

ITY LIBRARIES

0

3 1293 00902 1357

ﬂ

This is to certify that the
dissertation entitled

AUTOMATING THE DESIGN OF LARGE-SCALE
ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS

presented by

Sheng-Fu Wu

has been accepted towards fulfillment
of the requirements for

Ph. D. degreein Electrical Engineering

S it

Major professor

Date//ﬂ)" 6/770/

MSU is an Affirmative Action/Equal Opportunity Institution 0-12m

LIBRARY
Michigan State
Unlversity

PLACE IN RETURN BOX to remove this checkout from your record,
TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

MSU Is An Affirmative Action/Equal Opportunity Institution
c\circ\detedus.pm3-p, -

—_—

AUTOMATING THE DESIGN OF LARGE-SCALE
ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS

Sheng-Fu Wu

A DISSERTATION

submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

1991

ABSTRACT

AUTOMATING THE DESIGN OF LARGE-SCALE
ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS

By

Sheng-Fu Wu

The computer-aided design process described simplifies the task of designing large-
scale asynchronous sequential logic circuits (ASLC’s). It provides a highly structured,
interactive approach for modeling sequential logic functions and for mapping these models
into ASLC architectures and gate-level circuits. A design autémation system, which
implements this process, has been developed and tested. It contains five modules: the
behavioral descriptor, which maps the functional design specification into a primitive flow
table; the merger, which minimizes the number of states needed to implement the
functional model; the connector, which adds cycles and states, as needed, to avoid critical
races; the assigner, which encodes the states and generates the state excitation table and
output table; and, finally, the equatidn generator, which eliminates static or dynamic
hazards and converts the state excitation table and output table into two-level, sum-of-
product expressions for the state equations and output equations. This task-oriented system
provides a convenient way to describe the functional behavior of sequential logic functions.
It can reduce the design cycle time and improve the reliability of the overall ASLC design

process and can also be used to facilitate the investigation of alternative ASLC

implementations for. the purpose of optimizing the performance of a specific sequential
logic function. Moreover, it can assist the researchers and designers in developing rules
which may satisfy some particular requirements or applications, such as fault-tolerant or

testable ASLC’s designs.

ACKNOWLEDGMENTS

I would like to express my thanks to my major professor and advisor
Dr. P. David Fisher for all of his assistance with my graduate research and the development
of my thesis as well as the other members of my Graduate Guidance Committee:
Dr. Jacob Plotkin, Dr. Michael A. Shanblatt, and Dr. Chin-Long Wey. In addition, I would
like to thank my wife, my family, and my friends for their support, patience, and
encouragement in my efforts to achieve a Ph. D. degree while pursuing a graduate

education in the United States of America.

iv

TABLE OF CONTENTS

LIST OF TABLESccciniiicnennssnsissssssssssssstsssssssssssssesssesssesesssseseness vii
LIST OF FIGUREScoooiiriiiiininninninnisntssssstssassstsssssnsssssssasssssassasssessesssessessasssansesss viii
Chapter 1: INTOUCHONccvereiiruiruisicsunenensissesessissesessisssssssessassessssssssssesssssssnssseseas 1
1.1 MOUVALONccoceiiniiinniniicnecsiocanosarsssssstssstsnsasassssessasssassssessassasessasansessasns 2

1.2 SYStemM OVETVIEWccccenuinuininnncnscnisnnsasssessesassessssssssessssssssssnssnassensessesaensans 3

1.3 OULHNEocoiiiiiiniinninenenaesessesesatsassatncsssesestsssssssssesssnsssssssnssanssssaneessans 6
Chapter 2: Behavioral Descriptor with Artificial Intelligence Approach 7
2.1 The Behavioral DESCTIPLOTccoeuiineivinnennninnisissmsnssessesiessssssssesssssssensenes 8

2.1.1 REPresentationc.ccccceeceecceeseenceesessassasesasossassessasssessessansassansaas 9

2.1.2 Production RUIESc.cccevnvinnininnininnnncnsnnniinincnniesnicnesnceseceeaenens 10

2.1.3 Control SAtEGYccccrrerurrrsresessesercsuisessesssessenesesssssssesessssenencens 11

2.2 Algorithm for the BDcccicienieninnienieninninnecestneesnseseesssensesesssesaeessessanne 12

2.3 Design Examples and DiSCUSSIONcccccevceeruennnnernueceenuenceriereseesenseesenenens 13

2.4 Conclusions to the BDc.cccvviiinnnnnnnnnnnninnineninctiiecseeneseeneseeneesene 23
Chapter 3: Merger: The Merged Flow Table Generatorccccceveeeveeevcnnncencenunnnen. 24
3.1 The Merged Flow Tablecccccerieninnenneeneeninneninneeeneesieseeeseseeseeeesnenes 25

3.2 Alternative Merging Methods in the Mergerccceveeveneerercenseensesneenes 28

3.3 EXAMPIES ...ccceeeiriieeeneiineienenenieesneesenesnnessaesnnassnsessessseessssnseansesnsesnsessneensesanes 32

3.4 DISCUSSION ...ccovuereiienrenstessisunneniiesiesstsstessessesssesssessessessssssssressassesssesssssnsns 41
Chapter 4: Race-Free State ASSIgNMENLSccoeciienieenerineeeneenersreesrieneesnsenecsnsnenne 43
4.1 General Concepts on Race Conditions and Cyclescccceccevirvuencnncnnen. 44

4.2 State-Assignment Model ... 47

4.3 Methods to Avoid RaCESc.cocecueemicircnreiniecncccicececreesae e 52

4.3.1 Identification Of RaCESccccceevteererirenensenneiiececenee e secsecennns 53

vi

4.3.2 Node-Weight Diagram (NWD)ccccoceverrererrenerseesensseneeseseesenns 57

4.4 Algorithms and Examples for Race-Free State Assignments 64

4.5 Experimental Results and COmMPArisonsccccceeeeeeereeseeeseeessecsercnessacnnes 107
Chapter 5: Summary and CONCIUSIONScccceeeeventerreserecseesessessensssesensaesessessessesesnens 112
5.1 SUMMATYeoeeeecreceereieeeeessesseessessesssessasssessssssessasssessessassasenssesaessesssesses 112

5.2 Future Research and Developmentcccoveceereneererennerieecsenseesesseeseennns 117

LIST OF REFERENCEScoiniiniininiiiininsstssssssssssssssssssssesssssssssessenes 118

Table 2-1.
Table 2-2.
Table 2-3.
* Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 2-8.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.

Table 3-10.
Table 3-11.
Table 3-12.
Table 3-13.

LIST OF TABLES

Primitive State Table for P-SLFccccovmvunniirvnseccssnressissnsecsscseescsses 17
Primitive Output Table for P-SLFcccciiveeninnienssisncssnasasssssnsessaas 17
Primitive State Table for DIV-3 ctesetetanesstsateasat s nssnaasenanns 19
Primitive Output Table for DIV-3ccciiivenninsssirnscsissessicsessenes 19
Alternative Primitive State Table for DIV-3ccoccovineininivnneinscnncns 20
Alternative Primitive Output Table for DIV-3ccocceveveiviercricnnncnncene 20
Primitive State Table for Gated OSsCIllatorcccoccevcenenseiireenseranennneas 22
Primitive Output Table for Gated Oscillatorcccoenienicniicsnrennesnens 23
A Primitive State Tablecccevmeesecrnssesensncsnssnenscsacsnsscsescssessesessoseons 26
A Merged State Tablecccccvieninnininencnncsnnsaissessanssncsacseesassssessessneens 27
A Merged Output Tableccciciniiincciicnnenannsnennisssssssanssssosassssssosens 28
Merged State Table for P-SLF by Method 1cuceiviniiivnnnnincnccncns 33
Merged Output Table for P-SLF by Method 1ccccivinviniininncncannns 34
Merged State Table for P-SLF by Method 2ccccovnvenneninnnnncnncnninne 35
Merged Output Table for P-SLF by Method 2ccoceeeievicecnninncnnnnas 35
Merged State Table for DIV-3 by Method 1ccoieernveninceccncnnccnncns 36
Merged Output Table for DIV-3 by Method 1ccccevininivcnnnncnnnnns 37
Merged State Table for Gated Oscillator by Method 1c.ceueuee. 39
Merged Output Table for Gated Oscillator by Method 1c...... 39
Merged State Table for Gated Oscillator by Method 3ccceueuneae 40
Merged Output Table for Gated Oscillator by Method 3 40

vii

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-§.
Figure 3-1.
Figure 3-2.

Figure 3-3.

Figure 3-4.

Figure 3-5.

Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.
Figure 3-11.

Figure 3-12.

Figure 4-1.

Figure 4-2.

Figure 4-3.
Figure 4-4.

LIST OF FIGURES

Configuration of the ASLC design SyStemcccceeereereeveeseecresnessenneenes
GraphiC SYmMbOL fOr £he P-SLFccccoveevvecveeneessenreensecssesssessaessassasesesnns
Primitive flow table for 1he P-SLFccuieveeereenrecnncneeneccseessecssenseenes
DIV-3 (a) graphic symbol, (b) timing diagramcccceeeeereeeerereeernes
Graphic symbol for the gated 0SCillatorcccceccricncceeneeneecseecaensaenas
Timing diagram for the gated 0sCillatorccccevvereeerecrnereenneceesneereenes
Merger diagram for the PFT of Table 3-1
Strongly connected groups (a) 2 nodes; (b) 3 nodes; (c) 4 nodes; (d) 5
NOAES ..ouiiniinicrinstinnssecisissiostssassstsssssssssssssnsssssssssssasssssssassesssssasssassssasas
Merger diagram (4 nodes) with two different merging methods (a)
method S (largest strongly connected subsets first); (b) method 3 (least
strongly connected SUDSELS firSt)ccccccceerreceicseencensnecnecanscasesaasaannes
Merger diagram (5 nodes) with two different merging methods (a)
method 5 (largest strongly connected subsets first); (b) method 3 (least
strongly connected SubSets firSt)cccceeeeeererceceeesensaesessansaesasaneseentes
A possible merging approach by using method 5 for a merger diagram
Merger diagram for the primitive flow table of Figure 2-1
Merged groups for method 1
Merged groups for method 2cccovveerinceenerceneicseneesensnesencncenesesnnens
Merger diagram for the primitive flow table of Table 2-3
Merger diagram for the primitive flow table of Table 2-7
Merged groups generated by (a) method 1 (or 2, or 4); (b) method 3

..

oo

ooo

oo

Illustration of a noncritical race (a) yo changes before y;; (b) y;
Changes DEfOre Y ..ccceevrcnienesnnnnniniinetiitenncieesassenneseesnnsessssnsenns
Illustration of a critical race (a) y; changes before y, (desired
response); (b) yo changes before y; (incorrect response)cceeenee.

ITuStration Of & CYCIEccciecireeneienercennnnenessiessresecnsanssnsessessesesesnsnsnse
Ilustration of how improper state assignments can introduce races: (a)
flow table; (b) adjacency diagram; (c) excitation table with race-free
state assignments; (d) excitation table with races presentc......

viii

29

30

30
32
33
34
36
38

38

42

45

48
48

Figure 4-5.
Figure 4-6.
Figure 4-7.

Figure 4-8.

Figure 4-9.

Figure 4-10.
Figure 4-11.
Figure 4-12,

Figure 4-13.

Figure 4-14.
Figure 4-15.

Figure 4-16.

Figure 4-17.

Figure 4-18.

(a) A fragment of a merged state table corresponding to Figure 4-1 or
Figure 4-2; (b) a different state assignment for (a)ccceceeeervceseseesanns
An example of intrinsic races (a) VIR; (D) HIRoccueevveecreeeceeecnenns
An example of avoiding races by creating cycles (a) merged state table;
(b) adjacency diagram; (c) modified state table; (d) modified adjacency
diagram
An example of adding states to create cycles and eliminate races (a)
merged state table; (b) adjacency diagram; (c) modified state table; (d)
modified adjacency diagramccccecvecceererieeneenseneeseesnesseessssnesessnnennes
Examples of binary n-cube, (a) 3-cube, (b) 4-cubecccceveeererererrnrnnnns
Geometric representation of @ 4-NWDccoeeveeereenneenncsnesanesareseses
The data structure for anode in an n-NWDouererenenerererererssennene
An example of adding states to create cycles and eliminate races (a)
merged state table; (b) adjacency diagram; (c) modified state table; (d)
modified adjacency diagramccoceevcnrncnneneinneneseenneesaesnnessaesenesaens
An example of adjacency diagram which cannot avoid race conditions

...

oo

The data structure of an assignment tree et sass e sassesaesassaens
Example 4-1 (a)a merged state table; (b) relabeled MST; (c) adjacency
table corresponding to the relabeled MST; (d) 2-NWD; (e) modified
state table; (f) adjacency table corresponding to the modified state
table; (g) an excitation table due to system assignment; (h) an
alternative state assignment; (i) an excitation table due to an alternative
State ASSIGNIMENLcccceeereeeriereecrreceecseessanssessansaionsasssasessesssssssessasssesnsases
Example 4-2 (a)a merged state table; (b) relabeled MST; (c) adjacency

table corresponding to the relabeled MST; (d) 3-NWD; (e) modified
state table; (f) adjacency table corresponding to the modified state
table; (g) an excitation table due to system assignment; (h) an
alternative state assignment; (i) an excitation table due to an alternative
SLALE ASSIGNITICNLcceverereererernreseesnesnsesessnessssssssnessasssssassnsnneseasssessssssnes
Example 4-3 (a)a merged state table; (b) relabeled MST; (c) adjacency
table corresponding to the relabeled MST; (d) 3-NWD; (e) modified
state table; (f) adjacency table corresponding to the modified state
table; (g) an excitation table due to an alternative state assignment
(assign 000 tO SALE 2)cccovrerrerenreeseresemsnnsunesunssessesssesssessesssesssessasesees
Example 4-4 (a)a merged state table; (b) relabeled MST; (c) adjacency
table corresponding to the relabeled MST; (d) assignment tree; (e) 2-
NWD; (f) modified state table; (g) adjacency table corresponding to the
modified state table; (h) an excitation table due to system assignment

..

51
52

55

56
58
58

62

75

78

85

Figure 4-19. Example 4-5 (a)an example of large size MST; (b) relabeled MST; (c)
adjacency table corresponding to the relabeled MST; (d) 4-NWD; (e)
modified state table; (f) adjacency table corresponding to the modified
state table; (g) an excitation table due to system assignment

Figure 4-20. Example 4-6 (a)a merged state table; (b) relabeled MST; (c) adjacency
table corresponding to the relabeled MST; (d) assignment tree; (e)
modified state table; (f) adjacency table corresponding to the modified
state table; (g) 3-NWD; (h) an excitation table due to system
ASSIGNIMENEccieiieeneiorcrranssasiseesstsssssstesssessesssssssesssssssssssessssstssssessssssssses

Figure 4-21. Flow table for Unger’s example machineccccceveerecnsinvnncinncnnnnne

93

Chapter 1

Introduction

Sequential logic functions may be implemented in either clocked sequential logic
circuit (CSLC) or asynchronous sequential logic circuit (ASLC) architectures. ASLC’s have
several important intrinsic advantages over their CSLC counterparts. An ASLC sequential
logic function is potentially faster since it does not have to wait for the arrival of a clock
pulse before effecting a state transition [1-8]. In complex CSLC'’s, clock skewing may limit
overall performance [9], while this problem is not encountered in their ASLC counterparts.
Moreover, ASLC’s generally require less space to implement since the basic functional
primitives are gates, not gates and memory, as is the case for CSLC’s. However, for a given
sequential logic function, the ASLC design process is much more complex and time
consuming than that of the CSLC [10]. This drawback has led state machine designers to
prefer CSLC architectures to their ASLC counterparts. Consequently, before the intrinsic
advantages of ASLC architectures can be fully exploited, there exists a need for efficient
ASLC design tools which significantly simplify the process of designing this class of

sequential logic functions.

1.1 Motivation

For a given sequential logic function, the process of designing ASLC'’s is significantly
more complex than that of their CSLC counterparts. This is due in part to critical-race and
hazard problems that are associated with ASLC architectures. But, through appropriate state
assignments, the race conditions can be avoided [11-13]. Various types of hazards and the
design of hazard-free sequential logic circuits have been widely studied, and methods have
been developed to identify and eliminate them [14-16]. Although it can be a very tedious
process, the ASLC designer can verify that a particular design is functionally correct, as
well as race and hazard free [17,18]. Some CAD tools can be used to simulate the designed
circuits to assist in the design verification process, e.g., VHDL, CALCAD, or Schematic
Editor [19]. But, because of the complexity and difficulity of the overall ASLC design
process, only the simplest sequential logic functions have been implemented using ASLC
architectures. An automated set of design tools would enable state machine designers to
evaluate alternative sequential logic function architectures more thoroughly before
committing the design to a specific architectural implementation.

The complexity and difficulity of designing ASLC’s involves the following:

1. The table size of a primitive flow table (PFT): The PFT describes the transitions
between all the possible allowed states. Many inputs and outputs can make the flow
table unmanageably large.

2. The generation of a merged flow table (MFT): In the merging process, finding the
strongly connected subsets from a PFT (especially from a large PFT) is a very difficult
task. This involves some relative techniques and concepts in graph theory.

3. The elimination of race conditions: The difficulties of making a proper state assignment
to avoid race conditions are well known. Generating race-free state assignments and

modifying the MFT are very difficult tasks especially for a large MFT.

