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ABSTRACT

BATCH PRODUCTION USING

DYNAMIC CELLULAR MANUFACTURING SYSTEMS

By

Vijay R. Kannan

Demand patterns in the batch manufacturing environment are increasingly characterized

by greater variety, frequent design changes, and lower volumes. These trends place a

premium on short lead times and small batch sizes. Production methods that are

commonly used in this environment, are limited in their ability to provide both the

, flexibility and efficiency needed to meet these nwds. Job shops provide the flexibility to

respond to changes in demand, but their use of frequent setups is not conducive to the

repetitive production of small batches. Cellular manufacturing exploits similarities in

production needs, but is inflexible due to its rigid physical layout.

Dynamic Cellular Manufacturing (DCM) systems allow cellular manufacturing to be

operationalized without the layout constraints imposed by traditional cellular systems.

Manufacturing cells are formed on a real time basis, based on prevailing production

needs. These cells can evolve, expand, contract, or dissolve, depending on the needs of

specific part families and machine availability. This allows the principles of family based

production to be implemented with the flexibility required to meet current demand

patterns. This is accomplished without physically changing an existing job shop.



The use of DCM is compared to that of traditional job shop and cellular production

methods under a range of shop conditions. In addition, DCM is examined under a

broader range of conditions in order to identify conditions that appear conducive to its

use. The results show that the combination of flexibility and setup efficiency embodied

in DCM, enables it to meet the nwds of small/medium batch production more effectively

than the other production methods. DCM outperforms these traditional production

methods over a wider range of operating conditions than anticipated. It also appears to

be more robust to certain kinds of variability than currently used production methods.
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CHAPTERI

INTRODUCTION AND PROBLENI STATEMENT

1.1 INTRODUCTION

Between 60 and 80% of manufacturing takes place in a batch production environment

(Chevalier, 1986). However, recent changes in the batch manufacturing environment

have brought into question the use of the process layouts or job shops that are often used

for this type of production. According to Hyer (1982), 60-80% of manufacturing in the

US takes place in shops that utilize a process layout. Such shops, organized as groups

of functionally similar machines, provide routing flexibility by allowing any available

machine of the required type to be used to process a part. In this environment, the ratio

of setup times to processing times is typically large, making the use of frequent setups

inefficient. In addition, jobs often encounter long delays waiting for machines to become

idle and then be setup. Jobs spend as much as 95% of their flow times in queues and in

transit between machines (Tersine, 1985). To reduce these inefficiencies, batch ‘sizes are

generally large, increasing work in process and finished goods inventories.

Increasingly however, demand is characterized by greater variety, lower volumes,

frequent design changes and short cycle manufacturing. Demand is also more uncertain

than in the past. These factors make reductions in lead times and batch sizes essential to

improve responsiveness and competitiveness. This has been demonstrated by the

performance of manufacturing systems based on the just in time philosophy. Quality and
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reliability are also major considerations given the increased level of competition. Greater

diversity in materials, and higher material and energy costs add to the need for a more

efficient production system.

Given the limitations of job shops, considerable attention has been paid recently to

Cellular Manufacturing (CM). CM is one facet of Group Technology (GT). This is a

philosophy of production based on the principle of exploiting similarities in part design

and manufacture. CM specifically deals with the manufacture of families of parts, parts

that have been grouped based on processing similarity, within manufacturing cells, sets

of machines which have been dedicated to the manufacture of specific families. The

suggested gains from this are:

Improved control and monitoring of jobs, since they move within a limited

' physical area, and follow a clearly defined route ‘

Shorter lead times and work in process inventory, since the benefits of a flow line

can be attained

Faster quality feedback, since with the use of a flow line, the source of a problem

can be detected more quickly

Lower setup times and tooling requirements due to the greater homogeneity of

parts produced within a cell

Smaller lot sizes due to the ability of jobs to share setups

Learning benefits due to repetitive processing and worker specialization

Increased operator satisfaction due to the enlargement ofjob assignments to cover

family processing.
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Despite the potential however, the evidence increasingly suggests that CM is not the

solution to the problems of small batch manufacturing. The anticipated gains from its use

are more than offset by its limitations. The cost ofphysically reorganizing the shop floor

and adding new equipment which often results, is high. In addition, there is a cost

associated with lost production during the reorganization. Since reorganization is based

on existing demand patterns, it may not be possible to absorb subsequent changes in

demand without additional reorganization and/or investment. The dedication of

equipment to cells reduces routing flexibility. Since cells are dedicated to individual

families, demand patterns that create uneven cell workloads result in bottlenecks in some

cells, and idleness in others. This leads to long queues and consequently increases the

mean and variance of flow time. The evidence suggests that the range of conditions when

a cellular layout performs at a comparable level to a process layout, is extremely limited.

In summary, although production control and focus might be improved by effectively

creating plants within plants consistent with Skinner’s concept of focus (1974), shop

performance is poorer.

1.2 PROBLEM STATEMENT

Based on the existing evidence, a need exists for greater manufacturing flexibility.

Swamidass (1988) defined flexibility as

"the capacity of a manufacturing system to adapt successfully to changing

environmental conditions and process requirements” and ”the ability of the

production system to cope with the instability induced by the environment. "
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While traditional process layouts offer a high degree of flexibility, they are otherwise

inefficient for part family production. CM improves efficiency, but at the cost of reduced

flexibility. As an alternative to these extremes, this research operationalizes a

manufacturing system for small/medium batch family production that offers a higher

degree of flexibility than traditional CM without significantly compromising its

efficiency. The system pr0posed is a hybrid between CM and job shop production that

takes advantage of the benefits of each, yet attempts to minimize or eliminate their

individual limitations. This is accomplished by manufacturing in an environment

characterized. by dynamically formed manufacturing cells, or Dynamic Cellular

Manufacturing (DCM). It is envisioned that DCM will enable contemporary production

needs to be met more effectively, by better managing the apparent tradeoff between

flexibility and setup efficiency. Furthermore, higher flexibility in DCM is obtained

without necessitating the high capital investment as in a FMS.

DCM focusses on current manufacturing trends, for example shorter product life cycles,

frequent product revisions, and new product introduction. It does this by using the

principles of CM, but without the physical shop reorganization. Scheduling mechanisms

are used that recognize part family affiliations, and based on these, temporarily dedicate

machines. The result is the formation of logical production cells based on need, that exist

only as long as the need prevails. Since no permanent machine dedication is involved,

the underlying flexibility of a process layout is maintained while simultaneously

establishing the flow pattern dominance and family orientation of CM. This facilitates
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lower flow times and work in process, reduced bottlenecks, and more balanced

utilization. Since there is no physical shop reorganization, there is no financial cost

associated with the introduction ofDCM, nor a need for either a total or partial shutdown

of the production system. In addition to providing an alternative to traditional cellular and

job shop manufacturing, DCM provides a vehicle for testing the appropriateness of CM

in a given production environment.

This study compares the performance of DCM to that of a traditional job shop, and a

shop organized using the principles of CM. The objective is to identify whether DCM

ean meet the needs of small/medium batch production more effectively, and if so, under

what conditions. The questions to be addressed are :

a. Do setup conditions exist where DCM’s use of the part family concept and

efficient use of setups, is more beneficial than the flexibility of a traditional

job shop. If so, what setup conditions are conducive to DCM.

b. Can the recognition of part families by DCM, make it more effective in

dealing with different part mix compositions. If so, for what part mix

characteristics is DCM preferable.

c. Can the greater flexibility of DCM allow it to overcome the setup efficiencies

of permanent machine dedication in traditional CM, and if so, under what

setup conditions.

d. Does the greater flexibility of DCM make it more responsive to changes in

part mix than traditional CM, and if so, under what part mix conditions.

e. Does the information used to form dynamic cells affect their performance.

f. Does shop load have a significant impact on the effectiveness of DCM.

g. Is DCM sensitive to changes in job size.

h. Does job dispatching affect the performance of DCM.
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A simulation model is used to compare the behavior of the three systems under various

sh0p conditions, and to provide answers to these questions.

1.3 ORGANIZATION OF DISSERTATION

Chapter two discusses the literature that addresses the use and design of CM systems,

evidence of their performance, and mechanisms used to improve their effectiveness. This

will illustrate the shortcomings of CM for small/medium batch production, and address

the need to incorporate greater flexibility into existing cellular production methods.

Chapter three describes in more detail, the concept of DCM, how it differs from existing

production methods, and the specific issues and questions to be addressed by this

research. Chapter four describes in detail the experiments carried out, the methodology

used, and the techniques used to answer the research questions. The results of the

experiments and analysis of their implications are discussed in Chapter five, followed by

a discussion of the conclusions of the study and directions for future research.



CHAPTER2

BACKGROUND AND LITERATURE REVIEW

2.1 INTRODUCTION

Considerable attention has been paid recently to improving the performance of

small/medium batch production systems. One attempt to deal with this problem has

focussed on the principles of GT. One aspect of GT that has received particular attention

is CM. A number of articles have discussed the advantages and disadvantages of CM

(e.g., Greene & Sadowski, 1984, Suresh & Meredith, 1985). However, though case

evidence suggests gains from the use of CM, a larger body of literature refutes this.

This chapter discusses the literature that has addressed the merits of CM and compared

its use to that of a process layout. Mechanisms that have been proposed to overcome

CM’5 limitations are identified and their impact examined. The results will demonstrate

the nwd for a new approach to small/medium batch manufacturing. The literature on the

formation of manufacturing cells is also discussed. This is an important issue in CM

since cell formation is a key component in CM system design.

The chapter concludes by addressing the issue of manufacturing flexibility. As the

evidence will show, it is CM’3 lack of flexibility in contrast to that of a process layout,

’ that is the driving force behind the nwd for an alternative approach to small/medium

batch production.
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2.2 RESEARCH ONCELLULAR MANUFACTURING (GROUPTECHNOLOGY)

2.2.1 ° ' ll 1 ' rf

Evidence exists, primarily from surveys of CM users, that its use can significantly

improve shop performance compared to that of a process layout (Hyer, 1982). However,

several questions exist regarding the validity of these observations.

Leonard & Rathmill (1977) concluded that comparisons between cellular and process

layouts are often made between efficiently organized and operated cellular layouts, and

process layouts that were not optimized in the same way. This makes direct comparison

of their performance inconclusive. Their research also suggested that contrary to

expectations, CM yields lower utilization, more complex production control, and reduced

job satisfaction. Craven (1977) drew attention to the fact that gains from the use of CM

depend on a myriad of design considerations, constraints, and trade-offs. Flynn & Jacobs

(1986) noted that during the time it takes to implement CM systems, other variables such

as product mix, can change. This again makes comparison with the original process

layout inappropriate.

Wemmerlov & Hyer (1987) stated that performance improvements arising from the

conversion from a process to a cellular layout, do not reflect the cost and effort involved.

In addition, CM typically co—exists with machines organized on a functional basis. Any

gains from the use of the manufacturing cells may come at the expense of the functional

component of the shop. They also suggested that one of the reasons for poor CM
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performance is the use of poor routing information in cell design. Morris & Tersine

(1989) indicated that when CM is introduced, it is frequently accompanied by the

addition of new equipment. This new equipment might have improved the performance

of the existing process layout.

As well as the evidence from industry, several simulation studies have also concluded

that CM performance is not superior to that of process layouts, and is in fact inferior on

several dimensions.

2.2.1.1W

Cummings (1980) study is the only one to consistently support the use of a cellular

layout. It compared the performance of cellular and process layouts under different levels

of utilization, and with no and low labor absenteeism. Results showed that absenteeism

did not yield poorer performance when using a cellular layout except at very high

utilization. However, when using the process layout, performance decreased as

absenteeism increased at all levels of utilization. With or without absenteeism, the

cellular layout performed considerably better, particularly as utilization increased.

Despite these findings, the lack of recognition of family and setup characteristics, makes

their value limited.

Flynn (1984), Flynn & Jacobs (1986, 1987) conducted several comparisons of process

and cellular layouts. They compared four layouts; a process layout, a process layout with
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machines dedicated to specific parts, and two cellular layouts that differed in how

machines were organized. They showed that although the shops using dedicated machines

yielded improved performance with respect to setup, utilization and material handling,

they performed poorly for most other measures, in particular flow time and queue related

measures. Of the layouts using dedicated machines, the process layout performed the best

for queue related measures. They concluded that it was the dedication of machines rather

than the layout itself that led to differences in performance.

Flynn (1984) also considered two alternate routing strategies as a means of improving

the performance of the cellular layouts. According to the first strategy, jobs had at most

one alternate machine for a given operation, the machine that was physically closest to

the primary machine. Jobs were rerouted to the alternate machine if there were more

than twenty parts in the queue of the primary machine. Although this strategy generally

led to improved performance, performance was still inferior to that of a process layout.

The second strategy allowed work to be rerouted to any similar machine when the total

work content at the primary machine exceeded a certain level, defined in terms of

numbers of days of work. The results again showed that shop performance improved, but

only when cells were designed based on material flows between machines and not cells.

Larger critical queue lengths yielded better results, by increasing the accumulation of

jobs in a queue and increasing the potential to share setups. Though this strategy

outperformed the first, the improvement was again not enough to make the performance

of the cellular layout comparable to that of a process layout.
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Morris (1988), Morris & Tersine (1990) also found that the use of CM led to a

degradation in shop performance. They sought to identify operating conditions that are

conducive to CM. Results showed that a cellular layout performed at a comparable or

superior level to a process layout only when setup and material handling times were very

high, demand patterns stable, and job flow unidirectional. The difference in flow times

under other conditions was large enough that even with a ten fold increase in material

handling time, the process layout, which does not lend itself to material handling

efficiencies, had lower flow times.

Suresh (1992) demonstrated using queuing theory that partitioning a job shop into cells

necessarily leads to a decrease in flow time and work in process performance, and lower

utilization. Only if setup times within the cells are significantly reduced can the cells

generate improvements in performance. These conclusions were tested using a simulation

study of a process layout and two cellular layouts that differed in size and number of

families processed within each cell. Based on the batch size that yielded the most

efficient process layout operation, the results showed that under high setup times, the

cellular layouts were unstable at this or smaller batch sizes. Bottlenecks at even a single

machine were enough to render the entire cell unstable. Reductions in setup times within

the cells were necessary to induce stability. Further reductions enabled the cellular

layouts to outperform the process layout. Using larger batch sizes, the cellular layouts

were initially stable but yielded considerably poorer performance than the process layout

operating with the optimal batch size. The performance of the cellular layouts again
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improved as setup times within the cells were reduced. When cells were larger, flow

time performance was always better due to the reduction of bottlenecks. However,

utilization was unchanged due to the increase in setup frequency.

The ability to move work between cells was also shown to yield improvements in

performance. Inter—cell movement in the shop with small cells induced stability under

conditions that were previously unstable. Performance improved but was still poorer than

that when using the process layout. When batch sizes were small, smaller reductions in

setup time were needed to obtain stability in the shop and to generate improved

performance compared to that of the process layout. However, for large reductions in

setup time, performance began to deteriorate as move times more than offset the gains

from lower setup times.

2.2.1.2W

Hyer (1982) found that in shops using CM, none was organized entirely as cells. Shops

. contained a combination of cells and machines organized by function. Most users

produced at least 45 96 of parts outside the cell. Burgess (1988) suggested that

determining the extent to which cells should be used in such a hybrid layout was of

greater importance than determining whether they should they be used at all.

Christy & Nandkeolyar (1986) investigated the percentage ofjobs that must be completed

within the cellular component of the shop in order for it to outperform a pure process
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layout. They showed that for percentages between 17.5 and 22.5% , the hybrid yielded

lower flow times. Consistently however, the hybrid layout yielded higher mean tardiness.

Utilization was generally higher within the cellular component of the shop. For the

optimal proportion of jobs passing through the cell, the performance of the hybrid

improved when setup, operation and material handling times were reduced by 60-65 % ,

though greater reductions were needed to yield improvements in tardiness performance.

Using a labor constrained environment, Burgess (1988) showed that contrary to Christy

& Nandkeolyar’s results, the proportion of jobs passing through the cell in the hybrid

layout had to exceed 40% in order for the hybrid layout to outperform the traditional

process layout. This was true even when setup times in the process layout were reduced

by as much as 25%. Reducing the proportion of jobs passing through the cell had a

significant impact. For example, the process layout outperformed the hybrid layout if

only 30% ofjobs passed through the cell even when setup times in the cell were reduced

by 90%. Burgess concluded that in such hybrid layouts, the relative allocation of

resources between the two components of the shop has a significant impact on shop

performance.

Queuing theory was used by Suresh (1991) to explain why shop performance must

decrease when a job shop work center is partitioned into the kind of hybrids described

above. Flow time and work in process were shown to increase due to the increase in

queues that result from machine dedieation. Smaller batch sizes were also shown to be
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infeasible within the cellular component of the shop. When setup times within the cellular

component were reduced, not only were smaller batch sizes feasible, but the performance

of this component of the shop was better than that of the original un-partitioned work

center. However, performance of the shop as a whole was inferior due to the negative

impact on the functional component of the shop. Conditions for effective partitioning

were defined and confirmed using a simulation model. The results reiterated the

potential for machine dedication at low batch sizes if setup times are reduced, but also

highlighted the need to resolve the difficulties this creates within the functional

component of the shop.

2.2.2 r ' n in 11 l f ‘

Crookall & Lee (1977) and Lee (1985) showed that CM systems that utilized large cells,

few families, and small batch sizes, generally yielded better performance than those that

did not. The presence of multiple servers in large cells more than offset any increases

in setup frequency. Fewer families decreased the need for setup changes. Smaller batch

sizes allowed jobs to move through the shop faster, though the resulting increase in

setups caused increases in utilization. A similar study was carried out by Gupta &

Tompkins (1982) who used a simulation model to examine the tradeoffs between cell

size, material movements, and number of inter-cell moves, and between batch size and

setup times. Though intra-cell moves increase with larger cell size, these are generally

preferable to inter-cell moves. They showed that as expected, larger cells yielded fewer

inter-cell moves. Karmarkar et al. (1985b) showed analytically and using a simulation
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model that reductions in batch size reduced flow time and work in process. However,

batch sizes that were too small yielded more frequent setups, increased queues, and

poorer performance. Additional studies such as Sinha & Hollier (1984), and Wemmerlov

& Hyer (1987), have addressed additional issues that can affect the performance of CM

systems, but which have yet to be examined.

2.2.3 ' n 11 l f ri

Given the limitations of CM particularly with respect to flexibility, a number of

approaches have been suggested to improve its performance. These fall into three main

areas; group scheduling, repetitive lots, and alternate routing.

2.2.3.1W

According to Mosier & Taube (1985), group scheduling is the least addressed topic

related to CM. It refers to scheduling rules that exploit family processing similarities,

primarily in setups, between jobs in a queue. Similar sequencedependent scheduling

rules have been used in job shops where part families were not explicitly considered.

One stream of group scheduling research is analytic in nature. A number of these studies

consist of optimal family and job sequencing rules in a single machine facility. Hitomi

& Ham (1978) used mathematical programming to maximize production rate. Foo &

Wager (1983) developed a dynamic programming formulation to minimize setup time for

a single part family with sequence-dependent job setup times. Ozden et a1. (1985) used
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dynamic programming to minimize total setup cost where job and family setup times

were sequence—dependent.

Analytic models have also been applied specifically in a cellular environment. A branch

and bound solution to family and job sequencing was used by Hitorrri & Ham (1977) to

minimize makespan. A similar approach was used by Ham et al. (1979) to minimize

makespan with the minimum number of tardy jobs. Sundaram (1983) developed two

static heuristics to minimize makespan. The first heuristic selects the family to be

processed next on a machine based on earliest family completion date at that machine.

Within a family, a Gantt chart is used to schedule jobs to minimize makespan. According

to the second heuristic, the family is selected based on shortest family processing time.

Only on completion of family processing at the machine is the family loaded at the next

machine. The second heuristic was shown to perform the better of the two, yielding an

optimal solution for the data set used, though optimality is not guaranteed.

Most of the group scheduling research specific to cellular environments consists of

heuristics applied in simulation studies of single job shop and flow shop cells. They are

generally scheduling rules that use different criteria to select a family for processing, then

process all jobs in the queue from this family prior to resetting the machine. This takes

advantage of the similar setup needs of jobs from the same family, thereby reducing

setup frequency.
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2111.1MW

Vaitlrianathan & McRoberts (1982) defined five heuristics for family selection. These

consider lowest slack/processing time ratio, lowest family slack, highest setup time,

lowest setup time, and highest similarity of jobs (using similarity coefficients). Within

a family, jobs are dispatched using the shortest processing time (SPT) rule. Compared

to scheduling based on SPT alone, the heuristics yielded lower flow times and number

of setups per job. However, due date performance was very poor.

Mosier (1983) and Mosier et a1. (1984) compared three mechanisms for family selection.

These select families based on highest family work content (WORK), highest average job

priority (AVE, five dispatching rules were used to prioritize jobs), and the economic

benefit of changing the current setup or continuing to use the existing setup (ECON).

This rule makes it possible to change the setup even though jobs remain that require the

existing setup. They showed that overall, WORK yielded the best performance followed

by ECON. They also showed that family rules performed well with respect to mean flow

time and mean lateness, but not for mean tardiness and percent tardy. Dispatching using

either the SPT or minimum slack rule generally yielded the best results. Kelly at. al

(1986) compared WORK and ECON to two cost based family selection rules. They

showed that cost based heuristics performed poorly for flow time and tardiness measures.

