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ABSTRACT

VARIATIONAL PROBLEMS ON CONTACT MANIFOLDS

Shangrong Deng

S.S.Chern and R.S.Hamilton in a paper of 1985 studied a kind of Dirichlet energy
in terms of the torsion 7(7 = £¢g) of a 3-dimensional compact contact manifold and a
problem analogous to the Yamabe problem. They raised the question of determining
all 3-dimensional contact manifolds with 7 = 0 ( i.e. K-contact ). In a long paper of
1989 S.Tanno studied the Dirichlet energy and gauge transformations of contact man-
ifolds. In 1984 D.E.Blair obtained the critical point condition of I(g) = [, Ric(¢)dV,
over M(n) ( the space of all associated metrics ), and proved that the regularity of
the characteristic vector field £ and the critical point condition force the metric to be
K-contact. Since Ric(§) = 2n — %|1'|2 , the study of I(g) is the same as the study of
the Dirichlet energy. In this thesis we investigate the second variation and prove the

following results.

Theorem. Let M?"*! be a compact contact manifold. If g is a critical metric of
the Dirichlet energy L(g) = fy, |7°dV,, i.e. Ve£Leg = 2(£¢g)¢, then along any path
g;_,'(t) = g.-,.[6; + tH_;-' + tzK; + O(ta)] in M(f))

S0 =2 /M | £eHiaV,, > o,

and L(g) has minimum at each critical metric.

Theorem. Let M?"t! be a compact contact manifold, and suppose that geH* is a
geodesic with g(0) K-contact, then gef’* is K-contact for each t if and only if £¢H} = 0.

In general, |7| is constant along any geodesic gef* with £¢H} = 0.

In Chapter 3 we discuss almost Kahler manifold with Hermitian Ricci tensor and
its relation to critical point conditions. It was conjectured that K-contact manifolds
with Q¢ = ¢Q are Sasakian. We give a negative answer to the conjecture; hence we
have a new class of contact manifolds. We also give a variational characterization of

this class. In Chapter 4 we study other functionals.
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Chapter 1

Preliminaries

In this chapter we review some formulas and results which we will need in this the-
sis. Section 1 is an introduction to contact manifolds; in this section we also present
a new K-contact condition. In section 2 we describe the space of all Riemannian
metrics on a Riemannian manifold and the space of all associated metrics on a sym-
plectic or contact manifold. We follow basically the notations of [3], [18] and [20].
Differentiability always means differentiability of class C*°. By a manifold or tensor

field we mean a smooth one.

1.1 Contact Riemannian manifolds

A (2n+1)-dimensional manifold M?"*! is a contact manifold if it carries a global
1-form 7 such that n A (dn)™ # 0 everywhere. 7 is called the contact form. It follows
that any contact manifold is orientable.

n = 0 defines a 2n-dimensional distribution D of the tangent bundle, i.e. for any
m € M1 D, = {X € T,,M|n(X) = 0}. Since n A (dp)" # 0, D is not integrable
and dn has rank 2n. The subspace V;, = {X|X € T, M, dn(X,T,n M) = 0} of T,,M
is of dimension 1. Let £, be the element of V,, on which  has value 1. Then £ is a

vector field, which we call the characteristic vector field, defined on M?"+! such that

d’l(f,X) =0, U(f) =1 (1‘1)

for any X.
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Using (1.1) and the formula for Lie differentiation, £; = d- ¢(§) + ¢«(¢) - d, we have
£€7] = 0, £€d7] = 0. (1.2)

In this thesis we will also discuss symplectic manifolds. A 2n-dimensional manifold
M?" is called a symplectic manifold if it admits a global 2-form € such that Q" # 0

and d2 = 0. On a symplectic manifold we have the following theorem.

Theorem 1.1. Let (M?*,9) be a symplectic manifold. Then there exist a metric g

and an almost complex structure J such that
QX,Y) =g(X,JY) (1.3)

Outline of proof. Let k be any Riemannian metricon M?" and X - - - X3, be a local
k-orthonormal basis. We know that any non-singular matrix A € GL(n, R) can be
written uniquely as F'G with F' € O(n) and G a positive definite symmetric matrix.
Now consider A = Q(X;, X;). Since A is non-singular, A = FG by the polarization.
Then G defines a new metric ¢ and F defines an almost complex structure J locally.
In fact this construction is independent of choice of k-o.n. basis. Therefore g and J

are globally defined and (X,Y) = g(X,JY). Q.E.D.

Such g and J are created simultaneously and g is called an associated metric. Thus the
space of all associated metrics, denoted by M(f2), is the space of all almost Kahler

metrics with § as their fundamental 2-form. It can be shown that all associated

metrics have the same volume element dV = z-5Q".

On a contact manifold we have the following result .

Theorem 1.2. Let (M?"+1 5) be a contact manifold. Then there exist a metric g

and a type (1,1) tensor field ¢ such that

$* = -I+n®¢ (1.4)

d’?(X, Y) = g(Xa ¢Y)



n(X) = 9(X,¢)
proof. Let k' be any Riemannian metric. Then
k(X,Y) = K(=X +n(X)¢, =Y +9(Y)¢) + n(X)n(Y)

is a new metric with 7(X) = k(X,§). Since dn is a symplectic form on D, we can
polarize dnp on D as in Theorem 1.1. Therefore there exist ¢’ and ¢ on D such that
9'(X,¢Y) = dn(X,Y) and ¢* = —I. Extending ¢’ to g agreeing with k in the direction
of £ and extending ¢ so that ¢ = 0 , we have the theorem. Q.E.D.

Metrics constructed by polarization as above are called associated metrics. We refer
to (#,&,n,9) as a contact metric structure. A contact manifold with a contact metric
structure is called a contact metric manifold (or simply a contact manifold in this

thesis). It follows from Theorem 1.2 that
=0, n(sX)=0 (1.5)

9(X,Y) = g(¢X,4Y) + n(X)n(Y)
dn(X, ¢Y) = —dn(¢X,Y).

It is well known that all associated metrics have the same volume element dV =
a2 A (dn)" . We will discuss some properties of the space of all associated metrics
in section 2.

Now we are ready to introduce the concept of a Sasakian manifold, which is
the odd dimensional analogue of a Kahler manifold. We consider a product manifold
M?+1 x R of a contact manifold M?"*! and the real line. A vector field on M?"+! x R

looks like (X, f), where X € TM?**! and t is the coordinate of R. We define a

linear map on the tangent space of M?**! x R by

IX, £ 5) = 6X = fEn(X) ) (1.6
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Then J? = —1I, i.e. J is an almost complex structure on M?"t! x R .
Let [J, J] be the Nijenhuis torsion of J, and similarly ¢, #] the torsion for . We

have

[J,JI(X,Y) = JX,Y]+[JX,JY]
— J[JX,Y] - J[X,JY]

If J is integrable ( or [J,J] = 0 ), then we call the contact metric manifold M?"+1

Sasakian.

Let ®(X,Y) = dy(X,Y) and V be the Riemannian connection. From the following

2 classical formulas

29(VxY,Z2) = Xg(Y,2)+Yg(X,2) - Z9(X,Y) (1.7)

+g([Xs Y]’ Z)+ g([Z’ X]aY) - g([Y, Z]’X)
and

3dO(X,Y,Z) = X&(Y,2)+Y®(Z,X)+ 29(X,Y)

- 8([X,Y],Z) - 9((2, X],Y) - &([Y; Z], X),
we have ([3])
29((Vx9)Y, Z) = g(NO(Y, Z), $X) + 2dn(8Y, X)n(Z) — 2dy($Z, X)n(Y) (1.8)
where NO(X,Y) = [4, 8](X,Y) + 2dn(X,Y)¢.

Theorem 1.3. [J,J] = 0 if and only if N(V) = 0.
proof. Enough to check the Nijenhuis torsion for all vector fields on M?"**! x R. See

[3] pp.48-51 for details.
Let h = 3£¢¢, T = £¢g on a contact manifold.

Proposition 1.4. On a contact manifold with contact metric structure (¢,¢,7,9),
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we have

(1) Ved =0;

(2) V£ =0;

(3) Vigi = —2nn;;

(4) Vx{ = —¢X — ¢hX;

(5) k€ = 0,0k + h¢ = 0, and hence trh = 0;

(6) 7 = —24i, k7, and h = 7 = 0 iff £ is Killing.

Remarks: We define g;, 4} = ¢;;, hence 47 means ¢";. For differentiation we use the

following notation

V.HV" H, = (V,H?)(V Hy)
V8¢ = (V&)

etc. Hence we differentiate only the first object which follows the derivative sign.

