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ABSTRACT

CMOS VLSI IMPLEMENTATIONS OF

A NEW FEEDBACK NEURAL NETWORK ARCHITECTURE

By

Yiwen Wang

This work develops CMOS VLSI implementations of a new architecture for feed-

back Artificial Neural Networks (ANNs). The new architecture lends itself directly to

all-MOS implementations and it has been shown to exhibit qualitatively the same

dynamic properties as gradient continuous—time feedback neural nets. Neural proper-

ties of a prototype of this new architecture had been verified via extensive SPICE

simulations and discrete-component laboratory experiments.

A 6-neuron Tiny-chip of the new architecture was designed and fabricated as a

prototype all-MOS chip of the new architecture for developing and assessing various

potential off-chip learning algorithms. A new dynamic learning algorithm is described

for general dynamic continuous-time models of ANNs. The learning algorithm is spe-

cialized to the new architecture of ANNs and is successfully tested on the 6-neuron

Tiny-chip.

Subsequently a digital MOS realization of the learning algorithm is developed. A

SO-neuron CMOS analog chip with on-ehip digital learning scheme was designed and

fabricated in 6.8mm x 4.6mm chip size with 63,025 transistors and 1225 programme

able synaptic (interconnect) weights via standard 2pm CMOS n-well technology.



Dedicated interface circuitries and software environments had been built to suc-

cessfully demonstrate the use of the prototype chips of the new neural circuit. As an

example of an application of the fabricated neural net chip, real-time experiments are

described in which the chips are used as a coprocessor to a microcomputer. These

experiments entail learning an arbitrary image which can be subsequently retrieved by

images distorted by binary-noise in the order of 20 usecs in real time.

To our knowledge, these are the first successful and effective (analog) neural chip

experiments with guaranteed learning capability. The literature on the implementation

of ANNs has dramatically grown, yet, to the best of our knowledge, none of the pro-

posed neural implementations has been shown to execute and substantiate the claimed

learning and retrieval capabilities in real time. The implementations and real-time

experimental results described here have been shown to perform and substantiate the

capabilities attributed to ANNs by pursuing an approach of analysis followed by direct

electronic implementations.
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CHAPTER 1

INTRODUCTION

Artificial Neural Networks (ANNs) have recently become very popular due to

their anticipated ability to solve problems such as vision, speech understanding, pattern

recognition with distorted data, information retrieval with partial information, etc..

These networks attempt to mimic the functionality of the nervous system and the

brain. The human nervous system and the brain have the capabilities of creativity,

adaptive learning, error correction, and robustness. It is believed, for instance, that the

massive parallelism and high interconnectivity in the biological neural networks

account for some of their computational capabilities and intelligence. An ANN typi-

cally possesses parallel-like structure manifested as high connectivity.

Although it is perhaps proper that one includes a tutorial introduction to the

field, this has not been possible for several reasons: one being the unbounded diversity

of the field, and another is the publication of various recent textbooks covering

numerous orientations and foci [26.48.81].

During the 1960’s, artificial neurons were extensively studied. In many cases

these were simulations of biological neurons which attempted to take into account all

the many and varied nuances of real neurons. In other cases the neurons were

oversimplified but the accompanying algorithms were not suitably developed

Recently, very simple neurons have been considered resulting in emphases have shifted

away from the neuron itself toward the interconnections of neurons and the weighting



of their signals. Many researchers have proposed electrical circuits that model the

highly interconnected nervous system and the brain. These circuits are often referred

to as artificial neural nets. Architectures for artificial neural nets have been reported in

numerous works, e.g. [1-7] and [8-12]. In particular, [13-26] are concerned with some

aspects of implementations.

However, there exist two major problems that must be attacked before the reali-

zations of such artificial neural networks can be achieved. The first problem is how to

implement those global and dense interconnections among many neuron-like elements,

and the second is how to program such highly dense interconnect weights. One of the

goals of the field is to produce hardware, containing millions of neurons, that mimics

the signal processing capabilities of the brain where millions of neurons are present.

The majority of approaches for implementation, however, fall into two classes: (i)

those that are software-based and (ii) those that are hardware-based but with relevance

toward hardware realization and design for real-time applications.

Software-based implementations usually employ an algorithm, which“ is based

on the architecture and understanding of models of neural networks, mapped onto a

conventional digital computer. Software-based implementations are flexible and easily

modified. However, when large ANNs are represented by a set of differential equa-

tions, simulation on a digital computer may take a considerable amount of computing

time. Consequently, it becomes apparent that the field will be driven by the develop-

ment of devices that are simple and can readily be realized in hardware VLSI, optics,

or electro-optics.

Neurons in the human brain are interconnected in 3-D space because it is the

most natural and efficient way of interconnection, but VLSI-based interconnections are

inherently 2-D in nature. The high interconnectivity of these networks makes an elec-

tronic implementation difficult. Several schemes of VLSI implementations of neural

networks have been proposed [13-26]. Optical signals can flow through 3-D space to



achieve the required interconnections between neuron-like logic elements. Psaltis and

Farhat reported an optical implementation of the Hopfield neural network using an opt-

ical vector-matrix multiplier as a programmable interconnector and illustrated the

potential feasibility of optical content addressable associative memory [27]. Salam and

Wang developed a formulation for 2-D array neural net processing which is suitably

mapped into various electro—optical implementations [28,29]. However, due to the

immaturity of the present optical technologies, it is difficult to presently make optical

devices that are compact and easily programmable (to implement large scale artificial

neural networks).

Other goals of the field are to develop learning schemes [10,30-37] which

effectively choose or "program" the interconnections so as to render a relative

configuration of the neural network that conesponds to a pro-specified set of stored

data. The Backward Error Propagation (BEP) [34] has been somewhat successful as a

supervised learning rule for multilayered feedforward networks with hidden units. The

multilayered feedforward network is a continuous valued mapping from the input to

the output space. Its mapping function is adapted by repeatedly presenting the network

with a set of input-output vector pairs and using an appropriate update law (typically

gradient descent) to modify the mapping until a functional relationship is realized that

approximately satisfies the set of input-output pairs. However, as originally intro-

duced, BEP is limited to feedforward networks which gave marginal, albeit, and satis-

factory success. Networks with feedback necessarily raise the problem of overall sys-

tem stability [38]. There are several learning rules such as Hebb’s rule [36] and the

Pseudo-inverse rule [37] for feedback models, but none of the traditional rules has

been shown to be effective in applications.

The overall objective of this research is threefold: Firstly , to establish simula-

tion and experimental foundations for the operation of a certain, recently proposed,

neural network architecture. Secondly , to design and implement the neural net



architecture via CMOS digital/analog VLSI/LSI circuitry. Thirdly , to demonstrate the

performance of the design using the fabricated VLSI chips. The focus for applications

will be on the proper design and implementation of this architecture as a classification

device.

CMOS VLSI implementations of a new architecture for feedback ANNs are

described in this thesis. The new architecture has qualitatively the same dynamic pro-

perties as gradient continuous-time feedback neural nets [39,40]. Moreover, the archi-

tecture also has the following features:

i) It reduces the maximum number of connections to n (n + 1)/2, where n is the

number of neuron processors in the network.

ii) It does not require the symmetry of interconnections (in order to ensure the

convergence of all solutions to equilibria only).

iii) More importantly, it does not require the realization of linear resistive elements

for the synaptic weights. Instead, the connections are realized via MOSFET

conductance elements.

iv) It lends itself naturally to direct analog MOS VLSI silicon implementation.

A 3-unit prototype circuit is employed to illustrate and test the characteristics

and the performance of the new architecture. Extensive SPICE simulations are con-

ducted to obtain the transient evolution to the steady states (or stable equilibria).

Discrete—component laboratory experiments are also performed. The results are quali—

tatively identical to the SPICE simulations.

A 6-neuron Tiny-chip of the all-MOS implementation of the new architecture

was designed and fabricated as a prototype chip of the new architecture. Complete

testing of the Tiny-chips has successfully revealed the proper operation of the neural

circuit.



A new dynamic learning algorithm is described for general dynamic

continuous-time models of ANNs [30] which was motivated from our efforts to

develop a learning algorithm for the new architecture. The learning capabilities of the

new algorithm were tested on the 6-neuron Tiny-chip for storing and retrieving arbi-

trary digitized images.