3-

4. The elimination of hazards: In order to generate hazard-free state equations and output
equations, consensus terms must be added into those equations. For large excitation (or
output) tables, finding consensus terms may become a mofc difficult and complex task.

The primary objective of the work reported here is to map human (expert) knowledge
into the implementation of an ASLC design system to speedup the overall ASLC design
process. This system would lessen the burden on sequential logic function circuit designers
by greatly reducing the chances that errors would creep into the design and by greatly
reducing the overall design cycle time. This increase in designer productivity could be used
in part to explore alternative implementations for purposes of optimizing the overall
circuit’s performance. By providing the opportunities of investigating many different

implementations, researchers and dcsigncr§ may identify some rules for determining a

better ASLC design to fit some particular requirements or applications, for example fault

tolerance design, testable design, or the asynchronous control parts in the AS/C design.

An ASLC design automation system (MSUASLC) that achieves this objective has
been developed and tested. Software was written in the C programming language with
approximately 20,000 source code; and while the current version of this software runs on

Sun workstations, it is readily transportable to other platforms.

1.2 System Overview

The ASLC design automation system (MSUASLC) is illustrated in Figure 1-1. It
provides a view of the design hierarchy traversed by the ASLC design system. It consists of
five modules, each of which can accept data files from either an up-stream module or
interactively from the circuit designer [20,21]. These modules perform the following

functions:

Functional Design Specification

Behavioral
Descriptor
. . Designer’s (User’s)
Primitive State Table Prinngttilvc State Table
Primitive Output Table Primitive Output Table
Merger
Designer’s (User’s
Merged State Table Mcrgggd stageJTablg
Merged Output Table Merged Output Table
Connector
. Designer’s (User’s)
ic[dJa,ce:gYS abl_; bl Adjagcrclncy Table
M od1ﬁ0d!ﬁ o O‘uate T gl Modified State Table
tput 1able Modified Output Table
Assigner

Designer’s (User’s)
State Excitation Table State Excitation Table
Output Table Output Table

Equation Generator

T

State Equations and Output Equations

Figure 1-1. Configuration of the ASLC design system.

-5-

Behavioral Descriptor: maps the functional design specification into a
primitive flow table (PFT), which completely captures the sequential logic
function’s behavioral model [22].

Merger: reduces the PFT into a m.crged flow table and merged output table,

thereby minimizing the number of states by eliminating redundant primitive

state assignments.

Connector: develops a state adjacency table from the merged flow table and

adds cycles and states as needed to avoid critical races. It also produces a

modified state table and modified output table.

Assigner: encodes the states and generates the state excitation table and

corresponding output table from the information stored in the adjacency table,

modified merged flow table, and previously developed modified output table.

Equation Generator: eliminates static hazards and converts the state excitation

table and output table into state equations and output equations, which are

placed in two-level, sum-of-products form.

This modular CAD system architecture has clearly defined entry and exit points and
permits each module (sub-system) to be accessed independently. Therefore, concurrent
execution of these modules can be achieved for different design tasks.

The Functional Design Specification (see Figure 1-1) includes an external input
specification, an external output specification, and a sequential logic function specification
Each ASLC input logic line can be placed into one of three categories: edge-control (trigger)
input, level-control input, or data input. Edge-control inputs can cause an internal state
transition when the inputs change from low to high (rising edge) or from high to low
(falling edge) [23]. Level-control inputs do not cause state transitions to occur but may
determine what the next internal state will be. Data inputs do not effect the internal state of

the ASLC, only the present output state. In fact, all three types of inputs may effect the

-6-

present state of the output. The ASLC’s functional behavior is completely specified by the
designer with the Functional Design Specification.

The ASLC design system illustrated in Figure 1-1 translates this high-level Functional
Design Specification into a set of State Equations and Output Equations. Each of the five

modules shown represent key steps in this translation process.

1.3 Outline

This thesis is organized as follows: Chapter 2 provides an artificial intelligence
approach to model the functional behavior of ASLC’s. The first module (Behavioral
Descriptor) of the MSUASLC is described. The algorithm for BD is also provided. Chapter
3 describes the second module (Merger) of the MSUASLC. Four different merging methods
are developed for generating MFF’s. A traditional merging method (by me;ging largest
strongly connected subgraph first), which is not included in the Merger, is also discussed.
Some techniques related to the graph theory are also embedded into the algorithms for the
Merger. Chapter 4 provides some new techniques for avoiding races and for generating
race-free state assignments. Some new concepts dealing with the race conditions, which
include intrinsic races (/R’s) and generated races (GR’s) arc introduced. Several
aigorithms are developed and encoded into the Connector and Assigner. A graph called the
Node Weight Diagram (VWD) helps ensure that the minimum or near minimum number
of state variables and states are used to generate race-free state assignments. The
experimental results of our approach are compared with other approaches in terms of
computation time and the number of state variables. Details of the Equation Generator
are provided elsewhere [24]. Chapter 5 contains a summary of this research work and some

recommendations for future research directions.

Chapter 2

Behavioral Descriptor

with Artificial Intelligence Approach

There are several ways to describe an ASLC’s functional behavior. One way is to use
timing diagram. However, drawing a timing diagram is not an easy way to include all the
possible behavior (input/output combination), especially for any but the simplest ASLC.
Another way is to use a state diagram. However, if you don’t know how many essential
states for a given design specification, you cannot draw a state diagram. In fact, it is very
difficult to obtain a simplified state diagram [3-4, 6]. The most common way used to
describe the ASLC behavior is to construct a primitive flow table.

A method has been developed which uses artificial intelligence techniques to model
the functional behavior of ASLC’s. It provides a highly structured, interactive approach.
The domain representation, production rules, and control strategies are described. The
Behavioral Descriptor (BD) of the ASLC design automation system generates a primitive

flow table which captures the ASLC’s functional behavior. -

-8-

The application of Artificial Intelligence (A]) to digital system design has been widely
studied by many researchers [25-30], and many Al applications in engineering are
concentrated on VLS/ design [31]. An artificial intelligence (A/) approach to the behavioral
modeling of ASLC’s is described here. A “behavioral descriptor” (BD) is built to describe
the whole circuit behavior with a primitive flow table (PFT). The BD accurately generates
a PFT in a very short period of time, so that it lessens the burden on circuit designers and
reduce the design cycle time. This feature becomes more important when large-scale
ASLC’s must be designed.

In Figure 1-1, the highest level concerning ASLC design system is the Behavior
Descriptor [20, 21]. At this level the input/output behavior of an ASLC state machine is
described. This chapter deals primary with this level.

2.1 The Behavioral Descriptor

Constructing a PFT is the first important step in designing an ASLC. The inputs of this
domain problem are the inputs, outputs, and function of the desired ASLC, and these must
be provided by the designer. The output (result) of this domain problem is a primitive flow
table which describes the behavior of the desired ASLC of the designer. Therefore, the main
idea is to build a problem solver, which is named the “behavior descriptor” (BD). The BD
will map the designer’s design specification into a PFT.

The ASLC behavioral model includes two basic sets of parameters: ASLC inputs and
outputs. Each primitive state corresponds to a unique allowed input/output combination.
Four important parts in the BD are described [22]:

(1) Design Specifications: consist of three high level specifications; namely, the input
specification, the output specification, and the functional specification.

(2) Facts: are states represented by the input/output combinations and the corresponding

3)

“4)

9.

state numbers which are generated by control strategies.

Production Rules: are in the form of “IF conditions THEN actions” clauses. There
are no built-in production rules for BD. All the production rules are generated
according to the design specification.

Control Strategy: controls state transitions in the PFT and generates the next PFT
entries. They determine which production rule is to be fired by matching each pattern
in the condition part of a rule with the changing pattern in the input signals. The
control procedure looks for the facts and fills the state number into the corresponding

entry in the PFT until all the entries have been filled with the assigned values.

2.1.1 Representation

According to Rich [32], it is often useful to divide the representation question into

three subquestions:

0
2

3)

How can individual objects and facts be represented?

How can the mpmséntations of individual objects be combined to form a
representation of a complete problem state?

How can the sequences of problem states that arise in a search process be represented
efficiently?

Our specific criteria was to choose a representation that allows all of the necessary

knowledge to be represented and facilitates its use in solving the problem at hand.

Moreover, we want a representation that will be simple, informative, and easily used

interactively on a computer system. Our specific implementation is as follows:

Input Representation for BD

The inputs to the BD is the design specification of the ASLC. The format for

describing the design specification is described as follows:

-10-

The input specification has the following format:
input_specification
in_name_1 in_name_2 in_name_3 ... in_name_n
The output specification has the following format:
output_specification
out_name_1 out_name_2 out_name_3 ... out_name_m
Thq sequential logic functions’s functional behavior is completely specified by the
designer and has the following format:
function_specification
IF in_name_l=state in_name_2s=state ...
THEN out_name_l=function_1 out_name_2=function_2 ...
- Intern jon r the BD
Following is the definition for the attributes of each entry in the PFT.
row_no: specifies the entry’s row.
column_no: specifies the entry’s cc;lurhn.
state_no: specifies the entry’s primitive state number.
stable: specifies whether the entry is in a stable state or not.
output_value: specifies the value of the output signal combination associated with a

primitive state.

2.1.2 Production Rules

Many Al applications today employ some form of if-then rule-based programming;
i.e., if conditions C;, Cy, ..., C,, happen, then actions Ay, Ay, ..., A, will be performed. Most
of the VLSI design tools have built-in production rules which are fixed [26-28]. MYCIN

provides production rules which can be modified [32]. However, there is no built-in

-11-

production rules for BD. All the production rules are generated according to the design
specification. Therefore, it is a dynamic structure.

Some properties for the rules in BD are:

1. Each rule should be unique. There should not be same rules existing in the
production rules of BD.

2. Rules should not conflict each other.

3. One rule should not cover another rule.

Violating property 2 or property 3 may cause an unexpected result. Violating property
1 does not effect the result, but it takes unnecessary space in the system. In order to have a
desired design, we must pay much more attention on our functional design specification at
the beginning of the design.

You may have many “IF ... THEN ...” statements in your functional-specification.
However, one must be aware that there is no conflict or inclusion between each of them.
For example, assume you have two “IF ... THEN ...” statements which have same “IF
conditions” and different “THEN actions”. These two statements conflict each other.
Suppose in the two “IF ... THEN ...” statements, one “IF conditions” is covered by another
“IF conditions”. This violates the property 3 and should be avoided in order to generate a
desired PFT.

2.1.3 Control Strategy

The control strategy manipulates the representation by matching one of the
production rules. Each time it looks for one signal changing in the input state of the ASLC
and searches for the matched production rule. The policy for firing a rule is to take the first
matched rule and fire it. Each time only one rule is active. If a match occurs, it takes the

appropriate action and generates the next value of output signals. At this time, the

-12-

combination of input signals and output signals forms a new primitive state. The control
procedure decides whether this state currently exists. If it is a new state, the control
procedure assigns it a new value. Next, the control prbccdurc places the value in the
corresponding row and column in the PFT. This process continues until all rows and
columns have been filled with the assigned primitive state values or “don’t cares” values,

where “don’t cares” indicate that the particular primitive state transition does not occur.

2.2 Algorithm for the BD

The algorithm for the BD is provided in the following.

Step 1. Specify input:
1. circuit input names,
2. circuit output names,
3. circuit function (behavior).

Step 2. Generate rules.

Step 3. Initialize I/O combination table and primitive flow table (PFT).

Step 4. Give a possible I/O combination value as the starting primitive state and
mark it stable to start the operation for filling the PFT.

Step S. Determine the next “move” position which is in the same row as the
primitive stable state.

Step 6. Search the rules:
If matched then fire the rule to compute the outputs else keep outputs
unchanged.

Step 7. Determine the primitive state number and do the following things.
1. Put the primitive state number into the “move” position in the PFT and

mark it unstable.

-13-

2. Ifitis a new primitive state then find a blank row in PFT and put it into
the same column as the “move” position, and mark it as a stable state in
the new position.

Step 8. Repeat step (5) to (6) for all the adjacent “moves” in the same row.
Step 9. Repeat step (S) to (8) for all the primitive stable states until all the rows have

been checked.

2.3 Design Examples and Discussion

The BD has been applied on many ASLC design examples. Some examples have quite
large PFT s, which cannot be shown here. In order to explain how the BD works, a simple
example (example 2.1) is first used to illustrate it.

Example 2-1: P-SLF

This example deals with a specific sequential logic function (SLF) illustrated in
Figure 2-1. This logic element, referred to as a P-SLF, is a multi-stable sequential logic
function and has the following set of Functional Design Specifications:

(1) There are two input logic lines, which are labeled A and B.
(2) There are two output logic lines. They are labeled D ord and E or e, where the upper-
case and lower-case letters are used to denote next-output and current-output state,

respectively.

Figure 2-1. Graphic symbol for the P-SLF

-14-

(3) The output logic lines change state only on the falling edge of B, and the next output
states are defined as follows:

D=c¢A; E=d+A.

The Behavioral Descriptor maps the Functional Design Specification into the
Primitive Flow Table. The Functional Design Specification must first be read from a file
or entered interactively by the circuit designer. The interactive approach would be as
follows:

1. Enter the sequential logic function’s input variable names.
input_specification

in_name_1 in_name_2 in_name_3 ... in_name_n

B A
2. Enter the sequential logic function’s output variable names.
ouput_specification

out_name_l out_name_2 out_name_3 ... out_name_m

D E
3. Enter the sequential logic function’s functional behavior, which describes the

relationship between the next output state and the present output state and present and

past input states.
function_specification

IF in_name_l=state in_name_2=state ...

IF B=3 (Here, we use 3 to represent 1-to-0)

THEN out_name_l=function_1 out_name_2 =function_2 ...

THEN D=E&A E=D+1.\.

Once the Functional Design Specification has been entered into the MSUASLC, the BD

generates primitive state transition rules. For example, if B in the above example makes a

-15-

transition from 1-to-0, then the next output state is updated as indicated above; otherwise,
there is no change.
After these rules have been generated, the primitive flow table (PFT) is constructed

and completed. If the sequential logic function has m input lines and n output lines, then
2™*M primitive states are possible with each of these primitive states being assigned a row

in the PFT. There would be 2™ possible distinct input states with each of these states being
assigned a unique column in the PFT. For the P-SLF, m = 2 and n = 2; so, the PFT would
be expected to contain up to sixteen rows and four columns.

The PFT is initially empty. The process used to completé the PFT is as follows: One
of the allowed I/O combinations is arbitrarily selected as the starting primitive state and
marked stable to initiate the process of filling the PFT. For the P-SLF example, BADE =
0000 satisfies the Functional Design Specification and represents a stable primitive state;
so, this primitive state can be selected as a starting point. From this starting point, the logic
state of one input line is changed and the rules applied to compute the “next primitive
state”. All allowed input transitions are explored. Not all combinations of the input and
output logic states may be allowed by the Functional Design Specification. For example,
for the P-SLF, BADE = 1010 is not allowed since E = d + A. Moreover, only those
primitive state transitions are allowed for which one and only one input logic line changes
state. For example, for the P-SLF, BADE = 0000 = 1101 is not allowed because input logic
lines A and B were changed simultaneously. The PFT is completed after each allowed
primitive state has been visited and its row in the PFT completed.

Once the Functional Design Specification has been entered (or read), the BD
automatically generates the PFT (see Figure 2-2). For the P-SLF, twelve primitive states
are delineated with stable primitive states being “marked”. (For illustrative purposes, we
have circled the stable states in Figure 2-2). The computer (BD) generated primitive state

table and primitive output table are also listed in Table 2-1 and Table 2-2, respectively. The

-16-

Present Input (BA)

00 01 11 10
1{©@)] 4| - |8 |00
2[0 [@)[12] - oo
3/0]- [12|®|00

g4|- |5 BIE: 00
es[1| 13]- |m€
. =
6 |D|s5|- |9 |mE
£ ® <
=7 |- 7 9 |o1z
gslo]-|13 O)¥:
9| 3|®@|15]- |
0|[@)|7]- |1
n|-|[7|@|umn
21 |- [15|@u

Figure 2-2. Primitive flow table for the P-SLF

"Y, “N”, and “-” entries in the primitive state table are abbreviations that stand for *“'stable
state”, “unstable state”, and “don’t care” respectively. From the PFT, the circuit designer
can readily identify all of the primitive state assignments. For example, primitive state 12
is defined as having present-input and present-output states of BA = 11 and DE = 00,
respectively. From this figure we also see that the ASLC design system imposed the
fundamental-mode rule on the input states; i.e., only one input logic line may change state
at a time. The circuit designer may use this PFT output from the BD module to provide
documentation of the design or to verify manually the correctness of the result. But the
latter is not generally necessary since the BD in the ASLC design system guarantees the

correctness of the PFT according to the given design specification.

