strain field quantities in

the matrix of composite was computed using Finite Element

Method within the context of axisymetric and plane strain

unit cell formulations. The results indicate that the

development of significant stresses within a composite

matrix provides an important contribution to strengthening.

The numerical results provide a mechanistic

rationale for the experimentally observed trend for the

effect of ribbon on stress distribution within the composite.
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INTRODUCTION

The effect of the ribbons on the crack growth in a

brittle glass matrix has been investigated [ 1 ]. These

composites, have been shown to have high longitudinal

strength coupled with good off-axis properties [ 1 ].

Ribbon reinforcements unlike fiber reinforcements,

possess the ribbon width as an additional geometrical

parameter. Hence, the load transfer characteristics in

the ribbon reinforced composites are expected to be

influenced by ribbon's width. The ribbons can also be

oriented differently with respect to their long and short

transverse faces normal to the opening crack front.

Metallic materials, when reinforced with brittle

fibers offer the potential for significant improvements

in strength and toughness, particularly in mechanical

performance over monolithic alloys. While metal matrix

composites exhibit higher stiffness and strength than

matrix alloys, they often suffer from lower ductility

and inferior fracture toughness. Arguments for the

strength and failure in the metal matrix composite are

difficult, due to the lack of complete information on

the processing, characterization and properties of the
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materials. In a significant number of prior investigations,

with which the composite properties are compared, the

unreinforced matrix alloys, are obtained from different

routes.

In this work, a chosen thickness of the metallic

glass reinforcement in a glass ceramic matrix composite

was studied by numerical analysis to gain a perspective

on mechanics of strengthening. An understanding of this

effect will be useful in optimizing the properties of

such brittle matrix composites, in the attempt to make

them suitable for structural applications.

The purpose of the finite element calculations is

to measure changes in geometrical variables associated

with the shape and distribution of the reinforcement.

1. Finite Element Method FEM.

 

FEM analysis was carried out using a Prime 750 or

Unix computer system, and the program ANSYS, which

is used for the solutions of several classes of

engineering problems. The ANSYS element library offers

95 different element types to carry out a wide range of

engineering analyses.

Element type STIFF 42 was used for analysis of

metallic glass ribbon reinforced glass ceramic matrix

composites. A mesh of elements is presented for ANSYS

and FEM analysis, which is carried out with various

numbers of ribbons. Dividing the area into a greater
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number of elements increases the degree of accuracy.

2. Historical background.

 

Fischmeister and Sundstrom [ 2 ] used the FEM

technique to calculate stress-strain curves for different

hardness ratios between different phases present in

plain carbon steels ( 0.11 and 0.21 weight percent

carbon ) and aluminum bronzes (8 to 12 percent aluminum).

They also studied the deformation of individual phase

regions in the case of plain carbon steel by using a two

dimensional model of the ferrite-martensite

microstructure.

Karlsson and Sundstrom [ 3 ] have also studied the

plastic deformation in ferritic-martensitic steels. They

used FEM to study inhomogeneity in the corresponding two

phase model.

Sundstrom [ 4 ] has used FEM to study the elastic

plastic behavior of WC-Co ( tungsten carbide-cobalt )

alloys. He showed that the continuum mechanics can be

applied to a two dimensional model of real microstructure.

His results indicated that the plastic strain distribution

calculated by FEM is very inhomogeneous on a microscale

and FEM can not give the high resolution of stress and

strain fields in different phases.

Jinoch et. a1. [ 5 ] used FEM to study the stress

and strain of alpha beta Ti-8Mn alloy. They used a

uniform mesh of 392 triangular two dimensional ( plane



stress ) plate elements. The volume fraction, particle

size and shape could be varied to designate each triangle

as either alpha or beta. The shapes of particles used

in meshes were not the same as those in actual specimens

but were idealized to make calculations simpler while

maintaining the volume fraction constant. Jinoch et. al.

showed that an FEM calculated stress-strain curve

attained lower stress levels for similar strain levels

as compared to an experimentally calculated stress-

strain curve . This difference may be due to the fine

grain sizes in Ti-8Mn alloy and the contributions of

the interface phase which were not considered in the FEM

calculations.

