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ABSTRACT

LATTICE PATH PROOF OF SOME JACOBI-TRUDI TYPE FORMULAE

BY

José H. Giraldo

Ira Gessel gave a combinatorial proof of the Jacobi-Trudi identities using lattice

paths. We use this lattice path technique to prove some Jacobi-Trudi type identities.

These identities relate determinants, where each entry is the sum or difference of

certain complete homogeneous symmetric functions, to sums of certain skew Schur

functions. Similar determinantal identities are obtained when the entries of the de—

terminant are elementary symmetric functions.
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Introduction

In the theory of group representations it is well-known that the irreducible poly-

nomial representations of the general linear group GL(n) of all n by n non-singular

complex matrices are indexed by partitions A of length at most n. The character of

the irreducible representation indexed by A is the Schur function s,\ which belongs to

the ring A of symmetric functions. A nice combinatorial proof of the fact that s; is

symmetric was given by Knuth [Knu 70]. Even more, the 3), form a basis for the ring

of symmetric functions.

There are two other interesting bases for A, formed by the elementary and com-

plete homogeneous symmetric functions, denoted by e; and hA, respectively. Formulae

expressing s,\ as the determinant of certain elementary or complete homogeneous sym-

metric function were found by Jacobi [Jac 41]. The proof of such formulae was later

simplified by his student Trudi. These Jacobi-Trudi identities are stated as follows.

Let A = (A1, A2, . . . , A") be a partition. Then

3A = I’m-ml

and

8» = lend-HI

where the determinants are n by n, and A’ is the conjugate of A.

Ira Gessel [Ges um] gave a beautiful combinatorial proof of these results using

lattice paths and tableaux. The same technique has been used by Gessel and Gerald
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Viennot, [G-V 85,G-V ip], to prove other determinantal identities.

Bressoud and Wei [B-W um] in an attempt to find a lattice path proof of the

Jacobi-Trudi analogs for symplectic and orthogonal groups, discovered a way to ex-

tend this method to prove the following result. For t Z —1 an integer

2(t-ltlll2 Z (_1)a (h,.__,+,(,, + (—1)(‘+"')/2hi,-.-_a(.)+1_t)

n

063'; t l

= Z (_1)[IuI+u..(ItI-u1/23W

pgk

“GP:

where up is the length of the main diagonal of p and P; is the set of all p = (#1, . . . , pn)

such that p.- = p:- + t, for 1 S i S V”. However their method lacked the elegance of

the Gessel-Viennot proof.

In the present work we give a lattice path proof of some more general determinantal

identities which imply the Bressoud-Wei result. These identities are stated as follows.

Theorem Let A = (A1, A2, . . . , An) be a partition. Fort Z —1, a fixed integer,

lhAt-Hj + hA.—£—j+1—¢| = Z(_1)(Iul-(t+1)uu)/23Vu

MEX

”6"}

and

“MM“. _ hA.-i—j+i—t| = Z (_1)(l#l-(t—1)Vu)/23A/u

549*

FEP¢

In particular fort = —1 we have

Ll

Illa-m + hA.-i-j+2| = 2 Z (-1) t; 3w

[€1ch

I’M-m - hA.-i-j+2| = 0-

Similar formulae are obtained for elementary symmetric functions.



Theorem Let A :: (A1,A2, . . . , A") be a partition. Fort Z —1, a fixed integer,

let-4+,- + €A.—i-j+1—:| = Z (-1)(""—(t+1)"“)/23min
ug"

HEP:

and

ICA.—i+j _ €A,—i—j+1—t| = Z (—1)(I"|_(t—1)W)/2SA'/w

#91

“5":

In particular fort = —1 we have

I l

RIM-4+]. + eAi-i—j-i-Zl = 2 Z (—1).%_3AI/ul

"25:,

6A.—i+j - 6.\.—i—j+2| = 0-



Chapter 1

Preliminaries

1.1 Partitions and Tableaux

A partition is any sequence (finite or infinite)

(1.1.1) A=(A1,A2,...,Ak,...)

of non-negative integers in decreasing order, A1 2 Ag 2 - -- 2 Ah 2 -- -, with only a

finite number of non-zero terms. The partitions A, u are said to be equal if they have

the same non-zero terms.

The parts of A are the non-zero A.-’s in (1.1.1). The number of parts is the length

of A, which is denoted by ((A). The weight of A, denoted by IAI, is the sum of the

parts of A,

(1.1.2) |A|=A1+A2+A3+---.

If n = |A| we say that A is a partition of n. If the last non-zero entry of A is Ak, we

will simply write

A = (A1,A2,...,Ak).

If A is a partition of n, an alternate way of writing it is

4



A=(1’"‘,2’"’,...,n"‘")

where mk indicates the number of times the summand 1: appears in the partition. So

22;, m,- = l(A) and 22‘zlim; = n. For instance, A = (3,3,1,l,1) and A = (13,32)

represent the same partition.

The diagram of a partition A = (A1, Ag, . . . , A1,) is an array of k left-aligned rows.

The i“ row consists of A.- dots (nodes) or boxes. The rows are numbered starting

with the first row at the top and columns are numbered starting with the first column

at the left. We use (i, j) to refer to a box located in the it" row and j’h column. We

write (i,j) E A, if the box in that position is in the diagram of A.

For example if A = (4,3,2,1), its diagram is given in Figure 1.1.1. In this case

(2,3) 6 A but (3,3) ¢ A.

 

 

  

  

  —

Fig. 1.1.1

The main diagonal of a diagram is the diagonal starting at the upper left corner

of the diagram and moving southeast.

The conjugate of the partition A is the partition A’ = (A’l, A’z, Ag, . . .) whose diagram

is the transpose of the diagram for A. That is, the diagram obtained by reflecting

the diagram of A through the main diagonal. As an illustration, if A = (4,3,2), then

A’ = (3,3, 2, 1). The diagrams for A and A’ are given in Figure 1.1.2, where the main

diagonal of A is indicated.

A semi-standard A- tableau is a filling of the diagram for A with the elements from

a totally ordered set (A, _<_) where the rows are weakly increasing from left to right



 

  

   

    

      

Fig. 1.1.2

and the columns are strictly increasing from top to bottom. As an example, if A =

(4, 3, 2, 1), Figure 1.1.3 shows a semi-standard A-tableau where A is the set of positive

integers with the usual order.
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Fig. 1.1.3

Unless stated specifically, we fill the tableaux with positive integers. The entry in

box (i, j) of a semi-standard A-tableau T is denoted by T(i.j)° To To.» we assign a

variable denoted by an , ,). The weight :rT of a semi-standard A-tableau T is defined

by

T _
(1.1.3) at — II 31.0.1).

(Mlle)

If A = (3,2,2) some A-tableaux are shown in Figure 1.1.4. These tableaux have

weights: 2:71 = $1$1$1$2$3$3$3 = xi’xgarg, 1:72 = :rlxlxgzgx3x4z4 = xfmgxgxi, 2:73 =

A3.0 A 0

231322313343435 = xlzgxgxixs. The degree of a monomial 23‘: 13%,} - - 3,: is defined

as 23:1 A,-. Then, the weight of a semi-standard A-tableau is a monomiaJ of degree

IAI-



The length of the main diagonal of the diagram for A is denoted by VA. When A is

clear from the context we will simply write 11. Alternatively, we can interpret 11A, as:

(1..14) V,\ = l(AglA.‘ __>_ 2“.

Observe that the diagram for A is completely determined by the first u rows and

columns. We are interested in a particular set of partitions which is going to be

denoted by P,.

Definition 1.1.1 Let t be an integer. We define

P, = {AIA is a partition and A,- = A:- +t for all IS i 3 VA}.

For instance,

P0 = {Al/A; = A1, for l_<_ i S V,\}

= {AIA is self-conjugated}.

Figure 1.1.5 shows an element of P0.

0 e

c

Fig. 1.1.5

Observe that the partition p = 0 vacuously belongs to Pt, since it has no non-zero

parts. Note that if p 6 Po, and t > 0 then by adding t nodes to each of the first 12,,

rows of p we obtain 1] 6 Pt. We will say 1) is obtained by t-addition to p. An example

is shown in Figure 1.1.6.

o e e e e e e e

e 0 EP0 e e e 0 EP2

e e



Clearly, we can go backwards: given an element 17 of P,, with t > 0, we can obtain an

element of P0 by deleting t nodes from each of the first 11,, rows.

Definition 1.1.2 For a diagram A, the hook of the (i, j ) node is

Haj = {(i,j')|j' 21'} U {(i',j)|i' > i}-

The cardinality of HM, denoted hm‘, is called the hooklength of Hi,j- It follows that

(1.1.5) hi,- =A.-+A;-—(i+j)+l.

Note that if p 6 Po then h,,,- is odd. Thus |p| — V” E 0 mod 2.

Lemma 1.1.3 Let t be a positive integer and A 6 Pt, then |A| - V)‘ E tVA mod 2.

Proof. Since A 6 P,, A can be obtained by t-addition to p 6 Po. Because 11,, =

V,\, |A| = Ipl + tun and lul E 11,, mod 2, we have

lAl - VA = (l/‘l + til“) _ ”u = (l/‘l — Vii) + tVu 5 ti!“ mOd 2' B

Let p and A be partitions. The notation p C_: A indicates that p.- S A, for all i Z 1.

In terms of diagrams, this means that the diagram of p is contained in the diagram

of A. The boxes in A which are not in p determine a diagram, called a skew-diagram

and denoted A/u. The i“ row of A/u has length A,- — p,.

The definitions of a semi-standard A/p tableau and its weight are analogous to

the case p = 0.

1.2 Symmetric Functions

Let C[[3]] be the ring of formal power series on the variables a: = {2:1, 2:2, 1:3, . . .}.

An element of C [[x]] with all the monomials of degree n, is called a homogeneous

formal power series of degree n.



