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ABSTRACT

LATTICE PATH PROOF OF SOME JACOBI-TRUDI TYPE FORMULAE

BY

José H. Giraldo

Ira Gessel gave a combinatorial proof of the Jacobi-Trudi identities using lattice
paths. We use this lattice path technique to prove some Jacobi-Trudi type identities.
These identities relate determinants, where each entry is the sum or difference of
certain complete homogeneous symmetric functions, to sums of certain skew Schur
functions. Similar determinantal identities are obtained when the entries of the de-

terminant are elementary symmetric functions.
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Introduction

In the theory of group representations it is well-known that the irreducible poly-
nomial representations of the general linear group GL(n) of all n by n non-singular
complex matrices are indexed by partitions A of length at most n. The character of
the irreducible representation indexed by ) is the Schur function s, which belongs to
the ring A of symmetric functions. A nice combinatorial proof of the fact that s, is
symmetric was given by Knuth [Knu 70]. Even more, the s, form a basis for the ring

of symmetric functions.

There are two other interesting bases for A, formed by the elementary and com-
plete homogeneous symmetric functions, denoted by ey and hj,, respectively. Formulae
expressing s as the determinant of certain elementary or complete homogeneous sym-
metric function were found by Jacobi [Jac 41]). The proof of such formulae was later
simplified by his student Trudi. These Jacobi-Trudi identities are stated as follows.

Let A = (A1, A2,...,A,) be a partition. Then
$x = |ha—isi
and
sx = |exi-itjl
where the determinants are n by n, and )\’ is the conjugate of .

Ira Gessel [Ges um] gave a beautiful combinatorial proof of these results using

lattice paths and tableaux. The same technique has been used by Gessel and Gerald
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Viennot, [G-V 85,G-V ip], to prove other determinantal identities.

Bressoud and Wei [B-W um] in an attempt to find a lattice path proof of the
Jacobi-Trudi analogs for symplectic and orthogonal groups, discovered a way to ex-

tend this method to prove the following result. For ¢ > —1 an integer

n

2=/ 5™ (—1)7 [T(haminory + (=1 D20y o oyi1-e)
0€ESy i=1

= E (_1)(Iu|+u,.(|z|-1)]/23w

nCA
BEP,

where v, is the length of the main diagonal of 4 and P; is the set of all u = (py,...,pn)
such that y; = p! + ¢, for 1 <1 < v,. However their method lacked the elegance of

the Gessel-Viennot proof.

In the present work we give a lattice path proof of some more general determinantal

identities which imply the Bressoud-Wei result. These identities are stated as follows.

Theorem Let A = (A, A2,...,A,) be a partition. Fort > —1, a fized integer,

hrimivi + haciciprze] = 30 (S1)(H-DmI2s,

»CA
ME P,

and
haiits = hacicjpize = 3 (=1)EDm/2g,
»CA
HE Py
In particular for t = —1 we have

el
|Baiciti + Pa—icizz] =2 3 (=1)7 sy,

werl,

|haimiti = hai—icjs2] = 0.

Similar formulae are obtained for elementary symmetric functions.



Theorem Let A = (A1, Az, .., ) be a partition. Fort > —1, a fized integer,

lex—i+s + Eximijti—t| = E (—1)(I“I'(‘“)”")/""sw“,
Lér,

and
lexi—i+i — exicimjrr-t| = Z ("1)“"I_(t—l)y“)/z&\'/u'
e}
HEP;
In particular for t = —1 we have

lex—iti + xmicja2l =2 D (=1) % sp0/

uCA
w€P_,

ex—i+j — €x—i-j+2| = 0.



Chapter 1

Preliminaries

1.1 Partitions and Tableauz

A partition is any sequence (finite or infinite)
(1.1.1) A= (A A2,y kel l)

of non-negative integers in decreasing order, Ay > A3 > --- > Ax > .-+, with only a
finite number of non-zero terms. The partitions A, u are said to be equal if they have

the same non-zero terms.

The parts of A are the non-zero A;’s in (1.1.1). The number of parts is the length
of A, which is denoted by [(X). The weight of A, denoted by |)|, is the sum of the

parts of A,
(1.1.2) A=A +A+A+---.
If n = |A| we say that ) is a partition of n. If the last non-zero entry of A is A\x, we
will simply write
A= (A, A2, A8)

If A is a partition of n, an alternate way of writing it is
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A= (1™ 2™ . n™)

where m; indicates the number of times the summand k appears in the partition. So
r.m; = Il()) and T, im; = n. For instance, A = (3,3,1,1,1) and X = (13,3?)

represent the same partition.

The diagram of a partition A = (A, Az,...,Ax) is an array of k left-aligned rows.
The ** row consists of A; dots (nodes) or boxes. The rows are numbered starting
with the first row at the top and columns are numbered starting with the first column
at the left. We use (, ) to refer to a box located in the :** row and j** column. We

write (i,7) € A, if the box in that position is in the diagram of \.

For example if A = (4,3,2,1), its diagram is given in Figure 1.1.1. In this case

(2,3) € A but (3,3) € .

Fig. 1.1.1

The main diagonal of a diagram is the diagonal starting at the upper left corner

of the diagram and moving southeast.

The conjugate of the partition X is the partition X' = (A}, A3, A}, . ..) whose diagram
is the transpose of the diagram for A. That is, the diagram obtained by reflecting
the diagram of A through the main diagonal. As an illustration, if A = (4, 3,2), then
N =(3,3,2,1). The diagrams for A and ) are given in Figure 1.1.2, where the main

diagonal of A is indicated.

A semi-standard A-tableau is a filling of the diagram for A with the elements from

a totally ordered set (A, <) where the rows are weakly increasing from left to right



Fig. 1.1.2

and the columns are strictly increasing from top to bottom. As an example, if A =
(4,3,2,1), Figure 1.1.3 shows a semi-standard A-tableau where A is the set of positive

integers with the usual order.

2]5]8]|

>
(=2}

IOO-\!J:-'—-
o

Fig. 1.1.3

Unless stated specifically, we fill the tableaux with positive integers. The entry in
box (z,7) of a semi-standard A-tableau T is denoted by T{; ;). To T(; ;) we assign a
variable denoted by T The weight zT of a semi-standard A-tableau T is defined
by

T _
(1.1.3) T = H Tr,
('1.7)6A

If A = (3,2,2) some A-tableaux are shown in Figure 1.1.4. These tableaux have

weights: T = 7,7,2,2,237373 = 232,23, 212 = 2,212,2,232424 = zizi7373, 2T° =
. Ao

T1ZT3T3T3T4T4T5 = 2122237325. The degree of a monomial x;\l’ z;\:x;‘: -+-z; 9 is defined

as 37, Aj. Then, the weight of a semi-standard A-tableau is a monomial of degree

Al

=3
W N =



The length of the main diagonal of the diagram for X is denoted by vy. When A\ is

clear from the context we will simply write v. Alternatively, we can interpret v,, as:
(1.1.4) VN = I{/\.‘M,’ Z l}l

Observe that the diagram for A is completely determined by the first v rows and
columns. We are interested in a particular set of partitions which is going to be

denoted by P,.

Definition 1.1.1 Let t be an integer. We define
P, = {\|)\ is a partition and XA, = Xl +¢ forall 1 <i<w}.

For instance,

Fo

{AAi =], for 1 <i<wp}
= {A]A is self-conjugated}.

Figure 1.1.5 shows an element of F,.

o o
o
Fig. 1.1.5

Observe that the partition ug = 0 vacuously belongs to P,, since it has no non-zero
parts. Note that if 4 € Py, and ¢t > 0 then by adding ¢ nodes to each of the first v,
rows of y we obtain € P,. We will say 7 is obtained by t-addition to #. An example

is shown in Figure 1.1.6.

e o o e o o o o
o o €EPR e o o o € P,
° °



Clearly, we can go backwards: given an element 5 of P, with t > 0, we can obtain an

element of P, by deleting ¢t nodes from each of the first v, rows.

Definition 1.1.2 For a diagram A, the hook of the (7, 7) node is

Hi; = {7 25} u{({,5)l" >}
The cardinality of H; ;, denoted h,; ;, is called the hooklength of H; ;. It follows that
(1.1.5) hij =X+ X, —(i+7)+ 1

Note that if 4 € P, then A;; is odd. Thus |u| — v, = 0 mod 2.
Lemma 1.1.3 Let t be a positive integer and XA € P, then |\| — vy = tvy mod 2.

Proof. Since A € P, A can be obtained by t-addition to ug € Fy. Because v, =

vx, |A| = |p| + tv, and |p| = v, mod 2, we have

Al =wa=(lpl +tv) —vu = (| —vu) +tvy =ty, med 2. O

Let u and A be partitions. The notation g C A indicates that y; < A; for all > 1.
In terms of diagrams, this means that the diagram of u is contained in the diagram

of A. The boxes in A which are not in u determine a diagram, called a skew-diagram

and denoted A\/u. The i*h row of A/u has length \; — ;.

The definitions of a semi-standard A/u tableau and its weight are analogous to

the case u = 0.

1.2 Symmetric Functions

Let C[[z]] be the ring of formal power series on the variables z = {z,, 3, z3,...}.
An element of C[[z]] with all the monomials of degree n, is called a homogeneous

formal power series of degree n.



