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ABSTRACT

AUTOMATING THE DESIGN OF LARGE-SCALE

ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS

By

Sheng-Fu Wu

The computer-aided design process described simplifies the task of designing large-

scale asynchronous sequential logic circuits (ASLC’s). It provides a highly structured,

interactive approach for modeling sequential logic functions and for mapping these models

into ASLC architectures and gate-level circuits. A design automation system, which

implements this process, has been developed and tested. It contains five modules: the

behavioral descriptor, which maps the functional design specification into a primitive flow

table; the merger, which minimizes the number of states needed to implement the

functional model; the connector, which adds cycles and states, as needed, to avoid critical

races; the assigner, which encodes the states and generates the state excitation table and

output table; and, finally, the equation generator, which eliminates static or dynamic

hazards and converts the state excitation table and output table into two-level, sum-of-

product expressions for the state equations and output equations. This task-oriented system

provides a convenient way to describe the functional behavior of sequential logic funCtions.

It can reduce the design cycle time and improve the reliability of the overall ASLC design

process and can also be used to facilitate the investigation of alternative ASLC



implementations for the purpose of optimizing the performance of a specific sequential

logic function. Moreover, it can assist the researchers and designers in developing rules

which may satisfy some particular requirements or applications, such as fault-tolerant or

testable ASLC’s designs.
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Chapter 1

Introduction

 

Sequential logic functions may be implemented in either clocked sequential logic

circuit (CSLC) or asynchronous sequential logic circuit (ASLC) architectures. ASLC’s have

several important intrinsic advantages over their CSLC counterparts. An ASLC sequential

logic function is potentially faster since it does not have to wait for the arrival of a clock

pulse before effecting a state transition [1-8]. In complex CSLC’s, clock skewing may limit

overall performance [9], while this problem is not encountered in their ASLC counterparts.

Moreover, ASLC’s generally require less space to implement since the basic functional

primitives are gates, not gates and memory, as is the case for CSLC’s. However, for a given

sequential logic function, the ASLC design process is much more complex and time

consuming than that of the CSLC [10]. This drawback has led state machine designers to

prefer CSLC architectures to their ASLC counterparts. Consequently, before the intrinsic

advantages of ASLC architectures can be fully exploited, there exists a need for efficient

ASLC design tools which significantly simplify the process of designing this class of

sequential logic functions.



1.1 Motivation

For a given sequential logic function, the process ofdesigning ASLC’s is significantly

more complex than that of their CSLC counterparts. This is due in part to critical-race and

hazard problems that are associated with ASLC architectures. But, through appropriate state

assignments, the race conditions can be avoided [1 1-13]. Various types of hazards and the

design of hazard-free sequential logic circuits have been widely studied, and methods have

been developed to identify and eliminate them [14-16]. Although it can be a very tedious

process, the ASLC designer can verify that a particular design is functionally correct, as

well as race and hazard free [17,18]. Some CAD tools can be used to simulate the designed

circuits to assist in the design verification process, e.g., VHDL, CALCAD, or Schematic

Editor [19]. But, because of the complexity and difficulity of the overall ASLC design

process, only the simplest sequential logic functions have been implemented using ASLC

architectures. An automated set of design tools would enable state machine designers to

evaluate alternative sequential logic function architectures more thoroughly before

committing the design to a specific architectural implementation.

The complexity and difficulity of designing ASLC’s involves the following:

1. The table size of a primitive flow table (PFT): The PFT describes the transitions

between all the possible allowed states. Many inputs and outputs can make the flow

table unmanageably large.

2. The generation of a merged flow table (MFT): In the merging process, finding the

strongly connected subsets from a PFT (especially from a large PFT) is a very difficult

task. This involves some relative techniques and concepts in graph theory.

3. The elimination of race conditions: The difficulties of making a proper state assignment

to avoid race conditions are well known. Generating race-free state assignments and

modifying the MFT are very difficult tasks especially for a large MFT.
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4. The elimination of hazards: In order to generate hazard-free state equations and output

equations, consensus terms must be added into those equations. For large excitation (or

output) tables, finding consensus terms may become a more difficult and complex task.

The primary objective of the work reported here is to map human (expert) knowledge

into the implementation of an ASLC design system to speedup the overall ASLC design

process. This system would lessen the burden on sequential logic function circuit designers

by greatly reducing the chances that errors would creep into the design and by greatly

reducing the overall design cycle time. This increase in designer productivity could be used

in part to explore alternative implementations for purposes of Optimizing the overall

circuit’s performance. By providing the opportunities of investigating many different

implementations, researchers and designers may identify some rules for determining a

better ASLC design to fit some particular requirements or applications, for example fault

tolerance design, testable design, or the asynchronous control parts in the ASIC design.

An ASLC design automation system (MSUASLC) that achieves this objective has

been developed and tested. Software was written in the C programming language with

approximately 20,000 source code; and while the current version of this software runs on

Sun workstations, it is readily transportable to other platforms.

1.2 System Overview

The ASLC design automation system (MSUASLC) is illustrated in Figure 1-1. It

provides a view of the design hierarchy traversed by the ASLC design system. It consists of

five modules, each of which can accept data files from either an up-stream module or

interactively from the circuit designer [20,21]. These modules perform the following

functions:
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Behavioral

Descriptor
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Primitive State Table

Primitive Output Table

 

  

Desi er’s (User’s)
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Adjacency Table

Modified State Table

Modified Output Table

Assigner
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Designer’s (User’s)
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I

State Equations and Output Equations

Figure 1-1. Configuration of the ASLC design system.
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Behavioral Descriptor: maps the functional design specification into a

primitive flow table (PFT), which completely captures the sequential logic

function’s behavioral model [22].

Merger: reduces the PFT into a merged flow table and merged output table,

thereby minimizing the number of states by eliminating redundant primitive

state assignments.

Connector: develops a state adjacency table from the merged flow table and

adds cycles and states as needed to avoid critical races. It also produces a

modified state table and modified output table.

Assigner: encodes the states and generates the state excitation table and

corresponding output table from the information stored in the adjacency table,

modified merged flow table, and previously developed modified output table.

Equation Generator: eliminates static hazards and converts the state excitation

table and output table into state equations and output equations, which are

placed in two-level, sum-of-products form.

This modular CAD system architecture has clearly defined entry and exit points and

permits each module (sub-system) to be accessed independently. Therefore, concurrent

execution of these modules can be achieved for different design tasks.

The Functional Design Specification (see Figure 1-1) includes an external input

specification, an external output specification, and a sequential logic function specification

EachASLC input logic line can be placed into one of three categories: edge-control (trigger)

input, level-control input, or data input. Edge-control inputs can cause an internal state

transition when the inputs change from low to high (rising edge) or from high to low

(falling edge) [23]. Level-control inputs do not cause state transitions to occur but may

determine what the next internal state will be. Data inputs do not effect the internal state of

the ASLC, only the present output state. In fact, all three types of inputs may effect the
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present state of the output. The ASLC’s functional behavior is completely specified by the

designer with the Functional Design Specification.

TheASLC design system illustrated in Figure 1-1 translates this high-level Functional

Design Specification into a set of State Equations and Output Equations. Each of the five

modules shown represent key steps in this u'anslation process.

1.3 Outline

This thesis is organized as follows: Chapter 2 provides an artificial intelligence

approach to model the functional behavior of ASLC’s. The first module (Behavioral

Descriptor) of the MSUASLC is described. The algorithm forBB is also provided. Chapter

3 describes the second module (Merger) of the MSUASLC. Four different merging methods

are developed for generating MFT’s. A traditional merging method (by merging largest

strongly connected subgraph first), which is not included in the Merger, is also discussed.

Some techniques related to the graph theory are also embedded into the algorithms for the

Merger. Chapter 4 provides some new techniques for avoiding races and for generating

race-free state assignments. Some new concepts dealing with the race conditions, which

include intrinsic races (IR’s) and generated races (GR’s) are introduced. Several

algorithms are developed and encoded into the Connector and Assigner. A graph called the

Node Weight Diagram (NWD) helps ensure that the minimum or near minimum number

of state variables and states are used to generate race-free state assignments. The

experimental results of our approach are compared with other approaches in terms of

computation time and the number of state variables. Details of the Equation Generator

are provided elsewhere [24]. Chapter 5 contains a summary of this research work and some

recommendations for future research directions.



Chapter 2 '

Behavioral Descriptor

with Artificial Intelligence Approach

 

There are several ways to describe an ASLC’s functional behavior. One way is to use

timing diagram. However, drawing a timing diagram is not an easy way to include all the

possible behavior (input/output combination), especially for any but the simplest ASLC.

Another way is to use a state diagram. However, if you don’t know how many essential

states for a given design specification, you cannot draw a state diagram. In fact, ,it is very

difficult to obtain a simplified state diagram [3-4, 6]. The most common way used to

describe the ASLC behavior is to construct a primitive flow table.

A method has been developed which uses artificial intelligence techniques to model

the functional behavior of ASLC’s. It provides a highly su'uctured, interactive approach.

The domain representation, production rules, and control strategies are described. The

Behavioral Descriptor (BD) of the ASLC design automation system generates a primitive

flow table which captures the ASLC’s functional behavior. '
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The application of Artificial Intelligence (Al) to digital system design has been widely

studied by many researchers [25-30], and many AI applications in engineering are

concentrated on VLS'I design [31]. An artificial intelligence (AI) approach to the behavioral

modeling of ASLC’s is described here. A “behavioral descriptor” (ED) is built to describe

the whole circuit behavior with a primitive flow table (PFT). The BD accurately generates

a PFT in a very short period of time, so that it lessens the burden on circuit designers and

reduce the design cycle time. This feature becomes more important when large-scale

ASLC’s must be designed.

In Figure 1-1, the highest level concerning ASLC design system is the Behavior

Descriptor [20, 21]. At this level the input/output behavior of an ASLC state machine is

described. This chapter deals primary with this level.

2.1 The Behavioral Descriptor

Constructing aPFT is the first important step in designing an ASLC. The inputs of this

domain problem are the inputs, outputs, and function of the desired ASLC, and these must

be provided by the designer. The output (result) of this domain problem is a primitive flow

table which describes the behavior of the desiredASLC of the designer. Therefore, the main

idea is to build a problem solver, which is named the “behavior descriptor” (BD). The BD

will map the designer’s design specification into a PET.

The ASLC behavioral model includes two basic sets of parameters: ASLC inputs and

outputs. Each primitive state corresponds to a unique allowed input/output combination.

Four important parts in the BD are described [22]:

(1) Design Specifications: consist of three high level specifications; namely, the input

specification, the output specification, and the functional specification.

(2) Facts: are states represented by the input/output combinations and the corresponding
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state numbers which are generated by control strategies.

Production Rules: are in the form of “IF conditions THEN actions” clauses. There

are no built-in production rules for 30. All the production rules are generated

according to the design specification.

Control Strateg: conuols state u'ansitions in the PFT and generates the next PFT

enuies. They determine which production rule is to be fired by matching each pattern

in the condition part of a rule with the changing pattern in the input signals. The

control procedure looks for the facts and fills the state number into the corresponding

entry in the PFT until all the entries have been filled with the assigned values.

2.1.1 Representation

According to Rich [32], it is often useful to divide the representation question into

three subquestions:

(1) How can individual objects and facts be represented?

(2) How can the represtmtations of individual objects be combined to form a

representation of a complete problem state?

(3) How can the sequences ofproblem states that arise in a search process be represented

efficiently?

Our specific criteria was to choose a representation that alloWs all of the necessary

knowledge to be represented and facilitates its use in solving the problem at hand.

Moreover, we want a representation that will be simple, informative, and easily used

interactively on a computer system. Our specific implementation is as follows:

In at Re re ntation r BD

The inputs to the ED is the design specification of the ASLC. The format for

describing the design specification is described as follows:
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The input specification has the following format:

input_specification

in_name_l in_name_2 in_name_3 in_name_n

The output specification has the following format:

output_specification

out_name_l out_name_2 out_name_3 out_name_m

The sequential logic functions’s functional behavior is completely specified by the

designer and has the following format:

function_specification

IF in_name_l=state in_name_2=state

THEN out_name_l=function_1 out_name_2=function_2

~ n rn ' n r BD

Following is the definition for the attributes of each entry in the PFT.

row_no: specifies the entry’s row.

column_no: specifies the entry’s column.

state_no: specifies the entry’s primitive state number.

stable: specifies whether the entry is in a stable state or not.

output_value: specifies the value of the output signal combination associated with a

primitive state.

2.1.2 Production Rules

Many AI applications today employ some form of if-then rule-based programming;

i.e., if conditions C1, C2, ..., Cn happen, then actions A1, A2, ..., Am will be performed. Most

of the VLSI design tools have built-in production rules which are fixed [26-28]. MYCIN

provides production rules which can be modified [32]. However, there is no built-in



-11-

production rules for ED. All the production rules are generated according to the design

specification. Therefore, it is a dynamic structure.

Some properties for the rules in BD are:

1. Each rule should be unique. There should not be same rules existing in the

production rules ofBD.

2. Rules should not conflict each other.

3. One rule should not cover another rule.

Violating property 2 or property 3 may cause an unexpected result. Violating property

1 does not effect the result, but it takes unnecessary space in the system. In order to have a

desired design, we must pay much more attention on our functional design specification at

the beginning of the design.

You may have many “IF THEN ...” statements in your functional-specification.

However, one must be aware that there is no conflict or inclusion between each of them.

