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ABSTRACT

VARIATIONAL PROBLEMS ON CONTACT MANIFOLDS

Shangrong Deng

S.S.Chern and R.S.Hamilton in a paper of 1985 studied a kind of Dirichlet energy

in terms of the torsion 1'(1' = 13(9) of a 3-dimensional compact contact manifold and a

problem analogous to the Yamabe problem. They raised the question of determining

all 3-dimensional contact manifolds with 1' = 0 ( i.e. K-contact ). In a long paper of

1989 S.Tanno studied the Dirichlet energy and gauge transformations of contact man—

ifolds. In 1984 D.E.Blair obtained the critical point condition of I(g) = fM Ric(€)dVg

over M(n) ( the space of all associated metrics ), and proved that the regularity of

the characteristic vector field 5 and the critical point condition force the metric to be

K-contact. Since Ric“) = 2n — HTI2 , the study of I(g) is the same as the study of

the Dirichlet energy. In this thesis we investigate the second variation and prove the

following results.

Theorem. Let M2"“ be a compact contact manifold. If g is a critical metric of

the Dirichlet energy L(g) = fM ITIZdVg, i.e. nggg = 2(.€£g)¢, then along any path

9,3“) = 9;,[53' + tH; + t2K; + 0(t3)] in M01)

fl ,‘2

dt2 (0) = 2 [M |£6Hj| dvg 2 0,

and L(g) has minimum at each critical metric.

Theorem. Let M2"+1 be a compact contact manifold, and suppose that 96’“ is a

geodesic with g(0) K-contact, then geHt is K-contact for each t if and only if £5H; = 0.

In general, ITI is constant along any geodesic gem with ££H3 = 0.

In Chapter 3 we discuss almost Kahler manifold with Hermitian Ricci tensor and

its relation to critical point conditions. It was conjectured that K-contact manifolds

with Q05 = ¢Q are Sasakian. We give a negative answer to the conjecture; hence we

have a new class of contact manifolds. We also give a variational characterization of

this class. In Chapter 4 we study other functionals.
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Chapter 1

Preliminaries

In this chapter we review some formulas and results which we will need in this the-

sis. Section 1 is an introduction to contact manifolds; in this section we also present

a new K-contact condition. In section 2 we describe the space of all Riemannian

metrics on a Riemannian manifold and the space of all associated metrics on a sym-

plectic or contact manifold. We follow basically the notations of [3], [18] and [20].

Differentiability always means differentiability of class C°°. By a manifold or tensor

field we mean a smooth one.

1.1 Contact Riemannian manifolds

A (2n+1)-dimensional manifold M2"“ is a contact manifold if it carries a global

1-form n such that r) A (dn)" aé 0 everywhere. 1) is called the contact form. It follows

that any contact manifold is orientable.

17 = 0 defines a 2n-dimensional distribution D of the tangent bundle, i.e. for any

m E M2“+I,Dm = {X E TmM|n(X) = 0}. Since 77 A (dn)" 75 0, D is not integrable

and dry has rank Zn. The subspace Vm = {XIX E TmM,dr)(X,TmM) = 0} of TmM

is of dimension 1. Let {m be the element of Vm on which 1] has value 1. Then 6 is a

vector field, which we call the characteristic vector field, defined on M2"“ such that

dn(€,X) = 0, 77(6) =1 (1.1)

for any X.
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Using (1.1) and the formula for Lie differentiation, fg = d - i({) + i({) - d, we have

£677 = 0, fed?) = 0. (1.2)

In this thesis we will also discuss symplectic manifolds. A 2n-dimensional manifold

M2“ is called a symplectic manifold if it admits a global 2-form 0 such that Q" 7é O

and dfl = 0. On a symplectic manifold we have the following theorem.

Theorem 1.1. Let (M2", Q) be a symplectic manifold. Then there exist a metric g

and an almost complex structure J such that

Q(X,Y) =g(X,JY) (1.3)

Outline of proof. Let k be any Riemannian metric on M2" and X1 . - - Xgn be a local

k-orthonormal basis. We know that any non-singular matrix A 6 GL(n,R) can be

written uniquely as FG with F E 0(n) and G a positive definite symmetric matrix.

Now consider A = Q(X,-,X,-). Since A is non-singular, A = FG by the polarization.

Then G defines a new metric g and F defines an almost complex structure J locally.

In fact this construction is independent of choice of k-o.n. basis. Therefore g and J

are globally defined and 0(X, Y) = g(X, JY). Q...ED

Such g and J are created simultaneously and g is called an associated metric. Thus the

space of all associated metrics, denoted by M(Q), is the space of all almost Kahler

metrics with Q as their fundamental 2-form. It can be shown that all associated

 metrics have the same volume element dV = 2,3“,9“.

On a contact manifold we have the following result .

Theorem 1.2. Let (M2"+1,17) be a contact manifold. Then there exist a metric g

and a type (1,1) tensor field 43 such that

ct” = —I+n®£ (1.4)

d"(X7 Y) = 9(X3 ¢Y)



00‘) = 9(X,£)

proof. Let k’ be any Riemannian metric. Then

k(X, Y) = k’(-X + 72006. -Y + 17(Y)£) + 17(X)n(Y)

is a new metric with 17(X) = k(X,§). Since dn is a symplectic form on D, we can

polarize dry on D as in Theorem 1.1. Therefore there exist g’ and d) on D such that

g’(X, ¢Y) = dn(X, Y) and 452 = -—I. Extending g’ to g agreeing with kin the direction

of 6 and extending 96 so that d{ = 0 , we have the theorem. Q.E.D.

Metrics constructed by polarization as above are called associated metrics. We refer

to ((155, n, g) as a contact metric structure. A contact manifold with a contact metric

structure is called a contact metric manifold (or simply a contact manifold in this

thesis). It follows from Theorem 1.2 that

9156 = 0, TI(¢X) = 0 (1.5)

9(X, Y) = 9(¢X, ¢Y) + 770000”)

dn(X, ¢Y) = -d77(¢X,Y)-

It is well known that all associated metrics have the same volume element dV =

5%,?) A (dn)" . We will discuss some properties of the space of all associated metrics

in section 2.

Now we are ready to introduce the concept of a Sasakian manifold, which is

the odd dimensional analogue of a Kahler manifold. We consider a product manifold

M2““ X R of a contact manifold M2"“ and the real line. A vector field on M2"“ x R

looks like (X, f3%), where X 6 TM2”“ and t is the coordinate of R. We define a

linear map on the tangent space of M2"“ x R by

I
a
.

Jung) = <qu — f6, n(X) ,) (1.6)

Q
.

3
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Then J2 = -I, i.e. J is an almost complex structure on M2"+1 x R .

Let [J, J] be the Nijenhuis torsion of J, and similarly [45, d] the torsion for d). We

have

[J,Jl(X,Y) = JZIX,Y]+[JX.JY]

-— J[JX, Y] —- J[X,JY]

If J is integrable ( or [J, J] = 0 ), then we call the contact metric manifold M2"+1

Sasakian.

Let <I>(X, Y) = dn(X, Y) and V be the Riemannian connection. From the following

2 classical formulas

29(VXY, Z) = X9(Y,Z) +Y9(X, Z) -Z9(X, Y) (1-7)

+ g([X,Y], Z) + 9([ZaleY) - 9([Ya ZlaX)

and

3d<I>(X, Y, Z) = X<I>(Y,Z)+Y<I>(Z,X)+Z<I>(X,Y)

- ¢([X,Y], Z) — (NIZTXLY) — (Fax Zia/Y),

we have ([3])

29((Vx¢)Y, Z) = 9(N(”(Y, Z), 45X ) + 2d17(¢Y, X)n(Z) - 2dn(¢Z, XMO”) (13)

where N(1)(X, Y) z [¢, ¢](X, Y) + 2dn(X, Y)€.

Theorem 1.3. [J, J] = 0 if and only if N“) = 0.

proof. Enough to check the Nijenhuis torsion for all vector fields on M2"+1 x R. See

[3] pp.48-51 for details.

Let h = %££¢, T = £69 on a contact manifold.

Proposition 1.4. On a contact manifold with contact metric structure (¢,{,n, g),

4
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we have

(1) V£¢ = 0;

(2) WE = 0;

(3) Vt¢i = -2nm;

(4) fo = -¢X - ¢hX;

(5) ht = 0,451: + In) = 0, and hence trh = 0;

(6) n,- = —2¢.-.h;, and h = r = 0 is: is Killing.

Remarks: We define 951-455 = (6,3, hence 05; means d'j. For differentiation we use the

following notation

V.H;V'H,,. = (V.H;)(V*H,,.)

v.51? = (may,

etc. Hence we differentiate only the first object which follows the derivative sign.