-17-

Table 2-1. Primitive State Table for P-SLF

INPUT (BA) OUTPUT
0 1 3 2 (DE)

0Y 4N - 8N 0
ON 4Y 12N - 0
2 ON - 12N 8Y 0
S . 5N 12Y 8N 0
[1IN 5Y 13N - 1
Zg 1Y 5N - 9N 1
£ - 7N 13Y 9N 1
= ON - 13N 9Y 1
g 3N 7Y 15N - 3
£ 3y 7N - 11N 3
- 7N 15Y 11N 3
1IN - 15N 1Y 3

Table 2-2. Primitive Output Table for P-SLF

INPUT (BA)

0 1 3 2

0 0 - 0

s 0 0 0 -

s 0 - 0 0
% - 1 0 0 o
2 1 1 1 . a
£ 1 1 - 1 =
£ - 3 1 1 g
g 0 - 1 1)

E 3 3 3 -

3 3 - 3

. 3 3 3

1 - 3 3

-18-

Example 2-2: DIV-3 (alternative design specification)

The second example deals with a sequential logical function which has one input
called C (Clock), one output called Q. We refer to this circuit as a divide by 3 (DIV-3, see
Figure 2-3(a)). Every third clock transition causes the output Q to toggle. The timing
diagram is shown in Figure 2-3(b).

In order to use BD to generate the PFT, we introduce two pseudo outputs G and H
which can identify the first and second clock transitions so that the output Q can identify
the third clock transition. The function specification is as follows:

IF C=2 (2 means 0-to-1)
THEN G=Q, H=G, Q=H
IF C=3 (3 means1-to-0)

THEN G=Q, H=G, Q=H

The primitive state table is shown in Table 2-3, and the primitive output table is

SN EE RN

Figure 2-3. DIV-3 (a) graphic symbol, (b) timing diagram

-19-

shown m Table 2-4. An alternative function specification, which use only one pseudo
output G, is as follows:

IF C=2 (2 means 0-to-1)

THEN Q=QG+QG, G=CQ+CQ

IF C=(3 means1-to-0)

THEN Q=QG+QG, G=CQ+CQ

Table 2-3. Primitive State Table for DIV-3

INPUT (C) OUTPUT
0 1 (GHQ)
3 0y 12N 0
3 ON 9Y 1
3 3Y 9N 3
-g 6Y 1SN 6
= 3N 15Y 7
g 6N 12Y 4

Table 2-4. Primitive Output Table for DIV-3

INPUT (C)

0 1
§ 0 4 _
iy 0 1 o
3 3 1 S
£ ¢ 7%
g 5
g 6 4
[-%

-20-

The corresponding alternative primitive state table is shown in Table 2-5, and the

alternative output table is shown in Table 2-6.

Table 2-5. Alternative Primitive State Table for DIV-3

INPUT (C) OUTPUT
0 1 (QG)
g 0Y 4N 0
0 IN 4y 0
3 1Y 6N 1
£ ON 7Y 3
2 2N 6Y 2
2 2Y IN 2

Table 2-6. Alternative Primitive Output Table for DIV-3

INPUT (C)

0 1
g 0 0
S
& 1 0 5
::?: 1 2 %
E 0 3
£ ,
g 2 3

21-

Example 2-3: Gated Oscillator
There are many applications where we would like to be able to turn a clock on and off
using a manual switch. Usually a clock consists of pulses occurring at some fixed rate. We
might be tempted to solve this problem simply by ANDing the switch with the clock. The
difficulty is that since the switch is not synchronized to the clock, we might turn the switch
on in the middle of a pulse and in so doing produce an output pulse shorter than that
required by whatever system is being driven by the clock. Similarly, our switch might turn
off in the middle of a pulse. Thus, what we want to do is to design an ASLC that will
produce an output Z which is a complete clock as long as the switch G is on, regardless of
when the switch was turned on or off. This circuit is referred as gated oscillator [3]. The
schematic symbol of gated oscillator is shown in Figure 2-4, and the timing diagram is
shown in Figure 2-5. There are two inputs, G (switch) and C (clock), one output Z, where

C is an edge control input.

Gated Z
Oscillator

Figure 2-4. Graphic symbol for the gated oscillator

Figure 2-5. Timing diagram for the gated oscillator.

The function specification of this design description in the following.

22-

IF C=2 (C changes state from 0 to 1)

THEN Z=G

IFC=3(C cﬁanges state from 1 to 0)

THEN Z=0

The primitive state table is shown in Table 2-7, and the primitive output table is

shown in Table 2-8.

Table 2-7. Primitive State Table for Gated Oscillator

INPUT (CG) OUTPUT
0 1 3 2 2)
§ oY 2N . 4N 0
s ON 2Y TN - 0
2 ON - 6N 4y 0
£ - 2N 6Y 4N 0
g - 2N 7Y 5N 1
g ON - 7N 5Y 1

-23-

Table 2-8. Primitive Output Table for Gated Oscillator

INPUT (CG)

0 1 3 2
§ 0 0 . 0
? 0 0 1 - -
2 0 . 0 o T
£ - 0 0 o 2
g - 0 1 1 ©

: 1

z 1

2.4 Conclusions to the BD

Design is the process of refining a representation at one abstraction level intq a more
_detail representation at a lower abstraction level. The design of ASLC can be a very difficult
and time consuming process because of the large number of inputs/outputs, hazards, and
critical races. Many inputs/outputs can make flow tables unmanageably large. The BD
overcomes these complexity problems.

Once the PFT has been generated by the BD, the complete behavior of the designed
ASLC is controllable and observable. Since we can easily predict the next outputs from the
current state and the next inputs by using BD, there is no need to draw the timing diagram
for knowing the ASLC behavior. The BD helps us quickly produce the PFT without using
pen-and-paper methods. It provides the information about the circuit behavior and speedup

the ASLC design process.

Chapter 3

Merger: The Merged Flow Table Generator

The second step in designing ASLC’s is to reduce the primitive flow table (PFT) to a
table containing as few rows as possible. In order to achieve this purpose, a merged flow
table generator called Merger has been developed. The reason to reduce the PFT is that the
flow table will eventually become the excitation table, in which the number of rows
determines the number of state variables and, therefore, the complexity of the
implementation [3].

The Merger module reads the PFT and produces a merged flow table (MFT). In
general, this translation process eliminates redundant primitive state assignments and leads
to a more efficient implementation of the Functional Design Specification. Different
merging processes are included in the Merger for generating alternative MFT’s. The
Merger will choose the MFT with a minimum number of rows as the resulting MFT to be
used by th;: Connector in MSUASLC. The resulting MFT will have the same number of
columns as the primitive flow table since the number of unique combinations of the input

states remain the same, but the number of rows may be less, indicating that some of the

24-

-25-

primitive states were redundant. The merged state assignments are also used in conjunction
with the PFT to produce an output table which relates the present output logic states to the
present merged state and present input logic states. In order to investigate different
implementations for some particular applications or requirements, designers can choose

any one of the alternative MFT s as the resulting MFT.

3.1 The Merged Flow Table

The PFT can be reduced to an MFT through the merging process. A merger diagram
is used to show which rows in PFT can be merged. An example of merger diagram is
illustrated in Figure 3-1 which is corresponding to the PFT shown in Table 3-1. In the
merger diagram, the row number (state) is given inside the circle and the output
corresponding to this row is shown adjacent to the circle. The circled entries are referred to
as nodes. Therefore, each node is corresponding to a row in a PFT. If two rows in a PFT
can be merged, the corresponding two nodes in a merger diagram are connected by a line
(or edge). A set of nodes is said to be “strongly connected”, if for every node in the set is
connected to all the other nodes of the same set. For example, Figure 3-2 shows the strongly

connected groups for different number of states.

0 0 1 1

QO QL
ORI O20)}

Figure 3-1. Merger diagram for the PFT of Table 3-1

Table 3-1. A Primitive State Table

(INPUT (TC) OUTPUT
0 1 3 2 Q
g 0Y 2N - 4N 0
“« ON 2Y 6N - 0
2 ON . TN 4y 0
g - 2N 6Y 4N 0
£ - 3N 7Y 5N 1
= 1IN - 6N 5Y 1
2 1IN 3Y 7N - 1
£ 1y 3N) 5N 1

(a) : (b) : ©
@)

Figure 3-2. Strongly connected groups (a) 2 nodes; (b) 3 nodes; (c) 4 nodes; (d) 5 nodes.

-27-

The rules which are used to merge rows are described in the following:

1. Two rows can be merged if in each column either the state labels are the same, or
one or both entries are “don’t cares”.

2. A set of rows can be merged into a single row if the set is strongly connected in
the merger diagram.

3. When two rows are merged, a stable entry and an unstable entry become stable,
and two unstable entries stay unstable. Continuing to compare the rows in pairs,
we can merge a set of rows.

Applying the above rules to the Table 3-1, we can merge rows 1, 2, and 4 into one

row based on the merger diagram shown in Figure 3-1. Similarly, rows 5, 7, and 8 can be
merged into one row. The resulting merged state table and merged output table are shown

in Table 3-2 and Table 3-3, respectively.

Table 3-2. A Merged State Table

(INPUT (TC)

0 1 3 2
£ oy 2Y 6Y 4N
@ N] 7N 4Y
8 1Y 3y 7Y 5N
§ 1IN - 6N 5Y

-28-

Table 3-3. A Merged Output Table

INPUT (TC)
0 1 3 2
0 0 0 0o 8
0 - 1 0 2
1 1 1 1 =)
1 - 0 1 8

3.2 Alternative Merging Methods in the Merger

A given primitive staic may be capable of being merged in more than one way, but
primitive states must only be assigned to one of these merged states. Therefore, additional
constraints are necessary in order to decide which grouping is best. One such constraint
might be to require that only primitive states with identical output states be merged.

There are four different merging methods provided in the Merger. The first method
(method 1) is to merge rows with only the same outputs from the first row to the last row
in the PFT. The second method (method 2) is to merge rows with the same outputs but
starting from the rows (nodes) with minimum link degree (i.e., least strongly connected
subsets first). Here, the link degree is defined as the number of edges (lines) attached to a
node in the merger diagram. For example, the link degree of node 1 in Figure 3-1 is 3, but
the link degree of node 3 is 1. The third method (method 3) is to merge rows starting from

the minimum link degree (least strongly connected subsets first) regardless if the merged

229-

rows have the same outputs or not (merging rows with mixed outputs). The fourth method
(method 4) is to first merge rows with the same outputs, then extend to different outputs if
possible.

Another method is to identify the largest strongly connected subsets of these rows
which can merge into a single row [3]. This method will be referred to as method 5. Method
5 is not used in the Merger because it takes too much computation time (effort), especially
when the PFT is large. Usually, the resulting MFT of method 5 has the same number of
merged rows as that of method 3 (identifying the least strongly connected subsets). For’
example, in Figure 3-3, we can have two merged groups (1, 2, 3) and (4) by using method
5 (identifying the largest strongly connected subsets). If we use method 3, we can also get
two merged groups (3, 4) and (1, 2). In Figure 3-4, both method 5 and method 3 have the
same two merged groups (1, 2, 4) and (3, 5). However, for the merger diagram shown in
Figure 3-4, if the first selected, largest strongly connected subset is (1, 2, 3), there will be
a total of three merged groups: (1, 2, 3), (4), (5) as shown in Figure 3-5. In this case, we

(a) (b)

Figure 3-3. Merger diagram (4 nodes) with two different merging methods
(a) method 5 (largest strongly connected subsets first);
(b) method 3 (least strongly connected subsets first).

-30-

1 2
4 3
5

(L]

Figure 3-4. Merger diagram (5 nodes) with two different merging methods
(a) method 5 (largest strongly connected subsets first);
(b) method 3 (least strongly connected subsets first).

“gessasssssnsesansesssansesannassannssany

Method 5 (identifying largest strongly
connected subsets) generates
three merged groups:

1,2,3), 4, 5

R e e G

Figure 3-5. A possible merging approach by using method 5 for this merger diagram.

-31-

cannot get minimum number of merged groups. Therefore, the merged results are highly
dependent on the selection of the largest strongly connected subsets. Similarly, this may
happen to the method 3 (least strongly connected subsets). When multiple choices exist and
the merger diagram is large and ;:omplex, it becomes very difficult to decide which strongly
connected subsets to choose. From the computation complexity point of view, we would
like to use method 3 instead of method S, because finding a least strongly connected subset
is much easier and faster than finding a largest strongly connected subset.

In general, the merging process in the Merger is as follows: The merger diagram
(MD) and the merged flow table (MFT) are initialized [20]. The MD is completed by
identifying identical rows in the PFT. Each set of identical rows in the PFT becomes a new
row in the MFT and is assigned a new symbolic state name. An algorithm for method 3 is
listed in the following. Similarly, the algorithms for method 1, 2, and 4 can be generated by
modifying the Step 4 of the following algorithm.

Algorithm for Method 3 in the Merger

Step 1. Read PFT

Step 2. Initialize merger diagram (MD) and merged flow table (MFT).

Step 3. Generate MD.

Step 4. Generate a new row in MFT:

1. Initialize the merged buffer (MB).
2. Search the node with minimum link degree in MD.
3. Merge matched rows with the node of minimum link degree.
4. Update MD.
5. Fill output value associated with each entry in the MB.
6. Link MB to MFT.
Step 5. Repeat step 4 until all the nodes in MD have been merged.

-32-
3.3 Examples

Example 3-1: P-SLF

This example shows how to merge the PFT shown in the Figure 2-2. The merger
diagram for this PFT is shown in Figure 3-6. The merged groups for method 1 is shown in
Figure 3-7. The merged state table and merged output table generated by method 1 are
given in Table 3-4 and Table 3-5. The merged groups for method 2 is shown in Figure 3-8.
The merged state table and merged output table generated by method 2 are given .in Table
3-6 and Table 3-7. In this example, method 3 has just the same results as method 2, and
method 4 has just the same results as method 1. This example shows that four merging

methods have the same number of merged groups.
00 00 01 01 11 11
00 ' l 00 ‘ 01 ! 01 11 ' I 11

Figure 3-6. Merger diagram for the primitive flow table of Figure 2-1.

Figure 3-7. Merged groups for method 1.

Table 3-4. Merged State Table for P-SLF by Method 1

INPUT (BA)

0 1 3 2
o 0Y 4Y 12N 8Y
8 - 5N 12Y 8N
5 1Y 5Y 13N 9N
o ON 7N 13Y 9Y
s 3Y 7Y 15Y 11N
IN - 15N 1Y

34-

Table 3-5. Merged Output Table for P-SLF by Method 1

0 INPUT (BA)
0 1 3 2

0 0 0 0o
. 1 0 o A
1 1 1 13
0 3 1 1 &
3 3 3 3 38
1 5 3 3

olllo]o 0
ojllolo1©6

Figure 3-8. Merged groups for method 2

Table 3-6. Merged State Table for P-SLF by Method 2.

-35.-

INPUT (BA)

0 1 3 2
o ON SN 12Y 8Y
S 0Y 4y 12N 8N
%’ 1Y 5Y 13N 9N
$ ON 7N 13Y 9Y
2 1N 7N 15Y 11Y
3Y 7Y ISN 11N

Table 3-7. Merged Output Table for P-SLF by Method 2.

INPUT (BA)
0 1 3 2
0 1 0 0 .
0 0 0 0 A
1 1 1 1 S
0 3 1 1 a
1 3 3 3 3
3 3 3 3

Example 3-2: DIV-3

This example shows how to merge the PFT shown in the Table 2-3. The merger

diagram for this PFT is shown in Figure 3-9. From this diagram, we can identify that the

merged groups for method 1 are (1), (2), (3), (4), (5), and (6). There is no merging for any

two rows. The merged state table and merged output table generated by method 1 are given

in Table 3-8 and Table 3-9 which are the same as Table 2-3 and Table 2-4, respectively.

OO}
OO\

oy
Ok

Figure 3-9. Merger diagram for the primitive flow table of Table 2-3.

Table 3-8. Merged State Table for DIV-3 by Method 1

INPUT (C)

0

1

0y
ON
3Y
6Y
3N
6N

Merged State

12N
9Y
9N
ISN
15Y
12Y

-37-

Table 3-9. Merged Output Table for DIV-3 by Method 1

INPUT (C)
0 1
0 4
0 1 g
3 1 O
6 7 5
3 7 g
6 4 o

Using the other three methods will get the same merged groups, the same merged state table
and the same merged output table. This example shows that four merged methods have the

same merged results.

Example 3-3: Gated Oscillator

This example shows how to merge the PFT shown in the Table 2-7. The merger
diagram for this PFT is shown in Figure 3-10. Applying method 1 to this merger diagram,
we can get three merged groups: (1, 2), (3, 4), and (5, 6) (see Figure 3-11(a)). Apply method
3 to the merger diagram, two merged groups: (1, 3, 4) and (2, S, 6) (see Figure 3-11(b)) will
be obtained. The merged state table and merged output table generated by method 1 are
given in Table 3-10 and Table 3-11. Applying method 2 and method 4 will get the same

results as method 1. The merged state table and merged output table generated by method

-38-

Figure 3-10. Merger diagram for the primitive flow table of Table 2-7.

(@ (b)

Figure 3-11. Merged groups generated by (a) method 1 (or 2, or 4); (b) method 3.

-39.

Table 3-10. Merged State Table for Gated Oscillator by Method 1

INPUT (CG)
0 1 3 2

L
3 0Y 2Y 7N 4N
9 ON 2N 6Y 4Y
§ ON 2N 7Y 5Y

Table 3-11. Merged Output Table for Gated Oscillator by Method 1

INPUT (CG)
0 1 3 2
0 0 1 o 8
0 0 0 o &
0 0 1 1 3

-40-

3 are given in Table 3-12 and Table 3-13. This example shows that method 3 has a better
merged result than the others. Here, a better merged result means that it has a fewer number

of merged groups than the others.