The new learning algorithm has subsequently been specialized to a digital learn-

ing scheme which is realizable in the all-MOS VLSI implementations of ANNs. A

50—neuron CMOS VLSI chip of the new architecture with on-chip digital hardware

learning scheme was successfully designed and fabricated on 6800M x 4600um chip

size using a MOSIS 2-um scalable CMOS technology and a 64-pin standard pad

frame. There are 63,025 transistors, 1225 programmable synaptic weights, and 50 neu-

rons on a single chip. Each neuron consists of two CMOS inverters in series with one

feedback nMOS transistor between the input node and the output node. The gate vol-

tage of the feedback nMOS transistors can be adjusted globally. Either the input node

or the output node of the neuron can be connected to an external pin via a CMOS ana-

log switch. Each synaptic weight can be set up via on-chip digital hardware learning

circuitry or via direct assignment and it can be stored on an on-chip digital flip-flop.

Dedicated interface circuitries and software environments were designed and

developed for a personal computer in order to facilitate testing and verifying the per-

formance of the fabricated chips. Real-time experiments are conducted to successfully

demonstrate the use of the 50-neuron chip with on-chip digital learning as a real-time

pattern/character recognizer and associator.

The thesis is organized as follows. Chapter 2 covers some background material

on neural networks which is pertinent to the content and emphasis of this thesis. It

includes a biological overview of neural networks, some simplified neural net models,

and an overview of the current literature on the circuit implementation of ANN3.

Because standard CMOS technology is employed to implement ANNs in this thesis,



Chapter 2 also briefly introduces the basic concepts of MOS transistors and the charac-

teristics and limitations of VLSI/L81 design.

Chapter 3 starts out with an introduction of a new architecture of feedback

ANNs which may be motivated from neuro-biology. The basic building block and the

general n-neuron architecture with various topologies is also described. Then the basic

theory and some characteristics of gradient models are presented as a theoretical foun-

dation for the operation of the new architecture. Circuit implementations of the new

architecture are also discussed in Chapter 3. It ends with extensive SPICE simulations

and discrete-component experiments to verify the neural properties of a prototype of

the new architecture. In Chapter 4, a new learning algorithm for dynamic continuous-

time models of ANNs is described.

Chapter 5 describes a VLSI layout designed for a 6—unit neural circuit on a

MOSIS Tiny-chip as a prototype chip of the new architecture. A dedicated interface

circuitry is built to facilitate the programming of the chip. The new learning algorithm

described in Chapter 4 is specialized for the 6-unit Tiny-chips. The learning algorithm

is implemented in software on a PC; it interacts with the chip in real-time via the dedi-

cated interface circuitry. Using the interface circuitry and the learning schemes, we

successfully demonstrate the use of the Tiny-chips of the new neural circuits as a

recognition and association device.

Chapter 6 describes the design of a 50-neuron CMOS analog chip with on-chip

digital hardware learning scheme. SPICE simulations are conducted to verify the

functionality of the neuron and synaptic weight circuits before the chip was fabricated.

Extensive testing of the 50-neuron chip successfully substantiates the predicted opera-

tion of the neural circuit.

In Chapter 7, a real-time application is conducted using the 50-neuron chip with

on-chip digital learning as a pattern/character associator. An interface circuitry and a

software environment is designed and developed which provides a user fiiendly



environment to easily control and operate the fabricated chips. Real-time experiments

are conducted to demonstrate the learning capability of the SO-neuron chip for storing

a single pattern/character or storing multiple pattems/characters via digital hardware

learning circuitry. Finally, summary and conclusions are collected in Chapter 8.



CHAPTER 2

BACKGROUND

Interest in neural modeling and neural computing is not recent. It can be

traced to the work of McCullough and Pitts [41] and Hebb [36] in the 1940’s. By the

early 1960’s, active efforts in neural networks and learning were concentrated within

relatively few research groups in this country and abroad. The two most active groups

here were those of Prof. Frank Rosenblatt [42] at Cornell and Prof. Bernard Widrow

[43] at Standford. More recent work by Kohonen [10,37], Grossberg [44—46], Hopfield

[1-7], Rumelhart and McCleland [34,47], Arima [82,83], and others has led to new

resurgence of the field. This interest is due to the development of new network topo-

logies and algorithms, new analog VLSI implementation techniques, and some intrigu-

ing demonstrations as well as by a growing fascination with the function of the human

brain.

2.1. Biological Overview of Neural Networks

The brain can perform many tasks that conventional digital computers still

cannot. For this reason, it behooves us to examine various models of how a large

number of simple devices can work together to perform useful computation.



A neuron is the fundamental unit of all nervous systems [48]. Figure 2.1.1

depicts a highly idealized description of a real neuron [35].

     

   

post-synaptic dendrite

\

 

dendrites

pre-synaptic axon

  Cell body ................

Figure 2.1.1 A highly idealized biological neuron.

Usually, all signals from other neurons come into the dendrite. A cell body

integrates or sums all the information that comes in. Action potentials are initiated at

the axon hillock when the cell fires. The firing rate depends on the aggregated signals

received. The action potentials are a sequence of pulses whose frequency depends on

the intensity and duration of signals that excited the cell [10]. Pulses are transmitted to

the dendrites of other neurons through synapses. A synapse consists of the presynaptic

cell and the postsynaptic cell, which are separated by a synaptic gap. Numerous

chemical molecules are involved in transmitting signals through the synapse. If the

action potentials arriving at the synapse exceed a certain threshold, the chemical

molecules in the presynaptic cell are released and transmitted via the synaptic gap to

the postsynaptic cell of another neuron. As the neurotransmitter molecules combine
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with receptor cells on the postsynaptic cell membrane, the chemical signals transform

into electrical pulses.

Axons are specialized for the conduction of an electrical impulse, called an

action potential. Action potentials originate at the axon hillock, the junction of the

axon and the cell body, and travel to the small branches of the axon terminals [10].

From there chemical signals are passed on to other cells. Some axons are wrapped

with a sheath of myelin. There exist nodes between two pieces of myelins. These

nodes are achieved to reinforce the weakened signals so that they can be transmitted

without diminishing. Thus these nodes are sometimes referred to as signal repeaters.

Dendrites are thinner fibrous projections extending outward from the cell

body. Dendrites contain regions that receive signals from the axons of other neurons,

convert these signals into electrical impulses, and transmit them to the cell body [49].

A cell body receives signals independently as well. Electrical signals that are

generated in the dendrites or cell body spread passively to the axon hillock. If the sig-

nal is great enough, an action potential - an electrical pulse - is generated and is

actively conducted down the axon.

Synapses are specialized sites where neurons communicate with the cells. The

axon terminal of the presynaptic cell contains vesicles filled with a particular neuro—

transmitter molecules. When the nerve impulse reaches the axon terminal, these vesi-

cles are exocytosed, releasing their contents into the synaptic gap, the narrow space

between the cells [50,84]. The transmitter diffuses across the synaptic gap and com-

bines to receptors on the dendrite terminal of the postsynaptic cell. Upon combining,

it induces a change in the ionic permeability of the postsynaptic membrane that results

in a signal of the electrical potential at the point. With an excitatory synapse, the sig-

nal from the presynaptic cell will be more positive. With an inhibitory synapse, a

nerve impulse in a presynaptic neuron will be more negative to prevent the generation

of an action potential.
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Usually, the synapses are connected from the axon terminal of the presynaptic

cell to the dendrite terminal of the postsynaptic cell. However, synapses may also

appear between presynaptic dendrites and postsynaptic dendrites, or even between

presynaptic axons and postsynaptic axons [48]. For examples, the Horizontal and .the

Ganglion cells in the retina [26], their synaptic connections among neurons only occur

via their input terminals only. The synaptic connections among neuron units which is

established via dendrites only may be refen'ed to as dendro—dendritic connections.

In a typical state of the art human brain, there are in the order of 1011 to

1012 neurons [51].