Proof. First we prove (4). By (1.8) we have

2g((Vx¢)f, Z) = g(¢'2[£1 Z] - ¢[£s ¢Z]aX) - 2d7’(¢Z’X)
= - 2g(¢hZ, ¢X) - 29(¢Z1 ¢X)
= —29(hZ,X) —29(X,Z) + 29(n(X)¢, Z),

that is
—¢Vx€=—hX - X +(X){.
Applying  to both sides we have (4). (1), (2) and (3) follow from (1.8); (5) can be
proved using (1), (2) and (3). see [3] pp.55.
Using (4) we have
T(X,Y) = (£9)(X,Y)
= 9(Vx&Y) +9(Vvé X)
= g(—¢X — ¢hX,Y) + g(—9Y — $hY, X)

5






= —2g($hX,Y).

This completes the proof. Q.E.D.
Let l;; = R;yyj€“€*. Then [;;¢7 = 0 and [ is symmetric.

Proposition 1.5. On a contact metric manifold we have
(1) &V, hij = ¢ij — irhLh; — $irll;

(2) LT + &irl] = 205 — 245 kA3,

and hence, Ric(¢) = 2n — trh? = 2n — L |%;

(3) ViVidt + V. V;dt = Riudt + R;idh — 2n(hir ¢} + hjr 7).
Proof. Using Ricci identities and Proposition 1.4 we have
¢irl; = ¢ieruur€u£v
= ¢,-,.(VjV,,§' - V. V;i£r)E
= $ur[Vi(—6L — ush®)* — V(=4 — 6;52"")]
= ¢t.1 -_ ¢,‘,h:h; - th'J'

Then (1) and (2) follow from above.
By Proposition 1.4 (3) and the Ricci identitiy

ViVid; — ViVid; = Ruyp 8} — Ru;*4,

from which

ViVid’ = —Ripd? — Rispjd'? — 2nVi);.

(3) then follows immediately. Q.E.D.

From Proposition 1.5 we have the following formulas
lir @] — @irl} = 2V¢hy; (1.9)
lh —hl =V¢h?. ¢

6
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|Ver|? = 4[|1)* + trh* + 2tr(h*1) — 2n).

If ¢ is a Killing vector field, then we call the manifold M?"*! K-contact. By
Proposition 1.4, M?"*1 is K-contact if and only if 7 = h =0 ; and Vx¢ = —¢X on
a K-contact manifold. From Proposition 1.5 we have another K-contact condition,
namely, Ric(€) = 2n.

We can also characterize K-contact manifolds as the following.
Proposition 1.6. M?"*! is K-contact if and only if (Vx¢)Y = RexY.
Proof. (a) If ¢ is Killing, then Vy¢ = —¢Y. We have

VxVy€ — Veo,ré = RxcY.

Therefore

(Vx4)Y = RexY.

(b) If (Vx@)Y = RexY, weset Y =¢£. Then

IX = —Rext
= —(Vx¢)¢
= ¢Vx{
= $(—4X — $hX)
= X +hX —p(X)t.

But from Proposition 1.5 (2) we have
Rex€ — ¢Regx € = 2h° X + 24 X.

Therefore

(=X = hX +n(X)€) + (*X — $*hX) = 2h2X + 24%X,

from which we have

2r2X = 0.

7



But h is symmetric, and hence we have h = 0. Q.E.D.

Combining Proposition 1.6 and Proposition 1.4 (3), we have on K-contact manifolds
that Q¢ = 2n€ with Q denoting the Ricci operator s and from Proposition 1.6 we
also have that for any X L ¢

Rxeé =X

Now we consider the Sasakian condition.
Theorem 1.7. M?"+! is Sasakian if and only if (Vx@)Y = g(X,Y)¢ — n(Y)X.

Proof. (a) Combining (1.8) and Theorem 1.3 we have (Vx@)Y = g(X,Y)é—n(Y)X.
(b) If (Vx¢)Y = g(X,Y)¢é —n(Y)X, by (1.8) and a straightforward computation we
have N(1) = 0 (see [3] p73 for details). Q.E.D.

Theorem 1.8. M?"*1 is Sasakian if and only if Rxy¢ = n(Y)X — p(X)Y.

Proof. (a) If M?"*! is Sasakian, from Proposition 1.6 and Theorem 1.7 we have
Rxy¢ = n(Y)X — 9(X)Y. (b) From Rxyé = n(Y)X — n(X)Y and Proposition 1.5
(2), it is easy to see that h = 0; hence by Proposition 1.6 and Theorem 1.7 M +1 s
Sasakian. Q.E.D.

By Proposition 1.5 (3) and Theorem 1.7 we have Q¢ = #Q on a Sasakian manifold.
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1.2 The space of all associated metrics

Let M be a compact orientable manifold. The space of all Riemannian metrics
on M, denoted by M, has a Riemannian structure which was studied by Ebin [24]
and others. M is infinite dimensional. The tangent space at a point g consists of

symmetric (0,2)-type tensors on M. The inner product at g is defined by
<§T>;= /M SiiTug™*¢"'dV,.

Let M; be the space of all Riemannian metrics on M with fixed total volume.

Then M, is a subspace of M. By normalization we may assume

My ={g| [ dv, =1},

We begin with any metric ¢ € M;. Let g(t) be any curve in M; with ¢(0) = g.

On a coordinate neighborhood

dVy() = /det(gi;(t))dz' A --- A dz™,

and

%dvg(,) = % det(g;;(t))dz' A--- A dz”
= sy e et O et ) A+ A da”
= S5O0 as(dVy.

Hence for any g(t) in M;

i 9 0
/Mg J(t)agij(t)dvy(t) = 25‘{ -/M dVg(t) = 0.
Now we put
9i;(t) = gi; + tHi; + t*IG; + O(°).
Then
g (t) = ¢ — tH 4 *(H:H — K%) + O(°)

9



where H} = ¢'" H,;, etc.

To study variational problems over M; we will need the following lemma ( see

[11]).
Lemma 1.9. Let T;; be any symmetric 2 tensor. Then
/ TijHug*g"'dV, = 0
M
for any symmetric 2 tensor H;; satisfying [y, " H;;dV, = 0 if and only if T;; = ag;;

for some constant a.

Now we consider the space of all associated metrics M(7) of a contact manifold and
M(R) of a symplectic manifold.
Let g(t) be any curve in M(n) with g(0) = g. Then the structure tensors

(#(2),€&,m,9(t)) corresponding to g(t) satisfy the following:
gir(8)E7 =

2g,~,.(t)¢;(t) = 2¢;; = Vin; — Vn; (1.10)
SO0 = ~8 + ;.

Now we put

9ii(t) = g6} + tH] + K + O(£°)]
$5(t) = ¢ +tS; + 12T} + O(£).

Then from the above conditions we have the following lemma.

Lemma 1.10.
Hi¢ = K€" =S¢ =T} =0
Hij + H,,4;¢ =0, hence H;=0
Si=¢i.H;, SiS;=H:H]

r %
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T = K
Ki; + K., ¢;¢; = Hip Hj
2K = H"H,,
and
tr(HHH) = tr(H?h) = tr(h*H) = 0.

The proof is straightforward but note that H and h anti-commute with ¢.
It is easy to see that the tangent space of M(n) consists of all symmetric (0,2)

tensor fields H satisfying
Hi; + H,,¢;¢; =0, Hi.{ =0 (1.11)

Similarly the tangent space of M(2) consists of all symmetric (0,2) tensor fields H
satisfying
Hi; + H,,J[J; =0 (1.12)
In fact M(n) and M(R) are symmetric Hilbert manifolds. Geodesics in M(n) are
of the form g(t) = ge¥* with H¢ = 0, and H$ = —¢H. For details see [5]. In [25]
Freed and Groisser found the general formula for geodesics in M and computed the
curvature of M. M(n) and M(2) are totally geodesic submanifolds of M and are
path connected.
To study variational problems on M(n) or M(2) we will need the following
lemma([6], [12]).

Lemma 1.11. Let T;; be any symmetric 2 tensor. Then
/M TijHug™*g"'dVy = 0

for any symmetric 2-tensor H;; satisfying (1.12) in the symplectic case and (1.11) in
the contact case if and only if TJ = JT in the symplectic case and T¢ = ¢T on D in

the contact case.

