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ABSTRACT

SIMULATION STUDY OF LIPID BILAYER/NANOPARTICLE INTERACTIONS

by

Corey Evan Musolff

A coarse-grained model is used to simulate lipid bilayers (LB) interacting with nanoparticles (NP).

Different equilibrium states are observed as the size of the NP is varied along with the interaction

strength between the NP and LB. Sufficient attraction causes the NP to become wrapped by the

LB. Large NP are able to form pores in the LB. These various outcomes are explained using a

continuum theory.

The same model is used to simulate pore healing in LB. It is observed that the area of the pore

decreases linearly with time as explained by Allen-Cahn theory. Bulk properties of the LB can be

used to predict the closing time of a pore as well as the amount of charge able to flow through the

pore while it is open.
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Chapter 1

INTRODUCTION

I am interested in how nanomaterials interact with biological structures in the human body, specifi-

cally I am focused on interactions between nanoparticles (NP) and lipid bilayers (LB). NP can have

both beneficial and adverse effects on living cells. Nano-sized structures are special because they

are on the same size scale as lipids which are the building blocks of cell walls. Lipid molecules

are roughly a few nanometers long, so that the thickness of a lipid bilayer is about 5 nm. There-

fore, certain NP are able to penetrate cells under the right conditions and can disrupt the cell wall

to varying degrees. NP are believed to be ideal drug delivery vehicles for this reason. If a drug

molecule is not able to penetrate a cell on its own it may be able to be attached to a NP which can

then be targeted to the cell. On the other hand certain NP can be toxic and are capable of rupturing

cells. This has encouraged the active study of nanotoxicity. However, even this behavior could be

useful if for instance cancerous cells are targeted.

NP/LB interactions have been looked at from many different angles. In chapter 2 I will give a

review of recent experimental and theoretical work in this field. I have chosen to use molecular dy-

namics (MD) simulations to study the problem. MD can easily look at a system over a wide range

of conditions without the usual experimental constraints. I would like to identify how NP/LB inter-

actions are affected by fundamental properties such as the size, shape, and charge of NP. A deeper

understanding of these relationships would be useful in explaining effects that have already been

observed as well as predicting effects that have not yet been observed. New NP could be designed

with certain properties to have desirable interactions or to prevent undesirable interactions.

In chapter 3 I look at the thermodynamics of NP/LB interactions. I use a continuum model to

define the energy of various states. I then make phase diagrams showing the lowest energy states

depending on the properties of the system. I have also run MD simulations which agree reasonably

well with the predicted phase diagrams. Unlike the static states studied in chapter 3, chapter 4 looks
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at the dynamics of pores in LB. I use a simple energy argument to predict the rate at which a pore

will heal under different conditions. These predictions are again compared to MD simulations. My

goal is to understand the general process of pore closing. In chapter 5 I will summarize my work

and draw conclusions.
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Chapter 2

REVIEW

2.1 Introduction

Understanding the interactions between nanoparticles (NP) and lipid bilayers (LB) is necessary for

studying processes such as viral budding, endo/exocytosis, drug delivery, and harmful effects re-

lated to cytotoxicity. I am interested in the conditions under which nanoparticles become wrapped

and possibly rupture lipid bilayers.

This chapter covers the experimental and theoretical work of others in the field, though an

emphasis will be placed on molecular dynamics (MD) simulations. Experiments range from in

vitro studies on small patches of LB to in vivo drug studies on animals. Simulations tend to focus

on individual small scale interactions using a patch of LB or perhaps an entire vesicle or cell.

Simulations can take place over many length scales depending on the level of detail required,

ranging from the atomic scale to that of the entire cell (four orders of magnitude!). A single sim-

ulation or model can not hope to bridge that gap. At the small end of the spectrum are atomistic

or all-atom (AA) models. These of course have the advantage of including the most detail. We

are confident that the interactions between individual atoms are understood well enough to create

useful simulations. Unfortunately, these models are limited by computational constraints to look-

ing at rather small systems (thousands of lipids) over short time scales (nanoseconds). Even with

optimistic predictions for future computing power, these models will likely remain inadequate for

looking at large patches of bilayers over long time scales (milliseconds).

At the other end of the spectrum are continuum models which do not have the same kind of size

restrictions. A lipid membrane can be modeled as a simple two dimensional sheet. While these

models can be used to study the large scale structural properties of the membrane, they are forced

to ignore some of the details responsible for complicated interactions.
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Between these two extremes lie any number of intermediate, mesoscale models. These coarse-

grained models are similar to the AA models in that they simulate individual particle interactions,

but instead of each particle representing a single atom these “beads” can represent several atoms.

Typically, one bead will represent a few atoms. Besides a reduction in the number of particles being

simulated, the interactions between them can also be simplified for instance from multi-body to

pairwise forces. Another enormous simplification can be made if the solvent or water molecules

surrounding the membrane are neglected. While water is in a sense responsible for lipid bilayer

formation via the hydrophobic effect, bilayer formation can still be achieved by using effective

forces. These are so called implicit solvent models while those that include water molecules are

explicit solvent models. Since there are many more water molecules surrounding the cell than the

number of lipids, neglecting the water allows much larger and longer simulations.

I will first review experiments in the field in section 2.2. Then I will review various theoretical

models ranging from atomistic to continuum in sections 2.3-2.5. Special emphasis will be given to

a few coarse-grained (CG) models because I have chosen to use a CG model for my simulations.

2.2 Experimental Work

Interactions between NP and LB require a mutual attraction. Hou et al. looked at the accumulation

of functionalized gold NP on LB. They observed that adsorption depended on the specific func-

tionalization as well as the pH of the system [1]. After allowing some time for the NP to adhere,

they measured the total mass of the accumulated NP using inductively coupled plasma- optical

emission spectroscopy (ICP-OES). A wide range of NP sizes (1-100 nm) were tested with larger

NP producing a higher NP mass concentration on the membrane while smaller NP accumulated in

larger numbers producing a higher number concentration.

In addition to a NP simply adsorbing to a LB surface there are various ways in which it can

disrupt the surface, forming pores. Pore formation can be observed either directly by using an

imaging method such as atomic force microscopy (AFM) [2, 3, 4, 5, 6], or indirectly by measuring

the flow of current [7, 8] or dye molecules [5, 6, 7] across the membrane.
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The method of measuring current flow across a membrane requires an applied voltage. While

the membrane is intact, its natural resistance will prevent current flow. Any spikes in current

indicate a pore. de Planque et al. used this technique to test the dependence of NP size and

functionalization on membrane disruption [8]. They found that small (50 nm) unfunctionalized

silica NP caused more disruption than when when they were amine-functionalized. Conversely,

larger (500 nm) NP caused no disruption unless they were functionalized. This implies a balance

between size and functionalization.

The effect of NP size alone was studied by Roiter et al. [2, 3]. They began by placing various

sized silica NP on a smooth silica substrate. Then a LB was formed over the top. AFM was used

to observe any pores formed in the membrane. NP smaller than 1.2 nm only slightly deformed the

surface and did not produce any pores. Larger NP (1.2-22 nm) did result in pore formation. Smooth

NP larger than 22 nm caused significant deformation of the membrane as it wrapped around the

NP, though they did not produce any pores. Large NP with sharp features or bumps with higher

curvature were also able to form pores. This intermediate range of NP sizes can be explained by

balancing the cost of bending the membrane against the favorable attraction between the NP and

LB. I will discuss this in detail in the next chapter.

Attraction between NP and LB is greatly affected by the charge of the NP. This was demon-

strated in an experiment by Hong et al. [6] in which both supported LB and cells in vitro were

exposed to various polymer NP. The main determining factor for pore formation was the charge

concentration on the NP. Positively charged NP are known to be more attracted to LB which tend

to have a slight negative charge.

Medical research often focuses on either the toxicity of NP [9] or their use in drug delivery

[10, 11].

2.3 Atomistic Models

Atomistic models allow simulations on the smallest scale possible under classical mechanics.

Lyubartsev and Rabinovich published a recent review of current simulation techniques and fo-
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cused on atomistic models [12]. In these models individual atoms interact through Lennard-Jones

and Coulomb forces. The three most popular models are GROMOS, CHARMM, and AMBER.

The GROMOS model was developed at the University of Groningen in 1978 by van Gunsteren

et al. and is an acronym for GROningen MOlecular Simulation [13, 14]. It makes the simplifica-

tion of combining hydrogen atoms with the heavy atom they are bound to. The parameters have

been refined over the years. The newest set includes parameters for additional dihedral-angle and

torsional-angle terms [15]. Poger et al. presented a modified set optimized for dipalmitoylphos-

phatidylcholine (DPPC) lipids which produced lipid area and volume densities in agreement with

experiments [16].

CHARMM was created at Harvard and is an acronym for Chemistry at HARvard Macromolec-

ular Mechanics [17, 18]. In contrast to GROMOS, CHARMM treats hydrogen atoms explicitly

and has its own set of Lennard-Jones, Coulomb, and bond energy parameters. A recent parameter

set was developed specifically for lipids [19].

AMBER was developed at the University of California, San Francisco and is an acronym for

Assisted Model Building with Energy Refinement [20]. It was originally designed to model nucleic

acids and proteins. A newer version called the general Amber force field (GAFF) was created to

simulate drug molecules [21]. It was recently shown to accurately simulate LB [22].

Tieleman used the GROMOS model to simulate electroporation in LB [23]. In the simulation

he applied a voltage across a pure LB surrounded by water. At an electric field strength of 0.5

V/nm he observed pores forming over the span of one nanosecond. Another study by Tarek used

CHARMM to look at similar processes including resealing of the pore after the electric field is

turned off [24].

2.4 Coarse-Grained Models

I am most interested in using coarse-grained (CG) models to study LB. They are able to strike a bal-

ance between the detailed realism of atomistic models and the large scale and speed of continuum

models. Several reviews have been written about current CG models [25, 26, 27, 28, 29, 30, 31].
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The term coarse-grained is somewhat broad and can include a wide range of detail. Different CG

models have varying levels of complexity depending on the properties being studied. It is possi-

ble for very simple models to accurately simulate large scale structural properties. They are near

the continuum model end of the spectrum. Many levels of complexity can be added including

the number of beads, the types of interactions between beads, and the inclusion of solvent beads.

These details bring us closer to the atomistic end of the spectrum and are necessary for capturing

nanoscale processes.

Certain interesting NP/LB interactions take place on patches of LB which are hundreds of

nanometers wide (hundreds of thousands of lipids) and occur over millisecond time scales. These

scales are completely beyond the current capabilities of AA models. I will discuss the current CG

models available which I classify as either implicit or explicit solvent models. I will describe three

of the most popular models in more detail.

2.4.1 Implicit Solvent

The simplest and fastest models available employ an implicit solvent, meaning that the solvent

molecules, usually water, are not included in the simulation. These are a good place to start when

looking at LB systems if you are primarily interested in the large scale structural properties of

the LB itself. At first glance it seems impossible to model LB without including water. Water is

responsible for creating and keeping LB together through the hydrophobic effect. Lipids are not

held together by their own attraction to each other. Rather the hydrophobic tails are repelled by the

water and form micelles and bilayers in order to wall themselves off from it. To solve this problem,

the LB structure must be maintained by other means. The typical methods are either to tether the

head beads or to include an effective attractive force between tail beads.

2.4.1.1 Tethered Models

In tethered models the head beads are either tethered to their neighbors or else confined to move

along a two dimensional sheet with certain given properties [32]. Similar to continuum models,
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tethered models are tuned to reproduce structural surface properties. While the level of detail is

greater than in continuum models and one is able to look at lipid diffusion and surface dynamics,

it is still fairly limited. LB formation and surface pore formation are not observable with such

models. Brannigan et al. discuss recent tethered model applications in their review [26].

2.4.1.2 Non-tethered Models

Without tethering or solvent molecules, effective forces are needed to hold the LB together. If an

attractive force is used between tail beads, lipids will naturally aggregate into micelles and bilayers.

These models can be used to study such formations. Effective force models can capture much more

dynamic behavior, but it can be tricky to tune the attractive forces just right. Early such models

could not produce a liquid phase. The Lennard-Jones type pair forces used proved to be too short

ranged. Forces strong enough to hold the lipids together tend to form solid structures, but fall apart

at higher temperatures. LB in their natural state should have a robust liquid phase. It was shown

by Drouffe in the early 1990’s that multibody forces could be used to produce a liquid phase [33].

In the early 2000’s a few groups proposed pair potential models also capable of producing a liquid

phase. Pair potentials are much more desirable because they are computationally simpler and can

be easily implemented by popular molecular dynamics software packages.

The Farago model uses rigid lipids composed of three beads and a different Lennard-Jones

potential for each combination of bead type [34]. Farago was able to produce a liquid-gel phase

transition and to look at membrane elasticity and pore formation. The bending rigidity found using

this model was significantly higher than was expected for a single component membrane. Other

downsides of the model are that it can not spontaneously form bilayers and that the number of

potential combinations is somewhat cumbersome.

Brannigan and Brown proposed a model using spherocylinders to represent each lipid [35]. The

pair potential between lipids depended on their distances from each other as well as their relative

angles. Their model could reproduce the same behavior as the Farago model as well as being able

to self assemble.
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2.4.1.3 Cooke model

Around the same time, Cooke et al. [36, 37] proposed their own model. Each lipid in the Cooke

model consists of three beads, one hydrophilic head bead and two hydrophobic tail beads. Inter-

actions are limited to simple pair potentials which I will describe presently. All non-bonded beads

experience a hardcore repulsion via a Weeks-Chandler-Andersen potential

Vrep(r;b) =


4ε

[(
b
r

)12
−
(

b
r

)6
+ 1

4

]
, r ≤ rc

0, r > rc

(2.1)

which is simply a shifted Lennard-Jones potential cut off at the minimum rc = 21/6b. The

length scale in the model is set by the diameter of a tail bead σ = btail,tail ' 0.9 nm. The authors

claim that the head bead should be slightly smaller in order to ensure the correct lipid shape.

Therefore they use bhead,head = bhead,tail = 0.95σ ' 0.86 nm. I have run most of my simulations

at kBT = 0.9ε . Assuming this is near room temperature, a rough energy scale is found to be ε ≈

2-3 kJ/mol.

Individual lipids are held together by strong FENE (finitely extensible nonlinear elastic) bonds

of the form

Vbond(r) =−
1
2

kbondr2
∞log

[
1−
(

r
r∞

)2
]

(2.2)

where kbond = 30ε/σ2 is the stiffness and r∞ = 1.5σ is the divergence length. Lipids are kept

straight by a harmonic potential between the two end beads

Vbend(r) =
1
2

kbend (r−4σ)2 (2.3)

which has a rest length of 4σ . kbend = 10ε/σ2 is the bending stiffness of the lipid. In addition

to the aforementioned hardcore repulsion experienced by all non-bonded beads, tail beads feel a

broad attraction to each other of the form
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Vattr(r) =


−ε, r < rc

−ε cos2
(

π(r−rc)
2wc

)
, rc ≤ r ≤ rc +wc

0, r > rc +wc

(2.4)

This is a square well potential of depth ε below rc which then tapers to zero between rc and

rc +wc. The total inter-lipid bead potentials are shown in figure 2.1. The key to the Cooke model

is the width of the potential, wc, which determines the properties of the bilayer such as the melting

temperature. It is the only tunable parameter. The reason why previous pair potential models failed

to produce a liquid phase was that the potential wells were too narrow. Cooke et al. argued that

the form of the potential is unimportant as long as it is wide [37]. To demonstrate this they tried

two different forms of the potential. One simply inserted a flat extension from the minimum of the

normal LJ potential while the other slowly tapered the energy from the minimum to zero following

the smooth cosine squared shape shown in the figure. They showed that both potentials behaved

similarly and were both able to produce a liquid phase.

An estimated timescale can be calculated based on the other parameters σ
√

m/ε ≈ 10 ps.

However, the effective timescale can be much longer for coarse-grained models with relatively few

degrees of freedom [38, 39]. Cooke and Deserno estimated the effective timescale for the Cooke

model to be τ ≈ 10 ns [37, 40] by comparing their simulated diffusion constant with experiment

[41].

