

.
7
5
.
.
.

L
)
.

I
I
!
!
!

I
l
l
l
u
3
a
.
.
.
‘

I
.
I
:
J

.
1
1
.
7
3
;
)
.
.
T
.

4
.
1
.
.
.
(
1
1
)
3
:
1
1
.

.
I
1
.

7
.
.

i
.
:

.
1
.
5
.
1
9
1
.

ll
31293 00903 2032

This is to certify that the

thesis entitled

The Parallelization of Vectorizable Programs

presented by

Paul Dennis Hovland

has been accepted towards fulfillment

of the requirements for

Master of Science degree in Computer Science

 \jwwwg H . Ml

Major professor

Date 33mm? runs

0-7639 MSU is an Affirmative Action/Equal Opportunity Institution

LIBRARY

MichiganState

University

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

MSU Is An Affirmative Action/Equal Opportunity Institution

c:\circ\ddedue.pm3—p.1

The Parallelization of Vectorizable Programs

By

Paul Dennis Hovland

A Thesis

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

Master of Science

Department of Computer Science

December 2, 1992

ABSTRACT

The Parallelization of Vectorizable Programs

By

Paul Dennis Hovland

Many of today’s scientific applications are so computationally demanding that

they require the use of the most powerful supercomputers available. In the past, this

class of applications was solved on vector computers. Today, parallel computers, es-

pecially distributed—memory machines, offer better performance. This introduces the

question of how to parallelize codes originally targeted for vector architectures. For

distributed-memory parallel architectures, the parallelization of programs that vec-

torize well requires that we find a good way to distribute data among the processors,

so that we may exploit global parallelism.

A formal technique utilizing augmented data access descriptors (ADADS) to deter-

mine this distribution is presented. This technique differs from previous approaches

in that it views the problem of finding a good distribution as an extension of data

dependence analysis. The application of this technique to the task of parallelizing

the highly vectorizable programs generated by ADIFOR, an automatic differentiation

tool, demonstrates its utility.

ACKNOWLEDGEMENTS

I would like to-thank my thesis advisor, Dr. Lionel Ni, and my entire thesis

committee for their help and insight as I put this thesis together. Thanks as well to

Chris Bischof and Andreas Griewank, for introducing me to the world of automatic

differentiation and ADIFOR. Finally, thanks to my friends and family for the love

and support they have provided over the years.

iv

TABLE OF CONTENTS

LIST OF FIGURES

1 Introduction

1.1 Motivation

1.2 ADIFOR

1.3 Problem Statement

1.4 Organization

2 Foundations

2.1 Data Alignment

2.2 Data Dependence Analysis

2.3 Data Access Descriptors

2.4 Properties of Vectorizable Code

3 Augmented Data Access Descriptors

3.1 Augmented Data Access Descriptors

3.2 Finding a Good Alignment Using ADADs

3.2.1 Program Model

3.2.2 Computing Augmented Data Access Descriptors

3.2.3 Combining Augmented Data Access Descriptors

3.2.4 Using ADADS to Develop Alignment Statements

3.3 An Example

3.4 Interprocedural Analysis

4 The Effects of Loop Transformations on ADADs

4.1 Promotion

4.2 Loop Unrolling

4.3 Loop Fusion

4.4 Loop Interchange

4.5 Strip Mining

4.6 Invariant Code Movement

vii

(
O
Q
O
i
-
h
t
—
t
i
-
l

11

11

15

17

22

23

23

26

26

27

29

32

36

43

49

50

52

54

56

57

58

4.7 An Example 60

5 Performance Analysis 65

5.1 Parallelizing ADIFOR-generated code 65

5.2 Applying ADADs to Vectorizable Code 69

5.3 Empirical Results 74

6 Conclusions 77

6.1 Summary 77

6.2 Future Studies 79

BIBLIOGRAPHY 81

A Sample Programs 83

B ADIFOR-generated Code 88

vi

LIST OF FIGURES

5.1 Performance of various parallelization methods for program 1 76

5.2 Performance of inside-out method for program 2 76

vii

CHAPTER 1

Introduction

Since the advent of powerful vector supercomputers such as the Cray and Convex,

scientists have expended a great deal of energy creating code that vectorizes well.

Furthermore, computer scientists have developed tools that can take ordinary code,

perform some analysis, and produce new code that vectorizes well [3]. Such code is

characterized by many small loops that traverse an (one or multi—dimensional) array

in a single direction.

1 . 1 Motivation

Today, another type of supercomputer has entered the picture—parallel computers.

These machines are characterized by several, and often hundreds of, processors ca-

pable of operating more or less autonomously. It is highly desirable that the code

that executed well on the vector supercomputers of the past would execute as well

on the supercomputers of today with little or no modification. Since each iteration of

the small loops mentioned earlier may be executed in parallel (this is, in effect, what

happens in a vector processor), one would expect vector code to parallelize easily,

and with good performance. However, this is not always the case. The reason for

this is in large part due to the hardware used to execute parallel programs. There

is a start-up latency associated with executing several instructions in parallel. In

addition, the data to be used for these parallel operations must be distributed to the

processor where the computation will take place, the result of which must be stored

in its destination.

On a shared memory parallel supercomputer, a variable is retrieved from either

the local cache or main memory. In either case, the access time is essentially inde-

pendent of which processor is performing the computation. However, in a distributed

memory parallel supercomputer, each processor has associated with it its own local

memory. Accessing variables stored in local memory requires significantly less time

than accessing variables located in the memory associated with some other processor,

as the data must be communicated between the processors via some sort of network.

Because it is more scalable, the predominant paradigm in massively parallel systems

is distributed memory. So, if we wish to achieve good performance on a modern

supercomputer, we must try to minimize the communication of data from one pro-

cessor to another. As an example of a program that is well—suited for execution on

a vector supercomputer, but exhibits poor performance on a parallel supercomputer,

especially one with distributed memory, consider the following code segment:

DOALL I=2, 100

Ml) = B(I) + B(I-1)

ENDDD

This loop corresponds to the vector operation:

A(2:100) = B(2:100) + B(1:99)

and could be executed at very low cost on a vector computer. This program is said

to exhibit fine granularity; i.e., the amount of work performed within the parallel

loop is very small. This situation presents a problem for all parallel supercomputers,

because these machines must resynchronize after each parallel loop. If only a few

synchronizations need to be done, this cost is negligible, but if it is done frequently,

as in fine-grained programs, the additional cost can be substantial, and performance

poor. In addition to synchronization costs, on a distributed memory supercomputer,

execution of this code would require a substantial amount of communication. If A(k)

and B(k) are stored on processor k, k = 1, - - - , 100, then in order for us to perform

this computation in parallel, we must first communicate the value of B(k-1) from

processor k — 1 to processor k. As a consequence of the high costs associated with

entering and leaving a parallel loop, in order for code to execute efficiently on a

parallel machine, it must have a high ratio of work performed inside parallel loops

to number of parallel loops, or coarse granularity. Also, on a distributed memory

machine, communication of data from one processor to another must be kept to a

minimum.

One approach to attaining the goal of coarse granularity is through the use of

“global parallelism.” In this paradigm, the entire program executes as parallel tasks

on the several processors. If data computed by one processor is required by one

or several other processors, it must be communicated to this (these) processor(s).

It is extremely important that we minimize the amount of communication that is

performed. This problem reduces to deciding where data should be stored (that is,

where it is computed) among the various processors.

We address this problem, proposing the augmented data access descriptor as a

means to determine the best distribution for arrays on a distributed memory parallel

computer. Li and Chen have proven that the general problem of data distribution

on distributed memory machines is NP-complete [8]. However, the method presented

provides a good heuristic, in that it is often able to identify a communication free

distribution, if one exists. As presented, the algorithm applies to all programs. How-

ever, case studies will focus on vectorizable code, in particular, the code generated

by ADIFOR, a Fortran source-to-source translator that produces code for derivative

computation [2].

1.2 ADIFOR

In addition to existing programs intended for execution on vector computers, some

code that is generated automatically may lend itself easily to vectorization, but not

necessarily to parallelization. The code generated by ADIFOR, a tool for the au-

tomatic differentiation of functions, falls in this category. In order to facilitate our

discussion of the parallelization of these programs, a brief explanation of automatic

differentiation and ADIFOR is in order.

Traditionally, there have been three approaches to obtaining the derivatives of

functions in a computer program. One approach is to manually code the derivative of

the function. This task can be exceedingly complicated and tedious, and is prone to

errors, particularly if the function is very complex. Alternatively, one can use finite

differences. This approach is the simplest, but it is also the least accurate and can

produce large errors if a poor step size is selected. A third option is to use a symbolic

manipulator, such as Maple [4]. This is an excellent choice for many functions, but has

some drawbacks of it’s own. First, most manipulators are unable to handle extremely

complicated functions. Second, some redundant computations will be performed if

common subexpressions are not eliminated.

An alternative to all of these techniques is automatic differentiation. Automatic

differentiation relies upon the fact that every function, no matter how complicated, is

simply the composition of a small set of elementary functions, such as multiplication,

sine, and square root. The mathematical notion of a composition corresponds directly

to a program statement that performs some mathematical operation on the results

of previous computations. Thus, the code segment

X2 = X*X

F = SIN(X2)

corresponds mathematically to the composition of sine and multiplication, i.e.

= sin :32 . As a conse uence of this correlation, we may apply the chain rule9

>szg...)) (% (film)

repeatedly to the composition of the elementary operations, allowing us to calculate

g (9(t))|,:,0 = (gig-as

the derivatives of a function computed by an elaborate program accurately and in a

completely mechanical fashion. This procedure is referred to as automatic differenti-

ation [6].

ADIFOR transforms Fortran 77 programs using this approach. As an example,

suppose we have a Fortran subroutine that computes the value of f = 1'1?=1 58(2) The

code sequence might be written as:

subroutine prod5(x,f)

real x(5), f

f = x(1) * x(2) * x(3) * x(4) * x(5)

return

end

Then, if we wish to compute the derivatives of f with respect to 93,-,i = 1,-~,5

and store the results in array g$f(), we might apply our knowledge of calculus and

produce:

f = x(1) * x(2) * x(3) * x(4) * x(5)

g$f(1) = X(2) * XC3) * XC4) * X(5)

g$f(2) = x(1) * xCB) * XC4) * x(5)

g$f(3) = X(1) * X(2) * X(4) * X(5)

g$f(4) = X(1) * XCZ) * X(3) * XCS)

g$f(5) = X(1) * XC2) * X(3) * X(4)

where we use g$f(i) to designate 63%,. If instead we apply ADIFOR to this subrou-

tine, ADIFOR produces:

r$1 = x(1) * x(2)

r$2 = r$1 * x(3)

r$3 = r$2 * x(4)

r$4 = x(5) * x(4)

r$5 = r$4 * x(3)

r$1bar = r$5 * x(2)

r$2bar = r$5 * x(1)

r$3bar = r$4 * r$1

r$4bar = x(5) * r$2

do gi = 1, gp

g$f(g$i$) = r$1bar*g$x(g$i$,1) + r$2bar*g$x(g$i$,2)

+ r$3bar*g$x(gi,3) + r$4bar*g$x(gi,4)

+ r$3*g$x(gi, 5)

end do

f = r$3 * x(5)

Variables introduced by ADIFOR contain the $ sign, and continuation line charac-

ters have been deleted to improve readability. The array variable g$x corresponds

mathematically to g—:. From calculus, we know that

33, 0 fii¢j

1ifi=j

Thus, g$x should be initialized to the 5 X 5 identity matrix. The variable gp

corresponds to the number of columns in this array and should be set equal to 5. If

this initialization is performed, the code above is equivalent to:

r$1 = x(1) * x(2)

r$2 = r$1 * x(3) = x(1) * x(2) * x(3)

r$3 = r$2 * x(4) = x(1) * x(2) * x(3) * x(4)

r$4 = x(5) * x(4)

r$5 = r$4 * x(3) = x(5) * x(4) * x(3)

r$1bar = r$5 * x(2) = x(2) * x(3) * x(4) * x(5)

r$2bar = r$5 * x(1) = x(1) * x(3) * x(4) * x(5)

r$3bar = r$4 * r$1 = x(1) * x(2) * x(4) * x(5)

r$4bar = x(5) * r$2 = x(1) * x(2) * x(3) * x(5)

g$f(1) = r$1bar = x(2) * x(3) * x(4) * x(5)

g$f(2) = r$2bar = x(1) * x(3) * x(4) * x(5)

g$f(3) = r$3bar = x(1) * x(2) * x(4) * x(5)

g$f(4) = r$4bar = x(1) * x(2) * x(3) * x(5)

g$f(5) = r$3 = x(1) * x(2) * x(3) * x(4)

f = r$3 * x(5)

Comparing this code with the program derived using calculus reveals that the vector

g$f does in fact contain 8—5—9. In addition, the ADIFOR-generated program computes

the product in a binary-tree like fashion, allowing intermediate results to be utilized

in the computation of the gradient. As a consequence, no redundant subexpressions

are computed, and the ADIFOR—generated code may require fewer floating point

operations than the code that we generated by hand.

