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ABSTRACT

CURVATURE ENERGY OF NUCLEI, ELECTRONIC

EXCITATIONS OF CARBON CLUSTERS, AND THERMAL

PROPERTIES OF SODIUM CLUSTERS

BY

Nengjiu Ju

This thesis consists of three separate parts. In the first part we calculated the

nuclear correlation energy EMT in the RPA approximation with particular attention

paid to the A-dependence. We found that Eco" has a very different A-dependent

behavior from the mean-field total ground state energy Ema”. In this way, we want

to shed some new light on the longstanding contradiction between the curvature

coefficient value ac resulting from mean-field calculation which is always close to 10

MeV and that from the direct adjustment of mass-formula to nuclei ground state

masses which is zero.

Part two is dedicated to the study of the multipole electronic collective excitations

in carbon clusters using linear response theory. The single—particle wave and energy

levels are determined by a tight—binding Hamiltonian, whose parameters have been

determined by a fit to the LDA results. Because 060, the so—called buckyball, has a

spherical symmetry, its treatment is much simpler than that of an arbitrary cluster,

it is naturally our first choice to apply our model. With some work, we were also

able to completely solve the RPA problem within the tight—binding framework for an

arbitrary geometry of the cluster. We applied this new formalism to other carbon



clusters. The equivalents of both 71' and a plasmons in graphite are predicted for

these clusters. Since only dipole excitation is optically allowed, the other multipole

excitations are best studied by electron energy—loss spectroscopy (EELS). To this

end, we calculated the differential cross sections of inelastic electron scattering off

these carbon clusters. We compared our dipole electronic excitations with available

photoionization experimental data and our differential cross sections with available

EELS data. Good agreement is obtained between our calculations and available

experimental results where they are available.

The third part addresses the thermal properties of sodium clusters using the

isothermal molecular dynamics developed recently by Aurel Bulgac and Dimitri Kus-

nezov. A wide range of properties of small sodium clusters are investigated and pre-

sented. We found that sodium clusters undergo two “phase transitions”, one around

200 K from a crystal to a glassy or molten state, and a second one around 800 K,

from a molten to a fluid state. At low temperatures these clusters are essentially

incompressible, but relatively easy to deform. At high temperatures they become

extremely soft and evaporation of atoms sets in.
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Chapter 1

Introduction

1.1 Nuclear Correlation Energy

One of the well—established approaches to obtain nuclear binding energies is based

on the analogy of a nucleus to a drop of incompressible fluid. The first evidence in

support of such a simple “liquid drop” model for the nucleus comes from the fact

that per nucleon binding energy is about the same for all nuclei. If we are willing

to ignore the small local departures, it is possible to develop a simple formula that

expresses the binding energy of a nucleus in terms of its number of nucleons (in other

words, its volume since the volume is proportional to its number of nucleons) along

with surface correction, curvature correction and higher—order corrections.

The liquid drop model (LDM) has been very successful in determining many nu—

clear properties. An expansion of the nuclear energy of a finite nucleus into volume,

surface, curvature and higher—order contributions has proved enormously useful in

calculating fission barriers, ground—state masses and deformation, and other nuclear

properties [1, 2, 3]. However, a serious anomaly exists between the value of the

curvature energy coefficient aC obtained theoretically and that from adjustments to

experimental data [4]. Direct adjustment of mass—formula to the ground state masses



of nuclei throughout the periodic table yields values of the curvature energy coeffi—

cients aC (aC in the term aCA1/3 in the mass-formula) close to zero. On the other

hand, many previous theoretical calculations have given a typical value 10 MeV for

do.

By summing up all the ring diagrams, we calculated the nuclear correlation energy

ECO“. in the RPA approximation with particular attention paid to the A—dependence.

We found that Eco" has a very different A—dependent behavior from that of the

mean—field total ground state energy Emean. In this way, we want to shed some new

light on the anomaly aforementioned.

1 .2 Atomic Clusters

Clusters are aggregates composed of a countable number of atoms, which can be

as small as two or as large as hundreds of thousand. The real breakthrough comes

through the discovery of quantal shell structure in small droplets of sodium metal,

with characteristic “magic numbers”, by Knight and coworkers [5] , see fig. 1.1.

Since then, cluster physics has been an active field of theoretical and experimental

investigation. Many properties of a large variety of clusters have been examined

[6] — mass abundance spectra, fragmentation spectra and binding energy, supershell

structure [7], ionization potential [8, 9], photoelectron spectra and electron affinity,

static [11, 12, 13] and dynamical [14, 15, 16] polarizability, plasmon resonance spec-

tra [17] and thermal properties [18, 19], to name just a few. With the advent of

new technology, it has become possible to have well—controlled cluster sources, thus

to make clusters of well-defined sizes and to measure their properties precisely. Be-

cause clusters lie somewhere between a solid and an atom, they provide for a test

of our understanding of bonding and of the transition from atomic to molecular and
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N. The labels of the peaks correspond to the closed—shell orbitals. [From Knight et
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ultimately bulk properties. A compelling stimulus has been the desire to understand

how an extended crystalline solid develops from growing cluster aggregates. Clusters

possess many unique properties and they can be used to make new materials. Stimu—

lated perhaps by its potential use, from its very beginning, cluster physics has been a

very active field, bringing methods and concepts from atomic and condensed matter

physics, quantum chemistry, thermodynamics, surface science, optics, nuclear physics

and others into unprecedented combinations.

The most thoroughly studied clusters are the sodium clusters. Since sodium clus-

ters can be generated in conventional sources under supersonic adiabatic expansion

conditions, they can be studied for a longer time than it is possible for most other

clusters that require the use of the Smalley laser vaporization source [43]. The first

evidence of shell structures in clusters comes from the study of sodium clusters [5].

Recently, abundance spectrum has been measured up to 22,000 atoms and has re—

vealed interesting new shell structures [45]. The persistence of the strong shell effects

up to very large numbers of atoms in a cluster is a quite remarkable phenomenon

[46, 45].

The most interesting clusters studied so far are certainly the carbon clusters,

especially the so—called fullerenes including the celebrated buckyball C60.

To explain the large abundance of clusters with 60 carbon atoms, the existence of

a stable, spherical C60 molecule, the so—called buckyball, has been proposed [44]. In

the suggested structure, twelve regular pentagons and twenty hexagons are connected

to form an icosahedral structure, see fig. 1.2.

The most exciting development of the study of C60 has been the discovery of the

fourth form of pure carbon solid, the so—called fullerite, which was discovered about

only three years ago if we consider the amorphous carbon also as a pure solid form
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Figure 1.2: Structure of the C60 “buckyball” cluster.



(the other two forms are sp3—bonded diamond and spz-bonded graphite). In the fall

of 1990, W. Kratschmer et al [47] made a major breakthrough in the synthesis and

separation of C60. By chemical extraction methods, they obtained large quantities of

C60. This breakthrough has led to the intense experimental and theoretical studies

of the structural [48, 49, 50, 51] and electronic properties [52] of this novel solid form

of carbon.

The most striking property of fullerite is perhaps its superconductivity when it is

doped. Although the highest critical temperature of doped fullerite is still well below

that of the the high—TC superconductors, these intercalated fullerites have polarized

the interest of many investigators because they have superior material properties and

hence bear a higher potential for applications.

Many theories have been developed to explain a large variety properties of different

clusters, for example, the magic numbers of alkali metals. The simplest of these is

the spherical jellium model [6] of alkali metal clusters. Because of the delocalized

character of the valence s—electrons of alkali atoms, they are shared by all ions in a

cluster and this feature leads to shell effects similar to those observed in atomic nuclei.

To a very good approximation, the ions can be thought of as simply providing an

almost uniform positive background, and a jellium approximation is quite reasonable

[69]. The valence s—electrons move in a common mean field and the ensuing strong

shell effects account very well for both the enhanced stability of the magic clusters,

shapes corresponding to different numbers of atoms and the character of the optical

response (Mie resonance), which has analogous features to the well known giant dipole

resonance in nuclei. Spheroidal or ellipsoidal extensions of the jellium model are

derived in order to study deviations from sphericity and are used to provide general

shapes of cluster as oblate or prolate ellipsoids [22]. The spheroidal jellium model



also shows that within the jelluim model, special stability at shell closing is associated

with vanishing distortion from sphericity.

Among the more sophisticated methods are the density functional theory (DFT)

based on the local density approximation (LDA), configuration interaction (CI) cal-

culation, and calculation based on the Car—Parrinello method, to just name a few. In

these studies, it has been found that generally each cluster has several isomers at T

= 0 K with a very similar total energy, therefore thermal effects may have important

implications about the properties of the clusters [73].

Although there are many theoretical studies on a variety of different clusters, we

will concentrate on two studies of two classes of clusters in this thesis. The first

one is the study of the electronic excitations in fullerenes, which is presented in

chapter 3. Fullerenes are a group of carbon clusters with hollow cage structures, with

only pentagons and hexagons on their surfaces. The second one is the study of the

thermal properties of small sodium clusters using the newly developed isothermal

molecular dynamics [18, 19, 40, 39], which is the subject of chapter 4. Although

many theoretical studies have been done on clusters, most of them are concerned with

ground state properties, such as ground state geometrical and electronic structures.

Without justification, these calculations have been compared with experimental data.

On the other hand, clusters are produced at high temperatures [41]. Therefore the

study thermal properties of clusters is very important. The choice of sodium clusters

is pragmatic. Sodium clusters have been most thoroughly investigated [5].

1.2.1 Multipolar Responses of Fullerenes

Fullerenes are carbon clusters with hollow cage structure, with only pentagons and

hexagons on their surfaces. The best known member of fullerenes is the aforemen-



tioned buckyball C60. Since fullerenes are essentially hollow graphite shells, they

should support multipolar plasmon oscillations, closely related to the plasmons in

graphite. G. Barton and C. Eberlein [57] estimated the frequencies of these multi-

polar plasmons by adapting the reasonably successful hydrodynamic approach famil-

iar from bulk and surface plasmons [58, 59], with just one parameter calibrated on

graphite. They predicted 7r plasmons in the range between 6 and 8 eV, and a plas-

mons near and above 25 eV. In a more serious and physical treatment of the dipole

plasmon of C60, Bertsch et al [60] used the linear response theory (RPA) to study the

collective plasmon excitations in C60 clusters, they found that the valence electrons

are quite delocalized and show collective excitations. They predicted a giant dipole

resonance at an unusually high energy of 20 eV, see fig. 1.3. Their prediction is some-

what lower than the prediction 25 eV from the hydrodynamic model. The existence

of a giant dipole resonance in C60 was subsequently confirmed by an independent

photoionization experiment on a C60 gas target [61], see fig. 1.4. In computing the

matrix elements of the residual Coulomb interaction arising from the I = 0 transitions

in Ref. [60] for the dipole response, it was assumed that the spatial extent of the s—

and p-states is vanishingly small, this approximation results in a slight overestimate

of the Coulomb matrix elements. Another approximation in ref. [60] was to neglect

the l = 2 component in the particle—hole state [1912 > resulting from a p—hole state to

a p—particle state transition. These approximations make their approach unsuitable

to study other multipolar responses and also the multipolar responses of other non-

spherical fullerenes. It is part of our interest in chapter 3 to extend their calculation

without these approximations and to see to what extent their approximations are

valid. It is also our interest to extend the calculation to other multipoles.

In chapter 3, besides studying the multipolar responses of the C60, we also study
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the multipolar responses of other fullerenes. We have two aims. First of all. we are

interested in seeing how the plasmons vary with the sizes of the clusters. In the

classical picture of Mie, the energy of the plasmon is independent of the size of the

cluster and is totally determined by the free electron charge density of the cluster.

Secondly, we want to know how the plasmons behave with nonsphericity. Since other

fullerenes do not have spherical symmetry as C60 does, each plasmon of C60 should

split in other fullerenes. The extension from the RPA calculations of C60 to those of

other fullerenes is not trivial. Usually the nonsphericity of the system under study

presents a formidable technical problem in RPA, fortunately we are able to solve

the RPA equation for any geometry of the system considered in the tight—binding

framework for the single particle description of the electrons

Since only dipole excitation is optically allowed, the other multipolar excitations

are best studied by electron energy—loss spectroscopy (EELS). For this reason, we cal-

culate the differential cross sections of inelastic electron scattering off the fullerenes.

We compare our dipole electronic excitations with available photoionization experi-

mental data and our differential cross sections with available EELS data. Good agree-

ment are found between our calculations and available experimental results where they

are available.

1.2.2 Thermal Properties of Sodium Clusters

There are several reasons why it is interesting to study finite temperature properties

of atomic clusters, in particular of simple metal clusters. The most obvious one is the

fact that experimental results obtained so far are for relatively hot clusters [6, 74].

Even though the experimentalists do not have at the moment a way of determining

the temperature of the clusters they produce, and only relatively rough estimates are
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available, it is very likely that these clusters are melted. An estimated temperature

of T m 500—600 K seems to be realistic under experimental conditions [41]. On the

other hand, most of the theoretical studies are performed at zero temperature. With-

out further justification, these results have been compared with experimental data.

Therefore properties and the behaviour of finite systems at nonzero temperatures are

of unquestionable theoretical interest.

We will try to elucidate to some extent the role of a finite temperature in sodium

cluster in chapter 4. Although it is unquestionable that the most ‘fundamental”

way to describe atomic clusters at zero as well as at finite temperatures is ab initio

calculations, the computer time required to extract relevant physical information is

appalling. It is for this reason that we will adopt a less ambitious approach. We

will treat the electrons implicitly by using an effective many—body—alloy (MBA )

Hamiltonian. The parameters of this Hamiltonian were determined from ab initio

calculations with no free parameters [75].

1 .3 Thesis Organization

In chapter 2, we use RPA to calculate the nuclear correlation energy to address the

longstanding contradiction between the curvature coefficient value aC resulting from

mean-field calculation and that from the direct adjustment of mass—formula to nuclei

ground state masses.

We discuss the multipolar responses and differential cross sections of inelastic

electron scattering of C60 and other fullerenes in chapter 3. Comparison is made

between our calculations and available experimental data and good agreement is

obtained.

We elucidate the thermal properties of sodium clusters in charter 4. The electrons
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are treated implicitly by a MBA Hamiltonian. The possible link between the red shift

of the Mie plasmon in sodium clusters and their thermal expansion is discussed.

A summary of the results obtained and how to extend the works discussed in this

thesis are presented in chapter 5.