The Cooke model was originally used to study several LB properties including lipid density,

diffusion, and bending energy. The authors looked at the effects of stress on LB observing pore

formation and buckling which was previously impossible using tethered models [36, 37]. Deserno

has further used the model to simulate interactions with proteins [40]. Ruiz-Herrero et al. have used

the Cooke model to simulate the wrapping of NP by flat LB under zero tension. The Cooke model

appears to contain enough detail to simulate realistic nanoparticle interactions. At the same time

its simplicity and coarseness allow simulations over large size (100 nm) and time (milliseconds)

scales. That is why I have chosen to use this model in my own simulations. I will discuss my
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Figure 2.1: Potential used in the Cooke model. The solid line indicates the attraction between tail
beads. The dashed line indicates the hardcore repulsion for interactions involving head beads. For
interpretation of the references to color in this and all other figures, the reader is referred to the
electronic version of this dissertation.

implementation of the Cooke model in chapter 3.

2.4.2 Explicit Solvent

As the name suggests, explicit solvent models differ in that they include explicit solvent beads,

usually water. The size of the solvent beads are generally chosen to be similar to that of the lipid

beads. For that reason water beads tend to represent multiple water molecules. I will describe

some of the current models below.

One of the first explicit solvent models was developed by Goetz and Lipowsky [42]. They used

three types of beads. Lipids consisted of one or two tail chains containing four hydrophobic beads

each. Head groups were made up of either one or three hydrophilic beads depending on whether
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the lipid was single or double tailed. The solvent beads were treated the same as hydrophilic head

beads. All three beads had the same mass. Hydrophilic and hydrophobic beads interacted through

a strictly repulsive soft-core (1/r9) potential. Hydrophilic beads, both water and head beads, were

attracted by a Lennard-Jones potential. Lipids were held together by harmonic potentials. They

looked at both rigid and floppy lipids by including a bond bending potential. Their model was able

to self assemble fluid bilayers and micelles and they were able to measure the properties of those

structures. A very similar model was used by Stevens et al. to study liposome fusion [43].

Loison et al. used a similar model to study pore formation in LB [44, 45]. The Loison model

represents each lipid with two hydrophilic head beads and two hydrophobic tail beads. Solvent

beads consist of a single bead which represents approximately three water molecules. Individ-

ual beads are bound together by strong FENE bonds. All beads are repelled at short range by a

Lennard-Jones like potential. Beyond the Lennard-Jones minimum, beads from different lipids

and solvent beads are attracted by the potential

U(r) =
φ

2

[
cos
(

αr2 +β

)
−1
]

(2.5)

α and β determine the cutoff radius at which the potential becomes zero and above which the

potential remains zero. The potential depth, φ , determines the strength of the potential. It is the

same for all pairs of beads of the same type as well as between head and solvent beads. Tail beads

are not attracted to head or solvent beads, making the corresponding φ value zero. Apart from the

addition of water molecules, this looks very similar to the Cooke model [36, 37]. The shape of

the attractive part of the potential is slightly different. The more gradual increase approaching the

cutoff radius does affect the stability of the membrane. Loison et al. found that the bilayer state

was unstable in the presence of large amounts of solvent [45].

The explicit solvent models listed thus far share the fact that they use simple effective forces

which are are tuned to recreate large scale behavior. They also tend to use very few types of

beads. These characteristics make them similar to the implicit solvent models. Also, the models

mentioned thus far have not used any electrostatic forces. The next group of explicit solvent
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models differ in that they try to simulate atomic scale interactions more accurately. They use

a larger variety of beads as well as a variety of potentials to simulate the different interactions

between species. Electrostatic forces are also included. The added details make these models more

complicated and less general, but arguably more realistic depending on the system. The two most

popular models in this regime are the MARTINI [46, 47] and Klein [48, 49, 25] models. Each uses

beads consisting of four heavy atoms that interact through Lennard-Jones and electrostatic forces.

I will explain both of these models in more detail below.

Dissipative particle dynamics (DPD) was developed as an alternative to traditional molecular

dynamics (MD) by Hoogerbrugge and Koelman [50, 51]. Groot and Rabone adapted this method

to simulate LB [52]. Their model uses beads consisting of three heavy atoms which is comparable

to the MARTINI and Klein models. Each bead experiences a conservative force, a random force,

and a drag force. The conservative force defines a cutoff radius, below which beads feel a repulsion

that increases linearly as they get closer. This extremely soft repulsion greatly increases diffusion.

The time step used in MD is limited by the usual hard-core repulsion between beads. Trajectories

must be updated frequently in MD to make sure beads don’t wander too close together. Without

having to worry about the infinite energy of overlapping beads, DPD can use a time step 1000 times

larger than in MD. The coarse-graining gives an additional effective speedup, allowing Groot and

Rabone to use a time step of about 5 ps.

2.4.2.1 MARTINI model

Marrink et al. developed a popular coarse grained model called MARTINI [46, 47]. MARTINI

classifies 18 different building blocks for lipids and solvents. Each bead represents about four

heavy atoms. A typical lipid is therefore composed of about twelve beads. The main distinc-

tion between beads is polarity. Beads are classified as being polar, nonpolar, apolar, or charged.

Nonpolar and charged beads are subdivided according to their affinity for hydrogen bonding. The

subtypes are donor, acceptor, both, or none. Polar and apolar beads are assigned a number from

one to five indicating its degree of polarity.
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Lipids are held together by a weak harmonic potential between nearest neighbors

Vbond(R) =
1
2

Kbond(R−Rbond)
2 (2.6)

where Kbond = 1250 kJ mol−1 nm−2 and Rbond = 0.47 nm for every combination of beads.

Next nearest neighbors experience a bending potential

Vangle(θ) =
1
2

Kangle [cos(θ)− cos(θ0)]
2 (2.7)

where Kangle = 25 kJ mol−1 and θ0 = 180◦ for most types of bonds. Besides nearest neighbors,

every combination of beads experiences one of ten different Lennard-Jones potentials.

ULJ(r) = 4εi j

[(
σi j

r

)12
−
(

σi j

r

)6
]

(2.8)

The interaction strengths, εi j, vary from 2.0-5.6 kJ/mol. The closest approach distance, σi j,

equals 0.47 nm for all but a couple interactions. The final contribution is the Coulomb potential

for charged beads.

Uel(r) =
qiq j

4πε0εrr
(2.9)

Screening is enforced by setting εr = 15. The original model had the problem of water beads

freezing near room temperature. The newest version inhibits nucleation by replacing 10% of the

water beads with “antifreeze” beads that have an effective radius of 0.57 nm instead of the typical

0.47 nm.

Model parameters have been tuned to reproduce experimental results. The use of 18 different

building blocks allows the MARTINI model to capture a wide variety of interactions while keeping

a manageable number of parameters. The effective reduction in the number of atoms along with

the use of simple pair interactions makes it possible to simulate larger systems over longer times

compared to all-atom models. Simulations can be run with a time step of about 40 fs. The effective

timescale is about four times longer than that due to the lack of friction.
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The MARTINI model has been used to simulate NP/LB interactions. A molecular dynamics

study by Lee and Larson found membrane pore formation caused by small dendrimers (R≈ 2 nm)

[53]. Nanoparticle shape is another important factor. Nangia and Sureshkumar performed MD

simulations of NP with various shapes and charge densities interacting with LB [54]. They found

that shapes with high aspect ratios like rice were able to translocate more easily than spheres.

2.4.2.2 Klein model

Another earlier model was developed by Shelley et al. to specifically simulate dimyristoylphos-

phatidylcholine (DMPC) lipids [48, 49, 25]. Water beads represent four water molecules and

interact with each other via a Lennard-Jones 6-4 potential

V (ri j) =
15
4

εαβ

[(
σαβ

ri j

)6
−
(

σαβ

ri j

)4
]

(2.10)

The parameters were calibrated to reproduce the correct melting temperature of DMPC. The

lipid tails consist of two different beads, (CH2)3 and (CH2)2−CH3. The heads are made up of

choline, phosphate, glycerol backbone, and ester group beads. Adjacent beads are bound together

by a harmonic potential

V (ri j) =
kb;αβ

2
(ri j− r0;αβ )

2 (2.11)

The bond angles among tail beads are governed by a cosine potential

V (θi jk) = kθ ;αβγ

[
1− cos(π−θi jk)

]
(2.12)

These parameters are tuned by comparing with atomistic simulations. Bond angles involving

head beads are governed by a quartic bond angle potential

VQ(θi jk) = AB2/4 (2.13)

A = Kθ ;αβγ/(2d0)
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B = d0− (θi jk−π)2

d0 = (θ0;αβγ −π)2

All non-bonded interactions other than water-water are given by a Lennard-Jones 9-6 potential

V (ri j) =
15
4

εαβ

[(
σαβ

ri j

)9
−
(

σαβ

ri j

)6
]

(2.14)

These parameters were determined by matching densities from experiments and radial distribu-

tion functions from atomistic simulations. Finally, the choline and phosphate beads were assigned

respective charges of +e and -e and a dielectric constant of 78.

The Klein model is a niche model designed to study a very specific type of lipid (DMPC).

Its parameters have been finely tuned to accurately represent that system. The coarseness of the

model is about the same the MARTINI model with an entire lipid consisting of thirteen beads. The

bond length and bond angle potentials must be calculated every femtosecond while the non-bonded

interactions less than 11 Å are updated every 2 f s and longer non-bonded interactions are updated

every 40 f s.

2.5 Continuum Models

Continuum models are useful tools for studying the shape and large scale dynamics of LB [55, 56,

26]. LB lend themselves to continuum models due to their relatively simple morphology and the

large number of lipids usually involved. Bulk parameters such as bending energy and surface ten-

sion act as inputs to the models. Some recent reviews of continuum models are given by Brannigan

et al. [26] and Brown [57].

Canham was one of the first to use such a model to understand the shapes of red blood cells

[55]. He was able to produce a variety of shapes by minimizing bending energy alone. Shortly

after, Helfrich developed a similar model which has become the standard [56]. He considered three

types of strain: stretching, tilt, and curvature. He found that the curvature modulus is much smaller

than the stretching or tilt moduli. That means that the surface area and tilt of the LB tend to remain
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fixed and that the shape of the LB is determined mostly by the curvature. He also argued that tilt

is less important than stretching. The Canham-Helfrich (C-H) Hamiltonian of the LB, neglecting

tilt, is given by [27, 55, 56, 58]

H =
∫

d2A
(

γ +
κ

2
(C1 +C2−C0)

2 + κ̄C1C2

)
(2.15)

where γ is the lateral membrane tension. κ and κ̄ are the bending rigidity and saddle-splay

modulus. C1 and C2 are the local curvatures. For a sphere of radius R, C1 = C2 = 1/R. C0 is the

spontaneous curvature which is zero as long as the LB composition is the same on both sides. I will

make that assumption in later calculations. For a LB of fixed topology the last term in the integral

will contribute only a constant and can therefore be neglected. Yoo et al. calculated the energy

of bending that occurs around the edge of a pore to find the equilibrium shape and compared with

MD simulations [59].

In addition to bending energy there is a stretching energy associated with stretching or com-

pressing bonds in the membrane. To lowest order it is assumed that the stretching energy is pro-

portional to the square of the change in area. If the membrane is interacting with another surface

such as a NP, there will also be an adhesion energy proportional to the contact area.

Deserno has used continuum models to find equilibrium configurations involving NP and LB

[60, 61, 62, 40]. A paper by Deserno and Gelbart [60] looked at the interactions between spherical

colloids and spherical vesicles. They considered the following factors: the sizes of the colloid and

vesicle, the adhesion energy between them, and also the surface tension and bending energy of the

vesicle. The colloid was treated as a hard sphere while the vesicle was able to deform while binding

with the colloid. The energy contributions they considered were the adhesion energy between the

colloid and vesicle (Ead), the tension energy of the stretched vesicle (Eten), and the curvature

energy for bending the vesicle (Ec).

Etotal = Ead +Eten +Ec (2.16)

Ead =−kadAad (2.17)
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Eten =
kten

2
[max(A;A1)−A1]

2

A1
(2.18)

Ec =
∮ 1

2
kc(κ1 +κ2)

2dA (2.19)

where kad is the adhesion constant and Aad is the area of contact. kten is the lateral compress-

ibility, A1 is the unstretched vesicle surface area, and A is equilibrium stretched area. The max

function in Eten ensures that the vesicle will only stretch and can not be compressed. Ec is sim-

ply the Helfrich energy defined above, neglecting the Gaussian and spontaneous curvatures. The

energy gain through adhesion must be balanced against the deformation costs.

For a given set of vesicle and colloid sizes and membrane parameters they were able to mini-

mize the energy to find how far the colloid penetrated as well as the curvature of the vesicle near

separation. They found that vesicles greater than a certain minimum (R ∼ 300 nm) were able to

completely envelop colloids within a certain range of sizes. Colloids that were too large were

only partially wrapped. Vesicles below the critical size could only achieve partial wrapping re-

gardless of the size of the colloid. Very small colloids were not able to penetrate the vesicle at all

and remained unbound. In that case the surface tension cost overwhelmed the potential gain from

adhesion.

Other studies have looked at the interactions of NP with flat membranes and found similar

conditions for partial or complete wrapping [62, 61, 63]. In a more recent paper Deserno calculated

the tension required to form a pore in a membrane in the absence of a NP which agreed with coarse-

grained MD simulations [40].

Van Lehn and Alexander-Katz also used the C-H Hamiltonian to model NP interacting with

a LB under zero tension [64]. Their NP consisted of two different phases which were either hy-

drophilic or hydrophobic and were free to mix. This caused different adhesion energies depending

on which part of the NP was in contact with either the lipid head or tail region. In addition to the

bending and adhesion terms, they included the mixing energy for the NP surface. They predicted

varying degrees of penetration depending on the adhesion strengths and ratio or phases on the NP

which they compared to their own MD simulations.
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2.5.1 TGMB Theory

Although different from the continuum models above, Ginzburg and Balijepalli used a combination

of self-consistent field theory and density functional theory to model the interaction between NP

and LB [65]. Their work is significant because it proposes a phase diagram of NP/LB states. They

predict outcomes based on NP properties which can be compared to other theories and experiments.

I have run simulations closely following the conditions used by Ginzburg and Balijepalli. I will

present a comparison in chapter 3.

The technique was developed earlier by Thompson, Ginzburg, Matsen, and Balazs (TGMB) to

model the interaction between NP and block polymers [66, 67]. In the Ginzburg and Balijepalli

adaptation, diblock polymers are replaced by lipid diblocks (D) which have hydrophilic (H) and

lipophilic (L) parts. The other two components are the water solvent (W) and the nanoparticle (P).

The total free energy can be written as

FND
kBT ρ0V

= f1 + f2 + f3 + f4 (2.20)

f1 =
ϕP
α

ln
(

QP
V

)
−ϕDln

(
QD
V

)
−NDϕW

(
QW
V

)
(2.21)

f2 =
1
V

∫
dr

∑
α,β

(
χαβ ND

)
φα(r)φβ (r)−ξ (r)

(
1−∑

α

φα(r)

) (2.22)

f3 =
1
V

∫
dr

− ∑
α(6=P)

wα(r)φα(r)−wP(r)ρP(r)

 (2.23)

f4 =
1
V

∫
dr
[
ρP(r)ΨCS

(
φ̄P(r)

)]
(2.24)

The fist term, f1 (2.21), contains the entropic free energies. The second term, f2 (2.22), con-

tains the local interactions determined by Flory-Huggins parameters [68, 69]. I will explain each

of the contributions in detail in appendix 5.

Ginzburg and Balijepalli solved the above field equations on a two dimensional lattice 120x120.

The size of each lattice site was 0.36 nm on a side making the total lattice roughly 43x43 nm2.