What is most important about ADIFOR-generated code for our purposes is that

it contains many loops of length gpl If gp (which, memory permitting, is equal

to the number of elements in the independent variables) is large, this code vectorizes

very well. In addition, the vectors under consideration are always the same—the first

index of the gradient arrays is the only one that varies.

Since arrays are always accessed along the same dimension, it would appear that

distributing a different row (or set of rows, if there are more rows than processors)

to each processor would minimize the amount of communication necessary. This

conclusion is correct, but it does not take into consideration the need to communi—

cate the scalar values computed in between the vector loops. We can eliminate this

problem by using scalar promotion so that scalar computations are duplicated on all

processors, but this approach increases the total amount of work being performed.

Thus, we cannot achieve linear speedup, that is, execution on N processors requires

1For a. more complete discussion of the code and how it works, see [2].

% execution time on a single processor, our ultimate goal. Alternatively, we can try

to take advantage of any parallelism inherent in the original code, which ADIFOR is

guaranteed to preserve.

1 .3 Problem Statement

In Section 5.1, some mathematical analysis using estimates for various properties

of ADIFOR-generated code is performed. This analysis provides some very general

rules for parallelizing this code. These rules also apply to other vectorizable code.

However, the guidelines established are only useful if the programmer is able to find

the best distribution for the original program. If the original program is exceedingly

complex, this may be a formidable task if the best distribution must be determined

by the programmer. Instead, we would like to determine the best distribution of

data in an automatic fashion. Toward this aim, a formal technique utilizing aug-

mented data access descriptors to compute a close approximation to this distribution

is presented. Empirical results from execution on a Butterfly TC2000 reveal that

conclusions reached by the proposed method are reasonable.

1 .4 Organization

The organization of this thesis is as follows. Chapter 2 provides a brief explanation

of four subjects that are the underpinnings of augmented data access descriptors-

data alignment, data dependence analysis, Data Access Descriptors, and the special

properties of vectorizable code. The following chapter presents the augmented data

10

access descriptor, specifying its format, computation, meaning, and application to

modular programs. Chapter 4 describes the effects of various loop transformations—

promotion, loop unrolling, loop fusion, strip mining, and invariant code movement—

on augmented data access descriptors. In addition, an example of how goal-directed

loop transformations can be used to eliminate the need for data communication in

‘ a program is presented. The final chapter examines the parallelization of ADIFOR-

generated code, and provides empirical results to support the conclusions reached.

The nature of augmented data access descriptors and how they should be applied to

vectorizable code is reviewed, and topics requiring further study are presented.

CHAPTER 2

Foundations

This chapter serves as a brief introduction to data alignment, data dependence anal-

ysis, Data Access Descriptors, and the special nature of vectorizable code. This back-

ground information is necessary for a complete understanding of augmented data

access descriptors, and why they are useful.

2.1 Data Alignment

In order to aid parallelizing compilers in the task of code generation for distributed

memory computers (or any computer with non—uniform memory access time), several

languages have been developed that enable the programmer to include information

concerning the way in which data should be distributed among the various processors

[5, 12]. If the proper alignment of data is chosen by the programmer, then commu-

nication costs may be minimized. Furthermore, the compiler may exploit multicast

communication and other specialized communication techniques to further reduce the

cost of communicating information [10]. For example, suppose we wish to multiply

11

12

an N x N matrix A by an N element vector B to produce an N element product

vector, C. An ordinary Fortran 77 program to accomplish this task might look like:

DOUBLE PRECISION A(N,N), B(N), C(N)

INTEGER OUTER, INNER

DO OUTER=1, N

C(OUTER) = 0

DO INNER=1, N

C(OUTER) = C(OUTER) + B(INNER)*A(OUTER,INNER)

ENDDO

ENDDO

The Fortran D version [5] of this program would be something like:

DOUBLE PRECISION ACN,N), B(N), C(N)

INTEGER OUTER, INNER

c The next 5 lines are Fortran D specifications regarding

c the alignment of arrays A,B, and C.

DECOMPOSITION X(N)

ALIGN A(I,J) with X(I)

ALIGN B(I) with x(*)

ALIGN C(I) with X(I)

DISTRIBUTE X(CYCLIC)

PARALLEL DO OUTER=1, N

C(OUTER) = 0

DO INNER=1, N

C(OUTER) = C(OUTER) + B(INNER)*A(OUTER,INNER)

ENDDO

ENDDO

The DECOMPOSITION statement indicates that an N element vector X is to be

used as our frame of reference, or template. Each element of C aligns exactly with an

element of X. In addition, one row of A and the entire vector B is aligned with each

13

element of X. The DISTRIBUTE statement simply indicates how the data aligned with

each element of X should be distributed if there are not enough processors} If we

assume that the number of processors is greater than N, then each processor contains

a row of A, the vector B, and an element of C. Thus, each processor may compute

an element of C without needing to communicate with any of the other processors.

Unfortunately, determining the best distribution for a complicated program can

be exceedingly difficult. Also, a small mistake in the alignment statements can be

extremely costly. Suppose, for example, that we had produced the Fortran D program:

DOUBLE PRECISION A(N,N), B(N), C(N)

INTEGER OUTER, INNER

DECOMPOSITION X(N)

ALIGN A(I,J) with X(J)

ALIGN B(I) with x(*)

ALIGN C(I) with X(I)

DISTRIBUTE X(CYCLIC)

PARALLEL DO OUTER=1, N

C(OUTER) = 0

DO INNER=1, N

C(OUTER) = C(OUTER) + B(INNER)*A(OUTER,INNER)

ENDDO

ENDDO

The only difference between this program and the previous example is the ALIGN

statement for A. However, the change in performance would be dramatic. In order

for a given processor to compute its assigned element of C, C,, it must first get the

values of A,,,-(,-¢j) from the other processors. This communication could be very costly.

1For a more complete explanation of the syntax of this and other Fortran D instructions, see [5].

14

In order to prevent such mistakes from occurring, and to assist in the automatic

generation of data alignment information, several techniques have been developed

that determine a good (but not necessarily the best) data alignment in a mechanical

fashion. Li and Chen model the data alignment problem as a graph problem, and

present a heuristic algorithm for solving the problem [8]. The heuristic approach

produces performance results that are comparable to the optimal alignment (found

using brute force), and significantly better than the performance of an alignment

determined using a greedy algorithm. Gupta and Banerjee use a different approach,

attacking the problem from the perspective of the whole program, and solving for

an optimal combination of parallelism and communication costs, subject to certain

constraints [7]. Both approaches have their merit and may be better suited for many

applications than the technique described in Chapter 3. However, the approach we

examine has the advantage that it is very simple (and thus suitable for use in a

compiler, which must process a program in a reasonable amount of time) and can

treat statements, regions of programs, and entire programs in an identical manner.

This flexibility is an important feature, because it enables the separate examination

of sections of a program. In many cases, one alignment is appropriate for one stage

of a computation, while a different alignment is appropriate for a later stage. Using

both alignments can result in better performance than just using one alignment or

the other for the entire program [11].

15

2.2 Data Dependence Analysis

Instead of treating automatic data alignment as a completely new problem, we can

view data alignment as an extension of data dependence analysis. Data dependence

analysis is the investigation of the manner in which the execution of one statement

influences the results of another. In order for statements to be executed in parallel,

it is necessary that the result of each statement be independent of the results of all

other statements. Data dependence may take one of three forms: flow dependence,

antidependence, or output dependence. Flow dependence indicates that a variable is

defined by statement 81, then used by statement S2. Antidependence indicates that

a variable is used by statement S1, then defined by statement S2. Output dependence

indicates that a variable is defined by statement SI and by statement S2. By far the

most important of these is flow dependence, because anti— and output dependence

may be eliminated through the use of temporary variables.

Dependence analysis is straightforward when statements involve only scalar vari-

ables; if a variable appears on the left side of an assignment statement, then a depen-

dence exists with any other statement that references that variable. However, when

arrays are referenced using an expression that may vary between iterations of a loop,

it is possible for a dependence to exist between separate iterations of the loop. Such

a dependence is called a loop carried dependence.

There are many ways to test for loop carried dependences. One method

is to solve a Diophantine equation describing the array references and check if

the solution lies within the bounds of the loop(s). For example, suppose state—

16

ment Sl defines A(f1(i1,i2, . . .,ig,), . . . ,fm(i1,i2, . . . ,ig,)) and statement S2 uses

A(g1(j1,j2,...,jg,),...,gm(j1,j2,...,jg,)), where array A has m dimensions, S1 is

nested in 61 loops and S2 is nested in [2 loops. Then a flow dependence exists if the

equation

fk(i1)i2)' ' .,i£1)= gk(j1)j27'° '7jl2)31 S k S m

has an integer solution within the loop bounds. Solving the Diophantine equation can

be a computationally demanding task, especially when m is large. As a consequence,

several conservative tests of data dependence have been developed. Among these are

the GCD test, the Banerjee test, and the /\ test [9, 13]. These tests are conservative

in that they test necessary conditions for a dependence to exist. However, these

conditions may not be sufficient. Thus, a test may indicate that a dependence exists

when in fact it does not, but it will never indicate that a dependence does not exist

when it does.

Traditionally, parallelizing compilers have relied upon data dependence analysis to

determine whether particular sections of code or iterations of a loop may be executed

in parallel. If a dependence exists, then the loop is not parallelized. However, in

the global parallelization scheme, it is assumed that occasionally a variable will be

defined by one processor and used by another. What is most important is that the

number of times a dependence occurs (thereby creating a need for communication)

is minimized. Thus, data alignment may be viewed as an advanced type of data

dependence analysis, through which we attempt to minimize some function, which

serves as an approximation to communication costs.

17

2.3 Data Access Descriptors

In developing the Data Access Descriptor, Balasundaram takes a slightly different ap-

proach to data dependence analysis [1]. Rather than focusing upon the dependence

of one statement on another, Balasundaram examines the manner in which regions

of a program influence one another. This approach allows traditional statement-to-

statement data dependence analysis to be unified with interprocedural data depen—

dence analysis, which is extremely important in modular programs.

The Data Access Descriptor contains a variety of information regarding the way

in which a particular variable is accessed. An extremely important aspect of the

Data Access Descriptor is the simple section, a set of hyperplanes that form convex

hulls that completely enclose the regions of arrays accessed by a section of a program

(which may be a single statement or the entire program). By applying intersection

and union operations to these descriptors, it is possible to determine whether a data

dependence exists between two regions of a program. For example, suppose we have

the following section of code:

D0 I=1, 5

D0 J=1, 5

A(J,I) = 1.0

ENDDO

ENDDO

D0 I=1, 3

D0 J=1, 3

A(J-I+5,I+J-1) = 1.5

ENDDO

ENDDO

D0 I=6, 10

DO J=1,5

18

A(I,J) = A(I,6-J)

ENDDO

ENDDO

which we wish to parallelize by executing the third pair of loops concurrently with

the execution of the first and second pairs of loops.