Proof. First we prove (4). By (1.8) we have

2g((vx¢)g, Z) = g(¢2[€, Z] — as, 452], X) — 20122012, X)

= — 2g(¢hZa ¢X) -' 29(¢Z3 ¢X)

= _ 2g(hZ, X) — 2g(X, Z) + 2g(n(X)6, Z),

that is

-¢Vx€ = —hX — X + 17(X)€-

Applying a to both sides we have (4). (1), (2) and (3) follow from (1.8); (5) can be

proved using (1), (2) and (3). see [3] pp.55.

Using (4) we have

T(Xa Y) = (3:9)(X1Y)

= g(Vx€, Y) + g(Vy£,X)

-_— g(—¢X — dhX, Y) + g(—¢Y — th, X)

5





= ‘2g(¢hxa Y)’

This completes the proof. QHED.

Let 1,3 = Raw-(“6". Then 1.3? = 0 and l is symmetric.

Proposition 1.5. On a contact metric manifold we have

(1) {rvrhij = 45:)” "' ¢irh:h; - 4’31};

(2) 19¢; + ¢irl§ = 24’.) - 2453,1214,

and hence, Ric(§) = 2n -- trhz = 2n —- il‘rlz;

(3) Vtvk‘fi; + Vth¢i = Rkt¢§ + 331457. — 2n(hkr¢§ + hjr¢i)-

Proof. Using Ricci identities and Proposition 1.4 we have

¢irl; = ¢ieruvr€u€v

= ¢ir(vjvu€r _ Vuvjérku

= ¢;r[V1(—¢L - 45mm“)? - V£(-¢§ - ¢j.h")]

= ¢ij — (bgthh; - Vghgj.

Then (1) and (2) follow from above.

By Proposition 1.4 (3) and the Ricci identitiy

Vtvkfib; - Vkvflis; = Rtkpsfifig — Rtkjp¢;

from which

V57”); = —Rkp¢§ — Rktpj¢tp - 2nd17j.

(3) then follows immediately. Q.E.D.

From Proposition 1.5 we have the following formulas

1H3; - ¢irl; = 2V£hij (1.9)

lh—hlzvghz-d

6





V72=412+trh4+2trhzl —2n.
f

If 6 is a Killing vector field, then we call the manifold M2"+1 K-contact. By

Proposition 1.4, M2"“ is K-contact if and only if 1' = h = 0 ; and Vxé = —¢X on

a K-contact manifold. From Proposition 1.5 we have another K-contact condition,

namely, Ric({) = 2n.

We can also characterize K-contact manifolds as the following.

Proposition 1.6. M2n+1 is K-contact if and only if (Vx¢)Y = Rng.

Proof. (a) Iffi is Killing, then Vyé = —¢Y. We have

VXVYE - VVXYC = Rch-

Therefore

(VX¢)Y = R£XY-

(b) If (Vx¢)Y = RexY, we set Y = 6. Then

IX = —R€x§

= —(Vx¢)€

= 43ng

= ¢(-¢X -¢hX)

= X+hX—n(X){.

But from Proposition 1.5 (2) we have

Rgxg — ¢Rg¢x€ = 2h2X + 2¢2X.

Therefore

(—X — hX + 17(X)§) + (¢2X — ¢2hX) = 2h2X + 241%,

from which we have

2h2X = 0.

7



But h is symmetric, and hence we have h = 0. Q.E.D.

Combining Proposition 1.6 and Proposition 1.4 (3), we have on K-contact manifolds

that Q5 = 2n£ with Q denoting the Ricci operator 3 and from Proposition 1.6 we

also have that for any X J. 5

Rxgé = X

Now we consider the Sasakian condition.

Theorem 1.7. M21th is Sasakian if and only if (Vx¢)Y = g(X, Y)€ - 7](Y)X.

Proof. (a) Combining (1.8) and Theorem 1.3 we have (Vx¢)Y = g(X, Y)£—n(Y)X.

(b) If (Vx¢)Y = g(X, Y)€ — 17(Y)X, by (1.8) and a straightforward computation we

have N(I) = 0 (see [3] p73 for details). Q.E..D

Theorem 1.8. M2"+1 is Sasakian if and only if ny€ = n(Y)X — n(X)Y.

Proof. (a) If M2"“ is Sasakian, from Proposition 1.6 and Theorem 1.7 we have

ny€ = 17(Y)X — 17(X)Y. (b) From ny§ = 17(Y)X — n(X)Y and Proposition 1.5

(2), it is easy to see that h = 0; hence by Proposition 1.6 and Theorem 1.7 M2"+1 is

Sasakian. Q.E.D.

By Proposition 1.5 (3) and Theorem 1.7 we have Q96 = dQ on a Sasakian manifold.
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1.2 The space of all associated metrics

Let M be a compact orientable manifold. The space of all Riemannian metrics

on M, denoted by M, has a Riemannian structure which was studied by Ebin [24]

and others. M is infinite dimensional. The tangent space at a point g consists of

symmetric (0,2)-type tensors on M. The inner product at g is defined by

< 5,71 >g = /M Sikazgikgj’dlg.

Let M1 be the space of all Riemannian metrics on M with fixed total volume.

Then M1 is a subspace of M. By normalization we may assume

M1: {gl/MdVg =1}.

We begin with any metric g 6 M1. Let g(t) be any curve in M1 with g(O) = g.

On a coordinate neighborhood

(ll/g“) = (/det(g.-j(t))d:r1 /\ - - - /\ dr",

and

gm“, = gymm...td.n

= mg(detrgw»)them-(0W A . ~ A dx"

= édflflgmfltflwt)

Hence for any g(t) in M1

a- 3 8

Now we put

915(1) = gij + tHij +t21{ij + 0(t3).

Then

g‘ia) = 9‘1 — tH‘j + t2(H,iH'J' — K”) + 0(13)

9



where H}: = g"H,,-, etc.

To study variational problems over M1 we will need the following lemma ( see

[11]).

Lemma 1.9. Let T,-,- be any symmetric 2 tensor. Then

[M YinkIgikgfldVg = 0

for any symmetric 2 tensor ng satisfying fM g‘ngdeQ = 0 if and only if T,-,- = aggj

for some constant a.

Now we consider the space of all associated metrics M(17) of a contact manifold. and

M(Q) of a symplectic manifold.

Let g(t) be any curve in M(r]) with g(O) = g. Then the structure tensors

(¢(t),§,1], g(t)) corresponding to g(t) satisfy the following:

g;r(t)£' = m

29,-,(t)¢;(t) = 245,-,- = Vim“ - Vi’li (1-10)

¢i(t)¢§(t) = -5§ + Fm-

Now we put

g;j(t) = g,’,.[6; + tH; + t21{; + 0(t3)]

AW=3}H$+fifi+0w)

Then from the above conditions we have the following lemma.

Lemma 1.10.

Hit" = or = 5:15” = Tic = 0

ng + Hndfd; = 0, hence H: = 0

9=im $$=mm
J 7'1,

10





T; = :K;

Kij + Krs¢i¢§ = HirH;

2K: = H”H,.,

and

tr(HHH) = tr(H2h) = tr(h2H) = 0.

The proof is straightforward but note that H and h anti-commute with 45.

It is easy to see that the tangent space of M(n) consists of all symmetric (0,2)

tensor fields H satisfying

Hg," + Hugh”); = 0, Hirér = 0 (1.11)

Similarly the tangent space of M((2) consists of all symmetric (0,2) tensor fields H

satisfying

ng + H,,J,-"JJ‘-’ = 0 (1.12)

In fact M(1]) and M(Q) are symmetric Hilbert manifolds. Geodesics in M(n) are

of the form g(t) = geHt with H6 = 0, and H<15 = —¢H. For details see [5]. In [25]

Freed and Groisser found the general formula for geodesics in M and computed the

curvature of M. M(n) and M(Q) are totally geodesic submanifolds of M and are

path connected.

To study variational problems on M (77) or M(Q) we will need the following

lemma([6], [12]).

Lemma 1.11. Let ng be any symmetric 2 tensor. Then

[M TinklgikgfldVg = 0

for any symmetric 2-tensor ng satisfying (1.12) in the symplectic case and (1.11) in

the contact case if and only if TJ = JT in the symplectic case and T45 = dT on D in

the contact case.

11



Proof. We sketch the proof in the symplectic case; the proof in the contact case

being similar. Let X1, - - - , X2n be a local J basis on a neighborhood U and note that

X1 can be any unit vector on U. Let f be a C°° function with compact support in U

and define g(t) by the change in the subspace spanned by X1 and JX1 given by the

matrix

(1+tf+§t2f2 §t2f2 )

§t2f2 1—tf+%t2f2

with no change in other directions. Then g(t) E M(Q) and H11 = —-H22 = f.