Flynn (1987) applied the repetitive lots (RL) procedure (Jacobs & Bragg, 1988) in a

multi-cell shop. This procedure, designed to minimize setups in job shop scheduling, is
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equivalent to FCFS family selection. Within a family, jobs are also dispatched using the

FCFS criterion. Flynn also considered a truncated form of RL that limits the number of

batches processed with the same setup, in order to prevent long waits for jobs from other

families. The study compared the use of a cellular layout using both forms of RL, with

a process layout, a process layout with machines dedicated to particular parts, and a

cellular layout using FCFS dispatching alone. The results showed that in the cellular

shop, both forms of the RL rule, though indistinguishable in their performance,

outperformed FCFS dispatching for all performance measures. The relative performance

of the three layouts when RL was used was similar to that of Flynn & Jacobs previous

works (1986, 1987). The shops with dedicated machines performed better with respect

to setup time and utilization, but poorer than the pure process layout on queue related

measures and flow time. However, the difference in performance between the cellular

and pure process layouts was significantly smaller. No differences in performance existed

between the two layouts with dedicated machines. This further suggests that machine

dedication rather than layout, has a more significant effect on performance.

Mahmoodi et al. (1990) considered three family selection rules. FCFAM selects the

family containing the first job in the queue, DDFAM the family containing the job with

the earliest due date, and MSFAM the family that minimizes future sequence-dependent

family setups. They showed that MSFAM and DDFAM performed well for most

performance measures. MSFAM performed poorly only for mean tardiness. Their

relative performance depended on other conditions such as load and setup time/run time.
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They also showed that dispatching jobs within a family using either the SPT rule or a

processing time/slack hybrid (SI‘), yielded the best performance, similar to the findings

of Mosier et al. (1984). Mahmoodi et a1. (1988) also showed that the use of DDFAM

and FCFAM in conjunction with SPT and FCFS job dispatching, always yielded superior

flow time and tardiness performance than scheduling using the dispatching rules alone.

Mahmoodi & Dooley (1991) compared DDFAM and MSFAM, which they categorized

as exhaustive rules, to two non-exhaustive rules that do not require all jobs using the

current setup to be processed prior to a setup change. SLFAM processes jobs until the

total slack of another family in the queue becomes negative. The setup is then changed

to that of the more urgent family. If more than one family in the queue has negative

slack, the family selected is that with the most jobs in the queue. DKFAM processes jobs

until the time remaining until due date of the most urgent job, is more than C units

greater than that of the most urgent job in another family in the queue. The setup is then

changed to facilitate the new family. They showed that MSFAM always yielded the best

flow time performance, and DKFAM the worst. DKFAM always performed as well as,

if not better than the other rules for mean tardiness. MSFAM and SLFAM performed

poorly. Proportion tardy was lowest for MSFAM, and highest for DKFAM. They again

showed that dispatching using either the SPT or 81‘ rules yielded the best overall

performance. They concluded that although exhaustive rules as expected, generally

perform better, there are benefits associated with non—exhaustive rules.
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Ruben et a1. (1993) examined factors that affect the performance of family scheduling

heuristics. They showed that a rule that selects families based on minimum setup time

and dispatches jobs based on SPT (MSSPT) performed better than existing family and

non-family based scheduling rules. Significant gains in (flow time performance were

obtained by using group scheduling rules, though these were smaller for mean tardiness.

The extent of gains depended on shop conditions, increasing with high utilization,

setup/processing time ratio, and stable demand patterns. Though the DDSI‘ rule, which

selects families based on most imminent job and dispatches using the 81" rule yielded the

best due date performance, scheduling using 81" alone performed well, though this again

depended on other conditions. MSSPT again performed best for proportion tardy, and

FCFS based family scheduling for lateness. The authors concluded that by minimizing

setups, group scheduling rules are in general more robust to shop load and

setup/processing time ratio. However, they are also responsible for increases in tardiness

when part families are large, by discriminating against parts from smaller families.

Wemmerlov (1992) conducted a comprehensive analysis of farmly and non-family based

scheduling on a single machine. The study considered two family based rules, one

equivalent to FCFAM, and one that selects families {and jobs based on SPT. These were

compared to scheduling using FCFS and SPT alone. The results showed that as the

number of families was decreased, the resulting reduction in number of setups yielded

improved flow time performance for all rules. However, at low setup times, the use of

the SPT based family rule resulted in an increase in flow time. As the impact of setup
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times became less significant, the difference between this rule and the SPT dispatching

rule increased. Unlike past studies, this demonstrated that when setup times are low,

dispatching rules can outperform their family based counterparts. When demand was

biased towards specific families, flow times were as expected lower, particularly when

setup times were high and there were few families. Again, this was attributed to the

increased ability to reduce setup frequency. Decreases in setup time were again shown

to yield reductions in flow time, particularly at high utilization levels.

The research demonstrated the benefits of reducing variance. When processing time and

arrival rate variance were reduced, the mean and variance of flow times were lower, as

was the difference in performance between job and family based scheduling. In addition,

greater benefit was obtained from reducing arrival rate variance, though failure to reduce

processing time variance did on occasion lead to a degradation in performance of the two

- SPT based rules. The benefits of family scheduling rules also depended on the stability

of the environment. When the environment was unstable, FCFAM performed better than

FCFS. However, the SPT based family rule performed better than SPT only when

processing time variance was reduced. Under unstable conditions, family scheduling rules

were able to generate significant capacity increases and simultaneously improve flow time

performance. In addition to instability, conditions of high utilization, setup times, and

few families were shown to be most conducive to family based scheduling.
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22.3.1.2WW

Hitomi et al. (1977) compared two group scheduling heuristics to traditional dispatching

rules in a flow shop, job shop, and flow shop where flow patterns differed by family

affiliation. The two heuristics select families based on minimum family setup time, and

on the travelling salesman problem, where minimization of the sequence-dependent

family setup times is the objective. Both rules performed well with respect to flow time

measures, though not necessarily outperforming rules that did not recognize setups.

However, their relative performance improved when utilization was high and the

setup/processing time ratio large. For large ratios, they yielded the best performance.

The interaction of utilization and setup/processing time ratio had a similar effect on flow

time measures as the setup/processing time ratio. Heuristic methods were also used by

Manivannan et al. (1987), and Abin & Mohamed (1987). Manivannan et al. developed

a rule to minimize mean flow time given the optimal makespan. Abin & Mohamed

developed a rule to minimize total setup time.

Wemmerlov & Vakharia (1992) compared a number of dynamic and static job scheduling

rules to their family based counterparts. They confirmed that for each job based rule, the

corresponding family based rule yielded superior performance. Of the family based

procedures, minimum slack and FCFS based family selection generally yielded the best

flow time and tardiness performance when used with FCFS dispatching. The performance

of the FCFS based family selection rule is contrary to its performance in a job shop cell

(Mahmoodi et al., 1990). As a group, family based rules outperformed job based rules
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though there was little discrimination between individual rules. In less that 40% of cases

did the best job based rule perform significantly poorer than the worst family based rule.

The gains from using family oriented rules were greater when utilization was high. This

concurs with the results of Hitomi et al. (1977). Contrary to the evidence on job shop

cells (e.g., Wemmerlov, 1992, Ruben et al., 1993), the number of part families did not

affect the relative performance of job and family rules. This was significant only when

both utilization and setup times were high. Similarly, the ratio of setup time to processing

time was generally insignificant.

Mahmoodi et al. (1992) compared four family based scheduling rules to FCFS and SPT

dispatching. They examined their performance under different shop load,

setup/processing time ratio, due date tightness and inter-arrival time distribution

conditions. Their results showed that for mean flow time, the MSSPT rule (Ruben et al. ,

1993) always yielded the best performance. Under certain conditions, this was matched

by a rule that selects the next family based on job slack and dispatches jobs using 81".

This rule was shown to perform well in a job shop cell (Mahmoodi et al., 1990). As

expected, this rule consistently performed best for due date measures. These two rules

were also shown to be the most robust to changes in shop environment.

The ECON rule that had been shown to perform well in a job shop cell (Mosier, 1983,

Mosier et al. 1984), performed poorly. It also proved to be the least robust of the family

rules used. Contrary to Wemmerlov & Vakharia (1992), FCFAM also performed poorly.
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The research indicated that for each performance measure, differences in performance

between family heuristics were small when utilization was low, but increased at higher

utilization. Consistent with past research on flow shop cells (Wemmerlov & Vakharia,

1992), and job shop cells (Mahmoodi et al., 1988), group scheduling rules yielded

superior performance than their corresponding dispatching rules, particularly when

utilization and variance were high.

Russell & Philipoom (1992) examined the effect of due date setting procedures on the

performance of family scheduling rules. They showed that a procedure that considers

how many setup changes occur before a job is processed, consistently yielded the best

performance. They also demonstrated the importance of selecting scheduling mechanisms

in conjunction with the due date setting procedure particularly when setup times were

high. Overall, they showed that for flow time, the best scheduling rule was one that

selects families based on lowest processing time per job, and dispatches jobs using the

SPT rule. For this heuristic, no due date setting mechanism dominated. Mosier (1983),

- Mosier et al. (1984) showed that in a job shop cell, family selection based on average

family priority tended to perform poorly. For other heuristics, relative performance did

depend to a greater degree on which due date setting procedure was used, but again,

none dominated.

For due date performance, the relative performance of the rules depended on setup times.

When setup times were high, three heuristics generally performed best; FCFS family
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selection with slack based job dispatching (FCFS-SLK), due date dispatching where jobs

not belonging to the current family have a constant added to their due date to penalize

additional setup changes (EDD-T), and a rule that requires a setup change after a fixed

amount of time has elapsed in addition to when no jobs with the current setup remain

(Sawicki, 1973). For this rule (SAW-T), the authors showed that the best family and job

selection rule depended on the performance measure of interest and the due date setting

mechanism used. Overall however, FCFS family selection and slack based dispatching

performed best. When setup times were low, performance was generally best for the

EDD-T rule.

2.2.3.1.3W

In addition to the group scheduling literature, limited research exists on sequence-

dependent scheduling in job shops. However, Wemmerlov (1992) makes the distinction

that unlike group scheduling rules that attempt to avoid setups, sequence-dependent

scheduling rules typically consider only that changeover times are dependent on the

existing setup, and do not explicitly try to avoid setups.

Gavett (1965) considered the use of a scheduling rule that processes the job with the

lowest setup time relative to the job just completed, as well as two variants of this rule.

For a finite number of jobs, he showed that these rules performed significantly better

than random rules, but were frequently not optimal. The gains from the use of these rules

as well as their relative performance, depended on parameters such as distribution and
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variance of setup times, and batch size. Haynes et al. (1973) examined how these

parameters caused the heuristics to perform differently to an optimal sequence. They

showed that the rules yielded results closer to optimality when either a gamma or normal

distribution was used for setup times, and when batch sizes were small. The use of a

uniform distribution led to poor results.

Hollier (1968) compared a dispatching rule that selects the next job based on its using

the current setup, to dispatching rules that do not recognize setups. This rule was shown

to perform well for a number of measures, sometimes outperforming the other rules.

Wilbrecht et al. (1969) evaluated three sequence-dependent scheduling heuristics. These

select the job with the lowest setup time relative to that of the job just completed, the job

with the lowest process time (setup time plus run time), and the job with the highest

process time. They showed that for a number of performance measures, these rules

performed as well as or better than rules that do not consider sequence dependencies.

The first two rules exhibited particularly good performance.

White & Wilson (1977) developed a regression model that allows setup times to be

predicted, based on the assumption that actual setup times are not always known. Given

these predictions, a heuristic was used to sequence jobs in order to minimize the number

of more time consuming setups, and total setup time. This heuristic was shown to

generate good results even though actual setup times could not always be used.
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The Repetitive Lots (RL) procedure (Jacobs & Bragg, 1988) proposes splitting jobs into

transfer batches smaller than their original release quantity. This promotes more efficient

material flow and scheduling by allowing transfer batches to move independently. At

each machine, transfer batches using the existing setup are processed first on a FCFS

basis. When no such jobs remain, the setup is changed to that required by the. first

remaining job in the queue. This is similar in principle to the FCFAM family scheduling

rule. The use of RL was shown to yield significant improvements in flow time

performance over a range of release and transfer batch sizes. In addition, for smaller

release batch sizes, it induced stability in shops that were previously unstable.

2.2.3.2W

Lot splitting has been to used in CM to improve the efficiency of material handling and

setup use similar to the principles of repetitive lots. Morris & Tersine (1989) considered

splitting jobs into transfer batches of size one in conjunction with the use of cell loading

(Mosier, 1983). A cell using cell loading processes a single job at any given time, unlike

the more common machine loading, where a number of jobs compete for machines.

Mosier showed that cell loading yielded low utilization and poor performance. Morris

& Tersine however applied cell loading in conjunction with transfer batches. Their results

indieated that at low utilization, cell loading yielded performance superior to that of a

process layout and a cell using machine loading. However, as utilization increased, the

shop using cell loading was more sensitive to increased congestion. The less efficient use

of machines resulted in performance that was inferior to either of the two other layouts.



28

Sassani (1990) showed that reducing transfer batch size led to reductions in setup time

and proportion tardy. However, the performance of individual cells was sensitive to the

processing characteristics of jobs processed within them.

2.2.3.3W

Alternate routing has been proposed as a means of reducing problems in CM of

bottlenecks and imbalances in cell utilization, by rerouting jobs from overloaded

machines to less busy machines in other cells. However, this does result in an increase

in inter-family setups and the complexity of material handling. Widespread use of

alternate routing makes the operation of CM similar to that of a process layout, since the

material handling and setup benefits of CM are lost. Typically 20% of parts encounter

some inter-cell movement in practice (Wemmerlov & Hyer, 1987), though this may not

be attributable solely to alternate routing.

Ang & Willey (1984) considered several alternate routing heuristics. In addition they

considered routing work to idle machines from those that were not necessarily congested,

in order to balance loads. Their results indicated that a number of these heuristics led to

improved performance. In particular, a rule that transfers jobs from their primary

machine if average workload at the machine is greater than a critical value, and sends

them to the alternate machine with the lowest average workload that can process the job

immediately, showed the greatest improvement. Mean flow time, standard deviation of

lateness, and mean tardiness, all improved. However, performance gains decreased as
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the amount of rerouting increased. They also considered the impact of returning a

transferred job to its primary machine after it had been processed at an alternate

machine. Though this also led to performance improvements, these were not as large.

Alternate routing led to performance gains regardless of which dispatching rule was used,

shop configuration (i.e. , number of cells, cell size), changes in product mix and demand

patterns. The results showed that simple heuristics can yield significant performance

improvements if used sparingly, and that the gains are more the result of balanced

workload than rerouting itself. However, the time involved in rerouting was not

explicitly considered nor was any comparison made to a process layout.

Garza (1990) and Garza & Smunt (1991) showed that limited alternate routing enabled

CM to outperform a process layout. They showed that CM performance could better that

of a process layout when batch sizes were small, setup times high, and run time variance

low. They also showed that small ratios of minor (intra-family) to major (inter-family)

setup time led to improved CM performance by increasing the impact of fewer major

setups. In addition, they showed that when the impact of material handling in the process

layout was large, the use of alternate routing was consistently beneficial, regardless of

the extent of its use. Alternate routing was also examined by Flynn (1984) and Suresh

(1992) in studies that compared CM using alternate routing to the use of process layouts

(Section 2.2.2.1).
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Though the literature on alternate routing in CM is limited, considerable evidence of its

benefit in ajob shop exists, e.g., Wayson (1965), Russo (1965), Goodman (1972), Tilak

(1978), and Khatour & Moodie (1979). Bobrowski & Mabert (1988) investigated the

effect of adding routing flexibility at the process planning stage. They showed that

increased routing flexibility led to performance benefits, but that these followed the law

of diminishing returns. With additional flexibility, a tradeoff exists due to the increased

tooling and fixtures required.

2.2.4 Cell Eumau'uu fI'fihnigugs in Cellular Manufacturing

In addition to the literature on the performance of CM, a signifieant body of research has

examined the cell formation process. Cell formation involves the grouping of parts into

families based on production similarity, and allocating machines to individual families

to form cells. The current research is not concerned with traditional cell formation since

permanent cells are not formed. However, the separation of parts into families is

important since the existence of part families is the basis for forming dynamic cells.

A number of taxonomies exist for classifying approaches to cell formation (e.g. ,

Wemmerlov & Hyer, 1986, Vakharia, 1986). These represent comprehensive surveys of

the cell formation literature. The approach taken here is to briefly summarize some of

the more significant contributions using a framework similar to that of Vakharia.
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2.2.4.1MW

2.2.4.1.1W

Wemmerlov & Hyer (1986) cited implementations of CM where part families were

formed based on part name or function, i.e. , a valve manufacturer might treat a valve

stem as a part family. Categorization by visual inspection of shape or size is another

means cited. Part coding, an important component of GT, ean also be used to identify

similar parts, by capturing shape, size and machining characteristics.

214.12 mm

Burbidge’s (1975) Production Flow Analysis (PFA) uses the part/machine matrix that

defines production requirements, and by manual rearrangement, obtains clusters of

mutually exclusive part/machine groupings along the diagonal. Groupings that do not

yield precise partitions are used as the basis for the final cell configuration. Similar

approaches have been suggested by El Essawy & Torrance (1972), de Beer et al. (1976),

Malik & Dale (1977), and de Beer & de Witte (1978). El Essawy & Torrance’s

Component Flow Analysis sorts parts twice, based on the order in which they use

machines and the minimum number of machines required. This sorting is the basis for

forming machine groups, taking into consideration machine, part and shop constraints.

Cells are formed around groups requiring the most machines. Detailed analysis of within

cell flow patterns is earried out to ensure a feasible design. de Beer et al. and de Beer

& de Witte defined Production Flow Synthesis in which families are formed in a similar

manner to PFA, but operations defined also in terms of the number of machines that can



32

be used to process them. Machine clusters are formed depending on how many machines

can be used for a particular part. Malik & Dale suggested forming product groups based

on processing requirements, and allocating the required number of machines to each

group. Machines not allocated form a remainder cell.

Tilsley & Lewis’s (1977) Flexible Production Cells also forms cells based on processing

requirements, but also takes into account demand variability. It is based on computer

analysis of routings to identify machines that occur together frequently. Burbidge (1977)

also proposed Nuclear Synthesis, where machines used by only a few parts are identified

and represent the nuclei of cells. Once these nuclei are identified, processing

requirements of parts using them are analyzed, and parts with similar processing

requirements added to the group. Corresponding machines are then allocated to the

groups to form cells.

2.2.4.2 AnaliniLMetths

2.2.4.2.1SEW

Similarity coefficients, first proposed by Jaccard (Sokal & Sneath, 1973) numerically

define the similarity between pairs of items. McAuley’s Single Linkage Cluster Analysis

(1972) defines the similarity between two machines as the ratio of number of parts using

both machines to the number of parts using at least one. Cluster analysis is used to

determine the optimal grouping of machines based on these similarities. Machines are

added to a cluster if their similarity with existing machines in the cluster exceeds a
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threshold value. As fewer machines remain, a clustering algorithm is used to

systematically reduce the threshold value until all machines are alloeated. Similar to this

approach is the Bond Energy Algorithm, (McCormick et al. , 1972). Cells are identified

by reordering the binary part/machine matrix based on bond energy, the product of

adjacent element values, and maximizing total bond energy. Similarity coefficients were

also used by de Witte (1980) in an extension of an earlier work.

Rajagopalan & Batra (1975) used graph theory to form cells. Arcs of the graph represent

the strength of similarity between machines. These form cliques or groups of machines

so that strong relationships exist within groups, and weak relationships between groups.

Chandrasekharan & Rajagopalan (1986a, 1986b) formulated the problem as a bipartite

graph and used a non-hierarchical clustering algorithm to obtain diagonal groupings

within the part/machine matrix.

Carrie (1973) and Vakharia & Wemmerlov (1990) applied similarity coefficients to parts

rather than machines. Carrie’s method groups parts together if their similarity is above

a threshold value, and a specified minimum number included in a family. This prevents

the formation of unduly small cells. A clustering algorithm is used to systematically

reduce the threshold value until all parts are allocated to a family. Vakharia &

Wemmerlov explicitly considered intra-cell material flows and machine load in cell

formation. Their algorithm distinguishes between parts based on the need for operation

backtracks (non-sequential operations on the same machine) and number of operations.
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In addition, it distinguishes between parts using the same machines in the same sequence,

and those using the same machines in a different order. Operation sequence was also

considered by Choobineh (1988).

Kusiak (1987) proposed the p—median problem in which cells are formed using an integer

programming formulation, whose objective is to maximize total similarity. The maximum

number of part families to be formed can be expressed as a constraint in this formulation.

Kusiak also presented a formulation that allows alternate process plans for a part. Kusiak

& Cho (1992) developed two formulations that consider alternate process plans both

when there are and are not bottleneck parts or machines.

More comprehensive surveys of the literature regarding similarity coefficients and cluster

analysis can be found in Chu (1988), and Shafer & Rogers (1993).

22.422W

Several algorithms form cells by reordering the binary part/machine matrix to yield

mutually exclusive clusters along the diagonal of the matrix similar to Production Flow

Analysis. King’s (1979) Rank Order Clustering (ROC) re-orders the matrix by attributing

binary values to the rows and columns of the matrix. These are converted to decimal

equivalents and the rows and columns re—ordered based on decreasing decimal values.