11



Proof. We sketch the proof in the symplectic case; the proof in the contact case
being similar. Let Xi,---, X2, be a local J basis on a neighborhood U and note that
X can be any unit vector on U. Let f be a C* function with compact support in U
and define g(t) by the change in the subspace spanned by X; and JX; given by the

matrix
(1+tf+;t2f2 le2f2 )
3t f? 1—tf+ 382 f?

with no change in other directions. Then g(t) € M(2) and Hyy = —Hjy;, = f.
Therefore [y, T;; Hug™*¢'dV, = 0 becomes

Tll _ T22 dV. =

X )fdV, =0

Thus since X; was any unit vector field on U,
TX,X)=T{X,JX)

for any vector field X. Since T is symmetric, linearization gives T'J = JT. Conversely,
if T commutes with J and H anti-commutes with J, then trTH = trTJHJ =
trJTHJ = —trTH, giving T H;; = 0. Q.E.D.

12
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Chapter 2
The Dirichlet Energy

S. S. Chern and R. S. Hamilton in a paper of 1985 [21] studied a kind of Dirichlet
energy in terms of the torsion 7(7 = £¢g) of a 3-dimensional compact contact man-
ifold and a problem analogous to the Yamabe problem. They raised the question of
determining all 3-dimensional contact manifolds with 7 = 0 ( i.e. K-contact ). In a
long paper of 1989 [43] S. Tanno studied the Dirichlet energy and gauge transforma-
tions of contact manifolds. In 1984 D. E. Blair [6] obtained the critical point condition
of I(g) = [y Ric(§)dV, over M(7n) ( the space of all associated metrics ), and proved
that the regularity of the characteristic vector field ¢ and the critical point condition
force the metric to be K-contact. Since Ric(§) = 2n — %I‘rl2 , the study of I(g) is
the same as the study of the Dirichlet energy. In section 2 we investigate the second

variation and prove the following result.

Theorem 2.2. Let M?"t! be a compact contact manifold. If g is a critical metric of
the Dirichlet energy L(g) = [y |7|’dV;, i.e. VeLeg = 2(£¢g)d, then along any path
9ii(t) = gir[67 + tHT + 2 KT + O(t3)] in M(n)

oL

$12
2 (0) =2 /M | £eHi2dV, > 0,

and L(g) has minimum at each critical metric.

In section 3 we show that the critical points of the Dirichlet energy are also critical

13
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in M;. In section 4 we study the behavior of the Dirichlet energy at any associated

metric. In section 5 we study the isolatedness of special metrics.

2.1 The critical point condition

For completeness we show how to obtain the critical point condition in this section.
The computation will also be used later on.
Let M?"*! be a compact contact manifold with contact metric structure (¢,£,7,9)
and
ii(t) = gij + tHi; + K;j + O(2%)
be any curve in M(n) with g(0) = g. Let I}, be the Christoffel symbols for the
metric g and T} (¢) for g(t). We assume that '}, (t) = T, + Wi (t) and that V® is

the Riemannian connection for g(¢). We have

0 = V()
= 20 1 (0gna(t) - Ti(t)gns(t)

= Vigik(t) = Wii(t)grk(t) — Wi(t)gr;(t)
Rotating the indices ¢ — j — k — 7, we have

Vigki(t) = Wi(t)gri(t) + WEi()gri(t)

and
—Vigij(t) = —Wi(t)gr;(t) — Wi;(t)gri(t)
Adding these we have
Wi(t) = Tiu(t)— T
= %g"(t)lngrk(t) + Vigri(t) — Vigie(t)]
Therefore

w(t) = T+ Wi(t) (2.1)

14






.t . . .
= I+ §(V,-H,; + Vi H; — V'Hjy)

12 . , . .
+ —2-[(V,-K,: + V,J(} —V'K;) — H"(V;H. + ViH,; — V,ij)]

+ O(t%)
it ; in.r 3
= I+ -2-D,-k + E(Ejk — H;Dy") + O(t°)

where Dy’ = V;Hj + ViHi — ViHy and Ejy' = V;K} + ViK} — VK.
For the curvature tensor we have
R (t) = R+ ViWji(t) — V;Wi(8) + W)W (t) — W)W ()
= R+ %(Vz‘Djkh — VD™ + (2.2)
+ g[V;(Ejk" — H}Dy") = Vi(Ea" — H!Da) +
+ %(Dithjkr — D;;*Di")] + O(#3)
Therefore we have

t
Rj (t) = ik + -i(erJH; + V,VkH; - VTV,-HJ'};) + (23)
2
+ %[2(v,vj1(; + V. VK] — V'V, Kji — V;ViK?)
— QH"(V.VJ'HH: +V,ViH,; - V,V,Hj; — VijH,-,)
- 2V,H”(VjHrk + VkHrj - V,-ij)

+ V;H"VH,, — 2V, H!V,H} + 2V, H;V"H,] + o(t?)

Let I(g9) = [y Ric(€)dV, and the Dirichlet energy L(g) = [y |7[?dV, . For any
associated metric we have Ric(§) = 2n — %I'r|2 by Proposition 1.5, hence I(g) =

2n vol(M) — 1L(g). Therefore they have the same critical point condition.

Theorem 2.1.( Blair [6]) Let M?"*! be a compact contact manifold. An associated

metric g € M(n) is critical with respect to the Dirichlet energy if and only if
Ver = 2719, (2.4)

15
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Remarks: Chern and Hamilton studied this over the set of all CR-structures. Strongly
pseudo-convex CR-manifolds are contact manifolds satisfying an integrability condi-

tion, @ = 0, where Q is a (1,2)-tensor field on M?*+! defined by [43]

Q(X,Y) = (Vyé)(X) + (Vyn)(¢X)¢ + n(X)4Vy¢, (2.5)

in dimension 3, Q = 0 trivially.

Proof. We consider I(g) = [y, Ric(§)dV, here. Let g;;(t) = gi; + t H;; + O(t?) be any
curve in M(n) with g(0) = g. Then

dI

1 3] r r r
UES /Mg ¢(V,ViH] + V,V,;H] — V'V, Hy;)dV,

Using Green’s Theorem we have
/M EEV,VHIdV, = /M{v,(g"gfv.ﬂ;) — V. EEVH] — £V, V;H )Y,

- /M(V'f‘v,{' + EVV'ENH,,dV,

and
/M E¢VV, HijdV, = 2/M VeV, € H;dV,.
Therefore
0) = [ (VEVE +EVVE — VEViE ) Houd,
dt - M : : ‘ rs@Vg.
Let
1 . 1 .
UTS — Evrﬁlviéa + Evsslv‘er
1. 1. .
+ Egtvivré-a + §£‘V§V’£r _ V'Erviﬁs-
Then

U*p. =0.
By Lemma 1.11 we have that g is a critical metric if and only if U¢ = ¢U, namely,
Vr££V{7),¢: + Vaé‘ivi”r‘b: + £ivivr7]a¢: + f‘vivaﬂrqﬁf - 2vinrviﬂa¢:
= $raVEVity + 6 ViE Vil + 6,6 ViVI, + 6,6 ViV — 26,V Vi,
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Using
Vr{iv‘{a = __gro + Er{a + h;hja
vigrviéa =g — ¢ — 28" + h;hia

we have

Ver =276,

Q.E.D.

Example 2.1. Any K-contact metric g is critical since 7 = 0, and L(g) has a

minimum at g.

Example 2.2. Let Ty M(—1) be the tangent sphere bundle of a compact Riemannian
manifold of constant curvature (—1). The standard associated metricis a critical point
of L(g) , but 7 is not 0 ( see [8] ). In fact, non-trivial examples must be irregular (
see [6]). A vector field X on M?"*! is said to be regular if every point p € M"+!
has a cubical coordinate neighborhood U such that the integral curves of X passing
through U pass through U only once. If { is regular, then M?"*! is called a regular

contact manifold. We will study regular contact manifolds in Chapter 3.
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2.2 The second variation

In this section we study the second variation of L(g) and prove the following result.

Theorem 2.2. Let M?"*1 be a compact contact manifold. If g is a critical metric of
the Dirichlet energy L(g) = [y, |7|*dV,, i.e. Ve£eg = 2(£¢9)¢, then along any path
g(t) in M(n) with g(0) =g

oL

$12
(0 =2 /M | £ Hi?dV, > 0,

and L(g) has minimum at each critical metric.

Remarks: On any contact manifold Ric(€) = 2n—1|7|? ; hence I(g) = [y, Ric(¢)dV,
has maximum at each critical metric. Since in dimension 3, Q@ = 0, the space of all
CR structures and the space of all associated metrics are the same. Qur theorem has
extended the theory developed by Blair, Chern, Hamilton and Tanno to the second
variation. I(g) = [, Ric(£)dV, and L(g) = f5,|7|*dV, are nice functionals on the the

space of all CR structures and the space of all associated metrics .