For example, assume you have two “IF THEN ...” statements which have same “IF

conditions” and different “THEN actions”. These two statements conflict each other.

Suppose in the two “IF THEN ...” statements, one “IF conditions” is covered by another

“IF conditions”. This violates the property 3 and should be avoided in order to generate a

desired PFT.

2.1.3 Control Strategy

The conu'ol strategy manipulates the representation by matching one of the

production rules. Each time it looks for one signal changing in the input state of the ASLC

and searches for the matched production rule. The policy for firing a rule is to take the first

matched rule and fire it. Each time only one rule is active. If a match occurs, it takes the

appropriate action and generates the next value of output signals. At this time, the
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combination of input signals and output signals forms a new primitive state. The control

procedure decides whether this state currently exists. If it is a new state, the control

procedure assigns it a new value. Next, the control procedure places the value in the

corresponding row and column in the PFT. This process continues until all rows and

columns have been filled with the assigned primitive state values or “don’t cares” values,

where “don’t cares” indicate that the particular primitive state transition does not occur.

2.2 Algorithm for the BD

The algorithm for the ED is provided in the following.

Step 1. Specify input:

1. circuit input names,

2. circuit output names,

3. circuit function (behavior). -

Step 2. Generate rules.

Step 3. Initialize I/O combination table and primitive flow table (PFT).

Step 4. Give a possible I/O combination value as the starting primitive state and

mark it stable to start the operation for filling the PFT.

Step 5. Determine the next “move” position which is in the same row as the

primitive stable state.

Step 6. Search the rules:

If matched then fire the rule to compute the outputs else keep outputs

unchanged.

Step 7. Determine the primitive state number and do the following things.

1. Put the primitive state number into the “move” position in the PFT and

mark it unsrable.
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2. If it is a new primitive state then find a blank row in PFT and put it into

the same column as the “move” position, and mark it as a stable state in

the new position.

Step 8. Repeat step (5) to (6) for all the adjacent “moves” in the same row.

Step 9. Repeat step (5) to (8) for all the primitive stable states until all the rows have

been checked.

2.3 Design Examples and Discussion

TheBD has been applied on manyASLC design examples. Some examples have quite

large PFT’s, which cannot be shown here. In order to explain how the BD works, a simple

example (example 2.1) is first used to illustrate it.

Example 2-1: P-SLF

This example deals with a specific sequential logic function (SLF) illustrated in

Figure 2-1. This logic element, referred to as a P-SLF, is a multi-stable sequential logic

function and has the following set ofFunctional Design Specifications:

(1) There are two input logic lines, which are labeled A and B.

(2) There are two output logic lines. They are labeled D or d and E or e, where the upper-

case and lower-case letters are used to denote next-output and current-output state,

respectively.

 

   

Figure 2-1. Graphic symbol for the P-SLF
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(3) The output logic lines change state only on the falling edge of B, and the next output

states are defined as follows:

DzeA; E=d+A.

The Behavioral Descriptor maps the Functional Design Specification into the

Primitive Flow Table. The Functional Design Specification must first be read from a file

or entered interactively by the circuit designer. The interactive approach would be as

follows:

1. Enter the sequential logic function’s input variable names.

input_specification

in_name_l in_name_2 in_name_3 in_name_n

B A

2. Enter the sequential logic function’s output variable names.

ouput_specification

out_name_l out_name_2 out_name_3 out_name_m

D E

3. ' Enter the sequential logic function’s functional behavior, which describes the

relationship between the next output state and the present output state and present and

past input states.

function_specification

IF in_name_l=state in_name_2=state

IF B=3 (Here, we use 3 to represent l-to-0)

THEN out_name_l=function_l out_name_2 =function_2

THEN D=E&A E=D+A.

Once the Functional Design Specification has been entered into the MSUASLC, the 30

generates primitive state transition rules. For example, if B in the above example makes a
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transition from l-to-0, then the next output state is updated as indicated above; otherwise,

there is no change.

After these rules have been generated, the primitive flow table (PFT) is constructed

and completed If the sequential logic function has m input lines and n output lines, then

2”” primitive states are possible with each of these primitive states being assigned a row

in the PFT. There would be 2m possible distinct input states with each of these states being

assigned a unique column in the PFT. For the P-SLF, m = 2 and n = 2; so, the PFI' would

be expected to contain up to sixteen rows and four columns.

The PFT is initially empty. The process used to complete the PFT is as follows: One

of the allowed I/O combinations is arbitrarily selected as the starting primitive state and

marked stable to initiate the process of filling the PFT. For the P-SLF example, BADE =

0000 satisfies the Functional Design Specification and represents a stable primitive state;

so, this primitive state can be selected as a starting point. From this starting point, the logic

state of one input line is changed and the rules applied to compute the “next primitive

state”. All allowed input transitions are explored. Not all combinations of the input and

output logic states may be allowed by the Functional Design Specification. For example,

for the P-SLF, BADE = 1010 is not allowed since E = d + A. Moreover, only those

primitive state transitions are allowed for which one and only one input logic line changes

state. For example, for the P-SLF, BADE =0000 => 1101 is not allowed because input logic

lines A and B were changed simultaneously. The PFT is completed after each allowed

primitive state has been visited and its row in the PF!“ completed.

Once the Functional Design Specification has been entered (or read), the BD

automatically generates the PFI' (see Figure 2-2). For the P-SLF, twelve primitive states

are delineated with stable primitive states being “marked”. (For illustrative purposes, we

have circled the stable states in Figure 2-2). The computer (BD) generated primitive state

table and primitive output table are also listed in Table 2-1 and Table 2-2, respectively. The
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Present Input (BA)

00 01 11 10

1@ 4 - 8 00

2 0 E 12 - 00

3 0 - 12 .00

34 _'_ 5 @ 3 ”a:
$5 1 G) 13 - 019
.3 s

”‘6 CD 5 - 9 01%

'3 em?57 - 7 9 §

38 0 - 13 @01g

9 3 @15 - 11

10 Q 7 - 1111

11 - 7 ® 1111

12 1 - 15 @11     
 

Figure 2-2. Primitive flow table for the P-SLF

“Y, “N”, and “-” entries in the primitive state table are abbreviations that stand for “stable

state”, “unstable state”, and “don’t care” respectively. From the PFT, the circuit designer

can readily identify all of the primitive state assignments. For example, primitive state 12

is defined as having present-input and present-output states of BA = 11 and DE = 00,

respectively. From this figure we also see that the ASLC design system imposed the

fundamental-mode rule on the input states; i.e., only one input logic line may change state

at a time. The circuit designer may use this PFT output from the BD module to provide

documentation of the design or to verify manually the correctness of the result. But the

latter is not generally necessary since the BD in the ASLC design system guarantees the

correctness of the PFT according to the given design specification.
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Table 2-1. Primitive State Table for P-SLF

 

 

 

 

INPUT (BA) OUTPUT

0 1 3 2 (DE)

0Y 4N - 8N 0

ON 4Y 12N - 0

2 ON - 12N 8 Y 0

.2 - 5 N 12 Y 8 N o

1; 1N 5 Y 13 N - 1

fig 1 Y 5 N - 9 N 1

E - 7 N 13 Y 9 N 1

.5 ON - 13 N 9Y 1

a 3 N 7 Y 15 N - 3

E 3 Y 7 N - 11 N 3

- 7 N 15 Y 11 N 3

1 N - 15 N 11 Y 3

Table 2-2. Primitive Output Table for P-SLF

INPUT (BA)

0 1 3 2

0 0 - 0

o 0 0 0 -

§ 0 - 0 0

m - 1 0 0 ,-

f2: 1 1 1 - a

E 1 1 - 1 g

E - 3 1 1 g“

a o - 1 1 o

E 3 3 3 -

3 3 - 3

- 3 3 3

1 - 3 3
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Example 2-2: DIV-3 (alternative design specification)

The second example deals with a sequential logical function which has one input

called C (Clock), one output called Q. We refer to this circuit as a divide by 3 (DIV-3, see

Figure 2-3(a)). Every third clock transition causes the output Q to toggle. The timing

diagram is shown in Figure 2-3(b).

In order to use BD to generate the PFT. we introduce two pseudo outputs G and H

which can identify the first and second clock transitions so that the output Q can identify

the third clock transition. The function specification is as follows:

IF C=2 (2 means 0-to-1)

THEN G=Q H=G, Q=H

IF C=3 (3 meansl-to-O)

THEN G=Q H=G, Q=H

The primitive state table is shown in Table 2-3, and the primitive output table is

 

  
 

 

   
  

DIV-3

_‘ C Q _

(a)

M

Q

(b)

Figure 2-3. DIV-3 (a) graphic symbol, (b) timing diagram
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shown in. Table 2-4. An alternative function specification, which use only one pseudo

output G, is as follows:

IF C=2 (2 means 0-to-l)

THEN Q=QG+QU, G=CQ+CQ

IF C=(3 meansl-to-O)

TEEN Q=QG+QG, G=CO+CQ

 

Table 2-3. Primitive State Table for DIV-3

 

INPUT (C) OUTPUT

0 1 (GHQ)

g 0 Y 12 N 0

2;, 0 N 9 Y 1

:a 3‘Y’ 911 3

E 6 Y 15 N 6

- 3 N 15 Y 7

g 6N 12 Y 4

Table 2-4. Primitive Output Table for DIV-3

 

INPUT (C)

0 1

g 0 4 ...

o 0 l O'

:5:- 3 1 5,

IE 6 7 a
a: 3 7 g

3 6 4
O-
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The corresponding alternative primitive state table is shown in Table 2-5, and the

alternative output table is shown in Table 2-6.

 

Table 2-5. Alternative Primitive State Table for DIV-3

 

INPUT(C) OUTPUT

0 1 (QG)

g 0Y 4N 0

3 IN 4Y 0

3; 1Y 6N 1

33 ON 7Y 3

g 2N 6Y 2

ii 2Y 7N 2

Table 2-6. Alternative Primitive Output Table for DIV-3

 

INPUT (C)

O 1

a 0 0

§ 1 0 g

:5 1 2 r:

.5 0 3 a

:5. 2 2 g

g 2 3
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Example 2-3: Gated Oscillator

There are many applications where we would like to be able to turn a clock on and off

using a manual switch. Usually a clock consists of pulses occurring at some fixed rate. We

might be tempted to solve this problem simply by ANDing the switch with the clock. The

difficulty is that since the switch is not synchronized to the clock, we might turn the switch

on in the middle of a pulse and in so doing produce an output pulse shorter than that

required by whatever system is being driven by the clock. Similarly, our switch rrright turn

Off in the middle of a pulse. Thus, what we want to do is to design an ASLC that will

produce an output 2 which is a complete clock as long as the switch G is on, regardless of

when the switch was turned on or off. This circuit is referred as gated oscillator [3]. The

schematic symbol Of gated oscillator is shown in Figure 2-4, and the timing diagram is

shown in Figure 2-5. There are two inputs, G (switch) and C (clock), one output 2, where

C is an edge control input.

 

Gated z

Oscillator

  
 

Figure 2-4. Graphic symbol for the gated oscillator

 

    _* l— _ 4'— —’ "—4            

  

   
 

 

 

         

 
  

Figure 2-5. Timing diagram for the gated oscillator.



The function specification of this design description in the following.
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IF C=2 (C changes state from 0 to 1)

THEN Z=G

IF C=3 (C changes state from 1 to 0)

TI-IENZ=0

The primitive state table is shown in Table 2-7, and the primitive output table is

shown in Table 2-8.

 

Table 2-7. Primitive State Table for Gated Oscillator

 

DWUTKB) OUnUT

0 1 3 2 a)

g 0Y 2N - 4N o

3 0N’ 2Y 7N - 0

:2 ON - 6N 4Y 0

E - 2N 6Y 4N 0

~ - 2N 7Y SN 1

E 0N - 7N 5Y 1
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Table 2-8. Primitive Output Table for Gated Oscillator

 

INPUT (CG)

0 1 3 2

8 0 0 - 0

1:, o 0 1 - g.

:2 0 - O 0 t;

E - 0 0 0 g

g - 0 1 1 O

- 1 l
a:

 

2.4 Conclusions to the 80

Design is the process of refining a representation at one abstraction level into a more

, detail representation at a lower abstraction level. The design ofASLC can be a very difficult

and time consuming process because of the large number of inputs/outputs, hazards, and

critical races. Many inputs/outputs can make flow tables unmanageably large. The BB

overcomes these complexity problems.

Once the PFT has been generated by the BD, the complete behavior of the designed

ASLC is controllable and observable. Since we can easily predict the next outputs from the

current state and the next inputs by using 30, there is no need to draw the timing diagram

for knowing the ASLC behavior. The BB helps us quickly produce the PFT without using

pen-and-paper methods. It provides the information about the circuit behavior and speedup

the ASLC design process.



Chapter 3

Merger: The Merged Flow Table Generator

 

The second step in designing ASLC’s is to reduce the primitive flow table (PFT) to a

table containing as few rows as possible. In order to achieve this purpose, a merged flow

table generator called Merger has been developed. The reason to reduce the FF? is that the

flow table will eventually become the excitation table, in which the number of rows

determines the number of state variables and, therefore, the complexity of the

implementation [3].