Margolin et. al. [ 6 ] studied the influence of

particle size, matrix and volume fraction of phases on

the stress and strain relationship of alpha beta Ti

alloys. They found that for a given volume fraction of

the second phase, the calculation of stress and strain

were higher for specimens with a finer particle size as

compared to those of specimens with coarser particle

size.

3. ANSYS program.

 

ANSYS is a specific computer program, developed

and maintained by Swanson Analysis System Inc. It has

the ability to analyse static, dynamic, elastic, creep,

swelling, buckling, heat transfer, fluid, and current
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flow problems . The program is based on the Finite

Element Method. ANSYS program gives results with high

degree of accuracy in a short period of computer time.

The program is very flexible and can be applied to many

engineering problems. ANSYS program includes three phases:

the preprocessing phase, the solution phase, and the

postprocessing phase.

a. Preprocessing phase.

 

The preprocessing phase is carried out interactively;

the input is given directly and it may immediately provide

plots. The preprocessing phase begins with PREPn where n

is the number which dependes on the kinds of problems;

PREP7 for general purposes, PREP4 is for piping problem

etc, and the preprocessing phase may include many PREPn

as the subroutines.

b. Solution phase.

 

The solution phase checks the data before program

progressed to the actual execution. The solution phase

does not provide the solutions: it interprets the data

input and, checks elements, and various levels of

program. If there were errors, it would produce the

errors in this phase.

c. postprocessing phase.

 

The postprocessing phase consists of several



modules. Each module performs a different operation

and contains a unique set of commands. The postprocessing

phase will give the solutions, the plots and it stores

data to use for next time.

4. Description of analysis.

 

The overall equilibrium equations for static

analysis are

[ K ] { u }
II

A F }

or

i K ] { u } { F1 } + { F2 }

where

[ K ] is total stiffness matrix = total element

stiffness matrix.

{ u } is nodal displacement vector

{ F1 } is reaction load vector, and

{ F2 } is total applied load vector.

The stress sigma is related to the strain epsilon by

{ sigma } = [ D ]({ epsilon } - { epsilonl })

where

[ D ] is elasticity matrix.

{ epsilonl } is thermal strain vector.

The element stresses are computed by

{ sigma } = [ D ]({ B ]{ u } - { epsilonl })

because

{ epsilon } = [ B ]{ u }

where
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[ B ] is strain displacement matrix which must be

specified for each stress calculation point, and

{ u } is nodal displacement.

5. The aim of this project.

 

The aim of this project is to study the effect of

different ribbon configurations on the stress distribution

in ribbon reinforced brittle ceramic matrix composite by

using two dimensional Finite Element Method.



PROCEDURE OF FINITE ELEMENT ANALYSIS

1. Composite system.

 

The specimens considered in this study were

fabricated using Corning glass code 7572 ( code numbers

of products of Corning Glass Company ) as the matrix

material. An iron based metallic glass METGLAS 2605 S - 2

( registered trademark of Allied Signal Inc. for amorphous

metallic alloys and brazing alloys ) alloy was used as

the reinforcement [ 1 ].

The physical properties and chemical compositions

of metallic glass and ceramic glass matrices are presented

in tables I and II. The volume fraction of the ribbons

( 0.8 ) was kept constant in all of the samples studied

by FEM. This was achieved by changing the thickness

( subdividing ) but keeping the width and length the same.

The residual stress induced by the thermal

expansion coefficient between the matrix and

reinforcement was small and could be neglected since

coefficient of matrix 95 x 10E-7 per degree

coefficient of ribbon 76 x 10E-7 per degree.

Strong bonding was observed between ribbon and



matrix. The ribbon geometries used in the modelling

varied as

40 mm

40mm

40 mm

40 mm

40 mm

X

X

X

X

X

50

50

50

50

50

mm

mm

X

X

8 mm for one ribbon.

4 mm for two ribbons.

2 mm for four ribbons.

1 mm for eight ribbons.

0.5 mm for sixteen ribbons.