Proof. Let g;;(t) = gi; + tH;; + t*K;; + O(t3) be any curve in M(n) with g(0) = ¢
critical. By Theorem 2.1 we have V¢ £¢g = 2(£¢g)$ or V¢h = 2hé. Now we compute
the second derivative. First we consider I(g) = [, Ric(¢)dV, ; we know from section

2.1 that

t
Ris(t) = R+ 5(VoViH] + V., Vil — V'V, Hj) +
t2 r T T r
+ Z[2(V,-Vj]{k + V,-Vk]{j -V V,I{jk - V_,'V)J{,.)
- 2H"(V,VjHrk + V,VkH,-J‘ ad V,Vrij - VijH,-,)
- 2V,H"(VjHrk + VkHrj - V,ij)

+ V;H*VH,, — 2V, H!V,H] + 2V, H!V" H,] + O(t3).
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If we set
L = /M EE(V.VIK] + V. V;K] - V,V'K;; — V\V;K})dV,
I, = /M EE[—H™(V, V. H,; + V,V,;Hy — V,V,H; — VV;H,,)
- V,H"(VIH,.J' + VjH,-[ - VrHjl) + %VIHT’VJ'H,-,
+ V,H,;V'H —V,.H,;V*°H[]dV,,
then for the second derivative of I(g) we have

@1
(0 =N +1. (2.6)

Using Green’s Theorem, the critical point condition and the facts that
HiHTh: =0
VeH H B¢l =0
VIEVE = —g" + EE + hjh
ViETVE = g™t — T8 —2h™ + h;hjs
we compute as follows:

/Mgfg’v,v,l(;dvg = /M(—v,gig'v,l(;-gfv,g’v,l{;)dvg
= /M(V,V,gig‘lf; + ViV, KDY,
= [ @VVe + vk, Y,

/M EEV, VK dV, = /M(-v,gfg'v'z(j,—gf'v,g’v'l(,-,)dvg
= 2 /M V&V E KdV,,

/M EEV VKT dV, =0
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and hence

L = /M EE(V, VKT + V,V,K] - V,V'Kj — V,V;KT)dV,
= 2 [ (EVIVE + VEVE - VKLY,
= 2 [ [Ve(¢ - 1) + (=g + €€ + )
(g = €€ — 2 + KK, dV,
- 2 /M(—¢{V5h" _2g" + %7 + 2h7)K,,dV,
= 2 /M(2¢:¢;ihf' —2g™ +267€* + 2h™) K, ,dV,
= —4 /M KIdv,
= —2 /M |H|?dV,.

Now we consider I3:

/M EEH™V, V H,dV,
_ /M[_v,gfg'H"V,H,j — &V, HTV H,; - §€V,H "V, H,;|dV,
— /M [Vlvrgjle"H,j + Vr€j£IV1H"H,j +

+ ViV, & HH,; — £¢'V,H™V,H,;]dV,,

/M EEH™V,V, Hy;dvV,
= /M[_v,gig‘H"v.H,-, - &V, E8H™V,  H; - ¢ ¢V, H*V, H;)dV,
= /M[V,ij.f’H"Hj, + VIV EH Hj — €6V, H*V, ,H;))dV,
= /M[2v,§f V£ H H; — ¢V, H™V ,H;)dV,,

/Mgig’H"v,v,-H,,dvg - /M(_gfg’v,H"ij,,)dn
= - [ IVeHav,,
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[ €6V H Y, = - [ VE¢H,VH Y,

[ v a, v may, = - [ Ve,V H Y,

/M V&V H, H V.

Therefore

L = % [ €€ -2H™ (V. Vil + V. V;Hy = V.V, Hy = ViV;H,,)
—2V,H™*(V\H,; + V;H, — V.H;)
+ VH™V,H,, + 2V, H,;V"Hf - 2V,H,;V*H]dV,

- % /M[—4V,V,§j§‘H"H,,- — 4V, ¢V H™H,;
—AVEV,EH™H,; + 46 ¢V, H*V H,;
+4V,EVEHH) — 26¢'V, H*V , H;

— 2896, H™(V H,; + V;Hy — V,Hy) — 8¢V, H*V, H,,
+ 2V, &V Hy HY — 2V,8V°¢' H,; H{|dV,
- % [ 4V EE ], - 49,6V H H,,
— AV EH™ H,; + 4V, VY H H,
— ¢V H™V;H,,
+ 2V, ¢V e H, H — 2V, V¢ H,; H|dV,
- _% [ 1VeHa,
+ /M[-zv,v,gfg’H"H,,- _ OV, £V, H7 H,,;
— VeIV, & H H,; + 2V,6V ¢ H H;,
+ V&V HE — V.8V H, H|dV,
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but

/M EVIV.EH?H,;dV, = /M Ve(—¢i — ¢rih”)H] H}dV,

/M ViV, EH? H,;dV,

[, eVt

/M V&V H,; H dV,

[, V&V B H v,

= - /M $,iVeh' HT H!dV,
= -2 WHH,
0,

= [ (=8 +&n + ) H H}aY,

= [ (~IH" + pHP),

,/M(—# - d’rihij)(—‘ﬁla - ¢akhk‘)H”Hﬂd‘/y
| - GH ¢ H, + 6 H gihtH,

+ ¢LHI¢ThL Hi — hiH] by gk H2g7]dV,

| (B = tr(hHY)V,,

[ (" — 8¢ — 2k + Wik H, Ha,

[ OH? +1hH )Y,

[ (~4i = 64— buh)H 70V,
| (LHT LB} - Wik S H]
— ¢LHhigLH] + higk HihigiH)dV,

[ (B = tr(hE))av,
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and hence

I = /M[2(¢{+¢,,-h‘j)V€H:H; —tr(hH)?

1
= [hH|? = 5|VeH|'|dV,.

Since ¢,:hV¢H; H} = 0, we have from (2.6) that

a1
22;(0) = 11+12

] T I 1
= [ [21HP + 26} VeH H - 5|VeH]
— tr(hH)? — |hH|*|dV,

1
= /M[—§I2H — ¢VeH|* —tr(hH)? — |RH|*|dV,.

Now note that

LeHY = €V Hi+ HV;& — HIV, ¢
= VeHi+ Hi(—4; — $ish™) — Hi (— ¢, — ¢rsh™)

= (VeH; — 2H;8}) + (H;h; + hiH])4;

and hence

|£eHI” = |VeH —2H$|* + |Hh + hH|?

= |VeH —2H|* + 2tr(hH)? 4+ 2|hH|.
Therefore

d2L d2] §12
20 = (950 =2 [ |£cHav, > 0.

(2.7)

(2.8)

We show in the next theorem that |7(t)[? is constant along any geodesic g(t) = gef't

with £¢H! = 0; hence, L(g) is constant along all such geodesics. M(n) is geodesically
£
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complete [5], therefore L(g) has minimum at each critical metric. Q.E.D.

Theorem 2.3. 7}(t) = 7}(0) along any geodesic g(t) = gef* with £cH} = 0. In

particular, |7(t)[? is constant along such geodesics.

Proof. Let D(")' V;(H™), + Vk(H") — Vi(H™);,. We first compute I';(t) along

the geodesic ge”

()
= F'k+2 k+ ( (2)' - HiD})
4.+
+ t_[lD(ﬂ)t ___1__( I)H:D(n l)r+ (Hz) D(n 2)r 4ot
2 'n! (n-—l)' Tk ( )12| rLjk
L ey ple-r nel gnetyi gy

+ ...

If £¢H} = 0, we have V¢H = 2H¢ and kH = —Hh from (2.8). We now show
that Dgz)‘f" = 2(H")';¢; for any n.

D¢k = [Vi(H") + Vu(H"); — Vi(H");)¢*

= Ve(H): — (H")i(=¢5 — ¢ER]) + (H)5(4™ — $in™)

= Ve(H");+ (H")id% + $i(H"); — (H") % — $ih5(H™);
2(H"), ¢

for any n. Thus along gef* with LeH: =0,

VS}){:‘ = V& +- DJk'€k+ ( 2); — H'Dj'¢)+ -+
n 1 (n)i i pln=1)r ! 2yt p(n=2)r
gD+ 1)!( DH DG + gy (DR + -+

24




1

e (—DYHNYNDY 4= (1 YH™YY D
+ ...
and therefore
. 1
—-¢5(t) + 57}'(’5)
1. .
= 44T - teH]
t2 2\¢ ;-
_5(1{ g — e —
tr n\s 1k 2 n! n! _1\n-1
R
‘ 1, WL tr 4 n\r
= —¢;+§T;"t¢; i = (H"); — -
Note that ¢ H = —H ¢; hence
¢th = C_Ht¢.
Therefore we have
a(X, 0eY) = g(X,eftgeftY)
= g(X’ ¢Y)
= dn(X,Y)
and
¢6Ht¢e}lt=¢2 - _I+€®n

from which ¢(t) = ¢eHt. Thus we have
T;(t) =

along geH* with £¢H} = 0.