For k > 1, let Si be the symmetric group on k letters. For each k, consider the

function
$: Sk x Cl[z]] — C[[z]
defined by
(1.2.1) (P, f(21,22, 23, ) = F(Zo(1), Tp2)> To(a)s - )

where p(i) = i for i > k. The function ¢ defines an action of Sx on C[[z]].

Let A = (A1, A2,...,A,) be a partition. The monomial symmetric function asso-
ciated with ) is
(1.2.2) my(z) = E a:;\:z;\; e a:;‘:
where the sum is over all distinct monomials with exponents A;, A;, ..., A,. For each

A, my € C|[[z]] is homogeneous of degree |\| and invariant under the action of Sk, for

every k, as defined in (1.2.1).

Definition 1.2.1 The vector space spanned by the m, is denoted
A = A(z) = C[m,)]

as ) varies over all partitions. This vector space is closed under product and hence

is a ring. It is called the ring of symmetric functions.

It should be noticed that not all the elements of C[[z]] which are invariant under
the action of Si as in (1.2.1), can be written as a finite linear combination of the m,.
For example [];>,(1 + z;) is invariant under ¢ but is not in A. That is because the

product contains monomials of every degree.

The space spanned by all the m) of degree n is denoted by A". Since the set
{m\]A is a partition of n} is linearly independent, it is a basis for A®. So the
dimension of A" is the number of partitions of n, denoted p(n). Note that if f € AY

and g € A* then fg € A7** and thus A becomes a graded ring.
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Definition 1.2.2 For n > 0, the n** elementary symmetric function e, is the sum

of all products of n distinct variables z;. That is, o = 1, and for n > 1

(1.2.3) €n = M(n) = }: TiTiy -+ Ti, .
i1<i2<-+<in

As an example, for n = 4, e = 7177374 + T12223T5 + T1T2T4T5 + -+ .

For a partition A = (A1, A2,..., ;) define

(1.2.3') €\ =€)\, €\, ° €N,

Definition 1.2.3 For n > 0, the n** complete homogeneous symmetric function h,
is the sum of all monomials of degree n in the variables z;. That is, kg = 1 and for
n>1

(124) hn = my = Z Ty Tip - Ty,

For instance, if n = 4

h4 = m(4) + m(;“) + m(22) + m(14)
= zi+z3+ - +ajz+aiT + - + 2ia)

+ 2zl + -+ 21722374 + T1T2T3T5 + -+ -
Similarly, as in the case of the e’s, we define for any partition A = (A1, Az, -+, An),

(1.2.4") hy = hyhy, - hy

ne

Remark: For n < 0 we assume h,, = e, = 0. The definitions for e, and h, make sense

for any sequence of non-negative integers.

The proofs of the following results can be found in Macdonald [Mac 79] or Sagan
[Sag 91].
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Theorem 1.2.4 The generating functions for e, and h, are respectively

(1.2.5) E(t) = Y et =T[(1+ait),
r>0 i>1

(1.2.6) Hit) = Y ht'=][1-=zt)'. D
r>0 i>1

This theorem immediately yields

H()E(-t)=1.
Extracting the coefficient of t* on both sides, results in the following corollary.

Corollary 1.2.5 For eachn > 0,

n

(1.2.7) Y (1) exhn_x = 0.

k=0

In addition to the basis formed by the m), we have two other bases for A.

Theorem 1.2.86 The sets

{exlX is a partition of n}
and

{hx|X\ is a partition of n}
are bases for A™. o

Since the ey form a basis for A, the e; are algebraically independent. Thus we can
define a ring homomorphism

w:A—A

by

for all : > 0. In fact w is an isomorphism because of the next result.
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Theorem 1.2.7 w is an involution. That is w? is the identity.

Proof. 1t suffices to show w(h,) = e,. If n = 0, eg = ho, hence w(ho) = 9. Assume
w(h;) = ¢; for all : < n — 1. Because w is a homomorphism, and by (1.2.7) each h;

can be written as a polynomial in terms of e;’s for j < ¢, w(exh;) = w(ex)w(h;). Thus

w(h,) = w(zn:(—l)"“ekhn_k)

k=1

- g(—l)*“w(ek)w(hn-k)

— Z(_l)k+l hken—lc
k=1

= e, O

Definition 1.2.8 Let A = (A, A2,...,A,) be a partition. The Schur function

corresponding to X is

(1.2.8) sa=3 xT

T

where the sum is over all semi-standard \-tableaux T, and z7 is as defined in (1.1.3).

In a similar way, the skew Schur function corresponding to A/u is

(1.2.8") S\/u = ZzT
T

where the sum is over all skew semi-standard A/u-tableaux T'.

To illustrate this, let A = (3,2,2) and 4 = (3,1). Some skew semi-standard

A/ p-tableaux are
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whence the skew Schur function for A/u is

2 2
Sxju = T1T2 + T1T; + 20,123+ -+ .

Proposition 1.2.9 The function s)(z) is a symmetric function.

Proof: The following is a combinatorial proof due to Knuth [Knu 70]. Since the
function s)(z) is homogeneous of degree ||, it suffices to show the function s)(z) is
invariant under ¢ for all k. Since any permutation is a product of transpositions of

the form (z,7 + 1) we need to show
(5,3 +1),8:(z)) 2 sx(2)

for all z.

Let 7, be the collection of all semi-standard A-tableaux. We want to find a
bijection f : 7, — T such that f(T') = T’ implies ((3,¢ + 1),z7) —*, 27", We obtain
T’ from T as follows. Look at the entries of T equal toior:+ 1. If an i and an 1 4+ 1
are in the same column the entries are called fixed. If only one of ¢ or ¢ + 1 appears in
a column the entry is called free. In each row of T consider the free i’s and i +1’s. Ifa
row contains r free ¢’s followed by ¢ free i+ 1’s, then we change these into ¢ ¢’s followed
by r ¢ + I’s. Call this new tableau T’. That the rows of 7" are weakly increasing is
clear. When 1 is free, the entry immediately below it is at least 1 4+2, and when : +1 is
free the entry immediately above it is at most ¢ — 1. So if a free 1 is changed into i + 1
then the new column is strictly increasing. Similarly, if a free ¢ + 1 is changed into
i, the new column is strictly increasing. Thus T” is a semi-standard A-tableau. The
map defined is an involution, since exchanging the number of i’s and ¢ 4+ 1’s in each
row twice maps T into itself. The fact that ((z,:+1),z7) -2, 2T follows because the

number of fixed ¢’s and ¢ + 1’s is the same in T' and T, while the number of frees i’s



14

and 1+ 1’s is switched under f. Therefore under the action of (z,z+1), the exponents
of z; and z;4; are exchanged. Thus, this involution guarantees that sy(z) is invariant

under the action of each transposition. O

For instance, for the transposition (3,4), Figure 1.2.1 shows a T and the corre-
sponding T". The fixed entries are enclosed by circles and the free entries are enclosed

by squares.

2 ® BRI 111 2 ®RIMEM
OX T %E@5

Fig. 1.2.1

Our final basis for A (see [Mac,70] or [Sag,91]) is as follows.

Theorem 1.2.10 The set {s)|\ is a partition} forms a basis for A. O

1.3 Lattice Paths

Definition 1.3.1 a) Let Z x Z be the set of integer lattice points in R x R. If
u = (a,b) and v = (a+1,b) are in Z x Z then the line segment uv is called an eastward
step. If u = (a,b) and v = (a,b+ 1) are in Z x Z then uv is called a northward step.
We say that the step uv starts at u and ends at v. We call u and v the initial and

end points of the step, respectively.

b) Suppose u = (a,b) and v = (¢, d) are lattice points in Z x Z with a < cand b < d.
A finite u — v lattice path is a sequence of northward and eastward steps sy, s2,. .., sk
such that the first step begins at u, the last step ends at v, and the end point of s; is

the initial point of s;4; for 1 <i < k.
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c) We define Z = ZU {oo}. Let u = (a,b) and v = (¢,00) witha < cbein Z x Z. A
u — v path in Z x Z with initial point u and end point v, denoted (a, b) -2 (c, o),
also written p : (a,b) — (c,0), is obtained by extending a finite u — w path, where
w = (¢, d) for some d, with an infinite number of northward steps along the line z = c.
Note that in this case there are infinitely many u — v paths but each one has only

¢ — a eastward steps. Figure 1.3.1 shows a path in Z x Z.

Sg9

S¢ | ST S8

S4 | S5

81 S22 83

Fig. 1.3.1

Let p be a lattice path with steps s;,32,... To each eastward step we associate

two labelings, the e-labeling and the h-labeling, as follows.

The e-labeling of the eastward step s; is

L(S,’) =1.

The h-labeling of the eastward step s; is

L(s;) = (number of preceding northward steps) + 1.

Figure 1.3.2 shows the e and & labelings for the path given in Figure 1.3.1
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Fig. 1.3.2

Let p be a path. We assign to each of the eastward steps of p the weight z.,,) or
Z}(s,) depending upon the labeling we are considering. We now define two weights

for a path p, depending on the labeling assigned to the eastward steps as:
(1.3.1) 2? = [lewe

(1.3.2) * = [l=zi.,
3
where s; varies over all the eastward steps in p.

The connection of these weights with elementary and complete homogeneous sym-
metric functions is as follows. For a fixed a,b and n, consider all paths (a,b) -2
(a + n,00). There is a one-to-one correspondence between square free monomials in
n variables and the weights of these paths as determined by the e-labeling. Simi-
larly, there is a one-to-one correspondence between all monomials of degree n and the
weights of these paths as determined by the A-labeling. Hence,

(1.3.3) en = ) z?