Therefore fM fljHug‘kgfldVg = 0 becomes

T11 — T22 dV = O/M( )f ,

Thus since X1 was any unit vector field on U,

T(X,X) = T(JX,JX)

for any vector field X. Since T is symmetric, linearization gives TJ = JT. Conversely,

if T commutes with J and H anti-commutes with J, then trTH = trTJHJ =

trJTHJ = —trTH, giving T‘ngj = 0. QED.

12
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Chapter 2

The Dirichlet Energy

S. S. Chem and R. S. Hamilton in a paper of 1985 [21] studied a kind of Dirichlet

energy in terms of the torsion T(T = ££g) of a 3-dimensional compact contact man-

ifold and a problem analogous to the Yamabe problem. They raised the question of

determining all 3—dimensional contact manifolds with 7' = 0 ( i.e. K-contact ). In a

long paper of 1989 [43] S. Tanno studied the Dirichlet energy and gauge transforma-

tions of contact manifolds. In 1984 D. E. Blair [6] obtained the critical point condition

of I(g) = fM Ric(£)dVg over M(n) ( the space of all associated metrics ), and proved

that the regularity of the characteristic vector field 6 and the critical point condition

force the metric to be K-contact. Since Ric({) = 2n — il‘rl2 , the study of I(g) is

the same as the study of the Dirichlet energy. In section 2 we investigate the second

variation and prove the following result.

Theorem 2.2. Let M2"+1 be a compact contact manifold. If g is a critical metric of

the Dirichlet energy L(g) = fM |T|2dI/;, i.e. nggg = 2(£5g)¢, then along any path

gait) = girl5§ + tH} + tZK} + 003)] in M (17)

d2L g2

W(0) = 2/M lréHjl dV, 2 0,

and L(g) has minimum at each critical metric.

In section 3 we show that the critical points of the Dirichlet energy are also critical

13
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in M1. In section 4 we study the behavior of the Dirichlet energy at any associated

metric. In section 5 we study the isolatedness of special metrics.

2.1 The critical point condition

For completeness we show how to obtain the critical point condition in this section.

The computation will also be used later on.

Let M2"“ be a compact contact manifold with contact metric structure (45, 6, n, g)

and

9:50) = g.)- + tH,,- + t2K,,- + 0(t3)

be any curve in M07) with g(O) = g. Let 1‘31), be the Christoffel symbols for the

metric g and F§k(t) for g(t). We assume that P§k(t) = P37, + Ill/flu) and that V“) is

the Riemannian connection for g(t). We have

0 = Vitlgij)

_ 29549 _ r:,-(t)g.).(t) — mags-(t)

= Vigij) - W.-3(t)wIe(t) - “41(t)grj(t)

Rotating the indices i —> j —> k —) i, we have

Vigk£(t) = fi(t)gn‘(t) + WJ§(t)9rk(t)

and

-ngij(t) = ‘Wii(t)grj(t) — Wij(t)gri(t)

Adding these we have

Mt) = 31:0)" 3).

1 .

_-: 5g"(t)[ngrk(t) + Vial-j“) — Vrgik(t)l

Therefore

File“) = P37: + Wit“) (2-1)

14
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- t i i 1'

t2 , , . .

+ .2_[(v,.K;, + ka; — V'Kjk) — man-H.)c + VkHrj - VrijH

+ 0(t3)

‘- t i t2 i i r 3
= ij + §Djk + ~2-(Ejk "' HrDjk )+ 0(t )

where Djki = VjHI'; + VkH; - ‘7'.ij and Ejki = VJ'IQ; + Vklf; — Vilfjk.

For the curvature tensor we have

R,,-,,"(t) = Rah" + ViWJ’W) - viii/ii“) + Wit“) It“) - W,’i(t)W.-’i(t)

t

= Rijkh + 5(ViDjkh - VjDikh) + (2.2)

t2

+ §[V,-(Ej,," - Hijk’) - V,(E,-,," - HEDHJ) +

1

+ 5(Dithjkr - Djthik'H + 0(t3)

Therefore we have

t

Rjk(t) = Rjk + -2-(VerH; + Vrka; — VrVrij) + (2.3)

t2 r r r r
+ Z]2(V,Vj1(k + V,VkKj - V Vrlfjk — Vjkar)

— 2H”(V,VjH,-k + V,VkH,-j — V,V,~ij - Vij-Hra)

- 2vaH8r(VjHr-k + VkHrj - Vrij)

+ ijrrkan — 2V.H;V,H,: + 2V,H;V'H,,.] + 0(t3)

Let I(g) = fM Ric(6)dVg and the Dirichlet energy L(g) = ferldeg . For any

associated metric we have Ric(6) = 2n — %|T|2 by Proposition 1.5, hence I(g) =

2n vol(M) — %L(g). Therefore they have the same critical point condition.

Theorem 2.1.( Blair [6]) Let M2"+1 be a compact contact manifold. An associated

metric g E M(n) is critical with respect to the Dirichlet energy if and only if

V57 = 27¢. (2.4)

15
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Remarks: Chem and Hamilton studied this over the set of all CR—structures. Strongly

pseudo—convex CR—manifolds are contact manifolds satisfying an integrability condi-

tion, Q = 0, where Q is a (1,2)-tensor field on M2"“ defined by [43]

Q(X, Y) = (Vv¢)(X) + (Vyn)(¢X)€ + 17(X)¢Vy€, (2-5)

in dimension 3, Q = 0 trivially.

Proof. We consider I(g) = fM Ric(6)dVg here. Let gij (t) = g;,- + tng + 0(t2) be any

curve in M(n) with g(O) = g. Then

(11 1 ,- . ,. r r

m0) = 5/1.): «WM-H.- + VrVJ-Ha - V VrHifldVa

Using Green’s Theorem we have

[M sewn-Han = /M{Vr(rev.-H;) — Vrc‘evaH; - é‘VréjVaHfldVg

= /M(v'r'v.c + £‘V.V'e)H..dv.

and

[M {iéjvrerijdl/g = 2/M V’6‘Vr6ngjdi/g.

Therefore

all . . .

5(0) = /M(V'£'V.-e + my? — v'a'v.£-')H..dv..

Let

1 . 1 .
U78 : §VT€3V£€8 + §VJ€3V.£T

1 . 1 . .

+ aé'ViV’é’ + 58W? - V't'vr.

Then

U”17,. = 0.

By Lemma 1.11 we have that g is a critical metric if and only if U915 = dU, namely,

Vr€£Vflh¢§ "l" Vagivinr¢i 'l' givivrns¢i "l' €iV;V,fl,-¢: "" 2Vinrvins¢z

= ¢rsV86ivi7lt + ¢rsvt€ivi£8 + ¢nE£VrV‘m + ¢n€iV5Vt€’ - 2¢r.V‘£’V.-nt
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Using

vréiviga : __grs + 6%: + hghj"

viérviés = grs _ {r63 _ 2h” + hghjs

we have

VéT = 27¢.

Q.E.D.

Example 2.1. Any K-contact metric g is critical since 1' = 0, and L(g) has a

minimum at g.

Example 2.2. Let T1M(-1) be the tangent sphere bundle of a compact Riemannian

manifold of constant curvature (—1). The standard associated metric is a critical point

of L(g) , but 1' is not 0 ( see [8] ). In fact, non—trivial examples must be irregular (

see [6]). A vector field X on M2"+1 is said to be regular if every point p E M2"+1

has a cubical coordinate neighborhood U such that the integral curves of X passing

through U pass through U only once. If 6 is regular, then M2"“ is called a regular

contact manifold. We will study regular contact manifolds in Chapter 3.
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2.2 The second variation

In this section we study the second variation of L(g) and prove the following result.

Theorem 2.2. Let M2"+1 be a compact contact manifold. If g is a critical metric of

the Dirichlet energy L(g) = [M [rlzdI/g, i.e. nggg = 2(£€g)¢, then along any path

g(t) in MM) with 9(0) = 9

fl ,‘2

(It, (0) = 2/M lréHjl dV, 2 0,

and L(g) has minimum at each critical metric.

Remarks: On any contact manifold Ric(6) = 2n— il'rl2 ; hence I(g) = [M Ric(6)dVg

has maximum at each critical metric. Since in dimension 3, Q = O, the space of all

CR structures and the space of all associated metrics are the same. Our theorem has

extended the theory developed by Blair, Chern, Hamilton and Tanno to the second

variation. I(g) = [M Ric(6)dVg and L(g) = fl»! [ledVg are nice functionals on the the

space of all CR structures and the space of all associated metrics .