2.2. Basic Models of Neural Networks

Models of the biological neurons and their networks, if accurate, ought to cap-

ture at least some of the properties of biological networks. At least a model should

possess an essence of the mechanisms of operations of biological neural nets. Models

for neural nets can be classified into the following two categories according to their

applications. The first kind of models is for the purpose of studying the functions of

the brain. This category may be referred to as reverse engineering. These models are

of primary interest to biologist, psychologists, physiologists, etc.. The other kind of

models is for the purpose of advancing engineering technology. These are often

referred to as Neuro-engineering or Artificial Neural Networks (ANNs). These models

are inspired by the neurobiology and aim at improving the technological processing of

data or information. We will primarily focus on the second category.
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2.2.1. The Model of a Neuron

In a single neuron, a train of action potentials is propagating pulses of

electro-chemical activity. If the new has a strong input, these pulses are generated at

a high rate. If the input is weak or absent, they are generated at very low rate. The

mean rate at which these action potentials are generated results in a smooth nonlinear

function of the mean membrane potential, say S,- (u,-) which is typically modeled as a

monotone nondecreasing sigmoid function [1-5] or approximation thereof. Since the

synapses are activated by arriving action potentials, v,- = S,(u,-) becomes an input and

output relationship for a neuron, where u,- could be thought of as the mean soma

potential of a neuron from the total effect of its excitatory and inhibitory inputs, and 'v,

could be viewed as the short-term average of the firing rate of the cell i. We use

model neurons which lend themselves naturally to VLSI implementation that com-

municate by means of voltage levels. Think of a high voltage as representing a high

level of activity, a low voltage as representing a low level of activity. The neurons (or

the processing elements) are modeled as amplifiers having a monotone nondecreasing

sigmoid input-output relation, as shown in Figure 2.2.1. 1.

VjTij

 

  

 
Figure 2.2.1.1 Neural model circuits.
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2.2.2. Models of the Synapse

The strength of the synapse from a presynaptic neuron j to a postsynaptic

neuron i can be modelled as a linear parameter W5,- so that the postsynaptic signal is

given by Wij VJ- or ngSJ-(uj ). If the synapse is excitatory, the output from neuron j

will drive neuron i to produce more output, i.e. Wij is positive. If it is inhibitory, less

output will be produced and Wij will be negative. The linear synaptic weights can be

realized in VLSI implementation of an ANN via linear resistors [18, 21] or analog

multipliers [17,20,52-57].

The strength of the synapse in the biological neuron is a highly nonlinear

function in order to describe the chemical substances transmitting signals through the

synaptic gap. The dynamic neural net models supporting with good theoretical

analysis, the synapse may also be modeled as a nonlinear function [39,40] so that the

postsynaptic signal is given by fU (S,- (uj )) where fif is a nonlinear function describing

the strength of the synapse.

2.2.3. Feedback Models

Figure 2.2.3.1 depicts a usual feedback neural net model, where the outputs of

a set of neurons return to become inputs with an interconnection weight matrix T,,-.

This kind of neural net model has rich dynamics, but is hard to program.

In a biological system, it,- will lag behind the instantaneous outputs V] of the

other cells because of the input capacitance C,- of the cell membrane, the transmem-

brane resistance R,- , and the finite conductance Tij . Thus the rate of change of u,- in

feedback ANNs is determined by the following resistance-capacitance charging equa-

tion.

“i
du-

c, 7“— = 2 Til-VJ- - ? + 1,. (2.2.3.1)

I
l



14

u,- ='- Si—1[Vi]’

where Rfl = pfl + 2 T,-.

i

which is the net input impedance, C, is the total input capacitance of the neuron i, I,

is an external stimulation or excitation at the input of the neuron i, and Ti} Vj- is the

postsynaptic current from neuron j to neuron i.

Outputs

 

Inputs

  

 
  
  
 

D : Neuron I : Synapse‘l'tj

Figure 2.2.3.1 A typical feedback artificial neural network model.

We can now construct an electrical network model [1-7]. A cell body is

implemented via an (operational) amplifier whose input-output relation is a sigmoid

function. Axons and dendrites are each replaced by transmission wires. Synapses can

be substituted by conductance devices.

The dynamic behavior of the feedback neural net model can be examined by

considering the energy function of equation (2.2.3.1) [1—7,44,58]. There is symmetry

requirement on the connections, Ti- = Tji for the existence of an energy function.

The so-called potential energy function, which is a first integral of (2.2.3.1), can be

derived as



15

1 - V.- -
E = -32.z Tuvivj + ZR,- 1 I) S, 1(V) dV - 21m. (2.2.3.2)

r j r r

Hence the dynamic equations of the neural network model can be rewritten as

 

 

4“: BE
~-— = — —. 2.2. .Ct 3V, ( 3 3)

The time derivative of the energy function along trajectories is

dE BE dui
— = —— 2.2.3.4

__ 2 815‘ Wi dur

' , av, du, dt

= _ 2 LE fl. 2
I C, u,- 3V,-

_ _2 _1_dS.(u.) at: 2

1 Ci du, 3V,-

.<_ 0,

. . . . dSi(ui)
smce ego and S,- (u,-) rs a monotone nondecreasmg function, thus 720. There-

t'

fore, this system is a gradient-like system. That is, this energy function decreases

along trajectories and its time-derivative equals zero at 385' = 0, which is an equili-

t'

brium point of this system.

Some computational problems can be transformed into a "more—or-less"

equivalent optimization problem by a so—called regularization procedure [59,60]. The

energy function of feedback neural net model provides the link between this optimiza-

tion problem and its solution in terms of neural network, since in the network the

potential is automatically minimized (the characteristics of the gradient system) [1-7].

The computational dynamics of typical neural networks are characterized by the
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existence of several stable states. These steady states correspond to memories or pos-

sible answers of problems.

’0

> ’ozo'w’oy >

> > >

> > >

> b >

Input Layer Hidden Layer Output Layer

D : Neuron O : Synapse

Figure 2.2.4.1 A typical two-layer feedforward artificial neural network model.

2.2.4. Feedforward Models

Figure 2.2.4.1 depicts a feedforward neural net model, where outputs of any

layer are weighted and summed as an input to a neuron in the next layer. An external

input is applied to the first layer, which is called the input layer and fed forward to the

last layer, which is called the output layer. Any layer between the input layer and the

output layer is called a hidden layer. The governing static equation for each neuron

unit in any layer may be represented as

Y; = 5i( 2 Wijxj + 9: ). (2.2.4.1)

J'

where y,- is the output of the i -th neuron, S,- (.) is a nonlinear monotone nondecreasing

sigmoid function, wij is the connection weight from the j -th neuron output of the pre-

vious layer to the i -the neuron input, xj is the j-th output ofi a neuron unit in the
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previous layer, and 0,- is the threshold bias at the input of the i-th neuron.

The feedforward neural nets are quite powerful from the standpoint of being

able to program such a network through a learning scheme such as BEP [34] to do a

useful task. BEP is a continuous valued mapping fi'om input to output, where the

mapping function is adapted by repeatedly presenting the network with a set of input-

output vector pairs and using an appmpriate feedback function (typically gradient des-

cent) to update the mapping until a functional relationship is realized between the

inputs and outputs.

The total squared error function is given by

E = 2 Ep (2.2.4.2)

P

_ i— 2 )3 2t, —:y,..->.
p I

where Ep is the squared error function for the desired target p , say t; = [tpl - - - 'pn]

and ypi is the actual output for the target p .

The BEP rule is governed by the following equations:

 

w}; = tog-1 + 2; prg. (2.2.4.3)

P

35,
AP w”. = -n am,- (2.2.4.4)

115”ij ’

where Apw-- is the change of the weight wij at the k —th iteration for the desired target

p , n is the learning rate which is sufficiently small and positive, and ypj is the output

of the previous layer. If a unit j is in the output layer, SP,- is given by

at
SPI = d—uiflpi — ypil' (2m245)
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If a unit j is in the hidden layer, SP,- is given by

at
Opi = Egfiplwu, (2.2.4.6)

where l is the index for the units in the next layer to which a unit i is connected.

A modified BEP learning rule was proposed [33] in order to realize on-chip

learning circuits using standard CMOS technology. Using this modified BEP learning

rule, sigmoid-derivative circuits are not necessarily required for the implementation of

feedforward ANNs with learning.

Both feedback and feedforward models are interesting from the point of view

of artificial neural computation. Technologically, they emphasize the same things, a

set of sigmoid I/O neurons and a far larger set of interconnects that describe the rela-

tionships between the output of some neurons and input of others.

2.2.5. General Models

Besides the feedback and feedforward models, there are other ANN models

such as the combination of the feedback and feedforward models [38], silicon retina

[26,61] and cochlea model [26], self—organizing adaptation model [10]. The focus of

the silicon retina is trying to mimic the biological functions of primate retina. Another

mathematical model of ANNs is introduced by Hoppensteadt [62] using voltage con-

trolled oscillators (VCOs).
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2.3. Overview of the Present Literature

The interest in feedback neural networks has been revived by the recent publi-

cation [5] by Hopfield and Tank. In this publication, the authors were able to demon-

strate the applicability of neural networks ideas to the design of A/D converters, signal

decision circuits, and linear programming circuits.