The dimension of the composite specimen was

40 mm X 50mm X 10mm.

Experimental verification of the predictions based

on FEM analysis were carried out with specimens prepared

by using the following steps [ 7 ]:

a. Specimen was wet pressed in a steel die,

And then compacted at 3000 Psi ( 21 MPa )

The specimen was next preheated to 250 degree C

for 15 minutes to drive off the organic binder,

Then sintered at 400 degree C for 90 minutes.

Then it was treated at 450 degree C for 20 minutes

for matrix crystallization as recommended by

manufacturer,

And cooled to room temperature within the furnace

in order to minimize thermal shock.

The main crystalline phase was 2Pb0.Zn0, and the

specimens were tested in three point bending using an

Instron machine with a crosshead speed of 0.05 cm / min.
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2. Finite Element Method ( FEM ).

 

FEM was used to calculate the stress distributions

in the specimens.

The meshes were provided to the ANSYS program. In

the finite element model, the nodes A and B can move

only in the X-direction. Node C can move in the Y-

direction. The other nodes can move in both X and Y—

directions. A force of 125 N ( load corresponding to

fracture strength of the matrix of the selected size ) was

applied to node C, normal to the ribbons, as shown in

Figure 1.
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TABLE I

Properties of metallic glass ribbon [ 7 ].

Property : Metglas 2605 5-2

Chemical : Fe 78

composition w/o : B 13

° Si 9

Crystallization :

: 550

temperature :

Elastic modulus : 85

( GPa ) °

Yield strength > 700

( MPa )

: -7

Coefficient of thermal : 76 X 10

-1 :

expansion (degree C ) :
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TABLE II

Properties of ceramic glass matrix [ 7 ].

Property : Corning glass 7572

Softening point (degree C) : 375

: -7

Coefficient of thermal : 95 X 10

-1

expansion ( degree C )

-3

Density ( g cm ) : 6

Elastic modulus ( GPa ) 33 4

Continuous service : 450

temperature ( degree C )

Chemical composition : PbO 70

( w/o ) : B 0 5 - 10

2 3

SiO 2 - 5

2
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FIGURE 1.

Specimen model.

- Darker segments are ribbons.

— Lighter segments are matrix.

- Nodes A and B move in X direction only.

- Node C moves in Y direction only.
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3. Finite elements models.

 

In the first case, the specimen was reinforced

with one ribbon ( 8 mm thick ), as shown in Figure 2.

There were two symmetric parts, the dark and light parts.

Each part included one matrix segment that was divided

into smaller triangular elements, and another half of

thickness of the ribbon which was divided into larger

triangular elements.

The composite specimen was analysed by using 256

triangular elements and 177 nodes. Both the matrix

segments, and the ribbon segments consisted of 128

elements. The thickness of the matrix segment was

divided into two parts located on either side of ribbon,

each part having a thickness of 1 mm. The ribbon segment

was 8 mm thick . The length of the specimen was 40 mm,

and was divided into 17 equi-distant nodes. The nodes

were numbered in an increasing order in the horizontal

direction. The number of the node increased by 20 for

each step in the vertical direction.

For the second case, the specimen was reinforced with

two ribbons as shown in Figure 3. There were three

matrix segments and two ribbon segments. As in the first

case, the matrix segments were divided into the smaller

triangular elements and the ribbon segments were divided

into larger triangular elements. The composite specimen
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was analysed by using 320 triangular elements and 217

nodes.

In this case, each matrix segment was 0.66 mm

thick, while each ribbon segment had a thickness 4 mm.

The length of the specimen was 40 mm, and was divided

into 17 equi-distant nodes. Node numbering was carried

out in a fashion similar to the one described in the

previous case.

In the third case, the specimen was reinforced with

four ribbons. There were five matrix segments and four

ribbon segments, as shown in Figure 4. The composite

specimen was analysed using 576 elements and 377 nodes.

In this case, each matrix segment was 0.4 mm thick,

while each ribbon segment was 2 mm thick. The length of

the specimen was 40 mm, and was divided into 17 equi-distant

nodes.

