E531 M a. k ”C : .4-“ ... . e 3..»‘57. ~ mans}:- In: - N: m" ~~1 .. -. ‘ mu,» . I‘m“; '31:..(2 Eu, IA‘H ., , Lt» $12; 3%; \ 1 A J :fi'er.’ : .43“ :Eg‘fiiéfi i‘p’fifih .9: . ... L ~71: . ,‘fn' .x‘ 2.: ‘u .-. ' I . "r - ‘:.'tr.>:-y‘ ‘..4r' .!,.‘..., A..3..'.”..,r. ”1... ‘.a‘,vrl' ,, a . .t‘ p... ' n ”W -, u ‘ 1' ”m“... ..... . "A.“ 0p. L. .. n-m ,. 9-1». O Wr . ' ’ I ‘U‘IV' a: ‘ of ”gum”; :i‘V" qu '- .xv "mum-n ’ ‘ ”H «pa-w '; r, of. w>qu4nu Haw-IS- «:3.- " ram. , ”'1 "72,-2.2 {.4 Mrmvrkm w M .. ..~,.......3.!;'; ANN! xv..." ,2. “ (“Z-i” "at"... ‘ér:.7"'2‘;':' «an... ’7 n. ~n:-.-,mu farm-2%: MICHIGAN STATE UNI W \\ W“ \ \\ \\\\l \ ill \\ \\ |\\\\\\\\\\\\\\\\\\ l \l l“? ”l‘“‘“ 3 1293 00901 7355 .‘I This is to certify that the dissertation entitled AN INVESTIGATION OF WAVE I' OF THE BRAIN-STEM AUDITORY EVOKED POTENTIAL presented by Jacob Japane Mohale Semela has been accepted towards fulfillment of the requirements for Ph.D degreein AUDIOLOGY/URBAN AFFAIRS zfim Ma'or rofesmr Ernest J JMgore, Ph.D. Professor Date 03-04-1992 MS U is an Affirmative Action/Equal Opportunity Institution 0-12771 LIBRARY Michigan State University PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. DATE DUE DATE DUE DATE DUE __l _J IE! —_7 =_____'l______JL_J Tfll l MSU is An Affirmative ActiorVEquel Opportunity Institution remnant AN'INVESTIGEEICN’OI WAVE I’ OF'THE BRAINESHIIIIIHIEDDRYIEVDKED PUEENHHIE; by .1an Japane Male Senela A.DISSERENEHIU Suhnitted to Michigan State University in partial fulfilment of the requirewtts for the degree of IIXHIIKCW'PHIIDSOPHY anartment of Audiology and Speed: Scierms and Urban Affairs Programs 1991 ANINVESI'IGATIGJOFWAVEI’ OF'IHEmAIN-SI'EM mommmrm By Jaccb Japane lbhale Sarela ‘mepurposeofthisinvestigatimwastodeterminenhetherwavel' in thebrain-stenauditoryevdcedpotartial (BAEP)wasofoodilearor narralorigin. FiveeaqaerimentswereperformedeBfanalewbjects wimrbmlhearimeaminimtheeffects of clicks, talehlrsts, filter settings, forward-masking, andrepetition ratesonwave I'. W: Thirty-five mbjectsweretestedinthisexperiment. midcstimliwerepresentedtotheearatso, 60, and70dBnHLvia alternating, rarefaction, and ccndensation polarities. Wave 1' latencyardanpliuadewerefanfitobeomsisterrtwiththeimrt- mtpttfm'ctia'isoftheraairderoftheBAEP. W: Five abjects participated in this experiment. Irdependent variables used mm tame (500, 2,000, and 8,000 Hz), intasity (50, 60, arrl 70 dB nHL) and phase (i.e., rarefacticn and oa'derisaticn) . Wave I' W «were clearly idartifiable at 70 dB 1111. for all tale auditions but difficult to observe at loner inten- sities. As the intensity of the stimlus Weed, so did anplimde. Awidervariabilitymsobservedforwavel'thanforwave I. W: Eigtrtanbjectsweretested. 'meexperimentshowed similarwaveI’patternstothosefandinmvesI,II,andIIIof theBAEP. Impassfiltersettirqsyieldedclearrespa'sessirne therewasareducednmberofcscillationspreoedingwavel'. W: Five subjects were tested. Wave 1’ latency and anplitude responses were analyzed as a functim of delta-’1'. As delta-Timr'easedtolooirs, latencyofallmvestendedtoixcrease. Mien delta-T was greater than 100 ms, wave latencies grew shorter irdicatirg the taadency to recover. No statistically different F values were famd in waves 1' through V for anpliundes and latencies. W: miseqaerimentinvestigatedWIetherrepetitimrate hadanyeffectonwavel'andhowthispotentialcmparedwithwavesI aniIII. Five azbjectsrespafledtolow,midd1e,ardhigh rates of stimli. Waveformmorphology ofrespcrseswasstuiied.WaveI' rarefactimlatencywasoasistartlyshorterthanttnseofcaflensa— timeaweptattl'ieIOJIstimliperseoamwierethemopolarities produedeqaallatencies. mispatternwascbservedforwaveslard III. mtheotherhand,ca1densatimproducedanpliuflesof1arger nagnitniesthanrarefactimforwavesl’,1,arr1111foralltluee omditicra. 'mefiveexperimentsoonfirmtheviavthatmvel' isanairal ratherthancodilearpoterrtial. IIDICATICN 'Ihis achieverent is dedicated to my mother, unajani, and father, Md'iapi who, although enmiredbeforeIwastenyearscld, taughtme of life throaghart my childhood, adolescence, mmumm. meytaughtnethatwith determinatim, motivation, and steadfastness success is absolutely certain. Itwasamidaymmingwtmmychdwokemeup withthesewcrds (thelastadvicehegaveme beforehepassedaway), "thmgman! wakeupani getreadytogotosdnol." 'mesewcrdsrang inmymirdttmaglnrtmysdiclasticcareer. Keyalebcha, lonabainSanelalebaha Mothcpeng. Kgotso! Ma! le Nala Makcrong 1e Mawatleng. Mmpi 0 1e file matla bore 1e nketse naledi ya meso, lefatsheng la base 1e fatsheng 1a flaga e netsere 1e dinaledi. Ke Male hara Bahale ka baka 1a lcna. Malebc! ii Success of this investigation resulted fran collective efforts of synpathetic individuals as well as organizations. Their canfiderneanitrustinmmsdaxnstratedbythehelpirghardthey offered. Inexpressimmygratiufletowardthesuppcrtsystenlhad duringmyreseardmerfleavcrstishtcrecognizethefollowirgper— saas:Itharfllain possible malfunctions of the efferent feedback systan mich has its originatcodilearbmrlles. ‘Ihislatterobservatimcouldalsobe irdicativeofthemtimthatwaveswhidifollavwavelareattines attauated. 'Ihus this investigatiai seeks to offer an explanation as to the statue of cochlear bio-eletrical events. Limitations of the Investigation Sirnethisinvestigatiaiisbeingconductedusinglnman subjects, itisnotpcssibletoinvestigatewavel' withaneurotaric chanical, suchastetrodctoucincrmo. 'Ihisdemicalsubstancehas beaafandtobeeffectiveindistirguirmirgthenarnen'alfrmthe ramalcarpaertsoftleauditorypattmyinspeciesMasthecat (lbore, Caird, Klinice, 8: Win , 1988), theguineapig (xi, Dolan, &Nuttall, 1989; Dolan, Xi, & Nuttall, 1989), andthecricketacheta danestials (Venicatarao, Moore, & lowrie, 1990). These showedthat'l'l'x reducedtheanplitnrieofthewaveminanimalsmiletheEPSPor EPSP-likerewa'eeraieinedunaffected. Waveminaninelsisthaight tobeanequivalenttowavelinmnnansubjects. Basedaiexperiment- alanimlstuiiessudiasthese,itisassmedinthepmesartstlfly thatwavel'inlnmansvmldbehaveinasimilarmanneriftreated with'l‘lx. Itisalsoinportanttorntethatthesizeoftheheadofmst experimentalanimlsismnhmllerthanthelnmanhead. 'lhus,the lengthofthernmanauditorynervehasbeenfanritobeabaltfive timeslalgerthanthat ofthecat (antraldsxfluang, 1975; lam, 1981). ‘niisanldappeartoexplainthefirfiingsthatwhilethegereretorof waveIIoftheBAEPisattheperipheralpartoftheauiitorynervein mmnalbjects,theoodilearnnlasofthecentralnervaissystanhas beenfanritogeneratethispotentialinarperinentalaninals. Fran thesedataitisamarentthatthenairalinpilsetrananissiaiin theseaninalsisdifferentfrunthatofmmans. Ocnseguently,eutra cautimisrecessaryvmereverinferernesarenadefranevdcedpotartial investigatimsofarperimentalanimls. 'niepmnityof(Ecodrs)stuiiesonmmanamjectsinmidithe activeelectrodeisplacedincloseprrndmitytothegenerator, activated the experimenter in this investigatial to use farfield recordirgtedmiqesinwhidianearcanalelectrodeisplacedinthe anplimdeofwaveLwhencaiparedtowaveImidiisobtairedfranan electrodeplacedatthepran'rtory (Coats, 1983, 1974; Sims, & Beatty1962). W HistoricalardCurrentStatusofWaveI’ oftheBAEP WaveI’ oftheAuditoryBrain-Stemnespcnse wasfirstreported by I-hlghes, Fino, arrl Gagncn (1980 and 1981). Subsequently, Benito, Falco, and lauro (1984) observeda similarevokedpotentialwhichthey labelledwave"0". In1984,MooreandSemela alsodgservedthe potential and named it BI (before wave I, Moore, & Semela, 1985). Initially,mr;heseta1post111atedthatthesalrceofthepotential wasthederriritesofflieauditoryrerveaniflmstheyspecilatedthat waveI' maybeanEPSP (therefore, thelabel,dendritic potential,was arployed). intravenitranainedmlcertainastowhetherthepotential aresefrantheauditorynervederflrites. Toaccatmodatethis micertainty,MooreaniSene1a(1985)tInightitwasrecessarytousea descriptive passe, namely, "Before wave I" (abbreviated BI), since thepotentialpzrecededwaveloftheBAEP. Insubsequentyears,how- ever, Mooreandco-worker decidedtouseHughes' label, 1', since several investigators used the identifier BI for referring to the aural interactimpotentialofthemsp. Recently, theuse of [harmcologic agents inanimal experiments provided additia'ial evidence thatwaveI’ calld presumablybea neuralrespcnse. lboreetal(1988)andl....oz nu.u.mw 9.223. «30.23 0253.. £3.52 a» 0.0.3. a. . r .6282 m m23£$o~ .. . ... Ill-\(J * malusono K mm . . . a . .- r a P v . E... . m 2.32.22 . m. .... . 06.3. a 303:2. 00:6ch , R 02:3.an _ _ 3.32. 2032 53.8300 22:33.2 2.6.0302: Figure III-2 . Block diagram of acperina’ttal agar-abs usedinthefiveexperimentsalfldifferent omditias in the investigatim. Bagels, B,andCstmthreephase calditialsused for experiments I, III, andV. Wnisanillustratimof Wusedinexperima'ttn. WinEslmsafomrd—msldm paradigm. Eocwm SHIN .u>m>.<.m._.mmm o mononzo: mmnm varmmm _ . 0 Casio: . . . o v0.9.3. nonmaao: wmfim 3.....mwmo 050x o 33:.ng {.1 o >3o.::ao [A o .2060 0:310: ZO_mm.O_u.OX o 91.8 .fi 0 Ozox chmzo: 65 Irstrunmtatimusedinthepreeentimrestigatimappearsinfigme III-l. ‘meftnutimofeadxinflvidualompaurtindatagatherirg mybewcdbedintemofflxefalrsectiauasfollm (Chats, 1983). StimlusSectim missectimdimstimlmgaeratimamrmaowstic signalsaredeliveredtotheear. Stimlmmatimenbails parameters smhasrepetitim rate, intersity, polarity, arddnratim. Furthemre, the need for efficient attermtim and tramductim systamreoeivedahighpriority. W: mreestimlusrqaetitimratesmeusedin thestudy: 3.22, 10.21,ard96stimiliperseomd. ‘Iherearetwo reasalsfortheselectimoftheserepetitimrates. First,theyare nm-mltiples ofGOHz, andtherefore assistininprovingthesignal- to-miseratio. Secmd,lowanihighrepetitimratesmreusedin order to "force" the mflitory systelnalt of eqxilibr'im (Eisa'berg, 1965). Jewett and Willistm (1971) stated that, as the stinulus repetitim rate uneased (e.g., fran2.5 to 50 stimlipereeca'd), flaeevdcedpatartialwaveformbecanedistorted. Wendies have sinmthatas thestinnlus repetition rate increases, latencies ofthewavefonsimzreased,miletheNI-N§anplimdeofBAEvaes decreased(Pratt&Sdmer, 1976:2011meta1., 1976). W: ‘Ihestimlusduratimueedinthisimestigatim m0.2ns. Shdiesmsandgaeratimtaveslmnthatamratim ofapprcndmtelyo.18too.2mprochnesam>dmlsamdpressure level (SPL) for short dxratim stinzli (Durant, 1983). Mame, 66 thestinxliofdioiceinthiscesewereclickssincetheyextfibited anirstantanecuszerorise/falltine, asituatimmidxismreideal forefidngtransientreepcneesattheperipheryofthemfiitory systen (Wsm, 1982, 1980). 'mesecmdemerimentinthisinvestigatimexaminedthefilter effectsmwaveI’. 'Ioachievethisgoal, morphological patterns of the BAEPwere analyzed. Five milliseconds analysis time was employed inanefforttoanplifywavel'. 'lhus,objectivesoftheexperim1t are to (palitatively and oawerrtiorally evaluate the potential of interest. Inthethirdexperinent,theeffectsoftcnehmststimlim Wastimpotartial(m)wereinvestigated. miletheduraticn ofthesignalwaslholns,therewasmplateautimearfltlmsarise/ falltimof 2.0anasenplayed. ‘mefcurthexperinartinthisirwestigatimetployedthe fonvard-mskingparadigm. Aduration of 1,000nsinterstimilus interva1(ISI)wasused. Eadmintervalincltfledlaterniaofthe masker (mm noise), thesignal (click), andthetimeseparatirg themskerfrunthesigral(delta-t). Delta-tservedasthe Wmiableinttfisacperimmt. W: Usfieaam-writtmmlterm.the investigator selected polarity as well as repetition rates in the investigatim. 'naeparanetersinthepresartstudyaredeecribedin the follwirg secticms. In addition, the investigator could choose todelaytl'naisetofthestimliinrelatimtotheaisetofthe swam,atedmiq1ewhid1isusemlforavoidingartifactomtamimtim 6'7 atthecneetofthestimlm. miscmponentresidesinthe inthelflzmitofthemicrocmgrter. Itgeneratedstimliwhidi mtrarmitbedtothetransdwer(i.e.,theshieldedfladsai Electrmic headghmes) . Stimlus intersity could be selected within flierargeof23t0n6P.E.dBSPL. IowIevelAnalogSectim 'I'wotypes of pre-anplifierswereused, namely, the mta Inc. (2124mde1,2)andtheGrassRP8107abde1P511K). 