1

7(0)

r]{k +

Q.E.D.

Remarks: From Example 2.2 we know that the standard associated metric is a
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critical point of L(g) , but 7 is not 0. In fact, non-trivial examples must be irregular
( see [6]). Theorem 2.2 says that L(g) has local minimum at the standard metric. It
seems that it is also a global minimum, or in other words, one can not deform the
metric to have 7 = 0 (see also Example 2.3).

Recently Jack Lee and others studied the moduli space of all CR structures on
a compact 3-dimensional CR-manifold. Since in 3-dimension Q = 0, 3-dimensional
CR-manifolds are contact manifolds. Our theorem applies as a special case. But
little is known about the differential structure of M(n). It seems to be difficult to
determine whether we have Morse theory here, i.e. to verify the condition (C)(see
[38] for details; it is a condition to have Morse theory of differentiable real functions

on Hilbert manifolds).
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2.3 Critical even in M;

In this section we prove an interesting result, namely, that the critical metrics of

the Dirichlet energy in M(n) are also critical metrics of the same functional in M;.

Proposition 2.4. The critical metrics of the Dirichlet energy L(g) = [, |7|*dV, in

M(n) are also critical metrics in M.

Proof. We begin with a contact metric structure (¢,¢,7n,g) . For any path g;;(t) =
gi; + tHi; + O(t?) in M,.
Lg®) = [, 1£ea®dVy
= /M[(gi’ — tH)(g7* — tH?)(Legi; + tLeHij)(£egrs + tL£cHys)
+ O(t*)]dVg(o)
= /M{lfeg|2 — 2[H" g° £¢gi; £¢9.0 — (£¢H; £¢9)] + O(t*) }dVy(y)
where we use notation (T; S) = T#S;;, therefore
%(0) = / [2(£eH; £09) — 2H ¢ £¢gi; £egra + 5| £2916" Hi)aV,,
M 2
Using Green'’s theorem we compute as follows:
| (£eH; £eg)av,
= [ (€ ViH; + Vi€ Hi; + V¢ Ha)
(Vens + Vane )9 g”*|dV,
= [ (Ve (V'€ + V€] - € B VA(TE + V)
+ (V'€ + VIE)WE Hy; + (V'€ + VIE) V6 Hy JdV

| Hil=€Vu(TE + VIE) + (V793 + Vi) 9,€

+ (Vg + V)Y,
= [V + viE)
+ 2V, £(V'VI + Vig)| Hy;dV,
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and

/M HYg" £egi;LegrsdVy = ,/M H"g*(Vin; + Vim)(Vens + Vane)dVg
= [ (V€ +VE)(Vin + V. HisdV,

Let

T = —gEV(VE + Vi) + (VIVI + VIE)V,E + (Vi€ + VTE)V, ¢

. . 1 .
~ (V€ + V7E)Tin, + V,) + 7lLeals".

Then T is symmetric and
dL

—(0) = UH..
—(0) = [ 279 Hydv,.

We can simplify TV to
ij i, 1 2 ij ij
TV = =V + Z|£€g| g’ —4hY.
By Lemma 1.9 in Chapter 1, the critical point condition is T¥ = ag*. Therefore
v, 1 2 ij ij ij
=Ver? + 21 £egl'g” — 4hY = ag”.
By taking the trace we have a = %|£€g|2. Therefore
VgT = —4h

or

Ver =274
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2.4 Directions of most rapid change

In this section we study the behavior of the Dirichlet energy at any associated
metric g. We find the direction in which the Dirichlet energy changes most rapidly.

First we have
7i(t) = Vi + Vi,
] 1 t r r
= Vi +Vin' + 5(=Dyj"n, — Dii"n,) + O(t?)

= 7; —tDy"n. + O(t?)

and
D;;™n, = (ViH; + V;H] — V" Hi;)n,

= —H;(¢ir - ¢ish:) - H:(¢JT - ¢jah:) - VCH"J'

= 26, H] — VeHij + i (K H? + HIBS).
Therefore

() = [ —tDu 0, + O(t?))[g" — tHY + O(?)]
= 17 —t(Din.g" + 1 HY) + O(£?)

and

|T(t)|2 = [Ta] - t(Diarﬂrgsj + TisHaj) + O(tz)][T; - t(DJ'arUrg’i + TjaH’i) + O(tz)]
= |7 = 2t(Di, 0,7 + T H!T) + O(t?)

7'

= |7 = 24(Di, 9, 7%) 4+ O(£%);
then we have

7)) = |7|* - 2t[-2¢i, H; — VH;; + ¢ir (A H] + H:h;)]T‘j + O(t?)

= |r|* — 2t[44;hiLHE + 28]V HI — 26; gL (REH! + HERL)] + O(?)

7> = 4t(2h{H;’ + ¢RIV HE) + O(t2).
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Therefore

Lg(t) = L(g)—4t [ (2hH + G HVHV, +O0(E)
= L(g)— 4t /M(2h" — §Veh™)H,ydV, + O(t?)

and we have the following result.

Proposition 2.5. If 2A™ — ¢;V¢h** # 0, then L(g) changes most rapidly in the
direction H™ = 2h™ — ¢;Vh'.

This is essentially Theorem 2.1 in Chapter 2. Here we compute V;-t)m first, hence the
expression of L(g(t)) becomes nicer. We can study the equation of evolution; but at

this time it seems to be difficult.
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2.5 Isolatedness of special metrics

In Gauge theory people study “good” connections in the moduli space. We are in
a similar situation. It is very natural to study “good” or special metrics in the space
of Riemannian metrics. Our interest here will be Riemannian metrics associated
to a contact structure or symplectic structure. We will discuss the isolatedness of
K-contact metrics and Sasakian metrics in contact manifolds and Kahler metrics in
symplectic manifolds.
First we consider the symplectic case. Let M?" be a compact symplectic manifold
with symplectic form , i.e. Q" # 0 and dQ = 0. By polarization, an associated

metric g and an almost complex structure J can be created simultaneously such that
QUX,Y) =g(X,JY)

as in Theorem 1.1. There we began with any Riemannian metric k; one would think
that the space of all associated metrics M() is a large set of metrics. In fact we can
see that M () is infinite dimensional through the following deformation of metrics (
[6] , [12]).

Let g € M() and Xj,- -+, X3, a local J basis on a neighborhood U. Let f be a
C* function with compact support in U. Define g(t) by the change in the subspace

spanned by X; and JX; given by the matrix

(1-1-tf+§t2f2 1e2f2 )
2 f* 1—tf+ 38217

with no change in other directions. Then g(t) is also an associated metric for each ¢.
M(Q) can also be considered as the set of all almost Kahler metrics of M2" which
have () as their fundamental 2-form. Let’s consider the following problem: how
isolated are Kahler metrics in M(Q2) ? This was first studied by Blair [10].
We begin with a Kahler structure (g,J) on M?" . Let

9ii(t) = gij + tHij + O(t%)
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Ji(t) = J} + 1S} + O(¢%)
be any curvein M(Q2) with almost complex structure J(t). Then we have g;.(¢)J} (t) =

J;j. Therefore
JH+HJ =0 (2.9)

and

S=JH (2.10)

Proposition 2.6. Let g be a Kahler metric and g;;(t) = ¢i; + tHi; + O(t?) any path

in M(Q) . If each metric on g(t) is Kahler, then it is necessary that
ViHy — VH} = J'V"H,,,J? — JIV,HLJ? (2.11)

Proof. Let g;;(t) = ¢;;+tH;;+0(t?) and J;(t) = J_;:'*-tS;-I-O(t?) = J;+tJ:H;+0(t2).
We have

VOJi(t) = VO +tIHD +0(t?)) (2.12)
.t . . .
= ViJi+ (DT} — Dy’ J} + 2Vi(J H))) + O(£).