The Merger module reads the PFT and produces a merged flow table (MFT). In

general, this translation process eliminates redundant primitive state assignments and leads

to a more efficient implementation of the Functional Design Specification. Different

merging processes are included in the Merger for generating alternative MFT’s. The

Merger will choose the MFT with a minimum number of rows as the resulting MFT to be

used by the Connector in MSUASLC. The resulting MFT will have the same number of

columns as the primitive flow table since the number of unique combinations of the input

states remain the same, but the number of rows may be less, indicating that some of the

-24-
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primitive states were redundant. The merged state assignments are also used in conjunction

with the PFT to produce an output table which relates the present output logic states to the

present merged state and present input logic states. In order to investigate different

implementations for some particular applications or requirements, designers can choose

any one of the alternative MFTs as the resulting MFT.

3.1 The Merged Flow Table

The PFTcan be reduced to an MFT through the merging process. A merger diagram

is used to show which rows in PFI' can be merged. An example of merger diagram is

illustrated in Figure 3-1 which is corresponding to the PFT shown in Table 3-1. In the

merger diagram, the row number (state) is given inside the circle and the output

corresponding to this row is shown adjacent to the circle. The circled entries are referred to

as nodes. Therefore, each node is corresponding to a row in a PFT. If two rows in a PFT

can be merged, the corresponding two nodes in a merger diagram are connected by a line

(or edge). A set of nodes is said to be “strongly connected”, if for every node in the set is

connected to all the other nodes of the same set. For example, Figure 3-2 shows the strongly

connected groups for different number of states.

 

Figure 3-1. Merger diagram for the PFT of Table 3-1



2o

 

Table 3-1. A Primitive State Table

 

mumraC) ounmr

o 1 3 2 «3

g OY 2N - 4N o

m 0N 2Y 6N - o

.3 ON - 7N 4Y 0

-§ - 2N ' 6Y 4N 0

a - 3N 7Y SN 1

2.: IN - 6N SY 1

8 IN 3Y 7N - 1

E lY 3N - SN 1

 

(a)
(C)

 

 
Figure 3-2. Strongly connected groups (a) 2 nodes; (b) 3 nodes; (c) 4 nodes; ((1) 5 nodes.
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The rules which are used to merge rows are described in the following:

1. Two rows can be merged if in each column either the state labels are the same, or

one or both entries are “don’t cares”.

2. A set of rows can be merged into a single row if the set is strongly connected in

the merger diagram.

3. When two rows are merged, a stable entry and an unstable entry become stable,

and two unstable entries stay unstable. Continuing to compare the rows in pairs,

we can merge a set of rows.

Applying the above rules to the Table 3-1, we can merge rows 1, 2, and 4 into one

row based on the merger diagram shown in Figure 3-1. Similarly, rows 5, 7, and 8 can be

merged into one row. The resulting merged state table and merged output table are shown

in Table 3-2 and Table 3—3, respectively.

 

Table 3-2. A Merged State Table

 

(mmuraC)

o 1 3 2

g OY 2Y 6Y 4N

m ON - 7N 4Y

E lY 3Y 7Y 5N

E 1N - 6N 5Y
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Table 3-3. A Merged Output Table

 

INPUT (TC)

0 1 3 2

o o o 0 Q

0 - l 0 g

1 1 l 1 9‘

1 - 0 1 5

 

3.2 Alternative Merglng Methods in the Merger

A given primitive state may be capable of being merged in more than one way, but

primitive states must only be assigned to one of these merged states. Therefore, additional

constraints are necessary in order to decide which grouping is best. One such constraint

might be to require that only primitive states with identical output states be merged.

There are four different merging methods provided in the Merger. The first method

(method 1) is to merge rows with only the same outputs from the first row to the last row

in the PFT. The second method (method 2) is to merge rows with the same outputs but

starting from the rows (nodes) with minimum link degree (i.e., least su'ongly connected

subsets first). Here, the link degree is defined as the number of edges (lines) attached to a

node in the merger diagram. For example, the link degree of node 1 in Figure 3-1 is 3, but

the link degree of node 3 is l. The third method (method 3) is to merge rows starting from

the minimum link degree (least strongly connected subsets first) regardless if the merged
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rows have the same outputs or not (merging rows with mixed outputs). The fourth method

(method 4) is to first merge rows with the same outputs, then extend to different outputs if

possible.

Another method is to identify the largest strongly connected subsets of these rows

which can merge into a single row [3]. This method will be referred to as method 5. Method

5 is not used in the Merger because it takes too much computation time (effort), especially

when the PFT is large. Usually, the resulting MFT of method 5 has the same number of

merged rows as that of method 3 (identifying the least su'ongly connected subsets). For'

example, in Figure 3-3, we can have two merged groups (1, 2, 3) and (4) by using method

5 (identifying the largest strongly connected subsets). If we use method 3, we can also get

two merged groups (3, 4) and (1, 2). In Figure 3-4, both method 5 and method 3 have the

same two merged groups (1, 2, 4) and (3, 5). However, for the merger diagram shown in

Figure 3-4, if the first selected, largest strongly connected subset is (1, 2, 3), there will be

a total of three merged groups: (1, 2, 3), (4), (5) as shown in Figure 3-5. In this case, we

 

(a) (b)

Figure 3—3. Merger diagram (4 nodes) with two different merging methods

(a) method 5 (largest strongly connected subsets first);

(b) method 3 (least strongly connected subsets first).
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(a) (b)

Figure 3-4. Merger diagram (5 nodes) with two different merging methods

(a) method 5 (largest strongly connected subsets first);

(b) method 3 (least strongly connected subsets first).

Method 5 (identifying largest strongly

connected subsets) generates

three merged groups:

(1, 2. 3), (4), (5)

 

Figure 3-5. A possible merging approach by using method 5 for this merger diagram.



-31-

cannot get minimum number of merged groups. Therefore, the merged results are highly

dependent on the selection of the largest strongly connected subsets. Similarly, this may

happen to the method 3 (least strongly connected subsets). When multiple choices exist and

the merger diagram is large and complex, it becomes very difficult to decide which strongly

connected subsets to choose. From the computation complexity point of view, we would

like to use method 3 instead of method 5, because finding a least strongly connected subset

is much easier and faster than finding a largest strongly connected subset.

In general, the merging process in the Merger is as follows: The merger diagram

(MD) and the merged flow table (MFT) are initialized [20]. The MD is completed by

identifying identical rows in the PFT. Each set of identical rows in the P171” becomes a new

row in the MFT and is assigned a new symbolic state name. An algorithm for method 3 is

listed in the following. Similarly, the algorithms for method 1, 2, and 4 can be generated by

modifying the Step 4 of the following algorithm.

Algorithmfor Method 3 in the Merger

Step 1. Read PFT

Step 2. Initialize merger diagram (MD) and merged flow table (MFT).

Step 3. Generate MD.

Step 4. Generate a new row in MFT:

l. Initialize the merged buffer (MB).

2. Search the node with minimum link degree in MD.

3. Merge matched rows with the node of minimum link degree.

4. Ideau3A4£L

5. Fill output value associated with each entry in the MB.

(1 Link ALBlm>AlF71

Step 5. Repeat step 4 until all the nodes in MD have been merged.
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3.3 Examples

Example 3-1: P-SLF

This example shows how to merge the PFT shown in the Figure 2-2. The merger

diagram for this PFT is shown in Figure 3-6. The merged groups for method 1 is shown in

Figure 3-7. The merged state table and merged output table generated by method 1 are

given in Table 3-4 and Table 3-5. The merged groups for method 2 is shown in Figure 3-8.

The merged state table and merged output table generated by method 2 are given in Table

3-6 and Table 3-7. In this example, method 3 has just the same results as method 2, and

method 4 has just the same results as method 1. This example shows that four merging

methods have the same number of merged groups.

00 00 01 01 11 11

00 ' I 00 I 01 I 01 11 ’ l 11

Figure 3-6. Merger diagram for the primitive flow table of Figure 2-1.



-33-

  

     

Figure 3-7. Merged groups for method 1.

 

Table 3-4. Merged State Table for P-SLF by Method 1

 

INPUT(BA)

0 1 3 2

3 OY 4Y 12N BY

,3 - 5N 12Y 8N

B lY 5Y 13N 9N

go ON 7N 13Y 9Y

g 3Y 7y 15Y 11N

1N - 15N llY
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Table 3-5. Merged Output Table for P-SLF by Method 1

 

0 INPUT (BA)

0 1 3 2

o 0 o o A

- 1 0 o E

1 1 1 1 2;

o 3 1 1 e

3 3 3 3 5

1 - 3 3

 

 

Figure 3-8. Merged groups for method 2



Table 3-6. Merged State Table for P-SLF by Method 2.
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INPUT(BA)

o 1 3 2

0 ON 5N 12Y BY

‘5 OY 4Y 12N 8N

g lY 5Y 13N 9N

29 ON 7N 13Y 9Y

g 1N 7N 15Y llY

3Y 7Y 15N 11N

Table 3-7. Merged Output Table for P-SLF by Method 2.

 

 

INPUT (BA)

0 1 3 2

o 1 o o A

0 0 0 0 m

1 1 1 1 To:

0 3 1 1 5.5..

1 3 3 3 5

, 3 3 3 3



Example 3-2: DIV-3

This example shows how to merge the PFT shown in the Table 2-3. The merger

diagram for this PFT is shown in Figure 3-9. From this diagram, we can identify that the

merged groups for method 1 are (1), (2), (3), (4), (5), and (6). There is no merging for any

two rows. The merged state table and merged output table generated by method 1 are given

in Table 3-8 and Table 3-9 which are the same as Table 2-3 and Table 2-4, respectively.

0“” @‘m

@m @111

@“l

G...

Figure 39. Merger diagram for the primitive flow table of Table 2-3.

 

Table 3-8. Merged State Table for DIV-3 by Method 1

INPUT (C)

O 1

 

OY

ON

3Y

6Y

3N

6N

M
e
r
g
e
d

S
t
a
t
e

12N

9Y

9N

15N

15Y

12Y
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Table 3-9. Merged Output Table for DIV-3 by Method 1

 

INPUT (C)

o 1

0 4

o 1 Q

3 1 g

6 7 s

3 7 g:

6 4 O

 

Using the other three methods will get the same merged groups, the same merged state table

and the same merged output table. This example shows that four merged methods have the

same merged results.

Example 3-3: Gated Oscillator

This example shows how to merge the PFT shown in the Table 2-7. The merger

diagram for this PFT is shown in Figure 3-10. Applying method 1 to this merger diagram,

we can get three merged groups: (1, 2), (3, 4), and (5, 6) (see Figure 3-11(a)). Apply method

3 to the merger diagram, two merged groups: (1, 3, 4) and (2, 5, 6) (see Figure 3-1 l(b)) will

be obtained. The merged state table and merged output table generated by method 1 are

given in Table 3-10 and Table 3-11. Applying method 2 and method 4 will get the same

results as method 1. The merged state table and merged output table generated by method
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Figure 3-10. Merger diagram for the primitive flow table of Table 2-7.

 

 

  

 

 

      
 

 

    

 

(a) (b)

Figure 3-11. Merged groups generated by (a) method 1 (or 2, or 4); (b) method 3.
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Table 3-10. Merged State Table for Gated Oscillator by Method 1

 

INPUT(CG)

0 1 3 2

3

g OY 2Y 7N 4N

3 ON 2N 6Y 4Y

g 0N 2N 7Y 5Y

 

Table 3-11. Merged Output Table for Gated Oscillator by Method 1

 

INPUT (co)

0 1 3 2

o o 1 0 Ed:

0 o o o g

o o 1 1 5
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3 are given in Table 3-12 and Table 3-13. This example shows that method 3 has a better

merged result than the others. Here, a better merged result means that it has a fewer number

of merged groups than the others.

 

Table 3-12. Merged State Table for Gated Oscillator by Method 3

 

INPUT(CG)

O 1 3 2

OY 2N 6Y 4Y

ON 2Y 7Y 5Y

M
e
r
g
e
d
S
t
a
t
e

 

Table 3-13. Merged Output Table for Gated Oscillator by Method 3

 

INPUT (CG)

0 1 3 2

o 0 o g

o o 1 1 §

0
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3.4 Discussion

Four different merging methods are provided in the Merger. The major purpose is to

give designers or researchers more opportunities to investigate the merged results.

Different merging methods may give the same or different merged results, as we have seen

in previous examples. The merged results depend not only on the merging method but also .

on the merging sequence. For example, if nodes 1, 2, and 4 in the Figure 3-4(a) are merged

first, two merged groups (1, 2, 4) and (3, 5) will be obtained. However, if nodes 1, 2, and 3

are merged first, three merged groups (1, 2, 3), (4), (5) will be obtained as shown in Figure

3-5. It is possible to have many identical sizes of strongly connected subsets sharing

common nodes in a given merger diagram. Thus, when using one method, it is still possible

to have many merged results which are the same or different size. For example, assume we

have a simple merger diagram as shown in Figure 3-12(a), Four identical sizes of merged

results (see Figure 3-12(b), (c), (d), (e)) can be obtained by using either method 3, least

strongly connected subsets first, or method 5, largest strongly connected subsets first.

Merging a large flow table is more time consuming than generating a large flow table.

We cannot exhaustively search or generate all the possible merged results. In order to

overcome the problem of combinatorial explosion, each merging method will generate one

MFT. Four methods used in the Merger will generate four MFT’s, and the Merger will

choose a minimum size MFT among the four MFT’s as the resulting MFT for the

Connector. Designers or researchers can choose any one of the four MFT"s as the resulting

MFT for the Connector. Designers or researchers can also merge PFT in some specific

ways for some particular applications, requirements, or purposes.
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(a)

 
Figure 3-12. A merger diagram with four different merged results of identical size.