Proof. Let g;,-(t) == ggj + tH5j + 121(51' + 0(t3) be any curve in M07) With g(O) = 9

critical. By Theorem 2.1 we have nggg = 2(.£’5g)¢ or Vgh = 2h¢. Now we compute

the second derivative. First we consider I(g) 2 Lu Ric(6)dVg ; we know from section

2.1 that

t

R,- (t) = 12,-). + §(V.V,-H,: + WWII; - V'VrHJ-k) +

t2 r 7' r 1'

+ Z[2(V.V,K,, + V,V,.K, — v v.19, —— vjkag)

— 2H"(V.VjHrk + stkHr-j - VsVrij '— VijHv-s)

- 2VsH”(VjHrk + VkHrj “ Vrij)

+ ijvka" .- 2V.H;V,H; + 2V,H;V"H,k] + 0(t3).
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If we set

11 = [M6j6‘(V,V1KJ’-' + Vrijf — V,V'K,-; — VIVjI(:)dI/g

I2 = [M gig'[—H”(V,V,H,,- + V.v,-H., — V,V,H,-, — V,v,-H.,)

— V,H"(V1Hrj + VjHrl — V,Hj()+%V1H"Van

+ V,H,,-V'Hf — V,H,,'V’H{]dVg,

then for the second derivative of I(g) we have

.121

5,-(0) = 11+ 12. (2.6)

Using Green’s Theorem, the critical point condition and the facts that

Hngh: = 0

VéH:Hfh;-¢{ = 0

vréivigs : _grs + {r89 + hghjs

viérviés = grs _ {1'63 _ 2h" + hghjs

we compute as follows:

fM 6"5‘V.V1K;dvg /M(—v.§ig'v,K; — (iv,g’v,1(;)dv,,

= /M(v,v,gig’K; + v,§iv,g'1(;)dvg

= AWN? + vzrV't’de...

fM gig'v.v'K,-zdv,, = /M(—v,.§i§'V*K,-, —5J'V,.§’V'K,-,)dvg

= 2 [M maven-avg,

fMéjc'vzijMV. = 0

19

 



and hence

:
4

II [M §i§'(v,v,K; + v.v,-K; — v,v'K,. — V,V,K;)dvg

= 2 [Mu'vzv'r + vzrv't‘ — v.5'v‘t')K..dv.

= 2/M1V£(¢" — ¢£h") + (—g" + as + hghj')

— (9" - {'5’ - 2h" + hihj'HKndVg

= 2 /M(—¢EV5h“ — 2g" + 26"6‘ + 2h")K,,dVg

= f 2 /M(2¢;¢;ihi' — 2g" + 235' + 2h")K.,dv_,

= ._ 4 [M midi/g

2

2 /M|H| dvg.

Now we consider [2:

[M 6j6’H”V.V1H,jdl/_q

= /M[—V,§j6’H"V,H,,- — 51' V.6’H”V,H,,- — 6j6'V,H"V,H,j]dl/g

= leVerEj61H"Haj + Ver{'VtH"11.,- +

+ V,§J’V,§'H"H,,- — gig’V,H"V,H,,-]dvg,

[M gig’Hr'V.V,H,,-d1{,

= fMl—v.£"£‘H~v.H.-z — {erE'H"V.Hj1 — {jé’V.H”V.H.~z]dVg

= [MlvréjV.{'H”H,-z + v.§jV.£’H"H.1 - éjc’VrH"V.H.-:ldV.

= fMlzvsjvr’H’Wfl — eé'vrflr’Vflflldn,

[Mtjé'HWszHndVg /M(—tj€’v1H"V.-H..)dn

= — [M IVeHl2dVg,
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/M£"£‘VrH..V'HrdV. = — [M wrafl'Hz'dV.

= fMV’éjvfélH'J’Hidl/i)

[Méjé‘V.H.,er{dt/g = — /MV,6j6’H,jV’H{dVg

= [M V7.65V‘6’H,,H{dVg.

Therefore

12 = g- ]M gig‘[—2H"(V,V,H,,- + V.V,H,, — V.V,H,-, -— v,v,-H,,)

— 2V,H"(V;H,,- + VjHrl - VrHjl)

+ V,H~V,~H.. + 2V.H,,~V’Hf — 2V,H,,-V‘H{]dVg

= % /M[_4v,v.§i§'H"H.,~ — 4V.€’€’V:H"Hsj

— 4V1€jV.€’H"H.j + 46"E’VrH"V:Ha

+ 4Vr€j17.517"sz — zgig’V,H"V,H,-,

— 2§j6’V,H"(V,H,,- + ij., — V.H,-,) - gig’v,H"V,-H.,

+ 2v.5iv'§’H,,H; — 2v.§iV’§’H,,-H;']dvg

= g. /M[_4v,v,.5i§’H"H.,- — 4V.€"£’V1H"11,,-

— 4V,§J‘V,5’H"H.,- + 4V.€"V.£’H"sz

_ gig'vmnvjm,

+ 2V.6jV'6’H,,H{ — 2V.6jV‘6’H,jH{]dl/g

= g[M |V5H|2dVg

+ /M[—2V,V.6j6’H”H,j — 2V.6j6’VzH"H.j

— 2v,§iv,.g‘H"H.,- + 2v,.§5v.£‘H"H,-z

+ V.§J‘V*{‘H,,-H; — V,6jV‘6’H,jH{]dl/g
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9u4Ws.1W
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WW
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91105111111211"fz—=
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and hence

12 = /M[2(¢£+¢rgh£j)V£H:H;—tr(hH)2

1

— IhHl’ — §|VeH|”]d%-

Since drgh‘jV£HIH3’ = 0, we have from (2.6) that

(PI
2;;(0) = [14-12

. 1
= /M[—2|H|2 + 2¢1V£H:H;— §|V£H|2

— "(1.11)2 — |hH|2]dVg

= /M[—%]2H — 43:7.le —17~(hr1)2 — |hH|2]dVg.

Now note that

£6111; = {v.11} + vajg' — H;V,§‘ (2.7)

= v.11; + Hie); — w") — H;(—¢:l — crash")

= (Vefli — 2Hi¢;) + (Hih: + 125.1104);-

and hence

lrgij = |V£H — 2H¢|2 + th + men2 (2-8)

= lvéH _ 21%|2 + 2mm)2 + 2|hH|2.

Therefore

dzL d2] i

EN) = (“Dag-(0) = 2/M I£€Hj|2dV9 Z 0'

We show in the next theorem that [7'(t)|2 is constant along any geodesic g(t) = gem

with ££H1' = 0; hence, L(g) is constant along all such geodesics. M(r]) is geodesically
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complete [5], therefore L(g) has minimum at each critical metric. Q.E.D.

Theorem 2.3. Tj(t) = Tj(0) along any geodesic g(t) = gem with ££Hj = 0. In

particular, |i'(t)|2 is constant along such geodesics.

Proof. Let D(-")'= V,-(H")]c + VAH"); -— Vf(H”)J-k. We first compute I‘j-k(t) along

the geodesic ge”

F§k(t)t

= I“k +£- IDfiIL Hjogk)
+t22(2

+ . . . +

tn 1 (n)i 1 i (n—1)r

n1
1 Ii (n-l)r

+ m(—1)(H)r0jk +"°+

+...

—2—.<).:12.<H’>D05.24)...

HOD"-(Hn-lliDjkrl +

If ££HJ€ = 0, we have VgH = 2H¢ and hH = —Hh from (2.8). We now show

that DEE)?" = 2(H"):¢; for any n.

D§2"€’° = [v(11”) +v.(H");’-——v‘(H").-.):'=

= V501");- — (H")f.(—¢§° - ¢fh;) + (H")§(¢"° — as")

= VdH"); + (Haiti: + aw")? — (11”):th — ¢i 11H"):

= 2(H")i¢;

for any n. Thus along gem with £6113: = 0,

 

V§t)€i : Vj€'+ _2jkt€k+ fi;(0210(2)3€k_
H;Djk£€k) +

. . . +

t" 12 (n)i , (n_1),. 1 2 i “-2”

+ _2-[n_lek + (n _11)!("1)HrDjk +m(H )rDjk + . . . +
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___1 -1 H (.-.). ___1___

+...

and therefore

. 1 i

-¢}(t) + '24,“)

= —¢}+§T;—t¢i~H;

t2 2i 1'
__2_(H )r¢j_°”

t" ...-1. 2__"_!__.

+...

i 1 i i r tn i n?

= —¢j+'2'7j”t¢rHj—H°_;J¢T(H )j—"'°

Note that dJH = —H¢; hence

Therefore we have

asth = e—Ht¢

g.(X,¢e”‘Y) = g(X,.eH‘qseH‘Y)

and

= g(X,¢Y)

= d77(X1Y)

¢6Ht¢eflt=¢2=—I+€®7]

from which 43(t) = (fiem. Thus we have

along 96’“ with £5H; = 0.