The process is repeated until no changes in the matrix occur. King (1980) modified this

so that the rows and columns can be ordered directly from their binary values. King &
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Nakomchai (1982) proposed ROC 2 which is similar to ROC but computationally less

demanding. This algorithm places all rows with a ‘l’ in the last column at the top of the

matrix, then does the same with the columns, moving columns with a ‘1’ in the last row

to the left of the matrix. This is repeated until there are no further changes in the matrix.

Chan & Milner’s (1982) Direct Clustering Algorithm is similar to ROC 2 but re-orders

rows and columns based on decreasing number of entries in the row or column.

Boe & Cheng (1991) and Askin et al. (1991) addressed the limitation ofprocedures based

on ROC that they do not guarantee a diagonal matrix structure after reordering. They

proposed new algorithms that do produce such a structure.

22.4.2.3 MAW

Combinatorial grouping and mathematical programming have been used by Purcheck

(1974, 1975a, 1975b), and Oliva-Lopez & Purcheck (1979). Machines needed to process

a part and any parts whose routing is a subset of its are identified. Based on constraints

such as cell workload, groupings of sets of similar parts are found and merged.

Corresponding machines are allocated to the merged sets to form cells. Mathematical

programming was also used by Shtub (1989) who modelled the cell formation problem

as a generalized assignment problem.

In addition to the traditional approaches to cell formation, newer approaches have been

developed recently to overcome some of the limitations of existing methods (Chu, 1993).
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Amongst these are neural networks (Kaparthi & Suresh, 1992, Chu, 1993), fuzzy

clustering (Xu & Wang, 1989, Chu & Hayya, 1991), syntactic pattern recognition (Wu

et al., 1989), expert systems (Kusiak, 1988), and simulated annealing (Boctor, 1990).

2.2.4.3MW

Although several cell formation procedures exist, their impact on shop performance is

largely unclear. Most procedures do not consider their impact on shop performance.

Though some have been evaluated on the performance they yield, evidence of their

relative performance is limited (e.g., Morris, 1988, Shafer, 1988, Shafer & Meredith,

1990, Chu & Tsai, 1990).

Several studies have incorporated information on additional shop characteristics as well

as those of the parts and machines themselves. Vannelli & Kumar (1986) developed a

heuristic that minimizes the number of bottleneck cells. Ballakur & Steudel (1987)

considered the impact on cell formation of factors such as cell utilization and workload.

, Seifoddini (1987) and Balasubramaniam & Panneerselvam (1993) incorporated

information on production volumes in cell formation. Nagi et al. (1990) formulated cells

while incorporating multiple routings and capacity constraints. Rajamani et al. (1990)

also considered the availability of alternate process plans. Sule (1991) developed a

heuristic that considers capacity requirements as well as equipment costs and the costs

associated with inter-cell material movements. The impact of operating costs, lot size and

production planning, was also considered by Chakravarty & Shtub (1984). Rajamani et
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al. (1992) formulated a mixed integer programming model that evaluates the trade-off

between investment in additional machines and setup costs where setups are sequence-

dependent.

A number of articles have focussed on the issue of exceptional elements, parts that do

not fit into identified cells. Surveys ofCM users (e.g Pullen, 1976, Wemmerlov & Hyer,

1989) suggest that despite the intent of CM to obtain independent cells, most

implementations have large numbers of parts requiring processing in multiple cells.

Waghodekar & Sahu (1984) developed a heuristic to minimize the number of exceptional

elements. Kumar & Vannelli (1987) developed a method for identifying parts that can

be subcontracted so that those remaining belong to well defined cells. Wei & Gaither

(1990) formulated an integer programming model that minimizes the opportunity cost

associated with manufacturing exceptional parts. Kern & Wei (1991) and Shafer et al.

(1992) developed models that consider the costs of eliminating exceptional elements (i.e. ,

by inter-cell movement, machine duplication, or sub-contracting) once a cell

configuration has been identified.

A number of formulations focus specifically on the issue of inter-cell movement of work

and machine duplication. Harhalakis et al. (1990) and Wu & Salvendy (1993) minimized

the number of inter-cell moves by combining cells using heuristic and network

approaches respectively. Vohra et al. (1990) also formulated the cell formation problem

as a network to minimize interactions between cells. Logendran (1990) considered the
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effects ofboth inter and intra—cell movement as well as workload imbalances within cells.

This approach was extended (Logendran, 1991) to incorporate the impact of operation

sequence and cell layout. Song & Hitomi (1992) developed a quadratic assignment

problem to minimize inter-cell movement. Okogbaa et al. (1992) allow inter-cell

movement so that the variance of busy times of identical machines is similar. Dahel &

Smith (1993) formulated integer programming models to minimize inter-cell movement

and to minimize inter-cell movement while simultaneously maximizing routing flexibility.

The issue of duplicate machines was considered by Seifoddini & Wolfe (1986),

Seifoddini (1989), and Logendran (1992). Seifoddini & Wolfe developed a similarity

coefficients approach to cell formation that duplicates bottleneck machines. Seifoddini’s

model evaluates the machine duplication decision based on the tradeoff between increased

equipment cost and reduced material handling cost. Logendran formulated an integer

programming model that explicitly considers budgetary constraints in permitting machine

duplication.

2.2.5WWW:

Past research on CM allows a number of conclusions to be made about its effectiveness.

It is evident that the process of machine dedieation either in a cellular or process layout,

leads to signifieantly reduced shop flexibility and severe utilization problems. The result

is performance that is inferior to that yielded by a pure process layout. Only when non-

processing components of flow time (i.e., setup, material handling) are large, does the
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potential exist for CM to outperform a process layout. Even the more common

process/cell hybrid layout performs comparably to a process layout only under limited

circumstances.

Of the three procedures outlined to improve CM performance, none is designed to

overcome its inherent limitations. The objective of group scheduling is to take advantage

of batch similarities with respect to setups. As currently implemented, it is not concerned

with machine configuration or routing issues, and thus fails to address the issue of

flexibility. Lot splitting, though improving the efficiency of material flows, suffers from

the same limitations. Alternate routing, though to some degree alleviating problems of

unbalanced utilization and reduced flexibility, does not overcome the problem of machine

dedication that Flynn & Jacobs (1986) suggested is the primary cause of poor

performance. Each approach is also short term and narrowly focussed in how it tries to

improve performance. None adopts a long term perspective, taking into account the

downstream consequences of their actions, nor do any address problems of changing

product mix and volume.

Although these mechanisms enhance CM performance, the magnitude of the machine

dedication problem appears too large to be overcome within a cellular layout. Though

many approaches to cell formation have been proposed, they typieally do not consider

resulting shop performance. Those that do are faced with the problem of trying to satisfy

often conflicting goals. The result is that the impact of cell formation on shop
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performance is not clear. Even if it were and cells formed accordingly, the fact that

machines are dedicated implies that flexibility is lost. As long as this situation remains,

so will limits on shop performance. As Lewis (1973) stated, the ability to use a

production system to its best advantage is predetermined by how it is conceived and

designed. Given the available experimental and ease evidence, it is apparent that the

processing of part families must be viewed from an alternative perspective that does not

impose the restrictions placed by traditional CM.

2.3 FLEXIBILITY ISSUES IN MANUFACTURING

Based on the evidence, it is the loss of flexibility that limits the ability of CM systems

to generate improvements in performance. Not only does this loss of flexibility

compromise the production of existing products, but it makes it unresponsive to a

changing environment. As Buffa (1984) stated, in the present manufacturing climate,

there is a premium on flexibility. Harrigan (1985) suggested that organizations need to

be flexible because of technologically driven shorter life cycles and global competition,

and can be most responsive if facilities are designed with flexibility in mind. It is evident

therefore that the flexibility of the manufacturing process is the key to the ability to

respond to a uncertain environment.

Flexibility has been suggested to be a component of manufacturing strategy (Buffa, 1984,

Wheelwright, 1984). It thus represents one of the distinctive competencies that can be

used to obtain competitive advantage. Numerous definitions of flexibility in
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manufacturing exist (e.g., Mandelbaum, 1978, Hall, 1983, Swamidass & Newell, 1987,

Swamidass, 1988). At the core of these is the ability of a production system to respond

effectively to a changing environment. Mandelbaum (1978), and Buzacott (1982)

additionally characterized flexibility as the ability to respond to change, and the ability

to continue to perform despite the change. Slack (1987, 1990) made the distinction

between range flexibility and response flexibility. Range flexibility refers to the breadth

of change that can be accommodated. Response flexibility is the ease with which change

can be made.

23.1Wu:

The concept of flexibility in manufacturing has been used across the entire spectrum of

the production process, from product design to processing to delivery. Swamidass (1988)

identified twenty terms associated with flexibility in the operations management

literature. A number of typologies exist that identify the aspects of manufacturing that

flexibility must address. These include Mandelbaum (1978), Buzacott (1982), Zelenovic

(1982), Gerwin (1983, 1987), Slack (1983), Browne .et al. (1984), Swamidass (1988).

These are summarized by Alder (1985). Common to a number of these frameworks as

well as the perceptions of managers (Slack, 1987, 1990) are part, part mix, volume and

routing flexibility. In order to be competitive, an organization needs to be responsive to

changes in demand in terms of the types of parts it produces, their mix and volumes. To

be consistent with these needs, the production system must possess the flexibility to meet

new process plans, and to alter routings to accommodate changes in production
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schedules, capacity requirements and disturbances to the system such as machine

breakdowns.

As Gerwin (1987) suggested, manufacturing flexibility can be considered at a number of

levels. Amongst these are the flexibility of individual machines, the manufacturing

process, or the manufacturing system as a whole. Slack’s studies of managers (1987,

1990) indicated that managers are cognizant of the value of flexibility, but have a limited

view of it. They also prefer to deal with only a limited amount of flexibility. Managers

tend to view flexibility from a resource perspective, typically focussing on the flexibility

of a single resource, rather than that of the production system as a whole. Flexibility is

seen typically as a means towards an end rather than an end in itself. It is sought

primarily to meet the specific needs identified earlier, the ability to produce new parts,

modify part mix, change the level of output, and in addition, the ability to change

delivery dates. The evidence suggests that managers are more concerned with response

flexibility than range flexibility, particularly the time needed to bring about change. The

. limited evidence on the relationship of flexibility and performance from both empirical

and simulation studies, confirms the importance and increasing recognition of flexibility

as a competitive tool, an important shift away from the traditional focus on cost and

productivity.
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2.3.2W

Consistent with the perceptions of managers (Slack, 1987, 1990), evidence from the

literature suggests that resource flexibility, specifically machine and labor flexibility, is

central to the discussion of manufacturing flexibility (Slack, 1990). Malhotra & Ritzman

(1990) tested the hypothesis that increased resource flexibility in a multistage

manufacturing environment, allows an organization to improve its performance when

confronted with a changing environment. Machine flexibility was modelled by defining

a shop with a fixed number of machines and changing the number of departments they

were allocated to. Fewer departments implies departments must process a greater number

'of items with a larger number of more general purpose machines, making them more

flexible. Labor flexibility was modelled by changing the number of machines a worker

could operate. Two environments were examined, a benign environment characterized

by small lot sizes and a large capacity cushion, and a hostile environment characterized

by large lot sizes and a low capacity cushion.

Even with change limited to lot sizes and capacity, their results showed the value of

flexibility. In the benign environment, greater machine flexibility led to modest

improvements in customer service as measured by past due demand, but in the hostile

environment, there were substantial gains. The effect on inventory was less significant

in each environment. The benefits of increased labor flexibility were also lower in each

case. When both forms of flexibility were introduced, the performance gains were only

marginally greater than when only one existed. Machine flexibility is thus an important
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mechanism in responding to a changing environment, though there is a related cost in

terms of the purchase of more flexible but less efficient general purpose machines.

These results are similar to those obtained by Bott & Ritzman (1983). They showed that

in an MRP environment, the allocation of equipment to a few, large, general purpose

departments rather than several, small, specialized departments led to significantly

improved performance. Customer service, measured by past due demand, was

significantly lower. Inventory and the occurrence of bottlenecks were also reduced. The

impact of greater flexibility was of particular significance when demand was unstable.

2.3.3WW

Swamidass & Newell (1987) surveyed a number of managers as part of a study of the

relationships between environmental uncertainty, manufacturing strategy and business

performance. The organizations concerned all used small batch manufacturing processes.

One of the issues investigated was the effect of flexibility. Using a path analytic model,

they found there to be a strong positive correlation between flexibility and performance.

The benefits associated with greater flexibility were also positively correlated with

environmental uncertainty. The authors, commenting on the reported gains of Japanese

producers who designed repetitive production lines with flexibility in mind (Schonberger,

1982), concluded that flexibility is important regardless of the manufacturing process

being used.
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Roth & Miller (1990) as part of a broader study into the relationships between

manufacturing and managerial strengths and business performance, surveyed

manufacturing executives about the strength of their competitive capabilities relative to

their competitors. Using factor analysis, the authors identified five independent

dimensions of manufacturing strength. One of these was flexibility, specifically, new

product, volume and design change flexibility. They categorized companies as superstars,

middlemen, and weaklings, based on their competitive strengths, and compared these

groups with respect to the importance they placed on flexibility. The results showed that

both superstars and middlemen placed greater importance on flexibility than weaklings,

though there was no difference between superstars and middlemen. In addition, they

categorized the companies as winners and losers based on economic performance, and

again compared the two groups to determine whether differences in attitudes to flexibility

existed. As expected, the winners were shown to place greater emphasis on flexibility

than losers.

In a comparative study of Japanese, European and American manufacturing

organizations, De Meyer et al. (1989) identified differences in competitive priorities and

courses of action of organizations in each environment. European and American

producers still consider quality, reliability, and to a lesser degree cost as their

competitive priorities. However, the Japanese, having already addressed these issues,

consider flexibility to be the top priority. Their ability to shift focus is made possible by

the fact that they have attained what they consider to be appropriate levels of quality,
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cost and reliability, and now have a significant cushion relative to their competitors on

these dimensions. This allows them to concentrate on what the authors call the next

competitive battle. An important finding of the research is that actions taken by Japanese

‘ producers are consistent with their stated concerns and competitive priorities. This is

increasingly true of American producers, but less so of Europeans. This consistency has

been suggested to be a critical determinant of manufacturing success (Hill, 1989).

2.3.4 fR n f rin ' '1'

The evidence on the effect of manufacturing flexibility on performance, though sparse,

clearly demonstrates its value. Equally important is the finding that only a limited amount

of flexibility is required to improve performance. Further increases in flexibility may

have limited value. This is entirely consistent with results from studies that have

implicitly, if not explicitly, considered the effect of increased flexibility (Bobrowski &

Mabert, 1988, Ang & Willey, 1984). Given the costs associated with greater flexibility,

this is significant.



CHAPTER3

DYNAMIC CELLULAR MANUFACTURING (DCM)

3.1 INTRODUCTION

Given the limitations of CM, the value of resource flexibility, and the need for greater

responsiveness to changing market demands, a need exists for a more flexible production

system for small/medium batch production that allows the advantages of part family

production to be attained. Such a system should not permanently dedicate machines but

maintain flexibility in machine allocation. A system of this nature can be characterized

by a layout in which cells are not viewed as a physical grouping of machines as they are

in traditional CM. Instead, cells are temporary entities that are formed and destroyed on

a continual basis by allocating machines to families based on current need and

availability. The parts that constitute a family are those that have similar processing

requirements, thus allowing the number of setups to be kept to a minimum.

The concept of a cell that is not a physical ordering of machines was initially suggested

by McLean et al. (1982) and Simpson et al. (1982). They defined a ‘virtual cell’ to be

a set of machines, which, though physically separated, exist together as a logical entity

for scheduling purposes. In real time, virtual cells are created to meet current processing

needs, then dissolved on completion. The virtual cell is a routing mechanism where the

required machines are claimed before processing begins, and where machines are

dedicated to a given processing requirement only as long as needed. Irani et al. (1993)

47
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used the term virtual cell to refer to cells created by the sharing of machines in a shop

physically organized as a cell/process hybrid layout similar to that described earlier.

They proposed a shop layout in which cells with overlapping machine requirements are

located physically adjacent to each other. Likewise, machines used by several cells are

organized functionally and located physically close to the cells which require them. This

physical organization facilitates machine sharing without the need for machine duplication

or increasing the complexity of material handling. Individual parts can be processed

outside their primary cell creating the illusion of a cell since machines outside the

primary cell are temporarily dedicated to the corresponding family.

3.2 MANUFACTURING ENVIRONMENT FOR DCM

Dynamic cell formation involves examining the set of jobs awaiting processing at each

process department, and identifying their part family affiliations. When machines in the

department become available, they are temporarily allocated to families requiring them

using family based scheduling rules. It is this temporary allocation of machines to

. families that creates the illusion of a cell. Machines allocated to a family define a path

through the shop. While this path continues to exist, parts from the family are routed

along it to the specific machines they require. Unlike traditional job shops where the

allocation of machines to jobs is essentially random in nature, in DCM, machines are

to a greater degree pre-assigned as they are in traditional manufacturing cells.
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Cells formed in this way are dynamic and virtual. They are dynamic since they are

formed on an ongoing basis based on current processing needs and machine availability.

They are virtual since they cease to exist after the need for them passes. Over time, the

machines making up a cell change based on machine availability. This yields a more

efficient utilization of machines than in traditional CM. In addition, the size of a cell can

change over time. A cell begins to evolve once a single machine is allocated to a part

family. As parts from the family progress through the shop, machines from other process

departments may be allocated to them, increasing the size of the cell. Eventually,

machines from all departments visited by family members, may be held simultaneously.

This represents the greatest length of the cell. Beyond this, the cell can expand only if

multiple machines from the same process department are allocated to it. This can occur

f the additional machines are not required by other families. The capacity of the cell can

thus adjust to better meet the processing needs of the family without compromising the

processing needs of other families. Conversely, machines no longer required by the

family may be released, causing a contraction in the size of the cell. Cells may not

always evolve to their maximum length if machines are released at a faster rate than they

are added. Cells also need not consist of a continuous path if they do not contain

machines in the interior of the routing. In this case, the cell exists as disjoint cell

segments.

The primary benefit of forming cells in this manner is that family processing needs are

met without the sacrifice of flexibility. Machines are constantly assigned or reassigned
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to cells based on family need. This dynamic allocation overcomes the problem of

unbalanced load in traditional CM. This in turn makes the configuration more responsive

to changes in volume, family composition, and family size. In addition to offering an

alternative mode for part family production, DCM makes it possible for a manufacturing

concern considering conversion to a cellular layout, to investigate whether it ean benefit

from such a change. Since DCM applies the family concepts of CM, it can be used as

a mechanism to study the potential gains from using a cellular layout before any physical

change or investment takes place.

3.3 DCM vs. CELLULAR AND PROCESS LAYOUTS

3.3.1W

A major advantage of DCM is that it does not require the long term or permanent

physical shop reorganization required by traditional CM. Traditional CM is founded

upon physical reorganization of machines and their dedication to part families. This

way, a line flow or similar simplified routings can be obtained within each cell. This in

principle should yield improved control, lower work in process, and more efficient

material handling. In addition, CM typically strives for cells to be independent with

machines allocated to only a single cell. Consequently, additional equipment purchases

are often needed to make this possible, adding to the cost of reorganization. Implicit is

the fact that reorganization takes time, which will likely render the shop less than 100%

operational. Morris (1988) suggested that the need to physically reorganize a shop may

discourage product innovation in favor of process convenience.
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Physically, DCM can use the existing process layout. The only physical difference is in

the dedication of machines. Since DCM cells are not physical groupings of machines,

there is no need to physically reorganize the shop floor. This is particularly significant

with shorter product cycles, changes in part mix and the need for short lead times. Given

time and cost considerations, modifications to a traditional cellular layout to

accommodate such change may not be possible nor advisable. Since there are no physical

cells, duplication of machinery to achieve cell independence is not an issue. The need for

no additional investment is important not only in terms of dollars saved, but also given

the current emphasis on short term financial decision making. As Voss (1986) suggested,

investment decisions may not consider non-quantifiable factors such as increased

flexibility and improved competitiveness. This alone may preclude investment in CM

projects.

Since DCM cells are not fixed entities nor their machines located adjacent to each other,

there is a loss of some of the benefits of CM. In particular, the material handling benefits

of CM are lost, and production control is more complex. However, the benefits of more

efficient machine utilization can be expected to more than offset these losses.

3.3.2 Raufinsflcaihilim

With traditionally formed cells, all machines required by a part family are dedicated

permanently to that family. The result is that at times, some machines in a cell may be

idle, while functionally similar machines elsewhere may have long queues in front of
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them. The result is that jobs in congested cells may be delayed (unless alternate routing

strategies are employed). The aim of DCM is to exploit the routing flexibility of a

process layout. The process layout makes it possible for any machine of a given type to

be used to process a job. However, in DCM, machines are dedicated to a part family for

as long as it needs them. Once a machine is no longer needed, it can be assigned to a

different cell. Since any available machines of the required type can be allocated to a

cell, routing flexibility is increased. This eliminates the nwd for alternative routing

strategies.

33.3W

In a process layout, each job requires a major setup at each machine in its routing (unless

sequence-dependent scheduling is used). These setups cannot take place until the machine

is assigned to the job, thus the job must wait while the machine is being setup. In

traditional CM, since machines are dedicated to part families, once machines are initially

setup for a family, no major setups are required. Only minor setups are required to

recognize differences between jobs in the same family. With DCM, setup requirements

lie between these two extremes. Since a dynamic cell is dedicated to a family, a major

setup is required at each machine only when it is allocated to a family. After that, only

minor setups are required, to recognize differences between parts within a family.
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3.3.4W

CM is inflexible to changes in part mix and volume. Since the shop is physical organized

based on a particular part mix and workload, it cannot respond effectively or rapidly if

new parts are introduced that do not fit into existing families, and thus an existing cell.