Hopfield neural network is used for VLSI implementation due to the simple

architecture and well-defined network behaviors. A major component of VLSI imple-

mentation of artificial neural networks is the array of connections between neurons, the

synapses. The transfer function of the neuron itself is a monotonic sigmoid function

which can be easily implemented in VLSI by an amplifier or two logical inverters in

series.

Neural network hardware based on the silicon VLSI technology is actively

being pursued by several research groups. Hubbard et al. [21] demonstrated a thin

film synaptic array in submicron feature size fabricated by e-beam lithography. Selec-

tively deposited amorphous silicon resistive elements at the nodes provide the resistive

array synaptic connections which will be useful as an associative read-only memory.

Sivilotti er al. [22] at California Institute of Technology had fabricated a program-

able neural network chip with twenty-two neurons and +1, 0, and -l synapses. This

circuit is able to perform an on-chip learning by employing the truncated Hebb’s rule.

Since digital circuits have proven themselves in VLSI, there is one chip [25]

developed by T. K. Miller III et al. , which was implemented with fully digital cir-

cuits operating in a stochastic manner.

Researchers at AT&T Bell Laboratories [23] fabricated a 54-neuron CMOS

chip with programmable +1, 0, and -l synapses. Such an implementation uses static

RAM cells as prespecified memories. The stored data are presented in the interconnect

matrix and only one output is evaluated by the largest inner product value between the

input vector and the stored vectors. Recently, Bell labs [16,85] fabricated a 32768
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programmable binary connections neural-net chip which can be integrated with a digi-

tal signal processor and fast memory for image processing. They also fabricated a

programmable neural network chip with over 130,000 connections and a 4.5x7rnrn2

chip size using a 0.9urn CMOS technology [86]. A character recognition application

was performed using the chip in conjunction with a digital signal processor.

Sage er al. [24] at MIT Lincoln Laboratory developed chips based on Metal-

Nitride-Oxide-Semiconductor (MNOS) and Charge-Coupled Devices (CCDs) technol-

ogy. Such an implementation would achieve analog synaptic weights via variable

charge storage. Agranat er al. [15,87,88] at Caltech fabricated a neural network

integrated circuit with 65536 analog programmable synapses and 256 fully intercon-

nected neurons using CCD techniques.

Researchers at Jet Propulsion Laboratory [17] fabricated a 32x32 synapse chip

using analog multiplier circuits and a 32-channel variable-gain neuron chip. Research-

ers at Naval Research Laboratory [55,90] fabricated both 32x32 and 128x64 pro-

grammable analog vector-matrix multiplier chips to implement multilevel artificial

neural networks. A VLSI chip from Intel Corporation [20] has 64 neurons and 64x64

programmable synaptic weights which was implemented with fully analog circuitry

using analog multiplier and floating gate device techniques.

Researchers at Lockheed Research Laboratory [18] built an analog neural net-

work breadboard consisting of 256 neurons and 2048 programmable synaptic weights

with S-bit resolutions. Muller et al. [91,92] at the University of Pennsylvania

developed a general purpose analog neural computer which is composed of intercon-

nected modules containing arrays of neurons, modifiable synapses and switches.

In a different approach, Mead et al. [26,61] at Caltech integrated sensor

arrays and processing elements to emulate some of the spatial and temporal properties

of neural networks in the eye. Recently, they developed a working analog VLSI chip

[19] that implements a model of early auditory processing in the brain.



21

As of the present time, there are no reported application results for most of

these chips, except the reported AT&T results [85,86]. More importantly, there is no

on-chip hardware learning scheme for any of these chips.

There are only a few silicon ANN chips with on-chip learning. There is a

single neuron chip developed by Ricoh Corporation research group [89] with on-chip

learning and a 8.39x8.03mm2 chip size which was also implemented with fully digital

circuits using a 1.5m CMOS technology and operating in a stochastic manner.

Schneider et al. [93] at University of Manitoba fabricated a 25-neuron chip with 600

on-chip in situ learning Hebbian synapses and a 5.5x4.6mrn2 chip size using a 3m

CMOS technology. However, there are no reported testing results for the functionality

of these two chips and there are no reported application results.

Arima et al. [82,83] at Mitsubishi Electric Corporation, developed two on-

chip self-learning neural network chips. One has 125 neuron units and 10K synapse

units with a l3><13mrn2 chip size using a lwn CMOS technology and the other has

336 neurons and 28K synapses with a 14.5)(14.5mrn2 chip size. There are only two

examples of association in the reported application results and both two examples can

not successfully retrieve the complete desired patterns respectively after the network

learned 10 desired patterns. We have reported our testing experiments of the 50-

neuron chip with on-chip learning in [13], in June 1991. The 50-neuron chip can store

a desired pattern and successfully retrieve it via all initial conditions with Hamming

distances less than 9 from the desired pattern.

2.4. CMOS VLSI Circuits

It has been emphasized that a large number of neurons are needed in an ANN

to produce emergent useful computations in the neural network sense. Since then,

many workers have sought to implement the feedback (and the feedforward) ANNs
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using VLSI/LSI silicon electronics.

Over the past few years, Complementary Metal Oxide Silicon (CMOS) tech-

nology has played an increasingly important role in the world integrated circuit indus-

try. An MOS structure is created by superimposing several layers of conducting, insu-

lating, and transistor forming materials. After a series of processing steps, a typical

structure might consist of levels called diffusion, polysilicon, and metal that are

separated by insulating layers. CMOS technology provides two types of transistors, an

n-type transistor (nMOS) and a p-type transistor (PMOS). Typical physical structures

for the two types of MOS transistors are shown in Figure 2.4.1. For the nMOS

transistor, the structure consists of a section of p-type silicon separating two diffused

areas of n-type silicon. The area separating the n region is capped with a sandwich

consisting of an insulator and a conducting electrode called the gate . The transistors

have two n-type diffused areas, which are designated the drain and the source.
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Figure 2.4.1 MOS transistor physical structures.
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2.4.1. MOS Transistors

Recall that a MOS transistor current-voltage characteristic function, say Id, ,

denotes the current flowing from the drain to the source. Denote the source, gate,

drain, and threshold voltages respectively as v,, v , vd, and v,. Then, according to the

square-law theory, the current characteristic function Id, is given as

Cutoff: if (vg - vs — v,) S 0

Ids(vd,v,.vg) = o (2.4.1.a)

Triode: if (vg — vs — v,) 2 (vd — vs)

1,, (v, ,vsyg) = %c,,(W/L)[2(vg — v, - v,)(v,, — v,) - (v, - v,)2] (2.4.1.c)

Saturation: if (v8 5 v, - v,) S (vd — vs)

1,, (v, ,v,,vg) = 12‘-C,,(W/L)[vg — v, - v,]2, (2.4.1.c)

where W/L is the ratio of gate width to length, Cox is the oxide capacitance per unit

area, and u is the mobility of carriers.

2.4.2. Design Considerations

In order to design CMOS VLSI layout, Magic design tools has been

employed. Magic is the backbone of the Berkeley integrated circuit Computer Aided

Design (CAD) software system. With Magic, designers can paint geometry using a

mouse and a graphic display system. The layers painted are not the actual mask layers

used in fabrication. The actual CIF layers are generated by Magic from the abstract

layers.
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Both the number of pins and the chip area of the neural network circuitry

increase as the number of neurons increases. If we want to put more neurons on a sin-

gle chip with the same chip area, then there is a trade-off between the pin count and

the circuit area. The more pins we put on the same chip, the more area is used to

locate these pins and correspondingly we have less area to locate the network circuitry.

The minimal acceptable pad geometry by MOS Implementation System

(MOSIS) [63] is an 88 x 88 micron glass cut box over a 100 x 100 micron metal box.

The pad geometry is not scalable while the advanced technology is used. In addition,

bonding pads should be placed along the edges of the project, with at least 200 micron

center-to—center spacing. Thus, the network circuit area dramatically decreases as the

number of pins is increased.