Tj(t) = rj(0)

1)"-1(H"_1):Djk'l€k +

n!

----(-1)"’ll
(n — 1)!

Q.E.D.

Remarks: From Example 2.2 we know that the standard associated metric is a
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critical point of L(g) , but 7' is not 0. In fact, non-trivial examples must be irregular

( see [6]). Theorem 2.2 says that L(g) has local minimum at the standard metric. It

seems that it is also a global minimum, or in other words, one can not deform the

metric to have 1' = 0 (see also Example 2.3).

Recently Jack Lee and others studied the moduli space of all CR structures on

a compact 3-dimensional CR-manifold. Since in 3-dimension Q = 0, 3—dimensional

CR—manifolds are contact manifolds. Our theorem applies as a special case. But

little is known about the differential structure of M(17) It seems to be difficult to

determine whether we have Morse theory here, i.e. to verify the condition (C)(see

[38] for details; it is a condition to have Morse theory of differentiable real functions

on Hilbert manifolds).
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2.3 Critical even in M1

In this section we prove an interesting result, namely, that the critical metrics of

the Dirichlet energy in M(n) are also critical metrics of the same functional in M1.

Proposition 2.4. The critical metrics of the Dirichlet energy L(g) = fM |T|2dVg in

M(17) are also critical metrics in M1.

Proof. We begin with a contact metric structure (¢,§, n, g) . For any path g;,-(t) =

ggj + tng + 0(t2) in M1.

[M |£e9(t)|2dV9(t)

= /M[(g" - tHir)(gjs — tHja)(££gij + t££Hij)(££grs + t££Hrs)

+ 0(t2)]dVg(.)

= /M{l££g|2 — 2t[H"gj’£gg.,-£egr. — (3:11; am] + 0(t2)}dV9(t)

L(g(t))

where we use notation (T; S) = T‘jSij, therefore

dL ir 3'3 1 2 {j

Tit-(0) = /Ml2(-€£H;££9) —2H 9 £egij££gn + Elfegl g Holm-

Using Green’s theorem we compute as follows:

/M(£.H;mm

= /M[(§"V,.H;,- + V.§"H,.,- + VjékHik)

(v.27. + V.nr)gi'9j’ldl/.q

—_. /M{V,.[§"H,-,-(V‘£j + Vjé‘)] - 5"H,~,~V,.(V‘£j + W?)

+ (V‘éj + Vjé‘)V.-€"Hu + (V‘éj + V”£‘)V.-€"H.-k}d%

= [M H.,~[—§"V;.(V‘£j + V’f‘) + (V’Vj + Vjé’Wré‘

+ W?" + V'é‘Wré’ldVg

= [MI—skvkw‘e + vie)

+ 2Vr€‘(V'Vj + ng')]H.,-dVg
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and

[M H"gi’££g,-,-££g,,dvg = [M Hi".<I’°"(Vi775 + VmaXVrfls + V,n,)dVg

= [MW'E’ + V'é‘Xanr + mom-idle

Let

W = —§*v.(v‘§i + Vié‘) + (V’VJ' + Viewré‘ + (V‘é' + V’é‘Wréj

. . . . 1 ..

— (W + V'é')(V’nr + W) + Elam".

Then T is symmetric and

dL
._ = ij ..dt (0) [M2T H.,dV,.

We can simplify T” to

z" i' 1 2 z" z”
T] = —V£TJ + Z|££g| g] —4hJ.

By Lemma 1.9 in Chapter 1 , the critical point condition is T” = ag‘j. Therefore

a” 1 2 i‘ i' i'
—V51'J + Z|£€g| g’ —4hJ = ag’.

By taking the trace we have a = ilfgglz. Therefore

V57 = —4h

01‘

Ve‘l' = 2T¢.
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2.4 Directions of most rapid change

In this section we study the behavior of the Dirichlet energy at any associated

metric 9. We find the direction in which the Dirichlet energy changes most rapidly.

First we have

Taft) = VF)”,- + Vii)”;

. . t

= Vm’ + Vfll' + §(—D.-j’m - Dje'n.) + 0(t2)

= n,- — tD.,-"n. + 002)

and

0.1% = (Vin + ‘7ij — V'Hijlflr

= —H;(¢.-. - ¢.-,hf.) - HIM]. - $251311?) — VeHij

= —2¢irH; — ‘75ng + ¢;r(h:H; + H:h‘;-).

Therefore

Tilt) = [Tia - tDisr’lr + 0(t2)llgsj _ tHsj + 002)]

= 7'? — t(D,°,'77,g’j + 7.317”) + 0(t2)

and

l7(t)l2 = [Tij _ “Disrnrgfl- + TisHsj) + 002)]le — “Disrnrgm' + TjsHsi) + 0(t2)l

= [fl2 -— 2t(D,-,'7],T‘j + 'eri’Tj) + 0(t2)
J i

= l’rl2 _ 2t(Disr77rTsj) + 0(t2li

then we have

l'r(t)|2 = |7-|2 -— 2t[—2¢.-,.HJT — VéHij + 45,-,(h'H3’ + H1h9)]r‘j + 0(t2)
9 .7

m2 — 2tl4¢ih§¢in + 2¢ih§~VeH§ - 2¢:h§- {(hl‘Hi + Hfhin + 0(t2)

= m2 — 4t(2h{5Hj + ¢35h§V£Hj-) + 0(t2).
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Therefore

L(gu» = L(g) - 4t /M(2h?H;3 + ¢f5h§VeH})d% + 0w)

= L(g) — 4t /M(2h" — ¢IV£h“)HradVg + 0a?)

and we have the following result.

Proposition 2.5. If 2h" —- ¢{V£h“ # 0, then L(g) changes most rapidly in the

direction H" = 2h" — ¢;V£h“.

This is essentially Theorem 2.1 in Chapter 2. Here we compute Vi't)"i first, hence the

expression of L(g(t)) becomes nicer. We can study the equation of evolution; but at

this time it seems to be difficult.
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2.5 Isolatedness of special metrics

In Gauge theory people study “good” connections in the moduli space. We are in

a similar situation. It is very natural to study “good” or special metrics in the space

of Riemannian metrics. Our interest here will be Riemannian metrics associated

to a contact structure or symplectic structure. We will discuss the isolatedness of

K-contact metrics and Sasakian metrics in contact manifolds and Kahler metrics in

symplectic manifolds.

First we consider the symplectic case. Let M2" be a compact symplectic manifold

with symplectic form 0, i.e. Q“ 79 0 and d0 = 0. By polarization, an associated

metric g and an almost complex structure J can be created simultaneously such that

Q(X, Y) = g(X, JY)

as in Theorem 1.1. There we began with any Riemannian metric k; one would think

that the space of all associated metrics MU!) is a large set of metrics. In fact we can

see that M(Q) is infinite dimensional through the following deformation of metrics (

l6] , [12])-

Let g E MK!) and X1, - - - ,in a local J basis on a neighborhood U. Let f be a

C°° function with compact support in U. Define g(t) by the change in the subspace

spanned by X1 and JX1 given by the matrix

(1+tf+%t2f2 §t2f2 )

32¢sz 1—tf+%t2f’

with no change in other directions. Then g(t) is also an associated metric for each t.

M(Q) can also be considered as the set of all almost Kahler metrics of M2" which

have 9 as their fundamental 2-form. Let’s consider the following problem: how

isolated are Kahler metrics in M(fl) ? This was first studied by Blair [10].

We begin with a Kahler structure (9, J) on M2" . Let

so“) = 9:3 + tH.-J- + 0(9)
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J;(t) = J}? + ts; + 0(t2)

be any curve in M(Q) with almost complex structure J(t) Then we have g;,(t)JJ’-' (t) =

Jij. Therefore

JH + HJ = 0 (2.9)

and

S = JH (2.10)

Proposition 2.6. Let g be a Kahler metric and g;,-(t) = gij + tH.-j + 0(t2) any path

in M(Q) . If each metric on g(t) is Kahler, then it is necessary that

V‘Hk, — mm; = J;’V*H,.,J; — JjV.H,:J; (2.11)

Proof. Let g;j(t) = g.,-+tH.-,~+0(t2) and J;.(t) -_- Jj+tsj+0(t2) = Jj+tJ;'H;+0(t2).

We have

V5,"J;(¢) = v£"(J;+tJ,iH;+0(t2)) (2.12)

= VkJJ’: + é—[Dh‘Jf — Djer: + 2Vk(J,fH;)] + 0(t2).

It is well-known that g is a Kahler metric if and only if

VJ = 0.