Likewise, if the workload of a cell changes, the cell cannot adapt. Such changes may

require the additional purchase of machinery or relocation of existing machinery, which

as explained earlier, may not be possible. Alternatively, parts may have to be produced

using a combination of cells. This compromises the ability to reap the benefits of CM.

With DCM, this problem is moot. Since cells are not rigid, there is no problem of

matching new parts with existing cells. New families can be created and cells formed to

meet their processing needs without compromising the shop layout. Available equipment

can be assigned and reassigned to cells as the needs of families change. Since machines

within a process department are homogeneous and located physically adjacent to each

other, routing jobs to a secondary machine does not result in the loss of control that

might occur with physically separated cells.

3.4 LIMITATIONS OF DCM

From an operational standpoint, DCM does have certain limitations compared to existing

production methods. Scheduling in the DCM environment is more complex than in

traditional CM. In a traditional cellular environment, the scheduling problem is limited

to jobs within a given cell. In DCM, the scheduling problem encompasses the entire shop
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  Change    

Shop Configuration l

Process layout Cellular Layout DCM I

Requires Shop No Yes No

Reorganization

Requires New No Possibly No

Equipment 1‘

Machine None Permanent Temporary

Dedication

Shop Floor Highly Complex Least Complex Moderately

Control Complex

Scheduling High Low Medium

- Complexity

Routing High Low Medium

Flexibility

Material High Low High

Handling

Type of Setups Major & Minor Minor Major & Minor

Frequency of One/Machine/Job None One/Machine!Cell

Major Setups

Responsive to Yes No Yes   
Figure 1 : Comparison of DCM, Process and Cellular layouts
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and all current jobs. However, since jobs can only be routed to machines that are idle

or already setup for the corresponding family, scheduling effort is lower than in a

process layout, where all machines of the same type must be considered. As previously

mentioned, the material handling benefits of traditional cellular systems will also be lost,

due to the machines in a cell being physically distant.

From a behavioral standpoint, whether DCM has particular merit depends on its

implementation. One of the suggested gains of CM is that since parts are processed

within a cell, operators, if allocated to a cell rather than a machine, have a wider variety

'of tasks. The result is greater job satisfaction, and improved quality. In DCM (and a job

shop), the same benefits can be obtained if cross training exists, and operators allocated

to jobs rather than machines. However, the scope of these benefits might be limited by

the machines in a jobs routing not being physically adjacent as they are in traditional

cells.

3.5 DCM vs. FLEXIBLE MANUFACTURING SYSTEMS (FMS’s)

Flexible manufacturing systems (FMS’s) attempt to obtain the same benefits as DCM,

namely greater flexibility and higher utilization. However, though FMS’s may be able

to achieve these benefits more efficiently, they impose additional constraints.

Specifically, FMS’s are characterized by complex planning and scheduling environments.

They require expensive machining centers, sophisticated tooling systems, and advanced

material handling systems to provide the degree of automation sought. Overall control
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of the system is governed by complex and expensive computer hardware and software.

The costs associated with investment in capital and training are significant. It also takes

time to install and test the system. Investment and time are factors that make even

traditional CM difficult to justify unless a successful implementation can be guaranteed.

Given evidence from existing FMS implementations, this is far from certain. From an

operational standpoint, FMS’s are inappropriate in an environment with long setup times

which is characteristic of the environment being considered here. The intent of FMS’s

is to take advantage of production flexibility in environments with short setup times and

where tooling changes can be automated.

Although DCM may not be able to provide the same level of flexibility as FMS’s, it can

attain a significant degree of flexibility without physical reorganization of the shop floor

or new asset acquisition. Furthermore, it can do so without the introduction of the

complexity or cost associated with FMS’s. Given this tradeoff, the problems associated

with investment decision making described earlier, and the need for rapid introduction

of flexibility, DCM offers an attractive alternative.

3.6 SUMMARY OF DCM

In summary, DCM offers the benefits of CM while using a process layout, by means of

scheduling as opposed to machine layout. The investment, physical reorganization and

permanent machine dedication associated with traditional cellular systems are eliminated.

CM’s recognition of family processing needs and linear routings are retained and
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Low 0

Low

Setup Eficiency    
Figure 2. Tradeoffs Between Flexibility and Setup Efficiency

combined with the flexibility of a process layout. This allows the shop to respond more

quickly and efficiently to changes in production needs. DCM represents a trade-off

between the benefits of traditional CM and a process (or job shop) layout. It is also a

tradeoff between flexibility and setup efficiency.

3.7 RFSEARCH STATEMENT

This research examines the impact of DCM on small/medium batch production in a

closed shop environment. In a closed shop with repeat orders for a standard set of parts,

considerable scope exists for the application of CM. It is possible and beneficial to

identify similarities in part processing requirements and to exploit these in the production

process, particularly since these parts and families will exist over a period of time. In an
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open shop with different parts being produced without repetition, part families are less

clearly defined. With the composition of demand constantly changing, the make-up of

families also changes, making the application of traditional CM inefficient. Though there

is less potential to exploit production similarities in an open shop, possibilities may still

exist. One of the advantages of DCM is that since cells are not fixed entities, greater

flexibility exists in defining families and thus cells. Unlike traditional CM, DCM may

thus have applicability in an open shop. Even if a family consists of a single part, loading

the corresponding cell is equivalent to cell loading. Though cell loading in a traditional

cell was shown to yield poor performance (Mosier, 1983), the increased flexibility and

utilization of DCM can be expected to make cell loading more attractive.

The research addresses a number of questions regarding the potential of DCM. These

address two major issues. The first is the tradeoff that DCM represents between the

flexibility of a process layout, and the family processing and setup efficiency of

traditional CM. Five questions relating to this issue are investigated using specific

hypotheses:

a. Do setup conditions exist where DCM’s use of the part family concept and

efficient use of setups, is more beneficial than the flexibility of a traditional

job shop. If so, what setup conditions are conducive to DCM.

b. Can the recognition of part families by DCM, make it more effective in

dealing with different part mix compositions. If so, for what part mix

characteristics is DCM preferable.

c. Can the greater flexibility of DCM allow it to overcome the setup benefits of

permanent machine dedication in traditional cellular manufacturing, and if so,

under what setup conditions.
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(1. Does the greater flexibility of DCM make it more responsive to changes in

part mix than traditional cellular manufacturing, and if so, under what part

mix conditions.

e. Does the information used to form dynamic cells affect their performance.

The second issue is the robustness to change of a production system that physically has

a process orientation, but is operated as if it had a product orientation. Three additional

questions are examined:

f. Does shop load have a significant impact on the performance of DCM.

g. Is DCM sensitive to changes in job size.

h. Does job dispatching affect the performance of DCM.

These questions are addressed by first comparing the performance of DCM to that of a

traditional process and cellular layout, and then examining the behavior of DCM in

greater detail. The next chapter explains the research design used to carry out these

studies.



CHAPTER 4

RESEARCH DESIGN

4.1 INTRODUCTION

The research is conducted in two stages. DCM is first compared to production using

traditional process and cellular layout methods. The objective is to identify whether DCM

yields better performance with respect to throughput and due date measures, and under

what conditions its use might be appropriate. Stage two investigates DCM in more detail

by examining other conditions that influence its performance and suggest potential for

its use. This permits a better understanding of DCM and a greater awareness of when

it might be used or when other alternatives are more appropriate.

4.2 RESEARCH METHODOLOGY

The research is conducted using computer simulation models. Simulation is a commonly

used tool in research of this kind. It enables research to be conducted under controlled

conditions defined by the researcher. This eliminates the risk of other factors affecting

‘ the validity of conclusions. Cook & Campbell (1979) refer to this as internal validity.

Simulation also facilitates replication of an experiment. This allows sufficient data to be

collected for statistical conclusions to be made with an appropriate degree of certainty,

or statistical conclusion validity (Cook & Campbell, 1979).
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4.2.1 WWW

Five issues need to be addressed in simulation research to ensure its statistical validity.

These are initialization bias, independence and normality of observations, sample size,

and variance reduction. In non-terminating simulations such as those used in this

research, the system being modelled begins in a state of no activity. However, the system

is evaluated once it has reached steady state, or its long run level of activity.

Observations collected prior to the system reaching steady state have a biasing effect

since the system behaves differently initially compared to when it reaches steady state.

To eliminate this initialization bias, the time at which steady state has been reached must

be identified and observations prior to this point discarded.

Each time the simulation is run from start, observations collected during the initialization

period must be discarded. This results in a large number of discarded observations. To

reduce this, one long run can be carried out and batch sampling used. This leads to the

problem of autocorrelation. To be valid measures, observations must be independent. The

progress of a job is affected by that of jobs in the system at the same time, since they

affect shop load, queue sizes, etc. However, jobs separated by a large enough time lag

are not affected in this way. If the batch size is large enough, the mean response of

adjacent batches can be shown to be independent (Kleijnen, 1987). This batch size must

be determined.
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In order to meet the assumptions of the statistical tests to be used in data analysis, the

distribution of batch means must be approximately normal. The central limit theorem

states that for large sample sizes (n 2 30), the distribution of sample means is

approximately normal even for non-normally distributed populations (Law & Kelton,

1982). However, the quality of the approximation depends on the population distribution.

larger batch sizes improve the quality of the approximation. An appropriate batch size

must therefore be identified.

For statistical tests to be carried out with a high degree of power, a large enough sample

size must be obtained. An appropriate number of batches must therefore be run for each

treatment. Finally, the validity of statistical conclusions is compromised by the

introduction of variance other than that due to the experimental treatments themselves.

Additional sources of variation must therefore be minimized or eliminated.

4.2.1.1 InitializaticaBias

The method used here is that of Schruben et al. (1983). If there is no significant

difference between the mean of N observations, and the mean of the first k (k < N), a

steady state response has been obtained. They defined a test statistic for this difference

based on the t distribution. Since initialization bias is likely to cause an under-estimate

of the steady state response, a one-sided hypothesis for mean difference is tested. If

steady state is not reached within the first k observations, k is increased and the test

repeated.

 

lll'r
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4.2.1.2 Amman

The procedure used here is the Von Neumann statistic (q) whose use is suggested by

Kleijnen (1987). If batch means are independent and normally distributed, the expected

value of q is known and its variance can be computed as a function of n, the number of

batch means used to compute q. The statistic q is distributed normally. Kleijnen et al.

(1982) suggest it be at least 100 since for small n the test has low power. A value of n

= 100 is thus used. If the null hypothesis of independence is not accepted, the batch size

is increased and the test repeated. In this research, an initial batch size of one hundred

is arbitrarily selected and the batch size increased by one hundred each time the null

hypothesis is not accepted.

4.2.1.3M

An assumption of analysis of variance (ANOVA) which is used to analyze the data is that

observations are normally distributed. However, Neter et al. (1990) state that ANOVA

is robust to small departures from normality. In order to establish whether batch sample

means are approximately normal, the Probability Plot Correlation Coefficient Test is used

(Filliben, 1975). This computes the correlation between the ordered batch means and the

order statistic medians from a standard normal distribution. If the distribution of means

is normal, the correlation coefficient should be close to one. The significance of the

correlation is evaluated by comparison with percent points of the normal probability plot

correlation coefficient. If the hypothesis of normality is not accepted, the batch size is

increased and the test repeated. In this study, the initial batch size is that which satisfies
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the assumption of independence. Increments in batch size of one hundred are used if

normality is not obtained.

4.2.1-4W

Assuming a normal distribution of sample means, the sample size required to obtain a

confidence interval for the mean response can be computed as a function of the

population variance, and the half width of the required interval. Pilot runs are conducted

to estimate the mean and variance of flow time for each treatment. These are used to

establish the sample size required to obtain non—overlapping confidence intervals for all

treatment means. Schmeiser (1982) suggests using between ten and twenty batch means

to estimate the confidence interval. Twenty batch means are therefore used.

4.2. 1.5W

In order to eliminate variance other than that due to the treatments, common random

numbers are used (Kleijnen, 1987). For each treatment, the same random number stream

is used for the corresponding input process. This ensures that the random numbers are

not a source of variance. Glasserman & Yao (1992) demonstrated that the use of common

random numbers guarantees variance reduction and is optimal for a wider class of

simulation models than previously assumed. One random number stream is not

synchronized. This ensures that samples are independent (Mihram, 1974) which is an

assumption of the procedures to be used to analyze data.
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4.2.2 Mans

In order to conduct the above tests, pilot runs are carried out for each treatment of the

two stages of the research. These identify the initialization period and batch sizes to meet

assumptions of autocorrelation and normality. For each stage of the research, the

initialization period used during actual experiments is the longest identified from the

corresponding pilot runs. Likewise, the batch size used is the smallest required to meet

the assumptions for all corresponding treatments.

4.3 SIMULATION ENVIRONMENT

To facilitate comparison, the simulation environment used here is similar to that used by

Morris (1988). This also allows the simulation models to be validated. However, for

experimental purposes, certain parameters are changed to create a more suitable research

environment. This section describes shop features common to both stages of the research.

A total of forty part types, partitioned into five families, are considered (Figure 3). Each

 

Family Part Numbers

33, 34, 35, 36, 37, 38, 39, 40

19, 20, 21, 22, 23, 24, 25, 26

27, 28, 29, 30, 31, 32

9, 10, ll, 12, l3, 14, 15, 16, 17, 18

=1, 2, 3, 4, 5, 6, 7, 8
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Figure 3. Part Family Affiliations
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family contains between six and ten parts. Parts have between four and six operations.

Jobs arrive according to a poisson process, with inter-arrival times exponentially

distributed. This is a commonly used arrival process in job shops (Law and Kelton,

1982). Jobs are for a single part type. Operation processing times consist of a constant

and a stochastic component. These are 33.33 and Normal (1, 0.25) minutes per batch of

size 100. Due dates are set using the Total Work Content (TWK) rule (Conway et al.,

1967). This defines due dates as the arrival time of the job plus a multiple, k, of the job

processing time. Baker (1984) has shown this to be an effective procedure with respect

to tardiness performance over a range of conditions. Similar to Morris, k = 3 is used

here. Weeks and Fryer (1977) showed that for a range of conditions, k values between

2.5 and 2.75 were optimal but that for small departures from optimality, performance

did not change significantly.

A total of thirty machines are used. According to Baker (1974), no conclusive evidence

exists to suggest that the number of machines in a shop affects its performance. The shop

. floor covers an area of 10,000 (100 x 100) square feet, each machine allocated an area

of 225 (15 x 15) square feet. Layouts are defined using the CRAFT algorithm (Buffa et

al., 1964). Forklift trucks are available for material handling purposes. These move at

five miles per hour and are an unconstrained resource. Loading and unloading times are

uniformly distributed in the interval 1 to 5 minutes.



67

4.4 PERFORMANCE MEASURES

Any comparative study of production systems must consider the effect they have on

throughput performance and the ability to meet due dates. These determine the ability of

the system to complete orders in a timely fashion. To accomplish this, mean flow time

and mean tardiness are measured. In addition, the mean and standard deviation of work

in process (WIP) are measured. WIP is defined in terms of number of minutes of work.

WIP provides a surrogate measure for shop congestion. Changes in WIP can also be

expected to correlate positively with flow time variance, which in turn affects tardiness

variance. These are the primary performance measures due to their combined effect of

' appropriately gauging the overall performance of the system.

To more fully understand shop behavior, average utilization, proportion of time jobs

spend during setups and in queues, and the proportion of tardy jobs are also measured.

The intent of DCM is to reduce the impact of setup times relative to a traditional process

layout, and to overcome problems caused by unbalanced utilization and long queues in

a cellular layout. The secondary measures are used to identify if these objectives are met.

4.5 EXPERIMENTAL STAGE I

4-5-1 ExncdmentaLEactcrs

Stage one compares production using DCM to that using traditional process and cellular

layout methods. The intent is to identify whether DCM performance differs from that

obtained when using these layouts, and to determine when DCM might be preferred.
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Number of Machines 30

Number of Parts 40

Number of Operations/Part 4-6

Job Arrivals Exponential

Due Date TWK, k = 3
 

Operation Processing Times 33.33 + Normal (1,0.25) minutes / batch size 100

Loading/Unloading Times Uniform (1,5)

Material Handling Forklift Truck, 5 mph

 

 

 .

Performance Measures Mean Flow Time, Mean Tardiness, Mean WIP,

Standard Deviation of WIP

Mean Utilization, Proportion Tardy,

Setup Time Proportion, Queue Time Proportion     
Figure 4 : Simulation Environment and Performance Measures

Three factors are examined: shop configuration, setup times, and part mix variability.

4.5-1.1 mm

Seven shop configurations are examined, a traditional process layout, traditional cellular

layout, and five configurations based on DCM. As described earlier, each shop consists

of thirty machines. The traditional cellular layout consists of five cells, each containing

between four and eight machines (Figure 5). Cell sizes are consistent with evidence of

actual CM implementations (Wemmerlov & Hyer, 1989). Within cells, no machine

duplication exists. Parts are fully processed within a single cell. Material handling times

are not considered since cellular layouts are designed to make material handling

inconsequential.
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Cell/Family Machines Part No. Routing

1 18, 25, 13, 3, 23, 10, 16 34 18, 25, 13, 3, 23, 10

40 18, 25, 3, 23, 16

38 18, 25, 3, 23

39 25, 13, 23, 10

33 25, 3, 10

36 13, 3, 23, 10, 16

37 13, 23, 10, 16

35 13, 10, 16

2 26, 2, 15, 7, 17, 4, 20, 12 24 26, 2, 15, 7, 17, 4

20 26, 2, 15, 7, 17, 4

19 26, 7, 20, 12

23 26, 20, 12

26 2, 15, 7, 17, 4

22 2, 15, 7, 17, 4

21 2, 17, 4, 20, 12

25 17, 4, 20, 12

22, 8, 28, 24, 9, 21 32 22, 8, 28, 24, 9

30 22, 8, 28, 24, 9

27 22, 28, 24, 9

31 22, 28, 24

28 8, 28, 24, 9, 21

29 8, 9, 21

29, 14, 6, 19,27 17 29, 14, 6, 19

15 29, 6, 19, 27

13 29, 19, 27

9 29, 19, 27

18 14, 27

16 14, 27

12 14, 27

10 6, 19, 27

14 6, 19

11 6, 19

ll, 1, 30, 5 7 ll, 1, 30, 5

6 11, 1, 5

4 11, 30, 5

2 11, 1, 30

3 11, 1

8 l, 30, 5

5 30, 5

1 30, 5       
Figure 5 : Configuration of Cellular layout
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The process layout consists of eight process departments (Figure 6). Each contains three

 

Process Department Machine Numbers l

8, 18, 19, 26

2, 25, 27, 28

11, 13, 15, 24

1, 3, 7, 9

17, 21, 23, 30

4, 5, 10, 29

14, 16, 20

6, 12, 22
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Figure 6 : Configuration of Process Layout

or four machines. Routings using the process layout are defined in Figure 7. In addition,

both shops contain a shipping and receiving department.

The configurations based on DCM have the same physical layout as the process layout.

It is the temporary dedication of machines to families that distinguishes DCM from the

process layout. Machines could be allocated to families using the group scheduling rules

described earlier. However, these are typically local in nature. Most of these rules

consider processing characteristics of families only at the machine of interest, and not

elsewhere in the shop. In addition, they focus solely on exploiting sequence dependencies

in scheduling decisions, giving the appearance of a job shop using sequence-dependent

scheduling.



 

 

 

 

 

Process Departments Visited

 

'i 7

 

1 5,6 .

2 3,4,5 1

3 3,4 ‘

4 3,5,6 .

5 5,6 ,

6 3,4,6 1

7 3,4,5,6 ~

8 4,5,6 1

9 1,2,6 .

10 1,2,8 ,

11 1,8

12 2,7

13 1,2,6

14 1,8

15 1,2,6,8

16 2,7

17 1,6,7,8

18 2,7

19 1,4,7,8

20 1,2,3,4,5,6

21 2,5,6,7,8

22 2,3,4,5,6

23 1,7,8

24 1,2,3,4,5,6

25 5,6,7,8

26 2,3,4,5,6

27 2,3,4,8

28 1,2,3,4,5

29 1,4,5

30 1,2,3,4,8

31 2,3,8

32 1,2,3,4,8

33 2,4,6

34 1,2,3,4,5,6

35 3,6,7

36 3,4,5,6,7

37 3,5,6,7

38 1,2,4,5

39 2,3,5,6

4o 1,2,4,5 l
 

Figure 7 : Routings in Process Layout
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In order to address this limitation, three selection rules that consider family processing

needs at machines other than the machine to be assigned, are considered, in addition to

two traditional family selection heuristics. These new rules embrace the intent of DCM

to consciously create complete, continuous cells. This way, dynamically formed cells

more closely resemble traditional cells in which all machines required by a family are

available for its use, and form a clearly defined routing. Each rule is first applied to

families without access to a machine in the process department in question. If no such

families exist, all remaining families are considered. This promotes the development of

multiple cells and the simultaneous processing of all families. In addition, it minimizes

the risk of some cells not having access to a machine of a given type, while others have

multiple machines of the same type.

The family selection rules based on past research are :

DCM 1 : The family with the lowest average job slack. This is similar to the

DDFAM rule of Mahmoodi et al. (1988) that selects the family

containing the job with the earliest due date, but explicitly considers

remaining processing time and the urgency of the family as a whole

(Mosier, 1984).