It is well-known that g is a Kahler metric if and only if
VJ =0.
If g(t) is Kahler for each ¢, then

2Vk(H:J;) = Di'J; — Djy’ J}
= (ViH! +V,H} — V"Hk,)JJr
— (ViH} + V;H] — V" H,;)J;
from which
VHy — VH} = JIV"H,,J} — JIV,HLJ}

This completes the proof. Q.E.D.
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If H is parallel, then from (2.12) we can see that along gef’?, V{Ji(t) = 0. The
conditions of VH = 0 and HJ +JH = 0 are strong. If a Kihler manifold admits such
symmetric (0,2) tensor, then it is locally a product of a Kahler manifold on which H
is trivial and a flat Kahler manifold [10]. For example, T™ x T™ with H the difference
of the projection map. Problems in the symplectic case are still being studied.

Naturally we are interested in the similar problems in contact geometry. We now

consider the isolatedness of K-contact metrics.

Proposition 2.7. Let g be a K-contact metric. Then any metric on the path

g(t) = geH'* with £¢H} = 0 is K-contact.

Proof. Since |7(t)] = 0 along such path by Theorem 2.3 , we have this result

immediately. Q.E.D.

Proposition 2.8. Let g be a K-contact metric. Then g is isolated in M(7n) if and

only if equation £¢H} = 0 has no non-trivial solution on M?"+1,
Proof. (1) If £,H} = 0 has no non-trivial solution on M?**! | then by Theorem 2.2.

we have

d&’L

12
0= 2/M | £Hi[*dV, > 0

therefore g is isolated in M(n) .
(2) If g is isolated in M(n) , we know that |7(t)| = 0 along geodesic g(t) = gef’t with
£LeH} =0, then £H;} = 0 has no non-trivial solution. Q.E.D.

The equation L’eHJ'-' = 0 appears to be important in contact geometry. Let’s look

at the following example.

Example 2.3. Let M?"t! be a regular contact manifold. Then M?"*! fibers over an
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almost Kahler manifold M?", and equation £¢Hj = 0 means that H; is projectable.
Let H' be any type (1,1) tensor field on M?" such that H'J = JH'. Then the
horizontal lift of H’ denoted by H is a non-trivial solution of .C(H;: = 0; therefore
there are plenty of K-contact metrics on a regular contact manifold.

From the above example it seems that equation £¢H} = 0 may have no non-trivial
solution on an irregular contact manifold . That is why we tend to believe that L(g)
has global minimum at the standard metric of the tangent sphere bundle of a compact
Riemannian manifold of constant curvature (—1), i.e. TIM(-1) .

Now we turn to Sasakian metrics. Let M?"*! with contact metric structure
(¢,€,m,9) be a Sasakian manifold. It is well known that M?"*! is Sasakian if and

only if Rxy€ = n(Y)X —(X)Y (Theorem 1.8 ).

Proposition 2.9. Let g(t) be any curve in M(n) with g(0) = g Sasakian. Then g(t)
is Sasakian for any t if and only if
€ Rk (t) = € Ry

for any t. In particular, if g;;(t) = gi; + tHij + O(t?), then H satisfies the following
equation

ViHM — V, HEG — Hny = ViHM -V, H g — Hing
Proof. M?*! is Sasakian if and only if Rxy¢ = n(Y)X —n(X)Y . Since g(0) = ¢

is Sasakian, we have

f'Rurk = ﬂ:‘gf - 77:‘5;"
and that g(t) is Sasakian for any t if and only if
€ Rij:*(t) = 0;8F — mi6}
Therefore g(t) is Sasakian for any t if and only if
€ Riji*(t) = € Rij*
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or
€15(V:Dur* = VaD;) + O(E)] = 0
From
&(V;Dy' — ViDjr') =0
we have
ViH}¢; - V, H}¢; — Hn; = V,H T — V. H} ¢ — Hl'n;

completing the proof.
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Chapter 3
A New Class

3.1 Hermitian Ricci tensor and critical condition

It is well known that the critical metrics of A(g) = [3; RdV, over the space of all
Riemannian metrics with fixed total volume are Einstein metrics.

In [12] Blair and Ianus studied the same functional over the space of all associated

metrics of a compact symplectic manifold. They found that ¢ € M(Q) is a critical

point of A(g) = [y RdV, if and only if
QJ=JQ (3.1)

where @ is the Ricci operator of g and J is the almost complex structure.

Recently Blair showed in [9] that on a compact symplectic manifold

E(g)

B+ R4V,
/M dry;; J9dV

L n—1
F3(n = 1) /M iy

where R* is the star scalar curvature and 7 is the generalized Chern form. Therefore

E(g) = [y(R+ R*)dV, is a symplectic invariant.

On an almost Kahler manifold we have
1 2
R—-R= —-§|VJ i
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Thus Kahler metrics are maxima of the functional K(g) = f3,(R — R*)dV,. By (3.1)
and the symplectic invariance of E(g), the critical point condition of K(g) is also
QJ = JQ. When Q satisfies (3.1), we say the Ricci tensor is Hermitian.

It was a long standing question whether or not almost Kahler manifolds with
QJ = JQ are Kahler manifolds . In 1990 Davidov and Muskarov [23] gave a counter-
example by studying twistor spaces with Hermitian Ricci tensor. Before we can state
their result, we need to review twistor spaces ( see [23] ).

Let (M*, g) be an oriented Riemannian manifold. g induces a metric on the bundle
A?TM of 2-vectors by g(X1 A X3, X3 A X4) = 3det(9(Xi, X;)),i = 1,2,j = 3,4. We
define the curvature operator R : A2TM — ATM by

JR(XAY),UAV)=—g(RxyU,V).
We now need the Hodge % - operator on an n-dimensional Riemannian manifold,
*: AP TM — A"PTM;

and it satisfies #* = (—1)?"?). Since now n = 4 and p = 2, we have #* = id.
Thus * has eigenvalues 1 and —1 and we have the bundle decomposition A*TM =

AYTM @ A2TM. If {e1, €5, €3, €4} is a local orthonormal oriented frame field on M*,

set
uy=e ANey—ezNey
u,=¢€e;Aeg—eqgAey
uz=¢€e;1ANeg—eyAes
and

vi=eAest+esAeq

vo=e1AestesAe;

vz=¢e1ANes+exAe3
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then {uy,us,us} and {vy, vz, v3} are local oriented orthonormal frame fields for A3 T M
and A2TM respectively. Let W = W, + W_ be the decomposition of the Weyl
conformal curvature tensor. If W_ = 0 (resp. Wy =0 ), then we say the Riemannian
manifold M* is self-dual (resp. anti-self-dual).

The twistor space 7 : Z — M* is the sphere bundle of unit vectors in A2TM.
The Riemannian connection on M* gives rise to a splitting 'Z = H@®V into horizontal
and vertical parts. The vertical space V, at o € Z is the orthogonal complement of
oin A2T,M , p=n(o).

Each point ¢ € Z defines an almost complex structure K, on T,M by
9(K.X,Y) =2g(0,XAY)

X,Y € T,M.

For example, if 0 = e; A e — e3 A ey,

9K, X,e5) = 2g(e1 A e — e3 A eg, X'ei A ej)

= Xl(szj - Xzﬁlj - X3(54j + X463

that is
X! _X2
X? X!
K, x3|= X4
X4 -X3

Then we have K? = —I and g(K, X, K,Y) = g(X,Y).
Let x be the usual vector product in the oriented 3-dimensional vector space
A2T,M. We define two almost complex structures on Z. The first one was introduced

by Atiyah, Hitchin and Singer and is defined by
LV =-oxV,VeEYV,
T X = K, (m X), X € H,
and the second one by Eells and Salamon and is defined by
LV =oxV,VeEV,
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T X = Ko(r.X), X € H,.

Jy is integrable if and only if M* is self-dual and J; is never integrable. Define a
pseudo-Riemannian metric h, on Z by h, = 7*g+1g”, t # 0 where g” is the restriction
of the metric of A2T'M to V. h, is compatible with both J; and J; .

‘We now state the result of Davidov and Muskarov

Theorem 3.1. Let (M*,g) be a connected oriented real analytic Riemannian mani-
fold. If the Ricci tensor of (Z, Jn, h¢),n = 1,2 is J, Hermitian ( i.e. QJ = JQ) then
either: (1) M* is self-dual and Einstein or (2) M* self-dual with R = 12 and at each
point of M* at least three eigenvalues of Q coincide. Conversely given (M*,g), (1) or
(2) imply that (Z, Jy, h¢) is J, Hermitian .

Thus letting M* be a compact Einstein, self-dual manifold with negative scalar cur-
vature R and t = —12, we see that there exist compact almost Kahler manifolds with
QJ = JQ which are not Kahler. The only known examples of such M* are compact
quotients of the unit ball in C? with the metric of constant negative curvature or the
Bergman metric.