Finally the appendices are an integral part of this thesis, they provide the for- _

mulas used. We discuss the formulas of the multipolar responses and EESL of C60

in appendix A and their extension to nonspherical fullerenes in appendix B. This

extension is nontrivial and the formulas are much more complicated than those in

appendix A.
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Chapter 2

Correlation Energy and Curvature

Energy of Nuclei

L 2. 1 Introduction

Direct adjustment of mass—formula to the ground state masses of nuclei through-

out the periodic table yields values of the curvature—energy coefficients ac (ac in the

term aCA1/3 in the mass—formula) close to zero. However many previous theoretical

calculations give a typical value 10 MeV for ac. Calculations within mean—field meth-

ods have yielded the value 9.34 MeV for the Seyler—Blanchard effective two—nucleon

interaction [1], values ranging from 9.52 to 12.99 MeV for six representative Skyme

interactions [2]. And also in a HF calculation of a sequence of large mirror nuclei with

the Coulomb force turned off, the value 11.86 MeV has been obtained [3]. Stocker et

a1 [4] have made a systematic study of the problem. From their analysis they con-

cluded that the mean—field approximations are unable to reproduce the entire set of

nuclear mass—formula coefficients when the saturation density and surface diffuseness

are constrained to their experimental values. However, there is one very important

effect, not yet considered, which might be responsible for this discrepancy; namely

the quantum corrections arising from the zero point oscillations of the nuclear surface.
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It seems very natural to link the curvature corrections to the binding energy with the

surface oscillation, which modifies the local curvature when it is excited.

By summing up all the ring diagrams, we calculate the correlation energy Econ

for spherical nuclei in the RPA approximation with particular attention paid to the

A—dependence. We assume that the total ground state energy is the sum of Emean

and Econ, here Emean is the ground state energy in the mean—field approximation,

ECO" is the correlation energy in the ring RPA approximation. Since the fit of Em:

or other mean—field values of the total ground state energies gives the right values for

all the coefficients except aC which is far away from its experimental value zero, we

hope that the fit of E00,, to the same formula gives an c1C about the same magnitude

as that of the fit of Emean but with an opposite sign and all other coefficients to be

small compared with their corresponding values in the fit of Emean. In order to have

feWer coefficients to be fitted, we have used a set of imaginary nuclei with N = Z and

with Coulomb interaction turned off. Then we only have the volume term. surface

term, and curvature term to fit. The extracted curvature energy coefficient ac indeed

has the right order of magnitude and sign.

\

2.2 RPA Formalism of Correlation Energy

The formula to sum up all the ring diagrams is derived in many textbooks, e.g [5].

Because of the finite sizes of the nuclei, we will use the coordinate representation of

the RPA theory. In this representation, the formula for the correlation energy is given

by

1 ldA dw °°
Ecorr = _' __d3 d3 /_ AV On

22 o )1 :1: CE27rn:__:3( G)

1 1d/\ dw 1
: _- ___d3 3,,____/\ 03

220 A xdf2w(VG)1—AVGO
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1

= 12 d—Adsa' (13.1:'21::2 0 A (AVGO)/\VGRPA, (2.1)

with the RPA Green’s function given by

1
vRPA 0

G" :G 1— AVGO’
(2.2)

Note that the second order ring diagram is not included in the summation, since

it is already taken into account in the effective interaction in the usual mean—field

calculations. Also as it is usually done, we make an angular momenta decomposition

of GO and V, this procedure permits RPA to be calculated from independent radial

equations for each multipole, and also permits the ECO” to be calculated for each

multipole[7]. The following defines the multipolar interaction VL and Green8 function

'0

GL,

V(r,r’) = ZVL(r,r’)YgM(f)l/},M(f’),

LM

000.71") = 2: G74“ TVS/EM“)YLM(7QI)/(Tr’)2'

Lil/I

Then the correlation energy is calculated as the sum of that of each multipole,

Lmar

Ecorr —_2((2L +1)'EcLorr
(23)

Here Lmax is the maximum multipole which is included in the summation, ECLON, is

the correlation energy corresponding to each multipole L and is given by

1d)1,dw

Egg, = 52 0 7.1m2—(AVLC0 )AVLG‘BPA, (2.4)

where

GIaPA_ GO 1
(2.5)

L1 — AVLGg



 —7—_ -“-‘5-'- "'7 "1“"- ‘7 I "V

23

GEPA is usually found by matrix inversion if we treat both GL0“, r’) and VL(r, r') as

matrices in coordinate space. In the following, we will assume that the multipolar

interaction V1, is of separable form [6]

  

Vi(r.r')=a ‘ ' =af(r)f(r’). (2.6)

where v is the central part of the Wood—Saxon potential. The coefficient a is con-

strained by requiring GEPA to have a pole at w = 0 for L21, the spurious state. In

the case of separable interaction, 6?pr can be found analytically and therefore the

integration over A can be done analytically, this amounts to an enormous saving of

computational time.

Note that GRPA satisfies a Dyson—like equation

GR“ = G0 + GOVGRPA. (2.7)

For each multipole, we have

G’EPA(7~, r') = 016.7") + a / G%(vr,r1)f(r1)dr1 / d‘r2f('r2)G§PA(rg,r’). (2.8)

If we now multiply f(7‘) on both sides and integrate over r, we would get

. , _ f ali‘f(7‘)G0 (737")

/ ”(765109” ) “ 1—a ff(r1)G‘},(r1,Lr2)f(r2)dr1dr2' (2‘9)

 

Therefore 6'pr is given by

angU‘, 7‘1)f(7‘1)d7'1 fdr2f(r2)G%(T2,7‘l). (2.10)
RPA 7, 7,1 ____ 0 7' 7,!

GL, (’ ) GL( 7 )+ 1—aff(r1)G%(r1,r2)f(r2)dr1d7‘2

If isospin is included, GEPA, 0% and VL become 2 X 2 matrices. A similar argument

leads to

0’3“ -_.— G2+G},, (2.11)
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G%(7‘,7") = ITO(7‘,7") ( (1) (1) ) , (2.12)

G'L(7‘,7") = 1_Iguana/11%(7‘ 7‘1)f(7‘)1)drI/drgf()()7‘21'l0(7‘2,7")< ] ] ) , (2.13)

a = ff(7‘)II0(7‘,7")f('r’)d7‘cl7". (2.14)

Here H0(r, 7") is the free ph Green’s functions for protons and neutrons (in our case,

since N = Z and the Coulomb interaction is turned off, it is the same for both protons

and neutrons), so it can be factored out in front of the matrices. From the condition

that 6'pr has a pole at w = O for L = 1, we have

a =1/2a at w = 0 L =1. (2.15)

Finally the correlation energy is given by

1

EL" = T7‘ 44.6.6—(/\VLG°)2AVLGEPA
2i 0 /\ 271'

()Aaa3

42/()1(1—2/\—a—a 27r° (2'16)

Here T7‘ is the trace of the matrix. After the integration over /\ is done, the final

result is quite simple,

L 2 d“ 2
ECO“, = —z/-2——[2(aa) + 2(aa) + clog(1-— 2(aa)], (2.17)

77

clog is the complex natural logarithm. Of course the energy is real, and we should

take the real part of equation 2.17.

2.3 Numerical Details and Results

In our calculation, the single particle spectra and wave functions are obtained by

solving the Schrodinger equation using the Wood—Saxon potential. In order to be
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able to treat the open—shell nuclei, we have included pairing and occupation numbers

for the open—shell levels in our calculation, the corresponding formulas for the Green’s

function are given by Migdal [8]. We have chosen the empirical value of the gap

parameter A = 1214‘”2 for all the openeshell levels, and A = 0 for the fully occupied

levels. The occupation numbers for the open~shell are calculated from the BCS

equation,

  

[
\
l
e
—
‘
|

2_
Uk— 1— 0—6” . 1.. .

( \fléx-éflz‘l‘Ai) O 13)

The Fermi energy 6f is of course determined by

~2ng = N, (2.19)

k>0

N is the number of particles in the open shell and N = 0 for magic nuclei. The

separable potential has the same weight for all multipoles. But there must be a cutoff

at the high momenta. A natural cutoff for Lmax would be around kfR, this turns

out to be around 2141/3. Since 2A”3 is seldom an integer, we take the nearest integer

larger than 2A1/3. We further assumea Fermi—type weight function (1+ 6(L“L°)/L1)‘1

with L0 = 1.2141/3 for each multipole. For the integration over w, we have integrated

from w = 0 to w = 200 MeV with step size 0.5 MeV. The calculated energies and the

least‘square fitted coefficients along with their variance 02 of magic number nuclei

with different choice of L1 are shown in tables 2.1 and 2.2, and those of open—shell

nuclei are shown in tables 2.3 and 2.4.

2.4 Summary and Conclusion

The macroscopic part of standard nuclear mass formulas comes from an expansion

of nuclear energy on powers of (41/3. Such an approach is based on the geometry
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of the nucleus, which consists of a bulk part separated from a thin skin, and is

not associated with approximations like HF, ETF, which however have been used

to reproduce empirical mass—formula coefficients. Direct adjustment of mass—formula

coefficients to ground state masses of nuclei yields values of the curvature coefficient ac

close to zero, whereas values of (1C resulting from mean—field calculations are always

close to 10 MeV. We have pointed out in this short chapter that Eco... has a very

different A—dependent behavior from that of the mean—field total ground state energy

Emean and that there is still room to account for the apparent discrepancy if higher

corrections to the mean—field calculation is taken into account.

 



Table 2.1: Correlation energies divided by 141/3 for magic number nuclei with

L1 = 1,2,3

Table 2.2: The least—square fitted coefficients of Econ. / 141/3 to the formula
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E/A1/3(L1=1) E/A1/3 (111:3)
 

 

w
w

o
o
o
o
o
l
l

50

82

126  

-3.1120

-3.9128

-3.6554

—3.9785

-4.7833

6.0657  

—2.9525

3.7988

-3.6105

-3.9963

-4.7949

-6.0786  

-2.8785

3.7343

3.5724

43.9989

4.7881

-6.0864
 

ECON/Al/3 = aC + a3A1/3 + avA2/3, (1C is the curvature coefficient.

 

2

 

    

 

 

L1 aC as av a

1 -4.2535 0.8008 -0.1690 0.590E-1

2 -3.6783 0.5965 -0.1514 0.513E—1

3 -3.4686 0.5345 -0.1471 0.475E-1
 

 



Table 2.3: Correlation energies divided by 141/3 for open—shell nuclei with
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L1 = 1, 2, 3

N=Z E/A1/3 (131:1) E/A1/3 (1.1:?) E/A1/3(L1=3)

18 8.1386 4.9301 —4.8263

22 8.1053 4.9685 4.8997

30 8.7112 8.4141 8.3198

48 8.1914 8.1599 8.1360

52 8.4939 8.4422 8.4045

80 8.8130 8.7859 8.7556

84 8.8491 8.8521 8.8565

122 8.7240 8.6967 8.6769

124 8.5299 8.5247 8.5203    
 

Table 2.4: The least—square fitted coefficients of Eco."/A1/3 to the formula

EMT/Al” = 67C + asA1/3 + avA2/3, (1C is the curvature coefficient.

 

 

2

 

 

L1 ac as av a

1 -7.7925 1.4116 -0.l945 0.413E-1

2 -6.7973 1.0972 -0.1695 0.215E-l

3 -6.3635 0.9599 -0.l584 0.182E-1     
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Chapter 3

Collective Electronic Excitations

in Fullerenes

The large number of active electrons in a carbon cluster and the strong Coulomb

interaction among them lead to a rich spectrum of collective states. States with total

angular momentum up to L 2 85 have a strong collective character. The equivalents

of both 77 and o plasmons in graphite are predicted for a whole range of carbon

clusters C20,60,70,100. The theoretical results compare very well with experimental

photoexcitation results in C60, 70 and EELS data on gas targets C6030.

3.1 Introduction

The discovery of C60 cluster and the successful synthesis of macroscopic quantities of

C60 crystal have spurred a flurry of activity in the study of properties of both C60

cluster and other fullerene carbon clusters [1]. Since these fullerenes are essentially

hollow graphite shells, they should support multipolar plasmon oscillations, closely

related to the plasmons in graphite. Indeed, the existence of the giant dipole plas-

mon mode in C60 was first predicted [2, 3] and then an independent photoionization

experiment on a C60 gas target [4] confirmed its presence.

30
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The presence of the strong collective dipole plasmon in C60 suggests the exis-

tence of other multipolar excitations and the multipolar collective excitations in other

fullerenes as well. In this chapter we shall present an analysis of the collective exci—

tations in C20, C50, C70 and C100 and compare our predictions with available experi-

mental results on isolated fullerenes (gas targets). The dipole excitations are put into

evidence by photoionization experiments [4] and the the other multipole excitations

are evidenced by EELS experiments [5, 6, 7].

We should mention that there is a multitude of experimental results, concerning

plasmon excitation in pure solid C60 targets and doped solid C60 as well [8, 9, 10]. The

main difference between the plasmons in isolated fullerenes and fullerites [8, 9, 10]

and graphite and diamond [11, 12, 13] is mostly an upward shift of the o plasmon in

fullerites, by approximately 8 eV or more, because of the strong long range Coulomb

interaction between electrons belonging to different neighboring molecules. At the

same time, the properties of the 77 plasmon seem to be affected little by the presence

of other molecules.

3.2 Theoretical Description

We use the linear response theory (Random Phase Approximation — RPA), which is

the most appropriate theory for large systems with mobile electrons where screening

is significant, to describe the excitation of plasmon—like collective states in these

fullerenes. We determine the single-particle wave functions and energy levels using a

tight—binding (TB) Hamiltonian, which has been used to study the relative stability

of different carbon cluster structures [14] and the multipole response functions of

fullerenes [2, 5, 7].
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3.2.1 Description of the Tight—binding Hamiltonian

The tight-binding Hamiltonian, which considers only the s and p valence electrons

of carbon, is given by [14]

H = anaiviaad + Z tag(r,-j)a:mag,j . (3.1)

0,! 07373.7].

Here, i labels the atomic sites and a = s,p;,.,py,pz labels the atomic orbitals. 60, is

the orbital energy, and tag are the hopping matrix elements between different sites.

The parameters have been obtained from a global fit to Local Density Approximation

(LDA) [15, 16] calculations of the electronic structure of C2, a graphite monolayer,

and bulk diamond, for different nearest—neighbor distances [14], similar to what had

been done previously to describe silicon clusters [17]. The diagonal elements of this

Hamiltonian are the energy levels 6, = —7.3 eV and cp = 0.0 eV. The off—diagonal

matrix elements tag(r) are assumed to have a distance dependence ~ r‘g. Their values

at r = 1.546 A, which is the equilibrium nearest—neighbor distance in diamond, are

V330 = —3.63 eV, Vspa = 4.20 eV, Vppa = 5.38 eV, and K,” = —2.24 eV in the

Slater—Koster parameterization [18]. In this Hamiltonian, we consider those atoms as

nearest neighbors which are closer than the cutoff distance rc = 1.67 A. This is the

average of the nearest— and second nearest—neighbor distances in bulk diamond, and

hence near the minimum of the radial distribution function.

