

PN

MICHIGAN STA

M' il

WIll;Il}JWNVlllllthlHIIIWI

3 00902 1308

This is to certify that the

dissertation entitled

On Some Topological Issues In
Message-Passing
Multiprocessor Architectures

presented by

Guy Warren Zimmerman

has been accepted towards fulfillment
of the requirements for

4.0, degree in M&mu

Mafot professor

Date 7 -/Z- ? 0

MSU is an Affirmative Action/Equal Opportunity Institution 0-12m

LIBRARY
Michigan State
Unlversity

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

MSU Is An Affirmative Action/E qual Opportunity Inetitution
cicirc\datedus.pm3-p.*

ON SOME TOPOLOGICAL ISSUES
IN MESSAGE-PASSING
MULTIPROCESSOR ARCHITECTURES
By

Guy Warren Zimmerman

A DISSERTATION

Submitted to
Michigan State University
in partial fullfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

1990

ABSTRACT

ON SOME TOPOLOGICAL ISSUES
IN MESSAGE-PASSING
MULTIPROCESSOR ARCHITECTURES

By

Guy Warren Zimmerman

Advances in computer technology have made it possible to construct machines with
very large numbers of processors. Among such machines are the distributed-memory
machines, termed Multicomputers, which have the potential to deliver very high perfor-
mance for a large class of applications. A major component in the design of a Multicom-
puter system is its underlying interconnection topology (usually modeled by a graph),
since it has a significant influence on virtually every other aspect of the system, such as
communication capabilities and reliability.

This dissertation considers some aspects of communication and reliability in a Mul-
ticomputer system which are related to the underlying topology of the system. In particu-
lar, a type of communication known as broadcasting is studied. The roles of trees in com-
pleting broadcasting, and a near optimal broadcasting algorithm for a specific Multicom-
puter system known as the De Bruijn networks are explained. Other partial results such
as the distribution of the broadcast times of trees of different orders are given.

The reliability, or fault-tolerance, issues discussed here are of topological nature.
Specifically, a new approach to system-level fault-tolerance in Multicomputers is
presented. In this approach a bound is placed on the maximum number of connections
allowed at each processor and the number and configuration of redundant components is
then determined to achieve a specified level of fault-tolerance. The approach is applied
to the design of fault-tolerant ring topologies. Designs are presented which can tolerate

up to three processor failures.

To my wife, Janet

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Abdol-Hossein Esfahanian for all of his assistance dur-
ing my Ph.D studies, for his well chosen words of encouragement and for his confidence
in me. I would also like to thank Dr. Lionel Ni, Dr. Anthony Wojcik, and Dr. Bruce
Sagan for their service on my committee and for their helpful comments and suggestions
regarding the preparation of this dissertation. I would like to thank my wife, Janet Ergo
Zimmerman, without whose support and sacrifice I could not have completed my Doc-
toral work. I would like to thank my parents, Jack and Jane Zimmerman, for instilling in
me the importance of learning and for giving me the opportunity to pursue a college edu-
cation. Finally, I wish to thank Jack and Carol Ergo and my grandparents, Mable and
Harry Raymond, and for their years of support and encouragement.

iv

List of Tables
List of Figures
1.

Bibliography

. Graphs and GMP

TABLE OF CONTENTS

Introduction

1.1 Multiprocessors and Multicomputers

1.2 Motivation and Problem Statement

1.3 Thesis Organization

2.1 Graph Definitions, Notation, and Terminology

2.2. GMP - A software package for graph manipulation

2.2.1 An overview of GMP

2.2.2 Utilization of GMP

Broadcasting in Multicomputers

3.1 Background

3.2 Broadcasting in General Graphs

3.3 Broadcasting in Trees

3.3.1 Minimum broadcast trees

3.3.2 Characteristics of general minimum broadcast trees
3.3.3 Broadcast times for general trees

3.4 Broadcasting in Binary DeBruijn Graphs

3.4.1 Binary DeBruijn graphs

3.4.2 A distributed broadcast algorithm for BDG (n)
Fault-Tolerant Loop Architectures

4.1 Background

4.2 Chordal Rings as & -ft Cycle Topologies

4.2.1 Chordal rings
4.2.2 Fault tolerance of CR(N ,w)

4.2.3 Comparison with previous results

Conclusion

5.1 Conclusions and Summary of Research Contributions

5.2 Suggestions for Future Study

LIST OF TABLES

Table 3-1. The values of M (1.4)
Table 3-2. Distribution of broadcast times for all trees, T,4< IT 1 <28
Table 3-2 (Cont’d)

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13

Figure 4-14.

Figure 4-15
Figure 4-16
Figure 4-17

Figure 4-18.

Figure 4-19
Figure 4-20
Figure 4-21
Figure 4-22
Figure 4-23

LIST OF FIGURES

The three principal GMP windows
The Std. Graphs menu
The Miscellaneous menu
The Algorithms menu
The Find Cycles algorithm is invoked on a Chordal Ringccceecccucneens
The Goodies Menu
Two example broadcasts in a graph
Three rooted MBTs and their common underlying free tree
Two examples of MBTs
The unique trees MBT(2"), for k =234
MBT (2%) is constructed from two copies of MBT (2%
An MBT not having MBT (2% as a subgraph
The graph BDG (4)
An example broadcast in BDG (4) using Algorithm 1
The Chordal Ring CR(20,3)
A 16-cycle in CR(203) - (0,1)
A Hamiltonian cycle in CR(20,3)
An 18-cycle in CR(20,3) - (0,3)
An induction-by-two illustration
An induction-by-four illustration
An induction-by-six, version A illustration
An induction-by-six, version B illustration
An advance-by-four illustration
. F ={0,12,2i-1,2i 2i +1}) ,N-2i =2 mod 4
.F={0122i-12i2i+1), N-2i =0 mod 4
. F ={0,12,N-16)
.F = (0,12,N-12)
F ={0,12,N-8}
. F ={0,12,N-4)
. F ={03,6,7.8)

. F={01239)

F = {0,34,10,11)

. F ={03,12,13,14}
. F ={03,10,2i-1,2i ,2i +1},N-2i =2 mod 4
. F={03102-12i2i+1),N-2i =0 mod 4
. F={042-12i2i+1),N-2i m2mod 4
.F={042i-12i2i+1),N-2i =0mod 4

16
17
18
19

21
25
30
31
32

36

48
57
59
61
61

65
67
68
69
71
71
72
72
73
75
76
77
78
79
80
80
81
81

Figure 4-24.
Figure 4-25.
Figure 4-26.
Figure 4-27.
Figure 4-28.
Figure 4-29.
Figure 4-30.
Figure 4-31.
Figure 4-32,
Figure 4-33.
Figure 4-34,
Figure 4-35.
Figure 4-36.
Figure 4-37.
Figure 4-38.

Figure 4-39
Figure 4-40

Figure 4-41.
Figure 4-42,
Figure 4-43.
Figure 4-44.
Figure 4-45.
Figure 4-46.
Figure 4-47.
Figure 4-48.
Figure 4-49.
Figure 4-50.

F = {04N-8N-T})

F = (04N-6N-5)

F = (04N-4N-3)

F =(05,10,11)
F = (05,12)

F = (05,13)

F ={05,14,15,16}

F ={052i-12i 2i+1},N-2i =2 mod 4
F ={052i-12i 2i +1),N-2i sOmod 4
F = {0,6,7,12,13)

F = {06,7,13,14)

F ={06,7,8,15)

F = (06,7N-7)

F = (0,6,7,N-8)
F = (0,6,7,N-9)

.F = {0,6,7,4i 4i +1})

. F =(0,6,7,4i +2,4i +3)

F = {06,7,N-10})

F = (0,78,15,16)
F = (0,78,N-9)

F = (0,78 N-9N-10}

F ={0,7.8/N-11)

F =(0,78,2j +1)

F = {0,7,8,20)
F = {0,7.8.N-2j)

F ={02j+1z)

F =(02j2k)

viii

82
83

85
86
87
88
89
89

91
92
93
94
95
96

98

100
101
101
102
103
104
105
106

Chapter 1

Introduction

Advances in computer technology have made it possible to construct machines with
very large numbers of processors. Such machines have the potential to deliver very high
performance for a large class of applications. In fact, the development of multiple-
processor computers has made it possible to sharply reduce the amount of time required
to solve large scale problems and as a consequence, to greatly increase the scale of prob-
lems which can be solved in a reasonable amount of time. These problems are most often
of a scientific nature, are very CPU intensive, and typically require large amounts of
memory. Some examples of such problems include: acrodynamic simulations, weather
forecasting, petroleum exploration, image processing, and artificial intelligence
[HwBr84].

1.1. Multiprocessors and Multicomputers
At the highest level, the major components of the architecture of a multiprocessor
system are the processors, memory unit(s) and the interconnection network through

which the processors communicate with each other and access the memory unit(s).

Interconnection networks can be classified in two categories: static networks and
dynamic networks [Feng81]. The difference is that the physical connections may change
in a dynamic network, while they always remain fixed in a static network. Examples of
static networks include the ring, tree, 2-D mesh and hypercube. Dynamic networks
include single-stage and multistage structures. Single-stage is also called recirculating
network, which is composed of a stage of switch boxes cascaded to a link connection pat-
tern. A typical multistage interconnection network in a multiprocessor system with N
processors consists of log, N stages with N/k kxk switch boxes at each stage, where
2Sk < 8. A multistage network can usually connect an arbitrary input to an arbitrary
output. Examples of multistage networks include Omega (shuffle-exchange) and Delta
networks. Dynamic networks offer greater flexibility at the cost of additional hardware
and the overhead of managing the interconnection network [Agra83, BhAg83].

Over the years, two broad categories of multiple-processor computer systems have
emerged, based largely on the degree of autonomy of the processors and the way the
memory is organized and controlled. The first of these classes of systems is referred to as
SIMD, an acronym for Single Instruction Multiple Data. SIMD machines are character-
ized by the fact that at any given instant, every enabled processor in the system is execut-
ing the same instruction as all the other processors, although each may be processing
different data. For many applications with inherent massive data parallelism, SIMD
machines can provide high performance at a reasonable cost. Several successful SIMD
machines have been developed, including MPP, ICL’s DAP, and the Connection
Machine [Flan77, Batc80, Hill85]). One of the best features of these machines is their
ease of programming. This feature is also the principal drawback in that the ease of pro-
gramming is made possible by the limited range of applications which can be effectively
executed.

The other major category of multiple-processor machines is the MIMD class;
MIMD being an acronym for Multiple Instruction Multiple Data. As the name indicates,

at any given time each processor in the system may be executing a different instruction,
and is typically processing different data. These machines are a more general class of
multiple-processor computer systems, since they may simulate the operation of SIMD
machines. MIMD machines are further categorized by the way the memory is organized
and managed. A shared-memory machine has a single global memory which is usually
equally accessible to all its processors. Since having a single memory can lead to
memory contention problems, the memory is often physically organized into modules
and the processors access the modules through a communication network, most fre-
quently multistage. Even so, the possibility for contention for access to specific modules
can still be a problem. Processors communicate with one another by accessing pre-
arranged locations in the shared-memory. Examples of shared memory machines include
the BBN Butterfly, the NYU Ultracomputer, the IBM RP3 , the Sequent
Balance/Symmetry, the Encore Multimax and the Cray X-MP/Y-MP [Gott83, Lars84,
Crow85, Pfis85, Sten88, RCCT90]. The chief advantage of shared memory machines is
that they allow the programmer the impression of a single address space. The major
disadvantages are that the machines do not scale well and contention for memory access
can lead to so-called "hot-spots” which can degrade performance.

The second type of MIMD machine is referred to as a distributed-memory machine.
Here each processor in the system has its own local memory (which it controls) and the
processors are connected by a communication network (most frequently static). The pro-
grammer does not have the advantages of a single global address space. Processors com-
municate by passing messages through the communication network, and a message may
have to go through several intermediate processors before reaching its destination. For
this reason, these systems have also been referred to as message-passing or point-to-point
systems. A number of research and development projects have been undertaken to con-
struct such machines [Seit85, HMSC86, SAFM88]. Among the existing systems, the

most dominant one is the hypercube which is commercially available in different

variations including the Mark III, the iPSC-1, and the Ncube [PTLP85, GuHSS86,
GrRe86]. In contrast to shared-memory machines, message passing architectures gen-
erally scale better and are more robust. However, they are more difficult to program
effectively; and since communication is usually slower, they are better suited to problems
where the communication/computation ratio is relatively small. This dissertation con-
cerns several problems related to this type of machine, which we will refer to as a Multi-
computer (MC).

1.2. Motivation and Problem Statement

There are many aspects to the design of an MC. As in the development of every
computer there is the broad hardware/software dichotomy; and within each of these two
areas, one may consider many different levels of design. Here we will be concerned with
system-level issues. System-level means the consideration of the MC in a macroscopic
fashion. In terms of software, the issues are the development of operating systems, com-
pilers, programming tools, etc., all of which must address the MC as a complete entity.
In the hardware area, system-level means viewing the MC as a collection of
processor/memory-pairs connected by communication links. These two areas are highly
interdependent, and a successful design must consider both areas as they relate to each
other and to the design goals.

In terms of hardware, at the system-level the selection of the topology of the inter-
connection network is fundamental since it has a significant influence on virtually every
other aspect of the MC including communication capabilities and system reliability. In a
certain sense, the topology is the MC. Communication characteristics such as message
delay and routing are directly related to the underlying topology [FaKr83]. Many
research articles have focused on the relationship between the topology and one or more
of these characteristics. As a result, many topologies for MCs have been proposed
including cube-connected cycles, binary tree, 2D-mesh, binary DeBruijn networks, and

k-ary n-cube [Prad81, Prvu8l, HsYZ87, HwGh87, DuHw88, ChCD88, Dall90]. This
dissertation will examine how the topology of an MC influences its communication capa-
bilities and reliability.

Since MC:s rely on passing messages, the performance of an MC is significantly tied
to the types of communication that can be accomplished, and how quickly and efficiently
they can be done. Experience has shown that several communication paradigms are use-
ful in developing algorithms for MCs. These paradigms include: one-to-one where a pro-
cessor wishes to send a message to another specific processor; one-to-all where a proces-
sor wishes to send a message to all the other processors in the system; and finally one-to-
many, which is a generalization of the previous two. These classes have also been
referred to as unicast, broadcast and multicast, respectively. Some of the issues in
implementing these communication paradigms are: the number of messages that a pro-
cessor may simultaneously send or receive, the type of routing strategy (e.g., static or
dynamic), and the type of switching strategy (e.g. packet switched, circuit switched,
wormbhole, virtual cut/through) [KeK179, DaSe87]. The performance of each of these
communication schemes is affected by the topology. In this dissertation we consider the
problem of broadcasting in MCs and we assume that each processor may send or receive
only one message at a time.

The large number of components (such as processors and memories) and the overall
complexity of such systems serve to exacerbate reliability problems, and much research
has been done in studying reliability issues in MCs [KuRe80, PrRe82]. Several types of
reliability have been distinguished based principally on the nature of the applications the
MC is to execute. A highly available system may have frequent failures, but the failures
are such that the system can be restored to proper functionality in a short time; these sys-
tems are "up" most of the time. The Electronic Switching System (ESS) used by AT&T is
designed for high availability [Prad86). An wltra reliable system is one which has very
few failures over a specified time interval. This type of reliability is demanded by

applications where failures can have catastrophic results. Examples of such applications
include operation of aircraft and medical monitoring equipment.

One approach to developing reliable systems is to use ultra-reliable components in
the construction. However, this can be an expensive proposition and does not always
adequately address the problem. Another alternative is the so-called fault avoidance
approach in which the system is designed to avoid faults from occurring. The approach
we will consider in this dissertation is referred to as fault-tolerance. As the name
implies, the idea is to design systems in which faults may be tolerated, and a system will
be said to be fault-tolerant if it can remain functional in the presence of failures. At the
system level, two types of failures are considered: the failure of a set of processors, and
the failure of a set of communication links. What constitutes a functional system depends
largely on the type of applications that the system will execute.

Two basic functionality criterion have received much attention. According to one
of these, an MC is considered to be functional as long as there is a non-faulty communi-
cation path between all pairs of non-faulty processors. In graph theoretic terms, the
underlying topology is connected. This type of functionality is applicable to the so-
called coarse grain application, in which the algorithms are relatively insensitive to
topology. Typically, each processor is made responsible for executing some subset of the
tasks required to solve some (large) problem; in the event of a failure, the tasks are
assigned to other processors. This is the so called fault-tolerance through degraded per-
formance approach [ArLe81, Esfa88, RaGAS8S].