They used nanoparticles of radii (Rp = 1.6, 2.0, 2.4, 2.8, and 3.2 nm). The nanoparticles were
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made stationary and their densities were defined by sharp Gaussian functions. The Flory-Huggins

parameters for the interactions between nanoparticle (P), water (W), hydrophilic (H), and lipophilic

(L) blocks were as follows: χHL = χWL = 1.0 meaning that the lipophilic blocks will separate from

the water and hydrophilic blocks. χWH = χPL = 0.0 meaning that water and hydrophilic blocks as

well as nanoparticle and lipophilic blocks are as likely to mix as not. χPW = 1.0 while χPH varies

from +1.0 (repulsive) to -3.0 (strongly attractive). They argue that χPH =+1.0 corresponds to un-

charged or hydrophobic nanoparticles while χPH =−3.0 corresponds to highly charged nanopar-

ticles. It is known that nanoparticles are attracted more strongly to bilayers when charged [70, 71].

The values of χPL and χPW make it more favorable for the nanoparticle to become absorbed into

the lipophilic region than to remain separated from the membrane. The other possible configura-

tion is for the nanoparticle to become surrounded by the bilayer in contact with the hydrophilic

blocks. The most favorable configuration is determined by the size of the nanoparticle and the

interaction between nanoparticle and hydrophilic block.

They found that electrically neutral nanoparticles were absorbed into the center of the bilayer

for all particle sizes tested. As the charge density was increased (χPH decreased) the nanoparticle-

hydrophilic block interactions became more favorable. Charged nanoparticles were coated by a

bilayer of lipids instead of the monolayer needed for the uncharged nanoparticles. That caused

twice as many lipids to be pulled away from the membrane surface resulting in thinning and even

rupture. Small charged nanoparticles formed micelles while remaining embedded in the mem-

brane. Charged nanoparticles above a certain critical size, in addition to forming micelles, were

also found to form pores in the membrane. While the study was done over a narrow range of

nanoparticle sizes they assume that the trend of large, highly charged nanoparticles causing pores

would continue. I will present the details of their results in chapter 3 as they pertain to my results.

Ginzburg and Balijepalli acknowledged that their model only deals with the thermodynamics of

the system and that a dynamical model is needed to understand the details of the pore formation

such as energy barriers and time scales.
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Chapter 3

THERMODYNAMICS OF NANOPARTICLE/LIPID BILAYER INTERACTIONS

Interactions between nanoparticles (NP) and lipid bilayers (LB) can be understood in terms of the

membrane properties and the attraction between the NP and LB. In this chapter I will outline a

simple continuum model and define the free energies for various NP/LB states. I consider both

spherical and rod-shaped NP. By comparing those energies I will make a phase diagram to identify

when NP become wrapped and when pore formation becomes favorable. I will then compare my

phase diagram with the DFT results of Ginzburg and Balijepalli [65]. As I mentioned in section

2.5.1, I have chosen to compare with their work because they have also proposed a phase diagram.

Finally, I will present MD simulations I have run which I will compare with my predicted phase

diagram.

3.1 Continuum Model Theory

The energy of a membrane can be characterized in terms of large scale deformations like bending

and stretching. In this section I will present the energies for various NP/LB states. All energies are

defined with respect to an initial reference state in which the NP and LB are separated. I will first

define the energies and then compare them in order to make a phase diagram.

The choice of ensemble is an important factor in determining the wrapping behavior. In the case

of an isolated cell or vesicle interacting with small NP, a fixed area ensemble may be appropriate.

While there can be significant deformation of the membrane near the NP, the large scale dimensions

of the LB remain relatively unchanged. This assumes that there are insufficient free lipids to be

added to the LB or that the process occurs much more slowly than the NP wrapping. This means

that wrapping will increase tension in the LB and that exceeding a critical tension could rupture the

LB. I calculate free energies for the various states in this ensemble and later present corresponding

fixed boundary MD simulations.
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Alternatively, it may be more appropriate to fix the lateral tension of the LB. Cells are able

to regulate a small but nonzero tension by adding or removing lipids. While wrapping is still

possible, stable pore formation is impossible under low tension. One could imagine a very large

or highly charged NP causing severe stretching and inhibiting the cell’s tension regulation. That

would cause a spike in tension and temporary pore formation. Ruiz-Herrero et al. observed such

transient pores in their simulations [63]. One must be very careful in defining the barostat in

MD simulations. The barostat controls how quickly the pressure can relax and can therefore be

responsible for pressure/tension spikes.

In this section I will consider a fixed area and fixed tension LB interacting with a spherical NP.

I will also discuss the infinite rod NP case as it appears to be similar to a 2D system.

3.1.1 Fixed boundary LB with spherical NP

Here I list the possible states for a spherical NP interacting with a LB with fixed boundaries. I

first consider hydrophilic NP meaning that the NP will adhere to the lipid heads, opposed to the

tails. I will separately consider hydrophobic NP which prefer to be in contact with the lipid tails.

For each state I define the free energy with respect to the reference state in which the NP and LB

are dissociated. Figures 3.1 and 3.2 show schematics for each of the states along with their free

energies.
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Figure 3.1:

Hydrophilic spherical NP states

A Reference state defined as zero energy

B Detached liposome without a pore

C Detached liposome with a pore
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Figure 3.1 (cont’d)

D Embedded liposome without a pore

E Embedded liposome with a pore
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F Partially wrapped liposome
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3.1.1.1 Detached liposome (sphere)

The first nonzero energy state involves the nanoparticle being completely wrapped and detached

from the bilayer. I call this state “detached”. Its energy is

F1a =
K
2

(
4πR2

n−πR2
p

)2

A0
+8πκ +2πRpγ−4πR2

nw (3.1)

The first term is the stretching energy of the bilayer. This is an harmonic approximation ap-

propriate for relatively small changes to the membrane area [34, 72, 37, 40]. K is the stretching
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modulus and Rn is the radius of the NP. A0 is the starting unstretched area of the bilayer and is a

constant in this ensemble. The squared term in parentheses is the change in area, in this case the

surface area of the NP minus the area of a possible pore of radius Rp.

The second term is the bending energy of the bilayer around the nanoparticle and is independent

of the nanoparticle size in the case of total spherical coverage [56]. κ is the bending modulus of

the LB. The third term is the line energy around the edge of the pore. The cost comes from lipid

heads having to curve around the edge of the pore to protect the hydrophobic tails. The constant,

γ , is a material property and is directly proportional to K. In section 3.2 I will calculate values for

K, A0, κ , and γ based on my own MD simulations.

The last term is the adhesion energy proportional to the nanoparticle’s surface area and is the

only favorable term. The constant, w, is a parameter in my simulations on the order of 20 ε/σ2.

While I treat w as a constant, it should depend on the lipid concentration in contact with the NP.

A weakly attractive NP will allow thinning of the LB and result in less adhesion energy. On the

other hand, a strongly attractive NP could cause a tight aggregation of lipids in contact with it and

result in a higher adhesion energy. Assuming a constant w is reasonable for small changes in lipid

concentration. This issue will come up again later when analyzing my phase diagram.

This energy applies to states B and C in figure 3.1 depending on whether or not there is a pore.

3.1.1.2 Embedded liposome (sphere)

The second state consists of a completely covered nanoparticle which is embedded in the bilayer.

The energy is

F2a =
K
2

(
3πR2

n−πR2
p

)2

A0
+8πκ +2πRpγ−4πR2

nw (3.2)

and corresponds to states D and E in figure 3.1 depending on whether or not there is a pore.

The change in area in the first term is the surface area of the NP minus the cross sectional area

of the NP displacing the membrane as well as the area of the pore. The only difference from the
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detached state is a reduction in stretching energy. For that reason, the embedded states will always

be more favorable.

Equation (3.2) assumes that the pore is physically separated from the embedded liposome. It

is possible and in some cases preferable for the pore to be adjacent to the liposome. By sharing

an edge, the line energy around the pore can be reduced. This decrease in energy is somewhat

mitigated by a decrease in pore area which increases the stretching energy. After calculating the

changes to the stretching and line energy terms, I found that the effect on the total energy is negli-

gible.

An additional energy contribution I have neglected is the LB curvature around the interface of

the embedded liposome. For small NP, whose size is comparable to the LB thickness, the interface

curvature will be negligible. For larger NP, the curvature will increase until the radius of curvature

around the interface is similar to that around the edge of a pore. In this large NP limit, an additional

line energy term should be included in which γ increases with the NP radius. I believe equation

(3.2) is appropriate for describing my simulations which involve small NP.

3.1.1.3 Partially wrapped spherical nanoparticle

Another possible state is the partially wrapped NP given by state F in figure 3.1. If f represents

the fraction of the NP covered, its energy is

F3a =
K
2
(4πR2

n f 2)2

A0
+8πκ f −4πR2

n f w (3.3)

The bending and adhesion terms are simply proportional to f . This equation assumes that

the NP is less than half wrapped (0 ≤ f ≤ 1/2). Further wrapping requires a more complicated

form. The stretching term contains the surface area of a spherical cap minus the excluded circular

intersection area. The derivative with respect to f must be taken to find the optimal wrapping

fraction.
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dF3a
d f

= 4π

(
8πR4

n f 3K
A0

+2κ−R2
nw

)
(3.4)

Initial wrapping depends on the derivative as f approaches zero. Setting the limit of the deriva-

tive as f approaches zero equal to zero gives the following condition.

dF3a
d f

∣∣∣∣
f→0

= 0

⇒ 4πR2
nw = 8πκ (3.5)

The two remaining terms are the adhesion and bending energies. If the adhesion is stronger,

then at least partial wrapping will occur. For a given value of w a critical nanoparticle radius can

be found.

Rn1 =

√
2κ

w
(3.6)

The condition for at least a metastable half wrapped state can be found by taking the limit of

the derivative as f approaches 1/2.

dF3a
d f

∣∣∣∣
f→1/2

= 0

⇒ 4πR2
nw = 8πκ +K

(2πR2
n)

2

A0
(3.7)

In this case the adhesion not only has to overcome the cost of bending but also some stretching.

Again, assuming a constant w, the critical minimum radius would be

Rn2 =

√√√√ A0
2πK

(
w−

√
w2− 8πκK

A0

)
(3.8)

In order to see if total wrapping is favorable, let’s compare the half wrapped state and the

embedded state with no pore
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F2a|Rp→0−F3a| f→1/2 = 2π

(
2πR4

nK
A0

+2κ−R2
nw

)
(3.9)

The condition for complete wrapping can be determined by finding when equation (3.9) is neg-

ative. There are two positive roots indicating a range over which complete wrapping is favorable.

1√
πK

√
1−
√

1−ξ < Rn <
1√
πK

√
1+
√

1−ξ (3.10)

where

ξ =
16πκK
A0w2 (3.11)

Very small NP can not gain enough through adhesion to pay the cost of bending. Very large

NP simply require too much stretching.

3.1.1.4 Single layer micelle (sphere) states

The previous sections assumed a hydrophilic NP in contact with lipid heads and wrapped with a

bilayer. If instead, the NP is hydrophobic or attracted more to the lipid tails, then it will prefer

to be wrapped by a single layer and the energies will be slightly different. Again I consider the

embedded and detached states with and without pores. First, the detached states, corresponding to

states G and H in figure 3.2 will have an energy similar to F1a,

F4a =
K
2

(
2πR2

n−πR2
p

)2

A0
+4πκ +2πRpγ−4πR2

nv (3.12)

The bending and stretching terms are smaller because only a single layer of lipids is being

deformed. The adhesion term has a new constant, v, corresponding to the NP/tail interaction.

There is an increase in energy from the separation of monolayers around the nanoparticle. Since

that is also proportional to the surface area of the nanoparticle I have combined that effect with the

nanoparticle adhesion by lowering v appropriately. Although v and the NP/head attraction strength,

28



w, can be independent, what matters is their relative magnitudes. In later sections I will treat v as

a constant while allowing w to vary.

The embedded states corresponding to states I and J in figure 3.2 will be similar to F2a,

F5a =
K
2

(
πR2

n−πR2
p

)2

A0
+4πκ +2πRpγ−4πR2

nv (3.13)
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Figure 3.2:

Hydrophobic spherical NP states

G Detached micelle without a pore

H Detached micelle with a pore

F4a = K
2

(
2πR2

n−πR2
p
)2

A0
+4πκ +2πRpγ−4πR2

nv

I Embedded micelle without a pore

J Embedded micelle with a pore

F5a = K
2

(
πR2

n−πR2
p
)2

A0
+4πκ +2πRpγ−4πR2

nv
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3.1.2 Fixed boundary LB with infinite rod

Now I will list the possible states of the same fixed boundary LB, instead interacting with an infinite

rod. Schematics of the side views of these states, looking down the length of the rod, are the same

as those for spherical NP. The energies are listed in figures 3.3 and 3.4. The subscripts, “b” and

“c”, denote the rod states opposed to the “a” previously used for the spherical NP. I will still use Rn

to now represent the radius of the rod. Additionally, I define the length of the rod as L. By infinite

rod, I mean that it spans the length of my simulation box which has periodic boundaries. The area

of the unstretched LB is therefore L2.

Figure 3.3:

Hydrophilic rod-shaped NP states

A Reference state defined as zero energy

B Detached liposome with small or no pore C Detached liposome with a spanning pore

F1b =
K
2

(
2πRn−

πR2
p

L

)2

+
L

Rn
πκ

+2πRpγ−2πRnLw

F1c =
L

Rn πκ +2Lγ−2πRnLw
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Figure 3.3 (cont’d)

D Embedded liposome with small or no pore E Embedded liposome with a spanning pore

F2b =
K
2

(
2(π−1)Rn−

πR2
p

2L

)2

−2πRnLw+πRpγ +
L

Rn
πκ

F2c =
L

Rn πκ +Lγ−2πRnLw

F Partially wrapped liposome

F3b = K
2

(
4R2

n

)(
π f −2

√
f (1− f )

)2
+ L

Rn πκ f −2πRnLw f

3.1.2.1 Detached liposome (rod)

The detached states (B and C in figure 3.3) again consist of a completely wrapped NP (this time

rod-shaped) and a LB which may have a pore.

In the spherical NP cases, we assumed that the pore area which was proportional to the NP

area was much smaller than the area of the LB. In the infinite rod case, the length of the rod is

comparable (in our case equal) to the length of the LB. It is therefore possible for a pore to span

the entire length of the membrane. I separately consider the cases of small pores and pores that

span the entire length of the LB. The energy for a detached liposome state with a small round pore

is
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F1b =
K
2

(
2πRn−

πR2
p

L

)2

+
L

Rn
πκ +2πRpγ−2πRnLw (3.14)

The area term now contains the surface area of the rod as well as the pore area. Both terms in

parentheses are divided by L because of the division by the LB area. The bending term is now size

dependent because the curvature is still 1/Rn while the rod’s surface area is 2πRnL. Integrating

the curvature then gives

Eb =
∫

dA

{
κ

2

(
1

Rn

)2
}

=
κ

2

(
2πRnL

R2
n

)
=

L
Rn

πκ (3.15)

The line energy term remains the same while the adhesion term is again proportional to the

rod’s surface area. Equation (3.14) also describes the state without a pore if Rp is equal to zero.

In the case of a large spanning pore, the LB is free to retract and relieve all of the stretching

energy. The free energy of the spanning pore state is

F1c =
L

Rn
πκ +2Lγ−2πRnLw (3.16)

Besides the absence of stretching energy, the only other difference is that the line energy is

proportional to 2L because there are two edges equal to the length of the LB.

3.1.2.2 Embedded liposome (rod)

The embedded states (D and E in figure 3.3) can also have either a small or spanning pore. The

energy of the small pore state is

F2b =
K
2

(
2(π−1)Rn−

πR2
p

2L

)2

−2πRnLw+πRpγ +
L

Rn
πκ (3.17)

The change in area is equal to the surface area of the rod (2πRnL) minus the displaced area

(2RnL) and the pore area. The most energy efficient pore shape is a half circle adjacent to the
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liposome. It allows a smaller line energy for a given pore area. That is why the line energy is

proportional to πRp. The bending and adhesion terms remain the same.

The energy for the spanning pore case is

F2c =
L

Rn
πκ +Lγ−2πRnLw (3.18)

The line energy is half of that in equation (3.16) because there is only one edge.