The VLSI design project can be packaged in a 28, 40 or 64 pin DIP (dual In-

line Package) or an 84, 108, or 132 PGA (Pin Grid Array) package. Table 2.4.2.1

tabulates the relation among pin count, package type, and cavity size. The MOSIS Ser-

vice offers Standard Frames that specify bonding pad locations and their minimum

sizes. Table 2.4.2.2 shows the available Standard Frames for different project sizes.
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Table 2.4.2.1 MOSIS package types.

 

 

 

 

 

 

 

 

 

MOSIS

PACKAGE TYPES

PIN PKG TYPE CAVITY SIZE

COUNT

28 0.6“ DIP .310 x .310“

40 0.6“ DIP .310 x .310“

64 0.9“ DIP .400 x .400“

84 1.1“ PGA .350 x .350“

.470 x .470“

108 1.2“ PGA .350 x .350“

.450 x .450“

132 1.4“ PGA .350 x .350“

.450 x .450“   
 

Table 2.4.2.2 MOSIS Standard Frames.

 

 

 

 

 

 

 

  

Project Size Frame Name (by package pin count)

sq. mm 28 40 64 84 108 I32

7.9x9.2 - - - - - - 64P79x92 84P79x92 - - - - -

6.9x6.8 - - - 40969x68 64P69x68 84969x68 - - - - -

4.6x6.8 — - - 40P46x68 - - - — - - - - - - -

4.6x3.4 28P46x34 40P46x34 - - - - - - - - - - -

2.3x3.4 28PC23x34 - - - - - - - - - .. - .. .. -

2.22x2.25 - - - 40PC22x22 - - - - - - - - - _ -      
 

 



CHAPTER 3

A NEW NEURAL NETWORK ARCHITECTURE

A new architecture of feedback artificial neural nets was proposed in [39,40]

which has been shown to exhibit qualitatively the same dynamic properties as gradient

continuous-time feedback neural nets. This model (i) has a maximum number of con-

nections equal to n(n+1)/2, where n is the number of neurons, i.e., we reduce the

routing overhead for VLSI design. (ii) The synaptic weights are naturally "symmetric"

since there is a single element connecting unit i to unit j. Then, it becomes possible

to view gradient models as valuable and implementable in hardware. In addition to

these two features, this model utilizes simple nMOS transistors as its synaptic connec-

tion, where its conductance is controlled via the gate voltage. It doesn’t require the

realization of linear resistive elements for the synaptic weights. This new architecture

lends itself naturally to analog all-MOS VLSI implementation.

3.1. Motivation from Biology

This new neural network architecture is motivated from biological neural nets

where neurons have dendro-dendritic connections, i.e., connections among neurons

which occur via dendrites only. Consider neural units which communicate via their

dendrites, i.e. the synaptic connection between neuron units is established via the den-

drites. Such synaptic connections are referred to as dendro-dendritic connections.

26
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Indeed, the Horizontal and the Ganglion cells in the retina are examples of networks

with dendro—dendritic connections [26].

3.2. One Neuron with Self-feedback

Each neuron is a processing device with input u,- and output v,- related by the

usual sigmoid function 5,. It is modeled as an operational amplifier (op-amp) with a

capacitive element C,- and a resistive element R,- at the input node. The neuron may

be realized via two CMOS inverters in series instead of an op-amp. For VLSI imple-

mentation, the capacitive element C,- and the resistive element R,- at its input node are

eliminated, since the parasitics compensate for their roles.

There is a self-feedback MOSFET with gate voltage Vfb, between input u,-

and output vi. We shall refer to the neuron with self-feedback as a neuron unit. It

represents the building block for the new neural network architecture. The CMOS cir-

cuit model of this neuron unit is depicted in Figure 3.2.1. This neuron unit is capable

of processing two stable equilibria. It is, in fact, a model for a flip-flop.

ui vi

1‘” R _ in...

Figure 3.2.1 One neuron with self-feedback.

 

.4,— -L—
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3.3. General n-Neuron Architecture

The input of unit i is connected to the input of unit j via a single MOSFET

with gate voltage V6,,- . External input I,- may be injected at node i. The architecture

simply connects neuron unit via their input nodes. The CMOS circuit architecture, for

a 3¥unit prototype circuit, is depicted in Figure 3.3.1. One of the important advan-

tages of this architecture is that between any two neuron units there is a single physi-

cal connection. It preserves the symmetry in the connection required in the theory of

gradient dynamical systems. Moreover, the architecture reduces the maximum number

of connections to n (n + 1)/2, where n is the number of neuron processors in the net-

work and it does not require the realization of linear resistive elements for the synaptic

weights.

vl ul - -

1n
Vfbl :1.- + I

VGl3 v023

 

     

  

 

 

 

Figure 3.3.1 A 3-unit prototype circuit of the new architecture.
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We can also connect the output of unit i to the output of unit j via a single

MOSFET with gate voltage VGij [64]. This output-connected topology has the quali-

tatively same dynamic properties as the input-connected topology.

In planar VLSI implementation, it is difficult to make a global interconnection

among all units in a network, especially when the number of units is very large. Gen-

erally these networks are implemented in an array structure by connections to nearest

neighbors. Retinal structures have a high degree of symmetry and connectivity, and

thus they are attractive for VLSI implementation. This topology has been used to

design the silicon retina in [26]. In order to form a retinal structure network, our units

are tiled in a hexagonal array with six connections converging into the input node of

each unit [64].

3.4. Mathematical Analysis

From Kirchhoff’s Current Law (KCL), applied at every input node, one

obtains the mathematical model for the new architecture as follows:

dui " “i
Ci—dt— = 2 Ids(uj ,u;.VG,~j) + Id,(v,- ,u;,Vfb,-) - 'E- + I,- (3.413)

j I

Vi = Slut), (3.4.1b)

where S,- is a sigmoid function which represent the input and output relation of the

double inverter, 14, is the MOSFET current-voltage characteristic function which is

described in equation (2.4.1), C; and R,- are the parasitic capacitor and resistor, and I,

is an external bias.

With appropriate assumptions and approximations [40], we may consider the

MOSFET characteristic function Id, to be an odd function of (vd - v, ). Moreover,

we note that in this architecture, the gate voltages VGij and VGj; are identically the
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same, i.e. VGiJ- = VGj-i.

Hence the dynamic equations of the new neural circuit model can be rewrit-

ten as

dui ’3 u,-

Ci7 = 2 Ids (“j—“i,VGij) + 14; (Vt—“itVfbi) " R— + Ii (3.4.23)

1'
i

Vi = S.- (ut). (3.4.213)

Define “U = u‘. — u}. and “fl = “j - “i- BCCEIUSC VGij = VGji’

Id, (uij,VG,~J-) = —Id, (uji,VGj,-). One can obtain a first integral or energy function [40]

of equation (3.4.2) as

1

E=-§ZX
ijset

gull. Ids( xi! VGij )dxi " 2 Lu‘ Ids( 550;) — y,, Vfbi )dy, (3.4.3)

2i R‘ 1'“.

Hence the dynamic system (3.4.2) can be rewritten as

c. __L. = .. ——._ (3.4.4)

= ___' (3.4.5)

SO,

Therefore, this system is a gradient-er system endowed with the properties attributed

to gradient dynamic systems [40, 65]. A theorem [58,65-67] confirms that all solu-

tions converge to equilibria only. No oscillations or any other complicated behavior is
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permitted in this system as consequence of being a gradient system. Thus the overall

dynamic system is structurally stable.

3.5. Circuit Implementation of the New Architecture

If artificial neural nets are to be used in large scale, then the medium of their

implementation becomes critical in enhancing the quality of their performance.

Indeed, implementation in large scale is the vehicle through which artificial neural net-

works would reveal their computational powers. Hardware implementation is natural,

convenient, and more powerful where the mechanism of the proposed neural networks

would be directly realized, and suitably accommodated, into VLSI hardware.