The second functionality criterion considers an MC to be functional only when a
desired topology is contained in the system. In the past few years, much work has been
done in developing efficient, high performance parallel algorithms for various MCs. For
many of these algorithms, the existence of certain topologies is a significant factor in
delivering the desired performance. For such applications, the system should be able to
provide a specific topology throughout the execution of the algorithm. This criterion was

first formulated by Hayes, and subsequently a number of fault-tolerant (in the sense of
the second criterion) topologies have been proposed [Haye76). The basic approach in
this case is to employ redundant components (links or processors) throughout the system.
In the event of a failure, the system could then be reconfigured to exclude the faulty com-
ponent by using one of the redundant ones. In this dissertation, fault tolerance will refer
to the second functionality criterion, and we will consider only processor failures.

Broadcasting and fault-tolerance have much in common in that they are both inti-
mately tied to the topology of the MC. In addition, broadcasting can be an integral part
of the reconfiguration process for a fault-tolerant system. Also, a broadcasting scheme
for a fault-tolerant system must be robust enough to accommodate faulty system com-
ponents. A number of papers have addressed problems common to these two areas
[Bien88, LeHa88, Lies88].

1.3. Thesis Organization

As indicated, this dissertation will focus on two problems both of which are related
to the topology of the interconnection network. Such a topology is conveniently modeled
as a graph where the nodes of the graph represent the processors and the edges represent
the communication links. Many problems in Computer Science and Engineering can be
so formulated. However, it is often the case that such models are only practical for
"small"” instances of problems, since even modestly sized graphs can become incredibly
complicated and unwieldy to work with. In addition, many of the operations one wishes
to perform on such models are of a trial and error genre, and such operations become
increasingly labor-intensive for all but the smallest graphs. To address this problem, we
have developed a software package for graph manipulation which has been instrumental
in obtaining some of the results in this dissertation and other research as well. This pack-
age is described in Chapter 2, where we also present graph theoretic definitions and ter-
minology which will be used throughout the dissertation.

Broadcasting in MCs is discussed in Chapter 3. In particular, we examine the role
that trees play in the broadcasting process. A partial characterization of a class of graphs
called minimum broadcast trees is given. Finally, we present a distributed algorithm for
doing broadcasting in networks based on Binary DeBruijn graphs.

Fault-tolerance in MCs is the subject of Chapter 4. In this chapter we introduce a
new approach to system-level fault-tolerance. The approach is applied to the case when
the topology of the MC is a ring. For this case, a class of graphs called Chordal Rings is
shown to be an optimal solution.

In the final chapter we present our conclusions, summarize our research contribu-

tions and suggest some directions for future study.

Chapter 2

Graphs and GMP

We will use graphs to model the topology of an MC. The vertices of the graph
represent processors and the edges of the graph represent the communication links. With
this model in mind, we will use the terms vertex, node, and processor interchangeably
and similarly for the terms edge and link. In this chapter, we present our graph
definitions, notation and terminology which are common to both of the two problem
areas that we consider in subsequent chapters. Definitions and terms which are specific
to a problem area will be introduced in the context in which they are needed. We also
describe a software graph manipulation package which we have developed and which

has been useful in our research.

2.1. Graph Definitions, Notation, and Terminology

In this section we present our graph theoretic definitions and notation. Graph
theoretic terms not defined here can be found in [Hara72]. Let G (V,E) be a finite graph
without loops or multiple edges with the vertex set V = V(G) and the edge set
E = E(G). The order (size) of G (V ,E) is equal to the cardinality of the vertex set (edge

10

set), and is denoted by |V(G)| (|E(G)|) or simply |V | (|E|) when the context is
clear. If an edge ¢ = (4,v) € E, then vertices 4 and v are said to be adjacent, and the
edge e is said to be incident to these vertices. For a vertex v € V,1(G :v) represents the
set of all edges incident to v in G. Two vertices connected by an edge will be referred to
as neighbors. The degree of a vertex v isd(v) = |I(v)|. The degree sequence of G is a
non-decreasing list of the degrees of all the vertices in G. The minimum and maximum
degrees of a graph G are G)=min {d(v) lve V) and
A(G)=max {d(v) lv € V }, respectively. A graph G is r-regular if for all veV,
d(v) = r. A graph is a cubic graph if it is 3-regular.

A graph H which has all of its vertices and edges in G is a subgraph of G, denoted
H ¢ G. If G is isomorphic to a subgraph of H, we say G may be embedded in H. If H
is a subgraph of G, then G is a supergraph of H. A spanning subgraph of G is a sub-
graph containing all the vertices in G. For a set F ¢ V(G), the notation G—F represents
the subgraph of G obtained by removing from G all the vertices in F along with their
incident edges.

A path P is a sequence of distinct vertices v,V ...V, _;,V, Where (v;,v;) € E(G),
0<i sn-1. The length of the path is the number of edges in the path. A graph is con-
nected if every pair of vertices are joined by a path. A cycle is a sequence of vertices
VoV 1eVp_1sV, Where (v;,v;) € E(G),0<i sn-1,n 23,v,=v, and all the other ver-
tices are distinct. The cycle of order N, also called an N-cycle, will be denoted as C,.
When convenient, a cycle will be specified by listing, in order, the vertices in the cycle.
For example, x,x,, x,, X5, X, defines a 4-cycle. A Hamiltonian graph contains a cycle
passing through all its vertices.

The distance between two vertices ¥ and v, dist (u,v), is defined as the length of a
shortest path joining these vertices. The diameter of graph G, D (G), is the largest value
of dist(u,v) in G. A connected acyclic graph is also called a tree. The vertices of degree

one in a tree, T (V E), are called the leaves of T. A rooted tree is one in which a specific

11

node is labeled as the root. When no such designation is made, the tree is said to be free.
The level of a node in a rooted tree is the length of the unique path from the root to the
node. The height of the tree is the number of levels or the length of the longest path from
the root to any node in the tree. A spanning subgraph which is also a tree is called a
spanning tree. G is a bipartite graph if V(G) can be partitioned into two disjoint subsets
V, and V, such that every edge of G joins a vertex ue V, witha vertex veV,. Insucha
case G may be denoted G (V,,V,,E).

22. GMP - A Software Package for Graph Manipulation

In this section we give a brief description of the software package for graph mani-
pulation that we developed. A more detailed description, including a user’s manual, pro-
grammers manual, as well as the source code can be found in [ZiEs88]. We will describe
the functionality of the package, its utilization to date and some suggestions for improve-
ment.

Graph theory has long become recognized as one of the more useful research tools
in Computer Science and Engineering. Extensive use of graph theory has been made in
areas such as topological design of networks, complexity theory, and design and analysis
of algorithms. This dissertation considers two such problems.

In the course of our work in graph theory, we had increasingly noticed the need for
a software package which would enable the user to interactively manipulate graphs, test
conjectures, etc. No such package was then available, partially due to the unavailability
of affordable graphics workstations. In the summer of 1986, when such workstations
became accessible to us, we undertook a project to develop such a software package. We
dubbed it GMP, an acronym for Graph Manipulation Package. The package was written
in C and currently runs in the SunView environment on SUN workstations.

The first version of GMP became available in the winter of 1987. It is an interactive
program which allows users to visually manipulate graphs with up to 100 vertices. There

12

are essentially two major facets of the program. First, GMP allows the user to construct
and modify graphs on the screen. This construction can be done manually using a mouse.
Further, a menu of standard graphs is available, or the user can create a graph off-line and
then load it into GMP. Second, GMP allows the user to investigate the interaction of
graph algorithms and graphs. A number of classic algorithms are built into GMP, and the
program has been designed to allow users to easily incorporate new algorithms into the
system. Facilities exist for storage and retrieval of graphs, as well as for obtaining publi-
cation quality hardcopies of created graphs.

In developing GMP, our initial intent was to produce an exploratory tool rather than
a results-oriented, computational program ala LINPACK, etc. We wanted something
which would allow us to easily test conjectures and investigate ideas. This orientation
had important consequences on the overall design. One such consequence was the deci-
sion to limit the maximum size of graphs to 100 vertices. While the specific number was
somewhat arbitrary, it scemed that any number much higher would have decreased the
user’s ability to get a good understanding of what was going on. Also, our experience
was that any size monitor gets crowded with more than 100 vertices. Our design goal
also affected various aspects of the implementation. For example, data structures were
selected for their simplicity and universality, rather than economy of memory, etc.
Further, in adding an algorithm to the package, we generally chose a version which was
easier to implement, rather than one with the best performance. This was in keeping with
the above philosophy, and it was thought that for "small" graphs, the decreased perfor-
mance was probably minimal.

2.2.1. An overview of GMP
The GMP user interface consists of three main windows: the message window, the
control window, and the canvas window (Figure 2-1). Virtually all user input to GMP is

done via the mouse, although the keyboard is required for some functions. The message

13

window is the long horizontal window at the top of the screen. One purpose of this win-
dow is to provide feedback and instructions to users. This window also contains five
pulldown menus which are accessed by clicking the RIGHT mouse button over the menu
title (Figures 2-2 - 2-5). Each of these menus is described in more detail later. The long
vertical window on the right is the control window. From this window the user can ini-
tiate file system commands to store and retrieve graphs and select which manipulation
command is to be active when the cursor is in the canvas window. The large square win-
dow is the canvas window. This is the window in which the graph is drawn and manipu-
lated. Most user feedback occurs through this window.

As stated earlier, GMP has two major overlapping functions: 1) creating and mani-
pulating graphs, and 2) invoking algorithms which act on the created graphs. Graphs can
be created in several ways. Some standard graph definitions are available in the Std
Graphs pulldown menu in the message panel. Selecting one of these options will create
a graph of the specified type using the default number of vertices. In Figure 2-2, the Std.
Graphs menu is shown with the Binary Tree option highlighted. The graph which is gen-
erated by this command is shown in the canvas window. Note also the default parame-
ters window, in which the parameter number of vertices is set at 20. This indicates the
order of the graph that will be created by the Std. Graphs Menu. Graphs can be created
manually using one of the manipulation commands selected from the control window.
For example, select Add Vertex, move the cursor into the canvas and click where you
would like a new vertex to be placed. In addition, you can type an adjacency matrix into
a file, add an appropriate GMP header and then load this graph into GMP. The vertices
and edges of graphs created using one of these three methods all have default values for
their parameters: edge weight, node weight, edge type, node type, etc. The default
values for each may be set by the user, and the user may also manually set the value of

any parameter for a particular vertex and/or edge.

14

The Miscellaneous menu (see Figure 2-3), as the name implies, contains a number
of commands for various purposes. Among these are: displaying/hiding graph labels,
manipulating the weights associated with the graph vertices/edges, and altering the lay-
out of the graph. Figure 2-3 shows the main miscellaneous menu along with the Weighs
Options submenu. The Show Edge Weights option is highlighted and the results of this
command are seen in the canvas: all edges in the graph shown have weight equal to 1.0.

Users invoke algorithms on created graphs via the Algorithms menu (see Figure 2-
4). The Shortest Path algorithm is highlighted and the results of the command are
displayed in the canvas. In this example, a shortest path from a source vertex (black-
ened) to all the other vertices in the graph is shown by the "double" edges. In addition,
the distance from the source to each vertex is displayed next to the vertex. The figure
also shows an example of another graph type available in the Std. Graphs menu: 2D-
Mesh. A second example of the results of an algorithm is seen in Figure 2-5. The Find
Cycles algorithm was invoked and the user requested a search for a cycle of order 26.
Such a cycle was found and displayed in the canvas using double edges.

As mentioned, the package was designed to allow users to easily add new algo-
rithms. A programmer’s manual is available containing programming guidelines, exam-
ples and a description of user-accessible utility procedures. User implemented algorithms
are accessed through the User Algs menu. This menu is user-definable and may contain
an unlimited number of user algorithms.

Finally, the Goodies menu (Figure 2-6) allows the user to perform a variety of
operations which alter the visual appearance of the graph.

2.2.2. Utilization of GMP
Since its inception, GMP has been used in conjunction with graph theory related
courses in both the Mathematics and Computer Science departments at Michigan State

University. In particular, in the Computer Science course entitled Analysis of Graph

15

Algorithms students have used the package in a discovery mode to investigate basic con-
cepts in graph theory. The interactive and visual features have been extremely motivat-
ing in this context. The package also provides a framework from which one can develop
and test new graph algorithms, as well as to study existing ones. Students have written
and/or coded algorithms as projects for this class.

In addition to its instructional use, GMP has also been a valuable research tool.
Briefly, it automates many of the mundane operations that a graph theorist would nor-
mally do by hand. This automation allows many conjectures to be easily tested and
refined, a task which is often too onerous to be done manually. The package has been
instrumental in obtaining results reflected in recent publications. In particular, GMP has
expedited the formulation of a new approach to system-level fault-tolerance and com-
munication paradigms for multicomputers [EsNS89, ZiEs90]. In addition, some of the
proofs in Chapter 4 of this dissertation would have not been possible without it. It also
served as a tool for producing all the graph related graphics in this dissertation and other
recent publications.

The package has also been made available to researchers at other institutions
including Western Michigan University, Grand Valley State University, George Wash-
ington University, Georgia Institute of Technology, Rutgers University, Boston Univer-
sity, University of Iowa, and Université Paris-Sud. The responses have all been positive.

To date, GMP is unique in its category of software.

16

"smopuim JWO Tediound 3anp oy, 1-z amSiy

R A A A A A AR A A A A ARARNAL AR A AL SV AN AN SRS A SR A KK AR A AR

AOPUTM SBAUR)

seBps | ¢ sAcwey ()
w 10qe xe3uep sbusy) O
A 4610A xe3usp sbusyy O ~
Jubjep oBp3 ebueyy
obp3 3130819)

e6p3 enousy O

#6p3 ppy O

%9340A 8ACH O]

DTN

x83Jep sAOwey ()
: %8348 PPY 29
SONVMAOD NOILYMJINVM

$J0 0WkIRg }(NTj8Q

838 dwo)
1wy eBeunyg

+———"d—— AMOpUTM TO13UO)

\ Aoputy 98ewssoy [
:
%

LT Y] 88}p00g oB(y Jesn smpy 0By .\!85:8..: sydesg ‘pys
: Yuoy/susnsasns iapa ¥
GCand) ‘UOTIWIOT PaIYS3p 1940 u03IING 3IFAT YITID :XALWAA ¥ GaV oL |

;i Ay)ssaatun @3eys uebyy ‘Ueuisuw 2 *A D) PUB URJURYESS] “H-y AQ podojuasqg H°2 UDESGIAA “abeXIeqd uolvindiury c;fgnw
e D R TR SO W ST OIS RO 20 AT AN 000N YA DA w1y mne s

R PR R PR PR SR N 3 LR B R A S RSB

‘nuow sydesn ‘pi§ oYL, “g-g AunStd

s9by
[CU]
ubien

w619

17

pe ((¢ srowey O
8308 0Buty) O
xe3.00 sburid O
A 96p3 ebuey) O
#6p3 320818 O
o6p3 snouey O
9803 ppy O
xe38 8h0W O
X818 srouey O
x343h PPV B

SONYWHOD NOLLY M INVW

ewsoy obesos

(es) (x) A3s11qeqoly ebp3

SI230u810g 3 1NE400 WO

(i)

swoy/ssn/usn/

= s} 061y ‘snosus| |69

190ua ®1QnoQ

ufynug op Aueujg
(s0up
sns
s13g
a111ued)g e3e1dw)
udeag 838 dwoy

udeg wpury

18

"NUSW SNOJUB[[IISTIA YL, "€-T N1

AR RSN

sobpe | (¢ enowsy O
Leqeq xe3Jep eBuey) O
Biea xe3sep #Bury) O
Biea o0p3 sbusyy O

o8p3 320819 O
s6p3 saowey O

#6p3 pPY O
x031J40A 8AON O

x0340) Onowey O
x030A PPY 19
SONVINOD NOLLVINGINYN

Si9i0u8/ed 11N¢830€ 1Lne; 00 01 S1ubLem ebp3 jesew 3
Cres) (o) (oid) 1LNej00 01 SIubIomM X83J0A J0sey udeJp Jes(3
0181 dwo siybiom abp3 epin_ | OLIs II4 O 1]

