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ABSTRACT

RECONSTRUCTION OF LINE DRAWING
GRAPHS FROM FUSED RANGE AND
INTENSITY IMAGERY

By

Greg Chungmou Lee

This thesis addresses the problem of extracting a labeled line drawing graph from
registered range and intensity imagery. Wing representation [26] is used as an inter-
mediate step to achieve the final goal.

To attain the wing representation of an imaged scene, a low level feature detection
algorithm for extracting wing primitives is proposed. The procedure is largely based
on a hypothesize-and-test strategy. In a small neighborhood of the fused image, ex-
istence of various wing primitives is hypothesized. Verification of a wing hypothesis
is posed as a non-linear optimization problem in which the 2D intensity contour con-
straint, whenever available, is used to aid the recovery of surface parameters. Fitting
functions that relate various quadric surface forms to their limb contours and inter-
secting quadric surfaces to the projection of the crease edges are derived to define the
constraints of fused data fitting. The limb contours of quadric surfaces are also instru-

menta] in deducing good initial parameter estimates for the non-linear optimization




scheme. Results from Monte Carlo studies on the accuracy of parameter estimates
and surface shape discrimination by fitting fused, surface-only and contour-only data
confirm the importance of the limb contour constraints. Further study shows that
only very few data points are needed to achieve quality results. Experimental results
of wing detection on real images indicate that a recognition system probably can be
built upon the outlined primitive detection subsystem.

Given the wing representation of the scene, the labeled line drawing graph rep-
resentation is constructed. Three origami and polygonal scene reconstruction proce-
dures are given to analyze scenes under various restrictive assumptions. With very
idealistic assumptions about the wing samples, the complete and unique LLDG is ten-
able if resampling of the range image is allowed. By studying the geometric properties
of the line drawing graphs, a set of necessary but not sufficient rules are derived to
reconstruct the LLDG without having to resample the range image; however, unique-
ness of the reconstructed LLDG is not guaranteed. In dealing with imperfect wing
sampling, a heuristic based algorithm is devised to handle the possibility of having
missing and spurious wings and the inherent measurement and computation errors.
Methods for reconstructing quadric surface scenes are proposed but not implemented.

All of the implemented algorithms have been tested on both synthetic and real
images. Parallel renditions are natural but not yet attempted. It is shown that
reconstruction of labeled line drawing graphs from raw fused images via wing features

is plausible.
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CHAPTER 1

Introduction

Human vision is so effortless that one often forgets that it is a very difficult task.
Most people assume that the eye furnishes the brain with a description of the world
in view. This is not so. The eye is just an input sensor; the visual cortex of the the
human brain is our primary organ of vision. An exact science of the human visual
system is still unclear. Nevertheless, vision researchers continue to build computer

vision systems to mimic human vision.

Computer vision has gone a long way since the days of Roberts [108]. The ultimate
goal of a computer vision system is the recognition of the objects in the scene and
the interpretation of their relationships. Thus it is not surprising that most research
activities in the computer vision field concentrate on (1) building a better scene
interpreter; (2) bettering the techniques of various object recognition modules; or (3)
proposing altogether new object recognition and representation paradigms. Central
to any object recognition system is the issue of object representation and feature
extraction, which would be the function of the visual cortex in the human visual
system. This thesis proposes new methods for extraction of wing features from raw
nput imagery and for construction of the labeled line drawing of the scene. An

xample of the goal of this work is depicted in Figure 1.1.




dicased in Chapter 0




wing detection

\
detected wings \ \ Ty
i

reconstruction

reconstructed
LLDG

Figure 1.1. High level description and an example of wing detection and LLDG re-
construction process. The top image shows the intensity portion of the fused imagery.
The middle image shows the ideal set of wings that are extracted from the raw image.
The bottom image shows a LLDG reconstructed from an ideal set of wing samples as
discussed in Chapter 6.
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In the next section, we will present an overview of the problem studied in this
dissertation, and a quick survey of different object representation schemes in the

literature. An outline of the organization of this thesis concludes the chapter.

1.1 Problem Definition

Prospects for machine understanding of industrial or household scenes have been
greatly enhanced in the last ten years by development of better sensors, by successful
modeling of certain lower level functions of the various channels involved in vision,
and by progress in model-based object recognition. The concept recognition implies
that there must be some model in memory which is somehow evoked by the sensory
data at hand. Models can range in generality from the very specific object definitions
used in CAD/CAM [41], through parameterized forms such as the superquadrics [98],
to the qualitative models formed by geons and their relations [13]. (Note that a more
limited view is being taken here by not considering recognition by classical pattern
recognition [33] or recognition by function [125, 113]. ) The character of the model is
not the only crucial issue; the strategy or algorithm for matching the memory model
to the sensory data is just as critical [40, 63, 80]. Central to any object recognition
system is the issue of object representation and feature extraction; two of the most
researched topics in the computer vision-object recognition community.

An approach somewhat opposite to model-based recognition is that of line drawing
analysis. In this approach, an attempt is made to interpret the 3D structure of
surfaces, edges, and vertices by interpretation of the line drawing of object contours
in a 2D image [61, 66, 83, 92, 115, 123]. Usually no model database is assumed, only
general information about the geometry and topology of objects. As a result, there

is a potential for more generality of object definition and for bottom-up processing.
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The major weakness in most line drawing analysis schemes derives from the as-
sumption that the line drawings are perfect, when, in fact, years of work show that
perfect line drawings cannot be obtained from real data. Moreover, even if they were
obtainable, ambiguous interpretations would still arise unless some real 3D informa-
tion is added (see [84] for one way to do this).

The work presented in this thesis addresses two important problems in object

recognition and scene interpretations:

1. A proposal is made for the detection of object primitives in fused intensity-
range data via simultaneously fitting intensity contours and the adjacent range
(surface) data. The quadric form and its projection is proposed for modeling

object limbs and the intersection of quadric forms is proposed for modeling

crease edges.

2. Construction of a labeled line drawing graph from the set of locally detected
object primitives rather than a perfect line drawing graph. The line drawing,
once derived, should provide many features to index into the models of a higher-
level system. By organizing data-directed processes to create the line drawing
representation, effects of the segmentation problem are greatly reduced. Hence,
this work provides a partial solution to the “segmentation problem” which has

proven to be combinatorially difficult for most model-based schemes.

In the next subsection, we briefly introduce the wing representation theory and

offer a quick view of our methodology for extracting wing features.

1.1.1 Wing Representation Theory

Wing representation theory was introduced by Chen [26, 27] for 3D object recogni-

tion. Instead of modeling objects by parts [53], objects are modeled by set of views
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Figure 1.2. Unique wing representation of a bowl, a half grapefruit and a clam, which
all have the same line drawing [27].

composed of both simple wings, composite wings and their spatial structures. A sim-
ple wing is defined as a triplet that includes a pair of surface patches separated by
a fragment of image contour. Through some non-accidental relations such as coter-
mination, symmetry, parallelism, connectivity, collinearity and curvilinearity, object
wings are grouped into composite wings. Using wing representation, objects with sim-
ilar projected line drawings can be distinguished easily. For example, in Figure 1.2 a
bowl, a half grapefruit and a clam all have the saxﬁe line drawing, but can be uniquely
represented using wings.

In [28], a computational framework for construction of the multiple-view wing
representations of general 3D rigid objects was proposed. With it, was the preliminary
conclusion that wing representations have the properties of uniqueness, locality, and
stability. However, no satisfactory wing extraction method was proposed.

A more in-depth treatment of wing definition will be given in Chapter 2. Wing
representation offers a good basis for an objéct recognition system. It was conjectured
that the wing features are the highest level scene features that can be extracted
from a raw input scene without using any specific object models or any prior scene
segmentation [26]. But as with other theoretical work, an effective feature extractor

remains to be discovered.
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In this dissertation, we strive to

1. push forward toward automatic wing detection; and

2. complete (partial) reconstruction of a labeled line drawing graph from the set

of detected wings.

Wings are to be extracted from a single registered range and intensity image. In
a local area of interest in the fused image, existence of various wing primitives is
hypothesized. Verification of a wing hypothesis is posed as a non-linear optimization
problem in which the 2D contour constraint, whenever available, is used to aid the
recovery of surface parameters. The 2D contour is also useful in generating the initial
parameter estimates required by the non-linear optimization technique. Rectification
of a wing primitive gives qualitative as well as quantitative information about the
adjacent surface patches. No specific object models are used. Wings are extracted
from the input image without any pre-processing nor knowledge of the explicit object
surfaces present in the scene.

Rather than the usual two-step process (construction of a perfect line drawing
from a input image followed by analysis of the derived line drawing) in scene in-
terpretation via line drawing, we reason that a line drawing and its interpretation
should be produced concurrently. Specifically, given the set of sampled wings from a
raw image, we reconstruct the labeled line drawing graph (LLDG) in one step. The
issue involved is whether wing representation is adequate for line drawing reconstruc-
tion. We will explore the geometric constraints underlying the line drawing graph
and derive reconstruction rules based on those constraints. Deterministic algorithms
for complete line drawing reconstruction of origami, polygonal and quadric surface
scenes will be given. Heuristic algorithms for generating partial line drawings will also
be provided. To the best of our knowledge, Trytten {119] is the only other work that

tries to simultaneously derive and label the line drawing graph. However, this work
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differs from Trytten’s in several aspects including our use of fused imagery, different

classes of objects, and Trytten’s usage of junction catalogue.

1.2 Representational Schemes for 3D Object
Recognition

This thesis is about scene representation. In this section, we briefly survey some of the
more popular object representation schemes in use by the computer vision community

for the purpose of object recognition. [11, 29] provide in-depth surveys of various 3D

object representation and recognition techniques.

Generalized Cylinder

Generalized cylinders or generalized cones were introduced by Binford [14] to model
3D objects. It is defined by an azis, a cross-section function, a sweeping rule and
the eccentricity of the generalized cylinder. The axis is an arbitrary 3D curve and
corresponds to the spine of the object being described. The cross-section is of any
arbitrary planar shape that may change in shape and size as it is swept along the
axis. The sweeping rule governs how the size of the cross-section changes, and the
eccentricity is the angle between the axis and the cross-section plane. For example,

a right circular cylinder can be represented as a circular cross-section, swept along a

straight axis with no change in shape or size of the cross section and with eccentricity
90 degree.

The Generalized cylinder is a volumetric shape descriptor that is invariant to
otation, scale and illumination changes. For this reason, it has received considerable
ttention in the past. While Marr has proposed an object recognition system based

n the generalized cylinder [86], Brooks developed ACRONYM [21], a model-based
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object recognition system that explicitly models objects as generalized cones. Others
have concentrated on extracting generalized cylinders from raw input images ([2, 94]

from dense range images and [105] from intensity images).

Geons

Biederman [13] proposed a set of 36 volumetric primitives called Geons or Geometric
Ions for use in his theory of Recognition-by-Components (RBC). Geons are defined
by a set of four qualitative features: edge (straight or curved), symmetry (rota-
tional/reflective, reflective, asymmetric), size variation (constant, expanding, expand-
ing/contracting) and axis (straight, curved); and is a sub-class of the generalized
cylinders.

An object is represented by a set of geons, denoting its components, and the
structural relations among pairs of geons. Given two connected geons Gy and G,
the relations include (1) Relative Size: G; could be greater than, smaller than or
approximately equal to G2; (2) Verticality: G, could be above, below or side connected
to Ga; (3) Centering: the point of attachment could be centered or off-centered on
a geon’s surface; (4) Relative size of surfaces at join: the join could be on a long or
short surface of Gy and G,.

Biederman’s simple calculation showed that approximately 75 thousand and over
154 million qualitatively different objects can be constructed using only 2 and 3
geons, respectively and inter-geon relationships. He argued that liberal estimation
shows that human language vocabulary consists of only 30,000 readily discriminable
objects, implying that the set of 36 geons along with their inter-geon relations have
sufficient representational power.

An edge based procedure for segmenting an image into geon components was
also proposed. First, a line drawing of the objects was obtained, from which, edge

properties such as curvature, collinearity, symmetry, parallelism and co-termination
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were detected. The objects were segmented at concave regions and the identity of
each component was derived from the edge properties. The extraction of the line
drawing is the critical and the most difficult step. Obtaining geon-like parts directly

from range images has recently been addressed by Raja [103, 104].

Superquadrics

Instead of modeling object parts by qualitative shapes such as geons or generalized
cylinders, Pentland [97] suggested the use of superquadrics. The basic parts are
thought of as “lumps of clay” which may be deformed and reshaped by stretching,
bending, twisting or tapering. These basic “lumps of clay” can then be combined
using Boolean operations to form new, more complex prototypes which again can be
deformed, reshaped and combined.

Superquadrics are defined by the equation
a0, CL*
o g T
X(nw) = | a,C,28,2 Ty <n< Sy~ Sw<m

aaS,,"

where C,) = cos(n) and S, = sin(w). The parameters have intuitive geometric
meanings. Parameters a;,a; and a3 affect the size of the superquadrics along the x,
y and z axes, respectively. €; and €; govern the squareness of the superquadrics along
he z-axis and in the xy-plane. Parameters 7 and w are the latitude and longitude
ngles of vector X in spherical coordinates.

Recovering superquadrics in general position requires estimating 11 parameters
om the surface patch. These are location (3), orientation (3), size (3) and shape (€,
nd €;) parameters. Various schemes for superquadrics fitting have been proposed in

e literature but all assume that the images are pre-segmented into regions corre-



sponding to obje

with some interr

Problems w

A problem comm
of those parts fro
eforts in ﬁtting tl
segmentation s r
more, those volyy
hicls can be s
21D, Bligly mog

e false alarm

Aspect Grap]

b eonryg part
ttation of 3p) obj
the ageqy 8raph o
By 10de, defipeq
e ghjeey a seey f
s fropy this cop,
ac jnining two aspe
Tossing from gpe Te
d Possibje stable
¥ Some pects apg

83ph a tetrahedl



10

sponding to object parts [5, 48, 98, 112]. Superquadric fitting to actual range image

with some intermediate segmentation have been demonstrated in 38, 50].

Problems with Existing Parts-Based Representation

A problem common to all the above object representation schemes is that extraction
of those parts from a raw image is difficult. Most researchers have concentrated their
efforts in fitting those forms to pre-segmented images. Parts are rich and sophisticated
segmentation is required, whereas wing theory is a theory of segmentation. Further-
more, those volumetric parts model object parts as a 3D solids; hence, no origami
objects can be satisfactorily represented. In addition, the images are not 3D but
2.5D. Blindly modeling the backside of an object that is not visible in the image can

cause false alarms in model-based recognition systems.

Aspect Graph Representation

In contrast to parts-based representation, aspect graphs are a multiple-view repre-
sentation of 3D objects. Koenderink and van Doorn [71] introduced the idea of using
the aspect graph of topologically distinct views of an object to represent its shape.
Each node, defined as an aspect, in the aspect graph represents a “stable view” of
the object as seen from some maximal connected region of viewpoint space. Object
views from this connected region of viewpoint space appear qualitatively similar. An
arc joining two aspects represents a possible transition between two stable views by
crossing from one region to another. To complete the definition of an aspect graph,
all possible stable views and transitions between such stable views are represented

y some aspects and arcs in the aspect graph. Figure 1.3 shows an example aspect

raph for a tetrahedron.
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Figure 1.3. Aspect graph of a tetrahedron (from [71]).

This concept of aspect graph, intuitively, seems to be a powerful representation
scheme for object recognition. Many research efforts have been devoted to auto-
matic generation of aspect graphs of object models in various domains under both
orthographic and perspective projections (for a listing see [19]). Wing representation
theory coupled with aspect graph model representation might be a good basis of an

object recognition system.

1.3 Organization of the Dissertation

he remainder of this dissertation is organized as follows. In Chapter 2, we formally
efine the object domain of this research. The formal definitions of object wing, the
ine drawing graph (LDG), and the labeled line drawing graph (LLDG) are given. We
ill derive the set of all possible wing models and their mathematical representation
ased on those definitions. We will also explain the setup of our imaging system and

escribe the process of range and intensity images fusion.
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Detection of wings is treated in Chapter 3. It is well-known that edge information
from objects provides strong clues about the local shape of surface region [70]. We
propose simultaneous boundary and surface fitting with few sample points. The non-
linear equations for fused fitting are derived. Results from Monte Carlo experiments
on synthetic data show that fused fitting is superior to fitting either boundary or
surface data alone. Moreover, only a relatively small number of data points are
needed to achieve quality parameter estimates. Results of wing detection on a large
set of real images are analyzed. We observe that fitting fused data near an object

limb or crease edge is advantageous and more accurate than fitting surface data alone,

consistent with the finding from the Monte Carlo experiments on synthetic images.
We conclude that our wing detector, though not perfect, can reliably extract object
wings from fused imagery without any special pre-processing.

The collection of wing samples form the input to the line drawing graph reconstruc-

tion algorithms depicted in Chapters 4 - 6. In Chapter 4, we present two deterministic
algorithms, POLY-1 and POLY-2, that can reconstruct the perfect labeled line draw-
ing graph of polygonal scenes under some idealistic assumptions. In POLY-1, the key
is that the range image must be available for re-sampling whereas in POLY-2, the

geometric constraints of LDG are deduced and utilized to guide the reconstruction.

Junction catalogues and fallible heuristic rules are not used in these two reconstruc-
tion algorithms. The algorithms are tested on over 15 scenes, both synthetic and real;
several of which have appeared as problematic scenes in the literature.

In Chapter 5, we present a heuristic algorithm, POLY-3, that operates without the
idealistic assumptions as in Chapter 4. Instead, missing and spurious wing samples
occur in the input wing set. Errors introduced by computation and measurement
inaccuracies are tolerated. A set of heuristic rules are derived to perform the re-
construction of the LLDG given that the input wing samples are incomplete. We

experimentally show that algorithm is capable of reconstructing the complete LLDG
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if the input wing sample is complete and a partial LLDG if the input wing set is
defective. Results from both synthetic and real images are provided.

In Chapter 6, the aforementioned algorithms are extended to handle scenes with
curved objects. We argue and show by example that under the same idealistic assump-
tions, POLY-1 and POLY-2 can be directly applied with only minor modifications.
There are two major difficulties in direct extension of POLY-3 for the expanded do-
main: wing clustering and wing extension. A new heuristic algorithm, QUAD-2 is
introduced that bypasses the step of wing clustering. Future research directions for
solving the wing extension problem are also suggested. Examples of reconstructed
LLDGs from synthetically generated wing samples are shown. Chapter 7 concludes
the dissertation by summarizing the contributions of this research and pointing ways

for future research.
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CHAPTER 2

Formalization of Object Domain

and Wing Models

2.1 Introduction

There has been much work in the analysis of line drawings and a lot of work in the
area of surface fitting. In this chapter we will lay the foundation for the wing detection
and line drawing reconstruction techniques, which are based largely on fitting a wing
model (3D surface model and 2D contour model) to fused range and intensity data.

In the following sections, terms that are essential to the understanding of this
thesis are defined. In particular, the object domain and wing models are characterized.
The mathematical representation of the wing models and their derivations are given.
Formal definitions of a line drawing graph and labeled line drawing graph are also
stated. We will point out the differences between our definition of a labeled line
drawing graph and the line labeling commonly found in the work of line drawing
analysis. In addition, the process of acquiring registered fused range and intensity

images for use as test data is also described.

14
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2.2 Object Domain Definitions

In this research, the input is a registered range and intensity image of the scene from
a given viewpoint. The sensing equipment and the set-up is described in detail in
Appendix A. With our set-up, which has a single camera for capturing both range
and intensity images, only those surfaces in the scene visible to the camera are being
sensed, regardless of the shape of the surfaces. Therefore, we define the object domain
in terms of the surfaces that bound the object and the legal viewpoints as those that
would produce “usable” registered range and intensity image.

The very first problem encountered and an important lesson learned from this

research is that it is not easy to get the appropriate general definition for even a
polyhedron or polygon! The definition used by Huffman and Clowes [30, 61] is too

restricted. Their block world includes objects with only trihedral vertices. That

definition excludes many common polyhedral and all origami objects. Hoffmann’s
[65] complex definitions support CAD operations well but involve structures which
cannot be sensed. After reading the fascinating history of “Eulerian polyhedra”
related by Lakatos[74] we are less ashamed of our struggle for definitions that would

be both mathematically and practically effective.

Before defining our objects, it is important to note that we do not need a junction
catalogue nor the object domain restrictions that such a catalogue would imply. The
objects considered in this thesis are those whose faces are either §-polygons and/or
-quadric surfaces. The objects do not have to be solid. Objects from origami world
[66] are allowed as long as the faces are all 6-polygons. First, we define polygons

which have satisfactory size properties if properly viewed by the sensor.
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2.2.1 6 -polygons

Deﬁnition 2.1 A §-polygon is a closed region of finite eztent in a 3D plane
bounded by straight edge segments; moreover, (a) each edge contains a point P such
that there exists an open neighborhood N, of radiusr > § > 0 about P which includes
nonzero area of both the interior and exterior of the polygon, and includes no points

of other polygon edges; (b) every vertez has an even number of incident edges.

The radius, r, of the open neighborhood N, in (a), of minimum length §, implicitly
imposes a minimum length on each edge of the polygon and a minimum distance from
P to all other edges. Basically, it dismisses all objects that may be too thin or too
short for accurate range sensor registration and wing detection. To ensure that the
polygon is closed, condition (b) requires an even number of incident edges. This
condition is actually implied by the other restrictions. We will show that this is the
case in Theorem 4.2. It is explicitly stated here for emphasis.

Note that more than 2 coincident edges are allowed. Intuitively speaking, the
main difference between a é-polygon and the “usual” polygon is that a §-polygon is
any closed polygon such that (1) the length of each edge is at least é, and (2) there
exists a point on every edge such that the distance between that point to all other
edges is greater than §. With the above definition, not only are holes allowed, but
so are bowties. Non-§-polygons include those polygons with a cut or dangling line

segments. Some examples of §-polygons and non-§-polygons are shown in Figure 2.1.

2.2.2 4-quadric surfaces

Extension of the notion of §-polygon to 6-quadric is not straightforward. In the
polygonal case, the definition of an edge is intuitively clear. This is not so when
dealing with a curved surface patch. Before defining an edge, we must first define

what the vertices are. The vertices of a quadric surface patch are those points on
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Figure 2.1. Examples of valid and invalid §-polygons. (a) non-§-polygons: ab and cd
have points having neighborhood with zero exterior/interior polygonal area; ef has
no point P that would satisfy the open neighborhood property. (b) é-polygons. Open
neighborhood about a point P is represented by O.
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the bounding curve where the curvature or tangent is discontinuous and those points
where the curvature changes sign (points of inflection). The edges are the boundary
segments separated by the vertices. Since a closed curve is now possible, an additional
restriction on the coverage of the open neighborhood N, is also needed to guarantee
that the minimum of the maximum distance between any two points on the closed

curve is greater than 4.

Definition 2.2 A § -quadric is a closed 3D quadric surface patch of finite extent
such that there ezxists a viewing direction in 8D such that the 2D projection of the

quadric surface patch along it is a planar image region R bounded by a set of (curved)

lines, L = {l},1s,...,}; moreover, for each l; € L, (a) there ezists a point P on I,
such that an open neighborhood N, of radius r > § > 0 about P includes (1) nonzero

area of both the interior and exzterior of the planar region R, (2) no points of l; if

J #1, and (8) only a proper subset of points from l;; and (b) every junction of R is

incident with an even number of I;’s.

In this thesis, we will restrict §-quadric surfaces to a special subclass of quadric
surfaces. Specifically, only planar, spherical, circular cylindrical and circular conical
surfaces will be allowed and each edge must be of type linear, circular or elliptic. The

projection of those edges onto the 2D image plane results in (curved) lines of type

linear, circular or elliptic. Furthermore, given those four surface types, their limb
boundaries will always be projected to straight or circular lines in the image plane
regardless of the viewpoint.

Using this definition, a spherical patch would be a §-quadric if its radius is greater
than 6/2. Otherwise, any neighborhood N, of radius r > § on any point on the
projected bounding curve would include the entire boundary (see Figure 2.2 (b)).
Likewise, a right circular cylinder must have radius greater than /2 and height

greater than 6. Thus, the two sides of a penny are é-quadrics if r > §/2, but not
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Figure 2.2. Examples of valid and invalid §-quadrics. (a) é-quadrics. (b) Non-é-
quadrics. Open neighborhood about a point P is represented by .

the cylindrical surface because its height is too short. Note the top view of the
cylindrical surface projects to a circle which has radius » > §/2 but this is not a
valid view because the projection of the cylindrical surface yields a region with 0
area (i.e., no visible region). Possible views of this cylindrical surface are depicted in
Figure 2.2 (b).

For simplicity, the terms polygons and quadric surfaces will be used interchange-

ably with §-polygons and §-quadric surfaces.

2.2.3 Sample of Objects in the Object Domain

We are now ready to define the type of objects that belong to the object domain.

There are 2 types of objects in the object domain:
1. Origami or polyhedral objects where every face is a é-polygon.

2. Curved objects whose bounding faces are §-quadrics.
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Figure 2.3. (a) Examples of objects in the object domain. (b) Examples of objects
not in the object domain.

The first class of objects contains only planar surfaces, whereas the second class of
objects may be bounded by curved surfaces. Wing detection and line drawing recon-
struction of scenes involving objects in the first class are easier than those involving
the curved surface objects. In fact, in Chapter 4 we will give an algorithm showing
how a complete line drawing may be derived from a set of ideal wings sampled from
polygons. Examples of objects in each class as well as objects that belong to neither
class are shown in Figure 2.3.

Note that the penny is not in the object domain. The height of the cylindrical
surface is too short to qualify it as a §-quadric. The test tube, although a valid object,
may project to the same line drawing where the height of the test tube in the image
is shorter then 8. We shall call this view an accidental view. The formal definition of

an accidental view is given in the next section.
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2.3 Accidental and Non-Accidental Viewpoints

Wing detection, as described in the next chapter, is a low-level computer vision
task. It operates on fused range and intensity data of the scene as seen from some
pre-determined viewpoint. Success of wing detection depends on how much of the
edge and adjacent surface are visible in the image plane. With different viewpoints,
the same surface patch/edge may project onto the image plane as regions/lines of
varying sizes. For example, a planar surface seen from a viewpoint co-planar with
the plane projects onto the image plane as a straight line; the surface information is
lost. Detection of wings is impossible in this and other cases where the projection
yields very short line segments and/or small regions in the image plane. We define
those situations as consequences of sensing from accidental viewing directions. The

next two definitions define the sensing property of viewpoints and accidental/non-

accidental views of the scene.

Definition 2.3 [Sensing Property] A non-accidental view of a polygonal

(quadric) scene is a view with all of the following properties :
1. there exists some € > 0 such that the visible projection of every é-polygon (§-
quadric) from 8D is an e-polygon (e-quadric) embedded in the image plane;
2. every non-junction point of any line segment in the image plane can be correctly
labeled with one and only one wing label.
Note that from Definitions 2.1 and 2.2 it follows that each line segment in the
image plane has length at least e.
Definition 2.4 An accidental view is a view where one of the conditions of the
Sensing Property is violated.

This definition of accidental view differs from that of 83, 91], in which an acci-

dental view is defined as the orthographic projection of 3D edges under an unstable
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Figure 2.4. (a) A non-accidental view of a solid box, which is considered acciden-
tal under [83, 91] (b) An accidental view of a topless box. (This would not be an
accidental view if the side containing a, b, ¢ were removed from the box!)

viewpoint. A viewpoint is defined to be unstable if the structure of the projected
line drawing changes as the viewpoint is moved within some open set of the Gaussian
sphere. In this thesis, a non-accidental view is one where each visible edge and sur-
face can be (partially) sensed. Without this condition, an edge detector might miss
a visible edge resulting in no detected wings for that edge. As a result, the corrupted
wing representation of the scene will be incomplete and the reconstruction of the line
drawing graph will be much more difficult.

As an example, Figure 2.4 (a) shows a view of a solid box that would be considered
accidental under [83, 91] but is perfectly legal by Definition 2.3. Figure 2.4 (b) is an
accidental view of a topless box. It is accidental because the 3D edge corresponding

to the line segment marked “?” and its adjoining surface(s) cannot be sensed.
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2.4 The Line Drawing Graph (LDG)

In this research, objects are assumed to be composed of é-polygonal/§-quadric faces;
it is not important whether they are regarded as 3D solids or just 2D surfaces. Faces
are either §-polygons or é-quadrics. A view of a polygonal/quadric scene is a set of

3D polygons/quadrics with some viewing direction.

Definition 2.5 The projection of edges of objects in a scene with hidden line removal

forms a planar graph called the line drawing graph (LDG).

In this regard, the LDG is the starting point of much line labeling analysis research

including [30, 61, 66, 83, 115, 123]. Following previous authors, we will adopt the

naming convention that faces in the 3D world have edges, and vertices, while the

LDG has regions, line segments, and junctions. Note that line segments in the LDG

depending on the object domain are not necessarily straight.

In general, line drawing analysis attempts to interpret every line segment in the
LDG to be an image of a convex crease (+), concave crease (-), self-occluding surface
boundary (>>) or occluding surface boundary (>). Here, we strive to label the regions

in the LDG, too.

Definition 2.6 A LDG where each line segment and each region is labeled, is called
a labeled line drawing graph (LLDG).

The complexity of line and region labels are not specified in the above definition. It
is purposely left unspecified so the complexity of the labels can be adjusted according
to the application need. For our purposes, the line label not only must contain the 3D
interpretation ({+, -, >, > }) of the segment it must also capture the shape ({linear,
circular, parabolic}) of the segment. The region labels will have the shape and the
pose information of their 3D surface counterparts. The exact line and region labels

used in this research is the topic of next section.
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2.5 What are Wings?

The notion of wing was first conceived by Baumgart [9] as a data structure for polyhe-
dron representation for computer vision. Chen [27] later defined object wings as 23D
primitives for 3D object recognition and showed that wing representation is suitable
to support analysis of scenes of general objects. Here, the notion of wings will be

similar to that of Chen.

Definition 2.7 Let S = {s1, 82,...,Sm} denote the set of different labels of surfaces
that can appear in the scene and let C = {c1,c¢3,...,cn} denote the set of different
labels for the lines (2D projection of the 3D edge), both straight and curved, that can
appear in the image plane. Then a wing primitive, is defined as a triplet drawn

from the sample space formed by the set cross product S x C x S.

Definition 2.8 A wing in an image is defined as a fragment of image contour,
called the wing contour along with the surface patches, called the wing surfaces,
that project onto the regions adjoining the wing contour fragment in the image. Fur-

thermore, a wing can be uniquely labeled as one of the wing primitives.

Since each wing in the image is uniquely labeled by one of the wing primitives, we
will often refer to this unique wing primitive when we speak of wings in the image.
Note that this definition of wing places no restriction on the complexity of the surface
and line labels. If S = {NIL} then the image is represented by a set of wings which
would consists of purely line labels. If the line labels are restricted to labels found
in most line labeling research (e.g., Malik [83]) and if each wing contour is a whole
line segment in the image, then the wing representation is equivalent to that used in
other works on line labeling (Figure 2.5 (a)).

In Chen’s work [27], there are 5 surface types, {null (background), planar, convex,

concave, saddle}, and 4 contour types, {silhouette, jump, convex crease, concave
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null null

null null

(@ (b)

Figure 2.5. Representation of a coke can. (a) Line labeling using Malik’s [83] junction
catalogue (b) Chen’s wing [27] representation. (c¢) LLDG representation.

crease}. Theoretically there are 5 x 4 x 5 = 100 different wing primitives in his
definition. However, as Chen pointed out, only 34 of those 100 wing primitives are
physically realizable: that is there are only 34 different types that can appear in the
image using this definition of surface and contour labels. For example, if we make
the wing contour to take full length, then a coke can would have 5 wings but only
3 different wing primitives are needed to label them all (see Figure 2.5 (b)). The
LLDG wing representation (Figure 2.5 (c)) differs from Chen in that we want to

capture explicit wing contour/surface shape information as well as the contour label

and surface pose information.

2.5.1 Wing Primitives

In defining the object domain, the set of bounding surfaces of all objects have been
restricted to {planar, spherical, cylindrical, conical}. Instead of using other surface
labeling schemes (as in [27]), we use only those 4 surface types and their pose equations

as surface labels. Thus,

S = { PLN(a,b,d), SPH(.’Eo,yo,To), CYL(Z'O,yOaTmaaﬂ)a CON(.Ig,yo,Zo,T’o,a,ﬂ), NIL }







e
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where NIL indicates the background surface or don’t care. The equation of each of
the 4 surfaces in general position will be given in a later section.

The wing contour label is to have information about both the shape of the curve
as well as the type of the curve. Instead of defining wing contour to have shape of
general quadric polynomial, it is represented by 3 types of explicit 2D curves, namely
linear, circular and parabolic. Since the limb boundaries of cylinders or cones and
spheres project to straight lines and circles, respectively, linear and circular curves
are used as wing contour models. Note that some non-limb edges may also project to
a straight or circular curve. Projection of all other curved edges are locally modeled

by parabolic curves in 2D. Besides labeling each wing contour with explicit shape

information, 3D interpretation of the line segment is also recorded. Following the
symbols used in the line drawing analysis literature [83], each wing contour is also

labeled as a jump (<), convex crease (+), concave crease (—) or limb (<). Thus 12

different labels are possible for wing contours.