(a,b)2+(a+n,00)

and

(1.3.4) hy = Yy, i

(a,b) 2+ (a+n,00)

Products of elementary and complete homogeneous symmetric functions can be

obtained by considering weights of n-tuples of paths. Let P be the collection of all
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n-tuples of paths P = (p;, p2,...,pn) with initial points u;,u,,...,u,, and end points
v1,...,Vs. We insist that the initial point of p; is u; for all :. However the end points
of p1,pa,...,Pn can be v,(1), Vo(2), - - -, Vo(n) (respectively) for any permutation o € S,..
If the n-tuple P corresponds to the permutation o we will write P = P,. Each path

in Py, is written p; : u; — v,(;).

An n-tuple P = (p1,pa,-..,pn) is called intersecting if it contains two paths with
a common node, that is p; N p; # @ for some i # j. Otherwise, it is called non-
intersecting. Count the number of steps from the initial point of a path to a node
where intersection with other paths occurs. The node which corresponds to the

minimum number of steps is called the first intersection of the path.

Definition 1.3.2 Let P = (p;,p2,...,pa) be an n-tuple of paths. If P = P, we
define its sign to be (—1)P = (=1)°. Also, the weight of P corresponding to the

e-labeling is

(1.3.5) tf = I1=",

i=1

while the weight corresponding to the h-labeling is

(1.3.6) P =] a%.

We define the signed weights of P to be (—1)Pz” and (—1)PzF respectively. For
example, Figure 1.3.3 (a) - (b) shows a triple P with the e and h-labeling respectively.
In this case 0 = (2,3) and its sign is (—1)° = —1. The weights as defined in (1.3.5)

2 2

and (1.3.6) are P = z,z,2%22z57%19 and P = 2822
3T4T5%¢

1T3T4Ts.

Proposition 1.3.3 Let P be the collection of all n-tuples of paths of the form
pi : u; = v;, with u; = (a;,b;) and v; = (¢;,00). That is, for all n-tuples of paths

in P, the initial and end point of the path p; are fired. Let \; = ¢; — a; then, for

b
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A= (A1,...,A) we have

(1.3.7) ex=Y z"
P

and

(1.3.8) hy =Y 2F
P

where P varies over all n-tuples of paths in P.

V2 U3 U 1) v3 U1
] |
l LR l O '
! . : ‘
! -040 ¢ 9 l 04-» ¢ 1 3
I 'y ! )
30 0 N
| ) ! )
1!2 3,4 5 6 111 1,1 1 1
) ’ U ’
| [} . 1 [}
us U9 us u2
(a) (b)
Fig. 1.3.3
Proof: From (1.2.3') ex = ey, €5, --€r,. By (1.3.3) ey, = 2(a i) P (c5.00) zPi. Hence,

€\

I
-

1
s

]

E P
((a,,b.).“.’;(c.,w) )

= )Y P
P
where P varies over all n-tuples in P.

Similarly, from (1.2.4") hy = hy hy,---hy,. By (1.34) by, = 2

! (@i,6i) 22 (ci,00)

=§;P

Thus

hy =

—

8

(aube) Piateroo) T

h-2
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P varying over all n-tuples in 7. O

We define the z-coordinate function on Z x Z by z((a,b)) = a. For u = (a,b) and
v = (¢,d) in Z x Z we write u < v if z(u) < z(v) and say that u is to the left of v
(or v is to the right of u). When we refer to a partial order between lattice points we

assume it is the order induced by the function z, unless otherwise stated.

Given an n-tuple P of paths we will always write the initial points as
(u1y...,Upn_1,Uu,) Where ux > ury;. We also write an n-tuple of paths as P =
(p1y---»Pn-1,Pn), where p; is the path with rightmost initial point, p, is the path

with second rightmost initial point and so on.
Definition 1.3.4 We define a function ¢ : P — P the following way:
a) If P is a non-intersecting n-tuple of paths, then ¢(P) = P.

b) If P = (p1,...,pn) is an intersecting n-tuple of paths, choose the path with the
smallest index, say pi, such that p, N p; # @ for some j > k. Let vy be the lattice
point in p; where the first intersection occurs. Select the path with smallest index

intersecting pi at v, call it p,. Define i(P) = P’ with P’ = (p},...,p),) where
i) p, =p, if s # k,q and
i) pho:ui, = v RN Vs (ig)s
Py uig 29 vo 2 Vo(iy)-

Note that the permutations determined by P and P’ differ by a transposition.

The next result follows immediately from the definition of .

-

\ERE o aras
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Lemma 1.3.5 The function i as in definition 1.5.4 is an involution. Also, if P

is an intersecting n-tuple with i(P) = P' then (-1)P = —(-1)P'. O

Lemma 1.3.86 Let P be an intersecting n-tuple with i(P) = P’ as in definition
1.9.4.

a) If the paths have the h-labeling and the initial points are on the line y = c, then

iPxiPe = £PhiPa and hence (—1)PzP + (-1)P'zF = 0.

b) If the paths have the e-labeling and the initial points are on the z + y = c then

zPezPe = zPhzPe and hence (—1)PzP + (—1)P'zP = 0.

Proof: a) To reach vy we have to move the same number of northward steps from
the initial points, since they are on the line y = ¢. Thus, after switching paths to
obtain p} and p; the h-labeling remains the same and so #P*£Ps = Pk zPa. Since all the
other paths are unchanged, we have #F = ”'. But the permutations corresponding

to P and P’ differ by a transposition, so it follows that (—1)PzP 4 (-1)P'zF = 0.

b) Say the point vg is on a line z + y = a, for some @ > c¢. The number of steps on
any lattice path between the lines ¢ + y = c and z + y = a is ¢ — a. So, after the first
intersection on p; the e-labeling for p} and p; is the same as the one for p, and py,
respectively. Therefore zP*rPs = zPkzPs and because all the other paths in the n-tuple
remain unchanged, zF = z’. Since the signs of the permutations corresponding to

P and P differ by a transposition, it follows that (—1)Pz? + (—=1)P'zP = 0.

Figures 1.3.4 (a)-(b) illustrates cases (a) and (b) of Lemma 1.3.6, respectively.
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Chapter 2

Main Results

2.1 Jacobi-Trud: Identities

By Theorems 1.2.6 and 1.2.10 the sets

{ex]X s a partition of n}
{Rha|X is a partition of n}

{sarlX is a partition of n}

are bases for A™.

Equation (1.2.7) can be used to express each h) as a linear combination of e, and

vice versa.

Jacobi [Jac 41] expressed each s, as the determinant of an array of certain sym-
metric functions. Later, his student Trudi [Tru 64] simplified the demonstration of
these identities. In each determinant, all the entries are either complete homogeneous
or elementary symmetric functions. Thus, these determinantal identities provide a
way to write sy as a linear combination of h, or e, with |p| = |A|. They can be
proved combinatorially using a method of Gessel [Ges um)] involving lattice paths.

For completeness we present this proof here.

22
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Theorem 2.1.1 (Jacobi-Trudi determinants) Let A = (A, Az, ..., A,) be a partition.

Then

(2.1.1) $x = |ha—it;]
and

(2.1.2) sy = [eni—itsl-

Proof: To prove identity (2.1.1), we consider n-tuples of paths P = (p1,...,Pn-1,Pn)
with initial points u; = (1 —¢,0) and end points v; = (Aj—j+1,00) for1 <7, j <n.

We regard the weight determined by the h-labeling as in (1.3.6). Note that
U >uz > > Uy

and

V) DUV >+ D> Uy,

Due to the ordering of the initial and end points of the paths, the non-intersecting
n-tuples correspond to the identity permutation :d. Therefore the sign of non-

intersecting n-tuples is (—1) = 1.

For an intersecting n-tuple P, take p; and p, as in Definition 1.3.4. Since the
initial points are on the line y = 0, P3P = 3*Pk3Ps and so by Lemma 1.3.6 (a)
(=1)PzP 4+ (—1)P'zP’ = 0. Hence, the signed weights of intersecting n-tuples of paths

cancel in pairs.

Using the definition of determinant, identity (1.3.4), the definition in (1.3.6),

Lemma 1.3.6 (a) and the previous discussion, we obtain

n

lhs—ieil = D0 (1) [T(hayey-otis)

0€ESn =1

n

- Terl| o o#

0€Sn =1\ (1-6,0) B (A g (i) =0 (i) +1,00)
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Z: z(—l)P°iP°

0€Sn Po

= Z@P
P

where P varies over all non-intersecting n-tuples.

To complete the proof we establish a weight preserving bijection between non-
intersecting n-tuples of paths and semi-standard A-tableaux. For this part of the
proof, weight preserving means that if the n-tuple P corresponds to the tableau T
under a bijection, then ¥ = z7. Let P = (p1,...,Pa-1,Pn) be a non-intersecting
n-tuple. Since the path p; has ); eastward steps, we can fill the diagram of A =
(A1, A2,...,An) as follows. Fill the i*» row of A, from left to right, with the h-iabeling
of p;, also read left to right, and call this tableau T'. By the definition of the A-labeling
of a path, the rows of T' are weakly increasing. Because the paths do not intersect and
the initial points are on the line y = 0, the k*» eastward step of p; lies on a horizontal
line with y coordinate at least one less than the y coordinate of the horizontal line
containing the k** eastward step of p;;;. Therefore, Tiix) < T(i4+1,x), and hence, the
columns of T are strictly increasing. Thus, T is a semi-standard A-tableau. From the

definitions of 2P in (1.3.2) and z7 in (1.1.3), it follows ¥ = zT.