Chapter 4

Race-Free State Assignments

 

This chapter describes the process of makingASLC state assignments. The method of

state assignments for ASLC’s is different from the method for CSLC. The state assignment

procedure used in the CSLC design does not consider race conditions since the CSLC uses

a clock control input to synchronize the circuit. However, the race conditions cannot be

ignored in the designing ofASLC’s since it can cause the circuit to malfunction.

A new state assignment technique is introduced for synthesizing asynchronous

sequential logic circuits (ASLC’s). It provides a systematic and efficient approach for

generating race-free state assignments. This technique has been implemented and

incorporated into an ASLC design automation system. _

A race condition is classified as being either an intrinsic race (IR) or a generated

race (GR). Intrinsic races decompose into two subclassifications: visible intrinsic races

(VIR’s) and hidden intrinsic races (HIR’s). Algorithms have been developed to identify

and eliminate these races. A graph, referred to as a Node-Weight Diagram (NWD),

facilitates the process of making state assignments and guarantees that no races are

generated. Moreover, it provides a convenient and efficient method for investigating the

l- -43-
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implications of selecting from an allowed set of alternative race-free state assignments. The

state assignment technique described adds cycles and states, as needed, to avoid IR's and

always attempts to use the minimum or near minimum number of state variables and states.

This technique has been implemented and incorporated into the MSUASLC design

automation system. Experimental results show that it provides significantly better results

than other approaches in terms of the computation time required to make the assignments

and the number of state variables required to achieve race-free ASLC’s.

This chapter presents a systematic approach for identifying potential race conditions

and for dealing with them so that they do not cause the state machine to malfunction.

Specific objectives of the work reported here are four-fold: characterize and classify the

different types of possible race conditions; develop efficient procedures for identifying

possible race conditions; develop formal rules and strategies for eliminating race conditions

that might lead the state machine to malfunction; and, finally, integrate these results into

the MSUASLC design-automation system, and compare its performance with alternative

approaches.

4.1 General Concepts on Race Conditions and Cycles

In this Section, some general concepts on race conditions and cycles are reviewed.

The internal state (state) of an ASLC can be represented by an n-digit binary data word y.

State transitions occur in response to changes in the ASLC’s input state (input). Let ya and

yB represent the present and next states, respectively. The Hamming distance I-ld between

Ya and yp is defined as the number of digit positions in which the corresponding digits of

Ya and y5 are different. If Hd > 0, a state transition occurs since yB at ya. During the time

interval that the state is switching from ya to yB, one or more digits in y become unstable,
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i.e., their actual state at any instant in time is not known. But a potential problem may occur

if more than one digit in y becomes unstable at any instant in time [1]. This condition,

known as a race, occurs when Hd>1. and may cause an ASLC state machine to

malfrmction because the next state might depend upon the order in which the unstable digits

in y change state. A fragment of an excitation table, shown in Figure 4-1 and Figure 4-2,

illustrates the race conditions. Figure 4—1 illustrates a noncritical race. Figure 4-2 illustrates

 

 

 

 

     
 

 

 

 

  

     
 

acriticalrace.

A’B 00 01 11 10
Yb)’

oo 11 14-—.

01 11 Y 00

11 i 00

-1o 11

(a) ' Y1: Y0

A’B oo 01 11 10
ypy

oo 11 <——.

01 11 00

11 +® 00

10 I 11 v

(b) Y1, Y0

Figure 4-1. Illustration of a noncritical race (a) yo changes before yl; (b) y1

changes before yo

/_h
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Let us first focus on Figure 4-1. Suppose that the circuit corresponding to this table is

sitting in the stable state (A, B, y1, yo) = (O, l, 0, O) and input B changes from “1” to “0”.

The required transition to state y[yo = 11 involves a change in the values of two state

(secondary) variables. If these two changes occur simultaneously, the transition specified

in the table will actually take place. However, from a physical point of view, the

simultaneous changing of two signals in a circuit is highly unlikely -- one is bound to

change slightly ahead of the other. If either yo or y1 changes first, instead of going directly

to the stable state ylyo = 11, the circuit will go to state ylyo = 01 or yjyo = 10. Such a

condition, where two or more state variables are required to change at the same time, is

called a race condition [3]. We notice in this particular example that regardless of the

outcome of the race, the circuit will always end up in the same stable state yyo = 11. If the

final state which the circuit has reached does not depend on the order in which the variables

change, such a race condition is referred to as a noncritical race [1, 3, 4, 8]. Because the

race outcome is not critical in determining the final stable state.

Now, consider the same table shown in Figure 42. Suppose the circuit is sitting in the

stable state (A, B, y1, yo) = (0, O, 1, 1) and input B changes from “O” to “l”. The required

transition is to statemm = 00, which involves a change in the values of two state variables.

If y1 changes value faster than yo, the circuit will go to state y[yo = 01, from which it will

reach stable state y1Y0 = 00. On the other hand, ifyo changes value faster than y1, the circuit

will go to stable state y1)’0 = 10 and remain there. Thus the circuit operation will be

incorrect. In this case, the circuit may end up in one oftwo different stable states, depending

upon the outcome of the race. Such a race condition is referred to as a critical race [1, 3].

Consider a fragment of another excitation table shown in Figure 4-3. Suppose that the

circuit corresponding to this table is sitting in the stable state (A, B, y1, yo) = (0, 1, O, l) and

input B changes from “1” to “O”. The required transition to state y1Y0 = 10 involves a
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change in the values of two state variables. An unstable state y[yo = 11 is entered in row 01

column 00, thereby directing the circuit to row 11, from which it is directed to go to its final

stable state ylyo = 10. Such a condition, where a circuit goes through a unique sequence of

unstable states, is called a cycle [3].

4.2 State-Assignment Model

Flow tables (see Figure 4-4(a)) are generally used to characterize the functional

behavior of asynchronous sequential machines [12, 33, 34]. Each column of the flow table

represents an input state and each row represents an internal state. Entries in the flow table

specify the next internal state (state) of the machine. A graph, known as an adjacency

diagram (see Figure 4-4(b)), is typically used to depict the set of allowed state transitions.

Each node represents a state (row) in the flow table. The edge between two nodes is called

a link and represents an allowed state transition. Two nodes are said to be adjacent if they

are connected by a link. Traditionally, ASLC designers use adjacency diagrams and trial

and error methods to make state assignments.

In order to develop algorithms to solve the state assignment problems, a different

point of view is introduced to deal with the race conditions. Consider the flow table and

adjacency table shown in Figure 4-4. There is no unique solution to encoding the states. For

example, the following set of assignments could be made: 00 to a, 01 to b, 11 to c, and 10

to d. Since the Hamming distance for all possible state transitions is one (see Figure 4-4(c)),

no race condition exists. Alternatively, the following state assignments could also be made:

00 to a, 11 to b, 01 to c, and 10 to d. Since the maximum Hamming distance for this set of

state assignments is greater than one (see Figure 4-4(d)), a race condition exists. We refer

to this type of race as a generated race.
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11 ® J 00
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A’B 00 01 11 10
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00 11
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11 ® ——>lOO

10 11 V.

0” Y1, Y0

Figure 4-2. Illustration of a critical race (a) yl changes before yo (desired

response); (b) yo changes before yl (incorrect response)
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Figure 4-3. Illustration of a cycle
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Definition 1 (GeneratedRace):

A generated race (GR) is a race caused by encoding the states in a manner that

results in the existence ofa race condition when alternative state assignments could

have been made which do not result in a race condition.

Generated races can be classified into two categories: one is critical; another is

noncritical. This is because the critical races and noncritical races are identified from an

excitation table after state assignments are made. For example, Figure 4-5(a) is a fragment

of a merged state table corresponding to the excitation table shown in Figure 4-1 or Figure

4-2 which contains noncritical and critical races. However, if we give a different state

assignment shown in Figure 4-5(b), there is no critical race or noncritical race appearing in

the same part as those in the Figure 4-1 and Figure 4-2. Therefore, critical races or

noncritical races are produced by improper state assignments. That is the reason we put

critical and noncritical races into generated races. A proper state assignment will never

produce any GR’s.

Consider the adjacency diagram shown in Figure 4-6(a). Two state variables are

needed to represent four states. State a connects to three other states, as does b. In this

example, the link degree (number of links) for state a is 3. No matter how the state

assignments are made, a race condition will always exist, unless the corresponding flow

table is modified. We refer to this type of race as an intrinsic race.

Definition 2 (Intrinsic Race):

An intrinsic race (IR) is a race that results when the minimum possible Hamming

distance is greater than one.

Because the IR’s in Figure 4-6(a) are easily identified by inspecting the adjacency

diagram, we refer to them as visible intrinsic races.
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Definition 3 (Visible Intrinsic Race):

A visible intrinsic race (VIR) is an IR that results when the maximum link degree in

the adjacency diagram exceeds the number ofdigits in the state data word.

But another class of[R’s also exists. Consider the adjacency diagram shown in Figure

4-6(b). A minimum of three state variables are needed to encode the five states, and the

maximum link degree is 2. There are no VIR’s since the maximum link degree is less than

the number of digits in the state data word. However, a race will always exist no matter how

AB
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“0 Y1. Y0

AB 00 01 11 10
mp

01 11

00 11 01

11 ® 01

10 11

(b) Y1, Y0

Figure 4-5. (a) A fragment of a merged state table corresponding to Figure

4-1 or Figure 4-2; (b) a different state assignment for (a).
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0 0
(b)

Figure 4-6. An example of intrinsic races (a) VIR; (b) HIR

the state assignments are made; hence, [R’s exist which are not VlR’s. We refer to this type

of race conditions as a hidden intrinsic race.

Definition 4 (Hidden Intrinsic Race):

A hidden intrinsic race (HIR) is an IR that results when the maximum link degree in

the adjacency diagram is not greater than the number ofdigits in the state data word.

4.3 Methods to Avoid Races

Races in ASLC’s can always be eliminated, although there may be a cost in terms of

increased hardware complexity and reduced speed of operation. But, to achieve this,

intrinsic races (IR’s) must be eliminated and generated races (GR’s) must not be produced.

One method to eliminate [R’s is to direct the circuit through intermediate unstable states

before it reaches its final desired stable state. For this method, cycles are created without

adding any additional states [1, 3, 4]. Therefore, there will be no additional cost in
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hardware, although the circuit’s speed will be reduced in direct proportion to the number

of cycles added. Another method involves adding states to create cycles [1, 3, 4]. However,

this approach is less desirable since hardware complexity generally increases. In summary,

the general approach to avoid races is to first identify and eliminate all [R’s and then make

race-free state assignments to guarantee that no GR’s are produced.

Our design automation system (MSUASLC) always attempts to use the minimum

number of states and minimum number of state variables. If IR’s exist, it always initially

uies to find a cycle through intermediate unstable states without adding any additional

states. If this approach does not succeed in eliminating the IR’s, then states are added to

create a cycle(s) for eliminating the IR’s. This strategy guarantees achieving a minimum or

near minimum number of states and state variables.

4.3.1 Identlflcatlon of Races

Before making state assignments, IR’s must be detected, identified and eliminated. A

rule for quickly identifying a VIR is given as follows:

Rule 1 (VIR Identification Rule):

If the link degree of any state is greater than the number of digits in the state data

word (i.e., the number ofstate variables), a VIR exists.

Assume m is the number of states in a given flow table, II is the number of state

variables needed to represent the m states, so n = llogzm-I. Consider the merged state table

showing in Figure 4~7(a). The corresponding adjacency diagram is shown in Figure 4-7(b).

The number of states is m = 4, and the number of state variables is n = l—logzm-l = 2. The

link degrees for states a, b, c, and d are 3, 3, 2, and 2, respectively. From the VIR
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identification rule, we can immediately determine that IR’s exist. This merged flow table

can be modified by creating cycles without adding additional states. We can make the

unstable state 3 in row a go, first, to the unstable state 3 in row c and then to the stable state

3 in row b. Similarly, for the unstable state 4 in row b, we can make it first go to the unstable

state 4 in row d and then to the stable state 4 in row a. Figure 4-7(c) shows the flow table

in terms ofrows and indicates the necessary cycles explicitly. This kind of table is referred

to as a modified flow (state) table. Figure 4-7(d) is the modified adjacency diagram

corresponding to Figure 4-7(c).

Consider another example shown in Figure 4-8. This example tells us adding states to

create cycles and eliminate intrinsic races. There are four merged primitive states in Figure

4-8(a); so, two state variables are needed to represent four states. The link degree of any of

these states is 3 (see Figure 4-8(b)), which is greater than the number of state variables, so

VIR’s exist. We cannot eliminate intrinsic races in this example by using only two state

variables to make any row simultaneously adjacent to three other rows. However, if we use

three state variables instead oftwo to encode the rows ofthe merged state table, we may be

able to accommodate all of the required adjacencies by creating cycles. Figure 48(c) shows

the modified state table which does not contain any intrinsic races, and Figure 4-8(d) shows

the modified adjacency diagram corresponding to Figure 4»8(c).

. Based on the relation of the link degrees and the number of digits in the state data

word, we have the following theorem:

Theorem I:

The necessary, but not sufficient, condition for making race-free state

assignments is that all of the link degrees in a givenflow table (or adjacency

diagram) must be less than or equal to the number ofstate variables.