19 0w0) sy oM x83J0A OpIN ydesg juemaidwo)

am 8bp 0 3noAey
ua‘a—.) X8340A MOYS 8dA| abew] abuey)
s{0qe)
ydeag mespoy

j*w04 ebsuoyg

LY F] §8)pooy
Qwoy/SJ8N/JSN/ 143Q
Cund) _-uoanq

Ayyvaaajun @3e3s uebiyoy

19

‘nuSt SUNPUOS[Y YL ‘$-7 31

' A.Y s O s O o ¢ Y s O X
.m ws O e we O Ot . Jw.:
]
3
we O we O ws (3 O Q e

sobpe (s srowey O

A (eqe] xe3aep ebusy) N

yBjep xe3Jep eBury) O

1yjea 8Bp3 eBury) O

eBp3 300819 O

oBp3 enowsy [

efp3 ppy O o A

X0340A OAOKN [

Xx83487 SAOWRY [
x03}J8A PPY B9 - 314 390UU0) rn&

SONVIOD NOTLYWNIINVM ws (ey b

204] JOUL0}S

- uewso| oS bujioasay

7

SISy

\O o

e AV [AV AWH-... Oeer

N7
O

)
7
a
A
\ O
s

sJajeweJty 3(nejae(L4841 usjaeLng m
(Ge144) Jeyeme}q e
@ E we (O] In] X0} J0A OFee ,\IVU... A.V e m
038|dwo) - Bujyaien w
1swi0y abesoyg LY¥TTIP] §
"ON Ji1eWoJ4y] }IeXx m
*ON_3j1ew0Jy) I4181J8NK i
984] bujuuedS wnuwjujn £
S .. uylkd 3883J04S m
Y 89} poogy P suynidoBry w3208y snoeus | (838} sydsug "p§ H
swoy/sJsn/asn/ taiQ
Cuan) -uo33ng 9snow LHOIY PIOY Ppuw YIT[2 ‘nuaw umop TInd AatA oL
31843A4UN > ‘yewsBuil? A ") PUB UBJUBYEIST “H-°

v Aq pado|easqg W'Z UOp6IupA “sbexded uopyendjuep ydedn

A % < R DRI

Sury [epioyD e uo payoAur st WO SAPAD Puld YL 'S-T 3L

se0pe | (v srowsy 29

(eqe] xeyuep eBueyy O
M B1ea xejuep eBusyd O
i 0jep ebp3 ebueyy O
oBp3 338818 O

eBp3 srowey O ‘puno; sea gz :82)8 jo 8|2Kd y

®%p3 ppy O

‘834 ees 0} X0 WITD

NOJJ0A BAOH [

X0}JOA Snowey O

: XOJU8A PPY O
4 SOMeND NOLLYIADN

1 (%) (=) Coud)
: 830(dwo)

om0 sBeumys

smpy 0By snosus| (638} s ‘s

(92 :31nw3ap) ezys 9o1hd> ejug
Ad(A°¢ UVOLSIOA “ubexeg oy ndiuty ydears i

21

"MUIJA SIAPOON) Y], '9-7 ANS1]

wvrp.vv\”‘.v,g...b.““,»..»h.w\ R A KA N AR R A NN SRR BAN R A

sebpe (¢ srowey ()

3 10937 xe3004 ebusyy O
A Biea xeyue sBunyy O
4 1udiea eBp3 eBuryy O
oBp3 300819 O

o6p3 snouwsy O

e6p3 ppY O

X0348) 0AOK O

%03J48A SAOWSY (]

x83J0A PPY B

SONVIADD NOTLVININVM

(Gasiewang 3invyeg)
Cr9) E) Coud)
38| dwo)

Rt e | EErCETYYITNR

Lejuozy 104 Jjesued)

o144 atpoog o= sBiy Jeen swpy 0By snosus| |838}K sydess ‘pig
5\.-‘3\&8\ 440
.:ouuzn asnow LHOIH vﬁo: pu®w YOF[O ‘nuaw umop TINd A3TA O

v uot o _:_::.

gy

Chapter 3

Broadcasting in Multicomputers

One type of information exchange that often arises in MCs and communication net-
works in general (e.g. computer networks, spy networks) is referred to as broadcasting.
Here, one member of the network, called the originator, wishes to send a message to all
the other members in the network, as rapidly as possible. The underlying topology of the
network plays a significant role in how broadcasting should be done. In some networks,
by default, every message transmitted is received by all members of the network,
whereas in some others, a transmitted message is received by no more than one other
member of the network. These networks are respectively referred to as broadcast net-
works and point-to-point networks [Tane88]. Here we are concerned with the problem of
broadcasting MultiComputer networks as defined in Chapter 1. However, since our focus
is at the topological level, our discussion is also applicable to general point-to-point net-
works, and we hereafter refer simply to networks.

There are many applications of broadcasting in such networks. In general terms,
broadcasting is necessary whenever some information must be relayed to all the other

members of the network. Some specific examples include: synchronizing processors in

22

23

a distributed network, reconfiguring processors to achieve a desired logical interconnec-
tion, diagnosing the state of a distributed system, and communicating results from paral-
lel algorithms computations [Prad85].

The basic idea in broadcasting is to keep informing uninformed members of the net-
work until all member are informed, however, which uninformed members and how
many of them can be informed at a time are usually restricted by the network technology
and/or application environment. This has led to defining different types of broadcasting.
In this chapter, we first survey the existing work on broadcasting in a network. We then
discuss the difficulties that arise in implementing broadcasting and review the known
algorithms for broadcasting. We will examine the role that trees play in broadcasting and
we present a distributed broadcasting algorithm for a particular class of networks based

on Binary DeBruijn Graphs.

3.1. Background

We first consider the broadcasting process in general. In this process, one node
called the originator wishes to send a message to all the other nodes in the network. The
originator begins the process by making a "call” to another node in the graph, informing
it of the message. Subsequently, the informed nodes call their uninformed neighbors and
the process continues until all nodes in the network are informed. It has been suggested
[FHMP79] that each node be involved in at most one call during each time interval,
although calls between distinct pairs of nodes may take place concurrently. We assume
that all calls take the same amount of time; the time interval during which a call takes
place will be referred to as a time step or simply step. Thus during the first step of the
broadcasting process, the originator calls another node in the graph. At the end of the
first step, two nodes are informed. Since there is no benefit gained from a node receiving
the same message twice, we specify that each node (except the originator) be the

receiver of exactly one call during the broadcast.

24

Several types of broadcasting have been distinguished in the literature [Farl80]. In
local broadcasting a node may only call one of its neighbors. In line broadcasting a node
may call any other node to which it is connected by a path; however, the edges used to
make the call must not be used by any other call during that step. Path broadcasting is
similar to line broadcasting, except that it is further required that no node is used in more
than one call in any time step. The difference between line and path broadcasting is that
in the former, a node may allow several calls to pass through during any step, whereas in
the latter each node may participate in at most one call per step. In both cases, however,
only the starting node in a broadcast path need be informed; all the intermediate nodes in
the path can act as a switch and relay the message without being aware of its contents.
This assumption may not be very realistic; if a node is to relay a message it might as well
examine its contents since, in this context, the same message will be sent to it eventually.
Here, we will consider only local broadcasting and unless stated otherwise, we will use
the terms broadcasting and local broadcasting interchangeably.

The broadcast process is illustrated in Figure 3-1. The top graph represents the
topology of a communication network. Broadcasts originating from nodes e and f are
shown in the middle and bottom graphs respectively. The edges used in the broadcast are
highlighted with arrows to indicate the sender/receiver and are labeled with the time step
in which they are used. Unused edges are shown as dashed lines. Note that the broadcast
was completed in five time steps in the middle graph; the lower graph used only four.

It is clearly desirable to complete broadcasting in a minimum number of time steps.
For a general graph with N nodes, the minimum amount of time to complete a broadcast
is at least flog N (all logarithms are in base 2). This result follows from the fact that the
number of informed nodes can at most double after each step of the process and may be
proved formally by a simple inductive argument [FHMP79]. Clearly, the "location" of
the originator within the graph affects the amount of time needed; an originator which is
"in the middle" of the graph may require fewer time steps than one on the "periphery".

Figure 3-1. Two example broadcasts in a graph.

26

For example, in Figure 3-1, broadcasting from node @ will require more time than broad-
casting from node g. In addition, the sequence in which an informed node informs its
uninformed neighbors affects the number of time steps for a particular broadcast. In the
middle graph of Figure 3-1, e sends messages to nodes b, a, and f, in that order. How-
ever, it is not difficult to see that the number of steps can be reduced to four by using the
order f, b, a. These considerations motivate the following definitions.
Definition. 3.1 The minimum time (in number of time steps) required to complete
broadcasting in a graph G, when node v is the originator is denoted bt(G:v). The
minimum is taken over all possible orderings of calls.
Definition. 3.2 Let bz(G) be the best possible broadcast time for a particular graph G.
We have bt(G) = min{bt(G:v)|veV). Note that bt(G) is not necessarily equal to
log|V(G)| 1.
Definition. 3.3 Let BT (G) be the worst possible broadcast time for a particular graph
G. We have BT (G) = max{bt(G:v)|veV]).
Definition. 34 The broadcast center of a graph G,
BC(G) = {veV | bt(G:v) = bt(G)}, is the set of all nodes which when chosen as the
originator, can achieve the best possible broadcast time for G. This set is clearly
nonempty and may have more than one element.
Definition. 3.5 A calling schedule for a broadcast is a set of statements of the form
"node i calls node j during time step ¢". The calling schedule is a legal calling schedule
if it satisfies the criteria [Farl79]:

i) During a given time step, each node may participate in at most one call.
ii) For each call scheduled for step t, the sender is either the originator or was
called during steps, 1 <s <t . '

A graph G (V,E) is said to be a minimum broadcast graph if bt(G) = [log|V(G)|]1. In
addition, when BC(G) = V(G) then G is called a uniformly minimum broadcast
(UMB) graph. The above graphs are defined differently in [FHMP79], however we

believe our definitions are more consistent with the rest of the related literature. By

27

definition, a broadcast informs all the nodes in the graph and to accomplish this, it uses
some of the edges in the graph, each edge being used at most once. The subset of edges
E’° C E used in the process of broadcasting in G (V ,E) induces [Hara72] a rooted span-
ning tree T (V ,E °) of G . Further, the root of the tree is the originator of the broadcast and
there is a direction associated with the edges in the tree. A tree T(V,E) is a minimum
broadcast tree (MBT) if it is a minimum broadcast graph.

Broadcasting has received attention in the literature as both an abstract graph theory
problem and as a practical problem in communication networks. The problem of con-
structing UMB graphs is considered in [Farl79] and algorithms for their construction are
also presented. Designing UMB graphs with the minimum number of edges is discussed
in [Farl79, FHMP79] and solutions are given for a number of cases. In [FHMP79], such
graphs are termed "minimum broadcast graphs" and a catalog of these graphs with 15 or
fewer nodes is provided, along with proofs showing them to possess the minimum possi-
ble number of edges. This work has led us to consider what characterizes a minimum
broadcast graph, i.e., what are some of the necessary and/or sufficient conditions for a
graph to be a minimum broadcast graph? For general graphs no work has been done in
this regard.

In [Pros81], an algorithm is given to recognize minimum broadcast trees and to con-
struct all rooted minimum broadcast trees for a given number of nodes. An algorithm for
completing line broadcasting in minimum time is presented in [Farl80]. The algorithm
also produces a legal calling schedule for the broadcast. In [FaHe79], local broadcasting
in finite and infinite grid graphs is considered. The minimum times to complete broad-
casting are derived for several special cases of grid graphs; among these is the graph
which represents the topology of the Illiac IV-type array processor [Barn68). A conjec-
ture is made as to an upper bound on the number of nodes in an infinite grid that may
become informed after a finite number of steps. A survey of much of the work on broad-
casting and the more general problem known as "gossiping” is provided in [HeHL88].

28

3.2. Broadcasting in General Graphs

In a general connected graph G (V,E), the problem of finding bt(G:v) and a
corresponding legal calling schedule for an arbitrary veV, has been shown to be NP-
hard [SICH81]. The same is true for determining BC (G). In some circumstances, once a
"good" broadcasting schedule has been obtained, there is no need to determine a new
one. However, in other situations this may not be the case. For example, the topology of
a point-to-point network may change, either physically due to failure/recovery of a com-
puting element or communication channel, or logically due to reconfiguration. With
either of these changes, a new legal broadcast schedule may need to be determined.
Additionally, as an attempt to increase overall efficiency, it may be desirable to deter-
mine alternative broadcast schedules dynamically in response to traffic flow in the net-
work induced by specific applications. The above concerns have motivated researchers to
investigate heuristic algorithms for broadcasting in general graphs.

A class of heuristic algorithms for local broadcasting in general graphs is presented
in [ScWu84]. The heuristic algorithms presented are all variations on one basic process:
broadcasting in a graph G is done by successively generating maximum matchings in
bipartite graphs derived from G while optimizing a weight function. Different choices of
weight functions yield the variations. The performance analyses of these heuristics are
yet to be seen.

Although the problem of determining bt (G :v), b#(G), BT (G) and BC (G) of a gen-
eral graph G are NP-hard, this is not the case when G is a tree. In [SICH81], algorithms
have been developed for determining BC (T') and for finding a broadcast schedule requir-
ing bt(T) time steps for a given tree T. We remind the reader that, by definition, the
edges used in a broadcast in a given graph G induces a spanning tree of G . Therefore, to
find bt (G) we need essentially to select a spanning tree T of G such that bz (T') = bt(G),
and we know from Section 3.1 that such a spanning tree exists. In the absence of any

selection criterion, we may need to examine all the spanning trees of the graph in order

29

to find a suitable one. This method, has the obvious drawback that the number of span-
ning trees of a graph may be an exponential function in the number of nodes, making the
selection process very costly if not impractical. An alternative would be to examine a
subset of spanning trees (which is the idea behind the existing heuristics) with the hope
that it will contain a spanning tree T such that bt(T') = bt(G).

The above discussions motivated us to examine the role that trees play in the broad-
casting process. If we let ST (G) be the set of all distinct spanning trees of a graph G and
BST(G) = {TeST(G) | bt(T) = bt(G)), we are interested in the comparative sizes of

these sets.

3.3. Broadcasting in Trees

We have noted that trees play a fundamental role in the broadcasting process. In
this section we will examine this role beginning with a discussion of minimum broadcast
trees. In particular, we discuss a special class of MBTs - those whose order is equal to a
power of two. The properties of this class of trees are used to establish several theorems,
which characterize general MBTs. Finally, we examine the distribution of broadcast
times for all trees of order |V(T')| <28. We will then be able to state some general ideas

for a heuristic algorithm for broadcasting.

3.3.1. Minimum broadcast trees

In this section, T (V,E) will denote a tree with |V | = N. Recall that a tree T is an
MBT if bt (T) = rlogN] and BC(T) is the set of all nodes u in T such that
bt(T:u) = bt (T). Each ueBC (T), along with the direction induced on the edges of T
by its corresponding broadcast process, defines a rooted tree on T'. We will refer to such
trees as rooted minimum broadcast trees. Note that two rooted MBTs may have the same
underlying tree. Figure 3-2 shows an example of three different rooted MBTs on nine
nodes. In each case, the uppermost node is the originator of the broadcast. Each of these

Figure 3-2. Three rooted MBTs and their common underlying free tree.

31

Figure 3-3. Two examples of MBTs.

rooted trees shares the same underlying free tree which is also shown in the figure. The
labels (A,B,C) indicate how each rooted tree maps to the underlying tree. An algorithm
has been developed for constructing and counting all rooted MBTs on N nodes [Pros81].
We are, however, interested in counting the number of distinct MBTs rather than rooted
MBTs. We denote by SMBT (N) the set of all distinct MBTs on N nodes. Figure 3-3
gives some examples of MBTs.

A special class of MBTs are those with N = 2% nodes (k>0). These trees contain
the maximum number of nodes that can be informed in k time steps. The trees in this
class (also known as binomial trees) are in a sense, completely defined with respect to
many different properties, some of which are given below. We will utilize these proper-
ties in the characterization theorems for general MBTs in the next section.

Property 1. For each value of & >0, the set SMBT (2") has exactly one element. That is,
up to isomorphism, there is a unique minimum broadcast tree with 2% nodes and we will

denote it by MBT (2k). Figure e-4 illustrates some examples of trees from this class. The

32

Figure 3-4. The unique trees MBT (2), for k = 2,34.