Then the portion of A referenced by the first pair of DO loops (a region of the

program which we will denote R1) can be described by:

2£$+y310

—4Sw—y§4

where a: and y correspond to the first and second dimensions of A, respectively. This

system of equations may be represented graphically as:

where solid lines correspond to equations which actually impose bounds on the array

dimensions, and dotted lines correspond to equations providing redundant informa-

19

tion. The second pair of DO loops, R2, access a portion of A described by:

OSSC'i—USIO

—4§:c—y§0

which may be represented graphically as:

0 2 4 6 8 10

7Sx+y315

ISr—yg9

This set of equations has a graphical representation of:

20

6 I I I/ l \l

\

5— / -
/ \

4e / ‘s

3— ..

2— \ 7

1_ \. /_

\ /

0 1 L l\ l /1

0 2 4 6 8 10

The DADS describing two regions of a program can be combined using union to yield

a DAD describing a larger region of the program. So, we can get the Simple section

describing regions R1 and R2 by taking the union of the simple sections for R1 and

R2, yielding:

21

2§x+y310

—4S:c—y§4

If we compute the intersection of this merged simple section with the simple section

for R3, we discover that it is:

83$+y310

—4£x-yS—2

Or, graphically,

The fact that the simple section is not empty indicates that the section of code

composed of R1 and R2 accesses some of the same array elements as R3. Therefore,

these two sections of the program may not be executed in parallel. It is also easy to

determine that region R1 could not be executed in parallel with a section composed

of R2 and R3, since SS(R1) fl (SS(R2) U SS(R3)) 74 0.

22

2.4 Properties of Vectorizable Code

In addition to the standard considerations when performing data alignment analysis,

code which vectorizes well has certain special properties which we may wish to keep in

mind. Arrays are generally accessed along rows and columns, rather than in irregular

patterns. It is these regular accesses that facilitate vectorization. They also facilitate

data alignment, in that it is easier to determine how to best distribute data that is

always accessed in the same, Simple pattern. As was seen in Section 1.2, in the case

of ADIFOR—generated code, the accesses are even more regular, as they all occur

along the leading dimension of the array. In addition to regular access patterns,

vectorizable code is characterized by many small loops. This presents a problem for

standard parallelization techniques, because the amount of work performed inside

the loops is too small to make the high overhead of executing a loop in parallel

tolerable. However, when we exploit global parallelism, this fine granularity may be

acceptable. We will keep these special properties in mind as we examine a mechanism

for determining the proper data alignment for vectorizable programs.

CHAPTER 3

Augmented Data Access

Descriptors

We now explore a mechanism for finding a good data alignment. We define a good

alignment as one that leads to a distribution that is free from communication. In

cases where we cannot eliminate communication, we attempt to minimize it.

3.1 Augmented Data Access Descriptors

One approach to quantifying the amount of communication overhead associated with

various data distributions is to extend the data access descriptor so that it describes

both the sections of an array that are accessed by a particular statement and also

the manner in which they are accessed. As explained in Section 2.3, the original data

access descriptor consists of a set of hyperplanes forming a convex hull within which

all array accesses are guaranteed to occur. This information can be very useful, but

may be expensive to compute. However, because of the restrictive nature of data

23

24

alignment languages like Fortran D and DINO [5, 12], as well as the propensity of

vector codes to access arrays along the axes, it is sufficient to restrict our convex hulls

to hypercubes.

We are most interested in accesses that proceed along one dimension of the array

(as opposed to cases where the subscripts are coupled). Such accesses are easy to

identify, because they occur when one of the subscripts of the array is a function of

only one of the iteration variables; e. g., A (3*I+7) =1 .0. These accesses are also impor-

tant, because they indicate that the array may be distributed across that dimension

(and parallelized along that dimension) without any need for communication.

The augmented data access descriptor (ADAD) for an array referenced in a par—

ticular statement will consist of a k X n array of tuples, where k is the level of nesting

for the statement and n is the number of dimensions in the array, plus an integer

element, whose value is set equal to 19.1 For example, in statement SI in the following

code:

DO I=1, 100

D0 J=2, 50

ACI,J,I+J) = B(I,J) (Si)

ENDDO

ENDDO

the ADAD describing A would contain a 2 x 3 array of tuples, plus the integer 2, and

the ADAD describing B would contain a 2 X 2 array of tuples, plus the value 2. For a

k X n tuple array, each tuple is denoted by D(A, S, I, D), where A is the array being

1Strictly speaking, this integer element is not necessary, as we may deduce k from the number

of rows in the ADAD. However, it is included to facilitate the use of a statement’s degree of nest-

ing as a tie-breaker in determining alignments (the use of this heuristic for situations in which a

communication—free alignment is not possible will be discussed later).

25

described, 5 is the statement with which we are concerned, I is an iteration variable,

and D is a dimension of array A.

The first two members of each tuple indicate the lower and upper bounds, re-

spectively, on the value subscript D may assume (note that this value is independent

of I). The third element gives some indication of whether parallelizing the iteration

variable to which that row of the ADAD corresponds will create a need for commu-

nication if the array in question is distributed across that dimension. If this element

is an asterisk (*) then communication is necessary, and the fourth element in the

tuple is the empty set. If the element is a positive integer, then communication is

not necessary, if the array is distributed in bands of width equal to this positive in-

teger. In this case, the fourth element of the tuple is a set of offsets indicating which

rows (or columns, depending on perspective) are referenced by that statement. This

information is important for combining ADADS, a procedure to be described later.

If the third element is zero, no communication is necessary, so long as this is the

only reference to the array. The value zero is used as an indicator that the subscript is

a nonlinear function of the particular iteration variable. Distribution is complicated,

but possible, as discussed in Section 3.2.4. AS in the case of an asterisk, the tuple’s

fourth element is the empty set.

The ADADS for the example above are:

26

2 dimensionl dimension2 dimension3

139,31) = 1 (1,100,1,{0}) (2,50,*,(0) (3,150,*,0)

J (1,100,*,(Zl) (2,50,1,{0}) (3,150,*,(0)

and

2 dimension 1 dimension 2

00351) = I (1,100,1,{0}) (2,50,*,(0)

J (1,100,*,0) (2,50,1,{0})

The details of how these ADADS are computed will be discussed in the next section.

3.2 Finding a Good Alignment Using ADADS

3.2.1 Program Model

In describing ADADS and how they should be used, several assumptions are made

about the programs being evaluated. One assumption is that loops have a step size

of one. Such a loop is said to be normalized. Since it is possible to normalize any

loop [13], this restriction is not significant. We also assume that arrays are primarily

indexed by iteration variables. Constants and induction variables are also often used

to index arrays. Since constants do not provide a means for distribution and induction

variables can always be replaced by expressions involving iteration variables, this

27

assumption does not impose unnecessary restrictions. The third assumption is that

those statements located in the innermost loops are executed most frequently. In

general, this is a reasonable assumption, especially if loops involve more than a few

iterations. However, if a statement is guarded by a conditional, and the guard is

usually false, then it may be executed less frequently than a statement with a smaller

degree of nesting. However, since this assumption only governs our decision as to

how data should be aligned when a communication-free distribution does not exist,

correctness is not affected, and it is hoped that the effect on performance is minimal.

3.2.2 Computing Augmented Data Access Descriptors

The computation of ADADS is very simple. Given a particular reference to a par-

ticular array in a particular statement, for each loop within which that statement is

nested, we compute a tuple, D(A, S, I, D), representing the dependences of a particu-

lar subscript with respect to the iteration variable corresponding to that loop, as well

as the upper and lower bounds of the subscript. The upper and lower bounds, which

as mentioned earlier are the first and second elements of a tuple and which we denote

D(A,S,I,D)[1] and D(A,S,I,D)[2], can often be determined in a straightforward

fashion using the upper and lower bounds of the iteration variables. For example, if

a subscript is a monotonic function, G, of iteration variables I and J, then the lower

bound of the subscript, D(A, S, I, D)[1] is equal to the lower bound of the function:

D(A,S.I,D)l1l = min(G(L(1), L(J))aG(L(1), U(J))aG(U(I),L(J)),GUJU), U(J)))

28

Similarly, the upper bound of the subscript, D(A, S, I, D)[2], is:

904,531,139]: m&X(G(L(I), 1301)): G(L(I), U(J)),G(U(I),L(J)),G(U(I), UUD)

In cases where G is not monotonic, or where the bounds of the iterations are not

known, a conservative assumption regarding these bounds (0 for the lower bound and

positive infinity (00) for the upper bound) may be made.

The computation of the third element of the tuple may be expressed as:

r

m if D is a linear function m] + b of the iteration variable

D(A7 5: I) D)l3l : i 0 if D is a nonlinear function of the iteration variable, I

otherwise

Similarly,

{b} if D is a linear function mI + b of the iteration variable

D(A, S,I,D)[4] =

(2) otherwise

As an example, the augmented data access descriptor for statement 81 in the

following code segment:

DO 100 I=1,100

DO 110 J=1,100

A(I,J) = SQRT(I*J) (Si)

110 CONTINUE

100 CONTINUE

is:

29

2 dimensionl dimension2

D(A,Sl) = 1 (1,100,1,{0}) (1,100,*,0)

J (1,100,*,0) (1,100,1,{0})

This is equivalent to saying: “Statement 81 has a nesting level of 2. With respect

to iteration variable I, array A may be distributed across its first dimension, since the

first subscript is a linear function (U + 0) of I, but not across its second dimension.

With respect to iteration variable J, array A may be distributed across its second

dimension, since the second subscript is a linear function (1.] + 0) of J, but not across

the first dimension.” This is in complete agreement with the actual syntax of SI.

3.2.3 Combining Augmented Data Access Descriptors

Combining two ADADS that describe the same array is also a rather straightforward

task, as long as the convex hulls described by the the first two elements of the tuples

intersect. If they do not intersect, it may be possible to avoid communication by

distributing those two regions of the array in different ways. However, since the

ability to do this also implies that the program could be re—written in terms of two

different arrays, each of which would have its own augmented data access descriptor,

we can ignore this case and assume the hulls intersect.

Definition 3.1 (Merged Augmented Data Access Descriptors)

Merged ADADS consist of an I X n array of tuples, where l is the number of iteration

variables in common to the ADADS being combined, and n is the number of columns

30

in the original ADADS {also equal to the number of dimensions in the variable being

described). As in regular ADADS, each tuple is a I-tuple. For each iteration variable

I and dimension D, we derive a new tuple according to the following procedure.

1. D(A, {Sl,S2},I,D)[1] = min(D(A,SI,I,D)[1],D(A,S2,I,D)[1]

2. D(A, {Sl,S2},I,D)[2] = max(’D(A,Sl,I,D)[2],D(A,S2,I,D)[2]

The reason for choosing these elements in this manner is that accesses to the array by

these statements must lie within the hypercube whose bounds correspond to the max-

imum and minimum, respectively, of the upper and lower bounds of the hypercubes

containing the accesses of the statements being merged.