Proof: This theorem can be proven by using Definition 3 (or Rule 1 ) and Definition 4.
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Figure 4-7. An example of avoiding races by creating cycles (a) merged

state table; (b) adjacency diagram; (c) modified state table; ((1) modified

adjacency diagram.
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Figure 4-8. An example of adding states to create cycles and eliminate

races (a) merged state table; (b) adjacency diagram; (c) modified state

table; (d) modified adjacency diagram.
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To guarantee that no GR’s are generated in the state assignment procedure, a state

assignment assumption is required.

State Assignment Assumption:

Encoded adjacent states must have a Hamming distance equal to one, (Hd = 1 ).

4.3.2 Node-Weight Diagram (NWD)

To facilitate the process of making state assignments, a graph, referred to as a node-

weight diagram (or n-NWD) is introduced. This diagram is a variation of a binary n-cube

(see Figure 4—9) connection diagram but provides a more convenient geometric

representation of binary numbers for the purpose of making race-free state assignments. A

four-bit n-NWD (a 4-NWD) is illustrated in Figure 4-10. The weight of node Ni, denoted by

[Nd , is defined as the total number of 1’s in the binary representation of Ni- The nodes are

er\
,a‘r‘ ‘ ’

r- “.—-— \

(a) (b)

 

 

      

     

Figure 4-9. Examples of binary n-cube, (a) 3-cube, (b) 4-cube
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Level 4 @

Figure 4-10. Geometric representation of a 4-NWD

arranged by weights in levels with level p containing all nodes with weight p.

An n-NWD is constructed as follows: For m states, there are 2" nodes in the n-NWD,

where n = rlogzm-l. These nodes are arranged in (n + 1) levels, where the pth level contains

C [3) nodes of weight p, where,

Next, all possible binary vectors with n digits are assigned to the nodes in an n-NWD so

that the link relation between nodes can be established. The rule for assigning a binary

vector to a node is as follows:
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Rule 2 (n-NWD Code-Assignment Rule):

There are n digits in each binary vectorfor an n-NWD. The number of I ’s in a

binary vector assigned to a node is equal to the level number at which the node

resides. The binary vectors in each level are arrangedfrom left-to-right in

ascending magnitude of the binary vector.

After the binary vectors have been assigned to the nodes in an n-NWD, a link between

two nodes is generated if these two nodes have only one digit difference in their binary

vectors. A link may only exist between pairs of nodes in adjacent levels since only these

pairs of nodes may have a Hamming distance equal to one. For any pair of adjacent nodes,

the node with lower weight is called the parent node, while the adjacent node with higher

weight is called the child node. Nodes with the same weight are called sibling nodes. No

links exist between sibling nodes since the Hamming distance between sibling nodes is

always greater than one. '

Lemma 1: In an n-level state weight connection diagram, the Hamming distance between

any two nodes at the same level i (with the same weight 1') is greater than 1; i.e., Hd > 1.

Proof: Assume any two nodes, a and b, are at the same level i. Node a and node b have at

most (i - I)’s l at the same bit positions. Then, node a has a bit with value 1 at bit

position j, node b has a bit with value 1 at bit position k, and j 73* k (note that all the

nodes in the state weight connection diagram are different). Hence, Hd > 1.

Q.E.D.

Property: Each node at level p of an n-NWD has at most p parent nodes

The data structure for each node is shown in Figure 4-11. For an n-NWD, two states

can be connected through a path composed of a single link or series of links. Cycles and
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states can be added by referring to the n-NWD so that the flow table can be easily modified

to ensure that no race conditions exist. The length of a path is defined as the total number

of links connecting the endpoints. Since these endpoints represent the initial state and next

state in the original flow table, the objectives in assigning paths to required state transitions

may be expressed as follows: No path should contain a race, i.e., the Hamming distance for

all state transitions must be equal to one. Second, the length of each path should be as short

as possible to ensrn'e that timing delays between state transitions is minimized. And, third,

only the minimum number of new states should be added to help ensure that hardware

complexity is minimized.

Theorem 2: An HIR exists if a circuit exists in an adjacency diagram and the circuit size

Dc = 2 x q + 1, q 6 Zn, where Zn is a set of positive integer numbers greater than 0; i.e.,

there are odd number of links in the closed path.

Proof: Given a circuit with circuit size Dc, we can choose any one ofthe links in the circuit,

and cut it (assume the nodes connected to this cut link are labeled a and b). Assume

 

Lflag level_no std_code node_no parent child next

       

flag: indicates whether or not node has been previously checked

levei_no: level in the NWD in which the node is located

std_code: binary code for this node

node_no: symbolic name (i.e., number) for this node

parent: pointer to parent list

child: pointer to child list

next: pointer to next sibling node

Figure 4-11. The data structure for a node in an n-NWD
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a is the starting node (state) and b is the end node after the circuit is cut. We define

a path length, P, is equal to the number of links between node a and node b, so

P = Dc — 1. Then we map this circuit (after cut) into the state weight diagram

(suppose node a is mapped into level i with weight i). Since Hd = 1 between two

adjacent nodes, the two adjacent nodes must be at adjacent levels. According to this,

node b should be at level i - I or level i + I (because node a is adjacent to node b).

Although there may exist many different mapping patterns, the difference between

the number of up links (Lu) (the link from node p to node q is called an up link, if

node p (with higher weight) is at one level lower than node q (with lower weight»

and the number of down links (Ld) should be equal to 1 such that node b is located

at level i - I or level i + 1. Note that we will never choose the mapping patterns

which make node b be 2 more (include 2) levels above or below level i, since they

will always make [R’s exist. However, P is an even number which makes Lu = Ld,

so state b is at the same level (level i) as state a. By Lemma I , the Hd between state

a and state b is greater than 1. Therefore, an IR (HIR) exists.

QED.

Consider a very simple merged state table shown in figure 4—12(a). The

corresponding adjacency diagram is shown in Figure 4-12(b). Two state variables are

needed to encode three states. The link degree of each state is 2, so no VIR’s exist. By

Theorem 2, HIR’s exist. Since we cannot create a cycle through any of three states (a, b, c),

a state must be added to create a cycle. Figure 4-12(c) shows the modified state table by

adding a state to the merged state table. Figure 4-12(d) is the modified adjacency diagram

corresponding to Figure 4-12(c). This example shows that we can add states to create cycles

and eliminate intrinsic races without increasing the number of state variables.

Consider another adjacency diagram shown in Figure 4-13. Three state variables can



0
'

M
e
r
g
e
d
P
r
i
m
i
t
i
v
e
S
t
a
t
e

(
'
5

M
o
d
i
fi
e
d
M
e
r
g
e
d

S
t
a
t
e

-62-

Present Input (AB)
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CD    G3. (9  
 

(a)

Present Input (AB)

01 ll 10

 

(D b C

 

CD CD
 

<9 G)
 

 

G)

(D

    
 

(C)

(b)

((0

Figure 4-12. An example of adding states to create cycles and eliminate

races (a) merged state table; (b) adjacency diagram; (c) modified state

table; ((1) modified adjacency diagram
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be used to represent five states. No link degrees are greater than the number of state

variables, so no VIR’s exist. But, no matter how the state assignments are made, races

always exist. For example, if we assign 000 to a, 001 to b, 010 to c, and 100 to d, then any

of the remaining four binary vectors: 011, 101, 110, and 111 assigned to e will cause race

conditions happen.

Theorem 3:An adjacency diagram is mapped into a state weight diagram such that there

are n nodes at level i. For these n nodes, if they have a common parent node at level i -I , a

common child node at level i + I, and n > 2, then an HIR exists.

Proof: Because of the symmetrical property of the state weight diagram, for any kind of

this subgraph, we can view these three levels as the first three levels (level 0, l, 2).

According to the property of the state weight diagram, the node at level 2 has at

most two parent nodes (because each node at level 2 has weight value equal to 2).

Therefore, an I-IIR exists if n > 2.

QED.

Based on the concepts introduced above, four race-fiee state assignment algorithms

have been developed and integrated into the MSUASLC Design Automation System.

Following Section presents these algorithms and gives some examples to show how these

algorithms work.



“t5>° ..

Figure 4-13. An example of adjacency diagram which cannot avoid race conditions.

4.4 Algorithms and Examples for Race-Free State Assignment

Algorithm 1 (identifying and removing intrinsic races):

Step 1. Relabel the merged state table (MST):

Change the stable state number in each row corresponding to its row number

and change the remaining unstable states. (The purpose is to reduce the

redundant representations for the same state.)

Step 2. Compute the number of state variables according to the number of rows in

a given MST. (The number of state variables is equal to llogzml, m is the

number of given states.)

Step 3. Generate the adjacency table:

3.1 Initialize an adjacency table. (Table size depends on the number ofrows

in a given merged state table.)



Step 4.

Step 5.

Step 6.

Step 7.
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3.2 Fill the entries in the adjacency table according to the relabeled MST.

3.3 Compute link degree for each merged state.

Identify visible intrinsic races (VIR):

Check all the link degrees:

4.1 Check link degrees one by one. If one of the link degrees is greater than

the number of state variables, there exists a VIR. Stop checking the

remaining link degrees. Go to Step 6.

4.2 If all the link degrees are less than or equal to the number of state

variables go to Step 5.

Identify hidden intrinsic races (HIR) (see Algorithm 2).

5.1 If there are HIR’s in the given MST, go to Step 6.

5.2 If there are no HIR’s in the given MST, go to Step 7. (No any IR’s in the

given merged flow table)

Remove intrinsic races (see Algorithm 3).

End. Next is to do state assignment (see Algorithm 4).

Algorithm 2 (identifying hidden intrinsic races):

Step 1.

Step 2.

Select a merged primitive state with maximum link degree as the root node

of an assignment tree (see Figure 4-14).

Initialize the first two levels (level 0 and level 1) of assignment tree.

2.1 Assign 0 (n-bits, n is the number of state variables) to the root node at

level 0. Fill out the parent nodes and child nodes information for the

root node.

2.2 Generate the tree nodes at level 1 according to the child nodes

information at level 0. Assign binary vectors, which are one bit

difference with root node, to each u'ee node at level 1. Fill out the parent
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L-Atrad ASGN_T_head ASGN_TREE

level_no \ level_no

entry_list ‘ node_no

.next state_map ASGN_PARENT

.bin_code node_no node_no

ASGN_CHILD .map_value state_map state_map

m [ node_no] parent ~> .bin_code .bin_code

. . A—j next l4- child .map_value .map_value

next next +0 0 a next

level_no level_no

en list node_no

.ng‘ smc_map ASGN_PARENT

' .bin_code node_no node_no

.map_value state_map state_map

node_no node_no parent -> .bin_code .bin_code

next . . next child .map_value .map_value

__L next next ->- - next

: T l _]_

LEVEL_ASGN l

» level_no level_no

entl'>’_list node_no

.next state_map ASGN_PARENT

_l_ .bin_code node_no node_no

:— .map_value state_map state_map

Dodemcj parent —>- .bin_code .bin_code

. . 44 next J<~ child .map_value .map_value

next next +0 o - next      
J.

  

Figure 4—14. The data structure of an assignment tree
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nodes and child nodes information for each tree node at level 1. Set

level 1 to be the active level.

Step 3. Expand the assignment tree: (Generate new tree nodes based on the child

nodes information of each active tree node at the active level, and append

these new tree nodes to a new level next to the active level. Fill out the

parent nodes and child nodes information for each new tree node)

3.1 For each child node in the cmrent level, check if the child node is

already a tree node in the assignment tree. (Each time, check one child

node.)

3.2 IF it is a tree node in the assignment tree

THEN check if the level number of the child node is the same as the

level number of the active tree node. (The active tree node is a parent of

the child node. They are adjacent)

(1) If they are at the same level, then there is an HIR. Exit from this

algorithm and go to algorithm 3 for removing IR’s.

(2) If they are not in the same level, then check next child node. Go

to 3.1. .

ELSE (which means it is not a tree node in the assignment tree)

generate a new tree node and append it to the assignment tree. Go to 3.1.

Note: The above two steps 3.1 and 3.2 are repeated until all the child

nodes at the active level have been checked or exit if an IR is found.

Step 4. Check new level

IF there is no new level generated

THEN there are no HIR’s. Based on the assignment tree, an n-NWD is

generated. Exit from this algorithm and go to algorithm 4 for state

assignment.



Step 5
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ELSE compute the number of parent nodes for each new tree node in this

new level and do the following things.

4.1 If the number of parent nodes for anyone of these new tree nodes is

greater than the level number of this new level, then there is an HIR.

Exit from this algorithm and go to algorithm 3 for removing IR’s.

4.2 If the number of parent nodes is less than or equal to the new level

number, then check next new tree node. If all the new tree nodes have

been checked, then go to Step 5.

Try to assign a binary vector to each new tree node at this new level. The

method is as follows:

5.1 FOR each new tree node which has more than 1 parent node

DO the “OR” Operation on the binary vectors of its parent nodes, and

the resulting binary vector is assigned to the new tree node. If the

resulting binary vector is already assigned to another tree node, then

exit from this algorithm and go to algorithm 3 for removing [R’s

because an HIR is detected. Otherwise, go to step 5.2.

5.2 FOR the remaining new tree nodes which have only 1 parent node

DO trying to find an available binary vector which is one bit difference

with the binary vector of its parent node.

IF all the possible binary vectors (one bit difference with its

parent node) have been assigned,

THEN there is an HIR. Exit from this algorithm and go to

algorithm 3 for removing IR’s.