33

labels indicate the time step in which each node becomes informed.

Property 2. MBT (2") can be constructed by combining two copies of MBT (2""1); the
tree can be decomposed into two symmetric halves. The construction is depicted in Fig-
ure 3-5. Let u be an originator in one copy of MBT 2*') and v be an originator in a
second copy of MBT (2"-1). A single edge is added between the originators, yielding a
tree with exactly 2* nodes. To see that is also an MBT, choose u (or v arbitrarily) to be
the originator for the new tree. Initially, 4 calls v, using 1 time unit. Since each of ¥ and
v is the originator in their respective subtrees, the remaining nodes may be informed in
k-1 steps. Itis clear that all trees MBT (2") can be so constructed.

Property 3. The degree sequence of MBT (2") is completely determined and can be com-
puted recursively. In particular, there are two nodes of degree k; one of which must be
the originator of the broadcast; the other must be the first node to become informed in the
broadcast process. And, for each d, 1 Sd < k-1 there are 2¥"? nodes of degree d.
Property 4. There is exactly one calling schedule for MBT (2"), once the originator is
fixed.

k
Property 5. The number of nodes at any level A in MBT (2")is given by [2.] , hence the

name binomial tree.
Property 6. The number of levels in MBT (2%) is exactly .
Property 7. The number of leaves in MBT (2") is exactly 2t

3.3.2. Characteristics of general minimum broadcast trees

We now present some results for general MBTs in the form of several theorems.
These theorems represent some necessary (and sﬁﬂicicnt) conditions for a tree to be a
minimum broadcast tree. These results will serve as a first step in characterizing
minimum broadcast graphs.
Theorem 3-1: A tree T (V,E) of order N is a member of SMBT (N) if and only if T is a
subgraph of MBT (2*) where 2t ! < N <2*.

34

Figure 3-5. MBT (24) is constructed from two copies of MBT (23).

35

Proof: (=) By definition, there is a legal calling schedule C, which will complete the
broadcast in T in k = rlog N1 time steps. Begin the broadcasting. Let step T be the
first step during which a node has no neighbors left to inform and S(t) = (v € V |v and
all of its neighbors were informed before step t}. For each node v €S (t) add a new node
u, to V and add a new edge to E, connecting 4, and v. Inform all the newly created
nodes. Continue this process during each subsequent step through time step k. It is clear
that in each step we inform as many nodes as possible (by adding new nodes where
necessary, it is assured that the number of informed nodes must double) and that all
nodes are informed in £ steps. But MBT (2") is the only tree with these properties. Thus
we have constructed MBT (2") by adding nodes and edges to T and hence the tree T is a
subgraph of MBT (2%).
(¢) Suppose T MBT (2‘). By property 4, there is a unique calling schedule C “ for
MBT (2"). Now remove all elements of C ° which refer to a node not in T. We thus
obtain a legal calling schedule C, C c C’ for T which completes the broadcast in k
time steps. Thus T e SMBT (N). ®

Observe that the above proof implies that we can embed T in MBT (2k) in such a
way that the originator of T is embedded onto the originator of MBT (2"). It should be
noted that it is not necessarily the case that MBT (2"-1) is a subgraph of an MBT on N
vertices, where 2*! < N <2*. This is illustrated in Figure 3-6 where an MBT with 9
nodes (right) is constructed by inserting a node (labeled C) into the tree MBT (23) (left).
It is clear from the figure that the original tree (left) is not a subgraph of the new one,
illustrating that an MBT need not have MBT (2") , k >2 as a subgraph.
Theorem 3-2: Let T(V,E) € SMBT(N). Then A(T) € [log N1.
Proof: LetveV be a node whose degree d(v) > flogN]. Suppose ve V is an origina-
tor of T. Since a tree is acyclic, v must inform each of its adjacent nodes and this takes
more than [log N] steps, contradicting the definition of T. Now suppose v is not an ori-

ginator. It takes at least 1 time step to inform v, using one of the edges incident to v, v

36

Figure 3-6. An MBT not having MBT (2>) as a subgraph.

then has d(v)-1 uninformed neighbors. Since the only path to these nodes is through v,
v must send the message to each of them in turn. This requires d (v)-1 calls. Thus the
time to complete the broadcast is at least d(v) > llog N1, again violating minimality.
Thus no such v exists. @

Note that the converse of the above theorem is not necessarily true; it is easy to con-
struct trees with small maximum degree, which are not MBTs. For example, consider a
path P of order 2% ,k>2. To be an MBT, it would have to be possible to complete a
broadcast in P in ¢ <k time steps. It is clear that this cannot be done; the reason being
that each vertex (other than the originator) may only inform one other vertex, and there
are more vertices in the tree than can be informed in the required number of time steps.

An interesting related question is: how many nodes can be informed in a tree with
maximum degree A after ¢ time steps? In lemma 3.1, a recurrence relation is established

which relates the maximum number of nodes in a tree T which can be informed during

37

time step 7T, to the maximum degree of the tree, A.
Lemma 3-1: Let T be a tree with maximum degree A and MAX (1,A) be the maximum
number of nodes in T which can be informed during time step T of a local broadcastin T.

Then the following recurrence relation holds.

2%! 1<1SA
MAX (1-1,A) + MAX (1-2,A) + - - - + MAX(1-A+1,A) T>A

MAX (tA) =

Proof. The correctness of the recurrence relation may be seen as follows. Consider an
infinite rooted tree in which all nodes have degree A. With the root of the tree being the
originator, we wish to know how many nodes of this tree may be informed during time
step T. During each step T < A, each informed node has unused edges which may be used
to inform an uninformed node. Thus we generate MBT (2*) and consequently 2% nodes
are informed during time step T. Now, consider any T > A. Every node which is first
informed at time step T—-A+1 has exactly A-1 edges by which it can inform other nodes.
Since it may inform only one node per time step, it will inform one node during time
steps T-A+2 ,T-A+3, ...,T. Thus every node which becomes informed at step T—A+1
will inform a node during time step t. Similarly, every node which becomes informed at
time step T-A+k will inform a node during steps: T-A+k+1,t-A+k+2,...,t. This
yields the stated recurrence relation. &

The relation of lemma 3-1 can be used to determine the maximum number of nodes
which can be informed in a tree T with maximum degree A, in ¢ time steps. Let M (¢,A)

represent this number. Then we have

t
M(@,A) = Y MAX(i,A) 3.1

i=1
Table 3-1 shows the values of M (z,A) for A=2,3,45and ¢t = 1, ...,20. The entries in
the second through fifth columns of the table are the values of M (z,A). The last column

gives the lower bound on the number of nodes which must be informed in order for a tree

38

Table 3-1. The values of M (1,A).

t A=2 A=3 A=4 A=5 Minimum
0 1 1 1 1 0
1 2 2 2 2 1
2 4 4 4 4 2
3 6 8 8 8 4
4 8 14 16 16 8
5 10 24 30 32 16
6 12 40 56 62 32
7 14 66 104 120 64
8 16 108 192 232 128
9 18 176 354 448 256
10 20 286 652 864 512
11 22 464 1200 1666 1024
12 24 752 2208 3212 2048

13 26 1218 4062 6192 4096
14 28 1972 7472 11936 8192
15 30 3192 13744 23008 16384
16 32 5166 25280 44350 32768
17 34 8360 46498 85488 65536
18 36 13528 85524 164784 | 131072
19 38 21890 157304 317632 | 262144
20 40 35420 289328 612256 | 524288

to be an MBT. For example, with =5, 17 or more nodes must be informed for the tree to
be an MBT. If 16 or fewer are informed, then by definition, this cannot represent an
MBT. The table indicates in particular, that the largest MBT with maximum degree 2 has
6 nodes. This is because with A=2 and ¢ =4, at most 8 nodes can be informed and thus, by
definition, the tree will not be an MBT. The table also shows that if a tree with maximum
degree 3 has more than 66 nodes, it is not possible to complete broadcasting in 7 time
steps. Thus no MBT with maximum degree 3 may have more than 66 nodes. Similar
claims may be made regarding trees with higher maximum degrees.

Theorem 3-3: Let T (V,E) € SMBT (N) and A be the number of levels in T'. Then

<A< [logNT.

log N1]
2

39

Proof: The right hand inequality can be seen by recalling that by Theorem 3-1, T is a
subgraph of MBT (2"), where k = rlog N1. By property 6, the number of levels in
MBT (2") isk = [logN]. We prove the left hand inequality by contradiction. Suppose
A < [k721. First, note that T cannot have fewer than 2°~'+1 nodes (otherwise it will not
belong to SMBT (N)). By property 5, the number of nodes in MBT (2") has a binomial
distribution over the levels of the tree. Embed T onto MBT (2‘) and then remove all
nodes in levels [k/2] and greater. Now we consider two cases.

Case 1: k is odd. The distribution of nodes is symmetric with respect to the levels in the
tree. Here we have removed exactly half of the nodes from MBT (2"), so that the number
of remaining nodes is 2+1,

Case 2: k is even. The distribution of nodes is asymmetric. Here we have removed the
middle level as well as the levels below it, and the number of nodes remaining is less
than 257,

In both cases, we must have removed nodes from T in the pruning process, since the
pruned tree has fewer nodes than T is required to have. This yields the contradiction. B
Theorem 3-4: Let T(V,E)e SMBT(N) and p be the number of leaves in T. Then,
p<2 flog N1-1

Proof: Let k = [log N1 and embed T within MBT (2"). Recall property 7. Now prune
MBT (2") by removing leaves, one at at time, to yield T. Clearly, the pruning process

cannot increase the number of leaves. B

3.3.3. Broadcast times for general trees

We have seen that for an arbitrary tree T, [log N1 <bz(T) < N-1, and by applying
some of the above results we can further refine these bounds. Even so, this represents a
large range of broadcast times. We examined all possible trees on N nodes (1 <N <10)
and have noticed that in a large percentage of these, broadcasting can be done in the

optimal or near optimal number of steps. This motivated us to investigate the distribution

40

of broadcast times for all the trees of a given order.

In [WROMS6], an algorithm is presented which generates all free trees of a given
order. Combining this algorithm with the algorithm to compute b¢(T) from [SICHS81],
we wrote a computer program to calculate the distribution mentioned above, for all ord-
ers N,4 SN <28. Verifying the correctness of the program was done by carefully deter-
mining that each algorithm was accurately translated into the C programming language
and by comparing the results of the program for trees up to order 10 with previously
known results. The results are given in Table 3-2, from which we make the following

observations.

Table 3-2. Distribution of broadcast times for all trees, T,4 < |T | <28.

Order of Tree
T|4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
17]0 o 0 0 0 O O 0 0 0 0 0 0 0 0 0
2|1 0 0 0 0 O O 0 0 0 0 0 0 0 0
311 2 4 2 1 0 O 0 0 0 0 0 0 0 0 0
410 1 1 7 17 28 42 46 45 29 16 4 1 0 0 0
S$10 0 1 1 3 14 52 147 370 788 1543 2727 4516 6867 9758 12715
6/0 0 0 1 1 3 7 30 105 39 1293 3935 10970 28407 69110 159211
7170 0 0 0 1 1 3 7 19 63 229 848 3134 10951 36354 114449
8]0 0 0 0 o0 1 1 3 7 19 47 14 494 1840 6974 26142
9]0 0o 0 0 0 O 1 1 3 7 19 47 127 359 1136 3977
10(j0 0 0 0 0 O O 1 1 3 7 19 47 127 330 926
11/]0 o o 0 0 O O 0 1 1 3 7 19 47 127 330
12]0 0 0 0 0 O O 0 0 1 1 3 7 19 47 127
3]0 0 0 0 0 O O 0 0 0 1 1 3 7 19 47
4]0 0 0 0 0 O O 0 0 0 0 1 1 3 7 19
5|0 o 0 0 0 O O 0 0 0 0 0 1 1 3 7
6|0 0 0 0 0 O O 0 0 0 0 0 0 1 1 3
171]0 0 0 0 0 O O 0 0 0 0 0 0 0 1 1
180 o 0 0 0 O O 0 0 0 0 0 0 0 0 1

41

Table 3-2 (cont’d).

Order of Tree
T 20 21 22 23 24 25 26 27 28
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5| 15334 16814 16818 15022 11966 8249 4900 2390 954
6 | 350268 739433 1505525 2963910 5657301 10480329 18865609 33004506 56130583
7 | 343884 989511 2741135 7336006 19039628 48059182 118308484 284672624 670891043
8 | 94433 328241 1097455 3542358 11075203 33654560 99685018 288543207 817941510
9| 14990 57687 219887 816259 2936970 10237157 34637275 114047524 366427678
10 2732 8971 32196 122918 478692 1853958 7035486 26016218 93624639
11 889 2424 6938 21293 nm3 262261 1011898 3985601 15655171
12 330 889 2378 6506 18162 53365 168262 578628 2146253
13 127 330 889 2378 6450 17577 48756 139014 417062
14 47 127 330 889 2378 6450 17510 47986 132470
15 19 47 127 330 889 2378 6450 17510 47907
16 7 19 47 127 330 889 2378 6450 17510
17 3 7 19 47 127 330 889 2378 6450
18 1 3 7 19 47 127 330 889 2378
19 1 1 3 7 19 47 127 330 889
20 0 1 1 3 7 19 47 127 330
21 0 0 1 1 3 7 19 47 127
2 0 0 0 1 1 3 7 19 47
23 0 0 0 0 1 1 3 7 19
24 0 0 0 0 0 1 1 3 7
25 0 0 0 0 0 0 1 1 3
26 0 0 0 0 0 0 0 1 1
27 0 0 0 0 0 0 0 0 1

42

Observations from Table 3-2.

1 The distribution is heavily skewed towards the lower values of t. That is, in the vast
majority of trees of a given order , broadcasting can be accomplished in near the
theoretical minimum time.

2 A pattern is evident in the "tails" of each column. Most obvious is the diagonal of
1’s at the end of each column. Moreover, moving from left to right, the entries in
each tail become fixed after a certain point. For each column after the "10" column,
the last 4 entries are always 7,3,1,1. In fact the number of "fixed entries"” increases

by one for each even tree order.

3.4. Broadcasting in Binary DeBruijn Graphs

Binary De Bruijn graphs (BDG) are graphs whose interconnections are determined
by a simple coding scheme based on a numbering of the vertices in the graph. Networks
modeled after binary De Bruijn graphs will be referred to as binary De Bruijn networks
(BDNs). It has been shown that many network topologies can be embedded within
BDNs. The ring, one dimensional array, complete binary tree and shuffle exchange net-
works are some examples of such networks. Each of these networks is particularly well
suited for solving certain classes of problems [SaPr89]. For example, the shuffie
exchange network admits efficient computation of FFT; a one dimensional array network
is effective in solving problems in the pipeline class, among which is matrix-vector multi-
plication. A single BDN can be configured to act as any of a number of special purpose
networks and thus can serve as a general purpose network for the efficient solution of a
diverse set of problems. These facts make BDNs an attractive choice for the architecture
of an MC.

We have noted some of the issues related to broadcasting in general graphs. For an
arbitrary graph, determining an optimal broadcast schedule is NP-hard. We have given a

lower bound for bt(G) and noted that the value of bz(G) is related to the maximum

43

degree of G. In this section, we consider the problem of broadcasting in BDNs. We first
give a precise definition of binary De Bruijn graphs and some of their properties. Then
we present a distributed algorithm for doing broadcasting in BDNs which requires
(2-log, N¥)-1 time steps where N is the number of nodes in the network.

3.4.1. Binary De Bruijn graphs

The binary De Bruijn graph, BDG (n), has 2" vertices and can be constructed using
procedure 3.1. It is not difficult to see that each vertex (b,_,,b, ,, - ..,by) in BDG (n) is
adjacent to vertices (b,_,.b, s, ...,bp®) and (o, b, ,,...,b,) where ae (0,1}
This makes BDG (n) a regular graph with the degree of each vertex equal to four.
Procedure 3.1 Construct BDG (n).