If g(t) is Kahler for each t, then

2v,.(H;'J;) = 1),..‘J; — Djk'J:

= (v.11; + V.H;; — V*H,..)J;

— (v.11; + v.11; — V'HkJ-U:

from which

V‘Hk, — W]; = ijerJ; — ij.H,:J;

This completes the proof. Q.E.D.
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If H is parallel, then from (2.12) we can see that along gem, V936) = 0. The

conditions of VH = 0 and HJ+JH = 0 are strong. If a Kahler manifold admits such

symmetric (0,2) tensor, then it is locally a product of a Kahler manifold on which H

is trivial and a flat Kahler manifold [10]. For example, T" x T" with H the difference

of the projection map. Problems in the symplectic case are still being studied.

Naturally we are interested in the similar problems in contact geometry. We now

consider the isolatedness of K-contact metrics.

Proposition 2.7. Let g be a K-contact metric. Then any metric on the path

g(t) = ge”t with £5H; = 0 is K-contact.

Proof. Since |T(t)| = 0 along such path by Theorem 2.3 , we have this result

immediately. Q.E.D.

Proposition 2.8. Let g be a K-contact metric. Then g is isolated in M(17) if and

only if equation £€H3 = 0 has no non-trivial solution on M2““.

Proof. (1) If ££H1‘ = 0 has no non-trivial solution on M2"+1 , then by Theorem 2.2.

we have

(PL ,.
75(0) = 2 /M (£5HjI2dVg > 0

therefore g is isolated in A407) .

(2) If g is isolated in MO?) , we know that |T(t)| = 0 along geodesic g(t) = gs”t with

££HJ€ = 0 , then £6113: = 0 has no non-trivial solution. QWED

The equation £€H; = 0 appears to be important in contact geometry. Let’s look

at the following example.

Example 2.3. Let M2"+1 be a regular contact manifold. Then M2"“ fibers over an
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almost Kahler manifold M2", and equation ££H1' = 0 means that H1‘ is projectable.

Let H' be any type (1,1) tensor field on M2" such that H’J = JH’. Then the

horizontal lift of H' denoted by H is a non-trivial solution of .6in = 0; therefore

there are plenty of K-contact metrics on a regular contact manifold.

From the above example it seems that equation £611; = 0 may have no non-trivial

solution on an irregular contact manifold . That is why we tend to believe that L(g)

has global minimum at the standard metric of the tangent sphere bundle of a compact

Riemannian manifold of constant curvature (—1), i.e. T1M(—1) .

Now we turn to Sasakian metrics. Let M2"+1 with contact metric structure

(¢,§,n,g) be a Sasakian manifold. It is well known that M2"+1 is Sasakian if and

only if ny{ = 17(Y)X — n(X)Y (Theorem 1.8 ).

Proposition 2.9. Let g(t) be any curve in M(7]) with 9(0) 2 g Sasakian. Then g(t)

is Sasakian for any t if and only if

érRijrkU) = érRijw-k

for any t. In particular, if g.j(t) = g), + tH,-j + 0(t2), then H satisfies the following

equation

V.H,"¢; - V.H,-"¢§ - Hfm = V111”? - “Hi-“15.r — Hf”.-

Proof. M2”+1 is Sasakian if and only if nyé = 17(Y)X — 17(X)Y . Since g(O) = g

is Sasakian, we have

{Burk = 71153“ - m5?

and that g(t) is Sasakian for any t if and only if

g’R.,-."(t) = W51“ - m5}

Therefore g(t) is Sasakian for any t if and only if

érRijrkU) : érRijrk
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t . .

{’[§(V,Dk.' — Vijr') + 0(t2)l = 0

From

§'(V,-D,..‘ — ijr') = 0

we have

Wm»; — v.H!‘¢; — anj = VJ-HME — “Hi-‘25 - Him

completing the proof.
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Chapter 3

A New Class

3.1 Hermitian Ricci tensor and critical condition

It is well known that the critical metrics of A(g) = fM RdVg over the space of all

Riemannian metrics with fixed total volume are Einstein metrics.

In [12] Blair and Ianus studied the same functional over the space of all associated

metrics of a compact symplectic manifold. They found that g E M(Q) is a critical

point of A(g) = [M RdVg if and only if

QJ = JQ (3.1)

where Q is the Ricci operator of g and J is the almost complex structure.

Recently Blair showed in [9] that on a compact symplectic manifold

E(g) /M<R+R*)dv.

/M 47r7.,-J‘J'dv

2——"—3(n———1)!M/7A9”1

where R* is the star scalar curvature and 7 is the generalized Chern form. Therefore

E(g) = fM(R + 1?)st is a symplectic invariant.

On an almost Kahler manifold we have

R — 12* = —%|VJ|2.
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Thus Kahler metrics are maxima of the functional K(g) = fM(R — R*)dVg. By (3.1)

and the symplectic invariance of E(g), the critical point condition of K(g) is also

QJ = JQ When Q satisfies (3.1), we say the Ricci tensor is Hermitian.

It was a long standing question whether or not almost Kahler manifolds with

QJ = JQ are Kahler manifolds . In 1990 Davidov and Muskarov [23] gave a counter-

example by studying twistor spaces with Hermitian Ricci tensor. Before we can state

their result, we need to review twistor spaces ( see [23] )

Let (M4, g) be an oriented Riemannian manifold. g induces a metric on the bundle

AZTM of 2—vectors by g(X1 A X2,X3 A X4) = %det(g(X.-,Xj)),i = 1,2,j = 3,4. We

define the curvature operator R : A2TM —-) A2TM by

g(R(X A Y), U A V) = —g(nyU, V).

We now need the Hodge * - operator on an n-dimensional Riemannian manifold,

* : APTM ——> A""”TM;

and it satisfies *2 = (—1)p("_p). Since now n = 4 and p = 2, we have *2 = id.

Thus * has eigenvalues 1 and —1 and we have the bundle decomposition A2TM =

AiTM EB AZ TM. If {61, 62, 63, 64} is a local orthonormal oriented frame field on M4,

set

U1=€1A€2—€3A64

U2=€1A63—64A62

U3=€1A€4—62/\€3

and

01:61A62+63/\84

02:61A63+e4/\62

D3=€1A64+62A€3
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then {111,112,113} and {1}], 122,123} are local oriented orthonormal frame fields for AiTM

and AZTM respectively. Let W = W+ + W. be the decomposition of the Weyl

conformal curvature tensor. If W. = 0 (resp. W+ = 0 ), then we say the Riemannian

manifold M4 is self-dual (resp. anti-self—dual).

The twistor space 7r : Z —) M4 is the sphere bundle of unit vectors in AZTM.

The Riemannian connection on M4 gives rise to a splitting TZ = HEBV into horizontal

and vertical parts. The vertical space Va at a E Z is the orthogonal complement of

a in AZTpM , p = «(0').

Each point a E Z defines an almost complex structure K0 on TpM by

g(KaX, Y) = 2g(a,X A Y)

xYenM.

For example, if a = 61 A 62 — 83 A 64,

g(KaX, 51'): 2g(el A 62 — 63 A e4,Xie; A e,)

=prxfiusvm+X%j

that is

X1 —X2

X2 X1

[(0 X3 = x4

X4 —X3

Then we have K: = —I and g(K,X,K.,Y) = g(X, Y).

Let X be the usual vector product in the oriented 3-dimensional vector space

AZTPM. We define two almost complex structures on Z. The first one was introduced

by Atiyah, Hitchin and Singer and is defined by

J1V= —aX V,VE Va

1r,J1X = Ka(7r..X),X E Ho

and the second one by Bells and Salamon and is defined by

J2V=a><V,VEVa
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7&sz = I(g(7r*X),X E H00

J1 is integrable if and only if M4 is self-dual and J; is never integrable. Define a

pseudo-Riemannian metric h, on Z by h, = 7r*g+tg", t 75 0 where g” is the restriction

of the metric of A2TM to V. ht is compatible with both J1 and J2 .

We now state the result of Davidov and Muskarov

Theorem 3.1. Let (M4, g) be a connected oriented real analytic Riemannian mani-

fold. If the Ricci tensor of (Z, J", ht),n = 1,2 is J" Hermitian ( i.e. QJ = JQ) then

either: (1) M4 is self-dual and Einstein or (2) M4 self-dual with R = l} and at each

point of M4 at least three eigenvalues of Q coincide. Conversely given (M4, g), (1) or

(2) imply that (Z, J", h) is J” Hermitian .

Thus letting M4 be a compact Einstein, self-dual manifold with negative scalar cur-

vature R and t = —1—I§, we see that there exist compact almost Kahler manifolds with

QJ = JQ which are not Kahler. The only known examples of such M4 are compact

quotients of the unit ball in C2 with the metric of constant negative curvature or the

Bergman metric.