For Ir 2 1, let 5;, be the symmetric group on k letters. For each 1:, consider the

function

«5 = s. x CIIxII —-» Cllxll

defined by

(1.2.1) (Paf(W3 . . .)) 43+ f($p(1),$p(2)a$p(3)’ - . .)

where p(i) = i for i > k. The function o5 defines an action of S". on C[[:r]].

Let A = (A1,A2, . . . ,An) be a partition. The monomial symmetric function asso-

ciated with A is

(1.2.2) mm) = Z xt‘xt’ - - ' wt."

where the sum is over all distinct monomials with exponents A1, A2, . . . , An. For each

A, m; E C [[3]] is homogeneous of degree |A| and invariant under the action of St, for

every 1:, as defined in (1.2.1).

Definition 1.2.1 The vector space spanned by the m,\ is denoted

A = A($) = C[m,\]

as A varies over all partitions. This vector space is closed under product and hence

is a ring. It is called the ring of symmetric functions.

It should be noticed that not all the elements of C[[3]] which are invariant under

the action of S]. as in (1.2.1), can be written as a finite linear combination of the mA.

For example [1,210 + x.) is invariant under 45 but is not in A. That is because the

product contains monomials of every degree.

The space spanned by all the mi of degree n is denoted by A“. Since the set

{mAIA is a partition of n} is linearly independent, it is a basis for A”. So the

dimension of A” is the number of partitions of n, denoted p(n). Note that if f E A9

and g E A" then fg E M” and thus A becomes a graded ring.
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Definition 1.2.2 For n 2 O, the 12“ elementary symmetric function e,, is the sum

of all products of n distinct variables xi. That is, co = 1, and for n 2 1

(1.2.3) en = m(ln) = Z $.33.) - - - 11:5".

‘1 (i2<'"<£n

As an example, for n = 4, e, = $1$2$3$4 + $1$2$3$5 + 2:12:2st + - .. .

For a partition A = (A1, A2, . . . , An) define

(1.2.3') e; =e,\,e,\,---e,\n.

Definition 1.2.3 For n 2 O, the 71‘“ complete homogeneous symmetric function hn

is the sum of all monomials of degree n in the variables 13,“. That is, kg = l and for

n 2 1

(1.2.4) h,, = m,\ = 2 2:51:13, - - - xi".

IAI=n eases-gin

For instance, if n = 4

’14 = mm + mm) + mm) + mm

4 4 3 3 2 2
2:1+£2+---+xl:rg+a:2:rl+---+:rla:2

+ £133 + - - - + 11172513334 + 2:11:233225 + - - -

Similarly, as in the case of the e’s, we define for any partition A = (A1, A2, - - - , An),

(1.2.4’) ’01 = huh; ° ' ° h,\"0

Remark: For n < 0 we assume hn = en = 0. The definitions for e,\ and hi make sense

for any sequence of non-negative integers.

The proofs of the following results can be found in Macdonald [Mac 79] or Sagan

[Sag 91].
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Theorem 1.2.4 The generating functions for en and hn are respectively

(1.2.5) E(t) = Zert'=H(l+:r,-t),

r20 :21

(1.2.6) H(t) = 2 kn" = 1'1(1- at)“. D

r20 1'21

This theorem immediately yields

H(t)E(—t) = 1.

Extracting the coefficient of t" on both sides, results in the following corollary.

Corollary 1.2.5 For each n > 0,

71

(1.2.7) Z(—1)kekh,,_,. = o.

k=0

In addition to the basis formed by the m,\, we have two other bases for A.

Theorem 1.2.6 The sets

{e,\|A is a partition of n}

and

{MM is a partition of n}

are bases for A". D

Since the eA form a basis for A, the e, are algebraically independent. Thus we can

define a ring homomorphism

w:A——1A

by

w(e,-) = h,

for all i Z 0. In fact no is an isomorphism because of the next result.
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Theorem 1.2.7 w is an involution. That is a)? is the identity.

Proof It suffices to show w(h,,) = en. If n = 0, co 2 ho, hence w(ho) = e0. Assume

w(h,-) = e,- for all i S n -— 1. Because w is a homomorphism, and by (1.2.7) each h,-

can be written as a polynomial in terms of Cj,8 for j S i, w(ekh,-) = w(ek)w(h,-). Thus

w(hn) = w(Z(—1)k+lekhn_k)

k=1

= genrwkwwm)

= E(—1)k+1hken_k

k=1

2 en, El

Definition 1.2.8 Let A = (A1,A2,...,A,,) be a partition. The Schur function

corresponding to A is

(1.2.8) 3, = Z;

T

where the sum is over all semi-standard A-tableaux T, and xT is as defined in (1.1.3).

In a similar way, the skew Schur function corresponding to A/p is

(1.2.8’) 3),, = 2 1:7”

T

where the sum is over all skew semi-standard A/p-tableaux T.

To illustrate this, let A = (3,2,2) and p = (3,1). Some skew semi-standard

Afp-tableaux are
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whence the skew Schur function for A/p is

2 2 .
3A/u = $1132 + $132 + 2:1:lrgxg + - - -

Proposition 1.2.9 The function s,\(:r) is a symmetric function.

Proof: The following is a combinatorial proof due to Knuth [Knu 70]. Since the

function ”(23) is homogeneous of degree |A|, it suffices to show the function sA(:c) is

invariant under 45 for all k. Since any permutation is a product of transpositions of

the form (i,i + 1) we need to show

((.-,.-+1),.,,(.)) 34* so)

for all i.

Let 7} be the collection of all semi—standard A-tableaux. We want to find a

bijection f : 73 —; T,\ such that f(T) = T’ implies ((i,i + 1),:BT) 41* :cT'. We obtain

T’ from T as follows. Look at the entries of T equal to i or i+ 1. If an i and an i + 1

are in the same column the entries are called fixed. If only one of i or i+ 1 appears in

a column the entry is called free. In each row of T consider the free i’s and i+1’s. If a

row contains r free i’s followed by t free i+ 1’s, then we change these into t i ’s followed

by r i + 1’s. Call this new tableau T’. That the rows of T’ are weakly increasing is

clear. When i is free, the entry immediately below it is at least i +2, and when i+1 is

free the entry immediately above it is at most i — 1. So if a free i is changed into i + 1

then the new column is strictly increasing. Similarly, if a free i + l is changed into

i, the new column is strictly increasing. Thus T’ is a semi-standard A-tableau. The

map defined is an involution, since exchanging the number of i’s and i + 1’s in each

row twice maps T into itself. The fact that ((i, i + 1), 1:7) 4’4 $7" follows because the

number of fixed i’s and i + 1’s is the same in T and T’, while the number of frees i’s
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and i+ l’s is switched under f. Therefore under the action of (i, i + 1), the exponents

of z.- and 3,-4.1 are exchanged. Thus, this involution guarantees that sA(:r) is invariant

under the action of each transposition. C]

For instance, for the transposition (3,4), Figure 1.2.1 shows a T and the corre-

sponding T’. The fixed entries are enclosed by circles and the free entries are enclosed

by squares.

1112®EEI 1112®EEI

7‘@flflfl@5 7"@flflfl@5

@ @

Fig. 1.2.1

Our final basis for A (see [Mac,70] or [Sag,91]) is as follows.

Theorem 1.2.10 The set {sAIA is a partition} forms a basis for A. D

1 .3 Lattice Paths

Definition 1.3.1 a) Let Z x Z be the set of integer lattice points in R x R. If

u = (a, b) and v = (a+ 1, b) are in Z x Z then the line segment no is called an eastward

step. If u = (a, b) and v = (a, b + 1) are in Z x Z then no is called a northward step.

We say that the step uv starts at u and ends at v. We call u and v the initial and

end points of the step, respectively.

b) Suppose u = (a, b) and v = (c,d) are lattice points in Z x Z with a S c and b S d.

A finite u — v lattice path is a sequence of northward and eastward steps 31, s2, . . . , 3;,

such that the first step begins at u, the last step ends at v, and the end point of s,- is

the initial point of s,“ for 1 S i < k.
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c) We define Z = ZU{oo}. Let u = (a,b) and v = (c,oo) with a S c be in Z x Z. A

u —- v path in Z x Z with initial point u and end point v, denoted (a, b) l» (c, 00),

also written p : (a, b) -—i (c, 00), is obtained by extending a finite u — w path, where

w = (c, d) for some d, with an infinite number of northward steps along the line a: = c.

Note that in this case there are infinitely many it — v paths but each one has only

c — a eastward steps. Figure 1.3.1 shows a path in Z x Z.

39

  
86 37 38

  

34 35

 

- 81 32 33

Fig. 1.3.1

Let p be a lattice path with steps 31,32, . . . To each eastward step we associate

two labelings, the e-labeling and the h-labeling, as follows.

The e-labeling of the eastward step 3,- is

L(3,‘) = 2.

The h-labeling of the eastward step 3,- is

L(s.-) = (number of preceding northward steps) + 1.

Figure 1.3.2 shows the e and h labelings for the path given in Figure 1.3.1
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Fig. 1.3.2

Let p be a path. We assign to each of the eastward steps of p the weight mm“) or

mu“) depending upon the labeling we are considering. We now define two weights

for a path p, depending on the labeling assigned to the eastward steps as:

(1.3.1) as” = H m...)

(1.3.2) 2? = 112““,

3i

where s, varies over all the eastward steps in p.

The connection of these weights with elementary and complete homogeneous sym-

metric functions is as follows. For a fixed a,b and n, consider all paths (a,b) —”—+

(a + n, 00). There is a one-to-one correspondence between square free monomials in

n variables and the weights of these paths as determined by the e-labeling. Simi-

larly, there is a one—to-one correspondence between all monomials of degree n and the

weights of these paths as determined by the h-labeling. Hence,

(1.3.3) 6n = Z :r”

(a,b)-L(a+n,oo)

and

(1.3.4) 12,, = Z 2".