Table 3-12. Merged State Table for Gated Oscillator by Method 3

INPUT (CG)
0 1 3 2
oYy 2N 6Y 4Y
ON 2Y 7Y 5Y

Merged State

Table 3-13. Merged Output Table for Gated Oscillator by Method 3

INPUT (CG)

0 1 3 2
0 0 0 0 @
0 0 1 1 Ed
3

-41-
3.4 Discussion

Four different merging methods are provided in the Merger. The major purpose is to
give designers or researchers more opportunities to investigate the merged results.
Different merging methods may give the same or different merged results, as we have seen
in previous examples. The merged results depend not only on the merging method but also
on the merging sequence. For example, if nodes 1, 2, and 4 in the Figure 3-4(a) are merged
first, two merged groups (1, 2, 4) and (3, S) will be obtained. However, if nodés 1,2,and 3
are merged first, three merged groups (1, 2, 3), (4), (5) will be obtained as shown in Figure
3-5. It is possible to have many identical sizes of strongly connected subsets sharing
common nodes in a given merger diagram. Thus, when using one method, it is still possible
to have many merged results which are the same or different size. For example, assume we
have a simple merger diagram as shown in Figure 3-12(a), Four identical sizes of merged
results (see Figure 3-12(b), (c), (d), (e)) can be obtained by using either method 3, least
strongly connected subsets first, or method 5, largest strongly connected subsets first.

Merging a large flow table is more time consuming than generating a large flow table.
We cannot exhaustively search or generate all the possible merged results. In order to
overcome the problem of combinatorial explosion, each merging method will generate one
MFT. Four methods used in the Merger will generate four MFT’s, and the Merger will
choose a minimum size MFT among the four MFT's as the resulting MFT for the
Connector. Designers or researchers can choose any one of the four MFTs as the resulting
MFT for the Connector. Designers or researchers can also merge PFT in some specific

ways for some particular applications, requirements, or purposes.

-42-

(a)

Figure 3-12. A merger diagram with four different merged results of identical size.

Chapter 4

Race-Free State Assignments

This chapter describes the process of making ASLC state assignments. The method of
state assignments for ASLC’s is different from the method for CSLC. The state assignment
procedure used in the CSLC design does not consider race conditions since the CSLC uses
a clock control input to synchronize the circuit. However, the race conditions cannot be
ignored in the designing of ASLC’s since it can cause the circuit to malfunction.

A new state assignment technique is introduced for synthesizing asynchronous
sequential logic circuits (ASLC’s). It provides a systematic and efficient approach for
generating race-free state assignments. This technique has been implemented and
incorporated into an ASLC design automation system. _

A race condition is classified as being either an intrinsic race (/R) or a generated
race (GR). Intrinsic races (iecompose into two subclassifications: visible intrinsic races
(VIR’s) and hidden intrinsic races (HIR’s). Algorithms have been developed to identify
and eliminate these races. A graph, referred to as a Node-Weight Diagram (NWD),
facilitates the process of making state assignments and guarantees that no races are

generated. Moreover, it provides a convenient and efficient method for investigating the

.43-

-44-

implications of selecting from an allowed set of alternative race-free state assignments. The
state assignment technique described adds cycles and states, as needed, to avoid /R’s and
always attempts to use the minimum or near minimum number of state variables and states.

This technique has been implemented and incorporated into the MSUASLC design
automation system. Experimental results show that it provides significantly better results
than other approaches in terms of the computation time required to make the assignments
and the number of state variables required to achieve race-free ASLC’s.

This chapter presents a; systematic approach for identifying potential race conditions
and for dealing with them so that they do not cause the state machine to malfunction.
Specific objectives of the work reported here are four-fold: characterize and classify the
different types of possible race conditions; develop efficient procedures for identifying
possible race conditions; develop formal rules and strategies for eliminating race conditions
that might lead the state machine to malfunction; and, finally, integrate these results into
the MSUASLC design-automation system, and compare its performance with alternative

approaches.

4.1 General Concepts on Race Conditions and Cycles

In this Section, some general concepts on race conditions and cycles are reviewed.
The internal state (state) of an ASLC can be represented by an n-digit binary data word y.

State transitions occur in response to changes in the ASLC’s input state (input). Let y, and
yp represent the present and next states, respectively. The Hamming distance H,; between
Yo and ypg is defined as the number of digit positions in which the corresponding digits of
Yo and yg are different. If H,> 0, a state transition occurs since Yg # Yo - During the time

interval that the state is switching from y, to yg, one or more digits in y become unstable,

-45-

i.e., their actual state at any instant in time is not known. But a potential problem may occur
if more than one digit in y becomes unstable at any instant in time [1]. This condition,
known as a race, occurs when H,>1. and may cause an ASLC state machine to
malfunction because the next state might depend upon the order in which the unstable digits
in y change state. A fragment of an excitation table, shown in Figure 4-1 and Figure 4-2,

illustrates the race conditions. Figure 4-1 illustrates a noncritical race. Figure 4-2 illustrates

a critical race.
AB 0o 01 11 10
Y1 ¥
00 11 l<-—
01 11 Y 00
11 Y 00
10 11
(a) ' Y1, Yo
AB 00 01 11 10
Y1y
0| 11 w1—©00
01 11 00
11 4@ 00
of | 11y
(b) Y1, Yo

Figure 4-1. Illustration of a noncritical race (a) y changes before y1: ®) y1
changes before y

_“

-46-

Let us first focus on Figure 4-1. Suppose that the circuit corresponding to this table is
sitting in the stable state (A, B, y;,) = (0, 1, 0, 0) and input B changes from “1” to “0”.
The required transition to state y;yp = 11 involves a change in the values of two state
(secondary) variables. If these two changes occur simultaneously, the transition specified
in the table will actually take place. However, from a physical point of view, the
simultaneous changing of two signals in a circuit is highly unlikely -- one is bound to
change slightly ahead of the other. If either y, or y; changes first, instead of going directly
to the stable state y;yp = 11, the circuit will go to state y;yg = 01 or y;yp = 10. Such a
condition, where two or more state variables are required to change at the same time, is
called a race condition [3]. We notice in this particular example that regardless of the
outcome of the race, the circuit will always end up in the same stable state y;yp = 11. If the
final state which the circuit has reached does not depend on the order in which the variables
change, such a race condition is referred to as a noncritical race [1, 3, 4, 8]. Because the
race outcome is not critical in determining the final stable state.

Now, consid& the same table shown in Figure 4-2. Suppose the circuit is sitting in the
stable state (4, B, y;, yp) = (0, 0, 1, 1) and input B changes from *“0” to “1”. The required
transition is to state y;yg = 00, which involves a change in the values of two state variables.
If y; changes value faster than y,, the circuit will go to state y;yp = 01, from which it will
reach stable state y;yp = 00. On the other hand, if y, changes value faster than y;, the circuit
will go to stable state y;yp = 10 and remain there. Thus the circuit operation will be
incorrect. In this case, the circuit may end up in one of two different stable states, depending
upon the outcome of the race. Such a race condition is referred to as a critical race [1, 3].

Consider a fragment of another excitation table shown in Figure 4-3. Suppose that the
circuit corresponding to this table is sitting in the stable state (A, B, y;, yp) = (0, 1, 0, 1) and

input B changes from “1” to “0”. The required transition to state y;yp = 10 involves a

47-

change in the values of two state variables. An unstable state y;yy = 11 is entered in row 01

column 00, thereby directing the circuit to row 11, from which it is directed to go to its final

stable state y;yg = 10. Such a condition, where a circuit goes through a unique sequence of

unstable states, is called a cycle [3].

4.2 State-Assignment Model

Flow tables (see Figure 4-4(a)) are generally used to characterize the functional
behavior of asynchronous sequential machines [12, 33, 34]. Each column of the flow table
represents an input state and each row represents an internal state. Entries in the flow table
specify the next internal state (state) of the machine. A graph, known as an adjacency
diagram (see Figure 4-4(b)), is typically used to depict the set of allowed state transitions.
Each node represents a state (row) in the flow table. The edge between two nodes is called
a link and represents an allowed state transition. Two nodes are said to be adjacent if they
are connected by a link. Traditionally, ASLC designers use adjacency diagrams and trial
and error methods to make state assignments.

In order to develop algorithms to solve the state assignment problems, a different
point of view is introduced to deal with the race conditions. Consider the flow table and
adjacency table shown in Figure 4-4. There is no unique solution to encoding the states. For
example, the following set of assignments could be made: 00 toa, 01to b, 11 to ¢, and 10
to d. Since the Hamming distance for all possible state transitions is one (see Figure 4-4(c)),
no race condition exists. Alternatively, the following state assignments could also be made:
00toa, 11to b, 01 to c, and 10 to d. Since the maximum Hamming distance for this set of
state assignments is greater than one (see Figure 4-4(d)), a race condition exists. We refer

to this type of race as a generated race.

-48-

AB

00 01 11 10
Y1 ¥
00 11 *
01 11 l400
1| @ —» 0
10 11
@) Y1, Yo
AB 0o 01 11 10
Y1y
00 11
01 11 00
11 @ ——>|00
0| 1 D)
(b) Yl’ Y0

Figure 4-2. Illustration of a critical race (a) y; changes before y((desired
response); (b) yo changes before y; (incorrect response)

AB

00 01 11 10
Y1 ¥
00 10 01
01 11 w—— (0)
11 10 Y @)
10 .* 11

®) Yy, Yo

Figure 4-3. Ilustration of a cycle

Present Input (TC)

(Input State)

00 01 11 10
X OOIOK
&
e
:‘ggb 0 - 7 @
g3
11000
-gcc 5
Eoc‘, .
= d| 1 - 6 (:::)

(a)

TC

00 01 11 10

01

11

10

10

11

@@ =
O

(©)

-49-

(b)

TC

00 O01 11 10
0ol(00)|(20)|(@)| 1
111 00 | - | 01 (:::)
01 1‘:'} ‘III} ‘II'} 10
10, o1 - | o0 ‘II'}

(d

Figure 4-4. Tllustration of how improper state assignments can introduce races: (a)
flow table; (b) adjacency diagram; (c) excitation table with race-free state
assignments; (d) excitation table with races present.

-50-

Definition 1 (Generated Race):
A generated race (GR) is a race caused by encoding the states in a manner that
results in the existence of a race condition when alternative state assignments could

have been made which do not result in a race condition.

Generated races can be classified into two categories: one is critical; another is
noncritical. This is because the critical races and noncritical races are identified from an
excitation table after state assignments are made. For example, Figure 4-5(a) is a fragment
of a merged state table corresponding to the excitation table shown in Figure 4-1 or Figure
4-2 which contains noncritical and critical races. However, if we give a different state
assignment shown in Figure 4-5(b), there is no critical race or noncritical race appearing in
the same part as those in the Figure 4-1 and Figure 4-2. Therefore, critical races or
noncritical races are produced by improper state assignments. That is the reason we put
critical and noncritical races into generated races. A proper state assignment will never
produce any GR’s.

Consider the adjacency diagram shown in Figure 4-6(a). Two state variables are
needed to represent four states. State @ connects to three other states, as does b. In this
example, the link degree (number of links) for state a is 3. No matter how the state
assignments are made, a race condition will always exist, unless the corresponding flow

table is modified. We refer to this type of race as an intrinsic race.

Definition 2 (Intrinsic Race):
An intrinsic race (IR) is a race that results when the minimum possible Hamming

distance is greater than one.

Because the IR’s in Figure 4-6(a) are easily identified by inspecting the adjacency

diagram, we refer to them as visible intrinsic races.

-51-

Definition 3 (Visible Intrinsic Race):
A visible intrinsic race (VIR) is an IR that results when the maximum link degree in

the adjacency diagram exceeds the number of digits in the state data word.

But another class of IR’s also exists. Consider the adjacency diagram shown in Figure
4-6(b). A minimum of three state variables are needed to encode the five states, and the
maximum link degree is 2. There are no VIR’s since the maximum link degree is less than

the number of digits in the state data word. However, a race will always exist no matter how

AB

00 01 11 10
ol [®
-}
% b c a
—
2 ¢ a
] ©
[| ®
(a) Y, YO
AB o 01 11 10
¥1Y0
01 11
00 11 01
11 @ 01
10 11
(b) Y1, Yo

Figure 4-5. (a) A fragment of a merged state table corresponding to Figure
4-1 or Figure 4-2; (b) a different state assignment for (a).

-52-

(O—(

(b)

Figure 4-6. An example of intrinsic races (a) VIR; (b) HIR

the state assignments are made; hence, /R’s exist which are not VIR’s. We refer to this type

of race conditions as a hidden intrinsic race.

Definition 4 (Hidden Intrinsic Race):
A hidden intrinsic race (HIR) is an IR that results when the maximum link degree in
the adjacency diagram is not greater than the number of digits in the state data word.

4.3 Methods to Avoid Races

Races in ASLC’s can always be eliminated, although there may be a cost in terms of
increased hardware complexity and reduced speed of operation. But, to achieve this,
intrinsic races (/R’s) must be eliminated and generated races (GR’s) must not be produced.
One methoud to eliminate /R’s is to direct the circuit through intermediate unstable states
before it reaches its final desired stable state. For this method, cycles are created without

adding any additional states [1, 3, 4]. Therefore, there will be no additional cost in

-53-

hardware, although the circuit’s speed will be reduced in direct proportion to the number
of cycles added. Another method involves adding states to create cycles [1, 3, 4]. However,
this approach is less desirable since hardware complexity generally increases. In summary,
the general approach to avoid races is to first identify and eliminate all /R’s and then make
race-free state assignments to guarantee that no GR’s are produced.

Our design automation system (MSUASLC) always attempts to use the minimum
number of states and minimum number of state variables. If IR’s exist, it always initially
tries to find a cycle thrbugh intermediate unstable states without adding any additional
states. If this approach does not succeed in eliminating the IR’s, then states are added to
create a cycle(s) for eliminating the IR’s. This strategy guarantees achieving a minimum or

near minimum number of states and state variables.

4.3.1 Identification of Races

Before making state assignments, /R’s must be detected, identified and eliminated. A
rule for quickly identifying a VIR is given as follows:

Rule 1 (VIR Identification Rule):
If the link degree of any state is greater than the number of digits in the state data

word (i.e., the number of state variables), a VIR exists.

Assume m is the number of states in a given flow table, n is the number of state
variables needed to represent the m states, son = rlogzm.l. Consider the merged state table
showing in Figure 4-7(a). The corresponding adjacency diagram is shown in Figure 4-7(b).
The number of states is m = 4, and the number of state variables is n =[log,m] = 2. The

link degrees for states a, b, ¢, and d are 3, 3, 2, and 2, respectively. From the VIR

-54-

identification rule, we can immediately determine that /R’s exist. This merged flow table
can be modified by creating cycles without adding additional states. We can make the
unstable state 3 in row a go, first, to the unstable state 3 in row ¢ and then to the stable state
3 inrow b. Similarly, for the unstable state 4 in row b, we can make it first go to the unstable
state 4 in row d and then to the stable state 4 in row a. Figure 4-7(c) shows the flow table
in terms of rows and indicates the necessary cycles explicitly. This kind of table is referred
to as a modified flow (state) table. Figure 4-7(d) is the modiﬁéd adjacency diagram
corresponding to Figure 4-7(c).

Consider another example shown in Figure 4-8. This example tells us adding states to
create cycles and eliminate intrinsic races. There are four merged primitive states in Figure
4-8(a); so, two state variables are needed to represent four states. The link degree of any of
these states is 3 (see Figure 4-8(b)), which is greater than the number of state variables, so
VIR’s exist. We cannot eliminate intrinsic races in this example by using only two state
variables to make any row simultaneously adjacent to three other rows. However, if we use
three state variables instead of two to encode the rows of the merged state table, we may be
able to accommodate all of the required adjacencies by creating cycles. Figure 4-8(c) shows
the modified state table which does not contain any intrinsic races, and Figure 4-8(d) shows
the modified adjacency diagram corresponding to Figure 4-8(c).

) Based on the relation of the link degrees and the number of digits in the state data
word, we have the following theorem:
Theorem 1:

The necessary, but not sufficient, condition for making race-free state

assignments is that all of the link degrees in a given flow table (or adjacency

diagram) must be less than or equal to the number of state variables.

Proof: This theorem can be proven by using Definition 3 (or Rule 1) and Definition 4.

-55-

Present Input (AB)

00 01 11 10
CLLE O
5
ook
g
OB O
5
ook

(@

Present Input (AB)

00 01 11 10
a
s« @] o < |® (O—(©
3 &)
b d d—
Mo
=
O O—O©
L[OO

(©)

Figure 4-7. An example of avoiding races by creating cycles (a) merged
state table; (b) adjacency diagram; (c) modified state table; (d) modified
adjacency diagram.

-56-

Present Input (AB)

00 01 11 10
OO,
8
7
HolonE
[[[0
E
Lo

(@
Present Input (AB)
00 01 11 10
s | - 1@

ORAK ()
3
b e a
HO)O
p>
P R
L[OE | OOB
e d d)
flb
8 d c

©

Figure 4-8. An example of adding states to create cycles and eliminate
races (a) merged state table; (b) adjacency diagram; (c) modified state
table; (d) modified adjacency diagram.

-57-

To guarantee that no GR’s are generated in the state assignment procedure, a state

assignment assumption is required.

State Assignment Assumption:

Encoded adjacent states must have a Hamming distance equal to one, (H, = 1).