The equilibrium nearest—neighbor distance between carbon atoms in C60 is 1.453

A on pentagons (“single bonds”) and 1.369 A between pentagons (“double bonds”)

[2], corresponding to a buckyball of radius R z 3.5 A. The spectrum of C60 obtained

using this tight—binding Hamiltonian is shown in fig. 3.1. This spectrum is in good

agreement with previous ab initio calculations. The total width of the occupied band

is 19.1 eV, to be compared with the LDA values of 18.8 eV of ref. [19]. The level

ordering near the Fermi level agrees with results based on the LDA and other methods
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Figure 3.1: (a) Tight—binding Single-particle energy level spectrum of a C60 cluster.

The levels have been sorted by symmetry. (b) Expanded region of the energy level

spectrum near the Fermi level. Allowed dipole transitions hetween states with gerade

(g) and ungerade (u) parity are shown by arrows [From C. FBertsch, A. Bulgac,

D. Tomanek, and Y. Wang, Phys. Rev. Lett. 67, 2690 (1991)].
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[19, 20, 21, 8, 23]. The gap 2.2 eV between the highest occupied (HOMO) and lowest

unoccupied (LOMO) level compares well with the LDA values of 1.8 eV from [19] and

the experimental value [8] of 1.9 eV.

The HOMO to LOMO transition is forbidden by parity, and the lowest optically

allowed transitions are Hu —> T19, Hg —+ Tm, and H, —-> Hg, with the tight—binding

excitations energies of 2.8 eV, 3.1 eV, and 4.3 eV. These results compare well with

the LDA values 2.9 eV, 3.1 eV, and 4.1 eV [19].

3.2.2 Linear Response Theory of the Tight—binding Hamil-

tonian

The free particle—hole propagator in the energy representation is defined by

Z < rlph > 2(ep — 51,) < phlr' >

p. (a. —54)2 — (w + 27272
 

. (3-2)Go(r,r’;w) =

where p and h denote particle and hole states, spy, their corresponding energies, to

the excitation energy and 7] is an imaginary part.

The TB single—particle wave functions have the following structure

1

$7741.): 22‘: fn(Ri)\/4_7T¢O0(T1) +gn(RM\/:¢1()i)] 7 (33)

where n denotes either a hole state or a particle state, 1‘ is the electron coordinate,

R, are the carbon ion positions, r,- = r — R,, the summation is over the carbon sites,

050,1(7‘) are the LDA carbon 2s—~ and 2p— electron wave functions. fn(R,) and gn(R,-)

are the amplitudes to find an electron at site i either in the 2s—state or in one of the

three 2p—states. The particle—hole state then reads

< PIPh >= fi:[fp(R4)fh(R.-)¢3(r7) + 87434) ° gh(R4)¢f(r.-)] YooU‘i) +

47rLif— z‘).gh—m( Rt) + fh(Ri)gp,—m(Ri)l ¢o(7‘r)¢1(7‘i)Ylm(f‘r) +
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3

A

107 ZHY” [gm-7 >< 84111012,-.. 81471484.). (3.47

In the above formulas we have used interchangeably Cartesian and Spherical notations.

The Random Phase Approximation (RPA) Green’s function is determined as the

solution of the integral equation G = Go—GOVG, where V = e2/|r—r'] is the Coulomb

interaction among electrons. The matrix elements of the Coulomb interaction are

computed through its Fourier representation

2

e (‘32 1 .

= [r4 — 1‘: + Rk -- R1] : 27r7/d3q32—8XP12CI' (rk — 17+ Rk - RH], (3'5)

 

V

where rkJ are the electron coordinates with respect to sites 10,1 and R1,; are the

coordinates of the corresponding carbon ions. The response function (transition

strength) of the system to a weak external one—particle multipolar field F(r) is given

by S = Im < FlGlF > /7r.

In computing the matrix elements of the residual Coulomb interaction arising from

the l = 0 transitions in Ref. [2] for the dipole response, it was assumed that the spatial

extent of the s— and p—states is vanishingly small, this approximation results in a

slight overestimate of the Coulomb matrix elements. Another approximation in ref.

[2] was to neglect the l = 2 component in the particle—hole state [ph > (see eq. (3.4))

resulting from a p—hole state to a p—particle state transition. These approximations

make their approach unsuitable to study other multipolar responses and also the

multipolar responses of other nonspherical fullerenes. The present calculations are

performed without these approximations.

Since only dipole excitation is optically allowed, one can put into evidence higher

multipole plasmons in an inelastic electron scattering experiment. In the Born ap-

proximation the differential cross section of electron scattering is [24]

d2” 62m 2 4P, - 2

dfldw 2 7,2“ 7532' <n|exp(—zq-r)|0> | awn—130w) 
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82m 2 4p’

2 -— — a), , 3.6

where p and p, are the initial and final linear momenta of the electron, q = p — p,

is the transferred linear momentum, m the mass of the electron, w the energy of the

excited state and S(w,q) the spectral function of the cluster, which depends solely

on the properties of the cluster.

In the following two subsections, we will outline the application of the RPA theory

of a tight—binding Hamiltonian to a spherical cluster (C60) and nonspherical clusters

(C20, 70, 100). The detailed treatment of C60 is given in Appendix A, and that of other

nonspherical clusters in Appendix B.

3.2.3 Outlines of the Calculations of C60

The treatment of C60 is relatively simple. Because C60 has nearly perfect spherical

symmetry, good angular momentum quantum numbers can be introduced [2, 5, 7],

and the the RPA equation is solved for each multipole (see Appendix A). The total

angular momentum of a ph—state (see eq. (3.4)) has two components L and l, i.e.

J = L + l, where L comes from the fn(R,-) and gn(R,-) amplitudes alone and 1 from

the transitions on each site: I = 0 from s —> s and p —> p; l = 1 from s —> p and p —> s;

l = 2 from p —-> p. The three terms of the pit—wave function correspond to l = 0, l = 1

and l = 2 transitions on each site. Since we will be concerned with natural parity

states only and the spin variables merely double the number of available states, the

following selection rule applies (-1)J+L+l = 1. As a result for J 2 2 only the following

(L,l) configurations are allowed: (J, 0)2,(J — 1,1),(J + 1,1),(J — 2,2),(J, 2) and

(J+2,2). For J = 0: (0,0)2, (1, 1) and (2,2) and for J =1: (1,0)2, (0, 1), (2, 1), (1,2)

and (3,2) are allowed. The two (J,0) configurations arise from two I = 0 types of

transitions, see eq. (3.4).
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Using the expansion of a plane wave into spherical harmonics, we can rewrite the

Coulomb interaction eq. (3.5) as

2 2

 
e e A

V— In —r2+R1 _R2|_—22/exp[ik(r1—r2+R1 —R2)]dkdk

(471')3e2

: _27r_2—_/LzlLjL (kR1)YL]W((R1)YL1\/[(k)Z Z-LjLI(()kR2 YLI\JI(R2)

L’M’

YL’M’O‘)ZZJ1(((kT1)Yzm(1‘1) MEI-l,Jz'f(INDYI’m ,f‘(2)}i'm'(f<)dkdf9 (3-7)

[m l’m’

After the integration over k, PM is done by using the ph-wave function eq. (3.4). one

can represent the residual Coulomb interaction as a matrix in the representation (L, I)

described above. In a similar fashion to Ref. [2], the integral equation G = Go—GoVG

is then reduced to a matrix equation in the (L, l) representation of dimension 4 x 4

for J = 0, 6 X 6 for J = 1, and 7 X 7 for J 2 2. The resulting matrix equation

is solved by matrix inversion The multipolar responses are obtained by applying the

multipolar fields F(r) = r’ng(f‘) (F(r) = r2Y00(f‘) for l = 0).

In the case of spectral function, the external field is the plane wave exp(iq - r),

here q = p — p, is momenta transfer. It is computed by expanding the plane wave

into spherical harmonics and all excited states with angular momentum up to L = 20

are included (see Appendix A for details). We have checked that the responses and

the spectral function of C60 computed either by assuming spherical symmetry (as

described here and the details in Appendix A) or by taking into account the actual

3—dimensional ionic configuration of the C60 molecule (as described below and the

details in the Appendix B), lead to essentially the same results.

3.2.4 Outlines of the Calculations of C20,70,100

Since these clusters do not have spherical symmetry, good angular momentum quan-

tum numbers can not be introduced for them, and because of that the actual numerical
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implementation of the RPA is computationally more demanding (e.g. the calculation

of the whole dynamical structure function for C60 requires 1—2 hours, while performed

in the 3—dimensional manner described here and Appendix B, it requires about 300

hours on a CONVEX—240). To this end, we have formulated the RPA method for ar-

bitrary 3—dimensional structures in the TB approximation and used it to compute (or

recompute in the case of C60) the electromagnetic response of isolated fullerenes (the

details are given in Appendix B). The matrix elements of the Coulomb interaction

are computed through its Fourier representation, but this time instead of treating R1

and R2 as two different vectors (as we do in the case of C60), we treat R1 —- R; as

one vector, and perform the expansion of the plane wave into spherical harmonics

 

 

accordingly,

(,2 62 .

v = In __ m + R1 __ R2] = fi/expfik - (r1 — r2 + R.1 — R2)]dlcdk

(473382 .,. . , ~ ._,,. , . .
= 2.2 / gzyz<knmm(rlmm(k)§z JI'(k7"2)Yz'mI(I‘2)Yl'm'(k)

LEA/:1iLijkR12)YLM(R12)YEM(R)dkdf( (3-8)

Instead of solving the RPA equation for each multipole, we solve the whole RPA

Green’s function C(r, I") as a function of r and r’. Essentially, the integral equation

is transformed to a matrix equation in the (lmi) basis after the integration over k, rim;

is done , here I = 0, 1, 2 denotes the particle—hole transitions on each site i and m

denotes the corresponding third components of I. There are two terms for l = 0 (see

eq. (3.4)), three terms for l = 1 and five terms for l = 2. Therefore there are 10

lm terms for each site i and 10N terms in the particle-hole states in the (lmi) basis,

where N is the number of atoms in the cluster. A particular multipolar response 1 is

 

1strictly speaking there is no one—to—one correspondence between the multipolarity of the external

field and the corresponding one for the excited plasmons, the results presented were averaged over

all possible spatial orientations.
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obtained by applying a multipolar external field. The spectral function is computed

by applying the external field exp(iq- r) and averaged over the direction of q, see

Appendix B for details.

3.3 Theoretical Results and Comparison with Ex-

perimental Data

In figs. 3.2—3.5, we present the computed free (no residual Coulomb interaction among

electrons) and the RPA responses of C20, 60, 70, 100 clusters to a multipole external field

F(r) = r’Y1m(f‘), for I = 0 —— 8 (F(r) = 7‘2 for l = 0). C20 has only 12 pentagons,

while C70 and C100 can be obtained basically from a C60 molecule, by cutting it into

two equal semispheres and joining them by one and four additional carbon rings

respectively. We compare our predictions of the photoexcitation probabilities of C60

and C70 with the measured photoionization spectra [4] in figs. 3.6 and 3.7. One

should note the good agreement between our predictions and the experimental data,

even the width seems to be well obtained.

It is obvious from the these figures that a strong screening is obtained at low

energies for all of the multipole responses of all these carbon clusters. Except for the

monopole responses in C60 and C70, all other multipole responses have a very similar

structure, a low—energy mode around 6-10 eV and a high—energy mode around 18—22

eV. These two modes are the obvious analogues of the 7r and o plasmons in graphite

[11, 12, 13] and the corresponding plasmons seen in solid C60 [8, 9, 10]. In both

graphite and solid C60 the o plasmon is at a higher energy than it is in an isolated

fullerene.

The states with higher angular momenta show no collective behavior or in other

words the corresponding multipole responses are single-particle in character. The
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Figure 3.3: Multipolar free. (dashed lines) and RPA (solid lines) responses of C360
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physical reason is relatively simple. For these multipoles the wave length of the

excitation is comparable with the C—C bond length and no electron collectivity exists

at such length scales. Take, for example, C60, the maximum expected multipole of a

plasmon Lmax = qmarR = R7r/d % 8, where R is the radius of the buckyball, d the

C—C bond length and qmax = 7r/d is the momentum of the excitation with a half—wave

length equal to the C—C bond, compares extremely well with the RPA results in fig.

3.3.

As remarked earlier, one should note that strictly speaking only in C60 there is

an essentially one—to—one correspondence between the multipolarity of the external

field and the corresponding one for the excited plasmons. For other fullerenes, which

lack spherical symmetry, the presented results were averaged over all possible spatial

orientations of the cluster with respect to the laboratory reference frame (or in other

words the orientation of the external field).

Since C100 is a rather deformed object and one might expect that one can detect

the deformation by observing the splitting of the dipole plasmon. However, as our

results show, when one applies the external field either along or perpendicular to the

symmetry axis of this cluster, the dipole response changes insignificantly, see figs. 3.8,

3.9, in contradistinction to what one sees for example in deformed nuclei or metallic

clusters [25, '26]. To some extent this is surprising. This feature of the plasmon modes

in fullerenes simply reflects the specific character of the structure of the single—particle

wave functions, which are strongly localized around the ionic shell. The curvature

of the shell is less important than the 7:" or a character of the single particle wave

functions, and therefore of the corresponding plasmon modes.

Recently [27], the energies and oscillator strengths for a number of allowed dipole

transitions have been measured for C60 in solution. A comparison between the calcu-
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response along the symmetry axis

 

 
 

l

i 0100
D l‘

: \

: I\

. I \ ‘
D I \

T i“; \ \

I l \ //

f l \ / \

. l \

I:

r! a
,1 ~-

;/

l L L n 4 A n L L L

0 10 20 30

excitation energy (eV)

external field is along the symmetry axis.



 

dipole response perpendicular to the symmetry axis

 

   

7.?

a 006 ’ f v ' ' t ' ' __ v y - v v t v v

g 005 .

Cl” .:

i / ‘ (

V I \ (

r / \ .

5 o 4 ’. I :
g . i I \ I, \\ 4

0 I I \

5 r I i ’ \ .
°° 0.3: ,\ I \ I ‘ \ ‘

h , \ I \ l

3 ’ l l \ I \ *

g . I \ \ l

a 0.2 f g \ ll \ .

8 : ' ’ \x
O , l \ \

s » I ‘ ‘ ~

5 , ‘
h 0.0 g l A A_ L; A L L 4 x A l g

.2 O 10 20 30

'3 excitation energy (eV)

Figure 3.9: RPA (solid line) and free (dashed line) dipole response of (7.00 when the

external field is perpendicular to the symmetry axis.



49

Table 3.1: The free and RPA dipole response of C60 (energies and oscillator strengths),

computed using two different tight—binding (TB) parameterizations [14, 29] compared

to the calculations of Ref. [28] and experimental results [27]. A * next to a transition

means that several close in energy levels have been represented as one. A + sign

means that the oscillator strengths of the two or three consecutive levels have been

added. The measured oscillator strength for the 3.04 eV transition is 0.015i0.005.

The last row is the sum of the oscillator strengths quoted in the table.