DCM 2 : The family containing the most jobs in the queue. This is similar to

the WORK rule of Mosier et al. (1984), that selects the family with

the greatest work content. This facilitates families with the greatest

ability to minimize major setups.

The rules that incorporate information on family processing elsewhere in the shop are:

DCM 3 : A family is selected which also has parts currently being processed at

its immediate predecessor departments. If more than one such family

exists, the family with the most jobs in the current queue is selected.

This rule facilitates the incremental building of cells, thereby reducing

potential setups and queuing delays.
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DCM 4 : The family requiring the fewest machines to complete a cell is

selected. Similar to DCM 3, this facilitates the formation of complete

cells, and reduces potential major setups and queuing delays.

DCM 5 : When no jobs remain from the family currently using the machine, the

immediate predecessor departments of this family are examined to

determine whether jobs from the family are currently being processed

there. If they are, the machine is not reassigned to a new family, but

remains idle so that these jobs can use it without incurring an

additional major setup. If there are no such jobs, the machine is

assigned to the family with the most jobs in the current queue. This

rule goes further in maintaining the structure of a cell once it has

begun to evolve.

The family selection rules differentiate the five DCM shop structures among themselves,

and also from the process and traditional cellular layouts.

4.5.1.2 Mme

Setup time can be expected to affect the relative performance of DCM and traditional

process and cellular layouts. As demonstrated in past comparisons of CM and process

layouts (e.g., Morris, 1988) and in other work on setup times (e.g., Karmarkar et al.,

1985a), setup times have an important effect on shop performance. Setups require

machines to be busy but do not themselves add value to manufactured products. Any

delays due to setups therefore reduce the capacity of the production system. As described

earlier, it is the frequency of major setups when using a process layout, that makes its

use inefficient. Likewise, it is their avoidance when using a cellular layout, that makes

CM more efficient. In the context of the present study, it is the ability of DCM to

minimize the frequency of major setups without significantly compromising flexibility,

that gives it a potential advantage.
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Both major and minor setups are considered. Major setups between families are typically

more time consuming. Minor setups between parts in the same family are generally of

shorter duration and require less extensive tooling change. Both major and minor setups

are assumed to be sequence independent. This is a common assumption in research of

this kind. Two factor levels are considered. At the low setting, major setup time is one

third of the processing time, and at the high setting, two thirds (Mahmoodi et al. , 1992).

These yield setup times of 11.33 and 22.66 minutes. Minor setup time is one quarter of

the major setup time (Flynn, 1984). This is consistent with evidence from users of

cellular systems (Wemmerlov & Hyer, 1989). The ratio of minor to major setups is not

an experimental factor in this study. There is no setup time between jobs that are for the

sameparttype.

4.5.1.3W

The primary property of a process layout that allows it to perform well is its flexibility.

This also allows it to respond effectively to changes in the mix of parts to be produced,

since a machine’s use has not been predetermined. CM is unable to respond effectively

to such change since cells are designed to meet expectations of a given part mix. If the

mix changes, shop performance deteriorates since jobs are required to be processed in

specific cells which may not be designed to handle more than a certain load. Since it

makes less rigid assignments of machines to families, DCM offsets this loss of flexibility

while retaining the family recognition property of CM. Though a closed shop is being
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examined, the mechanism generating actual orders may create a variable part mix

environment, for example MRP.

TWO levels of this factor are considered. Under balanced part mix conditions, each

family has the same demand probability (0.20). Within a family, parts have the same

demand probability. This mix is consistent with the design of the cellular layout in that

the workload of each cell is proportional to the number of machines it has. Under

unbalanced part mix conditions, three families have a combined demand probability of -

0.70, equally distributed between the families. The remaining two have a combined

demand probability of 0.3, again equally distributed between the families. Within each

family, individual parts have the same demand probabilities. Though no basis for this

specific partitioning of demand between families exists, a similar approach was used by

Wemmerlov (1992).

4.5 .2 Sr'urulutign Envirunment

In this stage of the research, mean inter-arrival times are set in order to obtain a load of

approximately 80% when using the traditional process layout. This is a load that has been

used in past research, and that is found commonly in practice (Baker, 1974). Jobs are

dispatched using the minimum job slack rule. This has been shown in past research to

yield good flow time and tardiness performance in both process (Conway et al. , 1967)

and cellular shops (Mosier et al. , 1984) if due dates have been established in an

appropriate manner. It is also representative of rules used in research and in practice.
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The rule is slightly modified for use in the process layout by first giving priority to jobs

that are identical to those just completed. If there are no such jobs, job selection is then

based on minimum job slack. Cellular approaches to manufacturing have a built in

mechanism to recognize inter-family sequence dependencies. This modification

compensates for the minimum slack rule failing to recognize sequence dependencies, and

makes the implementation of the rule in the process layout more representative of actual

use. The focus of this stage of the research is on shop configurations rather than

scheduling issues.

4-5-3WW

Stage one of the research is carried out using a full factorial design with twenty eight (7

x 2 x 2) treatments. These are defined in Figure 8. The objective of the research is to

identify conditions when DCM shows potential as an alternative to production using

traditional job shop and cellular methods. The intent is not to predict the behavior of

DCM in different environments. To accomplish this objective, stage one of the research

investigates nine a priori hypotheses. These are formulated as non-orthogonal linear

contrasts and are evaluated using ANOVA ‘and paired comparisons. This is an

appropriate approach to use since only the presence of effects and not their magnitudes

is of interest.

ANOVA is first conducted to identify the presence of significant main and interaction

effects. If there are significant main effects and no significant higher order interactions,



  

 

 

 

 

 

 

 

 

F: =

rSetup Time Low High

Part Mix Balanced Unbalanced Balanced Unbalanced

DCM 1 1 8 15 22 l

DCM 2 2 9 16 23 fl

DCM 3 3 10 17 24

Shop

Config. DCM 4 4 11 18 25

DCM 5 5 12 19 26

Process Layout 6 13 20 27

Cellular Layout 7 14 21 28         

Legend : 1 - 28 = Treatment Numbers

Low Setup Time = 11.33 minutes, High Setup Time = 22.66 nrinutes

Balanced Part Mix = Part families have equal demand probabilities

Unbalanced Part Mix = Three part families have demand probabilities of

.233, two have demand probabilities of .15

Figure 8. Stage I Experimental Design

Kirk (1982) suggests the use of the Bonferroni procedure (Dunn, 1961) to test the

significance of the contrasts. This test guarantees that if the error rate when testing each

of C contrasts is a/C, the error rate for all C contrasts cannot exceed a. Neter et a1.

(1990) suggest that when only a small subset of all main effect contrasts is of interest,

this test is more powerful than other tests such as the Scheffe or Tukey tests.

If significant higher order interactions exist, contrasts are no longer meaningful, since

factor effects differ at different levels of other factors (Kirk, 1982). Under these

conditions, the hypotheses are examined using paired comparisons of all treatment means

using the Tukey method (Neter et al., 1990). Neter et al. suggest that this is a more
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powerful test to use when the number of comparisons is large. The inability to utilize the

contrasts does however mean that any conclusions regarding factor effects must be

viewed taking into account the effect of interactions.

The following are the nine a priori hypotheses to be investigated. Treatment means are

 

 

 

 

 

 

 

 

 

defined in Figure 9.

Setup Time Low High

Part Mix Balanced Unbalanced Balanced Unbalanced

DCM 1 11 12 13 14

DCM 2 21 22 23 24

DCM 3 31 32 33 34 1
Shop

Config. DCM 4 41 42 43 44

DCM 5 51 52 53 54 fl

Process Layout 61 62 63 64 ll

Cellular Layout 71 72 73 74      
Figure 9. Stage I Treatment Means

(#13)

1. When setup time is low, the process layout outperforms DCM.

. s ' £42 a £1avg-g; 10 -§ 2 :0

11.1090

Since the time associated with each major setup is low, the effect of greater

setup frequency when using the process layout is relatively small. Under these
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conditions, the greater flexibility of the process layout should enable it to

compensate for the increase in setup frequency that it incurs. Acceptance of

the null hypothesis suggests that DCM overcomes this flexibility premium

even when setup times are not expected to be critical.

2. When setup time is high, DCM outperforms the process layout.

5 ‘ £42 ‘ fir

3.3050

The primary benefit of DCM over the process layout is that it reduces the

frequency of major setups. When setup time is high, the benefit of fewer

major setups is greater. Acceptance of the null hypothesis suggests that the

minimization of setups cannot compensate for the reduced flexibility ofDCM.

3. When part mix is balanced, the process layout outperforms DCM.

s s

1 F "’ 1| )

H ,¢ _ z; 11 g 13 _ (”61*963) 50

°' 3 10 2

3.3090

When part mix is balanced, there are fewer parts from the same family and

thus less scope to share setups. Under these conditions, the inability of the

process layout to do this should not compromise its performance. Its greater

flexibility should continue to give it an advantage. Acceptance of the null

hypothesis indicates that even under conditions less suited to family

-recognition, DCM performs better.

4. When part mix is unbalanced, DCM performs better than the process layout.

5 s

( “13+ “14)
”rifle" § 10g _ (Parks) 20

H.:¢.<0



80

When part mix is biased towards certain families, there is greater scope to

share setups. By reducing the number of major setups, DCM is in a better

position to take advantage of these conditions. Acceptance of the null

hypothesis indicates that this setup reduction is not sufficient to overcome the

lower flexibility of DCM.

5. When setup time is low, DCM outperforms the cellular layout.

9 3 2.41 a 1‘11.
H.:¢s.§ .1 1° -; 2 20

H.30,<O

When setup time is low, the greater number of major setups incurred by

DCM has a relatively small effect. Under these conditions, DCM’s greater

flexibility should give it an advantage over the cellular layout. Acceptance of

the null hypothesis suggests that this increased flexibility is insufficient to

compensate for the elimination of major setups in the cellular layout.

6. When setup time is high, the cellular layout outperforms DCM.

s ‘ £42 ‘ £22H,:¢‘=§; ro -; 2 :0

3.3000

When setup time is high, DCM’s need to use major setups has a greater

adverse effect. By eliminating the need for major setups, the cellular layout

is less affected by high setup time. Acceptance of the null hypothesis suggests

that DCM’s greater flexibility more than offsets the effect of high setup time.

7. When part mix is balanced, DCM outperforms the cellular layout.
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s s

1 F ‘1 ll )

H _ g s: g u __ (911*973’ 20

“'3’ 10 2

H.:O,<O

8. When part mix is unbalanced, DCM outperforms the cellular layout.

5 S

Ho:¢.- (g “13:0; "10) - (""34“") 20

H.:¢,<O

Cellular layouts are unable to respond to change in part mix and perform well

only if cell workload is consistent with cell capacity. Even when part mix is

balanced, DCM has the flexibility to adjust to short term imbalances in

workload distribution. Acceptance of the null hypotheses for hypotheses 7 and

8 suggests that this flexibility is not able to compensate for the increase in

setups incurred by DCM.

9. Dynamically formed cells that recognize work flow patterns are more

effective than those that do not.

‘

5 0 3 ‘

H.:¢’- (gépu) - (Fig IA”) 20

H.r¢,<0

The intent of DCM is to provide the benefits of part family production within

a process layout. It also aims to make production more responsive to

prevailing work patterns. Cell formation that explicitly considers the flow of

work should therefore be more effective.
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4.6 EXPERIMENTAL STAGE H

4-6-1 Bancmrentalfactcrs

Unlike stage one whose purpose is to compare the performance of DCM to other

small/medium batch production methods, the objective of stage two is a more detailed

sensitivity analysis ofDCM alone. Stage two examines the effect of factors, which, based

on evidence from existing studies of small/medium batch production, may affect its

performance. This extends the understanding of the appropriateness of DCM in different

production environments. It also allows the behavior ofDCM to be contrasted more fully

with what is known about production using traditional job shop and cellular methods.

The factors included are utilization, job dispatching, volume mix variability, and part mix

variability.

4.6.1.1 1111112311211

Past research on job shops (e.g., Baker, 1984) and CM (e.g., Hitomi et al., 1977) have

shown shop performance to depend on utilization. As utilization increases, queues build

up at machines. This increases the delays encountered by jobs, thus increasing flow times

and leading to reduced on-time job completion. Job shops face the additional problem

that increases in the arrival rate ofjobs also increases the frequency of setups. This adds

further to the problem of delays. CM faces a problem of low overall utilization due to

the uneven distribution of work between machines. It is reasonable to expect that

utilization will also affect DCM. However, given DCM’s particular characteristics, it

may respond differently.
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Three levels of utilization will be considered, 70% , 80% and 90%. As described earlier,

80% utilization is common in practice and in prior job shop research. The remaining two

levels have also been used in past job shop research (e.g., Baker, 1984) and allow the

shop to be operated under conditions of lesser and greater congestion.

4.6.1.2 Whine

Past research on job shop scheduling (e.g., Conway et al., 1967) and scheduling in CM

(e.g. , Mosier et al. , 1984) has demonstrated the impact of dispatching rules on shop

performance. The order in which jobs are processed at a machine affects the extent to

which queues build. It also determines the extent to which individual jobs are made to

wait. To examine the impact of dispatching on DCM, three rules common in practice and

in past research are examined. These prioritize jobs based on a range of characteristics

that have been shown to have an objective rationale.

FCFS : Jobs are dispatched based on earliest arrival time at the machine

or process department. This is used frequently in practice (Conway

et al., 1967) based on its intuitive fairness.

SPT : Jobs are dispatched based on minimum operation processing time.

SPT is an example of a processing time based rule. It has been

shown in the past to yield good mean flow time performance

(Conway et al., 1967). SPT reduces the build up of queues by

processing jobs that can be completed quickly.

MINSLK: Jobs are dispatched based on minimum job slack. This is an

example of a due date based rule. It has been shown in the past to

yield good performance, particularly for due date measures

(Conway et al. , 1967). MINSLK explicitly tries to process jobs

whose on time completion is compromised.
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Changes in size of incoming jobs directly affects the stability of dynamically formed

cells. Smaller jobs implies that there are more jobs in the system simultaneously. For the

same utilization level, this suggests that a greater proportion of time is spent by machines

while they incur setups. This reduces the extent to which individual cells are utilized.

Likewise, greater variance in job size increases the variance of cell life, and thus the

extent to which the benefits of the cellular structure can be exploited. While one of the

benefits of DCM is the flexibility it introduces to CM, a tradeoff exists with setup

frequency. If the potential for cells to change is too great, this may offset the benefits of

increased flexibility.

These effects are examined by defining three levels of this factor. The first level

corresponds to the scenario in stage one where jobs have a constant batch size of one

hundred (Morris, 1988). The effect of variance is captured by defining batch sizes to be

normally distributed, with a mean of 100, and a coefficient of variation of 0.1 (Bott &

_ Ritzman, 1983, Krajewski et al., 1987). A batch size of 100 is characterized as a large

batch size. The impact of small job size is represented by jobs with a constant batch size

of fifty, and a corresponding increase in arrival rate.

4.6.1-4W

Part mix variability is carried over from stage one due to the potential interaction it has

with volume mix variability. Both affect cell workload and in turn the stability of cells,
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frequency of setups and productive capacity. The factor is defined the same way as in

stage one. Part mix is either balanced in which case all families have the same demand,

or it is unbalanced and demand skewed in favor of three families.

4.6.2 Simulaticnfinximmem

Only one DCM implementation, DCM 4, is included in stage two. This is one of the

better performing implementations based on the results of stage one, and one that

embraces the intent of DCM to consciously create complete cells. Setup times are not

included as an experimental factor. Setup times are fixed at the low level from stage one,

or 11.33 minutes per major setup. Utilization levels are based on the balanced part mix,

minimum slack dispatching scenario.

4-63W

Stage two is carried out using a full factorial design with fifty four (3 x 3 x 3 x 2)

treatments. These are defined in Figure 10. As described earlier, stage two of the

research is exploratory in nature. No specific hypotheses are tested. ANOVA is used to

identify the presence of significant main and interaction effects. Tukey multiple

comparisons are used to identify the source of specific differences.

4.7 SUMMARY OF RESEARCH DESIGN

The study uses computer simulation models to show whether DCM is a viable alternative

to production compared to traditional process and cellular layout methods. This is
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Balanced 1713192531374349

Unbalanced 2 14 20 26 32 38 44 50 §

Balanced 3 9 15 21 27 33 39 45 51

Unbalanced 4 lo 16 22 28 34 4o 46 52

Balanced 5 11 17 23 29 35 41 47 53

Unbalanced 6 12 18 24 3o 36 42 48 54
 

Legend : 1 - 54 : Treatment Numbers

Dispatching Rule : FCFS - First Come First Served, SPT - Shortest

Processing Time, Minslk - Minimum Job Slack

Volume Mix : 100 - Job Size = 100, N(100,10) - Job Size = N(100,10), 50

- Job Size = 50

Balanced Part Mix : Part families have equal demand probabilities

Unbalanced Part Mix : Three part families have demand probabilities of .233,

two have demand probabilities of .15)

Figure 10. Stage 11 Experimental Design

accomplished by comparing the different shop configurations under a range of shop

conditions, then examining additional factors expected to influence DCM performance.

The research questions posed are examined using ANOVA, linear contrasts, and multiple

comparisons. The results of these analyses are discussed in the next chapter.



CHAPTER 5

EXPERINIENTAL RESULTS

5.1 INTRODUCTION

The data collected from the simulation runs was analyzed in several stages. For each of

the primary performance measures, analyses of variance were conducted to identify the

presence of significant main and interaction effects. In each analysis, data were blocked

by replication number. This allows the independence of samples to be verified since

common random numbers were used (Mihram, 1974). Residual analysis was used to

verify the assumptions of normality and homogeneous residual variances underlying the

use and validity of ANOVA. The sources of specific differences associated with the

significant main and interaction effects were evaluated using Tukey multiple comparisons.

Since signifieant interactions were found in the stage one data for all primary

performance measures, the nine a priori hypotheses were analyzed using Tukey multiple

comparisons of treatment means. All statistical analysis was eanied out using SAS (SAS

Institute) and SYSTAT (SYSTAT Inc.) statistical software. Statistical tests were carried

out at the a = .05 level.

5.2 APPROPRIATENFSS OF ANALYSIS OF VARIANCE

The appropriateness of ANOVA models was evaluated by examining whether

assumptions of normally distributed residuals and homogeneous residual variances were

met. Neter et al. (1990) state that minor violations of these assumptions does not

87
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necessarily compromise the validity ofANOVA. The impact of non-normally distributed

residuals is to marginally increase the actual significance level and marginally decrease

the power of the test. This is defined to be the probability of correctly failing to accept

a false hypothesis. This effect is not significant for large sample sizes. The effect of non-

homogeneous residual variances is the same as long as sample sizes are equal. Neter et

al. (1990) suggest that data transformations be used to reduce or eliminate more

substantial violations of these assumptions. Specifically they suggest the use of log,

square root and reciprocal transformations, depending on the nature of the violation.

The implieation for this research is that since sample sizes are large and balanced,

inferencesbasedonANOVAcanbeassumedtobevalid eveninthepresenceofminor

violations of assumptions, except where observed p values are close to 0.05.

The assumption of normally distributed residuals was tested using the Probability

Correlation CoefficientTest (PCCT) described in Chapter 4. Homogeneity of variances

was tested using the Hartley test (Neter et al., 1990). This considers the ratio between

the maximum and minimum treatment residual variances and accepts the hypothesis of

homogeneity if the ratio is not significantly different from one. Neter et a1. (1990) state

that small significance levels are justified when using this test. A significance level of

a = .01 was therefore used.
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5.3 ANALYSIS OF STAGE I DATA

5.3.1 Introduction

The twenty-eight treatments in stage one are shown again for convenience.

 

 

 

 

 

 

 

 

      

Setup Time LOW High :

l Part Mix Balanced Unbalanced Balanced Unbalanced

DCM 1 1 8 15 22 j

. DCM 2 2 9 l6 . 23

l DCM 3 3 10 17 24
, Shop

. Config. DCM 4 4 11 18 25

DCM 5 5 12 19 26

Process Layout 6 13 20 27

Cellular layout 1 7 14 21 28

Legend : l - 28 = Treatment Numbers

Low Setup Time = 680 minutes, High Setup Time = 1360 minutes

Balanced Part Mix = Part families have equal demand probabilities

Unbalanced Part Mix = Three part families have demand probabilities of

.233, two have demand probabilities of .15)

Figure 11. Stage I Treatments

53.2 Wish

For mean flow time and work in process, there was a good fit between the data and the

ANOVA models. For mean flow time, though only ten of the twenty-eight treatments had

normally distributed residuals, all but one (Treatment 7) yielded PCCI‘ values within 4%

of that required to accept the hypothesis of normality. The remaining treatment was

within 7% . Nineteen of the treatments had residual variances that were homogeneous.
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Of the remaining nine (Treatments 3,5,7,12,14,17,20,21,28), three were treatments

whose variances were outliers (Treatments 7, 14,28). None of the nine were amongst the

better performing treatments.

For mean work in process, eleven treatments had normally distributed residuals. All but

three had PCCI‘ values within 2% of that required to accept the hypothesis of normality

(Treatments 7, 14, 28). These were within 6% of the critieal value. Nineteen of the

treatments had homogeneous residual variances. The heterogeneous variances again came

from poorer performing treatments (Treatments 3, 5, 6, 7, 12, 14, 20, 23, 24).