Now given a semi-standard A-tableau T', we map it to an n-tuple of paths as
follows. Take the entries of the i** row, weakly increasing, as the h-labeling of an
infinite path p; with initial point u; = (1 —¢,0). Note that the A-labeling uniquely
determines p; and that its end point must be v; = (A; —1+1,0). Because the columns
of T are strictly increasing, that is T{; xy < T(i4+1,x), and the initial points are on the
line y = 0, we have that the k** eastward step of p; lies on a horizontal line which is
below the horizontal line containing the k** step of p;41. So, the k*» eastward steps do
not intersect. Due to the choice of initial points, the k** eastward step of p;;, is one

unit to the left of the kt eastward step of p; for 1 < k < A\;4;. Thus, the northward
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steps between the k** and (k + 1)* eastward steps of the two paths do not intersect.
Hence, the paths p;;; and p; are non-intersecting. From what we have shown and
the relative placement of p; and p;4,, it follows that the semi-standard A-tableau is
mapped to an n-tuple of non-intersecting paths. Since this construction is a step by
step reversal of the one given in the previous paragraph, we have a bijection. Because

the bijection is weight preserving

(2.1.3) Y i =Y 4T
I T

where P varies over all non-intersecting n-tuples of paths with initial points u; and
end points v;, and T varies over all semi-standard A-tableaux. But the right hand

side of (2.1.3) is the definition of s as in (1.2.8). Hence the identity (2.1.1) holds.

An example indicating the correspondence between non-intersecting n-tuples of

paths and semi-standard A-tableaux is given in Figure 2.1.1.

V4 v3 v2 n

[S4 =N KL I o)

RN

Ug uz U2 u

Fig. 2.1.1

To prove identity (2.1.2) we consider n-tuples of paths with weight corresponding

to the e-labeling as defined in (1.3.5). We choose as initial points of the n-tuple
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u; = (1 — 4,7 — 1) and end points v; = (A\; —j + 1,00) for 1 < ¢, j < n. Note that
Uy > U > -+ > Uy

and

V] DUV > > Uy,

Due to the ordering of the initial and end points of the paths, the non-intersecting
n-tuples correspond to the identity permutation id. Therefore the sign of non-
intersecting n-tuples is (—1) = 1.

For an intersecting n-tuple of paths we take p; and p, as in Definition 1.3.4. Since

the initial points are on the line y + £ = 0 and we are considering the e-labeling, the

weights of intersecting n-tuples of paths cancel in pairs by Lemma 1.3.6 (b).

The previous discussion together with the definition of determinant, the identity

(1.3.3), the definition in (1.3.5) and Lemma 1.3.6 (b), yield

n

lexi—i+il = E(“l)”n(e*m-’(‘”‘)

0€ESn =1

n

= 2 (1]l > ¥

7€Sn =1\ (14,i-1) 2 (2 iy =0 () +1,00)

- T (-t

UGS,. Pq
= ) zP
P
where P varies over all n-tuples of non-intersecting paths.
We obtain a weight preserving bijection between non-intersecting n-tuples of paths
and semi-standard )'-tableaux as follows. Consider a non-intersecting n-tuple P =

(p1,---,Pn)- Since the path p; has \; eastward steps we fill the i** column of A’ from

top to bottom with the e-labeling of p;, read from left to right. Call this tableau T
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Columns are strictly increasing by definition of the e-labeling. Due to the choice of
initial points, and since the paths p; and p;;, are non-intersecting, the k** eastward
step of the path p;;; lies one unit to the left and at least one unit up from the k**
eastward step of the path p;, for 1 < k < A;4. Since the difference in the e-labeling
of these two steps is one less than the difference in their y coordinates, the rows of
T are weakly increasing making it a semi-standard \'-tableau. From definitions in

(1.3.1) and (1.1.3) it follows z¥ = zT.

Conversely, given a semi-standard M-tableau T, let p; be the infinite path with
initial point u; = (1 — 7,7 — 1) and eastward steps with the e-labeling determined
by the entries of the i** column of X, from top to bottom. The path p; is uniquely
determined by the e-labeling and it must have end point v; = (A; —i+1,0). Since the
rows of T are weakly increasing and the initial point of p;4; is one unit to the left and
one unit up from the initial point of p;, the k** eastward step of p;;; is one unit to the
left and at least one unit up from the k** eastward step of p;, for 1 < k < A\;4;. Thus
the paths p;41 and p; do not intersect. Therefore the unique n-tuple P = (p1,...,pn)

so obtained is non-intersecting and 7 = zP. Since the bijection is weight preserving

(2.1.3) Y af = P z7
P T

where P varies over all non-intersecting n-tuples of paths with initial points u; and
end points v; and T varies over all semi-standard A'-tableaux. The right hand side of
(2.1.3) is the definition of sy as given in (1.2.8), hence the identity (2.1.2) follows.

a

There are Jacobi-Trudi identities corresponding to skew Schur functions.

Theorem 2.1.2 Let u and ) be partitions with u C X\. Then

(2.1.4) S\ /u = |haiitiop, |
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and

(214') 3,\:/”: = |e)‘.._,-+,-_“1|.

Proof: To prove (2.1.4) we consider n-tuples of paths with the A-labeling. We take as
initial points u; = (1 —i + ;,0) and end points v; = (A\; —j+ 1,00) for 1 < ¢, 5 < n.
Since p; > piy1, we have u; > u;yq. Because the initial points are on the line y = 0, for
two intersecting paths the first intersection occurs after an equal number of northward
steps. Hence, by Lemma 1.3.6 (a) the signed weights of intersecting n-tuples of paths
cancel in pairs. The non-intersecting n-tuples correspond to the identity permutation
and so they have sign (—1)*¢ = 1. From these observations, it follows in the usual

manner that

|hri—idion,| = Y (=1)°

OESH [

(Ravcy=o(yimm )

1

n

n

- Tl > @

7€ =\ =i,0) Z gy (i) +1,00)

- T Ty

0€Sn Ps

= E;;,-P

P

where the summation is over all non-intersecting n-tuples of paths P.

A weight preserving bijection between non-intersecting n-tuples of paths with
the h-labeling and semi-standard A/p-tableaux T is obtained as follows. Let P =
(p1,-..,pn) be a non-intersecting n-tuple. Since the path p; has eastward steps, fill
the i** row of T', from left to right, with the A labeling of the path p;. Rows are weakly
increasing by the definition of h-labeling. Let’s consider the paths p; and p;4+;. Since
pi — pig1 = a > 0, the (a + k)* eastward step of piy1, 1 < k < A\iy1 — @, must be on

a horizontal line with y coordinate at least one greater than the y coordinate of the

T~
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horizontal line containing the k** eastward step of p;. Since the initial points are on
the line y = 0, the h-labeling of the (a + k)** eastward step of p;, is greater than
the h-labeling of the k** eastward step of p;. Thus columns are strictly increasing
and hence, T is a semi-standard A/pu-tableau. Therefore, to each n-tuple of non-

intersecting paths corresponds a unique semi-standard \/u-tableau T', with £¥ = zT.

Conversely, given a semi-standard A/u-tableau T, a unique n-tuple of non-
intersecting paths is obtained as follows. Construct the path p; with initial point
(1 -+ u;,0) and take the entries of the i*» row of T as the h-labeling for its eastward
steps. The paths are uniquely determined by the h-labeling and the end point of the
path p; is v; = (A\; =2+ 1,0). Due to the choice of initial points and the fact that the
difference in the h-labeling of the (a + k)** eastward step of p;4; and the k** eastward
step of p; is positive, the paths p;4; and p; are non-intersecting. Hence (2.1.4) follows

from (1.2.8").

To prove (2.1.4’), we consider n-tuples of paths with the e-labeling. We choose
as initial points u; = (1 — 1 + g;,¢ — 1 — y;) and end points v; = (A\j — j + 1, 00) for
1 <1, j <n. Since p; > piy1, we have u; > u;4;. Two intersecting paths have equal
number of steps up to the first intersection (see Lemma 1.3.6.(b)). Thus, the weights

of intersecting n-tuples of paths cancel in pairs by Lemma 1.3.6 (b). So,

n

|ez\.--i+j-u,| = E (—1)0 H (CA,(‘,_a(i)+i-u.)

0€ESn i=1

n

2 (=111 2 z”

9€Sn =1 (I—H"ﬂl-O)L(’\c(n)_"('.)"‘lv"o)

Z Z(_I)Paxpc

0€Sn Po
- T
P

where P varies over all non-intersecting n-tuples of paths.

I
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A weight preserving bijection between n-tuples of non-intersecting paths with the
e-labeling and semi-standard A’/u’ tableaux T is obtained as follows. Since the path
p; has \; — y; eastward steps, fill the i** column, from top to bottom, with the e-
labeling of the path p;, read from left to right. Columns are strictly increasing, by
the definition of e-labeling. Let p; — p;41 = a, thus the (a + k)** eastward step of
pi+1 must be at least one unit to the left and one unit up from the k** eastward step
of p;. Also, due to the choice of initial points the difference in the e-labeling of these
two steps is one less than the difference in the y coordinates of the horizontal lines
containing them. Hence, the rows are weakly increasing and if the semi-standard

tableau T corresponds to P then zT = zP.