3.5.1. A Neuron

The transfer function of a neuron itself is a monotonic nondecreasing sigmoid

function which can be easily implemented in CMOS VLSI via an op-amp or two logi-

cal inverters in series. The circuit schematic diagram and DC transfer function of a

neuron which is implemented via two CMOS logical inverters in series are depicted in

Figure 3.5.1. 1. An advantage of the implementation using two CMOS logical inverters

in series is its simplicity because a neuron consists of only four MOS transistors. The

circuit schematic diagram and DC transfer function of a neuron which is implemented

via a CMOS operational amplifier are depicted in Figure 3.5.1.2. An advantage for an

op-amp is that the threshold value of the sigmoid function can be adjusted after fabri-

cation.
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Figure 3.5.1.1 A implementation of one neuron via two CMOS inverters in series.
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Figure 3.5.1.2 A implementation of one neuron via an amplifier.
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Figure 3.5.2.1 Transfer characteristics of a nMOSFET.
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3.5.2. A Programmable Synapse

It is necessary that synaptic weights can be programmed so as to render a

relative configuration of the neural network which corresponds to various set of stored

memories. Linear resistive elements in electronic neural network can be realized via

analog multipliers which have been introduced [17,20,52-57] to implement the pro-

grammable synaptic weights using a standard CMOS technology. The new circuit

architecture does not require the realization of linear resistive elements for the synaptic

weights. Thus a programmable synapse can be easily realized via a single nMOS

transistor [64,68]. The conductance of an nMOS transistor is capable of being

adjusted via controlling the gate voltage of the nMOS transistor. For a fixed drain to

source voltage, the characteristic of nMOS conductance is depicted in Figure 3.5.2.1.

Although the programmable synapse of the new architecture is modeled as a nonlinear

function because the conductance of nMOS transistor is a nonlinear function of the

gate voltage, the dynamic behavior of the new architecture is supported with good

theoretical analysis.

3.5.3. Storage of Synaptic Weights

The configuration of a neural network is characterized by the synaptic

weights. Therefore, it is necessary to store synaptic weight values in order to preserve

the desired configurations. There are several approaches to implement the storage of

synaptic weight values, such as on-chip digital memory [23], floating-gate device [69-

73], CCDs [24,74], capacitors [75], and external digital memory with AD and D/A

converters [17,76].

On-chip digital memory restricts its programmability, but it is useful when the

network has a suitable digital learning scheme and is used in a static mode such as

associative memory and pattern classifier applications. The floating-gate devices are
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attracting considerable attention as a nonvolatile analog memory. However, its control

circuitry and scheme are still complicated. Furthermore, the accuracy and repeatability

is difficult to control. To maintain the analog weight, a twin capacitor storage [74]

cell had been proposed utilizing the CCD technique but its control scheme is still com-

plicated. External digital memory with A/D and D/A converters combines two popular

methods: Storing weights as digital words that are converted to analog values, and

storing each weight as a charge on an on-chip capacitor. Rather than implementing a

D/A converter for each weight, only one off-chip, high-precision converter is time

multiplexed to serially refresh all the capacitor charges on one chip. A disadvantage

of this approach, that the analog weight values are quantized by digital word length

and precision of the digital-to-analog converter, is more than compensated by the ease

with which the weights can be manipulated by the digital host computer.

In this work, on-chip digital memory or floating gate devices were used as the

storage of synaptic weights.

3.6. SPICE Simulations and Laboratory Experiments of the New Architecture

A 3-unit prototype circuit in Figure 3.2.1 has been employed to illustrate and

to test the performance of the proposed circuit. SPICE was used to simulate the tran-

sient evolution to the steady states (or stable equilibria). SPICE parameters for 2-

micron technology are provided by MOSIS.

The voltages (across the three capacitors) at the input nodes of the 3 unit s are

simultaneously initialized. Then the circuit evolves through its transients before set-

tling to the steady state values. The simulation has exhaustively been repeated using

various initial conditions and verified the convergence of the resulting solutions to

equilibria.
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Once the interconnect configuration is set, i.e., the gate voltages of intercon-

nect MOSFETs and the gate voltages of the self-feedback MOSFETs are set, the net-

work possesses a specific set of stable equilibrium states as its only limit set. As one

alters the interconnect configuration, the network will alter the set of equilibria accord-

ingly. In fact, one can adjust the interconnect configuration to obtain any different

number of stable equilibrium states which in turn correspond to different number of

memory data.

By only adjusting the gate voltages VGij of interconnect MOSFETs, the 3-

unit prototype circuit can exhibit all possible number of eqm1ibrium states; for a fixed

interconnect configuration, the number of possible equilibria ranged from two distinct

stable equilibria to eight distinct stable equilibria. Simulation results are depicted in

Table 3.6. 1.

When the gate voltages Vfb, of the MOSFETs across the double inverters are

adjusted, the circuit can then posses a single stable equilibrium state.

In order to verify the SPICE simulation, a discrete-component realization of

the 3-unit prototype circuit has been built and its performance tested in the laboratory.

Every CMOS inverter is realized by one inverter of the 74C04N which is a

single stage and unbuffered CMOS inverter. Every n-channel MOSFET conductance

element is realized via a 2N4351. Table 3.6.2 depicts the experimental results of a 3-

unit prototype circuit.

In the discrete-component realization, the component variations such as thres-

hold voltages and transistor size, will make the experimental results different from the

SPICE simulations. However, the experimental results are qualitatively identical to the

SPICE simulations.
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Table 3.6.1 SPICE simulation results of a 3-uint prototype circuit.

 

Vfb1=5.0V,i=l,"',3

 

 

 

 

 

 

 

 

 

 

  

Double Inverter nMOS W/L = 4.0/2.0

pMOS W/L = 12.0/2.o

Interconnect Transistor nMOS W/L s 4.0/2.0

Feedback Transistor nMOS W/L = 8.0/2.0

(VG 12, VG 23, VG 31) # Of Stable Equilibria Stable EQUIIIDTIB (V1, V2, V3)

(5.0, 5.0, 5.0) 2 (0,0,0).(1,1,1)

(2.6,2.7,5.0) 3 (0,0,0),(l,l,1),(l,0,l)

(0.5,0.5,5.0) 4 (0,0,0),(l,1,1),(l,0,l)

(0, l, 0)

(2.8,2.8,2.8) 5 (0,0,0),(1,1,1),(1,0,l)

(1, 1,0),(0, 1,1)

(2.7.3.3,22) 6 (0,0,0),(1,1,1),(1,0,1)

(1,1,0),(0,l, l),(l,0,0)

(2.6,2.6,0.0) 7 (0,0,0),(l,l,l),(l,0,l)

(l, 1,0),(0, l,l),(0,0, l)

(l, 0, 0)

(00.00.00) 8 (0,0,0),(l,l,l),(1,0,l)  (l, 1,0),(0, 1,1),(0,0,l)

(l,0,0),(0, 1,0)
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Table 3.6.2 Experimental results of a 3-ta‘nr prototype circuit.

 

Vfb,=5.0V,i=1,---,3

 

 

 

 

 

 

 

 

 

 

 

 

Double Inverter the MM74C04N

Interconnect Transistor nMOS the 2N4351

Feedback Transistor nMOS the 2N4351

(VG ,2, V623, VG 3,) # of Stable Equilibria Stable Equilibria (v1, v2, v3)

(5.0, 5.0.5.0) 2 (0,0,0),(l, 1,1)

(1.4,5.0,1.75) 3 (0.0.0).(1.1.1).(1.0.1)

(0.0,0.0,5.0) 4 (0,0,0),(l,l,1),(l,0,l)

(0. 1. 0)

(1.35, 1.9.1.75) 5 (0,0,0),(l,1,1),(1,0,1)

(l, 1,0),(0, l, l)

(1.4, 1.85.1.75) 6 (0,0,0),(1, 1,1),(1,0,l)

(l, 1,0),(0, 1, l ),(l,0,0)

(l.4,l.9,0.0) 7 (0,0,0),(1,l,l),(1,0,l)

(1,1,0),(0,l, l),(0,0,1)

(l, 0, 0)

(0.0,0.0,0.0) 8 (0,0,0),(l,1,l),(l,0,l)  (1, 1,0),(0, l,1),(0,0,1)

(l,0,0),(0, 1,0)

 
 



CHAPTER 4

LEARNING

OR THE DYNAMIC UP-DATE OF "WEIGHTS"

Learning is a key feature of artificial neural nets that critically affects

hardware designs. Learning schemes are usually used to determine the weights from a

set of training examples [30,33,34]. In some cases, neural networks have been shown

to be capable of learning the input-output relation from a finite set of examples,

defined as the training set, simply by minimizing a given measure of the error from the

training examples over the network’s parameter-space. This minimization is called the

learning process. Because the learning algorithms generally takes orders of magnitude

longer than the operation of ’reading ’ the network, most applications requiring fast

adaptability cannot yet be implemented in hardware. Consequently, non-adaptive

applications requiring weights to be set only once (not in real time) should be

developed first [21]; in that case learning algorithm efficiency is not an important

issue.