For the fourth case, the specimen was reinforced with

eight ribbons as shown in Figure 5. There were nine

matrix segments and eight ribbon segments. In this case,

the composite specimen was analysed by using 1088 elements

and 697 nodes.

Each matrix segment at either surface of the

specimen was 0.3 mm thick, while the other matrix

segments had a thickness of 0.2 mm. Each ribbon segment

was 1 mm thick. The length of the specimen was 40 mm and

was divided into 17 equi-distant nodes.

In the last case, the specimen was reinforced with
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sixteen ribbons; there were 17 matrix segments and 16

ribbon segments, as shown in Figure 6. The specimen was

analysed by using 528 elements and 677 nodes.

Each matrix segment at either surface of the

specimen was 0.175 mm thick. The other matrix segments

had a thickness of 0.11 mm. Each ribbon segment was

0.5 mm thick. The length of the specimen was 40 mm and

was divided into 17 equi-distant nodes.
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FIGURE 2 .

Finite element model of specimen

reinforced with one ribbon.

- Small triangles are in matrix element.

- Large triangles are in ribbon element.
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FIGURE 3 .

Finite element model of specimen

reinforced with two ribbons.

- Small triangles are in matrix element.

- Large triangles are in ribbon element.
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FIGURE 4 .

Finite element model of specimen

reinforced with four ribbons.

- Small triangles are in matrix element.

- Large triangles are in ribbon element.
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FIGURE 5.

Finite element model of specimen

reinforced with eight ribbons.

- Small triangles are in matrix element.

- Large triangles are in ribbon element.
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FIGURE 6.

Finite element model of specimen

reinforced with sixteen ribbons.

- Small rectangles are in matrix element.

- Large rectangles are in ribbon element.
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RESULTS AND DISCUSSIONS

The maximum tensile stress in the outer fiber

( before failure of the matrix ) of the sample ( in

three point bending ) is given by

2

sigma = 3PL / 2bd

where

sigma is fracture strength of the matrix

P is required force

L is length of composite 40 mm

b is width of composite 50 mm, and

d is thickness of composite 10 mm.

The first crack in the matrix will form when the

outer fiber stress reaches the matrix fracture stress.

The load for failure of the specimen considered

was calculated as

2

P = 2bd sigma / 3L = 125 N .

The stress in the matrix segments was determined

by the FEM analysis. The stress in each matrix segment

was determined at the load where the first matrix crack

would be initiated on the tensile surface corresponding

to the fracture stress of the matrix ( = 15 MPa ).

28
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1. The analysis of the stress distribution.

 

a. Specimen reinforced with one ribbon.

 

The stress distribution in the specimen reinforced

with one ribbon is shown in Figure 7. The stress was

compressive in the upper half, while it was tensile in

the lower half. The stress was close to zero ( 2.014 MPa )

at the neutral surface. The maximum tensile stress is in

the darkest region which has the value of 59.846 MPa. The

maximum compressive stress is in the lightest region, and

had a value -70.276 MPa. The stress slowly increased

from the maximum tension to maximum compression from the

lower to the upper part of specimen. The stresses are

also reduced at the nodes laterally far—distanced from

the middle nodes.

with the values of stress distribution given by

ANSYS, and the fracture strength of the matrix ( 15 MPa )

one can predict the number of cracked matrix segments.

The matrix segments would be cracked when the value of

stress distribution on it is greater than 15 MPa. The

matrix segment will be uncracked when the value of stress

distribution is lower than 15 MPa. In Figure 7, the crack

might occur in the lower matrix segment, and the shortest

length of cracked line is 1 mm.
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b. Specimen reinforced with two ribbons.

 

The stress distribution in the specimen reinforced

‘with two ribbons is shown in Figure 8. The stress is

compressive in the upper half, while it is tensile in

the lower half. The maximum tensile stress is 60.892 MPa

in the darkest region, and the maximum compressive

stress is -73.68 MPa in the lightest region. The stress

was close to zero ( 1.082 MPa ) at the neutral surface.