Conversely, given a semi-standard \'/u'-tableau T, choose a path p; with initial
point u; = (1 — i+ p;,2 — 1 — ;) and eastward steps with e-labeling determined by
the i** column of X'/u’. The path p; is uniquely determined by the e-labeling and its
end point is v; = (A; — i+ 1,00). Since the rows are weakly increasing, the e-labeling
of the k** eastward step of the path p; is less than or equal to the e-labeling of the
(a + k)** eastward step of the path p;,;, where y; — p;4y =aand 1 < k < Ay — a.
Because of the choice of initial points, the (a + k)** eastward step of p;;; is one unit
to the left and at least one unit up from the k*» eastward step of the path p;. Hence,
p; and p;;; are non-intersecting and zT = zP. Thus we have a weight preserving

bijection and (2.1.4’) follows from (1.2.8’). O

2.2 Some Jacobi-Trudi Type Identities

The identities we are about to prove relate certain determinants, where each
entry is the sum or difference of certain complete homogeneous symmetric functions,

to sums of certain skew Schur functions.
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Theorem 2.2.1 Let A = (A1, A,...,A,) be a partition. Fort > 0, a fired integer,

(2.2.1) |Baiziss + hacicjert| = Z (_1)(Iu|—(z+1)u,.)/2s”“

nCA
HEP;

(2.2.2) [hricits — Bacicjprmd = 3 (1)) 2,

uCli
HEP,

We first prove some lemmas.

For A = (A1, A2,...,As) a partition and ¢t > 0 an integer we consider n-tuples of

paths with initial points of the form

(2.2.3) u; = (1-1,0) or wj =(5+1¢,0)

for 1 <1, j < n, and end points

(2.2.3") vk = (M —k+1,00)

for 1 < k < n. We write the initial points of an n-tuple of paths in decreasing order

of their z coordinates as

(224) (wj“wjzv'- Wiy Ujiyy e -,uj,,)

where n > ji > 2> -+ > jmy jmi1 < jmsz < -+ < ja <nand j, #j forr £ 1.

The set of indices of the initial points is [n] = {1,2,...,n}. Thus, each n-tuple
of paths corresponds to a ¢ € S, as in Section 1.3. For A = (5,4,1) and t = 2
Figure 2.2.1 shows two triples of paths with initial points (w,, u2, u3) and (w3, w1, uz),
respectively. The permutations corresponding to these triples are (2,3) and (1,2,3)

in cycle notation.
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V3 U3 V2 v

Uz uz w w w2 w3

Figure 2.2.1

Forl < k <mlet yp = z(wj,)—z(ux) and for m < k < n, let px = z(u;,) —z(ux).
We say that the n-tuple u = (1, p2,. .., tn) of non-negative integers, is determined

by the initial points (wj,,..., W, . \s- . %;j,).

Lemma 2.2.2 The n-tuple p = (p1,p2,...,4n) determined by the initial points as
in (2.2.4), is a partition. Furthemore, if there ezists an n-tuple of non-intersecting

paths with the given initial and end points then p C A.

Proof: Note that the points are in decreasing order with respect to the x coordinates

and z(u;) — z(u;41) = 1, for 1 < i < n. We consider several cases.
For1<i<m,
z(w;,) — 2(w;,y,) 2 z(wi) — z(uip1).
That is
z(wj,) — z(wi) 2 2(wj,y,) — 2(uis1)
which by the definition of y; is y; > pi41.

Similarly, for : > m, we have

z(uj,.) - .’L‘(Uj'“) > :t(u.-) - x(“i-&-l)'
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So

z(uj.') - x(“i) > .’B(‘U_-,‘,-“) - :t(u.-+1)
which is p; > piy1, form <i < n.

Finally,
2(Wjm) — T(Ujpny,) 2 T(Um) — T(Um1).
Hence,
T(Wj) = T(Um) 2 T(Ujpny,) = T(Um41).
which is the same as g, > p41. All the cases together give y; > pip1, for 1 <7 <n,
so u is a partition.
Now, let P = (p1,...,pn) be a non-intersecting n-tuple of paths with the given
initial points. Thus, for each i the path p; has end point v;, that is p; : (1—:+p,,0) —
(Ai—141,00). So, the difference between the first coordinates of end and initial points

of each path is greater than zero. It follows that p; < A;,for alli,andsop CA. O

We now relate the length of the main diagonal of y with the number of w; and u;

occuring as initial points of the n-tuple of paths.

Lemma 2.2.3 Let P be an n-tuple of paths with initial points as in (2.2.4). If p is

the partition determined by the initial points, then v, = m.

Proof: According to (1.1.4) it has to be shown that y; > i for i < m and y; < i for
t > m. Sincet > 0, z(wj;) > 0. Thatis 1 —i+ g; > 0 and so y4; > ¢ for ¢ < m.
Similarly z(u;,) <0, that is 1 — ¢+ y; < 0 for m < ¢ < n. Hence, y; < i for : > m.

O

The next result explains the appearance of the partition from P, in our main

theorems.
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Lemma 2.2.4 Lett > 0 be a fired integer. There is a bijection between n-tuples of
initial points as in (2.2.4) and partitions in P,.
Proof: Note that if j, > j; then uj, = u,. Thus, g, = 0 for r > j;. On the other hand,
if j» < j1 then u;j, # u,. So, z(u;,) — z(u,) # 0, for j, < j1. Also z(w;,) — z(u,) # 0,
for j, < j;. It follows that I(u) = j;.

Given an n-tuple of initial points we prove by induction on z that the partition
= (p1y-- -y Mis fit1,- - -y fn) determined by them is in P;.

For i =1, p} = l(u). Since w;, = (j1 +¢,0) and py = r(w;,) — z(w1) = j1 + ¢, it
follows that u; = pj +t. For 1 < ¢ < m, we claim that p; — piyy = p — pl,,. By the

definition of g,

si — pinn = (z(w;,) —z(w;)) - (x(wjiy,) — z(uit1))

= z(w;) - o(wj,,) - 1

= Ji—Jinri— L
On the other hand
Wi — piyy = number of p with jiy < k<
= Ji—=Jinn— L.

Hence, the claim follows.

Since p; — piy1 = pi — piyy, for 1 < i < m, and py = pj +t, we have that

piy1 = piyy +t,for 1 <i <m. Thus, p € P.

Conversely, let p = (u1, p2,- .., p#tn) be in P, with v, = m. Define
Ji=l—i+ypl for 1<i<m

and

Jek=k—px for m <k <n.
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By definition of v,, j; >0for 1 <t < n.

Since pu! > pi,, we have that 1 — ¢+ pui > 1 — (1 +1) + pl,,. That is j; > jiyy
for 1 <i < m. Also, px > pi41 and so k — px < (1 + k) — pg41. Thus, ji < je4q for

m < k < n. Thus we have that j; > j. > -+ > j, and jpu41 < -+ < Jn-1 < Jn-

Because I(u) < n it follows that j; < n. Since p, 20, n — g, < n and so j, < n.

Therefore, 1 < j; < n for all <.

Now we claim that j, # j:. The proof of this claim follows the demonstration
of Proposition (1.7) in Macdonald [Mac 70]. We make a diagram with n x g, boxes
which contains yu, as shown in Figure 2.2.2 for p = (8,7,1,1,1,1) and n = 9. In this
diagram we consider the boundary path between A and its complement as indicated
by the thick line. This path has n + y; steps. Number its succesive steps, starting at

the bottom, with the numbers 0,1,...,u; +n — 1.

The i** eastward step of the boundary path is in the i** column. Up to and
including that step the path has n — u! northward steps and ¢ eastward steps for a
total of n — p! + ¢ steps. Since the labeling starts with zero, the number attached to

the i** eastward step counted from the bottom is

n—pi+i-1l=n—-(1-i+y) for 1 <i<n.

XXX X XXX
XX X|X|X[X

e bl B Kl e K

Figure 2.2.2
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The k** northward step is in the (n — k + 1)** row of u which has length p,_r41.
Up to and including that step, there are p,_i41 eastward steps and k northward
steps, for a total of u,_x4+1 + k steps. Since the labeling starts with zero, the number

attached to the k** northward step from the bottom is
Pnk41 +k—=1 for 1 <k<n.
After we substitute n — k + 1 for k, this can be written as

pr+(n—k)=n—(k—px) for 1 <k<n.

Now consider the part of the boundary path starting at the bottom and ending at
the main diagonal. The last northward step of this part of the boundary path is on
the row g41. Thus the part of the path in consideration has m eastward steps and
n —m northward steps for a total of n steps. So, the numbers attached to these steps
are 0,1,...,n — 1. Using the description of the labeling of northward and eastward
steps in terms of x4 as explained in the previous two paragraphs, we can write the

numbers 0,1,...,n — 1 as

n—(1l—i+p)=n—j for 1<i<m
and

n—(k—px)=n—jx for m<k<n.

This implies that 1 < 3; # jx <n, for i # k.
Finally, let

w;, =(1 -1+ ;,0) for 1 <2<m

and

uj, = (1 — k+ px,0) for m < k < n.
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Since p; = pi +t, for 1 <1 < m, we have that wj; = (1 — ¢ + p! +t,0). Using the
definitions of j; and j; we obtain
w;, = (5i+1,0) for 1<:<m
and
uj, = (1 = j&,0) for m<k<n
with jj,j2,...,Jn satisfying the conditions in (2.2.4). O

To tie in our paths with tableaux, we have the following

Lemma 2.2.5 Let P be the collection of non-intersecting n-tuples of paths with fized
initial points (wj,, ..., Wj., Uj,..\,...,Uuj,) asin (2.2.4) and end pointsv; = (A\j—j +
1,00), for 1 < j < n, where A = (A, As,...,A,). Let p be the partition determined
by the initial points. Then, there is a bijection between P and semi-standard \/p-

tableauz.