3. If :D(A,31,I,D)[3] ,i D(A,32,I,D)[3] or D(A, Sl, 1,0)[3] = 0 or

D(A, 52, I, D)[3] = * Then

D(A,{51,S2},I,D)[3] = *;D(A,{51,S2},I,D)[4]=0;

Else

Let B : D(A, 51,1, D)[4] U D(A, 52,1, D)[4];

If max(B) —min(B) < D(A,Sl,I,D)[3] Then

D(A, {51, 52},I,D)[3] = D(A, Si, I, D)[3];

D(A, {51, 52},I,D)[4] = B;

Else

D(A, {51, $2},I,D)[3] = *; D(A, {Sl,S2},I,D)[4] = 0;

Endif

31

Endif

As an example, consider the following ADADs:

3 dimension 1 dimension 2 dimension 3

I (1,49227{_1}) (1.100330) (1,100,*,0)

D(A,Sl) =

J (1,49,*,0) (1,100,1,{-1}) (1,100,*,0)

K (1,49,*,lll) (1,100,*,@) (1,100,2,{0})

3 dimension 1 dimension 2 dimension 3

I 2,100,2, 0 1,200,*,0 1,100,*,(bW’s” : < { }) <) <)

J (2,100,*,(ll) (1,200,1,{0}) (1,100,*,(b)

K (2,100,*,(0) (1,200,*,0) (1,100,3,{0})

Then the merged augmented data access descriptor is:

3 dimension 1 dimension 2 dimension 3

I (1,100,2,{—1,0}) (1,200,*,(0) (1,100,*,0)
 D(A,{Sl,82}) =

J (17100370) (1.200,*,@) (1,100,*,0)

K (1,100,393 (1.200330) (1400740)

Definition 3.2 (Global Augmented Data Access Descriptors) A global aug-

mented data access descriptor is a merged augmented data access descriptor for all

32

statements in the section of a program being analyzed.

3.2.4 Using ADADS to Develop Alignment Statements

After all of the ADADS describing a particular array have been combined to form one

global ADAD, we can make some decision as to what the best distribution for that

array might be.

Lemma 3.1 If the third element of the tuple corresponding to the iteration variable

whose loop is to be parallelized and the dimension of the array across which we wish

to distribute is a positive integer, m, then the array should be distributed in bands

of width equal to m. In addition, they should be oflset by an amount corresponding

to the smallest member of the fourth element. If this procedure is followed, then

communication will not be necessary. This may be formalized as follows:

Given:

S — a section of code.

I —- an iteration variable in section S.

n — the number of arrays accessed in section S.

Ak(k = 1..n) — the arrays accessed in section S.

Dk — an index corresponding to a dimension of array Ak.

D(A, S,I, D)[j] — the value of the jth element of the tuple corresponding to

iteration variable I and dimension D in the ADAD describing the accesses to

array A in section S.

33

If:

(31:Loop(I)§S:(VAk:1gkgn:

(3D,, : 1 g Dk S Numdims(Ak) :’D(Ak,S,I,Dk)[3] Z 0)))

Then:

The loop may be parallelized in a communication free manner.

Algorithm:

Given any code segment S for which the constraint holds, we can construct a data

parallel Fortran D version that is free from communication in the following manner:

1. Change the DO loop associated with I to a parallel loop.

2. For each array Ak choose some dimension Di, satisfying the above constraint,

and let Tk = ’D(Ak, S, I, Dk)[3]. Also, let Tlcm equal the least common multiple

of the nonzero Tks.

3. Add a decomposition statement of the form

DECOMPOSITION X(U)

to the code, where X is an unused variable name, and

U = max{’D(Ak,S,I,Dk)[2] X (Tim/TO}-

4. For each array Ak, if T}, 75 0 add an alignment statement of the form

ALIGN Ak(I,J,...) with X(stride*M—(strideXoflset))

to the program, where stride = Tzcm/Tk, oflset = max(D(Ak, S,I,Dk)l4]), and

M corresponds to the placeholding index variable (I, J, etc.) representing di-

mension D1,. If T1,. = O, array A}, is referenced only once and its distribution

34

should be handled independently and in a manner consistent with that refer-

ence. If the reference pattern is complicated enough, this may require Specifying

the distribution of each row individually.

5. Add a distribution statement, such as

DISTRIBUTE X(BLOCK-CYCLIC(Tzcm))

to the program.

Example:

AS an example of the application of this algorithm, suppose we have the following

ADADS.

dimensionl dimension 2

D(A,global) =

I (1,100,*,(b) (2,100,1,{0})

dimension 1 dimension 2

D(B,global) :

I (2,199,2,{-2,-1}) (1,100,*,(ll)

Then, we should create a Fortran D version of the program by adding the following

lines to the program.

DECOMPOSITION X(200)

ALIGN A(I,J) with X(2*I)

ALIGN B(I,J) with X(I+1)

DISTRIBUTE X(BLOCK_CYCLIC(2))

35

Proof of correctness:

Assume a need for communication exists. Then, there must be a reference to an

element of array A,- by processor p, when that element is not stored on processor p.

Since we have used the ADADS as a basis for distribution, there is a reference R to

A,- such that the value of dimension D,- is not in the range [p X D(Aj, S,I, Dj)[3] +

min(D(Aj, S, I, D,)[4]), (p +1) X D(Aj, S, I, Dj)[3] + min(D(A,-, S, I, Dj)[4]) — 1] (we

assume D(Aj,S,I,Dj)[3] 75 0, for if it did, then there would be only one refer-

ence to Aj, and distribution should be performed in a manner consistent with that

reference, as discussed in Section 3.2.4). Because of the procedure for merging

ADADS, D,- ¢ [p X D(Aj, S, I, D,)[3] +min(’D(A,-, S, I, D,)[4]),p X D(Aj, S, I, D,)[3] +

ma.v(D(A,~, S, I, Dj)[4])], which in turn implies that the individual ADAD for array

A,- and reference R, D(A,R), must have D(A,,R, I, Dj)[3] 75 D(Aj,S,I,Dj)[3], or

that the single element of D(A,,R, I,D,-)[4] is not an element of D(Aj, S,I, Dj)[4].

But, under the rules for constructing D(Aj, S) provided in Section 3.2.3, either situ-

ation is impossible. Thus, the assumption that communication is necessary is false.

QED.

A value of 0 for the third element indicates a special case for which the requi—

site distribution is difficult—the rows being accessed by successive iterations must be

distributed to successive processors. Describing such distributions is possible in lan-

guages like Fortran D, but very complicated. Because of the large amount of work

involved, as well as the potential for error, one would not typically attempt to add the

necessary code by hand. However, since the alignment statements describing this dis-

36

tribution can be generated automatically, the presence of such references is a strong

argument for the use of a tool that can generate alignment information automatically.

If the third element of a tuple is an asterisk, then communication will be necessary

if the array is distributed across that dimension and the loop designated by that

iteration variable is to be parallelized. In order to determine which distribution will

result in the least communication, we re-evaluate the global ADAD, considering only

those ADADS whose level of nesting is maximal. This approach is approximate,

based on the assumption that the most deeply nested statements will be executed

most frequently. If the new global ADAD still has an asterisk for the third element,

much communication will be necessary if we insist on using that iteration variable and

distributing across that dimension. Any of the distributions favored by an individual

ADAD of maximal nesting is acceptable (if no such distribution exists, then any will

suffice).

3.3 An Example

As a simple example of the application of augmented data access descriptors, con-

sider the following program. The program does not perform any useful function;

it is intended merely as a simple example of various types of array access and the

corresponding ADADS.

REAL A(1oo,1oo),B(1oo,100),c(2oo,1oo),D(2oo,2oo,100)

REAL PI

PARAMETER (PI = 3.14159265)

37

INTEGER I ,J,K,M,N

DO 100 I=i,1oo

D0 110 J=1,100

A(I,J) = SQRT(I*J) (Si)

B(I,J) = (I+J)/2 (52)

110 CONTINUE

D0 120 K=1,50

C(2*I-1,2*K-1) = PI * ACI,2*K-1) (53)

C(2*I,2*K-1) = C(2*I-1,2*K-1) * B(I,2*K-1) (s4)

C(2*I-1,2*K) = PI * BCI,2*K) (SS)

C(2*I,2*K) = C(2*I-1,2*K) * ACI,2*K) (so)

120 CONTINUE

DO 130 K=1,200

D(I,K,1) = 0.0 (57)

130 CONTINUE

DO 140 M=2,1oo

D0 140 N=M,100

D(I+N,I,M) = D(I+N,I,M-i) + C(2*I,I+N) (38)

140 CONTINUE

100 CONTINUE

Then the data access descriptors for A, B, C, and D may be computed for each

of 31 through S8. They are:

2 dimensionl dimension2

D(A,Sl) = I (1,100,1,{0}) (1.100330)

J (1,100,*,0) (1,100,1,{0})

D(B,SZ)

D(A,Ss)

D(C,SB)

D(B,S4)

mass)

38

2 dimension 1 dimension 2

I (1,100.1,{0}) (1.100,*,0)

J (1,100,*,(0) (1,100,1,{0})

2 dimension 1 dimension 2

I (1,100,1,{0}) (1799530)

[(1 (1:1007*90) (1199,27i'1I)

2 dimension 1 dimension 2

I (17199a23{'1}) (13997*30)

[(1 (1)1997*7®) (179972>{‘1})

2 dimension 1 dimension 2

I (1,100.1,{0D (1.99,*,®)

[(1 (171007*70) (1399:27{'1})

2 dimension 1 dimension 2

I (17199)2${'1}) (17993*7®)

[(1 (1:1997*90) (1)99327I'II)

Ds(c,s4)

D(B,SS)

D(C,SS)

D(A,SG)

D1(C,S6)

39

2 dimension 1 dimension 2

I (2,200.2,{0}) (1,9933%)

K1 (2,200,*,(ll) (1,99,2,{-1})

2 dimension 1 dimension 2

I (1,100,1,{0}) (2,100,*,0)

K1 (1,100,*,(l)) (2,100,2,{0})

2 dimension 1 dimension 2

1 (1,199,2,{-1}) (2,100.30)

K1 (1,199,*,(Z)) (2,100,2,{O})

2 dimension 1 dimension 2

I (1,100.1,{0}) (2,100.30)

K1 (1,100,*,(ll) (2,100,2,{0})

2 dimension 1 dimension 2

I (17199723{'1}) (271007*70)

K1 (1,199,*,(b) (2,100,2,{0})

D2(C,Se)

D(D,S7)

D(C,S8)

D1(D,S8)

40

2 dimension 1 dimension 2

I (2,200,2,{0}) (2,100,*,0)

K1 (2,200,*,0) (2,100,2,{0})

2 dimension 1 dimension 2 dimension 3

I (1,100,1,{0}) (1,200,*,0) (i,1,*,(0)

K2 (1,100,*,(ll) (1,200,1,{0}) (1,1,*,(ll)

3 dimension 1 dimension 2

I (2,200,2,{0}) (3,200,*,0)

M (2,200,*,0) (3,200,*,@)

N (2,200,*,(b) (3,200,*,0)

3 dimension 1 dimension 2 dimension 3

I (3,200,*,(ll) (1,100,1,{0}) (1,99,*,0)

M (3,200,*,lll) (1,100,*,0) (1,99,1,{-1})

N (3,200,*,0) (1,100,*,Q)) (1,99,*,fl)

D2(D , 38)

Note that the variable name K is used for two logically different iteration vari-

ables. To accommodate this situation, the variable names in the ADADS have been

41

dimension 1 dimension 2 dimension 3

(3,200,*,(l)) (1,100,1,{0}) (2,100,*,0)

(3,200,*,0) (1,100,*,Ql) (2,100,i,{0})

(3,200,*,0) (1,100,*,0) (2,100,*,(Z))

subscripted. From these ADADS we can derive:

D(A,global)

D(B,global)

D(C,global)

D(D,global)

dimension 1 dimension 2

(1,100,1,{0}) (1,100,*,0)

dimension 1 dimension 2

 (1,100,1,{0})
(1,100,*,0)

dimension 1 dimension 2

 (1,200,2.{0}) (1,100,*,(2l)

dimension 1 dimension 2 dimension 3

(1,200,*,0)

(i,200,*,®)

(i,100,*,0))

42

Since I is the only loop common to all statements, it is the only candidate for

parallelization. From the global augmented data access descriptors, it may be seen

that arrays A and B should be distributed in a row—wise manner (that is, A(1 , 1. . 100)

and B(1 , 1. .100) on one processor, A(2, 1. . 100) and B(2 , 1 . .100) on another, etc.).