Half-wings

As stated earlier, part of the goal of this research is to derive a reliable wing detector.

Instead of defining wings as three-tuples, (S;, Ck, S;) where S;,S; € S and C) € C,

they can be expressed as the union of two-tuples, (S;,Cx) U (S;,Ck), with a common
wing contour. We shall call each of those two-tuples as half-wings. The problem of
wing detection in an image are sometimes reduced to the problem of detecting two
individual half-wings followed by a merge operation. This is true if the edge contour
that separates the two surfaces is either jump or limb (depth discontinuity).

With the previously defined wing surface and contour labels, a complete list of
half-wing primitives are generated and given in Table 2.1. Note that for each half-
wing, the wing contour acts as a separator between the two wing surfaces. The wing

contour lies on exactly one of the two wing surfaces. Thus, a half wing could have
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Table 2.1. List of all 60 half-wing primitives

Planar:

(PLN+LN <)
(PLN+CCc< )
(PLN+PB.. )

(PLNFLN, )
(PLN+CC. )
(PLN+PB. )

(PLN+LN; )
(PLN+CC, )
(PLN+PB, )

(PLN+LN_ )
(PLN+CC._ )
(PLN+PB_ )

Spherical:

(SPH+LN.< )
(SPH4+CC<< )
(SPH+PB.. )

(SPH+LN. )
(SPH+CC. )
(SPH+PB. )

(SPH+LN; )
(SPH+CCy )
(SPH+PB, )

(SPH+LN- )
(SPH+CC_ )
(SPH+PB_ )

Cylindrical:

(CYL+LN<< )
(CYL+CC.c )
(CYL+PB.. )

(CYL+LN, )
(CYL+CC. )
(CYL+PB. )

(CYL+LN, )
(CYL+CC, )
(CYL+PB, )

(CYL+LN.)
(CYL+CC- )
(CYL+PB_ )

Conical:

(CON+LN.. )
(CON+CCe< )
(CON+PB.. )

(CON+LN, )
(CON+CC. )
(CON+PB. )

(CON+LNy )
(CON+CC, )
(CON+PB, )

(CON+LN_ )
(CON+CC. )
(CON+PB_ )

Background:

(NIL+LN<< )
(NIL+CCe< )
(NIL+PB.. )

(NIL+LNY )
(NIL+CCv )
(NIL+PB. )

(NIL+LNy )
(NIL+CC, )
(NIL+PB, )

(NIL+LN- )
(NIL+CC. )
(NIL+PB_ )

a planar surface while the wing contour is a projection of a limb from a cylinder or
sphere (PLN+LN< ) or (PLN+CC<< )). For completeness, Table 2.2 lists all those
wings that can be detected as a whole rather than as two half-wings. Basically, these

are wings that involve crease edges.

2.5.2 Derivation of Wing Contour Equations

Wing detection as to be described in the next Chapter, is to proceed by fitting each
of the wing models to the sampled surface/contour points. In the case of jump
wings (i.e., wing contour corresponds to a jump edge), sample points along the edge
projection do not facilitate the wing recovery process. However, those 2D points are
vital for the recovery of wings involving limb boundaries and crease edges. To aid the
recovery of wings by fitting the wing contour model to the sample points from the
edge projection, we must first establish the connection between the equations of the

wing contour and the wing surface(s).
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Table 2.2. List of 38 full wing primitives

(PLN+LN; +PLN)
(PLN+LN_ +PLN)

(PLN+LN; +CYL)
(PLN+LN_ +CYL)
(PLN+LN, +SPH)
(PLN+LN_ +SPH)
(PLN+LN, +CON)
(PLN+LN_ +CON)

(PLN+CC, +CYL)
(PLN+CC- +CYL)
(PLN+CC, +SPH)
(PLN+CC-. +SPH)
(PLN+CC4 +CON)
(PLN+CC- +CON)

(PLN+PB, +CYL)
(PLN+PB_ +CYL)
(PLN+PB, +SPH)
(PLN+PB_ +SPH)
(PLN+PB, +CON)
(PLN+PB_ +CON)

(CYL+LN, +SPH)
(CYL+LN. +SPH)
(CYL+LN, +CON)
(CYL+LN_ +CON)

(CYL+CC, +SPH)
(CYL+CC- +SPH)
(CYL+CC, +CON)
(CYL+CC- +CON)

(CYL+PB, 1SPH)
(CYL+PB_ +SPH)
(CYL+PB, +CON)
(CYL+PB_ +CON)

(SPH+LN, +CON)

(SPH+CC, +CON)
(SPH+CC_ +CON)

(SPH+PB, +CON)
(SPH+PB_ +CON)

(SPH+LN- +CON)

In the following sections, the equation of planar, spherical, cylindrical and conical

surfaces in general position are given. These equations will be denoted as Psy. From
these equations, the projections of the limb boundaries of sphere, cylinder and cone,
which are circular, linear and linear, respectively, onto the image plane are derived
and are denoted as P,4. Finally, we show the equations of the wing contours that are
projections of crease edges. But first, we show how to derive the equation of the ortho-
graphic projection of the limb edge from the equation of the general quadric surface.

In so doing, we will force the two equations to have the same set of parameters.

2.5.3 Deriving Py from Pjy

The general equation of a quadric surface takes the form

Py (z,y,2) = ax® + by* + c2* + dzy + exz+ fyz + gz +hy +iz+57=0. (2.1)
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To find the equation of the projection of the limbs, the points belonging to the limb
boundary must be identified. Note that a point on the quadric surface is on the limb if
and only if the surface normal at that point is orthogonal to the projection direction.

The surface normal at a given point (z,y, 2) is simply

OPsy 0Py 6P3d)
oz’ 9y’ 09z 7

Npad(ziy7z) = (

Assuming that the viewing direction is along the z-axis and that the viewpoint is

at (0,0, z,), the projection direction for a given point (z,y, z) is then

Poroj(2,9,2) = (2,9, 2 = 2).

Thus, the limbs must lie on the surface defined by the equation

P,oj Np,=z(ezy+9)+y(fzu+h)+2(2cz,+i)+(12,+25)=0 (2.2)

which is planar.

Finally, by solving Equation 2.2 for z in terms of z and y and substituting back into
Equation 2.1 and taking the limit as z, — oo, we arrive at P,q, which is the equation
of the limb, orthographically projected onto the image plane. The P,4 equation derived
from a general Py,surface equation is long and is omitted here. It should be noted
that only simple algebraic manipulations are needed in deriving the final form.

Fitting the general Psy and P24 equations to fused data, which have many complex
terms, is computationally expensive [73]. Furthermore, the error model for computing

the distance between the fitted model and the data points can only be approximated
in practice [24, 73]. Qur approach is to fit explicit categorical surface models to fused
data. With explicit surface models, we are é,ble to derive and use the exact distance

between data points and the model in evaluating the goodness of fit. Moreover, there
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are fewer parameters to fit. Below, we give the Ps; and the derived P4 limb projection
equations of spherical, cylindrical and conical models. This is followed by equations
of the projections of crease edges formed by two planar, a planar and a spherical, and
a planar and a cylindrical surface.

Spherical Surfaces

A sphere in general position has the equation
P (z,y, %0, Y0, 20,70) = (2 — 20)” + (¥ — %0)* + (2 — 20) = 10” = 0 (2.3)

There are four parameters: three translational (zo, yo, 20) and radius ro. It is obvious

that the orthographic projection of the contour is a circle. By applying the procedure

outlined above, we arrive at the equation of this circle.
sph . _ 2 2 2 __
P2d (:E, Y, 25 Zo, Yo, 7'O) - (:1: - 3:0) + (y - yO) —To = 0 (24)

Note that only three of the four P:?* parameters are present in Pg*. This means

that fitting P;?" to contour points leaves one free parameter (i.e., z).

Cylindrical Surfaces

The circular cylindrical model has 5 parameters: two translational (zo, yo), two rota-
tional («, 8) and the radius (ro). We derived Ps4 for the cylindrical model as follows.
Take a cylinder with radius ro and the axis coincident with the z-axis. Translate the
cylinder along the x-axis by z¢ and along the y-axis by yo. Using (zo, yo, 0) as the
origin of the new coordinate frame, rotate about the x-axis by angle a and then rotate
about the new y-axis by angle 8. The implicit quadric equation of the cylinder in the

new position can then be expressed in the original coordinate frame as:
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Pf{' (z,y,2; Zo, Yo, 70, @, B) = ((y — yo) cos(a) + z sin(a))*+
((z = zo) cos(B) + (y — yo) sin(a) sin(B) — z cos(a) sin(B))* — ro®>  (2.5)

The orthographic projection of the limbs are two straight lines. The P,y derived
using the method outlined above is a quadric equation representing the two parallel

lines. By solving for one of the variables, we have the equation of each of the lines.

P3¥ (z,y; %o, Yo, 7o, &, B) = (z — o) (cot() sin(e)) + (y — yo)

V/ro? (6 — 2 cos(2 @) — cos(2 (a — f)) — 2 cos(2 f) — cos(2 (a + §)))° csc(B)?
2% (sin(o:)2 + cos(a)’ sin(ﬂ)z)

(2.6)

Conical Surfaces

The circular cone model has 6 parameters: three translational (zo,yo, 20), two ro-
tational angles (o, 3) and the height of the cone at unit radius (dp). To find the
equation of the cone in general position, we first assume that the circular cone is in
the upright position (i.e., has its vertex at the origin and the axis coincident with
the positive z-axis). By translating the cone along the x-, y- and z-axis by z, y, 2o,
respectively, then rotating about the new x- and y-axis by a, 8 as in cylindrical case,

we arrive at the equation of the cone in general position.

é:ém (:C, Y, 2; To, Yo, 20, dOa «Q, :B) = U2 + V2 - W2/d02, (27)
U = (z— zo)cos(B) + (y — yo)sin(a)sin(B) — (z — zp)cos(a) sin(B)
where V= (y — yo)cos(a) + (2 — zo)sin(c)

W = (z - zo)sin(B) + (y — yo)sin(a) cos(B) + (= — z0)cos(a) cos(B)
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After expanding and rewriting Psy" as

5" (€, Y, 2; To, Yo, 20, do, @, B) = az’® + by? + c2® + dzy + exz + fyz+ gz + hy +iz 4+,
(2.8)

derivation of the equation of the projection of the limb edges is straightforward.

con

s (2,9, 2, %0, Y0, 20, do, @, ) = ka® + Iy’ + may + nz +oy +p,  (2.9)

where
62 —_ 2 —
k= a-%, 1= b-L, m= d-4,
n=g-%, o= h-£ p= j-g

2¢? 2¢c)?

By comparing Equation 2.9 with the factoring of two linear equations, we can solve
for the equation of each limb projection, namely
vVm2 —4kl —m —vo? —4lp—o

P oy= 5 z+ T (2.10)

con —vm? — 4kl —m Vol —4lp—o
€ 1 YT 2l i 2

(2.11)

Two Planar Surfaces

Our equation of planar surfaces has three parameters (a, b, d) and takes the form
Py (2,9,7:0,b,d) = az+by + 2+ d =0 (2.12)

To find the equation of the projection of the crease edge between two intersecting

planar surfaces, simply take two such equations and set them equal to each other.
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’I"‘ (z,y,z;a1,b1,d1) =a1z+ by +z+di =0
P (z,y,2z;a2,by,dy) = aaz+ by + 24+ dy =0

PoIntein (o yiay, by, dyyag, bady) = (a1 — az)z 4 (by — by)y + (dy —d3) =0 (2.13)

Note the resulting PZy**?' equation is defined in terms of all six parameters that
appear in PE™ and PPI™ . By fitting data points to PPi", we are in effect finding the

parameters of the two intersecting planes.

Planar and Cylindrical Surfaces

Recall the expressions for PZ" and PgY from Equations 2.12 and 2.5. By solving for
the variable z in PP™ and substituting the expression into P’ to eliminate the z term,

we derive the equation of the projection of the crease edge created by the intersecting

planar and cylindrical surfaces. Note that this equation has all the parameters that

. ool
are present in Pf;" and PY .

P2P;’1+C!l1 (.'E, Y, a, ba da Zo, Yo, To, &, ﬂ) = ((y - yO) COS(CY) - (GIL' + by + d) Sin(a))2+

((z — z0) cos(B) + (y — yo) sin(a) sin(B) + (az + by + d) cos(a) sin(B))? — ry?

(2.14)

Planar and Spherical Surfaces

pin+cyl

Using the same technique for deriving P, , the equation of the projection of the

crease edge created by two intersecting planar and spherical surfaces is

P;é"*"?h (31 Yy a, ba da Zo, Yo, 20, 1"0) = (SL’ - 1,0)2 + (y - y0)2 + ((a z+ by + d) + zo)'l - 7'02
(2.15)




Other Surface Intersections

The 2D equations of the projection of intersection of other surface types can be
derived similarly. However, they may involve very long expressions and are thus

omitted here.

2.6 Registered Fused Images

A database of more than 40 registered (fused) range and intensity images has been
created for experiments. The fused data is dense except for regions of shadowing and
for small holes due to quantization. Each pixel in the fused image contains both the
3D positional information and the intensity value at that position. We refrain from
creating a new terminology such as “fusel” to denote the rich information at each
image grid point. Instead, the term “pixel” will be used throughout this thesis and
should be understood to contain both range and intensity data. The fused images have
been acquired via the White Scanner from Technical Arts [117]. A brief discussion
of the fusion process is given here. Refer to Appendix A for complete details of the
fusion procedure.

The White Scanner is a triangulating sensor which projects a sheet of laser light
onto objects which are viewed by a camera from another angle (see Figure 2.6).
Normally, the intensity image from the camera is only used as intermediate data
toward the computation of 3D coordinates in the workspace reference frame. We
registered the intensity image pixels from the camera with range values obtained by
parallel projecting computed 3D surface points along the optical axis of the camera
onto a synthetic fused image plane. The fused image plane is a synthetic image plane
that is coplanar with the CCD array of the camera and contains both a range value and
an intensity value at each quantized point. A perspective transformation was obtained

by calibration to map 3D world surface points onto the intensity array produced by
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Figure 2.6. Setup of White Scanner and the two coordinate frames

the camera. In this manner, each visible surface point could be assigned an intensity
in the fused image plane. Care was taken to assure registration accuracy to within
one pixel in the final fused images. Because the White Scanner is a triangulating
sensor, there are voids in the data due to shadowing from both the camera and laser
sheet. Shadowing from the white light sources has been minimized by using two or
three light sources when taking the intensity images.

One final note: because the laser illumination is not the same as the white light,
it may happen that intensity edges and range jumps at limb boundaries are slightly

out of registration.

2.7 Summary

In this chapter, we have defined the wing primitive. The structure of a wing and its
mathematical representation were discussed. Essentially, a wingis a Z%D fragment of

image contour along with knowledge about the surfaces that project to the regions
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adjoining the image contour. A wing captures not only the shape of the object in
the local region but also gives clues to the pose of the surfaces that form the wing.
Given our definition of contour and surface labels, a set of 98 wing primitives were
conceived. The wing detection algorithms of the next chapter detect wings that can
be labeled by those wing primitives.

The line drawing graph is the assumed starting point and input of many past line
drawing analysis research projects (30, 61, 66, 83, 115, 123]. However, the labeled line
drawing graph defined here is much richer in information than the usual labeled line
drawing. A LLDG contains not only the usual line interpretations (labels) but also
contains information about the surfaces that project onto the regions in the graph.
With this additional surface information, a higher level vision process may be able to
determine the pose of the objects in the scene.

Finally, we briefly discussed the set-up in which the test images are generated.
We outlined how one can fuse the range and intensity images, originally in different

coordinate systems, to produce a single registered image. The details of the fusion

process can be found in Appendix A.






CHAPTER 3

Wing Detection

3.1 Introduction

As with any representation theory for object recognition, successful extraction of scene
features prescribed by the theory is as important as the theory itself. For theory of
wing representation, the features to be extracted are wings. A list of wing primitives
that can appear in the image are defined in Chapter 2. This chapter presents an
approach to wing detection.

Instead of detecting the surface and contour components of the wing indepen-
dently, we propose to extract, both wing contour and wing surfaces simultaneously.
Hypotheses of presence of various wing primitives are first generated. Verification of
each hypothesis is cast into a non-linear optimization problem in which convergence
to a solution approves the hypothesis and also recovers the parameters of the wing.
The verification procedure involves a novel idea of fused fitting of surface and image
contour data simultaneously to recover the wing parameters. The fused fitting process
is formulated and carefully studied in this chapter. Monte Carlo experiments are per-
formed to test the quality of the estimated wing surface parameters from fitting with
fused, surface-only and contour-only data and to test the shape discrimination capa-

bility of fused and surface-only fitting techniques. Experiments are also conducted
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to study the minimum number of data points required to obtain quality parameter
estimation. Finally, we report on results and inferences drawn from detection of wings

on real fused images.

3.2 Survey of Related Background

The wing, as defined in Chapter 2, consists of a fragment of edge image contour and
adjacent surface information. Using commonly known vision techniques, wing detec-
tion can be decomposed into two steps: edge detection followed by surface fitting for

recovery of the surface properties and the pose information. Chen [26] experimented

with the above simple strategy using only range images. Image segmentation was per-
formed using techniques of either Hoffman & Jain [54], Laurendeau & Paussart [78], or

Marr & Hildreth [85], afterwhich, a symbolic uniform procedure repeatedly grouped

pixels into the most likely neighboring region. Another approach proposed by Chen
was to perform feature extraction by means of the directional derivatives. Directional
derivatives are first order derivatives of a point in a given direction. However, our
implementation shows that a better wing detector is still needed. We should note
that the wing as defined by Chen is a less specific than our wing definition (see Fig-

ure 2.5). A major difference is that pose information of the surfaces is embedded in

our wing while Chen’s has only qualitative surface labels.

Surface fitting has traditionally been done by fine tuning the parameters of an un-
derlying assumed surface model and edge constraints are usually not used. However,
edge information from objects provides strong clues about the local shape of surfaces
[70]. For example, Lowe used only 2D contours for recognition of objects in gen-
eral position [80]; furthermore, superquadric surface fitting with edge constraints has
been successfully demonstrated by Bajcsy and Solina [5]. More recently, Lowe [81],

Taubin [116], and Bolle et al. [17] have also demonstrated the importance of contour
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information by utilizing it in estimating initial parameters prior to fitting and/or us-
ing it to aid the recovery of parameters during fitting. Our wing detector explicitly
uses the contour information to help deduce the initial parameter estimates and guide
the non-linear optimization process.

The following subsections survey some of the traditional edge detecting, surface

segmenting and surface fitting techniques.

3.2.1 Edge Detection in Intensity Imagery

The work on edge detection in intensity imagery can be traced back to the 2 x 2
cross operator of Roberts [108]. An approximate gradient is computed by convolv-
ing the edge operator with the image in two orthogonal directions and (non-)linearly
combining the convolved values. The direction of the maximum gradient can also
be approximated from the two convolved values. Since Roberts, many other differ-
ent edge masks have been proposed, including the Sobel [33] and the Prewitt [102]
operators. Instead of convolving the edge mask in only two directions and approx-
imating the maximum gradient direction from it, better results can be achieved by
convolving the edge operator in many different directions and selecting the maximum
value obtained as the gradient magnitude at the given location, and the correspond-
ing direction as the gradient direction. The Prewitt [102] and Kirch [69] are two such
operators. However, the drawback of such compass gradient operators is that they
require considerably more time for processing on a sequential computer.

Another type of window based operators, proposed by Hueckel [59, 60], Hum-
mel [62], and Frei & Chen [45], fits an explicit model of the ideal edge/line to the
image. Rather than fitting the model directly, the model is approximated by an
orthogonal set of basis vectors (masks) so that existence and the orientation of the

edge/line is computed by simple convolutions.
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A well known and popular edge detector for intensity imagery is the Canny edge
detector [22]. Canny defines detection and localization criteria for a class of edges and
augments it with a criterion to ensure that the detector has only one response to a
single edge. The major distinctions between his detector and the zero-crossing based
detector[85] are that (1) the detector has only one response to a single edge, and
(2) it uses directionally sensitive elongated (rather than circular) operators. Many
post-Canny edge detectors have been published in the literature, but the Canny
edge detector is still the norm against which all other intensity edge operators are

compared. A brief summary of the recent research trends in edge detection is given

in [20].

3.2.2 Segmentation of Range Imagery

In general, the intensity recorded at each pixel of an intensity image depends not
only on the surface position and orientation but also on the surface material, light
source position and the viewing position. Many researchers have concentrated on
the recovery of explicit shape information from intensity image(s) (e.g., shape-from-

shading [56, 57, shape-from-occluding contours {122}, shape-from-texture [126], and

shape-from-stereopsis [8]) which are collectively called “shape-from-x”. A survey of
those techniques can be found in [1].

With rapid advances of technology, range sensors have become more affordable
and accurate [10] and a new class of edge detectors for range images has evolved. The
edge detector for intensity imagery can only be applied to range images to detect jump
(depth discontinuity) edges. Crease edges cannot always be directly detected using
those operators because of smooth transition in depth. As a remedy, Mitiche and
Aggarwal [87)] offered a statistical test for detection of crease edges in range images.
Different partitions at a neighborhood of interest were tested for evidence of a crease

edge. A planar surface is fit to each partition and the difference between the slopes
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of the two planar fits serves as the test statistic. Rather than using those intensity
image operators, some pure range image segmentation methods have been proposed
and are based on aggregation of local surface properties such as curvatures or surface
normals {12, 35, 39, 54, 128]. Since curvature is a second order differential property,
it is especially sensitive to noise. In [43], Flynn compared several different curvature
estimation techniques but found no one performed satisfactorily under the influence
of noise.

Among the many range segmentation techniques in the literature, there are two
major classes: region-based (e.g., [12, 54, 107]) and edge-based (e.g., [35, 96, 99]).
Region-based algorithms segment the image by finding homogeneous regions corre-
sponding to surfaces of the objects while edge-based methods try to extract lines from
images that correspond to boundaries of the surfaces. While a region-based algorithm
may be poor in delimiting the region boundaries, the edge-based approach has the
inherent drawback that the extracted line segments may be fragmented so that a
heuristic line linking procedure is often required to ensure closed curves. Recently,
Nadabar [90], Yokoya & Levine [128], Davignon [31], and Ferrie et al. [39] have given
hybrid approaches to range image segmentation and have shown that by integrating
the region-based and edge-based approaches and using their complementary informa-
tion about the scene, a segmentation is achieved that has a better correspondence

between the shape of the regions and the surface of the objects.

3.2.3 3D Surface Reconstruction: Superquadric and

Quadric Fitting

Fitting of implicit quadric and superquadric forms to range data is one of the ways
to reconstruct surface shape. Here we will concentrate on the fitting aspect of the

reconstruction since our wing detector also involves quadric surface fitting.
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The problem of 3D surface reconstruction has received enormous attention in
vison research. A survey of recent 3D surface reconstruction methods can be found in
Bolle [18]. For example, Rimey & Cohen [107] divide the range image into windows,
classify each window as either planar, cylindrical or spherical and group like windows
into surface regions. Grouping windows of the same surface types is cast as a weighted
maximum likelihood clustering problem. The mixed windows, if any, are segmented
using a maximum likelihood hierarchical segmentation algorithm.

Quadric surface representation, popularized by Faugeras [37], is to represent object

surfaces by simple geometric quadric shapes such as a plane, sphere, cylinder, and

cone. The implicit equation of a general quadric surface is given in Equation 2.1.
By fitting this implicit equation to surface points to recover the coeflicients, the
underlying surface shape and its parameters can be estimated.

When fitting superquadrics in general position, 11 parameters need to be esti-

mated. These are location (3), orientation (3), size (3) and shape (¢; and €;) param-
eters. Given the surface equations (see Section 1.2), the reconstruction proceeds as
a nonlinear optimization procedure in which the error between the sampled surface

points and the model is minimized. The most popular nonlinear optimization tech-

nique seems to be the Levenberg-Marquardt method [101]. As with most nonlinear
optimization strategies, it requires an initial estimate of the model parameters and
converges to the global optimum only if the initial estimate is already close to the
global optimum. Much recent research on quadric and superquadric fitting only dif-
fers in the merit function for evaluating the goodness of fit and the estimation of the
initial parameters. The well known research includes that of Pentland [98], Gross &
Boult (48], Ferrie et al. [38], Solina & Bajcsy [112], and Gupta & Bajcsy [50],
Recently, Kriegman & Ponce [73] proposed a method for shape reconstruction
based on the rim contour points only. They use Elimination Theory to derive the

implicit equation of the rim contour of surfaces of revolution and solve for the pa-
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rameters by fitting a large number of contour points to the rim model using the
Levenburg-Marquardt optimization technique. The implicit equation is a compli-
cated high degree polynomial.

All of the fitting routines mentioned above assume that the image is pre-segmented
and all use a large number of surface points sampled over a large surface area for
fitting (in [73], it is contour points over most of the rim contours.). The large surface
(contour) patch requirement is needed for better estimation of the initial parameters.
As we will show later in this chapter, reconstruction of surface shape can be done

with few sample points over a small surface area if the boundary information can be

used during the fitting process. Moreover, images do not have to be pre-segmented.
As already pointed out at beginning of this section, image contour information can
be an important cue in extracting surface shape. In the remainder of this chapter,

we will explore the possibility of simultaneous fitting 3D surface data points together

with 2D image contour points.

3.3 Wing Detection Algorithm

A flowchart of the proposed ai)proach is depicted in Figure 3.1. Instead of detecting
all wings in the input image I at once, we propose to divide the input image I into
overlapping windows and to detect wings in each of those windows in parallel. Since
wings are local features, locating all wings at once from the original image is recast
into locating wings from smaller subimages that overlap the original image. The set
of detected wings may contain many overlapping and co-curvilinear wings, in which
case, they may be merged to form longer wings and to achieve better accuracy for
the wing parameters. The functionality of each module of the algorithm is examined
more closely in the following subsections and a list of the major parameters of the

algorithm can be found in Appendix C.







44

Detect wings in
wl

Detect wings in
w2
set of all
Bk

Taw range Divide LintoM x M
————*| overlapping windows
image, I of sizenxn

wi

Detect wings in
W MxM

Figure 3.1. Flowchart of proposed wing detection algorithm

3.3.1 Tesselation of the Input Image

The first step in the wing detection process is to divide the input image Iy« into M

X M overlapping windows, wy,ws, ..., Warxm, of size nxn (see Figure 3.2) such that
L. Uiw;i = Inxn, and

2. each pixel P, ., except for those that are near the image border, is covered by

exactly m windows.

The constants, {n, m, N, M } are certainly all interrelated. The number of win-
dows, M x M, is directly related to the window size, n and the degree of overlapping,
m. The size of the window is crucial to the success of wing detection. If the window
is too small, then the covered surface patch would also be small, in which case, the
number of data points available for the parametric fitting may be too few to be ac-
curate. Worse yet, with a small surface patch, it may be impossible to derive a good
set of starting values for the non-linear fit. On the other hand, large window size de-

feats the purpose of dividing the original image into smaller size to simplify the wing
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window size

Figure 3.2. Tesselation of input image

detection process. In general, there is no one window size that will work well for all
images. The best set of {n, m, N, M } to use is really problem, feature size and pixel
size dependent. With larger features that expand across a large area of the image, a
large window would not hurt the detection of features. However, small features may
be missed by using large windows. Given the drawback of a fixed window size, a scale
space approach in wing detection using coarse to fine window sizes is an important
future research direction.

The reason for overlapping windows instead of disjoint segmentation is to guard
against the fact that wings may fall on the border of a window, in which case, the
wing may not be detected. By having overlapping windows, we try to minimize the

the chance of a wing falling on borders of all windows that (partially) cover it.

3.3.2 Detecting Presence of Wings

A hierarchical diagram of how wings may be detected from each subimage is depicted

in Figure 3.3.
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In the first stage, we screen out those windows that are not interesting or are
too busy and only keep those windows that are moderately busy for wing detection.
Since a wing contains a fragment of an edge contour, if a window covers only the
image of a single surface patch, there can be no wing in that window and no wing
detection is necessary in that window. We call those windows bland windows. On
the other hand, windows that are too busy will also be discarded. A window is said
to be busy if more than one wing is present. A typical busy window would be one in
the neighborhood of a vertex. It has been shown in the literature that edge detection
near a corner is a difficult task. Many have attempted to find corners or dominant

points on planar curves [4, 36, 44, 106, 110, 118}, which would require the image

to be segmented in the first place. By detecting wings away from busy areas of
the image and later reconstructing the junctions from the detected wings, the true

junction type and location might be better estimated. Thus, only those windows that

contain exactly two surface patches, counting the background as one, will be further
processed. Those are the interesting windows.
A simple procedure is used to detect the presence of wing(s) and to identify

those interesting windows. First the intensity map of the subimage is convolved

with the Sobol operator. The 2Xws;,. pixels with the highest gradients from the
above convolution are selected as potential edgelets. From the definition of wings in
Chapter 2, there are three classes of wing contours: linear, circular and parabolic.
That is, the 3D edge when projected onto the image plane can be locally approximated
by either a straight line, a circle or a parabola. Therefore, the decision criterion for an
interesting window is based on the goodness of fit of those wing contour models to the
potential edgelets. Note that those 2D curve models have 2, 3, and 3 parameters. By
selecting enough edgelet points, we can solve for the parameters of the curve models
using the linear least squares method. If the window is bland or contains many 3D

edges, then all these fits should be poor and the window will be rejected. Otherwise,
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Figure 3.3. Wing detection within each subimage w;
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in an effort to remove outliers and to achieve more accurate wing location, those
potential edgelets that deviate from the fit model by more than the mean deviation
of all potential edgelets are thrown out as outliers. The remaining edgelets are fit to
the same model again to obtain the final wing contour. The equation of the fitted
curve is useful in the estimation of the initial parameter values for the iterative non-
linear fitting to be described in Section 3.4. Furthermore, the policy for sampling
range data for wing model fitting can also be based on the shape of the contour
extracted and the location of the contour.

Note that the selection of the edgelets is based on the Sobel gradient of the in-

tensity image; the range data is not used. We are able to successfully extract most

edgelets using this simple procedure. Obtaining edgelets without the use of range
data also paves the way for our future research on wing detection from intensity

image alone.

3.3.3 Fitting Wing Primitives

Once interesting windows have been identified, the next step is to detect plausible
wings from each of these windows. This is achieved by fitting each of the wing models
to a sub-sample of points from each of the two regions and the edge contour in the
window. As pointed out in Chapter 2, if a wing model assumes a jump edge then
the 2 surfaces are fit individually without the benefit of contour data. Otherwise,
either one or both surfaces may be fit with the aid of the contour points. We follow
the popular technique of Levenberg-Marquardt for fitting non-linear models [101]. A

non-linear model depends nonlinearly on the set of unknown parameters that define

it. A x?merit function is defined and the best-fit parameters are determined by
minimization of the merit function. If no wing model fits the sampled points well,
then no wing is detected in that window. Otherwise, all detected wings from a window

are reported back for higher level processing.
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In the next section, we will develop the details of the fitting equation, the x? merit

function and the initial estimate of the wing model parameters.

3.4 Simultaneous Boundary and Surface Fitting

Least-squares fitting has been one of the most popular fitting techniques in the field of
computer vision {16, 48, 68, 73, 81, 100, 112, 116]. The conceptual idea is as follows.
Given a set of n data points X = {z;,z,,...,z,}, we want to fit the data by an
implicit equation, P(z;; ?) = 0, having parameters . The problem is to find a set
of parameter values {} such that P(Q) models those data points well. € is said
to be the least-squares estimate (LSE) of the parameters that minimizes the sum of

squared errors. Thus,
> (P(=zi; 0)? < S (P(=i; ©))? for all possible parameter values Q.
i=1

It is well known that the residual error measure may be a poor indicator of the
error between the data points and the fitted model [76]. For example, when fitting a
polynomial to a set of points in 2D, points that have the same Euclidean distance to
the fitted polynomial may have grossly different residual errors (see Figure 3.4).

A better approach is to use the exact normal distance function when computing
fitting errors. Instead of minimizing the squared residual errors, the sum of the
squared normal distances between the data points and the fitted curve is minimized.

Hence the quantity to be minimized is

2

idist(:c;, P(zi; Q).

Unfortunately, the exact formulation of the distance between the data points and

the fitted curve often does not exist (e.g., determining distance between a 3D point
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Figure 3.4. Data points that are close to the fitted curve may have large residual
€rrors.

and a general quadric surface). Some surface fitting algorithms in the computer
vision community have either continued to use the residual errors [42] or used an
approximation to the true distance function [16, 68, 73, 112, 116]. The study by
Gross and Boult [48] showed that the ad hoc goodness-of-fits measures have many
problems and biases in parameter fitting. It was shown that fitting superquadrics
with an error measure based on the true Euclidean distance fares far better than if
other ad hoc measures are used.

In what follows, we will define our fitting functions and derive the true distance
measure to be used as the indicator for the goodness of the fit. We are able to derive
the true distance measure because explicit quadric surface models are used. This
would not be possible if a general quadric surface equation were used instead.