3.1.2.3 Partially wrapped rod-shaped nanoparticle

The partially wrapped rod-shaped nanoparticle has an energy of

F3b =
K
2

(
4R2

n

)(
π f −2

√
f (1− f )

)2
+

L
Rn

πκ f −2πRnLw f (3.19)

The area term contains the surface area of the LB in contact with the NP minus the displaced

area. The bending and adhesion terms are the same as in states B-E except that they are propor-

tional to the wrapping fraction, f .

As in the spherical NP case we can find the condition for wrapping by taking the derivative

with respect to f

dF3b
d f

= 4K
(

π− 1−2 f
f (1− f )

)
( f π−2

√
f (1− f ))R2

n +L
(

πκ

Rn
−2πRnw

)
(3.20)

Since I am assuming an infinite rod (L >> Rn), only the terms proportional to L are significant.

Therefore the derivative is negative and wrapping is favorable if

Rn >

√
κ

2w
(3.21)

Notice that this condition is independent of f meaning that total wrapping will occur for rods

above the critical radius. For a finite rod, there is a stable partially wrapped state which I’ll describe

in section 3.3.2.
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3.1.2.4 Single layer micelle (rod) states

Similar to the spherical hydrophobic NP states, I will now list the states in which the rod prefers to

be in contact with lipid tails and is therefore wrapped by a single layer of lipids, forming a micelle.

I begin with the detached rod-shaped micelle state with a small pore (G in figure 3.4). The energy

is given by

F4b =
K
2

(
πRn−

πR2
p

L

)2

+πκ
L

2Rn
+2πRpγ−2πRnLv (3.22)

The stretching and bending terms are smaller than in state B (F1b) because it is easier to bend

or stretch a single layer of lipids. The energy for a detached micelle with a spanning pore (H in

figure 3.4) is

F4c = πκ
L

2Rn
+2Lγ−2πRnLv (3.23)

The bending energy is half of that for state C (F1c). An embedded rod-shaped micelle with a

small pore (I in figure 3.4) has an energy of

F5b =
K
2

(
(π−2)Rn−

πR2
p

2L

)2

+πκ
L

2Rn
+πRpγ−2πRnLv (3.24)

The stretching and bending terms are similarly smaller than in state D (F2b) because of the

single layer wrapping. An embedded rod-shaped micelle with a spanning pore (J in figure 3.4) has

an energy of

F5c = πκ
L

2Rn
+Lγ−2πRnLv (3.25)
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Figure 3.4:

Hydrophobic rod-shaped NP states

G Detached micelle with small or no pore H Detached micelle with a spanning pore

F4b =
K
2

(
πRn−

πR2
p

L

)2

+πκ
L

2Rn

+2πRpγ−2πRnLv

F4c = πκ
L

2Rn +2Lγ−2πRnLv

I Embedded micelle with small or no pore J Embedded micelle with a spanning pore

F5b =
K
2

(
(π−2)Rn−

πR2
p

2L

)2

+πκ
L

2Rn
+πRpγ−2πRnLv

F5c = πκ
L

2Rn +Lγ−2πRnLv

3.1.3 Fixed tension ensemble

If the tension of the LB is held constant then it becomes impossible for a stable pore to exist. The

only benefit of a pore is to relieve tension. If the LB is kept at zero tension then any pore will heal
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itself to avoid the unfavorable line energy around the edge of the pore. If the LB is under positive

tension, then there will be competition between tension relief and line energy.

As an example, let us consider the detached spherical liposome state. The only change from

F1a (equation 3.1) is in the stretching term. Under constant tension this term is simply equal to the

tension, Σ, times the change in area with respect to the reference state.

F1d = Σ(4πR2
n−πR2

p)+8πκ +2πRpγ−4πR2
nw (3.26)

First let us determine when wrapping is favorable before a pore forms. For that we need to find

when the energy is negative.

F1d(Rp = 0) = π(4R2
n(Σ−w)+8κ)≤ 0

⇒ Rnc ≥
√

2κ

w−Σ
(3.27)

A minimum requirement for wrapping is that the benefit from adhesion outweighs the cost of

stretching (w > Σ). Additionally, the nanoparticle must be larger than the critical size in equation

(3.27) in order to overcome the cost of bending which dominates for small nanoparticles. Ruiz-

Herrero et al. performed simulations at zero tension and found the same condition for wrapping

[63].

To see the dependence of pore size on the energy we can differentiate with respect to Rp

dF1d
dRp

= 2π(γ−ΣRp) (3.28)

The slope is initially positive meaning that there is a barrier to pore formation. The derivative

becomes negative for pores larger than

Rpc = γ/Σ (3.29)
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Any pore larger than this will continue to grow. The size of the energy barrier can be found by

comparing the energy at the critical pore radius and the energy for no pore.

Ebarrier = F1d(Rp = γ/Σ)−F1d(Rp = 0)

= πγ
2/Σ (3.30)

While the critical radii and size of the energy barriers will be different for other states, the

general behavior remains the same. Very small NP will not become wrapped and pores will be

unstable for any value of Σ. Under positive tension small pores will heal themselves while pores

larger than a critical size will grow until the LB tears apart.

3.2 LB properties from simulation

Several LB properties can be determined from simulation. If the LB is slowly stretched biaxially,

the surface tension is expected to increase linearly with the area. The critical tension at which a

pore forms is related to the line tension around the pore. Cooke and Deserno performed such tests

on their LB model [37, 40]. I have run my own simulations using their model to measure these

properties. As discussed in section 3.1, the energy of a LB with a pore is

E =
K
2
(A−A0−πR2

p)
2

A0
+2πγRp (3.31)

Tolpekina et al. [72] used the following relation between the membrane free energy and surface

tension in the canonical ensemble

(
dE
dL‖

)
N,V,T

= L⊥L‖(2pzz− pxx− pyy) = 2L‖Σ (3.32)

where L‖ and L⊥ are the simulation box dimensions parallelel and perpendicular to the mem-

brane. pi j represent the pressure tensor components. The right-hand side serves as the definition

of the surface tension, Σ. The area of the LB, A0, is equal to (L‖)
2. Differentiating equation (3.31)

gives
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(
dE
dL‖

)
N,V,T

= 2L‖
K
A0

(A−A0−Ap)

⇒ Σ =
K
A0

(A−A0−Ap) (3.33)

The optimal pore size occurs when the derivative with respect to Rp is zero.

dE
dRp

= 2π

[
γ−

KRp

A0

(
A−A0−πR2

p

)]
= 0 (3.34)

Equation (3.34) only has a positive root if its discriminant is positive.

Discriminant
[

dE
dRp

]
=

4π5K2

A4
0

(
4K2(A−A0)

3−27πγ
2A2

0

)
(3.35)

At the critical point (A = Ac), the discriminant is equal to zero and can be solved for the line

energy constant, γ .

γ =
2K
3A0

√
(Ac−A0)

3

3π
(3.36)

Figure 3.5 shows surface tension versus area for my simulations. I measured the tension for

both slowly increasing (green) and decreasing (black) areas. Tension was calculated from the

pressure components which are easily accessible from the simulation. Although equation (3.33)

assumes a constant volume, it is still appropriate if the box is stretched very slowly.

Under low tension, the relation is linear as indicated by equation (3.33). By fitting my data to

that equation I was able to determine K ≈ 22 ε/σ2 and A0 ≈ 1820 σ2. The hysteresis between the

green and black traces is due to the energy barrier for pore formation and is rate dependent. As the

rate of area change is decreased, the two traces should converge. The true critical point should lie

between the two peaks and depend only on the membrane properties indicated by equation (3.36).

By running constant area simulations over a range of areas, I observed the true critical point to

be around 1970 σ2, indicated by the red point in figure 3.5. Along with the other previously

determined parameters, equation (3.36) gives a value of γ ≈ 4.0 ε/σ . The values for K and γ are
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Figure 3.5: Surface tension versus area in a flat LB. The green trace represents increasing area
while the black trace represents decreasing area. The red circle indicates the critical point.

in good agreement with those found by Deserno [40]. My values are slightly larger because my

simulations were run at a lower temperature.

The bending modulus, κ , can be estimated from thin plate theory as

κ =
Kh2

48(1−ν2)
(3.37)

where h is the thickness of the membrane and ν is the Poisson ratio measuring compressibility.

Assuming a perfectly incompressible membrane, ν = 0.5. A LB thickness of 5 nm ≈ 5.6 σ , along

with my value for K gives a bending modulus of κ ≈ 19 ε . This value is also in good agreement

with the bending modulus found by Cooke and Deserno using fluctuation measurements [37]. I
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will use these values when calculating phase diagrams in the next section.

3.3 Phase diagram

I will now compare the various states described in section 3.1 to see which are the most favorable

for different parameters. I will then create a phase diagram to compare with my simulation results

and with those of Ginzburg and Balijepalli [65].

3.3.1 Fixed boundaries with spherical NP

The embedded states will always have a lower energy because the stretching energy is smaller.

This is a result of my neglecting the curvature around the embedded liposome or micelle interface.

As previously mentioned, a large embedded NP will cause significant bending. In the limiting case

where the line energy around the interface is equal to that around the edge of a pore, the detached

states clearly become more favorable. In all of my small NP simulations, only embedded states

were observed.

My phase diagrams will depend on the properties of the NP, namely the size and strength of

attraction. By comparing the energies I will determine the transitions. First I will find the critical

NP size required for pore formation. A pore will form in the embedded liposome case when the

energies of states D and E are equal. It is useful to define the difference between the energies as

∆F2a = F2a(Rp)−F2a(Rp = 0) (3.38)

= πRp

(
πRpK
2A0

(−6R2
n +R2

p)+2γ

)
(3.39)

This function is by definition equal to zero at (Rp = 0) and increases as Rp increases. The pore

state is favorable if the function has a positive root, meaning that it eventually becomes negative

for a positive pore radius. The factor of Rp corresponds to the zero at the origin. The zero we

are interested in must lie in the cubic function in parentheses. Cubic equations have multiple roots
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only if their discriminant is positive. Therefore finding the discriminant of the term in parentheses

gives another constraint.

Discriminant[∆F2a] =
27π2K2

A4
0

(2π
2K2R6

n−A2
0γ

2) (3.40)

Setting the discriminant equal to zero and solving for Rn determines the critical NP radius

which transitions from D to E. Nanoparticles larger than this will form an embedded liposome and

pore.

REa =

(
γA0√
2πK

)1/3
(3.41)

The same procedure can be used to compare the embedded micelle states with and without

pores. Again, I start with the difference between energies

∆F3a = F3a(Rp)−F3a(Rp = 0) (3.42)

=
πRp

2A0

(
πRpK(−2R2

n +R2
p)+4A0γ

)
(3.43)

Taking the discriminant of the cubic factor gives

Discriminant[∆F5a] = 256π
4R6

nK4−432π
2A2

0γ
2K2 (3.44)

The critical NP radius at which an embedded micelle forms a pore, transitioning from I to J, is

therefore

RJa =
√

3
(

γA0√
2πK

)1/3
(3.45)

REa and RJa give clear transitions for micelle and liposome pore formation. Now I will find

when total wrapping becomes more favorable than the dissociated reference state. Since I am using

a single adhesion strength between the NP and tail beads, v, it is easier to find the transition from

the dissociated state (A) to the embedded micelle state (I). Setting F5a with no pore equal to zero

and solving for Rn gives
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F5a(Rp = 0) = π

(
πR4

nK
2A0

−2R2
nv+4κ

)
= 0

⇒ RIa = 2

√√√√A0v
πK

(
1−

√
1− πκK

2A0v2

)
(3.46)

The sizes of the three transition radii are as follows

RIa < REa < RJa (3.47)

This defines four regions in each of which there are two possible states. For NP smaller than

RIa the possible states are A and D. For NP between RIa and REa the possible states are D and I.

Between REa and RJa the possible states are E and I. For NP larger than RJa the possible states

are E and J. To find the adhesion strength (w) dependence of the transitions we must compare the

energies in each region.

The transition from the dissociated reference state (A) to the embedded liposome (D) can be

found by setting F2a with no pore equal to zero and solving for w

wADa =
9πR2

nK
8A0

+
2κ

R2
n

(3.48)

There is also a partially wrapped state (F). In section 3.1 I found the minimum NP radius

required for partial wrapping. If equation(3.5) is solved instead for w, we find the transition from

detached (A) to partially wrapped (F).

wAFa =
2κ

R2
n

(3.49)

which is the second term in equation (3.48). Once the adhesion strength reaches wADa, the

fully wrapped, embedded state is favorable. The range of w over which a NP becomes partially

wrapped is given by the first term in equation (3.48). The partially wrapped phase becomes larger

as the surface area of the NP increases with respect to the LB area. For small NP (R2
n << A0), the

partially wrapped phase is negligible.
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The transition from state D to I in the second region can be found by setting F2a equal to F5a

and solving for w

wDIa =
πR2

nK
A0

+
κ

R2
n
+ v (3.50)

To find the remaining two transitions we must first solve for the optimal pore sizes for states E

and J. This is done by setting the derivative of F2a with respect to Rp equal to zero and solving for

Rp.

dF2a
dRp

= 2π

(
πRpK

A0
(R2

p−3R2
n)+ γ

)
= 0

⇒ Rp2a = Rn

(
(
√

α2
a −1−αa)

2/3 +1

(
√

α2
a −1−αa)1/3

)
(3.51)

where

αa =
A0γ

2πR3
nK

(3.52)

The optimal micelle pore radius can be found similarly.

dF5a
dRp

= 2π

(
πRpK

A0
(R2

p−R2
n)+ γ

)
= 0

⇒ Rp5a =
Rn√

3

(
(
√

β 2
a −1−βa)

2/3 +1

(
√

β 2
a −1−βa)1/3

)
(3.53)

where

βa =
3
√

3A0γ

2πR3
nK

(3.54)

The transition from state E to I in the third region can be found by setting F2a equal to F5a with

no pore and solving for w.

F2a(Rp = Rp2a) = F5a(Rp = 0)
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⇒ wEIa =
πK
4A0

(
4R2

n−3R2
p2a +

R4
p2a

2R2
n

)
+ v+

1
R2

n

(
Rp2a

2
γ +κ

)
(3.55)

where Rp2a is given by equation (3.51). The transition from state E to J in the fourth region can

be found by setting F2a equal to F5a with the appropriate pore size substitutions (3.51) and (3.53)

and solving for w.

F2a(Rp = Rp2a) = F5a(Rp = Rp5a)

⇒ wEJa =
πK
4A0

(
4R2

n +
R4

p2a−R4
p5a

2R2
n

+R2
p5a−3R2

p2a

)
(3.56)

+v+
1

R2
n

(
Rp2a−Rp5a

2
γ +κ

)
Figure 3.6 shows the phase diagram of w versus Rn with wADa, wAFa, wDIa, wEIa, and wEJa

plotted over their respective regions. The partially wrapped state is present but is narrower than

the line thickness of the plot. As mentioned before, the favorable region for partial wrapping is

negligible for NP small compared to the LB.

3.3.2 Fixed boundaries with infinite rod NP

Similar to the previous section I will now explain the phase transitions for the case of an infinite

rod NP interacting with a LB with fixed boundaries. The energies are given in figures 3.3 and 3.4.

The phase diagram looks similar to that of the spherical NP case with a couple differences. The

relative sizes of the critical radii depend on the size of the membrane. For that reason I will make

one phase diagram for large L and one for smaller L.

Embedded states are always preferable to detached states because there will be less stretching.

Again, this is because I have neglected the curvature around the interface of the embedded NP

which I believe is appropriate for small NP. We are left with states A, D, E, F, I, and J as possibili-
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Figure 3.6: Phase diagram of spherical NP states. The x-axis shows the radius of the nanoparticle.
The y-axis shows the attraction between the nanoparticle and lipid heads. Attraction increases
with w. (A) Dissociated reference state, (D) Embedded liposome without a pore, (E) Embedded
liposome with a pore, (I) Embedded single-layer micelle without a pore, (J) Embedded single-
layer micelle with a pore. Schematics and energies for each phase are given in figures 3.1 and
3.2.

ties. To see when a small pore becomes favorable with an embedded liposome we find where F2b

is smaller than its value at Rp = 0.