1. Label the 2" vertices using distinct binary n-tuples (b,_,.b, _,, . . . ,.by).

2. Connect (via an edge) each vertex (b,_,.b, , ...,by) to vertices
(bp_gby_zs---:bp,0)and (b, _5.b, 3, . ..,by1).

The fact that the A(BDG (n)) = 4 (the number of connections at each processing
element is fixed) and the diameter of BDG (n) is equal to n means that the diameter of
the network increases only logarithmically with the number of vertices. This makes
BDG (n) particularly attractive as an interconnection network. Additionally, many use-
ful topologies are contained in BDG (n) including a 2" vertex linear array, a 2" vertex
ring, a (2"~1) vertex complete binary tree, a (3-2"2-2) vertex tree machine, and a 2"
vertex one-step shuffie-exchange graph [SaPr89]. As mentioned in Section 3.4, each of
these topologies is useful for solving various classes of problems. The fact that De Bruijn
graphs can accommodate these topologies makes them an especially powerful topology.

The construction given in procedure 3.1 implies that the two vertices with n-tuple
labels (0,0,...,0) and (1,1,...,1) have a loop edge. Further, the two vertices with
labels (0,1,0,1,...,) and (1,0,10,...,), (i.e, alternating O’s and 1’s) have 2 edges
between them. In a practical situation, the loop edges would not be used and the doubled
edge would be implemented as a single edge. Figure 3-7 shows BDG (4) with the above
modifications. In what follows, BDG (n) will refer to this modified graph.

Figure 3-7. The graph BDG (4).

3.4.2. A distributed broadcast algorithm for BDG(n)

In this section we present an algorithm which generates a calling schedule for
broadcasting in BDG(n). Observe that bt(BDG(n))2n; however, in general
bt (BDG (n)) > n. This is due to the fact that A(BDG (n)) is a constant. The formula 3.1
from Section 3.3.2 can be used to rigorously prove that BDG (n) is not a minimum broad-
cast graph in general. Our broadcasting algorithm for BDG (n) generates a calling

schedule that requires exactly (2n—1) time steps to complete broadcasting, irrespective

45

of the choice of the originator. Also, the control of the broadcast process described by the
algorithm is distributed, in the sense that each vertex can determine to whom it should
transmit the message. It is only required that the label of the originator of the broadcast
accompany the message.

Central to our broadcast algorithm is an integer valued function BTS (A), called
broadcast time step function, defined on binary m-tuples A. Let
A=(@,_ a4, , ... ,ay anddefine X (g a;), 0 i,j Sm-1,as follows:

2 ifa; @ a; = 0
K (a; 'al) =

1 otherwise
where @ is the binary Exclusive-OR operation. BTS is used to determine the time step
when a vertex becomes informed. Now, if m <1 then BTS (A) = 0, otherwise BTS (A) is

defined as:

m-2
BTS(A) = Y K(a;.a;,,)
i=0

Example 3.1 Let A = (1,0,1,0,0,1,0). Then BTS(A) = 1+1+2+1+1+1 = 7. Note that the
value of BTS (A) is maximum if and only ifa, _, =a,_,= --- = a,, and the maximum
value is 2(m-1).

Intuitively, our broadcasting algorithm proceeds as follows. Each vertex will inform
at most two of its adjacent vertices. In particular, for a vertex B = Bp_ysbpy_ys - - - sb)s
let LSNE (B) and LSCE (B) be two of its adjacent vertices whose labels, respectively,

are
LSNEB) = (b, b, . .- .bpby) and LSCE®B)= (b, pb, 3 - - -,bobp)

where b-‘ is the bit complement of b;. (LSNE and LSCE stand for Left Shift with Normal
Extension and Left Shift with Complement Extension, respectively.) Vertex B will
attempt to inform vertices LSCE (B) and LSNE (B), and in that order provided that these

vertices have not already been informed. Observe that this scheme implies that a vertex

46

Algorithm 1.
1: Find the largest i such that

B = (by_pbpy---2bg) = i_18; - -1 Sgbpiyibp g -1
2: /* check LSCE neighbor */
IF LSCE(B)=S goto4.
ELSE find the largest j such that
LSCEB) = (8;_ySj 3 - - - +Sobp_j2Pn-j3r - - - 1 Dosb)
32 IF BTS(Sob,_jpbnj3---bgbe) > BISGob, ;i 1B, ;o ---.bg
THEN inform LSCE (B).
4: /* check LSNE neighbor */

IF LSNE(B)=S STOP
ELSE find the largest k such that

LSNE (B) = (sk_l,sk_2, “e ’SO’bn-k-Z'bn—k—3’ e ,bo,bo)

5: IF BTS(sgb, ; pby s -+ bobg) > BIS(qby i 1By i -+ 1bg)
THEN inform LSNE (B). STOP.

can potentially get informed from two other vertices, since for any vertex
A =(a,_ 4, ,-..,a, there are exactly two other distinct vertices X and Y such that

either LSNE (X) = LSNE(Y) = A or LSCE (X) = LSCE(Y) = A, namely,
X=0a,_,4a,,...,a;) and Y =(,a,_,.a, ,,...,a,).

The function BTS will be used to check whether a vertex is already informed or not. We
proceed by stating our broadcast algorithm, Algorithm 1, formally. An example of its
execution is given, and then we prove a theorem which implies the correctness of the
algorithm. It is assumed that the broadcast originator is vertex § = (s,_;,5, o, - - - »5¢)
and this information accompanies the broadcast message. Each vertex B, in BDG (n),
once informed of the broadcast message, will perform Algorithm 1.

Example 3.2 Let us trace its execution for vertex B = (1,0,0,1) when the network is

BDG (4) and the originator of the broadcast is vertex S = (0,0,1,0). In this case,

47

LSNE (B) is the vertex (0,0,1,1) and LSCE (B) is the vertex (0,0,1,0). The value of i
found in step 1 is 2. Since LSCE (1,0,0,1) = (0,0,1,0) = S, execution will continue from
step 4. In step 4, the value of k is found to be 1. Thus, in step S we have:

BTS (sg,b.bgby) = BTS(0,0,1,1) = 2+1+2
and
BTS(sqbyby) = BTS(0,0,1) = 1+2,
and therefore since BTS (s3,b,b0,by) > BTS(sqb,.by), LSNE (B) will be informed.

The broadcast process in BDG (4) is illustrated in Figure 3-8. The arrows indicate
the direction of the broadcast and highlight the spanning tree that is induced by the
broadcasting. Note that, as in example 3.2, node 9 informs node 3 and not node 2, since
node 2 is the originator.

Theorem 3-5. Let vertex S = (s,_,,5,_5 - - .,5g) be the originator of a broadcast in
BDG(n). Also, let A =(a,_,.a, ,,...,a, be an arbitrary vertex in BDG (n) and find

the largest i such that
A =@, 18,5 ...80) = (159 SoBu i 1B 80
Then, using Algorithm 1, vertex A is informed at the end of time step
T(A)=BTS(So,_; 1y 3-89

Moreover, at the end of time step (2n-1) all vertices are informed.

Proof: We prove the theorem by induction on the number of time steps. Clearly, only
T(S) = BTS(s,) = 0. Now suppose the theorem is true for all vertices B with T(B) <k,
and let A be a vertex such that T(A)=k+1. Consider the vertex
X =(5;85_1s - 1S08p_i—18nig - - - 137) where i is defined as in the statement of the
theorem. Observe that vertex X is adjacent to vertex A in BDG (n), since we either have

LSNE(X)=A or LSCE(X) = A. Also,

48

6 Teell
-~
.~
-
5 Se~ao
-~
G ®
4 ’
' PR
' <
’
1 2 4 [}
! 04 02 !
' '
' 3 . '
[\J -7 1
) A e '
' \ P2 '
f \ s 1 '
' \ . 1
\ -
: P 5 :
-
1 % '
] —,o L]
] —',f \ 2]
_-
Q B G ®
6 ="
1 / -==" '
' U - 1
-
' S TN~ " _e-"" 3 '
| O '
1 ’ '
' /) 5 4 1
1 '
1) '
1 , '
1 '
! ‘;) ‘I’ '
1 '
1 , 5 '
1 L’ 1
) .,)
'
’t 6 '
@ g
~.
-~ 7
-
..
-
~.
-
RO

Figure 3-8. An example broadcast in BDG (4) using Algorithm 1

T(A)= BTS(spa,_; 18p_;_3 ---+80)
= BTS(sy@,_;_18, ;3 ---,8;) + BIS(a,.ay)

T(X) + BTS(a,ay.

Since BTS(a,.a,) 21, we have T(X) <k. By the induction hypothesis, vertex X was
informed by the end of time step T (X). We now consider the following two cases:

Case 1: a, @ a,= 1. This means that BTS(a,.a,) =1 and thus we have T(X) = k.
Also, in this case, LSCE (X) = A, and therefore, by step 3 of Algorithm 1, vertex A will

49

be informed at the end of time step k+1.
Case 2: a, @ a,=0. This implies BTS (a,,ay) = 2 and thus we have T(X) = k-1. In
this case, LSNE(X) = A, and therefore, by step 5 of Algorithm 1, vertex A will be
informed at the end of time step k +1.
In both cases, vertex A is informed at the end of time step T(A). Note that when
A = (§pSg - - -5y T(A) is maximum. In this case, T (A) = 2n-1. Therefore, at the end
of time step (2n-1) all vertices are informed. B

The above theorem and the inequalities in step 3 and step 5 of Algorithm 1 ensure
that each vertex receives the broadcast message exactly once. Thus Algorithm 1 satisfies

the criteria of local broadcasting.

Chapter 4

Fault-Tolerant Loop
Architectures

The large number of components (processors, memory units, etc.) in an MC, cou-
pled with the demands placed on them by the types of applications that they are intended
to be used for, make reliability concerns a very important issue. We noted in Chapter 1
that one method of improving reliability is to design a system in such a way that it will be
able to tolerate component failures and still remain operational. For an MC, fault-
tolerance at the system level (also referred to as the topological level) implies that the
type of faults to be tolerated are processor and/or link failures, and an MC (by an MC we
will often mean its topology) is said to be fault tolerant if it can remain functional in the
presence of such failures. It is, however, the topological requirements of the application
that essentially determine when an MC is considered to be functional.

Two basic functionality criteria have received much attention. According to one of
these criteria, an MC is considered functional as long as there is a nonfaulty communica-

tion path between each pair of nonfaulty processors [ArLe81, PrRe82, RaGA8S, Boes86,

50

51

Esfa88]. In other words, the underlying topology of the MC should remain connected in
the presence of certain failures. Both processor and link failures have been considered in
the literature. This fault-tolerance model is particularly applicable to large-scale MCs
that are to execute concurrent algorithms whose performance is mostly insensitive to
infrequent changes in the topology of the system. Such MCs generally permit graceful
degradation.

The second functionality criterion considers an MC functional as long as a desired
topology is contained in the system. In the past few years much work has been done in
developing parallel algorithms and the best MCs for their executions [Quin87]. For these
algorithms, the existence of certain topologies is a significant factor in delivering the
desired performance. Thus, for such applications, the system should be able to provide a
specific topology throughout the execution of the algorithm. The existing work on such
fault-tolerant topologies has mainly considered processor failures. The basic approach
in achieving fault-tolerance when this functionality criterion is used is to employ
system-wide redundancy. Two topologies that have received much attention are the ring
and the rree [Haye76, KwTo81, RaAE84, LoFu87, DuHa88]

Here, fault-tolerance will refer to the second functionality criteria, and we will con-
sider only processor failures. We assume that all failures are permanent and that some
diagnosis mechanism is available to detect and isolate the faulty processors. Further, it is
assumed that in the event of processor failures, some mechanism exists that allows the
system to be "reconfigured” (using redundant processors) to maintain the desired topol-
ogy. This also implies that as a part of this process, the tasks assigned to the faulty pro-
cessor can be successfully shifted to a fault-free processor. Neither the diagnosis nor the
reconfiguration problems will be addressed here [YaHa86).

In designing such a fault tolerant topology, the number of faults to be tolerated is
specified a priori. Given this value, say &, a topology is determined such that the desired
sub-topology can be realized given any collection of k faults. In previous work, the

52

primary design criteria has been to employ the minimum number of redundant processors
in deference to other parameters, such as the number of communication links, etc. The
overriding rationale for this choice has largely been economic: processors are usually the
most expensive component. However, using the absolute minimum number of spare pro-
cessors has typically forced these designs to incorporate a very large number of redun-
dant communication links; in graph theoretic terms each vertex has very "high" degree.
From a practical perspective this presents a problem in that processors have only a finite
(usually quite small) number of communication ports. For large scale systems these
designs can only be used to achieve low levels of fault tolerance, since for high levels,
the number of ports needed would exceed the number available. Additionally, in terms of
VLSI and WSI technology, one of the primary design concemns is overcoming pin-
limitation and layout problems; designs which require large numbers of links only exa-
cerbate these problems [ChCD88, Dall88].

In this chapter, we present an alternate primary design criterion and employ it in the
design of fault-tolerant loop topologies. The basic idea is to place a bound on the max-
imum number of connections at each processor and determine the number and
configuration of redundant components required to achieve a specified level of fault-
tolerance. Loops are a common interconnection topology and are important in their own
right. However, as many other topologies have loops "embedded” within them, results
relating to the construction of "low" degree fault-tolerant loops can give insight into the

feasibility of such constructions for other topologies.

4.1. Background

In this section we introduce some additional terminology, definitions and a formal
statement of the problem we will consider. As we have done throughout this disserta-
tion, we model the topology of an MC by a graph G (,V ,E). In particular, a loop intercon-

nection network connecting N processors is modeled by the cycle Cy,. The failure of a

53

processor is modeled by the removal of the corresponding vertex and its incident edges in
the graph.

As previously mentioned, in this model an MC is functional as long as a desired
structure is contained within the system. This criterion was first formulated by Hayes
and can be stated formally as follows [Haye76). Let G (V ,E) represent the topology of
an MC and D (V ,E) be a desired structure. Then, G is k-fawlt-tolerant (k -ft) with respect
to D, if for any set of faulty vertices F c V(G), with | F | = k, the graph D ¢ G - F.
We also say that G is a k-ft D graph. Thus, G is a 1-ft N-cycle means that
Cy € G — {v) for each ve V(G). It is clear from this definition that G is a k-ft D graph
implies | V(G) | 2 | V(D) | + k. For a given graph D, and specified integers k and m,
the set of all k-ft D graphs G, with | V(G) | = | V(D) | + m, will be denoted by
I, [D m).

Using the above definition, several classes of problems can be formulated by impos-
ing certain requirements on the graph G. The problem originally proposed by Hayes can
be stated as: Given a graph D, and a positive integer k, construct an "optimal" graph, G,
which is k -ft with respect to D. The optimality criteria considered in [Haye76] is:

@ |VG)|=|vD)|+k
(b) |E(G) | is as small as possible subject to (a).

In [Haye76] three candidates for the graph D are considered, namely cycles, trees
and simple paths. In particular, a construction is given for G when D is a cycle of even
order. In this case, G is a (k +2)-regular graph. A similar construction is also given for
the case of D being a cycle of odd order. The work of Hayes was followed by the results
in [KwTo81, RaAE84, LoFu87, DuHa88]. In these papers the authors have adhered to
the same optimality criterion, but imposed additional restrictions on the set F. For exam-
ple, in [RaAE84] the case of D being a binary tree is considered with the additional res-

triction that failures only occur at different levels of the tree.

54

The criterion (a) alone dictates that the number of spares be exactly equal to the
desired level of fault tolerance. When no additional restriction is placed on the set F,
this criterion implies 8(G) 2 8(D) + k. Thus the degree of each vertex in G is at least
proportional to the number faults to be tolerated. Since current technology limits the
number of connections at each processing node (and it seems this constraint will persist
for some time to come [ChCD88, DAII88],) the above optimality criteria may not be
viable in certain situations.

To address the above concern, we propose the following modified version of the
problem. Given a desired graph D and positive integers k and r, construct a graph G
such that:

(a) D is a subgraph of G—F for any set F c V(G), with |F | = k.

(b) G isr-regular, and

() no graph satisfying (a) and (b) above has fewer vertices than G .

It is clear that this problem may not have any solution for certain choices of D, k, and r.
A case in point, when r=2 and D = Cj,, there is no solution G for any k. Thus 3 is the
smallest value of r for which a solution may exist for the case of D = Cy,.

In the sequel we will consider the modified problem for the case =3 and D = C,,,
N even. We will show that no solutions using exactly k spares exist; thus we must incor-
porate "extra" redundancy into the design. In fact, we show that the minimum number of
spares required is bounded by 2k, thatis | V(G) | 2 | V(D) | + 2k, and we will exhibit
a class of graphs, called Chordal Rings for which the lower bound is achievable for
k=1,2,3. Further, this result will be shown to be "optimal” in the sense that higher levels
of fault tolerance cannot be achieved for this class of graphs using the minimum number

of spares.