Matrix C should be distributed in striated row-wise fashion, with striations of width

2. Array D, however, cannot be distributed without a need for communication. Thus,

the distribution favored by those statements with the greatest level of nesting is

determined. In this case, the statement whose nesting level is maximal is statement

S8 (rather than S7, the only other statement to reference D). The merged access

descriptor is thus:

dimension 1 dimension 2 dimension 3

 D(D,{S8}) =

 I (3.200%) (1,100,1,{0}) (1.100320)

So, array D should be distributed across its second dimension. It should be noted

that all communication could be eliminated if the order of the subscripts in S7 were

reversed, which is most likely the programmer’s intention. Thus, code that contains

errors that do not necessarily lead to incorrect answers (suppose, for example, that

the Fortran compiler automatically initializes all arrays to all zeroes) can still lead to

inefficient parallel programs.

The Fortran D code corresponding to this alignment is:

REAL A(100, 100) ,B(100 , 100) ,C(200,100) ,D(200,200,100)

DECOMPOSITION X(200)

ALIGN A(I,J) with X(2*I)

43

ALIGN B(I,J) with X(2*I)

ALIGN C(I,J) with X(I)

ALIGN D(I,J,K) with X(2*J) overflow (WRAP)

DISTRIBUTE X(BLOCK_CYCLIC(2))

REAL PI

PARAMETER (PI = 3.14159265)

INTEGER I,J,K,M,N

PARALLEL DO 100 I=1,100

DO 110 J=1,100

A(I,J) SQRT(I*J)

B(I,J) (I+J)/2

110 CONTINUE

DO 120 K=1,50

C(2*I-1,2*K-1) = PI * A(I,2*K-1)

C(2*I,2*K-1) C(2*I-1,2*K-1) * B(I,2*K-1)

C(2*I-1,2*K) PI * B(I,2*K)

C(2*I,2*K) = C(2*I-1,2*K) * ACI,2*K)

120 CONTINUE

DO 130 K=1,2OO

D(I,K,1) = 0.0

130 CONTINUE

DO 140 M=2,100

DO 140 N=M,100

D(I+N,I,M) = D(I+N,I,M-1) + C(2*I,I+N)

140 CONTINUE

100 CONTINUE

3.4 Interprocedural Analysis

It is often the case that a section of code that we wish to analyze contains one or more

calls to subroutines. Therefore, we must establish a framework for computing ADADS

44

when such a call occurs. It is a fairly simple task to include procedure calls in the

scheme for combining ADADS. First, we compute the ADAD(S) for the subroutine,

as usual. Then, the ADAD(S) for the call statement can be computed by replacing

the formal parameters in the ADAD(S) computed for the subroutine with the actual

parameters of the call. If the arrays undergo reshaping due to the nature of the call,

then this reshaping and the indexing used need to be taken into aCcount. Any rows

corresponding to iteration variables local to the subroutine can be ignored, since we

are restricting ourselves to an analysis at a higher level. If we wish to consider these

variables in our alignment analysis, we should determine the best alignment for the

section of code before the call, the best alignment for the subroutine, and the best

alignment for the section of code after the call. Finally, the ADAD(S) for the call

statement can be merged with the ADADS for the rest of the section. This procedure

is best illustrated with an example. Suppose we have the following section of code:

DOUBLE PRECISION A(100),X(100,100),Y(100)

DO I=1, 100

A(I) = I (Si)

CALL SUBR(I,A,X(1,I)) (s2)

Y(I) = 0 (33)

DO J=1, 100

Y(I) = Y(I) + X(J,I) (34)

ENDDO

ENDDO

and that the code for SUBR looks like:

SUBROUTINE SUBRCI,X,Y)

DOUBLE PRECISION X(100),Y(100)

45

INTEGER I,J

DO J=1, 100

Y(J) = SQRT(X(I)*J)

ENDDO

END

Then, the ADADS for the subroutine are:

2 dimension 1

D(X,SUBR) = 1 (1,ee,i,{0})

J (1,oo,*,@)

and

2 dimension 1

D(Y,SUBR) = 1 (1,100,*,@)

 J (1,100,1,{0})

Following the rules outlined above, we get the following ADADS for statement 82:

1 dimension 1

 190%52)

I (1,100J,{0})

and

D(x,s2)

These may be combined with the ADADS for the rest of the section:

D(A,Si)

D(Y,SB)

D(X,S4)

and

46

dimension 1 dimension 2

(1,100,*,0) (1,100,1,{0})

dimension 1

(1,100,1,{0})

dimension 1

(1,100,1,{0})

dimension 1 dimension 2

(1,100,*,(0) (1,100,1,{0})

 (1,100,1,{0}) (1,100,*,(ll)

47

2 dimension 1

D(Yss‘l) = I (1,100,1,{0})

J (1,100,*,(Z))

to yield the ADADS for the section:

1 dimension 1

 D(A,section) =

1 (1,100,1,{0})

1 dimensionl dimension 2

D(X,section) =

I (1,100,*,@) (1,100,1,{0})

and

1 dimension 1

D(Y,section) =

I (1,100,1,{0})

Thus, this computation may be performed in a manner free from communication, if

A and Y are distributed across their first dimensions, and X is distributed across its

second dimension.

The Fortran D code for this is:

DOUBLE PRECISION A(100) ,X(100,100) ,Y(100)

48

DECOMPOSITION B(100)

ALIGN A(I) with B(I)

ALIGN X(I,J) with B(I)

ALIGN Y(I) with B(I)

DISTRIBUTE B(CYCLIC)

PARALLEL DO I=1, 100

A(I) = I

CALL SUBR(I,A,x(i,I))

Y(I) = 0

D0 J=1, 100

Y(I) = Y(I) + X(J,I)

ENDDO

ENDDO

CHAPTER 4

The Effects of Loop

Transformations on ADADS

Most parallelizing compilers attempt to perform a number of different loop transfor-

mations, in the hope of enabling the parallelization of loops that previously could

not be parallelized. Loop transformations are also used to increase the granularity

of a program. When we use a data parallel programming paradigm, our concerns

are different. In particular, our primary goal is to reduce the amount of communi-

cation required. Loop transformations may help us to achieve that goal. Therefore,

the effects of some of the standard loop transformations on augmented data access

descriptors are presented, not because it is easier to modify ADADS than it is to

recalculate them, but so that our transformations may be guided by the effect they

will have on the ADADS.

49

50

4. 1 Promotion

Promotion entails the addition of a dimension to a variable, which is indexed by the

iteration variable of a loop within which the variable is defined. This technique is par-

ticularly appropriate for intermediate variables. For example, consider the following

section of code:

DO I=1, 100

DO J=1, 10

TEMPCJ) = COS(A(I,I+J)) (Sl)

B(I,J) = 2.0*TEMP(J) (S2)

ENDDO

ENDDO

The variable TEMP is not indexed by I and therefore can not be distributed among

the processors using that variable. However, if we perform a promotion, we get the

following code:

DO I=1, 100

D0 J=1, 10

TEMP(I,J) = CDS(A(I,I+J)) (81’)

B(I,J) = 2.0*TEMP(I,J) (82’)

ENDDO

ENDDO

which enables TEMP, A, and B to be distributed among up to 100 different processors.

After a promotion, the ADADS associated with the variable being promoted should

have a dimension (column) added. The tuple for the iteration variable with which we

are indexing the new dimension will be (L, U, 1, {0}), where L and U are the lower

and upper bounds, respectively, on the iteration variable. The tuple for all other rows

is (L, U, *, (ll). So, for TEMP in the example above, the original ADADS were:

D(TEMP,Sl) =

and

D(TEMP,S2) =

dimension 1

(1,10,*,(b)

 (1,10,1,{0})

dimension 1

(1,10,*,(ll)

 (1,10,1,{0})

After promotion, the ADADS are:

D(TEMP,Sl’) =

and

D(TEMP,SZ’) =

51

dimension 1 dimension 2

(1,100,1,{0}) (1,10,*,0)

 (1,100,*,(Zl) (1,10.1,{0})

dimension 1 dimension 2

(1,100,1,{0}) (1,10,*,(b)

 (17100)*)®) (1.10.1,{0})

52

4.2 Loop Unrolling

In loop unrolling, the number of iterations of the leop is reduced by changing the step

size, and adding statements to accommodate the values between steps. Since we have

restricted actual step sizes to a length of 1, the effective step size may be changed by

dividing the loop’s upper bound by some factor, which we will refer to as the unrolling

factor, and multiplying the iteration variable by that factor. For example,

DO I=1, 100

A(2*I) = B(I+2) (Si)

ENDDO

might become (with an unrolling factor of 4)

DO I=1, 25

A(8*I-6) = B(4*I-1) (81a)

A(8*I-4) = B(4*I) (Sib)

A(8*I-2) = B(4*I+1) (Sic)

A(8*I) = B(4*I+2) (Sid)

ENDDO

If a loop is unrolled by a factor M, the ADADS for statements within the loop

could be expanded to M ADADS, one for each statement introduced by the unrolling.

However, it is simpler to modify the original ADAD to one which describes the M

derived statements. Only tuples in the row corresponding to the loop being unrolled

are affected. The first and second elements in each tuple remain unchanged. If

the third element, D(A, S, I, D)[3], is * or 0, it should remain unchanged. Otherwise,

D(A, S, I, D)[3] should be multiplied by .M and the fourth element modified according

to the following procedure. For each element E in the original set, D(A, S, I, D)[4],

53

introduce M elements to the new set, D(A, {S0,Sb, ...},I,D)[4], equal to E + k X

D(A, S, I, D)[3], (k = [1 — M, 0]). The original ADADS for the example above are:

1 dimension 1

D(A,Si) =

I (2,200,2,{0})

and

1 dimension1

D(B,Si) =

I (3,102,1,{2})

The new augmented data access descriptors would be:

1 dimension 1

 D(A,{Sia,S1b,Sic,Sid}) =

I (2,200,8,{—6,—4,—2,0})

and

1 dimension 1

 D(B,{S1a,Sib,Sic,S1d}) =

I (3,102,4,{—i,0,i,2})

So, the Fortran D alignment statements might look like:

DECOMPOSITION X(200)

54

ALIGN A(I) with X(I)

C The expression 2*I-4 in the next statement derives from

C the fact that 8/4=2 and B has offset 2, so we need to

C align B(I) with X(2*(I-2)).

ALIGN B(I) with X(2*I-4) overflow (WRAP)

DISTRIBUTE X(BLOCK_CYCLE(8))

4.3 Loop Fusion

In loop fusion, two adjacent loops are merged to form one loop. The iteration variables

of the original loops are replaced by the new iteration variable. For example,

DO I=1, 100

B(I) = 2*I*A(2*I) (Si)

ENDDO

DO J=i, 100

C(J) = A(2*J-i) - 1 (S2)

ENDDO

could become

DO K=1, 100

B(K) = 2*K*A(2*K) (Si’)

C(K) = A(2*K-1) - 1 (82’)

ENDDO

In order to perform loop fusion, while preserving program correctness, there are

certain criteria which must be satisfied. The formal verification that transformations

are correctness-preserving is left to books on parallel compiler construction [13]. In-

stead, we restrict ourselves to examples that are Simple enough that correctness is

readily apparent.