'Iheirgainswere 1.8x105and2x105 respectively. WW: Wmthmednmelsflmmidl scalp respmses were preearted to preanplifier, namely, the ratinverting,theinverting,ardtheomm11rp.rt. ‘Ihesedaannels enmitethefollowing fimctims. 'IbeCz, orpositive electrode positim (i.e.,theverteotelectrode),leadtotherm-invertingi:prt ofthepre-anplifier. 'Ihiselectrodepromceswaveformthatpeakin thepositive direction. 'meearlobe (Mar-AZ) ornegative electrode wasrwtedtoflaeinvertingpartofthepre-anplifier. 'meproduct ofthischarmelisawavethatpointsinthenegativedirection. 'me mkpxtombinestheresultsoftherm-imrertirgardthe invertimgirprts. miscadainatimocmrsthmighthegram electrode,whidiisplacedmtheforehead(sz)inthisstudy. 'Ihe differential anplification processes described above, are grafliicelly reprmentedinAmaflixG. 68 W: The responses are amplified with a gain of 1.8x105,midiiseq.xivalaltt0105dBSPL. 'Ihesesignal respa'sesarednamueledtbraghabarflpassfilterwiththesettixgs 1oonzuumgha,ooonz. DigitalSectim Inthiseectimfwrfmctimsoftherewmeerecordingsystan aredeecribed. First,thedigitalsectimcawertssig1alsfrman aralogtoadigitalform,mid1erablesthecmprtertoreccgnizeani procasthedata. Secad,dataisaveragedincmjmctimwiththe timer. 'mird,datathathasbeenproceseedisstoredsothatitmay beretrievedatalaterstage. Fourth,thedigitalsectimcawerts digitizeddatatoanalogform. 'meprocesseddataaretransferredto thedisplaysectimafterbeingtranslatedbytheD—Acawerter. Inthepreeentstuiythefmrflmctionswereexecrtedviathe ombinatimofthebbdularlnstnmentslmcmpxtersystenardthe mums. 'nmighthemtaTin'erOcntrollerm214),alesems initiated. misocmrredinsudiawaythatitwasmase-lodcedto theclick stinuli. 'Ibus, A—D cawersion resultedinthegeneratim ofbinarydigitalnmbers. Twominfeam'esoftheA-Dcawersimhadtodowiththe output reeolutim, whidiconsisted of time and anplibjde. As the sanplixyrateimreased,thetimeresolutimdecreased. Formximl anplitude resolution attainnent, signal anplitude was set within the A-D culverter's anplitude limits. Lastly, thesignalswerestoredin myaftertheyhadbemaveraged. 69 DisplaySection: Winfiepreeentimestigatimwascmfiguredonthat dataproceeeedcmldbedisplayedinnimdifferentways. 'Iheee ocmrredviabathaulitoryardvislalnodesofpresentatim. W: Mspeakersmidiexecrteddifferent functims wereapartofthesystem. 'nlefirstspeakerenabledtheexperineter tomitortherquetitimrateofthestimlus. ‘Iheseca'dspeaker was used to mitor the electroalceghalogramic (Em) activity of eadnabject. W: 'lheralainirgsevendlalmelsweredisplayed visually. The Universal Gamer (Hewlett Packard 5314A) displayed therateatwhidistimliwerepresartedtotheearfinle. ‘me metitimratedisplayedbythismitwasgeneratedbythenlal FunctimGenerator (14208)withinthe}bdular1nstrtmxtslnc. 'me iJwestigatornetdledthereadirgsofthelmiversalcamterard thoseoftheirpxtinthelhcpllseprogramwithinthecmpxter. the Digital mitineter (Hewlett Padcard model 3466A) provided feecback mthelevelofintensityfrunthemalAtteruatoroftherbdular Instnnentsm108). 'mrmghthemtpxtdisplayedmtheoecilloeeope ('IektrmixD15) itmspossibletocbeervefwrtracirgs. 'Ihefirsttracing representedthestimlusdeliveredtothembject’sear. 'Ihistracirg ccnfirued the type of stimlus polarity selected and the anplituie of thestinulus: italsooorrespa'dedwiththemiversalcclmberremm. 'Ihesecaadtracimnonitoredtheartgntofthetriggerpllse. It cmfinmdflutflnuigerdelayatflemmrtmfiedmmfle 7O itputsetting. 'Ihethirdtracirgrepreeentedthealtprtfrmthe power alplifier. It cmfirned that the signals transnitted to the earfinlewereidenticaltothemespresaltedattheirprt. 'Ihe fmuacimwasareflectimoffllealbject’sEEBactivity. 'Blis tracing enabled the experinaater to vialalize mysiologic activities thatwerealsoheardviathespeakerasdeecribedpreviasly. 'ma cameramaitor (Panascnic WV-5300) was used tournitor' abjects during testirg, by daeervim facial, eye blinking, swallow- ing,tagleandmrdihllarjawnm1ts,andbcdilymmts.'nleee bodilymvenentsmyintrodwemnentedartifactsdlringtestirg. A spectrum analyzer (Heurlett Parkard 3582A) pemitted the detectimspectnmofthestimli. 'Iheeruhancedcolor display (IR! nodel)wastheminpertofthedisplaysectim. Forenanple,the averaged,aswellastheargoingrawdataaredisplayedonthescreen astestimisinprogress. Inadditim,waveformanalyseecanbemde whiletesting. mrthermore,thenostclrrentwaveformcanbecmpared with waveform previalsly obtained. Upon daserving the waveform collected,fl1eexperinenterhadtheoptimofrejectixgorsavingthe obtainedinformatim. 'meinvestigatorcalldalsodecidewhetherto internmttheprogramardmkeare—nmofdata. 'meIHJPrqarinter n,printerardplotter(rmcolorplotter)msusedtoptintam plot respectively, the waveform of the data collected. 19.2mm. 'Ihe SP1 program operates in a similarmamerastheSAprogram. Itisusedtoanalyzedatathat havealreadybeencollected. Inadiitim, itpermittedtheeaqaerima'r- tertoplatdataontheplatter. Italsomdeitpossibleforthe 71 investigatortornr‘nalize, filter, oramletheamsoftheaxtptt We..- Further, a sub-program (dcbat.bat) was installed under the SP1 processingprogram. 'Ihisptrogrammade itpossibletotabulatevalues of latencies am anplitudes of single or nultiple waveform by nonnalizirgtheirdcshifts. Inthisnermeratmiformbaselinewas maintained for all waveforms analyzed. previously-menticned siglal emancanenttechnigles (e.g., useof drielded pliones ard medial earlobe electrode placement), the following methodswerefcmritobeusefulinaahancingwavesI'andIofthe 'Ihemiseleveldurirgtestinganbedecreasedbyincreasirgthe umber of sanples (Goats, 1983; Glasscock et al., 1987). In the presentstudythenmberof sanpleswasincreasedfrunl,024 for 3.22 stimlliperseca‘dto4,096sanplesfor9ostimlipersecadrepeti- tim rate. decreasimtheanalysistimefranlOtoSns,thispemittedaleto erhancethedetectimofthefirsttlueethefirsttlueewavesofthe BAEP. Fin-thermre,themet1ndpermittedahigherreeolutimbyusing anirmeasednmberofdatapointsandadecreaseddwelltine. rcbustreepcme, anintra-tynpanic electrode placanentwasenployed. ‘nlus,wavesIandIIwereerhanced. Previousstuiieshavesupported 72 themtimthatasthedistamebebdemtherecordingelectrodeard thegeneratorisinzreased,theanpliuldeoftheBAEPisiJmeased (Holler and Holler, 1985) . mcmmm Inthisdlapterapresentatimismadeofthefirdirwofwaves I', I, III,ardVoftheBAEPfrm58mnnalinnnansubjects. Since wavel'istheprinaryfoclsofthisimestigatim,itwascmpared towaves1,m,aniVusinglatemyaruanpliuneasthedepemmt variables. 'Ihegoaloftheinvestigatimwastodetemineifthe bdaviorofwavel'wassimilartotheremairderofthewavesofthe BAEP. Ifso,theeedatamyrevea1fmflanentalinformatimasto whetherwaveI’isofnalralorcodllearorigin. Toadiievethis goal,waveI'msobservedmderfiveexperimentalcaditimsinmid1 click and taleburst acoustic stinuli were presented at suprathreshold intersity levels. To be more specific, latency and anplitude of these potartialsvereanalyzedinrelatimtowaveI',tovariablessLd1as intensity level, stimulus polarity, filter settings, forward-mskin; andrepetitimrate. 'Ihefomard-masldngparadigmwasusedinorder toprovideadditicmalinformatimabartthebehaviorofwaveI’m'der thevariableoftimeinbehaeentheoffsetofthemaskermflthealset oftheclick stimlus, i.e., delta-’1'. 73 74 m: Adiqalayoftheapparamsusedinthisexperimentcen be fund in figure III-l. Basically, an electrical pulse of 0.240 as duratim was used to generate an acoustic click of amroximtely 3.0 ms at the diapm-agm of the earphone. Alternating, rarefactim, and ccniensatim polarity were included as independent variables. m: Thirty-five, maul-hearing, fenale subjects were tested inthisexperiment. Subjectselectimprocedureswerethesameas described in chapter III. m:‘1hegeneralprocedmeofsubjectpreparatimand electrodeplacanartdeecribedindlapterIIIwasusedinthis experiment. All thirty-five subjects were tested using three intalsity levels of 70, so, ardSOdBri-mandthreeclidcpolarities of alternating, rarefaction, and mum. Each caditim was rqzeated twice m each subject in order to insure rqalicability. Electroghysiologic activity following each of a total 2 , 048 clicks at a rate of 10.21/sec, was averaged. A sanpling rate of 100 kHz was med, whichresultedinadvelltimeof 10microeecmds. Inthisway, atotalof 1,000 datapointswereavailablewithinalollsanalysis tine. mspmsesobtainedwereanalyzedinaBXBanalysisof variance (ANNA) experimental design m: WavesI’, I, III, ardeerethainedandanalyzedby calmlatirq latency and anpliorle. Within these two depa'dent parameters, the effects of the intensity and polarity series were 75 examined. InviavofthefactthatlatencyanianplitudeoftheBAEP tenitovarybothbetwemandwithinsubjectsarflfranaieeventto another,threedistincta.mgrwpsinthedistrib.1timcnrvewere observed. These subgroupswere previously identified as reducers, mugnenters, ardaugnenters (Amedofu, 1985). Sincethere ismore variability of anplitude than of latalcy, the investigator deduced anpliurieoftheaugma'tters(N=8). Figure IV-l displaysthevariwsBAEPwavesrecordedfrm subjects 1115104911 and MBlO49R1, which are representative of those cbtainedfranthe353ubjects. Asshowninthefigure,datawere collected in response to alternating, rarefaction, and ccndersatim clicksatthethreeintensitylevelsof70,60,ani50d3flm. Waves I',I,arriIV-Vwereidentifiedinthetracings. Itcanbeseen, irmeventhatwavesl, IIIandVarereadily identified at various finsesoftheclickardateadioftheintensitylevels. Incontrast, whilewaveI'isidentifiedregardlessofthephaseofthestinuli, identifiability becomes nuch more difficult as the intensity is decreasedtothe50d81evel. Itsimldbemted,l‘ndever,thatwha1 I’ispresa1t,itisadistinctwavewhichprecedeswave1(e.g.,see cmdensatimcmditimat70dBfl-IL);butattines,itterdstobe fusedmtherisingphaseofwavelincertainoftheccnditians (e.g., seealternating coalition at 70dBnHL). Figure IV-2 describes latency ofwaveI’asafm'ctim of intensity and polarity. mile effects of intersity were cheerved, i.e., latencydecreasedasintensity increased,theeffects of polaritywerenoreprotnmcedattheSOdBlevelwhencmparedtothe 76A Figure IV-l. Represartative brain-stall auditory evoked potentials fran om subjects (renown and MBlO49R1) . Phase and intensity ccnditials are nested in a three by three experimental design. 76 :92 =-_ gflmwztpdzo 050K gasodoz 030x . Hdoz oon . 4 : i. afi). .... __ ...... («do . s H 2.2 e \C. /\ / .f.) .x .s. . t . is 77A Figure IV-z. SunlnaryofthewaveI’ latencyasafunctim ofintensityandphase. ‘Ihehigherthe intensitytheshorterthelatalcyandthe snallerthevariaticn withineachrespmse. '71? Latency (m8) -.ne~. .e-» 2.2... a. handbag. melon I 95553. n~.nv .| Docs D NB. nu .run ...w _. UI/ . 1 D// o HZ/m fiv.mw .. _ _ _ _ _ . .111‘ _ lei _ . 2 mo no so Saunas. Em 95.. 78 thealterratirgdatapointsarecmsistentlygreaterinlatalcythan eitherrarefactimorcaflaisatim. FigmeIV-3cmparesWaveI’tothethreewavesoftheBAEP,i.e, I, III,andV. 'Ihiswasdcnetocalparewavel'withanevoked potaltialthatislmcwntobegaleratedbythedistalweriyleral) partoftheauiitorynerve(wave1),thecauialpartofthecentral auiitorynervoussystanwaveIII),andthemorerostralpartofthe brain-stall (wave V) . Figure IV-3 also displays the additional paramterofphaseofthestinlli. WaveI'latencyiscalsistent withtheinprt-artprtfimctimsobtainedfortheranainderofthe waves. Inotherwords,tberee)dstparallelisnforwave1’when cmparedtothefmlcticnsofwavesI,III,ardV. Notethatthe latencyofwavesI'ardIareclosertogetherwhencmparedtowaves III,arriV. Furthermore,waveI'1atax:yappearstobemresaisitive tophaseatthelmerintemitylevel. Statistical data m the effects of intensity and polarity m latencyofwaveI', I, IIIandVamearinArpenlixI-I. WaveI' latency has a statistically siglificant intensity main effect (F = 36.12, P < 0.05) , but no sigiificznt polarity effects. Furthermre, no intensity-polarity interactimwas cheerved. Waves I, IIIaniVlatencysimedanidenticalstatisticaltrendtothatof waveI'. 