 

 

 

 

 

 

                  
 

 

Free TB [14] [[ RPA TB [14] [[ Free TB [29] [[ RPA TB [29] [[ Ref. [28] Ref. [27]

[[eV [7 [ev [f [[ev [f [[ev if [[ev |f [[ev [f

2.88 4.04 2.94 0.027 2.6 3.5 2.68 0.015 3.4 0.08 3.04 0.015’

3.12 6.09 3.74 0.66 2.82 5.41 3.37 0.43 4.06 0.41 3.30

4.28 3.95 4.78 1.37 3.84 4.01 4.39 1.24 4.38 2.37 3.78 037

520+ 522+ 4.83 0.029 470+ 406+

526+ 528+ 0.64 4.93 2.70 5.17 0.44 507+ 0.30 435+ 010

537+ 2.88 5.69 1.15 538* 1.36 5.32 0.13 5.24 7.88 4.84 2.27

5.86 5.94 0.21 6.03 0.35 5.47 0.12 5.54 0.22 5.46 0.22

597+ 0.86 6.13 2.48 6.31 0.24 5.80* 2.86 5.78 10.74 5.88 3.09

6.73 6.26 0.50 6.14 1.64 628 6.36

6.76 0.40 6.40 1.99

6.90 0.15
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lated free and RPA predictions, using two different parameterizations for the tight—

binding Hamiltonian, the calculations of Ref. [28] and experimental results of Ref.

[27] are presented in the Table 3.1. Even though a detailed correspondence between

computed and measured transitions cannot be established yet, the significant dy-

namical screening emerging from the RPA description compares very well with the

observed transition strengths, including the large suppression of the first allowed

dipole transition. It is unclear to us however, to what extent the computed prop-

erties of an isolated C60 cluster are related to absorption spectra of C60 in solution.

A measurement of the gas form will be highly desirable. The static polarizability of

a byckyball, OFT-63 = 195 and 207 and (13122) = 56 and 57 using parameterizations

[14, 29] respectively, shows the same order of rather strong screening.

The dynamical structure factors for C60 and C70 are represented in figs. 3.10 and

3.11. One can see that they are very similar, there are two “mountains”, one at an

excitation energy around 6—10 eV and a second one around 18—22 eV, corresponding

to the 7r and a plasmons respectively and their corresponding energies increase mono-

tonically with the increase of the transferred linear momentum. The profile of the

spectral function in the q direction is rather structureless, due to the fact that states

with different angular momenta are very close in energy. The dispersion laws for the

71' and a plasmons, inferred from the profile of 3(w, q) (u),r z 6 + q2 and 020 z 18 + 2q,

when energy and momentum is in eV and A‘1 respectively), are rather distinct

from classical estimates for a charged spherical shell [31]. The maxima of the spectral

function are at transferred momenta z 1.5—2 A“, indicative at the fact that states

with L % qR R: 5—7 are mainly excited in this process. The a plasmon always has

a higher intensity. At relatively high transferred linear momenta we do not expect

these computed dynamical structure factors to be very reliable though, because of
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the limited TB Hilbert space we have used, but on the other hand we do not expect

a significant collectivization of the transition strength either when the transferred

momentum becomes comparable with Tr/d, where d is the C—C bond length.

In figs. 3.12 and 3.13, we compare the RPA predictions for the excitation of the

plasmon modes in C60 and C70 with recent EELS experimental results on a gas target

at an incident electron energy of 1 keV and at 1.5 deg for C60 and 1 keV and at 2.0

deg for C70 [5, 6, 7] .

The linear transferred momentum in the C60 experiment is "~V 0.41 A”, this corre-

sponds to an almost equal contribution from the dipole and quadrupole excitations,

and the linear transferred momentum in the C70 experiment is z 0.55 A”, and it cor-

responds mainly to the quadrupole excitation. But in both experiments, the excitated

multipoles are far from the main maxima of the spectral functions.

A few words about the experimental setup are in order. The detector used in both

experiments has a circular finite area, it forms a cone with the scattering center of

the sample, the surfaces of the cones are 1° off their axis. The axis of the cone in

the C60 experiment is l.5° off the beam of the incident electrons, and that in the C70

experiment is 2.0° off the beam of the incident electrons. The actual geometry of the

detector has been accounted for in our calculations for the differential cross sections.

In figs. 3.12 and 3.13 the computed differential cross sections of the plasmon ex-

citation are compared with the EELS data on C60 and C70. Since only relative cross

sections were available and the experimental data have been thus renormalized. One

can see that both the shape and the position of the plasmon modes agree very well

with the experimental data. Moreover, even some rather fine details of the experi—

mental results seem to be reproduced by the theoretical model. In photoexcitation

experiments one can excite only dipole states, while with electrons one can in principle
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excite any multipolarity, depending on the amount of linear momentum transferred

to the target. In the semiclassical approximation, the angular momentum of the ex-

cited state is given by L z qR, Where L is the multipolarity of excited state, R is

the radius of the target and q = pf,n — pin is the transferred linear momentum. The

EELS C60 data in fig. 3.12 thus correspond to approximately an equal contribution

of dipole and quadrupole states and the EELS C70 data in fig. 3.13 correspond to

approximately quadrupole state, therefore these are the first experimental evidence

of quadrupole states in isolated C60 and C70 molecules.

3.4 Discussions

In an RPA treatment one cannot describe the fragmentation of the oscillator strength

due to the coupling to more complicated states. The Landau damping (i.e. fragmen-

tation of the strength due to the 1 particle - 1 hole background) is accounted for

in RPA, but this mechanism is not sufficient to explain the significant width espe-

cially of the 0 plasmon, see the results presented in Ref. [2]. Since these clusters

are essentially 2—dimensional objects, the damping due to more complicated particle

— hole configurations was imitated with an imaginary part 77 z 02/8 eV in eq. (3.2)

(chosen as to describe the experimentally observed width of the dipole plasmon in

C60), characteristic of the coupling of the RPA modes to surface electronic oscillations

only [32].

However, one cannot fail to observe that the predicted peaks are about 2—3 eV

lower than the measured ones. We suspect that the reason for this discrepancy

lies in the very special structure of the plasmon spectra of these clusters, namely

that depending on the amount of linear momentum transferred to the cluster by the

external field, 202.,r and 37.07r are very close in energy to 020, see the dynamical spectral
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functions in figs. 3.10 and 3.11. In this respect it seems that these clusters are

very peculiar and the structure of the plasmon spectra indicates that there may be a

strong, essentially resonant coupling between these modes (namely 2w,r or 3w, with

too), unlike other many-fermion systems studied until now. A plasmon is similar to

a photon in QED. In QED it is known that the Furry’s theorem forbids the 7 ——> ‘27

process (7 is a photon), but at the same time the ’7 ——> 3’7 process is allowed. For

similar reasons (in particular because there is an approximate symmetry between

the particle and hole spectrum) we expect that a —> 2 7r process should be to some

extent less important than the a —> 3 7r process, see fig. 3.14. The finite geometry

of the carbon clusters, phase space considerations and the fact that a plasmon is

not exactly a free photon may lead to the fact that these two processes are actually

equally important. The coupling between the lp—lh and 2p—2h and 3p—3h electronic

excitations may also lead to a rather strong non—linear optical response of the carbon

clusters and to an upward shift in energy of the high—lying mode, besides the large

fragmentation of the strength of the a—plasmon. A proper theoretical treatment of

these effects goes well beyond the framework of the RPA and it is a rather involved

computational procedure (never before attempted in the literature to our knowledge).

A couple of aspects of our theoretical treatment deserve a few comments. In the

present approach we have approximated the continuum states with a set of discrete

states and thus we are not able to describe electron escape widths. On the other hand

one can suspect that a proper treatment of the continuum might change significantly

our results. We do not expect this to be the case. In Ref. [2] the continuum has been

accounted for in the jellium approximation and the electron escape widths turned out

to be much smaller than the fragmentation width of the plasmon. We have also ne-

glected exchange—correlation contributions to the residual Coulomb interaction, which
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are much smaller than the direct Coulomb part, which has been taken exactly into

account in the present approach. Yabana and Bertsch [33] have analysed explicitly

the role of certain Coulomb exchange diagrams in inelastic electron excitation of C60

and found that they are relatively unimportant, even at small energies of the incident

electrons, where one might expect the exchange Feynman diagrams to be relatively

important.

The most debatable approximation is the use of a limited TB space for the elec-

trons. As a consequence the total oscillator strength accounted for is only a fraction

of the total (one has about 70 instead of 240 for C60 and approximately the same

ratio is obtained for the other fullerenes). This is a rather serious drawback of the

present approach. However, we have reasons to expect that the missing strength

is at much higher energies, than the ones considered here. First of all, the present

formalism seems to describe quantitatively pretty well the oscillator strength in the

low energy region, where absolute measurements are available [2, 5, 27]. At the same

time the relative intensity of the 71' and a plasmons (as seen in EELS experiments on

gas targets, see Refs. [5, 6, 7]. and the present results, where only relative intensities

are available so far) seems to be reproduced also very well. In a recent study of the

plasmon states in C60 in the framework of the jellium model, including however the

icosahedral distortion of the single particle spectrum, where most of the oscillator

strength is accounted for in the formalism, Yabana and Bertsch [34] have shown that

in the RPA up to an excitation energy of approximately 30 eV only about 30 ‘70 of the

total energy weighted sum rule, i.e. approximately 80 units of oscillator strength out

of 240, are present. The rest are located at much higher excitation energies. There

are some experimental indications as well that this might be the case, from the double

(and even triple) photoionization experiments on (360/70 gas targets [35]. A theoreti-
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Figure 3.14: Feynman many—body diagrams responsible for the fragmentation width

of the plasmon modes in carbon clusters. Solid lines represent the electron propaga-

tors and wavy lines the plasmon modes, while the residual interaction is represented

through a point vertex.
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Figure 3.15: Feynman diagrams of the decay of a plasmon through the emission of 2
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cal analysis of the double and triple photoionization processes is warranted. One can

expect that a highly excited plasmon can easily decay through the emission of '2 or

even 3 electrons, in a 2— or 3—step process, see fig. 3.15. When a high energy plasmon

(more than 30 eV) decays through the emission of an electron (particle state), the

residue is left in a relatively deep hole state or again in a relatively highly excited

particle state, which subsequently might easily couple to a lower energy plasmon,

which subsequently decays through the emission of a second electron. This type of

process seems much more probable than a double photon or electron excitation. It is

a straightforward procedure to disentangle experimentally these two excitation mech-

anisms. In the course of the EELS experiment on C60 [6] multipole ionized states

up to C354 have been observed, with ionization states 1 to 4 in the ratio of 1 : 0.6 :

0.1 : 0.01. The proper treatment of such processes is beyond the framework of the

present paper and we plan to address these questions later. It will be highly desirable

to have experimental spectra for the emitted electrons, not only the ion yields as it

is presently the case, in order to be able to disentangle different possible channels.
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Chapter 4

Finite Temperature Properties of

Small Sodium Clusters

In this chapter, we will present geometric and energetic properties of sodium clusters

with 8, 14, 20, 30 and 40 atoms at finite temperatures using an effective many—

body interaction among sodium atoms in the framework of an improved isothermal

molecular dynamics approach. We shall show that these clusters undergo two phase

transitions and that the two transition temperatures go up with the cluster size. The

two phase transitions are the equivalents of bulk melting and of boiling in a finite

system. At low temperatures, these sodium clusters are essentially incompressible,

but relatively easy to deform. At high temperatures they become extremely soft.

However, strong finite particle effects are observed. In particular, these clusters show

a more pronounced thermal expansion than the bulk.

4.1 Introductory Remarks

There are several reasons why it is interesting to study finite temperature properties

of atomic clusters, in particular of simple metal clusters. The most obvious one is the

fact that experimental results obtained so far are for relatively hot clusters [1, 2, 3].

Even though the experimentalists do not have at the moment a way of determining
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the temperature of the clusters they produce, and only relatively rough estimates are

available, it is very likely that these clusters are melted. On the other hand, most

of the theoretical studies are performed at zero temperature. The properties and the

behaviour of finite systems at nonzero temperatures are of unquestionable theoretical

interest. While in the bulk there are well defined phase transitions (melting and boil-

ing) and statistical physics concepts (such as temperature, microcanonical, canonical

ensembles, etc.) are well defined, the validity of such terminology for finite systems

still raises some eyebrows, in spite of the fact that the usefulness and correctness of

such an approach have been justified for quite a while [4, 5, 6, 7]. Although the study

of finite systems opens an avenue towards understanding the way a piece of bulk ma-

terial emerges this field has its own set of problems. The relative role of the surface

versus volume effects is significantly enhanced compared to the bulk. An important

aspect is the presence of at least two types of degrees of freedom — electronic and

ionic — with vastly different characteristic time and correspondingly energy scales.

This fact seems to lend support to the validity of the traditional adiabatic approach.

Since the ion cores are so much heavier than the electrons and the physical phenom—

ena of interest occur in a region where the density of states for the ionic degrees of

freedom is extremely high [8], a classical description of these degrees of freedom seems

more than reasonable. One the other hand, a quantum description of the electronic

degrees of freedom is unquestionably the right approach. This View is supported by

the experimental evidence of pure quantum phenomena, reminiscent of the similar

nuclear phenomena: relative abundances of different atomic clusters, odd—even parti-

cle effects, geometrical shapes of the clusters (as indirectly inferred from the study of

their electromagnetic and optical properties), occurrence of the so called supershells;

as well as by simple theoretical estimates of the relevant electronic energy scales in

such finite objects [4, 5, 6, 7].
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We attempt to elucidate to some extent the role of a finite temperature in sodium

clusters. The approach chosen by us is not irreproachable. In choosing one or another

description, various authors emphasize different dominant physical aspects. One can

distinguish roughly two dominant trends in the literature: 2') pure adiabatic picture

with an explicit treatment of the ionic degrees of freedom, which can be subdivided

in two subclasses ia) explicit treatment of the electronic degrees of freedom and 25)

implicit treatment of the electrons via an effective many—body classical potential for

the ions; and ii) featureless ionic background and explicit finite temperature treatment

of the electronic degrees of freedom. We shall not discuss here the quantum chemistry

calculations, which because of their rather ambitious goal to compute everything with

essentially no approximation, are limited to relatively small clusters [9].