∆F2b = F2b−F2b(Rp = 0) (3.57)

= πRp

[
K
L

(
πR3

p

8L
+(π−1)RnRp

)
+ γ

]
(3.58)

This has a positive root if the discriminant of the cubic expression in brackets is positive.

Discriminant[∆F2b] =
πK2

64L5

(
32(π−1)3R3

nK2−27πLγ
2
)

(3.59)
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⇒ RDb =
3

2(π−1)

(
πLγ2

4K2

)1/3

(3.60)

The same procedure can be used to find the critical NP size required to form a small pore in

the embedded micelle case.

∆F5b = F5b−F5b(Rp = 0) (3.61)

= πRp

[
γ−

RpK
2L

(
(π−2)Rn−

πR2
p

4L

)]
(3.62)

Discriminant[∆F5b] =
πK2

64L5

(
4(π−2)3R3

nK2−27πLγ
2
)

(3.63)

⇒ RIb1 =
3

π−2

(
πLγ2

4K2

)1/3

(3.64)

RDb is always smaller than RIb1. To find the minimum NP radius required to form an embedded

micelle with no pore we can set F5b equal to zero (the reference energy) and solve for Rn.

F5b(Rp = 0) =
1
2

π
2R2

nK−2πLRnv+
πLκ

2Rn
= 0 (3.65)

⇒ RIb2 =
1

4φ

√
κ

v

(√
3−
√

3cos
[

1
3

cos−1
[
1−2φ

2
]]

(3.66)

+3sin
[

1
3

cos−1
[
1−2φ

2
]])

(3.67)

where

φ =
3(π−2)2K

16πL

√
3κ

v3 (3.68)

These three critical points, RDb, RIb1, and RIb2, are again independent of w and will appear as

vertical segments in the phase diagram. RIb2 can be either larger or smaller than RIb1 depending

on the size of L.
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The optimal pore radii in states D and I can be found by seeing when the derivatives of F2b and

F5b with respect to Rp are equal to zero. By substituting the optimal pore radius back into F2b and

comparing with the energy of the spanning pore state (F2c), we can find the NP transition radius

from state D to E, REb.

The NP transition radius from state I to J, RJb, can similarly be found by substituting the

optimal pore radius into F5b and setting the energy equal to F5c. RJb is always larger than both

RIb1 and REb, but the order of RIb1 and REb depends on the size of L.

Now that I have calculated all of the transitions which are strictly radius dependent, I will

calculate the transitions which depend on the adhesion constant, w.

3.3.2.1 Small L

For relatively small L, the order of the radial transitions is

RDb < RIb2 < REb < RIb1 < RJb (3.69)

which defines six regions in which w dependent transitions are required. For NP smaller than

RDb, the possible states are A, D, and F. The transition from state A to D can be found by setting

F2b with no pore equal to zero and solving for w.

F2b(Rp = 0) = 2(π−1)2R2
nK +πL

(
κ

Rn
−2Rnw

)
= 0

⇒ wADb1 =
(π−1)2RnK

πL
+

κ

2R2
n

(3.70)

As in the spherical case, there is also a stable, partially wrapped state which can be found by

finding when the derivative of F3b with respect to f as f approaches zero, is negative.

dF3b
d f

∣∣∣∣∣
f→0

= 8R2
nK +πL

(
κ

Rn
−2Rnw

)
= 0

⇒ wAFb =
4RnK

πL
+

κ

2R2
n

(3.71)
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For NP between RDb and RIb2, the possible states are A and D with a small pore. The transition

can be found by substituting the optimal pore radius into F2b and finding where it becomes zero.

F2b
(
Rp = Rp2b

)
= 0

⇒ wADb2 =
1

2RnL

[
K

8πL2

(
πR2

p2b−4(π−1)RnL
)2

+Rp2bγ +
Lκ

Rn

]
(3.72)

where Rp2b is the optimal small pore radius. For NP between RIb2 and REb, the possible states

are I without a pore and D with a small pore. The transition can be found by substituting the

optimal pore radius into F2b and setting the energy equal to F5b without a pore. Solving for w

gives

F2b
(
Rp = Rp2b

)
= F5b

(
Rp = 0

)
⇒ wD2I1b =

1
4RnL

[
K

4L2

(
2RnL−R2

p2b

)(
2(3π−4)RnL−πR2

p2b

)
+2Rp2bγ +L

(
4Rnv+

κ

Rn

)]
(3.73)

For NP between REb and RIb1, the possible states are I without a pore and E. The transition

can be found by setting F5b without a pore equal to F2c and solving for w.

F2c = F5b
(
Rp = 0

)
⇒ wEI1b =

1
4πR2

n

[
2Rn (2πRnv+ γ)+πκ− (π−2)2R3

nK
L

]
(3.74)

For NP between RIb1 and RJb, the possible states are I with a small pore and E. The transition

can be found by setting F5b with its optimal pore radius equal to F2c and solving for w.

F2c = F5b
(
Rp = Rp5b

)
⇒ wEI2b =

1
2πRnL

[
(2πRnv+ γ)L−πRp5bγ +

πLκ

2Rn

− K
8L2

(
πR2

p5b−2(π−2)RnL
)]

(3.75)

49



Figure 3.7: Phase diagram of short rod-shaped NP states. The x-axis shows the radius of the
nanoparticle. The y-axis shows the attraction between the nanoparticle and lipid heads. Attraction
increases with w. (A) Dissociated reference state, (D) Embedded liposome with and without a
pore, (E) Embedded liposome with a spanning pore, (I) Embedded single-layer micelle with and
without a pore, (J) Embedded single-layer micelle with a spanning pore. Schematics and energies
for each phase are given in figures 3.3 and 3.4.

Finally, for NP larger than RJb, the possible states are E and J. The transition can be found by

setting F2c equal to F5c and solving for w.

F2c = F5c

⇒ wEJb =
κ

4R2
n
+ v (3.76)

Figure 3.7 shows the w vs. Rn phase diagram for L = 40σ . The partially wrapped state between

A and D is narrower than the line width.
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3.3.2.2 Large L

For larger L, the order of the radial transitions becomes

RIb2 < RDb < RIb1 < REb < RJb (3.77)

This introduces two new transitions. For NP between RIb2 and RDb, the possible states are D

without a pore and I without a pore. The transition can be found by setting F2b equal to F5b and

solving for w.

F2b
(
Rp = 0

)
= F5b

(
Rp = 0

)
⇒ wD1I1b =

(3π−4)RnK
4L

+
κ

4R2
n
+ v (3.78)

For NP between RIb1 and REb, the possible states are D and I, each with a small pore. The

transition can be found by substituting the optimal pore radii into F2b and F5b and finding when

they are equal.

F2b
(
Rp = Rp2b

)
= F5b

(
Rp = Rp5b

)
⇒ wD2I2b =

1
4RnL

[
K
L2

(
R2

p2b−R2
p5b−2RnL

)(
8RnL+π

(
R2

p2b +R2
p5b−6RnL

))
+2
(
Rp2b−Rp5b

)
γ +L

(
4Rnv+

κ

Rn

)]
(3.79)

where Rp2b and Rp5b are the optimal small pore radii for the embedded doubly and singly

wrapped states respectively. Figure 3.8 shows the w vs. Rn phase diagram for a much longer rod

(L = 1000σ ).

3.4 Comparison with Ginzburg and Balijepalli

I will now see how well my phase diagram agrees with the DFT results of Ginzburg and Balijepalli

[65]. As explained in section 2.5.1 they calculated the favorable states for NP/LB interactions while
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Figure 3.8: Phase diagram of long rod-shaped NP states. The x-axis shows the radius of the
nanoparticle. The y-axis shows the attraction between the nanoparticle and lipid heads. Attraction
increases with w. (A) Dissociated reference state, (D) Embedded liposome with and without a
pore, (E) Embedded liposome with a spanning pore, (I) Embedded single-layer micelle with and
without a pore, (J) Embedded single-layer micelle with a spanning pore. Schematics and energies
for each phase are given in figures 3.3 and 3.4.

varying the size and charge density of the NP. In order to compare with Ginzburg and Balijepalli’s

results I first need to relate the Florry-Huggins parameter, χ , to the adhesion energy density, w. Let

us start with the definition of the Flory-Huggins parameter between two types of material (say A

and B).

χAB =
z
τ

[
wAB−

1
2
(wAA +wBB)

]
(3.80)

where z is the coordination of a particular bead, τ is equal to the Boltzmann constant times

the temperature, and w is the interaction energy between two beads. The Flory-Huggins parameter
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indicates the energy difference between mixed and unmixed states. The three types of beads I use

below are hydrophilic (H), lipophilic (L), and nanoparticle (P), corresponding to the head, tail, and

NP beads respectively. The attraction between lipid beads is fixed by the Cooke model, so I will

use those constraints to set the energy scale. The hydrophilic-lipophilic Flory-Huggins parameter

is given by

χHL =
z
τ

[
wHL−

1
2
(wHH +wLL)

]
= 1.0 (3.81)

The value on the right hand side of this equation as well as those used in the following equations

are the values used by Ginzburg and Balijepalli. The Cooke model sets wHL = wHH = 0 and

wLL =−ε . This gives us the relation between the energy scales.

z
τ
=

2
ε

(3.82)

Now let us look at the particle-tail interaction.

χPL =
z
τ

[
wPL−

1
2
(wPP +wLL)

]
= 0.0 (3.83)

While wLL is fixed, we have the freedom to choose wPL = wPP = −ε to satisfy the relation.

Finally, we can determine the nanoparticle-head interaction.

χPH =
z
τ

[
wPH −

1
2
(wPP +wHH)

]
(3.84)

wPH =
ε

2
(χPH −1) (3.85)

I can now appropriately map Flory-Huggins parameters in Ginzburg and Balijepalli’s model to

interaction strengths in the Cooke model. Since the Cooke model does not have an explicit solvent,

we can safely think of it as having solvent beads with effectively zero interaction strength with all

other beads. For the sake of completeness let us look at the Flory-Huggins parameters involving

the solvent.
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χLW =
z
τ

[
wLW −

1
2
(wLL +wWW )

]
= 1.0 (3.86)

The new subscript, W , denotes the solvent beads. wLW and wWW are not uniquely determined,

but we can choose wLW = wWW = 0 to satisfy the relation. Similarly,

χHW =
z
τ

[
wHW −

1
2
(wHH +wWW )

]
= 0.0 (3.87)

χPW =
z
τ

[
wPW −

1
2
(wPP +wWW )

]
= 1.0 (3.88)

give wHW = wPW = 0.

The only interaction varied by Ginzburg and Balijepalli is χPH which is related to the NP

bead/head bead attraction, wPH . The adhesion energy density referred to in the phase diagrams of

the previous section can be calculated by estimating the number of nearest neighbors to be

w = 1.89−9.51wPH (3.89)

Substituting equation (3.85) gives a linear relation between the Florry-Huggins parameter and

adhesion energy density.

w = 6.6−4.8χPH (3.90)

Ginzburg and Balijepalli varied χPH from -3 to +1 corresponding to w ranging from 2 to 20.

Their NP radii ranged from 1.6 nm to 3.2 nm. Figure 3.9 shows my predicted phase diagram along

with Ginzburg and Balijepalli’s results. The blue circles indicate an embedded micelle with no

pore which corresponds to state I. The red squares indicate an embedded liposome with no pore,

corresponding to state D. The green diamonds indicate an embedded liposome state with a pore,

corresponding to state E.

One discrepancy between my phase diagram and Ginzburg and Balijepalli’s results is the three

points in the lower left of figure 3.9. My phase diagram appears to overestimate the wrapping
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Figure 3.9: Phase diagram of spherical NP states. The x-axis shows the radius of the nanoparticle.
The y-axis shows the attraction between the nanoparticle and lipid heads. (A) Dissociated reference
state, (D) Embedded liposome without a pore, (E) Embedded liposome with a pore, (I) Embedded
single-layer micelle without a pore, (J) Embedded single-layer micelle with a pore. Schematics
and energies for each phase are given in figures (3.1 and 3.2).
Data points indicate the results of Ginzburg and Balijepalli. (Blue circles): Embedded micelles
with no pores. (Red squares): Embedded liposomes with no pores. (Green diamonds): Embed-
ded liposomes with pores.

transitions to states D and I. I believe this comes from an overestimate of the bending energy

which dominates for small NP wrapping. I assumed bending around a closed spherical surface.

However, there is a band around the equator of the NP where it intersects with the LB that should

not be counted. This region can be ignored if the NP is much thicker than the LB, but it makes up

a significant fraction of the surface area for small NP. Appropriate reduction of the bending energy

would lower the wrapping transition.

Another discrepancy in my phase diagram is related to pore formation. My prediction of a
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larger critical NP size required for pore formation goes back to my neglect of the curvature around

the NP/LB interface. As the NP gets larger that neglected curvature becomes comparable to the

curvature around the edge of a pore. By including that curvature cost, the transition from state D

to E would occur for slightly smaller NP.

The final discrepancy is that I have predicted the pore transition to be independent of w while

Ginzburg and Balijepalli only observed pore formation for strongly attractive NP. I assumed that

stretching occurred uniformly throughout the LB with a small uniform decrease in lipid concentra-

tion and that the adhesion was independent of stretching. It’s true that a weakly attractive NP will

cause uniform stretching throughout the LB regardless of whether or not it is in contact with the

NP. However, as w increases, lipids will pack more tightly around the NP, increasing the stretch-

ing away from the NP. In that way, a strongly attractive NP could increase the stretching above a

critical tension, causing a pore. Combining the stretching and adhesion energy terms may fix the

discrepancy.

One could argue that a more appropriate comparison with Ginzburg and Balijepalli’s results

would be with the infinite rod phase diagram shown in figure 3.7. While the predicted transition

from singly wrapped micelles to doubly wrapped liposomes is in agreement, there are significant

discrepancies with the predicted pore transitions. The spanning pore transition for hydrophilic NP

should occur around Rn = 1.1 nm according to my predictions compared to the 2.4 nm observed

by Ginzburg and Balijepalli. I would also expect a spanning pore transition for hydrophobic NP to

occur around Rn = 2.1 nm while such a state would presumably exist above 3.2 nm in the Ginzburg

and Balijepalli model.

While qualitative comparisons can be made, differences in the models prevent quantitative

agreement regarding transition points. Ginzburg and Balijepalli stressed that their results repre-

sented only a qualitative view of the dependency of these transitions on NP size and surface treat-

ment. Hydrophobic NP will become singly wrapped while hydrophilic NP will become doubly

wrapped. There is also a critical NP size in the nanometer range which causes pore formation. On

these general trends, our models are in agreement. A more careful comparison would require de-
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termining the the bending and stretching moduli which correspond to the Ginzburg and Balijepalli

model.

3.5 Comparison with MD simulations

I have used molecular dynamics to simulate the NP/LB interactions described in the previous

sections for both spherical and rod-shaped NP. Interactions were simulated using the Cooke model

[36, 37] which was explained in chapter 2. As was previously stated, the Cooke model was chosen

for it’s ability to handle large systems. For the purpose of comparison, I tried to mimic the same

system properties used by Ginzburg and Balijepalli [65]. In this section I will first go over the

details of my particular implementation and then I will present my results.

3.5.1 Implementation Details

Simulations were run using LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simu-

lator), which is an open source molecular dynamics package distributed by Sandia National Lab-

oratories. One benefit of using this package is that it can easily be run on parallel systems. My

simulations were run on the High Performance Computer Cluster (HPCC) at Michigan State Uni-

versity. The HPCC consists of multiple clusters with both AMD and Intel processors, both dual

and quad cores, ranging from 2.2 GHz to 2.4 GHz per core. I used generic submissions to the

cluster which used a combination of any available nodes.