55

Modifying the ADADS affected by a loop fusion, once it has been determined that

one may occur, is Simple. The rows of the ADADS that corresponded to the original

iteration variables now correspond to the new iteration variable. Also, the ADADS

describing a region of code may change, and should be computed. Thus, for the

example above, the original ADADS of

1 dimension 1

D(A,Si) =

1 (2,200,2sl0l)

1 dimension1

D(B,Si) =

I (1,100,1,{0})

1 dimensionl

D(A,SQ) =

J (17199127l'1})

1 dimension1

D(C,S2) =

J (1,100,1,{0})

D(A,{Si,s2}) NULL

become:

56

1 dimension 1

D(A,Si’) =

K (2,200.2,{0D

1 dimension1

D(B,Si’) =

K (1,100,1,{0})

1 dimension1

D(A,S2’) =

K (1,199.2,{-1})

1 dimension1

D(C,S2’) :

K (1,100,1,{0})

1 dimension 1

 LKA,{Si’,S2’}) 2:

K (1,200,2,{-1,0})

4.4 Loop Interchange

As the name implies, loop interchange entails the interchange of two loops. The outer

loop becomes the inner loop, and the inner loop becomes the outer loop. Thus,

DO I=1, 100

D0 J=1, 100

57

A(I,J) = 0.0

ENDDO

ENDDO

would become

DO J=i, 100

D0 I=1, 100

A(I,J) = 0.0

ENDDO

ENDDO

As with loop fusion, the conditions under which loop interchange may safely be

performed depend on sophisticated data dependence analysis [13]. However, assuming

loop interchange can be performed, the ADADS associated with individual statements

and with regions of the program will remain unchanged.

4.5 Strip Mining

Strip mining is often used in parallelizing compilers to increase the amount of work

performed inside of a loop. It is analogous to loop unrolling, except that rather than

increasing the number of statements by some factor M, a new loop is introduced to

cover the range of iterations between the outer steps. So,

DO I=1, 1000

A(I) = 3.14*(R(I)**2)

ENDDO

becomes

DO I=1, 10

58

DO J=1, 100

A(100*(I-1)+J) = 3.14*(R(100*(I-1)+J)**2)

ENDDO

ENDDO

This is an extremely useful technique when we want to parallelize a particular

loop for execution on a Shared memory computer with a relatively small number

of processors. However, the process of strip mining results in all tuples associated

with the original iteration variable, as well as those associated with the new iteration

variable, having a third element of *. Thus, when we are attempting to exploit

global parallelism on a large distributed memory computer, strip mining can have an

adverse effect. Instead of increasing the work load per processor through strip mining,

we should utilize the distribution facilities of the data parallel language being used.

4.6 Invariant Code Movement

If a statement within a loop uses variables that do not change within the loop, defines

a variable that is not defined elsewhere in the loop nor used earlier in the loop, and the

statement does not occur within a conditional, then that statement may be moved to a

position immediately before the loop. This is useful for eliminating extra calculations.

For example,

DO J=1, 5

V(J) = 0.0 (Si)

DO I=1, 100 ‘

A(J) = 3.14*R(J)*R(J) (s2)

V(J) = V(J) + A(J)*F(I) ($3)

ENDDO

ENDDO

59

can be changed to

DO J=1, 5

V(J) = 0.0 (Si)

A(J) = 3.14*R(J)*R(J) (82’)

DO I=1, 100

V(J) = V(J) + A(J)*F(I) (SS)

ENDDO

ENDDO

When a statement like this is moved outside of a loop, the row in the ADAD for

the statement corresponding to that loop’s iteration variable should be eliminated,

and the integer representing the nesting level of the statement Should be decremented.

S0, in the previous example,

2 dimension 1

D(A’SQ) = I (1.5M)

J (175717{0})

becomes

1 dimension 1

 IMA,S2’)

J (1,5,1,{0})

Although this technique does not assist in the parallelization of the program, it can

result in significant performance improvements, by eliminating unnecessary work.

4.7 An Example

To understand the usefulness of directed loop transformations, consider the following

section of a program:

DO I=1, 100

D0 J=1, 100

60

A(J,I) = A(J,I) + SQRT(J*I)

ENDDO

DO K=1, 50

A(2*K,I) = A(2*K-1,I)

ENDDO

DO L=1, 100

A(L,I+1) = A(L,I)

ENDDO

ENDDO

If we attempt to determine the best alignment for this code, we get the following

ADADS

2 dimension 1 dimension 2

WW) = I (1.100,*,@) (1,100,1,{0})

J (1,100,1,{0}) (1,100,*,(ll)

2 dimension 1 dimension 2

D2(A,Sl) = 1 (1,100,*,0) (1,100,1,{0})

J (1,100,1,{0}) (1,100,*.0)

(81)

(S2)

(83)

D1(A,82)

D2(A,S2)

D1(A,SB)

D2(A,SB)

and

D(A,global)

61

dimension 1 dimension 2

(2,100,*,(ll) (1,100,1,{0})

 (2,100,2,{0D (1,100,*,(2))

dimension 1 dimension 2

(1,99,*,(ll) (1,100,1,{0})

 (1199127{'1}) (1,100,*,0)

dimension 1 dimension 2

(1,100,*,(D) (2,101,{1})

 (1,100,1,{0}) (2,101,*,0)

dimension 1 dimension 2

(1,100,*,0) (1,100,{0})

 (1,100,1,{0}) (1,100,*,(Z))

dimension 1 dimension 2

(1,100,*,(2))

(1,101,*,(Z))

62

So, there is no way in which to distribute this code without the need for commu-

nication being introduced. However, if we unroll the first and third loops by a factor

of two, then fuse the three loops, we get:

DO I=1, 100

D0 J=1, 50

A(2*J-1,I) = A(2*J-1,I) + SQRT((2*J-1)*I) (Sia’)

A(2*J,I) = A(2*J,I) + SQRT(2*J*I) _ (Slb’)

A(2*J,I) = A(2*J-1,I) (32’)

A(2*J-1,I+1) = A(2*J-1,I) (SSa’)

A(2*J,I+i) = A(2*J,I) (SSb’)

ENDDO

ENDDO

which has the following ADADS:

2 dimension1 dimension 2

1310.781?) = I (i,99,*,0) (1,100,1,{0})

J (1,99,2,{—1}) (1,100,*,(ll)

2 dimension1 dimension 2

D2(A,Sla’) = I (1,99,*,(Z)) (1,100,1,{0})

J (1,99,2,{-1}) (1,100,*,(ll)

2 dimension1 dimension 2

IDNthib’) ll

l
l
—
l

(2,100,*,0) (1,100,1,{0})

 J (2,100,2,{0D (1,100.30)

D2(A,Sib’)

Dl(A,32’)

D2(A,S2)

D1(A,SSa’)

D2(A,SBa ’)

63

dimension 1 dimension 2

(2,100,*,(0) (1,100,1,{0})

 (2,100,2,{0D (11100330)

dimension 1 . dimension 2

(2,100,*,0) (1,100,1,{0})

 (2,100,2,{0}) (1,100,*,0)

dimension 1 dimension 2

(1,99,*,0) (1,100,1,{0})

 (1,99,2,{-1}) (1,100,*,(2))

dimension 1 dimension 2

(1,99,*,fl) (2,101,{1})

 (1,99,2,{-1}) (2,101,*,(b)

dimension 1 dimension 2

(1,99,*,(l)) (1,100,{0})

 (1,99,2,{-1}) (1,100,*,(D)

64

dimension 1 dimension 2

D1(A,83b’) (2,100,*,0) (2,101,{1})

(2,100,2,{0}) (2,101,*.0)

dimension 1 dimension 2

D2(A,S3b’) (2,100,*,Q)) (1,100,{0})

(2,100,2,{0}) (1,100,*.0)

and

dimension 1 dimension 2

D(A,global) (1,100,*,0) (1,101,*,0)

(1,100,2,{-1,0}) (1,101,*,(l))

So, after the transformations, we may distribute A along the first dimension, using

a stride Size of 2, and we will have no need for communication. This could be achieved

using:

DECOMPOSITION X(iOO)

ALIGN A(I) WITH X(I)

DISTRIBUTE X(BLOCK_CYCLE(2))

This represents a significant improvement over the original version, which would have

had to forgo all parallelism, or suffer the added cost of communicating information

between processors.

CHAPTER 5

Performance Analysis

Having described ADADS, the manner in which they are combined, how they should

be interpreted, and the effect upon them of various loop transformations, we are now

prepared to examine the manner in which they may be applied to the parallelization

of vectorizable programs. We begin by examining some of the properties of ADIFOR-

generated code and examine how an understanding of these properties assists in the

task of parallelization. We then propose a method using ADADS to decide how a

vectorizable program should be parallelized and apply this method to two simple

programs. Finally, we confirm the conclusions made about these programs through

performance measurements on a parallel computer.

5.1 Parallelizing ADIFOR-generated code

The parallelization of code generated by ADIFOR is a complicated problem, be—

cause nothing is known about the algorithms to which ADIFOR will be applied. In

cases where the original algorithm is not parallelizable, it is highly desirable that the

65

66

parallelism inherent to ADIFOR-generated code be exploited to the greatest extent

possible. However, it is not clear that this is the case when the original algorithm has

a large amount of parallelism. In such cases, it may be best to ignore the additional

parallelism introduced by ADIFOR.

Because ADIFOR uses primarily the forward mode1 of automatic differentiation

[2], a large number of vector operations are embedded in the newly generated code.

For example, given the code section:

IC=ICOMP(J,I)

SIGT(J,I)=SIGMAT(IC)

C(J,I)=CC(IC)

QEXT(J,I)=Q(IC)

ADIFOR will produce:

ic = icompCj, i)

C Sigt(j, i) = sigmat(ic)

do 99798 gi = 1, gp

g$sigt(g$i$, j, i) = g$sigmathi, ic)

99798 continue

sigt(j, i) = sigmat(ic)

C C(j, i) = cc(ic)

do 99797 gi = 1, gp

g$c(g$i$, j, i) = g$cc(gi, ic)

99797 continue

C(j, i) = cc(ic)

C qexth, i) = q(ic)

do 99796 gi = 1, gp

g$qext(g$i$, j, i) = g$q(gi, ic)

99796 continue

qexth, i) = inc)

1for a discussion of the differences between the forward and reverse modes of automatic differen-

tiation, please see [6].

67

Two options for global parallelism present themselves. If the original algorithm

possessed parallelism in an outer loop, the ADIFOR-generated code will too, and we

can use this for parallelizing the code. However, if this parallelism does not exist, we

can exploit the parallelism inherent in the vector loops. In order to achieve this, we

replicate scalar operations across all processors, then perform all vector operations

in parallel. This is roughly equivalent to promoting all scalars and fusing the vector

loops. We shall refer to this technique as the inside—out method. For example, the

code fragment:

A=PI*(R**2)

W[i . .30] =A*X[1 . .30]

might become:

PROCESSOR 1 PROCESSOR 2 PROCESSOR 3

A=PI*(R**2) A=PI*(R**2) A=PI*(R**2)

W[1..10]=A*X[1..10] wEii..20]=A*xE11..2oJ w[21..30]=A*xC21..30]

In order to get an upper bound on the speedup achievable with this method,

assume that the time to branch and join is negligible compared to the total time for

a computation. Also, let:

N = number of processors to be used

C = number of columns of the jacobian to be evaluated

E(0) = time to compute original function.

E(1) = time to compute function plus one column of Jacobian

E(2) = time to compute function plus two columns of Jacobian

Then, the time to compute one element of each of the gradient vectors (one column

of the Jacobian), EV, is:

68

Furthermore, the time spent doing scalar operations (computing the value of the

function, computing reverse mode objects, and loop overhead), E5, is:

E5 = E(l) - EV = 2 * E(l) — E(2)

The run time of the sequential program should therefore be:

ES'l'CEV

The time required using the inside—out method and a slice size of 1 is:

Accordingly, speedup is:

Es + CEV

[1%] (Es + EV)

Using a more appropriate slice Size ([C/N]), we achieve a runtime of:

C

EsiltlEV

Since E5 is guaranteed to be at least E(0), the running time of the original algorithm,

this represents a Significant improvement in cases where C is substantially larger than

69

N. The speedup is:

ES+CEV

Es+ [19,—] Ev

5.2 Applying ADADS to Vectorizable Code

Based on the results of the previous section, we propose a method for determining

the best manner in which to parallelize a vectorizable program. First, the original

program should be Simplified by replacing all vector operations by scalar operations.