5.3 Generate the child nodes information for each new tree nodes at the new

level. I

5.4 Set the new level to be the active level. Go to Step 3.
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Algorithm 3 (removing intrinsic races):

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Copy the relabeled merged flow table (MFT) to a new MFI‘ for

modification. If the number of rows (m) is less than 2“, then add additional

rows (2n - m) to the new MFT, where n = rlogzml. The additional rows are

marked “checked”. In the following, the modification is done to the new

MFT.

Generate an n-NWD.

2.1 Initialize the n-NWD: generate nodes for first two levels, level 0 and

level 1. The number of nodes in level 1 is equal to the number of state

variables currently used.

2.2 Complete the n-NWD: generate all the link information.

Find a state with a minimum link degree (greater than 0) (or alternatively, a

link degree which is equal to or close to the number of state variables) as the

root node in the n-NWD. Fill the parent nodes and child nodes link

information.

Fill the nodes in the first level of the n-NWD with the States adjacent to the

root node. Fill the parent nodes and child nodes link information. Set level

1. as the active level.

Pick up a effective node in the active level as active node. Here, we mean

effective node is that the node number of this effective node must be > 0 and

<= number of rows in the MFT. The active node is marked “checked”.

5.1 Find a row in a MFT as the active row. The row number of this active

row must be equal to the node number of the active node. The active

row is marked “checked”.
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5.2 Check all the entries from first column to the last column in the active

row:

IF the entry is in an UNSTABLE state,

THEN check if this entry is in the n-NWD:

IF it is in the n—NWD

THEN check if it is directly connected (which means one bit

difference) to the active node:

IF yes, check next enny.

IF no, try to find an available path (create cycle) (shortest

path first) from the active node to the node corresponding to

the active entry:

IF an available path is found

THEN modify the MFT, and then check next entry.

ELSE go to Step 10 (expand MFT and n-NWD, n is

increased by 1).

ELSE try to find such an empty node that can provide an

available path (shortest path first) to the active node.

IF such an empty node is found

THEN fill the empty node with a node number, which is the

same as the state number of the active entry. Fill the parent

nodes and child nodes link information. If path length is

greater than 1, then modify the MFI‘ according to the path.

ELSE go to Step 10 (expand MFT and n-NWD).

ELSE check next entry

Step 6. Repeat Step 5 until all the effective nodes in the active level have been

checked.



Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Step 12.
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Take the next level as the active level and go to Step 5, until all the

remaining levels have been checked.

Recheck the n-NWD firm that level to the last level to see if there are new

effective nodes generated.

IF a new effective node is found in some level

THEN Set that level as an active level. Go to Step 5

ELSE Go to Step 9.

Check if all the rows in MFT have been checked.

IF all the rows have been checked

THEN exit from this algorithm and go to algorithm 4 for state assignment.

ELSE take an empty node in n-NWD as the node corresponding to an

unchecked row in MFT. The empty node becomes an effective node and the

corresponding level becomes an active level. Go to Step 5.

Reset new MFT according to the relabeled MFT.

Increase the number of state variables by 1. Expand the new MFT and

generate an new n-NWD according to the current number of state Variables.

Go to Step 3.

Algorithm 4 (state assignment):

Step 1.

Step 2.

Step 3.

Select one state assignment from the following:

Choice 1. alternative state assignment: user assign any legal binary vector

to one of the states.

Choice 2. system assignment

IfChoice 1 is selected, then user will be asked to give a binary vector to one

of the existing states. Go to Step 4.

If Choice 2 is selected, then excitation tables and output tables can be
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generated according to the standard codes on the n-NWD. End.

Step 4. Perform an “XOR” operation on the assigned binary vector and the standard

code (in an n-NWD) of the designated state. Take the result of the “XOR”

operation as the “mask vector”.

Step 5. IF the value of “mask vector” is equal to zero

THEN generate the excitation tables and output tables based on the n-NWD.

End.

ELSE go to Step 6.

Step 6. Use the “mask vector” to do “XOR” operation with each standard code in

the n-NWD. Each result is a binary vector assigned to each state.

Step 7. Generate the excitation tables and output tables. End.

AlgOrithm 1 gives an easy way to identify VIR’s. Algorithm 2 presents an efficient

method to identify HIR’s. Algorithm 3 is the most important and most difficult part in all

of the four algorithms. Algorithm 4 provides us a very quick and very efficient method to

generate alternative state assignments.

The following examples illustrate the principal features of the four algorithms and

demonstrate their utility. In each example, a merged flow (state) table is given before

applying the four algorithms. Other tables shown for each example were generated using

the MSUASLC Design Automation System. These include a re-labeled merged state table

(MST), an adjacency table, a modified MST, and an excitation table.

Example 4-1: (VIR’S Present)

Figure 4-15(a) depicts a reduced MST for an ASLC with two inputs and four internal

states. The re-labeled MST given in Figure 4-15(b) is obtained by applying Algorithm 1 .

The adjacency table for the re-labeled MST is shown in Figure 4-15(c). The table entries S,

Y, and N indicate whether the next state is the same state as the present state, is adjacent to
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the present state, or is neither, respectively. The number in parentheses next to each row

number indicates the link degree for the present state. The link degree of each present state

equals the number of Y’s in its row. For this example, since the link degree of row 1 is

greater than the number of state variables (=2), a VIR exists.

In Algorithm 3, the row (state) 3, which has minimum link degree in the given MST,

is selected as the root node of the 2—NWD (see Figure 4-15(d)). States 1 and 2 become the

child nodes of the root node, since they are adjacent to the state 3. Algorithm 3 sets node 1

of the 2-NWD as the active node and row 1 of the re-labeled MST as the active row. The

first entry in row 1 is a stable state, so it is skipped and next entry checked. This is unstable

state 2 and is node 2 in the 2-NWD. Node 2 is not directly connected to the active node 1

(there is no path 1-2); hence, an available race-free path between the present state and next

state must be found. In this example, path 1-3-2 from active node 1 to node 2 located in the

2-NWD and is also available in that column of the MST. Thus, the active entry 2 is changed

to 3 as shown in the modified MST (see Figure 4-15(e)). Next entry 3 in the row 1 is

checked. It is an unstable state. Because there is a direct link 1-3, this entry is not modified.

The next row entry is a stable state: so, it is not altered. This completes the path-assignment

process for the first row in the MST. The remaining rows are checked and modified in like

manner. This path identification and modification process yields the modifiedMST (Figure

4-15(e)) and corresponding adjacency table (Figure 415(0). These two tables identify all

allowed transitions. 3

Algorithm 4 is next applied to encode the states. The excitation table (see Figure 4-

15(g)) is generated according to the state assignments. In this excitation table, the binary

vectors 00, 01, 10, and 11 are represented by the decimal number 0, 1, 2, and 3. Figure 4-

15(h) is an alternative state assignment by assigning binary vector 00 to row 2 first. Then

the mask vector is obtained by the following: 00 O 10 = 10. The binary vectors for the

remaining states can be obtained by XORing the mask vector with each vector shown on
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the 2-NWD. The resulting set of state assignment is provided in Figure 4-15(h), and the

excitation table based on this state assignment is depicted in Figure 4-15(i).

Simple examples, like the one illustrated in Figure 4-15, can easily be done by

inspection of the MST; however, more complex ASLC’s require formal procedures to

identify and eliminate races. For example, it is not an easy process to modify the MST

shown in Figure 4-16(a) by inspection even though it is a relatively simple MST (see

Example 4-2).

Example 4-2: (VIR’s Present)

An MST is shown in Figure 4-16(a). Applying Algorithm 1, a relabeled MST is

obtained and shown in Figure 4—l6(b) which is the same as Figure 4~l6(a) for this example.

' The adjacency table for the relabeled MST is shown in Figure 416(c). The link degrees for

row 1, 2, 3, 4, 5, 6, 7, and 8 are 3, 5, 3, 3, 3, 3, 3, and 3, respectively. Since the link degree

of row 2 is 5, which is greater than the number of state variables (=3), a VIR exists.

Using Algorithm 3, a 3-NWD (shown in Figure 4-16(d)) is constructed to modify the

M67 and eliminate IR’s. The modified MST is shown in Figure 4—16(e) and the

corresponding adjacency table is shown in Figure 4- 16(0) in which the link degrees of row

2, 4, and 6 have been changed from 5, 3, 3 to 3, 2, 2.

Algorithm 4 is next applied to encode the states. The excitation table (see Figure 4-

16(g)) is generated according to the state assignments. Figure 4-16(h) is an alternative state

assignment by assigning binary vector 101 to row 3 first. Then the mask vector is obtained

by the following: 001 O 101 = 100. The binary vectors for the remaining states can be

obtained by XORing the mask vector with each vector shown on the 3-NWD. The resulting

set of state assignment is provided in Figure 4-16(h), and the excitation table based on this

state assignment is depicted in Figure 4-l6(i).
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Figure 415. Example 4-1 (a)a merged state table; (b) relabeled MST; (c) adjacency table

corresponding to the relabeled MST; (d) 2-NWD; (e) modified state table; (f) adjacency

table corresponding to the modified state table; (g) an excitation table due to system

assignment; (h) an alternative state assignment; (i) an excitation table due to an alternative

state assignment.
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Figure 4-15 (cont’d).
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Figure 4-16. Example 4-2 (a)a merged state table; (b) relabeled MST; (c) adjacency table

corresponding to the relabeled MST; (d) 3-NWD; (e) modified state table; (0 adjacency

table corresponding to the modified state table; (g) an excitation table due to system

assignment; (h) an alternative state assignment; (i) an excitation table due to an alternative

state assignment,
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Assign binary vector 101 to state 3

mark vector:

1016001 = 100

 

node 1: 1006000 = 100

node 3: 100 6 001 = 101

(1) A 3-NWD with standard codc node 4; 100 e 010 = 110

 
noch: 1006100 = 000

nodc7: 1006011 = 111

node 2: 1006101 = 001

node 6: 1006110 = 010

noch: 1006111 = 011

 (11)

Figure 4-16 (cont’d).
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2
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4
1
5
6
0
2
7
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(D

Figure 4—16 (cont’d).
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Example 4-3: (VIR’s Present)

In the above two examples, the size of the MST is not increased after the MST is

modified. However, an MST (see Figure 4-17(a)) will be expanded in this example.

Applying Algorithm 1, a relabeled M57 is obtained and shown in Figure 4-17(b). The

adjacency table for the relabeled MST is shown in Figure 4-l7(c). The link degree of each

row is 3 which is greater than the number of state variables (=2), so VIR’s exist.

Applying Algorithm 3, a 3-NWD (see Figure 4-17(d)) is generated to eliminate all the

IR’s. The modified MST is shown in Figure 4—17(e). The MST is expanded from 4 rows to

7 rows, so the number of state variables is increased by 1 (=3). Look at the node 2 in Figure

4-17(d). Assume it is an active node on the active level (level 1) at this time. The nodes 5,

6, and 7 are not in the 3-NWD now. Examine the entries in the second row of the relabeled

MST, an unstable state 4 is under column 3. In the 3-NWD, there is a path 2-1-4. However,

the next state of state 1 under column 3 is state 3, so the path 2-1-4 is not available. Another

path 2-x-4 is available, where x represents an empty node in the 3-NWD. Since no other

rows in the column 3 of the relabeled MST are connected to the row 4, row 5 is added as

the intermediate node of the path 2-x-4. Then the path 2-x—4 becomes 2-54. Similarly for

the entry at the row 3 (the third row) and column 0 (the first column) of the relabeled MST,

the path 3-1-2 is not available. However, there is a path 3-x-2 can be used to connect node

3 to node 2. The x in the path 3-x-2 is replaced by the number 6. Hence node 6 is in the 3-

NWD and a new row (row 6) is added into the new MST. Notice that we cannot use row 5

as the intermediate node for the path 3-x-2, even though it is unused under column 0 (a

don’t care “-” in that entry). Because there is no such path 3-5-2 existing in the 3-NWD.

Therefore, modifying an MST is not so straightforward, it refers to both 3-NWD and MST.

The adjacency table corresponding to the modified MST is shown in Figure 4-17(f). The

excitation table for an alternative state assignment (assign a binary vector 000 to state 2

first) is shown in Figure 4-17(g).
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Present Input (AB)

00 01 11 10

3 <9 3 . <95
U)

D

COG) . 4
E

B 1 2 @G)

is“

= . @® .
(a)

INPUT(AB)

o 1 3 2

3A
5-3 1Y 2N 3N lY

$3 2Y 2Y 4N 1N,

£503 2N 4N 3Y 3Y

:3 .1.N 4Y 4Y 3N

(b)

1(3) - 2(3) 3(3) 4(3)

1(3) 8 Y Y Y 2,.