4.3.2 Node-Weight Diagram (NWD)

To facilitate the process of making state assignments, a graph, referred to as a node-
weight diagram (or n-NWD) is introduced. This diagram is a variation of a binary n-cube
(see Figure 4-9) connection diagram but provides a more convenient geometric
representation of binary numbers for the purpose of making race-free state assignments. A

four-bit n-NWD (a 4-NWD) is illustrated in Figure 4-10. The weight of node N;, denoted by

|N{, is defined as the total number of 1's in the binary representation of N;. The nodes are

5 1>

(a) (b)

Figure 4-9. Examples of binary n-cube, (a) 3-cube, (b) 4-cube

-58-

Figure 4-10. Geometric representation of a 4-NWD

arranged by weights in levels with level p containing all nodes with weight p.
An n-NWD is constructed as follows: For m states, there are 2" nodes in the n-NWD,

where n = rlogzm-l. These nodes are arranged in (n + 1) levels, where the pth level contains
(o (Z) nodes of weight p, where,

n|_ n!
C(P) ~ (n=-p)ip!"

Next, all possible binary vectors with n digits are assigned to the nodes in an n-NWD so
that the link relation between nodes can be established. The rule for assigning a binary

vector to a node is as follows:

-59-

Rule 2 (n-NWD Code-Assignment Rule):
There are n digits in each binary vector for an n-NWD. The number of I's ina
binary vector assigned to a node is equal to the level number at which the node
resides. The binary vectors in each level are arranged from left-to-right in

ascending magnitude of the binary vector.

After the binary vectors have been assigned to the nodes in an n-NWD, a link between
two nodes is generated if these two nodes have only one digit difference in their binary
vectors. A link may only exist between pairs of nodes in adjacent levels since only these
pairs of nodes may have a Hamming distance equal to one. For any pair of adjacent nodes,
the node with lower weight is called the parent node, while the adjacent node with higher
weight is called the child node. Nodes with the same weight are called sibling nodes. No
links exist between sibling nodes since the Hamming distance between sibling nodes is

always greater than one.

Lemma 1: In an n-level state weight connection diagram, the Hamming distance between
any two nodes at the same level i (with the same weight i) is greater than 1;i.e.,, H;> 1.
Proof: Assume any two nodes, a and b, are at the same level i. Node a and node b have at
most (i - I)’s 1 at the same bit positions. Then, node a has a bit with value 1 at bit
position j, node b has a bit with value 1 at bit position &, and j # k (note that all the
nodes in the state weight connection diagram are different). Hence, H,> 1.
Q.ED.
Property: Each node at level p of an n-NWD has at most p parent nodes

The data structure for each node is shown in Figure 4-11. For an n-NWD, two states

can be connected through a path composed of a single link or series of links. Cycles and

-60-

states can be added by referring to the n-NWD so that the flow table can be easily modified
to ensure that no race conditions exist. The length of a path is defined as the total number
of links connecting the endpoints. Since these endpoints represent the initial state and next
state in the original flow table, the objectives in assigning paths to required state transitions
may be expressed as follows: No path should contain a race, i.e., the Hamming distance for
all state transitions must be equal to one. Second, the length of each path should be as short
as possible to ensure that timing delays between state transitions is minimized. And, third,
only the minimum number of new states should be added to help ensure that hardware

complexity is minimized.

Theorem 2: An HIR exists if a circuit exists in an adjacency diagram and the circuit size
D, =2xq+1, qe Z,, where Z, is a set of positive integer numbers greater than 0; i.e.,
there are odd number of links in the closed path.

Proof: Given a circuit with circuit size D, we can choose any one of the links in the circuit,

and cut it (aSsume the nodes connected to this cut link are labeled g and b). Assume

flag | level_no | std_code | node_no | parent | child | next

flag: indicates whether or not node has been previously checked
level_no: level in the NWD in which the node is located
std_code: binary code for this node

node_no: symbolic name (i.c., number) for this node

parent: pointer to parent list

child: pointer to child list

next: pointer to next sibling node

Figure 4-11. The data structure for a node in an n-NWD

-61-

a is the starting node (state) and b is the end node after the circuit is cut. We define
a path length, P, is equal to the number of links between node a and node b, so
P = D_—1. Then we map this circuit (after cut) into the state weight diagram
(suppose node a is mapped into level i with weight i). Since H; = 1 between two
adjacent nodes, the two adjacent nodes must be at adjacent levels. According to this,
node b should be at level i - or level i + 1 (because node a is adjacent to node b).
Although there may exist many different mapping patterns, the difference between
the number of up links (Z,) (the link from node p to node q is called an up link, if
node p (with higher weight) is at one level lower than node g (with lower weight))
and the number of down links (L) should be equal to 1 such that node b is located
atlevel i - I or level i + 1. Note that we will never choose the mapping patterns
which make node b be 2 more (include 2) levels above or below level i, since they
will always make IR’s exist. However, P is an even number which makes L, = L,
so state b is at the same level (level i) as state a. By Lemma 1, the H; between state
a and state b is greater than 1. Therefore, an IR (HIR) exists.

Q.ED.

Consider a very simple merged state table shown in figure 4-12(a). The
corresponding adjacency diagram is shown in Figure 4-12(b). Two state variables are
needed to encode three states. The link degree of each state is 2, so no VIR’s exist. By
Theorem 2, HIR’s exist. Since we cannot create a cycle through any of three states (a, b, ¢),
a state must be added to create a cycle. Figure 4-12(c) shows the modified state table by
adding a state to the merged state table. Figure 4-12(d) is the modified adjacency diagram
corresponding to Figure 4-12(c). This example shows that we can add states to create cycles
and eliminate intrinsic races without increasing the number of state variables.

Consider another adjacency diagram shown in Figure 4-13. Three state variables can

-62-

Present Input (AB)

O -
0

Qo

s | OO
’ @@ o (b)

(a)

[>)

Merged Primitive State

Present Input (AB)
01 11 10

LELS O—C
O

« |1 (D)—(

Modified Merged State

(d)

©

Figure 4-12. An example of adding states to create cycles and eliminate
races (a) merged state table; (b) adjacency diagram; (c) modified state
table; (d) modified adjacency diagram

-63-

be used to represent five states. No link degrees are greater than the number of state
variables, so no VIR’s exist. But, no matter how the state assignments are made, races
always exist. For example, if we assign 000 to a, 001 to b, 010 to ¢, and 100 to 4, then any
of the remaining four binary vectors: 013, 101, 110, and 111 assigned to e will cause race

conditions happen.

Theorem 3:An adjacency diagram is mapped into a state weight diagram such that there
are n nodes at level i. For these n nodes, if they have a common parent node at level i -1, a
common child node at level i + 1, and n > 2, then an HIR exists.

Proof: Because of the symmetrical property of the state weight diagram, for any kind of
this subgraph, we can view these three levels as the first three levels (level 0, 1, 2).
According to the property of the state weight diagram, the node at level 2 has at
most two parent nodes (because each node at level 2 has weight value equal to 2).
Therefore, an HIR exists if n> 2.

Q.ED.

Based on the concepts introduced above, four race-free state assignment algorithms
have been developed and integrated into the MSUASLC Design Automation System.
Following Section presents these algorithms and gives some examples to show how these

algorithms work.

Figure 4-13. An example of adjacency diagram which cannot avoid race conditions.

4.4 Algorithms and Examples for Race-Free State Assignment

Algorithmm 1 (identifying and removing intrinsic races):

Step 1. Relabel the merged state table (MST):
Change the stable state number in each row corresponding to its row number
and change the remaining unstable states. (The purpose is to reduce the
redundant representations for the same state.)

Step 2. Compute the number of state variables according to the number of rows in
a given MST. (The number of state variables is equal to rlogzm], m is the
number of given states.)

Step 3. Generate the adjacency table:
3.1 Initialize an adjacency table. (Table size depends on the number of rows

in a given merged state table.)

Step 4.

Step 5.

Step 6.
Step 7.

-65-

3.2 Fill the entries in the adjacency table according to the relabeled MST.

3.3 Compute link degree for each merged state.

Identify visible intrinsic races (VIR):

Check all the link degrees:

4.1 Check link degrees one by one. If one of the link degrees is greater than
the number of state variables, there exists a VIR. Stop checking the
remaining link degrees. Go to Step 6.

4.2 If all the link degrees are less than or equal to the number of state
variables go to Step 5.

Identify hidden intrinsic races (HIR) (see Algorithm 2).

5.1 If there are HIR’s in the given MST, go to Step 6.

5.2 If there are no HIR’s in the given MST, go to Step 7. (No any IR’s in the
given merged flow table)

Remove intrinsic races (see Algorithm 3).

End. Next is to do state assignment (see Algorithm 4).

Algorithm 2 (identifying hidden intrinsic races):

Step 1.

Step 2.

Select a merged primitive state with maximum link degree as the root node

of an assignment tree (see Figure 4-14).

Initialize the first two levels (level 0 and level 1) of assignment tree.

2.1 Assign 0 (n-bits, n is the number of state variables) to the root node at
level 0. Fill out the parent nodes and child nodes information for the
root node.

2.2 Generate the tree nodes at level 1 according to the child nodes
information at level 0. Assign binary vectors, which are one bit

difference with root node, to each tree node at level 1. Fill out the parent

-66-

L“A::“d ASGN_T_head ASGN_TREE
level_no S/ level_no
entry_list » node_no
— state_map ASGN_PARENT
.bin_code node_no node_no
ASGN_CHILD .map_value state_map state_map
[node_mi [node_nd| parent = .bin_code .bin_code
[next oowa] next | child .map_value] .map_valug
next next - o o NEXt
= il
L l =
level_no level_no
entry_list »| node_no
= e ASGN_PARENT
.bin_code node_no node_no
.map_value state_map state_map
node_no| node_no parent = .bin_code .bin_code
next * o« next child .map_valug .map_valueg
_L next next -+ « d next

: = l i

LEVEL_ASGN l
level_no level_no
entry_list » node_no
.next state_map ASGN_PARENT
.bin_code node_no node_no
fad .map_value state_map state_map
| node_no| [node_nol parent la={ .bin_code .bin_code
[next I- . -1-{ next]4—1 child .map_value .map_value|
next next (¢ ¢ 4 NnEXt

= =l i

Figure 4-14. The data structure of an assignment tree

-67-

nodes and child nodes information for each tree node at level 1. Set
level 1 to be the active level.

Step 3. Expand the assignment tree: (Generate new tree nodes based on the child
nodes information of each active tree node at the active level, and append
these new tree nodes to a new level next to the active level. Fill out the
parent nodes and child nodes information for each new tree node)

3.1 For each child node in the current level, check if the child node is
already a tree node in the assignment tree. (Each time, check one child
node.)

3.2 IF itis a tree node in the assignment tree
THEN check if the level number of the child node is the same as the
level number of the active tree node. (The active tree node is a parent of
the child node. They are adjacent)

(1) If they are at the same level, then there is an HIR. Exit from this
algorithm and go to algorithm 3 for removing /R’s.

(2) If they are not in the same level, then check next child node. Go
t03.1. |

ELSE (which means it is not a tree node in the assignment tree)

generate a new tree node and append it to the assignment tree. Go to 3.1.

Note: The above two steps 3.1 and 3.2 are repeated until all the child

nodes at the active level have been checked or exit if an /R is found.

Step 4. Check new level
IF there is no new level generated
THEN there are no HIR’s. Based on the assignment tree, an n-NWD is
generated. Exit from this algorithm and go to algorithm 4 for state

assignment.

Step 5

-68-

ELSE compute the number of parent nodes for each new tree node in this

new level and do the following things.

4.1 If the number of parent nodes for anyone of these new tree nodes is
greater than the level number of this new level, then there is an HIR.
Exit from this algorithm and go to algorithm 3 for removing IR’s.

4.2 If the number of parent nodes is less than or equal to the new level
number, then check next new tree node. If all the new tree nodes have
been checked, then go to Step 5.

Try to assign a binary vector to each new tree node at this new level. The

method is as follows:

5.1 FOR each new tree node which has more than 1 parent node
DO the “OR” operation on the binary vectors of its parent nodes, and
the resulting binary vector is assigned to the new tree node. If the
resulting binary vector is already assigned to another tree node, then
exit from this algorithm and go to algorithm 3 for removing IR’s
because an HIR is detected. Otherwise, go to step S5.2.

5.2 FOR the remaining new tree nodes which have only 1 parent node
DO trying to find an available binary vector which is one bit difference
with the binary vector of its parent node.

IF all the possible binary vectors (one bit difference with its
parent node) have been assigned,

THEN there is an HIR. Exit from this algorithm and go to
algorithm 3 for removing IR’s.

5.3 Generate the child nodes information for each new tree nodes at the new
level.

5.4 Set the new level to be the active level. Go to Step 3.

-69-

Algorithm 3 (removing intrinsic races):

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Copy the relabeled merged flow table (MFT) to a new MFT for
modification. If the number of rows (m) is less than 2", then add additional
rows (2" - m) to the new MFT, where n =[log,m . The additional rows are

marked “checked”. In the following, the modification is done to the new

MFT.

Generate an n-NWD.

2.1 Initialize the n-NWD: generate nodes for first two levels, level 0 and
level 1. The number of nodes in level 1 is equal to the number of state
variables currently used.

2.2 Complete the n-NWD: generate all the link information.

Find a state with a minimum link degree (greater than 0) (or alternatively, a

link degree which is equal to or close to the number of state variables) as the

root node in the n-NWD. Fill the parent nodes and child nodes link
information.

Fill the nodes in the first level of the n-NWD with the states adjacent to the

root node. Fill the parent nodes and child nodes link information. Set level

1 as the active level.

Pick up a effective node in the active level as active node. Here, we mean

effective node is that the node number of this effective node must be > 0 and

<= number of rows in the MFT. The active node is marked “checked”.

5.1 Find a row in a MFT as the active row. The row number of this active
row must be equal to the node number of the active node. The active

row is marked “checked”.

Step 6.

-70-

5.2 Check all the entries from first column to the last column in the active
row:
IF the entry is in an UNSTABLE state,
THEN check if this entry is in the n-NWD:
IF it is in the n-NWD
THEN check if it is directly connected (which means one bit
difference) to the active node:
IF yes, check next entry.
IF no, try to find an available path (create cycle) (shortest
path first) from the active node to the node corresponding to
the active entry:
IF an available path is found
THEN modify the MFT, and then check next entry.
ELSE go to Step 10 (expand MFT and n-NWD, n is
increased by 1).
ELSE try to find such an empty node that can provide an
available path (shortest path first) to the active node.
IF such an empty node is found
THEN fill the empty node with a node number, which is the
same as the state number of the active entry. Fill the parent
nodes and child nodes link information. If path length is
greater than 1, then modify the MFT according to the path.
ELSE go to Step 10 (expand MFT and n-NWD).
ELSE check next entry
Repeat Step 5 until all the effective nodes in the active level have been
checked.

Step 7.

Step 8.

Step 9.

Step 10.
Step 11.

Step 12.

-71-

Take the next level as the active level and go to Step 5, until all the
remaining levels have been checked.

Recheck the n-NWD from first level to the last level to see if there are new
cffcctiv? nodes generated.

IF a new ecffective node is found in some level

THEN Set that level as an active level. Go to Step 5

ELSE Go to Step 9.

Check if all the rows in MFT have been checked.

IF all the rows have been checked

THEN exit from this algorithm and go to algorithm 4 for state assignment.
ELSE take an empty node in n-NWD as the node corresponding to an
unchecked row in MFT. The empty node becomes an effective node and the
corresponding level becomes an active level. Go to Step S.

Reset new MFT according to the relabeled MFT.

Increase the number of state variables by 1. Expand the new MFT and
generate an new n-NWD according to the current number of state Variables.

Go to Step 3.

Algorithm 4 (state assignment):

Step 1.

Step 2.

Step 3.

Select one state assignment from the following:

Choice 1. alternative state assignment: user assign any legal binary vector
to one of the states.

Choice 2. system assignment

If Choice 1 is selected, then user will be asked to give a binary vector to one
of the existing states. Go to Step 4.

If Choice 2 is selected, then excitation tables and output tables can be

-72-

generated according to the standard codes on the n-NWD. End.

Step 4. Perform an “XOR” operation on the assigned binary vector and the standard
code (in an n-NWD) of the designated state. Take the result of the “XOR”
operation as the “mask vector”.

Step 5. IF the value of “mask vector” is equal to zero
THEN generate the excitation tables and output tables based on the n-NWD.
End.

ELSE go to Step 6.

Step 6. Use the “mask vector” to do “XOR” operation with each standard code in
the n-NWD. Each result is a binary vector assigned to each state.

Step 7. Generate the excitation tables and output tables. End.

Algorithm 1 gives an easy way to identify VIR’s. Algorithm 2 presents an efficient
method to identify HIR’s. Algorithm 3 is the most important and most difficult part in all
of the f;)ur algorithms. Algorithm 4 provides us a very quick and very efficient method to
generate alternative state assignments.

The following examples illustrate the principal features qf the four algorithms and
demonstrate their utility. In each example, a merged flow (state) table is given before
applying the four algorithms. Other tables shown for each example were generated using
the MSUASLC Design Automation System. These include a re-labeled merged state table
(MST), an adjacency table, a modified MST, and an excitation table.