For convenience, denote the candidate window for wing detection as W;. Instead
of using all the points in the window, we subsample m surface points from each region
and n contour points along the wing contour as data points for wing fitting. Let’s
denote those points as X,; = {S11,S12, S13y-+» S1m}, Xsz2 = {S21, S22, S23, e» S2m},
and X, = {C,Cs,Cs,...,C,}, respectively. The effect of different sizes of m and n

have been studied and is reported in Section 3.6.
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3.4.1 Fitting Equations

There are 3 different fitting functions used depending on the type of the wing contour
of the assumed wing model. If the wing contour of the assumed wing model is of type

convex or concave crease, then the fitting function is

Fi(zi; Q) = w (2 € Xp1) P3j(2i; Q) + wy (2 € Xe) Poa(zi; Q) +

wy (2 € Xa) Pii(2i5 Q) (3.1)

for all points in X = X,; U X U X,,. The expressions (z; € X,), (z; € X),
and (z; € X,;) are binary terms. For any z;, only one of the terms is 1 (true) and
the other two are 0 (false). The weights w; and w, are used to scale the relative
significance of image contour residual compared to range residual. Note that there
is also an implicit weighting caused by the numbers of surface points m and contour
points n.

If the wing contour is of type “jump”, then contour information is not useful in
the recovery of the surface parameters. In this case, the wing is broken into two half-
wings and each half-wing is fit to only the set of sampled surface points. Thus, across

jump edges the fitting function is the same as the surface model equation, which is
Fy(zi; Q) = Pyj(zi; Q), Vai € Xa

and

Fy(zi; Q) = P (2:; Q), Vi € X (3:2)
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If the wing contour of the assumed wing model is of type limb, then the contour
data can only aid the recovery of the self-occluding surface. The fitting equation for

this surface and the contour is

Fs(a:,-; Q) = wp (23,' € X_,l) P;;(:B;; Q) + wo (:c,- € XC) Pgd(:c;; Q), (33)

for all z; € (X = &, U X.). Since a limb edge is a jump edge, the other surface
which is being occluded by the self-occluding surface is detected without the aid of

the contour information. Its fitting equation would be the same as Equation 3.2.

3.4.2 Distance Functions

If we substitute P§} and P§? in the fitting equations with one of {PZ}*, PZ2* | Py’

52" } and Py with one of {PE*, P2?%  P¥' Pen} and do a least-squared fit over

Fy, F; or F3 then we would be computing the LSE of the parameters by minimizing
the squared residual errors. As Figure 3.4 indicates, a better error function is the true
distance function. Since we have modeled different types of quadric surfaces by their

respective explicit quadric equations, we are able to derive the true distance from a

given 3D point, ®34, to the model surface. The distance function from a given 2D
contour point, €,4to the model 2D contour may also be derived. We shall denote the
distance function as DPJi® and DPj;® where gqq denotes one of the surface/contour

types.

Planar. The way PZ"is defined, the distance from z34to the fitted plane is equal
to the residual at that point. Thus the distance function of PZi"is simply |PE™ .
Computation of the distance from z,4 to a line in the same image plane is also straight

forward. If the line has slope m and y-intercept b, then the distance is simply (mz +

¥)/V1+ m?. Thus,
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DP™ (29,7 a1,b,dh) = ez + by + 2+ di |
DP phﬁ(x Y,2; a2,b2,dy) = a2z + boy + 2 + da |,
Ppln+pln
1 + ls=e)?

(b1—b2)

pin+pln . _
DF, (z,y,2; a1,b1,d1,a2,by,d2) =

Sphere. Computation of the distance from #3,to a fitted sphere can be computed
as the distance from 34 to the center of the sphere minus the radius of the sphere. In
2D, the distance from @4 to the limb contour projection is the distance from ,4 to

center of the projected circle minus the radius of the circle. Thus,

DPa’f"(z,y,z; o, Yo, 20, T0) = | \/("" - "30)2 + (- yo)2 +(z— 20)2 -],

DP;gh(z, Y5 Zo, Yo, 20, 7'0) = I \/(l‘ - 170)2 + (y - yo)2 - Tol .

Cylindrical. The distance from x34 to a cylindrical surface is also straight forward.
The distance is the absolute difference between the radius of the cylinder and the dis-
tance from 34 to the axis of the cylinder which is a straight line in 3D. Computation
of the distance from z,4 to the projected limb contour is similar to that of DP;’;""’” i

Note that the slope of the projected limb contour in P§y is cot(8)sin(a).

DP:;?I(I,SI, z; To, Yo, To,a, B) =
(yo — y) cos(a) sin(a) cos(f) 4 (z — 2o) cos(a) cos(f3) sin(B) —
L) ((sin(@) * + cos(a) *sin(8)*) r? +

sin(a) “+cos(a) “sin(B) )

2(~2? + 22 30 — 26%) cos(a) * cos(B) sin(a) sin(8) +

2(—zy + Zoy + T Yo — ToYo) sin(a) sin(B) cos(B) +
(—y* + 2y yo — ¥0*) (cos(a) * + sin(a) *) sin(B) *+
2(=y% + 2y yo — yo?) cos(e) * sin(e) " sin(6)*)
—z,
Pcyl
V1 + cot? ﬂ)81n2(a)

l
DPCz (:B Y, %5 o, Yo,To, @, ﬂ
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Conical. We use Figure 3.5 to explain how the exact distance function from 34 to
the surface of a cone can be derived. The distance from x34to the conical surface is
merely

dist (234, P53" ) = 1 - sin(6,).

By the Law of Sines, §; can be computed as sin'l(%) — 01, where [; is the dis-
tance between z34and the vertex, and [, is the distance between x35and the axis
of the cone. Both quantities are easily computed given the estimated parameters
0= {z0, Yo, 20, do, @, B} of the cone. 6;, which is the angle between the axis and the
surface of the cone, is just 1/dp.

The formulation for computing the distance from @,4 to the limb contour of the

cone is similar to the cylindrical case. As with the cylindrical case, since the 2D

equations of those limb contours are already derived (Equations 2.10 and 2.11), one

only needs to find the distance between a point and a line.

D :;:2"(2}, Y, 2, To, Yo, 20, dO,a, ,B) = 11 . sin(02)

con -

;;1 + slopé?

where slope is the slope of the line P59" (refer to Equations 2.10 and 2.11 for exact

DPZC:;n(z7y1 Z; To, Yo, andO’ a1ﬂ) =

b

notation).

3.4.3 x*® Merit Functions

Following [101], we will use the x?merit function to evaluate the goodness-of-fit.
Assume that each surface data point, z; € X, or @; € X3, has a measurement error
that is independently and identically distributed as a normal distribution around
the fitting model Pay(z;; §2), with zero mean and standard deviation o,. Likewise,
assume that each contour data point, z; € X, has a measurement error that is
also independently and identically distributed as a normal distribution around the

contour model Pyy(x;; ) with zero mean but different standard deviation o, (i.e

"y
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Given: 0, , x34, Xg

Il = DIST(XM, Xo )

—
N
]

DIST ( x3g4, axis of the cone)

I
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a
I

= I+ Sin(9,)

Figure 3.5. Computing the Euclidean distance from a point in 3D to the surface of a
cone.

DP;;"’““(::M, P;;"f““) ~ N(0,0,) and DPg™o¥ (2,4, P53™*") ~ N(0,0.)). Then

the x? merit functions for the the fitting functions defined earlier are

Y 2man _&(::1._9)_)'-’ , for fitting Fy in Equations 3.1 (creases)

=1
x* () = by Ez_(:_f;_ﬂl)z , for fitting F, in Equations 3.2 (jumps)  (3.4)

Em-i—n Faff;;ﬂ!)z, for ﬁttmg F3in Equations 3.3 (hmbs)

i=1

For F, in Equation 3.2 where only one surface model is involved, o, is simply o,.
oy and o3 are derived from the sum of two x%s. Their derivations are given in
Appendix B.

By minimizing the x?quantity, we obtain the maximum likelihood estimate of
the model parameters if the noise follows the distribution assumptions. Note that
we have substituted DP;} for Ps; and DP;; for Py in the fitting functions so that
the least-squares estimates are computed in terms of true distance errors instead of

residual errors.
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3.4.4 Initial Parameters

With an iterative non-linear optimization technique, we must supply the fitter with
an initial estimate of the parameters. The fitter iteratively refines the supplied initial
values until convergence. The final estimated parameters are more likely to be the
global minimum if the initial estimates are close to it in the first place. Thus it is
important to have good initial estimate of the parameters. In [80], Lowe matched
features of the hypothesized model to features found in the image to help estimate
the pose parameters of the hypothesized object. Using this paradigm, not only are
the model database must be available, the challenging problem of matching image
features to model features must also be solved. Furthermore, there could be large
number of matches if only a small number of features were detected. However, Lowe
claimed that if the initial orientation parameters are within 60 degrees of the correct
values, then almost any values can be chosen for the other parameters. Our approach,
which will be described in the following subsections, is to estimate the parameters
from the small surface patch and make good use of the contour information whenever

it is available.

Planar. The parameters of a plane are completely recovered if the surface normal
and a point on the plane are known. The surface normal can be computed by taking
the cross product of any two non-collinear vectors on the plane. In our implemen-
tation, we picked three non-collinear surface points that are far apart in the region
and use two of the three surface vectors formed by those three points to compute the
surface normal. The normal vector along with any of the three points picked uniquely

determines the plane on which the three points lie.
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Spherical. A spherical surface model has four parameters, the center of the sphere
(Zo, Yo, 20) and the radius of the sphere ro. There are two cases to be considered

when the assumed surface model is spherical.

Case 1: Wing contour is of class “circular” and of type “limb”. Note
that the orthographic projection of the limb boundary of the sphere onto the image
plane (the z = 0 plane) is a circle whose radius is the same as the sphere. Furthermore,
since the viewing direction is along the z-axis, the center of the sphere must lie on
the line parallel to the z-axis and passing through the center of the circle in 2D.
This means the parameters zo and yo can also be extracted from the equation of the
limb on the image plane. With an additional point on the spherical surface patch,

say (zi, ¥i, zi), the lone remaining parameter, 2o, can be computed by solving the

equation of the sphere for zo. Thus,

20 =2z +\/r}—(z; - 1?0)2 —(yi — yo)2

Since the equation of the projected circle on which the wing contour lies is already

known from the wing presence test in Section 3.3.2, all of the parameters can be

estimated using the procedure outlined above.

Case 2: Estimating parameters from surface patch. Without information
about the limb, the parameters must be estimated from the surface patch directly.
Instead of estimating the curvatures of surface points, which are second derivative
features and therefore are noise sensitive, and deriving the parameters from the esti-
mated curvatures as in [42], we simply fit the surface points with the implicit equation

of a sphere. This implicit equation has the form:

P;fh(:r,y,z; a,b,c,d):a:""-*—yz-}-zz—am—by—cz—d=0 (35)

R >
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The parameters of the spherical surface model can then be computed from the pa-

rameters of the implicit equation {a, b, c,d} by

Lo = a/zv Yo = b/21 20 = 0/27 To = \/d - (%)2 - (;—)2 - (';-)2

Cylindrical. There are two translational and two rotational parameters along with
the radius of the cylinder to be estimated. In effect, one only need to recover the radius
and the orientation of the axis in 3D to estimate all five parameters. Again, there are

two cases to be considered when the assumed wing surface model is cylindrical.

Case 1: Wing contour is of class “linear” and of type “limb”. As in
the spherical case, the presence of the limb contour is useful in estimating the initial

parameter values. However, the limb contour information is not used in estimating the

radius of the cylinder. Although the limb contour gives the direction of the minimum
curvature of the surface patch in 2D, the maximum curvature (therefore the radius)
cannot be computed directly because the direction of the maximum curvature is not
along a straight line in the 2D image Instead, the radius of the cylinder is estimated

by first fitting a bi-quadratic surface of the form

z = P(z,y; a,b,c,d,e,f) = az® + by’ + czy + dz + ey + f

to sampled surface points from the surface patch and then computing the maximum
curvature at each of the sampled points. The radius of the cylinder is taken to be the
inverse of the median of all the maximum curvatures.

The axis of the cylinder must lie parallel to the wing contour in the image plane.
Furthermore, any straight line on the surface patch that is parallel to the wing contour
in the image plane must have the same orientation as the axis of the cylinder. Hence,

by shifting the line along the wing contour into the region corresponding to the

e e
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cylindrical surface patch, the surface points that lie on the new line form a 3D line
that has the same orientation as the axis of the cylinder. The rotational angles can
now be estimated from the orientation of this 3D line. Finally, the translational
parameters are estimated by first projecting this 3D line into the cylinder along the
surface normal by a distance equal to the estimated ro. The new 3D line that goes
through those projected points is an approximation to the axis of the cylinder. The
translational parameters can then be determined by extending the axis to intersect

the image plane (the zy-plane).

Case 2: Estimating parameters from surface patch. The radius is esti-
mated using the same procedure as in Case 1. Since the orientation of the cylinder
in the 2D image plane is not known in this case, we project each of the sampled
surface points along its surface normal into the cylinder by a distance equal to the
estimated ro. Those projected points should lie roughly on a line which is the axis of
the cylinder, from which the translational and rotational parameters of the cylinder
can all be estimated.

In Section 3.7 the cylindrical parameters estimated in Case 1 result in better

estimates due to the fix on the axis direction in 2D.

Conical. Although the fitting equations have been derived, we are unable to derive
a satisfactory algorithm for estimating the geometric parameters of the conical model
from a small conical surface patch, even if information about a limb boundary is avail-
able. We have left the problem of estimating conical parameters from a small surface |
patch to future research. This is not to say that there is no hope in initial parameter
estimation for conical models. In fact, several papers [17, 42, 95] addressing quadric
surface fitting have reported methods in estimating those parameters. However they

all have their limitations. Often, a large surface patch is assumed and/or they use
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noise-sensitive second derivative features such as curvatures to derive the initial val-
ues. For example, Flynn and Jain [42] proposed a method for estimating conical
model parameters based on curvature values. A bicubic surface is fit to the surface
patch, from which the maximum and minimum curvatures and their directions are
estimated. The geometric parameters of the conical models are computed based on
those curvature values. As the authors pointed out, these calculations require accu-
rate curvature estimates, which in itself is a very difficult task [43]. Also, no examples
of conical parameter estimation were given. In [95] a model driven technique for es-
timating conical surface parameters was given. This method is model driven because

one of the parameters, namely the angle between the axis and the cone surface, is

assumed known from the model database. The other parameters, the vertex of the
cone and axis direction, are inferred from the surface patch which must include both

limbs. However, from the outlined approach and the examples given in the paper, it

seems that a large surface patch size is required to obtain acceptable initial param-
eter values. Bolle [17] approximated the axis direction of quadrics of revolution by
intersecting two planes in 3D that theoretically contain the axis of the cone. Each
plane was chosen to contain a surface point and spanned by the direction vectors of
minimum curvature and normal at that point. We think that this approach merits
some consideration in our future work. By using information about the axis direction
in 3D and the limb contour in 2D, the initial estimates of the conical model can be

defined.

Our work so far shows that it is very difficult to differentiate a cone from a
cylinder when only one limb is present. It may be that we should consider them

locally equivalent.







61

3.4.5 An Example

Figure 3.6 depicts how two wing models are fit to a window that partially covers
one side of a cylinder including the limb boundary and the background. In this
window, since only one surface exists, the wing is detected using half-wing models.
The background requires no fitting at all. In Case 1, where the correct wing model
(NIL+ LN¢c + CYL) is to be fitted, the half-wing used is (CYL + LN ). Since
the wing contour is assumed to be the projection of a limb boundary, both surface

and contour points are fitted simultaneously. Hence, the fitting function is

F(zi; Q) = wy (z; € X,) P5¥ (zi; Q) + ws (2: € Xo) PY (255 Q),

where z; € X, U X..

In Case 2, an incorrect underlying wing model (NIL + LN¢ + CYL) is assumed.
Since the wing contour is assumed to be the projection of a jump edge, only the
sampled surface points are used for fitting. Note that the assumed surface model
is correct so that the fit may converge. However, it is our experience that initial
parameter estimation is more difficult and less accurate and therefore less likely to

converge. The fitting function is,

F(zi; Q) = P5Y (zi; Q), where z; € X,.

Finally in Case 3, both the assumed wing surface and wing contour models are
incorrect. Again, since the wing contour is assumed to be the projection of a jump

edge, no contour data is used in fitting. The fitting function is

F(zi; Q) = P* (24; Q), where z; € X,.
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3D fit (Pyglx
to surface

Case 11 F(zi; Q) = w; (zi € X,) PV (25 ) + ws (2 € X.) PV (245 Q).
Case 2: F(xi; Q) = Psy (24 Q).
Case 3: F(zi; Q) = P;:h (zi; Q).

(b)

Figure 3.6. Fitting wing models to a window with cylindrical surface patch. (a)
Window from which the surface and edge points are sampled. (b) Fitting equations
of three different wing models.
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3.5 Experiments with Synthetic Data

Two sets of experiments with synthetic data were conducted to evaluate the perfor-
mance of the fused fitting technique as compared to fitting surface or contour points
alone.

In the first set of experiments, we set out to evaluate the quality of the fit on planar,
spherical, cylindrical and conical surfaces when using respectively only contour data,
only surface data and fused data. True surface models were used during each fit. The
question to be answered by this set of experiments is “Is the use of both contour and

surface data for fitting superior to either used alone?”

While the first set of experiments used true surface/contour models during fitting,
the second set of experiments fitted both true and incorrect models to the data points.

The goal is to determine if the wrong models will fit the surface/contour patch better

than the true model. In other words, the experiments are to exploit the classification
power of the fused data fitter against the usual techniques.

One thousand Monte Carlo trials were performed in each of the experiments. Dur-
ing each iteration, a new set of surface and contour data were synthetically generated
as follows. First the parameters of the surface model were generated randomly. The
ranges from which those parameters were generated are given in Table 3.1. Points
on the surface could then be rendered without error using the selected parameter
values and the appropriate surface model equation. A rectangular sampling window
of specified size was placed over the image contour of the limb boundary. In the case
of two intersecting planes, the window was placed over the line in the image that
corresponded to the crease edge in 3D. Surface and contour points for fitting were
sampled from this window. The total number of points sampled in each of the trials
was 30. For surface points, Gaussian noise was added to the z-component to simu-

late sensor errors. Results at two noise levels, ¢ = 0.01 and o = 0.05 are reported
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Table 3.1. Range (in inches) of parameters

Planar: —=5.0<ay, by, d,a;,by,d; <5.0.
Spherical: | —5.0 < zo, yo < 5.0; 15.0 < 25 <25.0; 1.0 <rg <10.0.
Cylindrical: | =5.0 < zg, yo <5.0; 1.0<r;<10.0; 50<a, <175
Conical: | —=5.0 < zg, yo <5.0; 15.0<2<25.0; 0.5<dp <2.0;
50< a, f <175,

here. Gaussian noise at levels of ¢ = 0.002 and o = 0.01 was also added to both z-
and y-components of the contour data points. In reality, the noise level of our range
scanner [117] was determined to have o < 0.01. We also experimented at a higher o
because we feel that range data derived using shape-from-x techniques would have a

much higher noise level.

3.5.1 Fitting True Models to Contour, Surface, and Fused
Data

The first four experiments involve fitting the true model to spherical, cylindrical,
conical and planar surface patches. We compare the results of fitting fused (both
contour and surface) data to fitting contour-only or surface-only data. The fused
data consists of 15 points sampled from the contour and 15 points sampled from the
adjacent surface patch for a total of 30 points. For surface-only and contour-only
data sets, 30 points were sampled from either the surface patch or the contour in the
window.

Since true model parameter values are known, the initial parameter estimates are
taken to be the truth plus/minus some random deviations having uniform distribu-
tion. Table 3.2 lists the range of deviations for all of the parameters.

In studying the results of the experiments, one of the statistics reported is the
total number of bad fits over the 1000 trials. A fit is considered bad if the computed

x*is over the threshold of 12. Since 30 data points were used in each trial, and the
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Table 3.2. Initial estimate of the model parameters

Planar Conical
dy =a;xday, day ~U(0,1) || £o=2z0xdzo, dzo~ U(0,1)
by=by+dby, db ~U(0,1) || 4o =yo+dyo, dyo~ U(0,1)
diy=dy+dd,, ddy ~U(0,1) || Zo=20+dze, dzo~U(0,1)
d; = aytday, da;~U(0,1) || do = dotddy, ddo~ U(0,0.5)
by =by+db;, db~U(0,1) |@=a+da, da~U(0,10)
dy=dy+dd;, dd,~U(0,1) | =8+dB, dB~ U(0,10)
Spherical Cylindrical
fozxoidxo, dzoNU(O,l) f():—‘il!o:f:dl‘o, dl‘oNU(O,l)
Yo=yoEtdyo, dyo~U(0,1) |l o =yoxdyo, dyo~ U(0,1)
£0=Z():i:d20, dZoNU(O,l) 7:0=T0:f:d1°0, dToNU(O,z)
fo =rotdrg, dro~U(0,1) || & =atda, da ~ U(0,10)
B=B+dB,  dB~U(0,10)

number of parameters is either 4 (spherical), 5 (cylindrical) or 6 (conical, planar), the
degrees of freedom would then be 26, 25 or 24. A x%of 12 with number of degrees
of freedom in the range of 24 - 26 indicates that the probability of the fit obtaining
a x®as small as 12 happening by chance is about 2%. While a bad fit is a type II
error in the hypothesis testing sense in which the correct hypothesis is falsely rejected,
we note that additional reject conditions will be added in the following subsections,
making the term “type II error” an inaccurate description of the rejects by the whole
model fitting procedure. Thus, we shall use the term “bad fits” to donote those fits
that resulted in a type II error or rejected by the additional “good” fit criteria.

All other statistics are computed over the good fits only. Besides reporting the
average and maximum deviations of the estimated parameters from the ground truth,
three other summarizing statistics are also reported. They are the average d.lse, the
average m.lse and the average number of iterations for the good fits to converge. The
d.lIse models the variance of the Gaussian noise in the data and is computed as the
unweighted sum of the squares of the Euclidean distances between the data points

and the fitted surface/contour averaged over all 30 points. The m.lse is a similar
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Table 3.3. Fitting Spherical Model on Spherical Data

Number of trials: 1000
Number of samples per trial: 30
Parameter Measurements | Contour-Only | Surface-Only Fused
are in inches Avg. | Max.| Avg. | Max.| Avg. | Max.
£o- Tirue 0.00 0.01 0.01 0.03 0.00 0.01
Y0 - Ytrue 0.04 [ 045 | 0.03 | 0.14 | 0.02 | 0.08
20~ Ztrue Inf. Inf. 0.03 0.14 0.01 0.04
o= 0.01 T0- Ttrue 0.04 0.50 0.04 0.19 0.02 0.08
x* 0.01658 0.26373 0.13292
dlse 0.00001 0.00009 0.00004
m lse 0.00001 0.00002 0.00001
iterations 3.99 4.29 5.37
bad fits 30 0 3
Zo- Ttrue 0.01 0.03 0.03 0.11 0.01 0.06
Y0 - Ytrue 012 [ 045 [ 017 [ 038 | 008 | 0.35
20~ Ztrue Inf. Inf. 0.18 0.43 0.04 0.17
o =0.05 T0- Ttrue 0.12 0.45 0.23 0.50 0.08 0.34
x° 0.27139 6.80193 3.19649
dlse 0.00009 0.00227 0.00107
m lse 0.00001 0.00056 0.00015
iterations 4.12 4.72 5. 77
bad fits 34 188 3

quantity except the error is computed from the data points before Gaussian noise
was added to the fitted surface/contour. This measure gives an indication of how well

the estimated surface/contour matches the noise free data.

Experiment 1: Spherical

The sampling window size was chosen to be proportional to the radius of the sphere
as 0.5r9 X 0.6r¢. This covers roughly 10% of the projected area of the hemisphere.
Since the sampled area is a small fraction of the sphere, many good fits may result

with various different radii. An additional “good fit” criterion is added to detect

those fits whose estimated radius deviates by more than 0.5 inches from the ground
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truth. Thus, a fit is said to be good if and only if x* < 12.0 and the estimated radius
is no more than 0.5 inches from the truth. The results are summarized in Table 3.3.

In fitting contour-only data, the z-component of the center of the sphere cannot
be recovered. When the noise contamination level is low (o = 0.01), the results are
comparable between surface-only and fused fitting. Perhaps a slight advantage goes
to fused fitting. In fitting with fused data, the estimated parameters are closer to
the ground truth. The average number of iterations is only one more than if only
surface data were used. Although there are 3 bad fits using fused data, it is negligible
in light of the large number of trials. The results in the more noisy case (¢ = 0.05)

strongly support our claim that fused fitting is superior then fitting with 3D or 2D

data alone. The number of bad fits using fused data remained low while the number

of bad fits for surface-only data shot up to 18.8%. The estimated radii are also much

worse using surface data alone.

Overall, the results suggest that simultaneously fitting surface and contour points
can tolerate a much higher noise level. The fitted parameters are more accurate,
and these results are obtained without much increase in computation time (one more

iteration).

Experiment 2: Cylindrical

The window from which the data points are to be sampled is a rectangular box of
height 2.07y (running parallel to the axis of the cylinder) and width 0.6r,. This
roughly covers 33% of the projected area of a cylinder of height 2.07¢. As in the
spherical case, many fits will be deemed good if x* were the only criterion used. Here
a fit is consider good if and only if (1) x* < 12.0, (2) |fo — o] < 0.5, and (3)
|& —a| < 10° and | — B] < 10°. Those conditions force a good fitted cylinder to have
similar size and have the axis approximately pointing in the true direction. Results

from the Monte Carlo trials are depicted in Table 3.4.
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Table 3.4. Fitting Cylindrical Model on Cylindrical Data

Number of trials: 1000
Number of samples per trial: 30

Parameter Measurements | Contour-Only | Surface-Only Fused
are in inches Avg. | Max. | Avg. | Max.| Avg. | Max.
Zo- Tirue 1.69 |61.84 | 0.29 |14.52| 0.12 2.81
Y0 - Yerue 0.44 5.33 0.17 5.27 0.08 1.92
70~ Ttrue 0.25. | 0.50 0.09 0.46 0.03 0.27
O- Qtrye 4.59 9.98 0.63 7.52 0.60 5.19
o =0.01 B - Birue 270 [ 971 | 049 [ 6.8 | 048 | 430
x* 0.06889 0.26924 0.18603
dlse 0.00002 0.00009 0.00006
m lse 0.00002 0.00725 0.00067
iterations 3.45 7.18 6.63
bad fits 815 : 58 7
Zo- Ttrue 140 |18.74 | 054 |16.39| 0.50 | 14.51
Yo~ Ytrue 043 | 544 | 029 | 329 | 0.35 |10.86
T0- Tirue 0.25 0.50 0.23 0.50 0.15 0.50
Q- Qgrye 4.63 9.99 0.91 9.95 1.29 9.89
o = 0.05 B- Birue | 2.61 9.70 0.62 5.02 0.70 5.37
x* 0.32513 6.63258 4.31621
dlse 0.00011 0.00221 0.00144
m lse 0.00003 0.00087 0.00369
iterations 3.72 4.76 6.18
bad fits 819 676 186
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As with the spherical cases, the fused fit out-performed the other two methods.
This is especially true with the noisier data. Note that the contour-only based fitting
converged on less than 20% of all trials performed and is therefore not a good choice
for parameter estimations. Under light noise contamination, the convergence rate for
the surface-only fit is 2% higher than the fused fit. However, the fused fits result in
better parameter estimates and slightly faster rate of convergence. With higher noise
level, the surface-only fits failed much more frequently and the estimated parameters

were inferior to those obtained in fused fits.

Experiment 3: Conical

The size and placement of the window is chosen as follows. First a point z,, along the
limb boundary at some random elevation from the vertex of the cone is selected. The
radius of the circular cross-section that touches z,, and orthogonal to the axis can be
then be computed, say ro. The window from which the data points are to be sampled
is thus a rectangle of height 2.0y (running parallel to the limb contour of the cone)
and width 0.6 ro placed with one corner of the window coinciding with the selected
point on the limb contour. The good fit criteria are similar to the cylindrical case,
which are: (1) x2 < 12.0, (2) |do — do] < 0.5, and (3) |&— | < 10° and |3— 8] < 10°.
Results of this experimentation are given in Table 3.5.

As with the previous two cases, the contour-only fits are not reliable for 3D pa-
rameter estimation. In low noise, the fused fits performed the best in all category
including number of bad fits, the accuracy of the estimated parameters and the con-
vergence rate. However, none of the fitting methods performed satisfactorily when
the noise level was raised to o = 0.05. Overall, conical model fitting performed worse
than the spherical and cylindrical cases, probably because the conical model has more

degrees of freedom and the region from which the data points are sampled is smaller

[24].
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Table 3.5. Fitting Conical Model on Conical Data

Number of trials: 1000
Number of samples per trial: 30

Parameter Measurements | Contour-Only | Surface-Only Fused
are in inches Avg. | Max.| Avg. | Max.| Avg | Max.
Lo~ Ttrue 041 | 1.00 | 0.33 | 2.99 | 0.27 | 2.96
Yo - Ytrue 038 | 097 | 028 | 1.87 | 0.21 | 1.69
Zo- Ztrus 051 | 1.00 | 0.55 |11.73| 0.37 | 8.98
do - dirye 0.20. | 047 | 0.09 | 049 | 0.08 | 0.46
o =0.01 G- Qtrue 433 | 9.93 | 231 |[999 | 191 | 9.96
B- Birue 413 | 967 | 1.31 | 945 | 1.12 | 9.78
X: 4.07391 0.10676 1.12798
dise 0.00136 0.00004 0.00038
m lse 0.00136 0.00921 0.01186
iterations 5.15 15.03 12.53
bad fits 843 273 155
Lo- Tirue 040 | 1.00 | 055 | 3.22 [ 048 | 2.92
Y0 - Ytrue 037 | 097 ] 1.02 |392] 051 | 225
Zo- Ztrue 0.51 | 1.00 | 233 |1565| 091 |11.08
do- dirye 020 | 047 | 017 | 048 | 011 | 0.49
o = 0.01 & Qltrue 417 | 993 | 387 | 971 | 314 | 9.86
B- Birue 396 | 959 | 255 [ 895 | 210 | 9.64
% 3.85353 1.70781 5.00942
dlse 0.00128 0.00057 0.00167
m lse 0.00121 0.04439 0.00210
iterations | 5.14 27.44 17.45
bad fits 854 872 744
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Table 3.6. Fitting Planar Model on Planar Data

r Number of trials: 1000
Number of samples per trial: 30
Parameter Measurements || Surface-Only Fused
are in inches Avg. | Max. [ Avg. [ Max.
G- Girye 0.00 | 0.02 0.00 | 0.02
by - birue 0.00 | 0.02 0.00 | 0.02
dy - dirue 0.01 | 0.73 0.01 0.14
A2 Qirye 0.00 | 0.02 0.00 | 0.02
o =0.01 b3 - berue 0.00 | 0.02 0.00 | 0.02
- dirue 0.01 [0.62 ] 001 |036
% 0.43084 0.44556
dlse 0.00014 0.00015
mlse 0.00001 0.00001
iterations 3.53 3.39
bad fits 0 0
d1- Qtrue 0.00 | 0.02 0.00 | 0.02
b1 - berue 0.00 | 0.02 0.00 | 0.02
dy - dirue 0.01 | 0.55 0.01 0.29
d2- Qirue 0.00 | 0.02 0.00 | 0.02
o =0.05 by - berue 0.00 | 0.02 0.00 | 0.02
dy- dirue 0.01 | 0.29 0.01 0.32
i 6.58697 6.58583
dlse 0.00220 0.00220
mlse 0.00007 0.00004
iterations 3.85 3.64
bad fits 13 13

Experiment 4: Planar

simply a fit in which X? < 12. The results are shown in Table 3.6.

The fused fit is performed over two adjacent planar surfaces along with the projec-
tion of the intersection edge. No contour-only fitting is performed because there is
insufficient constraint on the 3D parameters. The sampling window size is fixed at
1.0 x 2.0, with each surface getting 1.0 x 1.0 of coverage. The surface-only data set
consisted of 15 points from each of the two surfaces whereas the fused data set is

made up of 10 surface points from each surface and 10 contour points. A good fit is
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The differences in the planar fits are judged to be insignificant. Almost all 2000
Monte Carlo trials converged to the ground truth. The fused fit is slightly faster than
the surface-only fit. However, the difference is small. One observation that came out
of additional Monte Carlo trials using a wide range of initial parameter values is that
planar fitting is very tolerant of bad initial guesses. The fits still converge rapidly
even when the starting parameter values are far off the final values. This is consistent
with many reports of planar fitting in the literature. All of this implies that fused

fitting is not needed for polyhedra.

3.5.2 Surface Classification Experiments

The next 4 experiments are designed to test the surface classification and shape recog-
nition power of fitting fused data as compared to fitting surface-only data. Specifi-

cally, we want to test how well the fused fits reject the fitting of one model to data

generated from other models (e.g., fitting all models to spherical surface path).
The initial guesses of the parameter values are important in finding the correct fit.