The approach ia) seems to be accepted as the most “fundamental” way to describe

atomic clusters at zero as well as at finite temperatures and is often referred to as an

ab initio calculation [10, 11]. It amounts to a classical description of the ionic degrees

of freedom — which seems to be a very reasonable approximation, with the exception

of very light atoms like hydrogen, helium and to some extent lithium — and a Density

Functional Theory within the Local Density Approximation (DFT—LDA) for elec-

trons, augmented with a pseudopotential interaction between ionic cores and valence

electrons (which are the only ones usually treated explicitly) [10, 11, 12, 13]. From

the point of View of a pure practitioner, the main drawback of this type of approach is

the appalling amount of computer time required to extract relevant physical informa-

tion. It is for this reason that several groups decided to simplify the treatment of the

electronic degrees of freedom by using relatively old ideas, originated in condensed

matter physics, like the tight—binding approximation (see Refs. [15, 16, 17, 18] for a

sample of references), embedded atom [19, 20], etc. The “natural” extension of these
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methods to finite temperatures still does raise some questions. Although one can

accept this type of approach for the description of insulators, where the gap between

the occupied and unoccupied electronic states is sufficiently large and the assumption

that the electrons are at all times essentially at zero temperature seems reasonable,

the applicability of the strict adiabatic approximation for metals or atomic metallic

clusters is questionable. One possible approach seems to be the generalization of the

DFT—LDA to finite temperatures [21]. However, this line of thought implies a rela-

tively quick relaxation of the electronic degrees of freedom. At low temperatures the

relaxation times in many—fermionic systems have a l/T2 behaviour [22, 23] and ionic

and electronic relaxation times can become comparable. Moreover, atomic clusters

are likely rather floppy objects and level crossing phenomena can occur. In such a

case nonadiabatic effects could prove to be quite important and in any event this

seems to be yet a term incognito.

A further simplification ib) relies on the use of an effective many—body interac-

tion among atoms, derived as before in the Born—Oppenheimer approximation for

the electrons [3, 24, 25, 26, 29]. In particular, the strongly delocalized character of

the valence electrons in simple metallic systems is at the origin of the many—body

character of this effective potential and it cannot be simulated by two—body forces

only. In this way one loses some pure quantum features, like shell effects, odd—even

effects, etc. However, one has the advantage, like in a Thomas—Fermi approximation,

of describing the gross properties of the clusters, since volume and surface effects

seem to be mimicked rather well by this type of model [25, 26, 27].

The last listed type of approach, ii), emphasizes solely the role of electrons, while

the ionic degrees of freedom form a simple featureless jellium background, without

any dynamic or thermodynamic properties [1, 2, 3, 31, 33]. The main raison d’étre
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for such models is the hypothesis that the electron dynamics dominates completely

the properties of simple metallic clusters, as manifested in abundances, odd—even ef-

fects, electromagnetic and optical properties, supershell effects, etc. While perfectly

suited to explain this range of phenomena, the jellium approach has its own inherent

limitations, especially when finite temperature properties of metallic clusters are con-

cerned. The gross properties of metallic clusters are rather poorly described in such

pure electronic models. For example the volume energy (total energy per particle)

derived in a jellium model is about 2.26 eV [31, 32] as contrasted with the cohesive

energy for sodium 1.113 eV. This fact alone sheds strong doubts on the treatment of

the ions as a physically featureless background. In the pure jellium model the shape

and stability of a cluster are totally governed by the electronic degrees of freedom.

If the volume energy is so strongly affected by the ions, a similar strong effect for

the surface tension, due to the ionic degrees of freedom, is plausible. As a result the

whole concept behind the jellium model, seemingly so successful in describing a whole

range of pure quantum effects, becomes to some extent questionable.

Moreover, a large series of molecular dynamics (MD) calculations [3, 5, 6, 7] point

to the existence of a large number of isomers, which are absent in a pure jellium

description, and their presence gives rise to the phase transitions occurring in atomic

clusters. The phase space for the ionic degrees of freedom increases exponentially

with increase of temperature (or equivalently excitation energy of the cluster, see

Section 3), while at the same time the phase space for the electrons increases at a

much smaller rate, since the electrons behave essentially like a degenerate Fermi gas.

One can estimate the electronic density of states using Bethe’s Fermi gas formula [34]

exp [(MZNE/sg (4 1)

pel(E): V \/Zl_8-E a

 



70

where N is the number of valence (delocalized) electrons in the cluster, 51: is their

Fermi energy and E is the electronic excitation energy. For the ionic degrees of

freedom an estimate from below (see Section 3) for their density of states can be

obtained from the classical formula for 3N —- 6 intrinsic degrees of freedom in the

harmonic approximation (Debye model) [8]

E3N——7 3N

pion(E): (ZS—T—V—G)! 1:1} (433)

where N is the number of atoms in the cluster and w,- are the vibrational frequencies

of the normal modes. For the Nam cluster one obtains in this way p61 z 4 x 104

eV‘1 and pm, a: 1058 eV‘1 at an excitation energy of 3 eV. Consequently, the finite

temperature properties, the phase transitions in particular, should be dominated

by the ionic degrees of freedom. Since the density of states is directly linked with

the entropy, one can rephrase the above discussion in terms of entropic effects; the

electronic entropy is much smaller than the ionic entropy.

Experimentally, sodium clusters are likely to be produced in a liquid state, with

an estimated temperature around a few hundred degrees. This could serve as an

explanation of the spectacular success of the jellium model. Being in a liquid state,

the ions are rather mobile and therefore the cluster can be easily deformed. If the

contribution to the surface tension, originating from the ionic degrees of freedom,

is significantly smaller than the electronic part, one can expect that the electronic

degrees of freedom (through the quantum shell effects) would play the major role

in determining the shape and the stability of the cluster. The surface energy for

liquid bulk sodium (0 = [0.699 — 3.18 x 10‘4(T — Tmegtingfl eV) [35] seems to be in

qualitative agreement with the value extracted from jellium calculations, O'jeuz'um(T =

400 K) = 0.5918 eV [33] (The total surface energy is defined as 0N2/3, where N is

the number of atoms in the cluster). However, the surface tension for liquid bulk
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sodium shows a relatively strong temperature dependence, while the jellium model

seems to underestimate it by at least one order of magnitude in the temperature

range T = 0...600 K, doJ-euium/dT % 2. ..8 X 10‘5 eV/K compared to 3.18 x 10‘4

eV/K for liquid bulk sodium [35] (We have estimated the temperature dependence

of the surface energy in the jellium model from the results for the liquid drop energy

in Ref. [33]). This comparison seems to indicate that a combined treatment of the

ionic and electronic degrees of freedom is desirable in order to understand the finite

temperature properties of these clusters. The apparent agreement between the jellium

prediction and the bulk value for the surface tension might very easily prove to be an

accident.

MD calculations with effective many—body potentials definitely fail to describe

the electronic shell effects. The amplitude of the so called shell—correction terms

(computed in the spherical approximation, which overestimates them as a result,

probably by as much as a factor of two) never exceeds 1 - 3 eV for clusters with up

to a few hundred atoms and a little bit more for larger ones [3, 33]. When converted

into energy per atom, the magnitude of the shell—corrections is relatively small, about

0.025 eV or 300 K for N = 40 (note however that this is still about 20% of the

potential internal energy for Na40 around T = 500 K, see Section 3, and therefore a

quite sizable correction). For larger clusters the contribution from these pure quantum

effects becomes even smaller, smaller than, or at least of the same order of magnitude

as, the uncertainty of the estimated temperatures of the clusters. Nevertheless, the

rather fine details of the abundance distributions seem to correlate qualitatively well

with the effects predicted on the basis of the shell—corrections [33, 36]. One might

therefore conclude that, if one is not interested in rather fine details, a pure MD

approach to these metallic clusters might provide a quite reasonable description.
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There is one more argument in favour of using such a relatively simplified ap-

proach. A reasonable model for the description of thermodynamic properties of small

metallic particles has been suggested by Kubo and Gorkov and Eliashberg (see Refs.

[37, 38] for reviews of this approach and other relevant references). The specific heat at

small temperatures for a many—fermion system, in an independent particle model. is

shown to be determined essentially by the fluctuation properties of the single—particle

spectra near the Fermi level. Assuming either a Poisson or GOE type of level spacing

distribution, one can show that the electronic contribution to the specific heat at low

temperatures, T < 25F/N, for an even number of electrons, is either Ce; % 5TN/2cp

or 061 % 30T2N2/452F respectively. Here T is the absolute temperature, 5;: z 3.2

eV is the Fermi energy and N is the number of electrons. Throughout the paper

we shall use energetic units for the temperature (k3 = 1) unless otherwise explicitly

mentioned. The mean level spacing is estimated as 5F/N. Even though these values

represent averages over an ensemble of clusters and not values for individual clusters,

they should provide a good estimate of the magnitude of the electronic specific heat.

For temperatures of interest in sodium clusters, the ionic contribution to the specific

heat is dominant, since CW, 2 (3N — 6) >> Ce; (see Refs. [39]). At relatively high

temperatures the electronic contribution to the specific heat can become comparable

to the ionic part (For T 2 25p/N the specific heat for the electrons, in the leading

1/N approximation, is C31 2 27r2TN/65p, irrespective of the character of the fluctu-

ations [37, 38]). Consequently, the structural changes (phase transitions) are likely

to be caused by the ionic degrees of freedom for not too large and moderate sized

clusters. This last argument is another way of comparing the electronic and ionic

densities of states, see eqs. (4.1—4.2).

In spite of all these semi—quantitative or qualitative arguments which we have
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presented in favor of dealing with mostly the ionic degrees of freedom in metallic

clusters at finite temperatures, we do not mean to imply that the electronic degrees

of freedom are unimportant. On the contrary, we believe that a combined treatment

of both ionic and electronic degrees of freedom is warranted. In Refs. [13, 14] such

a problem has been studied to a certain extent, however from those results one can-

not make a judgement concerning the relative role of different degrees of freedom.

The quite ambitious method chosen there (DFT—LDA in conjunction with the Carr—

Parinello method), aimed at a complete description of the system, did not allow the

authors to clearly disentangle the specific role played by ions and electrons. The

relatively delicate interplay between these two types of degrees of freedom is likely

to lead to interesting phenomena, some of them we have partially alluded to above

(part of which seem to be beyond the present formulation of DFT at finite temper—

atures). Even though in the present paper we shall focus by default on the role of

the ionic degrees of freedom, we plan to extend our studies in the near future to a

comprehensive treatment of all degrees of freedom in these clusters.

In the following section we shall formulate explicitly our approach. In particular,

we shall present an improved isothermal molecular dynamics scheme, based on a

previous development [46, 41, 42] of the Nose—Hoover method [43, 44]. Section 3 is

devoted to the presentation of our results, followed by a short summary.

4.2 Isothermal Dynamics

The delocalized character of the valence s—electrons makes the alkali clusters quite

different from noble gas clusters. In the case of argon clusters one need only introduce

an effective two—body interaction among the atoms, typically the Lennard—Jones

potential. Electron delocalization makes a two—body interaction among alkali atoms
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physically unacceptable. Instead of treating the electrons explicitly we shall use a

phenomenological interaction: the many—body alloy potential [24, 25, 26, 28, 30].

This potential has a many—body attractive part and a two—body repulsive part. The

parameters of this potential were determined from ab initio calculations with no free

parameters [25, 26, 27]. A similar type of interaction has been used in the description

of other metal clusters as well [3, 28, 29, 30].

The Hamiltonian describing the properties of a sodium cluster used by us is

Ecoh X

1 ‘- CI/P)\/ Zb

 

N p2

H = Et..+v= —*—+
22m (

 

 

N N 7‘7“ q N ,,._.

exp [—2q (4 — )] — exp {—19 (A — 1)] , 4.3

g 1%; f0 PV Zb ,2; 7‘0 ( )

J¢i 17,4:

where the following values for the constants have been adopted ECO), = —1.113 eV

for the bulk cohesive energy, Zb : 10.4 for the effective coordination number in the

bulk, p = 9, q = 3 and r0 = 3.66 A for the nearest neighbor distance [25, 26, 27].

The second term in the rhs describes the attractive part of the interaction and has

a many—body character, due to the delocalized valence s—electrons. The last term

describes the short range repulsion between sodium atoms.

Since we are interested in the thermal behaviour of the clusters, we have to in-

troduce the coupling to a thermal bath. In a recent study of Na7_9 clusters [39], a

cubic coupling scheme suggested previously [46, 41, 42] was used. This scheme was an

efficient algorithm to achieve ergodicity and also to allow a relatively fast exploration

of the phase space [45] It works well for small clusters such as Na7_9, but the cubic

term introduced in the equations of motion makes the integration of the equations of

motion rather difficult at high temperatures and for large clusters, since it requires a

relatively small time step. For example, the choice of the time step ranged from 2.0
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X 10‘15 to 0.15 x 10‘15 sec for different temperatures in the study of Na7_9 clusters

[39]. Another drawback of the cubic coupling scheme is that the optimal coupling

coefficients are different for different temperatures and clusters [39]. This situation

can be quite annoying, especially in the case of relatively large clusters. In this paper,

we propose a new coupling scheme, similar to the one proposed for the description of

a Brownian particle [46]. We will make the dependence of the coupling coefficients

on the temperature and cluster size explicit. Furthermore, we can use the same in-

tegration time step for all cluster sizes and temperatures. In all our simulations, we

used 1 X 10‘15 sec as the time step and the simulations were carried out for 106

steps. Consequently the system was evolved for l x 10'9 sec for all temperatures.

This makes the length of the simulation about 7 times longer than in the previous

study [39] at high temperatures.

Our new coupling scheme to a thermal bath at temperature T is described by the

following equations of motion for the coordinates :r,, momenta pr,- and pseudofriction

coefficients 53, Cr and 6,, (here for the :r—components only)

  

5,, = Br: (4.4)
'm

. 8V 080 3 P—xi 380 [92' 760 [33'

xi = — a _ — _ 17 if; _ _ 3—11' 4.5

p ()(L‘i NLO€x_p0 IVLOC p0 a0 TVLQ6 p8 ( )

 

51::

iN=1pxi _ 1 4.6

NmT3) ( )poLo

  

[305110 NmTpo NmT Npo

 a:

N _ {V .

1. = T(~ z) (.7)

2i]: 1 pri_ 3 Z:iil Pit) (4.8)

POLO NmTPo NP6

Similar equations hold for the y— and z—components. In the equations above, e0 ~

ngwf) is a constant with the dimension of energy, of the order of the energy cor-



76

responding to the highest frequency-in the system (one can call it the Debye fre-

quency, tap, for a cluster). L0 is a constant with the dimension of length of order

~ 1 A, P0 = \/2m—T is the average thermal momentum at temperature T and (10 is

a dimensionless constant of order one. oz, 6, 7 are dimensionless constants, cluster

independent and their temperature dependence is given by

I mL2

where to is the smallest characteristic time scale of the system, i.e. to ~ 27r/wD. [n

 

relations. (4.9) the number of particles N appears explicitly because the amplitude

of fluctuations of the terms in parentheses in eqs. (4.6-4.8) is proportional to N.

All the constants, whose magnitude we have specified only by the order of magni-

tude, can be varied within reasonable limits, without critically affecting the quality of

the simulation. However, relatively large variations of these constants might require

significantly longer simulation times. This might not affect the ergodic properties of

the equations of motion, and therefore in theory will lead to correct results, provided

that the simulation is long enough.