The famous conjecture of Goldberg is still open: Is a compact almost Kahler

Einstein manifold Kahler?
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3.2 A new class of contact manifolds

In section 1 we discussed almost Kahler manifold with Hermitian Ricci tensor and

its relation to critical point conditions. Again we are interested in the analogue

in contact geometry. We know that Q45 = ¢Q on any Sasakian manifold. It was

conjectured that K-contact manifolds with Q¢ = qSQ are Sasakian. In the following

we will present a negative answer to this conjecture; hence we have a new class of

contact manifolds.

For compact regular contact manifold, we have the following celebrated theorem

of Boothby and Wang [17].

Theorem 3.2. Let M2"“ be a compact regular contact manifold with contact form

1}. Then there exists a contact form 17 = m} for some non-vanishing function p whose

characteristic vector field { generates a free effective S1 action on M2"+1. Moreover

M2"“ is a principal circle bundle over a symplectic manifold M2" whose symplectic-

form 0 determines an integral cocycle on M2’1; 1] is a connection form on the bundle

with curvature form dn = «*0.

Hereafter in this section we assume that M2"“ is compact and regular. By the

theorem of Boothby and Wang, M2”“ is a principal circle bundle over a symplectic

manifold M2" and (11) = 7r*fl with 7r : M2"+‘ ——» M2" the projection.

Since M2" carries a symplectic form 9, there exist a Riemannian metric g and an

almost complex structure J such that (9, J) is an almost Kahler structure on M2".

Let X denote a vector field on M2" and X a vector field on M2"“. We define (5

on M2"+1 by

43)? = (J«.X)* (3.2)

for X E TzMzn'”, where upper * denotes the horizontal lift with respect to n. Then

(:52)? = (J«.(J«.X)*)* = (J2«.X)*
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= —(«.X) = —X + ”(2)5,

i.e. 452 = —I + 1) (8) 5. We can also define g on M2"+1 by

60?, 17) g(erL m?) + 77057707) (33)

i.e. g = 7r*g + n ® 17. By (1.2) in Chapter 1 43:17 = 0, we have £53 = 0; hence { is

Killing. Moreover

g(X, 4517) = g(mX, m(J7r*17)*)

= g(7r*)~(,J7r*i~’)

= Q(7r,.)~(,7r,.i~’)

= #903,?)

= (1720?, Y”);

similarly

g(ibXa ¢?) = 9(7HX, 7G?)

= g(X, Y”) - 77(J’~f)17(37)-

Therefore the contact metric structure (45,5, 17, g) is a K-contact structure.

Now since £535 = 0 we have

N(1)(€,X) = l¢,¢l(€,X)+2dn(€,X)

: ¢2l£ax~l - ¢l£a ¢Xl

= 0.

For projectable horizontal vector fields X and f’ we have

[¢. 4510?, Y’) + 2017702, 3””)6

__. (J21r,,[)"(, m)* + [(mer, (J1r*)7)*] — (J«.[(J«.X)*, my

— (J«.[X.(J«.?)*1)* + 20W.m

41

 

 



(J2[7r.x,my + wax, Jud/1 + 17([(J7r,.)~()*, (mi/)1)

— (max,my — (JIM. J«.Y])* + 2dn(X, Y’)£

([J,J](1r*X,7r*i~/))*.

Thus from Theorem 1.3 we see that the K-contact structure (¢,£,77, g) is Sasakian if

and only if the base manifold M2" is Kahlerian(see e.g. [3]).

Given a symplectic manifold such that 9 determines an integral cohomology class,

by a theorem of Kobayashi [28] we have

'P(M2", $1) a H2(M2", Z)

where ’P(M2",.5'1) is the set of all principal circle bundles over M2". Through

’P(M2", S1) the construction above is reversible.

Now we are ready to prove the following result.

Theorem 3.3. On a (compact) regular contact manifold MR“, let (4), 5, 1], g) be the

contact metric structure and (g, J) be the almost complex structure described above.

Then QJ = JQ if and only if Q45 = ¢Q, where Q is the Ricci operator on M2”+1.

Proof. Let V (resp. 6) denote covariant differentiation with respect to g (resp. g).

From the classical formula (1.7) in Chapter 1 we have

2g(1r.vx.Y*, z)

= 2g(vX.Y*, 2*)

= X*g(Y*, 2*) + Y*§(X*, Z*) — Z*§(X*, Y*)

+ 9([X*, 3”], Z*) + §(lZ*, X*], Y*) - g(X”, [Y*, Z*])

: Xg(Y, Z) + Yg(X, Z) — Zg(X, Y)

+9([X,Y], Z) +g([Z,Xla Y) - g(X, [K Zl)

= 29(VXY, Z)
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which shows that the horizontal component of Thai” is (Vx Y)*. On the other hand

25(fiX’IY’raé)

X*§(Y*’€) + Y*g(X*a€) _ {g(X*,Y*)

+§(lX*,Y*l’€) +§([€,X*],Y*) *§(X*,[Y*,€])

g([X*,Y*],§)

which means 271({7X*Y*) = 71([X*, Y*]); hence the vertical component of 6X*Y* is

given by %n([X*, Y*]){. Therefore

” * 1 -k *

vaIY" = (ny) + 50([X ,Y D6. (3.4)

Now we can compute the curvature tensor [35]:

(VxVyZ)*

= _¢2V‘7X.(VYZ)*

= —¢2vx.(vy.z* — grid)”, 21):)

= —¢2{vx.vy.z* — $(X*n<[Y*.Z*1)e+ n(lY*, Time}

" " i: 1 * i: "

= —¢2{VX*VY*Z — 57]“), ,Z ])VX*€}

moreover we have

(V[X.Y]Z)* = -¢2v[x,y]*z*

—¢2{v[x.,y.]z* — n([X*, rcpt/62*}.

Therefore

(E(X, Y)Z)* (3-5)

= ~¢2{R(X*,Y*)Z* — $7M)”,TWM

+§n(lx*.z*1)vy.:+ n([X*. WWW}-
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Let (E1, - - - ,Ezn) be an orthonormal J basis on M2". Then (EN, - ~ - ,E2n*,£) is

an orthonormal basis on M2"+1 with E2* = (JE)" = ¢E1* and so on.

Since M2"+1 is K-contact, Q5 = 2n€ and R(X*,§){ = X* (Proposition 1.6). We

have

QX* = is“: E.-*)E.* + R<X*. 05

= in: R(X*, E;*)E,-* + X*
{=1

and

2n

Q¢X* = Z R(¢X*. E.-*)E.-* + ¢X*.

i=1

Therefore Qt/J = 9256? if and only if

Zn 271

ZR(¢X*,E.~*)E.-* = ¢ZR(X*,E.-*)E.~* (3.6)

5:] i=1

Since 133* is invariant under 5, [E335] = 0; hence {7513* = 6&4. Thus we have

(R(X, E;)E.-)* (3.7)

= _¢2{R(X*, E;*)E.-* — gnaw, Ei*l)‘~7x*§

+ gnu/v. Erma: + n([X*.E.-*1)v.E.-*}

= —¢2{R(X*. E.*.-*)E — gnaw. E.*1)¢E.-*}

= _¢21;2(x*, EmE — gnaw. E.*])¢E.-*

hence

—¢2R(¢X*.E.~*)E.-*

= —¢2R((JX)*.E.-*)E.-*

= (RUX. E.)E.-)* + gnaw E.*1>¢E.-*

from which

2n

—¢2 ZR(¢X*, E;*)E.-*

i=1

2": (E(JX. E.)E.)* + $2 n([¢X*.E.-*1)¢E.*.
i=1
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By (3.6) we have

62¢ = <3?-

Conversely if Qq) = ¢Q, then

Q¢X* = ¢QX*

and therefore (3.9) holds; and considering (3.8) we have

2n * 211. *

(Z RUXEOEJ = (JZRCX, EOE.) -
{:1 {:1

Therefore

JQ = QJ

completing the proof. QED.

We have seen that there exist compact almost Kahler manifolds with JQ = QJ

which are not Kahler. By considering the circle bundles over such manifolds, from the

construction and the theorem above we can see that there exist K-contact manifolds

with Q4) = ¢>Q, but which are not Sasakian.

As in the symplectic case, the condition Q¢ = 4562 has been studied extensively (

[13], [14] etc.).

Now we have a new class of contact manifolds. In the following we give a varia-

tional characterization of this class.

In a recent paper [16] Blair and Perrone found a scalar curvature which is much

more natural than the generalized Tanaka-Webster scalar curvature. They studied

the critical point conditions of the following functionals:

Eng) = /M WldV. = /M<R —— 12.35) + 4n)dV.