The famous conjecture of Goldberg is still open: Is a compact almost Kahler

Einstein manifold Kahler?
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3.2 A new class of contact manifolds

In section 1 we discussed almost Kahler manifold with Hermitian Ricci tensor and
its relation to critical point conditions. Again we are interested in the analogue
in contact geometry. We know that Q¢ = ¢Q on any Sasakian manifold. It was
conjectured that K-contact manifolds with Q¢ = ¢Q are Sasakian. In the following
we will present a negative answer to this conjecture; hence we have a new class of
contact manifolds.

For compact regular contact manifold, we have the following celebrated theorem

of Boothby and Wang [17).

Theorem 3.2. Let M?**! be a compact regular contact manifold with contact form
7j. Then there exists a contact form n = prj for some non-vanishing function p whose
characteristic vector field ¢ generates a free effective S* action on M?"*1. Moreover
M?+1 is a principal circle bundle over a symplectic manifold M?" whose symplectic-
form 2 determines an integral cocycle on M?"; 5 is a connection form on the bundle

with curvature form dn = 7*Q.

Hereafter in this section we assume that M?"+! is compact and regular. By the
theorem of Boothby and Wang, M?"*! is a principal circle bundle over a symplectic
manifold M?" and dn = 7*Q with = : M?"*! — M?" the projection.

Since M?" carries a symplectic form (2, there exist a Riemannian metric g and an
almost complex structure J such that (g,J) is an almost Kahler structure on M?".

Let X denote a vector field on M?" and X a vector field on M?"+1. We define ¢
on M1 by

X = (JmX)" (32)

for X € TM?***1, where upper * denotes the horizontal lift with respect to 7. Then
#X = (Jr (I X)) = (S X)
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= —(mX) = -X +n(X)¢,

i.e. 9> = —I+n® £ We can also define § on M2"+1 by
§(X,Y) = g(r X, mY) + n(X)n(Y) (33)

ie. § =7*9+n®n. By (1.2) in Chapter 1 £¢n = 0, we have £,§ = 0; hence { is

Killing. Moreover

§(X,8Y) = g(mX,m(JmY))
= g(nX,JrY)
= QmX,mY)
= X,Y)

= d)(X,Y);
similarly
i(¢X,4Y) = g(rX,mY)
= §(X,Y) —n(X)n(Y).

Therefore the contact metric structure (4,€,9,§) is a K-contact structure.

Now since £¢¢ = 0 we have

NOEX) = [¢,4](é X) + 2dn(¢, X)
= ¢*¢, X] - ¢¢, 8X]
= 0.

For projectable horizontal vector fields X and Y we have

[, #)(X,Y) + 2dn(X,Y)¢
= (X, YD) 4 [(UnX),(InY)] - (Jr[(ImX), V)
— (Im[X, (JnY))" + 2dn(X, P)E

41




(PPmX, mY)) + [(Jm X, Jn Y] + (I X)", (J7Y)])
— (J[ImX, 7 Y)) = (J[mX, I Y])" + 2dn(X, V)€

(4, J)(m X, 7))

Thus from Theorem 1.3 we see that the K-contact structure (¢,¢,7,§) is Sasakian if
and only if the base manifold M?" is Kahlerian(see e.g. [3]).
Given a symplectic manifold such that ) determines an integral cohomology class,

by a theorem of Kobayashi [28] we have
P(M™,SY) ~ H(M™, Z)

where P(M?",S') is the set of all principal circle bundles over M?*. Through
P(M?",5') the construction above is reversible.

Now we are ready to prove the following result.

Theorem 3.3. On a (compact) regular contact manifold M?"*1 let (¢, &, 7, §) be the
contact metric structure and (g, J) be the almost complex structure described above.

Then QJ = JQ if and only if Oqﬁ = ¢Q, where Q is the Ricci operator on M?"+1,

Proof. Let V (resp. V) denote covariant differentiation with respect to g (resp. §).

From the classical formula (1.7) in Chapter 1 we have

2g(7Vx.Y*, Z)
= 25(Vx:Y*,2%)
= X*G(Y*, 2"+ Y*§(X*, 2%) - Z*G(X*,Y?)

+3((X* Y], 2%) + §((2%, X7], Y*) = §(X*, [Y*, 2°])
= Xg(Y,2)+Yy(X,Z) - Zg(X,Y)

+9(1X,Y),2) + 9(12, X], Y) - 9(X,[Y, Z])

= 29(VxY,2)
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which shows that the horizontal component of Vx+Y* is (VxY)*. On the other hand

2§(Vx:Y*,£)
= X*§(Y*,6) + Y*3(X*,€) — £5(X*,Y*)
+3([X*,Y*,6) + 3(16, X1, Y*) — (X%, [Y*,€))

§((x*,Y*,¢)

which means 27(Vx.Y*) = 5([X*,Y*]); hence the vertical component of Vx.Y* is
given by 37([X*,Y*])¢. Therefore

v, vy 1 * YR
Vx.Y* = (VxY)" + Eq([x ,Y*))E. (3.4)
Now we can compute the curvature tensor [35]:

(VxVy2)
= —¢*Vxu(Vy2)*
= —FVxe(Fya2t = (Y, 28)
= P (TxIr 2 — (XY, ZDE ([, Z)Vx-)

o ~ 1 .
= —¢H{Vx:VyaZ* - 1Y, Z)Vxet}
moreover we have

(Vixn2)* = —¢*"Vixyp2*

= Vixeys2* — n([X*, Y*))VeZ*}.
Therefore

(RCEY)Z) (35)
= LR, YZ* = g0l Z)xe

+ 300X, Z) Ty + (X%, Y )V2).
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Let (Ey,- -+, Ez,) be an orthonormal J basis on M. Then (Ey*,--, Ez.*,§) is
an orthonormal basis on M?**! with E,* = (JE,)* = ¢E;* and so on.

Since M2"+1 is K-contact, Q¢ = 2n¢ and R(X*,£)¢ = X* (Proposition 1.6). We

have
gx* = i&(x',E;*)E.-'+1'i(X',E)£
= iR(X',E.-*)E.-*+X‘
and )

Qéx* = fjiz(gbx*, ENE + ¢X*.
Therefore Q¢ = $Q if and only if‘=l
S RGX BB = $35 RX, BB (3.6)
i=1 i=1
Since E;* is invariant under ¢, [Ei*,€] = 0; hence V¢E;* = V€. Thus we have
(R(X, E)E:)" (3.7)
= SR, BB - (1B BVt
+ g1, BT rt 4 0(X*, BB}
= R, ENES - 31X, BB}

= RO, ENES — Sn(IX, BB

hence
—#*R(6X*, E*) B
= —#*R((JX)", ENE?
= (R(JX,E)E)" + gn([w{: EX))¢Ex
from which

-4 22" R(¢X*, E)E*
i=1
2n 2n
= S (RUX,E)E) + g Son([6X*, E)SE:.
i=1

i=1
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Since
n((8X*, E]) = ~2dn(8X*, E)
= 2dy(X*, 6B) = —n((X*, 6B,
we have
Sa(x, Bpen

= -Ex eepon:

= —6Sallx e DB

B én([xn EASE:.
Now if JQ = QJ, then

2n
—¢?Y R(6X*, E)E* 358)

i=1

= (CRUXE)E) +3 Son(lex, EgEs

i=1

2n bt 2n
(S ROGENE) + 363 n(X*, EA)$E:
=1 =1

2n 2n
¢{Z: (R(X,E:)E)*" + g Z_j n([X*, E*])$E:*}.

By (3.7) we have

2n 2n
— $*Y R(¢X*, E*)E* = ${—¢*Y R(X*, E*)E*}. (3.9)
=1 i=1

Since M?"+! js K-contact,
§(QX*,6) = §(X*,Q¢) =0
and hence QX* L €. Then
2n - 2n .
> R(¢X*,E*)E* = ¢y R(X*,E*)E;*
i=1 i=1

45

B —— e ——




By (3.6) we have
Q¢ = Q.
Conversely if Q¢ = ¢Q, then
QéX* = $QX*

and therefore (3.9) holds; and considering (3.8) we have

2n L 2n %
(CRUX,E)E) =(J L R(X,E)E) .
i=1 =1
Therefore
JQ=QJ
completing the proof. Q.E.D.

We have seen that there exist compact almost Kahler manifolds with JQ = QJ
which are not Kahler. By considering the circle bundles over such manifolds, from the
construction and the theorem above we can see that there exist K-contact manifolds
with Q¢ = ¢Q, but which are not Sasakian.