79A Figure IV-3 . (imperative view of the latencies of waves 1’ , I, III, andVasafuncticnof intensityand fiase. WaveI' hasasimilarpetternasthe restofthebrainstanatditoryevoked potentials. 79 Laiency (ms) .1— ...ea. ...u .435 H. E OOEEMOZ .Ho 13am H. 8 >26 < runabow melon I 2942. ... r 5 end < D 00b 0 was. O .5. — _ mo 00 do Fwobuwnw am #5.. fih I1— I-i— 80 Figure IV-n48hcwswaveI’ anpliudehistogransasaftmctimof inta'sity, with polarity as the parameter. Maximl anplitude ofabart215anasdrtainedat70dBrfmforrarefactimand cariensatim clicks. The effect of alternating plase was less than that of rarefactim ard ccndensatim. Hadever, both rarefactim and cariersatim amplitude showed higher variance than alternating clicks. 'Iims, alternating stimlm magnitude was less than for rarefactim and ca'daBatim respcnses at all levels, except 50 dB rflL. Figure IV-S permits a general ccmparative view of wave 1’ with wavesIandIII. Anpliuldeoutputofwavel' seansconsistent withthenaglitudeofwavesIaIdIII at70dBrflL, butmtas cmsistentatGOandSOdBnHL. Itshculdbemtedthathigher maiufleswerecbtainedforoaflaisatimardrarefactim forwavesI and III, which is cmsistart with the anplitude data ofwave 1'. Statistical data rqaresertirg effects of intensity m anplituie isshcwninAmendixI. WaveI' recordirgsshmedthattherewas a sigiificant intalsity min effects (F = 159.64, P < 0.05): a statistically siglificant polarity main effects (F = 14.40, P < 0.05); and a statistically siglificant polarity/intensity interaction effect (F = 6.17, P < 0.05). An intensity level of 70 dB rimpuniucedhigheranplitudenagnitudethanderim, whichalsohad a significantly higher magnitude than 50 dB nHL. Siglificance of polarity/ intensity interactim indicated that anplitude for 70 dB rill. intensityismrepranmcedforrarefactimaniocniensatim, thanis for alternatirg polarity. 81A Figure IV-4. Wave 1’ anplitude histogram are shown as a function of intensity and rinse. Rarefaction produced maximal anplitude of 215 nanovolts at 70 dB rflL. 81 lit!!! IV-( WAVE I’ Intensity Series Rat-m Con Alt 323 — VIA 269 - V//.////////.//////////. V\\\\\\\\\\\\\\.\\\\\\\\\ ... .... "WW ou’?w%?0???w o. co... :Moonain ’voozoc :z: ”OHONONOHO. /////////// ......‘O. ..... 0%fiflflfififlfifmflp 090 0009.000". %0 coco .33?“ 0’ "”0”.”00 ... .9... ONO. goooouoo. "uni éonwfikw 215 - 161 r 108 - $5 ceased: 60 70 Intensity (dB 131-11.) 50 82A Figure IV-S. Wave 1’ anplitude, as a function of intensity ard phase, is cmpared with waves I and III via histographic representatim. 82 lime "—5 u... ///////////////////////A ///////// / // \\\\\\\\\\ n //////////;/////\ \\\\\\\\\\\\\\\\\\\\\\\\\\\ u ///////////////////// /\\V\\\\\\\\\\\ \\\\\\\\\ .////////////////\, \\\\\\\\\\\\ \\\\\\\ IA“ 7 . . m Cs one-1|. Fa. own-sale 83 main effects (F = 177.17, p < 0.05), polarity main effect (F = 53.35, P < 0.05), and intensity/polarity interactim effect (F = 29.63, P < 0.05). In general, 70 dBnHLyielded a higher anpliufle magnimde than60dBnHL, whichalsohadahigiermagnioriethanSOdBrim. Both70ani60dBri-1Lhadthehighestnagnitudeinrarefactim ccnditim than either alternating cr cmdensatim polarities. m the otherhand, 50dBnHLhada sligirtlyhigher' anplitudemagiituie in alternating cmditim than either rarefactim or condensatim. Wave V negliulde showed statistically significant intensity min effects (F = 195.78, p < 0.05), polarity main effects (F = 8.60, p < 0.05), and intasity/polarity interacticn effect (F = 6.54, P < 0.05). 'Ihe 70 dB intensity level resulted in a significantly higher amplitude thanthatofeither600r50dBnHL. However, theanplitlriealtput of the 60 dB nHL intersity levels was not sigiificantly different franthatofSOdBnHL. Respmeesoftheiunanauiitorysystantoclickacmsticstimli thatwerepreeentedattherateoflO.21/secwereobeervedm'dersix experimntal cariiticms, nested intmo factors, A(a1ternatim, rarefaction, ardcariensatim) andB (7o, 60, and50d3nHL). Itwas investigatedastowhethertlesixca'ditionshadeffectsmblo Wmiablee, latencyardanplituie. Further, itwas mined iftherewereinteractiasbecaea'lintetsitylevelsanipolarities. WaveI',whidlisthef0aBoftheinvestigatim,wascmparedwith 84 threewavesoftheBAEP, wavesI, III, ardV. mileastatistically siglifimnt effects of intensity was daserved for latency, similarly significant polarity effects on latency and intensity/polarity interactimwereabsent. Incartrast, bathintmsityandpolarity had significant effects on anplitude, with intensity and polarity interactim. me, waveI' resultswereverysimilartothoeeof waves I, III, andV. W:'fleamarahrsusedinthisexperimentweretiesaneas thoeedeecribedinthepreviouschapter. 'Ihenamreofta'iestimlli usedwassimilartothea‘iesimninfigureIII-ZD. Ataleburstofz mrise/falltimedurationwesusedtogeneratearfldeliverataeto thesubject’s ear. Rarefactimarricmdmsatimtoneburstswere restedwithintmesof 500, 2,000 $118,000 Hz. m: Five, renal-hearing, female subjects were selected for thiseniperinart. ‘meselectimprocedureswerethesameasthose ascribedintheprevimsdiapter. m:Fivesubjectsweretestedwithelectrodeplacanentas describedinohapterIII. 'mefactorsofta'leimrst(A)aniintersity (B)werepmtedtoeachalbject. 'Ihreeexperinentalcariitias werermtedwifllineadiofthetmofactor‘s. FactorAhadthreeta'e- burstsof 500, 2,000,ancis,000 Hz, while factochcmprised70, 60, and50dBnHL. Topreventtheanbientmiseaswellmchineartifact 85 dimingrecordings,aemilliseca1dtinedelaywesintroducedforlow andhigh frequencies whilemiddletonehado.5 milliseccni delay time. m:1tcanbeseeninfigureIV-6thatwavesI,III,andV werepreeartatthethreefrequmciesandatthethreeintersity levels. mileI’waspresentatSOO, 2,000and8,000Hzat70dBm-1L, it was more difficult to observe the response at lower intensity levels, forbati:500ani8,000Hztcmes. Wastimatfle70d3mfl. levelproducedaclearwaveI'respmseatallthreetones. In cattrast, cariensatim at the same level elicited identifiable wave I’mlyatSOOHz. Figure lV—6alsoindicates thatthelowtone (500 Hz) at less than70dBnHLispoorat eliciting peripheral auiitorywaves(i.e. wavesI',I,aniII),whileoentralauiitorywevesca1tiruetobe observed. AltinlghwaveI'wasdifficulttoelicit at60dBwhena 2,000Hztcnewaspreea1ted,waveIcouldstillbeseen. FigureIV-7disp1ayslatencysetsasaftmtimoffreglencyand intensity. Imludedalsoaretheparametersoffilase, i.e., rarefactimarrlcadensatim. Inthetoppanel(500Hz),itcanbe seen that cadensatial stimli yielded shorter latencies than rarefactimstimli. 'memidilepanelshowsresultsforthezooonz stinfli,wherelaten:yisseentodecreaseasafinx:timofinta'eity. At 8,000Hz (lover panel), r'ar'efacticn yieldedshorterlata'lcie thancmdensatimstimlli. Inallcases,thenorma1variabilityisof avaluewhidlpermitslatencytobemedasanindexforomfidence limits. Rarefactim shows morter latercies at the higher frequalcies andhigherintensities. mus,itcanbeseenthatl'canberecorded 86A Figure IV—6. Analogrespcnseselicitedfransubject SKOB68R1. Mspcmsesarerqareeentedthroughathreeby threeexperimentaldesigl. Phaseisnested withineadlintersity level (50, 60, and70dB rflL) ardeachtaie (500, 2,000, andB,000 Hz). 86 ~.-e~. _¢-o Howl—Hug Nada 02 a E Goa Mu Nooo EN 0000 MN (is; mi- uh- fir- E... A“; 3,..- ar- co— 3 Or- ...- NP- one 87A Figure IV-7. Wave I’ respcnses is histographically mreseted asafm'ictimminteleity (50, 60, ard70dB niiL) phase (rarefaction and condensation) and tales (500, 2,000, and 8,000 Hz). 87 Figure "-1 un r Him-HEW m u Cn- II'I' mum-...“ - Iz- 0- is ..I. $.31 88 at low, mid, andhigh frequencies, but is best seen at high intensity levels. FigureIV—80amareswave1’asafumtimoffrequencytothat ofwaveI. aneagain,theparaneterisphase. ‘megeneraltrerrlof theeedataistilatwaveI'latencyterflstodecreaseasafmctialof freq.lerr:y,verymx:hlikethatofwave1,regardlessofthefilase. 'nms,weveI'a;pearstobehaveverysimilarlytothatoftheauditory nervewaveI. 'nielowerfregienciesterdtohavegreatervariability thanthehiglerfreglerciesardatthelower intensitylevels. In figure IV-9, carparisons oftheanplitude data asa functim of freglercycanbeseeninthefarleftpanels(wave1')orfatright panels(waveI),whileomparismofwaveI’withwaveIcanbeseen byreadimacrosstheupper(500Hz),middle (2,000Hz),orlower (8,000 Hz) panels. Astheintalsityisimreased,anplitude increases, regardlessofthefiiaseofthestimlliorfrequenzyofthestimli. Rarefactim consistently has greater effects than condensaticn exoqrt for I' at 8,000 Hz, 50 and 60dBrHL (e.g., see figure IV-lO). In general,thereisgreatervariabilityforwave1'thanthereisfor waveI. ‘Ihe three min effects of anplitude were frerpency, intetsity, and polarity. Wave 1' intaasity (F= 22.46, P < 0.05) and polarity (F = 10.28, P < 0.05) were statistically significant, while fragm- cy failed to reach statistical criterim. 'Ihe interactims of these data revealedanintensitybypolarity effect (F=3.37,P<0.05) andafreqaicybypolarity effect (F=5.28,P<0.05). Similar statistimleffectswereseenforwavesI,III,aniV(Seeappendix 89A Figure IV-8. Waves 1' and I latencies are sham as a finctim of intensity (50, 60, and 70 dB rm.) and tones (500, 2,000, and 8,000 Hz). 89 !inre "-8 mw-~-w I lull ”“0“.“ “fin-fit“ mum-tut“ IIVI f “Odo-”hm I.- h- Figure IV-9 . 90A Histograpmicompar'ismofwavesI'ardI anplitndeas a furrzticn of intersity (50, 60, ard70dBrHL) ardtcnes (500, 2,000, $118,000 Hz). AlthoughwaveI' anplitudeteniedtohave mrevariatmthanmveI,patten1sofcnewave resatblethoseoftbecther. 90 Figure "-9 ”Ink-“l!“ "II I Mm-“l‘w ...- ~- V/////////%///////m 1%.. ammumm—u. ‘5 3:1! \\\\\\\\\\\\\ //////%////// g/ix/x/ix/ 9: ...—ii. n"! f H‘yI-h-mfiY-oh" Cu. \\\\\\\ \\\\\\\\\\\\ \\\\\ ///// /////////////é~x/// %/ «12...! \\\\\\\\\\\\ \\\\\\\\\\. ////////////// //////////. \\\\\\\\\\\\\\\\\t I 91A Figure IV-lo. Grafirical rqaresentatim of anplimde by are indeperdent variable. 91 MUTUDE IN NANOVOLTS ~_u=~. _¢._o 2.»; H. Ewrfidcm wax HOZHwCWMH Hzamgofloz ”3.02.336 D 40 ab 9mm. Mac I D 00 am flmfl. 0 GO an an. moo .. / smo I / o/o/M 400 ... T JT lo mo _ _ . _ .l 000 NOOO G000 AMPLITUDE IN HANOVOL‘I'S umo duo ‘00 we Oobnogfiob D do .5 E 0 ac um 6mm. 0 ac nu HE. D _ _ ~ _ Ll moo mooo aooo EDGMZQ H2 MEN—N 92 J), and frequency stated a significant main effect. ‘nieeedatarevealedthatwavel' canbeevokedbyvar'ias fretpencies, namely, 500, 2,000 and 8,000 Hz. For the most part, rarefactim stinnli yielded shorter latency ard greater amplitude respmsesthancmdensatimstimli. milefreqwcywasnct statistically significant for wave 1' , it was significant for waves I, III, andV. ‘merewasasignificnnt interaction forfrequencyard intensity forallwaves, exceptwaveI’. W: 'meemipnentusedmsthesaneasdescribedinthe previanexperiment.1nordertofowsmremwave1’,anepodiof 5.0mmeuplcyed. Wavel’,attines,cnmwtberecognizedinthe 10mepod1,butcanbemrereadilyidentifiedina5.0mepoda. Stimlimrepresentedusirgalternatirgclidcsatarateof 10.21/sec. Aspecial electrede,t1)eCoat’s leaf eartr'ode,wasplacad intheexternalauiitoryneams. m: Eight, maul-hearing female subjects, withmhistor'y ofheariminpairwrt,weretestedinthisexperiment. Detailsm abject-selectimcriteriawerethesaneaswtlinedindaapterm. m:mreeelectrodeswereplacedmthesubject'shead. Gold wpelectrodeswereplaoedatthevertex(¢z)andatthefdrehead 93 (sz). Inpedamesweremtanowedtoemeedzm. ‘Iheear'tr'ode wasplacedmacleaminferiorsurfaceoftheextenialauditory mahn,withinthenedialbmym—thirds. Inpedarceoftheeartrode waskeptintheregimofarprmdmtelyzsm. Recordingswere madebetweaatheCzandtheeartrodeinadifferentialmarmer. Since thecbjectiveoftheemperimmtvastodaservethefflter‘effectsm waveI',sevmoftheeiglrtsubjectsweretestedatthecmstant intesity level of 70 dB ri-IL. 