Nanoparticles were chosen to have the same radii as those used by Ginzburg and Balijepalli

(1.6-3.2 nm) [65]. A square patch of LB containing 3200 lipids was used. The simulation box

had fixed periodic boundary conditions with dimensions roughly 40x40x27 nm3. The horizontal

dimensions were initially equilibrated at zero tension before the NP was introduced. The tempera-

ture was held constant at kBT = 1.0 ε using a Nosé-Hoover thermostat [73, 74]. That temperature

was shown to be in the liquid phase by Cooke and Deserno [37]. I confirmed this by measuring the

projected area as a function of temperature. The phase diagram is shown in figure 3.10. The lighter
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Figure 3.10: Area per lipid versus temperature from Cooke model simulation. The dark lines
represent running averages of the raw data which is displayed as lighter dots. In the top trace the
temperature is decreasing while in the bottom trace it is increasing. The gel to liquid transition
occurs around kBT = 0.98 ε while heating.

dots indicate the raw data while the dark lines are running averages to clearly show the transition.

The top trace represents the cooling transition while the bottom trace represents the heating tran-

sition. Cooke and Deserno observed a similar hysteresis. The gel-fluid transition occurs around

kBT = 0.98 ε in the lower trace.

I also looked at the radial distribution function of the bilayer at various temperatures during the

heating transition as shown in figure 3.11. It is clear from the disappearance of long range order

that the liquid transition occurs between kBT = 0.97 ε and 0.99 ε .

The main tunable parameter in the Cooke model is the potential width, wc, which I set to 1.6 σ .
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Figure 3.11: Radial distribution function for a lipid bilayer at various temperatures during the
heating transition. The lack of long range order in kBT = 0.99 ε indicates the liquid phase.

That set the overall cutoff distance to 2.6 σ ≈ 2.3 nm. Nanoparticles consisted of beads which were

the same size as the lipid beads (σ ), arranged in a spherical cutout of an FCC lattice. The relative

positions of the NP beads were held rigid throughout the simulation.

Interactions between NP and lipid beads were also governed by the Cooke potential. Differ-

ent strengths of the potential were used to correspond to the Flory-Huggins parameters used by

Ginzburg and Balijepalli. The relation between the Florry-Huggins parameter and the interaction

between individual beads was explained in the previous section.

Simulations were run in the canonical ensemble, keeping the temperature, volume, and number

of particles constant, similar to Ginzburg and Balijepalli’s work. I used a Nosé-Hoover thermostat
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[73, 74] which is explained in appendix 5. A single damping parameter, Q, is used to determine

how strongly the system is coupled to the heat bath. It is the effective “mass” associated with the

virtual variable s. Great care must be taken to select appropriate Q values [75]. I explain my choice

of Q in appendix 5.

I used a time step of 0.01 τ which was used by Cooke and Deserno [37]. The bilayer was

allowed to equilibrate for 104 τ (≈ 93 ns) before introducing the NP. The NP was initially placed

at rest about 1 nm from the bilayer. Simulations were run for another 104 τ after the NP was

introduced. Each simulation ran in parallel on nine cores of the HPCC for approximately one hour.

LAMMPS divided the simulation box into a 3x3 grid and calculated interactions in each region on

a separate processor.

3.5.2 MD Results

In this section I will describe my simulation results. As explained in the previous section I tried to

reproduce the same conditions used by Ginzburg and Balijepalli [65]. Again, the bilayer contained

3200 lipids and had an area of approximately 40x40 nm2. The temperature was set to kT = ε and,

like the area, was held constant. I used five different sizes of spherical nanoparticles with radii

ranging from 1.6 nm to 3.2 nm. I also ran simulations on infinite rods with the same radii. The

Flory-Huggins parameter governing the attraction between NP and lipid head beads ranged from

-3 to +1.

3.5.2.1 Spherical NP

Figure 3.12 shows the initial configuration for the spherical NP system. For every combination of

parameters the NP became embedded in the bilayer. For each configuration, I observed whether

the NP became wrapped by a single layer of lipids which Ginzburg and Balijepalli called a single-

layer hybrid micelle or by a bilayer which they called a bilayer hybrid micelle. Figures 3.13 and

3.14 show cross sections of those two outcomes.

In addition to the type of micelle formed I also observed the formation of pores by certain NP.
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Figure 3.12: Typical starting configuration of my spherical nanoparticle/lipid bilayer simulations.

Figure 3.13: Cross section of single-layer hybrid micelle. A hydrophobic nanoparticle is embedded
between two single layers of lipids.

In each of those cases the NP was wrapped by a bilayer. Figure 3.15 shows the top view of a NP

embedded in a bilayer and the accompanying pore that is located adjacent to the NP as explained

in section 3.1.1.2. The pore is mostly round while sharing an edge with the liposome. That allows

it to maximize its area while minimizing the line energy around the edge of the pore.

Figure 3.16 shows my predicted phase diagram along with my simulation results. The symbols

have the same meaning as in figure 3.9. The same discrepancies are present in the lower left and

upper right. The same explanation given at the end of section 3.4 applies.
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Figure 3.14: Cross section of bilayer hybrid micelle. A hydrophilic nanoparticle is surrounded by
a bilayer and embedded in the membrane.

3.5.2.2 Rod-shaped NP

I performed the same simulations with “infinite” rod nanoparticles which spanned the simula-

tion box with periodic boundaries. The radii of the rods were the same as those of the spherical

nanoparticles. Figure 3.17 shows the starting configuration for the 3.2 nm rod.

In all cases the NP became embedded as either a singly wrapped micelle or a doubly wrapped

liposome. Figure 3.18 includes the same phase diagram as figure 3.7 except scaled for the sizes I

have used. The data points represent my simulation results.

The blue circles in the lower left represent narrow hydrophobic rods which form embedded

micelles without a pore. These agree with state I predicted by my phase diagram. Figure 3.19

shows the resulting equilibrium state.

The red squares in the lower right represent thicker hydrophobic rods which form embedded

micelles but also form small pores. These also agree with state I and are above the critical NP

radius required for pore formation. Figure 3.20 shows one of these states. Notice the semicircular

pore located adjacent to the micelle which is the most efficient shape.

The green diamonds in the upper region represent hydrophilic rods. In all cases the rod formed
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Figure 3.15: Strongly hydrophilic nanoparticle is wrapped by a bilayer and causes a pore in the
membrane.

an embedded liposome and caused a pore which spanned the entire length of the LB. This is in

agreement with state E predicted by my phase diagram. Figure 3.21 shows one such final state.

The left side of the figure shows the severed edge that continues straight across the membrane. The

right side of the liposome is smooth where it detached from the membrane.
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Figure 3.16: Phase diagram of spherical NP states. The x-axis shows the radius of the nanoparticle.
The y-axis shows the attraction between the nanoparticle and lipid heads. (A) Dissociated reference
state, (D) Embedded liposome without a pore, (E) Embedded liposome with a pore, (I) Embedded
single-layer micelle without a pore, (J) Embedded single-layer micelle with a pore. Schematics
and energies for each phase are given in figures (3.1 and 3.2).
Data points indicate my molecular dynamics results. (Blue circles): Embedded micelles with
no pores. (Red squares): Embedded liposomes with no pores. (Green diamonds): Embedded
liposomes with pores.
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Figure 3.17: Typical starting configuration of my rod-shaped nanoparticle/lipid bilayer simula-
tions.
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Figure 3.18: Phase diagram of rod-shaped NP states. The x-axis shows the radius of the nanopar-
ticle. The y-axis shows the attraction between the nanoparticle and lipid heads. (D) Embedded
liposome with a small pore, (E) Embedded liposome with a spanning pore, (I) Embedded single-
layer micelle with a small pore or no pore. Schematics and energies for each phase are given in
figures (3.3 and 3.4).
Data points indicate my molecular dynamics results. (Blue circles): Embedded micelles with no
pores. (Red squares): Embedded micelles with small pores. (Green diamonds): Embedded
liposomes with spanning pores.
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Figure 3.19: Narrow, hydrophobic, rod-shaped nanoparticle embedded in a bilayer. It is wrapped
by a single layer of lipids and does not form a pore.

Figure 3.20: Thick, hydrophobic, rod-shaped nanoparticle embedded in a bilayer. It is wrapped by
a single layer of lipids and does form a pore.
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Figure 3.21: Strongly hydrophilic, rod-shaped nanoparticle embedded in a bilayer. It is wrapped
by a double layer of lipids and has caused the membrane to rupture.
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Chapter 4

LIPID BILAYER PORE DYNAMICS

4.1 Tension required for pore formation

There is an energy cost associated with membrane pores due to the curvature around the edge

of the pore. This energy increases linearly with the radius of the pore. Therefore a pore is not

energetically favorable unless a surface tension is applied to the membrane. Under low tension a

pore will not form, or if formed will heal over time. For sufficiently large tension, a pore can lower

the total energy by relieving this tension. In that case the energy will continue to decrease as the

pore grows until all of the tension is released. In this section I will calculate the critical relation

between surface tension and pore size.

4.1.1 Fracture mechanics

This problem is similar to the fracturing of materials. Griffith studied the effect of cracks on

stressed materials [76]. Consider an object with an applied stress, σ , which experiences a corre-

sponding strain, ε . The Young’s modulus, E, is equal to the ratio σ/ε and is an intrinsic property

of the material. The energy stored in the stretched material per unit volume is

U∗ =
∫

σdε

U∗ =
Eε2

2
=

σ2

2E
(4.1)

Now consider a crack of length a perpendicular to the applied stress which spans the entire

height of the material (t). The crack will lower the stress energy for part of the object while adding

energy due to the broken bonds along the inner surface of the crack. If the crack starts at the outer

edge of the object, the volume of the region of relieved stress will be a triangular prism of height

t. The area of the triangular base turns out to be πa2. The relieved stress energy is then
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U =−σ2

2E
(πa2t) (4.2)

The additional surface energy is equal to the inner surface area of the crack, 2at, times a

material specific surface energy constant, γ .

S = 2γat (4.3)

The critical crack size can be found by setting the derivative of the total energy equal to zero

d(U +S)
da

=−πσ2t
E

a+2γt = 0 (4.4)

⇒ ac =
2γE
πσ2 (4.5)

For a given stress, ac is the critical crack size. Cracks larger than this will continue to propagate.

Solving equation (4.4) instead for σ gives the critical stress required for a starting crack of length

a to grow.

σc =

√
2γE
πa

(4.6)

Notice that these relations do not depend on the thickness of the object which means a similar

approach can be used to analyze the continuum membrane model.

4.1.2 Membrane rupturing

In section 3.1.3 I used a similar energy balancing to look at the criteria for pore formation in a

membrane under tension. I will briefly rederive the critical pore radius here. Considering only the

pore dependent terms from equation (3.26) the free energy consists of a stretching term and a line

energy term

F =−πR2
pΣ+2πRpγ (4.7)
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where Σ is the surface tension and γ is a constant related to the bending modulus. The line

energy is due to the fact that lipid heads will curve around the edge of the pore to cover the

hydrophobic tails and is proportional to the circumference of the pore. Differentiating this energy

with respect to Rp gives

dF
dRp

=−2πΣRp +2πγ = 0 (4.8)

⇒ Rpc =
γ

Σ
(4.9)

For a given applied tension, Rpc gives the critical pore size. Small pores will heal over time.

Pores larger than the critical size will grow indefinitely. The metastable pore can be observed if

the membrane area is held constant. If a membrane is stretched to sufficient tension a pore will

form. Figure 3.5 from section 3.2 shows tension versus membrane area for a simulation in which

the area was slowly increased. The sharp drop indicates pore formation. Beyond that transition the

tension decreases like A−1/2 as shown by Cooke and Deserno [37, 40]. While the entire membrane

does stretch, most of the increased area is added to the pore. Therefore the critical pore radius and

critical tension are in fact inversely proportional. For any area above the critical value in figure

3.5 there is a pore and a corresponding tension given by equation (4.9). If the simulation is run

instead at constant tension, then the pore will be unstable. If either the pore radius or tension are

decreased, the pore will heal. If either are instead increased, then the pore will grow until it spans

the entire membrane.

4.2 Dynamics of pore healing

In this section I will determine theoretically how the size of a pore changes over time and compare

with MD simulations.
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4.2.1 Predicted time dependence

I will now calculate how the time required for pore healing scales with the size of the pore. In order

for the pore to heal in the presence of tension, the pore radius must not exceed the critical value

in equation (4.9). In the absence of tension, the pore energy will always be positive and it will

therefore always heal. A flat lipid bilayer with a pore can be viewed as a two dimensional system

with two phases. The main phase is the homogeneous region containing lipids. The second phase

is the pore which contains no lipids. We can use lipid concentration (c) as the order parameter to

distinguish the two phases. In the case of zero tension the concentration is not conserved. Filling

in the pore (increasing the concentration in one phase) does not change the concentration in the

surrounding area. It is known that the interface between two phases in a non-conserved system

will move with a speed proportional to the mean curvature of the interface [77]. I will rederive that

result below.

Cahn and Hilliard showed that the free energy of a phase segregated system contains a homo-

geneous term representing the energy within each region as well as gradient term representing the

energy of the interface [78]. The total free energy is then

F = Nv

∫
V
[ f0(c)+κ(∇c)2 + . . . ]dV (4.10)

where Nv is the number of particles per unit volume, f0(c) is the homogeneous volume energy

which depends only on the concentration, c. Only even powers of the gradient are present because

the scalar energy must be invariant with respect to the direction of the gradient. While the energy

can depend on higher powers of the gradient, only the lowest order term is kept if we assume the

gradient to be much smaller than the reciprocal of the distance between particles. The variational

derivative of the free energy with respect to the concentration is

δF
δc

=
∂ f0
∂c
−∇

(
∂

∂ (∇c)
κ(∇c)2

)
(4.11)

= f ′0(c)−2κ(∇2c) (4.12)
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The variational derivative is a local thermodynamic force which is assumed to be proportional

to the rate of change of the order parameter [77].

∂c
∂ t

=−α
δF
δc

(4.13)

This is a phenomenological assertion. It contains only the first time derivative because the

system is in an overdamped liquid state. Combining equations (4.11) and (4.13) leads to

∂c
∂ t

= α(2κ(∇2c)− f ′0(c)) (4.14)

⇒ 1
2ακ

∂c
∂ t

= ∇
2c−

f ′0(c)
2κ

(4.15)

By absorbing 2ακ into the time scale and defining

V (c) =
f0(c)
2κ

(4.16)

we arrive at the time-dependent Ginzburg-Landau equation

∂c
∂ t

= ∇
2c−V ′(c) (4.17)

Now let us apply this equation to the case of a pore centered at the origin in a two dimensional

membrane. I will follow the same procedure used by Krapivsky et al. to look at the shrinking

of a spherical droplet [79]. The system can be described in polar coordinates with no angular

dependence. We can assume the concentration has the following form

c(r, t) = m(r−R(t)) (4.18)

where r is the radial coordinate and R(t) is the time dependent pore radius. If we define

x = r−R(t), then m(x) is defined over the domain x≥−R(t) with a sharp transition at x = 0. The

concentration is zero for negative x and becomes a positive constant for positive x. The left-hand

side of equation (4.17) becomes
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∂m
∂ t

=
∂m
∂x

∂x
∂ t

=−m′
∂R
∂ t

(4.19)

Using polar coordinates, the Laplacian term becomes

1
r

∂

∂ r

(
r

∂m
∂ r

)
= m′′+

m′

r
= m′′+

m′

R(t)+ x
(4.20)

Equation (4.17) is then

m′′+
(

1
R(t)+ x

+
∂R
∂ t

)
m′−V ′(m) = 0 (4.21)

Multiplying equation (4.21) by m′ and integrating over x from −R(t) to ∞ gives

1
2
(m′)2

∣∣∣∣∞
−R(t)

+
∫

∞

−R(t)

[
1

R(t)+ x
+

∂R
∂ t

]
(m′)2dx−V (x)

∣∣∣∣∞
−R(t)

= 0 (4.22)

The first is zero because m is constant away from the interface. The third term is proportional

to the difference in volume energy in the membrane compared to in the pore. It is equal to zero

in the pore and equal to a constant in the membrane which I will call −V . It is negative because

of the negative potential energy from lipid attraction. Since (m′)2 is large near the interface and

zero away from it, the second term is equal to the expression in square brackets evaluated at the

interface (x = 0). Equation (4.22) becomes

[
1

R(t)+ x
+

∂R
∂ t

]
x→0

+V = 0 (4.23)

which finally gives the equation of motion for the pore radius

dR
dt

=
−1
R
−V (4.24)

Remember that multiple material dependent constants were absorbed into the time scale. To

make this clear I will add constants to equation (4.24).

dR
dt

=
−A
R
−B (4.25)
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where A is proportional to the line energy around the pore and B is proportional to the volume

energy inside the membrane. Since both A and B are positive, both terms are driving the pore shut.