For mean tardiness none of the treatments yielded normally distributed residuals and only

nine had homogeneous residual variances. In order to overcome this, the three

transformations suggested earlier (log, square root, and reciproeal) were used. The log

transformation significantly improved the fit of the data with the assumptions of

ANOVA. All but four treatments (Treatments 1, 2, 8, 9) yielded PCCI‘ values within

6% of that required to accept the hypothesis of normality. Nineteen treatments had

homogeneous residual variances. Again, treatments with non-homogeneous residual

variances were either outliers or other poor performing treatments (Treatments 3, 7, 10,

12, 14, 21, 24, 27, 28).

For the standard deviation of work in process, though all but three treatments had PCCI‘

values within 7% of the critical value and eighteen had homogeneous residual variances,
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a log transformation significantly improved the fit of the model. All treatment residuals

yielded PCCT values within 4% of the critical value, and twenty-five of twenty-eight had

homogeneous residual variances. Again, treatments with heterogeneous residual variances

were poorer performing treatments (Treatments 3, 5, 14).

5.3.3 Analxsiutfiffects

5.3-3.1 Wm:

ANOVA results for mean flow time are reported in Table 1. Since all higher order

Table 1. Analysis of Variance for Mean Flow Time

SS MS

Random Numbers 731960 7394

Shop Configuration 11375365 1895894

80978 ‘ 80978

293933 293933

 

 

 

 

 

7437319 1239553

 

Shop *Mix 5330985 888497

 

Setup *Mix 551862 551862

 

527601Shop * Setup * Mix 3165604

6515853 2438

       
R2 = 0.82

interactions are signifieant, Tukey multiple comparisons were carried out for each shop

configuration for the four combinations of setup time and part mix. The rationale for this

is the fact that over a short time horizon, setup time and part mix are factors that
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management can exercise some control over through the planning system. Only over a

longer time horizon can management exercise control over the shop configuration.

Treatment means are reported in Table 2.

Table 2. Treatment Means for Mean Flow Time

 

 

 

 

 

 

 

    

Setup Time Low High

Part Mix Balanced Unbalanced Balanced Unbalanced

DCM 1 206.67 193.77 237.58 223.67

DCM 2 205.76 193.42 236.07 222.66

1 DCM 3 214.77 200.08 249.93 232.39

mg, DCM 4 208.51 196.30 240.50 227.04

DCM 5 228.71 210.86 249.00 232.98

Process Layout 225.47 208.44 268.15 247.98

Cellular Layout 322.11 749.10 252.01 293.42   
When setup time is low and part mix balanced, the best performance is yielded by DCM

14 (Figures 12, 13a). No significant differences exist between these configurations. The

performance of the process layout is similar to that of DCM 5, even though DCM 5 is

the most far-sighted of the DCM implementations. The performance of the cellular layout

is poorer than that of the other configurations. When setup time is low and part mix

unbalanced, performance is indistinguishable between all implementations of DCM and

the process layout (Figures 12, 13b). Performance of the cellular layout is extremely

poor. When setup time is high and part mix balanced, DCM 1, 2 and 4 yield the lowest

flow times (Figures 12, 13c). DCM 3 and 5 and the cellular layout yield similar
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Part Mix Balanced Unbalanced Balanced Unbalanced

DCM 2 -= DCM 2 - DCM 2 DCM 2

DCM 1 DCM 1 DCM 1 DCM 1 ]

Mean DCM 4 DCM 4 DCM 4 DCM 4

FlowTime DCM3 DCM3 DCM5 l DCM3}

Process ] Process DCM 3 DCM 5

DCM 5 DCM 5 Cellular Process

Cellular Cellular Process Cellular

DCM 2 ' DCM 2 'j DCM 2 ] DCM 2 ]

DCM 1 J DCM 1 DCM l DCM 1

Log Mean DCM4 DCM4 ] DCM4 DCM4

Tardiness DCM 3 DCM 3 ] DCM 5 ] DCM 5

Process DCM 5 DCM 3 DCM 3

DCM 5 Process 1 Process Process

Cellular Cellular Cellular Cellular

DCM 2 DCM 2 DCM 2 DCM 2

DCM1]r DCMl DCMI] DCMI]

MeanWork DCM4 J DCM4 DCM4 - DCM4 1

in Process DCM 3 DCM 3 DCM 3 DCM 3 1'

Process ] Process Cellular ] DCM 5 |

DCM 5 DCM 5 - DCM 5 Process

Cellular Cellular Process Cellular

DCM 2 DCM 2 DCM 2 DCM 2

Log DCM l l DCM l I DCM 1 I DCM 1 1

Standard DCM4 DCM4 DCM4 1 DCM4 *

Deviation DCM3? DCM3 =1 DCM5 l DCM5]

ofWIP DCM5: DCM5 ] DCM3 ' DCM3 -

l l     

 

Figure 12. Tlukey Multiple Comparisons of Shop Configuration

by Setup Time x Part Mix
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performance. The process layout yields the poorest performance. When setup time is

high and part mix unbalanced, DCM 1, 2 and 4 again perform best (Figures 12, 13d).

All DCM implementations outperform the process and cellular layouts.

5.3.3.2 MeanIanliness

ANOVA results for log mean tardiness are reported in Table 3. Treatment means for the

Table 3. Analysis of Variance for Log Mean Tardiness

 

 

 

 

 

 

 

 

 

      

: SOURCE or: SS MS F p

' Random Numbers 99 980.28 9.90 6.72 0.0001 I

. Shop Configuration 6 902.58 150.43 102.06 0.0001 1

Setup Time 1 582.07 582.07 394.89 0.0001

PartMix 1 3.83 3.83 2.60 0.1069

Shop'Setup 6 412.24 68.71 46.61 0.0001 5

Shop*Mix 6 22.60 3.77 2.56 0.0180

‘ Setup * Mix 1 0.33 0.33 0.22 0.6378

Shop * Setup * Mix 6 12.25 2.04 1.39 0.2165 i

‘ Error 2673 3939.97 1.47 *-

R2 = 0.42

untransformed data are reported in Table 4. Pairwise comparison of shops by setup

time/part mix conditions show that for low setup time, balanced part mix conditions,

DCM implementations 1, 2, and 4 yield the best tardiness performance, followed by

DCM 3 (Figures 12, 14a). Similar to the result for mean flow time, the performance of

DCM 5 and the process layout is indistinguishable, and the cellular layout yields the
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Table 4. Treatment Means for Mean Tardiness

; Setup Time

 

Unbalanced Unbalanced ,

DCM l . 0.137

DCM 2 . 0.142

DCM 3 . 0.686

DCM 4 . 0.426

DCM 5 . 0.758 -

Process Layout . 0.635

Cellular layout

 

 

 

 

 

 

       
highest tardiness. For low setup time, unbalanced part mix conditions, DCM l and 2

outperform other DCM implementations (Figures 12, 14b). The process layout again

performs poorly as does DCM 5, but not as poorly as the cellular layout. For both high

setup time scenarios, DCM 1 and 2 again perform best, followed by DCM 4 (Figures

12, 14c, 14d). The process and cellular layouts perform poorer than all DCM

implementations.

5.3.3.3WW

ANOVA results for mean work in process are reported in Table 5. Treatment means are

reported in Table 6. Multiple comparison results are, as expected, largely similar to those

for mean flow time. The exceptions are that the performances of DCM 2 and 3 are not

indistinguishable when setup time is low and part mix balanced, and DCM 4 and 5

perform differently when setup time is high and part mix unbalanced (Figures 12, 15a-d).



Figure 14. Mean Tardinessby Setup Time x Part MiX
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Table 5. Analysis of Variance for Mean Work in Process

  

    

     

    

 

 

     

   

 

 

 

 

  

   

 

 

 

  

DF SS MS F

‘ Random Numbers 99 223048038 2253010 8.44

Shop Configuration 6 1158547167 193091195 723.67

Setup Time 1 195185982 195185892 731.52

_ Part Mix 1 22896 22896 0.09

Shop .- Setup 6 807971467 134661911 504.69

Shop * Mix 6 386391299 64398550 241.35

Setup * Mix 1 36492126 36492126 136.77

. Shop * Setup * Mix 6 249934824 41655804 156.12

R2 = 0.81

Table 6. Treatment Means for Mean Work in Process

Low

 

 

 

 

 

 

 

  

 

 
    

‘ Setup Time A

Part Mix Balanced Unbalanced Balanced Unbalanced

DCM 1 2916.70 2630.50 2816.46 2563.98

Shop

, Config. DCM 2 2884.44 2611.62 2785.34 2541.40

DCM 3 3083.43 2752.23 3012.25 2685.35

DCM 4 2926.47 2653.40 2841.66 2593.50

DCM 5 3362.13 2970.69 3062.79 2765.63

Process layout 3331.16 2941.83 3349.51 2960.70

i ellul 4487.57 7989.86 __ 3.96
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5.3.3.4WW

ANOVA results for log standard deviation of work in process are reported in Table 7.

Table 7. Analysis of Variance for Log Standard Deviation of Work in Process

U a
s

j SOURCE

? Random Numbers

 

 

Shop Configuration
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R2 = 0.83

Treatment means for the untransformed data are reported in Table 8. For both low setup

time scenarios, the best performance is Obtained when DCM 1-4 are used followed by

DCM 5 (Figures 12, l6a,b). The poorest performance is obtained when the cellular

layout is used. When setup time is high and part mix balanced, DCM 1, 2 and 4 perform

best followed by DCM 3 and 5 (Figures 12, 16c). The process layout performs poorest.

The result is the same when setup time is high and part mix unbalanced except that the

cellular layout performs poorer. than DCM 5 but similar to the process layout (Figures

12, 16d).
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Table 8. Treatment Means for Standard Deviation of Work in Process

 

Unbalanced

684.23 "

DCM 2 . 675.09

DCM 3 . 747.38

DCM 4 . 693.47

DCM 5 . _ 743.17

Process layout . 840.25

854.20

 

 

 

 

 

 

      
 
The ANOVA results indicate that the relative performance of the shop configurations

depends on specific setup time and part mix conditions. They also show that under each

set ofconditions examined, DCM generally performs better than the process and cellular

layouts. Only under one set of conditions is there no distinct advantage to be Obtained

by using DCM. The relative performance of different DCM implementations remains

largely unchanged as shop conditions change, DCM l, 2 and 4 generally performing

best.

5.3.5MW

As described earlier, the presence of higher order interactions makes the interpretation

of linear contrasts inappropriate. Instead, the a priori hypotheses were evaluated using

Tukey multiple comparisons Of treatment means. This was done by identifying those



Figure 16

low Setup Time,

. Standard Deviation of Work in Process by Setup x Part Mix

b Unbalanced Part Mix
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Hypothesis

Process layout outperforms DCM

when setup time is low.

treatments included in each hypothesis (Figure 17), and comparing treatment means for

Treatments

1 - 6, 8 - 13

 

DCM outperforms process layout

when setup time is high.

Process layout outperforms DCM

when part mix is balanced.

DCM outperforms process layout

when part mix is unbalanced.

DCM outperforms cellular layout

when setup time is low.

Cellular layout outperforms DCM

when setup time is high.

DCM outperforms cellular layout

when part mix is balanced.

DCM outperforms cellular layout

when part mix is unbalanced.

15-20,22-27

1-6, 15-20

8-13,22-27

l-5,7-12, 14

15-19, 21 -26, 28

1-5,7,15-19,21

8 - 12, 14, 22 - 26, 28

 

DCM that recognizes material flows

outperforms DCM that does not.  l-5,8-12,15-19,22-26
Figure 17. Treatment Numbers by Hypothesis

all appropriate treatments (e.g., Hypothesis 1, Treatments 1-6, 8-13). The Significance

or otherwise of multiple comparisons can provide evidence to make certain conclusions

regarding the hypotheses. If not, they can still yield information regarding underlying

trends contained within the data.
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5.3.5.1 11111191111:qu

Hypothesis 1 states that when setup time is low, the process layout outperforms DCM.

The data does not support this (Figures 18, 19a-d). DCM always performs at least as

   

  

 

Mean Flow Time  

 

Mean Work in

 

       

 
  

     
  

  

         

log Std. Dev. of

i Tardiness Process WIP '

1 DCM2/Unbal DCM2/Unbal - DCM2/Unbal DCM2/Unbal

j DCMl/Unbal ] DCMl/Unbal DCMl/Unbal DCMl/Unbal

1 DCM4/Unbal ] DCM2/Bal DCM4/Unbal DCM4/Unbal

DCM3/Unbal J DCMl/Bal ] DCM3/Unbal ] DCM3/Unbal ]

i DCM2/Bal DCM4/Ba] DCM2/Ba1 DCM2/Bal

DCMl/Bal DCM4/Unbal ] DCMl/Bal DCMl/Bal

. Process/Unbal DCM3/Unbal DCM4/Bal DCM4/Bal

j DCM4/Bal DCM3/Ba! Process/Unbal DCM5/Unbal

' DCM5/Unbal J DCM5/Unbal DCM5/Unbal ] DCM3/Ba]

j DCM3/Bal Process/Unbal ] DCM3/Bal Process/Unbal]

' Process/Bal ] Process/Bal ] Process/Ba] ] DCM5/Ba] ]

’ DCM5/Ba] DCM5/Dal DCM5/Hal Process/Bal

 

       

 

Figure 18. Tukey Multiple Comparisons for Hypothesis 1

well as the process layout with the exception of the flow time performances of DCM 3

and 5, and the mean work in process performance of DCM 5. DCM 1, 2 and 4 always

outperform the process layout for mean tardiness. DCM 2 also outperforms the process

layout for the log of the standard deviation of work in process.

5.3.5.2 Hmthesiu

Hypothesis 2 states that when setup time is high, DCM outperforms the process layout.

The results support this for DCM 1, 2 and 4, and for the tardiness performance ofDCM

5 (Figures 20, 2la-d). DCM 3 and 5 never perform poorer than the process layout.
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Mean Flow Time Log Mean Mean Work in Log Std. Dev. of

Tardiness Process WIP

DCM2/Unbal DCM2/Unbal DCM2/Unbal j DCM2/Unbal

DCMl/Unbal] DCMl/Unbal DCMl/Unbal DCMl/Unbal h

DCM4/Unbal] DCM2/Bal ] DCM4/Unbal :l DCM4/Unbal 1

DCM3/Unbal DCMl/Bal DCM3/Unbal = DCM2/Bal i

DCM5/Unbal DCM4/Unbal DCM5/Unbal DCM5/Unbal

DCM2/Bal DCM4/Hal DCM2/Bal DCMl/Bal

DCMl/Bal ] DCM5/Unbal DCMl/Bal DCM3/Unbal '

DCM4/Ba1 DCM5/Ba] ] DCM4/Bal DCM4/Bal '1

DCM3/Unbal ] Process/Unbal DCM3/Ba1

J DCM3/Bal DCM3/Bal ] DCM5/Bal ‘]

Process/Unbal DCM5/Ba] Process/Unbal

Process/Ba] Process/Bal Process/Bal

 

   

 

 
 

  

 

Figure 20. Tukey Multiple Comparisons for Hypothesis 2

 

  

5.3.5.3 amnesia

Hypothesis 3 states that when part mix is balanced, the process layout outperforms DCM.

The results do not support this (Figures 22, 23a-d). For mean flow time, the process

layout never outperforms any DCM implementation under the same setup time condition,

being outperformed in all but one case (DCM 5 under low setup time conditions). The

tardiness performance of DCM l and 2 is always better than that of the process layout.

DCM 4 always performs at least as well as the process layout and DCM 5 never poorer

than the process layout. DCM 1, 2 and 4 always yield better work in process

performance than the process layout. DCM 3 also yields lower mean work in process.

DCM never yields poorer work in process performance than the process layout.
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Figure 22. Tukey Multiple Comparisons for Hypothesis 3

535.4 mm

Hypothesis 4 states that when part mix is unbalanced, DCM performs better than the

process layout. The results support this for DCM l and 2 except for their mean flow

time performance, and for the work in process performance of DCM 3 and 4 (Figures

24, 25a-d). DCM 1-4 always perform better than the process layout under the same setup

time conditions and DCM 5 at least well as the process layout.

5.3.5-5W

Hypothesis 5 states that when setup time is low, DCM outperforms the cellular layout.

The results support this (Figures 26, 27a-d). For all measures, the cellular layout always

yields the poorest performance.
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1 Mean Flow Time Log Mean

i Tardiness Process WIP }

DCM2/Low DCM2/Low DCM2/High ‘ DCM2/High i '

DCMl/Low ] DCMl/Low DCMllHigh DCMllHigh

, DCM4/Low DCM4/Low DCM4/High 1 DCM4/High r

‘ DCM3/Low 3 DCM2/High DCM2/Low DCM2/Low

, Process/Low] DCMllHigh ] DCMl/low DCMl/Low i
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‘ DCM2/High DCM5/Low DCM3/High - DCM3/Low
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DCM3/High ] DCM5/High ] Process/Low DCM5/Low

? DCM5/High DCM3/High Process/High] Process/Low ]

Process/High Process/High DCM5/low Process/High

Figure 24. Tukey Multiple Comparisons for Hypothesis 4

5.3.5.6 11110211123116

Hypothesis 6 states that when setup time is high, the cellular layout outperforms DCM.

The results do not support this (Figures 28, 29a-d). DCM 1, 2 and 4 always outperform

the cellular layout. DCM 3 and 5 always perform at least as well as the cellular layout.

The cellular layout always yields the poorest tardiness performance.

5.3.5.7 Hmthcsisl

Hypothesis 7 states that when part mix is balanced, DCM outperforms the cellular

layout. The results support this for DCM 1 and 2 except for their mean work in process

performance, for DCM 4 for mean flow time and tardiness, and for DCM 3 and 5 for

mean tardiness (Figures 30, 3la-d). DCM never performs poorer than the cellular layout

with the exception of the mean work in process performance of DCM 5.
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i Mean Flow Time Log Mean Mean Work in . Log Std. Dev. of 1

' Tardiness Process WIP i
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DCM5/Bal - DCM5/Bal DCM5/Bal DCM5/B31

Cellular/Bal Cellular/Bal Cellular/Bel Cellular/Bal
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Figure 26. Tukey Multiple Comparisons for Hypothesis 5

535.8M

Hypothesis 8 states that when part mix is unbalanced, DCM outperforms the cellular

layout. The results support this with the exception of the work in process performance

ofDCM 5 (Figures 32, 33a-d). With this one exception, the cellular layout always yields

the poorest performance for all measures.

5.3.5.9 Hmthesisj

Hypothesis 9 states that DCM implementations that recognize material flows in cell

formation (DCM 3-5) yield better performance than those that do not (DCM l & 2). The

results do not support this (Figures 34, 35a—d). Given the range of shop conditions

examined, it is understandable that no single implementation consistently yields the best
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Figure 28. Tukey Multiple Comparisons for Hypothesis 6

performance. However, DCM 1, 2 and 4 typieally yield the best performance under a

given set Of conditions. Of these, only DCM 4 recognizes material flows.

53.6 Symmcfmrchjmtheses

The information yielded by the multiple comparisons indicates that DCM performs well

under a wider range of conditions than anticipated. In comparison to the process layout,

DCM generally performs better regardless of setup time conditions. DCM performs

better, as expected, when setup time is high. It also performs well when setup time is

low, a scenario in which setup time was not expected to greatly compromise the

performance of the process layout. With respect to part mix, the results suggest that

DCM performance is in general better, but not conclusively so. Comparing DCM to the

cellular layout, the results suggest that DCM performs better not only when setup time
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Figure 30. Tukey Multiple Comparisons for Hypothesis 7

is low, as expected, but also when setup time is high. Under these conditions, the cellular

layout was expected to have an advantage. As hypothesized, DCM performed better for

both part mix conditions.

5.3.7W

In addition to the primary performance measures discussed SO far, data was also collected

for secondary performance measures. DCM is able to obtain the benefits described above

while simultaneously increasing effective capacity (Table 9). Mean utilization for DCM

ranges from 0.4 to 5% lower than that for the process layout, depending on setup and

part mix conditions. As expected, the cellular layout consistently yields low utilization,

varying from 61% to 70%. The utilization of the different DCM implementations is

essentially similar with the exception of DCM 5 which yields utilization that is about 2%
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Figure 32. Tukey Multiple Comparisons for Hypothesis 8

Table 9. Treatment Means for Mean Utilization

 

 

 

 

 

 

 

  
 

     

Setup Time Low High

I Part Mix Balanced Unbalanced Balanced Unbalanced

DCM 1 0.790 0.763 0.784 0.757

DCM 2 0.789 0.762 0.782 0.755

DCM 3 0.795 0.768 0.791 0.762

222%, DCM 4 0.791 0.765 0.786 0.759

DCM 5 0.770 0.747 0.754 0.733

process layout 0.799 0.772 0.804 0.774 I

Cellular Layout 0.698 0.677 0.628 0.607
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lower. This is due to the enforced machine idleness that it permits. DCM 5 also yields

the poorest overall utilization of the five DCM implementations. Considering only DCM

1-4, the maximum difference in utilization between DCM and the process layout is about

2.2%. The ability of DCM to increase effective capacity is as anticipated higher when

setup time is high. Not only are utilization levels lower when setup time is high (with the

exception of the process layout upon which the 80% utilization level was established),

but they are also lower when part mix is unbalanced.