(a,b)—L(a+n,oo)

Products of elementary and complete homogeneous symmetric functions can be

obtained by considering weights of n-tuples of paths. Let ’P be the collection of all
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n-tuples of paths P = (p1,p2, . . . ,pn) with initial points u], u;, . . . , u", and end points

v1, . . . , v... We insist that the initial point of p.- is u,- for all i. However the end points

of p1, pg, . . . , pn can be 120(1), van), . . . , ”0(a) (respectively) for any permutation a 6 Sn.

If the n-tuple P corresponds to the permutation a we will write P = P0. Each path

in P, is written 19,- 2 u,- ——> 210(5).

An n-tuple P = (p1,p2, . . . ,pn) is called intersecting if it contains two paths with

a common node, that is p,- n 12,- ;£ 0 for some i ;E j. Otherwise, it is called non-

intersecting. Count the number of steps from the initial point of a path to a node

where intersection with other paths occurs. The node which corresponds to the

minimum number of steps is called the first intersection of the path.

Definition 1.3.2 Let P = (p1,p2,...,pn) be an n-tuple of paths. If P = P, we

define its sign to be (—1)P = (—1)". Also, the weight of P corresponding to the

e-labeling is

(1.3.5) 2:” = pr‘,

i=1

while the weight corresponding to the h-labeling is

(1.3.6) 3” = H see.

We define the signed weights of P to be (—1)Pa:P and (-1)P:i:P respectively. For

example, Figure 1.3.3 (a) - (b) shows a triple P with the e and h-labeling respectively.

In this case a = (2,3) and its sign is (—1)" = -1. The weights as defined in (1.3.5)

2 2

and (1.3.6) are 2:? 2 13111322731174 6 21:52:19 and :EP = 313323425.

Proposition 1.3.3 Let ’P be the collection of all n-tuples of paths of the form

p.- : u,- —+ v.-, with u; = (a.-,b,-) and v.- = (c,~,oo). That is, for all n-tuples of paths

in ’P, the initial and end point of the path p,- are fired. Let A,- = c, — a,- then, for

L.
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A = (A1,...,A,,) we have

(1.3.7) e; = Zap

P

and

(1.3.8) hA = 22”

P

where P varies over all n-tuples of paths in ’P.

     

v2 '03 01 ‘02 v3 v1

| 1 I 1

i -63 l .5.9 . ..

: 1 : .
u -‘Li 9 1 -4. o . 3
I g

| b

...3_l i _.3-l 1

' i ' i

1 l 2 3 1 4 5 6 1 l 1 1 1 l 1 1

U1 : i “1 : i

. l t l t

U3 112 113 112

(a) (b)

Fig. 1.3.3

Proof: From (1.2.3’) e) = ehey, - - - e,\,,. By (1.3.3) e), = 201' b_)_.:._,+(c_ 00) .31". Hence,

6A = H ( 2 mp.)

i=1 (a.,b.')—flo(c.',oo)

= 2.1-”

P

where P varies over all n-tuples in 'P.

Similarly, from (1.2.4’) h,\ = h,\,h,\,-~h),n. By (1.3.4) h), = 2(3 b~)—’—’L(c Mi“.

Thus

by = :II( 2 ftp")

(Cabal-514% .00)

= 21-”

P
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P varying over all n-tuples in 15. D

We define the x-coordinate function on Z x Z by a:((a, b)) = a. For u = (a, b) and

v = (c,d) in Z x Z we write 11 < v if :c(u) < x(v) and say that u is to the left of v

(or v is to the right of 11). When we refer to a partial order between lattice points we

assume it is the order induced by the function 2:, unless otherwise stated.

Given an n-tuple P of paths we will always write the initial points as

(u1,...,un_1,u,,) where uk > uh“. We also write an n-tuple of paths as P =

(p1,. . .,p,._1,p,,), where p1 is the path with rightmost initial point, p; is the path

with second rightmost initial point and so on.

Definition 1.3.4 We define a function i : 'P —+ ’P the following way:

a) If P is a non-intersecting n-tuple of paths, then i(P) = P.

b) If P 2 (p1, . . . ,pn) is an intersecting n-tuple of paths, choose the path with the

smallest index, say pk, such that p)‘ 0 pi gé G for some j > lc. Let v0 be the lattice

point in pk where the first intersection occurs. Select the path with smallest index

intersecting pk at v0, call it p,. Define i(P) = P’ with P’ = (p’l, . . . ,p’n) where

i) p’,=p, ifs¢k,qand

ii) p), : ugh —p-"—* vo 33-) vauq),

p" . 1’1. .35., .
q . u", v0 vam‘).

Note that the permutations determined by P and P’ differ by a transposition.

The next result follows immediately from the definition of i.

 



20

Lemma 1.3.5 The function i as in definition 1.3.4 is an involution. Also, ifP

is an intersecting n-tuple with i(P) = P’ then (-—1)P = —(—1)P'. Cl

Lemma 1.3.6 Let P be an intersecting n-tuple with i(P) = P’ as in definition

1.3.4.

a) If the paths have the h-labeling and the initial points are on the line y = c, then

£2"qu = Wire‘s”; and hence (—1)P§:P + (—1)P'§:P' = 0.

b) If the paths have the e-labeling and the initial points are on the a: + y = c then

2:"qu = xpirpi and hence (-—1)P.rP + (-—1)P’:I:P' = 0.

Proof: a) To reach v0 we have to move the same number of northward steps from

the initial points, since they are on the line y = c. Thus, after switching paths to

obtain p6, and pf, the h-labeling remains the same and so a?” 5:"? = 2:" 5%. Since all the

other paths are unchanged, we have 5:” = 2’”. But the permutations corresponding

to P and P’ differ by a transposition, so it follows that (—1)P:i:P + (—1)P':i:P' = 0.

b) Say the point v0 is on a line a: + y = a, for some a > c. The number of steps on

any lattice path between the lines a: + y = c and :1: + y = a is c — a. So, after the first

intersection on pk the e-labeling for p5, and pf, is the same as the one for p, and pk,

respectively. Therefore as?“ :13”? = spirit”; and because all the other paths in the n-tuple

remain unchanged, 15” = .13”'. Since the signs of the permutations corresponding to

P and P’ differ by a transposition, it follows that (—1)P:L'P + (-1)P'2:P' = 0.

Figures 1.3.4 (a)-(b) illustrates cases (a) and (b) of Lemma 1.3.6, respectively.

 



21

010203

w
.2

0

vs

.
“

  

4
.

i
n
k
}
.
.
.

_
.

4
.
33
.

p
2

i
l
l
u

2
r

3

u

P
.

i
n
.
.
.

4
.

4
.

3
.

3
..

:
5
.
.
.

2
F

3

u

P
.

  

 

1
u

v
i

5

A
.

O

4

2
l

v

4

3
l
l

I
l
l
.

U

_

3
2
.

h
i
l
l

1

o
2

u

P
.

 

 

 

111

Fig. 1.3.4



Chapter 2

Main Results

2.1 Jacobi- Trudi Identities

By Theorems 1.2.6 and 1.2.10 the sets

{eAIA is a partition of n}

{hAIA is a partition of n}

{s,\]A is a partition of n}

are bases for A".

Equation (1.2.7) can be used to express each hA as a linear combination of ep and

vice versa.

Jacobi [Jae 41] expressed each s; as the determinant of an array of certain sym-

metric functions. Later, his student Trudi [Tru 64] simplified the demonstration of

these identities. In each determinant, all the entries are either complete homogeneous

or elementary symmetric functions. Thus, these, determinantal identities provide a

way to write 3) as a linear combination of h,, or ep with lpl = IA]. They can be

proved combinatorially using a method of Gessel [Ges um] involving lattice paths.

For completeness we present this proof here.

22
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Theorem 2.1.1 (Jacobi-Trudi determinants) Let A = (A1, A2, . . . , An) be a partition.

Then

(2.1.1) 3A = lhA.—e+j|

and

(2.1.2) 3.. = le.,_.,,-|.

Proof: To prove identity (2.1.1), we consider n-tuples of paths P = (p1, . . . , pn_1, pn)

with initial points 11; = (1—i,0) and end points v,- = (AJ- —-j + 1,00) for 1 S i, j S n. L

:1

We regard the weight determined by the h-labeling as in (1.3.6). Note that

u1>u2>--->un

 
and

v1>v2>--->vn.

Due to the ordering of the initial and end points of the paths, the non-intersecting

n-tuples correspond to the identity permutation id. Therefore the sign of non-

intersecting n-tuples is (—1)"’ = 1.

For an intersecting n-tuple P, take pk and p, as in Definition 1.3.4. Since the

initial points are on the line y: 0, 2:“qu = $932”; and so by Lemma 1.3.6 (a)

(—1)P:1:P+ (—1)P’x”' = 0. Hence, the signed weights of intersecting n-tuples of paths

cancel in pairs.

Using the definition of determinant, identity (1.3.4), the definition in (1.3.6),

Lemma 1.3.6 (a) and the previous discussion, we obtain

lhA,—i+jl = Z(—1"Hh1,(,_a(.)+.

068'; 3 1

fl

2 (*1)’H Z 33”"
aesn i=1 (,_,-,o):1.(,\,(,.,_a(.-)+1,oo)
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= Z Z(_1)Pajpc

065'; Pa

= Z 5"
P

where P varies over all non-intersecting n-tuples.