2(3) Y s Y Y 333

3(3) Y Y s Y 3%

4(3) Y Y Y 8 £3

(6)

Figure 417. Example 4-3 (a)a merged state table; (b) relabeled MST; (c) adjacency table

corresponding to the relabeled MST; (d) 3-NWD; (e) modified state table; (0 adjacency

table corresponding to the modified state table; (g) an excitation table due to an alternative

state assignment (assign 000 to state 2).
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nwunnm

o 1 3 2

1 lY 2N 3N 1Y

2 2Y 2Y 5N 1N §A

3 6N 7N 3Y 3Y m3

4 IN 4Y 4Y 7N '§§

5 - - 4N - 533

6 2N - - - 2

7 - 4N - 3N

@)

Figure 4-17 (cont’d).
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2(3) 3(3) 4(3) 5(2) 6(2) 7(2)1(3) 
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1
0
3
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2
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Figure 4-17 (cont’d).
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Example 4-4: (HIR’s Present)

This example illustrates the process of identifying and eliminating hidden intrinsic

races. Consider the MST illustrated in Figure 4-18(a). Results of applying Algorithm 1 are

illustrated in Figure 4—18(b). The adjacency table for the re-labeledMST is shown in Figure

4-18(c). The link degree of each row is 2 which is equal to the number of state variables;

so, no VIR’s exist. But, do any HIR’s exist? To answer this question, Algorithm 2 is used to

construct an assignment tree, which is shown in Figure 4-18(d). Node 2 is both a parent

node and a child node of node 3, and they are in the same level. But nodes at the same level

(sibling nodes) are always separated by a Hamming distance which is greater than one;

hence, an HIR exists.

Algorithm 3 is next applied to eliminate all IR’s. A 2-NWD is generated and shown

in Figtn'e 4-18(e). The modified MST is shown in Figure 4-18(f). Notice that the entry in

row 2 and column 0 has been changed from 3 to 4, and one row (row 4) is added into the

MST. Although there is a path 2-1-3 existing in the 2-NWD, this path is not available under

the input 00 (i.e., column 0). Therefore, a new path 2-4—3 is created so that it can start from

state 2, via state 4, and reach state 3. The adjacency table corresponding to the modified

MST is shown in Figure 4-18(g). Algorithm 4 is next applied to encode the states. The

excitation table (see Figure 4-18(h)) is generated according to the state assignments.

So far, the examples we have seen are small size of MST. In the following, we are

going to see an example with a very large size ofMST. Smith [13] pointed out a flow table

with more than 150 cells is a very large flow table. The number of cells (entries) is equal to

the number ofrows times the number ofcolumns. It can be used as a rough measure offlow

table complexity. It will be shown that the algorithms presented can be used to rapidly

determine state assignments for extremely large tables.
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INPUT (AB)

0 1 3 2

gn 1 Y 1Y . 2 N 3 N

mg 3 N 1N 2Y 2Y

“gm 3 Y 1N 3 Y 3 Y

53.3-
2 (b

1(2) 2(2) 3(2)

1(2) 5 Y Y ‘33

2(2) Y s Y 33%

3(2) Y Y s is

s e
2 v

(C)

Figure 4-18. Example 44 (a)a merged state table; (b) relabeled MST; (c) adjacency table

corresponding to the relabeled MST; (d) assignment tree; (e) 2-NWD; (f) modified state

table; (g) adjacency table corresponding to the modified state table; (h) an excitation table

due to system assignment.
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Figure 4-18 (cont’d).
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1(2) 2(2) 3(2) 4(2)

1(2) 8 Y Y N 3 ,...

2(2) Y s N Y 3 3

3(2) Y N S Y E33

4(2) N Y Y ‘ 3 £3

(3)

. INPUT (AB)

0 1 3 2

o g o 0 1 2

1 g 3 o 1 1

2 § 2 o 2 2

3 E 2 - - '

Figure 4-18 (cont’d).

(h)



-92-

Example 4-5: (VIR’s Present)

This example demonstrates a very large flow table with 256 entries (8 rows * 32

columns). The merged state table is given in Figure 4-19(a). Applying Algorithm 1, a

relabeled M57 is obtained and shown in Figure 4-19(b). The adjacency table for the

relabeled MST is shown in Figure 4-19(c). The link degrees are 7, 3, 3, 7, 5, 3, 3, and 3 for

row 1, 2, 3, 4, 5, 6, 7, and 8, respectively. Therefore VIR’s exist.

Now, Algorithm 3 is applied to eliminate the IR’s. A 4-NWD (see Figure 4-19(d) is

generated for this purpose. The modified MST is shown in Figure 4-19(e), and the

corresponding adjacency table is shown in Figure 449(1). The excitation table based on a

system assignment is shown in Figure 4-19(g). This example fully shows that it is almost

impossible to do this by pen-and-paper methods, because it takes too much effort and too

much time. Also, human designers may make mistakes because of the complexity of the

merged flow table.
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INPUT(JKCSR)

o 1 3 2 6 7 5 4

1Y 5Y 13N 10N 26N 29N 21Y 17Y

1N 5N 13Y 9Y 26N 29N - - -

- - 13N 10N 25Y 29Y 21N 17N

2N 6N 14Y lOY 26Y 30N 21N 18Y

2N 6Y 14N - - 30N 21N -

2Y 5N 14N 10N - - 21N 18N

- 5N 14N - 26N 30Y 22Y 18N

- 5N - . - - - - -

12 13 15 14 10 11 9 8

49Y 53Y 61N 58N 42N 45N 37Y 33Y

49N 53N 61Y 57Y 42N 45N - 33N

- - 61N 58N 41Y 45Y 37N 33N

SON 54Y 62Y 58Y 42Y 46N 37N 34N

49N - 62N - 42N - 37N 34Y

SOY 53N 62N 58N 42N 46Y 38Y 34N

- 53N 62N - - - 37N -

- 53N - - - - - -

Figure 4-19. Example 4-5 (a)an example of large size MST; (b) relabeled MST; (c)

adjacency table corresponding to the relabeled MST; (d) 4-NWD; (e) modified state table;

(0 adjacency table corresponding to the modified state table; (g) an excitation table due to

system assignment.
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24 25 27 26 30 31 29 28

97 N 101 Y 109 Y 105 Y 122 N 125 N 117 Y 113 Y

97 Y 101 N - 106N 122N 125 N - 114N

- - 109N 106N 121 Y 125Y 117N 113N

98N 102N 110Y 106Y 122Y 126N 117N 114Y

98Y 101N 110N 106N 122N 126Y 118N 113N

- 101N llON - - - 117N 114N

98 N 102 Y 110 N - - - 117 N -

- 101N - - - 126N 118Y 114N

20 21 23 22 18 l9 17 16

81N 85Y 93Y 89Y 74N 77N 69Y 65N

82N - ' - - 74N 77N 69N 65Y

81Y 85N 93N 90N 73Y 77Y 69N 65N

82Y 85N 94N 90Y 74Y 78Y 70N 66N

82N 86N 94Y 90N 74N 78N 69N 66Y

82N 86Y 94N - - - 69N 66N

- 85 N 94 N - - - 69 N -

- 85 N - - - 78 N 70 Y 66 N

 

INPUT(JKCSR)

0 l 3 2 6 7 5 4

lY lY 2N 4N 4N 3N lY lY

IN IN 2Y 2Y 4N 3N - -

- - 2N 4N 3Y -3Y IN IN

6N 5N 4Y 4Y 4Y 7N 1N 4Y

6N 5Y 4N - - 7N 1N -

6Y 1N 4N 4N - - 1N 4N

- 1N 4N - 4N 7Y 7Y 4N

- 1N - - - - - -

Figure 4-19 (cont’d).
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12 13 15 14 10 11 9 8

lY 1Y 2N 4N 4N 3N 1Y 1Y

1N 1N 2Y 2Y 4N 3N - 1N

- — 2N 4N 3Y 3Y 1N 1N

6N 4Y 4Y 4Y 4Y 6N 1N 5N

1N - 4N - 4N - 1N 5Y

6Y 1N 4N 4N 4N 6Y 6Y 5N

- 1N 4N - - - 1N .-

- 1N - - - - - -

24 25 27 26 3o 31 29 28

2N 1Y 1Y 1Y 4N 3N 1Y lY

2Y 1N - 4N 4N 3N - 4N

- - 1N 4N 3Y 3Y 1N 1N

5N 7N 4Y 4Y 4Y 5N 1N 4Y

5Y 1N 4N 4N 4N 5Y 8N 1N

- 1N 4N - - - 1N 4N

5N 7Y 4N - - - 1N -

- 1N - - - 5N 8Y 4N

20 21 23 22 13 19 17 16

3N 1Y 1Y 1Y 4N 3N 1Y 2N

4N - - - 4N 3N 1N 2Y

3Y 1N 1N 4N 3Y 3Y 1N 2N

4Y 1N 5N 4Y 4Y 4Y 8N 5N

4N 6N 5Y 4N 4N 4N 1N 5Y

4N 6Y 5N - - - 1N 5N

- 1N 5N - - - 1N -

- 1N — - - 4N 8Y 5N

(b)

Figure 4-19 (cont’d).



 

1(7) 2(3) 3(3) 4(7) 5(5) 6(3) 7(3) 8(3)

1(7) S Y Y Y Y Y Y Y

2(3) Y S Y Y N N N N

3(3) Y Y S Y N N N N

4(7) Y Y Y S Y Y Y Y

5(5) Y N N Y S Y Y Y

6(3) Y N N Y Y S N N

7(3) Y N N Y Y N S N

8(3) Y N N Y Y N N S

(C)

state number: outside the circle

binary vector: inside the circle 3

 

 

 
Figure 4-19 (cont’d).
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Figure 4-19 (cont’d).
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- - - - - .. 1N -

- 2N - - - - - -

20 21 23 22 18 19 17 16

3N 1Y lY 1Y 5N 3N 1Y 3N

7N 3N - - 7N 3N 3N 2Y
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4N 6N 5Y 4N 4N 4N 1N 5Y

5N 6Y 5N - - - 5N 5N

4N 2N 4N - 4N 4N 2N 4N

- 7N - - - 7N 8Y 7N

.. - .. - - - 8N -

(C)

Figure 4-19 (cont’d).
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Figure 4-19 (cont’d).
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Figure 4—19 (cont’d).
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Figurc'4519 (cont’d).
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Example 4-6: (No [R’s Present)

An ASLC’s flow table is given in Figure 4-20(a). It has 6 rows and 4 columns. A re-

labeled MS'I' (see Figure 4-20(b)) and its corresponding adjacency table (see Figure 4-

20(c)) are generated by applying Algorithm 1 . Because no link degrees are greater than the

number of state variables, no VIR’s exist. élgorithm 2 is next applied for the purpose of

identifying HIR’s. An assignment tree is generated, (see Figure 4-20(d)); it shows that no

I-IIR’s exist either. Since no VIR’s and no.HIR's exist, the flow table is free of intrinsic races

(IR’s); hence, the modified flow table (see Figure 4-20(e)) is the same as the re-labeled flow

table. Also, the adjacency table (see Figure 4-20(f)) corresponding to the modified flow

table is the same as the one shown in Figure 4-20(c). From the assignment tree, a 3-NWD

is generated (see Figure 4—20(g)), and race-free state assignments are made. The excitation

table is shown in Figure 4-20(h).
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HWUTmA)

o 1 3 2

OY 4Y HN' 8Y

g - 5N’ 12Y 8N

m lY’ SY UN 9N

§ ON’ 7N BY 9Y

5 SY 7Y UY 11N

2 1r; - 15N 11Y

(a)

ImmnaM)

o 1 3 2

o 1Y 1Y 2N lY

§§ - 3N 2Y 1N

g3 3Y 3Y 4N 4N

ms 1N 5N 4Y 4Y

g3. 5Y 5Y 5Y 6N

3N - 5N 6Y

(b)

1(2) 2(2) 3(3) 4(3') 5(2) 6(2)

 

1(2) 3 Y N Y N N 2 A

an Y s Y N N N 33

3(3) N Y s Y N Y '3 g

4(3) if rt if 3 3r it 111?

5(2) N N N Y s Y 2 v

6(2) N N Y ' N Y s

m)

Figure 4-20. Example 4—6 (a)a merged state table; (b) relabeled MST; (c) adjacency table

corresponding to the relabeled MST; (d) assignment tree; (e) modified state table; (f)

adjacency table corresponding to the modified state table; (g) 3-NWD; (h) an excitation

table due to system assignment.
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Figure 4-20 (cont’d).
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INPUT (BA)

0 1 3 2

1 1Y lY 2N lY

2 - 3 N 2 Y 1 N g-

3 BY 3Y 4N 4N m3

4 1 N 5 N 4 Y 4 Y "680%

5 5Y 5Y 5Y 6N 63

6 3N - 5N 6Y 2

(6)

1(2) 2(2) 3(3) 4(3) 5(2) 6(2)

1(2) 3 Y N Y N N 0

2(2) Y s Y N N N E ’3‘

3(3) N Y s Y N Y ‘g 3

4(3) Y N Y s Y N 992

5(2) N N N Y s Y g 3

6(2) N N Y N Y s

(D

Figure 4—20 (cont’d).
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Figure 4-20 (cont’d).

INPUT (BA)

0 1 3 2

3 3 3 1 3

1 3 - o 1 3

o ."3. o o 2 2

2 § 3 6 2 2

6 g 6 6 6 4

4 o - 6 4

(h)
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4.5 Experimental Results and Comparisons

State assignment techniques for ASLC’s have been widely studied by many

researchers [1 1-13, 33-41]. Most of the research relates to the single transition-time (STT)

state assignment technique for fundamental-mode ASLC’s; i.e., only one digit in the input

may change at a time, and no changes can take place in the input until the state machine

stabilizes. STT state-assignment techniques were first presented by Liu [36] and later

extended by Tracey [12]. Other improvements or variations on S77 state assignments were

studied by many researchers [13, 34-35, 37-39]. Tracey’s methods [12] are important

representative approaches of STT state assignments.