Separating variables and integrating, gives

∫ R

R0

−R′

BR′+A
dR′ =

∫ t

0
dt′ (4.26)

where R0 is the initial pore radius. The resulting equation is

1
B2

(
B(R0−R)−Log

[
A+BR
A+BR0

])
= T (4.27)

While this does not have an analytic solution, it can be solved numerically. To understand its

general behavior I will consider the two limiting cases where A or B are zero. B = 0 means that the

volume energy is the same both inside the membrane and the pore. This corresponds to a magnetic

system in which a region of spins with a certain orientation is surrounded by spins of the opposite

orientation. The energy within each region is the same and the dynamics are governed completely

by the curvature at the interface. Equation (4.25) reduces to the well known Allen-Cahn equation

[77] in two dimensions. In a general non-conserved system, a non-equilibrium interface will move

with a speed proportional to the mean curvature of the interface. In this limit, the equation of

motion for the pore radius is

R =
√

R2
0−2At (4.28)

It is known that the size of domains in non-conserved systems scale as t1/2. The area of the

pore is

Ap = Ap0−2πAt (4.29)

where Ap0 is the initial pore area. The area decreases linearly with time.

If on the other hand we consider A = 0, we are completely neglecting the line energy around

the pore. The system is governed by the difference in volume energies. It behaves like a pressure

difference across the interface, closing the pore. The equation of motion becomes
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R = R0−Bt (4.30)

In this case the radius decreases linearly and the area is

Ap =
(√

Ap0−
√

πBt
)2

(4.31)

We can expect the actual solution to equation (4.25) to lie somewhere between the two extremes

of equations (4.29) and (4.31). In the next section I will show simulation results for pore healing.

The area does appear to decrease quadratically. I will now show how the fit parameters from a

second order polynomial fit can be related to the constants A and B in equation (4.25). If the initial

pore radius at time zero is R0, then equation (4.25) can be used to find the initial first and second

derivatives.

Ṙ(0) =
−A
R0
−B (4.32)

R̈(0) =
AṘ(0)

R2
0

=
−A
R2

0

(
A
R0

+B
)

(4.33)

Now assume that the pore area can be approximately fit by

Ap =C0t2 +C1t +C2 (4.34)

C2 is clearly the starting pore area (πR2
0). The pore radius can be expressed as

R =

√
C0
π

t2 +
C1
π

t +R2
0 (4.35)

The initial first and second derivatives of equation 4.35 are

Ṙ(0) =
C1

2πR0
(4.36)

R̈(0) =
1

2π

(
2C0
R0
−

C2
1

2πR3
0

)
(4.37)
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By setting equation (4.32) equal to (4.36) and equation (4.33) equal to (4.37), C0 and C1 can

be solved for in terms of A and B.

C0 = πB
(

A
R0

+B
)

(4.38)

C1 =−2π(A+BR0) (4.39)

A quadratic approximation of the solution to equation (4.25) is therefore

Ap = π

[
B
(

A
R0

+B
)

t2−2(A+BR0)t +R2
0

]
(4.40)

In order to determine the relative contributions to healing, one can fit data to see if it is mostly

linear, as predicted by Allen-Cahn, or if there is a significant quadratic component.

4.2.2 Simulation results

I have run simulations on both a flat LB with periodic boundaries and a spherical LB vesicle and

observed how a pore heals over time. The Cooke lipid model [36, 37] was again used.

4.2.2.1 Flat LB

I began with an equilibrated 80x80 LB with periodic boundaries under zero tension. Unlike the

fixed area simulations in chapter 3 these simulations required free tensionless boundaries to allow

closing of the pore. A pore was made in the center by removing lipids within a radius of 8 σ (≈ 9

nm). That left tail beads initially exposed around the edge of the pore. Figure 4.1 shows three

different states during healing.

I calculated the area of the pore by dividing the LB into a 2D grid of bins approximately 1 σ2

each. Any bin which doesn’t contain a bead contributes to the pore area. Figure 4.2 shows the pore

area calculated every 1 τ for 20 different runs. There is initially a rapid decrease in area as lipids
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Figure 4.1: Snapshots of pore healing in a flat LB at three different times.

Figure 4.2: Pore area versus time in a flat lipid bilayer under zero tension. This is the raw data
from 20 different runs.
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Figure 4.3: Averaged pore area versus time in a flat lipid bilayer under zero tension. The data in
figure 4.2 was averaged (red circles) and fit to a quadratic function (solid black line) as well as a
linear function (dashed black line).

curve around to coat the interior of the pore with lipid heads. This occurs within a few τ . There is

a large variation in closing times, which I define as when the pore area first becomes zero.

Figure 4.3 shows an average of the 20 runs. Each run is a piecewise function which is decreas-

ing at early times and becomes zero beyond the closing time. I believe the averaged data contains

three distinct regions. There is a rapid decrease during the first 10 τ in which lipids are bending

around the edge. After this initial relaxation there is a more gradual decrease in area lasting about

50 τ . This middle region is most likely to correspond to the dynamics discussed in the previous

section. At late times there is a tail which I believe is mostly due to averaging data with different

closing times.
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C0 C1 C2
Flat LB 0.017±0.002 −3.3±0.2 162±9
Vesicle 0.007±0.002 −3.5±0.3 342±5

Table 4.1: Parameters for the pore area versus time data, fit to quadratic equation (4.34).

In order to isolate the middle region, I removed the very early time data as well as the zeros

after the pore is closed before fitting each run separately to equation (4.34). The averages of those

fit parameters are shown in table 4.1. The averaged quadratic fit is represented by the solid black

line in figure 4.3.

While the coefficient for the quadratic term is not zero, the linear term is dominant throughout

the closing process. The average closing time, equal to the first root of equation (4.34), is 92 τ . The

time at which the quadratic and linear terms are equal is 198 τ . Therefore a linear approximation

should be reasonable. Figure 4.3 also shows the average linear fit to the data represented by the

dashed black line. The closing time predicted by the linear fit is 73 τ which is an underestimate of

about 20% compared to the quadratic fit.

4.2.2.2 Spherical vesicle

I also ran simulations on a spherical vesicle with an initial radius of about 20 σ (≈18 nm). I

created a pore by removing 10% of the lipids within a certain polar angle. Figure 4.4 shows the

initial configuration as well as an intermediate state and the fully healed vesicle.

I calculated the pore area by dividing the surface of the spherical vesicle into equal area bins

identified by their angular coordinates, θ and φ . Bins which did not contain any beads were

counted as part of the pore. Figure 4.5 shows the pore area versus time for 20 different runs.

Figure 4.6 shows the average of the data in figure 4.5. There are again three distinct regions:

an initial sharp drop, then a long gradual decline, and finally a rounded tail. I once more removed

the early time data and late time zeros from each run before fitting them to a quadratic function.

The averaged quadratic fit parameters are listed in table 4.1. This time the quadratic coefficient is

80



Figure 4.4: Snapshots of pore healing in a spherical vesicle at three different times.

Figure 4.5: Pore area versus time for a spherical vesicle. This is the raw data from 20 different
runs.
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Figure 4.6: Averaged pore area versus time for a spherical vesicle. The data in figure 4.5 was
averaged and fit to both a linear and quadratic function.

even smaller. The estimated closing times from the quadratic and linear fits are 131 τ and 122 τ

respectively. The linear approximation still underestimates the closing time, but only by 7% in this

case.

It appears that the area of pores decrease linearly at early times and that the process can be

explained by a simple Allen-Cahn theory. The pore closing is driven primarily by the membrane

curvature around the pore. I believe there is a different process at work later on. Lipids which are

initially oriented with their heads pointing toward the center of the pore must reorient themselves.

The large variation in closing times among my simulation runs indicates that this is an activated

process. It is known that Allen-Cahn theory is only valid when the thickness of the interface, which
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in this case is on the order of the LB thickness, is much smaller than the radius of curvature of the

pore. In my flat LB simulation, the radius of curvature is only about twice as large as the interface

thickness. In the vesicle simulation the ratio is closer to four, which may explain why the vesicle

data is more linear.

While Allen-Cahn theory can explain the healing dynamics of pores which are much wider

than the LB thickness, a different theory is needed to understand the final closing process.

4.2.2.3 Alternative fitting

While the quadratic and linear fits of the previous two sections are meant to describe the middle

region of decreasing area, I have also fit the entire averaged data sets shown in figures 4.3 and

4.6. In an attempt to capture the nonlinear early and late time behavior, I fit each data set to the

following two equations

Ap = A0 · exp(−A1 · t)+A2 · t2 +A3 · t (4.41)

Ap = B0 · exp(−B1 · t)+B2 · exp(−B3 · t) (4.42)

which I refer to as “exponential plus quadratic” and “double exponential”. Figure 4.7 shows

the flat lipid bilayer data fit to both the exponential plus quadratic represented by the solid green

line and the double exponential represented by the dashed blue line. Tables 4.2 and 4.3 list the cor-

responding fit parameters. After finding an insignificant quadratic coefficient I performed another

fit excluding that term. Since equations (4.41) and (4.42) each contain four fit parameters they do

a comparable job fitting the data. The two fit lines are nearly overlapping throughout the entire

range.

Figure 4.8 shows the averaged vesicle data again fit to equations (4.41) and (4.42). While the

quadratic coefficient was rather small, including the term significantly improved the fit in this case.

Both new functions do a reasonable job fitting the middle and late time behavior, but still miss

the early time relaxation. Perhaps such models could be used to represent the entire evolution of
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Figure 4.7: Averaged flat lipid bilayer pore data with alternative fits. The data in figure 4.2 was
averaged (red circles) and fit to a an exponential plus a linear term (solid green line) as well as a
double exponential (dashed blue line).

A0 A1 A2 A3
Flat LB 175 0.0257 N/A -0.182
Vesicle 366 0.00560 0.00934 -2.43

Table 4.2: Parameters for the pore area versus time data, fit to an exponential plus quadratic equa-
tion (4.41).

a healing pore. However, I believe it would be much more useful to understand and model the

behavior in each of the three regions separately as part of a comprehensive model.
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B0 B1 B2 B3
Flat LB 9400 0.0145 -9230 0.0142
Vesicle -1730 0.0322 2090 0.0280

Table 4.3: Parameters for the pore area versus time data, fit to a double exponential equation (4.42).

Figure 4.8: Averaged vesicle pore data with alternative fits. The data in figure 4.5 was averaged
(red circles) and fit to an exponential plus a quadratic function (solid green line) as well as a double
exponential (dashed blue line).

4.2.2.4 Ion transfer

When considering the possibly harmful effects of pores, it is not only important to know how long

a pore remains open, but also what can happen while it is open. Cells maintain a difference in

ion concentration inside compared to outside. Knowing how the pore area changes with time,
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we can calculate how much charge can pass through the pore. If we assume the difference in

ion concentration remains fairly constant during transfer, we can also assume a constant current

density through the pore, J. The total charge that passes through the pore is then

Q =
∫ T

0
J ·Ap(t)dt (4.43)

where T is closing time and Ap(t) is the pore area for which we can use the linear or quadratic

approximations considered in the previous sections. I have calculated the total charge transfer

for both the flat LB and vesicle cases. Table 4.4 shows the results for the linear and quadratic

approximations.

Total charge transferred (J ·σ2/τ)
Flat LB Vesicle

Quadratic 5.3E3 19.8E3
Linear 5.2E3 19.6E3

Table 4.4: Total calculated charge transferred through pores using linear and quadratic approxima-
tions.

The differences in charge transfer between the linear and quadratic approximations are much

smaller compared to differences in closing times. One reason is that the underestimates of area

that take place in the linear approximations at early and late times, are compensated for by over-

estimates in the middle (see figures 4.2 and 4.6). Also, most of the charge transfer occurs at early

times when the decrease in area is mostly linear. The differences between the linear and quadratic

approximations are only 1.7% for the flat LB and 1.1% for the vesicle cases. It appears that the

linear approximation predicted by Allen-Cahn works quite well for calculating charge transfer.
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Chapter 5

CONCLUSION

I have looked at the interactions between nanoparticles (NP) and lipid bilayers (LB). Simple contin-

uum models can be used to determine both the thermodynamics of NP/LB states and the dynamics

of pore healing in LB. I used a coarse-grained lipid model to simulate the behavior in both cases.

In chapter 3 I looked at various equilibrium states resulting from NP/LB interactions. Using

a continuum theory, I defined a free energy for each possible state (figures 3.1-3.4). The theory

depends on the size and attraction strength of the NP and the macroscopic properties of the mem-

brane such as the bending and stretching moduli. By comparing the free energies, I identified the

equilibrium states under different conditions and constructed a phase diagram (figures 3.6-3.8). I

varied the properties of the NP while fixing the membrane parameters, This was done for both

spherical and rod-shaped nanoparticles.

The driving force behind these interactions is the attraction between the NP and the lipid heads

and tails. This attraction favors wrapping of the NP by the LB. It can be wrapped by a double or

single layer of lipids depending on whether it is attracted more to the lipid heads or tails. Total

wrapping involves a bending energy which is independent of the NP size and is therefore the

dominant contribution for small NP. In that case the adhesion, which is proportional to the surface

area of the NP, can not overcome the cost of bending.

The stretching energy is proportional to the square of the NP surface area and therefore dom-

inates for large NP. The stretching energy can be relieved by forming a pore in the LB at the cost

of line energy around the edge of the pore. Very small NP will not become wrapped due to the

overwhelming cost of bending. Slightly larger NP will become embedded in the LB. NP larger

than a critical size cause pore formation in the LB.

Ginzburg and Balijepalli studied these small NP interactions using density functional theory

[65]. In section 3.4 I compared their results with my continuum model predictions. The gen-
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eral range of transitions is in decent agreement with my phase diagram (figure 3.9). The slight

discrepancies in the transition points are due to simplifications in my model which I explained.

In section 3.5 I used a coarse-grained particle model to simulate the interactions under the

same conditions. The NP sizes and attraction strengths I used were the same as those used by

Ginzburg and Balijepalli. The resulting states were reasonably well predicted by the continuum

model (figures 3.16 and 3.18).

I have compared three different techniques for studying NP/LB interactions which are all in

general agreement about the range of transitions. Mutual agreement lends credibility to all three

methods. Such a multiscale approach is a good way to study these kinds of systems. Simulations

which can quickly and easily be run over a wide range of conditions are an excellent supplement

to experiments which can be difficult and expensive. Continuum theory can identify the interesting

regions of phase space and help direct the conditions for simulation and experiment.

I have found a particular set of NP properties which result in absorption and pore formation.

Given the membrane properties of another system, this method could be used to predict the effects

of NP interaction.

In chapter 4 I looked at the dynamics of pore healing. The evolution of a pore is determined by

the line energy around the edge of the pore as well as the volume energy of the LB away from the

pore. The volume energy is related to the stretching or compression of the LB. A compressed LB

will want to spread out and will accelerate the closing of the pore. A stretched lipid bilayer will

instead work to increase the size of the pore. The line energy is always a positive energy related

to the bending modulus of the LB and is proportional to the circumference of the pore. The line

energy acts to close the pore.

I showed that the volume energy contribution will change the area of the pore quadratically with

time while the line energy contribution produces a linear decrease in pore area. If both energies are

present, the evolution will have both a linear and a quadratic component. Using the same coarse-

grained lipid model, I simulated the closing of a pore in a flat LB and also in a spherical vesicle. By

fitting the pore area data, I was able to compare the relative importance of the linear and quadratic
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contributions. In both the flat LB and the spherical vesicle cases, the pore area decreased quite

linearly. The quadratic fit determined the pore closing time more accurately than the linear fit.

The linear fit underestimated the closing time by 20% in the flat LB case and by only 7% in the

spherical vesicle case.