'mebandpassfiltersthrughwhichresponsesweretransnitted were caxtrolled in the following manner: upper limits were fixed at 10,000, 5,0000r3,0001-Iz,whi1ethelcwerlimitswereprogressively increasedfrunlOHz,tolOOHzand300Hz. Aseriesoffortytraces msobtairedfrunfmrsubjectswhidiprwidedaclearmrfinlogical viewofrequmsesfrunthecodxlearthraghthecodflearnrclan. m: Figure IV-ll presents respmses dartained franame subject (SAO450R1)usingthevariaisbanipassca'ditions. Ingenera1,waves I',I,II,arrlIIIbehavedinasimilarnam1erinrespaaetothe various filtersettings. However,thehigherthelwpass filter setting (e.g., 10 KHz), thehigherthe frequency misewasintroduced intothetraces. Ins, rewmseiderttificatimisless certain, especiallyforwaveI'. ForlowpassfiltersettirgsofSorBIGlz, respcnse identification is less confusing, especially for 3 KHz, since atthissettingtherearefaaeroscillatimspriortowaveI’. 'Ihus, waveI'ismrereadilyidentifiableusingamrerestrictedbardpass settkgforboththehighardlcwbarflpasssettirgs. 'mesedata,withregardtolatency,canbestbeviaaedinfigme 94A Figure IV-11. Aralogbrainstanatflitoryevdcedpotartial 'nxemlogrespalsesslmthatasthewidth of the bardpass filter decreases anplituie sizedecreasesaswell,whilelatacy increases. Waveforms ircreasirglybeome smoother. VOLTAGE GAIN AT 105 dB 94 Figure IV-ll FIIJ'EREFFEC'I‘SONWAVESISLEANDIIIAT'IOdBnHL II III 0.01-10kHz I’ 04-52112 013—3in2 TIME (ms) 95 IV-12. This figure displaysthelatency of respectivewavesasa fmctimoffiltersettirqs. Itcanbeseenthatonoewavel' is identified,thelatacyoftherespmsedoesmtvaryasaftmctimof thelworhighpassfiltersettirg. WavesIandIIIshowslight differanes, but are not statistically different. 'Ihetracingsthatwerewtainedseemtosuggestthefollowirg points: (a)thewiderthebandpass,themredetailedthetracings wereobtained. 'Ihetrade-off forthedetailed informatimobtained was that the tracirw elicited permitted oartamination of high frequacywavesardmoreeqializatimoftherespazsesaran'dthezero baseline; (1:) waveI’ oouldbereoognizedat suprathreshold levels, hrtaslittleasalOdBreductimofintensitywasstnwntoobsoare waveI’,partim1arly forthe300—3,000Hzrange; (c)bardpassfilter settingsof loo—5,000steanedthemstidealoa1ditim for illustrat- ingwave I’, aswell aswaves followirgwave I'. Forexanple, SP, dwble-peakedwaveI’,waveIlaee,ordmble—peakedwave1weresem insanesubjectswtmthisfiltersettingwereused:(d)bardpass filters that are My used in clinical situatims are loo-3,000 Hz,arr1300-3,000Hzarrlwerethefilter~susedinthisexperimart. In experinent III a cpalitative evaluatim of the effects of filteringwasnade. Inanattalpttofocusonwavel' ofBAEP, the following variables were included in experimental omditicns: the Figure IV-12 . 96A Filtereffectsofnarrwingabardpassm waves 1', I, ard III. Narrowerbarripass (lo-3,000, loo-3,000, ard 300-3,000 Hz) omsistently produced shorter latencies forthssewaves. 96 Latency in ms Latency in ms hb wb mb Nb Nb who ~b ob Ab ab 0.0 Na Nb pb Hb ob mpemw Madam 02 spam w. r >26 5 I Eemzow. .5. do aw Um? I _ 2940 H. f I I _ 133 H. _ £33. a r 1940 a > F $.38 B O P 236 E ~.ne~a _¢-_~ Latency in ms hb I .3 r ab 1. Nb 1 Nb r H6 1 w Hb I 0.0 F b I 238 a. ando H 3940 B >” b I poooo mu 0 b I 0000 EN D we I 0000 an D m” poo I 3000 mu 0 ~00 I @000 in D be I mooo mm D on woo I 3000 In 0 woo I 0000 mu 0 moo I mooo mm D 97 "refererneelectrede"wasplacedclosertothegeneratorintheear canal than in the omventicnal far-field testing conditions. In additim, a5nsanalysistinearriprogressivelymrrowingbarripass filter settings (i.e., frcm 10-10,000 Hz to 300-3,000 Hz) were 61910393- W: Eqiirmerrtusedfortheexperinentappearsinfigure III-1, withanadditianal white noise channel. m: Data were collected fran five, normal-hearing female subjects. Subject-selection procedure and rationale for selection werethesameasdescribedinchaprterIII. m: 'mefonward-mskirgparadigmusedintheeaqaerimentis illustrated in figure III-2E. 'Ihe procedure entails presentatim of noise, the masker, followed by a click. 'Ihe indeperdart variable in theexperimentisthetimethatelapsesbeforemiseanitheclidc, called delta-t. In the present experimm five delta-t variables weremidered, 10,50, 100, 200,and400 us. @113: WeseeinFigureIV-lBanalogtraoesdctainedfrma typical subject in relatim to various times between the offset of the miseanithealsetoftheclick (delta-t). 'Ihecartroltraoereveals wavesI’, I, III,andV. WaveI’cnnbereadilyseaaasitpreoexs theappearanceofwaveI. Asdelta-tisincreased(anincreasein interetimlusinterval),thelaten:yofallwavestendstoincrease outtothetimeoflOOms. Asdelta-tisincreasedbeyonleOns,the Figure IV-13 . 98A Iatencyasafmnctimofdelta-T (Dt) andphase in a forward-mskim paradigm. Six experinental cariiticns were included under delta-'1' (cartrol, 10, 50, 100, 200, and 400 ms). Phase jmluded 98- ~.ne~. _¢-~u :32 E b 1:29.32 cm. bangle. E > "..an g0 mega: gunner—ob oouaofluafiou . 4‘ E Simeon—u H. s. Simeon: ~. ~ gibbon; . p . . p. p. s p . _ IIIh _ . . . _ _ . _ _ I. [Ilia o s N u a u m a a m 3 o s N u p m m u m 0 so 5.50 5 Encore. .380 5 E3009? 99 wavesaredaservedtoreooverintheirlatency, i.e., latencybeoanes progressively shorter. Figure IV-14 provides the difference, if any, bemeendelta-tardmaseoftheolickstimli. Itcanbeseenthat there are same minimal differences—in that latencies are shorter for rarefactim stimli, especially at a delta-t equal to or greater than 100 m. Figure IV-15 displays the anplitude of wave 1' as a function of (hlta-t ard {base of the click. 'Ihe rarefactim stinnli mistartly produced responses of greater magnitude than oordensation stimuli. Onceagain, theeffectsofamorerestricteddelta—toanbeseenas pertaimtoanplitmde. Itistobenotedthatthevariabilityis quite large, attesting to the fact that anplitude is quite variable, unless (he uses all augmenters. Ingeneral, statisticspertainingtothisexperinentshmedm significant differences for both dependent variables (i.e., latency and anplitnde) of the BAEP. 'mese statistical values amear in amerdioesLandM. Frunthesecalculatims itisevidentthattheP values for all waves are significantly large. milestatisticalassessnentofwaveI' showsasimilarpattern to that of the waves that follow, in terms of latency and anplituie magnitlxle, analog data reveal a significant relevant pattern in all BAEPwaves. 'merespa'sesshmedthatasdelta-tircreasedfranlo tolOO as, latencies of allwavesalso increased. However, asthe 100A Figure IV-14. Histograrhic rqaresentatim of latency as a functim of delta-'1‘ (in milliseccrds) for waveI' inafonaard—msldrgparadigm. 8mm) L-ntaa (cpnooo GI 09 00'! 003 00? 100 THE In MILLIISECONDS .0 .0 t" or o /////////////////////////<-—* \\\\\\\\\\\\\\\\\\\‘ ///////////////////////< \\\\\\\\\\\\\\\\\\\\ / \\\ ///////////////// \\\\\\\\\\\\\\\\\\ -* ////////////////////// \\\\\\\\\\\\\\\\\\\\\\\ m NOD mm 1.431190 1° HOLLOW ‘ 3'“ .I EAVA Figure IV-15 . 101A Histograpic represaitatim of wave 1' anplituie (in nanovolts) as a functicn of delta-'1' (in milliseocnds) in a forward- (spuooocmrm) L-F‘IPG OI 09 001 003 001' 101 AMPLITUDE IN NANOVOL‘I‘S (A O 0 § 0" O O //////////////////, \\ ///////////// \\\\\\\\‘-—* W a\\\\\\\\\\ 4 ,_l I //////////////////// \\\\\\\\\\\ ///////////////// \\\\\\\\\ ‘3‘ .I SINK 1.431190 3° HOLLOW 102 interstimlusexoeedleOns, thepotentialsareinclinedtoreoover but not fully. In adiitim, it was found that anplitnde responses had greater mgnitude for rarefaction than for condensation. M: Eqiiprentforthisaqaerinentwassetinthesamemyas shown in figure III-l. Click stimli were presented as shown in figure III-2A. m: Five, normal-hearing female subjects were selected for described in chapter III. m: Subjectswerepreparedinaooordancewithprooedures described in previous sections. Subjects were presented with pulses in the nanner illustrated in figures III-2A and B, at the rates of 3.22, 10.21 and 96.00 stimli per second. 'Ihese stimlus rates were midered suitable for eliciting rqaresentative nwral behavior ofthemiditorypathwayastheyooveredawiderargeofrates. m Weseetheeffectsofrepetitimrateardp'aasemthe waves in figure IV-16. All waves could be identified at the slow repetitim rate of 3.22 and 10.21/sec. However, when a rate of 96/sec wasanployed, allmresvereredroedinanpliufleardprola'qedin latency. 'Iheeffect ismreprcnounoed forwaves III andII, less soforIandI'. 'Ihemormologyofthewaveformisalteredasthe repetitim rate is increased. Figure IV-17 displays latency, while Figure IV-16. 103A Repetitim rate as a finctim of latarcy arripnseat 70dBrflL. Asrepetiticn rate increases: anplitude is reduced, latency increased, and waveform mrpiology is distorted. 103 ' :22 2-; EMA—.202 25d E b 323.32 on r2323 >26 Era—dun 5. do am am”. Evan—on oh :4 noun—Econ H. «ha \30 u. 3.3 \aoo oabo\noo 5 P r b P L L o d N u A. u E AEV 104A Figure IV-17. Omparativeviavof latencyasa functimof rqaetitimrateaniphaseforwavesl', I, and III. mileapar'allelpatternisobservedfor wave Iwhenthethreerates (3.22, 10.21, and 968tinnliperseocnd)waves1’aniIIIshcw straigest agreanent for 10.21 stimli per securi. Latency in llilliaeconds 104 ' Figure IV- 17 LATENCTY A3 A FUNCTION OF WON RATE III Cf 0 run 0 CON )- 8‘ + :8 1 - M I’ L l l J 3.22 10.21 96.0 Rate (Stimuli per Second) 105 figure IV-18 displays anplitude. Figure IV-17 shows that wave 1' rarefaction latency responses are canistently shorter than those of omdensatim, except at the 10.21 stinnliper'seocnd, mwmynsesproduoeetpallatancies. Rarefactimresultsinshorterlatamciesthanomdersatiminwavesl aniIIIaswell. milewaveIreqna'sesshowanalmstparallel irpxt-artputgraph, rarefactimissuperiortoocndensatim forthis potential. WavesI’ ardIIIslwwanidenticalpatterninthat mum produces lcnger latencies at low and high repetition rates ard tallies with rarefaction only at the mid-rate (10.21/sec) . Anplitude nagnitude ofwaves I’, I, and III are shown in figure IV-18. In general, oondensatim produced larger anplitudes for all low, mid, and high repetitim rates than rarefactim. Waves I and III stmthispatternmlyat 96.0 stimlipersecorri. Inomparismwith theranainirgwaves, theoppositeistruefor lowardmidrepetitim rates. It stmldbemtedthatmlyatthelowardmidratesdoesthe anplitudemagnittdeappearinacleararddistirctnamer. Allwaves display a noticeable drop of amplitude at 96.0 stimli per seoa'd. Wave 1' lateny responses revealed statistically significant min effects irdepenient variables, repetition rate (F = 10.67, P < 0.05), ard polarity (F = 18.26, P < 0.05). Interactim between these variables was found to be insignificant. 'Ihe pattern of statistin significanoeforwaveI' isidentioaltothatofwavesIandIII. 106A Figure IV-18 . A omparative vial of anplitude as a functim of repetiticnrateandphase. Amarkeddecreasein anplitude is seen at 96 stimli per seocnd. 1116 Figure II-lfl ME AS A FUNCTION OF REPETITION RATE IINUK) {- 3 800 - m D “g 0 con 3 600 - m 0‘ 2 £3 I c}__, «8 ‘53 4|(ICI '- I :3 E 200 "' r C_ o l l l _l 3.22 10.21 96.0 Rate (Stimuli per Second) 107 Similartolatencyoutput, themagnitudeofwaveI' armliuldesrmed statistically significant values for repetition rates (F = 3.48, P < 0.047) and imignificant interactim between these variables. ForwaveI, therepetitimrateappearedastheonlyfactor (F = 49.06, P < 0.05) . No statistically significant effects were found for either polarity or interactim between polarity ard rqaetitim rate. In contrast, wave III anplitude revealed statistical- ly significant effects for the main effects as well as the interactim between then. ‘lheir F values were 81.94, 28.23 and 15.90 for repetitim rate, polarity and repetitim rate/polarity interaction respectively. In all cases the P value was 0.05. 