Tracey [12] described a method for finding minimum variable unicode STT

assignments for normal, fundamental mode ASLC's. He noted that for “large” (8-12 rows)

flow tables, the effort required to calculate minimum variable USTI‘ codes became

prohibitively complex. Therefore, he suggested two related algorithms which would

require less effort, but would usually produce near minimum variable assignments. '

Smith [13] demonstrated that for flow tables that contained more than 50 cells, even

automated generation ofminimum-variable assignments was not practical. Furthermore, he

discovered that for very large flow tables (more than 150 cells), even Tracey’s near-

minimum variable methods required extremely large computation time. Smith noted that

one 12- row by 4-column table (48 cells) from the literature requires 50 transition

constraints and has more than 300 maximal intersectable classes. Even using very large

computers, it has been economically impractical to calculate minim-um variable

assignments for tables with more than a few dozen constraints. Since the number of

constraints is related to the number of next state entries rather than number of rows, Smith

uses the number of cells (the product of the number of rows and columns) as a rough

measure of flow table complexity. Smith also noted that none of Tracey’s assignment
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methods appear to be suitable for dense (mostly specified) flow tables of more than about

250 cells.

Smith presented an extension of Tracey’s techniques which produces near-minimum

variable assignments for very large tables, while requiring much less computational effort

than previous methods. In the Fig. 9 in Reference [13], Smith gives a comparison of

computational requirements for five assignment techniques. For the flow tables ofMachine

4 (table size 12 rows by 4 columns) and Machine 6 (table size 6 rows by 4 columns), our

approach yields fewer state variables and requires less CPU time than either Smith’s or

Tracey’s state-assignment techniques. With the Machine 4 example, Smith’s and Tracey’s

assignments yield 6 state variables. In contrast, our method solves the race-free state

assignment problem using only 5 state variables. For the Machine 6 example, Smith’s and

Tracey’s assignments use 4 state variables [13], Tan’s assignment needs 12 state variables,

Ullman’s (Friedman’s) assignment needs 9 state variables, Kuhl’s assignment needs 6

variables [35], and our method requires only 3 state variables. All the experimental results

that we have examined to date demonstrate that the MSUASLCDesign Automation System

always yields the minimum number of state variables.

The MSUASLC currently runs on a Sun workstation. ForMachine 4, Tracey’s Method

D requires 3.4 seconds (CPU time), Smith’s method requires 3.3 seconds. In contrast,

MSUASLC requires less than 10% of their shortest time. For Machine 6, both Smith’s and

Tracey’s methods require approximately 1 second, while MSUASLC requires less than 0.1

second.

For a flow table with 250 cells, Smith’s method needs 49.9 seconds, and Tracey’s

method needs 179.2 seconds [13]. However, MSUASLC takes less than 1 second to

complete state assignment for a flow table with 256' entries (cells). Although these two

tables (250 cells and 256 cells) differ slightly, the results demonstrate that MSUASLC

reduces the computation time significantly.
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The One-Hot State-Assignment method [5] is an interesting special class of unicode

row assignment techniques. It is characterized by the fact that for each row in the flow table,

exactly one of the state variables is assigned the value of 1. Therefore, a flow table with n

rows will have n state variables. The advantage of this technique is that state equations can

be obtained in a relatively straightforward manner. The disadvantage is that too many state

variables are used; hence, the hardware cost can be quite high. Consider the Example

Machine described by Unger and illustrated in Fig. 4-21 [5]. The number of state variables

is 5 in using the One-Hot State-Assignment method and the state equations are as follows:

Y1 = J151177233 “Hi-273 4917253

Y2 = i.11172)’1"’)’293

Ya = xlx2yl 4‘ xrxzyz 4' 3’35’194

Y4 = 515‘22'3 +x1x2y5 +y4y'5

Y5 = Jr13723’4 "”5915’4

By way of contrast, the number of state variables obtained using the MSUASLC is 3,

and the state equations are as follows:

Y0 = 52792 +y2yli0xl

Y1 = y1x2 49131 +y2x1x2

Y2 = y2x2 +y2x1 +Y2Y1+y1i152

The race-free state-assignment method described here reduces the complexity of

solving the race-free state-assignment problem by decomposing the problem into two

principal stages. In the first stage, the flow table is scanned for intrinsic races (IR’s). Visible

intrinsic races (VIR’s) and hidden intrinsic races (HIR’s) are efficiently identified and

eliminated. This stage yields a modified flow table that is free of intrinsic races. In the

second stage, race-free state assignments are systematically made.
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The node-weight diagram (NWD) was introduced and used in both stages of the race-

free state-assignment method described here. This diagram is a variation of the binary n-

cube connection diagram and provides a more convenient geometric representation of

binary numbers for the purpose of making race-free state assignments than the n-cube. The

NWD provides a fi'amework for efficiently adding cycles and states to eliminate intrinsic

races (IR’s) and for guaranteeing that no generated races (GR’s) are introduced when the

symbolic states are assigned binary codes.

Many asynchronous state-machines have been synthesized using the state-

assignment method described here and comparisons made with other state-assignment

methods reported in the literature. Experimental results show that this method provides

significantly better results than other approaches in terms of the computation time required

to make the assignments and the number of state variables required to achieve race-free

ASLC’s.
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Figure 4-21. Flow table for Unger’s example machine
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Chapter 5

Summary and Conclusions

 

5.1 Summary

The research reported here has focused on investigating the process of designing

asynchronous sequential logical circuits (ASLC’s). For a given sequential logic function,

the process of designing ASLC’s is significantly more complex than that of their clocked

sequential logical circuit (CSLC) counterparts. This is due in part to critical-race and hazard

problems that are associated with ASLC architectures. But, through appropriate state

assignments, the race conditions can be avoided. Although it can be a very tedious process,

the ASLC designer can verify that a particular design is functionally correct, as well as race

and hazard free. Some computer-aided design (CAD) tools can be used to simulate the

designed circuits to assist in the design verification process. But, because of the complexity

of the overall ASLC design process, only the simplest sequential logic functions have been

implemented using ASLC architectures. An automated set of design tools would enable

state machine designers to evaluate alternative sequential logic function architectures more

thoroughly before committing the design to a specific architectural implementation.
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An ASLC design automation system, which is called the MSUASLC Design

Automation System, has been developed and tested. Software was written in the C

programming language with approximately 20,000 lines of source code. While the current

version of this software runs on Sun workstations, it is readily transportable to other

platforms. It is both modular and interactive and automatically validates the correctness of

each step in the design process. Each module provides intermediate output information

necessary to document the design. This design system significantly reduces the ASLC

design cycle time.

The MSUASLC Design Automation System consists of five modules as illustrated in

Figure 1-1. Each module can accept data files from either an up-stream module or

interactively from the circuit designer. This modular CAD system architecture has clearly

defined entry and exit points and permits each module (sub—system) to be accessed

independently. Therefore, concurrent execution of these modules can be achieved for

different design tasks.

Constructing a primitive flow table (PFT) is the first important step in designing an

ASLC. Generating a large PFT by pen—and-paper methods may require several hours or

days, and the results may be incorrect. In order to ensure aPFTmatch a required functional

design specification, the generated PFT must be verified to guarantee a correct ASLC

behavior. Therefore, verifying a PFT may take longer time than the generating a PFT.

Many inputs/outputs can make flow tables unmanageably large. The Behavioral Descriptor

(BD) overcomes these complexity problems. The BB uses an artificial intelligence

approach to map the functional design specification into a primitive flow table (PFT),

which completely captures the sequential logic function’s behavior. For a table with 212

entries, the BD can generate the PFT in about one second. Therefore, the BD can quickly

generate a very large PFT’s. This significantly reduces the time for generating and

verifying the PFT.
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Merging a large flow table is more time consuming and more difficult than generating

a large flow table. It becomes almost impossible to draw a merger diagram by hand from a

large PFT and to identify the strongly connected subgraphs by visual process from a

complex merger diagram. The Merger uses graph techniques to reduce the complexity of

the merging process. It reduces the PFT into a merged flow tableand merged output table,

thereby minimizing the number of states by eliminating redundant primitive state

assignments. Specific steps in this state merging process are as follows: The merger

diagram (MD) and the merged flow table (MFT) are initialized. The MD is completed by

identifying identical rows in the PFT. Each set of identical rows in the PFT becomes a new

row in the MFT and is assigned a new symbolic state name. A given primitive state may be

capable of being merged in more than one way, but primitive states must only be assigned

to one of these merged states. Therefore, additional constraints are necessary in order to

decide which grouping is best. One such constraint might be to require that only primitive

states with identical output states be merged. Four different merging methods are provided

in the Merger. The major purpose is to give designers or researchers more opportunities to

investigate the merged results. The traditional merging method (identifying the largest

strongly connected subsets) is not included in the Merger module because it takes too much

computation time (effort), especially when the PFT is large. As indicated in Chapter 3, the

traditional merging method does not guarantee a minimum number of merged states, i.e.,

rows in the merged flow table.

Verifying all the allowed state transitions and modifying the MFT to avoid races are

very difficult in the design of ASLC’s, especially for a large MFT’s. The Connector and

Assigner overcome the difficulty of malcing race-free state assignments. The race-free

state-assignment method described here reduces the complexity of solving the racefree

state-assignment problem. The node-weight diagram (NWD) is introduced. It is a variation

of the binary n-cube connection diagram and provides a more convenient geometric

rm
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representation of binary numbers for the purpose of making race-free state assignments

than the n-cube. The NWD provides a framework for efficiently adding cycles and states to

eliminate intrinsic races (IR's) and for guaranteeing that no generated races (GR’s) are

introduced when the symbolic states are assigned binary codes. Experimental results show

that this method provides significantly better results than other approaches in terms of the

computation time required to make the assignments and the number of state variables

required to achieve race-free ASLC’s.

The process of mapping symbolic states into race-free binary-coded state vectors is

not unique; i.e., more than one set of race-free state assignments can be generated for a

given flow table. The approach described here is currently being used to investigate

alternative ASLC implementations for a given sequential—logic element specification. The

objective of this investigation is to develop rules for determining the best set of state

assignments for a specific set ofASLC design constraints.

Finding consensus terms to eliminate hazards is also a time—consuming and difficult

process, especially when the excitation tables and output tables become large. The purpose

of most Boolean minimization tools [42-45] is to minimize a given switching function, so

they do not provide the function for eliminating hazards. The Equation Generator quickly

generates hazard-free ASLC state equations and output equations. The Equation Generator

module reads the state excitation table and modified output table and applies the Quinc-

McCluskey algorithm [46] to generate the state equations and output equations. These

equations are expressed in two-level, sum-of-products form. Static hazards are identified

by searching each of these equations for adjacent pairs of prime implicants. If a pair of

adjacent prime implicants do not possess a consensus term, it is added to eliminate the static

hazard. The Equation Generator consists of two major parts: one is Boolean Generator; the

other is Hazard Eliminator. The Boolean Generator generates a minimized Boolean

function. The Hazard Eliminator realizes the Boolean function (generated by the Boolean

Generator) in its hazard-free, two-level sum-of-products form.
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One primary objective of the work reported here is to map human (expert) knowledge

into the implementation of an ASLC design system to speed up the overall ASLC design

process. This system lessens the burden on sequential logic function circuit designers by

greatly reducing the chances that errors would creep into the design and by greatly reducing

the overall design cycle time. This increase in designer productivity could be used in part

to explore alternative implementations for purposes of optimizing the overall Circuit’s

performance.

The MSUASLC Design Automation System not only overcomes the design

complexity and difficulty but also provides for design flexibility. Different merging

methods may generate different MFT’ 5. Different state assignments may generate different

excitation tables and output tables. Any of these may result in a different ASLC

implementation. Designers can choose the one which satisfies their particular

requirements.

Results of the research reported here will impact the ASLC design process as follows:

1. It provides a tool that will enable researchers to investigate the general

implications of alternative ASLC implementations. The intent would be to

develop a general set of rules for optimizing designs.

2. It provides a tool that will enable ASLC designers to explore alternative ASLC

implementations for purposes of optimizing a given design.

3. It provides a means to design complex ASLC’s (large-scale ASLC’s) and thereby

provide an alternative to the CSLC implementation of sequential circuits.

4. It provides a tool to help the researchers or designers investigate specific designs

such as fault-tolerant or testable ASLC designs. Researchers or designers can

modify the tables generated or can make tables themselves and then submit these

tables to the system to generate the ASLC equations which satisfy their design

constraints.
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5.2 Future Research and Development

One important research issue that has not yet been fully addressed is the design of

fault-tolerant or testable ASLC’s. Since using the MSUASLC Design Automation System

can quickly generate the ASLC equations, one can readily investigate the internal

characteristics of the ASLC’s. In order to explore fault-tolerant or testable ASLC design,

some redundant states may be added to make the circuit have some specific features, or

some special arrangements can be made to the flow table, state assignments, excitation

tables, or output tables. Based on these, researchers may develop rules for fault-tolerant or

testable ASLC design. Because of its modular design, the MSUASLC Design Automation

System can be easily expanded. We can expand the capability ofMSUASLC, e.g., add some

features to allow the design automation for fault-tolerant or testable ASLC design.

Another research issue could be the asynchronous control portion of an ASIC

sequential logic function. The design time of an ASIC is only as fast as the design time of

its slowest portion. Keutzer [47] pointed out the lack of synthesis and verification

procedures for asynchronous and analog portions of circuits is a severe problem. The

MSUASLC Design Automation System can be used to assist the research in ASIC design.

Some specific asynchronous control applications can also be explored or implemented.

One interesting research issue would be in the prediction and avoidance of hazard

conditions.
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