To complete the proof we establish a weight preserving bijection between non-

intersecting n-tuples of paths and semi—standard A-tableaux. For this part of the

proof, weight preserving means that if the n-tuple P corresponds to the tableau T

under a bijection, then a?” = 237. Let P = (p1,. . .,p,,-1,p,.) be a non-intersecting

n-tuple. Since the path p,- has A,- eastward steps, we can fill the diagram of A =

(A1, A2, . . . , An) as follows. Fill the i’h row of A, from left to right, with the h-labeling

of pg, also read left to right, and call this tableau T. By the definition of the h-labeling

of a path, the rows of T are weakly increasing. Because the paths do not intersect and

the initial points are on the line y = 0, the lc’h eastward step of p.- lies on a horizontal

line with y coordinate at least one less than the y coordinate of the horizontal line

containing the k“ eastward step of p51,]. Therefore, T(i.k) < T91”), and hence, the

columns of T are strictly increasing. Thus, T is a semi-standard A-tableau. From the

definitions of 5:” in (1.3.2) and :1:T in (1.1.3), it follows 3:” = :rT.

Now given a semi-standard A-tableau T, we map it to an n-tuple of paths as

follows. Take the entries of the i”‘ row, weakly increasing, as the h-labeling of an

infinite path p,- with initial point 11.- = (1 — i,0). Note that the h-labeling uniquely

determines p,- and that its end point must be v,- = (A, — 1+1, 0). Because the columns

of T are strictly increasing, that is T(i.k) < Th1”), and the initial points are on the

line y = 0, we have that the It“ eastward step of p, lies on a horizontal line which is

below the horizontal line containing the k’h step of [35+]. So, the k’h eastward steps do

not intersect. Due to the choice of initial points, the k’h eastward step of pi“ is one

unit to the left of the Ic’h eastward step of p,- for 1 S k S Ag“. Thus, the northward

 



25

steps between the In“ and (k + 1)” eastward steps of the two paths do not intersect.

Hence, the paths pm and p,- are non-intersecting. From what we have shown and

the relative placement of p,- and [25+], it follows that the semi-standard A-tableau is

mapped to an n-tuple of non-intersecting paths. Since this construction is a step by

step reversal of the one given in the previous paragraph, we have a bijection. Because

the bijection is weight preserving

(2.1.3) 22? = 237'

P r

where P varies over all non-intersecting n-tuples of paths with initial points u,- and

end points v,-, and T varies over all semi-standard A-tableaux. But the right hand

side of (2.1.3) is the definition of s; as in (1.2.8). Hence the identity (2.1.1) holds.

An example indicating the correspondence between non-intersecting n-tuples of

paths and semi-standard A-tableaux is given in Figure 2.1.1.
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To prove identity (2.1.2) we consider n-tuples of paths with weight corresponding

to the e-labeling as defined in (1.3.5). We choose as initial points of the n-tuple
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u; = (1 —i,i- 1) and end points v,- = (A,- —j+ 1,00) for 1 S i, j Sn. Note that

u1>u2>--->un

and

v1>v2>--->v,,.

Due to the ordering of the initial and end points of the paths, the non-intersecting

n-tuples correspond to the identity permutation id. Therefore the sign of non- ‘

1

intersecting n-tuples is (—1)“’ = 1.

For an intersecting n-tuple of paths we take pk and p, as in Definition 1.3.4. Since

the initial points are on the line y + a: = 0 and we are considering the e-labeling, the

 
weights of intersecting n-tuples of paths cancel in pairs by Lemma 1.3.6 (b).

The previous discussion together with the definition of determinant, the identity

(1.3.3), the definition in (1.3.5) and Lemma 1.3.6 (b), yield

(6A,(,)-a(i)+i)lexa-iw'l = ZED”.

n

065" 1: _

n

= 2(_1)0H Z 2:"

06571 {:1 (1_i'i_1).flo(AU(i)-U(i)+19°°)

___ Z: Z(_1)PaxPa

0637; Pa

= Z :5”

P

where P varies over all n-tuples of non-intersecting paths.

We obtain a weight preserving bijection between non-intersecting n-tuples of paths

and semi-standard A’otableaux as follows. Consider a non-intersecting n-tuple P =

(p1, . . . , pn). Since the path p; has A,- eastward steps we fill the i’h column of A’ from

top to bottom with the e-labeling of p;, read from left to right. Call this tableau T.
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Columns are strictly increasing by definition of the e-labeling. Due to the choice of

initial points, and since the paths pg and pg.” are non-intersecting, the lc’h eastward

step of the path pg.” lies one unit to the left and at least one unit up from the k’h

eastward step of the path pg, for 1 S lc S Ag“. Since the difference in the e-labeling

of these two steps is one less than the difference in their y coordinates, the rows of

T are weakly increasing making it a semi-standard A’-tableau. From definitions in

(1.3.1) and (1.1.3) it follows .23” = (J.

Conversely, given a semi-standard A’-tableau T, let pg be the infinite path with

initial point ug = (1 —- i,i — l) and eastward steps with the e-labeling determined

by the entries of the i’h column of A’, from top to bottom. The path pg is uniquely

 

determined by the e-labeling and it must have end point vg = (Ag - i + 1, 0). Since the

rows of T are weakly increasing and the initial point of pg“ is one unit to the left and

one unit up from the initial point of pg, the k’h eastward step of pg“ is one unit to the

left and at least one unit up from the k’h eastward step of pg, for 1 S k S Ag“. Thus

the paths pg+1 and pg do not intersect. Therefore the unique n-tuple P = (P1, . . . , p")

so obtained is non-intersecting and IT = 2’”. Since the bijection is weight preserving

(2.1.3’) 22” = :xT

P T

where P varies over all non—intersecting n-tuples of paths with initial points ug and

end points vg and T varies over all semi-standard A'-tableaux. The right hand side of

(2.1.3’) is the definition of s), as given in (1.2.8), hence the identity (2.1.2) follows.

C]

There are Jacobi-Trudi identities corresponding to skew Schur functions.

Theorem 2.1.2 Let p and A be partitions with ,u Q A. Then

(2.1.4) 8.1,. = lhAg—Hj-ml
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and

(2.1.4,) SAI/ul 1: ICA'._,'+J'_“J .

Proof: To prove (2.1.4) we consider n-tuples of paths with the h-labeling. We take as

initial points ug = (1 —i+pg,0) and end points v,- = (Ag —j + 1, 00) for l S i, j S n.

Since pg 2 pg“, we have 11,- > ug+1. Because the initial points are on the line y = 0, for

two intersecting paths the first intersection occurs after an equal number of northward

steps. Hence, by Lemma 1.3.6 (a) the signed weights of intersecting n-tuples of paths

cancel in pairs. The non-intersecting n-tuples correspond to the identity permutation

and so they have sign (-1)"’ = 1. From these observations, it follows in the usual

manner that

lhAg—i+j-#Jl = )0412.1: (h/‘anrOl‘lH-I‘i)

06:5n( 3:1

11

= Z (—1)" 1'1 )3 see
UESn ’=1 “4+“,,o)—’1L(A,(g)—a(i)+l.00)

= 22(—
06311 Pa

= 25”

P

where the summation is over all non-intersecting n-tuples of paths P.

A weight preserving bijection between non-intersecting n-tuples of paths with

the h-labeling and semi-standard A/p-tableaux T is obtained as follows. Let P =

(p1, . . . , pn) be a non-intersecting n-tuple. Since the path pg has eastward steps, fill

the i’h row of T, from left to right, with the h labeling of the path pg. Rows are weakly

increasing by the definition of h-labeling. Let’s consider the paths pg and pg“. Since

[1; — pi.“ = a Z 0, the (a + It)“ eastward step of pg“, 1 S k S Ag.“ — a, must be on

a horizontal line with y coordinate at least one greater than the y coordinate of the
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horizontal line containing the lc’h eastward step of pg. Since the initial points are on

the line y = 0, the h-labeling of the (a + k)“ eastward step of pg.” is greater than

the h-labeling of the lc’h eastward step of pg. Thus columns are strictly increasing

and hence, T is a semi-standard A/p-tableau. Therefore, to each n-tuple of non-

intersecting paths corresponds a unique semi-standard A/p-tableau T, with 5:” = :rT.

Conversely, given a semi-standard A/p-tableau T, a unique n-tuple of non-

intersecting paths is obtained as follows. Construct the path pg with initial point

(1 - i + pg, 0) and take the entries of the i’h row of T as the h-labeling for its eastward

steps. The paths are uniquely determined by the h-labeling and the end point of the

path pg is vg = (Ag — i + 1, 0). Due to the choice of initial points and the fact that the

difference in the h-labeling of the (a + k)”‘ eastward step of pg.” and the k‘h eastward

step of pg is positive, the paths pg.“ and pg are non-intersecting. Hence (2.1.4) follows

from (1.2.8’).

To prove (2.1.4’), we consider n-tuples of paths with the e-labeling. We choose

as initial points ug = (1 — i + pg,i — 1 — pg) and end points v,- = (Ag — j + 1,00) for

1 S i, j S 11. Since pg 2 flg+1, we have ug > ug+1. Two intersecting paths have equal

number of steps up to the first intersection (see Lemma 1.3.6.(b)). Thus, the weights

of intersecting n-tuples of paths cancel in pairs by Lemma 1.3.6 (b). So,

73

lexa-Hj-ujl = Z (’lla H (8*a(d1-0(‘)+‘-"i)

= Z (4)0.
068" 3

Z Z(_1)P01.Pa

0651; Pa

= D"
P

where P varies over all non-intersecting n-tuples of paths.