Next, ADADS may be used to determine an alignment for the resultant code. If

this alignment if free from, or nearly free from, communication, then this alignment

may be employed in parallelizing the original program. Otherwise, we may utilize

the inside—out method, promoting the scalar operations and fusing the vector loops

to yield a program with a high degree of global parallelism, at the cost of duplicate

computations.

AS an application of this technique, consider the programs in Appendix A. Pro-

gram 1 computes f,- = sin(:z:,-) through a series of trigonometry identities. The

reason for doing this is to make the solution easy to check. Program 2 computes

f = fsinflri) through the same identities. Note that in the case of ADIFOR-

":1

generated code, replacing the vector operations with scalar operations yields a pro—

gram roughly equivalent to the original program. Thus, it is sufficient to examine the

original programs, and apply our conclusions to the ADIFOR-generated code, which

70

can be found in Appendix B. It is obvious from inspection that the first program pos-

sesses a high degree of parallelism while the second is naturally sequentially. However,

the same conclusions can be reached methodically through the use of ADADS.

First, consider program 1. The augmented data access descriptors are:

1 dimension 1

D(temp1,Si) =

I (1,100,1,{0})

1 dimension 1

D1(X,Sl) :

1 dimension 1

D2(X,Sl) =

1 (1,100,1,{0})

1 dimension 1

D(temp2,S2) =

I (1,100,1,{0})

1 dimension 1

 D1(x,82) :—

I (1,100,1,{0})

DQ(X,S2)

D(temp3,83)

D1(x,83)

D2(X,33)

D3(X,83)

D4(X,83)

D(f,S4)

dimension 1

(1,100,1,{0})

dimension 1

 (1,100,1,{0})

dimension 1

(1,100,1,{0})

dimension 1

(1,100,1,{0})

dimension 1

(1,100,1,{0})

dimension 1

(1,100,1,{0})

dimension 1

(1,100,1,{0})

72

1 dimension 1

D1(temp1,S4) :

 1 (1,100,1,{0})

1 dimension 1

D2(temp1,S4) =

I (1,100,1,{0})

1 dimension 1

D(temp2,S4) =

I (1,100,1,{0})

1 dimension1

D(temp3,S4) =

1 (1,100,1,{0})

1 dimension1

D(x,S4) =

I (1,100,1,{0})

These may be combined to yield the global ADADs:

dimension 1

 D(x,global) =

73

dimension 1

D(temp1,global) =

dimension 1

D(temp2,global) :—

1 (1,100,1,{0})

dimension 1

 D(temp3,global) :

I (1,100,1,{0})

dimension 1

D(f,global) :

I (1,100,1,{0})

Thus, this program may be parallelized by parallelizing the I loop and distributing

x,temp1,temp2,temp3, and f across their first (and only) dimension. The Fortran D

code for doing the alignment is:

DECOMPOSITION A(100)

ALIGN F(I) with A(I)

ALIGN X(I) with A(I)

ALIGN TEMP1(I) with A(I)

ALIGN TEMP2(I) with A(I)

ALIGN TEMP3(I) with A(I)

DISTRIBUTE A(CYCLIC)

Next, we verify that program 2 can not be parallelized. Since it is impossible to

74

distribute a variable if it is only a scalar, we promote these variables, yielding program

3. However, even this program is inherently sequential. The augmented data access

descriptors for farray are:

1 dimension1

D1(farray,S4) = and

I (1,100,1,{0})

1 dimension 1

D2 (farray,S4) =

1 (2,101,1,{1})

When combined, these yield the global ADAD:

dimension 1

 D(farray,global) =

l (1,101,*,Ql)

Thus, we are unable to distribute farray in any way that prevents communication.

This limitation is what makes the inside—out method so attractive when we attempt

to parallelize the ADIFOR-generated code.

5.3 Empirical Results

In order to confirm the conclusions reached in the previous section, both programs

were implemented on a BBN Butterfly TC2000. Although the TC2000 is a shared

75

memory machine, it is similar to distributed memory machines in that it exhibits non-

uniform memory access times, dependent upon which processor attempts to reference

a particular storage location.

The programs were processed by ADIFOR and the resultant program parallelized.

As can be observed from the data in Figures 1 and 2, the performance of actual

implementations was in keeping with the projections made using our simplistic model

in Section 5.1. In particular, note that the speedup of the inside-out method is

bounded by N/Z.

The degradation in efficiency as N increases can probably be attributed to the

overhead associated with forks and joins, and would probably be less significant in

larger problems. Taking this into account, we can conclude that for computationally

intensive programs, the speedup of a program that requires no communication will be

nearly linear, While only a speedup of N/2 can be achieved for programs that must be

parallelized using the inside—out technique to eliminate the need for communication.

Thus, by using ADADS to determine a good alignment for the original code and

by applying the conclusions of section 5.1 regarding the speedup available using the

inside—out method for a particular ratio of vector to scalar computations, we can

make accurate predictions concerning the best way to parallelize a program. In the

case of ADIFOR-generated code, if the efficiency of a program containing alignment

information is better than 50%, it is probably not worthwhile to attempt to use the

inside-out technique on the derivative program.

76

 6 r executipn time I 20 1 speedup

s
e
c
o
n
d
s

 nodes

l I efficiency

solid - parallel function evaluation

dotted - inside-out mechanism

0.6 ~ — dot-dash - both

dashed - sequential version

0.4

I

0.2 -

I0

I

l

L

0

10

20

30

40

nodes

Figure 5.1. Performance of various parallelization methods for program 1

5 execution time 5 T speedup r

i 4 c -

—8 — 3 _ i

I:

0

§ — 2 — —

_ l

0 1 i 0 1 l

O 10 20 30 0 10 20 30

nodes nodes

0 6 , efficiency I

solid - inside-out parallel mechanism

0'5 _ I dashed =- sequential version

0.4 ~ ~

0.3 r 1

0.2 L ~

0.1 4 '

0 10 20 30

nodes

Figure 5.2. Performance of inside-out method for program 2

CHAPTER 6

Conclusions

6.1 Summary

Many of today’s scientific applications, such as climate modeling and superconduc-

tivity studies, are so complex that they require the use of the most powerful super—

computers available. Today, this class is represented by parallel computers. A great

deal of effort has gone into developing programs that vectorize well. In addition,

there exists an abundance of naturally vectorizable code, such as that generated by

ADIFOR, an automatic differentiation tool. Because there exists such a large class

of computationally difficult problems that vectorize well, we would like to be able to

parallelize vectorizable programs.

However, the parallelization of programs that perform well on vector supercom-

puters is not a trivial task, because vector supercomputers and parallel supercom-

puters exploit different types of parallelism. Vector computers utilize fine-grained

parallelism, while parallel computers, especially distributed memory supercomputers,

77

78

achieve better performance using coarse—grained parallelism. This results in part from

the memory hierarchies of the machines in question. So, the problem becomes one of

determining the best distribution of data among the various processors.

We presented a formal technique for determining a good distribution of data using

the augmented data access descriptor (ADAD). This technique differs from previous

approaches in that it views the problem of data alignment as an extension of data

dependence analysis, rather than a completely new problem. Thus, the Data Access

Descriptor [1], used for data dependence analysis, may be augmented to facilitate data

alignment analysis, yielding the augmented data access descriptor. This approach is

simple, efficient, and quite accurate.

Ways to handle interprocedural analysis and the effects of loop transformations

were presented. The former was discussed so that programs with good modularity

are not penalized by incomplete analysis. The effects of loop transformations were

examined so that they might guide decisions as to which transformations should be

performed. An example showing how this knowledge could be utilized was provided.

The question of how to apply ADADS to the parallelization of vectorizable code

was also addressed. ADADs can be used to discover a good data alignment for any

program. However, in the case of vectorizable programs, a second option presents

itself. If an analysis of the program with all vector operations replaced by a scalar

operation reveals that an alignment free from, or nearly free from, communication

exists, then this alignment may be used to parallelize the program. Otherwise, the

scalar operations of the program may be promoted and the vector loops fused, en-

abling a high degree of global parallelism, at the cost of duplicate computations.

79

We term this technique the inside-out method. The viability of this procedure was

confirmed through performance analysis on a BBN Butterfly TC2000.

6.2 Future Studies

Possible subjects for future research include the development of a tool to automati-

cally compute ADADS, plus the development of a tool that can use ADADS and the

original source code to automatically generate source code in some language with

data alignment constructs, such as Fortran D or DINO [5, 12]. Construction of these

tools, especially the former, would help to resolve several unknown aspects of ADAD

analysis. In particular, it is not clear what the storage requirements for the data

structures used to describe an actual application program might be. Also, analysis of

real programs would facilitate an assessment of the viability of ADADs in the auto-

matic data partitioning of vectorizable programs. Should ADADS prove inadequate,

we may employ a more sophisticated analysis (at the cost of performance) which pre-

serves the notion of data alignment as data dependence analysis and recognizes the

importance of interprocedural analysis and directed loop transformations.

An important feature of ADAD analysis is that it can be done incrementally. Anal-

ysis is performed on small regions of a program, and the ADADS are then merged so

that they describe larger regions of the program. This feature makes ADAD analysis

particularly well suited for a programming environment, because small changes to

the program do not mandate another complete analysis of the program, but instead

incur a small additional cost. In addition, incremental merging of ADADS may allow

80

a programmer to detect what statements are blocking a communication free distri—

bution. This knowledge may enable the programmer to rewrite the program in a

manner better suited for global parallelization. Thus, future studies should examine

what hierarchy of ADAD analysis best facilitates these two goals.

Another issue yet to be addressed is whether it is better to apply the method

of ADAD analysis to the vectorizable code itself, or a scalar version of that code

(in the case of ADIFOR, the scalar version is simply the original program). In the

section 5.2, we observed that one can make good predictions as to the best approach

using information about the ratio of vector statements to scalar statements, and the

application of ADADS to the scalar version of the code. However, we could have

come to the same conclusion by applying ADADS to the ADIFOR-generated code,

after several loop transformations. The former approach offers simplicity and speed,

while the latter approach could potentially offer greater accuracy. It remains to some

future analysis to determine which approach is best.

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] V. Balasundaram. Interactive parallelization of numerical scientific programs.

[2]

[4]

l5]

[8]

Technical Report TR89—95, Dept of Computer Science, Rice University, 1989.

Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hov-

land. Adifor: Generating derivative codes from Fortran programs. Scientific

Programming, 1(1), 1992.

David Callahan, Jack Dongarra, and David Levine. Vectorizing compilers: A

test suite and results. In Proceedings of Supercomputing ’88, pages 98—105. IEEE

Computer Science Press, 1988. also Argonne Technical Report ANL/MCS-TM-

109.

Bruce W. Char, Keith O. Geddes, Gaston H. Gonnet, Benton L. Leong,

Michael B. Monagan, and Stephen M. Watt. Maple V Language Reference Man-

ual. Springer Verlag, New York, 1991.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.-W. Tseng, and

M.-Y. Wu. Fortran (1 language specification. Technical Report CRPC-TR90079,

Center for Research in Parallel Computation, Rice University, December 1990.

Andreas Griewank. On automatic differentiation. In Mathematical Programming:

Recent Developments and Applications, pages 83—108, Amsterdam, 1989. Kluwer

Academic Publishers.

M. Gupta and P. Banerjee. Demonstration of automatic data partitioning tech—

niques for parallelizing compilers on multicomputers. IEEE Transactions on

Parallel and Distributed Systems, 3(2):179~193, 1992.