Example 4-1: (VIR’s Present)

ngure 4-15(a) depicts a reduced MST for an ASLC with two inputs and four internal
states. The re-labeled MST given in Figure 4-15(b) is obtained by applying Algorithm 1.
The adjacency table for the ré-labeled MST is shown in Figure 4-15(c). The table entries S,

Y, and N indicate whether the next state is the same state as the present state, is adjacent to

-73-

the present state, or is neither, respectively. The number in parentheses next to each row
number indicates the link degree for the present state. The link degree _of each present state
cquals the number of Y’s in its row. For this example, since the link degree of row 1 is
greater than the number of state variables (=2), a VIR exists.

In Algorithm 3, the row (state) 3, which has minimum link degree in the given MST,
is selected as the root node of the 2-NWD (see Figure 4-15(d)). States 1 and 2 become the
child nodes of the root node, since they are adjacent to the state 3. Algorithm 3 sets node 1
of the 2-NWD as the active node and row 1 of the re-labeled MST as the active row. The
first entry in row 1 is a stable state, so it is skipped and next entry checked. This is unstable
state 2 and is node 2 in the 2-NWD. Node 2 is not directly connected to the active node 1
(there is no path 1-2); hence, an available race-free path between the present state and next
state must be found. In this example, path 1-3-2 from active node 1 to node 2 located in the
2-NWD and is also available in that column of the MST. Thus, the active entry 2 is changed
to 3 as shown in the modified MST (see Figure 4-15(e)). Next entry 3 in the row 1 is
checked. It is an unstable state. Because there is a direct link 1-3, this entry is not modified.
The next row entry is a stable state; so, it is not altered. This completes the path-assignment
process for the first row in the MST. The remaining rows are checked and modified in like
manner. This path identification and modification process yields the modified MST (Figure
4-15(e)) and corresponding adjacency table (Figure 4-15(f)). These two tables identify all
allowed transitions.

Algorithm 4 is next applied to encode the states. The excitation table (see Figure 4-
15(g)) is generated according to the state assignments. In this excitation table, the binary
vectors 00, 01, 10, and 11 are represented by the decimal number 0, 1, 2, and 3. Figure 4-
15(h) is an alternative state assignment by assigning binary vector 00 to row 2 first. Then
the mask vector is obtained by the following: 00 @ 10 = 10. The binary vectors for the

remaining states can be obtained by XORing the mask vector with each vector shown on

-74-

the 2-NWD. The resulting set of state assignment is provided in Figure 4-15(h), and the
excitation table based on this state assignment is depicted in Figure 4-15(i).

Simple examples, like the one illustrated in Figure 4-15, can easily be done by
inspection of the MST;, however, more complex ASLC’s require formal procedures to
identify and eliminate races. For example, it is not an easy process to modify the MST
shown in Figure 4-16(a) by inspection even though it is a relatively simple MST (see
Example 4-2).

Example 4-2: (VIR’s Present)
An MST is shown in Figure 4-16(a). Applying Algorithm 1, a relabeled MST is
obtained and shown in Figure 4-16(b) which is the same as Figure 4-16(a) for this example.
“The adjacency table for the relabeled MST is shown in Figure 4-16(c). The link degrees for
rowl,2,3,4,5,6,7,and8are 3, 5,3,3,3,3,3,and 3, réspecﬁvcly. Since the link degree
of row 2 is 5, which is greater than the number of state variables (=3), a VIR exists.
Using Algorithm 3, a 3-NWD (shown in Figure 4-16(d)) is constructed to modify the
MST and eliminate /R’s. The modified MST is shown in Figure 4-16(¢) and the
corresponding adjacency table is shown in Figure 4-16(f)) in which the link degrees of row
2, 4, and 6 have been changed from 5, 3, 3 to 3, 2, 2.

Algorithm 4 is next applied to encode the states. The excitation table (see Figure 4-
16(g)) is generated according to the state assignments. Figure 4-16(h) is an alternative state
assignment by assigning binary vector 101 to row 3 first. Then the mask vector is obtained
by the following: 001 & 101 = 100. The binary vectors for the remaining states can be
obtained by XORing the mask vector with each vector shown on the 3-NWD. The resulting
set of state assignment is provided in Figure 4-16(h), and the excitation table based on this
state assignment is depicted in Figure 4-16(j).

-75-

Present Input (AB)
00 01 11 10
O [[®
s
70}
(5]
HoloRiE
% IEN OO
g
= o |D|()]
(a)
INPUT (AB)
0 1 3 2
e 1Y 2N 3N 1Y
a8 a2y 2Y 4N IN
B3£ 2N 2N 3Y 3Y
5P 1IN 4y a4y IN
2 -
(b)
13) 2(3) 3(2) 4(2)
1(3) S Y Y Y ‘§?§
2(3) Y S Y Y w-;g
3(2) Y Y S N 2%
4(2) Y Y N S 5L
=
©

Figure 4-15. Example 4-1 (a)a merged state table; (b) relabeled MST; (c) adjacency table
corresponding to the relabeled MST; (d) 2-NWD; (e) modified state table; (f) adjacency
table corresponding to the modified state table; (g) an excitation table due to system
assignment; (h) an alternative state assignment; (i) an excitation table due to an alternative

state assignment.

00

@

(2)”

g

10
OOl
"

O
11

INPUT (AB)
0 1 3 2
1 1Y 3N 3N 1Y 85
2 2Y 2Y 4N AN @3
3 2N 2N 3Y 3y 3%
4 IN 4Y 4Y IN §¢8
zv
O)
12) 2(2) 3(2) 42)
1Q2) S N Y Y £
2(2) N S Y Y %8
3Q2) Y Y S N B2
4Q2) Y Y N S e
Sv
®

Figure 4-15 (cont’d).

-717-

INPUT (AB)
0 1 3 2
1 @ 1 0 0 1
2 & 2 2 3 3
0 & 2 2 0 0
3 2 1 3 3 1
&

Binary vectors 01, 10, 00, and 11 are assigned to row 1, 2, 3, and 4,
respectively.

(g)
00 10
mask vector:
0010 =10
10 00
OHON-m 00O
00810 =10
11 ‘ 01810 =11 01
11610 = 01
(h)
INPUT (AB)
0 1 3 2
3 § 3 2 2 3
0 w» 0 0 1 1
2 § 0 0 2 2
1 g 3 1 1 3

@)

Figure 4-15 (cont’d).

-78-

Present Input (AB)
00 O01 11 10
O [
@) s |(»)] »
BB
g
/5]
(5]
1NcH©
£
3 6@2 '
20
Q
=l s |2 |®
O] ¢ |
7 O] s
(a)
INPUT (AB)
0 1 3 2
1Y 5N ; 3N
2Y 8N 2Y 3N
g9 TN - 2N 3Y
22 1IN 4y 2N 4Y
8L 6N 5Y 2N -
EE 6Y 8N 2N 6Y
= 7Y 7Y 8N 4N
7N 8Y 8Y 6N
(b)

Figure 4-16. Example 4-2 (a)a merged state table; (b) relabeled MST; (c) adjacency table
corresponding to the relabeled MST;, (d) 3-NWD; (e) modified state table; (f) adjacency
table corresponding to the modified state table; (g) an excitation table due to system
assignment; (h) an alternative state assignment; (i) an excitation table due to an alternative
state assignment.

-79-

13) 2(5) 3(3) 4(3) 53) 6(3) 7(3) 8(3)
1(3) S N Y Y Y N N N
2(5) N S Y Y Y Y N Y
33) Y Y S N N N Y N
403) Y Y N S N N Y N
53) Y Y N N S Y N N
6(3) N Y N N Y S N Y
7(3) N N Y Y N N S Y
8(3) N Y N N N Y Y S

©

Figure 4-16 (cont’d).

Merged State
(relabeled)

INPUT (AB)

0 1 3 2
1 1Y SN 3N 3N
2 2Y 8N 2Y 3IN o _
3 7N - 2N 3y 83
4 1N 4Y 1N 4Y g3
5 6N 5Y 2N - BB
6 6Y 8N 5N 6Y =%
7 7Y 7Y 8N 4N
8 7N 8Y 8Y 6N
(e)
13 23) 33 42 353 6@ 73) 803)
13 S N Y Y Y N N N
23 N s Y N Y N N Y
33 Y Y S N N N Y N
420 Y N N S N N Y N
53) Y Y N N S Y N N
62) N N N N Y S N Y
73) N N Y Y N N S Y
83) N Y N N N Y Y S

®

Figure 4-16 (cont’d).

Merged State
(relabeled)

-81-

INPUT (AB)

——e—N 1+ \ON O

—“VnnNnNoWVnNIT-~

<SS AN~~~

OV MNOVLONnM

ale)g Juasalg

CWVN—=ANTON~

(g)

Figure 4-16 (cont’d).

-82-

Assign binary vector 101 to state 3
mark vector:
101 © 001 = 100

node 1: 100 & 000 = 100

node 3: 100 ® 001 = 101
(1) A 3-NWD with standard code node 4: 1008010 = 110

node 5: 100 © 100 = 000
node 7: 100 © 011 = 111
node 2: 100 © 101 = 001
node 6: 100 © 110 = 010
node 8: 100 ® 111 = 011

(h)

Figure 4-16 (cont’d).

-83-

INPUT (AB)

MW NVYO NOAN

VNed i F = O NN

O s OO NI~

ST AAN

a1e1§ 1UIsAIY

TN OVOoOAN~M

@)

Figure 4-16 (cont’d).

-84-

Example 4-3: (VIR’s Present)

In the above two examples, the size of the MST is not increased after the MST is
modified. However, an MST (see Figure 4-17(a)) will be expanded in this example.
Applying Algorithm 1, a relabeled MST is obtained and shown in Figure 4-17(b). The
adjacency table for the relabeled MST is shown in Figure 4-17(c). The link degree of each
row is 3 which is greater than the number of state variables (=2), so VIR’s exist.

Applying Algorithm 3, a 3-NWD (see Figure 4-17(d)) is generated to eliminate all the
IR’s. The modified MST is shown in figurc 4-17(e). The MST is expanded from 4 rows to
7 rows, so the number of state variables is increased by 1 (=3). Look at the node 2 in Figure
4-17(d). Assume it is an active node on the active level (level 1) at this time. The nodes 5,
6, and 7 are not in the 3-NWD now. Examine the entries in the second row of the relabeled
MST, an unstable state 4 is under column 3. In the 3-NWD, there is a path 2-1-4. However,
the next state of state 1 under column 3 is state 3, so the path 2-1-4 is not available. Another
path 2-x-4 is available, where x represents an empty node in the 3-NWD. Since no other
rows in the column 3 of the relabeled MST are connected to the row 4, row S is added as
the intermediate node of the path 2-x-4. Then the path 2-x-4 becomes 2-5-4. Similarly for
the entry at the row 3 (the third row) and column O (the first column) of the relabeled MST,
the path 3-1-2 is not available. However, there is a path 3-x-2 can be used to connect node
3 to node 2. The x in the path 3-x-2 is replaced by the number 6. Hence node 6 is in the 3-
NWD and a new row (row 6) is added into the new MST. Notice that we cannot use row 5
as the intermediate node for the path 3-x-2, even though it is unused under column 0 (a
don’t care “-” in that entry). Because there is no such path 3-5-2 existing in the 3-NWD.
Therefore, modifying an MST is not so straightforward, it refers to both 3-NWD and MST.
The adjacency table corresponding to the modified MST is shown in Figure 4-17(f). The
excitation table for an alternative state assignment (assign a binary vector 000 to state 2

first) is shown in Figure 4-17(g).

-85-

Present Input (AB)
00 01 11 10
T ®
10,
(77}
HoloRE
g
s]2 |OB
5
ook
(@)
INPUT (AB)
0 1 3 2
-
39 1Y 2N 3N 1Y
‘§§ 2Y 2Y 4N IN
ps 2N 4N 3Y 3Y
$E 1IN 4Y 4y 3N
(b)
1(3) 203) 3(3) 4(3)
13) S Y Y Y 8 _
23) Y S Y Yy &3
3(3) Y Y S Yy 32
4(3) Y Y Y S §3

(©

Figure 4-17. Example 4-3 (a)a merged state table; (b) relabeled MST; (c) adjacency table
corresponding to the relabeled MST; (d) 3-NWD; (e) modified state table; (f) adjacency
table corresponding to the modified state table; (g) an excitation table due to an alternative
state assignment (assign 000 to state 2).

-86-

INPUT (AB)

0 1 3 2

1 1Y 2N 3N 1Y
2 2Y 2Y 5N IN 8o
3 6N 7N 3Y 3y &3
4 1N 4y 4Y IN B2
5 - - 4N - SE
6 2N - - - =

7 - 4N - 3N

(e

Figure 4-17 (cont’d).

-87-

20 33 4 5 62 72

1(3)

(Paraqear)
a.g paSN

ZZ>r»HZZwn

Zr>HZZwnZ

ZrZrunZZ

NZZwn>Z >

HNZnNnZZ

HnZZ» > Z

DXL ZZ

1(3)
2(3)
313)
4(3)
5(2)
6(2)
72)

®

INPUT (AB)

NS N

nNntTnwnvmn

(g)

SO~V ¢+

—ON— , O

a1elg Judsalg

o MnNwvmiT A~

Figure 4-17 (cont’d).

-88-

Example 4-4: (HIR’s Present)

This example illustrates the process of identifying and eliminating hidden intrinsic
races. Consider the MST illustrated in Figure 4-18(a). Results of applying Algorithm 1 are
illustrated in Figure 4-18(b). The adjacency table for the re-labeled MST is shown in Figure
4-18(c). The link degree of each row is 2 which is equal to the number of state variables;
so, no VIR’s exist. But, do any HIR's exist? To answer this question, Algorithm 2 is used to
construct an assignment tree, which is shown in Figure 4-18(d). Node 2 is both a parent
node and a child node of node 3, and they are in the same level. But nodes at the same level
(sibling nodes) are always separated by a Hamming distance which is greater than one;
hence, an HIR exists.

Algorithm 3 is next applied to eliminate all IR’s. A 2-NWD is generated and shown
in Figure 4-18(e). The modified MST is shown in Figure 4-18(f). Notice that the entry in
row 2 and column 0 has been changed from 3 to 4, and one row (row 4) is added into the
MST. Although there is a path 2-1-3 exiSting in the 2-NWD, this path is not available under
the input 00 (i.e., column 0). Therefore, a new path 2-4-3 is created so that it can start from
state 2, via state 4, and reach state 3. The adjacency table corresponding to the modified
MST is shown in Figure 4-18(g). Algorithm 4 is next applied to encode the states. The
excitation table (see Figure 4-18(h)) is generated according to the state assignments.

So far, the examples we have seen are small size of MST. In the following, we are
going to see an example with a very large size of MST. Smith [13] pointed out a flow table
with more than 150 cells is a very large flow table. The number of cells (entries) is equal to
the number of rows times the number of columns. It can be used as a rough measure of flow
table complexity. It will be shown that the algorithms presented can be used to rapidly

determine state assignments for extremely large tables.

-89-

Present Input (AB)
00 01 11 10

O -
®
O/l10/©,

Merged Primitive State
o
w

(a)
INPUT (AB)

0 1 3 2
§§ 1Y 1y 2N 3N
& : 3N 1IN 2Y 2Y
:80 £ 3Y 1IN 3Y 3Y
SE
= (b

1Q2) 2(2) 3(2)
12) S Y y £s5
2(2) Y S Y @ §
3(2) Y Y S ?»s.
5%

©

Figure 4-18. Example 4-4 (a)a merged state table; (b) relabeled MST; (c) adjacency table
corresponding to the relabeled MST; (d) assignment tree; (e) 2-NWD; (f) modified state
table; (g) adjacency table corresponding to the modified state table; (h) an excitation table
due to system assignment.

-90-

parent nodes tree nodes child nodes

Level 1
1 3 2 @
10
()
(o (5
11
"" (e)
INPUT (AB)
0 1 3 2
1 1Y 1Y 2N 3N §A
2 4N 1N 2Y 2Y &3
3 3Y IN 3Y 3y 38
4 3N] j . 25
. SE
®

Figure 4-18 (cont’d).

91-

1(2) 2(2) 3Q2) 4(2)
12) S Y Y N g
202) Y s N y &3
32) Y N S Yy g2
4(2) N Y Y S 5 &
z L =4
®
| INPUT (AB)
0 1 3
0 g 0 0 1 2
1 @ 3 0 1 1
2 5 2 0 2 2
3 k 2 - - -

(h)

Figure 4-18 (cont’d).

-92-

Example 4-5: (VIR’s Present)

This example demonstrates a very large flow table with 256 entries (8 rows * 32
columns). The merged state table is given in Figure 4-19(a). Applying Algorithm 1, a
relabeled MST is obtained and shown in Figure 4-19(b). The adjacency table for the
relabeled MST is shown in Figure 4-19(c). The link degrees are 7, 3, 3, 7, §, 3, 3, and 3 for
row 1,2,3,4,5,6, 7, and 8, respectively. Therefore VIR’s exist.

Now, Algorithm 3 is applied to eliminate the IR’s. A 4-NWD (see Figure 4-19(d) is
generated for this purpose. The modified MST is shown in Figure 4-19(e), and the
corresponding adjacency table is shown in Figure 4-19(f). The excitation table based on a
system assignment is shown in Figure 4-19(g). This exximple fully shows that it is almost
impossible to do this by pen-and-paper methods, because it takes too much effort and too
much time. Also, human designers may make mistakes because of the complexity of the

merged flow table.