Proof: The coordinates of the initial and end points are the same as those of the
initial and end points in the proof of (2.1.4). Thus the result has alredy been proved

during the demonstration of Theorem 2.1.2. O
Lemma 2.2.5 allows us to express sy, as
(2.2.5) sxw =9 3"

P

where P varies over all n-tuples of non-intersecting paths with the given end points

and whose initial points determine u.

For the next result we write o € S,, using one row notation as c=a; - - - a;a;41 - - - @y,.

A pair (a;, a;) is called an inversion of the permutation if ¢ < j and a; > a;.

Lemma 2.2.8 Fort > 0 a fized integer, let P = P, be a non-intersecting n-tuple

of paths with initial points as in (2.2.4) and p the partition determined by the initial
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points of P. Then,

" lul=(e+1)
()P =(-1)"=(-1)" = .
Note that since p € P, by Lemma 1.1.3, |u| — (t + 1)v, is even.

Proof: It suffices to show that the number of inversions of o~! is

|ul = (¢ + 1)y
5 :

Since P, = (wj,,W;5,.+ . W)y Ujpyyy---»Uj,) IS NON-intersecting, using one row
notation for permutations we have 6=! = j; -+ jmim41 -+ - Jn With j3 > -+ > j, and
Jm+1 < +++ < Jn. For 1 < < m, all the numbers to the left of j; are greater than it.
So the numbers 1,2,...,5; — 1 are all to the right of j; and causing inversions with
it. For m < i < n, all the numbers to the right of j; are greater than it. So they do

not generate any inversions. Thus, the number of inversions is

invoe '=(Gi=1)4+Ga=1) 4+ (Um —1).

Now consider the diagram of u € P,. After we delete a strip with (¢ + 1)v, boxes
from the diagram of 4, as shown in Figure 2.2.3, we obtain an array with |u|—(t+1)v,
boxes represented by the two unshaded regions. By the definition of P, the two
unshaded parts have the same number of boxes. The size of the upper unshaded part
is(p1—(t+1)+(p2—(t+2))+ -+ (pm — (t + m)). Since px = je +t — (1 — k),
for 1 < k < m, we can write this as (j; — 1)+ (j2—1) + -+ + (jm — 1). Therefore

lul =+ Dy _

2 =D+ G=D+--+(m—1)

and the result follows. O
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X[X[X|X[|X
X[ X[ X[X|X
X[ X|X|X|X
X{X|X|X|X
——
(t+1)v
Fig. 2.2.3

Remark: If o # id is a permutation, there may be non-intersecting n-tuples of paths
which correspond to o. In Figure 2.2.1 we exhibited a non-intersecting triple of paths

corresponding to o = (1,2,3).

Now, we put together these results to prove Theorem 2.2.1, which we restate here

for easy reference

Theorem 2.2.1 Let A = (A, A2,...,A,) be a partition. Fort > 0, a fized integer,

(2.2.1) |Ba—iv; + Ba—icjsiot] = Z (‘1)(“'_('“)"")/23/\/“,

uCA
HE P,

(2:2.2) |hamins = haijprod = 3 (=)D 2g,

uCA
HEP;

Proof: We first prove identity (2.2.1). Consider initial points of the form (2.2.4).

Combining the definition of determinant and the identity (1.3.4) we have

n

[haimits + hacicinized = D0 (=17 [I(ha,=otiyi + hagey—o(iy—it1-t)

0€ESn i=1

=z<—1rﬁ( Y #+ ¥ )

o€Sn =1\ (1-4,0) -+ (A iy =2 (i) +1,00) (t44,0)E+ (Ag(iy=0 (i) +1,00)

= z: 2(_1)1:’,:21’,

UeSn Pa
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where P, varies over all n-tuples of paths corresponding to o. Since the initial points
are along the line y = 0 and we are considering the h-labeling, by Lemma 1.3.6 (a)
the signed weights of intersecting n-tuples cancel in pairs. Thus,
|hriciss + bacicjizd = Y Yo (-1)2™
UGSn Pg

where now P, varies over all non-intersecting n-tuples of paths corresponding to o.
Group the signed weights of non-intersecting paths that have the same initial
points. By Lemma 2.2.4, identity (2.2.5) and Lemma 2.2.6 it follows that

lul=(t+1)y
|hacids + Bacicipieel = D (1) 7 Sy

nCA
HEP;

To prove the identity (2.2.2) we proceed as follows

n
|hxiziti = hacicirrcel = D0 (=1)7 [T(Rayy-otr41 = Bagy-o)-it1-t)
O0ESH i=1

n

=Y (-1)°]I 3 P — > z?

9€Sn =1\ (1-4,0) 24 (Aggiy =0 (i) +1,00) (i44,0) 2 (Ag(iy=0 (i) +1,00)
In each factor, the second summation is over paths with w’s as initial points. When
we multiply out the product indicated for each o € S,, we obtain a sum of signed
weights of n-tuples. Each n-tuple has as many factors with negative sign as paths
with initial points w;. Let Vp, be the number of w which are initial points of the
n-tuple P,. By Lemma 2.2.3 v, = vp,, where p is the partition determined by the
initial points of P,. Thus,

P, .
hicits = sl = 30 Do (=1) P3P
UESn Pc

By Lemma 1.3.6 (a), signed weights of intersecting n-tuples cancel in pairs. So,

we can consider the last identity as summed over all non-intersecting n-tuples P,.
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Group all the monomials for n-tuples with the same initial points. Then, by identity

(2.2.5) and Lemma 2.2.6, we have

lel=(t41)v 4y,
|haicits = Pamicjiiel = D0 (=1) z SX/u
[T{ap
HEP,

lul—(t-1)v
= Z("'l)_—i_—a‘s/\/u' O

uCA
HEP;

Theorem 2.2.7 Let A = (A, A2,..., ;) be a partition. Fort = —1 we have

s
(2.26) [h—its + haicisal =2 32 (=1)F sy,
webl,
(2.2.7) |hizi+s = haicizjg2| = 0.

Proof: To prove (2.2.6) we consider initial points as in (2.2.3) and satisfying the
condition established in (2.2.4). Since t = —1, we have u; = w;. So we will always
let u; be present as an initial point in the n-tuple; that is, we always have j,41 = 1.
Define p as for the case t > 0. The proof of Lemma 2.2.2 is the same as before, so u
is a partition. Since each w that appears in the n-tuple still satisfies z(w) > 0, the
demonstration of Lemma 2.2.3 holds for ¢t = —1. The proofs of Lemmas 2.2.4 and
2.2.5 can be mimicked without change for t = —1. Thus, identity (2.2.5) is still valid.
Finally, the proof of Lemma 2.2.6 proceeds similarly, except that since t + 1 = 0 we
do not have to delete any strip. In this case the number of boxes to the right of the

diagonal and including it is |¢|/2. So we have

|| = 2(number of inversions of o).

Thus,
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Therefore, we can apply all the results as for ¢ > 0 to yield

n

|h'\|—'+] + h/\i-i-j+2| = Z (_1)0 H(h/\,(.)—d(l)+l + ht\o(i)—d(i)—i+2)
0€ESn =1

n

- Tl Y e+ ¥ o#

0€Sn =1\ (1-4,0) 2o (A piy—o (i) +1,00) (i-1,0) (A5 (iy—0 (i) +1,00)
= Z (-1)° (2 Z jp)
o€ Sn (0,0)2+((Ao(1)=0(1)+1,00))

n

I 2 i+ 2 "

=2\ (1-4,0)-E+ (A g1) =0 (i) +1,00) (i-1,0) 2+ (Ag(iy= (i) +1,00)
=2 Y Y (-1)FiP
0€Sn Ps

=23 (-1)PzF
Pe

where, by Lemma 1.3.6 (a), P, varies over all non-intersecting n-tuples of paths with
u; as one of the initial points. Group the signed weights of n-tuples of paths with the
same initial points. Now, we use the bijection of Lemma 2.2.6, the identity (2.2.5)
and the observation made at the beginning of the proof to obtain

lul
|hacivi + hacicisal =2 ) (1) 7 8y
uCA
FEP_)

To prove (2.2.7), note that for o € S, the first factor of each of the summands

participating in the determinant is

h/\c(l)—d(l)+1 - h/\,(l)—d(l)+l = 0'
Thus, the result follows. O

The next result was proved by Bressoud and Wei [B-W 92]. Here, we give a proof

of it using Theorem 2.2.1.
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Corollary 2.2.8 Lett > —1 be an integer. Then

2=1D/2 3 (<1) [T(Aaimitory + (= 1) 2Ry i yiame)

0€ESn i=1

= Z (_1)[|#|+v,.(lt|-1)]/28’\/w

#GA
KEP;

Proof: We rewrite the statement of the corollary as:
(a) Ift = —1,

|haids + hacicieal =2 3 (=1)H2sy,,.
el

(b) If t is even,

haimits + Bamicignoe) = 3 (—1)lebt=D12g,

BsCA
HEP,

(c) If t is a positive odd integer,

himiss — hrvoicjgioe] = 3 (=1)eHwut-Dlzg,

nCA
HEP;

Now we proceed to prove these three.
(a) This is the content of the identity (2.2.6) already proved in Theorem 2.2.7.