As in the symplectic case, the condition Q¢ = ¢Q has been studied extensively (
[13], [14] etc.).

Now we have a new class of contact manifolds. In the following we give a varia-
tional characterization of this class.

In a recent paper [16] Blair and Perrone found a scalar curvature which is much
more natural than the generalized Tanaka-Webster scalar curvature. They studied

the critical point conditions of the following functionals:
Ei(g) = /M Widv, = /M(H — Ric(€) +4n)dV,

Exg) = /M WadV, = /M (B* + Ric(€) + 4n?)dv,

Fa(g) = /M WadV, = /M[R + R+ 4n(n + 1)]dV,
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Theorem 3.4. Let M?"*! be a compact contact manifold. Then g € M(p) is a
critical point of E;(g) = [y W1dV, if and only if

(Qd—¢Q)—(lg—¢l) =46h —n @ $QE + (N0 QF) ® ¢

(see [16] [43]). In the 3-dimensional case the critical point condition becomes h = 0
or K-contact( which is proved by Chern and Hamilton [21]).

Theorem 3.5. Let M?"*! be a compact contact manifold. Then g € M(n) is a
critical point of E;(g) = [y WadV, if and only if

(Qé—6Q) — (Ip — 8l) = —4(2n — 1)¢h — 1 @ $Q{ + (1 0 Q¢) ®&.

Theorem 3.6. Let M?"t! be a compact contact manifold. Then g € M(n) is a

critical point of E3(g) = [y WadV, if and only if g is K-contact.

Therefore W3 is a better scalar curvature in view of the results here.

Proposition 3.7. Let M?"*! be a compact contact manifold. Then g € M(7) is a
critical point of f,,(aW; + bW;)dV, for any a and b if and only if

h=0, Q¢=4¢Q

Proof. By the results above we have that g € M(n) is a critical point of [,,(aW; +
bW,)dV, for any a and b if and only if

(—8nb+4(b—a))ph — (b — a)(Q¢ — $Q)
= (b—a)n®@¢QE—(noQP)®E — (16— ¢l)]

is true for any a and b. By (1.9) and the fact that Q¢ = 2n¢ on K-contact manifolds,

the proposition follows immediately. Q.E.D.
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Chapter 4

Other Functionals

4.1 Some classical functionals

In this section we study the critical point conditions of functionals B(g) = [, R?dV,,
C(9) = [y |Ric[*dV, and D(g) = [y, |Riem|*dV,. These functionals have been stud-
ied in the Riemannian context by Berger, Calabi, Muto and others([2], [33], [34], [46]
etc.). Our interest here will again be critical point conditions of these functionals in
the space of all associated metrics M(n) or M(9) .

First we consider B(g) = [3; R?dV,. Let g;;(t) = gij +tH;; + O(t?) be any curve in
M(n) or M(2) . From the expression of Rji(t) (2.3) we have, summarizing a lengthy

computation,

dB
Al

/M(Rg‘jV,V;H; + R¢¥V,V;HI

- RgV, V" Hy; — 2RR;; H)dV,

/M (ViV;R — RR;)H'dV.

Let Ti; = V;V;R — RR;;. Then T is symmetric and by Lemma 1.11 in Chapter 1
we have that g is critical in M() (resp. in M(n) ) if and only if TJ = JT (resp.
¢T =Té on D).

Now we consider C(g(t)) = [3; Rij(t)R¥(t)dV,, where g;;(t) = gi; + tH;; + O(t?)
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is any curve in M(n) or M(f). Then by similar computation

dc
=0

[, @V ViH; RS -V, 9 B RS

M

— 2R;;Rug"g?*)dV,

/M(zv,v.-R; —V,V'R;; — 2R, R} HY V.

Ui = V,ViR; + V,V;R] — V,V'R;; — 2R, R}.
Then g is critical in M(Q) (resp. in M(n) ) if and only if UJ = JU (resp. ¢U = U¢
on D).
For D(g) = [y |Riem|*dV, we have from (2.2)

dD
= ©

=% /M(zvkvhH,jR‘*f“ — Ruy' R*M H;;)av,

=2 /M(zvhvkﬁ"‘ﬂ' — Ry R*)H;aV,.

We assume that Vi = V,VRi¥i* 4+ V,V,R** — Ry  R¥hi| Then we can sum-

marize the results in the following proposition.

Proposition 4.1. In symplectic case the critical point conditions are
(1) critical for B(g) if and only if TJ = JT;

(2) critical for C(g) if and only if UJ = JU;

(3) critical for D(g) if and only if VJ = JV.

In contact case the critical point conditions are

(4) critical for B(g) if and only if ¢T = T'¢ on D;

(5) critical for C(g) if and only if U = U¢ on D;

(6) critical for D(g) if and only if ¢V = V¢ on D.
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4.2 Other functionals on M(n)

On contact manifolds we have something like the Dirichlet energy which has no

counterpart for symplectic manifolds. Consider the following functional
2 2 _ 2
Fio) = [, WFdv, = [ |RetldY,.

Let gi;(t) = gij + tH;; + O(t?) be any curve in M(n) . Then

dFR
Q)

= [ e (VVH] + ViVt
— ViV Hy) Runjg” — (ViViH
+ ViViH] — ViV’ H) Rujg*1dV,.
Using Green’s theorem we have

dFy
O

= [ (= VeV + v
F2VITV 8 + TV € — 2V £V ) H,,dV,.
Let
U™ = ="l = VeV + TV
+2VlTVE + VTV V6 — 2TV LTV 0
Since U™n, = 0, by Lemma 1.11 the critical point condition is ¢U = U¢; and it can
be written as
—2VeVVeh + 2V Ver +4Veh + Vehhh
+hhVe¢h — 2hV¢hh + 8lhé + 8V chh
—4lVe¢h —4Vehl = 0.
Therefore we have the following.

50




Proposition 4.2. g is critical metric of Fi(g) = fus [II’dV; = fas |Re€|*dV, in M(n) if
and only if U = U¢. K-contact metrics are critical points. Furthermore, if V¢h = 0

for a critical metric, then A% = h.

Let us also study a similar functional
Fy(g ——/ Re. - 2dv,.
2(9) M |Re. - ["dVg

Let gij(t) = gi; + tHij + O(t?) be any curve in M(n) . Then

dF,
7{'(0)

/M(zf'f'v,V;H.-kR.‘f* + 27 ViV H, R

El 5rE:R"_JkR“iji!)d‘/g
[ @V VeReria + 294Vt Reiu + 2Vin, V* Reir
+2V*0, V' Reiok — RerjaRes?* ) H™ dV.

Now set
Vis = ViVeRerjs + VIVeReoir + VEVn, Reigk
+ VEVin, Reirk + V1. V¥ Reig + Vin, V¥ Reivi
+ V0,V Reigk + V0,V Reirk — RerjiRes.
Then V™7, = 0 and the critical condition is ¢V = V¢. If g is Sasakian, then
Reijie = mkgi; — nigix
ViRegijk = dugi; — d1i9ik

etc.; it is easy to see that g is a critical metric. Thus we have the following result.

Proposition 4.3. g is a critical metric of F5(g) = [/ |Re. - |dV, in M(n) if and only

if §V = V ¢. Moreover Sasakian metrics are critical points.
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By Theorem 1.7 in Chapter 1, a contact manifold is Sasakian if and only if
(Vx9)Y = g(X,Y)E —n(Y)X.
We define P = (P;jx) on a contact manifold by [42]
Pijk = Vidik — nigik + Mkgij-

Then P = (P;x) measures how far away a metric is from being Sasakian. It is natural

to consider the functional
Fy(g) = [ |P[*dV,.
Wo) = [, 1PPaV,
Since |P|? = |V4|* — 4n, we have
[P
= |P]P+1[2V' "V, ($;H]) — V¢ D, ¢ — V'$" D, 6,
= V185V " H" + V, 8,V ¢ H* — V.,V $3H| + O(£)
hence

dFs
=

= /M(2¢:V,VJ’¢" +241V;V ¢ — 261V, V7 g
—dnh™ — V' $;;V* ¢V H,,dV,,.
Taking the symmetric part we set
Wi,
= $uViVig + 0uV;Vigi + 6:V;V, 4 + 4V, V, 47
+81V;V. 8, + ¢iV;V, i — dnh,, — V,8;V,¢"

Since W,,£* = 0, we have the following proposition.

Proposition 4.4. g is critical metric of F3(g) = [y, |P|*dV} in M(n) if and only if

¢W = W¢; and Sasakian metrics are minima.
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