-93-

INPUT (JKCSR)
0 1 3 2 6 7 5 4

1Y 5Y I3N 10N 26N 29N 21Y 17Y
IN SN 13Y 9Y 26N 29N - -

- - I3N 1ION 25Y 29Y 21N 17N
2N 6N 14Y 10Y 26Y 30N 21N 18Y

2N 6Y 14N - - 30N 2IN -
2Y SN 14N 1ION - - 2IN 18N
- SN 14N - 26N 30Y 22Y 18N
- SN - - - - - -

12 13 15 14 10 11 9 8

49Y 53Y 61N S8N 42N 45N 37Y 33Y
49N S3N 61Y 57Y 42N 45N - 33N

- 61N S8N 41Y 45Y 37N 33N
SON 54Y 62Y 58Y 42Y 46N 37N 34N

9N - 62N - 42N - 3TN 34Y
S0Y 53N 62N S8N 42N 46Y 38Y 34N
- 53N 62N - - - 37N -

- 53N - - - - - -

Figure 4-19. Example 4-5 (a)an example of large size MST; (b) relabeled MST; (c)
adjacency table corresponding to the relabeled MST; (d) 4-NWD; (e) modified state table;
(f) adjacency table corresponding to the modified state table; (g) an excitation table due to
system assignment.

-94-

24 25 27 26 30 31 29 28
97N 101Y 109Y 105Y 122N 125N 117Y 113Y
97Y 101N - 106N 122N 125N - 114N
- - 19N 106N 121Y 125Y 117N 113N
98N 102N 110Y 106Y 122Y 126N 117N 114Y
98Y 101N 110N 106N 122N 126Y 118N 113N
. 101N 110N - - - 117N 114N
98N 102Y 110N - - . 117N -

- 101N - - - 126N 118Y 114N
20 21 23 22 18 19 17 16
81N 85Y 93Y 8Y 74N 7IN 69Y 65N
82N - - - 74N 77N 69N 65Y
81Y 8N 93N 9N 73Y 77Y 69N 65N
82Y 8N 94N 90Y 74Y 78Y 170N 66N
82N 8N 94Y 90N 74N 78N 69N 66Y
82N 8Y 94N - - - 69N 66N
- 8SN 94N - - - 6N -

- 8SN - - - 78N 70Y 66N

(a)

INPUT (JKCSR)
0 1 3 2 6 7 5 4
1Y 1Y 2N 4N 4N 3N 1Y 1Y
1IN IN 2Y 2Y 4N 3N - -
- - 2N 4N 3Y 3Y IN IN
6N SN 4Y 4Y 4Y 7N IN 4Y
6N 5Y 4N - - 7N IN -
6Y IN 4N 4N - - IN 4N
- IN 4N - 4N 7Y 7Y 4N
- 1N - - - - - -

Figure 4-19 (cont’d).

-95-

12 13 15 14 10 11 9 8

1Y 1Y 2N 4N 4N 3N 1Y 1Y
IN IN 2Y 2Y 4N 3N - IN
- - 2N 4N 3Y 3 IN IN
6N 4Y 4Y 4Y 4Y 6N 1N SN
1IN - 4N - 4N - IN 5Y
6Y IN 4N 4N 4N 6Y 6Y SN
- IN 4N - - - IN -

- 1N - - - - - -

24 25 27 26 30 31 29 28
2N 1Y 1Y 1Y 4N 3N 1Y 1Y
2Y IN - 4N 4N 3N - 4N
- - IN 4N 3Y 3Y IN IN
SN 7N 4Y 4Y 4Y 5N IN 4Y
5Y 1IN 4N 4N 4N 5Y 8N "IN
- IN 4N - - - IN 4N
SN 7Y 4N - - - 1IN -

- IN - - - SN 8Y 4N
20 21 23 22 18 19 17 16
3N 1Y 1Y 1Y 4N 3N 1Y 2N
4N - - - 4N 3N 1IN 2Y
3Y IN IN 4N 3Y 3Y IN 2N
4Y IN SN 4Y 4Y 4Y 8§N SN
4N 6N 5Y 4N 4N 4N IN SY
4N 6Y SN - - - IN SN
- IN SN - - - IN -

- 1IN - - - 4N 8Y SN

(b)

Figure 4-19 (cont’d).

1(7) 2(3) 3(3) 4(7) 5(5) 6(3) 73) 8(3)
1(7) S Y Y Y Y Y Y Y
2(3) Y S Y Y N N N N
3(3) Y Y S Y N N N N
4(7) Y Y Y S Y Y Y Y
5(5) Y N N Y S Y Y Y
6(3) Y N N Y Y S N N
703) Y N N Y Y N S N
8(3) Y N N Y Y N N S
(©)

state number: outside the circle
binary vector: inside the circle 3

Figure 4-19 (cont’d).

97-

INPUT (JKCSR)

2

6

VOO WLEWN™=

1Y
3N
IN
SN
5Y
12N

3N
2Y
2N
4Y
4N
5N

3N
2Y
4N
4Y
4N
SN

SN
TN
3Y
4Y
4N

4N

11

Figure 4-19 (cont’d).

98-

24 25 27 26 30 31 29 28
3N 1Y 1Y 1Y 5N 3N 1Y 1Y
2Y 3N - 3N 7N 3N 3N 7N
2N IN IN 4N 3Y 3Y 1IN 1N
5N 7N 4Y 4Y 4Y 5N 3N 4Y
5Y 1IN 4N 4N 4N 5Y 11N 1IN
- SN SN - - - 12N 9N
4N 7Y 4N - 4N 4N 2N 4N
- 13N - - - 7N 8Y 7N
- - - - - - - 4N .
- - - - - - 8N -
- - - - - - ION -
- - - - - - IN -
- 2N - - - - - -
20 21 23 22 18 19 17 16
3N 1Y 1Y 1Y 5N 3N 1Y 3N
7N 3N - - 7N 3N 3N 2Y
3Y 1IN IN 4N 3Y 3Y 1IN 2N
4Y 3N 5N 4Y 4Y 4Y 9N 5N
4N 6N 5Y 4N 4N 4N 1IN 5Y
5N 6Y 5N - - - 5N 5N
4N 2N 4N - 4N 4N 2N 4N
- 7N - - - 7N 8Y 7N
- - - - - - 8N -
O]

Figure 4-19 (cont’d).

-99.

23 33 44 5@ 63 73 84

13)

NNNNNNYQ.UYYNNY
ZHZHZZnHZALZZZ
ZZZZrnZZHNZZ»Z
HZZ>r DN ZLLZZZZ
ZZ>rnPRZHZHNZLLZZ
HrNNZZZZZLZZLZZ

ZnNHNZZZHZZZZZ >

N

NZPHZHNZZZZZZ»

13)
2(3)
33)
4(4)
5(4)
6(3)
7(3)
8(4)
9(3)
10(2)
11(2)
12(2)
13(2)

102) 11(2) 12(2) 13Q2)

9(3)

ZHRNZZLZZZHNZZZZwn
HNLZLZLZHNZZZZZnZ
CZLZZHNZZZZwnZZ
NNNNNNNYNSYNN

ZZZRNZHZ»HNZZZZ

®

Figure 4-19 (cont’d).

-100-

INPUT (JKCSR)

7

6

2

- g et N <t

- =-O WD

COOCWwWY I ©

NOVOITT |

SN I TN

oSNNIt N

O 1WA\

o o
.lo.lul.l. '

o
- ANO T N —~ O

<t
—

13

o
—

v
-—

~ o

o
—

13° 15 14 10 11

12

— O =NV ,

NOOTTWN T

OCNIT TN

oNANStTTtN <

— QO et~ N O

o

QO vt e

o
—

(4]
—

Figure 4-19 (cont’d).

-101-

28

29

31

30

26

27

25

24

(ql]
— O rt <t et \OF

1010792“

COOWVwn , ¢+ O

MNMOOTTE |

— Ottt

- gttt T

o

10‘161561

oaNANwVnNn T

< n
—

-

16

17

19

18

22

23

21

20

oNANWVWNVNWNVN T O

(9 < <

QO et) v v

QOO T + VO

NMOVOSTT + I

— ot

- g =N N

o N
O O - O

CVOt It T

€4]

Figure 4-19 (cont’d).

-102-

Example 4-6: (No /R’s Present)

An ASLC’s flow table is given in Figure 4-20(a). It has 6 rows and 4 columns. A re-
labeled MST (see Figure 4-20(b)) and its corresponding adjacency table (see Figure 4-
20(c)) are generated by applying Algorithm 1. Because no link degrees are greater than the
number of state variables, no VIR’s exist. Algorithm 2 is next applied for the purpose of
identifying HIR’s. An assignment tree is generated, (see Figure 4-20(d)); it shows that no
HIR’s exist either. Since no VIR's and no HIR's exist, the flow table is free of intrinsic races
(IR’s); hence, the modified ﬂbw table (see Figure 4-20(e)) is the same as the re-labeled flow
table. Also, the adjacency table (see Figure 4-20(f)) corresponding to the modified flow
table is the same as the one shown in Figure 4-20(c). From the assignment tree, a 3-NWD
is generated (see Figure 4-20(g)), and race-free state assignments are made. The excitation
table is shown in Figure 4-20(h).

-103-

INPUT (BA)
0 1 3 2
0Y 4y 12N 8Y
g - 5N 12Y 8N
A 1Y 5Y 13N 9N
B ON 7N 13Y 9Y
5 3Y 7Y 15Y 11N
b= 1IN - 15N 1Y
(a)
INPUT (BA)
0 1 3 2
o 1Y 1Y 2N 1Y
sg - 3N 2Y 1IN
gg 3Y 3Y 4N 4N
.2 1N SN 4y 4Y
zé 5Y 5Y 5Y 6N
3N - SN 6Y
(b)
1(2) 2(2) 3(3) 4(3) 5(2) 6(2)
12) S Y N Y N N o
22) Y S Y N N N 233
33 N Y S Y N Y 32
43) Y N Y S Y N B3
52) N N N Y S Y s
62 N N Y "N Y S

©)

Figure 4-20. Example 4-6 (a)a merged state table; (b) relabeled MST; (c) adjacency table
corresponding to the relabeled MST; (d) assignment tree; (e¢) modified state table; (f)
adjacency table corresponding to the modified state table; (g) 3-NWD; (h) an excitation
table due to system assignment.

-104-

parent nodes tree nodes child nodes
Level 0 2 = 4 | 6
000
(D)l
001
Level 1 3 ’ Tl
010
A O =
100
4 |am—{ 2
011
Level 2
6 e 4
110

(d

Figure 4-20 (cont’d).

-105-

INPUT (BA)
0 1 3 2

1 1Y 1Y 2N 1Y

2 - 3N 2Y 1IN g

3 3Y 3Y 4N 4N &8

4 IN 5N ¢ ay B2

5 5Y 5Y 5Y 6N 58

6 3N - 5N 6Y =

(e
12) 2(2) 3(3) 4(3) 5(2) 6(2)

1) S Y N Y N N
2(2) Y S Y N N N &)
33) N Y S Y N Y g 3
43) Y N Y S Y N &=
52) N N N Y S Yy £ £
62) N N Y N Y S

®

Figure 4-20 (cont’d).

-106-

(h)

Figure 4-20 (cont’d).

®
INPUT (BA)
0 1 3 2
3 3 3 1 3
1§ - 0 1 3
0 2 o 0 2 2
2 § 3 6 2 2
6 £ 6 6 6 4
4 0 - 6 4

-107-
4.5 Experimental Results and Comparisons

State assignment techniques for ASLC’s have been widely studied by many
researchers [11-13, 33-41]. Most of the research relates to the single transition-time (ST7)
state assignment technique for fundamental-mode ASLC'’s; i.e., only one digit in the input
may change at a time, and no changes can take place in the input until the state machine
stabilizes. STT state-assignment techniques were first presented by Liu [36] and later
extended by Tracey [12]. Other improvements or variations on STT state assignments were
studied by many researchers [13, 34-35, 37-39]. Tracey’s methods [12] are important
representative approaches of STT state assignments.

Tracey [12] described a method for finding minimum variable unicode STT
assignments for normal, fundamental mode ASLC’s. He noted that for “large” (8-12 rows)
flow tables, the effort required to calculate minimum variable USTT codes became
prohibitively complex. Therefore, he suggested two related algorithms which would
require less effort, but would usually produce near minimum variable assignments. -

Smith [13] demonstrated that for flow tables that contained more than 50 cells, even
automated generation of minimum-variable assignments was not practical. Furthermore, he
discovered that for very large flow tables (more than 150 cells), even Tracey’s near-
minimum variable methods required extremely large computation time. Smith noted that
one 12- row by 4-column table (48 cells) from the literature requires 50 transition
constraints and has more than 300 maximal intersectable classes. Even using very large
computers, it has been economically impractical to calculate minimum variable
assignments for tables with more than a few dozen constraints. Since the number of
constraints is related to the number of next state entries rather than number of rows, Smith
uses the number of cells (the product of the number of rows and columns) as a rough

measure of flow table complexity. Smith also noted that none of Tracey’s assignment

-108-

methods appear to be suitable for dense (mostly specified) flow tables of more than about
250 cells.

Smith presented an extension of Tracey’s techniques which produces near-minimum
variable assignments for very large tables, while requiring much less computational effort
than previous methods. In the Fig. 9 in Reference [13], Smith gives a comparison of
computational requirements for five assignment techniques. For the flow tables of Machine
4 (table size 12 rows by 4 columns) and Machine 6 (table size 6 rows by 4 columns), our
approach yields fewer state variables and requires less CPU time than either Smith’s or
Tracey’s state-assignment techniques. With the Machine 4 example, Smith’s and Tracey’s
assignments yicld 6 state variables. In contrast, our method solves the race-free state
assignment problem using only 5 state variables. For the Machine 6 example, Smith’s and
Tracey’s assignments use 4 state variables [13], Tan’s assignment needs 12 state variables,
Ullman’s (Friedman’s) assignment needs 9 state variables, Kuhl’s assignment needs 6
variables [35], and our method requires only 3 state variables. All the experimental results
that we have examined to date demonstrate that the MSUASLC Design Automation System
always yields the minimum number of state variables.

The MSUASLC currently runs on a Sun workstation. For Machine 4, Tracey’s Method
D requires 3.4 seconds (CPU time), Smith’s method requires 3.3 seconds. In contrast,
MSUASLC requires less than 10% of their shortest time. For Machine 6, both Smith’s and
Tracey’s methods require approximately 1 second, while MSUASLC requires less than 0.1
second.

For a flow table with 250 cells, Smith’s method needs 49.9 seconds, and Tracey’s
method needs 179.2 seconds [13]. However, MSUASLC takes less than 1 second to
complete state assignment for a flow table with 256 entries (cells). Although these two
tables (250 cells and 256 cells) differ slightly, the results demonstrate that MSUASLC

reduces the computation time significantly.

-109-

The One-Hot State-Assignment method [S] is an interesting special class of unicode
row assignment techniques. It is characterized by the fact that for each row in the flow table,
exactly one of the state variables is assigned the value of 1. Therefore, a flow table with n
rows will have n state variables. The advantage of this technique is that state equations can
be obtained in a relatively straightforward manner. The disadvantage is that too many state
variables are used; hence, the hardware cost can be quite high. Consider the Example
Machine described by Unger and illustrated in Fig. 4-21 [5]. The number of state variables

is S in using the One-Hot State-Assignment method and the state equations are as follows:
Y, = X1 Xp)5+ X1 X3Y3 +¥1¥5)3
Y, = X1X91 +¥2¥3
Y3 = X1 X201 + X1 X395 + Y391 34
Yy = X)X0y3+ X1 X2)5 +Y4Y's
Y5 = X X294+ ¥5Y134
By way of contrast, the number of state variables obtained using the MSUASLC is 3,
and the state equations are as follows:
Yy = ¥o¥ 1%+ ¥2¥ 105
Y) = X+ 31X +Yx1Xp
Yy = ypXy+ Xy + Yo +Y 151X,

The race-free state-assignment method described here reduces the complexity of
solving the race-free state-assignment problem by decomposing the problem into two
principal stages. In the first stage, the flow table is scanned for intrinsic races (/R’s). Visible
intrinsic races (VIR’s) and hidden intrinsic races (HIR’s) are efficiently identified and
eliminated. This stage yields a modified flow table that is free of intrinsic races. In the

second stage, race-free state assignments are systematically made.

-110-

The node-weight diagram (VWD) was introduced and used in both stages of the race-
free state-assignment method described here. This diagram is a variation of the binary n-
cube connection diagram and provides a more convenient geometric representation of
binary numbers for the purpose of making race-free state assignments than the n-cube. The
NWD provides a framework for efficiently adding cycles and states to eliminate intrinsic
races (/R’s) and for guaranteeing that no generated races (GR’s) are introduced when the
symbolic states are assigned binary codes.

Many asynchronous state-machines haveé been synthesized using the state-
assignment method described here and comparisons made with other state-assignment
methods reported in the literature. Experimental results show that this method provides
significantly better results than other approaches in terms of the computation time required
to make the assignments and the number of state variables required to achieve race-free
ASLC'’s.