132(9) = /M Wde. = /M<R* + Rica) + 4n‘)dV.

E3(g) = [M ngVg = [Mm + 12* + 4n(n +1)]dvg
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Theorem 3.4. Let M2"+1 be a compact contact manifold. Then g 6 M(n) is a

critical point of E1 (g) = fM WldVg if and only if

(Q¢—¢Q)-(l¢—¢l)=4¢h—n®¢Q€+(n°Q¢)®€

(see [16] [43]). In the 3-dimensional case the critical point condition becomes h = 0

or K-contact( which is proved by Chem and Hamilton [21]).

Theorem 3.5. Let M2"+1 be a compact contact manifold. Then 9 E M(17) is a

critical point of E2(g) = [M ngclVg if and only if

(Q43 - 9’56?) — W — W) = -4(2n -1)¢h - 77 ® ¢QE+(17 ° 62¢) ® 6.

Theorem 3.6. Let M2"“ be a compact contact manifold. Then g E M(n) is a

critical point of E3(g) = fM W3dVg if and only if g is K-contact.

Therefore W3 is a better scalar curvature in View of the results here.

Proposition 3.7. Let M2"+1 be a compact contact manifold. Then g E M(17) is a

critical point of fM(aW1 + bW2)dl/:q for any a and b if and only if

Proof. By the results above we have that g E M(n) is a critical point of fM(aW1 +

bWr‘»)dVg for any a and b if and only if

(-8n5 + 4(b - a))¢h - (b - a)(Q¢ - ¢Q)

= (b-a)l77®¢Q£- (0°Q¢)®€-(l¢— MI

is true for any a and b. By (1.9) and the fact that Q6 = 2726 on K-contact manifolds,

the proposition follows immediately. Q.E.D.
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Chapter 4

Other Functionals

4.1 Some classical functionals

In this section we study the critical point conditions of functionals E(g) = fM deVg,

C(g) = fM IRz‘chdVg and D(g) = fM |Riem|2dVg. These functionals have been stud-

ied in the Riemannian context by Berger, Calabi, Muto and others([2], [33], [34], [46]

etc.). Our interest here will again be critical point conditions of these functionals in

the space of all associated metrics M (17) or M(Q) .

First we consider B(g) = fM deVg. Let g;j(t) = g, +tH,-J- +O(t2) be any curve in

M(7]) or M(Q) . From the expression of Rjk(t) (2.3) we have, summarizing a lengthy

computation,

dB

97(0)

/M(Rg‘jV.V.-H; + Rg‘jVTVJ-Hf

— Rg‘iV.V'H,-,- — 21212.,H‘i)dvg

[M 2(V,-V,-R — RR;,~)H‘jdVg.

Let ng = ngjR — Rjo. Then T is symmetric and by Lemma 1.11 in Chapter 1

we have that g is critical in M(fl) (resp. in M07) ) if and only if TJ = JT (resp.

¢T = TqS on D).

Now we consider C(g(t)) = fM R;j(t)R‘j(t)dl/;, Where gij(t) = gij + tng + 0(t2)
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is any curve in M(r]) or M(Q). Then by similar computation

dC'

g(t))

/ (2v.v,-H;R"J' — V,V’H.~,~R‘j
M

— 2R..R.kg“gj‘)d%

/M(2V,V.R; — V,V’R,-j — 2R..R;)H"J'dv_,.

U.,- = V.V.-R; + vying — V.V'R.-,- — 212,-.Rg.

Then g is critical in M(Q) (resp. in M(n) ) if and only if UJ = JU (resp. ¢U = U45

on D).

For D(g) = fM |1‘2i<~‘2m[2dl/g we have from (2.2)

(11)

gm)

= 2 /M(2v,.vhH,-,-R“°ih — R.,,,*Rk'hiH,-,-)dvg

= 2 /M(2VthR”°j" — Rk1h‘Rk’hi)H.-jdvg.

We assume that V‘j = VthR‘kjh + VthRjk‘h — Rklh‘Rk’hj. Then we can sum-

marize the results in the following proposition.

Proposition 4.1. In symplectic case the critical point conditions are

(1) critical for B(g) if and only if TJ = JT;

(2) critical for C(g) if and only if U] = JU;

(3) critical for D(g) if and only if VJ = JV.

In contact case the critical point conditions are

(4) critical for E(g) if and only if ¢T = T¢ on D;

(5) critical for C(g) if and only if ¢U = U45 on D;

(6) critical for D(g) if and only if 43V = Va) on D.
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4.2 Other functionals on M(77)

On contact manifolds we have something like the Dirichlet energy which has no

counterpart for symplectic manifolds. Consider the following functional

mg) = [M Ill‘dv. = /M mam.

Let 951'“) = gij + tHij + 0(t2) be any curve in M07) . Then

3
dt

= /M{£‘£’€“€"(V.V.Hi + v.v,Hg

0)

— vkviH.)R....-g" — (V.V.H{'

+ V.V,H,{ — V,ViH,.,)Ru,v,-g"]dvg.

Using Green’s theorem we have

dFl

_dt— (0)

= /M(—l“l{ — stsl" + firm-6mgs

+ 2vglirng’ + [Mam-5‘ — 21‘jV;{’VJ-€’)Hr,dVg.

Let

Ur. = 4.51: _ nggl” + ljrvjéiviés

+ warm-5’ + 13%ngs — 21‘ivigrngs.

Since U"77, = 0, by Lemma 1.11 the critical point condition is ¢U = Uq); and it can

be written as

—2V5V5V£h + 2V5V€T + 4V5h + Vghhh

+th5h — 2hV5hh + 8lh¢ + 8V£hh

—41v.h—4v.hz = 0.

Therefore we have the following.

  



Proposition 4.2. g is critical metric of F1 (g) = fM |l|2dVg = [M [Refildeg in M(n) if

and only if ¢U = U925. K-contact metrics are critical points. Furthermore, if fol = 0

for a critical metric, then h3 = h.

Let us also study a similar functional

F = / R . - 2dl/ .
2(9) M l t l a

Let g;,-(t) = gij + tH,-,- + 0(t2) be any curve in M(n) . Then

sz

7(0)

/M(2grg~'v,v,-H,-,.R,Uk + 2:*§’V.—V.H.,~R.‘j"

— éréeriijatij“)dl/g

/M(2ViV.Rer.-. + 2V‘V‘n. 12...). + 2V‘n.V"Re.-.k

+ 2Vk17. Vinisk — Rerijgajlendl/sr

Now set

l/ra = VjVERfirjs + Vjvafisjr ‘l' VkvinrRfiisk

+ VkViT}. Rem. + ViflrVkaisk + Vinskafirk

+ anrViREisk + vknaviRfirk - Rerijgsjk-

Then V”n, = 0 and the critical condition is ¢V = V¢. If g is Sasakian, then

Rails = 771.93 - my“.

VlReijk = ¢1kgij — ¢Ijgik

etc.; it is easy to see that g is a critical metric. Thus we have the following result.

Proposition 4.3. g is a critical metric of F2(g) = [M We - |2dVg in M(n) if and only

if 45V = V43. Moreover Sasakian metrics are critical points.
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By Theorem 1.7 in Chapter 1, a contact manifold is Sasakian if and only if

(Vx¢)Y = g(X, Y)€ — n(Y)X-

We define P = (ngk) on a contact manifold by [42]

PM, = Vi¢jk - njgik + 771.93-

Then P = (PgJ-k) measures how far away a metric is from being Sasakian. It is natural

to consider the functional

F = / P 2dV.
3(9) M l l 9

Since |P|2 = [VqSI2 — 4n, we have

|1L’(t)|2

= |P|2 + t[2V’¢“V.(¢,,-H{) — V'¢"'D,,J'¢j,- — V’¢"D,.-j¢,,—

— v.¢..v.-¢"HJ" + V.¢..vr¢;Hj-' — v.¢..vr¢;Hi‘1 + 0(3)

hence

dF3

Wm)

= /M(2¢:V.~Vj¢“ + 2¢:V.V*¢j‘ - win-ms"

— 4nh" — vr¢.-.vs¢j‘)H..dV..

Taking the symmetric part we set

W...

= ¢..-V.~VJ’¢: + ¢..V.Vi¢i + ism-WNW" + ¢..v.v.¢j‘

+ ¢fvjvr¢i + ¢fV.-V.¢i — 4nh.. — v.¢,-.-v.¢"‘

Since W,,{’ = 0, we have the following proposition.

Proposition 4.4. g is critical metric of F3(g) = fM [Plfzdl/j7 in M01) if and only if

43W = W45; and Sasakian metrics are minima.
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