(b) We have that Mﬂ;—ﬂ —tv = Mﬂ%——“)ﬁ Since t is even

(=1)Ust=002 — (_1)(ul=(t+1))/2,

Hence, the identity in (b) is (2.2.1) for ¢ even.

(c) We have that Ji‘-li'-(;'—l)—" —-(t-1w= M#ﬂ Since t — 1 is even

(= 1)Ut E=112 = (_1)(lal==10)/2,
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Hence, the identity in (c) is (2.2.2) for t odd. O

Using the ring homomorphism w in Theorem 1.2.7, we have w(h))

w(s2) = sx. When we apply w to the identities (2.2.1), (2.2.2), (2.2.6) and (2.2.7) we

obtain, for t > —1,

lex—its + exncicjproe) = 3 (1),
n&,

and

—(t=1)vu/2
Cri—itj — 6A.~—a’-1‘+1—t| = 2 : (‘l)l”l (t=1)v/ S\t fut-
CAx
:G-Pt

We can also give a combinatorial proof of these identities.

Theorem 2.2.9 Let A = (A, A2,...,A,) be a partition. Fort > —1, a fired integer,

(228) Ie)\,._,-+,~ + 6)\‘_;_1'.,,1_" = Z (—1)(|“|_(t+l)u“)/28,\1/“:
vér,

and

(2.2.9) lex—iss — exmicjprme] = 3 (=)D 25,
%

In particular for t = —1 we have

i
(2:2.10) lex—i+; + enzicjsal =2 D0 (=1)7 snjws
wek.,
(2.2.11) lex—i+j — exn-i-j42| = 0.

First we make some remarks. For A = (A, A2,...,,) a partition and ¢ > —1 an

integer we consider n-tuples of paths with initial points of the form

(2.2.12) ui=(1-4,i—1) or wi=(j+t,—j—1)
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for 1 <1i, j < n, and end points
(2.2.12") vk = (A —k+1,00)

for 1 < k < n. Observe that for t = —1, u; = w;. In this case we always write the
initial points of an n-tuple of paths as in (2.2.4) with j,4; =1 and u; in it.

The proofs of Lemmas 2.2.2, 2.2.3, 2.2.4 and 2.2.6 go through unchanged, since
r(u}) = z(u;) and z(w}) = z(w;) for 1 <14, j < n. Note that for Lemma 2.2.6 the
strip of size (1 + t)v is removed from under the diagonal instead of from the right

hand side.

For Lemma 2.2.5 we have the following analogue.

Lemma 2.2.10 There is a bijection between n-tuples of non-intersecting paths as in
(2.2.12) with fized initial and end points, and semi-standard X' [y’ tableauz, where p

is determined by the initial points and the end points are determined by A.

Proof: Consider non-intersecting n-tuples of paths with initial points as in (2.2.12)
and satisfying the condition in (2.2.4). Assign the e-labeling to each path. Now the
proof goes as for the skew case of the Jacobi-Trudi determinants involving elementary

symmetric functions in Theorem 2.1.2. O

By Lemma 2.2.10
YT =% 2P
T P
where T varies over all semi-standard )’'/y’ tableaux and P varies over all non- inter-

secting n-tuples of paths with initial points as in (2.2.12) which determine x and end

points as in (2.2.12'). From these remarks and (1.2.8’) we obtain

(2.2.13) Sxjw = ak.
P
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Proof of Theorem 2.2.9: The proof of (2.2.8) goes exactly parallel to that of (2.2.1) in
Theorem 2.2.1, using the corresponding lemmas about elementary symmetric func-
tions and partitions determined by initial points as in (2.2.12). Since we are using the

e-labeling, the cancellation of signed weights of intersecting paths is due to Lemma
1.3.6 (b).

Similarly, identity (2.2.9) is obtained by following the proof of (2.2.2) and using the
elementary symmetric functions lemmas together with the ones about the partition

determined by the initial points.

The identities (2.2.10) and (2.2.11) are obtained similarly as (2.2.6) and (2.2.7)

using the parallel results for elementary symmetric functions. O

2.3 Symplectic and Orthogonal Analogs

Definition 2.3.1 Let A = ()\y,..., ;) be a partition and A = {1,1,2,2,...,n,#,...}
a totally ordered set with 1 <1 <2<2<:--<n<f<--. A semi-standard
A-tableau T with entries from A is called a sp-tableau if all the entries in the row :
are greater than or equal to ¢. In Figure 2.3.1 T} is a sp-tableau (3,2, 1)-tableau while

T, is not.

1]1]2] 1[{2]2]
2|2 1(3
3] 3]

T1 T2

Figure 2.3.1

We assign weights to the entries of a sp-A-tableau T' as follows. If : appears as

an entry then we give it weight w(i) = z;, and if 7 is an entry then we give weight
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w(z) = z7'. The weight of T is defined as

T
r = H W(T(i,y))"
(i.0)€T
For the sp-tableau T) in Figure 2.3.1 27" = z,7 7,77 25 23 = 2225 'z3.

For the rest of the section we consider z*! = (z,,z7!, 24, 277,...).

Definition 2.3.2. Let A be a partition. The sp Schur function corresponding to A is

UNCSOED L
T

where T varies over all sp-A-tableaux. The sp Schur functions are symmetric functions

in the variables z*!.

Definition 2.3.3. Let A = (A1, A3,...,A,) be a partition and
A={1,1,22,...,n,n,...,00}

a totally ordered set with 1 <1 <2<2<-.-<n<f<---<o0. A semi-standard

A-tableau T with entries from A is called an so-tableau if

a) all entries in row i are larger than or equal to ¢;

b) on any row, the symbol co appears at most once.

The weight of an so-tableau T is defined as the weight of the sp-tableau obtained from

T by deleting the symbol oo if it appears. In Figure 2.3.2 T is a so-(4,2,2)-tableau

with weight zT = z7'z2z,

22 ]oo|

QO | N1 | =1
N

Figure 2.3.2
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Definition 2.3.4. Let A be a partition. The so-Schur function corresponding to A is

soy(£%!) = 3 zT
T

where T varies over all so-A-tableaux and %' = z*! U {1}.

The Jacobi-Trudi identities are polynomial expressions for the character s, of
the polynomial representation of the general linear group GL(n). There are similar
identities for the characters sp) and so) of the polynomial representations of the
symplectic group sp(2n) and orthogonal group so(2n + 1), respectively, which are due

to Weyl [We 46]. These formulae are

1
(2.3.1) spa(z*!) = 3 det(hy—imj+2(z*!) + ha,_ivj(2*))
and
(232) SOA(iil) = det(h,\.._.'_j(i‘il) + h,\i_,'.'.j(:i:il))

where both are I(A) by I(A) determinants and hy(z*!) is the complete homogeneous

symmetric function on z*!.

Note the resemblance between the identity (2.2.6) in Theorem 2.2.7 and (2.3.1).
We are attempting to prove (2.3.1) using the lattice path approach as in Theorem
2.2.1. In our attempt we have discovered that there may be a relationship between
the Gessel-Viennot technique and Schiitzenberger’s jeu de taquin (or “teasing game”)

[Scii 76). An account of Schiitzenberger’s jeu de taquin can also be found in Sagan

[Sa 90,Sa 91].

Okada [Ok um] recently gave a combinatorial proof of these formulae using lattice
paths, but introducing some dummy variables. In his proof the relationship between

lattice paths and tableaux is not as clear as it could be following our approach.



Chapter 3

Open Problem

3.1 Circulants

Definition 3.1.1 A circulant determinant, C, is an n by n determinant where the

(1 + 1)* row is obtained by rotating the :** row one place to the right. Thus

Gy @ +*+ Qn_2 Gn_)
Gp_1 QG -+ Gp_3 Gn_2
C =
a az --- Qo a
@ a2 -+ GGn_1 Qo

Let p(z) = ap+ a1z + -+ + a,_12""! be a polynomial having as coefficients the
values from the entries of the first row of C and let r be a generator for the group of

the nt* roots of unity. It is well known [Led 87] that
C =p(L)p(r)--- p(r"7).
That is
(3.1.1) C = (ao+a1+--+a,1)(a+arr+- - +ap_ ")
(a0 +ar(r" ') + - + ana (PP

Consider the right hand side of (3.1.1). We call p(r*-!) the k** factor. From

left to right, label the n summands in the k** factor, 1 < k < n, with the numbers
49
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k,k+1,...,n,1,...,k—1. With this labeling the coefficient of the term labeled j in

the kt* factor is the entry of C in the k** row and j** column.

Let f be a function from {1,2,...,n} to itself. If f(g) = s, then from the ¢**
factor we choose the summand labeled with s. Thus, the product in (3.1.1) can be
regarded as a sum of weights of functions f from a set with n elements to itself where
the weight of a function f is the product of the summands picked by the function

from each of the factors.

We will visualize functions and their weights using graphs as explained next.

Definition 3.1.2 Let V be a set and let A be a set of ordered pairs of elements from
V. The set V will be called the set of vertices (or nodes) and A the set of arcs or
directed edges, where loops are allowed. The pair (V, A) is called a digraph or directed

graph.