'lhe analog data show that as repetitim rates increase, morghology of theBAEPisprogressivelydistorted. 'medataalsoshowsthat rarefactim W are more affected at 96.0 stimli/sec. than cmdersation. Waves 1' and III rarefactim resalted in a more stable pattern of latmcies than cmdensation. A definite parallelism isdisplayedbywaveIatall repetitionrates. Thelowandmid repetitimratesshcwadistimtanplitudepattemintheir dispersim. In contrast 96.0 stimli/sec. resulted in a reduced cluster of magnitudes. DISGJSSIGI OF mus AND MICE 'Ihemainelphasisofthisinvestigationwasdirectedtoward determinirgwhethermmanwaveI'oftheBAEPwasneuralorrn‘I- naxralinorigin. ‘IIoad‘Iievethedajectiveofthisgoal, five experimertswereperformdma 58, normal-hearing, felale subjects. Withineadiexperimmt,severalparaneterswererested,im1m1ing anflablessudiasinta'Sity levels, [338e, tale, filter settings, andrepetition rate. Depardentvariables intheseexperi— martswerelatancyandanplitnrie. WaveI'wasanalyzedthrcugh theseparanetersardcmparedwiththelamnnemalrespmsewithin ardartsidethecentralrervcussysten. Severalgaaeralpatternsbecaneevidartfrantheclidcdata fundinfibcperimentl. First,waveI’isasnall,intaisity- Wrespaeethatisclearlydasewedinnnstnormally- hearing iniivichals at the highest suprathreshold levels. Second, alternatirganirarefactimwerebetterpereeivedbytheearatthe highest inta'sity levels than a condmsatim click. 'Ihird, alter-rat- imfinsereafltedinflelawgestlatacywtprtatwdbmmwmile rarefactimhadtheshortestlatenzy. Altl'nlghat70dBri-1Lwave1' click stinuli producedverytigtrt latencies, aromd 1 m, alternating piasestillrevealedthelcmgestlataicyvalue. Apatter'nsimilarto treBAEP,weveI'arthtanpliuriesincreasedasimrtintensitylevel increased. m, alternating phase stinuli produced anpnune of 108 109 rechoedmagniurieinagradualmarmer. At70dBnHL,r-arefactim clidcsresultedintheinhighestartprtofaboutzmnv. Ingeneral, [ruse showed no significant differences at differert levels of presentatim, while intensity effects were cmsistently distinct. FiguresIV-3ardVI-Sshowalatalcyardanplitudecmparism ofwavesI'withwavesIandIII. Fruntheseoonifigureitis amarartthattlemlydifferernebeueenwevel’ardtheremining twowavesisinsizeofanpliuxieartpxt. 'Iheserespa'eesrevealan identicalpatternwmidlalgportstheinterpretatimthatwavel’is possiblyaneuralrespmsethatharpenstobesmallardoftenmrer looked or incorrectly identified as an epi-filencmerm, cochlear micrqimic,orsmnatingpotential. Itisapparart, therefore that wavel'isarenalrespmsethatisreadilymaskedwhenstinllusis presartedatlowintensity. Itbeoanesclearatthehighestardmst canfortableinta'lsitylevel. 'lhefoasoftheseca‘d experinentwastodeterminedifwmrel’ mstae—specificarfiwhetherthispotentialwasasintereity- Waitpravedtobeforclidcsfimli. Beeidesaflitim oftaestimlianieliminatimofthealternatingfilaee,therest oftheparametersusedinthisexperimrtarethesameasparameters omsideredinthepreviouseaqaerinzrt. 'Ibexamineatmeandinten- sity effecton latenoyaraampllmde wtpzt, the resultswere analyzed ina2x3factorialdesign,wherebyfactorhwaspolarity(rarefac— timardcadmeatim)alflwhilefactor3wasintersity. Iow(500 Hz), mid (2,000 Hz) andhigh (8,000 Hz) werenestedwithin factor A. Inge'eral,waveI'latemiesweresimilartothoseelicited with click stinnli, inview ofthefact that latenciesgravshorter 110 asstimlusintalsitylevelincreased. Forthe70dBlevel, results datainedweresimilartothoseprevicuslyobtainedinmperimentI. Besimilarityocan'redatSOOHzthralghrarefactimanicadensa- tim,ardat8,000Hzthmrghrarefaction. Responsestomiddletones at 70dBlevelweregalerally lmgerthanthoseelicitedbyclicks. Inadditim,alargevariatimofrespalsesoomrred. Furthermore, ircreaeeofstinulusintensity,frcm50to60dBrHLseanedtohave meffectswmenmiddtaeswereprmmtedflmlghcada'satimfilase. RespalsesofwaveI'latenciesamearedsimilartothoseofwmreIas sealfiqneIV-9. Wavel'anplihrierespmsespresarteddistinctpattemsatall levelsoftcneandintensity. '1hehighestresponsesevokedwith70dB limtalestimluswerefan'dtobeabaltzmnv. 'Iheseca'dandthird highestrespmseswereobservedatmiddleandhightmes, respectively. Ingaeral,rarefactim1masepredtnedhigheranpliufleortputatall intmsityandtcnelevels. 'IhefactthatwaveI'anpliuriereqmsestrendsappearedthe saneaswavelanplitmdesearstoverifytheinterpretatimthatwave I'isanelralrespmse. ItisalsoagparentthatwaveI’canbe evokedmtmlybyhlghtmesmtlowaswell. Omsiderirgthefact thatwaveI'ameareddistimtat70dBrim,whentalesof500ard 2,000szerepresartedthrulghrarefactim,seetstobeomsistent withthefindigsofKian;(1965)whopointedaltthattheBAEPisa highfrecpmcyghaunetminwhidlmtallnalralfibersrespald. Inadiitim, Schwartz andBerry (1985) reocmnendedtheuseof rarefactiminclinicalauiitorybrain-stenmtestingorbest respaaes.miderirqthefactthatwave1'respmsesfandinthis 111 experiwrtfitflnsefirdirgs,itseerstosuggestfllatthepote1tial isofnalralorigin. InmperinartIII,waveI'wasobservedwtenbardpassfilters werevariedfrunawidetoanarrcwfilterpassageinasystanatic mar. 'Ihe enuresis of the enqerimentwas directed at cpalitatively daservingthemrphologyoftheamlogrespmses. Inadiition, iniividmlsmbjectrespaeeswerecmsidered. Foradditimaldataon bandpasseffects,wave1'wascalparedwithwaveslardIIIinterms oftheirlatalcies. FrunfigmelZpanelsA,B,ardC,itisclearthatwaveI’is insyrdlrulywiththeremainirgwavesoftheBAEP. ‘Ihisexperiment Wflleviewthatwavel'amlralrespmse. Inadiitim,the analog data displayedintheforward—msldrgparadigm (figure IV-13) ardtherepetitim rate (figures IV-16, 17, and18) stmthebehavior ofwaveI'tobethesameastherestoftheshortlatencyrespmses. Franthepresentinvestigatim,aconclusionisdrawntothe effectthatwaveI'isofneuralpotential. Itisneoessarytocarry artmreinvestigatimmthemtimofEPSP—lflceinanimlstudies, sirneTDtmymtbeusedmanimlmbjects. Itisalsoneoessary toirwestigatetheoa'ditiaemderwhiohwavel’ridesmthe aecadirgghaseofwavelasthiswilldistimuishSPfranwaveI'. ‘nlepresentinvestigatiminficatesthatinsanesubjectstheuseof certainfilterscantotallyobliteratewaveI'. Itisreoannended thatmrefiltersbriiesareperfornedbetweenaniwithinsmajects sothataninsigbtcnnbegained. Inviavofthefactthatthereisanircreasingnmberofteen- agemthers, homelessness, andslum caditimsinimlercities, the 112 birthrateofnematesmthehighriskregisterislikelyto increase. 'Ihisca'ditimiswersenedbythefactthatmanymthers areexposedtod'nenicalagentswmidlmypoismthedlildinthe fetalstage,t1msplacingthedlildmthehighriskregister. 'me waveI'testnayserveasignificantscreaiirgdeviceofdlildralm thehighriskregister. 'Ihefactthatitisasuprathresholdtest givesitanadvantageofbeingagplicableintheintersivecare mits,wheretheremybenoisefrmtheim1batoreardvariamkirds ofmmitoringdevices. 'nnls,detectimofwave1'ininfantshasthe praniseofbeinganeffectivediagnostic tool. As a rehabilitative device, thewave I' testmay offer insights irrtothenalralccniitimoftheimerearincodllearinplant cardidates. 'nlisissobecausethetestmkescodilearneural functimpossible. Caulusion WaveI'asaralralpotentialoftheBAEPmldsprmisefor future research and clinical applicatims. 'Ihe previarsly-named potentialsuriiesmayexplaintleflmctiasofthecodflear—hearing lauduetoototoldcdrugingestim, noise-inducedhearirgloss, and presbyulsis. Reoannerdatims Inviavofthe factthatthepresent investigatimusedmly young to middle-age, renal-hearing, fanale subjects in order to rule 113 cutvariability that my result frangalderandagedifferenoes, it isreoamrdedthatshriiesbemadeinthefollcwingpopllatim 9104333 (1)91aveI'asafm1ctimofgemeranittedegreeofdifferaloes ifany: (2) WaveI' asafunctim ofageandpossible longitudinal shadythat will irriicateiflatencyofthiswaveshorteninasimilarwayas waveVinearlydlildhood: (3) An investigatim intothebehavior ofwave I’ for differenttypes ofhearinglossesandseverity; (4) Acmparative shriyofwave I’ cochlear inplant patients and hearingaiduserswith sa'lsori-nalral hearing loss diagnosis; and (5) AnalysisofthewaveI’ oftheBAEPindrug—dependentpregnant mtrersardtheiroffsprings. AMI“ APPENDIXA legesinAmmaracteristicsSeoondary 114 APPENDIX A 03263 5 )2» 038082918 monogamQ 8 308350 Boonie: 88. Repetion Rate (sec) N... u... A... m... m... O_Nuaum.~ 0.0 m r333. 3 2500 O.~ue< b d 0 _ «>- .15 '0‘“- av- a«» 0... air r, can (p-n- 6 APPENDIXB Illustratim of Increasing Rwetitim Rate for AH! with Nonnal Subject. 1.115 mo .mm A0 mwomzzo: 303 NO m A _ APPKHDII B m .0 Swan .5585: or ”academic 6330: 3.8 as >wm 2:: 3036. 26th. 208 003 552% was mod .03 2 38: ms :6: 3:8. zu some. _u mm nmmnr .22: on ammo azox. . APPENDIX C AdultChseI-Iistoryflearing 116 If working, describe occupation Do you think you have a hearing loss? If yes, which ear(s) RIGHI' IEFI' Doycuhavefreguentorcorstantringirg/mzzinginears?YES Doyalhavelmusualdrainagefrimyalrears? Doyouhavefrequentorca'stantearpain’? I-Iaveycueverhadaprolongedhighfever? Doesanymalberofyourfamilyhaveahearinglosscther thanduetoaging? Doyulhavefrequentdizziness? Doycuhaveahistoryofjob—relatednoiseelqaosure Ifymarmred"YFS"toeitherofthetwoprevials questicns, haveconsistently alplcyedgoodear protectimdm'ingthemiseexpoalre? Doyouhaveavisual' Haveycuhadahearinglossbefore? I-Iaveamered"YES"whereardwhen? 555 5538 8 Haveyalhadanysevereheadinjuries? Inveyouwornahearingaid? mks/mael/Settixq/Fhmld 58 535 List any previous surgeries and dates. List any medications presently prescribed for you. List any allergies. Vhat is your primry cmplaint or problan with your ear/hearing, hunting,etc.? MDIXD InformedcmsentForm 117 APPENDIX D MICHIGAN STATE UNIVERSITY DUMYNENT Of AUDIOCOGY AND SPEECH $OENC£S EAST MNSING 0 MICHIGAN 0 «nu-m2 J7! COMflUNICAHON ARTS AND SCIENCES BUILDING Department of Audiology and Speech Sciences Communication Arts and cienges Bu11ding. Room 5 Michigon_Stote University East LonSIng, MI u382u-1212 INFORMED CONSENT FORK 1. I, y freely and voluntarily consent to serve as a subject in a scientific study of conducted by and other student assistants. 2. I wider-stand that the purpose of the study is to determine the usefulness of several electrophysiologic potentials which may have clinical applicability. 3. I understand that I will not be exposed to any experimental conditions which constitute a threat to my hearing, nor to my physical or psychological well- being. I understand that in the unlikely event of injury resulting from research procedures, Hichigan State University, its agents, and employees will assune that responsibility as required by law. Dnergency medical treatment for injuries or illness is available where the injury or illness is incurred in the course of an experiment. I have been advised that I should look taaard my own health insurance program for payment of said medical expenses. If there are any questions, please contact Dr. Ernest J. Moore at 353-8788. 4. I understand that data gathered from me for this experiment are confidential, that no information uniquely identified with me will be made available to other persons or agencies, and that any publication of the results of this study will maintain anonymity. .5. I engage in this study on my own free will, with payment to me for my per- sonal time, but without implication of personal benefit from the experiment. I understand that I may cease participation in the study at any time without prejudice to me or my standing as a member of the MSU Comunity. 