When the true model is fitted to the surface patch, the initial parameter estimates are

perturbed from the truth as before. However, when an incorrect model is fitted, the
initial estimate of the parameters can no longer be directly generated from the true
model parameters of data to be fitted. Care has been taken to ensure that the initial
guess results in a surface close to the actual surface patches. The repbrted statistics
include the number of bad fits, the average x?, the average number of iterations and
2 new entities. First, Best x? counts the frequency in which one model is the best fit
among all good fits in terms of x?. If all models failed to fit a surface patch, then the
comparison is not made. The other new entry, misclassification %, is the percentage

in which the wrong surface model fitted the surface patch better then the true surface
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Table 3.7. Fitting all models to Spherical surface patch

True surface form: SPHERICAL
Number of trials: 1000
Number of points sampled per trial: 30

Surface-Only Fused ]
con cyl [sph [ pln || con | cyl [ sph [ pln |
bad fits 909 996 0 931 || 1000 | 1000 0 855 ,
o X2 8.77 [ 10.81 | 0.27 | 7.62 - - 0.13 [ 6.15 l
I iterations 19.25 | 14.25 | 3.78 | 3.62 - - 4.79 | 3.31
0.01 I Best x? 0 0 1000 | O 0 0 1000 ] 0
| % misclassified 0.0% 0.0%
[ bad fits 939 | 1000 { 99 | 972 |[ 1000 [ 1000 [ 0 | 886
a L X2 9.19 - 6.85 | 9.49 - - 3.34 | 7.08
1 ‘ iterations 22.08 - 433 | 3.5 - - 5.44 |3.39
0.05 l Best x* 22 0 888 14 0 0 998 2
[ % misclassified 3.9% 0.2% ]

model. Again, if all surface models failed to converge, then no classification was

performed and that trial was not included in the calculation of frequency of misclas-

sification.

Experiment 5: Fitting all models to spherical patch

The results of fitting all models to a spherical surface patch are depicted in Table 3.7.
When the added Gaussian noise is low (o = 0.01), there is no misclassification error
using either data set. Note that when contour information is not used, the conical
model will fit the spherical surface patch 9% of the time, whereas when contour in-
formation was used, the conical model never converged. The effect of added contour
information is more apparent in the more noisy case. Using fused data, the misclassi-
fication rate was 0.2%. Using surface-only data, the error rate jumps to 3.9%. Again,
when contour data was also used during fitting, the conical and cylindrical models
never fitted well. Since the limb contour of a sphere is curved while the limb contour

of a cylinder or cone is straight, the use of contour points will cause the fitter to
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reject cylindrical and conical models as bad fits. This further supports our claim that
contour information is important in classifying surface shape. We must make a note

that when fitting a planar model to the surface patch, only the surface data is used.

Observation: Among the wrong models, the conical model fit the spherical
surface patch the best only when surface data was used. With fused data, planar

model does better among the wrong models.

Experiment 6: Fitting all models to Cylindrical patch

The cylindrical surface/contour data sets were generated as in Experiment 2 except
for the height of the window (along the limb boundary) which was shrunk from
2.07o down to 0.575. With the original elongated window, the spherical and conical
models would be quickly ruled out by the long straight limb and zero curvature along
the limb. With a more squared sampling window (0.579 X 0.67¢), The conical and
spherical models have a better chance of fitting the cylindrical surface patch and the
contribution of the contour data in fused fitting can be better interpreted. Results of
the experiments are given in Table 3.8.

With low Gaussian noise, the cylindrical model has the best fit most of the time.
Although the misclassification rate for fused fits (4.5%) is lower than that of surface-

only fits (7.8%), they are close. With higher noise level, the power of shape recognition

with fused data is more apparent. While fitting surface-only data yields a 60.8% mis-
classification rate, fused data fitting has a much lower 16.6% error rate. Furthermore,
the conical model fitted the cylindrical surface patch more successfully than the cylin-
drical model when only surface points were used, but this tendency was reversed with
fused data. This can be attributed to the fact that the Gaussian noise induced sur-

face patch no longer resembles a cylindrical patch. Since a conical model has one
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Table 3.8. Fitting all models to Cylindrical surface patch

True surface form: CYLINDRICAL
Number of trials: 1000
Number of points sampled per trial: 30

Surface-Only Fused ]
con [ cyl [ sph [ pln [[ con [ cyl [sph [ pln |
T bad fits 530 | 58 | 882 | 736 || 824 | 61 | 913 | 571 |

o [ X 5.38 10.30 | 6.76 | 5.63 || 5.11 | 0.21 | 6.10 l 5. 21J
I\ ‘ iterations 23.72 1 6.80 | 8.53 | 3.61 || 29.00 | 6.82 | 4. 55 [ 3.41 '
0.01 \ Best x? 58 905 6 13 4 933 [ 40 ]
[ % misclassified 7.8% 4.5% |

‘ bad fits 661 | 728 | 996 | 857 859 | 233 | 942 | 637 I

o L X2 7.17 16.53 [ 10.09 | 8.85 || 6.09 | 4.39 | 7.94 | 6.87 ]
\ ‘ iterations 21.16 | 5.43 | 4.00 | 3.63 || 29.10 | 6.51 | 4.67 3.45J

0.05 | Best x? 276 | 235 1 87 45 [ 706 | 0 96 |

| % misclassified 60.8% 16.6% |

more degree of freedom, it would fit this “irregular” surface patch better than the

cylindrical model. When the limb contour is introduced in fused fitting, it forces the

limb of the conical model to line up with the contour data and consequently makes
the tapering surface of the conical model a bad fit to the non-tapering surface patch.

On the other hand, the contour data put a fix on the axis direction of the cylindrical
model which wasn’t available to surface-only fitting. Consequently, it would fit better
than before.

In fitting surface-only data set, when the surface is misclassified, the conical model
tends to have the best fit, followed by planar then spherical models. We must note
that although a large sphere may fit a small cylindrical patch well, we have made an
explicit assumption that no sphere of radius greater than 10 inches is possible (see
Table 3.1). Thus, all spherical fits with ro > 10 were rejected.

On the other hand, if the surface patch is misclassified when fitting fused data,
the planar model tends to have the best fit followed by the conical model but never

the spherical model.
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Table 3.9. Fitting all models to Conical surface patch

True surface form: CONICAL

Number of trials: 1000

Number of data points sampled per trial: 30

e
S

Surface-Only Fused ]
con [ cyl [sph [ pln [ con | cyl [ sph | pln |
| bad fits 153 | 775 | 745 [ 1000 | 62 | 935 | 998 [ 1000 |
o | X 015 [ 362 [267] - | LI7 [474 [9.09] - |
\ L iterations 15.78 | 21.53 | 6.55 - 12.86 [15.74 | 7.00 [ - |
0.01 [ Bestx” 835 | 20 [129] 0 | 93¢ | 24 [ 0 [ 0 |
| % misclassified 15.1% 2.5% |
\ bad fits 784 859 | 803 | 1000 || 642 949 | 1000 l 1000 l
o | I 218 | 813 |[743] - [ 530 [ 708 | - | - |
I l iterations 30.51 | 20.03 | 7.05 - 18.51 | 16.53 - - J
0.05 l Best x* 215 98 183 0 357 49 0 [ ]
| % misclassified 56.7% 13.7% ]

Observation: Among the wrong models, the conical model fit the cylindrical

surface patch the best if only surface data were used. With fused data, the

the planar model does better among the wrong models.

Experiment 7: Fitting all models to Conical patch

The result of this experiment is consistent with the previous experimentsin that fitting

with fused data yielded fewer misclassifications. From Experiment 3, we learned that

fitting a small conical surface patch is a difficult task even if a conical model were

given. Here we found out that a wrong model is less likely to fit a small conical surface

patch if fused data were used. From Table 3.9, the conical surface patch is misclassified

15.1% (0 = 0.01) and 56.7% (o = 0.05) of the time when only surface points are fitted.

When both surface and limb contour points are used, the misclassification rate drops

to 2.5% and 13.7%. We also note that without contour information, among the

misclassified cases, the spherical model tends to fit the surface patch well, while the

spherical model was never a good fit to the conical surface patch when fused data
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were used. This phenomenon is also consistent with the earlier observation that the
straightness of the limb contour prohibits the spherical model from being a good fit

to the conical surface patch.

Observation: Among the wrong models, the spherical model fit the conical
surface patch the best if only surface data were used. With fused data, the

cylindrical model does better among the wrong models.

Experiment 8: Fitting all models to Planar patch

As in Experiment 4, data points were sampled from a window of size 1.00 x 2.00 in?.
The planar model was fitted to the data set the same way as before. However, when
fitting conical, cylindrical and spherical models, only data collected from one of the
planar surfaces was used. Any small planar patch can be reasonably fitted if the
radius of the quadric model is large. For this reason, the initial ro was set to 7 inches
for cylindrical and spherical models. The other parameters were chosen carefully so
that the surface would conform close to the planar patch. As in the previous two
experiments, any cylindrical or spherical fit with radius greater than 10 inches was
rejected as a bad fit. The results of this experiment are given in Table 3.10.

Clearly, fitting with fused data results in much better classification power. The
fused fit only misclassified 1 surface patch out of 2000 chances where the surface-only
fit produces a much worse result. As with previous observations, without the edge
contour data, the conical model will fit the surface patch rather well. However, with
the added contour information, only one of the wrong models fitted the planar patch

better than the planar model.
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Table 3.10. Fitting all models to Planar surface patch

True surface form: PLANAR
Number of trials: 1000
Number of data points sampled per trial: 30
Surface-Only Fused
con cyl {sph | pln |[ con | cyl | sph | pln
bad fits 178 | 937 | 998 | O | 1000 | 996 1000 | O
o x* 3.54 | 3.63 | 6.91 | 0.42 - 8.22 - 0.41
I iterations 15.33 | 31.43 | 49 | 3.47 - 12825 - 3.30
0.01 Best x* 161 9 0 | 830 0 0 0 |1000
% misclassified 17.0% 0.0%
bad fits 277 | 974 | 998 | 0 | 1000 | 996 | 1000 | O
o x° 4.66 | 5.69 [7.25]6.48 - 8.79 - 6.47
I iterations 17.76 | 37.77 | 42.5 | 3.84 - [23.00 | - 3.59
0.05 Best x* 483 7 0 | 510 0 1 0 999
% misclassified 49.0% 0.1%

Observation: Among the wrong models, the conical model fit the planar

surface patch the best only when surface data were used. With fused data,

none of the wrong models fit the planar patch well.

3.5.3 Simulation Results Summary

The simulation results of the first 4 experiments show that the use of fused data in
surface parameter recovery is superior to using either the contour-only or the surface-
only data. In general, the fused fit yields more accurate parameter estimates and
better convergence rate (especially under higher noise level) without a significant
increase in number of iterations before convergence. In fact, the average number of
iterations for convergence went down using the fused data in some cases.

Monte Carlo experiments directed toward recognition capability indicate that the
proposed fused fitting method has a much lower false alarm rate than the method of

fitting only surface data. On the rare occasions where the fit to an incorrect model
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Table 3.11. Percentage of bad fused fits versus number of surface and contour points.

n\m 5 10 15 20 25
5 32.7% | 8.0% | 7.6% | 5.9% | 5.2%
10 |[31.8% | 7.8% | 7.7% | 6.2% | 5.6%
15 |31.3% [ 7.9% | 7.1% | 6.5% | 5.9%
25 130.6% |7.8% |7.6%|6.4% |57%

m = number of surface points

n = number of contour points

does converge, the misclassification rate (wrong surface label) is also much lower.
This misclassification rate appears to be small enough to give good input to our

planned higher level scene reconstruction module. The observations made in each

of the experiments strongly supports our hypothesis that edge contour information

contributes greatly to the correct qualitative classification of surface shape.

3.6 Fitting with Different Number of Surface and

Contour Points

In the literature, fitting is often performed with a large number of surface or contour

points. We argue that more is not necessarily better. In this section, we study the

effect of fused and surface-only data fitting with various numbers of data points over
a small cylindrical surface patch.

A Monte-Carlo experiment of 1000 trials with different numbers of surface and
contour points was conducted. The number of surface points sampled was 5, 10, 15,
25, or 50 and the number of contour points was 5, 10, 15 or 20. The numbers of bad
fits over the 1000 trials are reported in Tables 3.11. Contrary to popular belief and
common practice in fitting, the results suggest that the performance of the fitter is

stabilized with very few surface and contour points. Improving the performance by
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Table 3.12. Surface-only fitting with various numbers of surface points.

m | Bad Fit % || m | Bad Fit %
10 38.6% 40 5.0%
15 47.4% 50 4.9%
20 6.1% 55 4.5%
25 5.1% 60 4.5%
30 5.1% 65 4.2%
35 5.6% 75 4.3%

increasing the number of data points is possible but the gain is minimal compared to
the increase of the data size.

Similar experiments on surface-only fitting was also conducted and reported in
Table 3.12. The total number of points sampled ranges from 10 to 75. As with the
fused fitting, the performance of the fit stabilized at a very low number of data points
(20). Although the data suggests that more data points would improve the fit, the
improvement is small. One must weigh the advantage of higher convergence ratio to
the cost of slower convergence rate and more expensive sensing when more points are
used to determine the number of points to use for fitting. Similar results should be

expected with surfaces other than cylindrical surfaces.

3.7 Experiments with Real Fused Imagery

3.7.1 JIG1 Example

All surfaces in this image are planar (see Figure A.4). 104 out of total 255 windows
were interesting windows, (i.e., candidate windows for wing detection). Of the 104
interesting windows, 80 were found to contain wings. All hypotheses in the other 24
windows were rejected due to poor surface/fused fits. Of the 80 windows, 75 wings
were correctly identified. However, 5 false wings were also reported. Those 5 false

wings all belong to the error category of F2. E2 occurs if the window covers an
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homogeneous region of the surface but the wing detector managed to find a wing in
it. For example, in Figure 3.7, window A produces a spurious wing. Window B shows
that the correct wing primitive hypothesis, (PLN+LN+PLN), is verified as the wing
present in the window and the other false hypotheses are rejected by fused fitting.
Window C shows that a jump wing is correctly detected.

To evaluate the fitted parameters, we manually clustered the 75 good wings into
the 4 surfaces (this step would be done automatically by the LDG reconstruction
process) and visually inspected the surface parameters of wings in the same cluster.
The means and the standard deviations of each parameter are also shown in Figure 3.7
(The three numbers represent (A, B, D) in the planar equation Az + By+2z+ D = 0).
From the standard deviations, we see that there is little variance in parameters among
all wings in the same cluster. Note that the two surfaces at the far ends have the
same normals and the dot product of the normals of the two inner surfaces, which

are perpendicular to each other, equals 0.

3.7.2 CYL2 Example

There are two types of surfaces in this image: cylindrical and planar (see Figure A.4).
One of the limbs is also registered in the fused imagery. Results of the wing detection
indicates that there are only 45 interesting windows: 30 winged windows and 15 busy
windows. Of the 30 winged windows, 23 contain good wings and 7 contain erroneous
wings. The errors are of type EI (4) and type E3 (3). An E1 error is one where the
simple wing test failed to recognize that two or more 3D edges exist in the window
and to classify it as a busy window (e.g., window F and the lower left corner of
Figure 3.8). An E3 error is one where the surface is cylindrical but the cylindrical
surface hypothesis was rejected and the planar/spherical hypotheses was accepted.
All 3 E3 errors had occurred in windows in which only surface data were available for

fitting (i.e., along the boundary near the lower limb in Figure 3.8).
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(140,-100,3757)  (-142,-100,-2552)
(0.05,001,0.13) (003,002,009)

' \ %
[Um,-lm,-ﬁJ?)‘ C /

(0.01,000,005) (001,-100,-26.76)
~ (002,001,002)

A: (90 30) wing! - PLN, PLN
hypotheses chi_sq fitted parameters

(CYL+PB+ 1.44) (CYL: x0=92.51 yO= 7.47 rO= 43.43 alpha= 31 beta=136)
* (PLN+PB+ 1.33) (PLN: a = 1.47 b =-0.99 4 =-38.01)
(SPH+PB+ 7.79) (SPH: x0=13.87 y0=-4.93 20= 32.86 r0= 9.92)

(  +PB+CYL 159.30) (CYL: x0=61.36 y0=25.63 rO= 27.97 alpha= 28 beta=148)
*( +PB+PLN  1.12) (PLN: a = 1.33 b =-1.04 d =-36.99)
(  +PB+SPH 27.06) (SPH: x0= 8.18 y0=-0.99 z0= 28.59 r0= 1.88)

B:(90 165) wing! - PLN+LN+PLN

(CYL+LN+PLN  1000) (CYL: x0= 0.00 yO= 0.00 r0= 0.00 alpha= O beta= 0)
(PLN: a = 0.00 b = 0.00 d = 0.00)
(PLN+LN+CYL  1000) (PLN: a = 0.00 b = 0.00 d = 0.00)
(CYL: x0= 0.00 yO= 0.00 r0= 0.00 alpha= O beta= 0)
*(PLN+LN+PLN 1.46) (PLN: a = 0.01 b =-1.00d = -26.78)
(PLN: a =-1.46b =-1.00d = -25.79)

C:(150 45) wing! - PLN
(CYL+ + 1000) (CYL: x0=-43.49 yO= 23.04 r0=61.36 alpha= 50 beta=136)
(CYL+LN+ 597) (CYL: x0O= 37.28 y0=-16.43 r0= 0.00 alpha=153 beta= 46)
(SPH+LN+ 1000) (SPH: x0= 3.55 yO= -0.87 z0=24.81 r0O= 3.54)

*(PLN+LN+ 1.06) (PLN: a= 1.39 b = -0.97 d =-37.43)

Figure 3.7. Detected wings in the jig image. Window A in the image corresponds to
the output marked (90 30) where the jump wing hypothesis (PLN+LN), (LN+PLN) is
wrongly accepted. It should be a bland window. Window B in the image corresponds
to the output marked (90 165) where the crease wing hypothesis (PLN+LN+PLN)
is correctly accepted and the others rejected. Window C in the image corresponds
to the output marked (150 45) where the jump wing is detected. * denotes accepted
hypothesis.
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(4235,3377,179,51,46)
(083,130,006,094,000)

(8521,2847,177 47 ,43)
(533,326,031,344,471)

A: (60 105) wing! - CYL, CYL+LN
*( + +CYL 1.92) (CYL: x0=-37.67 y0=28.21 rO= 1.65 alpha= 46 beta= 45)
*( 4LN+CYL 3.42) (CYL: x0=-42.92 y0=34.84 rO= 1.74 alpha= 52 beta= 45)

B: (60 120) wing! - CYL+LN

( + +CYL 10.44) (CYL: x0=-69.36 yO= 68.85 rO= 1.78 alpha= 68 beta= 43)
*( +LN+CYL 1.78) (CYL: x0=-41.18 yO= 31.93 rO= 1.87 alpha= 50 beta= 45)

C: (105 75) wing! - CYL, SPH

*(CYL+ + 1.31) (CYL: x0=-32.56 yO= 23.17 rO= 1.83 alpha= 41 beta= 44)
(CYL+LN+ 21.17) (CYL: x0=-20.19 y0=-78.03 r0O= 0.87 alpha=109 beta=163)
*(SPH+LN+ 1.34) (SPH: x0= 3.24 yO= -1.03 z0= 27.76 r0= 1.88)

D: (120 90) wing! - SPH, CYL
*(CYL+PB+ 5.39) (CYL: x0=-26.02 yO= 32.35 r0= 1.29 alpha= 50 beta= 34)
*(SPH+PB+ 4.28) (SPH: x0= 3.29 yO= -0.94 z0= 27.37 rO= 1.56)

E: (60 195) wing! - PLN
*(PLN+4CC+ 1.21) (PLN: a= 1.38Db

F: (90 165) wing! - (PLN, SPH)
*(PLN+PB+ 0.42) (PLN: a = 1.61Db
*( +PB+SPH 0.57) (SPH: x0= 0.75 yO

( +PB+CYL 1000) (CYL: x0= 0.00 yO

-1.05 d =-25.56)

-1.13 d = -25.54)
0.64 z0 26.21 r0= 1.88)
0.00 r0 0.00 alpha= 0 beta= 0)

Figure 3.8. Detected wings in the CYL image. Wings A and B : limb location in 2D
aids the recovery of the cylinder parameters. Wings C and D : cylinder parameters
recovered without the limb information in 2D. Wing E: correct wing segment type is
recovered. Wing F: small cylindrical surface patch is best fitted by a spherical model.
* denotes accepted hypothesis.
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Again, we clustered the correct wings into the two surface regions. We further
clustered the wings associated with the cylindrical surface into two groups: one where
parameters are estimated from fused data and one in which parameters are estimated
from surface-only data. The mean parameter values and their standard deviations
are reported in Figure 3.8. The 5 numbers associated with the cylindrical surface
are the five cylinder parameters (zo, yo,70, @, 8). Six and nine wings were detected
with the limb (fused fits) and without the limb (surface-only fits), respectively. Of
the 5 parameters, we only have the ground truth for ro, which should be close to 2.0.
The fused fit performed better in having closer radius than the surface-only fits. We

have no way of accurately measuring the ground truth of other pose parameters. By

trying to fit the mean parameters from the surface-only fit as the initial estimates for

fused fitting and vise versa, we found that the mean surface-only fit parameters are

not good starting parameters for fused fitting (did not converge). However, the mean
parameters from fused fitting are good starting values for the surface-only fitting.
This result empirically suggests that the parameters recovered from fused fitting are
more believable than those from surface-only fitting. In any case we are encouraged
by the fact that the parameters clustered tightly.

By carefully studying the results, some general inferences can be made. We use

Figure 3.8 to illustrate those inferences. We note that those inferences are true in

genera] among all the images that were tested.
¢ 2D limb contour information is useful for recovery of surface parameters.

As stated above, parameters recovered from fused fitting should be closer to the
ground truth. In Window A, the cylindrical surface parameters are recovered with
((+LN+CYL)) or without ((+ +CYL)) the limb contour. However note that the
estimated radius is closer to the truth with fused fitting. In Window B, the surface-
only fit ((+ +CYL)) did not converge where as the fused fit did. Upon examining

the initial parameter estimates, we found that the initial values of surface-onlyce fits
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are rather far from both sets of mean parameters described above. Note that the
initial values for surface fits are derived from a local surface patch whereas the initial
values for fused fits are derived with the aid of limb contour position in 2D. This
leads us to believe that limb contour position in 2D is important information to use
for recovering surface shapes.

o The program is able to correctly identify a cylindrical region near limb boundary
from one that is not.

From sample output of window B, we see that the hypothesis that the cylindrical
surface is near limb ((+LN+CYL)) is correctly accepted. In windows C and D, the
hypothesis that the surface is near the limb is properly rejected. Only the hypotheses
that the surface is not near limbs are accepted (e.g.,(CYL+ + ) and (CYL+PB+)).
o Curved contours can be correctly inferred.

This is exemplified by windows D and E. where the correct local contour shape,

parabolic, is correctly identified.

3.7.3 Open Cup vs. Lid Cup

In Figure 3.9 we demonstrate the power of wing representation and our wing detector.
In Figure 3.9 (a), wing detection is performed on an image of a cup with no lid. The
detected wings around the rim on top are correctly detected as jump wings. On the
other hand, the wings around the rim on top of a cup with lid, as in Figure 3.9 (b),
are correctly identified as crease wings. From the line drawing perspective, those two
objects have the identical projection in the 2D. Because of the many-to-1 mapping in
projecting 3D points into 2D image plane, line drawings in 2D often have ambiguous

interpretations. This effect is also exhibited in Figure 1.2.
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(a) (b)

(a): (90 90) wing! - CYL

( +PB+CYL 16.14) (CYL: x0=-25.09 y0= 39.21 r0= 1.31 alpha= 54 beta= 31)

(b): (90 90) wing! - CYL, PLN
*(CYL+PB+PLN 17.74)(CYL: x0=-18.75 yO= 39.91 r0= 1.19 alpha=

55 beta= 25)
(PLN: a = 1.61 b = -1.80 d =-33.90)

Figure 3.9. Wing representation can distinguish an opened cup from a cup with a
lid. (a) Opened cup, the line corresponds to the rim is a jump edge. (b) Cup with
lid, the line corresponding to the rim is a crease edge.






87

3.7.4 Summary on 10 Real Images

The summary of wing detection on the 10 real images depicted in Appendix A is
given in Table 3.7.4. The window size for wing detection is fixed at 30 pixels x
30 pixels. By carefully studying the table and the program output, we make the

following observations.

1. Planar surfaces are reliably detected, even when the visible surface patches are
small. Furthermore, there are no E4 errors. However, there tends to be more E'f
and E2 errors. We believe a more intelligent busy window detector can remove

most of the F1 errors.

2. For fits involving spherical surface patches, the wings can also be reliably de-

tected. We also noticed that the estimated radii tend to be smaller than the

ground truth. There are also no ES5 errors in the two scenes with true spherical
surface patches. The curved limb contour works strongly against the cylindri-
cal hypotheses which must have straight limb contours. This agrees with our

experiments done on synthetically generated data in Section 3.5.2.

3. Cylindrical fits were very sensitive to initial parameter values. We experienced
better initial parameter estimations when the window overlapped the limb pro-
jection. The limb in 2D makes apparent the direction of the maximum curva-
ture. Furthermore, it restricts the 2D projection of the axis to be parallel to it.
Without the limb, the axis can only be estimated from the surface points, which
is difficult if the patch is small. There were 13 E3errors in the 5 images involving
cylindrical surface patches. All but one of those 13 errors occurred in windows
that did not overlap a limb. Thus, as with the spherical case, the straightness

of the limb boundary acts as a deterrent against spherical hypotheses.
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Table 3.13. Summary of wing detection of 10 real images

Number of Interesting W; Number of W; containing wing
region no correct
too wing wing | wing(s) | E1 | E2 | E3 | E4 | E5 | E6
small | detected | detected | inferred
block2 54 27
5 | 22 | 27 20 [4]0]J0fo0ofO0]1
bulbl 11 5
0 | 6 I 4 |[0]O]JOf[O]O]1
cone 28 18
2 | 8 | 18 0 [o0]JOfjoO]JO]O]17
cylinder2 45 30
6 | 9 | 30 22 [4]0[3]0]JO]O
Tigl 104 80
3 | 21 | 80 B Jo]l5[0{0]0]oO
agpartl 22 6
1 | 15 | 6 4 (2]0f(0fJ0jJO]O
blockl+ 49 26
columnl 3 1 20 | 26 18 [ 6]0]2f{0]0]0
cone+ 34 20
cylinder2 0 | 14 | 20 10 | 3j0f(3[0ofJof2
hump+ 48 20
agpart 2 | 26 | 20 16 [2j0f1Jo0fof1
cone+ 37 24
cylinder+ 10 3 24 13 4 12141010 1
sphere \ \
¢ E1: window should be busy but wing is detected.
e E2: W; is bland, but wing is detected - (spurious wing)

e E3: W, contains cylindrical surface patch but planar or sphere are a better fit.

o E4: W; contains planar surface patch but cylinder or sphere are a better fit.

e E5: W; contains spherical surface patch but plane or cylinder are a better fit.

¢ E6: W; contains irregular surface patch but plane, cylinder and/or sphere
fits anyway.







4. Finally we note that in the absence of the conical surface hypothesis, when
fitting a conical surface patch the fitter will reject all the hypotheses when the
surface patch overlaps part of the limb boundary. However, when the surface
patch does not include the limb boundary, the spherical hypothesis will often

be accepted. This again is in agreement with our finding with synthetic data.

3.7.5 More Wing Detection Examples

More examples of wing detection results are shown in Figure 3.10 (a)-(f). The figures
show the detected wing samples overlayed on top of the original intensity images.

Although some of the wings along an edge contour look ragged, this is partly due to

the fact that short local edge contour may be well approximated by more than one
curve type, resulting in possibly more than one wing of different wing contour shape

being detected in the same window. Also, missing range data near edges causes holes

in the displayed data. The currenf wing detector does not differentiate among those
wings and all detected wings are returned for higher level processing. In the future,
a smarter wing sensor could be designed to return only the “correct” wing for each
window.

Note that there are some spurious wings and that some edge contours have no
wings. On planar surfaces, spurious wings often have very similar wing surface at-
tributes on either side and can be removed easily (see Section 5.3). For a spurious
wing in a quadric surface, we observed that the wing surfaces often have different
qualitative labels, making detection of it as a spurious wing difficult. This can be
partly attributed to the fact that an interesting window is not divided evenly into
two halves. If one of the regions becomes too small, an erroneous surface label may
emerge from the non-linear least squares fit. In all the figures, edge contours with no
wing can all be attributed to the fact that the fixed scale window always overlapped

a fragment of those edge contours along with some other edge contours in the image,
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Figure 3.10. Wing detection examples of quadric surface scenes
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which resulted in a busy window. In the future, a scaled-space wing detector may be
tried to alleviate both of these problems.

The conclusions drawn from the previous examples also apply to these examples.
The limb boundaries of the cylinder and the spherical ball are all correctly detected
and labeled. Further, the surface parameters recovered with the limb contours are
more consistent than those derived without it. More examples of wing detection on

scenes consisting of only planar surfaces can be found in Figure 5.7.

3.8 Summary

In this chapter, a procedure for the detection of object wings in fused intensity-range
data was outlined. Wings, which are local features, are detected from overlapping
subimages. A simple busy/bland window detector is used to weed out the uninter-
esting subimages so that only those interesting subimages are further processed for
wing detection. Hypotheses about the type of wings that are present are verified by
fitting the hypothesized wing models against the data points in the subimage.

The novel idea of simultaneously fitting intensity contours and the adjacent range
(surface) data is the central theme of the wing detector. We derived the contour
equations of the limb projection of spheres, cylinders and cones from their respective
3D surface shape formulation and the projection of crease edges formed by intersecting
quadric surfaces so that the 2D contour and 3D surface equation(s) are related by a
common set of parameters. We showed by means of Monte Carlo experiments that
(1) fused fitting results in fewer bad fits and more accurate parameter estimates than
if surface or contour data were used alone; moreover, (2) fused fitting is better able
to discriminate the different surface types. The advantage of fused fitting was more

evident when higher Gaussian noise was introduced in the experiments.
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We also studied the effect of different numbers of surface and contour points used
for fused fitting. Contrary to popular belief, only a very small total number of data
points are needed for the fit to achieve high success rate. This result seems to suggest
that past fitting techniques that use hundreds and thousands of points are merely
wasting valuable computing resources for a very small gain in confidence.

Wing detection over a large set of real fused images demonstrates the effectiveness
of our wing detector. In general, correct wings are detected over “interesting” regions
of the image and spurious wings, although present, are rare. The usefulness of the
edge contours, especially limbs, in aiding surface fitting was apparent. It was shown

that the limb contour is essential in generating good initial parameter estimates for

wings near a limb boundary. We also observed that for curved surfaces, although
the qualitative surface shape is often correctly inferred, the quantitative parameter

estimates still need to be improved. The problem lies in generating good initial

parameter estimates. Near a limb boundary, a more accurate guess can be induced
with the help of its 2D position. Away from limb boundary, the initial estimates must
be “guessed” over the small subimage area. Improving the initial estimate is a topic
for future research. We also observed that if the region from which the surface points

are sampled for fitting were too small, then the recovered qualitative and quantitative

shape measures will often be incorrect.

Finally, we note some of the improvements that can be made to the wing detection
algorithm. As is, wing detection is performed over a fixed scale; the window size is
fixed for all images. Short image segments may never be recovered given the fixed
window size and the image partition policy. To be robust, a scale-space approach can
be used to prevent small features from being overlooked. Although this may increase
the computational complexity, the algorithm is suitable for parallel implementation.
Since wing detection within a window of subimage can proceed independently from

the others, all wings can be detected concurrently on a parallel computer.






CHAPTER 4

Perfect Reconstruction of LLDG -
Origami/Polyhedral World

4.1 Introduction

Line drawing analysis has been actively researched in the past. The goal of research
in this field is to interpret the scene by interpreting the lines of the line drawing of
objects derived from the scene. A common trait of the early papers is that they
all assume that a perfect line drawing is available as input. They often left the
difficult task of low level processing, taking a raw image and converting it to its
line drawing representation to future research. In addition, a junction catalogue
was usually derived in advance to facilitate the line interpretation process; this in
turn placed unrealistic limitations on the domain of objects. The major drawback
in those works is that by insisting on having the perfect line drawing in hand before
interpreting the scene, one is faced with the difficult if not impossible mission of
deriving the perfect line drawing from the raw data.

In this chapter, we will present two methods for complete construction of the
labeled line drawing graph (LLDG) from a set of sampled wings under ideal assump-

tions. The added power of sparse range data is explored. With the benefit of the
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(a) wing representation (b) labeled line drawing

Figure 4.1. Wing representation and reconstruction of the Big-Block (from [26]).

range data, detected wings can be sorted so that data from individual planes can be
interpreted separately. The basic idea is to first recover the line drawings of individual
visible object faces; then the entire view is reconstructed by integrating the recovered
individual faces. Two algorithms have been developed to do the reconstruction. In
the first algorithm, global or local constraints are not necessary, provided that we can
take sparse samples from the original range image. The second algorithm relies only
on the geometrical properties of the LDG and does not need to reference the original
range image. In so doing, not only will a perfect line drawing be constructed, but
the lines and the junctions in the LDG will also be interpreted and the pose of each
polygonal surface in the scene will be recovered (the labeled line drawing graph). An
example showing the wing representation and reconstruction of an object is depicted
in Figure 4.1.