55

4.2. Chordal Rings as k -ft Cycle Topologies

In this section we will define the Chordal Ring class of graphs, and we examine the
extent to which they can serve as fault-tolerant graphs for Cy,. The results are presented
in the form of several theorems, organized as follows. Theorem 4-1 establishes a lower
bound on the number of spares required by the use of cubic (3-regular) graphs.
Theorems 4-2 and 4-3 establish that certain members of the chordal ring class are 1-ft
and 2-ft for C,. Two lemmas are given to establish Theorem 4-4, which provides a
necessary condition for any graph G to be a member of the class I',[Cy,2k]. This
theorem is used in proving Theorem 4-5, which establishes that 3-ft is the highest level of
fault-tolerance that can be achieved using Chordal Rings. Finally, in Theorem 4-6, we
prove that this level of fault tolerance can be achieved by the chordal rings CR (M ,7).
We begin with some additional definitions that we make use of in the proofs.

Definition 4.1. A fault-set F is a set of faulty vertices.

Definition 4.2. Given a graph G and a desired graph D, a vertex v is unusable with
respect to a given fault set F, if no subgraph of G — F isomorphic to D contains v.
Example 4.1 Let G be 3-regular and the desired graph D be a cycle. Let {u,,u,u;} C
V(G) and ((u,,u,),(upU3)} € E(G). Then the fault set {u,,u;} makes u, unusable
because u, has only one edge connected to a non-faulty vertex in G, implying that u,
cannot be a vertex in any cycle. Itis "trapped” between two faulty vertices. Note that by
this definition any faulty vertex is unusable. A vertex is usable if it is not unusable.
Definition 4.3. Given a graph G, a fault set F, and a desired graph D, the set of all
unusable vertices induced by F will be denoted U (F) or simply U.

Clearly, a necessary condition for a graph to be k-ft for C, is that there be N usable
vertices for every fault set F of order k. In other words, the maximum cardinality of an
unusable set may not exceed the total number of spare vertices. As we have noted, the
tradeoff in using cubic graphs for k-ft cycles is that we must include "extra” spare ver-

tices in the design. Theorem 4-1 establishes the lower bound (cited earlier) on the

56

amount of redundancy required.
Theorem 4-1: Let G € I', [Cy, ;m] be 3-regular and connected. Thenm 2 2k-1.
Proof. By definition, there is an N-cycle in G. Label the vertices of this cycle
VoV 1s-sVy_; and consider the fault set F = {v,,v,,...,v,,_,}. As in the example 4.1,
the failure of the vertices v,; , andv,; ,,1<i <k-1, "traps" the vertex v,;, making it
unusable. Thus all the vertices "between" such pairs of vertices in F are unusable. This
gives {v,,v,,...,v,, ;}JcUandhence |U | 22k-1. 8

Since we are considering designs for even N, Theorem 4-1 and the fact that there
exists no cubic graph of odd order imply that the minimum number of spares is at least
2k. Hereafter we restrict our attention to cubic graphs having this minimum number of
spares, i.e., those in the class I',[Cy,2k]. In addition, we will consider only the cases
where k < N/2. This seems a reasonable requirement for large scale systems and elim-

inates many special cases in the proofs.

4.2.1. Chordal rings

A chordal ring of degree 3, hereafter referred to simply as a chordal ring, is a 3-
regular Hamiltonian graph. Clearly, chordal rings are of even order. Following [ArLe81]
we define a specific class of chordal rings, CR (N ,w), which can be constructed using
Procedure 4.1. The parameter w is called the chord length which is required to be odd
and at least 3. Note that CR (N ,w) is bipartite with v; and v, , being in different parti-
tions. Without loss of generality, we will assume that w SN/2. The chordal ring
CR (20,3) is shown in Figure 4-1. (For sake of readability, we have labeled the graphs in
the figures using integral labels, i.e., vertex v; is labeled simply i.)

Procedure 4.1. Construct CR(M ,w)
1. Construct a cycle of order M ; labeling the vertices 0,1, - - - ,M-1.
2. Foreachi,0<i < (M-1)/2, add the edge (2i,j) where j = (2i + w)mod M.

57

Figure 4-1. The Chordal Ring CR(20,3).

4.2.2. Fault tolerance of CR(N,w)

As we noted earlier, two solutions for 1-ft cycles were given in [Haye76]. The solu-
tion for even cycles has A = 4, while the solution for odd cycles is cubic. We have
noticed that Hayes’ solution for 1-ft C 2j+1 (using one spare) can also serve as a 1-ft C2j
(using two spares). In fact Hayes’ design is the chordal ring CR (2j+2,3). Thus such
chordal rings belong to I‘l[Czj ,2]. The following theorem establishes a stronger result
for 1-ft cycles.

Theorem 4-2: For any even N 24, CR(N+2,w) € I'|[Cy,,2], where w is as defined
above.

Proof. Let N be given and let the vertex set of CR(IN+2,w) be V = {vy,v,, - - vy,).
Without loss of generality, let F = {v,}. Then it is not difficult to see that the N -cycle

58

ViVaVs " WNs-w YN 1YN Y T T VNGV)

is contained in CR(N+2,w)-F. B

For the 2-ft case, we have proved [ZiEs89] that no cubic graph exists for N =4, and
we thus consider N26. The next theorem establishes that for such N, the chordal rings
CR (N +4,3) are 2-ft for C,,.
Theorem 4-3: Forany even N 26, CR(N +4,3) € T,[C), 4].
Proof. Let N be given and let the vertex set of CR(N+4,3) be V = {v,v,, " - -,y 5}
To establish the result, we must show that for any fault set F = {x,y J cV,Cy C
CR (N +4,3) - F . Since the design uses 4 spare vertices, for any fault set F as above,
two additional vertices will not be used in the resulting cycle. The two faulty vertices and
the two additional ones will be referred to as the inactive vertices for the fault F.
Without loss of generality, we let x = v and consider the possibilities for y. There are 3
cases:

Casel. y =v, Consider the two paths:
VaVeVpVe " VaicpVais T T sVN-1YN N 41
VaVsVeVe " " VaiaVsaiv1 " " VN-3YN-2VN 41 -

These two paths have only the vertex vy, in common. A cycle of order N can be
formed by concatenating the two paths and including the edge between v, and v,. Note
that the vertices vy, _, and v, _, are inactive in this cycle. An example of such a cycle is
given in Figure 4-2 for CR(20,3). The edges in the 16-cycle are shown as solid lines;
dashed lines represent unused edges.

In the remaining two cases we will exploit the Hamiltonian cycle shown in Figure
4-3 to establish the result. This cycle is made up of paths of the form v, _,,v,.,V,; , 4; that
is, an edge from the "peripheral” cycle followed by a chord in the "opposite" direction. It
is clear that such a cycle always exists in CR(M,3). The salient feature of this Hamil-

tonian cycle is that we may remove any two "endpoints” of a chord and using an edge

Figure 4-2. A 16-cycle in CR (20,3) - {0,1}.

previously not used, obtain a new cycle without altering any other edge or vertex in the
original cycle. The order of the new cycle is obviously two less than that of the initial
one. For example, we may remove the vertices v, and v, in Figure 4-3 and employ the
edge (v,,v,) to obtain the cycle shown in Figure 4-4.

Case 2. y-= v; ,j#1,3 In this case, an N-cycle can be obtained by removing the
chords (i.e., their endpoints) corresponding to the faulty vertices as discussed above.
Case 3.y =v, . Here, the two faulty vertices are the endpoints of a chord. To obtain a
cycle of the correct size, we choose the endpoints of any other chord in the graph (with
the exception of the pair v, vy,_,) and remove them to obtain a cycle of the desired size
as in case 2.

Thus for all combinations of 2 failures we can obtain a cycle of order N. B

60

We have shown that CR (N +2k ,w) € T, [Cy,,2k] for k=1,2 and w=3. We will next
show that the 3-ft is the best that can be achieved from chordal rings using the minimum
number of spare vertices. To do this we need the following results.

Lemma 4-1: Let G be a 3-regular and connected graph. Further, let G € T',[C)y,,2k].
Then the girthof G, g(G) 2 k+1.

Proof. By contradiction. Suppose G has a j-cycle C;, jsk. Consider the set
A={v|vé Cj , v is adjacent to some vertex u € Cj). Call A the adjacentsetoij
and let | A| =m. Note that m < j, since each vertex in C, has one incident edge not in
the cycle with which to connect to another vertex in G. Suppose all the vertices in A
are faulty. The vertices in CJ. are "trapped” by the fault set A and thus (A L Cj) cU.
Since G is k-ft for C,, and m <k, there is an N-cycle in G which does not include any
vertices in A qu. Let wow,,...,wy_;,W, be such a cycle. Since G is connected,
there is a path between some vertex v, €A to a vertex w, in the N -cycle which does not
include any other vertex in A. Let this path be P =vu,u,,..., W Note that the
path P may be of length 1. Now extend P to P by concatenating with it the path formed
by the vertices of the N-cycle: P’ =v,u,.u,,... Wy WoW1s oo Wy So, we have
established that there is a path beginning at v, of length at least N, which does not con-
tain any vertices of A U Cj other than v,. Let us relabel P°, denoting the first 2k —2m +2

VETHCES 85 V3,V ,Vy, - - - ,Vop_om 41 NOW consider the fault set:
F = A | {Vl,v3,) ,vzk_h+l] - {VO]

which contains | F | =m + (k-m+1)—1 = k nodes. This makes the set
[A qu Vv, . --"’2&-2m+1]] cU

and thus | U | 2m + j + 2k=2m +1 2 2k +1, which contradicts the definition of G. B
Lemma 4-2: Let G be as in Lemma 4.1, then g (G) =k +1.

Proof. By contradiction. Suppose G has a k +1-cycle C, and let A be the adjacent set of
this cycle as in Lemma 4.1. If | A | Sk, then the proof of Lemma 4.1 also holds here.

Figure 4-4. An 18-cycle in CR (20,3) - {0,3)

62

and (C UF)cU. This implies |U |2k+1+ k =2k+1 which contradicts the
definitionof G. W
Lemmas 4.1 and 4.2 give us the following theorem.
Theorem 4-4: Let G be a 3-regular and connected graph. Further, let G € T, [Cy,,2k].
Theng(G)2k+2. 1

We are now ready to state the following theorem which indicates that 3-ft is the
highest level of fault-tolerance that can be attained with Chordal Rings using the
minimum number of spare vertices..
Theorem 4-5: CR (N +2k,w) ¢ T, [Cy,,2k] for any k24.
Proof. For any values of N and w as defined above, the graph CR (N,w) contains the
cycle induced by the edge set:

{(vgsv) s (V1) (V23 V12) s Va0 Vi st) s (V10 V) - (0, 5 V) -

This implies that g (CR (M ,w))<6 and therefore from Theorem 4 the conclusion holds for

k 25. For k =4, consider the fault set

F = {voVyV 4Vn s2k-w42)-
This makes the set

F* = FOv V3 VN ok +1VN s2k-w43) €U

Since five of these vertices all belong to one set of a bipartition of CR (N +2k,w), the
largest cycle that can exist in CR(N +2k,w) —F" is Cy 5, o This gives the desired
result for k=4. &

The final theorem of this chapter, establishes that the chordal rings CR (N +6,7) are
3-ft for Cy, N 220. These graphs have chord length equal to seven. Note that since
8 (CR (M ,3)) = 4, we may conclude from theorem 4-4 that CR (N +6,3) ¢ I';[C),,6] for
any N. In addition, for the chordal rings CR (N +6,5), we have found counterexamples
which show that the graphs are not member of I';[Cy, ,6] for arbitrarily large values of N.

63

Theorem 4-6: CR(N,7) € I3[C,,,6], where M=N—6and N 2 26.

Proof. We need to show that for any fault set F = {x,y,z},Cy, S CR(N,7)-F.

We proceed by specifying fault-sets F, and demonstrating that an M -cycle is present in
the presence of each such fault-set. For some fault sets, a specific cycle will be given
explicitly. In the remaining cases, the existence of an M -cycle in a specific graph or set
of graphs along with an inductive argument will demonstrate that the fault-set can be
tolerated for every CR (N,7), where N is as in the statment of the theorem. The proof
employs four types of inductive arguments, which are illustrated in Figures 4-5, 4-6, 4-7,
4-8. A fifth type of argument (non-inductive) shows how a special class of faults can be
handled. Each of these arguments is described below. In our approach, each fault set is
characterized in terms of the relative distances between its member vertices; the induc-
tive argument is always done in such a way as to preserve these relative distances, and
hence the fault-set itself. .

Figure 4-5 illustrates the most straightforward inductive variation. In the figure, all
the faults are contained "within" one chord. The M -cycle is apparent. It is clear that we
may add a pair of vertices to this graph, (anywhere except between vertices 26 and 5)
extending the cycle by two, and not altering the fault set. We thus obtain a chordal ring
of order N +2, which has an M +2 cycle for the given fault-set. The key characteristic
here is that there be an edge in the M -cycle of the form (2i +1,2i +2) such that there is no
chord in the M -cycle which begins at the vertices 2i —4, 2i -2, 2i. Intuitively, no edge of
the M -cycle "jumps" past the vertices 2i +1, 2i +2. It is clear that in such a circumstance,
we may add any even number of vertices between vertices 2i +1 and 2i +2, which will
establish the pattern for all chordal rings. We will refer to this as the induct-by-two
(IB2) pattern.

The second inductive variation is show in Figure 4-6. The key characteristic is that
there be an edge in the M -cycle of the form (2i,2i +7) (i.e. a chord) and that the edges
(2i +2,2i +9) and (2i —2,2i +5) are not used in the M -cycle. Intuitively, imagine drawing

Figure 4-5. An induction-by-two illustration.

a straight line from the center of the circle, between two vertices such that the only edge
of the M -cycle intersected is a chord. Observe that such a cycle can be extended by
adding four vertices between vertices 2i +3 and 2i +4, as shown in the bottom graph. In
the example shown, 2i = 10 and the four new vertices are labeled "N" for "new". To
make use of this pattern, we will demonstrate the desired cycle in graphs of orders N and
N +2, and then use this property to induct by four to yield the conclusion. We will refer
to this as the induct-by-four (IB4) pattern.

Figure 4-7 illustrates the first of two "induct-by-six" patterns. The key feature in
this first pattern is that the M -cycle "doubles-back" on itself. Intuitively, a line can be
drawn which does not intersect any edge of the M-cycle. Note that "doubling back"
implies the existence of two "corners": vertices 5 and 6 are corners in the upper graph.
Observe that any such cycle can be extended to a cycle with 6 additional vertices as
shown in the lower graph. The extension can be accomplished by removing the peri-
pheral edge (6,7), adding 6 new vertices between vertices 5 and 6 and reforming the

65

Figure 4-6. An induction-by-four illustration.

66

cycle as shown. Note that the extension can be done at either corner. Since this process
adds six vertices, to use it inductively it will be necessary to establish that a cycle exists
for a given fault-set in graphs with orders N N +2,N +4. We will refer to this as the
induct-by-six-A (IB6A) pattern, Figure 4-7.

The fourth variation will be referred to as the induct-by-six-B (IB6B) pattern, illus-
trated in Figure 4-8. The characteristic here is that the M -cycle uses three consecutive
chords (2i,2i+7), (2i+2,2i+9) and (2i+4,2i+13) and does not use the edge
(2i +5,2i +6). The cycle is extended by adding six vertices between 2i+5,2i+6 as
shown (2i = 8 in the example). Again, this situation may be intuitively characterized as
being able to draw a line from the center of the circle between a pair of vertices
(2j +1,2j) which intersect exactly three edges of the cycle, all of which are chords.