6. I have had the opportunity to ask questions abOut the nature and purpose of the study, and I have been provided with a copy of this written informed consent form. I understand that upon completion of the study, and at my request, I can obtain additional explanation about the study. DATE: 516850;“ Part iprant .‘i I (INN): WIIIH‘.‘ NIP/I (W/HIIWNI’ SCI It“; MVP/I APPENDIX E Intematimal ( 10-20) Electrode Placmrt 118 APPENDIX E 24323.02? A Sung 23:83 2>nm3mzu 01>”... ._ 262 _ -ns---nn---ni . < \ Z r _ ouoprhmw..aooo Q mos roan :10: :3 £3 2.. =26 . 2% 3:28 207:. APPENDIXF BlochiagramofAveragfligSystanfor Wammmmls. 119 IPPKIDIX I .... lllllllll J \\\x _ . 3.3.. _ llllll J . o ....05 rm.. U I ozmxom 8 9987 U >l 99$: 8 macaw APHNDIXG Top Panel: Sdmtic Illustratim of 1: Differential Pre- amplifier. Middle Panel: Sdmtic Illustratim of Noise Effects of a Preanplifier. BattanPanel: Dauples oftheABRDetectedattheVertexard mstoid Sites, ard the meinatim Effects of the Diffemtial Preanplifier. ‘Ihe Om Electrode wasPlacedmtherreheadardismtIlltBtrated. 120 APPKIIDIX G NONINVERI I HG INPUI COW INPUI OUTPUI 203 :Ofi INVERIING INPUI Schematic illustntioo of a differential preamplifier. “IMO". MM ‘ (”l‘. ”M I N j— ' “(MW Sehe-ttutie illustration of noise cancellation eflecu of a differential preampli- / “I“! IA'UOII PREAMPUFIER \ MHOIO turnout (MOSH! \tavuoau Etampies ol the ABR deteeted at the vertex and mutoud sites. and the torn- btnatton efforts of the dtIIetenttaI preamplifier. We common eleflrodt VI! placed on the forehead an! u not tlluttrated. APPENDIXH Effects of Intensity and Pourity on Iata'tcy of the BAEP. Analysis of Variance meats. Pol Int*Pol Error Total P01 Int*POl Error Itfizfl. P01 Int*POl Inotal DF 2 4 135 143 DF fiNNg SS 3.70287 0.14068 0.11144 6.91919 10.87418 SS 8.0136 0.0123 0.0503 10.0901 18.1662 SS 6.9139 0.0268 0.1795 19.8120 26.9322 121 APPENDIXUH “ENE 1’ HS 1.85143 0.07034 0.02786 0.05125 WRVE I MS 4.0068 0.0061 0.0126 0.0747 III INS 3.4570 0.0134 0.0449 0.1468 0.00 mm EFFECTS OF'INTENSITY.ANDIPOLARITY’ON’IAEENCY' OF'THE BEEP. .ANALMSIS OF'VERIKNCEIRESULES. 0.000 0.257 0.704 0.000 0.921 0.954 is?" \l .5 APPENDIXI Effects of Intaaity and Polarity m Anplimde of the BAEP. Analysis of Variance Results. P01 Inttpol P01 Int*POl P01 Int*POl F01 Int*Pol 122 APPENDIX I EFFECTS 0F“INTENSITY’ANDDPOLKRITYiflNtfiflPLITUDE‘OF THE BEEP. .ANALYSIS OF'VHRIANCEIRESUIES. DF SS 2 5078.91 2 458.26 4 392.62 63 1002.18 71 6931.97 DP SS 2 18035.5 2 5431.8 4 6033.6 63 3206.7 71 32707.6 DF SS 2 3254.9 2 2528.2 4 3957.1 63 1763.7 71 11504.0 DF SS 2 22821.1 2 1002.2 4 1523.8 63 3671.8 71 29018.9 “ENE I' 153 2539.45 229.13 98.15 15.91 'WNVE I MS 9017.8 2715.9 1508.4 50.9 WHVE III MS 1627.5 1264.2 989.3 28.0 WHVE‘V 11410.5 501.1 381.0 58.3 F P 159.64 0.000 14.40 0.000 6.17 0.000 F P 177.17 0.000 53.36 0.000 29.63 0.000 WJ Effects of Intensity, m, ard POIarity m WavesI', I, III, andVIatencies oft'heBAEP. Analysis of Variance Reants. ATB ) ANOVA LAT=INTITONK§POL Factor Type Levels Values INT fixed 3 50 TON! fixed 3 l POL fixed 2 2 Analysis of Variance for LAT Source 07 INT 2 TON! 2 POL 1 INTtTONT 4 INTtPOL 2 TOlltPOL 2 INT'TONT‘POL 4 Error 72 Total 89 SS 8.24108 1.64848 0.11236 2.34131 2.06232 1.34754 0.62180 5.99904 22.37393 86 4.12054 0.82424 0.11236 0.58533 1.03116 0.67377 0.15545 0.08332 1:223 APPENDIX J F P 49.45 0.000 9.89 0.000 1.35 0.249 7.03 0.000 12.38 0.000 8.09 0.001 1.87 0.126 8T8 > VAV! 1‘ LATIICI RBSPOISIS TO TOIIBOIST 8T8 > lNOVl LATzllTITOIIIPOL Factor INT fixed TON! fixed POL fixed Type Levels Values 3 50 3 1 2 2 Analysis of Variance for LAT Source 07 INT 2 TON! 2 POL 1 INT‘TONL 4 INTVPOL 2 TONTIPOL 2 INT'TONltPOL 4 Error 72 Total 89 65 10.4482 3.9433 0.0105 0.8848 2.5362 0.1669 2.3340 9.9412 30.2650 “N8 g 0 85 5.2241 1.9716 0.0105 0.2212 1.2681 0.0835 0.5835 0.1381 F P 37.84 0.000 14.28 0.000 0.08 0.784 1.60 0.183 9.18 0.000 0.60 0.549 4.23 0.004 878 > HAVE I LATENCI RESPONSKS TO TONKBURSI 818 > ANOVA LATlINIiTONRiPOL Factor Type Levels Values INT fixed 3 50 TONE fixed 3 l POL fixed 2 2 Analysis of Variance for LAT 6 Source INT TONI POL INT‘TONK INT‘POL TONilPOL INTtTONRtPOL Error Total wNANNAu—NN-u GK) SS 16.2326 10.1132 0.0348 0.7550 0.4702 2.0524 1.6335 10.1471 41.l388 N (.0 85 8.1163 5.0566 0.0348 0.1888 0.2351 1.0262 0.4084 0.1409 7 57.59 35.88 0.25 1.34 1.67 7.28 2.90 m > ttvt 111 Lima ttsrotsts T0 rottmsr 878 ) ANOVL LAT=1NTIIOINIPOL Factor INT fixed TON! fixed POL fixed Type Levels Values 50 1 2 Analysis of Variance for LAT C7 torQANroAu—oNN'fi Source INT TON! POL INTlTONK lNTlPOL TON8‘POL INT‘TONB‘POL Error Total CD-w-J 55 18.8963 11.7669 0.0034 1.3084 1.5122 0.7565 1.7856 11.6615 47.6908 85 9.4482 5.8835 0.0034 0.3271 0.7561 0.3783 0.4464 0.1620 F ‘ 58.33 36.33 0.02 2.02 4.67 2.34 2.76 878 ) VAVK V LATRNCI RESPONSES TO TONEBURST P 0.000 0.000 0.621 0.264 0.196 0.001 0.028 P 0.000 0.000 0.886 0.101 0.012 0.104 0.034 WK Effects of Intensity, 'Itne, and Polarity on Waves 1’, I, III, ardeAnpliufle of the BAEP. Analysis of Variarce msults. 878 > 17078 88PLO=INTITDIIIPOL Iactor INT fixed TONI fixed POL fixed Analysis of Variance for 88710 Source 07 INT 2 7071 2 POL 1 17777071 4 1773701 2 ‘ 70118701 2 IIT‘TOITVPOL 4 lrror 72 Total 89 Type Levels Values 50 1 2 59 1439.48 84.20 329.25 309.15 216.19 338.24 111.14 2306.87 5128.50 878 ) 111071 A8PL3:IITITOIIIPOL Iactor INT fixed ION! fixed POL fixed Type Levels Values 50 1 2 Analysis of Variance for 88713 Source 07 INT 2 709! 2 831 1 17717071 4 INT'POL 3 TONI'I’JL 2 IVI‘IOVI'POL 4 Error 72 0a (A) Total SS 7389.9 8255.6 2243.8 817.0 274 5 3914.2 1723.0 5131.7 29739.6 60 70 2 9 3 85 719.74 42.10 329.25 75.79 IN.” 169.12 27.78 32.04 60 70 2 3 85 3695.0 4127.8 2243.8 204.2 137.2 1957.1 430.8 71 1 APPENDIX 1 l P 22.46 0.000+‘< 1.31 0.275 10.23 0.002-at 2.37 0.061 3.37 0.0401ee 5.20 0.007 54‘ 0.87 0.488 I P 51.94 0 000 - 58.03 0.000 gt 31.54 0.000 x 2.87 0.029 a. 1 93 0 153 27.51 C 000 r.‘ 6 05 0 000 . h 1.2211 878 > INDIA 88PLI=IIIIIONIIPOL Iactor IIT fixed TONI fixed POL fixed Type Levels Values 3 50 3 1 2 2 Analysis of Variance for LlPLl Source 07 III 2 7011 2 POL 1 17737081 4 ITT’POL 2 70817701 2 IITITOIT‘POL 4 lrror 72 Total 89 878 > 11071 88PLV=IITITOITIPOL lactor III fixed TONI fixed POL fixed Inalysit of Variance for A8PLV Source 07 III 2 TONI 2 FOL 1 17717081 4 INI‘POL 2 TONI'POL 2 IVIIIONI!?Ii 4 Error 2 9 7 7:1el 8 SS 10429.76 1947.84 476.42 2052.58 295.23 22.99 721.68 5878.14 21824.64 Type levels Values 3 50 3 I 2 2 55 11203.4 16648.9 806.5 907.7 74.1 168.0 310 1 4718.2 34837 0 85 5214.88 973.92 476.42 513.14 147.62 11.50 180.42 81.64 60 70 2 3 3 85 5601.7 8324.5 806.5 226.9 37.1 84.0 77,5 65 5 7 P 63.88 0.000 44 11.93 0.000 34 5.84 0.018 ,e 6.29 0.000 *0 1.81 0.171 0.14 0.869 2.21 0.076 I P 85.48 0.000 .. 127.03 0.000 20 12.31 0.001.27 3.46 0.012 ;_ 0.57 0.570 1.28 0.284 1.18 0 326 APPBIDIX L Delta-’1' Effects m Waves 1’, I, III, ard V latencies of the BAEP. Analysis of Variance Results. 11255 8PPINDII L 878 > 88078 887800=08878:POL Factor Type Levels Values 08878 fixed 5 10 50 100 200 400 POL fixed 2 2 3 Analysis of Variance for 887800 Source 07 55 8S 7 P 08878 4 0.09915 0.02479 0.67 0.619 POL 1 0.12301 0.12301 3.31 0.077 088788708 4 0.07947 0.01987 0.53 0.712 8rror 40 1.48832 0.03721 Total 49 1.78995 878 ) 8878 1' 8878808 885708585 70 08878-7 878 > 88078 88712088781708 Pactor Type Levels 7a1ues 08878 fixed 5 10 50 100 200 400 POL fixed 2 2 3 8na1ysis of Variance for 8871 Source 07 55 8S 8 P 08878 4 0.04979 0.01245 0.34 0.852 POL 1 0.00029 0.00029 0.01 0.930 088784P08 4 0.13533 0.03383 0.91 0.466 Error 40 1.48244 0.03706 Total 49 1.66785 878 > 8878 1 8878807 885P08585 70 08878-7 878 ) 88078 887852088781708 Pactor Type Levels Values 08878 fixed 5 10 50 100 200 400 POL fixed 2 2 3 Analysis of Variance for 88785 Source 07 55 85 P P 08888 4 0.02991 0.00748 0.19 0.943 P08 1 0.04322 0.04322 1.09 0.304 088788708 4 0.09439 0.02360 0.59 0.670 8rror 40 1.59172 0.03979 Total 49 1.75924 878 5 8878 7 8878807 885708585 70 08878-7 878 5 88078 “783:0887811’08 ' iiiiir (if: we]; mi? 50' 100 zoo «oo POL fixed 2 2 3 8na1ysis of Variance for 88783 Source or 55 85 08878 4' 0.01935 0.00484 0 13 0.972 P08 1 0.06266 0.06266 1.65 0.207 088788P08 4 0.10057 0.02514 0 66 0.623 8rror 40 1.52164 0.03804 Total 49 1.70422 878 > 8878 111 8878807 885P08585 70 08878 mm M Delta-'1‘ Effects on Waves 1', I, III, ard V Anplitude of the BAEP. Aralysis of Variance meats. 11265 87788018 8 m > 116“ anrwwmmon factor Type Levels Values 08878 fixed 5 10 50 100 200 400 70L fixed 2 2 3 Analysis of Variance for 88780 Source 07 55 85 P P 08878 4 877.2 219.3 0.70 0.598 708 1 1230.8 1230.8 3.91 0.055 088788708 4 471.1 117.8 0.37 0.825 12578.8 314.5 15157.9 8rror 40 Total 49 878 ) 8878 1' 887817008 885708585 70 08878-7 878 > 88078 88781=088781708 Factor Type Levels Values 08878 fixed 5 10 50 100 200 400 708 fixed 2 2 3 Analysis of Variance for 88781 Source 07 - 55 85 P P 08878 4 5477 1369 0.68 0.608 708 1 2438 2438 1.22 0.277 088783708 4 3564 891 0.44 0.776 8rror 40 80166 2004 Total 49 91645 878 > 8878 I 887817008 885708585 70 08878-7 878 > 88078 887832088781708 Vactor Type Levels Values 08L78 fixed 5 10 50 100 200 400 708 fixed 2 2 3 Analysis of Variance for 88783 Source 07 SS 85 7 7 08878 4 110643 27661 1.87 0.134 708 1 12016 12016 0.81 0.372 088783708 4 59264 14816 1.00 0.417 8rror 40 590259 14756 Total 49 772182 878 > 8878 111 887817008 885708585 70 08878-7 878 > 88078 88785=08L781708 Pactor Type Levels Values 08878 fixed 5 10 50 100 200 400 708 fixed 2 2 3 Analysis of Variance for 88785 Source 07 SS 85 7 7 08878 4 67561 16890 0.43 0.783 708 1 35717 35717 0.92 0.344 088788708 4 105099 26275 0 68 0.613 8rror 40 1556999 38925 Total 49 1765376 878 > 8878 V 88PLIT008 885708585 70 08878-7 m1}! N mpetition Rate Effects m Waves I’, I, and III latencies of the BAEP. Aralyais of Variance Results. 21287 87788011 8 878 > 88078 8870288781708 Factor Type Levels Values 8878 fixed 3 3 10 96 708 fixed 2 2 3 Analysis of Variance for 8870 Source 08 55 85 7 7 8878 2 0.35059 0.17529 10.67 0.000 708 1 0.30000 0.30000 18.26 0.000 88788708 2 0.07352 0.03676 2.24 0.128 8rror 24 0.39424 0.01643 Total 29 1.11835 878 ) 8878 1' 885708585 70 8878717108 88785 878 ) 88078 88T8I=88781708 Factor Type Levels Values 8878 fixed 3 3 10 96 708 fixed 2 2 3 8na1ysis of Variance for 88781 Source 07 55 85 8 7 8878 2 0.014587 0.007293 1.16 0.330 708 1 0.158413 0.158413 25.20 0.000 88783708 2 0.000987 0.000493 0.08 0.925 8rror 24 0.150880 0.006287 Total 29 0.324867 878 > 8878 1 8878867 885708585 70 8878717108 88785 878 ) 88078 88783:8878:708 Factor Type Levels Values 8878 fixed 3 3 10 96 708 fixed 2 2 3 Analysis of Variance {or 88183 Source 07 SS 85 F P 8878 2 1.65715 0.82857 25.39 0.000 708 1 0.34992 0 34992 10.72 0.003 88788708 2 0 10568 0.05284 1.62 0.219 Error 24 0 78320 0 03263 Total 29 2 89595 HIB > 8878 111 8815851 885708585 10 8878111108 88785 APPENDIXO Rspetitim Rate Effects an Waves 1', I, and III Anplibndes of the BAEP. Analysis of Variance Rsaalts. 1j2£3 87788011 0 878 > 88078 88780=8878:708 Factor Type Levels Values 8878 fixed 3 3 10 96 708 fixed 2 2 3 8na1ysis of Variance for 88780 Source 08 55 8S 8 7 8878 2 377.39 188.70 3.48 0.047 708 1 945.73 945.73 17.43 0.000 88788708 2 34.01 17.00 0.31 0.734 8rror 24 1302.31 54.26 Total 29 2659.44 878 ) 8878 1' 887817008 885708585 70 3.22. 10.21. 