Both algorithms to be presented in this chapter can be classified as deterministic
algorithms because no heuristic procedures are involved in the reconstruction process.

This is only possible due to the strong assumptions made about the completeness of
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the input wing set. A heuristic based algorithm which relaxes some of the strong

ptions will be di d in the next chapter. The main differences between this

research and that of the past are that: (1) a perfect line drawing is derived instead
of assumed; (2) a junction catalogue is not needed in interpreting the line drawing;
and (3) surface pose information is also recovered.

In the next section, we will survey some of the previous research done on line
drawing analysis. This is followed by the presentation of the two LLDG reconstruction
algorithms. Arguments for correctness of each of those algorithms will be given.
Section 4.5 provides reconstruction examples from both syntactically generated scenes
and real scenes. A section summarizing the results and contribution of this research

concludes the chapter.

4.2 Survey of Related Background

Analysis of line drawings have received much attention since the early days of com-
puter vision. Interpretation of line drawings of polyhedral objects has been studied
quite extensively [30, 61, 66, 82, 108, 115, 123] and is well understood. Only recently,
have works on line drawing interpretation been extended to a limited class of curved
objects [83, 92, 93]. One common drawback of all those algorithms is that they all
assumed that a perfect line drawing can be acquired from the input image. However,
to date, no edge detection algorithms can yield perfect line drawings so that those
algorithms can be applied.

In the following subsections, past work in the area of line drawing analysis will be

reviewed. Most works have concentrated on the polyhedral world. Only recently has

interpretation of curved line drawings received any attention. One significant result
coming out of those studies is that a curved line in the image may be labeled as an

occluding edge in one part and a crease edge in the other [83].
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4.2.1 Model Based Interpretation of Line Drawings

One of the first significant works on interpreting two dimensional line drawings of
three dimensional objects is due to Roberts [108]. The main component of his 3D
object recognition system is the database of models of objects to be recognized. Given
an image of an object from the model database, the perfect line drawing of the object
is extracted from the image. The database is searched for a model whose perspec-
tive projection, after some translational, orientational transformation and scaling,
coincides with the extracted line drawing. Although this system required the strong
assumptions that (1) a perfect line drawing can be extracted, and (2) objects are
isolated in the images, it did pave the way for future research on line drawing inter-
pretation and object recognition via a model database.

Falk [34] also used fixed models of the objects that would appear in the scene to
help in identifying the visible objects in a photograph of a scene and determining
their orientation and positions in 3D space. There are two main differences between
the systems of Falk and Roberts. For one, Falk allowed for imperfect input (line
drawings generated from the photograph can be degenerated views of the objects or
some edge may be missing all together) as opposed to the perfect line drawing required
by Roberts. Secondly, Falk’s models specified precise shapes and sizes as opposed to
Roberts’ models, which are generic in the sense that a cube can represent any right

parallelepiped. A hypothesize-and-test strategy was used by Falk in identifying and

locating objects in the scene.

4.2.2 Model-Free Interpretation of Line Drawings - Poly-
hedral and Origami World

In contrast to Roberts, Guzman [51] did not attempt to recognize isolated objects

in a scene. Instead, he developed a program called “SEE” which took a perfect line
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drawing of a scene consisting of jumbles of solid polyhedra with occlusion and tried
to partition it into a set of individual objects. The partitioning was based on a set
of ad hoc rules where configurations of lines and regions at junctions dictate how the
regions are to be decomposed/grouped. Although this method worked well for many
complicated line drawings, it was nevertheless a heuristic algorithm. No justification
of why the rules are correct was given. Examples of line drawings where the algorithm
may fail were given by Mackworth [82].

The first systematic scene interpretation based on line drawing labeling was largely
credited to Huffman and Clowes [30, 61]. They independently went about line drawing

interpretation of trihedral polyhedral scenes. A trihedral polyhedra is an object in

which exactly three planar surfaces meet at each vertex. Each line in the line drawing

can be labeled by exactly one of four symbols: {+,—,>}. A “+” indicates projection

of a convex edge where both surfaces are visible; a “~” indicates projection of a

concave edge where both surfaces are also visible; and a “>" indicates projection of an
occluding edge where only one of the two surfaces is visible and the visible surface lies
to the right as one moves in the direction of the arrow. Junctions which correspond
to visible vertices are labeled as a combination of line labels of all lines meeting
at each junction. Assuming a general viewpoint, an algorithm can be formulated to

systematically, yet exhaustively examine all physically realizable junctions. Given the

trihedral assumption, the three faces of any vertex define three intersecting planes,
which divide the space into 8 octants. By considering all ways of filling up these 8
octants with object material and viewing the vertex from un-filled octants, a complete
junction catalogue can be obtained. A complete listing reveals that only 18 of 208
possible junction labels are physically realizable (see Figure 4.2).

Using the junction catalogue, valid interpretations of line drawing of trihedral
world are rendered through exhaustive search. This labeling scheme is not without

problems. More than one interpretation of a single line drawing is possible (Fig-
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Figure 4.2. Huffman-Clowes junction catalogue.

ure 4.3 (a)). Moreover, nonsensical scenes are coherently labeled (Figure 4.3 (b));
line drawings may be given geometrically impossible line labels (Figure 4.3 (c)); and
scenes that cannot arise from polyhedra are easily labeled (Figure 4.3 (d)).

Waltz [123] extended Huffman and Clowes’ research in two important ways. One,
he expanded the Huffman-Clowes set of line labels to include shadows, cracks, and
separable concave edges. As a result, the number of line labels increased from 4
to 11 and the junction catalogue was greatly expanded due to the addition of 4-
and 5-line junctions. Approximately 2593 junction labels were physically possible.
It is clear that exhaustive search for a consistent line labeling as with Huffman-
Clowes is computationally prohibitive. The second contribution from Waltz is that he
replaced the exhaustive search for consistent line labelings by a constraint-propagation
algorithm to weed out impossible junction labels at each junction. A direct tree search
followed to enumerate all possible labelings. However, the problems associated with

Huffman-Clowes labeling still persist.
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Figure 4.3. Problems with Huffman-Clowes labeling scheme. (a) More than one
interpretation may exist for a single line drawing. (b) Syntactically nonsensical scenes
are coherently labeled. (c) Line labels that are geometrically impossible (d) Non-

polyhedra can also be labeled (b, ¢, d are from {7} )

To deal with the problem of legal labelings that are not realizable as polyhedra,
Mackworth [82] proposed the use of gradient space to remove those labelings. Simply
stated, the gradient (p, q) measures the instantaneous change in the depth of a surface
at point (z, y). The gradient space is then a representation for vector orientations and
is used to represent the surface normals of the polyhedral faces. For a planar surface,
all points on the plane map to the same (p, ¢) point in the gradient space. Using
the same set of line labels as Huffman and Clowes, Mackworth was able to interpret
line drawings by reasoning about surface orientations based on the properties of the
gradient space. Not only were the labelings which yield geometrically impossible
objects removed, but also the object domain was broadened to include all polyhedra

(not just trihedral polyhedra).
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Figure 4.4. Origami junction types and number of possible junction labels for each
type (from [66]).

Mackworth’s approach was continued by Kanade [66]. Kanade broadened the
object domain of Huffman and Clowes to include origami objects. The assumptions
were that surfaces in the origami world are assumed to be planar, that no more
than three surfaces of different orientations meet at a vertex, and that no more than
three edges of different orientations are involved at a vertex. Orthographic projection
was assumed. Under this set of assumptions, a new junction catalogue was derived
much like that of Huffman and Clowes. Line labels were still restricted to the set
{#,—,> }. However, 9 junction types are now possible (Figure 4.4) and the total
number of entries in the junction catalogue jumps from 18 to 153. Line labeling
proceeds by using a filtering procedure for labeling junctions similar to that of Waltz
and checking the consistency of surface orientation. Kanade later introduced two
heuristics to filter out unnatural interpretations [67].

Sugihara [115] took the algebraic approach to line drawing interpretation. First,
a set of candidate spatial interpretations was generated for the given line drawing via
constraint propagation much like that of Waltz [123]. For each interpretation, spatial

information such as the relative depth between a pair of vertices or a vertex and a
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surface was derived from the line label. The task of determining the correctness of
each candidate interpretation was reduced to the problem of testing whether a system
of linear constraints has a solution or not.

Assuming that there are m (rq,r,,...,ry) regions and n (J1, j2, ..., jn) junctions in

the line drawing, the system of linear constraints was derived as follows:

(1) Each region r; is associated with a 3D planar face f; with linear equation a;z +
by + z + ¢; = 0. Each 3D vertex v, which corresponds to a junction j, and
which lies on f; gives rise to a linear equation a;z, + biya + zo + ¢; = 0. Note

that the unknowns are a;, b;, ¢; and z,. A system of linear equations is obtained

by collecting all such equations, one for each junction in each region.

(2) A system of inequalities can be gathered from the relative depth of all pairs of

vertices corresponding to junctions on the line drawing. If a vertex v; is in front

of v; then |

2; < 24

else

z; > z;.

(3) Finally, a system of inequalities are formed using the relative depth information

between a vertex v, and a surface f; that correspond to a junction j, and a

region r; on the line drawing. If v, is in front of f; then

a4jTa + bjya+2a+¢; >0

else, if v, is behind f; then

;T + bjya + 24 +¢; < 0.
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Appending the above three systems results in one big linear system of equations
and inequalities with n + 3m (2y, 25, ..., 2n, a1, by, €1, --., @, b, &) unknowns. Sugi-
hara showed that the existence of a solution to this system of linear equations and
inequalities is a necessary and sufficient condition for a labeled line drawing to rep-

resent a valid planar surface scene.

4.2.3 Model-Free Interpretation of Line Drawings - Curved
Surface World

Turner [121] attempted to extend the trihedral vertex polyhedral junction catalogue to
smooth faced opaque solids. The surfaces were composed solely of planar, parabolic,
elliptic, or hyperbolic points and bounded by surface-normal discontinuous edges.

A general viewpoint was assumed and shadow boundaries were allowed. Several

other assumptions about the viewpoint, background, illumination, and corners were

also made. However, unlike the junction catalogue for trihedral vertices, Turner’s
catalogue was not shown to be complete for its domain [91].
Chakravarty [25] dealt with planar-faced and curved-surface solids, having ver-

tices formed by at most, three surfaces, and edges formed by two surfaces. Seven

generalized junction types were defined. Limitations on permissible junction types as
one moves from one end of a line segment to the other provided the ability to verify
whether a given sequence of junctions forms a realizable configuration. This labeling
scheme dealt with regions and lines, rather than with the geometric characteristics of
a junction.

Malik [83] systematically derived a junction catalogue (Figure 4.5) for scenes com-
prising opaque regular solids bounded by piecewise smooth C® surface patches with
no markings or texture on them. Orthographic projection and a general viewpoint

were assumed. The input line drawing to the interpretation module was assumed to
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be perfect and that lines due to shadows or specularities were not present. An algo-
rithm which utilizes this catalogue to determine all legal labelings of the line drawing
was developed. A new line label <« was introduced to accommodate limb boundaries,
a locus of points on the surface where the line of sight is tangent to the surface (see
Figure 4.6). In order to prune highly counter-intuitive interpretations involving a
number of hidden faces, a local minimum complexity rule was also used to restrict
the number of hidden faces at a vertex to at most one. Although a large number of
curved objects were allowed in the object domain, simple objects such as the piece of
nose cone shown in Figure 4.6 were excluded.

A mathematical framework for line drawing interpretation was recently presented

by Nalwa [91]. The assumptions were that the imaging geometry is accurately cap-
tured by orthographic or perspective projection, the viewpoint is general, the surfaces

are piecewise C°, and that limbs are the only viewpoint-dependent edges. Using this

framework, constraints on the scene from instances of straight lines and conic sections
in line drawings were derived [92]. In [93] constraints associated with bilateral sym-
metry were investigated. It was shown that the orthographic projection of a surface
of revolution exhibits bilateral symmetry about the projection of the axis of revolu-
tion, irrespective of the viewing direction. However, no attempt was made to suggest

schemes for the detection of bilateral symmetry in line drawings.

4.3 Reconstruction of LDG Via Resampling

An LLDG reconstruction algorithm similar to the one presented in this section was
first conceived by Chen [26]. However no implementation was attempted and there
were more restrictive assumptions. Here, we present a slightly different algorithm
_ that does not require the objects to be completely inside the field of view and show

the results of our implementation.
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Figure 4.5. Junction catalogue for piecewise smooth surfaces [83].
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Figure 4.6. Apiece of nose cone is not in Malik’s [83] object domain.
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4.3.1 Assumptions

The reconstruction algorithm depends upon the following assumptions.

Object Domain/Scene Assumptions:

A;) Objects are é-polygons or polyhedra whose faces are §-polygons.

A;z) Scenes can be composed of multiple objects which may occlude one another.

Wing Detector Assumptions:

A;) The view is non-accidental and the “wing sensor” produces at least one wing
sample for each edge that would be visible in the LDG. (Recall the definition

of a non-accidental view from Section 2.3.)

A,) There are no spurious wings.

Computation Accuracy Assumption:

As) Measurements and computations are infinitely accurate.

Clearly assumptions A3, A4 and As are unrealistic in lieu of existing low level
image processing techniques. However, our intention is to present a deterministic
algorithm such that a complete line drawing graph can be reconstructed under these
ideal assumptions. In the next chapter, we shall give a heuristic algorithm for re-
constructing LDGs that relaxes these assumptions. An object view and its wing

representation which satisfy these assumptions is given in Figure 4.1.

4.3.2 Algorithmic Approach

Our approach is to individually reconstruct the LDG of each face of the objects in the

view then merge them to form the final LLDG. For each plane, the line segments from
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all wing samples involving that plane are extended until they intersect the image frame
forming the set of all possible LDG line segments. When necessary, the algorithm
resamples the range data to decided whether one of the possible segments is really in

the LDG. The example below originates from Chen [26].

Step 1 : Cluster wings into plane groups

Wings are clustered into groups such that wings in the same group lie on the same
plane. Counting background as one planar group, each wing will be a member of
exactly two plane groups. From Assumption Aj, the wing sensor produces at least

one wing for each LDG segment. Thus, all planes containing object faces will be

known as well as all lines containing visible edges. In addition, from Assumption A4,

there can be no spurious wings; hence no spurious planes. Consider the example in

Figure 4.1 (a). After grouping wing segments according to their plane equations, 8
plane groups are obtained. Processing of one plane group, { 4, 13, 14, 15, 16, 17,
26, 27, 28, 29 }, from the right face of the block will be continued below. Note that
it is possible for a planar group to be composed of wings from two or more faces.

For example, wings from faces fi3 and fi4 or fa; and fa3 in Figure 4.1 (b) belong to

the same group because the two faces are coplanar. The following steps show how to
reconstruct LDG segments from the wings of a single plane group. At the very last

step, all labeled segments will be merged to compléte the interpretation of the LDG.

Step 2 : Determine all possible LDG segments of a planar group

For each wing segment in a plane group, construct a straight line within the picture
frame (see Figure 4.7 (a)). This will result in a set of junctions and line segments
which represent the possible images of the 3D object features (vertices and edges).
From Assumption As, collinear wing segments will lie exactly on the same constructed

line. There are no extra lines generated (Assumption A4) and no missing lines (As-
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sumption A3). The object edges visible in the LDG must form a subgraph embedded
in the planar graph of all these possible line segments: it is the goal of the next steps
of the reconstruction algorithm to extract the correct subgraph (or subgraphs in case
of ambiguity).

At any time in the reconstruction, a line segment can be classified into one of the
following three categories: a must-segment, an undecided-segment or an unwanted-
segment. A must-segment is a line segment that has been determined to be part of
an object face boundary. An undecided-segment is one that is not a must-segment,
but has not been discarded. An unwanted-segment is one that has been determined

to not be part of a face boundary. We now select only those line segments which form

the visible boundaries of the given 3D object faces in the given plane.

Step 3 : Determining initial must-segments

Because of Assumption A4, a line segment overlapping a wing segment must indicate
some object edge and hence should become a must-segment. The result for the right

face of the block in Figure 4.1 is shown in Figure 4.7 (b). There are also several

undecided line segments, denoted by broken line segments in Figure 4.7 (b). For
example, LDG segment kI has not yet been recovered because no wing segment is
associated with it. Such segments are examined in the next step to decide whether

or not they should be part of the LDG.

Step 4 : Access the range data for all undecided-segments

Any line segment in the LDG must separate exactly two distinct regions. If 3D points
projecting to both sides of a candidate line segment are located on the same 3D plane,
then the undecided line segment can be deleted from consideration. An undecided
segment is unwanted unless it has exactly one side with points on the 3D plane of the

current wing group. Assumptions A; and A; ensure that there is sufficient surface
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Figure 4.7. Deciding on LDG line segments (Figure originated from [26]).
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in the 3D view to sample and make this decision. By resampling the range data on
either side of the undecided-segment, every undecided line segment can be classified
as a must- or unwanted-segment. Thus unique LDG is obtained for each planar
group of faces. Returning to the running example, the line segment between & and [
in Figure 4.7 (b) can be successfully recovered, while all other undecided-segments,
including be, ef, gh, g7 and fk, are identified as unwanted-segments. The result of
this step is depicted in Figure 4.7 (c).

By using this resampling rule, each of the undecided segments is either kept as a
must-segment or discarded as an unwanted-segment. Obviously if the range image is
not available for resampling, this step would not be possible. In the next section, we
give another way of reconstructing faces from each planar group using rules derived

from geometric constraints instead of resampling range data.

Step 5 : Delete redundant junctions.

Returning to Figure 4.7 (c), we see that junctions e, h and k do not correspond to
vertices of a 3D polygon. From object and view point assumptions all regions in the
image plane are e-polygons. Thus each junction of the newly reconstructed region
must be shared by an even number of line segments not all of which are collinear.
Therefore, after removing unwanted line segments, junctions which become redundant
are removed. After applying steps 2 to 5 to each plane group, the following conditions
must hold for each group: every junction has even degree and line segments form a
set of circuits. The distinct object faces from a given plane group are represented by

distinct sets of circuits.

Step 6 : Merge planar groups to form the LDG.

Up to this point the algorithm has recovered all edges and vertices of polygonal faces.

The remaining work is to reconcile the line segment labels for the entire LDG. T-
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junctions are created when plane groups are merged and line and sub-line segment
labels are assigned according to the recovered T junctions and the wings associated
with the given line segments. Figure 4.1 (b) shows the result of such a process. More
interesting is the analysis of the “table & chair” in Figure 4.19 : when planar face
ABCD is reconstructed, points G and H are not known — they are formed by the
merger with other faces. Note that the junction H is not in the Huffman-Clowes
catalogue. Junctions (vertices), such as C and F, are formed by merging 2D (3D)
points of intersection computed from the original wing data : assumptions A, and A,
give us tolerances to use for this task. (Also note that the geometric character of DA
can be determined by the wing sensor to be one of { + (chair-top collinear with table
edge), < (chair-top closer than table top), > (chair-top occluded by table-top)}, but

in no case can the connectivity of the materials being sensed be determined without

fallible heuristics being applied on top of the LDG construction.)

4.3.3 Resampling Reconstruction Algorithm: POLY-1

The above steps are summarized below in an algorithm skeleton. The input includes
the range image and an extracted wing representation of a polygonal scene. The out-
put includes a labeled line drawing, the equations of visible faces and the coordinates

of visible vertices. Examples of scenes that can be handled are given in Section 4.5.

(1) Cluster wing segments by plane equation
(2) For each plane group

(2.1) generate a line for each wing

(2.2) compute the intersections among all lines

(2.3) preserve line segments which overlap a wing

(2.4) remove or preserve line segments by testing the range data

(2.5) delete redundant intersections

(3) Merge LDGs of individual polygonal faces

N N
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(4) Compute 3D vertices by intersecting line equations
(5) Retain all line segment labels from wings

(6) Output LDG with plane equations, 3D vertices and edges

4.4 Reconstruction Via Geometric Constraints

While the algorithm developed in Section 4.3 is able to reconstruct a unique LLDG
from the wing samples, it requires the original range image to be available for re-
sampling. However, the range image may not be available in some situations. Fur-
thermore, future research may enable wing detection without range data. Thus, an
algorithm for the recovery of the LLDGs using only the set of sampled wings is de-
sirable and is developed in this section. The algorithm is similar to the previous one
except for the way individual planar groups of wings are reconstructed into regions.

Rather than resampling the range data to complete the line drawing of each of the

coplanar faces, we show that the LDG can be reconstructed using the assumptions

and the inherent geometric constraints of the projection of polygonal scenes. Thus

only the region reconstruction step will be described in this section.

Given a polygonal scene consisting of only objects in the object domain and a
non-accidental view of the scene, assume there are m visible faces which lie on =,
n < m, different planes, the task at hand is the reconstruction of the line drawing of
the faces on each plane. Let G denotes the perfect LDG of the faces on one polygonal
plane as viewed through the given non-accidental viewpoint. G is not the LDG of
the scene; rather, the LDG of a set of coplanar §-polygons in the scene. In the

following subsections, we will exploit the geometrical constraints on G and formulate

reconstruction rules base on those constraints.
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4.4.1 New Terminology

To aid the understanding of the geometric constraints and the new algorithm, we
define the following functions such that each returns some specific information about
a particular line segment, junction or region label. The first four functions are similar
to those of Baumgart [9] but are renamed here to better suit our data structure.
Denote the regions (e-polygons) to which the faces (é-polygons) project as
{R1, R;,... }, and the line segments in the LDG as {seg;;, seg;k,... } where seg;;
denotes the segment from junction v; to junction v;. Furthermore, the regions
{R1, Ry, ... } all have the same planar label, say P;n, which is the equation of the
plane from which the line drawing of object faces are being reconstructed. Note that

due to occlusion, there may be more junctions in the LDG than there are vertices in

3D.

SegCCW,, (segij): returns segix where seg;x is incident to junction v; and is the first
segment encountered from seg;; in the counter-clockwise direction. (same as

PCW (edge) in [9)])

SegCW, (segi;): returns seg;; where seg; is incident to junction v; and is the first seg-

ment encountered from seg;; in the clockwise direction. (same as NCCW(edge)

in [9])

RL-CCW,;(seg;j): returns region label Ps of the region encountered in the counter-

clockwise direction from seg;; with viewing origin at v;. (same as PFACE(edge)
in [9])

RL-CW,,(seg;;): returns region label Ps of the region encountered in the clockwise

direction from seg;; with viewing origin at v;. (same as NFACE(edge) in [9])

In addition, we shall define two segments seg;; and segix to be adjacent segments

if they share a common junction v; and (1) SegCCW, (segi;) = segix or (2) segix

e e
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Figure 4.8. Graphical interpretation of newly defined functions.

= SegCW, (segi;) and define the region immediately bounded by seg;; and segix as
RL-CCW,,(segi;) (or equivalently RL-CW,,(segix)) if (1) is true or RL-CW,,(seg;;)
(or equivalently RL-CCW,,(segix)) if (2) is true.

The above function definitions are depicted graphically in Figure 4.8. Note that

RL-CCW,,(segi;) = RL-CW,,(segi;) and RL-CCW,,(segi;) = RL-CW,,(seg;;).

4.4.2 Geometric Constraints Imposed by Projection of a
6 -polygon

Theorem 4.1 If a circle centered at v is divided into n pieces by n straight seg-
ments, all eztending from v to the boundary of the circle (like a pie chart), then the

2-coloring problem has a solution if and only if n is even.

Pf: Assume a,,a,,as,...,an_1,a, are the pieces of the pie in the clockwise direction
starting at a;. In a 2-coloring problem, adjacent sectors must have alternating colors.

Therefore, one must color the pieces in the following way. If a; is colored green, a,
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must be colored white, az must be colored green, and so on. When all the pieces are
colored, a; will be colored green for all odd i’s and a; will be colored white for all
even j’s.

Since a; and a, are adjacent, they must also have different colors. If n is even,
then a; and a, will have different color and the 2-coloring problem is solved. However,
if n is odd, both a; and a, will have the same color, namely green. Since ¢; and a,
are adjacent to each other, the condition of 2-coloring is violated. Therefore, the

2-coloring problem has a solution if and only if n is even. a

Theorem 4.2 Every vertez of a 6-polygon must be incident with an even number of

edges.

Pf: Let v be a vertex of the é-polygon, Ps. Consider the plane that is coplanar with

P, call the polygonal plane and a circular neighborhood N, of radius r < §, centered

at v on this polygonal plane, the edges of Ps incident with v divides NN, into sectors
where each sector is wholly inside or outside of Ps on the polygonal plane (recall that
the definition of é-polygon guarantees that each edge of Ps have length greater than

§ on the polygonal plane).

Suppose the vertex v is incident with odd, say 2n-1, number of edges. Those 2n-1
edges divides N, into 2n-1 sectors. Since there is an odd number of sectors, from
Theorem 1, at least 2 adjacent sectors will have the same label. But this means that
the edge between those two sectors will have the same label on both sides, which
contradicts the definition of a §-polygonal edge. Therefore, a é-polygon may not have

a vertex of odd degree. =

Corollary 4.2.1 Every junction of the line drawing of an non-accidental view of a

6-polygon must be incident with an even number of line segments.

Pf: Recalling the definition of a non-accidental viewpoint (Section 2.3), the projection

of a §-polygon onto the image plane from a non-accidental viewpoint is an e-polygon.

e
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Therefore, by Theorem 4.2, every junction (vertex) of the line drawing (e-polygon)

must be incident with an even number of line segments (edges). s}

Theorem 4.3 Let S denote a set of coplanar (co-quadric) faces of objects in the
scene, G denote the perfect LDG of those faces in S as viewed through some non-
accidental viewpoint, and Ps denote the region label of all the regions project onto

which those faces of S (P is simply the equation of the copl (co-quadric) surface).

If segi; and seg;. are two adjacent segments in G then either
RL-CW,,(segi;) = Ps = RL-CCW,,(segix)
or

RL-CCW,(segi;) = Ps = RL-CW,(segix)

Pf: From the definition and the properties of the LDG, two regions adjacent to a
line segment in the LDG correspond to projections from two faces in distinct surfaces;
thus must have different region labels. Therefore, it must be that RL-CCW,,(seg;;) #
RL-CW,,(seg:;) and RL-CCW,,(segix) # RL-CW,,(segix). Without loss of generality,
label the regions of G which are not images of faces in S as P,, where P, # P;.
First let’s assume that the region immediately bounded by seg;; and segi
corresponds to RL-CCW,,(segi;) and RL-CW,,(segix) (see Figure 4.9 (a)). Thus
RL-CCW,,(segi;) = RL-CW,,(segir).-
Case 1: Assume RL-CCW,(segi;) = Ps. Then RL-CCW,(seg;) = P =
RL-CW,,(segix).
Case 2: Assume RL-CW,,(seg;;) = Ps. If it were the case that RL-CW,,(segix) = Ps,

then so must RL-CCW,,(segi;) = Ps because they bound and label the same region in
G. But this implies that RL-CCW,,(segi;) = RL-CW,,(segi;) = Ps, which contradicts
the fact that adjacent regions of a line segment cannot have the same region label.

Thus, it must be that RL-CCW,,(segix) = RL-CW,,(segi;) = Ps.







Figure 4.9. Graphical illustration of Theorem 4.3.

The same argument can be constructed if we assume the region immediately
bounded by seg;; and segix corresponds to RL-CW,(seg;;) and RL-CCW,,(segix)

instead (see Figure 4.9 (b)). O

Corollary 4.3.1 Let S denote a set of coplanar (co-quadric) faces of objects in the
scene, G denote the perfect LDG of those faces in S as viewed through some non-
accidental viewpoint, and Ps denote the region label of all the regions projected onto
by those faces in S (Ps is simply the equation of the surface). If seg;; and segy are
two adjacent segments in G then either
RL-CCW,,(segi;) = RL-CCW,,(segix)
nor

RL-CWW (seg.-j) = RL'CWu;(segik)~
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Pf: Since seg;; and segix are adjacent line segments, either RL-CCW,,(seg:;)

RL-CW,,(segix) or RL-CW,(segi;) = RL-CCW,(segix) must hold. If
RL-CCW,(segi;) = RL-CCW,(seg) then by transitivity, RL-CCW,,(segi;) =
RL-CW,(segi;), which violates the fact that adjacent regions cannot have
the same region label. Likewise, if RL-CW,(segi;) = RL-CW,(segi) then
RL-CCW,,(segix) = RL-CW,,(segix), which again is impossible. o.

4.4.3 Geometric Constraint Based Decision Rules

Before characterizing the decision rules, we must first define more terminology and
redefine the functions given in the previous section.

Since the functions RL-CWand RL-CCWare defined as functions that act on the
perfect LDG, they need to be redefined to be used here.

Let W denote the set of coplanar wings on the plane Ps that is being reconstructed
and let G denote the state of reconstruction of Ps at a given time instance. Recall
that each wing sample has information about the two surfaces that project to the
two regions adjacent to the wing edge projection (called the wing segment) in the
LDG. One of the regions adjacent to the wing segment must be labeled Ps because
wing samples in W are all coplanar with plane P and the other region must not be
labeled Ps, say P,. When the wing segments are extended and intersected to form
undecided-segments, the region labels on both sides of the wing segments are carried
over to their extended segments. If wing segments happen to be collinear, then the
extended segment(s) in-between the two wing segments may have multiple region
labels on each side of the segment(s). Thus we shall denote the region label on each
side of a segment in the LDG as a set of labels. When an undecided-segment becomes
a must-segment, the region label on one side will be exactly Ps and the other may

not contain Ps as a possible region label. An example is depicted in Figure 4.10.
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Figure 4.10. Multiple region labels are possible if wings are collinear.

We will now redefine the functions RL-CCW and RL-CW to suit the possibility of
multiple region labels and to define three more new functions. These are the functions

used in the implementation of the reconstruction algorithm.

RL-CCW,,(segi;): returns the set of region labels associated with seg;; on the side
V;.

encountered in the counter-clockwise direction from seg;; with viewing origin at

RL-CW,(segij): returns the set of region labels associated with seg;; on the side

encountered in the clockwise direction from seg;; with viewing origin at v;.

False.

WingDir, (segi;): returns True if at least one of the detected wings is collinear with
seg;; and appears on the v; side of seg;; using v; as viewing origin; else returns

degmust(v;): returns the number of must-segments currently known to be incident
with junction v;. Also called the must-degree of v;.

degund(v;): Teturns the number of undecided-segments currently known to be incident
with junction v;. Also called the undecided-degree of v;.
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In addition to the list of must-, undecided- and unwanted-segments, three sets
of junctions, Vg,, Vo, and V,,4 are also maintained for the new decision procedure.

Members of the same set share the common characteristics as defined below.

Ve, = { vi | degmust(vi) is even and degynq(v;) = 1. }

il

Vo.= { vi | degmust(vi) is odd and degyna(vi) = 1. }

Vind = { Ui l degund(vi) > 1. }

Note that Vg, C Vyna , Vo, C Viune and Vg, ) Vo, = null

We make a note that the set membership of Vg, Vo, and V,n4 and the values
returned by the functions SegCCW, SegCW, RL-CCW, RL-CW, degmust, d€gund may
vary over time as the state of reconstruction G progresses. Therefore, the functions
are not true functions in the mathematical sense but are access functions in the
abstract data type sense. Those functions and sets are graphically illustrated in
Figure 4.11.

As a direct consequence of Corollary 4.2.1, if a junction in G has exactly one

undecided-segment, then that undecided segment can be classified as a must-segment

or unwanted-segment based solely on the must-degree of that junction. This gives

rise to our first two rules.

Rule 4.1 An undecided-segment seg;; can be discarded if degm,s:(vi) is even and

degund(vi) = 1; or if degmust(v;) is even and degyna(v;) = 1.

Rule 4.2 An undecided-segment seg;; is a must-segment if degmyet(vi) is odd and

degund(vi) = 1; or if degmust(v;) is odd and deguna(v;) = 1.

From our experiments, most of the undecided-segments can be resolved using
those 2 rules. However, there are situations where these two rules do not apply. We

derived Rules 3a and 3b to discard more undecided-segments that cannot possibly be
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e RL-CW (ad) = B,
RL-CCW (ad) = Fs

I W

....................................................

RL-CW , (de) =RL-CCW  (de) = F5

WingDir ; (dh) = False deg .o (@)=2
WingDir d (da) = True deg und (a)=4

Figure 4.11. Graphical illustration of redefined and new functions. Notation: broken
lines are undecided-segments, solid lines are must-segments, thick solid lines are wing
segments.

must-segments in the presence of other must-segments. These two rules are directly

implied by Theorem 4.3 and Corollary 4.3.1.