A few clarifications, concerning the nature of this type of coupling to a thermo-

stat, are in order. A complex system is always characterized by a rather wide range

of characteristic frequencies (modes). In isothermal MD the thermostat is coupled

mostly to some modes. In a 3—dimensional system the density of modes is largest at

high frequency, like in the phonon density in a solid. Consequently, in order to have

the most effective coupling to a thermostat, the characteristic frequencies of the ther—

mostat should be comparable with the Debye frequency of the system under study.

An analysis of the above equations of motion shows that this is indeed the case. A

quick thermalization implies also that energy is exchanged at a reasonable rate among
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all the modes of the system (i.e. relatively small apparent relaxation times). At the

same time the thermalization of the slowest modes of the system is achieved only if

the total time of the simulation is larger than the characteristic time of these slow

modes and the intrinsic relaxation times of the system. It is possible to devise an

isothermal MD in which coupling to all modes (both slow and fast) is achieved by a

slight generalization of the type of couplings studied so far [47]. One may wonder as

well, why we have introduced a relatively larger number of pseudofriction coefficients.

Our experience [45, 46] shows that by increasing the number of pseudofriction coef-

ficients one can ensure a more efficient rate of exploration of the system phase space

(smaller apparent relaxation times) and hence avoid problems with lack of ergodicity.

In particular one can achieve a better convergence in the case of phase transitions

when the so called critical slowing down phenomenon sets in [45]. Moreover, in the

case of isolated systems one wants to make sure that there are no conserved quanti-

ties (whose presence signals the absence of ergodicity), in particular neither the total

angular momentum nor its direction ia a constant of motion. The price one has to

pay, the increased number of differential equations to be solved, is insignificant, es-

pecially for large systems. At the same time, a quicker decorrelation time among the

generated phase space configurations (which is the essential element of any ensemble

average procedure) ensures a much better overall quality of the simulation.

Provided that the equations of motion generate ergodic trajectories, one can re—

place the phase space average by the time average, which is much simpler to compute

(A(p,9)) = 271;) / d3di3quxp [-H—(§.’—q)] 409.9)

= $151.10 ifamanmn) (4-10)

where p,q stand for the momenta and coordinates, Z(T) is the partition function and
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A(p, q) is an arbitrary observable.

In this new coupling scheme, both the center of mass coordinate and momentum

of the cluster are not constants of motion. When we discuss the thermal properties

below, we will refer everything to the instanteneous center of mass of the cluster and

present only the intrinsic thermodynamic properties of the cluster. In order to avoid

evaporation at high T (around and above the “boiling” phase transition), we have

added a linear restoring force every time a particular interparticle distance r,,- > 3R,

where R = roNl/3 and N is the number of particles in the cluster.

4.3 Thermal Properties

We shall follow Refs. [39] to classify the cluster characteristics into two categories:

thermodynamic properties (internal energy, specific heat, density of states, phase

transitions) and geometric properties (shape, rms radius, momenta of inertia, relative

bond length). The energetics and geometry of the cluster are strongly correlated and

their analysis is extremely helpful in understanding the thermal behaviour of atomic

clusters.

4.3.1 Thermodynamic Properties

During each time step we have monitored the kinetic, potential, rotational, vibrational

and total energies of the cluster. The total kinetic energy carries no useful information

about a system in the canonical ensemble and we have used it merely as a check of the

quality of our simulation. However, the kinetic energy of a cluster can be separated

in an unique way into two nontrivial parts, rotational and vibrational energies [48].

Although one might expect that the rotational energy could be different from that

of a rigid body, since the clusters are to some extent floppy objects, in the whole
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range of temperatures studied we have found that these clusters behave essentially

like rigid bodies. In particular the rotational specific heat of the clusters is CM, 2 3/2

as for a rigid body. This is due to the fact that in this temperature range the thermal

rotational motion is not fast enough to lead to any significant centrifugal stretching.

The only pertinent physical information comes from the analysis of the potential

energy of the clusters. For each temperature, we bin the value of the potential energy

at each time step, and construct the histogram f(E-p0t,T). This distribution of the

potential energy at a given temperature T is

 
1 Epot

f(E,,o,,T) = ——(—T)-p(Epot)exp (— ). (4.11)
Zpot T

where ,0(Epot) is the density of states originating form the potential energy only, and

 
ZPO,(T) = /,0(Epot) exp (- E51“) dEpot (4.12)

is the potential energy partition function. The distribution f(Ep0t, T) is peaked near

the average potential energy for the corresponding T, and drops off rapidly on both

sides. This allows for a reconstruction of the density of states over an energy range

comparable to the width of f(Epot,T) [39, 49]. By piecing together parts of p(Epot)

from simulations at different temperatures one can reconstruct the density of states

over a significant energy interval, up to an undetermined multiplicative factor, which

can in principle be determined as well. The logarithm Of the densities of states of the

potential energy for the clusters studied are shown in fig. 4.1 along with the logarithm

of the corresponding Debye density of states, eq. (4.2), divided by (3N — 8)/2.

One can clearly see an increased density of states at higher excitation energies,

which we associate with the softening of the clusters and which leads to the onset of

the phase transitions. The internal energy and the specific heat can be determined
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Figure 4.1: The decimal logarithm of the unnormalized density of states (potential

energy only) as a function of the excitation energy per particle (solid line) and the

Debye model expectation (dashed line), divided by (3N - 8)/2.
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from the following standard relations

 

 

1 E 0
U(T) :— <Epot> = m/Epotp(Epot)eXp (—‘ lit) dEpota (413)

< E2 > — < E o >‘2

C(T) = p“ N , (4.14)
T2

once the density of states is known. We have computed these quantities using the

above relations and checked them also against the corresponding averaged quantities

obtained during each separate simulation, and the agreement between the two meth-

ods was satisfactory. However, in spite of the fact that our simulation time is rather

long (1 nsec), the temperature dependence of some quantities is often not very smooth

and some fluctuations are still present (their magnitude will be evident in some of the

quantities presented in the following subsection, for which an equivalent of the density

of states cannot be defined). This is indicative of the fact that even longer simulation

times and/or an optimization of the coupling scheme to the thermostat are needed.

The extracted density of states proved to be a rather smooth function of the energy

(the inherent statistical fluctuations, due to finite simulation times, are indistinguish-

able in the plots). The internal energies presented here are calculated with respect to

the ground state energy of each cluster. The temperature dependences of the internal

energy and of the specific heat are displayed in figs. 4.2 and 4.3. Even though the

change in the slope as a function of temperature is not so evident for U(T), one can

clearly identify the existence of two phase transitions in fig. 4.3. The lowest phase

transition can be associated with the melting and the highest one with the boiling of

the cluster. As expected, in finite systems the phase transitions are not sharp and not

as well defined as in an infinite system. However one can unmistakably conclude that

“something quite dramatic happened” to the cluster. As the cluster size increases,

the two phase transitions become better defined and in the thermodynamic limit they
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will likely correspond to the melting and boiling phase transitions for bulk sodium,

with Tmeztmg = 371 K and Tbomng = 1156 K. The reason for the appearance of these

phase transitions is the dependence of the density of states on the excitation energy

of the cluster. At low excitation energies, below the melting point, the density of

states has a power law behaviour, characteristic for an ensemble of harmonic oscilla-

tors, see eq. (4.2). The cluster resembles a small crystal and the atoms perform only

small amplitude oscillations near their equilibrium positions. This is reminiscent of

the Einstein model for a solid. Note however that the finite number of ionic degrees

of freedom leads to a finite number of vibration energies. Once the excitation energy

is increased, the power law behaviour changes to an exponential one, see fig. 4.1,

the available phase space increases at a tremendous rate and as a result so does the

entropy of the cluster. At approximately 0.4le eV excitation energy, the density

of states for the cluster exceeds the Debye density of states, see eq. (4.2), by about

(3N — 6) /2 orders of magnitude. The logarithm of the density of states is essentially

the entropy of the system (5(E) = In p(E)). Our results shows that at this excitation

energy the entropy per particle exceeds the Debye model estimate by approximately

3-4 units. One can see that the two. transition temperatures go up with the cluster

size and both melting and boiling occur at lower temperatures in a cluster than in

the bulk [3, 5, 6, 7]. In finite systems these temperatures are obviously not sharply

defined and both melting and boiling occur in a range of temperatures. A cluster has

a significant part of its atoms (or perhaps better to say, most of them) at the surface.

These atoms are not strongly bound, since their mean coordination number is lower

than that for the inner atoms, and it is relatively easy to “shake them up”. For that

reason atomic clusters “below the melting point” are in a rather unusual state, some-

times called the glassy, the molten or the fluctuating state [3, 28, 29, 30, 39]. “Above

the melting point” they start behaving like liquids, as one can see more easily in the

 



83

behaviour of their pair correlation function (see the next subsection and Refs. [39].

As a side remark, we would like to stress the advantage of performing an MD

calculation in the canonical rather than microcanonical ensemble. One finds often

in the literature the statement that the two approaches are essentially equivalent

with respect to the amount of physical information extracted and for that reason

different authors rather often prefer microcanonical simulations to canonical ones. In

a canonical simulation one can relatively easily extract the density of states, which

is unaccessible in a microcanonical one, and the thermodynamic behaviour of the

system can be easily inferred and understood. For a finite system. the density of

states plays a similar central role as in statistical physics of large or infinite systems.

In particular, it is much less expensive to perform a canonical MD and find structural

isomers than in a straightforward search. If an isomer exists, its presence will show

up at sufficiently high temperatures, as, in particular, a more careful analysis of the

behaviour of the density of states shows (To some extent a similar ideology is behind

the popular simulated annealing method).

In spite of the fact that we are dealing here with such small systems, we decided

to estimate the latent heat of fusion for sodium from these simulations. Since the

first phase transition occurs around 200—300 K, and the transition peak is very broad,

we will simply take 500 K as the temperature at which we regard the clusters are

completely in a liquid state. If there is no phase transition, the potential internal

energy at temperature T would be (3N — 6)T/2, as for pure harmonic oscillators

(note that the ionic degrees of freedom are treated classically). We shall identify the

excess over the internal energy of pure oscillators as the energy necessary to melt

the cluster, i.e. the energy needed to cause a structural change of the system. We

estimate the heat of fusion to a value between 2.36 and 3.45 kJ/mole, which compares



S~l

 

 

 

-
A

L
A
L
A
A
J
A
A

l'

L
A
J
A
-

A

  -1 l m..

1000 1250

 
 

o- --IAALmlLAAAI-

0 250 500 750

T [K]
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unexpectedly well with the value 2.6 kJ/mole for bulk sodium [35]. One can try to

estimate in the same manner the heat of vaporization as well. At high temperatures

the quality of our simulations is worse, due to significant evaporation. Nevertheless,

we obtain a value which is approximately equal to the experimentally measured heat

of vaporization for sodium 89.6 kJ/mol (within 15 — 20 ‘76). This is not very surprising,

since the effective interaction we are using has the correct asymptotic behaviour of

the cohesive energy for large systems built in, and the heat of vaporization is almost

equal to it.

4.3.2 Geometric Properties

A very sensitive indicator of structural changes in a cluster is the rms relative bond

length [5, 6, 7, 39]

 

 

2 N <r,-2->—<r,-->2

éz—Z“ ’ ’ . (4.15)
1V(1’V _1)i<j < Tij >

The temperature dependence of the rms relative bond length is shown in fig. 4.4. As

we have mentioned above, at low temperatures, “below the first phase transition”, the

cluster behaves like a small crystal, with the atoms oscillating with small amplitudes

around their equilibrium positions. At temperatures around 200 K the atoms are at

their equilibrium positions for relatively long periods of time. However from time

to time an atom jumps from one equilibrium position to another clue to thermal

fluctuations [3, 39]. The rms relative bond length changes drastically around this

temperature, indicative of a structural change. At still higher temperatures, the

atoms become extremely mobile and move across the entire cluster [39].

In the region of the second phase transition 850—1000 K, we observe a second

increase in 6. This is partially linked with the fact that some atoms can evaporate,



 

 

 

 

 

 

 

 
 

    
 

0.635Ti'h PF fx ' .1

0 5- Na x x x '

:35. x x x x x i

0.2E-Ax l l AlAAA 1AAAAL‘:

0.8} ‘ X X x ‘1

I X .

0.5? N330 x «I

0.43- x l

03E x x x x .5

E x ' 3
0.2:A AAA AALAAAALAAAA;

AAAAA

0.6? Nam x X X X '3

0.5? x ‘i

'o E i

0.4:- x X 1

cat X X X <1

. E x l A l A IA AlAA All

i
X x 1

. :- x x ‘2

06E N314 x :

0.4; x x 1

0.3;- x x x «;

t X 1
0.2 A 1AAAAAAA AAA AAAAA 1‘

x x x .

0.9 Na. " x 1

x 1

0.4 1

x X X X X ii

0.2 A¥AALAAAA1
AAA

LAAAAIAAAA
Ll

0 260 500 760 1000 1250

’1‘ [K]

Figure 4.4: The temperature dependences of the relative bond length 6.

 



88

even though at a not very significant rate yet. At temperatures above 1000 K, the

evaporation of atoms is significant and the precision of our results is therefore re-

duced. A better approach will be a grand canonical ensemble at these temperatures,

suited for the description of the liquid—vapor coexistence. The structural transition

in these sodium clusters can be seen also in the behaviour of the (unnormalized) pair

correlation function f(r,-j), see figs. 4.5 and 4.6. Below the first phase transition

the interparticle separations are rather well defined, as one would expect for a small

crystallite. In the fluid phase, even though one can see a well defined short range

correlation among particles, the long correlation is almost completely lost and at very

high temperatures the presence of the vapor phase is obvious.

For each spatial configuration of the cluster, we have calculated three geometric

quantities: the rms radius of the cluster, which characterizes the cluster size ; the

shape parameter 6, for the degree of asphericity of the cluster and the shape parameter

’7 (0 S 7 g 71' / 3), which describes the triaxiality of the cluster [39]. These parameters

provide an average information about the size and shape of the clusters. The rms

radius and shape parameters 6 and 7 are related to the principal momenta of inertia

(11 Z [2 Z 13 Z 0) through the following relations

k_

1,,=§7~’2 [1+fisin (7+L46—3M)] k:- 1,2,3, (4.16)

where

1 2 _
r: NZ!” (Zn-.0) (4.17)

is the rms radius of the matter distribution. The condition that the semiminor axis

of the associated ellipsoid of the inertia is positive

2
2 T‘

a:—

3

[1 — 2fisin(7 + 7r/6)] 2 O (4.18)
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Figure 4.5: The pair correlation function for Nam at several temperatures.
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Figure 4.6: The pair correlation function for Nam at several temperatures.
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defines the region of allowed values for [3 and 7. If 7 = 0, then 11 = 12 > [3, and the

shape of the cluster is an axially symmetric prolate ellipsoid (cigar) with O S ,8 S 1.