880 96.00 8878 Factor Type Levels Values 8878 fixed 3 3 10 96 708 fixed 2 2 3 Analysis of Variance for 88781 Source 08 55 8S 8 7 8878 2 35570.8 17785.4 49.06 0.000 708 1 792.0 792.0 2.18 0.152 88788708 2 3578.6 1789.3 4.94 0.016 8rror 24 8701.3 362.6 Total 29 48642.8 .878 > 8878 1 887817008 885708585 70 8878717108 88785 878 > 88078 88783=88781708 Factor Type Levels Values 8878 fixed 3 3 10 96 708 fixed 2 2 3 8na1ysis of Variance for 88783 Source 07 55 85 7 P 8878 2 15401.3 7700.7 81.94 0 000 708 1 2652.9 2652.9 28.23 0.000 88784708 2 2987.8 1493.9 15.90 0.000 Error 24 2255.5 94.0 Total 29 23297.5 878 > 6477 111 887817008 885708585 70 8375711108 88785 gags-yahoo. Allan, J.A. , (1980) . Publishers. Allism, T., Wood, C.C., 8 Goff, W.R., (1983). Brain stem auditory, pattern-reversal visual, and stnrt-latercy mtosensomy evoked pota'rtials: latencies in relatim to age, sex, and brain body size. Unpublished masters thesis. Michigan State University, East Lansing, MI. Anarrthanarayan, A.K., & Gerken, 6.14., (1987). Respmse enhanomxt ardreductionoftheauiitomybxain-stemrespmseinaforward- W: fi. 427-439- Anarrthanarayan, A.K., & Gerken, 6.11., (1983). Post-stimxlatoxy effectsmtheaufiitorybminstanxesponse: partial-naskhgaxfi 153g, 55, 223-226. 129 130 Asante, K.O., (1988). lbs Inportanoe of Fetal Alcohol Syndrane in the Handicapped anulatim. In G.C. Minson & R.W. W (15:53.). -1 (1;). 123-134) Varmxver, British Columbia, British Columbia Fetal Alcohol Syndrane. Bauch, C.D., Rose, D.E., 8: Harrier, 8.6., (1980). Brain stan respmsestotaaepipardclick stimli. m, 1, 181- 184. Beagley, 11.18., & Sheldrake, J., (1978). Differences in bxainstan response latency with age and sex. WW. g, 69-7'7. Benito, 14., Faloo, 6., & lauro, 11., (1984). Brain stanevoked potentials. Descriptim of the "0" wave of possible electro- Bong, E., & Iofquist, L., (1982). Auditory brainstan response to ramfactim and oondematim clicks in normal ears. N $111.91: L1, 227-235- Bostm, J.R., & Ainslie, P.J., (1980). Effects of analog all digital filteringmbrainstanau'litozyevdcedpotentials. mm ‘ c. "8 A13, 361-364. 131 demau, J.C., (1965a). Stimlm correlates of wave activity in the superimlivary of the cat. W, 31, 779-785. Bouireau, J.C., (1965b). Neural volleying: Umer frequa'icy limits detectable in the auditory system. m, 293, 1237-1238. mutuald, J., & 11mg, (11., (1975). Far-field acoustic respmee: Origins in the cat. m, 1&2, 382-384. Cacaoe, A.'I‘., Shy, 14., & Satya-lhrta, S., (1980). Effects of Brain- stanauditoryevohedpotentials: Aomparismofuvohigh-freqa'cy filter settings. My, 39, 765-767. (hrtecette, E.C., (1956). hairless adaptatim for bards of noise. 1mm. 25(5). 865-871. Carterette, E.C., (1955). Watery auditory fatigue for castin- uous and hatermpted noise. My 21, 103-111. Chiama, K.H., (1983). (chapters 1, 4, and 5). NavYork: Raven Press. Chiama, K.H., Gladstcne, K.J., & Yourg, R.R., (1979). Brainstan auditoryevoluedrespmses; Stuiies ofmvefozmvariations in 50 normal 1mm abject-e- W. 3.6. 81-87- 132 Coats, 11.6., (1983). Ixstrunentatim. In E.J. more (£11.), m - : (Chapter 8). Ne'IYork: Coats, 11.6., (1974). m electrooodileograpiic electrode design. We fir 708.7110 Coats, A.C., (1971). Deprressim of click actim potential by atteni- atieno cooling. and maekingz .AQEaJQtezlarxngnl.sunnl-. 254. 1—19. Coats, 11.6., (1967). Physiological masking in the perinatal auditory systan. III. Effect of varying test-click intmsity. m WEI-$29!: 29(5), 931-943- Ooats, A.C., (1964a). Physiological observations of auiitory masking. 1. Effect ot“maskin9'durationu a9urna1_9f;ue§mgphuaiglggy..22. 989-1000. Coats, A.C., (1964b) . Physiological observatims of aniitory making. 11. Effect oftmaeking‘duratienm AI9u:nal.9£1fl§nmnnhaaiglggy..22. 1001-1010. Oohn, L.F., & Koushki, P.A., (1991). Social attitude am traffic noise: A studY'inIRiyadh. Saudi Arabia. szzu22915811n12u18fl33813. 13(2), 233-242. 133 Daly, 0.14., meser, R.J., Aung, H.H., 8 mly, 0.0., (1977). Early evdcedpotentials inpatientswithacmsticmm. Elm Davis, 11., (1976). Principles of electric response audianetry. Am. $911 311ml. W. 55(31991 28). 1-96. Davis, 11., & Hirsh, s. K., (1976) lbs audianetric utility of brain stanrespasestolm-frequercysanfls. Mom, 15, 181-195. Davis, 11., W, C.'I‘., Hawldns, J.E., Galanbos, R., & Smith, F.W., (1950). W deafness following exposure to loud tmes & noise. -. lira-111311 , g9, 1-87. Derbyshire, A.J., & mvis, 11., (1935). The action pctartials of the aIflitorY nerve- Wm. 11:. 476-504- DeRosier, D.J., Tilney, J.L., & Flicker, P., (1980). A change in thetwistofactin—omtainingflawitsooaxrsdtmixgflaeexterr simoftheacroscmalprooessinLimlussperm. mm, 1;, 375-389. ' Dolan, D.F., x1, 1.., a. Nuttall, 11.1... (1989). Characteristics of an EPSP-like potential recorded fran the round. W, §§(6), 2167-2171. 134 Dolan, T.6., 8 Klein, A.J., (1987). Effect of signal tamoral stapixgmthefrerpaacyspecificityoftheactimingerbils. mm. 2.6: 20730- Don, 14., Allen, A.R., 8 Starr, A., (1977). Effect of click rate (11 thelatencyofauditorybrainstanrespaaesinlmmans. mm W. §§. 186-195- Draoddiatm, D., Kellner, J., Mamherz, 11.6., Groschel-Staaard, U., Wick-Jones, J., & Scholey, J., (1982). Absence of myosin- like insure-reactivity in stereocilia of cochlear hair cells. m. .3587: 531‘532- mrrant, J.D., (1983). Fmdamentals of SourdGeneratim. InE.J. 4 - (Chapter 3). more (811.), =- NavYorkz6r1meandStrattm. Eocles, J.C., (1969). Excitatory and inhibitory mechanisms in brain. In 17.78. Jam, AJK. Ward, 8: A. Pme, (£838.), m ~ 2: Bostm: IittleBrownardco. Eocles, J.C., (1966). lbs imic mechanism of excitatory and irhibi- ter? sweetie action- W. 13.2. 473- 135 Eggermmt, J.J., 5: Dan, 14., (1982). Amlysis of click-evoked braixatan auditory electric pctartials using high-pass noise mask- ing and its clinical applicatim. m, 471-486. Eggemcnt, J.J., & Dm, 14., (1980). Analysis of the click-evoked brainstem potentials in hmns using high-pass noise masking. II. Effect of click intalsity. mm“ §§(6), 1671-1675. Eggermmt, J.J., & Spoor, 14., (1973a). Cochlear adaptatim in guinea pigs: A qualitative ascriptim. Mom, 12, 193-220. Eggernart, J.J., & Spoor, 14., (1973b). Masking of actim pctmtials in the guinea pig cochlea, its relatim to adaptation. m: .127 221.241- Eisenberg, R.B., (1965). Auditory bdaavior in the humn nemate. I . Methodologic problems and the logical design of research meantime- Wm. .5. 159-177- 136 Elberling, C., (1979). Auditory electroghysiology: W1 analysis ofcodflearardbrainstanevdcedpotentials. w. M: Q, 57-64. Elberling, C., (1976). Actim potatialsreoorrded fmtheptcnur- tomyandthesurfaoeomparedwimthereoordingsfrantheear canal in man- Wdanmglm. 5. 69-78- Elliot, L.L., (1962) . Backward an'l forward masking of probe taxes of differait frequencies. W, 35, 1116-1117. Evans, E.F., & Wilsm, J.P., (1973). The freqnncy selectivity of the cochlea. In A. Holler; (ELL). (519-554). Nev York: Academic Press. Fabiani, 14., Samar, H., Tait, C., Gami, 14., & Kinarti, 12., (1979). Aflmctiaialmeasureofbrainactivity: Brainstantrarmissim 483-491. Finck, A., (1966). Physiological correlate of taxal making. W I .32 I 1056-1062 . 137 Finitzo—Hiwer, 'I'., Heomt, K., & Ome, 8., (1979). Brain stem atflitoxy evoked potentials in patients with oayenital atmsia. 1mm. 52. 1151-1158. Franklin, D.L., (1987). Black Adolescent Pregnancy: A literature Review. In S.F. Battle on.) (pp. 15-39) . Gardner, 14.8., (1947) . Snort dmratim auiitory fatigue a method of Classifyim W W. W! .12: 178-190. Nae York: The W Press. Garner, 6., unreal, K., & Branhmrk, 8., (1975). Maternal uniting am fetal breathing W. W. 12.3 861. Gerlirq, I.J., & Finitzo—Hieber, T., (1983). unitary brairstan respaaewimhighstinflusratesinnoxmlarflpatientpoplla- ticns. 119-123 . Giseelssm, & Soreneen, (1959). unitary adaptatim ard fatigue in oodflear potartials- W. 59. 438-450. Glaseoock III, 11.8., Jadcsm, C.G., & Josey, A.F., (1987). - (2nd. ed.) N.Y.: 'miane Medical mblishers, Inc. 138 Harris, 8.11., & mllos, P., (1979). W masking of auditory rerve fiber responses. W. 12(4). 1083-1107- Heoox, K., Swims, N., & Galanbos, R., (1976). Brainstmmflitory evoked response in man. Effect of stimlus rise-tine and duration. W. .69. 1187'1192- Heoox, K., sGalanbos, R., (1974). Bratstanevdcedmnitory respmses inmmaninfantsaniadllts. m. M, .2: 30-34. Hermn, 8., Sanjen, G., & Carpenter, 8.0., (1965a). chtimal significance of cell size in spinal W. m MI. 25. 550- Hmrnan, 8., Sanjen, G., & Carparter, 8.0., (19651:). Ebccitability am irhibitability of motcnamms of different sizes. WI 25' 599' Hood, J.D., (1950). Studies in auditoxy fatigue and adaptatim. Hashim, T., (1976). Attadm'rt ofixmersensoryhairoellsto tectorial malbrane. A seaming electrcn microsomic surly. W. 3.8. 11-18- 139 was, 51.12., Fino, J., a. Gagrm, L., (1981). "me inportance of phaseofstimlusardthereferaacemcomingelectzodeinbrain stem auditory evoked potentials," W. 51. 611-623- mighes, J.R., & Fino, J., (1980). Usefulness of piezoelectric earpniesinreoordimofthebrainstemmflitorypotattials: A new early deflectim. ;.°1!1'133131%1!F__ mm. 53. 357-360. Huglzsm, W., & flitting, 8.6., (1934). An cbjective study of auditory fatigue- Acts W. 21. 457-486- Hyde. M.L., Stephen, S.D.G., & 'Ihorntm, A.R.D., (1976). Stimlus repetitimratealfltheearlybraixstanrespmses. m W. 19. 41-50- Iurato, S., (1974). Effera'xt innervatim of the cochlea. In W.D. kick-21. & VLD. Neff. (1368-). W ‘ 0 0:: V01. V/1 Springer Verlag, Berlin. pp. 261-282. Jasper, 8.11., (1958). 'Report of the committee of methods of clinical examination in electroenoqhalography,’ WM. 19. 370. 140 Jerger, J., (1956). homely pattern fran auditory fatigue. : :, 21(1), 39-46. Jerger, J., & Hall, J., (1980). Effects of age and sex (11 auditory brainstem reapmse- WW. 1526. 387-391. Jewett, D.L., & Willistm, J.S., (1971). Auditory-evdced far fields averaged frcn the scalp of hmans. mm, 95, 681-696. Jewett, D.L., mm, M.N., & Williston, J.S., (1970). I-hman auditory evokedpotentials: possiblebrainstencmpamentsdetectedm the scalp. m, 151, 1517-1518. Jones, K.L., & Smith, D.W., (1973). Incognitim of the fetal alcohol synirane in infancy. Lam z, 999-1001. Jcnes, K.L., Smith, D.W., Ulleland, C.N., & Streissguth, A.P., (1973). Patterns of malfomtion inoffspring of alcoholic mothers. mm. 1. 1267-71- Jorgensau, J.M., & Flock, A., (1976). Non-innervated sense organs ofthelateral line: developla'rtintheregeneratimtailofthe A: 0.0: , 5, 33-41. Josey, A.F., (1985). Auditory Brainstan Response in Site of lesion Testim- In J- Katz (Ed-L WW (pp. 534-548) 3111 ed. Baltimore: William and Wilkirs. 141 Handel. ER. (1977)- Wiener: my 112s W. Vol.I. Cellular Biology of Name, Parts 1 and 2, Bethesda, Maryland: American Physiological Society. Kevanishvili, z., 8 W, V., (1981). Click polarity inver- simeffectsupmtherunanbrainstanatnitorypotartial. m m. 19. 141-147- Kevanishvili, Z., 8 W, V., (1979). Frecpercy cmpositim ofbrainstanaulitozyevckedpotmtials. W,§, 51-55. Khama, 8.11., 8 Imrd, D.G.8., (1982) Basilar nmbrane 1:1th in the cat cochlea. m 215, 305-306. Kiarg, N.Y.S., Rho, 3.11., Northrop, G.C., Libennan, H.C., 8 Ryugo, D.K., (1982) Hair-cell innervatim by spiral ganglia: cells in adult cats. m 212. 175-177. Kiang, N.Y.S., Watanabe, T., 'lhcnas, E.C., 8 Clark, L.F., (1965). Discharge Pattenn of Single Fibers in the Cat's Auditory Nerve. W, 15, Canbridge, 11.11.: M.I.T. Press. 142 Kim, 8.0., 8 1blnar, 0.8., (1975). Cochlear 11ed1anics: W113 ardlbdels. In 8.8. 'Ibwer (81.). WVOI. 3 - _‘ NavYork: Raven Press. Kinura, 12.8., (1966). Hair of the cochlear sensory cells and their attadm'tt to the tectorial mmrane. 5:33. W, (Stockh) 61, 55-72. Kjaer, 11., (1979) . Differences if latencies and anplimdes of brain stenevdedpotmtialsinaabgrmpscfamrmalmterial. egg-4 W. 52. 