Rule 4.3a Given two adjacent line segments Mseg;; and Useg, where Mseg,; is a
must-segment and Useg; = SegCCW, (Mseg;;) is an undecided-segment. Assume
that the wing group being processed has the surface representation Ps. Then Useg,
can be discarded as an unwanted-segment if
RL-CCW,,(Mseg;;) = {Ps} and Ps ¢ RL-CW,,(Usegu)
or

RL~CCWW(MSC‘(],'J') # {Ps} and RL-CWU‘.(USCgu) = {Pg}
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Rule 4.3b Given two adjacent line segments Mseg;; and Useg;; where Mseg;; is @
must-segment and Useg, = SegCW,,(Mseg;;) is an undecided-segment. Assume that
the wing group being processed has the surface representation Ps. Then Useg; can be
discarded as an unwanted-segment if
RL-CW,,(Mseg;;) = {Ps} and Ps ¢ RL-CCW,,(Usegu)
or

RL-CW,,(Mseg;;) # {Ps} and RL-CCW,,(Usegi) = {Ps}.

The situations depicted by Rules 4.3 (a) and 3b are graphically illustrated in Fig-
ure 4.12. Basically, Rule 4.3 discards an undecided-segment if (1) it adjoins and

neighbors a must-segment and (2) only the must-segment or the undecided-segment

labels the commonly shared region as Ps but not both. Figures 4.12(a)-(b) depict
two situations in which the undecided-segment (broken segment) is discarded and
Figures 4.12(c)-(d) show instances in which the rule would not apply.

Finally, we add a rule to remove spurious extension of a wing. Assumption A3
states that at least one wing is detected on each visible edge of the scene. Thus,
all extensions of a wing beyond intersection with a must-segment should all be re-

moved. This is graphically demonstrated in Figure 4.13. In Figure 4.13(a), undecided-

segments ij and jk are extensions of wing w; which forms the line I Since must-
segment m, intersects line /, if any of the segments on the 23 side of line I were to be
a must-segment then there must be a wing on that side of line .. However, since there
were no wings detected on that side, and there are no missing wings (Assumption A3),

all segments on the 75 side of line / must be unwanted-segments.
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Figure 4.12. Graphical illustration of Rule 4.3. Must-segments and undecided-
segments are represented by solid and broken lines, respectively. (a) Undecided
segment 7l is discarded via Rule 4.3a. (b) Undecided segment 7l is discarded via
Rule 4.3b. (c)-(d) Neither Rule 4.3a nor Rule 4.3b applies.






123
wing/must i ~— undecided
IS HEE k . X
line 1 no wing on this side line 1 AN violates A 5
<«— must my
(@) (®)

SN i
line 1 ]

©

Figure 4.13. Graphical illustration of Rule 4.4. Must-segments and undecided-
segments are represented by solid and broken lines, respectively. (a) No wing on the
7] side of line I (b) if 7 were a must segment, it would violate Assumption As. (c)
Segments on 7] side of line ! in (b) are unwanted-segments.

Rule 4.4 Given a must-segment Mseg;; and an undecided-segment Useg;x where
Usegix = SegCW, (Msegi;) or SegqCCW,, (Msegi;). If Msegi; and Usegix are not
collinear (co-curvilinear) and WingDir, (Usegix) = False, then all (undecided) seg-
ments collinear (co-curvilinear) to and on the side of Usegix with respect to v; includ-

ing Usegix can be deleted.

4.4.4 Complete Reconstruction Algorithm: POLY-2

We are now ready to give the geometric constraint based LDG reconstruction al-
gorithm. All steps but step (2.4) of this algorithm are the same as the previous
algorithm. Note that we apply Rules 4.1 and 4.2 whenever possible because they

are easier to apply than the other rules.
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(1) Cluster wing segments by plane equation
(2) For each plane group

(2.1) generate a line for each wing

(2.2) compute the intersections among all lines

(2.3) preserve line segments which overlap a wing

(2.4) remove or preserve line segments by using Rules 4.1, 4.2, 4.3, and 4.4
(2.4.1) if Vg, # null, apply Rule 4.1 then goto (2.4.1)
(2.4.2) if Vp, # nul, apply Rule 4.2 then goto (2.4.1)
(2.4.2) apply Rules 4.3 and 4.4 to a Jjunction v; of V.,

(2.4.3) if Ving = null or no more changes are possible then goto (2.5)
else goto (2.4.1)

(2.5) delete redundant intersections
(8) Merge LDGs of individual polygonal faces
(4) Compute 3D vertices by intersecting line equations
(5) Retain all line segment labels from wings

(6) Output LDG with plane equations, 3D vertices and edges

4.4.5 Example - Paddle Wheel

Figure 4.14 depicts how one group of wings can be reconstructed using the above
4 rules. This group of wings are extracted from the “background” group (denoted
as Fs) of the paddle wheel example in Figure 4.19 (a). After step (2.3), the state
of reconstruction looks like Figure 4.14 (a). The three junction lists, Vg, , Vojand
Viuna are formed at this instance. By repeated application of Rules 4.1 and 4.2, 20 of
the 40 undecided-segments were discarded as unwanted-segments and 3 became must-
segments. Note that in Figure 4.14 (b), junctions bs and bs € Ving due to accidental
intersections, but they are eliminated soon after. The intermediate LDG resulting
from each application of these two rules are shown in Figure 4.14 (b)-(f). At this
point, both Vg and Vo, are null lists, but there are still some undecided-segments

in the LDG. Thus a more complex rule must be used to further the reconstruction
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Table 4.1. Rest of the processing steps of the Paddle Wheel example.

Iteration | Vg, | Vo, Vind Next Action
10 {0} [null [{c,eg,j,0,0,4,t} | R4.1on {0}, removes nl
11 null | null | {c,e,9,7,1,q,t R 4.3 on {c}, removes cg
12 {c,q} | null | {c,e,9,7,1,q,t R 4.1 on {c, q}, removes ce and ge
13 null | null | {e, g,7,0,t R 4.4 on {e}, removes et
14 {e null | {e,g,7,1,t R 4.1 on {e}, removes g
15 {g null | {g,7,1,t} R 4.1 on {g}, removes gt
16 null | null | {j,],¢ R 4.3 on {l}, removes [t
17 {1,t} | null | {j,1,t R 4.1 on {l,t}, removes lj and jt
18 null | null | null DONE

process. The undecided-segment nl and the must-segment 7 satisfy the criteria set
forth in Rule 4.3 (i.e., RL-CWy(Msegnm) # {Ps} and RL-CCW,(Usegni) = {Fs}).
Therefore, nl can be discarded. Upon removal of nl (see Figure 4.14(g)), Rule 4.1 can
be applied once more to arrive at Figure 4.14(h). This is followed by one application
of Rule 4.4 to remove undecided-segments pg and gl. As a result, more undecided-
segments can be discarded or become must segments via application of Rules 4.1
and 4.2. Table 4.1 shows the rest of the actions to be taken to arrive at the final

reconstructed “background” LDG in Figure 4.15.

4.4.6 Merging of Surfaces

The surface merging step is trivial for the first algorithm since every visible surface

in the scene is guaranteed to be completely recovered. However, in the second al-

gorithm where surfaces are reconstructed using the four rules mentioned above, it is

possible to have some undecided-segments still unresolved at the end of the planar

surface reconstruction step. That is, those four rules only depict necessary but not

sufficient conditions for complete and unique reconstruction of surfaces. An example

is illustrated in Figure 4.16. Figure 4.16 (a) shows the wings detected for the front

face of the block as in Figure 4.1. The reconstructed LDG using the above proce-
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Figure 4.14. cont. (see page 128 for caption)
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Figure 4.14. Reconstruction of the background wing group of the Paddle Wheel.
(a) State of reconstruction after step (2.3).
(b) Result of applying Rule 4.1 to (a).
(c) Result of applying Rule 4.1 to (b)
(d) Result of applying Rule 4.1 to (c).
(e) Result of applying Rule 4.2 to (d)
(f) Result of applying Rule 4.1 to (e). =
(g) Result of applying Rule 4.3 to segment nl in (f).
h) Result of applying Rule 4.1 to (g). e
Result of applying Rule 4.4 to segments pg and ¢l in (h).
Result of applying Rule 4.2 to (i).
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Figure 4.15. Reconstructed silhouette (background) of the Paddle Wheel.

dure results in eight undecided-segments that cannot be resolved using the 4 rules
(see Figure 4.16 (b)). There are four possible valid interpretations as shown in Fig-
ures 4.16(c)-(f). Without information about other adjacent surfaces, this ambiguity
cannot be resolved.

Although the case depicted in Figure 4.16 is highly coincidental, nevertheless it
shows that the preceding algorithm cannot guaranteed an unique LLDG even with a
wing sample from every edge visible in the LDG. Even the use of a junction catalogue
cannot resolve this ambiguity. However, we must note that since all four possible in-
terpretations are physically realizable, perhaps it is not that the rules are insufficient,
but rather that the wing representation of the scene is inherently ambiguous. Unless
the wings are made to be as long as the actual edge segments, ambiguous cases can
always be constructed. Unfortunately, this requirement would mean derivation of a

perfect line drawing graph from the raw input image.






(a) ®)
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Figure 4.16. Algorithm 2 on front face of Big block. (a) Wings detected. (b) 4
undecided segments still unresolved from surface reconstruction. (c)-(f) Possible valid
interpretations (only (e) remains after merging surfaces).
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Figure 4.17. Reconstructed LDG of the Big Block. (a) Incomplete front face. (b)
Ambiguity resolved when surfaces are merged.

With this algorithm, the fate of any left over undecided-segments on a surface

is determined when the surface is merged with its neighboring surfaces, if any exist.

Basically, each of the remaining undecided-segments will b a must-segment only
if it is completely overlapped by a must-segment on some adjacent surface. In other
words, since a segment can only be adjacent to exactly two surfaces, if the segment
is deemed to be a must-segment on one surface, then it must also be a must-segment
on the other surface. Using this fact, when all the surfaces of the 3D Big-Block are
merged, the algorithm is able to resolve the ambiguous cases in Figure 4.16. The

result is shown in Figure 4.17.

4.5 Experimental Results

These two line drawing graph reconstruction algorithms have been implemented in
common LISP and tested on more than 15 test cases. The average run time for scenes

considered in this section was less than 5 seconds per scene on a Sun690MP. Wing
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detection time is not included in this estimate. Both syntactically generated wing
sets and wings detected from real images were used to test the two algorithms. For
the syntactically generated cases, the completely labeled line drawing graph is first
created by hand. The wings are then extracted from each line in the line drawing.
Note that each line segment in the graph can produce more than one wing. The
results of the experiments on the syntactic data are depicted in Figures 4.18 and
4.19.

Figure 4.18 shows the input wing set and all the reconstructed faces as well as
the final reconstructed LLDG of the Big Block example. Note that although face P
cannot be uniquely reconstructed using the geometric constraints based algorithm,
the merging of all the faces discards the unsupported cases and results in unique
interpretation of the object in the scene. More examples showing only the input
wings and the reconstructed LLDG are given in Figure 4.19.

The geometric constraint based algorithm was also applied to a set of wings de-
tected from a real image using the wing detector outlined in Chapter 3. Since the
reconstruction algorithm demands complete wing samples (at least one wing on every
edge contour), we have doctored the output of the wing detector by inserting one
missing wing and merged collinear compatible wings into one long wing. The aug-
mented wing set was then fed into the algorithm for reconstruction. Results of the

reconstruction is shown in Figure 4.20.

4.6 Worst Case Time Complexities of POLY-1
and POLY-2

Both POLY-1 and POLY-2 algorithms consist of four sequential modules: clustering
of wings, extending wings and computing the intersections, resolving the undecided-

segments and merging of the planar faces. Analysis of the complexity of the algorithms
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P1

Figure 4.18. Reconstruction of the Big Block. (a) Detected wings (solid lines). (b)
Individual reconstructed faces. (c) Reconstructed LLDG.
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(a) wing samples

Figure 4.19. cont. (see page 135 for caption)
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(b) reconstructed LDG

Figure 4.19. More examples of syntactic scenes that have been reconstructed. (a)
Wings samples. (b) Reconstructed LDG.
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(c) augmented wing samples (d) reconstructed LLDG

Figure 4.20. Reconstruction of the LLDG of a view of the gb3 block.
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is decomposed into analysis of those individual components. Of those four modules,
the two algorithms only differ in how the undecided-segments are resolved. In the
following analysis, we assume that the number of wing samples is n.

Wing Clustering

The wing clustering step is simplified with the ideal ption about the

ment and the computational accuracy. Co-planar wings all have the same wing-surface
labels on one of the two wing-surfaces; therefore, only one pass through the wing set is
necessary to form the co-planar wing clusters. Suppose wing w ... w;_, have already
been placed into m proper clusters, where m < 2(i — 1) (recall that each wing must
belong to exactly two planar clusters). To place wing w; into the two proper planar
clusters, at most m comparisons with the already existing planar clusters are needed.
Thus the complexity of the clustering step is

032 2(i — 1)) = O(n?).

i=1

Wing Extensi and Intersections

Assume that there are m different wing clusters, Cy,Cy,...,Cn with ny,ny,...,n,
wings, respectively. Note that ny +ny + ... + nm = 2n and the minimum number of
clusters is 2. For each wing cluster C;, the wings are extended and intersected with
other wing extensions in the cluster which is accomplished in 0(( i )) = 0(n})

time. Summing over all wing clusters, the total time is

o % ))=2;0(n?).

=1
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Since ( 75‘ ) > 0, V2, it is easy to see that the above sum is bounded above by
O((n1 + nz + ... + 1y )?) = 0((2n)?) = O(n?)

This worst case scenario only occurs when all the wing samples are co-planar giving

rise to two planar groups: the plane of the object faces and the background.

Resolving Undecided-Segments

Initially, the number of undecided-segments in each wing cluster is at most n?. Using
POLY-1, each of those segments is visited only once to either change it into a must-

segment or an unwanted-segment. Note that once a segment is “decided” it can never

be changed back to the undecided state. Therefore the time complexity over all wing

clusters is
m

2 0(n),

i=1

which again is bounded above by

O((n1 + 1z + oo + 1)) = O((20)2) = O(n?)

With POLY-2, the algorithm iterates over the set of remaining undecided-
segments until either no more undecided-segments remain or no more updating is
possible. Thus, during each pass through the remaining undecided-segments, at least
one undecided-segment is permanently updated. The worst case scenario occurs when
only one undecided-segment changes state (to either must or unwanted) during each
iteration (in practice, several undecided-segments would have been updated during
each pass). Thus for wing cluster C;, which has at most n? undecided-segments, the

= updating will stop after at most n? iterations and the number of remaining undecided-

segments is decremented by at least one after each iteration. Therefore the worst case
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time complexity is characterized by

o(x 1) = o) _ o

j=1

Over all wing clusters, the total time complexity is

30,

i=1

which is bounded above by
O((m1 + nz + ... +1m)*) = O((2n)*) = O(n*).

Merging of Planar Faces

In merging planar faces, must-segments from two non-co-planar faces are intersected
in 3D to discover the final line segments in the LDG and to compute the 3D vertices.
Recall that the number of line segments in each planar group of faces is bounded by
the square of the number of wings in the planar group. Theoretically, for group C;, at
most n? line segments can appear in the reconstructed face group C;. Over all planar
groups, the upper bound on total number of line segments would be (n}+n3+...n%)/2
(each segment must appear in two planar groups). However, the ideal wing sample
assumptions A3 and A4 restrict the number of line segments in the final LDG to be
at most the number of wings samples, n. Thus, there can only be at most 2n line
segments among all the reconstructed faces. Pairwise intersecting those segments

yields a worst case time complexity of
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Overall Worst Case Time Complexities

For the POLY-1 algorithm, the worst case time complexity is
O(n?) + O(n?) + O(n?) + O(n?) = O(n?).
For the POLY-2 algorithm, the worst case time complexity is

0(n?) + 0(n?) + O(n%) + O(n?) = O(n*).

4.7 Summary

We have given two algorithms for reconstructing line drawings from “wing samples”
for a large class of polygonal scenes and views. The mathematical characterization of
legal scenes and views was given in Chapter 2, which we believe to be more general
and more practical than those in previous works. A junction catalog was not as-
sumed, nor were accidental views ruled out by topological events. Moreover, fallible
heuristics based on principles of human perceptual organization have not been used.
Both theoretical and practical considerations indicate that wing features are quite
appropriate for low-level representation of polygonal scenes.

In POLY-1, we resampled the range values during reconstruction. In step (2.4),
a limited search of the range image was performed in order to get information that
was not directly coded in the bottom-up wing representation. This step allows the
processing to continue to completion using only local processing. Via POLY-2, we
showed that the line drawing can actually be constructed without such further access
to the underlying range image. The second algorithm searches for valid interpreta-
tions of each surface using general geometrical constraints. Since the rules employed

were shown to be necessary, no valid interpretations will ever be thrown away. The
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surface merging procedure has successfully merged and resolved any ambiguous sur-
face interpretations in our test cases.

Both algorithms presented are suitable for parallel implementation. Once the
wing groups are decided, reconstruction of each surface can proceed independent
of one another. Parallel implementation of the second algorithm can also cure the
problem of ambiguous surface interpretations by communicating with adjacent plane
groups for information about the undecided segments.

All of the results presented in this chapter hinge on strong assumptions about the
input wing set and accuracy of computation. In the next chapter, we will present a

heuristic algorithm that can better deal with imperfect set of wing samples.



CHAPTER 5

Partial Reconstruction of LLDG -

Origami/Polyhedral World

5.1 Introduction

The algorithms depicted in the previous chapter rely strongly on the assumptions
that the wing samples are complete and that the computations are infinitely accurate.
Those assumptions are unrealistic in practice and were asserted only to facilitate a
better understanding of the reconstruction algorithms. The algorithm to be given in
this chapter is heuristic based. Heuristic rules are used to replace the deterministic
rules and to account for those unrealistic assumptions. Only the two object domain

assumptions from Chapter 4 survive the reality check in this chapter:
A;) Objects are §-polygons or polyhedra whose faces are §-polygons.
Az) Scenes can be composed of multiple objects which may occlude one another.

We do not make any assumptions about the completeness of wing samples; an
imperfect set of wing samples with missing and/or spurious wings is allowed as input.

Furthermore, the non-accidental view assumption is also omitted. From the definition
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of accidental view in Chapter 2, wings may not be sensed on some of the visible edges
in an accidental view, which results in missing wings.

In the next section, we briefly review past and present work on line drawing
reconstruction. This is followed by the presentation of our approach. A good heuristic
algorithm should result in a complete LLDG if the input wing samples are complete.
We show by example that this is indeed the case. Examples of partially reconstructed

LLDGs from imperfect sets of wings are also given.

5.2 Survey of Related Background

Construction of perfect line drawings from a raw input image or imperfect line drawing
has only been sparingly reported in the literature. Although an abundance of work
has been done in image segmentation, existing edge detection techniques are still far
from being perfect. Furthermore, line labeling algorithms surveyed in the previous
chapter all require that all junctions in the image be identified.

Perhaps the earliest documented work on obtaining line drawings of polyhedral
scenes is that of Shirai [111]. The input is an intensity image from which the line
drawing is simultaneously generated and interpreted. Shirai assumes that the scenes
consist of only polyhedral objects and are always set up with high contrast between
white objects and their black background. Thus the contour lines in the image are

easy to find. The strategy for finding the lines is to first extract the contour lines

in the image and then to heuristically search along the contour for other object
boundary lines and crease edge lines. The set of heuristics used not only finds lines,
but also facilitates the finding of the relationships between objects. When a complete
set of boundary lines is found, all the objects can then be identified. However, this

top-down approach for line finding may fail to generate the appropriate line drawing
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if some contour/boundary lines were not detected or if spurious lines were found due
to noise in the image, especially during the early stages of the process.

In [49], Gu and Huang described a heuristic-search algorithm for extracting a
connected line drawing from a perspective view of a polyhedral scene. The main
feature of the algorithm is that instead of detecting lines (edges) in the image before
forming the junctions (corners), the junctions are located first and the search for lines
concentrated on local areas centered at each junction. An image of not necessarily
connected edge points is obtained by thinning the thresholded Sobel gradient image.
A corner finder routine [36] is then applied to this sparse edge map to generate a list
of plausible corners. Final edges in the image are found by heuristically searching for
evidence that an edge exists between two corners for every possible pair of corners. A
drawback of this approach is that corner finding is expensive and difficult. Further-
more, if a visible corner is not detected, all line segments incident with that corner
will be lost.

Most recently, Trytten has proposed to create a labeled line drawing graph from a
single intensity image by integrating multiple perceptual modules [119]. The approach
is to take existing low level perceptual modules and integrate them through the use
of a blackboard system as a common database, where each module can cooperate
and compete with others to search for a good interpretation of the input image. The

modules proposed for integration include:
1. regularization based surface segmentation module [15],
2. boundary detection via perceptual grouping [120],
3. line labeling analysis [83], and

4. symmetry detection module [47].
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Figure 5.1. Falk’s heuristic rule for completing imperfect line drawings [34].

This approach might be robust since features that are hard to detect and consequently
missed by one module may be diagnosed as being imperfect and possibly fixed by
another module. However, the complexity of integrating various modules may be
overwhelming and must be overcome.

Instead of deriving an entire line drawing from scratch, Falk [34] assumes that
an incomplete line drawing is obtained, fills in the missing line segments based on
heuristic rules, and finally uses object models to aid the interpretation of the line

drawing. Three ad hoc rules are used to complete the line drawings:
1. Two dangling collinear lines are replaced by a single line. (Figure 5.1 (a))

2. If two dangling lines on an incomplete face can be extended to form a corner,

then the lines are extended to complete the face. (Figure 5.1 (b))

3. If there exists a pair of L-type junctions with parallel sides as in Figure 5.1 (c),

then add a line between these two junctions to split the face into two.
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Figure 5.2. Spurious line could be added with Falk’s [34] rules.

Obviously those rules may result in spurious line segments in many real life situations.
For example, Rule 3 would unnecessarily introduce a new segment between junctions
A and B in Figure 5.2. Based on the amended line drawing, Falk’s algorithm hy-
pothesized about objects in the scene and their orientations, then predicted the line

drawing of the hypothesized scene, and finally tried to verify it.

5.3 Heuristic LLDG Reconstruction Algorithm

The flow of the heuristic based algorithm is very similar to the two deterministic
algorithms presented in the previous chapter. A quick overview of the algorithm is
as follows. First, some preprocessing is needed to screen out spurious wings and to
cut down the number of wings to use for reconstruction. The remaining wings are
clustered according to their wing-surface labels. This step is no longer trivial because
we have removed the measurement and computation accuracy assumption. As be-
fore, each cluster of wings is processed independently. Wings within each cluster are
extended and intersected as before. Each line segment is labeled using one of the six

heuristic rules. The notion of maybe-segment is introduced to facilitate the recon-
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struction process. After (partial) reconstruction of all the planar faces, they must be
merged to form the final LDG, which involves more heuristic decision making. The
complete algorithm as well as the major steps that are different from the algorithms

of Chapter 4 are given and discussed in detail in the following subsections.

5.3.1 .Preprocessing of Wing Samples

Using the detection algorithm depicted in Chapter 3, the sampled wings are often
short and overlapping. Multiple wings extracted from the same physical edge often

have the same wing label; however, due to measurement and computation inaccura-

cies, those wings almost never have the same set of parameter values. Since a line
segment in the LDG can be recovered if at least one wing is present, it is advanta-

geous to combine those overlapping compatible short wings into one long wing before

performing LDG reconstruction. Reconstructing the LDG using the new set of longer
wings reduces the complexity of the algorithm.

Basically, two wings are combined into one if they overlap and the wing attributes
are compatible. Two wings are compatible if their wing-contour labels and the two
wing-surface labels are equivalent; furthermore, the wing-contours in 2D must be

near-collinear within some threshold. Note that an edge may still be represented by

more than one non-overlapping wing after the merge.

Another task undertaken by the preprocessing module is to screen out spurious
wings. Spurious wings are often the result of surface marking. While detection of
surface marks may be of some importance to other vision tasks, this research strives
to reconstruct the shape of the objects in the scene but not the features on the surface
of those objects. Thus those wings shall be dismissed before the actual reconstruction
takes place. A common trait among those spurious wings is that the surface labels
(equation) on both sides of the wing are nearly coplanar. Experiments have shown

that usually only a few spurious wings were detected by the wing detector described
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in Chapter 3. In those rare instances, spurious wings often can be screened out by

the above procedure.

5.3.2 Clustering of Wings

As in the POLY-1 and POLY-2 algorithms, the first step in the reconstruction phase
is to cluster wings into groups according to their wing-surface labels. Each wing
belongs to exactly two planar groups (counting background or don’t care groups as
one planar group). Previously, infinite measurement accuracies were assumed and the
planes were denoted symbolically which assured that coplanar wings have common
wing-surface labels. Given this assumption, the clustering process was a trivial task.
In reality, the wing-surface labels are the parameters of the planar surfaces as detected
by the wing detector which may not be exactly the same even for coplanar wings.

Our clustering strategy is motivated by the pose clustering technique used by
Stockman [114]. First, the plane equations from all wings are collected into a pool, say
P. Plane equations in P are then pairwise clustered. A pair of planes are equivalent
and therefore clustered if they are coplanar in the sense that the angle between
their surface normals and the difference in distances to the origin are within some
predetermined thresholds. Clusters of planar groups are formed such that members
of each plane cluster P; = {p;1,piz, ...} are either symmetrically equivalent (p;; = pi)
or transitively equivalent (p;; = pix = ... = pim). Finally, wings with wing-surface
labels in the same cluster are collected as a wing cluster. A symbolic label is assigned
to each plane cluster and the wing-surface labels are replaced with those symbolic
symbols.

Having formed planar wing clusters, the next step is to recover the planar faces
and their boundaries within each cluster. Wings are extended and the intersections

of the extended wings are found as before. The junctions are taken to be the union of
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those intersections and the actual wing segment endpoints. The initial must-segments

are those segments overlapped by a wing segment. The rest were undecided-segments.

5.3.3 Notion of Maybe-Segments

Before introducing the heuristic rules, we must add a new segment type. Previously,
an undecided-segment became a must-segment if some criteria were satisfied. Here,
an undecided-segment must first become a maybe-segment before becoming a must-
segment. The strategy for finding all the must-segments is to extend the existing
must-segments whenever possible. The maybe-segments are the segments that are
subjected to the must-segment tests. So the sole purpose of this extra stage is to
screen for the most likely candidates for the tests. A maybe-segment must be an
extension of an existing must-segment; furthermore, its adjacent region labels must
be consistent with those of its neighboring must-segments if they exist.

Let Ps denotes the plane equation of the planar group that is being reconstructed.

An undecided-segment seg;; becomes a maybe-segment if
1. segjx is a must-segment and is collinear with seg;;; and

2. 5egCCW, (segi;) (SegCW, (segi;)) is a must-segment and the region labels for
the region shared by seg;; and SegCCW,, (segi;) (SegCW, (segi;)) contains Py.

Circumstances in which an undecided-segment is and isn’t turned into a maybe-

segment are depicted in Figure 5.3.

5.3.4 Heuristic Rules

Reconstruction of faces in each planar group of wings proceeds independently. For

convenience, we denote the planar group under reconstruction as Ps (i.e., Ps is the

common wing-surface label of all wings in the group).
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Figure 5.3. Some examples of Maybe-segments and non-Maybe-segments. Notation:
dashed segments are undecided-segments; thin solid segments are maybe-segments;
thick solid segments are must-segments.
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Since our experiments have shown that occurrence of spurious wings are rare and
when they do occur, the preprocessing step would remove them, we will proceed
as if no spurious wings survive to this level. Thus no line segments are results of
extension of spurious wings. However, there may still be missing line segments due
to missing wings. From this observation, Rule 4.1 of the POLY-2 algorithm can also
be applied here. Specifically, if a junction is incident with an even number of must-
segments and if only one undecided-segment is incident with that junction, then that

undecided-segment shall be removed as an unwanted-segment.

Rule 5.1 An undecided-segment or maybe-segment seg;; = (vi v;) is discarded as
unwanted-segment if degmust(vi) = even and degynd(vi) = 1; or if degmust(v;) = even

and deg,md(vj) = 1.

Note that Rule 4.2 used by algorithm POLY-2 to make an undecided-segment a
must-segment cannot be used because line segments could be missing due to missing
wings.

The first condition in which a maybe-segment can become a must-segment is based
on the Gestalt Law of Good Continuation {72, 124] and is graphically illustrated in
Figure 5.4.

Rule 5.2 Given line segments seg;;, seg;k, and segu are collinear with compatible
attributes where seg;; and segy are must-segments and seg;; is a maybe-segment.
Then segjr becomes a must-segment if junctions j and k are coincident with no other

segments.

Basically, Rule 5.2 fills the void between two collinear must-segments to form one
continuous line that would otherwise be two dangling must-segments.

While Rule 5.2 fills in the gap on a broken but likely continuous line, the next
two rules reconstruct the junctions of each face with high degree of certainty. The

situations in which those rules can be applied are graphically illustrated in Figure 5.4.
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Figure 5.4. Graphical illustration of Heuristic Rules 2-6.
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Rule 5.3 Given noncollinear line segments seg;j, segjk, and seg where seg;; and
segi are must-segments while seg;x is a maybe-segment that is collinear with segy.
In addition, seg;; and segj; are neighboring segments around junction j. If

RL-CCW;(segij) = {Ps } and Ps € RL-CWj(seg;x)

or

RL-CWj(segij) = {Ps } and Ps € RL-CCWj;(seg;x),
then segjr becomes a must-segment and the extensions (connected undecided-segments
from junction j) of these two segments into the non-shared region(s) are removed as

unwanted-segments.

Rule 5.4 Given two pairs of collinear compatible segments {seg;,seg;;} and

{segjk, segn} where segn; and segy are must-segments while seg;; and seg;. are

maybe-segments. In addition, seg;; and seg;r are neighboring segments around junc-

tion j. If
Ps € RL-CCW;(seg;;) and Ps € RL-CWj(seg;)
or
Ps € RL-CW(segi;) and P; € RL-CCWj(seg;s),

then both seg;; and seg;r become must-segments and the eztensions (connected

undecided-segments from junction j) of these two segments into the non-shared re-

gion(s) are removed as unwanted-segments.

In the case of Rule 5.3, the fact that a must-segment is coincident with the maybe-
segment at a junction and that they both label the region they share as Ps gives strong
suggestion that the maybe-segment indeed is a must-segment. Rule 5.4 differs only in
that two maybe-segments meet at the junction instead of one must- and one maybe-
segment. However, Rule 5.4 is not weaker than Rule 5.3 because the maybe-segments
are all immediate extension of must-segments and the evidence from wing-surface

labels supports the hypothesis those maybe-segments should both be must-segments.
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While the first 4 rules can be applied with high degree of confidence, they are
not sufficient in reconstructing all of the image scenes that were tested. The next
two rules are the weaker version of Rules 5.3 and 5.4. They are weaker because the
maybe-segments are still going to become must-segments even when other undecided-
segments are present in the region that is labeled as Ps by both segments. Example
of their usage is given in Figure 5.4. Even though applying these two rules may

introduce untrue must- ts, the risk is minimized by invoking them only when

no more segments can be decided by any of other rules. Moreover, a must-segment
on a particular planar group of faces does not automatically carry over to the final
LDG. The same must-segment must appear in one other planar group of faces or it
maybe downgrade to a maybe-segment in the final LDG. Merging of planar faces is

discussed in the next subsection.

Rule 5.5 Given noncollinear line segments segi;, segjx, and segy where seg;; and
segi are must-segments while segjx is a maybe-segment that is collinear with seg.
Looking at a small neighborhood N, of radius r < €, Line segments seg;; and seg;i
locally divide N, into two regions. If

RL-CCWj(segi;) = {Ps } and Ps € RL-CWj(segjr)

or

RL-CWj(segi;) = {Ps } and Ps € RL-CCW;(seg;x)

and there are only undecided-segments in the region in which the above conditions were

met, then segji b a t-segment and the extensi ( ted undecided-

segments from junction j) of these two segments into the other region are removed as

unwanted-segments.
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Rule 5.6 Given two pairs of collinear compatible segments {seg,segi;} and
{segjk, segr} where segy; and segy are must-segments while seg;; and seg;i are
maybe-segments. Looking at a small neighborhood N, of radius r < ¢, Line seg-
ments seg;; and segji locally divide N, into two regions. If
Ps € RL-CCWj(segi;) and Ps € RL-CWj(seg;x)
or

P5 € RL-CWj(segi;) and Ps € RL-CCWj(seg;i),

then both seg;; and seg;r become t-segments and the extensi ( ted

% P R |

g ts from junction j) of these two segments into the other region are

7 d as ted ts.

The rules are applied from 1 to 6 in that order since the first four rules have more
local evidences in turning undecided/maybe-segments into unwanted and/or must-
segments. Upon application of each rule, a check is performed to remove any false
junction (junction that appeared on collinear must-segments). If a false junction is
detected and removed, the extension of any must/maybe-segment incident with that
false junction is also updated to reflect this change. Afterward, the cycle repeats
starting from Rule 5.1. The process stops when there is no more undecided- or
maybe-segment to decide or when none of the rules can be applied to the remaining

undecided/maybe-segments.