2 3m

73

= (1-i+pg,0)fl*(/\a(g)-0(t)+l,00)

1
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A weight preserving bijection between n-tuples of non-intersecting paths with the

e-labeling and semi—standard A’/p’ tableaux T is obtained as follows. Since the path

pg has Ag — pg eastward steps, fill the i”‘ column, from top to bottom, with the e-

labeling of the path pg, read from left to right. Columns are strictly increasing, by

the definition of e-labeling. Let pg -— [15.1.1 = a, thus the (a + k)”l eastward step of

pg+1 must be at least one unit to the left and one unit up from the k’h eastward step

of pg. Also, due to the choice of initial points the difference in the e-labeling of these

two steps is one less than the difference in the y coordinates of the horizontal lines

containing them. Hence, the rows are weakly increasing and if the semi-standard

P
T=$ .tableau T corresponds to P then 1:

Conversely, given a semi-standard A’/p’-tableau T, choose a path pg with initial

point 11g = (1 -— i + pg,i — 1 — pg) and eastward steps with e-labeling determined by

the i”‘ column of A’/p’ . The path pg is uniquely determined by the e-labeling and its

end point is vg = (Ag — i + l, 00). Since the rows are weakly increasing, the e-labeling

of the lc’h eastward step of the path pg is less than or equal to the e-labeling of the

(a + lc)”' eastward step of the path pg+1, where pg — pg.” = a and 1 S k S Ag.” — a.

Because of the choice of initial points, the (a + k)“ eastward step of pg.” is one unit

to the left and at least one unit up from the Ir“ eastward step of the path pg. Hence,

pg and pg“ are non-intersecting and :rT = 2:”. Thus we have a weight preserving

bijection and (2.1.4’) follows from (1.2.8’). D

2.2 Some Jacobi- Trudi Type Identities

The identities we are about to prove relate certain determinants, where each

entry is the sum or difference of certain complete homogeneous symmetric functions,

to sums of certain skew Schur functions.
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Theorem 2.2.1 Let A = (A1, A2, . . . , An) be a partition. Fort 2 0, a fixed integer,

(2.2.1) I’m-1H + hAg—i—j+1—tl = Z (‘1)(lpl_(t+l)u")/25A/u

149‘

“GP:

(22-?) lhA.-a+j - hA.-£-j+1-t| = Z: (-1)("‘"("1)"“)’281/,..

ugA

#61:}

We first prove some lemmas.

For A = (A1,A2, . . . ,An) a partition and t Z 0 an integer we consider n-tuples of

paths with initial points of the form

(2.2.3) ug=(1—i,0) or wg=(j+t,0)

for 1 S i, j S n, and end points

(2.2.3’) 11;, = (Agc — k +1,00)

for 1 S lc S n. We write the initial points of an n-tuple of paths in decreasing order

of their :1: coordinates as

(2.2.4) (w,-,,w,-,,...,wgm,u,-m+,,...,ujn)

wheren2j1>j2>--->jm,jm+1<jm+2<---<jnSnandj,9éjgforr;ét.

The set of indices of the initial points is [n] = {1,2, . . . ,n}. Thus, each n-tuple

of paths corresponds to a 0' E 5,, as in Section 1.3. For A = (5,4,1) and t = 2

Figure 2.2.1 shows two triples of paths with initial points (whuz, 113) and (w3, w1, 112),

respectively. The permutations corresponding to these triples are (2,3) and (1,2, 3)

in cycle notation.

 



32

 

   

U3 U2 U1 U3 U2 U1

1'

I

. . . ---l . . . . . .

1

P2 P3 : P3 P2 P1

1

' P1
I_-- . . . .

l

113 112 111 101 102 103 U3 112 111 101 102 103

Figure 2.2.1

For 1 S k S m let pk = $(ij)—$(Uk) and for m < k S n, let pk = :1:(u,-,‘)—:r(uk).

We say that the n-tuple p = (p1,p2, . . . ,pn) of non-negative integers, is determined

by the initial points (w,-l , . . . ,wJ-m,u,~m+1 , . . . ,an).

Lemma 2.2.2 The n-tuple p = (p1,p2,...,p,,) determined by the initial points as

in (2.2.4), is a partition. Furthemore, if there exists an n-tuple of non-intersecting

paths with the given initial and end points then p g A.

Proof: Note that the points are in decreasing order with respect to the at coordinates

and x(ug) — :r(ug+1) = l, for l S i < n. We consider several cases.

For 1 S i < m,

$(wj.) - N101“) Z $(Ui) - alum)-

That is

$(Wj.) - $(U1) Z $(wj.+1)- Mam)

which by the definition of pg is pg 2 [1.21.].

Similarly, for i > m, we have

$(uji) — 111113.“) 2 (”(115) _ $(Ug+1).
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So

the.) - $011) 2 $(Uj.+1)- $(Ui+1)

which is pg _>_ #5.“, for m < i < n.

Finally,

mm...) — m-..) 2 mm) — an...)

Hence,

new...) — mm) 2 up...) — mm“).

which is the same as pm 2 pm“. All the cases together give pg 2 [15+], for 1 S i S n,

so p is a partition.

Now, let P = (p1, . . . ,pg.) be a non-intersecting n-tuple of paths with the given

initial points. Thus, for each i the path pg has end point vg, that is pg : (1 —i+pg, 0) —->

(Ag —i + 1, 00). So, the difference between the first coordinates of end and initial points

of each path is greater than zero. It follows that pg S Ag, for all i, and so p Q A. D

We now relate the length of the main diagonal of p with the number of wg and u,-

occuring as initial points of the n-tuple of paths.

Lemma 2.2.3 Let P be an n-tuple of paths with initial points as in (2.2.4). Up is

the partition determined by the initial points, then 1),‘ = m.

Proof: According to (1.1.4) it has to be shown that pg 2 i for i S m and pg < i for

i> m. Sincet 2 0, :r(w,-g) >0. That isl—i+p.' > Oand so pg >iforiS m.

Similarly 2(ugg) S 0, that is 1 — i + pg S 0 for m < i S 12. Hence, pg < i for i > m.

C]

The next result explains the appearance of the partition from Pg in our main

theorems.
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Lemma 2.2.4 Lett 2 0 be a fixed integer. There is a bijection between n-tuples of

initial points as in (2.2.4) and partitions in Pg.

Proof: Note that ifj, > j] then uj, = u,. Thus, p, = 0 for r > j]. On the other hand,

if jr <j1 then 11g, ;£ 11,. So, :r(u,;) — a:(u,) ;é 0, for j, <j1. Also x(wj,) — :1:(u,.) gé 0,

for j, S j]. It follows that l(p) =j1.

Given an n-tuple of initial points we prove by induction on i that the partition

p = (p1, . . . ,pg,pg+1, . . . ,pn) determined by them is in Pg.

For i = 1, p’1 = l(p). Since w,-, = (j1+t,0) and p1 = $(wg,) — x(u1) =j1 + t, it

follows that p1 = p’1 + t. For 1 S i < m, we claim that pg — pg+1 = pf — pf“. By the

definition of p,

M - PM = ($301.) - $011)) - (x(wji+1)— $(Ui+1))

= $(wji) _ 3(wj1+1)— 1

= .li - ji+1 — 1-

On the other hand

Pi _ “2+1 = number of pk with j1+1 < k < ji

= J} —j1'+1 - 1-

Hence, the claim follows.

Since pg — pg.“ = p:- — pf“, for 1 S i < m, and p1 = p’l + t, we have that

pg.“ 2 pf-H + t, for 1 S i S m. Thus, [1 6 Pg.

Conversely, let p = (p1,p2, . . . ,pn) be in P, with up = m. Define

jg=1—t+}t: for lSiSm

and

jkzk—pk for m<lcSn.
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By definition of up, jg > 0 for 1 S i S 11.

Since p: Z pf“ we have that 1 — i + pf>1—(1+i)+ pf“. That is jg > jg+1

for 1 S i < m. Also, pk _>_ pk.“ and so k — pk < (1 + k) — pk“. Thus, jk <jk+1 for

m<lc<n. Thuswehavethatjl>j2>~~>jm andjm+1 <---<j,g_1<j,g.

Because l(p) S n it follows that j] S 11. Since pg. 2 0, n — pn S n and so jn S n.

Therefore, 1 S jg S n for all i.

Now we claim that j, 75 jg. The proof of this claim follows the demonstration

of Proposition (1.7) in Macdonald [Mac 70]. We make a diagram with n x p1 boxes

which contains p, as shown in Figure 2.2.2 for p = (8, 7,1,1,1,1) and n = 9. In this

diagram we consider the boundary path between A and its complement as indicated

by the thick line. This path has n + p1 steps. Number its succesive steps, starting at

the bottom, with the numbers 0,1,. .. , p1 + n — 1.

The i’h eastward step of the boundary path is in the i’h column. Up to and

including that step the path has n — pf. northward steps and i eastward steps for a

total of n — p: + i steps. Since the labeling starts with zero, the number attached to

the i‘h eastward step counted from the bottom is

n—p:+i—1=n—(1—i+p£) for lSiSn.

XXXX

XXX

XXX

XXX

 
Figure 2.2.2
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The lc’h northward step is in the (n — k + 1)”‘ row of p which has length pn_gg+1.

Up to and including that step, there are pn-k+1 eastward steps and lc northward

steps, for a total of pn-k+1 + lc steps. Since the labeling starts with zero, the number

attached to the la“ northward step from the bottom is

pn_k+1 +k—1for1SkSn.

After we substitute n — k + 1 for k, this can be written as

pk+(n—k)=n-(k—pgg) for lSlcSn.

Now consider the part of the boundary path starting at the bottom and ending at

the main diagonal. The last northward step of this part of the boundary path is on

the row pm“. Thus the part of the path in consideration has m eastward steps and

n - m northward steps for a total of 11 steps. So, the numbers attached to these steps

are 0,1, . . . ,n — 1. Using the description of the labeling of northward and eastward

steps in terms of p as explained in the previous two paragraphs, we can write the

numbersO,l,...,n—1as

n—(l—i+p:-)=n—jg for lSiSm

and

n—(k—pgg)=n—jgg for m<lcSn.

This implies that 1 S jg 91$ j), S n, for i aé Is.