72-79- Klinke, 12., Caird, 0.11., mm, 11., 1. Moore, E.J., (1988). Beeinfltbt ein intracochleares exzitatoricsches potential die him- We? AIS!» W1 ML 1983/11- 159-161. Kodera, 11., Harsh, 12.12., Suzuki, 14., Suzuki, J-I., (1983). Portions of tcne pips cartributing to flowery-selective auditory brain sten responses. m, 22, 209-218. Kcmkle, 8.F., 5. mix, D.J., (1979). Auditory Adaptation. In W.F. Rintelnann (81.), mm (pp. 207-233). Baltimre, 118: University Park Press. W. R., (1971). Codxlea masking and adaptation. m M! 11: 232-241- 143 Lang, J., (1981). Facial ard vestibulccochlear nerve, topograpuc anatany andvariatims. Inn. Samii 8 P.J. Jarmetta (813.), Mm- New York: Springer-Verbs- I.aukli, 8., 8 Hair, I.W.S., (1981) Early auditory-evoked respmses: Filter effects. m, 29, 300-312. Libermn, 11.0., (1980a). Wlogical differences my radial affere'rt fibers in the cat cochlea: an electrm-micrcscopic study of serial section. W 3, 45-63. Libennan, 11.0., (1980b). Efferent sympses in the inner hair cell area of the cat cochlea: an electron-microscopic study of serial sections- W :1. 189-204- Lim, 8.J., (1972) . Fine minnology of the tectorial mamrane. Its relationship to the organ of Cbrti. M. W, 9g, 199-215. Inscher, 8., 8Zwislocki, J., (1947). 'Ihedecayof sensatimard theremirderofadaptatimaftershortwredtaieinpflsesmthe ear. m MW. 25. 428-445. Manning, 8.11., 8 Feyerabavd, 0., (1976). Cigarette sinking ard fetal breathing movmrts. W. 83, 262. 144 McGee, T.A., Ryan, 11., 8 mllos, P., (1976). Psychoghysical 11min; curves of diinchillas. MM. 69, 1146-1150. Mendel, 11.I., 8 Goldstein, R., (1969). 'Ihe effects of test conditions mtheearlycmpaientsoftheaveragedelectroencepialicrespmse. ‘ i,&%,' .2! 344-3500 Midlalevski, H.J., 'Ihalpson, L.W., Patterson, J.V., Bowman, T.E., 8 Litzelman, 8., (1980) . Sex differences in the anplihfles and lataicies ofthemmnatnitcrybrainstanpotartial. Elm ‘ 110.1151: 0 9.2:, 55, 351-356. Holler, 11.3., & 1b11er, A.R.,(1985). Auditory Brainsten-EVdced W015!) inDiagnosiscfEigbthNerveardBrainstemIesiaB. In ILL. P1113110 8 F.E. msiek ($8.), 175“.“ ‘ Baltimore: Willians ard Wilkins. Moore, 8.0., (1978). Psydiophysical taming caves neasured in simil- tanems and forward masking. W, 6;, 524-532. Moore, E.J., (1983). Effects of Stimlus Parameters. In E.J. more (811.), ‘2 x~ (diapter 9). 145 Moore, E.J., (bird, 0.11., 10111118, R., 8 1003131111, R., (1988). EffectscfintracodilearinfusicnofTIXardGIEEcnbrainsten aiditcryevokedpotartials. .-- m. 31, St Petersbng, Beach, FL, Jammy, 1988 26. Moore, 8.J., 8 Sanela, J.J.11., (1985). The potential of the auditory brain—stenrespaae:Ana1ra1reqamseorsystanaticartifact? A Morrism, 8., Sdiirdler, R.A., 8 Wersall, J., (1975). A giantitative analysisoftheafferent innervationoftheorgancfcortiin guinea pig- mm mm. 12. 11-23. Manson, 11.11., 8 Gardner, 11.8., (1950). Loudness patterns - a new approach- LW. 22. 177-190. msiek, 8.8., (1989) . Essentials of the Alxiitory Brain-Stan W. AmmmatflwW (April) McyI-quaital, Savamah, Georgia. Nadol, J.8. Jr., (1981). Incidence of reciprocal synapses on cuter raircellsofthelnmanorganofmrti. Am. @521. m. ml. 23. 247-250- 146 Nadol, J.8. Jr., (1983a). Serial secticn recastructim of the hair cellsinthehunancrganofCorti. I. Irmerhaircells. m em. .23. 599.514- Nadol, J.8. Jr., (1983b). Serial sectim recastxuctim ofthehair cellsinthelnmnorgancfoorti. II. mierhaircells.1m m 23, 780-791. Nadol, J.8. Jr., (1981). Reciprocal synapses at the base of outer haircellsintheomganchortiinman. Aug. 0:91. M1. m1- 9.0. 12-17- Nauntcn R. P., 8 Zerlin, S., (1976). Inman whole-nerve respmse to clicks of various freqmaicies. muggy, 15, 1-9. Nuttall, A.L., (1986). Physiology of Hair Cells. In R.A. Altsdmler, 12.12. min 8 UN. Hoffman. (Eda-L W W. (Chapter 3). Nechrk: Raven Press. OIphm, A.F. van, Roderhirg, 11., 8 Verwey, 0., (1979). Influence of stimlus repetition rate on acoustic stixmlatim m brain-sten- evcked respa'ses in man. W, 18, 388-394. Omitz, 8.11., 8 Walter, 8.0., (1975). The effect of sound pressure waveform on Inman brain sten evoked rsspmses. W, 22 , 490-498 . 147 Ostrea, 8.11., (1978). 1112 Drug Dependett Wanan wring Pr'egmncy. In 8.11. Ostrea, 0.J. Chavez 8 J.0. Stryker (mm) W Iansing, 111: Departma'tt of Biblic Health. Paparella, 11.11., 8 Jlmg, T.'I'.K., (1983). Disorders of the Auditory System. In 8.J. Moore (81.), «avian-=12: . (Chapter 5) . N611 York Peaks, W.T., Kim, N.Y.S., 8 Goldstein, 11.11., (1962). Rate functim formflitcrynerver'espa'sestohnstsofmise: effects ofdiangesinstimlusparameters. W. 25. 571-575. Parkins, 12.8.: 8 1brest, 8.K.: (1975). A study of cochlear inner- vatimpatternsincatsandratswiththecclgimethodam Nanarski (PtiGB- lem- 15.3. 129-158- Pictcn, T.w.: 8 Fitzgerald, P.G.; (1983). A General Descripticn of theHmanAmiitoryEvolnedPotentials. In8.J.1bore(m.),mg :2 (Chapter 6). Nev York: Pictm, '1'.w., Stapells, 0.12., s. Canfiaell, x.12., (1981). Auditory evokedpotmtialsfrunthelnnnancodlleaardbraimten. m, 2(Supplanent), 1-41. 148 Pictm, T.W., Woods, A.8., Baribeau-Braun, J., 8 Healey, T.11.G., (1977) Mad paternal Monetary- WW. 5, 90-119. Pollack, I., (1952). The latriness of bards of noise. W. m. 25. 533.533- Pollack, I., (1951). m measurenent of the loadness of mite noise. 91W. 22. 654-657. Pratt, 11., 8 Sdmer, 11., (1976). Intensity and rate fmctims of codflearanibrainstanevokedrespa'sestoclickstinilatiminman. Wm. 212. 85-92. mjol, 12.: 8 Lenoir, 11.: (1986) '81s four types of synapses in the organ of corti. In R.A. Altsdmler: R.P. Bobbin: 8 8.11. Hoffman: (11%.) (pp. 161- 172) New York: mven Press. Rhoda, W.S.: (1978). Sane observatims on cod'ilear mechanics. We: fir 158-176- Rcbinsm, R., 8 Ridge, P., (1977). Almomalities of the atnitcry evoked potential in patients with nultiple sclerosis. m m, 19-40. 149 W, H.J., Lindstran, 8., 8 Immorg, J., (1978). mtheuse of click evoked electric brainstem responses in auiiolcgic diagno- sis. I. ‘Ihsvariability of thenornnl respa'ise. mm, 1 , 193-206. Ruth, R.A., Hildsnbrand, D.L., 8 Chntrell, R.W., (1982). A study of methodsusedtoenharnewaveIintheauditcrybrainstanrespmse. Saito, K., (1980) . Fine structure of the sancry qaithslium of the guineapigorganofCorti: Afferentardeffera'rtsympsesofhair 08118- W- 11. 222-232. Schmidt, R.F., (1983). In 12.1'. Schmidt, 8 G. 'Ihevs, (8138.). W (masters 3 and 4)- Berlin: Sunset-Verm- Schwartz, 8.A., 8 Berry, G.A., (1985). Normative Aspects of Am. In J.T. Jacdasm (81.), 97). San Diego, California: College-Hill Prea. - (m o 65- Sinnrns, F.8., 8 Beatty, D.L., (1962). '81s significance of round window recorded codilear potentials in hearing. W W. 21. 676-801. Sininger, 11.8., 8 8m, 11., (1989) . Effects of click rate and elec- trode crientatim m threshold of the auditory brainsten response. ',1.'1,' 32(4), 880-886. 150 SJdnner, P.H., (1978). Electrcmceghalic W Airlianetry. In J. Katz, (EL) , n. 1.059.010. 118: lbs Willians and Wilkins Ccnpany. Small, A.11., (1963). Auditory Adaptation. In J. Jerger (8a.), (1st ed.) NY: Acadanic Press. Small, A.11., (1959). Rue tale masking. W, 31. 1619-1625. anith, 0.A., 8 Remissen, G.L., (1963). W observations (:1 the olivo-codalear hurdle. Am. Q91. Ml. W1, 12, 489-497. Snyder, R.L., 8 Sdireiner, 0.8., (1985). Fomard masking of the auditorynervenanqimic (ANN) andthefrequencyfcllwingres— pause (FER). W. 29. 45-62. Sdflwicz, 11.11., lbse, J.E.; Scott, 6.8., 8 Slamick, S.11., (1982). Rihbmsympsesinthedevelcpirgintactandculturedorganof Corti in the wise. M, 1, 942-957. Sclmer, 11., (1983). Nairclogic Disorders. In 8.J. more (8d.), (Chapter 12) . 151 Sdmer, 11., 8 Feinnssser, 11., (1967). Cochlear actimpote'ttial recordedfrmtheetternalearinman. W W. 7.6. 427-438- Spoerdlin, 11.: (1979) Neiral canectias of the outer hair cell System. m W- .81. 381-387. Spoendlin, 11., (1972) . Innervatim densities of the cochlea. aeta. W. 13. 235-248- Spoendlin, 11., (1969). Irmervatim patterns of the organ of Corti of the cat- m. M. 5.2. 239-254- Spoocr, A., (1965). Adapticn of actim potentials in the cochlea. WW. 1(2). 154-160- Spoor, A., 8 W, J.J., (1971). Actimpotentials inthe co- chlea. Masking, adaptatim, and recruitment. m, 19, 340-352. SteveB,S.S., 8 mvis, 11., (1938). W muggy Nev York: John Wiley 8 Sms. Stockaxd, J.8., Storkard, J.J., Westmreland, B.F., 8 Corfits, J.L., (1979). Bramsten auditory evoked responses: Norml variation as a functim of stimlus and mbject characteristics. W m, 3g, 823-831. 152 Stockard, J.J., Sharbrcugh, F.W., 8 Tinker, J.A., (1978). Effects cfhypthenniamthelnmnbrainstenatnitoryrespmse. Ame]; 9W. .3. 368-370- Suzuki, T., Hirai, 11., a. Noriudii, 12., (1977). Alnitorybrain sten maestopnetcnestinlli. W, .6, 51-56. Suzuki, T., 8 Horiudii, R., (1977). Effects of high filter a: brain stem responses to tone pipe. and. 8111191992. .6. 123-126- Teas, 8.0., 8 Henry, 0.8., (1969). Auditory nerve respmses as a functim of repetitia'i-rate ard backgren'd noise. M, g, 151-163. Teas, 8.0., Eldridge, 8.11., 8 mvis, 11., (1962). Codilear respcmses to acoustic transients and interpretatim of the whole nerve action potertiale- WM.“ 11. 1438-1459- 'Derkildsel, R., Csterhannel, 12., 8 Ellis in’t Veld, F., (1975). Far- field GIWW. Adaptation. w 3311.91, 5, 215-220. 'I‘erkildsen, R., Osterhamnel, P., s. Huis in't Veld, F., (1973). Far field electrography electrode positims. m 51,111,521, 2, 141-148. 153 'nm'ntm, A.R.8., 8 Colenn, 8.J., (1975). lbs adaptatim of co- chlear ard brainsten auditory evoked potentials in hunam. 'l‘eijimoto, A., Nakashim, T., 'Ianino, S., Dohi, T., 8 nxrogodii, Y., (1975). Tiseledistrihltimofnicotimindogsandrhesus W- W. 12. 21- 'I‘suchitani, 0., 8 Beflreau, J.C., (1964). Wave activity in the sweeter olivary omelet: of the cat- W. 21, 814-827. Veflcatarao, R., Moore, 8.J., 8 Laurie, 0., (1990). Characterization ofanEPSP-likepotential inthevertral-cordofmm. PreseitedattheAmricanSpeedi-IarguageardflsaringAssociatim Natia'ial Cmventim held in Seatle, Washington. Ward, W.D., (1973). Adaptation and Fatigue. In J. Jerger (Ed.), (pp. 301-344) 2nd. ed. Nev York: Ward, W.D., Glorig, A., 8 Sklar, D.L., (1959). Temporary threshold shift frun octave-bani noise: applicatim to damage-risk criteria. Wm. .21. 522'528- 154 Warr, 11.8., (1980). Effereit W of the auiitomy system. MW- 89. ml- 25: 114-120. Warr, 11.8., 8 Guinan, J.J., (1979). Efferent immervatim of the organ of Corti: two squamte systas. m. 1.13, 152-155. Weber, 8.A., 8 Fujikme, 8.11., (1977). minsten evoked rsspmse (BER) at varies stimlus preseitatim rates. W 3, 59. Wegel, R.L., 8 Lane, 0.8., (1924). 'lhe aluitorynasldng of one ta'lebyamtheraniitsprcbablerelatimtothedynamicsofthe inner ear. W, 23(ser 2), 266-285. Weirberger, N.11., Kitzes, L.11., 8 Goodman, 8.A., (1970). Sane characteristics of the 'auditory We. W, 26, 46-48. mite, J.S., 8 Warr, W.8., (1983) 'Ihe dual origins of the olive- cochlear bundle in the albino rat. M91. 212, 203-214 . 155 Xi, L., Dolan, 8.F., 8 NUttall, A.L., (1989). Giaracterizatim cf theresidualnenalpotertialafteramlicatimoftetrodotmcinto St. Pietershmg, Florida. chlner, c., Karnahl, T., & Stange, G., (1976). Irput-artpxt func- tim an: adaptation behavior of the five early potentials register- ed with the earlobe-vertex pick-up. Wm, W992. 212. 23-33- Zwislocki, J., (1978). Masking: Ebcperime'ltal and Theoretical Awects ofsimltaneous, WWamCemlMasldm. In 8.0 (hrterette 8 11.P. Friedmn (Eds.). W: W m (pp. 283-336). Nev York: Amdenic Press. Zwislocki, J., (1960). 'Iheory of temoral auditory emulation. We: 22: 1046-1060. Zwislocki, J., PirocHa, 8., 8 Ribin, 11., (1959). On sane post- stinulatcry effects at the threshold of audibility. W. m. .31. 9‘14. Zwislocki, J., 8 Pirodda, 11., (1952). (In the adaptatim, fatigue, 8 ecstatic trams of the ear. W, 8, 279-284. "11111111111111!"111117155