For 7 = 7r/3, 11 > 12 = [3 and the shape corresponds to an axially symmetric oblate

ellipsoid (pancake) and 0 S 5 S 1/2. For all the remaining angles in between, the

shape is a triaxial ellipsoid. For fl = 1/2 and 7 = 7r/3, the shape is a disk of zero

thickness, while fl = 1 and 7 = 0 corresponds to a linear chain. The region of allowed

values for [3 and 7 has the shape of a triangle in the plane where [3 is the radial

distance and 7 is the angle at origin, see fig. 4.7.

The temperature dependence of the average principal momenta of inertia and

its relative covariances are displayed in figs. 4.8—4.9, the rms radius of the cluster

1", and the shape parameters 5, 7 along with their corresponding covariances, are

displayed in figs. 4.10—4.12. From these plots, one can see that all these clusters

tend to acquire a cigar—like shape at high temperatures. This might seem a bit

peculiar, but is quite easy to understand. One can show that the shape space measure

is proportional to i?“ sin 37(1/3d7 [52]. Consequently shapes with small values of 1'3

are strongly suppressed and for the same reason pure oblate or prolate shapes are

suppressed as well. At the same time the shapes with as large values as possible for

B are strongly favored by this measure and for this reason prolate—like shapes (for

which large values of fl, 1/2 S B S 1, 0 S 7 S 7r/6 are possible) start dominating

at high temperatures. For 0 S 3 S 1/2 oblate—like (7r/6 S 7 S 7r/3) and prolate—like

(0 S 7 S 7r/ 6) shapes are equally probable, according to the shape measure only.

One has to keep in mind that these distributions reflect the shape of the free energy

of the cluster in the shape space, which takes into account both energetic and entropy

properties of the system (the shape space measure is already included). We could have

defolded the shape measure from these plots (this is the standard convention in nuclear

 



 

 

 

Figure 4.7: The allowed region for the shape variables 13 and 7.
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physics calculations of deformed nuclei [3, 52], but since any average will involve this

measure anyway, such a way of displaying the shape properties of the cluster seems

to us to a certain extent misleading. At low temperatures, these clusters are almost

incompressible (their rms radii have relatively sharp distributions), but at the same

time they can change their shape rather easily (the distributions for both fl and 7

have significant widths). At high temperatures, these clusters become apparently

soft as well, having the characteristics of a compressible fluid. This apparent softness

is to some extent an indirect indication of the presence of the vapor. In spite of

the shape differences of their ground geometries, the high temperature behavior of

their shapes is quite similar. Thelcharacter of the shape parameters distributions

changes dramatically in the Vicinity of the phase transitions. The smallest principal

momentum of inertia has the biggest fluctuations, since atoms evaporate more readily

from the sides of the cigar for obvious reasons (more chances).

We have tried to extract the coefficient of thermal expansion from our results.

Unfortunately we did not have enough statistics for a precise determination of the

linear and quadratic expansion coefficients. Nevertheless, as one see from fig. 4.10

the clusters display a rather well defined nonlinear thermal expansion. This fact

might play a quite significant role in explaining the red shift of the Mie plasmon in

sodium clusters [1, 2]. In the jellium calculations, routinely used in describing the

optical response of sodium clusters, the bulk density for the jellium is assumed. Be-

sides melting and boiling in a quite different way than the bulk, sodium clusters seem

to have also a rather distinct thermal expansion behaviour. Since the experiments

are lilcely performed with liquid clusters, their larger volume can easily serve as an

argument in favor of a lower plasmon energy. The classical Mie plasmon frequency

will change approximately as 6wM,e/wM,e = —36r/2r when the radius of the cluster
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Figure 4.10: The temperature dependences of the rms radius and its covariance (error
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changes. At 400—600 K (the estimated temperature of the clusters in nozzle exper-

iments) the linear dimensions of a cluster seem to be about 6 — 15% larger than at

T=0 K (and significantly larger for higher temperatures), already of the right order

of magnitude to explain the observed red shift of the Mie plasmon. At the same time,

at these temperatures the volume distribution of the clusters have a quite sizeable

width Ar/r % 0.04 - 0.07 (and significantly larger at higher temperatures), which can

explain at least part of the width of the plasmon. In figs. 4.13—4.13 we present the

spherical part of the ionic density, extracted from our simulations at several selected

temperatures (The relatively large fluctuations of p(r) near the origin are due to ob-

vious volume effects, near 7‘ z 0 the probability to find an ion at a distance r from

the center of mass of the cluster is proportional to -r2p(r) and correspondingly the

statistics is lower). With increasing temperature this density becomes flatter. The

radius of the cluster does not seem to vary significantly, however the surface diffuse-

ness is greatly increased after the first phase transition, which explains the thermal

behaviour of the rms radius discussed above. This relatively large apparent surface

diffuseness is partially due to the fact that the cluster is rather strongly deformed as

well. One can conclude that the anomalous thermal expansion of sodium clusters,

when compared to the bulk, is mainly due to these surface effects.

An additional contribution to the width of the Mie plasmon in sodium clusters

at finite temperatures will arise from shape fluctuations. The rough estimates we

presented here should be looked upon only as order of magnitude effects. The shape

of the cluster in its ground state and that with one Mie plasmon excited can be quite

different and the ultimate shape and width of the plasmon should be estimated using

a more detailed procedure [53].
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A comment concerning the potential use of such distributions in jellium—type

calculations is in order. These distributions represent ensemble averages. The time

scales for the ionic degrees of freedom are significantly lower than for the electronic

degrees of freedom. If one would like to include such thermal effects in the calculations

of the electronic properties and optical response of a cluster, one should perform the

corresponding jellium calculations for one member of the ensemble at a time and take

the ensemble average only afterWards. In particular, spill—out of the electron density

can be more pronounced for some members of the ensemble.

4.4 Closing Remarks

Since the energy scale characteristic for the ionic degrees of freedom is relatively small,

a huge phase space becomes available upon increasing the temperature of the cluster.

These entropic effects show up in rather drastic structural changes and, without being

extremely pedantic concerning the adequacy of the terminology, one can characterize

these changes as phase transitions in finite systems. With increasing temperature,

the clusters go first through a glassy/molten or fluctuating state (200—300 K) and

eventually become totally liquid (above 300 K). In this temperature range they are

almost incompressible, but highly deformable. At still higher temperatures (850—1000

K) they start boiling, vaporization sets in and they become rather soft/compressible.

In contradistinction with noble gas clusters [5, 6, 7], the melting and boiling do not

seem to be a geometric or particle number effect and the same behaviour is observed

for all the clusters we have studied (N = 7, 8, 9, 14, 20, 30 and 40) [39]. The thermal

expansion properties of these clusters seem to be more pronounced when compared to

the bulk and it is mostly due to an increased surface diffuseness and deformation of the

cluster. Thermally induced rotation is never fast enough to lead to any rotationally
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induced effects and in the temperature range studied, one can safely characterize

these sodium clusters-as rigid bodies with respect to rotational degrees of freedom.

The onset of the new phases can be. observed in both thermodynamic and geometric

properties of the clusters, which have a strong temperature dependence.

The present approach does not account for the electronic degrees of freedom ex-

plicitly and therefore electronic shell effects are not accounted for. We expect however

that, due to the large ionic entropy effects we observe, similar behaviour should be

observed in a more complete description of these clusters. The electronic shell effects

should be rather important at relatively low temperatures, below melting. It will be

extremely interesting to study the effects of the large geometric fluctuations on the

electronic properties and on the optical response in particular (unless in a combined

treatment the clusters do not become more stiff. which does not quite seem to happen

[1:3, 14]).
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Chapter 5

Summary and Perspectives

5.1 Summary

Cluster physics is an exciting and young field, it has not only brought methods and

concepts from different disciplines into new and unanticipated combinations, but also

led to the development of new and advanced experimental techniques. Besides a few

words about our work on the nuclear curvature energy problem, we have devoted most

of chapter 1 to the review of the new developments in cluster physics, with special

attention paid to the theoretical side.

Chapter 2 has been devoted to the calculation of the correlation energy of spherical

nuclei using RPA method. We found that the correlation energy has a very different

A-dependent behavior from that of the mean-field ground state energy. By finishing

this project I learned the theoretical tools used for the study presented in chapter 3

even though by that time I did not know I would jump on the bandwagon of doing

cluster physics research.

Chapters 3 and 4 are the main part of this thesis. We calculated the multipolar

plasmon excitations in fullerenes in chapter 3. These calculations consist of two parts.

One is concerned with the plasmons in C60, its treatment, due to its spherical sym-
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metry, is simpler than that of the nonspherical clusters. The other one is about the

plasmons in other nonspherical fullerenes, their treatment is somewhat more compli-

cated. With some manipulation of the RPA equation, we are able to completely solve

the RPA problem within the framework of tight—binding description for the single

particle spectrum and wave functions. The equivalents of both 71' and a plasmons in

graphite are predicted for these clusters. Good agreement is obtained between our

calculations and available experimental data.

We addressed the finite temperature effects of clusters in chapter 4. Since clusters

are produced at high temperatures, the study of clusters at finite temperatures is

very important and absolutely warranted. We have computed rotational, vibrational

and potential energies and corresponding specific heats, momenta of inertia, shapes

parameters and bond lengths of Na8,14,20,30,40 over a wide range of temperatures.

The equivalents of both “melting” and “boiling” of the bulk are predicted for these

clusters.

5.2 Perspectives

There are a number of directions along which the works presented in this thesis can

be extended. First of all, the extremely large width of the a plasmon in fullerenes is

an important problem to be understood. Several possibilities come to mind. As we

have remarked in Chapter 3, because 2t.)7r and 3t.)7r are very close in energy to 3w.”

there may be a strong, essentially resonant coupling between them. This coupling of

electronic excitations may lead to the large width of the a plasmons. Another route

one may take to improve the quality of the calculations in chapter 3 is to use a better

Hamiltonian to describe the single spectrum and wave functions. Due to the limited

Hilbert space of the tight—binding Hamiltonian, sum rule is severely violated (less
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than one third of the dipole sum rule is accounted for). Since the RPA problem is

completely solved in the framework of tight—binding, one may be tempted to use this

method to study the dynamical responses of other clusters where a TB Hamiltonian

is available, or at least for a rough idea of the system under study.

There are also many ways the work presented in chapter 4 can be extended.

The most obvious one is probably to treat the electrons explicitly instead of being

treated implicitly through the use of a many—body—alloy (MBA) potential. There are

a couple of options one may take. The simplest and most computationally efficient

approach is to use a tight—binding type Hamiltonian for the valence electrons. The

most ambitious way is to use the ab initio methods like LDA. Although these ab initio

methods as of now are computationally not practical to use in simulations to extract

the density of states, which is the most useful statistical quantity as we did using

the MBA potential, they can be used in molecular dynamics simulations to study

other properties of finite systems. For example, one may use MD to generate a large

number of configurations for clusters at finite temperatures, and then to take these

configurations as input to study the optical properties like the plasmons. By using MD

to generate a canonical ensemble of configurations and taking the average of different

configurations, the effects of temperatures will be properly taken into account. For

example, the finite temperature will increase the width of the plasmon. The molecular

dynamics can also be used to study atom—cluster or cluster—cluster collisions. The

study of cluster collision may lead to new structural as well as dynamical properties.

It may also reveal how the the energy is transferred from the projectile to the cluster

target and how the energy is partitioned among the atoms in the target and how fast

equilibration is achived.



Appendix A

Multipolar Responses for C60

The particle-hole state from chapter 3 is reproduced here,

< I‘ll?h >= [£2 [fpri)fh(Ri)¢(2)(7‘i) + gp(Ril'ghR()¢1()] Y00(r)+

47,L2] WMIL),gh_m(R) + fh(Ri)gp.——(mRn)7V)l¢O( (7‘1)1/1m(r1)+

1_07r_;(— mlgpr )X gh( Rz')lg,_.,,, ¢i(7‘i)Y2m(f‘i)
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A2110) = éfpm)R:’)(thHYOO(Pi)
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Note that there are two A2,,(2)s for l— 0, they correspond to the two (1)0(ri)’ s, that

is (1)0(r,) = ¢3(r,) and (1)003) = ¢1(r,) respectively. <I>l(r,-) and <I>2(r,-) are obviously
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given by (1)1(7‘5) = ¢0(r,)¢1(r,) and <I>2(r,-) = dim). Now we consider the expansion

of the Coulomb interaction. First we represent the Coulomb interaction through its

Fourier representation

62 62

V —— / exp[ik- (r1 — r2 + R1 — R2)]dkdk (A.3) 

: [Pl—P2+R1—R2] Z2772

Now we expand the plane waves into spherical harmonics using the following formula

expuk - r) = 4w 2 i’iz(kr)fim(f)ifl:.(l¥)- 01.4)
lm

After we carry out the integration of the product of four spherical harmonics, we

obtain the following formula for the Coulomb interaction

JM (L JM

I’L’

V Z Z {Z VIZJ’L’(7‘117'2)[Y1(IA‘1)® YL(R1)]JM [l/l'ff‘z) ‘3 YL'(R2)]* } (A-5)

with Wi,1/LI(T1,T2) defined by
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v;i,,,L,(r1,r2) = 2.111W2H1X2L + 1)(21/ + 1)(2L’ + 1)

CiiisCflé’soz"+L"’-L’ [110mnuke.)ju(krs)js(kRs)dk (as)

We have used the definition for the tensor product

[Yidf‘ll ® ”203)le = Z Clifn/Illgmgyhmi(Elli/12m2(f.2)' (A7)

m1m2

The quantities inside the curl bracket define the multipolar expansion of the Coulomb

interaction. The quantum numbers JM define the multipolarity of the plasmons when

we calculate the response functions. Since C60 has spherical symmetry, all the matrix

elements are the same for a given J and different M’s. The matrices using (1L) and

(l’L’ ) as their indices for different J’s are
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J20 4x4

J=1 6x6

J22 7x7

Now we will find the RPA Green’s function 0. First G0 can be put in the following

form

2(5)!) — Eh) *12 .' _ L
(r, r; w) =2: Aph (i)(r(I>1,)(Ep _ 5h)2 _ (w + 2.77),) E A ph(j)<I>)2(rJ) (A8)

1”! 111' 121'

 

Now we proceed to solve the RPA equation for a particular multipole JM by expan-

sion.

 Got/GO: ZZAjghu))<1>,(

ph. [11

111'

J1W
/ Z A*§.i.0><1>..<r.) Z Vijwsm, r.) [14.006 YL.(R >1

lgj L2L3

[13301) (8) YL,((R), )]M Z ZAghln)<1>,, (rk)drjdrkdrjdrk

wP1h1 13k

2(5p1_

(5P1 _ 5’11)

 

6:)

01' 277?22m P1h1( )14(T' )

 

2(5 —5h) 12L

———E E Apl,,i)(r<1>) ,p . E 13*1 2

Ph 111' 1( )(Ep - €132 - (90 +2702 1,1, M
13L3

 

2(5 -)e;,
D12L2J3L3 BlgL3 P1 1 A14 j)(p r A9

P1h1(5p1_€h1)2_(w+in)2)2p§l;l§ P1h1(-) 14(J) ( )

Byg—_ ZW/A)[14(1~.) <8 11031)]wa as, (A.10)

for fixed JM and D’ll’l’l2ng is defined by

DhLl’M’2 = f(D11(Ti1)(plg(ri2)Vlj]Ll,12L2(T117'2)d7‘1dr2 (All)
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Note that some arguments of the summation notation 2 come before it, this is to

ensure each block in the formulas has a clear meaning. Next we consider

 

 

2(e —e),)

GOVGOVGoz A],,,i)(r<I>1 f” , . 19“?“

a???“ l( i)Efpr'éihlz-(WJHUV ph

Dl2L2,l3L3 Z Bl3L3 2(EP1 — Shl) *14L4 DlgLQ,,13L3

h . .