Usually we represent a digraph by a diagram where the vertices are indicated
by nodes and the directed edge (u,v) is represented by an arrow heading from u
to v. We say that u is the starting point and v the ending point of the directed

edge (u,v). For the digraph shown in Figure 3.1.1 we have that V = {1,2,3,4} and

A=1{(1,4),(2,4),(3,3),(4,1)}.

@
(3]

i ®

Figure 3.1.1

A digraph is of outdegree one if each node is the starting point of only one directed
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edge. We are interested in digraphs of this type since they represent functions from

a set with n elements to itself.

Given a digraph G with n vertices we label them 1,...,n in a clockwise manner
after we select the vertex with the label zero. The graph in Figure 3.1.1 shows this
type of labeling. With this assignment of labels we think of the :* node of G as being

associated with the root r-!.

Definition 3.1.3 Let G be an outdegree one digraph and denote the edge with

starting point ¢ and ending point j by e;;. We define the weight of e;; as

where j — ¢ is taken modulo n.

The weight of G is defined as

w(G) = [ wles;)
i=1

which we also write as

w(G) = H a,-_;r(i‘l)(j“)
(3,5)
where (¢, 7) indicates a directed edge.

As an example, Figure 3.1.1 shows a digraph G where w(e14) = a3, w(ezq) =

asr?, w(es3) = ap and w(eq;) = a1r3. So, w(G) = (a3)(azr?)(ao)(a1r®) = apaiazasr.

Let G be an outdegree one digraph. With the edge e;; € G we associate the number
t;, where t; = j —i mod n and 0 < ¢; < n. Hence, with digraph G is associated a
unique n-tuple (¢,,...,t,) where ¢; is the number associated with e;; € G. Conversely,
each n-tuple (¢,...,t,) with 0 < t; < n uniquely determines a digraph G. To see
this we take as e;; € G the edge with starting point ¢ and ending point j, where

ti+1=j mod n with 1 < j < n. This allows us to identify outdegree one digraphs
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on n vertices with n-tuples of non-negative integers less than n. Note that if ¢, is in
the n-tuple of non-negative integers associated with the digraph G, then the weight
of the edge ex; has a,, as a factor on its weight. Thus, two edges with the same value
tx associated with them, contain the same factor of a;. So, we have proved the next

lemma.

Lemma 3.1.4 Let G be a digraph associated with the n-tuple (t1,...,t,). If G’ is
another digraph associated with an n-tuple which is a rearrangement of (t,,...,t,)

then the a’s participating in the weights of G and G' are the same. O

For instance, the digraph associated with (1,0,0,2) has ajapaga; as the a’s and
(r®)(r')°(r?)°(r®)? = r? as the r’s in its weight. The digraph associated with
(0,1,2,0) has apajazae as the a’s and has (r°)°(r!)!(r?)?(r3)° = r as the r’s in its
weight. Observe that the powers of r associated with two n-tuples which have the

same set of values may be distinct.

Definition 3.1.5 Let (¢,,...,t,) be the n-tuple associated with the digraph G. We

define the ratio of G or ratio of the n-tuple by
Re = Z t;.
i=1

Let (t1,...,ts) be the n-tuple associated with G and consider ¢ = (1,2,...,n)
€ S,. We define an action of the cyclic group generated by o on digraphs the following
way

(3.1.2) o*F(G)=G 0<k<n

where G’ is the digraph associated with the n-tuple (tp_k4+1,tn—k425--«s815. . ynk).
Note that the k*» position in the n-tuple is occupied by ¢,. We say that G’ is a k"

rotation of G.
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The next lemma relates the weights of digraphs wich are in the orbit of G' under

the action defined in (3.1.2).

Lemma 3.1.8 If G’ is the k** rotation of G then
w(G') = w(G)(r?)*
where R = Rg is as in Definition 3.1.5.

Proof: Let (t,,...,t,) be the n-tuple associated with G. Since the a;’s in the weights
of G and G’ are the same, it suffices to concentrate on the powers of r. The power of
r in the weight of G is (r®)" (r?)!1 ... (r"~1)!», Its exponent is 3" (¢ — 1)¢;. On the

other hand, the power of r in the weight of G’ is
(1,0)!,._,,.“ (7‘1)""‘"*2 . (rk—l)t,.(rk)t, (rk+l)!2 .. (T")t""‘.

Its exponent is 3", (k + (: — 1))¢;, where k + ( — 1) is taken modulo n. The relation
between the exponents of r is

Y(k+(GE-1))ti=kR+) (i - 1)

=1 =1

and the lemma follows. O

Given an n-tuple (¢,,...,%,) associated with a digraph G we interpret the entry ¢,
as the number of nodes we have to move clockwise from the :** node to reach the end
point of the directed edge with initial point at that node. If the digraph G represents
a bijection, then it is composed of cycles. Also, the sum of the t;’s corresponding to

the edges in a cycle is a multiple of n. So we have proved the following result.

Lemma 3.1.7 If (t,,...,1,) is the n-tuple associated with a digraph G representing

a permutation then n|Y " t; = R. O
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By Lemma 3.1.7, if R is not a multiple of n then the digraph does not represent
a bijection. However, if R is a multiple of n it does not imply that G represents a
bijection. For instance, the graph corresponding to (1,4,3,1,1), as shown in Figure
3.1.2, has ratio R = 10 and does not represent a permutation. In the graph, the

numbers next to the edges are the entries of the n-tuple associated with the digraph.

1

—

1 4 +2
3

—

7N
N

4
Figure 3.1.2

The next theorem allows us to reduce the right hand side of (3.1.1) to a sum
associated with n-tuples whose ratio is a multiple of n. We consider the n-tuple
(t1,...,ts) as a circular word. The degree I of the n-tuple is the number of elements
in the orbit of that n-tuple under circular permutation. In terms of graphs, the
degree [ represents the number of digraphs in the orbit of G under the action defined

in (3.1.2).

Theorem 3.1.8 Let G be an outdegree one digraph associated with the n-tuple
(t1,...,tn) of degree l. If n\ Rg then

Z w(G') =0

Gl
where G’ varies over all digraphs in the orbit of G under the action defined in (3.1.2).

Proof: Note that (t,...,t,) has 7 identical blocks each of length I. If the sum of

the entries in one of the blocks is ¢ then Rg = 2t. Thus (rR)! = r™ =1 and so
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1 — (rRe)! = 0. Also, since n\ Rg we have that ¢ # 1. By Lemma 3.1.6, and the
fact that the orbit of G has I digraphs we have that

Y (@) = w(G)(1+(rRo) 4 (rRo)? +... 4+ (rRo)T)

G!

1 — (rRo)!

= w(@) 1-rR

= 0. O

Lemma 3.1.9 Let G be an outdegree one digraph associated with the n-tuple
(t1,...,ts) of degree l. If n|Rg then

Y w(G') = lw(G)

Gl

where G’ varies over all digraphs in the orbit of G under the action defined in (3.1.2).

Proof: Since rRé = 1, the result follows from

%:w(G’) = w(G)(1 + (rRe) 4+ (rRe)2 4+ ... 4 (#Re)-1). O

Conjecture: We know each digraph corresponding to a permutation o contributes
(—1)°@4(1)-184(2)-2  * * G5 (n)-n to the determinant. Since on the product side the terms
corresponding to digraphs with weight not a multiple of n cancel, we can partition
the terms corresponding to digraphs with weight a multiple of n in a natural manner

such that

a) Each subset of the partition has the weight of a digraph corresponding to a

unique permutation o.

b) The sum of the weights on the subset is (—1)°a,(1)-180(2)-2 " * * Go(n)n-
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Note that the term in the determinant C corresponding to o € S, is

Qs(1)-1Q0(2)-2 " ° * Qo(n)—n)
where o (i) — 1 is taken modulon and 0 £ o(z) — ¢ < n.

Now we will show that the conjecture is true for the case of transpositions. Let
o = (,7), ¢ < j, be a transposition on S,, and let G be the outdegree one digraph
representing 0. The n-tuple associated with G is (0,...,j5 —7,0,...,z — 7,0,...,0),
where j — i and i — j are in the i** and j** entries, respectively. We fix the i** entry
and make ¢ — j occupy each of the remaining n — 1 positions, to obtain n — 1 n-tuples
which are associated with digraphs in different orbits. All these digraphs have the
same factors of a; in their weights, namely agao:--a;_i---a;_;---ap which can be
written as da,(1)-1@o(2)-2** @o(n)-n- If we call G, the digraph associated with the
n-tuple having j — ¢ in the :*» entry and ¢ — j in the k** entry, 1 < k < n, k # i, then

the power of r in its weight is (r*=1)7=*(rk-1)*-J. With this setup we prove the next

result.

Lemma 3.1.10 If 0 is a transposition in S, and G is the outdegree one digraph

representing it then

n

Y w(Gk) = =a5(1)-180(2)-2* * * Co(n)=n
k=1
ks

where the Gy is as defined previously.

Proof: Note that r(-9+(=3) = 1 and T3_,(r*~1)"7 = 0. Hence,

n

2 w(Gk) = Qg(1)-185(2)-2" " * Qo(n)-n Z(ri-l)j—i(rk-—l)i—j

k=1 k=1
ks kati

n
= Go(1)-184(2)-2" * * Go(n)-n (Z(r"l)"“(r"'l)“j - (r“‘)(i“)”’-l))
k=1

= —04(1)-186(2)-2" " * Ag(n)-n- O
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We expect to carry on this construction for all the subsets of digraphs where two

of them are in different orbit and exactly one represents a permutation.
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