Finally, let

wg.=(1—i+pg,0) for lSiSm

and

ug,‘=(1—k+pk,0) for m<kSn.
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Since pg 2 p:- + t, for 1 S i S m, we have that 101'.- = (1 — i + p:- + i,0). Using the

definitions of jg and jgc we obtain

10,-, = (jg+t,0) for 1SiSm

and

Ujk=(l—jk,0) for m<kSn

with j1,j2, . . . ,jn satisfying the conditions in (2.2.4). B

To tie in our paths with tableaux, we have the following

Lemma 2.2.5 Let ’P be the collection of non-intersecting n-tuples of paths with fixed

initial points (win . . . ,wjm,u,-m+,, . . . ,ujn) as in (2.2.4) and end points vi = (A,- —j +

1,00), for 1 S j S n, where A = (A1,A2, . . . ,An). Let p be the partition determined

by the initial points. Then, there is a bijection between 13 and semi-standard A/p-

tableaux.

Proof: The coordinates of the initial and end points are the same as those of the

initial and end points in the proof of (2.1.4). Thus the result has alredy been proved

during the demonstration of Theorem 2.1.2. B

Lemma 2.2.5 allows us to express 311/). as

(2.2.5) 3w = Z 5:”
P

where P varies over all n-tuples of non-intersecting paths with the given end points

and whose initial points determine p.

For the next result we write a 6 5,. using one row notation as a = a1 - - - agag+1 - - -a,,.

A pair (ag,a,-) is called an inversion of the permutation if i < j and ag > 61,-.

Lemma 2.2.6 Port 2 0 a fixed integer, let P = P, be a non-intersecting n-tuple

of paths with initial points as in (2.2.4) and p the partition determined by the initial
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points of P. Then,

a fill—0+1)”

(-1)P = ('4) = (-1) 5 -

Note that since p 6 P, by Lemma 1.1.3, |p| — (t + 1)1/,, is even.

Proof: It suffices to show that the number of inversions of a“ is

 

lul -(t+1)V
2 .

Since P, = (wj,,w,-,,...,w,-m,u,-m+,,...,ugn) is non-intersecting, using one row

notation for permutations we have a“ = j] - - ~jmjm+1 - - -j,, with jg > > jm and

jm+1 < - - - < jn. For 1 S i S m, all the numbers to the left of jg are greater than it.

So the numbers 1,2, . . . , jg — 1 are all to the right of jg and causing inversions with

it. For m < i S n, all the numbers to the right of jg are greater than it. So they do

not generate any inversions. Thus, the number of inversions is

inva‘1 =(j1—1)+(2'2—1)+---+(jm-1).

Now consider the diagram of p 6 Pg. After we delete a strip with (t + 1)1/,g boxes

from the diagram of p, as shown in Figure 2.2.3, we obtain an array with |p| —(t+1)1/,,

boxes represented by the two unshaded regions. By the definition of Pg, the two

unshaded parts have the same number of boxes. The size of the upper unshaded part

is (#1—(t+1))+(u2-(t+2))+-~+(#m-(t+m))- Sincet“: =j.+t-(1-k),

for 1 S k S m, we can write this as (j1—1)+(j2 — 1) + - -- + (jm — 1). Therefore

lfll-(t'i'lll’:
2 (jl—1)+(.l2_1)+"°+(jm—'1)
 

and the result follows. Cl
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XXXXX

XXXXX

XXXXX

XXXXX

W—J

(t+1)u

Fig.2.2.3

Remark: If a 75 id is a permutation, there may be non-intersecting n-tuples of paths

which correspond to a. In Figure 2.2.1 we exhibited a non-intersecting triple of paths

corresponding to a = (1,2, 3).

Now, we put together these results to prove Theorem 2.2.1, which we restate here

for easy reference

Theorem 2.2.1 Let A = (A1, A2, . . . ,An) be a partition. Fort _>_ 0, a fixed integer,

(2.2.1) lhAg—i+j + hAg—i—j+l-tl = Z: (‘1)(lul—(t+1)u”)/23A/m

uSA

PEP:

(2.2.2) lhAg-i+j _ hA‘_.._j+l_t| = Z (‘1)(lul-(t-1)V”)/2Sx/u-

uQA

HEP:

Proof: We first prove identity (2.2.1). Consider initial points of the form (2.2.4).

Combining the definition of determinant and the identity (1.3.4) we have

n

lhAg-i+j + hAg-i—j-H-tl = Z (-1)0 H(h1,(g,_a(r)+.' + h1,(,,_a(i)—i+1—1)

063" i=1

=Z(—1rfi( z 221+ z .]
oesn i=1 (1-1,o)-!-o(»\.(.-)-a(i)+1.oo) (t+i.0)-3~(Aam-0(‘)+1’°°)

= : Z(—1)”°i”‘
”€511 Pa

id
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where P, varies over all n-tuples of paths corresponding to 0. Since the initial points

are along the line y = O and we are considering the h-labeling, by Lemma 1.3.6 (a)

the signed weights of intersecting n—tuples cancel in pairs. Thus,

|h1._.-+g + hxg—e-m—tl = Z Z(-1)P°~’5P°
063,, P,

where now P, varies over all non-intersecting n-tuples of paths corresponding to a.

Group the signed weights of non-intersecting paths that have the same initial

points. By Lemma 2.2.4, identity (2.2.5) and Lemma 2.2.6 it follows that

lul-(H'llu

lhA.—i+j+hA.-i-J‘+1—t|=2(4) 1‘ SA/w

119*

"GP;

To prove the identity (2.2.2) we proceed as follows

Vin-1+1 — hAg—i—j-H—tl = Z (-1)" H(h1.(.)-a(i)+1 — hxag.)—a(i)—i+1-t)

n

= X (-1)" ll )3 53" - Z 5‘"

053" i=1 (1-1.0)_E—.(1,(g,_a(1)+1.oo) (i+t,0)—L(,\,(g,—a(i)+1,oo)

In each factor, the second summation is over paths with w’s as initial points. When

we multiply out the product indicated for each 0' 6 3,, we obtain a sum of signed

weights of n-tuples. Each n-tuple has as many factors with negative sign as paths

with initial points wg. Let u be the number of w which are initial points of the
Pa

n-tuple P,. By Lemma 2.2.3 11,, = Vpa, where p is the partition determined by the

initial points of P,. Thus,

P x

lhAi-i'i'j — hAg—i-j-{J—t] = E : E (_1) 0+VPU (LPG.

0651; Pa

By Lemma 1.3.6 (a), signed weights of intersecting n-tuples cancel in pairs. So,

we can consider the last identity as summed over all non-intersecting n-tuples P,.
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Group all the monomials for n-tuples with the same initial points. Then, by identity

(2.2.5) and Lemma 2.2.6, we have

lPl-('+1)”E+”g

Z (—1) SA/u

149A

P6P;

I’m-1+1 - hA.-i-j+1-t| =

= z(—1>'-“'ir"—’”*=st.. s
149*

”6”:

Theorem 2.2.7 Let A = (A1, A2, . . . , An) be a partition. Fort = —1 we have

lu

(2.2.6) Hug—1n + hA.-i—j+2l = 2 Z (“ll-713M“

.2st

(22-7) Illa-m - h.\.--:°-j+2| = 0-

Proof: To prove (2.2.6) we consider initial points as in (2.2.3) and satisfying the

condition established in (2.2.4). Since t = —l, we have u1 = 1121. So we will always

let 111 be present as an initial point in the n-tuple; that is, we always have jm+1 = 1.

Define p as for the case t Z 0. The proof of Lemma 2.2.2 is the same as before, so p

is a partition. Since each w that appears in the n-tuple still satisfies :r(w) > 0, the

demonstration of Lemma 2.2.3 holds for t = —1. The proofs of Lemmas 2.2.4 and

2.2.5 can be mimicked without change for t = —1. Thus, identity (2.2.5) is still valid.

Finally, the proof of Lemma 2.2.6 proceeds similarly, except that since t + 1 = 0 we

do not have to delete any strip. In this case the number of boxes to the right of the

diagonal and including it is [pl/2. So we have

lp] = 2(number of inversions of 0).

Thus,
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Therefore, we can apply all the results as for t 2 0 to yield

n

lhA.-i+j + hA.-i-j+2| = Z (-1)” H(hx.(.-)-a(i)+i + hA.(.-)—a(i)-i+2)

063,. i=1

n

= Z (—1)"H Z i"+ Z 56‘”
065" i=1 (l-i,0)L(Adi)—0(i)+1.°0) (i“lv0)"’,—'(Aa’(i)"a(i)+l'°°)

= z (—1)" 2 z:
aeSn (o,o)_’_.((,\,(,,—a(1)+1.oo))

n

11 z 5.». z
i=2 (1_§,0)—L(Aa(,)—a(i)+l,oo) (i—1.0)L(Aa(i)-”(‘)+1'°°)

= 2 Z z(—1)Pai-Pa

068,. Pa

= 2Z(—1)P°;2Pa

Pa

where, by Lemma 1.3.6 (a), P0 varies over all non-intersecting n-tuples of paths with

u; as one of the initial points. Group the signed weights of n-tuples of paths with the

same initial points. Now, we use the bijection of Lemma 2.2.6, the identity (2.2.5)

and the observation made at the beginning of the proof to obtain

lul

I’M—m + hA.—i-j+2| = 2 2, (-1)73A/u-
pCA

pet;

To prove (2.2.7), note that for a 6 Sn the first factor of each of the summands

participating in the determinant is

hAc(1)—U(l)+l — hAa(1)-a(1)+l = 0.

Thus, the result follows. [3

The next result was proved by Bressoud and Wei [B-W 92]. Here, we give a proof

of it using Theorem 2.2.1.
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Corollary 2.2.8 Lett 2 —1 be an integer. Then

2(t- MHz Z((—1)0 H((I‘M-Hm“) "l' ('-1)(t+ltI)/2hAg-i—a(i)+1—t)

063,. i=1

= Z (_1)[lul+vu(ltI-1)]/2sA/w

#93

“GP:

Proof: We rewrite the statement of the corollary as:

(a) Ift = —

I’m-m + h.\.—i—j+2| = 2 Z: ("UM/23m-
pCA

per; 1

(b) Ift is even,

lhA.-i+j + hA.—£—j+1—tl = Z (_1)[lul+uu(t—1)]/23/Vu.