P1h1 P1 1(5P1 — €h1)2 _ (w '1' ”ll2 plh 1

25 E}, *6 .

228125;: (“’2 2) . ,Ai....0)<1>i.<r.-)=
 

 

pghg 153' 5219—2-5hz)(W + “7)

ZZ Aplh i)((pl 2(813 — Sh) ' 8112th DlszJngg

Ph fli 1( “)5” _5h)2“ w + “7)2 p

 

2 e , - e , .
E13L3J4L4D14L4JsLs Z ZBlsLs ( p h l . Bp61h1(j )(I)16(T'j) (A12)

It

[hit] lej p1 1(6131 — €h1)2 — (90 +17])2

And E’lLlJQLQ is defined as

2(5 - 8h)
El1L1,l2L2 = Bllh1L1 P . BleLQ A.13

a: (as - €02 - (w + 20)2 p” ( )

 

Now the structure of the expansion is clear, in the middle we have

1
 

 

 

 

Ueff=D—DED+DEDED—-~=Dl+ED (A.14)

So we have

2(6 "5h) 1 .

G:
Ag}; 2)(D (7",)

P . A* 2 _

Eh: 12,7“ ’1 (ep — 5,,)2 _. (w + z”)2 E ph(])

ZZ Ainlh z)(q)!(“)7‘
2(5p — (Eh) 22 BlszU1214213L3

10" l11 1 2 (EP — ‘5th (w +l71)2 1212 Ueff

‘353

Z Z 8’31? 2““ “ 5’“) 14*" ,. on» (is) (A15)
mhl uj pl 1( 101—51102 - (w + in)2 P1 1 4

When we look the response to an external field F(r,), we need to calculate

h)=2/A]h(i)<I>1(r,))F(r,~)dr,-df',~ (A.16)



115

Then the response is determined by

Fewer))(rlF)>=):g(p,1)€p( if]; 5:)+,,,,,g*(p,h)— 

 
2(5p—5h) 1L] lLlL

' B*11 U61 1122

;;§[g(ph) (Pp-ShV—(wi-WZ M U

12142

 

Z [B*:’21[’al;;( 2(5p1—8h1)*(P11h1):l
(A17)

.9

Plh-l 5P1 ”- €h1)2—-—(w + “llz

We use I" to denote the real coordinate, R the ion coordinate, r coordinate relative to

the10m, 1. e. r’ ——R + 1‘. Then the external field1s denoted by r’JYJM(r’) (for .—I— 0,

we use r’2Y00(ri’)). In order to do the integration over 1', we rewrite the multipolar

field in terms of the ion coordinate R and the relative coordinate r.

 

 

I . . . 47rJ 2.] +1 _ ,
r JYJMfl") = RJYJMfR) +\/ ( 3 )RJ 1": ClinijJ—lll’f—ml

 

 

. . 2 J—1J2J—1 2J1

Y1m,(I‘)YJ_1,M_m1(R)
+ \/ 7f( ) ( 15 )( + )RJ—2r2

ZCZmlJ—2114—m1Y2m1(f‘)YJ-2-M—m1(fi‘) + (A18)

The terms with l > 3 have no contributions to the response function since the maxi-

mum angular momentum of site transition is l = 2. For l = 0, F(r’) = r’2Y00(r’) and

the expansion is given by

(R2+r2+2R-r)=—1—R2+
.rI2YOO(rI) = m

1

\/4ir

1 2 2\/47r ~ .

r + Br Y (R)Y* (1') (A19)
  

Now the calculation of g(p, h) is relatively simple, and we will not write down the

formulas. In the Born approximation the differential cross section for inelastic electron

scattering is

(120 e2m 2 4p’

dads; = (‘57) P77; (91,01), (A20)
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where p and p are the initial and final linear momenta of the electron, q = p — p,

is the transferred linear momentum, m the mass of the electron, w the energy of the

excited state and S(w, q) is the spectral function (or the dynamical structure factor)

of the cluster, which depends solely on the properties of the cluster and is given by

1

S(w,q) = —Im/exp(iq ~ r)G(r,r';w)exp(—z'q' r')drder'dQ'. (A21)

7r

In order to do the integration, we expand exp(iq- r) and exp(—iq- 1") into spherical

harmonics,

eprq-r) =4wzi’111qrmmm 3,161). (A221
1771.

exp1—2'q- r') = 4w Z1-i1’jz<qu')14:,(f'mm(<1> (A23)
1m

Now j,(qr)Y}m(i‘) acts as the external field in the calculation of the structure factor

as 'r’JY:11\/[(I:I) does in the calculation of the response function. Once again, we ex-

press j,(qr)Y1m(i‘) in terms of functions of coordinates of R and 7" using the following

 

 

formula,

. A 4 0° . m

JL(qr,)YLM(r) : W Z Zll‘Hz-iL\/(2ll +1)(212 +1)Clllzm1213ms
2L + 1 [112:0

j1,(qr)j1,(qR) [mm 61 191111)] W (11:24)

Now we can define a similar gL(p, h) for each multipole L, then S(w, q, L) is defined

by

2(5p — 5h)

(522 — Ehlz — (w + in)

 

5(w,q, L) = 29(1), h) 29*(10111) -
ph

 

229mm “5““) B*$hL‘U§}il’12L2
ph 111.1 (519 '_ 5h)2 "‘ (w + my

‘2L2

2 e — a .

2 3*1’1" ( p‘ h‘) 29091,121) (A.25) 

mm mm (5P1 — €h1)2 _ (w + 277)
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Since

L

2 4m‘LY5M1c‘1)4vr(—1)LYLM(é1) = 4w<2L+ 1) (A26)

Adz-L

we may omit 47riLYLM(€1) and the summation over m everywhere in the formulas, and

include a factor 47r(2L + 1) in our final formula for the cross section. The differential

cross section is given by

 

(120 62m 2 4' I Lm”

dad“) = (723—) 1% Z 47r(2L+1)S(w,q,L) (A27)

' L:O

We take Lmasr = 20 in our calculations.

  



Appendix B

Multipolar Responses for

C20,70,100

Once again the particle—hole state is reproduced here,

< PlPh >= J}: [fleilfh(Ri)¢filri) + gp(R1') ' gh(Ri)¢f(r.-)l YooIi‘i) +

1

im

1071'_Zm:(_
)X gh( Ri)]2,-—m ¢i(7‘i)Y2m(f‘i)

_—2 Ag}: M10?)lm(ri)

(mi

The quantities Ag}: )’s are defined as

A22(R,~) = JgfpfliR-)(th

A22(R,) = J;gp(Ri‘))gh(R)

A;)'Z‘(R.) = (‘1m) ngprRR')9h,—m(Ri)+fh(Ri)gP1—m(Ri)l

AiflRi) = (-1)m -§;r-ngp()Xgh(Ri)l2,_m

118

AGEI- 1'") lfP(R1)gh,-m( R1)+fthilgp.—m(Ri)l¢0("‘i)¢1("‘i)YIm(i‘i)+

(13.1)
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Note that there are two Agg(R,-)’s for (lm) = (00), they correspond to the two ¢0(”1)’Sa

that is (1)002) = 45302) and <I>o(r,-) = gbflri) respectively. In order to keep the number

of indices in the formulas to a minimum, we did not introduce another index for this

distinction, (1)1(r) and (D203) are given by (1)1(7‘)= ¢o(r,)¢1(r,-) and (D203) 2 4510“,).

Using the notation in eq. (B.1) for the particle—hole state < rlph >, we can put

the single particle Green’s function in the following form,

(,r r; w) =2 2 A2,? (7")YzmII'i)

ph "hm“

(
\
D

 

(5 —5) [*1m, 1* A

(. _;h)§_ :+m)2/l lm (Ri')¢z'(rw)Ypm/(r.v) (8.2)
up c

The matrix elements of the Coulomb interaction are computed through its Fourier

representation, but this time we treat R1 — R2 as a single vector instead of treating

R1 and R2 as two separate vectors.

62 62

v = lrl—r2+R1—R2|= 22/exp[ik (rl—r2+R1—R2)]dlsdf< 

(4w) 3102
‘

2 -----—-—-2P/;llj1(k7'1))/1m(r1)ylm(k)ZZ—mjl’(kr2Yl’m’(r2)Yl'm'(k)

I’m’

:1Jr(kR12)YLM(Rn)YE111(R)dkdk (13.3)
LM

After the integration over lc of the product of three spherical harmonics is carried

out, one obtains

V = Z BzmMmr,Mm(i'1)Y,fm,(i'2)YLM(R12)

mlrlri’LM

f11(197‘1)jl'(kr2)jL(lez)dk, (13.4)

where Bffiflm, is defined as

 

, (21+ 1)(2L +1) ,m,

8117431,";,2 il+L-132mg2\J 47r(2l’+ 1) CmLoCllmLM.



120

Now we will consider the expansion of the integral equation G = Go — Go VG. First

we will consider

2(5). — 6).)

(8p - 5h)2 - (w + in)2

 GOVGO—_ Z 2: Ag}: )(.14.,. (1.)

lmi

plhl limit!

Z AlillhmmlR11 )ZBIIJX ,(12m2/(p11 T11)jll(kr11)¢12(ri2)j12(kri2)JL(kR112'2)

l1771111 LM

‘2'"2‘2

2(51)’ "' Eh’)

(51w-~ <'311I)(2R-)(w(+2'77)2

 cm.dr..deLM(Ri.z-.)A;%7$’(R12)

 

A*S$I’(Rii)¢ll(7‘z
)')I ”Tn/(1‘17) Z;

2 Ag}: M))/lm(.)

p’h, l’lmI1I

2(5). — 5),) 1 1

A*ph1m1(1:{R1 )Dlmi miA2mIz R1

(511-Shy-(<.a+277)2)2(1;;1
1 ’ 1112 22 ph( 2)

‘2m2'2

2 8 I — 5 I a: 'm’ * A( P h ) A gr)“(Ri/)‘I>zi(ri))Yl,m
,(rp),

(B5)
 

(5p, - 5h!)2 - (w +217)2

where the quantities Dzlm,.1,)2m2.-2 are defined as follows

_ LM ‘ . .
Dzlmnmmig - Z Bz.m.,z.m.YLM(Rm2)

LM

/ ¢l1(ri1)j11(kri1)(D12(Ti2)j12(kri2)jLUCRiiiz)driidrizdk

Next we consider

 

A 2(5 - Eh)

_ Z 2 1m . . . 1"
GOVGOVGO -- h lmi Aph(Rz)¢l(rl)Yfm(rz)(€p _ 5h)2 _ (w + l")2

p

p’h’ l’m’i’

 

2(5 - 5), )
, A*11m1(R_ )Dl _ ’1 _ AIQTZQ(R_2 ) P1 1 .

LEE; ph 11 1mm 2m2221:4:41 pl 1 (5131 __ 5h1)2 _ (w + “7)2

 

2(5 ' — 512') I’m
A*’3m3(R.- )D. m . ,1... . A",m;‘(R.- ) P , A*3:1.(11 )

isggs M1 3 3 33 i H M 4 (Er-511')?—(W+277)2
4m4'4
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 14,-114, =1;:A::::<14.1141; ESTES)...
p’h’ l’m'i'

*llhmi

Z A (R41) 2 Dllmlil112m2i2E12m2'i2113m3i3D13m3i3114m4i4

(lmltl (277321?

‘4'"4'4 l:sms‘s

2(6p’ - Ehl)

AétZHRu ) 2A*iwu(Ri')‘1’z'(7‘i')YszI(i‘wl, (3-6)
 

(5p, - 51102 - (w +271)

where E12m2.2,13m3.-3 are defined as

 

2(8 —- 5}.)
l m P *1 m3

Ebmm[Maia_ 2 AM? 2((Ri2)(5p — 602 — (w + 2'77le ,3. (R15).

If one continues to calculate the successive terms in the expansion of GOVG, one can

see that the expansion involves higher and higher powers of the matrix product of E

and D. Once the rule of the expansion is clear, G = Go — GoVG can be solved as

 
A 2(510 ‘ 5h)

G E. 1;.A13“ (4114,.(“)(sp—th—(wwn)?

 
 

 

(Iml. I

A*il,:"’<R161101114 —Z 2 Air}: R-W(Mme)
Plh’ lllrnlu'l

2(5p _ (5h) 1)( 1 )

A*m1ml(R; D

(510 _ 5h)?“ (0.) + Z77)2)211§1:.1 1 + ED 11m1i1112m2i2

lzmz'z

m 2 5 ' _ 5 ' * ’m' * A

Aéih12(R.2 ) ( P h) A LIhI(Ril)¢ll('ril)Yme(ril). (B.7)

(Ep' - 5w)2 *- (w +271)2

From here on, the procedure to calculate the response functions is exactly the same as

that detailed in Appendix A for C60. Since we have to take into account the different

orientations of the nonspherical clusters, we outline how to average over the directions

of q in the following. 5(w, q) is given by

S(w,q) = $Im/exp(iq - r)G(r, r';w)exp(—iq- r')drdfldr'dfl’. (B.8)
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This amounts to the following calculation

/Q1(7‘i)Y1m(f‘i) exp(iq ° 1")de0 = exp(iq ' R,)/(D1(Ti)Yim(f‘i)

exp(z'q- r;)drd§2 = exp(iq - Rf) / (P1(7"i)Y1m(f‘i)47T Z illjldqril

l’m’

l/zimr(f‘i)l/I'm'(€l)drd9 = 47Till/zm(€l)€XP(iq ' Ri)/<I>z('ri)jz(qr,-) (39)

It is obvious that only Yzm(Q)exp(iq - Bi) and Yfmlfi) exp(—iq- Rj) (we have two

plane waves in the formula for S(w,q)) depend on the directions of q. To average

over 61 is fairly simple and amounts to do the following integral,

/ Yzmfii) exp(z‘q- Ri)1/,rm,(<a) exp(—iq- Rj)dq =

/Y1m(él) [rm/(fl) Z47r'iLjL(q
Rij)YLMfill’Ev/(RU

MQ =

L1W

 

Z47riLjL<qRinYzM<Rt> CisioCm’M (8.10)
LIV!

 

(21+ 1)(2L +1)

47r(21’ +1)

Note that we have treated R0 = Rl- — RJ- as one vector.
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