The values of stress slowly decreased from the darkest

region to lightest region; stress also decreased at the

nodes laterally far-distanced from the middle nodes. With

the values of stress distribution given by ANSYS, and the

fracture strength of the matrix ( 15 MPa ), one can

predict the number of cracked matrix segments. The matrix

segments would be cracked when the value of stress on it

is greater than 15 MPa. They will be uncracked when the

value of stress is lower than 15 MPa. In Figure 8, The

crack might occur in the lowest matrix segments and the

shortest length of cracked line is 0.66 mm.

c. Specimen reinforced with four ribbons.

 

The stress distribution in the specimen reinforced

with four ribbons is shown in Figure 9. The stress is

compressive in the upper half, while it is tensile in

the lower half. The maximum tensile stress is 63.644 MPa

in the darkest region, and the maximum compressive stress
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is -78.962 MPa in the lightest region. The values of

tensile and compressive stresses reduced from the darkest

region to the lightest region, and at the nodes laterally

far-distanced from the middle nodes. The stress was close

to zero ( 0.253617 MPa ) at neutral surface.

With the value of stress distribution given by the

ANSYS, and the fracture strength of the matrix ( 15 MPa ),

one can predict the number of cracked matrix segments.

The matrix segments would be cracked when the value of

stress distribution on it is greater than 15 MPa. They

will be uncracked when the value of stress distribution

is lower than 15 MPa. In Figure 9, the crack might occur

in the two lowest matrix segments, and the total shortest

length of the cracked line will be 0.8 mm.

d. Specimen reinforced with eight ribbons.

 

The stress distribution in the specimen reinforced

with eight ribbons is shown in Figure 10. The stress is

compressive in the upper half, while it is tensile in

the lower half. The maximum tensile stress is 64.474

MPa in the darkest region. The maximum compression stress

region is - 80.555 MPa in the lightest region. The values

of stress were reduced from the darkest region to the

lightest region, and at the nodes laterally far-distanced

from the middle nodes. The stress was close to zero

( 0.0166 MPa ) at the neutral surface.

With the value of stress distribution given by
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ANSYS, and the fracture strength of the matrix ( 15 MPa ),

one can predict the number of cracked matrix segments.

The matrix segements would be cracked when the value of

stress distribution on it is greater than 15 MPa. They

will be uncracked when the value of stress distribution

is lower than 15 MPa. In Figure 10, the crack might occur

in the four lowest matrix segments, and the total

shortest length of cracked line will be 0.9 mm.

e. Specimen reinforced with sixteen ribbons.

 

The stress distribution in the specimen reinforced

with sixteen ribbons is shown in Figure 11. The stress

is compressive in the upper half, while it is tensile

in the lower half. The maximum tensile stress is 70.299

MPa in the darkest region, and the maximum compressive

stress is - 95.524 MPa in the lightest region. The value

of stress reduced from the darkest region to the lightest

region, and at the nodes laterally far-distanced from

the middle nodes. The stress is close to zero at the

neutral surface.

With the values of stress distribution given by

ANSYS, and the fracture strength of the matrix ( 15 MPa ),

one can predict the number of cracked matrix segments.

The matrix segment would be cracked when the value of

stress distribution on it is greater than 15 MPa. They

will be uncracked when the value of stress is lower than

15 MPa. In Figure 11, the crack might occur in the lowest
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seven matrix segments, and the total shortest length of

the cracked line will be 0.835 mm.

A comparison of specimens with one, two, four,

eight, and sixteen ribbons, provides the following

results:

- The magnitude of stress increases at the regions far-

distanced from the neutral surface of the specimen, and

decreases at the nodes laterally far-distanced from the

middle nodes.

- The maximum value of outer fiber tensile stress was

lowest in the specimen with one ribbon 59.846 MPa;

this value increased in the specimens having more

ribbons, as in the specimen with sixteen ribbons the

maximum tensile stress was 70.299 MPa.

- The maximum value of compressive stress region was

lowest at the specimen with one ribbon - 70.276 MPa;

this value increased in the specimens having more

ribbons as in the specimen with sixteen ribbons, the

maximum compressive stress was - 95.524 MPa.

So the maximum values of tensile and compressive

stresses increase with increasing number of ribbons.
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FIGURE 7 .