J. Li and M. Chen. The data alignment phase in compiling programs for

distributed-memory machines. Journal of Parallel and Distributed Computing,

13:213—221, 1991.

81

82

[9] Z. Li, P.-C. Yew, and C.-Q. Zhu. An efficient data dependence analysis for

parallelizing compilers. IEEE Transactions on Parallel and Distributed Systems,

1(1):26—34, 1990.

[10] P. K. McKinley, H. Xu, and L. M. Ni. Efficient communication services for

scalable architectures. Technical report, Dept. of Computer Science, Michigan

State University, 1992.

[11] Lionel Ni. Private communication.

[12] M.‘ Rosing, R. Schnabel, and R. Weaver. The DINO parallel programming lan-

guage. Journal of Parallel and Distributed Computing, 13:30-42, 1991.

[13] M. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, Cam-

bridge, Mass., 1989.

APPENDICES

APPENDIX A

Sample Programs

PROGRAM examplel

C This program contains a great deal of parallelism

double precision f(100),x(100)

do 100 i = 1 , 100

X(i) = sqrt(dble(i)) * sin(dble(i))

100 continue

call func(f,x)

do 110 i = 1, 10

write(*,*) X(i), f(i), sin(x(i))

110 continue

end

subroutine func(f,x)

83

200

84

double precision f(100),x(100)

double precision temp1(100), temp2(100), temp3(100)

do 200 i = 1, 100

templCi) = (sin(x(i)))**2 + (cos(x(i)))**2

temp2(i) = (1/(Sin(x(i))*sin(X(i))))

temp3(i) = (cos(x(i))*cos(x(i)))/(sin(x(i))*sin(x(i)))

f(i) = sin(x(i)) * (temp1(i)*temp2(i) - temp1(i)*temp3(i))

continue

end

C

100

110

200

85

PROGRAM example2

This program is naturally sequential

double precision f,x(100),answer,deriv

do 100 i = 1 , 100

x(i) sqrt(dble(i)) * sin(dble(i))

continue

call func1(100,f,x)

answer - 0

do 110 i 1, 100

answer - answer + sin(x(i))

deriv = deriv + cos(x(i))

continue

write(*,*) f,answer

end

subroutine func1(n,f,x)

integer n

double precision f,x(n), templ, temp2, temp3

f = 0.0d0

do 200 i = 1, n

templ = (sin(x(i)))**2 + (cos(x(i)))**2

temp2 = (1/(sin(x(i))*sin(x(i))))

temp3 = (cos(x(i))*cos(x(i)))/(sin(x(i))*sin(x(i)))

f = f + sin(x(i)) * (temp1*temp2 - temp1*temp3)

continue

end

100

110

86

PROGRAM example3

This is a new version of program 2, with scalar variables

promoted to vectors.

double precision f,x(100),answer,deriv

do 100 i = 1 , 100

x(i) = sqrt(dble(i)) * sin(dble(i))

continue

call func1(100,f,x)

answer = 0

do 110 i 1, 100

answer - answer + sin(x(i))

deriv = deriv + cos(x(i))

continue

write(*,*) f,answer

end

subroutine funchn,f,x)

integer n

double precision f,farray(101),x(n)

double precision temp1(100), temp2(100), temp3(100)

farray(1) = 0.0d0

do 200 i = 1, n

(sin(x(i)))**2 + (cos(x(i)))**2

(1/(sin(x(i))*sin(x(i))))

temp1(i)

temp2(i)

87

temp3(i) = (cos(x(i))*cos(x(i)))/(sin(x(i))*sin(x(i)))

farray(i+1) = farray(i) + sin(x(i)) * (temp1(i)*temp2(i)

+ - temp1(i)*temp3(i))

200 continue

f = farrayClOl)

end

APPENDIX B

ADIFOR—generated Code

subroutine g$func$6(gp, n, f, gf, ldgf, x, gx, ldgx)

O
0
0
0
0

integer gp

integer g$pmax$

The ADIFOR-generated subroutine for program 1

Formal x is active.

Formal f is active.

parameter (g$pmax$ = 100)

integer gi

double precision

double precision

double precision

double precision

double precision

double precision

double precision

double precision

double precision

double precision

templbar

d$9bar

d$10

d$9

d$8

d$7

d$4bar

d$6

d$5

d$4

88

89

double precision d$3

double precision d$2

double precision d$1

double precision d$0

integer 1

real sin

real cos

integer n

double precision f(n), x(n), templ, temp2, temp3

double precision g$f(ldg$f, n), g$x(ldg$x, n), g$temp1(g$pmax$),

* g$temp2(g$pmax$), g$temp3(g$pmax$)

shared x,gf,gx

integer 1dg$f

integer ldg$x

if (gp .gt. g$pmax$) then

print *, ’Parameter g$p is greater than g$pmax.’

stop

endif

do 99999, i = 1, n

C templ = sin(x(i)) ** 2 + cos(x(i)) ** 2

d$0 = X(i)

d$1 Sin(d$0)

d$3 X(i)

d$4 cos(d$3)

do 99994 gi = 1, gp

g$temp1(g$i$) = cos(d$0) * (2 * d$1) * g$x(gi, i) + ((-sin

*(d$3) * (2 * d$4)) * g$x(g$i$, 1))

99994 continue

templ = d$1 ** (2) + (d$4 ** (2))

C temp2 = (1 / (sin(x(i)) * sin(x(i))))

d$0 = X(i)

d$1 = sin(d$0)

d$2 = X(i)

d$3 = sin(d$2)

d$4 = d$1 * d$3

d$5 1 / d$4

d$4bar = (-d$5 / (d$4))

do 99993 gi = 1, gp

g$temp2(g$i$) = cos(d$0) * (d$4bar * d$3) * g$x(g$i$, i) + c

99993

99992

99991

200

99999

90

*os(d$2) * (d$4bar * d$1) * g$x(gi, i)

continue

temp2 = d$5

temp3 = (cos(x(i)) * cos(x(i))) / (sin(x(i)) * sin(x(i)))

d$O = x(i)

d$1 = cos(d$0)

d$2 = X(i)

d$3 = cos(d$2)

d$5 = X(i)

d$6 = sin(d$5)

d$7 = X(i)

d$8 = sin(d$7)

d$9 = d$6 * d$8

d$10 = d$1 * d$3 / d$9

d$4bar = (1.0do / d$9)

d$9bar = (-d$10 / (d$9))

do 99992 gi = 1, gp

g$temp3(g$i$) = (-sin(d$0) * (d$4bar * d$3)) * g$x(g$i$, i)

*+ ((-sin(d$2) * (d$4bar * d$1)) * g$x(gi, i)) + cos(d$5) * (d$9b

*ar * d$8) * g$x(gi, i) + cos(d$7) * (d$9bar * d$6) * g$x(gi, i

*)

end

continue

temp3 = d$10

f(i) = sin(x(i)) * (templ * temp2 - temp1 * temp3)

d$0 = X(i)

d$1 sin(d$0)

d$4 templ * temp2 - templ * temp3

temp1bar = -d$1 * (temp3)

temp1bar = temp1bar + d$1 * temp2

do 99991 gi = 1, gp

g$f(g$i$, i) = temp1bar * g$temp1(gi) + d$1 * templ * g$te

*mp2(gi) + (-d$1 * (templ) * g$temp3(gi)) + cos(d$0) * d$4 * g$

*x(gi, 1)

continue

fCi) = d$1 * d$4

continue

continue

O
0
0
0
0

91

subroutine g$func1$6(gp, n, f, gf, ldgf, x, gx, ldgx)

The ADIFOR-generated subroutine for program 2

Formal x is active.

Formal f is active.

integer gp

integer g$pmax$

parameter (g$pmax$ = 100)

integer gi

double precision temp1bar

double precision d$9bar

double precision d$10

double precision d$9

double precision d$8

double precision d$7

double precision d$4bar

double precision d$6

double precision d$5

double precision d$4

double precision d$3

double precision d$2

double precision d$1

double precision d$0

integer 1dg$f

integer i

real sin

real cos

integer n

double precision f, X(n), templ, temp2, temp3

double precision g$f(1dg$f), g$x(ldg$x, n), g$temp1(g$pmax$), g$

*temp2(g$pmax$), g$temp3(g$pmax$)

integer ldg$x

if (gp .gt. g$pmax$) then

print *, ’Parameter g$p is greater than g$pmax.’

stop

endif

99993

99992

99991

92

r = 0.0d0

do 99993 gi = 1. gp

g$f(g$i$) = 0.0d0

continue

do 99999, i = 1, n

templ

d$0

d$1

d$3

d$4

= sin(x(i)) ** 2 + cos(x(i)) ** 2

x(i)

sin(d$0)

x(i)

cos(d$3)

do 99992 gi = 1. gp

g$temp1(g$i$) = c08(d$0) * (2 * d$1) * g$x(gi, i) + (C-Sin

*(d$3) * (2 * d$4)) * g$x(g$i$, 1))

continue

templ = d$1 ** (2) + (d$4 ** (2))

temp2 = (1 / (sin(x(i)) * sin(x(i))))

d$0 = x(i)

d$1 = sin(d$0)

d$2 = x(i)

d$3 = sin(d$2)

d$4 = d$1 * d$3

d$5 = 1 / d$4

d$4bar = (-d$5 / (d$4))

do 99991 gi = 1, gp

g$temp2(g$i$) = cos(d$0) * (d$4bar * d$3) * g$x(g$i$, i) + c

*os(d$2) * (d$4bar * d$1) * g$x(gi, i)

continue

temp2 = d$5

temp3 = (cos(x(i)) * cos(x(i))) / (sin(x(i)) * sin(x(i)))

d$0 = x(i)

d$1 = cos(d$0)

d$2 = x(i)

d$3 = cos(d$2)

d$5 = x(i)

d$6 = sin(d$5)

d$7 = x(i)

d$8 = sin(d$7)

d$9 = d$6 * d$8

d$10 = d$1 * d$3 / d$9

d$4bar = (1.0do / d$9)

93

d$9bar = (-d$1o / (d$9))

do 99990 gi = 1, gp

g$temp3(g$i$) = C-Sin(d$0) * (d$4bar * d$3)) * g$x(g$i$, i)

*+ ((-sin(d$2) * (d$4bar * d$1)) * g$x(gi, i)) + cos(d$5) * (d$9b

*ar * d$8) * g$x(gi, i) + cos(d$7) * (d$9bar * d$6) * g$x(gi, i

*)

99990 ' continue

temp3 = d$10

C f = f + sin(x(i)) * (templ * temp2 - templ * temp3)

d$0 x(i)

d$1 sin(d$0)

d$4 templ * temp2 - templ * temp3

temp1bar = -d$1 * (temp3)

temp1bar temp1bar + d$1 * temp2

do 99989 gi = 1, gp

g$f(g$i$) = g$f(gi) + temp1bar * g$temp1<g$i$) + d$1 * tem

*p1 * g$temp2(g$i$) + (-d$1 * (templ) * g$temp3(g$i$)) + cos(d$0) *

* d$4 * g$x(gi, 1)

99989 continue

f = f + d$1 * d$4

200 continue

99999 continue

end

-
:
.
v

.
.
.
.
.
y

k

u
.
,

h
i
n
d
.

.
.
.
.
.
,
.
,
.
l
.
«
.
.

.
.
;
u
.
.
.
;
.
.
»
,

.
,
,
.
'
.
.
.
;
m
,
.

.
1
4
.
.
”

.
.

A
.
.
‘
.
‘
.
,
.
.
.
,
.
.
.
.

.
1
.
.
»
.
.
.
.
,
.
:

,

ll

MICHIGAN STQTE UNIV

1

[I

ll11]]
31293009

l]

0.1

[J

l
I

1|

LIBRQRIES