The final type of argument we use is illustrated in Figure 4-9. The idea is to identify
a cycle pattern for a specific fault-set and observe that the fault set can be "pushed"” for-
ward and the cycle reformed. In the top graph, the fault is F = {0,3,4,5}. The cycle uses
the edge (1,2) and then "skips over" vertices 3,4,5 using a chord. The cycle then
traverses groups of four vertices connected by peripheral edges, with each group con-
nected to the next by a chord. Observe in the middle graph that the fault-set has been
advanced forward by four vertices, i.e. F = {0,7,8,9}. and the cycle reformed. Essen-
tially, one of the groups of four vertices has been displaced (backwards) by the advanced
fault set. This process can be continued until all the groups of four have been displaced,
as seen in the bottom graph. Note that typically, as in the figure, the cycles we exhibit
have specific patterns before and after the fault-set being advanced. The number of ver-
tices needed by these patterns (before and after) varies between fault-classes, but typi-
cally meets a certain congruence relation and range criteria. For example, the fault class
above can be described as follows. F = {0,2i-1,2i,2i+1), where 4 <2i <N-14 and
N-2i =2 mod 4. This argument will sometimes be used in conjunction with the four

inductive arguments in establishing the result for certain fault-sets. We will refer to this

67

Figure 4-7. An induction-by-six, version A illustration.

68

Figure 4-8. An induction-by-six, version B illustration.

69

Figure 4-9. An advance-by-four illustration.

70

as the advance-by-four (AB4) pattern.

Since the graphs we are considering are bipartite, we may assume without loss of
generality that x = 0 and then consider the possible values for y and z. Note that when y
is odd, by symmetry we need only consider values of z in the range 2y Sz S (N +y-1)/2.
Also, when y is even, we need only consider values of z where 2y <z SN-2y-1.

We proceed by considering several cases based on choices for y. For each case, we

provide a series of specific fault sets, numbered for convenience.

CASE 1. y € {1,2}.

Fault Set: 1 F = {0,1,2,3,4,N-1}. Here, all the faults are contained "inside" a chord,
which can be used to "short circuit” the faulty vertices. See Figure 4-5. This also covers
the fault F = (0,12, N-3,N-2,N-1}.

Fault Set: 2 F = {0,1,2,2i-1,2i,2i-1) , where N-2i =2 mod 4 and 6 S 2i SN-6. See
Figure 4-10. We may apply AB4. The requirement N -2i = 2mod4 simply guarantees
that the number of vertices after the fault is a multiple of four so that the group of four
pattern will work.

Fault Set: 3 F = {0,1,2,2i-1,2i,2i-1} , where N-2i =0 mod 4 and 6 S N-2i S N-20.
See Figure 4-11. We may apply AB4. Here the path after the fault-set requires 18 ver-
tices. The inequality aboves ensures that there are enough vertices for this pattern.

The above fault-sets cover all the odd vertices and all even vertices except
N-16,N-12,N-8,N —4, which are considered next.

Fault Set: 4 F = {0,1,2,N—-16). See Figure 4-12. Apply IB2 to the edge (3,4).

Fault Set: § F = {0,1,2,N-12}). See Figure 4-13. Apply IB2 to the edge (3,4).

Fault Set: 6 F = {0,1,2,N-8)}. See Figure 4-14. Note that the cycle doubles back at
vertices 5 and 6. We may apply IB6A to either corner. It is important to note that we are

not altering the fault pattern, since in this case we may consider the faults to be

71

Figure 4-11. F = {0,1,2,2i-1,2i 2i+1} , N=2i =0 mod 4

Figure 4-12. F = {0,1,2,N-16}.

Figure 4-13. F = {0,1,2N-12}.

Figure 4-14. F = {0,1,2N-8).

74

"contained" between N -8 and 2 (in a clockwise sense from N —8) and altering the graph
outside of this containment preserves the relative distance between faults.
Fault Set: 7 F = {0,1,2,N—4}. See Figure 4-15. Apply IB6A to either corner.

We have covered all possible fault-sets of the form {0,1,2,z }, completing this case.

CASE 2.y =3,6<zsSN/2+1.

Fault Set: 8 F = {0,3,6,7,8). See Figure 4-16. Apply IB6A to either corner.

Fault Set: 9 F = {0,1,2,3,9}. See Figure 4-17. Apply IB6A to vertex N-1.

Fault Set: 10 F = {0,3,4,10,11). See Figure 4-18. Apply IB6A to vertex 12.

Fault Set: 11 F = {0,3,12,13,14}. See Figure 4-19. Apply IB2 to the edge (15,16).
Fault Set: 12 F = {0,3,10,2i{-1,2i,2i +1). Where 14<2i SN-10and N-2i =2 mod 4.
See Figure 4-20. Apply AB4.

Fault Set: 13 = {0,3,10,2i-1,2i,2i+1}. Where 14<2i <N-16 and N-2i = 0 mod 4.
See Figure 4-21. Apply AB4.

This completes case 2.

CASE 3. y =4,8<z<N-3.

Fault Set: 14 F = {0,4,2i-1,2i,2i+1}. Where 8 2i SN-10 and N-2i = 2 mod 4. See
Figure 4-22. Apply AB4.

Fault Set: 15 F = {0,4,2i-1,2i,2i +1}. Where 8 S2i SN-12 and N-2i=0mod4. See
Figure 4-23. Apply AB4.

Figure 4-15. F = {0,1,2N-4).

8.

7

{0,3,6

Figure 4-16. F

Figure 4-17. F = {0,1,2,3,9}.

,10,11}.

= {0,3,4

18. F

Figure 4-

79

Figure 4-19. F = {0,3,12,13,14}.

Figure 4-20. F = {0,3,10,2i-1,2i 2i +1}, N-2i =2 mod 4.

Figure 4-21. F = {0,3,10,2i-1,2i ,2i +1), N-2i =0 mod 4.

Figure 4-22. F = {0,4,2i-1,2i 2i +1)},N-2i =2 mod 4.

Figure 4-23. F = {0,4,2i-1,2i 2i +1)},N-2i =0 mod 4.

82

The previous sets cover all possible values of z in the range 8 S z S N-8. The next three
fault-sets complete this case.

Fault Set: 16 F = {0,4N-8,N-7}. See Figure 4-24. We may apply IB2 to the edge
(5,6).

Fault Set: 17 F = (0,4 N-6,N-5). See Figure 4-25. Apply IB6A to either corner.
Fault Set: 18 F = {0,4 N—4,N-3}. See Figure 4-26. Apply IB6A to either corner.

CASE 4. y =5,105z SN/2+2.
Fault Set: 19 F = {0,5,10,11}. See Figure 4-27. Apply IB4 between vertices N-1 and
0.

Figure 4-24. F = {0,4,N-8,N-T).

Figure 4-25. F = {0,4N-6,N-5}.

-3}.

(04N-4N

igure 4-26. F
Fi

85

{0,5,10,11).

Figure 4-27. F

86

Fault Set: 20 F = {0,5,12). See Figure 4-28. Apply IB2 to the edge (13,14).

Fault Set: 21 F = {0,5,13). See Figure 4-29. Apply IB6B between vertices 15 and 16.
Fault Set: 22 F = {0,5,14,15,16}. See Figure 4-30. Apply IB2 to the edge (17,18).

The previous fault-sets are sufficient (for this case) for N =26 and N =28. The following
two complete this case for N 2 30

Fault Set: 23 F = {0,5,2i-1,2i,2i+1}, where 14<2i SN-10 and N-2i =2 mod 4.
See Figure 4-31. Apply AB4.

Fault Set: 24 F = (0,5,2i-1,2i,2i+1), where 14<S2i SN-16 and N-2i =0 mod 4.
See Figure 4-32. Apply AB4.

This complete the case {0,5,z }.

Figure 4-28. F = {0,5,12).

Figure 4-29. F = {0,5,13).

Figure 4-30. F = {0,5,14,15,16}.

CASE 5. y € {6,7},1252 SN-6.

Fault Set: 25 F = {0,6,7,12,13). See Figure 4-33. Apply IB6B between N-1 and 0.
Fault Set: 26 F = {0,6,7,13,14}). See Figure 4-34. Apply IB6B between N-1 and 0.
Fault Set: 27 F = {0,6,7,8,15}. See Figure 4-35. Apply IB6B between 23 and 24.
Fault Set: 28 F = {0,6,7,N-7). See Figure 4-36. Apply IB2 to the edge (17,18).

89

Figure 4-32. F = {0,5,2i-1,2i,2i +1}, N-2i =0 mod 4.

Figure 4-33. F = (0,6,7,12,13}.

{0,6,7,13,14).

Figure 4-34. F

Figure 4-35. F = {0,6,7,8,15}.

......

©®®

Figure 4-36. F = {0,6,7N-7]}.

Fault Set: 29 F = {0,6,7,N-8}. Sec Figure 4-37. Apply IB6B between vertices 17 and
18.

Fault Set: 30 F = {0,6,7,8,N-9). See Figure 4-38. Apply IB2 to the edge (9,10).

Fault Set: 31 F = {0,6,7,4i,4i +1). See Figure 4-39. The range of 4i is qualified as fol-
lows. 16<4i <N-12, where N—4i=0mod 6 (top), 16<4i SN-14, where
N—4i =2 mod 6 (middle), and 16 S4i SN-16, where N—4i =4 mod 6 (bottom). To
see this result, first fix 4/ = 16. Then we may apply IB6B between vertices N-1 and 0.
This verifies this choice of 4i. Now note that we also apply IB4 between 11 and 12.

Figure 4-37. F = {0,6,7,N-8}.

®® @

Figure 4-38. F = {0,6,7,N-9}.

Fault Set: 32 F = {0,6,7,4i +2,4i +3}. See Figure 4-40. The range of 4i is qualified as
follows. 16<4i SN-12, where N-4i =0mod4 (top), 16<4i SN-14, where
N—4i =2 mod4 (bottom). To see this result, first fix 4i = 16. Then we may apply IB4
between vertices 19 and 20. This verifies this choice of 4i. Now note that we also apply
IB4 between 7 and 8.

The above fault-sets cover all possible values of z except for z = N-10, which fol-
lows.
Fault Set: 33 F = {0,6,7,8,N-10}. See Figure 4-41. Apply IB4 between 7 and 8.

This completes the case {0,6,7,z}.

CASE 6. y €{7,8),16<z SN-8.
Fault Set: 34 F = {0,7,8,15,16). See Figure 4-42. Apply IB6B between N -1 and 0.
Fault Set: 35 F = {0,7,8,N-9}. See Figure 4-43. Apply IB2 to the edge (13,14).

Figure 4-39. F = (0,6,7,4i 4i +1).

97

Figure 4-40. F = {0,6,7,4i +2,4i +3}.

98

Figure 4-41. F = {0,6,7,N-10).

{0,7,8,15,16}.

Figure 4-42. F

Figure 4-43. F = (0,7,8 N-9}.

We have thus far shown that any fault-set in which two vertices are at a distance of at
most eight can be tolerated. It is not difficult to see that for N = 26, two faults must meet
this requirement, and thus the proof is complete for

Fault Set: 36 F = {0,7,8, N-9,N-10]}. See Figure 4-44. Apply IB4 to vertices 9 and 10.
For reasons similar to the above, the previous fault-set completes the proof for N = 28.
Fault Set: 37 F = {0,7,8,N-11). See Figure 4-45. Apply IB2 to9 and 10.

For reasons similar to the above, the previous fault-set completes the proof for N = 30.
Fault Set: 38 F = {0,7,8,2j+1}, where 17<2j+1 SN-11. See Figure 4-46. We may
apply IB2 to the edge (9,10) and also IB6B to the vertices N—1 and 0, allowing us to
cover all odd vertices in the specified range.

Fault Set: 39 F = {0,7,8,20),N 232 . See Figure 4-47. Apply IB4 to 25 and 26.

Fault Set: 40 F = {0,7,8,N-2j}, 10<2j SN-22. See Figure 4-48. Apply IB2 to the
edge (23,24).

101

Figure 4-45. F = {0,7,8,N-11).

Figure 4-46. F = {0,7,82j +1).

103

Figure 4-47. F = {0,7,8,20).

Figure 4-48. F = (0,7,8 N-2j}.

This completes the case of {0,7,8,z} and we now consider our final two cases.

CASE 7.y =2i+1,2i+129

Fault Set: 41 F = {0,2i+1,2i+1+z} , where 9<2i+1<N/2 and 2i+1<z SN/2+i
See Figure 4-49. We may apply IB2 in the top graph to the edge (21,22); and also IB4
between vertices 17 and 18. In the bottom graph, apply IB2 to the edge (17,18) and IB4
between vertices 23 and 24. This covers all possible combinations of {0,2i +1,2j+1} and
{0,2i +1,2j }, for the necessary limits. We have thus proved that the failure of any combi-
nation of two even vertices and one odd vertex can be tolerated. By the symmetry of the
graph, this also covers the case of two odd vertices and one even vertex, leaving only the

case of three even vertices remaining, which is covered in case 8.

CASE 8. y =2j,2j210.
Fault Set: 42 F = {0,2j,2k }. See Figure 4-50. We may apply IB2 to the edges (1,2),
(11,12), and (21,22) in any combination.

105

Figure 4-49. F = (02j+1,z).

106

Figure 4-50. F = {0,2j,2k }.

We have now shown that every combination of three failures can be tolerated, finishing

the proof. B

4.2.3 Comparison with previous results.

In the previous section, we proved that cubic graphs, in particular chordal rings, can
be used as designs for fault-tolerant loops and can tolerate up to 3 failures. Here, we
compare our results with the work done in [Haye76]. For the 1-ft case, we have exhi-
bited a class of 3-regular graphs which are in the class I',[C),,2]. Previously known
results have A=4 and do not have the advantages of being regular. In the 2-ft case, our
design is 3-regular, requires 4 spare vertices and 3(N +4)/2 edges. Previously known
results are 4-regular, use 2 spare vertices and require 2(N +2) edges. For the 3-ft case,
our designs are 3-regular, require 6 spare vertices and 3(N +6)/2 edges. Previous results
are 5-regular, use 3 spares and S(N +3)/2 edges. Thus, the savings in edges is O (N),
while the cost in vertices is fixed (and small). So for large N, our designs yield improve-

ments in terms of numbers of edges and are more in accord with the limitations of current

107

technology. In addition, since these designs have "extra" redundancy, they have the abil-
ity to tolerate certain specific patterns of greater than k failures. Indeed, in the proofs of
the previous section, we demonstrated fault-sets of sizes k+1 ,.., 2k which could be
tolerated.

It should also be noted that the design based on chordal rings is not unique; there
are other families of cubic graphs which belong to the class I',[C), ,4], but which are not
chordal rings. In particular, a certain subset of Generalized Petersen graphs is one such
family [ZiEs89].

Chapter 5

Conclusion

5.1. Conclusions and Summary of Research Contributions

In this dissertation we have examined two problems relating to the topology of Mul-
ticomputer interconnection networks. The first of these is broadcasting; a communica-
tion paradigm in which one member of a network wishes to send a message to all the
other members of the network. The second problem involves system-level fault-
tolerance; a strategy for improving the reliability of a Multicomputer by designing it so
that it can remain functional in the presence of faulty components (processors and com-
munication links). Both of these problems were formulated in graph theoretic terms and
extensive use of graph theory was made in establishing the results.

A software package for graph manipulation, developed at Michigan State Univer-
sity, was described in Chapter 2. This package allows users to easily create and manipu-
late graphs interactively. In addition, users may invoke algorithms on graphs to study
their properties and test conjectures. This package was used in establishing some of the
results in this dissertation and other recent research. It was also used in the preparation of

figures for this dissertation and other recent publications.

108

109

It was noted that the topology of an MC plays a fundamental role in both the
manner that broadcasting can take place, and how rapidly the process can be completed.
The role of trees in the broadcasting process has been explored and we have provided a
partial characterization of minimum broadcast trees. A recurrence relation has been
developed which relates the maximum number of vertices in a graph which can be
informed in a broadcast, to the maximum degree of the graph. This relation can be used
in the characterization of both minimum broadcast trees and minimum broadcast graphs.
The distribution of broadcast times over all trees of order up to 28 was given, showing
that in "most” trees broadcasting can be done in the optimal or "near" the optimal amount
of time. Finally, a distributed algorithm for broadcasting in Binary DeBruijn Graphs has
been presented. The algorithm was shown to complete broadcasting in at most
(2log N)-1 time steps, where N is the order of the underlying graph.

In the area of fault-tolerance, a new approach to system-level fault-tolerance for
message-passing multicomputers has been presented. In this approach, a bound is placed
on the number of connections allowed at each processor. It was shown that this approach
necessitated the use of "extra" redundancy and designs based on chordal rings which can
tolerate up to 3 processor failures were given. These designs illustrate that the new
approach can be successfully applied to the design of fault-tolerant topologies and can

achieve improvements over previous results.