5.3.5 Merging of Planar Faces

Once all the faces have been (partially) reconstructed, they need to be merged to-
gether to arrive at the final LLDG of the scene. The merging process is not as trivial
as before because some of the faces now may still have missing lines after recon-
struction. Although a line segment theoretically should appear on exactly two faces,

missing wings can cause a line segment not to appear in one or both faces. Further-
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more, even if it does appear in both faces, it may be labeled differently (e.g., labeled
as must in one and as maybe in the other). More heuristic steps must be taken to
ensure that each segment in the final LLDG has a unique interpretation in the sense
that it is either a must-segment or maybe-segment. Note that a line segment is said to
appear on a face only if it is labeled either as a must-segment or as a maybe-segment.

The first step in merging all the faces is to pull together all the must- and maybe-
segments and determine all the intersections of all those segments. Three very com-
mon problems encountered as a result of this operation are depicted in Figure 5.5 (a).
All of these problems can be attributed to computation and measurement inaccura-
cies. First, many short residual segments may result around the intersection of two
segments. On the other hand, two lines that were supposed to intersect may fail
to do so. Thirdly, when three or more supposedly co-junction line segments meet,
instead of meeting at one unique junction, three or more different close-by junctions
will occur. To alleviate these problems, after determining all the junctions in the
LDG, nearby junctions are clustered into one unique junction. All the line segments
that terminate in the same cluster of junctions have their endpoints replaced by that
unique junction. In so doing, the overshoot of line segments are removed; the gaps
between two supposedly intersecting line segments are filled; and the multi-junctions
are merged into one (see Figure 5.5 (b)).

Once all the junctions have been determined, we must resolve any ambiguity
in labeling each line segment (i.e., must- or maybe-segment). If the line fragment
appears on two faces and it is labeled as a must-segment on at least one of the two
faces, then the segment is labeled as a must-segment. Otherwise, the line fragment
is labeled as a maybe-segment. This is the case where the line fragment is labeled as
maybe-segment on both faces.

When the line fragment only appears on one face and it is labeled as a must-

segment, then the decision process is more complicated. Recall that during recon-
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Figure 5.5. Problems encountered when merging faces into final LDG their solutions
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struction of a face, the original set of must-segments are the actual wing segments
which are just fragments of the real line segment in the LDG. Let’s denote the end-
points of those wing segments as wing endpoints. If the reconstructed face contains
a dangling wing segment, it would indicate that some line segment(s) of the face is
(are) missing because that wing is not extended to meet with other line segments.
Therefore a wing endpoint in the reconstructed face indicates that the wing segment
should be extended further at that end. Thus, a line fragment in the merged LDG
which appears on only one face would be labeled as a must-segment if (1) it is la-
beled as a must-segment on that single face and (2) one of its endpoints is a wing

endpoint. Otherwise, that line fragment is labeled as a maybe-segment. However, if

the segment is labeled as a maybe-segment on the only face in which it appears, then
it is discarded as an unwanted-segment. Examples of different cases mentioned above

are ‘d-epicted in Figure 5.5 (c).

Upon resolution of the line labels, the LLDG is finally reconstructed. Since some
line segments may still be missing due to missing wings, the reconstructed LLDG

shall be called a partial LLDG.

5.3.6 Heuristic Reconstruction Algorithm: POLY-3

The entire reconstruction procedure is summarized below. The input is a set of
sampled wings which may contain spurious and/or missing wings. The output is a
(partial) LLDG whose completeness is directly related to the completeness of the
sampled wings. Examples of scenes that can be handled are given in the next section.

A list of the major parameters used in this algorithm is given in Appendix C.

(0) Preprocess wing samples to merge compatible wings and to cull out extraneous
wings.

(1) Cluster merged wing samples by plane equation
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(2) For each plane group

(2.1) generate a line for each wing

(2.2) compute the intersections among all lines

(2.3) preserve line segments which overlap a wing

(2.4) remove or preserve line segments by using Rules 1, 2, 3, 4, 5 and 6.

(2.4.1) if Vi, # null, apply Rule 1 then goto (2.4.1)
(2.4.2) apply Rule 2. If invoked, goto (2.4.1)
(2.4.3) apply Rule 3. If invoked, goto (2.4.1)
(2.4.4) apply Rule 4. If invoked, goto (2.4.1)
(2.4.5) apply Rule 5. If invoked, goto (2.4.1)
(2.4.6) apply Rule 6. If invoked, goto (2.4.1)
(2.4.7) no more changes are possible, goto (2.5)

(3) Merge LDGs of individual polygonal faces
(4) Compute 3D vertices using intersecting line/plane equations
(5) Retain all line segment labels from wings

(6) Output LDG with plane equations, 3D vertices and edges

5.4 Exampies

A complete example depicting the major phases of the reconstruction process is given
in Figure 5.6. The set of wing samples as detected by the wing sensor is imperfect.
It consists of some spurious wings and missing wings. Many close-by parallel wings
are also present in the wing set. After the initial wing merging step, all the spurious
wings are removed and the compatible wings are merged; only 13 wings remain for the
reconstruction. The initial and final states of each wing cluster upon reconstruction
are shown in Figure 5.6 (e)-(1). Note that some false must-segments are inserted in
(e) and (f). However, each is downgraded to a maybe-segment due to non-sufficient
evidence from the other faces. The final reconstructed LLDG is depicted in (b).
More LLDG reconstruction examples are shown in Figure 5.7. The images on the

left column show the sampled wings overlaid on the original intensity image while the
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Figure 5.6. cont. (see page 161 for caption)
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Figure 5.6. Reconstruction of the JIG via algorithm POLY-2
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right column shows the reconstructed LLDG. Since we have assumed that only planar
surfaces can appear in the scene, the wing detector was tailored to detect only planar
wings. The “roofl” example is the only one in which there was no missing wing and
the complete LLDG was reconstructed. The others all have defective wing samples.
We must also admit that some of the wings in the “jigl+box1” did not cluster properly
and were manually placed in the “correct” cluster before proceeding. The missing
wings in the “gb3” and “blockl” examples are direct effects of the quantized wing
detecting window. In both cases, whenever the window overlapped the edge contour
with no wing, it also overlapped some other junction, resulting in a busy window.
As previously discussed in Chapter 3, a scale-space approach to wing detection may
cure this problem. Furthermore, in the “gh3” example, although a face is completely
missing (having no range values due to occlusion of the laser light), an LLDG was
nevertheless reconstructed from the available wing samples. Note that line labeling
of the reconstructed LDG using the Huffman-Clowes junction catalogue would not be
possible due to the missing face. The missing wings in the “planar2” and “blocksl”
examples were due to slight mis-registration of range and intensity data: the intensity
data and range data gave conflicting information about the presence of a wing, which
resulted in having no wing detected.

Table 5.1 gives the performance summary of the POLY-3 algorithm in reconstruct-
ing the LLDGs of the real images in Figures 5.6 and 5.7. Observe that in the “block1”
image, an arc in the ideal LLDG with no wing sample was correctly inferred. However,

one must-segment was also incorrectly inferred, showing the fallible heuristic nature

of the algorithm. Upon closer examination, we found that there was some evidence for
the existence of that extra must-segment and no evidence to discourage its formation.
Furthermore, its existence was tied to the fact that an arc that was supposed to adjoin
was missing in the reconstructed LDG due to missing wing samples on that arc. For

all other images, all arcs with at least one wing sample were correctly reconstructed
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Figure 5.7. cont. (see page 164 for caption)



Figure 5.7. Examples of reconstructed LLDG via algorithm POLY-2 (Names of the
scenes: roofl, gb3, blockl, jigl+boz1, planar2, blocks1).
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and no false arcs were introduced in the reconstructed LLDGs. Associated with the
missing arcs are the incomplete regions in the reconstructed LLDGs. However, most
of the incomplete regions have only one missing arc. Despite the incompleteness of
the LLDGs, the features embedded in the partially reconstructed LLDGs seem to be
rich enough for any reasoﬁable object recognition module to infer the objects from
the model database.

Finally, we make a note that the algorithm has been applied to the synthetically
generated test cases of Chapter 4, where the wing samples were complete. The
algorithm is able to reconstruct the complete LLDG as would the previous algorithms

in those test cases.

5.5 Worst Case Time Complexity of POLY-3

As with the POLY-2 algorithm, POLY-3 also consists of the same four major sequen-
tial modules: clustering of wing samples, extending and intersecting wings, resolving
the undecided-segments and merging of the planar faces. Again, assume that the
number of wing samples after the preprocessing step is n (Note the preprocessing
module requires O(w?) time to complete where w is the original number of wing

samples).

Wing Clustering

Recall that the wing clustering step was performed by first pairwise clustering the
wing samples followed by distribution of wings into clusters such that wings within
each cluster are either symmetrically equivalent or transitively equivalent. Since there

are n wing samples, the pairwise clustering step can be completed in
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time. The second clustering stage iterates over the pairwise clusters to form the final
wing clusters. A new wing cluster is formed at the completion of each iteration which
has a time complexity of no more than 0(( g )) Note that with n wing samples,
there can be as many as n wing clusters. Thus, the wing clustering module has a

worst case time complexity of
0(»*) +0(( § ) 0(n) = O(x*).

Wing Extensions and Intersections

The wing extensions and intersections module in POLY-3 is similar to that of POLY-
1 and POLY-2. Assume that there are m different wing clusters, Cy, Cs, ..., Cr, with
n1,Mg, ..., Ny Wings, respectively, where ny + ny + ... + n,, = 2n. Following the same
analysis as in Section 4.6, the time complexity of the wing extension and intersection

step over all wing clusters is bounded above by O(n?).

Resolving Undecided-Segments

The module for resolving the undecided-segments in POLY-3 is similar to that of
POLY-2. They only differ in the rules used to form must- and unwanted-segments.
So the worst case time complexity can be expected to be the same. As in POLY-2,
the algorithm iterates over the set of remaining undecided segments until either no
more undecided-segments remain or no more updating is possible. The worst case

scenario in resolving all the undecided-segments is when only one undecided-segment

is updated during each iteration. Note that once a segment is “decided” it can never
be changed back to the undecided mode. Thus for wing cluster C;, which has at most
n? undecided-segments, the worst case time complexity is

0(33) = oL, _ o)

i=1
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Over all wing clusters, the total time complexity is

m

200,

=1

which is bounded above by
O((n1 + na + ... + nm)*) = O((2n)*) = O(n*).

Merging of Planar Faces

The analysis of the merging module in POLY-3 is more complex than in POLY-2 due
to the existence of maybe-segments. Given a wing cluster C; with n; wings in the
cluster, at the completion of the reconstruction the numbers of must- and maybe-
segments are bounded above by n; and 2n;, respectively. Thus wing cluster C; would
contribute at most 3n; segments to be merged with segments from other wing clusters.

Summing over all wing clusters, there would be at most

must- and/or maybe-segments to be merged. Pairwise merging those segments yields

the line segments in the final LDG. This merging step has a time complexity of

1)) = 0(n?)

g
—~
w

Note that resolution of must/maybe label on the line segments of the LDG is also
done during this merging step.

As indicated in Section 5.3.5, with the inherent round-off errors of floating point
computations, a true junction in the LDG may be represented by many scattered,

yet close-by, junctions. A junction clustering step is performed to group those multi-
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junctions into one representative junction. Given the number of line segments to be
merged is 3n, the maximum number of junctions that can arise is 0(( 32" )) =0(n?).
Using the pairwise clustering strategy as for merging line segments, the junction

clustering step requires has a theoretical time complexity of
2
o( 3 )-o(( % )=o),

However, in practice, most of the line segments do not intersect and thus do not
produce any junctions. The worst case time complexity of O(n®) should be treated
as a theoretical upper bound.

Thus, the total time required for merging the faces is bounded by
0(n?) 4+ O(n®) = O(n®).

Overall Worst Case Time Complexity

Given the above complexity analysis of individual modules, the algorithm POLY-3

has the worst case time complexity of

0(n®) + 0(n®) + O(n*) + O(n°) = O(n°).

5.6 Summary

In this chapter, we presented a third algorithm, POLY-3, for reconstructing the LLDG

of origami/polygonal scenes. POLY-3 differs from its predecessor in many ways. For

one, it is constructed to work with wing samples detected from real images. As
such, it allows for an imperfect set of wing samples as input. Missing and spurious
wings, disallowed in POLY-1 and POLY-2, are allowed with POLY-3. Furthermore,

the unrealistic assumption of infinite computation and measurement accuracy are
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dropped. POLY-3 is an algorithm designed to work in the real, yet imperfect world.
In place of those idealistic assumptions is a set of 6 heuristic rules that reason about
junctions and regions to inject must-segments and to reject unwanted-segments. A
junction catalogue is not used and the original range, intensity or fused images are
also not needed.

The input set of possibly imperfect wing samples as detected from the wing de-
tector algorithm in Chapter 3 is preprocessed to merge overlapping compatible wings
and to remove any spurious wings. The all important step of clustering wings into
planar group was shown to be realizable given the accuracy of our wing detector.
Heuristic rules are used to reconstruct the LDG of each planar group of wings. Some
faces may not be completely reconstructed due to missing wings. Merging of different
faces from different planar groups requires that a must-segment in the final LDG
be substantiated by the two plane groups that it is in. This conservative approach
guards against introducing spurious segment in the final LDG. By trying to be sure
that no untrue must-segment exists in the reconstructed LLDG, a higher level object
recognition module can proceed without wasting time second guessing the validity of
the line feature.

The algorithm has been implemented and tested on the same test cases of POLY-2
to ensure that its performance is comparable to that of POLY-2 when a complete set
of wing is present. POLY-3 has also been tested on a number of imperfect sets of
wings as acquired from real imagery through our wing detector. The results show that
reconstruction of partial LLDGs is tenable given the accuracy of our wing detector

and the set of heuristic rules.

Finally we note that POLY-3 is only as good as the wing detector will allow
it to be. If the accuracy of the detected wing falls outside of the fixed tolerance
range for error, then the clustering step may fail (wings put in the wrong group)

causing many segments in the true LDG to be missed. Future research will aim at
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improving the robustness of the algorithm to tolerate a wider range of wing detection
inaccuracies. Also we note that similar to POLY-1 and POLY-2, POLY-3 is suitable
for parallel implementation. Once the wings are clustered, reconstruction can proceed
independently. As with POLY-2, a parallel version of the algorithm that allows
for different planar groups to communicate during reconstruction may facilitate the

undecided-segment decision process.




CHAPTER 6

Reconstruction of the LLDG -

Quadric Surface Scenes

6.1 Introduction

As with line drawing analysis for polygonal scenes, some attempts have been made
to understand the line drawings of scenes of limited classes of curved objects [25, 83,
92, 91, 93], but no one has been successful in building a line extractor to demonstrate
that the two step approach to scene interpretation (line extraction followed by line
labeling/interpretation) is viable. To our knowledge Trytten [119] is the only other
researcher who is working toward a labeled curved line drawing graph by extracting
and labeling line segments simultaneously.

In this chapter, we will assume that objects in the scene are either é-quadrics or
objects with §-quadric faces, and that the scene can be composed of multiple objects
which may occlude one another. In the following section, we will argue that under
ideal wing sensing and infinite computation accuracy assumptions, the POLY-1 and
POLY-2 algorithms of Chapter 4 can be modified to reconstruct the LLDG of scenes
in the quadric domain. In Section 6.3, we drop the idealistic assumptions about

the sensor and computational accuracy and point out two major obstacles in our
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approach to reconstruction. A new algorithm will be proposed to work around one
of the difficulties. The solution to the second problem is left for future research.

Examples of reconstruction by both algorithms are provided.

6.2 Perfect Reconstruction Algorithm

Initially, reconstruction of the LLDG from wings seems to be made more difficult
by the expansion of the object domain to include objects with §-quadric surfaces.
However, under ideal assumptions, reconstruction in this domain is no more difficult
than reconstruction in the polygonal domain. The POLY-1 and POLY-2 algorithms
depicted in Chapter 4 can be readily adapted to work in this expanded domain. In
fact, the only modifications are the wing clustering and the wing extension steps.
In the following subsections, we will reiterate the idealistic assumptions, point out
the necessary modifications to the previous algorithms and present some examples of

reconstructed scenes.

6.2.1 Wing Sensing Assumptions

Recalling from Section 4.3, the ideal wing sensing and computation accuracy assump-

tions are:

Wing Detector Assumptions:

As) The view is non-accidental and the “wing sensor” produces at least one “correct”
wing sample that projects onto a line segment, curved or straight, in the LDG
for each segment that would be visible in the LDG. (Recall the definition of a

non-accidental view from Section 2.3.)

A4) There are no spurious wings.
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Computation Accuracy Assumption:

As) Measurements and computations are infinitely accurate.

Note that the no missing wing assumption (Assumption A3) has been modified to
account for the difficulty in defining edges of curved objects in 3D. Together with the
assumption on computational accuracy, the two assumptions guarantee that every
visible line segment, curved or straight, of the LDG is represented by at least one
physically “correct” wing sample (meaning that the wing surface label contains the
correct quadric shape and parameters for the adjacent regions) and that co-quadric
wings have a common wing surface label. Two wings are co-quadric if they lie on the

same quadric surface in 3D.

6.2.2 Wing Clustering

The first step in the reconstruction process is to cluster the wings into “common”
surface groups. Previously, all surfaces were planar and the wings were grouped
according to the planar equations of the wing surfaces. With the addition of quadric
surface types, this clustering step is broken into a two-step process. Recall that the
wing surface label contains knowledge of both the qualitative surface shape and the
quantitative surface shape parameters. Using the qualitative shape information, the
wings are first clustered into planar, circular, cylindrical and conical groups. Each
group is then further clustered by using the shape parameters. The second grouping
is only possible if one is confident about the accuracy of the recovered parameters

but this is guaranteed by the computation accuracy assumption.

6.2.3 Extension of Wings

Upon grouping of wings into clusters, reconstruction of individual wing clusters pro-

ceeds independently. As in POLY-1 and POLY-2, the first step toward this recon-
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struction is to form a graph embedding of the true LDG. This was accomplished by
extending the straight wing contours and forming the intersections as junctions in
the polygonal scenes. Extending curved wing contours is much the same. For the
quadric surface domain, we know that line segments in the LDG must be of type
linear, circular or elliptic (see Section 2.4). Given our computation accuracy assump-
tion, coupled with the wing contour information accompanying each wing sample, the
wing contour can be extended without error. Extending the curved wing contour in
practice, however, is a much more difficult task. In Section 6.3, a possible remedy to

this problem will be offered.

6.2.4 Reconstruction of Individual Wing Group

The extended wing contours intersect to form the initial set of undecided-segments.
As before, those segments that overlap wing contours have to be must-segments (As-
sumptions Az and A4). In the POLY-1 algorithm, range data on both sides of an
undecided-segment are re-sampled to justify its presence as a must-segment or to
reject it as an unwanted-segment. If the range data is available for re-sampling, then
the same procedure can be applied to determine all the must-segments in the graph.

Rather than resampling, the POLY-2 algorithm rebuilds the LDG based on geo-
metric constraints derived from the physical structure of the LDG. Notice that the
constraints used in deriving the reconstruction rules all still hold under the new object
domain. To use Rules 4.1 and 4.2, the junctions in the LDG of individual quadric
surfaces must all have even degree. This condition is satisfied by the definition of
6-quadrics. The constraints leading up to the development of Rule 4.3 are stated in
Theorem 4.3 and Corollary 4.3.1, which already are defined in terms of §-quadrics.
Finally, the no missing wing assumption (Assumption As) gives us Rule 4.4. The four
rules are now restated with proper choice of words to reflect the possibility of curved

segment types in the LDG.
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Rule 6.1 An undecided-segment seg;; can be discarded if degmust(vi) is even and

degund(vi) = 1; or if degmux(v;) is even and deguna(v;) = 1

Rule 6.2 An undecided-segment seg;; is a t t if degmust(vi) is odd and

degund(vi) = 1; or if degmust(v;) is odd and deguna(v;) = 1.

Rule 6.3a Given two adjacent line segments Mseg;; and Useg; where Mseg;; is a
must-segment and Useg, = SegCCW,,(Mseg;;) is an undecided-segment. Assume
that the wing group being processed has the surface representation Ps. Then Usegy
can be discarded as an unwanted-segment if
RL-CCW,,(Mseg;;) = {Ps} and Ps € RL-CW,,(Usega)
or

RL-CCW,,(Msegi;) # {Ps} and RL-CW,,(Usegy) = {Ps}.

Rule 6.3b Given two adjacent line segments Mseg;; and Useg; where Mseg;; is a
must-segment and Useg, = SegCW,, (Mseg;;) is an undecided-segment. Assume that
the wing group being processed has the surface representation Ps. Then Usegy can be
discarded as an unwanted-segment if
RL-CW,,(Mseg;;) = {Ps} and Ps ¢ RL-CCW,,(Usegy)
or

RL-CW,,(Msegi;) # {Ps} and RL-CCW,,(Usegy) = {Ps}.

Rule 6.4 Given a must-segment Mseg;; and an undecided-segment Usegy where
Usegix = SegCW,,(Mseg;;) or SegCCW, (Msegi;). If Mseg;; and Usegi are not
co-curvilinear and WingDir,,(Usegix) = False, then all (undecided) segments co-
curvilinear to and on the side of Usegir with respect to v; including Usegix can be

deleted.

The resolution of the undecided-segments is solely based on reasoning about each

junction and region labels, and makes no use of the physical properties (such as being
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planar or otherwise) of the projecting surface. Thus, it is not surprising to see that

those rules also apply in the reconstruction of the LDG in the quadric domain.

6.2.5 Quadric LLDG Reconstruction Algorithm: QUAD-1

The reconstruction algorithm given below is essentially the same as the algorithm
for reconstruction in the polygonal domain except for the different choice of words
to account for curved segments in the LDG. Examples of reconstructed LLDGs from
complete wing samples are depicted in Figure 6.1. In hand-tracing those examples,
we observed that it is less likely for curved surfaces to be co-quadric (as compared
to planar surfaces to be coplanar); consequently, few wings would be clustered into
co-quadric group, making the reconstruction of faces in each wing cluster a simpler
task. All of the examples in Chapter 4 where only planar faces are allowed are all

hand-traced and reconstructed by this algorithm.

(1) Cluster wing segments by quadric equation
(2) For each quadric group

(2.1) generate a curve for each wing
(2.2) compute the intersections among all curves
(2.3) preserve line segments which overlap a wing
(2.4) remove or preserve line segments by using Rules 6.1, 6.2, 6.3 and 6.4.
(2.4.1) if Vi, # null, apply Rule 6.1 then goto (2.4.1)
(2.4.2) if Vo, # null, apply Rule 6.2 then goto (2.4.1)
(2.4.2) apply Rules 6.3 and 6.4 to a junction v; of Ving
(2.4.3) if Vyna = null or no more changes are possible then goto (2.5)
else goto (2.4.1)

(2.5) delete redundant intersections
(8) Merge LDGs of individual quadric faces
(4) Compute 3D vertices by intersecting curve equations
(5) Retain all line segment labels from wings

(6) Output LLDG with junctions, lines, and regions all labeled.
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Figure 4.14. cont. (see page 179 for caption)
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Figure 6.1. Examples of reconstruction of LLDG from wing samples of quadric scenes.
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6.3 Heuristic Reconstruction Algorithm

6.3.1 Wing Clustering

The first step of all LDG reconstruction algorithms that have been presented is the
clustering of wing samples. This clustering step is non-trivial in practice. There are
many pitfalls which make wing clustering difficult. Recall that the wing surface label
contains the qualitative surface type and the parameter estimates of the assumed
surface model. If the wing detector wrongly classifies the surface patch then there is
no hope of correctly clustering that wing into the “correct” wing cluster. Even if the
“correct” surface model were assumed, if the surface parameters cannot be recovered
accurately then wings may be placed in the wrong cluster. Worse yet, each wing
could form cluster of its own if the error in estimation is large.

Fortunately, we have been able to escape such a predicament so far. In the POLY-
1, POLY-2 and QUAD-1 algorithms, the measurement and computation accuracy
assumptions ensure that all coplanar and co-quadric wings have the same wing surface
labels; thus they can be clustered easily without mistake. In POLY-3, we relied on
the fact that the wing detector is able to estimate the planar parameters accurately to
correctly cluster the wings into proper groups. With the addition of quadric surfaces,
the problem is not so easy to solve. In Chapter 3, we have concluded that the wing
detector is able to classify qualitative surface shape more accurately than to estimate
the quantitative shape parameters. Furthermore, parameter estimates from two far
apart regions of a quadric surface could deviate by an unacceptable margin.

Given the difficulty in wing clustering, one has to ask: “Can this step be bypassed
in LDG reconstruction?” Perhaps, reconstruction of the LDG can be achieved without
having to cluster wings at all. In this section, we will present a heuristic algorithm
which does not cluster wings; rather, the entire LLDG is to be reconstructed from

the entire set of sampled wings at once.
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6.3.2 Wing Extension

Extension of wing contours across the entire imaging (bounded) plane is also an es-
sential part of all of the LDG reconstruction algorithms. The accurately extended
segments together with their intersections form a graph of segments and junctions
that is a superset of all segments and junctions of the LDG. Under ideal assumptions,
extending wing contours is simple. Extending straight wings detected from real im-
ages of the polygonal domain has also been shown to be realizable given the accuracy
of our wing detector. However, the same cannot be said about extension of curved
wing contours. As noted in Chapter 3, the wing contour descriptor, which is derived
from fitting a 2D curve model to selected edge points within each subimage, is only
a local curve approximation; it may not reflect the true shape of the global curve.
Blindly extending each wing contour may result in many supposedly co-curvilinear
curves that are potentially damaging to the heuristic reconstruction of the LDG.
One possible solution to this dilemma is to use the technique of the Hough Trans-
form (HT) [58], popularized by Duda and Hart [32], to accumulate evidence about
existence of different curves and their locations in the image. The main advantages
of the Hough Transform for curve detection are that little has to be known about
the location of the curve as long as the shape of the curve can be described para-
metrically; furthermore, it is relatively unaffected by gaps in curves and by noise [7].
In [6], Ballard presented a generalized Hough Transform technique for detection of
arbitrarily shaped curves that cannot be easily parameterized. The biggest drawback
with the HT techniques are that they generally are very time and memory consum-
ing and are therefore expensive for practical computer vision tasks. For this reason,
much research on the HT has aimed at reducing the storage (parameter) space and/or

speeding up the process (e.g., [3, 64, 79]). Others have concentrated on detection of
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certain curve shape [23, 88] or surface shape [89, 109]. A survey of different variations
of Hough transform can be found in [65].

Hough transform techniques have also been used in the object recognition aspect
of computer vision. Object recognition and pose identification via transformation
clustering is a Hough based technique [75, 114]. However, recent investigation by
Grimson and Huttenlocher on the sensitivity of using the Hough Transform to perform
transformation clustering suggests that under moderate levels of noise in sensory data,
occlusion and image clutter, the HT may generate many false solutions [46].

Part of our future research plan is the study of Hough based techniques for group-

ing co-curvilinear wing contours and to recover the underlying curve from those wing

contours.

6.3.3 A Heuristic Approach

The purpose of clustering wings in all of the previous algorithms was to weed out
unnecessary wings and to keep only the co-quadric wings for quadric surface recon-
struction. However, if a wing is wrongly clustered, it, in effect, has introduced a

spurious wing in one cluster and its rightful cluster will be missing a wing. The effect

is potentially damaging if several wings are misclustered. Rather than risking the
damaging effect of wrongly clustered wings, we shall propose an algorithm that uses
the entire set of wing samples to reconstruct the LDG at once. The surface equations
of the wing surfaces used for wing clustering are only used in this algorithm to ver-
ify the hypothesis that two line segments should be merged. Figure 6.4 provides an

accompanying example for the explanation of the algorithm below.

Step 1: Extension of Wings

Although we have side-stepped the issue of wing clustering, our strategy still re-

volves around creating a graph G in which the true LLDG is embedded, and to




—-—- m s s T e mere

183

remove unwanted-segments and verify must-segments using heuristic rules. As dis-
cussed above, extension of wings is also a difficult task made worse by inexact shape
representation of the wing contour. Although our wing detector can reliably dif-
ferentiate surface shapes, the wing contour shape can sometimes be misrepresented
especially under the presence of noise. The accuracy of wing segment shape represen-
tation depends strongly on the window size used in detecting that wing. For example,
with a small window, due to shortness of the edge image in the window, many wings
may be detected as being straight. Future research will aim at better estimation of

the wing segment shape.

Step 2: Determination of Junctions

Assuming that wings can be reliably extended, some housekeeping jobs are required

before starting the reconstruction loop. First the wing labels are propagated to the
entire extensions. Then the intersections of those wing extensions must be resolved.
Under an ideal situation, only one junction will arise when many line segments meet
at supposedly one junction. In practice, supposedly co-terminating segments may
intersect at more than one point or may fail to intersect at all (see Figure 6.4 (b)).

To find missing junctions, if the minimum Euclidean distance d between two non-

intersecting line segments is less than some threshold «, then the two segments are
adjusted to meet along the shortest path between them. An example is provided
in Figure 6.2 (a). Note that already intersecting segments are exempt from this
procedure. Although intersecting wing extensions and merging of nearby segments
may create many split junctions, the junctions are clustered so that nearby junctions
are pulled together into one unique representative junction (see Figure 6.2 (b). Finally,

the endpoints of all wing segments are also denoted as junctions.
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Figure 6.2. Determining set of all possible junctions in the LDG. (a) Nearby non-
intersecting segments are merged at e. (b) Nearby scattered junctions are clustered
into one.
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Step 3: Initial Classification of All Segments

Initially all the segments in G are denoted as undecided-segments. Update the seg-
ment labels in G by labeling all wing segments as must-segments. An undecided-
segment is a maybe-segment if it is coincident and co-curvilinear with exactly one
must-segment at one of its two endpoints. The updated G is shown in Figure 6.4 (b)
where undecided-segments are represented by broken lines, maybe-segments by solid

lines and must-segments by thick solid lines.

Step 4.1: Removal of Unwanted-Segments

We are now ready to invoke the heuristic rules to remove any undecided-segments as
unwanted-segments. Recall that each region of the LDG can only correspond to a
single face of the object in 3D. Therefore, theoretically, each region should only have‘
one label. In reality, computation inaccuracy prevents the segments surrounding that
region to have the same exact label (remember that the wing labels are propagated
to all its extensions in Step 2). Also recall that the wing surface label consists of both
the surface type and the parameters of that surface. Our wing detection experiments
suggest that although the recovered surface shape parameters may vary throughout
the surface patch, the qualitative surface type can be accurately predicted. For con-
venience, denote that surface type as the coarse label and the actual parameters as
the fine label of the wing surface label.

The following rule checks for inconsistency of the coarse labels of two adjacent
segments on the region bounded by the two segments. If they differ and one is an
undecided-segment while the other is a maybe- or must-segment, then the undecided-
segment is discarded. No action is taken if both segments are undecided-segments
because we have no knowledge of which segment is likely to be unwanted. The rule

i1s graphically illustrated in Figure 6.3 (a).
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Figure 6.3. Graphical illustration of the heuristic rules for reconstructing LDG of
curved object scenes. (a) Rule 1, removal of undecided-segments. (b) Rule 2, rectifi-
cation of must-segments.

Rule 6.5 An undecided-segment seg;; can be discarded as an unwanted-segment if
segix is an adjacent, maybe- or must-segment and the coarse label of the bounded

region of the two segments are different.

Removal of undecided-segments may leave another undecided-segment dangling by
itself (i.e., not attached to any other segments). Therefore, any dangling undecided-
segments are also removed as unwanted-segments. In addition, phantom junctions,
those having no segments attached or incident to two co-curvilinear segments, are
removed from G, and the list of maybe-segments is updated accordingly.

The above process is applied repeatedly until no more undecided-segments can be
removed. Many of the undecided-segments in the running examples are removed by

the above procedure and maybe-segments are extended as shown in Figure 6.4 (c).

Step 4.2: Verification of Must-Segments

While coarse labels are used to check for inconsistency of region labeling by two

adjacent segments, they can also be used to check for consistency.
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Figure 6.4. Reconstruction of LDG of a curved surface scene. Broken lines are

undecided-segments, solid lines are maybe-segments and thick solid lines are must-
segments). (a) Wing samples and their extensions. (b) After junction detection and
clustering. (c) Result of repeat application of Rule 6.5. (d) Result of one application

of Rule 6.6.
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If the region labels are consistent, and both segments are maybe-segments or one
is a must-segment while the other is a maybe-segment, then it is hypothesized that
both segments are must-segments. The hypothesis is verified or rejected by comparing
the finer label (parameter estimates of the projecting surface) of the two segments.
If the estimated parameters are reasonably close, then the hypothesis is accepted;
otherwise, rejected. This hypothesis verification step is similar in principle to the
wing clustering step that we have cited as being too unreliable and consequently
abandoned. However, there is a major difference in these two approaches. Wing
clustering was performed over all sampled wings; wings that are far apart, though on
the same surface, need to be clustered into the same group. Here, only two sets of
parameters are compared, and they are propagated from two wing segments that fall
on adjacent line segments of the LDG, which in general means the surface patches
from which those wings are derived are close in 3D. Again, from the wing detection
experiments, we have concluded that nearby wings have more consistent parameter
estimates than far apart wings of the same surface, except in the planar case where
there is not much difference. Therefore, hypothesis verification by comparing the

parameter estimates is reasonable.