With few exceptions, DCM yields lower proportions ofjobs tardy than either the process

or cellular layouts (Table 10). Whereas the process layout has proportions tardy between

Table 10. Treatment Means for Mean Proportion Tardy

‘ Setup Time
 

Unbalanced Unbalanced =

0.003 . 0.007 :

DCM 2 . . 0.007

DCM 3 . . 0.022

DCM 4 . . 0.014

DCM 5 . . 0.022

Process Layout . . 0.046

Cellular Layout . . 0.253

 

 

 

 

 

 

       
1.3 and 6.5% and the cellular layout between 35.4 and 60%, DCM has at most 3.1%

tardy, with the proportion generally much lower. When setup time is high, DCM
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implementations always yield lower proportions tardy than the process layout. The

relative benefit of DCM is, as expected, higher when setup time is high and when part

mix is unbalanced.

As anticipated, the proportion of time spent incurring setups is lowest when using the

cellular layout (Table 11). Conversely, jobs in the cellular layout also spend the greatest

Table 11. Treatment Means for Mean Setup Time Proportion (Mean Setup Time)

  

 

 

I Setup Time Low High

, Part Mix Balanced Unbalanced Balanced Unbalanced

DCM 1 0.113 0.115 0.203 0.206

(23.35) (22.28) (48.23) (46.08)

DCM 2 0.113 0.114 0.202 0.206

(23.25) (22.05) (47.67) (45.87)

DCM 3 0.116 0.118 0.205 0.211

(24.91) (23.61) (51.24) (49.03)

Config. (23.77) (22.77) (48.82) (49.99)

DCM 5 0.090 0.095 0.170 0.179

(20.58) (20.03) (42.33) (41 .70)

Process layout 0.113 0.117 0.196 0.204

(25.48) (24.39) (52.56) (50.59)

Cellular Layout 0.030 0.020 0.060 0.053 f

(966 16969> 6691> (1666> .  

 
    

  

 

     

 

     

 

 

     

 

     

 

 

   

 

        

 

proportion of time in queue even under conditions known to be conducive to CM (high

setup time, balanced part mix). There is little difference in the proportion of time spent

in setups between DCM and the process layout when setup time is low, with the
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exception as expected of DCM 5, where jobs spend less time incurring setups. Curiously

however, when setup time is high, DCM, again with the exception of DCM 5, yields

marginally higher proportions. DCM 5 consistently has setup time proportions 2-3%

lower than the next best configuration other than the cellular layout. This suggests the

potential of DCM 5 as setup time increases further. Part mix has little effect on the

proportion of time spent in setups.

DCM yields large improvements in proportion of time spent in queues (Table 12). When

Table 12. Treatment Means for Mean Queue Time Proportion

  
 

 

 

 

 
 

 

 

 

   

Setup Time Low High

Part Mix Balanced Unbalanced Balanced Unbalanced

DCM 1 0.233 0.215 0.232 0.214

DCM 2 0.233 0.216 0.229 0.213 E

DCM 3 0.242 0.221 0.244 0.220 I

Emu. DCM 4 0.237 0.221 0.237 0.220

DCM 5 0.291 0.264 0.272 0.248

Process Layout 0.265 0.239 0.282 0.252

Cellular layout    

 

part mix is balanced, the proportion for DCM is generally of the order of 23-24% with

the exception of DCM 5. DCM 5 yields higher proportions due to the potential delay in

re-allocating machines. For the process layout, this figure is between 26 and 28% . When

part mix is unbalanced, the proportion is around 21-22% for DCM and 24-25% for the
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process layout. When setup time is high, even DCM 5 yields marginal improvements

over the process layout.

53.8W

The analysis of effects and a priori hypotheses demonstrate the benefits of DCM. When

the shop configurations are compared under different operating conditions, DCM always

performs as well as, if not better than, the traditional process and cellular layouts.

As expected, the cellular shop, being rigid and inflexible, consistently performs poorly.

Similar to existing findings (e.g., Morris, 1988), its relative performance is good only

when setup time is high and part mix is balanced. Though the cellular layout outperforms

the process layout with respect to mean flow time and work in process under these

conditions, it cannot outperform any of the DCM implementations, and is consistently

outperformed by most of them. The impact of reduced setup frequency in the cellular

layout is small compared to the considerable loss of routing flexibility, providing

, additional evidence of the effects of permanent machine dedication. Even under

supposedly conducive conditions, the cellular layout yields the worst due date

performance, likely the result of large flow time variance. When part mix is unbalanced,

performance is particularly poor, the result of uneven utilization, frequent bottlenecks,

and ever increasing queues.
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The failure to accept hypothesis 6 shows that even under conditions that have been shown

to be conducive to CM, the addition of flexibility to CM systems has a significant impact

on their performance. Although the reduction of setup frequency can have a beneficial

effect by reducing queue sizes, if this is done while permanently dedicating equipment,

the benefits are significantly lower than when flexibility is present. If the location of a

bottleneck were to remain constant and the cell configuration designed to accommodate

this, the cellular layout can be expected to perform better. Typically however,

bottlenecks are non-stationary. By letting cells evolve by shrinkage and growth to adjust

to this, a cellular configuration can overcome this problem. Alternatively, the planning

. system must consider conditions within individual cells when making decisions regarding

job release to those cells.

The performance of the process layout compared to DCM is more interesting since it

does not have the same problem of inflexibility. However, as the results demonstrate, its

lack of recognition of part families is a significant factor. Even when this might have

been expected to be a relatively minor problem, i.e., when setup time is low, DCM,

despite being relatively less flexible, performs better. Indeed, the relative performance

of the process layout is only marginally better under low setup time conditions than under

high setup time conditions. Comparing the process layout to DCM under different part

mix conditions, there is again little difference in relative performance. These observations

suggest that under normal and common operating environments, DCM is a better choice

than a process layout.
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The results demonstrate that the lower flexibility of DCM compared to the process layout

does not compromise material flows through the shop. When machine dedication is

permanent as in the cellular layout, forcing jobs to utilize specific machines often leads

to problems of long queues. However, these problems are not encountered in DCM.

Clearly all DCM configurations do not perform the same, though in general, differences

in performance between them are small. This is particularly true for flow time related

performance. DCM 1-4 consistently perform better than DCM 5. This shows that

increasing the degree of permanence of cells, even dynamically formed cells, has a

detrimental effect on performance. This provides additional evidence to support the

assertion of Flynn & Jacobs (1986) that machine dedication is a limiting factor in the

performance of traditional cellular systems. It also suggests that forcing machines to

remain idle may not be beneficial. However, it is also clear that the relative performance

of DCM 5 improves as setup time increases, as might be expected. This suggests that

under extreme setup time conditions, increasing machine dedication may be beneficial,

WWW.Given the simplicity of the cell

formation heuristic used by DCM 5 and the fairly small decrease in performance when

it is used when setup time is high (flow time is 5% higher than the best DCM

implementation when part mix is balanced), a similar but more efficient heuristic that

utilizes greater cell permanence, may make such cells more viable. One way to

accomplish this is to consider the length of time a machine is allowed to remain idle. If

this is longer than the time it takes to carry out a major setup, immediate reallocation
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of the machine may be more appropriate. As it is currently implemented, DCM 5 does

not consider this trade-off.

Of the remaining DCM implementations, the observation that DCM 3 yields relatively

poor performance under high setup time conditions is interesting. DCM 3 explicitly

attempts to promote the flow of jobs by extending cells forward to their successor

departments, allowing the cell to grow. However, when setup time is high, this

implementation performs poorly relative to the two more myopic implementations, DCM

l and 2. On the other hand, DCM 4, which also considers shop-wide family processing

requirements, performs relatively well. This may be due to DCM 3 being too myopic

itself by not considering the extent to which the newly allocated machine can be used by

a family. The potential exists for the machine to be allocated to a family with only a

single job in the current queue and only the job currently being processed in the

predecessor department. Under this extreme case, only two jobs take advantage of the

major setup incurred. On the other hand, the current queue may contain families without

jobs in process in their respective predecessor departments, but morejobs or more urgent

jobs in the current queue. DCM 4 is again likely to be more effective under these

conditions since it considers processing requirements of the family throughout the shop,

not just at the current and predecessor departments. This suggests that DCM 3 may yield

better performance if its implementation is modified to make it recognize material flows

more globally. This could be done by considering the total number of jobs in both the

current and predecessor departments that can use the new setup.
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Comparing DCM 3 and 5 as a group to DCM 1, 2, and 4, the results show that

differences in mean flow time when setup time is high, are, though statistically

significant, small in magnitude. DCM 3 and 5 have flow times that are less than 4%

higher than that required for them not to be statistically significantly different from the

other implementations. The difference in flow times is due to increases in both setup time

and time spent in queues. However, the increase in time spent in queues is relatively

higher. This lends further support to the contention that DCM implementations that

recognize information about material flows may indeed perform better than those that do

not, if they are designed effectively. Recognizing material flows provides a mechanism

to route work more efficiently. By making available all machines required by a family,

the potential for delays while jobs await major setups is reduced. This enables jobs to

pass through the shop with the fewest obstacles.

An observation concerning all DCM implementations is that they generally perform better

when part mix is unbalanced. This suggests that under these conditions, the greater

ability of parts from high demand families to share setups more than offsets the increase

in setups caused when corresponding machines are reassigned to families with low

demand.

5.3.9W

The results of stage one demonstrate that DCM is a more effective means of production

than that using a traditional process or cellular layout under certain conditions. For the
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conditions examined, DCM consistently outperforms these alternatives when conditions

are not suited to them. Under conditions conducive to these alternatives, DCM performs

at least as well as them, and often better than them. The increased setup efficiency of

DCM allows the process layout to be operated more efficiently than at present, despite

the loss of some degree of routing flexibility. The increased flexibility ofDCM compared

to traditional CM, enables family based production to be carried out so that it is more

responsive to change, without being compromised by the decrease in setup efficiency.

Given the tradeoff between flexibility and setup efficiency that exists in a small/medium

batch production environment, DCM offers an alternative between the extremes of high

flexibility/low efficiency (process layout), and high efficiency/low flexibility (cellular

layout). The results suggest that some sacrifice along one dimension is justified and in

fact beneficial, if it is substituted with an increase in the other. Furthermore, it appears

that it is more beneficial to sacrifice setup efficiency than flexibility. DCM allows the

tradeoff to be made without changing the physical nature of the shop.

5.4 ANALYSIS OF STAGE II DATA

5.4.1W

The treatments included in stage two are re-stated in Figure 37. Of the five DCM shop

configurations used in stage one, DCM 4 was selected for use in stage two. DCM 4

consistently performed well in stage one and is also one of the implementations that

utilizes shop information on a more global scale, actively seeking to complete the

machine requirements of part families.
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Legend : 1 - 54 : Treatment Numbers

Dispatching Rule :

Processing Time, Minslk - Minimum Job Slack

Volume Mix : 100 - Job Size = 100, N(100,10) - Job Size = N(100,10), 50

- Job Size = 50

Balanced Part Mix : Part families have equal demand probabilities

Volume Mix 100 I N(100,10) I 50 I

Utilization(%) 70I80I90I70 80I90I70I80I90I

Disp. Rule Part Mix

FCFS Balanced 1 7 13 19 25 31 37 43 49

Unbalanced 2 14 20 26 32 38 44 50

SW Balanced 3 9 15 21 27 33 39 45 51

Unbalanced 4 10 16 22 28 34 40 46 52ll

Balanced 5 11 17 23 29 35 41 47 53

Unbalanced 6 12 18 24 30 36 42 48 1.3—1..
 

FCFS - First Come First Served, SPT - Shortest

Unbalanced Part Mix : Three part families have demand probabilities of .233,

two have demand probabilities of .15)

Figure 37. Stage II Treatments

5.4.2 mm;

For mean flow time, though there was a reasonable fit with the assumption of normality,

this was improved considerably by the use of a log transformation. For the raw data, all

but eight treatments yielded PCCI‘ values within 5% of that required to accept the

hypothesis of normality. However, three were more than 20% less than the critical value.

When a log transformation was used, all but three of the treatments yielded PCCT values

within 5% of that required to accept the hypothesis of normality, and all were within 7%.

None of the three transformations used increased the homogeneity of residual variances.
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However, examination of the residuals showed that heterogeneity increased as utilization

increased and performance deteriorated.

The analysis for mean tardiness again showed that using a log transformation on the data

yielded the best fit with the assumption of normality. All but ten treatments yielded

PCCT values within 5% of that required to accept the hypothesis of normality. The fit

with the raw data was poor. Homogeneity of variances also increased when this

transformation was used. When a log transformation was used for the two measures of

work in process, the fit with the assumptions was again better than that with the raw

data. For mean work in process, all treatments yielded PCCT values within 2.5% of the

critical value, and for the standard deviation, all but one was within 4% . However, as

with the other measures, the variance of residuals increased as utilization increased, but

this also led to a deterioration in shop performance.

5.4.3 AaalxsiLQLEm

5.4.3.1 Mmflmlime

ANOVA results for the log of mean flow time are reported in Table 13. Treatment

means for mean flow time are reported in Table 14. In order to examine the impact of

the significant interactions, Tukey multiple comparisons were carried out at each level

of utilization for each combination of part mix and volume mix (Figures 38, 39a-c).



Table 13. Analysis of Variance for Log Mean Flow Time

SOURCE
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Random Numbers 99 4.976 0.050 7.56 0.0001 3

Dispatching Rule (D) 2 0.047 0.024 3.54 0.0292

Part Mix (16) 1 5.381 5.381 809.33 0.0001 :

[Volume Mix (V) 2 61.292 30.646 4609.69 0.0001 ;

Utilization (U) 2 101.471 50.735 7631.47 0.0001 .

D 6 r9 2 0.019 0.009 1.41 0.2446 1

D 9- v 4 0.030 0.007 1.12 0.3474

F) 9 U 4 0.063 0.016 2.38 0.0495

P 9- v 2 0.599 0.300 45.05 0.0001

19 9' U 2 15.198 7.599 1142.99 0.0001

v 6 U 4 0.023 0.006 0.87 0.4780

D 9- 16 9 v 4 0.007 0.002 0.28 0.8922

D 9 P .. U 4 0.039 0.010 1.48 0.2065

D 9- v 6 U 8 0.036 0.004 0.67 0.7192

P 9 v .. U 4 0.924 0.231 34.74 0.0001 I

D 6 P 6 v 9 U 8 0.013 0.002 0.24 0.9823

[32m- 5247 34.883 0.007 I
 

R2 = 0.84
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Log Mean Flow Time by Part Mix x Volume Mix I

Utilization = 70% Utilization = 80% Utilization = 90% I

Unbal/SO Unbal/50 ] Bal/50

BaI/50 Bal/50 Bal/N(100,10)

Unbal/100 ] Unbal/100 J Bal/lOO ]

Unbal/N(100,10) Unbal/N(100,10) Unball50

Bal/IOO ] Bal/100 ] Unbal/100 ]

Bal/N(100,10) Bal/N(100,10) Unbal/N(100,10)
  

Figure 38. Tukey Multiple Comparisons for Log Mean Flow Time

The results show that at low utilization levels (70%), flow time is as expected, lowest

when jobs are of batch size 50, with flow times lowest if part mix is unbalanced. For

jobs of batch size 100, performance is the same when part mix is unbalanced, regardless

of whether job size is constant or variable. Performance deteriorates when part mix is

balanced, though again it is not affected by variability in job size. As utilization increases

to 80%, these results repeat themselves with the exception that when job size is 50, there

is no difference if part mix is balanced or unbalanced. At high utilization levels (90%),

the results change dramatically. Flow time is lowest when job size is 50 and part mix

balanced. However, there is now no difference between jobs of size 50 when part mix

is unbalanced, and jobs of size 100 when part mix is balanced. The poorest performance

is obtained when jobs are of size 100 and part mix unbalanced.

5.4.3.2 Mines:

ANOVA results for log mean tardiness are reported in Table 15. Treatment means for

mean tardiness are reported in Table 16. The significant effects were examined by
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Table 15. Analysis of Variance for Log Mean Tardiness

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

   

   

 

     

SOURCE DF 88 MS F p

Random Numbers 99 490.68 4.96 5.38 0.0001

Dispatching Rule (D) 2 924.11 462.05 501.99 0.0001

Part Mix (16) 1 53.84 53.84 58.50 0.0001

Volume Mix (V) 2 99.30 49.65 53.94 0.0001

Utilization (U) 2 4031.04 2015.52 2189.73 0.0001

D * 16 2 9.70 4.85 5.27 0.0052

D .. v 4 114.57 28.64 31.12 0.0001

D 6 U 4 1423.32 355.83 386.59 0.0001

16 6 v 2 0.11 0.05 0.06 0.9435

[16 9' U 2 5.72 2.86 3.11 0.0447

I v 99 U 4 492.89 123.22 133.87 0.0001

F) 6 16 9 v 4 1.16 0.29 0.32 0.8674

D 9 P 9 U 4 7.42 1.86 2.02 0.0895

D 9 v 9 U 8 171.29 21.41 23.26 0.0001 .

16 9 v 9- U 4 3.60 0.90 0.98 0.4187 I

D * 16 6 v 9- U 8 13.36 1.67 1.81 0.0695

Error 5247 4829.56 0.92   

 

  
R2 = 0.62
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carrying out Tukey multiple comparisons by utilization for each combination of

dispatching rule and part mix, and dispatching rule and volume mix (Figures 40, 41a-c,

42a-c).

Log Mean Tardiness by Dispatching Rule x Volume Mix
 

‘ Utilization = 70% Utilization = 80% Utilization = 90%
 

, MINSLK/100

MINSLK/N(100,10)

; FCFS/100

, FCFS/N(100,10)

f MINSLK/50

, FCFS/50

, SPT/N(100,10)

. SPT/100

J
1

J

 

MINSLK/N(100, 10)

MINSLK/100

MINSLK/50

FCFS/100

FCFS/N(100,10)

FCFS/50

SPT/50

SPT/N(lOO, 10)

SPT/ 100

l

J

 

MINSLK/50

FCFS/50

MINSLK/100

MINSLK/NOW, 10)

SPT/50

FCFS/ 100

FCFS/N000, 10)

SPT/N(100, 10)

SPT/100

 
 

Log Mean Tardiness by Dispatching Rule x Part Mix

Utilization = 70%

 

Utilization = 80% Utilization = 90%
 

' MINSLK/Bal

MINSLK/Unbal

7 FCFS/Ba]

FCFS/Unbal

: SPT/Bal

, SPT/Unbal  

MINSLK/Bal

FCFS/Bal

MINSLK/Unbal

FCFS/Unbal

SPT/Ba]

SPT/Unbal  

MINSLK/Bal

FCFS/Bal

SPT/Ba]

MINSLK/Unbal

SPT/Unbal

FCFS/Unbal

Figure 40. Tukey Multiple Comparisons for Log Mean Tardiness

At low utilization levels, tardiness is as expected lowest whenever the minimum slack

dispatching rule is used. The FCFS rule outperforms the SPT rule. For both of these

rules, tardiness is lower when part mix is balanced. Slack based dispatching generally

yields lower tardiness when job size is large, regardless of whether it is constant or

variable. At 80% utilization, tardiness is lowest when slack based dispatching is used and



Figure 41 . Mean Tardiness by Dispatching Rule x Part Mix
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Figure 41. (cont'd)

c.U'° tion = 90%
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part mix balanced. There is however no difference between slack based dispatching when

part mix is unbalanced and FCFS dispatching when part mix is balanced. The relative

performance of the remaining three scenarios is the same as that when utilization is 70%.

Slack based dispatching always yields the best performance regardless ofjob size, though

again performance is better when jobs are of size 100. The FCFS dispatching rule

performs better than SPT for all job sizes, but unlike slack based dispatching, there is

no difference due to job size. When SPT dispatching is used, small jobs yield relatively

better due date performance than large jobs. At high utilization levels, there is no

difference between minimum slack and FCFS dispatching when part mix is balanced.

Tardiness is always lower when part mix is balanced. Only at 90% utilization do small

jobs yield relatively lower tardiness, and this only if minimum slack or FCFS dispatching

are used. Overall, slack based dispatching as expected yields better performance, and

SPT dispatching performs poorly.