Stress distribution for specimen

reinforced with one ribbon.

- Positive number is the value

of tensile stress.

- Negative number is the value

of compressive stress.

- Small triangles are in matrix element.

- Large triangles are in ribbon element.

- MN is middle nodes.
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FIGURE 8 .

Stress distribution for specimen

reinforced with two ribbons.

- Positive number is the value

of tensile stress.

- Negative number is the value

of compressive stress.

- Small triangles are in matrix element.

- Large triangles are in ribbon element.

- MN is middle nodes.
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FIGURE 9 .

Stress distribution for specimen

reinforced with four ribbons.

Positive number is the value

of tensile stress.

— Negative number is the value

of compressive stress.

— Small triangles are in matrix element.

- Large triangles are in ribbon element.

- MN is the middle nodes.
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FIGURE 10 .

 

Stress distribution for specimen

reinforced with eight ribbons.

- Positive number is the value

of tensile stress.

- Negative number is the value

of compressive stress.

- Small triangles are in matrix element.

- Large triangles are in ribbon element.

- MN is the middle nodes.
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FIGURE 11 .

 

Stress distribution for specimen

reinforced with sixteen ribbons.

- Positive number is the value

of tensile stress.

— Negative number is the value

of compressive stress.

- Small rectangles are in matrix element.

- Large rectangles are in ribbon element.

- MN is the middle nodes.



  SIXTEENR
I
B
B
O
N
S

 

 
 

A
N
S
Y
S

4
.
4
A

M
A
R

1
4

1
9
9
1

2
0
:
0
6
:
4
0

P
L
O
T

N
O
.

1

P
O
S
T
l

S
T
R
E
S
S

S
T
E
P
=
1

I
T
E
R
=
1

S
X

(
A
V
G
)

D
M
X

=
0
.
0
8
0
8
1
3

S
M
N

=
-
9
5
.
5
2
4

S
M
N
B
=
-
1
2
4
.
7
1
5

S
M
X

=
7
0
.
2
9
9

S
M
X
B
=
7
3
.
9
1
1

D
I
S
T
=
1
5
.
5
5
7

X
F

=
2
0

Y
F

=
5

-
22
-3
3;

I
I
I

'
-
5
8
.
6
7
4

-
4
0
.
2
5

-
2
1
.
8
2
5

43



4.4

2. Analysis of the plots.

 

Fraction of cracked matrix segments can be defined

as the ratio of number of layers of matrix that are

cracked divided by the total number of matrix layers

Figure 12, is a plot of fraction of cracked matrix

segments versus number of ribbons ' n '. A plot relating

number of cracked segments to the number of ribbons is

provided in Figure 13.

Another point of interest is to learn how stress

varies at various locations along a vertical section.

For this purpose, node number 9; the lowest node in the

mid section ( in the tensile region ) is chosen as the

origin as shown in Figure 14, and the distances of all

other middle nodes are measured relative to this origin.

The plots of stresses in the middle nodes versus the

distances of these nodes from the origin are shown in

Figures 15, 16, 17, and 18. The zero stress at the

neutral surface, and its location do not depend on the

number of ribbons in the specimens as shown in Figure 19.
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FIGURE 12.

 

The plot of fraction of cracked matrix

segments versus total number of ribbons.
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FIGURE 13.

The plot of total number of cracked matrix

segments versus number of ribbons.
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FIGURE 14 .

 

Schematic illustrating location of

middle nodes relative to the origin.

- Node number 9 is the origin.

Dots indicated are middle nodes.

- Nodes A and B move in X direction only.

Node C moves in Y direction only.
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FIGURE 15.

The plot of stress versus distance of nodes

to the origin in specimen reinforced

with two ribbons.
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FIGURE 16.

 

The plot of stress versus distance of

nodes to the origin in the specimen

reinforced with four ribbons.
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FIGURE 17 .

 

The plot of stress versus distance of

nodes to the origin in the specimen

reinforced with eight ribbons.
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FIGURE 18 .

The plot of stress versus distance of

nodes to the origin in the specimen

reinforced with sixteen ribbons.
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FIGURE 19 .