Mg“

O‘GP:

(c) Ift is a positive odd integer,

IhA.-e+j - hA.-i—j+1—t| = (-1)[""+"“(H)]/23A/w
uCA

”6?;

Now we proceed to prove these three.

(a) This is the content of the identity (2.2.6) already proved in Theorem 2.2.7.

(b) We have that wig—“115 — tu = W. Since t is even

(_1)(lul+(t-l)v)2 = (_1)(lu|—(t+1)u)/2.

Hence, the identity in (b) is (2.2.1) for t even.

(c) We have that Milt—11‘: — (t — l)V = W. Since t — 1 is even

(__1)(lul+(t-1)V)2 z (_1)(lu|-(t-1)V)/2.
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Hence, the identity in (c) is (2.2.2) for t odd. Cl

Using the ring homomorphism w in Theorem 1.2.7, we have w(hA) = e,\ and

w(s;) :2 8y. When we apply (.0 to the identities (2.2.1), (2.2.2), (2.2.6) and (2.2.7) we

obtain, for t Z —l,

IeAfl-H + eA,_,-_j+1_,| 2 Z (_..1)(lul‘(t+l)Vu)/2SA,/u'

MC}

“GP;

and

€A.—i+j _ 8A.—i-j+1—tl = Z (_1)|#l—(t-1)Vu/23A'/#"

HEX

HEP;

We can also give a combinatorial proof of these identities.

Theorem 2.2.9 Let A = (A1, A2, . . . , An) be a partition. Fort Z —1, a fixed integer,

(2.2.8) ICA.—i+j + 6A,—i—j+1_tl = Z ('1)(lul—(t+1)”“)/23y/ur

55A

and

(2-2-9) 6A.-:‘+j - €A.-i—j+1-t| = (-1)“"Ht-l)y“)/23A'/u'-

:3.

In particular for t = —1 we have

ltl

(22-10) ICA,—i+j + 6A.—i—j+2| = 2 Z (—1) 2 3A’/u'a

p253,

(2'2'11) leAi-H'j _ eAr-i-i-Hl : 0'

First we make some remarks. For A = (A1, A2, . . . ,An) a partition and t Z —1 an

integer we consider n-tuples of paths with initial points of the form

(2.2.12) u'—=(1—i,i—1) or w;=(j+t,—j—t)
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for l S i, j S n, and end points

(2.2.12’) 22;, =(Ak—k+l,oo)

for 1 S k S n. Observe that for t = —1, u1 = wl. In this case we always write the

initial points of an n-tuple of paths as in (2.2.4) with jm+1 = 1 and ul in it.

The proofs of Lemmas 2.2.2, 2.2.3, 2.2.4 and 2.2.6 go through unchanged, since

:c(u(-) = a:(u,-) and 23(w3) = $(wj) for 1 S i, j S n. Note that for Lemma 2.2.6 the

strip of size (1 + t)v is removed from under the diagonal instead of from the right

hand side.

For Lemma 2.2.5 we have the following analogue.

Lemma 2.2.10 There is a bijection between n-tuples of non-intersecting paths as in

(2.2.1.?) with fixed initial and end points, and semi-standard X/p’ tableaux, where a

is determined by the initial points and the end points are determined by A.

Proof: Consider non-intersecting n-tuples of paths with initial points as in (2.2.12)

and satisfying the condition in (2.2.4). Assign the e-labeling to each path. Now the

proof goes as for the skew case of the Jacobi-Trudi determinants involving elementary

symmetric functions in Theorem 2.1.2. D

By Lemma 2.2.10

2 3T = Z xP

T P

where T varies over all semi-standard X/p’ tableaux and P varies over all non— inter-

secting n-tuples of paths with initial points as in (2.2.12) which determine [1 and end

points as in (2.2.12’). From these remarks and (128’) we obtain

(2.2.13) SW, = 2 :cp.
P
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Proof of Theorem 2.2.9: The proof of (2.2.8) goes exactly parallel to that of (2.2.1) in

Theorem 2.2.1, using the corresponding lemmas about elementary symmetric func-

tions and partitions determined by initial points as in (2.2.12). Since we are using the

e-labeling, the cancellation of signed weights of intersecting paths is due to Lemma

1.3.6 (b).

Similarly, identity (2.2.9) is obtained by following the proof of (2.2.2) and using the

elementary symmetric functions lemmas together with the ones about the partition

determined by the initial points.

The identities (2.2.10) and (2.2.11) are obtained similarly as (2.2.6) and (2.2.7)

using the parallel results for elementary symmetric functions. D

2.3 Symplectic and Orthogonal Analogs

Definition 2.3.1 Let A = (A1, . . . , A") be a partition and A = {1,1,2,2, . . . ,n,fi., . . .}

a totally ordered set with 1 < I < 2 < 2 < < n < n < A semi-standard

A-tableau T with entries from A is called a sp—tableau if all the entries in the row i

are greater than or equal to i. In Figure 2.3.1 T1 is a sp—tableau (3, 2, 1)-tableau while

T2 is not.

  

  

    

    

112j 12?]

22 1'3

_3. 5!.

T1 T2

Figure 2.3.1

We assign weights to the entries of a sp—A-tableau T as follows. If i appears as

an entry then we give it weight w(i) = 23;, and if i is an entry then we give weight
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w(i) = 13,71. The weight of T is defined as

T

x = H w(T(i.1))°

(i.j)eT

For the s tableau T1 in Fi ure 2.3.1 3T1 2 xlxlxgx’lx’lxg, = 3223-1233.
I" 2 2 1 2

For the rest of the section we consider 1"“ = ($1,314,172, 3?, . . .).

Definition 2.3.2. Let A be a partition. The sp Schur function corresponding to A is

8pA(.’E*1) = ExT

T

where T varies over all sp—A-tableaux. The sp Schur functions are symmetric functions

in the variables :5”.

Definition 2.3.3. Let A = (A1, A2, . . . , An) be a partition and

A = {1,1,2,2,...,n,n,...,oo}

a totally ordered set with 1 < l < 2 < 2 < . - ' < n < n < .. - < 00. A semi-standard

A-tableau T with entries from A is called an so—tableau if

a) all entries in row i are larger than or equal to i;

b) on any row, the symbol 00 appears at most once.

The weight of an so-tableau T is defined as the weight of the sp—tableau obtained from

T by deleting the symbol 00 if it appears. In Figure 2.3.2 T is a so—(4,2,2)-tableau

with weight 37 = xflxgsra

 

2 210°]
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Figure 2.3.2
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Definition 2.3.4. Let A be a partition. The so—Schur function corresponding to A is

soA(;i:i1) = Z :cT

T

where T varies over all so—A-tableaux and in” = mil U {1}.

The Jacobi-Trudi identities are polynomial expressions for the character s,\ of

the polynomial representation of the general linear group GL(n). There are similar

identities for the characters 3p; and so; of the polynomial representations of the

symplectic group sp(2n) and orthogonal group so(2n + 1), respectively, which are due

to Weyl [We 46]. These formulae are

1

(23.1) 8PA($i1) = 5 det(h,\.-i-j+2(93i1) + hA,_,-+,-(x*1))

and

(232) 30A(itil) = det(h,\..-,-_j(.i:il) + hAi_.°+j(iIil))

where both are l(A) by l(A) determinants and hk(:r*1) is the complete homogeneous

symmetric function on 2:”.

Note the resemblance between the identity (2.2.6) in Theorem 2.2.7 and (2.3.1).

We are attempting to prove (2.3.1) using the lattice path approach as in Theorem

2.2.1. In our attempt we have discovered that there may be a relationship between

the Gessel-Viennot technique and Schiitzenberger’s jeu de taquin (or “teasing game”)

[Scii 76]. An account of Schiitzenberger’s jeu de taquin can also be found in Sagan

[Sa 90,Sa 91].

Okada [0k um] recently gave a combinatorial proof of these formulae using lattice

paths, but introducing some dummy variables. In his proof the relationship between

lattice paths and tableaux is not as clear as it could be following our approach.



Chapter 3

Open Problem

3. 1 Circulants

Definition 3.1.1 A circulant determinant, C, is an n by n determinant where the

(i + 1)“ row is obtained by rotating the i‘h row one place to the right. Thus

(lo 01 ' ’ ° art—2 an—l

an—l (10 ° ' ’ an-3 ail-2

02 a3 ' ' ° do a;

01 a2 ‘ ° ' art—1 ao   

Let p(x) = a0 + ala: + + a,,_.1:1:"‘l be a polynomial having as coefficients the

values from the entries of the first row of C and let r be a generator for the group of

the n“ roots of unity. It is well known [Led 87] that

C = P(1)P(") - °-P(""'1)~

That is

(3.1.1) C = (a0 + a1 + - -- + an_1)(ao + alr + - - - + an_1r"‘l) - ~-

(00 + 01(7‘n_1)+---+ an—1(7‘n—1)n-1)

Consider the right hand side of (3.1.1). We call p(rk’l) the kth factor. From

left to right, label the n summands in the let" factor, 1 S k S n, with the numbers

49
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k, k + 1, . . . , n, l, . . . , k — 1. With this labeling the coefficient of the term labeled j in

the k‘h factor is the entry of C in the k” row and jth column.

Let f be a function from {1,2,. . . ,n} to itself. If f(q) = s, then from the qth

factor we choose the summand labeled with 3. Thus, the product in (3.1.1) can be

regarded as a sum of weights of functions f from a set with n elements to itself where

the weight of a function f is the product of the summands picked by the function

from each of the factors.

We will visualize functions and their weights using graphs as explained next.