5.2. Suggestions for Future Study.

There are a number of open problems of practical and theoretical interest in broad-
casting in general networks, and in specific interconnection networks, e.g. BDN in partic-
ular. A partial list of problems which are immediate extensions of the results in Chapter
3 follows.

- Finding a tight upper bound for bz (G)

110

- Finding a relation between bz (G) and other invariants of graph G.

- Completing the characterization of minimum broadcast trees.

- Analyzing and extending (beyond trees of order 28) the counting results for the
broadcast time distributions given above.

- Generalizing the definition of local broadcasting to allow up to £ messages to be
issued concurrently from each informed node.

Many variations on DeBruijn graphs have been proposed [DuHw88]. One such variation

allows the vertex set to be of any order (not just a power of two). In another variation,

bases other than base 2 are used to define the interconnections. We conjecture that our

broadcasting algorithm can be readily adapted for these and other variations.

In the area of fault-tolerance, we are currently investigating the applications of
using extra redundancy in the development of general & -fault-tolerant designs for vari-
ous topologies. The principal goal of this research is to achieve designs with feasible
degree requirements. One basic area to consider is the relationship between the level of
fault tolerance k, the maximum degree of the graph A, and the number of spare vertices.

Since we are using "extra" redundancy, it will be possible to provide, in a proba-
bilistic sense, levels of fault tolerance which exceed the design specifications. It is an
open question as to what probabilistic levels might be attainable.

The reconfiguration problem has not been addressed here. Although for any given
set of failures a cycle can always be found, a general reconfiguration strategy is yet to be
developed.

Finally, we have considered only vertex failures, however, it is clear from the
proofs that the designs can also tolerate multiple edge failures. It would be valuable to

extend the research to formally study edge failures and/or combinations of both.

BIBLIOGRAPHY

[Agra83]
[ArLe81]

[BaKF86]

[Barn68]

[Batc80]

[BeSi86]

[BhAg83]

[Bien88]

[Boes86]

[ChCD88]

[Crow85]

[Dall90]

111

BIBLIOGRAPHY

D.P. Agrawal, "Graph theoretic analysis and design of multistage intercon-
nection networks," IEEE Trans. on Comput., Vol. C-32, pp. 637-648, 1983.

B. Arden and H. Lee, "Analysis of Chordal Ring Network," IEEE Trans. on
Comput., Vol. C-30, pp. 291-295, April 81.

Prithviraj Banerjee, Sy-Yen Kuo, W. Kent Fuchs, "Reconfigurable Cube-
Connected Cycles," Proc. of the Sixteenth Symposium on Fault-Tolerant
Computing, pp. 286-291, 1986.

G.H. Bamnes et al., "The Illiac IV Computer," IEEE Trans. on Comput., Vol.
C-17, pp. 746-757, 1968.

K.E.Batcher, "Design of a Massively Parallel Processor," JEEE Trans. on
Comput., Vol. C-29, pp. 336-340,1980.

B. Becker and H.-U. Simon, "How Robust is the n-Cube," Proc. of the 27th
Annual Symposium on Foundation of Computer Science, pp. 283-291,
October 1986.

L. Bhuyan and D.P. Argawal, "Design and Performance of generalized
interconnection networks," JEEE Trans. on Comput., Vol. C-32, pp. 1081-
1090, 1983.

D. Bienstock, "Broadcasting With Random Faults," Discrete Applied Math.,
Vol. 3, pp. 4-7, 1988.

F.T. Boesch, "Graph Theory and Reliable Network Synthesis," Technical
Report, Electrical Engineering and Computer Science Department, Stevens
Institute of Technology, 1986.

D.V. Chudnovsky, G.V. Chudnovsky, and M.M. Denneau, "Regular Graphs
with Small Diameter as Models for Interconnection Networks," Proc. of the
3rd International Conf. on Supercomputing, Vol. I1I, pp. 232-239, 1988.

W. Crowther, et al., "Performance Measurements on a 128-node Butterly
Parallel Processor,” Int’l Conf. Parallel Proc.” IEEE Computer Society
Press, pp. 531-555, 1985.

W.J. Dally, "Performance Analysis of k-ary n-Cube Interconnection Net-
works," IEEE Trans. on Comput., Vol. 39, No. 6, pp 775-78S5, June 1990.

[DaSe87]

[DuHa88]

[DuHw88]

[EsHa85]

[Esfa88]

[EsNS89]

[EsZi88]

[FaHe79]

[FaKr83]

[Farl79]

[Farl80]

[Feng81)

[FHMP79]

[Flan77)

[Gott83]

[GrRe86]

112

W. Dally and C. Seitz, "Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks," IEEE Trans. on Comput., Vol. C-36, No 5. pp.
547-553, May 1987.

S. Dutt and J.P. Hayes, "Design and Reconfiguration Strategies for Near-
Optimal k-Fault-Tolerant Tree Architectures,” FTCS-18, June 1988.

D.Z. Du and F.K. Hwang, "Generalized de Bruijn Digraphs," Networks,
Vol. 18, pp. 27-38, 1988.

A.-H. Esfahanian and S.L. Hakimi, "Fault-Tolerant Routing in De Bruijn
Communication Networks," IEEE Trans. on Comput., Vol. 34, No. 9, pp.
777-789, September 1985.

A.-H. Esfahanian, "Generalized Measures of Fault-Tolerance with Applica-
tion to n-Cube Networks," IEEE Trans. on Comput., Vol. 38, No. 11, pp.
1586-1590, Nov. 1989.

A.-H. Esfahanian, L.M. Ni, and B. Sagan, "The twisted n-cube with Appli-
cation to Multiprocessing," to appear in IEEE Trans. on Comput., to appear.

A.-H. Esfahanian and G. Zimmerman, "A New Fault Tolerance Analysis for
N-cube Networks," Proceedings of the International Symposium on Mini
and Microcomputers, December 1988.

AM. Farley, S.T. Hedetniemi, "Broadcasting in Grid Graphs," Proc. 9th
Conf. Combinatorics, Graph Theory, and Computing, pp. 275-288, 1979.

E.T. Fathi and M. Krieger, "Multiple Microprocessor Systems: What, Why,
and When," IEEE Comput., Vol. 16, pp. 23-35, March 1983.

AM. Farley, "Minimal Broadcast Networks,” Networks, Vol. 9, pp.
313-332 1979.

AM. Farley, "Minimum-time Line Broadcast Networks," Networks, Vol.
10’ pp- 59'70, 1980.

T. Feng, "A Survey of Interconnection Networks," JEEE Comput., pp. 12-
27, December, 1981.

A. Farley, S Hedetniemi, S Mitchell, and A. Proskurowski, "Minimum
Broadcast Graphs," Discrete Math., Vol. 25, pp. 189-193, 1979.

P.M. Flanders et al., "Efficient High Speed Computing with the Distributed
Array Processor,” High-Speed Computer and Algorithm Organization,
Kuch, Lawrie, and Sameh, eds., Academic Press, New York, 1977.

A. Gottlieb, "The NYU Ultacomputer - Designing an MIMD Shared
Memory Parallel Computer,” IEEE Trans. on Comput., C-32, pp. 175-189,
1983.

D.C. Grunwald and D.A. Reed, "Benchmarking Hypercube Hardware and
Software," Technical Report, UIUCDCS-R-86-1303, Department of Com-
puter Science, University of Illinois at Urbana-Champaign, 1986.

[GuHS86]

[Hara72]
[Haye76]

[HMSCS86]

[HeHL88]

[Hill85]
[HoJe81]

[HsYZ87]

[HwBr84]

[HwGh87]

[JoHo089]

[KeK179]

[KuRe80]

[KwTo81]

[Lars84]

[LeHa88]

113

J.L. Gustafson, S. Hawkinson and K. Scott, "The Architecture of a Homo-
geneous vector supercomputer,” Proc. of 1986 Int’l Conf. on Parallel Pro-
cessing, pp. 649-652, August 1986.

F. Harary, Graph Theory, Addison Wesley, 1972.

J.P. Hayes, "A Graph Model for Fault-Tolerant Computing Systems," JEEE
Trans. on Comput., Vol. 25, No. 9, pp. 875-884, September 1976.

J.P. Hayes, T.N. Mudge, Q.F. Stout, S. Colley, S. and J. Palmer, "Architec-
ture of a hypercube Supercomputer," Proc. of 1986 Int’l Conf. on Parallel
Processing, pp. 653-660, August 1986.

S. M. Hedetniemi, S. T. Hedetniemi and A. Liestman, "A survey of Gossip-
ing and Broadcasting in Communication Networks," Networks, Vol. 18, pp.
319-349, 1988.

W.D. Hillis, The Connection Machine, MIT Press, Cambridge, Mass., 1985.

R.W. Hockney and C.R. Jesshope, Parallel Computers, Adam Hilger, Ltd.,
1981.

W.T. Hsu, P.C. Yew and C.Q. Zhu, "An Enhancement Scheme for Hyper-
cube Interconnection Networks," Proc. of the 1987 Int’l Conf. on Parallel
Processing, pp. 820-823, August 1987.

K. Hwang and F.A. Briggs, Computer Architecture and Parallel Process-
ing, McGraw-Hill Book Co., 1984.

K. Hwang and J. Ghosh, "Hypemet: A Communication-Efficient Architec-
ture for Constructing Massively Parallel Computers," IEEE Trans. on Com-
puters, pp. 1450-1466, December 1987.

S. Johnsson, Ching-Tien Ho, "Optimum Broadcasting and Personalized
Communications in Hypercubes," IEEE Trans. on Comput., Vol 38., No. 9,
pp. 1249-1268, September 1989.

P. Kermani and L. Kleinrock, "Virtual cut-through: A new computer com-
munication switching technique," Comput. Networks, Vol 3, pp. 267-286,
1979.

J.G. Kuhl and S.M. Reddy, "Distributed Fault-Tolerance for Large Mul-
tiprocessor Systems,"” Proc. 7th Annu. Symp. Comput. Architecture, pp. 23-
30, May 1980.

C.-L. Kwan and S. Toida, "Optimal Fault-Tolerant Realizations of Some
Classes of Hierarchical Tree Systems,” The 11th Int’l Conf. on Fault-
Tolerant Computing, pp. 176-178, 1981.

J. L. Larson, "An Introduction to Multitasking on the Cray X-MP-2 Mul-
tiprocessor," Computer, Vol. 16, No. 7, pp. 62-69, July 1984 Nov. 1988.

T.C. Lee and J.P. Hayes, "Routing and Broadcasting in Faulty Hypercube
Computers," The 3rd Conf. on Hypercube Concurrent Computers and

[LePe88]

[Lies85]

[LoFu87]

[Pfis85]

[PrRe82]

[Prad81]

[Prad85]

[Prad86]

[Prvu8l]

[PTLP8S]

[Pros81]

[Quin87]

[RaAE84]

[RaGAS8S]

[RCCT90]

114

Applications, pp. 346-354, January 1988.

A. Leistman and J. Peters, "Broadcast Networks of Bounded Degree," SIAM
J. Disc. Math, Vol. 1, No. 4, pp. 531-540, November 1988.

Arthur L. Liestman, "Fault-Tolerant Broadcast Graphs," Networks, Vol. 15,
Pp. 159-171, 198S.

M.B. Lowrie and W.K. Fuchs, "Reconfigurable Tree Architectures using
Subtree Oriented Fault Tolerance," JEEE Trans. on Comput., Vol. 36, pp.
1172-1183, October 87.

G.F. Pfister et al., "The IBM Research Parallel Processor Prototype (RP3),"
Proc. 14th Int’'l Conf. on Parallel Processing, 198S.

D.K. Pradhan and S.M. Reddy, "A Fault-Tolerant Communication Architec-
ture, for Distributed Systems," JEEE Trans. on Comput., Vol. C-31, No. 9,
pp. 863-869, September 1982.

D.K. Pradhan, "Interconnection Topologies for Fault-tolerant Parallel and
Distributed Architectures," Proc. 10th Int’l Conf. on Parallel Processing,
Pp. 238-242, August 1981.

D.K. Pradhan, "Dynamically Restructurable Fault-Tolerant Processor Net-
work Architectures,” JEEE Trans. on Comput., Vol. C-34, No. 5, pp. 434-
447, May 1985.

D. Pradhan, Ed., Fault Tolerant Computing, Theory and Techniques, Vol. I
and II Prentice Hall, 1986.

F.P. Preparata and J. Vuillemin, "The Cube-Connected Cycles: A Versatile
Network for Parallel Computations,”" Commun. ACM, pp. 300-309, May
1981.

J.C. Peterson, J.O. Tuazon, D. Licberman and M. Pniel, "The Mark III
Hypercube-Ensemble Concurrent Computer,” Proc. of the 1985 Int’l Conf.
on Parallel Processing, pp. 71-73, August 1985.

A. Proskurowski, "Minimum Broadcast trees," IEEE Trans. on Comput., Vol
C-30, No. §, 1981.

M.). Quinn, Designing Efficient Algorithms for Parallel Computers,
McGraw-Hill Book Company, 1987.

C.S. Raghavendra, A. Avizienis, and M.D. Ercegovac, "Fault Tolerance in
Binary Tree Architectures,” IEEE Trans. on Comput., Vol. 33, No. 6, pp.
568-571, June 1984.

C.S. Raghavendra, M. Gerla, and A. Avizienis, "Reliable Loop Topologies
for Large Local Computer Networks," IEEE Trans. on Comput., Vol. C-34,
No. 1, pp. 46-55, Jan. 198S.

R.D. Rettberg, W.R. Crowther, P.T. Carvey and R.S. Tomlinson, "The
Monarch Parallel Processor Hardware Design," Computer, Vol. 23, No. 4,

[SaPr89]

[SAFMS88]

[ScWu84]

[Seit85]
[SICH81]
[Sten88]
[Tane88]

[Topk89]

[WROMS86]

[YaHa86]

[ZiEs88]

[ZiEs89]

115

Pp. 18-30, April 1990.

M.R. Samatham, D.K Pradhan, "The De Bruijn Multiprocessor Network: A
Versatile Parallel Processing and Sorting Network for VSLL," IEEE Trans.
on Comput., Vol. 38, No. 4, pp. 567-581, Apr. 1989.

C.L. Seitz, W.C. Athas, C.M. Flaig, A.J. Martin, J. Seizovic, C.S. Steele
and W. Su, "The Architecture and Programming of the Ametek Series 2010
Multiprocessor,” Proc. of The 3-rd Conf. on Hypercube Concurrent Com-
puters and Applications, pp. 33-38, January 1988.

Peter Scheuermann and Geoffrey Wu, "Heuristic Algorithms for Broadcast-
ing in point-to-point Computer Networks," IEEE Trans. on Comput., Vol
C-33, No. 9, 1984.

C. Seitz, "The Cosmic Cube," Commun. of ACM, Vol. 28, No. 1, pp. 22- 33,
January 198S.

P.J. Slater, E.J. Cockayne, and S.T. Heditniemi, "Information dissemination
in trees," SIAM J. Comput., Vol 10, No. 4, pp. 692-701, 1981.

Per Stenstrom, "Reducing Contention in Shared-Memory Multiprocessors,"
Computer, Vol. 20, No. 11, pp. 26-37, Nov. 1988.

A.S. Tanenbaum, Computer Networks, Second Ed., Prentice-Hall, Engle-
wood Cliffs, N.J., 1988

D. Topkis, "All-to-All Broadcast by Flooding in Communication Net-
works," IEEE Trans. on Comput., Vol. 38, No 9, pp. 1330-1333, September
1989.

R. Wright, B. Richmond, A. Odlyzko, and B. McKay, "Constant Time Gen-
eration of Free Trees," Siam J. Comput., Vol 15., No. 2, pp. 540-548, May
1986,

R.M. Yanney and J.P. Hayes, "Distributed Recovery in Fault-Tolerant Mul-
tiprocessor Networks," IEEE Trans. on Comput., Vol. 35, pp. 871-880,
October 1986.

G. Zimmerman, and A.-H. Esfahanian, "GMP: A Graph Manipulation
software Package for SUN Workstations," Technical Report, MSU-ENGR-
88-019, Department of Computer Science, Michigan State university,
October 1988.

G. Zimmerman and A.-H. Esfahanian, "A New Approach to System-Wide
Redundancy in Designing Fault-Tolerant Topologies," Technical Report,
MSU-CPS-ACS-019 , Department of Computer Science, Michigan State
University, February 1989.

[T