Charge flow through a pore is proportional to the time integral of the pore area curve. The

total charge flow predicted by the linear and quadratic fits agreed even better. The predicted charge

flows differed by less than 2% between the flat LB and spherical vesicle cases (table 4.4).
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APPENDIX A: GINZBURG AND BALIJEPALLI EQUATIONS

Here I will elaborate on the TGMB equations used in section 2.5.1. I am mostly rehashing the

thorough explanation given in the paper by Ginzburg and Balijepalli [65]. Once again, the total

free energy can be written as

FND
kBT ρ0V

= f1 + f2 + f3 + f4 (1)

f1 =
ϕP
α

ln
(

QP
V

)
−ϕD ln

(
QD
V

)
−NDϕW ln

(
QW
V

)
(2)

f2 =
1
V

∫
dr

∑
α,β

(
χαβ ND

)
φα(r)φβ (r)−ξ (r)

(
1−∑

α

φα(r)

) (3)

f3 =
1
V

∫
dr

− ∑
α(6=P)

wα(r)φα(r)−wP(r)ρP(r)

 (4)

f4 =
1
V

∫
dr
[
ρP(r)ΨCS

(
φ̄P(r)

)]
(5)

In the first equation (1) ND is the degree of polymerization of the lipid diblocks or the number

of segments in each lipid, either hydrophilic (H) or lipophilic (L). Each segment has a Khun length

a =0.4 nm and therefore a volume of (ρ0)
−1 =0.064 nm3. V is simply the system volume.

The fist term, f1 (2), contains the entropic free energies. ϕP, ϕD, and ϕW are the volume

fractions of the nanoparticle, lipids, and water respectively which add to one. QP, QD, and QW are

the individual partition functions for each component. α is the particle to diblock volume ratio

α =
4πR3

pρ0

3ND
(6)

where Rp is the radius of the nanoparticle.

The second term, f2 (3), contains the local interactions determined by Flory-Huggins param-

eters [68, 69] as discussed in section 3.5.1. φα(r) represents the local volume fraction of each
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component. The last part of (3) also enforces incompressibility. ξ (r) is a pressure field which I

will define later in this section.

The third term, f3 (4), introduces the chemical potential fields, w, which depend on the local

interactions. ρP(r) in (4) is the particle center density which is related to the particle’s local volume

fraction, φP(r), and “smoothed density” function, φ̄P(r), as follows

φP(r) =
1

ND

∫
dr′ρP(r

′)Θ

(
1−

∣∣r− r′
∣∣

(RP/RgD)

)
(7)

φ̄P(r) =
1

2dND

∫
dr′ρP(r

′)Θ

(
1−

∣∣r− r′
∣∣

(2RP/RgD)

)
(8)

d is the dimensionality of the simulation box. Θ is the Heaviside step function. RgD = a(ND/6)1/2

is the radius of gyration of the diblock.

Finally, the fourth term, f4 (5), contains the non-ideal hard-sphere interactions. It involves a

density functional theory approximation used by Tarazona [80]. The hard-sphere fluid free energy

is given by the Carnahan-Starling [81] equation of state

ΨCS(x) =
4x−3x2

(1− x)2 (9)

The partition functions used in f1 (2) are given by

QW =
∫

exp{−wW (r)}dr (10)

QP =
∫

exp{−wP(r)}dr (11)

QD =
∫

q(r,1)dr (12)

The propagator q(r,s) and its counterpart q † (r,s) are defined by the following diffusion equations

∂q(r,s)
∂ s

=
[
∇

2−wt(s)

]
q(r,s) (13)

∂q † (r,s)
∂ s

=
[
∇

2−wt(s)

]
q † (r,s) (14)

92



s is an index denoting the position along the diblock which ranges from 0 to 1. t(s) = L if s < f ,

and H otherwise. These equations are subject to the boundary conditions q(r,0) = q † (r,1) = 1.

The chemical potential fields, w are given by

wH(r) = χHLNDφL(r)+χHPNDφP(r)+ξ (r) (15)

wL(r) = χHLNDφH(r)+χWLNDφW (r)+ξ (r) (16)

wW (r) = χWLNDφL(r)+χWPNDφP(r)+ξ (r) (17)

wP(r) = ΨCS
(
φ̄P(r)

)
+

1
ND

∫
dr′Θ

(
1−

∣∣r− r′
∣∣

(RP/RgD)

)
×[

χHPNDφH(r′)+χWPNDφW (r′)+ξ (r′)
]
+

1
2dND

∫
dr′Θ

(
1−

∣∣r− r′
∣∣

(2RP/RgD)

)
×
[
ρP(r

′)Ψ′CS
(
φ̄P(r

′)
)]

The pressure field, ξ (r), is given by

ξ (r) = P(r)+ ε (φP(r)+φW (r)+φH(r)+φL(r)−1) (18)

P(r) =
HW (r)+HH(r)+HL(r)

3
(19)

where HH(r), HL(r), and HW (r) are the right hand sides of equations (15-17) except for the ξ

terms. ε is a heuristic parameter which Ginzburg and Balijepalli found to be convergent when set

equal to 60.

The algorithm used by Ginzburg and Balijepalli was adapted from the one used by Drolet and

Fredrickson [82] and in the original TGMB paper [66]. The first step is to initialize the chemical

potential and pressure fields. Those can then be used to calculate the density fields with the help

of equations (7) and (8) as well as these relations

ρP(r) =
ϕP
α

V
QP

exp [−wP(r)] (20)

φW (r) = ϕW
V
QP

exp [−wW (r)] (21)

φL(r) = ϕD
V

QD

∫ f

0
q(r,s)q † (r,s)ds (22)

93



φH(r) = ϕD
V

QD
>
∫ 1

f
q(r,s)q † (r,s)ds (23)

φH(r)+φL(r)+φP(r)+φW (r) = 1 (24)

Then the chemical potentials are updated according to

wt+1
i (r) = (1−λi)w

t
i(r)+λiµi(r) (25)

where t is the iteration number. The index i refers to H, L, W , or P. µi are the new chemical

potentials calculated from equations (15-18). λi acts as an effective time step. Ginzburg and

Balijepalli set λP = 0 in order to maintain a constant particle field while setting all other λi = 0.025.

Finally, the pressure field is updated by equations (18) and (19). These steps are iterated until the

fields converge.
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APPENDIX B: NOSÉ-HOOVER THERMOSTAT/BAROSTAT

My simulations were run in the isothermal-isobaric ensemble fixing the number of particles, tem-

perature, and pressure (NPT). The natural ensemble for molecular dynamics is the microcanonical

ensemble in which the number of particles, volume, and total energy (NVE) are conserved. The

isothermal-isobaric ensemble is more desirable because it can be directly compared to experiments

in which temperature and pressure are controlled. The temperature and pressure are fixed using a

Nosé-Hoover thermostat and barostat [73, 74] which I will explain now.

The standard Hamiltonian consists of kinetic energy including coordinates q′i and masses mi

as well as potential energy φ(q′). In this system the total energy will be conserved while the

kinetic energy (temperature) and pressure are free to fluctuate. Nosé and Hoover introduced a

different Hamiltonian which allows the total energy to fluctuate while conserving the temperature

and pressure. The temperature and pressure can be included separately and I will discuss the

thermostat first.

Thermostat

The Nosé-Hoover formulation transforms the real variables (q′,p′,t′) where p′ are the momenta, to

virtual variables (q,p,t) through the following transformations

q′i = qi (26)

p′i = pi/s (27)

t′ =
∫ t dt

s
(28)

Nosé interpreted these transformations as a rescaling of time by dt′ = dt/s. The new Hamilto-

nian in terms of the virtual variables is
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H = ∑
i

pi
2

2mis2 +φ(q)+
p2

s
2Q

+gkT lns (29)

where g is the number of degrees of freedom, k is the Boltzmann constant, and T is the fixed

external temperature. ps is the conjugate momentum for s. Q behaves like an effective mass for the

variable s. It determines the strength of the coupling between the system and the heat bath and sets

a time scale for temperature fluctuations. A small value for Q corresponds to strong coupling and

causes frequent velocity rescaling. Extremely small values can make the simulation unstable. A

large value for Q corresponds to weak coupling and can cause very slow temperature equilibration.

It has been shown that the most efficient equilibration occurs when the heat bath fluctuations are in

resonance with the natural system fluctuations. Nosé derived an estimate of the heat bath frequency

[83, 84] which I will now show. The Hamiltonian equations of motion area

dqi
dt

=
∂H
∂pi

=
pi

mis2 (30)

dpi
dt

=−∂H
∂qi

=− ∂φ

∂qi
(31)

ds
dt

=
∂H
∂ ps

=
ps
Q

(32)

d ps
dt

=−∂H
∂ s

=

(
∑
i

p2
i

mis2 −gkT

)
/s (33)

Setting the time derivative of (32) equal to (33) a second order differential equation for s is

obtained.

Q
d2s
dt2 =−∂H

∂ s
=

(
∑
i

p2
i

mis2 −gkT

)
/s (34)

When the system is in equilibrium s will fluctuate around its average value < s >. We can then

replace s with < s >+δ s where δ s contains the time dependence. A linear expansion of (34) gives

Q
d2δ s
dt2 =

1
< s >

(
∑
i

p2
i

mi < s >2 −gkT

)
− δ s

< s >2

(
3∑

i

p2
i

mi < s >2 −gkT

)
(35)
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For small values of Q or strong coupling to the heat bath the variable s will fluctuate more

quickly than the particles in the system. The temperature can then be defined as

gkT = ∑
i

p2
i

mi < s >2 (36)

and (35) reduces to

d2δ s
dt2 =

−2gkT
Q < s >2 δ s (37)

This is simply a harmonic oscillator equation whose angular frequency is

ω =

√
2gkT

Q < s >2 (38)

The period of fluctuations in s is therefore

τ =
2π

ω
= π < s >

√
2Q
gkT

(39)

Nosé found through simulations that < s > was on the order of one [83]. Multiple studies have

been done to determine the effect of the parameter Q on simulations [83, 84, 75]. Fluctuations in

s show up in the temperature and kinetic energy and can be on a much different time scale than

the natural system fluctuations. If the frequency of s fluctuations are significantly larger than that

of the system, it can result in an isolated mode and cause a non-Gaussian distribution of kinetic

energy.

Figure B.1 shows a histogram of the kinetic energy of a simulated lipid bilayer for a small value

of Q. Notice the slight dip at the center. This bimodal distribution was predicted by Nosé [84].

Extremely small values of Q can even make the simulations unstable, similar to using too large of

a time step. Large values for Q correspond to weak coupling to the heat bath and result in long

equilibration times. The optimal value for Q is one which places the fluctuations of s in resonance

with those of the system. It will maintain a Gaussian distribution while being able to equilibrate in

the least amount of time.
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Figure B.1: Histogram of kinetic energy for strong heat bath coupling (Q = 0.648,T damp =
0.005). The scaling variable s fluctuates faster than the system and causes a bimodal, non-Gaussian
distribution.

The characteristic timescale of the system can be estimated from the potential. For small

oscillations about the equilibrium positions the motion will appear harmonic. The spring constant

for an equivalent harmonic potential can be found by taking the second derivative of the original

potential and evaluating it at the equilibrium position. The potential between tail beads in the

Cooke model is given by the sum of equations (2.1) and (2.4) and is represented in figure 2.1. The

second derivative of that potential evaluated at r = 21/6 ∗b is approximately 57 ε/σ2. The period

then follows as
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Figure B.2: Temperature versus time for various T damp.

τ
′ = 2π

√
m
k
≈ 0.83 (40)

The molecular dynamics package, LAMMPS, which I’ve used for my simulations uses a pa-

rameter called T damp which is related to Q by

T damp =

√
Q

gkt
(41)

They define T damp as a rough timescale for temperature equilibration. It is directly propor-

tional to the period derived in (39). Using the period in (40) implies a T damp value of around

0.2.
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I ran simulations of a 40x40 lipid bilayer at a temperature of kT = ε . I varied T damp from

0.02 to 2 to observe the effects of the damping parameter. The units for T damp are the standard

Lennard-Jones time units (
√

mσ2
ε

). There were 9600 particles making g = 28800 degrees of free-

dom. Figure B.2 shows temperature versus time for three different values of T damp. All three

simulations were run at the same temperature and are simply displaced for clarity.

The small features in the top two traces are due to the normal fluctuations of the system. The

larger features in the top two traces are due to fluctuations of the heat bath. The bottom trace

(T damp = 0.02) contains fluctuations which are faster than the normal system fluctuations and

could prevent equilibration. In the middle trace (T damp = 0.2) the heat bath fluctuations are on

the same order though slightly longer than the system fluctuations which is ideal. The system will

be able to equilibrate and the temperature and kinetic energy will have the proper distribution. The

heat bath coupling used in the top trace (T damp = 2) would also work but the system would take

ten times longer to equilibrate. The LAMMPS documentation recommends trying a T damp value

equal to 100 time steps. Since my time step was 0.01, that would suggest a T damp equal to 1

which I believe is larger than necessary in this case. Again, it would produce reasonable results,

but simulations would have to be run for much longer. All simulations shown in other chapters

were run with T damp = 0.2.

Barostat

Pressure can also be held constant through use of a barostat. The method was originally used by

Andersen [85] and involves a rescaling of the coordinates by V 1/3, where V is the volume of the

simulation box. Similar to equations (26-28)

q′i = qiV
1/3 (42)

p′i =
pi

sV 1/3
(43)

t′ =
∫ t dt

s
(44)

100



The Hamiltonian for the isothermal/isobaric ensemble is

H = ∑
i

pi
2

2mis2V 1/3
+φ(qV 1/3)+

p2
s

2Q
+gkT lns+

p2
V

2W
+PexV (45)

where Pex is the externally applied pressure and pV is the conjugate momentum of V . The fifth

term on the right looks like a kinetic energy making W act as an effective mass similar to Q. It

determines the strength of the pressure coupling and hence the frequency of volume fluctuations.

W is sometimes referred to as the mass of an imagined piston that is controlling the pressure. While

a normal piston compresses the volume along one dimension, these volume changes occur in all

three dimensions.

Care must be taken in choosing a value for W . A value which is too small can again cause

rapid, independent oscillation that produce a non-Gaussian ensemble distribution. Fluctuations

that are short relative to the time step of the simulation can also cause instability. Similar to the

derivation of temperature fluctuations above, Nosé and Klein [86] derived a relation between the

period of volume fluctuations and W as follows

τ0 = 2π

√
W

3LB
(46)

where L is the length of the simulation box and B is the bulk modulus. In the same paper Nosé

and Klein offer another approximation for the fluctuation period

τ
′
0 = 2π

L
v1

(47)

where v1 is the speed of sound in the simulated material. If equations (46) and (47) are set

equal, W can be solved for.

W =
3BL3

v2
1

(48)

This can be further simplified because the bulk modulus and speed of sound are related as

follows
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B = ρ
∂P
∂ρ

(49)

v2
1 =

∂P
∂ρ

(50)

where P is pressure and ρ is the mass density. Therefore

B = ρv2
1 (51)

Equation 48 can then be simplified to

W = 3L3
ρ =

3L3mN
V

(52)

where m is the mass per particle which is equal to one. L is the length of the simulation box

along which pressure waves propagate. In my simulations I’m interested in fluctuations parallel to

the lipid bilayer surface or the xy plane. I also use square bilayers so that

L = Lx = Ly (53)

The volume of the bilayer is equal to the area times the height or thickness of the bilayer (h)

V = L2h (54)

W can once again be reduced to

W =
3NL

h
(55)

LAMMPS sets W through another parameter called Pdamp defined as

Pdamp =

√
W

NkT
(56)

They describe it as the timescale for pressure equilibration. Substituting (55) into (56) gives
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Pdamp =

√
3L

kT h
(57)

The units for Pdamp are again the standard Lennard-Jones time units (
√

mσ2
ε

). Using the

approximate dimensions of my bilayer (40x40x5 σ3) and my temperature of kT =0.9 ε implies

that Pdamp should be around 5. That corresponds to 1000 time steps which is exactly what the

LAMMPS documentation recommends. Since all of my simulations use the same size bilayer, I

have used this Pdamp value for all of them.
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