Different types of learning definitions may be formulated [31,32]. We limit

attention here to the so-called supervised learning [31], and in particular for dynamic

feedback models of ANNs. In the context of ANNs, supervised learning loosely

means that the network acquires a desired set of data (vectors) as stable equilibria in

the case of dynamic feedback ANNs.

39
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Even in theory, learning for neural nets, particularly feedback neural nets,

remains a very difficult problem. The main reason is that the models of ANNs are

nonlinear. When the model of the ANN is dynamic, as Oppose to static, its dynamics

will in_te_rac;_t with the dynamics of a learning algorithm (or an update law). This type of

problem has plagued the development of the so-called robust adaptive algorithms for

linear systems in the area of adaptive control [77]. The situation is perhaps worse in

ANNs because the model of an ANN is nonlinear.

Learning for static models, such as the case for feedforward ANNs [34], is

conceptually simpler because the model does not have dynamics -- it is only a static

map. Thus the problem of coupling between the model and a dynamic learning algo-

rithm does not exist. This, to some extent, explains the relative success of the gradient

learning algorithm popularized as the error back-propagation [34].

However, in electronic implementations, the implementation of a static model

(or a map) results in a dynamic model, nonetheless. This is caused by physical reality

and by the presence of parasitic capacitors, resistors, transistors, etc.. Consequently,

one is faced with the possibility of interaction or coupling between the dynamics of the

ANN and its dynamic learning algorithm.

In this work, a dynamic learning algorithm is introduced for general dynamic

continuous-time models of ANNs.

The learning algorithm

Consider the general dynamic model of ANNs. (In fact, it may be any general

dynamic model.)

i.- = 7" =f.-(x.p). «Hal

1’: = Sit-(xi). (4.11))
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where x = [ltl,...,tt,,]T is the n—d state vector, p = [p1,...,p,]T is an l-d parameter

vector which needs to be updated (dynamically). (Supervised) learning means that a

1.

given vector, say it ‘ (or a set of m vectors x ,...,x"’") becomes a stable equilibrium

point. It is assumed, of course, that solutions of equation (4.1a) exist and are unique

for each initial condition 1(0), as it is often assumed for differential equations.

Suppose that we desire the learning algorithm to "learn" a given vector x‘.

First, we define the energy function for the learning scheme as follows:

1 " l "
=EVE-Eat. )2: 3211-f(x,p)2.

(4'2)

The learning scheme updates each parameter according to the dynamic equation:

de _ BE _ " . ain‘rP) _ " afi(xsp)

7t— --'aEf--i§xt apj --i§fi(x.p) apj (4.3a)

Thatrs,

if": -f(x p)* Df(x 12) (43b)

where f (x, p) = [f1(x,p),...,f,,(x, p)]T is the vector field of equation (4.1a) and

Df (x , p) denotes the vector composed of the partial derivatives on the right-hand side

of equation (4.3a). Note that in the case that p is a matrix, each element of p will be

specified by two indices.

The algorithm proceeds as follows. Clamp, i.e. fix 1: in equation (4.3) at the

desired value, say it = x' . Let the dynamics of equation (4.3) evolve until they con-

verge to a value for the parameter, say p'. For x = x’ , the system of equation (4.3) is

a gradient dynamic system and hence p I must be an equilibrium point. In computer

simulations or in implemented circuit hardware, the dynamics realistically converge to

only stable equilibria. Hence, in practice, p I is a stable equilibrium point. The vector

p' is also a minimum point of the energy function in equation (4.2), where x = x' .

When equation (4.3b) converges to p ' , we have
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0 =f(x*.p’) .Df(x'.p").

This means that (at least) one of the following is true:

Case (1): f(x’,p') = 0.

Case (2): Df(x',p') = 0

Case (3): the vectors

f(x'.p') and Df(x’.p').

are perpendicular to one another.

If case (1) is true, then the point it. is an equilibrium point of (11) for

p = p'. If the "physical" system or circuit does not permit case (2), then case (1) is

the only possibility. In addition, if the model of equation (4.1a) is flexible enough, then

it can support the (augmented) equilibrium (x' , p') as stable equilibrium. Idealy if we

I! n

plug p' in equation (4.2), E = -;—2 (i,- )2 = ‘2': fi(X, p")2 = 0. Hence inserting p'

i=1 i=1

in equation (4.1) renders the desired vector x ' a stable equilibrium of equation (4.1)

The desired vector can be retrieved by initial conditions sufficiently close to x '.



CHAPTER 5

A PROTOTYPE 6-NEURON CMOS TINY-CHIP

A 6-neuron Tiny-chip of the all-MOS implementation of the new architecture

has been designed and fabricated. Complete testing of the Tiny-chip [64,78] has suc-

cessfully substantiated the predicted operation of the neural circuit. A dedicated inter-

face circuitry has been built to facilitate the programming of the chip via learning

algorithms developed onto a software environment with graphics display on a Personal

Computer (PC). Using the interface circuitry and the learning schemes, we demon-

strate the use of the Tiny-chips of the new neural circuits as a classification device.

5.1. Layout design

A VLSI layout was designed for a 6-unit neural circuit on MOSIS Tiny-chip

as a prototype chip of the new architecture. This layout was fabricated by MOSIS

using an n-well 2 um CMOS process, with 2.2 x 2.2 mm2 chip area in a 40-pin pack-

age. The schematic diagram of this 6-unit neural circuit is depicted on Figure 5.1.1.

Every node in the neural circuit is connected to an external pin to facilitate testing.

This includes the input and output of every neuron and the gates of every connecting

 

MOSFET. For the 6-neuron chip the number is 2x(6) + (6)x((26)+1) = 33. Analog

bonding pads are used in this design, i.e., there are no buffers between the I/O pins

and our designed circuit. Thus, we can easily verify the characteristics of this neural
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Figure 5.1.2 the layer names and their corresponding symbols.
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Figure 5.1.3 A VLSI layout of one neuron with self-feedback.
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Figure 5.1.4 A VLSI layout of the interconnect network for the 6—unit neural circuit.
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Figure 5.1.6 A die photo of the 6-unit neural circuit.
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Figure 5.1.7 A die photo of the 6-um‘t neural circuit in MOSIS Tiny-Chip.
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Figure 5.1.8 A pin configuration of the 6-neuron chip.
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circuit and examine the performance of this chip design. Figure 5.1.2 depicts the layer

names and their corresponding symbols. Figure 5.1.3 depicts the VLSI layout of one

neuron with self-feedback. Figure 5.1.4 depicts the interconnect network with 15

nMOS transistors for the 6-unit neural circuit. Figure 5.1.5 depicts the VLSI layout of

the 6—unit neural circuit corresponding to Figure 5.1.1. Figure 5.1.6 shows the die

photo of the 6-unit neural circuit corresponding to Figure 5.1.5. Figure 5.1.7 shows

the die photo of a 6-unit neural circuit in a MOSIS Tiny-chip with a 2.2 x 2.2 mm2

chip area and a 40—pin package. Figure 5.1.8 depicts the pin configuration of the 6-

neuron chip.

In the testing process, we set the gate voltage of each feedback MOSFET to

zero, then we measured the I/O characteristics of each double inverter. The resulting

I/O function is indeed a sigmoid curve with a switch-point around 1.57 volts. Using

the new SPICE parameters obtained by MOSIS from measurements of the MOSIS test

structures on the selected wafers of this specific fabrication lot, the SPICE simulations

have almost identical result. We used a 3-unit subcircuit for more testing to compare

the results to the SPICE simulations.

We can adjust the gate voltage of the interconnected MOSFET conductance

elements among the 3-unit subcircuit to obtain a different number of distinct steady

states or stable equilibrium points. The experimental results are depicted in Table

5.1.1. The testing result is highly repeatable. We tested all four chips obtained from

MOSIS for the same circuit design. The results for all four chips are similar to one

another.

Complete testing of the Tiny-chips has successfully revealed the proper opera-

tion of the neural circuit [64,78].
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Table 5.1.1 Experimental results of a 3-unit subcircuit of the 6-neuron chip.

 

 

 

        

 

 

 

 

 

 

 

Vfb; = 5.0 volts for i=l,2,3.