00

-111-

X1X3

01

11

10

OROIOK

®
®

Figure 4-21. Flow table for Unger’s example machine

S |

P
P

Chapter 5

Summary and Conclusions

5.1 Summary

The research reported here has focused on investigating the process of designing
asynchionous sequential logical circuits (ASLC’s). For a given sequential logic function,
the process of designing ASLC'’s is significantly more complex than that of their clocked
sequential logical circuit (CSLC) counterparts. This is due in part to critical-race and hazard
problems that are associated with ASLC architectures. But, through appropriate state
assignments, the race conditions can be avoided. Although it can be a very tedious process,
the ASLC designer can verify that a particular design is functionally correct, as well as race
and hazard free. Some computer-aided design (CAD) tools can be used to simulate the
designed circuits to assist in the design verification process. But, because of the complexity
of the overall ASLC design process, only the simplest sequential logic functions have been
implemented using ASLC architectures. An automated set of design tools would enable
state machine designers to evaluate alternative sequential logic function architectures more

thoroughly before committing the design to a specific architectural implementation.

-112-

-113-

An ASLC design automation system, which is called the MSUASLC Design
Automation System, has been developed and tested. Software was written in the C
programming language with approximately 20,000 lines of source code. While the current
version of this software runs on Sun workstations, it is readily transportable to other
platforms. It is both modular and interactive and automatically validates the correctness of
each step in the design process. Each module provides intermediate output information
necessary to document the design. This design system significantly reduces the ASLC
design cycle time.

The MSUASLC Design Automation System consists of five modules as illustrated in
Figure 1-1. Each module can accept data files from either an up-stream module or
interactively from the circuit designer. This modular CAD system architecture has clearly
defined entry and exit points and permits each module (sub-system) to be accessed
independently. Therefore, concurrent e;tecution of these modules can be achieved for
different design tasks.

Constructing a primitive flow table (PFT) is the first important step in designing an
ASLC. Generating a large PFT by pen-and-paper methods may require several hours or
days, and the results may be incorrect. In order to ensure a PFT match a required functional
design specification, the generated PFT must be verified to guarantee a correct ASLC
behavior. Therefore, verifying a PFT may take longer time than the generating a PFT.
Many inputs/outputs can make flow tables unmanageably large. The Behavioral Descriptor
(BD) overcomes these complexity problems. The BD uses an artificial intelligence

approach to map the functional design specification into a primitive flow table (PFT),

which completely captures the sequential logic function’s behavior. For a table with 212
entries, the BD can generate the PFT in about one second. Therefore, the BD can quickly
generate a very large PFT’s. This significantly reduces the time for generating and

verifying the PFT.

-114-

Merging a large flow table is more time consuming and more difficult than generating
a large flow table. It becomes almost impossible to draw a merger diagram by hand from a
large PFT and to identify the strongly connected subgraphs by visual process from a
complex merger diagram. The Merger uses graph techniques to reduce the complexity of
the merging process. It reduces the PFT into a merged flow table and merged output table,
thereby minimizing the number of states by eliminating redundant primitive state
assignments. Specific steps in this state merging process are as follows: The merger
diagram (MD) and the merged flow table (MFT) are initialized. The MD is completed by
identifying identical rows in the PFT. Each set of identical rows in the PFT becomes a new
row in the MFT and is assigned a new symbolic state name. A given primitive state may be
capable of being merged in more than one way, but primitive states must only be assigned
to one of these merged states. Therefore, additional constraints are necessary in order to
decide which grouping is best. One such constraint might be to require that only primitive
states with identical output states be merged. Four different merging methods are provided
in the Merger. The major purpose is to give designers or researchers more opportunities to
investigate the merged results. The traditional merging method (identifying the largest
strongly connected subsets) is not included in the Merger module because it takes too much
computation time (effort), especially when the PFT is large. As indicated in Chapter 3, the
traditional merging method does not guarantee a minimum number of merged states, i.e.,
rows in the merged flow table.

Verifying all the allowed state transitions and modifying the MFT to avoid races are
very difficult in the design of ASLC’s, especially for a large MFT’s. The Connector and
Assigner overcome the difficulty of making race-free state assignments. The race-free
state-assignment method described here reduces the complexity of solving the race-free
state-assignment problem. The node-weight diagram (VWD) is introduced. It is a variation

of the binary n-cube connection diagram and provides a more convenient geometric

4
e

-115-

representation of binary numbers for the purpose of making race-free state assignments
than the n-cube. The NWD provides a framework for efficiently adding cycles and states to
eliminate intrinsic races (/R’s) and for guaranteeing that no generated races (GR’s) are
introduced when the symbolic states are assigned binary codes. Experimental results show
that this method provides significantly better results than other approaches in terms of the
computation time required to make the assignments and the number of state variables
required to achieve race-free ASLC’s.

The process of mapping symbolic states info race-free binary-coded state vectors is
not unique; i.e., more than one set of race-free state assignments can be generated for a
given flow table. The approach described here is currently being used to investigate
alternative ASLC implementations for a given sequential-logic element specification. The
objective of this investigation is to develop rules for determining the best set of state
assignments for a specific set of ASLC design constraints.

Finding consensus terms to eliminate hazards is also a time-consuming and difficult
prbccss, especially when the excitation tables and output tables become large. The purpose
of most Boolean minimization tools [42-45] is to minimize a given switching function, so
they do not provide the function for eliminating hazards. The Equation Generator quickly
generates hazard-free ASLC state equations and output equations. The Equation Generator
module reads the state excitation table and modified output table and applies the Quine-
McCluskey algorithm [46] to generate the state equations and output equations. These
equations are expressed in two-level, sum-of-products form. Static hazards are identified
by searching each of these equations for adjacent pairs of prime implicants. If a pair of
adjacent prime implicants do not possess a consensus term, it is added to eliminate the static
hazard. The Equation Generator consists of two major parts: one is Boolean Generator, the
other is Hazard Eliminator. The Boolean Generator generates a minimized Boolean
function. The Hazard Eliminator realizes the Boolean function (generated by the Boolean

Generator) in its hazard-free, two-level sum-of-products form.

1

P
]

-116-

One primary objective of the work reported here is to map human (expert) knowledge
into the implementation of an ASLC design system to speed up the overall ASLC design
process. This system lessens the burden on sequential logic function circuit designers by
greatly reducing the chances that errors would creep into the design and by greatly reducing
the overall design cycle time. This increase in designer productivity could be used in part
to explore alternative implementations for purposes of optimizing the overall circuit’s
performance.

The MSUASLC Design Automation System not only overcomes the design
complexity and difficulty but also provides for design flexibility. Different merging
methods may generate different MFT’s. Different state assignments may generate different
excitation tables and output tables. Any of these may result in a different ASLC
implementation. Designers can choose the one which satisfies their particular
requirements.

Results of the research reported here will impact the ASLC deéign process as follows:

1. It provides a tool that will enable researchers to investigate the general
implications of alternative ASLC implementations. The intent would be to
develop a general set of rules for optimizing designs.

2. It provides a tool that will enable ASLC designers to explore alternative ASLC
implementations for purposes of optimizing a given design.

3. It provides a means to design complex ASLC’s (large-scale ASLC’s) and thereby
provide an alternative to the CSLC implementation of sequential circuits.

4. It provides a tool to help the researchers or designers investigate specific designs
such as fault-tolerant or testable ASLC designs. Researchers or designers can
modify the tables generated or can make tables themselves and then submit these
tables to the system to generate the ASLC equations which satisfy their design

constraints.

hyra
.
1

-117-
5.2 Future Research and Development

One important research issue that has not yet been fully addressed is the design of
fault-tolerant or testable ASLC’s. Since using the MSUASLC Design Automation System
can quickly generate the ASLC equations, one can readily investigate the internal
characteristics of the ASLC’s. In order to explore fault-tolerant or testable ASLC design,
some redundant states may be added to make the circuit have some specific features, or
some special arrangements can be made to the flow table, state assignments, excitation
tables, or output tables. Based on these, researchers may develop rules for fault-tolerant or
testable ASLC design. Because of its modular design, the MSUASLC Design Automation
System can be easily expanded. We can expand the capability of MSUASLC, e.g., add some
features to allow the design automation for fault-tolerant or testable ASLC design.

Another research issue could be the asynchronous control portion of an ASIC
sequential logic function. The design time of an ASIC is only as fast as the design time of
its slowest portion. Keutzer [47] pointed -out the lack of synthesis and verification
procedures for asynchronous and analog portions of circuits is a severe problem. The
MSUASLC Design Automation System can be used to assist the research in ASIC design.
Some specific asynchronous control applications can also be explored or implemented.
One interesting research issue would be in the prediction and avoidance of hazard

conditions.

1

LIST OF REFERENCES

(1]

(21

(31

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

LIST OF REFERENCES

E. J. McCluskey, Logical Design Principles, Prentice Hall, Englewood Cliffs, New
Jersey, 1986.

L. A. Hollaar, “Direct Implementation of Asynchronous Control Units,” JEEE Trans.
Computers, vol. C-31, pp. 1133-1141, Dec. 1982.

K. J. Breeding, Digital Design Fundamentals, Prentice Hall, Englewood Cliffs, New
Jersey, 1989.

A. D. Friedman, Fundamentals of Logic Design and Switching Theory, Computer
Science Press, Inc., Rockville, Md.,1986.

S. H. Unger, Asynchronous Sequential Circuits, Wiley Interscience, New York, 1969.
Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill, New York, 1978.
T. H.-Y. Meng, R. W. Brodersen, and D. G. Messerschmitt, “Asynchronous Logic
Synthesis for Signal Processing from High-Level Specifications,” IEEE ICCAD’87
Dig. Technical Papers, pp. 514-517, Nov. 1987.

A.E. A. Almaini, Electronic Logic Systems, 2nd ed., Prentice-Hall International (UK)
Ltd., 1989.

A. L. Fisher and H. T. Kung, “Synchronizing Large VLSI Arrays,” IEEE Trans.
Computers, vol. C-34, pp. 734-740, Aug. 1985.

C. E. Molnar, T. P. Fang, and F. U. Rosenberger, “Synthesis of delay-insensitive
modules,” in Proc. 1985 Chapel Hill Conf. VLSI, Chapel Hill, NC, May 15-17, 1985,
pp. 67-86.

T. Nanya and Y. Tohma, “On Universal Single Transition Time Asynchronous State
Assignments,” IEEE Trans. Computers, vol. C-27, pp. 781-782, Aug. 1978.

-118-

[12]

(13]

[14]

(15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24)

-119-

J. H. Tracey, “Internal State Assignments for Asynchronous Sequential Machines,”
IEEE Trans. Elect. Computers, vol. EC-15, pp. 551-560, August 1966.

R. J. Smith, II, “Generation of Internal State Assignments for Large Asynchronous
Sequential Machines,” IEEE Trans. Computers, vol. C-23, pp. 924-932, Sep, 1974.

S. H. Unger, “Hazards and Delays Detection in Asynchronous Sequential Switching
Circuits,” IRE Trans. Circuit Theory, vol. CT-6, pp. 12-25, March 1959.

S. B. Lemer, “Hazard Correction in Asynchronous Sequential Circuits,” IEEE Trans.
Electron. Computers, vol. EC-14, pp. 265-267, Apr. 1965.

W. S. Meisel and R. S. Kashef, “Hazards in Asynchronous Sequential Circuits,” JEEE
Trans. Computers, vol. C-18, pp. 752-759, Aug. 1969.

M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra, “Automatic Verification of
Sequential Circuits Using Temporal Logic,” IEEE Trans. Computers, vol. C-35, pp.
1035-1044, Dec. 1986.

C. Berthet and E. Cemy, “An Algebraic Model for Asynchronous Circuits
Verification,” IEEE Trans. Computers, vol. C-37, pp. 835-847, July 1988.

T. S. Chen, and P. D. Fisher, A Complete Logical Design System for Application
Specific CMOS Digital Integrated Circuits, Technical Report, Department of
Electrical Engineering, Michigan State University, E. Lansing, May 1988.

Wu, Sheng-Fu and P. David Fisher, “Automating the Design of Asynchronous
Sequential Logic Circuits”, IEEE Journal of Solid-State Circuits, Vol. 26, pp. 364-
370 March 1991.

S. F. Wu and P. D. Fisher, “Automating the Design of Asynchronous Sequential
Logic Circuits,” IEEE 1990 Custom Integrated Circuits Conference, pp. 29.5.1 -
29.5.4, May 1990.

S. F. Wu and P. D. Fisher, “An Artificial Intelligence Approach to the Behavioral
Modeling of Asynchronous Sequential Logic Circuits,” 33rd Midwest Symposium on
Circuits and Systems, August 1990 (in press).

I. E. Sutherland, “Micropipelines,” Comm. of the ACM, vol. 32, pp. 720-738, June
1989.

S.F. Wu and P. D. Fisher, MSUASLC Design Automation System -- Technical Report,
Department of Electrical Engineering, Michigan State University, 1991.

(25]

(26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

-120-

V. E. Kelly, “The Critter Systems: Automated Critiquing of Digital Circuit Designs,”
Proceedings of the 21st ACMI/IEEE Design Automation Conference, pp. 419-425,
IEEE and ACM-SIGDA, IEEE Computer Society, June 1984,

R. Joobbani, An Artificial Intelligence Approach to VLSI Routing, Kluwer Academic
Publishers, Boston/Dordrecht/Lancaster, 1986.

R. Joobbani and D. P. Siewiorek, “WEAVER: A Knowledge-Based Routing Expert,”
Proceedings of the 22nd ACM/IEEE Design Automation Conference, pp. 266-272,
IEEE and ACM-SIGDA, IEEE Computer Society, June 23-26, 1985.

W. P. Bermingham, and J. H. Kim, “DAS/Logic: A Rule-based Logic Design
Assistant,” Proceedings of the Second Conference, Miami Beach, Florida, Artificial
Intelligence Applications The Engineering of Knowledge-Based Systems, pp. 264-
268, IEEE Computer Society Press, Dec. 1985.

W. P. Birmingham, D. P. Siewiorek, “MICON: A Knowledge Based Single Board
Computer Designer,” Proceedings of the 21st ACM/IEEE Design Automation
Conference, pp. 565-571, IEEE and ACM-SIGDA, IEEE Computer Society, June 25-
27, 1985.

L. L Steinberg, T. M. Mitchell, “A Knowledge-based Approach to VLSI CAD,”
Proceedings of the 21st ACM/IEEE Design Automation Conference, pp. 412-418,
IEEE and ACM-SIGDA, IEEE Computer Society, June 25-27, 1985.

W. B. Rauch_Hindin, Arrificial Intelligence in Business, Science, and Industry,
Prentice Hall, Englewood Cliffs, New Jersey, 1985.

E. Rich, Artificial Intelligence, McGraw-Hill, Inc., New York, 1983.

D. A. Huffman, “The Synthesis of Sequential Switching Circuits,” J. Franklin Inst.,
vol. 257, pp. 161-190, March 1954 and pp. 275-303, April 1954.

C. J. Tan, “State Assignments for Asynchronous Sequential Machines,” IEEE Trans.
Computers, vol. C-20, pp. 382-391, Apr. 1971.

J. G. Kuhl, and S. M. Reddy, “A Multicode Single Transition-time State Assignment
for Asynchronous Sequential Machines,” IEEE Trans. Comput., vol. C-27, pp. 927-
934, Oct. 1978.

C. N. Liu, “A State Variable Assignment Method for Asynchronous Sequential
Switching Circuits,” J. ACM, vol. 10, pp. 209-216, April 1963.

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

-121-

G. K. Maki, J. H. Tracy, and R. J. Smith, II, “Generation of Design Equations in
Asynchronous Sequential Circuits,” IEEE Trans. Computers, vol. C-18, pp. 467-472,
May 1969.

A.D. Friedman, R. L. Graham, and J. D. Ullman, “Universal Single Transition Time
Asynchronous State Assignments,” IEEE Trans. Computers, vol. C-18, pp. 541-547,
June 1969.

T. Nanya and Y. Tohma, “Universal Multicode STT State Assignments for
Asynchronous Sequential Machines,” IEEE Trans. Comput., vol. C-28, pp. 811-818,
Nov. 1979.

G. K. Maki, and J. H. Tracy, “A State Assignment Procedure for Asynchronous
Sequential Circuits,” IEEE Trans. Computers, vol. C-20, pp. 666-668, June 1971.

G. Saucier, “Encoding of Asynchronous Sequential Netwofks,” IEEE Trans. on
Elec.Computers, pp. 365-369, June 1967.

M. R. Dagenais, V. K. Agarwal and N. C. Rumin, “McBoole: A New Procedure for
Exact Logic Minimization,” IEEE Trans. on CAD, pp. 229-238, Jan. 1986.

R. K. Brayton, C. McMullen, G. D. Hachtel and A. Sangiovanni-Vincentelli, Logic
Minimization Algorithms for VLSI Synthesis, Kluwer Academic Publishers, 1984.

Richard L. Rudell, Multiple-Valued Logic Minimization for PLA Synthesis, Thesis,
University of California, Berkeley, June 1978.

S. J. Hong, R. G. Cain and D. L. Ostapko, “MINI: A Heuristic Approach for Logic
Minimization,” IBM J. of R&D, pp. 443-458, Sep. 1974.

E. J. McCluskey, Jr., “Minimization of Boolean Functions,” Bell Syst. Tech. J., vol.
35, pp. 1417-1444, Apr. 1957.

Kurt Keutzer, “Three Competing Design Methodologies for ASIC’s: Architectural
Synthesis, Logic Synthesis and Module Generation,” 26th ACM/IEEE Design
Automation Conference, pp. 308-313, June 1989.

MICHIGAN S

N
31293009021357