5.4.3.3 WES.

ANOVA results for log mean work in process are reported in Table 17. Treatment means

for mean work in process are reported in Table 18. Tukey multiple comparisons were

carried out for each utilization level, for each combination of dispatching rule and part

mix, and part mix and volume mix (Figures 43, 44a-c, 45a-c). When utilization is 70 or

80% , there is no difference in work in process based on particular dispatching rule and

part mix combinations. However, at 90% utilization, a balanced part mix always yields

lower work in process. For each part mix, there is no difference due to dispatching rule.
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Table 17. Analysis of Variance for Log Mean Work in Process

SOURCE U
1

"
”
1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

Random Numbers 99 9.818 0.099 28.40 0.0001

Dispatching Rule (D) 2 0.002 0.001 0.34 0.7113

Part Mix (16) 1 2.414 2.414 691.19 0.0001

Volume Mix (V) 2 101.203 50.601 14488.80 0.0001

Utilization (U) 2 164.557 82.278 23558.92 0.0001

D 6 16 2 0.028 0.014 4.06 0.0173

D . V 4 0.010 0.002 0.71 0.5832

D .. U 4 0.032 0.008 2.31 0.0552

16 .. V 2 0.876 0.438 125.36 0.0001

; 16 .. U 2 7.939 3.970 1136.60 0.0001

V .. U 4 0.067 0.017 4.83 0.0007

I D .. 16 6 V 4 0.004 0.001 0.26 0.9023

D 6 16 6 U 4 0.058 0.014 4.13 0.0024

1) .. V 6 U 8 0.011 0.001 0.40 0.9189

16 6 V 6 U 4 0.969 0.242 69.37 0.0001 I

D .. 16 . V 9- U 8 0.007 0.001 0.24 0.9831 I

Error 5247 18.325 0.003 J      
2 = 0.94
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Log Mean Work in Process by Part Mix x Volume Mix
 

 

   

   
   

Utilization = 70% Utilization = 80% Utilization = 90%

Unbal/SO Bal/50 J Bal/50

Bal/50 Unbal/50 Unba1/50

Unba1/100 ] Unba1/100 ] Bal/loo ]

Unba1/N(100,10) Unbal/N(100,10) Bal/N(100,10)

Bal/100 ] Bal/100 Unba1/100

Ba1/N(100,10) Bal/N(100,10) Unbal/N(100,10) 

   

    

   

 

   
    

  
    

Utilization = 70% Utilization = 80% Utilization = 90%

SPT/Unbal ‘I FCFS/Unbal 'I SPT/Bal

FCFS/Unbal SPT/Unbal FCFS/Ba]

MINSLK/Unbal MINSLK/Unbal MINSLK/Ba]

FCFS/Bal SPT/Bal MINSLK/Unbal

SPT/Bal FCFS/Ba] FCFS/Unbal

MINSLK/Ba] .. MINSLK/Ba] - SPT/Unbal

  

Figure 43. Tukey Multiple Comparisons for Log Mean Work in Process

Work in process is as expected, always lowest when job size is small. At 70%

utilization, an unbalanced part mix yields lower work in process than a balanced part mix

when jobs are of size 50. For jobs of size 100, work in process is lower whenever part

mix is unbalanced, though for a particular mix, variability in job size is not significant.

These observations repeat themselves at higher utilization levels with few exceptions. At

80% utilization, there is no difference between a balanced and an unbalanced part mix

when job size is 50, but for jobs of size 100 under balanced part mix conditions, constant

job size yields lower work in process. At 90% utilization, jobs of size 50 yield the lowest
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work in process, particularly when part mix is balanced. For jobs of size 100, a balanced

part mix yields lower work in process than an unbalanced part mix.

5.4.3.4WW

ANOVA results for the log of the standard deviation of work in process are reported in

Table 19. Treatment means for the standard deviation of work in process are reported

in Table 20. Tukey multiple comparisons were carried out for each utilization level for

all combinations of dispatching rule, part mix and volume mix (Figures 46, 47a-c). The

comparisons show that the standard deviation of work in process is always lower when

job size is 50. For this job size, no differences exist based on part mix or dispatching

rule. When utilization is 70 or 80%, there is no difference in work in process based on

particular dispatching rule and part mix combinations. However, at 90% utilization, such

differences do exist. Performance is generally lower when part mix is unbalanced.

5.4.4WWW

‘ The proportion of time spent in setups decreases as utilization increases, falling from

12.6% to between 6 and 8% for jobs of size 100, and from 21.6% to between 10 and

14% for jobs of size 50 (Table 21). Most of this decrease occurs when utilization goes

from 80 to 90%. The proportion is also higher for jobs of size 50, typically of the order

of9% higher than for jobs of size 100. This falls to only 6% as utilization increases. For

jobs of size 50, setup time proportion at high utilization levels is also around 2-3%

higher when part mix is balanced. The SPT dispatching rule yields poorer performance
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Table 19. Analysis of Variance for Log Standard Deviation of Work in Process

 

 

 

 

   

 

 

 

 

 

 

   

   

 

   
 

 

 

 

 
 

 

 

 

      

SOURCE DF 88 MS 19 p I

Random Numbers 99 23.383 0.236 69.13 0.0001

Dispatching Rule (D) 2 0.062 0.031 9.14 0.0001

Part Mix (P) 1 0.764 0.764 223.51 0.0001

Volume Mix (V) 2 121.311 60.655 17752.16 0.0001

Utilization (U) 2 75.250 37.625 11011.79 0.0001

D .. P 2 0.001 0.001 0.20 0.8208

D 6 V 4 0.014 0.004 1.04 0.3828

D 6 U 4 0.035 0.009 2.60 0.0345

16 .. V 2 0.350 0.175 51.26 0.0001

16 .. U 2 0.157 0.079 23.03 0.0001

v 6 U 4 0.454 0.114 33.25 0.0001

D .. 16 6 v 4 0.074 0.019 5.42 0.0002

D .. 16 6 U 4 0.001 0.000 0.10 0.9840

D 6 V .. U 8 0.035 0.004 1.28 0.2467 II

16 .. V .. U 4 0.315 0.079 23.06 0.0001 II

D 4 16 6 V .. U 8 0.150 0.019 5.48 0.0001 I

Error 5247 17.928 0.003 I
 

R2 = 0.93
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when part mix is unbalanced, increasing the proportion by 1% when job size is 100, and

2% when it is 50.

Results for queue time proportion mirror those for setup time proportion (Table 22). The

proportion increases as utilization increases, going from 17-19% to as high as 53%. Jobs

of size 50 are in queues proportionately longer when utilization is low. At 70%

utilization, they consistently spend about 2% longer in queues than jobs of size 100.

However, at medium and high utilization levels, the proportion is higher only when part

mix is unbalanced. At 80% utilization this is only about 1% higher, but at 90%

«utilization it is 4-5% higher. Queue time proportion is consistently higher for an

unbalanced part mix particularly when utilization is high, except when SPT dispatching

is used. For jobs of size 100, this proportion is 4-5% higher. For jobs of size 50, an

unbalanced part mix yields an 11% increase when FCFS or minimum slack dispatching

is used, and 4% when SPT dispatching is used. This increase is only 2% when utilization

is 80%.

The choice of dispatching rule yields differences, again primarily at high utilization, with

SPT dispatching yielding lower proportions. When job size is a constant 100, SPT

dispatching yields 6% lower queue time proportions when part mix is balanced, and 10%

lower when part mix is unbalanced, compared to the FCFS rule. Compared to slack

based dispatching, these differences are 5 and 8%. Compared to jobs of size N(100, 10),

the differences are 7 and 11% and 6 and 9% respectively. For jobs of size 50 they are
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4 and 10%, and 3 and 9% respectively. At 80% utilization, SPT dispatching typically

yields only a 1-1.5% improvement over other rules.

As expected, proportion tardy increases significantly as utilization increases (Table 23).

For jobs of size 100, it goes from near zero at 70% utilization, to 1-4% at 80%

utilization, to 14—30% at 90% utilization. For jobs of size 50, it rises from near zero to

2-6% to 17-40% at utilization levels of 70, 80 and 90% respectively. Again, smaller jobs

consistently fare poorly, particularly when part mix is unbalanced. At 90% utilization,

when part mix is unbalanced, proportion tardy is typically 9% higher for jobs of size 50.

Proportion tardy is slightly higher when job size is N(100,10) compared to a constant

100. Again, small increases in pr0portion tardy are caused by an unbalanced part mix.

These rise as utilization increases. At 80% utilization, an unbalanced part mix yields

increases in proportion of about 1% when job size is 100, and 2% when job size is 50.

However at 90% utilization, these rise to 10 and 20% respectively, except when SPT

dispatching is used. In this case the increases are of the order of 2 and 7% respectively.

At 70 and 80% utilization levels, the FCFS and minimum slack dispatching rules yield

similar proportions tardy. SPT dispatching yields 1-2% poorer performance at 80%

utilization, but at 90% utilization, it is more effective. For jobs of size 100, it yields 5-

6% lower proportions tardy when part mix is balanced, and 13-14% lower when

unbalanced. For jobs of size N(100, 10), these are about 2% higher in each case, and for

jobs of size 50, about 2% lower.
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5.4.5W

The results demonstrate a number of characteristics of DCM, some of which are similar

to those of traditional process and cellular shops, and some which appear to be specific

to DCM. Utilization, as expected, has a considerable effect on performance. Whereas

an increase in utilization from 70 to 80% does not significantly affect flow times, an

increase to 90% has a dramatic effect, particularly when part mix is unbalanced. Mean

flow time increases by about 10-15% when utilization is increased to 80%. When

utilization is 90%, flow times (compared to those at 70% utilization), are typically 70

or 44% higher when part mix is balanced, for jobs of size 100 and 50 respectively.

When part mix is unbalanced, these are 190 or 250% respectively.

Similar increases in work in process are found. Mean work in process increases by 25-

30% when utilization increases to 80%. At 90% utilization, work in process is 127 or

216% higher (compared to work in process at 70% utilization) when part mix is

balanced, for jobs of size 100 and 50 respectively. When part mix is unbalanced, these

are 216 and 282% respectively. The corresponding figures for the standard deviation of

work in process are a 2030% increase at 80% utilization regardless of part mix, and

increases of 120 or 80% at 90% utilization.

This in turn explains the large increases in tardiness that occur at higher utilization

levels. At 80% utilization, the percentage increases are large due to the negligible

tardiness at 70% utilization, though actual tardiness is low, of the order of less than
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seven minutes. However, at 90% utilization, tardiness is of the order of 10-60 minutes

for a balanced part mix, and over 200 for an unbalanced part mix. This behavior is to

be expected since it is well known that shop performance deteriorates under high

utilization levels (Baker, 1984).

The result of increased utilization and the cause of the. decreased performance is as

expected a dramatic increase in time spent in queues. At 80% utilization, the impact of

queues is relatively small since there is sufficient capacity to absorb the extra workload.

At 90% utilization, this is no longer true. The benefits of setup efficiencies are eroded

by the volume of work. However, this does not detract from the increase in effective

capacity yielded by reducing major setups. As was seen in stage one, even at 80%

utilization, DCM outperforms a traditional process layout. One can surmise that at higher

utilization levels, the greater setup efficiency of DCM will yield relatively larger

improvements over the traditional process layout. Indeed, DCM performance at 90%

utilization is not considerably poorer than comparable process layout performance at 80%

. utilization (see stage one results). Even at 90% utilization, flow time performance with

a balanced part mix does not increase in an explosive manner. Given that existing CM

systems are more conducive to an environment characterized by a balanced part mix, the

results show that the incorporation of flexibility increases the potential of manufacturing

based on the cellular concept. The traditional cellular layout, as stage one demonstrates,

performs poorly even when it is operated at utilization levels of 60-70%.
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An important point to recognize is the impact of minor setups on DCM performance.

DCM attempts to schedule jobs within a cell based on a single stage dispatching rule and

treats minor setups as relatively insignificant. As utilization increases, though the

frequency of major setups may decrease due to an increase in number ofjobs in a queue

from the same family, the frequency of minor setups necessarily increases. By reducing

this frequency, for example by using sequence-dependent scheduling within a cell, or by

reducing minor setup times, potential exists to reduce the negative impact of higher

utilization further. A possible drawback with sequence-dependent scheduling however,

is that it discriminates against jobs requiring a change in minor setup. A large number

of identical jobs in the queue could thus lead to an increase in flow time variance and

thus tardiness, by making jobs that require a setup endure long waits. This problem will

be exacerbated if the number of machines in each process department is small in relation

to the number of part families.

The response of DCM to part mix and volume mix variability is an important

characteristic of it. At high utilization levels, unbalanced part mix leads to a degradation

in flow time related performance, not unlike traditional CM. Though the setup time

proportion does not change significantly except when job size is 50, queue time

proportion does. Two explanations are plausible. First, the permanence of cells

corresponding to high demand families may be resulting in low demand families

competing for few remaining machines. In addition, when high demand families gain

access to multiples of the same machine, these machines must be relinquished when
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required by cells lacking that machine type. The result is that more frequent setups occur

on these two groups of machines, i.e., those used by low demand families and ‘shared’

machines. This may be resulting in longer waits for jobs competing for these machines.

No adverse impact on average setup time proportion is seen since cells corresponding to

high demand families incur few major setups. An alternative explanation is that since

multiple machines must be relinquished by more permanent cells as demand elsewhere

dictates, these cells, though able to increase their capacity when machines are available,

generally have fewer machines than necessary to efficiently reduce the queues in front

of them. More likely, the cause of poor performance under unbalanced part mix

conditions is a combination of these two explanations. DCM therefore exhibits behavior

similar to a traditional cellular layout with respect to part mix, but only at much higher

levels of utilization. At lower utilization levels, DCM is unlike traditional CM,

performing better when part mix is unbalanced. It appears that not only is there a greater

ability of high demand families to retain multiple machines of the same type, but

competition among low demand families for machines not already allocated, is lower.

This reduces the impact of setups and queues. These observations further substantiate the

claims of Flynn & Jacobs (1986) regarding the effects of permanent machine dedication.

Reducing machine dedication and allowing machines to supplement cells or be re-

assigned between them, makes CM more responsive to changes in production needs.

The impact of small jobs is also evident. Although as expected flow times are lower at

low and medium utilization levels when jobs are small, these flow times are greater in
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proportion to job size than for large jobs. At low and medium utilization levels, flow

times of jobs of size 50 are 60% or more of those of jobs of size 100, indicating the

absence of returns to scale. Consistent with the findings for part mix, this becomes worse

at higher utilization levels when part mix is unbalanced. Flow times grow to as much as

70% of that for jobs of size 100. The only instance when flow times of jobs of size 50

are in proportion to their size is when utilization is high and part mix balanced.

Less pronounced effects exist for work in process. At 70 and 80% utilization levels,

mean work in process is as expected, half that for jobs of size 100. At 90% utilization

however, this is only 44% when part mix is balanced, but 62% when unbalanced. The

standard deviation of work in process is in all cases close to the one half expected. The

poor performance when jobs are small can be attributed to the increased impact of

setups. Setup time is larger in proportion to processing time when batch size is small.

This can be seen by the higher setup time proportions when jobs are of size 50. This also

translates into longer times spent in queues by jobs awaiting setups, increasing the queue

time proportion further. In order for small jobs to be processed efficiently, further setup

time reduction is required. It should however be pointed out that since for each utilization

level the arrival rate was established based on processing and setup times, this has an

important effect on small jobs. Due to more frequent setups, the productive capacity of

the shop is lower when batch size is small. The arrival rate for jobs of size 50 is

consistently about 58% of that for jobs of size 100, not one half. This implies that if the

impact of setups on small jobs is held constant, the arrival rate will decrease, and work
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in process will increase. What remains to be seen is whether the increase in arrival rate

will further degrade performance, or whether the reverse will happen. Increased arrival

rate increases the potential number of jobs that can share a setup, and may thus reduce

setup frequency.

The absence of differences in performance due to introducing variability in job size when

job size is 100 does suggest DCM to be robust with respect to uncertainty in volume

mix. One would expect a reduction in variance to yield better results, yet the results

consistently show this not to be so. Given this and the observations regarding part mix

variability, DCM appears to be an effective method ofproduction even in an environment

characterized by the kind of uncertainty modelled here, except when utilization is high.

As expected, DCM exhibits similar behavior to process and cellular layouts with respect

to job dispatching. Minimum slack dispatching yields better due date performance when

this is measured by mean tardiness. In addition, it performs well at high utilization levels

when part mix is unbalanced. However, SPT performs relatively better with respect to

proportion tardy. This is no surprise based on evidence from past job shop research. For

other performance measures, dispatching rule has little effect on shop performance. This

can be attributed to the fact that dispatching rules are often used in job shops in situations

where more effective planning would have been more appropriate. Since DCM explicitly

considers family production characteristics prior to scheduling jobs, it compensates for
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poor planning to a greater extent than traditional job shops do. This reduces the impact

of dispatching rules.

5.5 SUMMARY OF STAGE 11 RESULTS

The results suggest that DCM performs well under a wide range of shop conditions and

is fairly robust against usual forms of variability found to adversely affect other shop

configurations. Performance is good at both low and medium utilization levels, and

shows substantial deterioration only when utilization is at a high level. Even then DCM

appears to provide improved performance compared to traditional methods of small batch

production. DCM is robust to part and volume mix variability except when the shop is

subject to heavy loads. However, DCM does not perform well when batch size is small.

DCM is in general not overly sensitive to different dispatching rules, but when it is, it

exhibits behavior similar to that found in traditional process and cellular layout

production.

5.6 SUMMARY OF EXPERIMENTAL RESULTS

The results indicate that DCM is an effective configuration for small/medium batch size

production under the conditions investigated. Not only does it outperform traditional

process and cellular layout production under conditions when it was expected to, but also

when conditions were thought to be more conducive to these alternative configurations.

Further, while these other configurations have in the past been shown to be sensitive to

variability in the shop environment, DCM is not affected in the same way.
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Though one of the objectives of DCM is to make small batch production more efficient,

DCM does not perform well when batch sizes are decreased. DCM resolves some of the

difficulties inherent in existing production methods, particularly with respect to

scheduling issues, but it does not address others such as setup time. DCM focusses on

operating the shop more effectively, not changing the physical characteristics of the shop.

Only by simultaneously addressing both can additional improvements in performance be

obtained. Despite this, DCM appears to be more effective than existing small/medium

batch production methods for the same batch size, setup time environment.

5.7 CONCLUSIONS AND FUTURE DIRECTIONS

A preponderance ofevidence suggests that manufacturing systems that physically embody

the principles of CM perform poorly in an environment characterized by small batch

sizes, changing demand patterns, and an emphasis on short lead times. This is true

regardless of whether the system is composed either fully or partially of manufacturing

cells, or if it is designed to compensate for the limitations of cellular production methods.

- This research shows that the principles of CM can be utilized effectively if two of its

main properties, layout and similarity in part design/processing needs, are separated. The

study shows that if the production system embraces CM’s philosophy with regard to part

design/similarity in isolation from CM’s layout requirements, it has the potential to

perform well under a variety of conditions that can be found in contemporary batch

production environments.
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The research carried out in this study has examined relatively simple implementations of

DCM under a limited set of conditions. However, this does not undermine the value of

DCM. To the contrary, by keeping the design of DCM simple and not introducing

potentially confounding factors, it emphasizes how important the separation of the layout

and design/processing aspects of CM is. In addition, it demonstrates that reaping the

benefits of DCM is a realistic objective for manufacturing organizations, since DCM

does not add significant constraints, either operational or financial, to existing job shop

production environments.

The results suggest a number of areas where additional investigation may add to the

benefits and understanding of DCM. As discussed earlier, one of the reasons why DCM

implementations that recognize material flows do not perform as well as anticipated is

that their design is possibly overly simplistic and myopic. Similar but more far-sighted

cell formation methods may more clearly demonstrate the benefits ofrecognizing material

flows. In addition to using heuristics to form dynamic cells, the formation of dynamic

cells using optimization methods may further improve the performance of DCM. This

might be accomplished by using optimization models similar to those used for traditional

CM cell formation.

Given that DCM cells are not fixed entities, part families do not have to be pre-

determined as they must be in traditional CM. This suggests that ‘families’ or groups of

parts that will be processed together, can be created in real time based on parts currently
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awaiting processing. This also eliminates the problem of parts that do not naturally fit

into existing families. Instead of identifying families based on setup requirements, they

might be distinguished based on the machines individual parts use, and/or the sequence

in which they are used. This is similar in principle to how similarity coefficients have

been used in traditional cell formation models. This also allows the potential for DCM

to be evaluated in an environment characterized by less repetitive production.

The study indicates that DCM becomes less effective as batches become smaller. This

is due to the relatively greater impact of setup time. One can surmise that as setup time

is reduced, this will be less of a problem. Closer examination of the impact of setup time

may make it possible to determine whether smaller batches can be produced as effectively

as larger batches, or whether lower setup time still yields relatively better performance

with larger batches. Another way to evaluate the effect of setup time and batch size is

to consider the use of lot splitting. One would expect that some reduction in batch size

may improve throughput by making processing more continuous. Since DCM recognizes

family processing requirements, problems of increased setup frequency found in other

studies on lot splitting should be reduced. This can be extended to incorporate transfer

batch scheduling based on the repetitive lots logic.

Additional factors that define the physical characteristics of the shop can also be expected

to affect DCM performance. The impact of these factors needs to be investigated. These

factors include shop size, family size, and the number of families. Any negative effects
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of dedicating a particular machine to a family are likely to be reduced if the number of

machines of that type is increased. More machines of the same type should result in less

competition for remaining machines of this type. Similarly, fewer families should reduce

the competition for available machines. The size of a family may be important since the

larger a family is, the larger is the number of its parts that may require the use of a

machine at any instant. This may increase the extent to which the family retains use of

machines, thus increasing the life of the cell.

The research also provides insight into how traditional CM implementations might

perform more effectively. DCM’s separation of the processing and layout properties of

CM shows that CM is effective if the shop is not viewed as individual cells that do not

interact. Part of the reason for this layout effect may be due to the planning system

releasing jobs to the shop, not to individual cells. The cells however are independent and

have their own processing, capacity and workload constraints that change over time.

Releasing work to the shop without regard to the status of individual cells may place

demands on cells that are inconsistent with their current capabilities. In contrast, DCM

and job shops consist of process departments that are linked by the routings of individual

jobs, and by prevailing processing requirements. Since there are no permanent layout

restrictions, the shop as a whole assumes the demands placed by prevailing work

patterns. Whereas a planning system that releases jobs to the shop as a whole is

consistent with this environment, this may not be so for a shop that consists of

independent elements. Consistent with the concepts of focus and plants within plants
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(Skinner, 1974), the infrastructure of a manufacturing facility needs to be consistent with

the demands placed by its individual components. In traditional CM, this appears not to

be the case. One way to resolve this issue is to release work to cells in a traditional

cellular layout based on their individual workload or utilization, not on the behavior of

the shop as a whole.
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