The plot of stress versus distance of nodes

to the origin in the specimens reinforced

with two, four, eight, and sixteen ribbons.
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The following is the summary of results drawn from

this study:

- The ribbon distribution had a significant

effect on the stress distribution in the composite

specimen. This can be seen in Figures 7, 8, 9, 10,

and 11, for specimens with 1, 2, 4, 8, and 16 ribbons

respectively.

- From the stress distribution the segments of

the matrix that would crack instantly can be determined.

This was achieved by comparing the magnitude of the

stresses ( tensile ) to the cracking stress of the matrix

( in tension and ignoring coupling effects ).

A generalized empirical value for the number of

cracked segments in a composite with ' n ' ribbons is

log ( n ) - 1

2 .

Hence the number of uncracked matrix segments is

log ( n ) - 1

( n + 1 ) - 2

Even when some matrix segments are cracked, few

remaining matrix segments do continue to contribute to

the overall composite strength ( along with the ribbons ).

The total composite strength sigmal remaining can be

expressed as.

sigmal = ( sigma2 X V2 ) + K ( sigma3 X V3 )

where K is a fraction depending on the number of

uncracked matrix segments. The value of K varies with

' n ' and is equal to
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log ( n ) - 1

K = ( n + 1 ) - 2 / ( n + l )

and hence

log ( n ) - 1

sigmal = ( sigma2 X V2 ) + ( [ ( n + 1 ) - 2 ]

/ ( n + 1 ) ) X ( sigma3 X V3 ).

The strength for composites having ( same volume

fraction of ribbons ) various numbers of ribbons can be

given as

sigmal = ( sigma2 X V2 ) + 1 / 2 ( sigma3 X V3 ) for n = 1

sigmal = ( sigma2 X V2 ) + 2 / 3 ( sigma3 X V3 ) for n = 2

sigmal = ( sigma2 X V2 ) + 3 / 5 ( sigma3 X V3 ) for n = 4

sigmal = ( sigma2 X V2 ) + 5 / 9 ( sigma3 X V3 ) for n = 8

sigmal = ( sigma2 X V2 ) + 10 / 17(sigma3 X V3) for n = 16.

From the results it is evident that the matrix

contribution to the strength is fairly constant ( of

the order of 50 % to 60 % ) indicating that only 50 %

to 60 % of the matrix contributes to the strength at

any instant ( after the first crack in matrix region has

been initiated ). Such a behavior has also been observed

experimentally for the cases with 1, 2 and 4 ribbons.

Experimental verification of prediction of number of

cracked segments based on FEM analysis for these cases

has been good.

This type of information is particularly useful

when incorporating such composites for practical

applications. Although the first matrix crack governs
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the resulting properties of the composite, the load that

the composite can carry does not decrease significantly

when the first matrix crack appears if sigma2 >> sigma3

A typical load displacement curve for such a composite is

shown in the Figure 20.

Modelling studies can be carried out incorporating

practical conditions. The results based on such studies

can affect the decision to use or discard any given

component once a certain fraction of the matrix has

cracked.

Another important point which has to be accounted

for is the constantly changing position of the neutral

axis in a dynamic test. The results obtained in the

present study are only useful under static conditions

( constant load ). Any dynamic loading can alter the

conditions dramatically and change the end results.
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FIGURE 20.

The plot of load versus displacement

of composite specimen.

- Number 1 indicates the position where the

first matrix segment crack occurs.

- Number 2 indicates the position where the

load is carried by ribbons and uncracked

matrix segments.

- Number 3 indicates the position where the

composite failure occurs.



6'5

LOAD

 
 

DISPLACEMENT



SUMMARY

For a given volume fraction of ribbon reinforcement,

the ribbon distribution ( number of ribbons ) affects the

stress distribution; however, it does not significantly

change the fraction of cracked matrix segments. This

behavior indicates that the number of the ribbons would

not alter the end results, provided the volume fraction

is kept constant. Hence, based on practical constraints,

it would be beneficial to incorporate fewer ribbons

rather than more narrower ones.
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