Rule 6.6 Two adjacent segments seg;;, segix should both be must-segments if (1) both
are must- or maybe-segments or one of each; (2) the coarse labeling of their bounded

region is consistent; and (3) the fine labeling of their bounded region is also consistent.

The result of applying this rule to the the running examples is depicted in Fig-

ure 6.4 (d). Again, any phantom junction resulting from this operation is removed.

Step 5: The Final LLDG

By repeated application of the above two steps, we arrive at the final LLDG as in

Figure 6.4 (e). It only remains to label the regions with a unique label. Note that
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any closed region in the LDG must have a consistent coarse label on all surrounding
segments (Rule 6.6). If the original range image is available for resampling, one could
refit the surface model (coarse label of the region) to points sampled from within this
region on the range image. If the range image is not available, then depending on the
application, all the estimates or perhaps the mean of all estimates could be passed

onto the next higher level of recognition module.

6.3.4 Heuristic Quadric LLDG Reconstruction Algorithm:
QUAD-2

The complete heuristic algorithm is outlined below.

(1) Extend each wing segment (no clustering)

(2) Form junctions by computing the intersections among all curves and propagate
the wing labels of each wing segment to its extensions; denote this graph as G

(3) Initial classification of must-segments, maybe-segments, and undecided segments
(4) Remove or preserve maybe-segments by heuristic Rules 6.5 and 6.6

(4.1) Repeatedly apply heuristic Rule 6.5 to all remaining undecided-segments
in G until no more undecided-segments can be thrown out as unwanted-
segments

(4.2) Apply heuristic Rule 6.6 to all remaining maybe-segments in G to rectify
any must-segment

(4.3) If G is updated, loop back to step (4.1)

(5) Resolve region labels and output (partial) LLDG.

6.3.5 Examples

Two examples involving missing wings are given in Figure 6.5. In Figure 6.5 (a), we
removed 5 wings from Figure 6.4 (a) that we thought would be less likely to be sensed

from real fused image. Using algorithm QUAD-2, the reconstructed LLDG revealed
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the two cylinders at the end. However, one curve segment that does not belong in
the true LLDG was inferred. In Figure 6.5 (b), two more wings were removed which
results in just one big cylinder and two non-existing limb contour segments in the
reconstructed LLDG. In the defense of the algorithm, we must point out that the
most revealing features about the object in the scene, the curvature-L junctions and
the three-tangent junctions, were detected; furthermore, the reconstructed LLDGs
mimic how the human visual system would have reconstructed the scenes without
given prior knowledge about the objects in the scenes.

In Figure 6.6, more interesting facts about the algorithms are revealed. In Fig-
ure 6.6 (a), the complete LLDG are reconstructed despite that fact that there are
three missing wings. In Figure 6.6 (b), a missing wing caused 4 maybe-segments not
to be resolved, which indicates that the reconstructed LLDG is not complete. In Fig-
ure 6.6 (c), a complete set of wing samples are supplied for reconstruction; however, 4
maybe- and 3 undecided-segments are not resolved by the reconstruction algorithm.
Those examples show that the reconstruction rules used in algorithm QUAD-2 are
not sufficient. Better decision rules await to be discovered to prevent situations like

that of Figure 6.6 (c) from occurring.

6.4 Summary

Extending reconstruction techniques to the domain of quadric-surface objects proves
to be quite challenging. In this chapter, we have shown that under the same set
of idealistic assumptions about the input wing set and the computation accuracy as
in Chapter 4, the LLDG reconstruction algorithms of POLY-1 and POLY-2 can be
directly extended to reconstruct the LLDG in the expanded domain. The extension is
possible because the algorithms made no assumptions about the linearity of the line

segment and the planarity of the surfaces. Reconstruction was performed based purely’
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Figure 6.5. Reconstruction of LLDGs from imperfect wing samples using heuristic

algorithm QUAD-2.




192

wing samples reconstructed LLDG

7

Figure 6.6. More LLDGs that are reconstructed by the heuristic algorithm QUAD-2.
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on the geometrical constraints of the underlying line drawing graph. A modified
algorithm, QUAD-1, was outlined.

A couple of challenging problems arise when the idealistic assumptions are
dropped. First, the wing clustering step, which was successful for POLY-3, will
be hard to duplicate given our knowledge about the quality of the quadric surface
wings detectable by our wing finder. We argued that wing clustering requires more
accuracy on the estimated surface shape parameters than currently available. Instead
of risking placing wings in the wrong cluster, a new algorithm, QUAD-2, is proposed
to bypass the whole clustering step and to reconstruct the LLDG at once from the
set of input wings. The second problem when dealing with realistic situations, has to
do with the extensibility of wing contours to form a graph embedding of the LDG.
Given that wing contours only model the local image contour shape, extending it to
fit the global contour is asking a lot. No solution to this problem was offered but the
Hough Transform technique was suggested to be a plausible approach.

The proposed QUAD-2 algorithm has only two heuristic decision making rules.
Both are based on the fact that each region in the LDG corresponds to a physical
surface in 3D so that the line segments surrounding a region should all label the
common region the same way. The qualitative region labels of each segment are used
to discard any conflicting unwanted segments and the surface parameter estimates are
checked to verify the hypothesis of a must-segment. A drawback of this algorithm is
that by not clustering sampled wings into co-quadric groups and reconstructing each
group independently, the transparent parallel implementation of previous algorithms
is not present in QUAD-2.

Neither QUAD-1 nor QUAD-2 has been implemented. Hand-traced results were
provided to exemplify the algorithms. Future research is needed to solve the difficult

task of extending curved wing contours so that QUAD-2 can be aptly applied.




CHAPTER 7

Summary, Conclusions and
Recommendations for Future

Research

7.1 Summary and Conclusions

The research addressed in this dissertation dealt with extracting a labeled line drawing
graph from registered range and intensity image via locally detected wing primitives.
The problems of wing detection and labeled line drawing reconstruction are treated as
separate issues: Wing primitives are extracted from raw fused images and reconstruc-
tion of the LLDG proceeds from the sampled wings. By making it a separate issue,
limitations of wing detection will not hinder the growth of line drawing reconstruction
research.

After introducing the research problem in Chapter 2, we set out to define the
special terminology used in this thesis and to derive the mathematical formulation for
various quadric surfaces, the image contours and image of the crease edge created by
intersecting quadrics. The structure of the wing and its mathematical representation

were discussed; in the process, a set of 98 wing primitives were conceived for the
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quadric surface domain. It is those primitives that are to be extracted from the fused
images. A labeled line drawing graph is a representation for the view of the scene
with as much geometric and topological fidelity as is possible. We defined accidental
views in terms of the surface sensing property, which dictates that each visible edge
and surface must be partially sensed. Mathematical representation of various surface
and contour shapes were derived and fit to facilitate the wing detection process.

The first problem that we studied was on the detection of wings from fused images.
Many issues and conclusions were drawn from this study. A major contribution of
this thesis is the study of the effectiveness of simultaneously fitting 3D surface data
and 2D image contour data to recover surface shape and pose parameters. A large
number of Monte Carlo experiments were performed and the results strongly support
our hypothesis that fused fitting can better discriminate between different quadric
shapes and provide more accurate estimations of the pose parameters than if surface
data or contour data were used alone. The results are even more compelling when
Gaussian noise of higher variance was introduced in the data. Experimentation on
real images further supports this conclusion. An experiment was also conducted to
study the minimum number of data points required to obtain reasonable fits. The
performance of the fused and surface-only fitters stabilized when as few as 20 sample
points were used for fitting. This result refutes the common belief that large number,
hundreds or even thousands, of sample points are required to obtain good fits. Private
communication [24] with our colleagues confirms that it is not the number of data
points, rather, it is the coverage of the sample points that controls the success of the
fit.

Armed with this new found fused fitting technique, we proceeded to investigate
the main problem of wing detection. It is well known that edge information from
objects provides strong clues about the local shape of surface regions [70] and shape-

from-boundary methods have already been implemented [127]. For example, the limb
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boundary of a circular cylinder should be detected as much by its straight boundary
contour as by the curvature of its surface points. The elliptical contour at the lip of a
cup or can is perhaps more revealing of 3D shape than is a local set of range samples
as recent work has shown [41, 54]. We proposed to incorporate the limb boundary
and crease edge position information to constrain and to aid the recovery of the
surface shape parameters by simultaneous fitting the 2D contour information with
the sampled 3D surface data points. Furthermore, the limb contour was shown to be
of particular importance for it is instrumental in generating good initial parameter
estimates for non-linear fitting.

The wing detection algorithm was tested on over 20 real fused images. Carefully

studying the results enabled us to draw the following conclusions:

o The wings can be reliably detected in polygonal scenes. Presence of spurious

wings are rare and the variation of surface parameters across a plane is low.

e The conclusion drawn from Monte Carlo experiments about the surface shape
discriminatory power of fused fitting is also evident in real images. Wings near
the limb boundary or crease edge contour are detected with more precision and

with fewer errors in qualitative surface classification.

e Wing detection in images of quadric surface scenes reveals that the qualitative
shape of the surface is often correctly recovered but the quantitative shape

parameters may have large variance over the same quadric surface.

After closely examining the quality of the wing detector, we turned our attention
to reconstruction of labeled line drawing graphs in Chapters 4 to 6. In Chapter 4, we
studied the plausibility of reconstructing a unique line drawing of origami and polyg-
onal scenes from a complete set of wing samples under some favorable conditions.
The input wing sets were assumed to be complete, meaning that at least one wing

was detected for each visible edge in the LDG but no spurious wings. Furthermore,
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infinite computation and measurement accuracy were assumed so that the validity
of the reconstruction algorithm could be accurately assessed. Under these idealistic
assumptions, two deterministic algorithms, POLY-1 and POLY-2, were proposed for
complete reconstruction of the LLDG. By allowing re-sampling of range image, com-
plete reconstruction of the labeled line drawing graph is guaranteed. On the other
hand, by studying the geometric constraints of the line drawing graph, rules can be
deduced to facilitate the reconstruction process as in POLY-2. Since those rules are
derived from the geometric properties of the LDG, they were shown to be geomet-
rically “correct”, meaning that the reconstruction rules are necessary conditions for
any LDG. However, as pointed out by one of the examples, those rules are not suffi-
cient to guarantee the recovery of a complete LLDG. The problems lies not with the
reconstruction algorithm; rather, the information retained by wings about the scene
may be inadequate for complete reconstruction even in an idealistic setting.

In Chapter 5, the idealistic assumptions were dropped and a new algorithm,
POLY-3, was proposed to reconstruct the LLDG from the wing samples as detected
by our wing sensor. The objects were still assumed to consist of planar surfaces only.

Some of the problems addressed and overcome were:

1. possible inaccuracy and imprecision of wing parameters;

2. spurious wing samples that do not correspond to any physical line segment in

the LDG; and
3. missing wings (i.e.,no wing sample for some of the line segments of the LDG).

The problem of possible inaccuracy in wing parameters was partially solved by the
inherent capability of our wing sensor to produce accurate wings. However, there will
always be some discrepancy in the parameters. This was overcome by introducing
displacement tolerances in places where the quantitative parameter values are com-

pared. Spurious wings could potentially cause difficult problems if they are present
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during the reconstruction. Since spurious wings do not correspond to physical edges
in 3D, by checking to see if the two planar surfaces represented by the wing are actu-
ally coplanar, they can be discerned from other wings and discarded from the wing
samples. Experiments have shown that spurious wings are rare and are often removed
by the preprocessor. The missing wing problem is the reason why heuristic rules are
used for reconstruction. By means of heuristic rules, the algorithm has no guarantee
of reconstructing a complete LLDG. We conclude that the algorithm is sound by
showing that (1) it is capable of generating an LLDG comparable to that of POLY-2
when a complete set of wing samples is given as input; and (2) a partial LLDG can
be obtained even when the input wing set is incomplete. With this, we conclude that
(partial) reconstruction of labeled line drawing graphs from fused range and intensity
imagery is tenable for scenes involving origami and polygonal objects.

Having drawn such strong conclusions about planar surface scenes, we must admit
that our work on reconstructing LLDG of quadric surfaced scenes is only preliminary.
We argued that under idealistic assumptions, the POLY-1 and POLY-2 algorithms
can be directly extended to operate in the expanded domain. Hand traced examples
supported our argument. We expect that the difficulties involved in reconstructing
the LLDG for the polygonal domain will only be magnified for the quadric scenes.
An algorithm was offered to overcome some of these difficulties, but it has not been
implemented nor fully tested. Hand traced examples are available to encourage us

that we are moving in the right direction.

7.2 Contributions

The primary contribution of this research is the successful demonstration of recon-

structing a labeled line drawing graph (LLDG) from raw fused imagery.
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The wing detection algorithm and the reconstruction algorithms were tested on a
large number of test cases, both synthetic and real.

A contribution is made to strengthening “wing representation theory” by the
successful implementation and testing of a wing detection algorithm. In
contrast to some other representational theories, we showed that the primary feature
of the wing representation theory, which is the wing, can be extracted from raw fused
images.

We have proposed to recover surface shape and pose parameters by simul-
taneously fitting 3D surface data as well as relevant 2D contour points.
We have shown by both Monte Carlo experiments and by tests on real data that

fused fitting is superior to either fitting surface data or contour data alone. We also

found that only a small number of data points are really necessary to obtain quality

fitting results. Valuable computation time is saved by sampling the data points for
fitting rather than fitting all the available data points. Also within the study of wing
detection, we discovered that the limb contour position information can help provide
a good starting set of parameter values for the non-linear fitting routine. A good
starting vector is essential for the fitter to converge and to converge to the global
optimum.

The study on labeled line drawing reconstruction of polygonal scenes under ideal-

istic assumptions provided insights into the geometric constraints of the line

drawing graph. It was shown that the reconstruction rules derived from those ge-
ometric constraints are necessary conditions but not sufficient conditions for unique
reconstruction of the LDG. The example, where unique reconstruction could not be
made, points out that wing representation is not mathematically adequate for recon-
structing a perfect LDG. Progress toward automatic generation of the LLDG
for polygonal scenes was made by our heuristic reconstruction algorithm. The

algorithm was shown by examples to be comparable to the deterministic algorithms
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when the input wing set was complete. When the input wing set was not complete, a
partial LLDG was generated. Difficulties in generalizing the reconstruction algorithm
to include quadric scenes were identified and possible solutions were offered. Much
more needs to be done to achieve the goal of automatic generation of the LLDG for
quadric scenes.

One final small contribution of this thesis is the successful fusion of registered
range and intensity images to subpixel accuracy from source images in two differ-
ent world coordinate frames. The fused image provides complementary information
about the surfaces in view. Object recognition related processing may benefit from
the use of fused data as demonstrated by our research on wing detection and fused

fitting.

7.3 Recommendations for Future Research

We have presented algorithms with examples that show line drawing generation and
interpretation is plausible in the planar surface domain. Extending the implemen-
tation to handle quadric or even more general surface scenes will be an important
future research topic. Some of the difficulties involved are already discussed in Chap-
ter 6. The question “Is wing representation adequate for line drawing recovery and
interpretation of quadric surfaced scenes?” needs to be addressed before reaching for
a quadric surface scene reconstruction module.

The use of fused fitting enabled a more accurate recovery of wing features within
a subimage of the scene; but a poor decision on the “busyness” of a subimage can
result in having no wing detected on an edge contour (missing wing) or having spurious
wings. Our experiments have suggested that a fixed-scale window for wing detection is
inadequate across scenes with multi-size features. Variable size windows are needed to

achieve a more robust wing sensor. Toward this end, a scaled-space approach to wing
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detection is an important theme to be explored in the future. Scale space techniques
for feature extraction have been successfully implemented in the past [35, 96, 106]. A
similar feat should be duplicated to achieve a variable scale wing sensor.

Having demonstrated the feasibility of wing detection from fused imagery, a natu-
ral improvement and extension is to forego the range image and to attempt to extract
wing features using shading data alone. Intensity can be directly related to surface
patch shape via the same model parameters and hence new fitting equations, such as
those of Section 3.4, can be derived. Future experiments may show that rough object
shape can still be distinguished by applying the same fitting method to observations
derived from a single intensity image.

An immediate future goal is the parallel implementation of the wing detection and
the LLDG reconstruction algorithms. Parallel implementations of our algorithms are
natural. Detection of individual wings is independent of one another; once the image
is tessellated into subimages, wings may be detected in parallel. With parallel wing
detection, wings detected in one window with confidence may be used to aid the
recovery of the wings in neighboring windows. The LLDG reconstruction procedure
can also be parallelized by reconstructing each planar group of wings simultaneously.
By allowing inter-group communications during reconstruction, ambiguous interpre-
tations may be resolved during the reconstruction phase (recall the front face of the
Big-Block example in Figure 4.18). The rules governing conflict resolution must be
carefully constructed to ensure only a physically realizable interpretation survives.

Finally, with the advent of our wing detector, object recognition based on wing
representation theory should be studied further than previously [26] done. Aspect
graph representation offers a structural multi-view representation of the objects, while
wing representation explicitly defines the characteristics of the visible surfaces of the
object in a given view. By building an aspect-wing graph object model database,

object recognition can be performed based on the set of detected wings. Furthermore,
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successful partial line drawing reconstruction from wings should be most useful in
object recognition tasks where the junctions in the LLDG may be used as composite
wings to reduce the prohibitive large space requirement imposed by the aspect-wing

graph.
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APPENDIX A

Creation of Fused Imagery

In this Appendix, the process of obtaining registered range and intensity imagery
will be detailed. We will describe the the imaging system and its set-up follow by
the complete description of the data acquisition procedure including all the necessary
frame transformations.

For convenience in its use, the data is presented as if it were formed from the scene
using parallel projection along the optical axis of the camera. However, a perspective
transformation was needed in order to map 3D world surface points onto the intensity
array produced by the camera, so that intensities could be assigned to 3D surface
points. The resulting data is definitely not 3D, but rather 2 1/2 D, and is very much
viewpoint dependent. Because the Technical Arts Scanner is a triangulating sensor,

there are voids in the data due to shadowing from both the camera and laser sheet.
Shadowing from the white light sources has been minimized by using two or three
light sources when taking the intensity images.

Care has been taken to assure registration accuracy to within one pixel in the final

fused images. The fusion process is briefly outlined first; complete details follow.
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Data Creation Process

—

Obtain range image (R,,) using Technical Arts White Scanner.

2. Obtain intensity image (I.) using Innovision’s color imaging system through

White Scanner’s camera.

w

. Compute the calibration matrix for mapping a surface point in R,, to its corre-

sponding point in I..

4. Compute the transformation matrix for transforming a point in world coordinate

frame to camera coordinate frame.

ot

. Parallel project each surface point in R, into the fused image plane (z. = 0
plane in camera-centered frame), from which depth and intensity values can

easily be computed.

o

. Set the binary flag image to indicate the validity of the range/intensity values

at each element in the image.

System Setup and Capturing Range Images

Figure A.1 depicts the set up of the White Scanner for capturing range images in our
facility. The White Scanner is a triangulation based range scanner [117]. The stage
for holding the objects in the scene can be moved in two directions: along the X,,-
and Y,-axes. A sheet of laser light is projected onto the scene and the laser stripe
that hits the surface of the objects in the scene is picked up by the camera. It is those
surface points (along the stripe) whose z-values (2, ) are computed using the world
coordinate system. Note that only those surface points that are illuminated by the
laser light and are visible to the camera can yield fused data values. The stage was

moved in the direction along the X,-axis to ensure that the z,’s are computed for
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X (parallel to Y )

Xw

Yw
Figure A.1. Setup of White Scanner and the two coordinate frames

all visible surface points. The total distance moved along the X,,-axis and the strip
seen by the camera were both quantized into 240 steps so that the resulting range
image has the dimension of 240 pixels by 240 pixels. Since the final fused image
contains both range and intensity data we use either term pizel or rangel rather than
coin another term such as fusel ! However, the actual z,, and y,, coordinates were
recorded rather than the row and column numbers. An example range image is given
in Figure A.2 (a).

0, which is the angle between the sheet of laser light and the optical axis of the
camera, is fixed to be 45 degree. Hgist, which is the normal distance from the camera
to the sheet of laser light, is known from calibrating the White Scanner beforehand.
These two parameters enable the scanner to compute the z,, coordinate for each of the
visible & illuminated surface points. Furthermore, knowledge of those two parameters

is essential in parallel projecting the surface point into the final fused image plane as

will be seen later.
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Capturing Intensity Images

The intensity image I. was captured through the White Scanner’s camera using dig:-

color, an in house program, which drives the Datacube board for capturing images.

The laser light was turned off and 1 to 3 white light sources were used to minimize

the shadowed regions. The registered intensity image, originally of size 512 pixels

x 485 pixels, was reduced to 240 x 240 using the “stretch” function (which is basi-
cally block averaging) available in the HIPS [77] package. This intensity image is
camera-centered as opposed to world-centered for the range image. Note that due
to occlusion of the laser stripe, some surface points that are visible in the intensity
image may not have corresponding data in the range image. An example intensity

image is shown in Figure A.2 (b).

Computing the Calibration matrix

In order to obtain a fused (range and intensity) image, a calibration (transformation)
matrix for mapping rangels in the range image to corresponding surface points in
the the intensity image must be found. This is done by picking n, n > 6, pairs
of corresponding points in the range and intensity images (say R;, Rs,..., R, and
I, I, ..., I,) and solving for the calibration matrix C[52). Mathematically, this process

1s written as

TR, YR, Zm, 1] zp, yn 1
TR, YR, 2R 1 I, Yo 1
. : 04:53 = .

TR, YR, #R, 1] T, Y1, 1|

Figure A.2 (a), (b) and (c) show actual images and matching data points used in
computing a calibration matrix C. Note that using this calibration matrix, subpixel

accuracy was achieved for these calibration points.
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(2)
Input Data | Fitted Data | Residuals
Xw Yw Zw | Xi Yi | Xi2 Yi2 | X ¥
| | |
-3.0 -1.3 -0.0 | 62.0 231.0 | 61.5 231.5 | 0.5 -0.5
2.9 -1.3 -0.0 | 133.0 215.0 | 133.1 214.3 | -0.1 0.7
-3.0 0.6 0.0 | 61.0 184.0 | 61.5 183.8 | -0.5 0.2
2.9 0.7 -0.0 | 133.0 172.0 | 133.0 172.6 | 0.0 -0.6
2.9 4.2 -3.5 | 23.0 98.0 | 23.0 97.4 | -0.0 0.6
2.9 4.2 -3.5 | 95.0 99.0 | 95.0 99.6 | 0.0 -0.6
-3.0 7.7 -0.0 | 61.0 11.0 | 61.0 11.5 | -0.0 -0.5
2.9 Tad -0.0 | 133.0 26.0 | 132.9 25.5 | 0.1 0.5
CALIBRATION MATRIX
14.92047691 -0.06266269 9.73421764  100.84538269
3.06331229  -22.63347054 -2.31218886  192.72633362
0.02696475 -0.00035766 -0.02190359 1.00000000
©
(d) (e)

Figure A.2. A complete example: (a) original range image, (b) original intensity
image, (c) calibration matrix, (d) fused range image, (e) fused intensity image.
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Zw
Rotate about X by 45 Rotate about Z’ by -90 Rotate about Y" by 180
Yc
{c) p & {c’)
Zc Xw {w)
X
Xc z’
Yu

Figure A.3. Relating World coordinate frame to Camera-centered coordinate frame.
To align the axes: rotate {C} about X -axis by 45 degree then rotate about the new
Z-axis by -90 degree follow by 180 rotation about the new Y-axis.

Forming Final Fused Images

The final step in forming the registered orthographically projected fused image is to
parallel project the (¢ , yw , 2w ) into the fused image plane. The fused image plane
is a synthetic image plane that is coplanar with the CCD array of the camera. Since
the exact relationship between the world coordinate frame and the camera-centered
coordinate frame is known, translate the origin of {W} to {C} then rotate the axis

so that they align (see Figure A.3), the projection is carried out via the following

transformation:
Zc Ty — Hyist
Yo | =R R R &
= . Poidard iyl
Ze T 45 2. ', —90 Yo "',180 Zw — Hiist
1 1

Each element in the fused image plane has 3D coordinates (z. , y. , 2. ), where
2z is the actual depth from image plane to object surface point. The corresponding
intensity value,i. , at (z. , y. , 2 ) is taken from the original intensity image, I, at
the pixel corresponding to the surface point (2, , Yw , 2w ). This is done by projecting

(B 5 P B ) into I, using the calibration matrix derived above.
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A binary flag image is used to indicate the validity of the range/intensity values
at each element in the image. A pixel element is deemed to have invalid registration
if at least one of the range or intensity values is not available. A background pixel
will have neither range nor intensity value. A pixel has intensity but no range value
when it is the projection of a surface point that is visible to the camera but not
the laser. On the other hand, when computing the range values (z,, ), the object(s)
is(are) passed through the sheet of laser light by moving the stage along the X, -axis
direction while the intensity image is captured with the stage centered at z,, = 0.
Thus, there may be surface points that have range values but no intensities because
those points were not visible to the camera at that fixed stage position. The final
fused image has 5 components (flag, z. , y. , zc , ic )-

Finally, because we have forward transformed the data, there are often small
holes or lines in the fused data. These are due to quantization and not shadowing.
Most such holes may be easily removed using a median filter (or, by doing back
transformation and interpolation). We thought that it might be better for scientific
research to view the data as spatial samples which may not be dense in the array,

and, thus we have not filled the holes at this time.

Fused Images

A list of 10 sample fused images are given below. These are the 10 images used to

compile the wing detection summary in Table 3.7.4.
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(a) agpart2

(b) block2

(c) bulbl

Figure A.4. cont. (see page 213 for caption)
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(d) conel

(e) cylinder2

(f) jigl

Figure A.4. cont. (see page 213 for caption)
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(g) blockl+columnl

(h) cone+cylinder

(i) cone+cylinder+sphere

Figure A.4. cont. (see page 213 for caption)






(j) hump-+agpart

Figure A.4. Fused range (left) and intensity (right) images






APPENDIX B

x2 Merit Function for Fused
Fitting

Suppose we are fitting a set of n data points X, = {2}, 2%, ..., 20} to a model
P3y(2; Q) = 0 with m adjustable parameters . Assume that for each data point ¥, €
&1, it has a measurement error that is independently and identically distributed as

a normal distribution with mean 0 and standard deviation o3, :
Pag(xi; ) ~ N(0, 02,), Vai, € X,.

Then the x? merit function for fitting Psy is defined as

Xocm = Z (P”‘ a"’ ~)>2-

3d

Given another set of n points X. = {z!,2% ...,2} to be fit to another model
Pyy(x; Q) = 0 with the same m adjustable parameters Q. Again, assume that each
data point ¢ € X, has a measurement error that is independently and identically dis-

tributed as a normal distribution with mean 0 but a different standard deviation o4 :

Py(zi; Q) ~ N(0, 03,), Vzi€ X..
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Then the x? merit function for fitting Pzq is defined as

" ([ Po(xi; O))°
X = D (——“(z° )> .
i=1 024

Now let X = X, U X, = {z},,2%,...,2,z},22,...,z"}, to which we want to fit

a “fused” model
Prused(2; Q) = a1 Pag(; Q) + az Poa(z; Q) = 0

with the same m adjustable parameters, 2, as in Ps; and Py, where a; and a, are
two weighting constants.

Given that the fitting errors of fitting «; € X to Psp and P,p are all i.i.d. normal
distributed, the error of fitting weighted P34, P2s and consequently Py,,.q are also

normal distributed. Specifically,

a P:!d(xfid; Q) ~ N(0, (a1034)%),
a2 Pu(x; ) ~ N(0, (a20.)?),
and

Prusea(2'; Q) ~ N(0, (a1050)* + (a20.)%), Vo' € X.

Therefore the x? merit function for fitting a weighted fused model is

2n i 32
P/uud("’? Q)
X 2nem = Z ( o 3

i=1

where o = (a; 034)% + (az 0¢)%






APPENDIX C

Parameters of the Wing Detection
and the LLDG Reconstruction

Algorithms

Parameters of the Wing Detection Algorithm

There are two sets of parameters that are present in the wing detection algorithm:
image/window size parameters and the wing detection parameters (see Table C.1).
The first set of parameters control the number and the size of individual image patch
for wing detection. These parameters include the image size (N x N), the window
size (n x n), degree of overlap between adjacent windows (m rows and m columns),
and the number of windows (M x M). Though other image and window shapes are
possible, we have selected square images and windows in this study for simplicity.
Wing detection would proceed in the same way regardless of the shape of the image
patch.

Two window sizes were used in the studies reported in this research: 30 x 30 and
20 x 20 pixels. The larger window size was used in compiling the statistics reported in

Table 3.7.4. The wing detection results shown in Figures 3.10 and 5.7 were generated
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Table C.1. Parameters of the wing detection algorithm

Tesselation of the input image

image size
window size
degree of window overlaps

N x N
nxn
m X m

240 x 240 pizels
30 x 30 or 20 x 20 pizels
15 x 15 or 10 x 10 pizels

number of windows MxM 225 and 529
Detection of interesting windows
initial number of potential edgelets 2xn
minimum number of edgelets MIN-2D-PTS n
goodness-of-fit
linear 0.1
circular 3.0
parabolic 3.0
minimum number of pixels per region 2xn
Wing model fitting parameters
total number of data points 30
number of 2D/3D points nap/nap 15/15
number of 3D/2D/3D points  nap/nap/nap 10/10/10
number of 3D points n3p 30
weight distribution
fitting 2D /3D points wap/wap 1.2/0.8
fitting 3D/2D/3D points wap/wap/wsp 0.6/0.8/0.6
maximum number of iterations 50
x? thresholds
wing model involving only PLN surface 1.5
wing model involving only SPH surface 2.9
wing model involving only CYL surface 7.5
wing model involving two PLN surfaces 5.0
wing model involving a PLN and a CYL surfaces 20.0
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with the smaller window. Large window size often yields fewer wing samples but more

accurate parameter estimates while smaller window results in fewer missing wings but

less accurate parameter estimates. The other window size related parameters were

also varied as indicated in Table C.1).

The first step toward wing detection is the detection of “interesting” windows. The

interesting window detecting module uses 6 parameters: the initial number of Sobel
edge points used for edge contour fitting, the minimum number of Sobel edge points
required on a valid edge contour, the three goodness-of-fit thresholds (experimentally
chosen) for the three types of wing contours and the minimum number of valid pixels

(surface points) in each of the two regions available for wing model fitting. The last

parameter is to guarantee that the size of the region is adequate for sampling.
Detection of wing within each interesting window proceeds by fitting various wing
models to the contour and/or surface points sampled from the window. The total
number of sampled points (30) and the distribution of those points to surface and/or
contour samples are some of the parameters involved in this module. If the wing
model hypothesis calls for fitting of only one surface patch, then 30 data points are
sampled from the surface patch. If the contour and a surface patch are to be fitted,

then 15 points are sampled from each of the contour and surface patch. And, if the

contour and two surface patches are to be fitted, then 10 data points are sampled
from each contour and surface patches. The weights placed on the contour and surface
data points during fused fitting were 1.2 and 0.8, respec;tively (which were not varied
in the study), and the maximum number of iterations allowed for the non-linear least-
squares fit is capped at 50. The experimentally chosen x? goodness-of-fit thresholds

round out the set of parameters in wing detection.
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Table C.2. Surface Model parameters

Planar: a,, b;, d;
Spherical: =z, yo, 20, 7o
Cylindrical: =z, yo0, 70, @, 8
Conical: z¢, yo, 20, do, @, B

Parameters of the Surface Models

The parameters of the wing surface models used in this research are listed in Ta-
ble C.2. The range of these parameters for the Monte Carlo experiments performed
in Section 3.5 were previously given in Table 3.1. Note that the equations of the
2D projections of the limbs and crease edges have the same set of parameters that

created those limbs/edges.

Parameters of the POLY-3 Algorithm

The POLY-1 and POLY-2 algorithms require no parameters due to the assumption
on measurement and computation accuracy. However, in the POLY-3 algorithm,
5 parameters are needed. In preprocessing of the wing samples, short compatible
wings are merged into long wings. Compatibility of two overlapping wings is based
on the collinearity of the wings and the co-planarity of the adjacent surfaces. Using
the polar coordinate system, 2D position of the wing can be represented by the
parameters p and . Thus two wings are collinear if their respective p and 6 values
are within some thresholds. Co-planarity of surfaces are determined by requiring the
surface normals and the minimum distance from the origin to the planes to fall within
some predetermined thresholds. Those parameters are used again during the wing
clustering step in which the planar surfaces equations of all the wings are clustered.

The fifth parameter is used to cluster close-by scattered junctions in the final LDG
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Table C.3. Parameters of the POLY-3 algorithm

collinear wing/line segments
lp1 — p2| < 0.3
|01 — 02' < 10°
coplanar surfaces
| angle between two surface normals | < 10°
| difference in distance to the origin | < 1.5

clustering of nearby junctions
dz'st(jctl,jctg) <0.3

into one representative junction after the reconstructed individual planar faces are

merged. The threshold values for each of those parameters are listed in Table C.3.
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