Definition 3.1.2 Let V be a set and let A be a set of ordered pairs of elements from

V. The set V will be called the set of vertices (or nodes) and A the set of arcs or

directed edges, where loops are allowed. The pair (V, A) is called a digraph or directed

graph.

Usually we represent a digraph by a diagram where the vertices are indicated

by nodes and the directed edge (u,v) is represented by an arrow heading from u

to v. We say that u is the starting point and v the ending point of the directed

edge (u,v). For the digraph shown in Figure 3.1.1 we have that V = {l,2,3,4} and

A = {(1, 4))(2a4)9(31 3)7(4i1)}

& '6)

Figure 3.1.1

A digraph is of outdegree one if each node is the starting point of only one directed
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edge. We are interested in digraphs of this type since they represent functions from

a set with n elements to itself.

Given a digraph G with n vertices we label them 1,. . . ,n in a clockwise manner

after we select the vertex with the label zero. The graph in Figure 3.1.1 shows this

type of labeling. With this assignment of labels we think of the i“ node of G as being

associated with the root ri'l.

Definition 3.1.3 Let G be an outdegree one digraph and denote the edge with

starting point i and ending point j by e;,-. We define the weight of e5,- as

where j — i is taken modulo n.

The weight of G is defined as

w(G) = H we.)
i=1

which we also write as

10(G) = H aj_.'T(i-l)(j—i)

(M)

where (i, j) indicates a directed edge.

As an example, Figure 3.1.1 shows a digraph G where w(eu) = a3, w(e24) =

a2r2, w(e33) = a0 and w(e41) = a1r3. So, w(G) = (a3)(a2r2)(ao)(a1r3) = 000102037‘.

Let G be an outdegree one digraph. With the edge egj E G we associate the number

t,-, where t.- E j -i mod n and 0 S t,- < n. Hence, with digraph G is associated a

unique n-tuple (t1, . . . , tn) where t.- is the number associated with 65,- 6 G. Conversely,

each n-tuple (t1, . . . ,tn) with O S t.- < n uniquely determines a digraph G. To see

this we take as e:,- 6 G the edge with starting point i and ending point j, where

t,- +i E j mod n with 1 S j S n. This allows us to identify outdegree one digraphs
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on n vertices with n-tuples of non-negative integers less than n. Note that if tk is in

the n-tuple of non—negative integers associated with the digraph G, then the weight

of the edge ck,- has at, as a factor on its weight. Thus, two edges with the same value

tk associated with them, contain the same factor of (1;. So, we have proved the next

lemma.

Lemma 3.1.4 Let G be a digraph associated with the n-tuple (t1,.. . ,tn). If G’ is

another digraph associated with an n-tuple which is a rearrangement of (t1, . . .,t,,)

then the a ’s participating in the weights ofG and G’ are the same. E]

For instance, the digraph associated with (1,0,0,2) has 01000002 as the a’s and

(r°)1(r1)°(r2)°(r3)2 = r2 as the r’s in its weight. The digraph associated with

(0,1,2,0) has 00010200 as the a’s and has (r°)°(r1)‘(r2)2(r3)° = r as the r’s in its

weight. Observe that the powers of r associated with two n-tuples which have the

same set of values may be distinct.

Definition 3.1.5 Let (t1, . . . ,tn) be the n-tuple associated with the digraph G. We

define the ratio of G or ratio of the n-tuple by

RC = Ztg.

i=1

Let (t1,. . .,t,.) be the n-tuple associated with G and consider a = (1,2,. . . ,n)

E S... We define an action of the cyclic group generated by a on digraphs the following

way

(3.1.2) 0'"(G) = G’ O S k < n

where G’ is the digraph associated with the n-tuple (tn_k+1, tn_k+2, . . . , t1, . . . , tn-k).

Note that the lc‘h position in the n-tuple is occupied by t1. We say that G’ is a k“

rotation of G.
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The next lemma relates the weights of digraphs wich are in the orbit of G under

the action defined in (3.1.2).

Lemma 3.1.6 IfG’ is the k’h rotation ofG then

w(G') = w(G)("R)'c

where R = RC is as in Definition 3.1.5.

Proof: Let (t1, . . . , tn) be the n-tuple associated with G. Since the ag’s in the weights

of G and G’ are the same, it suffices to concentrate on the powers of r. The power of

r in the weight of G is (r0)"(r2)t1 ---(r"’1)‘". Its exponent is XXL-1U — 1)t;. On the

other hand, the power of r in the weight of G’ is

(r0)t,,_k+1 (r1)t""‘+2 . . . (rk—1)tn(rk)t1(rk+l)t2 . . . (Tn)t""".

Its exponent is ELI“: + (i — l))t.~, where k + (i — l) is taken modulo n. The relation

between the exponents of r is

20: +(i—1))t.- = kR + Z(i-1)t.-

i=1 i=1

and the lemma follows. C]

Given an n-tuple (t1, . . . , tn) associated with a digraph G we interpret the entry t.-

as the number of nodes we have to move clockwise from the i"‘ node to reach the end

point of the directed edge with initial point at that node. If the digraph G represents

a bijection, then it is composed of cycles. Also, the sum of the t,’s corresponding to

the edges in a cycle is a multiple of n. So we have proved the following result.

Lemma 3.1.7 If (t1,.. .,t,.) is the n-tuple associated with a digraph G representing

a permutation then n|2?=1 t,- = R. C]
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By Lemma 3.1.7, if R is not a multiple of n then the digraph does not represent

a bijection. However, if R is a multiple of n it does not imply that G represents a

bijection. For instance, the graph corresponding to (1,4,3,],1), as shown in Figure

3.1.2, has ratio R = 10 and does not represent a permutation. In the graph, the

numbers next to the edges are the entries of the n-tuple associated with the digraph.

l

,.:.2

/ R
5 3

X
4

Figure 3.1.2

The next theorem allows us to reduce the right hand side of (3.1.1) to a sum

associated with n-tuples whose ratio is a multiple of n. We consider the n-tuple

(t1, . . . , tn) as a circular word. The degree I of the n-tuple is the number of elements

in the orbit of that n-tuple under circular permutation. In terms of graphs, the

degree I represents the number of digraphs in the orbit of G under the action defined

in (3.1.2).

Theorem 3.1.8 Let G be an outdegree one digraph associated with the n-tuple

(t1,...,t,,) of degree I. Ifn‘f R0 then

2w(G’) = 0

G!

where G’ varies over all digraphs in the orbit ofG under the action defined in (3.1.2).

Proof: Note that (t1, . . . ,tn) has % identical blocks each of length I. If the sum of

the entries in one of the blocks is t then RC; = %t. Thus (r3)’ = r"t = 1 and so
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1 — (rRG)’ = 0. Also, since 12‘ R0 we have that r30 7‘. 1. By Lemma 3.1.6, and the

fact that the orbit of G has I digraphs we have that

wa’) = w(G)(1+(r’*°‘)+(r’*0)2 + ' - - + (rRGY‘l)
GI

1 — (rRG')l

l — r3

w(G)

=O.D

Lemma 3.1.9 Let G be an outdegree one digraph associated with the n-tuple

(t1,...,t,,) ofdegree I. IntRG then

2 w(G’) = [w(G)
G,

where G’ varies over all digraphs in the orbit ofG under the action defined in (3.1.2).

Proof: Since r30 = l, the result follows from

gwm’) = w(G)(1+(r“")+(r“")2 +
- - - + (”26)“). D

Conjecture: We know each digraph corresponding to a permutation a contributes

(—1)"a,(1)-1a,(2)_2 - - - a,(,,)_,, to the determinant. Since on the product side the terms

corresponding to digraphs with weight not a multiple of n cancel, we can partition

the terms corresponding to digraphs with weight a multiple of n in a natural manner

such that

a) Each subset of the partition has the weight of a digraph corresponding to a

unique permutation a.

b) The sum of the weights on the subset is (—1)"aa(1)_1a,(2)_2 - - - a,(,,)_,,.
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Note that the term in the determinant C corresponding to a E 15'n is

aa(1)—laa(2)—2 ' ' ' aa(n)—n9

where 0‘(i) — i is taken modulo n and 0 S 0(i) —i < n.

Now we will show that the conjecture is true for the case of transpositions. Let

a = (i, j), i < j, be a transposition on Sn, and let G be the outdegree one digraph

representing a. The n-tuple associated with G is (0, . . . ,j — i,0, . . . ,i — j,0, . . . ,0),

where j — i and i - j are in the ith and j“ entries, respectively. We fix the it" entry

and make i — j occupy each of the remaining n — 1 positions, to obtain n — l n-tuples

which are associated with digraphs in different orbits. All these digraphs have the

same factors of a.- in their weights, namely aoao - - -a,-_.- - - -a.-_,- - . - a0 which can be

written as a,(1)_1aa(2)_2-- .a,(,,)_,,. If we call G}. the digraph associated with the

n-tuple having j —i in the ith entry and i— j in the let" entry, 1 S k S n, k 7t i, then

the power of r in its weight is (r"‘)j“(r"'1)"j. With this setup we prove the next

result.

Lemma 3.1.10 Ifa is a transposition in Sn and G is the outdegree one digraph

representing it then

2 w(Gk) : _aa(1)—laa(2)-2 ° ' ° aa(n)-n

7.31

where the G, is as defined previously.

Proof: Note that r‘j“l+("j) = 1 and 22:1(rk'1)"j = 0. Hence,

it

2““le = aa(1)_1aa(2)_2---a,(,,)_
,, 2(r5-1)i-i(rk—1)i-j

ks] has]

us kg“

= “0(1)-iaa(2)-2 - - - (1...)-.. (2(r‘-‘)j-‘(r*-1)‘-J‘ - (r‘-‘)“-"+<‘-“)
k=1

= -Ga(1)—10a(2)—2'"aa(n)—n- U
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We expect to carry on this construction for all the subsets of digraphs where two

of them are in different orbit and exactly one represents a permutation.
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