Initial States

Number of

“’61” V023' V631) 000 001 010 011 100 101 110 111

Stable Equilibria

Steady States

(5.0,5.0,5.0) 2 000 000 000 000 000 000 000 111

(32.3.5.5.0) 3 000 000 000 000 000 101 000 111

(0.0,0.0,3.7) 4 000 000 010 010 000 101 010 111

(3.13.134) 5 000 000 000 011 000 101 110 111

(32.35.00) 6 000 001 000 011 000 101 110 111

(2.7.2.700) 7 000 001 000 011 100 101 110 111

(0.0,0.0,0.0) 8 000 001 010 011 100 101 110 111            

5.2. Interfacing with a Personal Computer

To ensure testing of the implementation and also to provide an environment

for developing and assessing various potential learning algorithms, we planned at the
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design stage for interfacing the Tiny-chips with a PC. An interface [78-80] was

developed such that the gate voltages of the 15 MOSFETs, which are the interconnect

transistors among the input nodes of the 6—unit neural circuit, can be flexibly read or

assigned analog values between 0 and 5 volts.

Only a single 8-bit D/A converter (DACOSOO) is employed to convert the digi-

tal data to the corresponding analog voltages. The analog outputs of DAC0800 are

multiplexed to the gate voltages of the 15 MOSFETs via analog multiplexers

(CD4051). Fifteen Sample and Hold Amplifiers (LF398N) are required for holding the

analog voltages at the gates of the 15 interconnect MOSFETs. To keep the precision

of each gate voltage, the Sample and Hold Amplifiers should be refreshed within a

certain time constant which depends on the size of the storage capacitor.

Two 8-bit 8-channel AID converters (ADC0808) were employed to simultane-

ously read out the steady states at both input node and output node of a single neuron.

The output of the ADC0808 is stored in an octal latch and then transferred to the PC.

The exact initial values are dependent on the outputs of the octal latch

(specifically, 74LS373). The analog voltage of the octal latch output is about 3.5 volts

when the corresponding input is high and is about 0.22 volts when the corresponding

input is low.

5.3. A Learning Scheme

The learning algorithm described in Chapter 4 was specialized for the 6-unit

Tiny—chips. The learning algorithm was implemented in software on a PC [30]; it

interacts with the chip in real-time via a special purpose interface described in the pre-

vious section.



54

5.3.1. Dynamic Learning Model

Assumption: In equation (3.4.1), assume that I,- = O, and the local resistance,

R,- , is quite large. This is reasonable since R,- represents an input to a double inverter

[1]. Thus, equation (3.4.1) can be rewritten as

du. n

Ci 7;" = 2 1&(uk,u,-'VGh-) + Id‘,(v,-'u,-.Vfb,-). (5.3.1.1)

A:

We define the energy function for the learning scheme as the following:

1 " . 2

E = —2 (Ciui ). (5.3.1.2)

2 i=1

Therefore the learning scheme is governed by the following dynamic equations:

 

  

  

     

 

dVGji = 315‘

dt aVGfi

fag-a,- , acid,-

— ‘C‘u‘ _aVGj,] - Ciuf [8V6],-

=—Cidi 81d,(uj,u,-.VGJ-,-) -—Cu Bld,(u,-,uj.VGJ-,-)

‘ 8V0]; J J J b 8V0],-

,BI uo,u,-VG-,- ‘ P—BI u-,u,-VG-,~=-Cidi d3( 1 . J) -C'-d 41(1 , I)

. . alds(ujvui,VGji)

= [Ciui ”C‘“‘][ em,

= mji(uj,ui.VGj;)[CJ-uj -Cidi] (5m313)

where dej and Cid; may be obtained from equation (5.3.1.1) and iji(uj,u,-.VGj,-) is

the transconductance of a MOSFET which can be expressed as follows:

cutOff: if (VGfl "" X "" V‘) S O
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iji(uj,u,-’VGj,-) = 0 (5.3.1.3a)

Triode: if(VGfi -X — v,) 2 |(uj - “0|

iji(uj,u,-’VGj,-) = K04,- — u,) (5.3.1.3b)

Saturation: if (VG),- - X - v,) S |(uj — “0|

ij, (uj,u,-.VGJ-,-) = K(VG,-,-—X -v,) (5.3.1.3c)

where v, is the threshold voltage, X is the minimum of uj and u,-, and

K = uCox (W/L).

5.3.2. Software Implementation of the Dynamic Learning

The learning scheme is accomplished via software implementation using the

Runge-Kutta fourth order integration routine running on an AT personal computer. A

hardware interface was built so that the gate voltages of the fifteen MOSFETs, which

are the connection transistors among the input nodes of the 6-unit neural circuit, can

be controlled, i.e., analog voltage values read and written onto them. The Tiny-chip

neural circuit can be initialized by the interface at the input nodes; the initial values

are dependent on the outputs of the one Octal latch (74L8373). Each output bit of the

Octal latch controls one input node of the neural circuit The analog voltage of the

Octal latch output is about 3.5 volts when the corresponding input is high; otherwise

the output is about 0.22 volts. The square law MOS transistor model which was

described by equation (2.4.1) is employed to simulate the interconnect and feedback

MOSFETs. The parameters of the transistor model are obtained from MOSIS after the

fabrication of the chip. The learning scheme communicates with the actual 6-unit

neural circuit via the computer interface.

The learning procedure is summarized in the following:
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Step 1:

The desired training pattern is represented in binary

format and is set by the computer interface.

At every input node of the 6-unit neural circuit, "0"

means 0.22 volts and "1" means 3.4 volts as set by

the interface.

The initial values of the gate voltages of the

interconnect transistors are also set by the

computer interface. In this procedure, all gate voltages are initialized

at 5 volts (or the high level).

Step 2:

The actual analog voltages of the input and the output

nodes, obtained from the interface are used to compute the

new gate voltages of the interconnect MOSFETs according

to dynamics of the learning scheme in equation (5.3.1.3).

Step 3:

The new gate voltages of the interconnect MOSFETs are

used in the chip by the interface. Then the process

is repeat. 00 to Step 2 until the change of the gate

voltages reaches a chosen stoppage criterion.

A computer graphic environment displays the interconnected architecture as

well as the updating of the analog values for each interconnect gate voltage. After the
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stoppage criterion is satisfied, the personal computer will automatically test all possible

initial conditions (all combinations of high and low) and display them next to their

corresponding steady states at the input nodes of the units. The whole testing pro-

cedure is sequentially displayed in the computer graphics. Using this procedure, one

can verify that a given pattern is indeed stored as a stable equilibrium point. Moreover,

one can test all the binary initial conditions and determine the steady states to which

they converge.

5.4. Chip Experimental Results with Learning

A desired pattern (i.e., a desired stable equilibrium point) is represented as a

binary number (X6X5X4X3X2X1), where X,- (i =1, - - - ,6) represents the logical

value of the desired steady state at the input node (or at the output node). We set the

gate-voltages of the feedback MOSFETs to logical high (i.e. about 5 volts). When all

the gate-voltages of the 15 interconnect MOSFETs are high, the neural circuit would

have only two stable equilibria, namely (000000) and (111111) [13,14]. All initial

conditions applied at the input nodes of the neural circuit will converge to either one

of these two states. These two states shall be referred to as the no-information states.

We note that these no-information states will remain regardless of the values of the

gate-voltages of the 15 interconnect MOSFETs [13,14]. The initial conditions applied

at the gates of the 15 interconnect MOSFETs are set at 5 volts. Now, we apply the

outlined learning procedure in section 5.3.2.

Storing a single pattern

The test results show that the learning scheme can successfully store any

desired pattern. The complement of the desired pattern, however, will also be stored.

That is, the neural circuit would now store the desired pattern, its complement and the



58

always-present no-information states. If appropriate bias or restriction on the values of

the gate-voltages of the interconnect MOSFETs are applied, the complement of the

desired pattern can be eliminated.

Storing multiple patterns

Multiple patterns can be applied sequentially. After the first pattern is applied,

the learning scheme would converge to a set of gate-voltages for the 15 interconnect

MOSFETs. As the next pattern is applied, the last values of the gate-voltages of the

15 interconnect MOSFETs are used as initial conditions for the learning procedure.

The test result shows that multiple desired patterns can successfully be learned sequen-

tially. We found that each time a new pattern is learned, other patterns of intersection

images among the desired patterns and their complements will also be stored.

Experimental examples

Figure 5.4.1 depicts a graphic display after each of three patterns was learned

in a sequential learning experiment. Figure 5.4.1.a displays the first desired pattern,

namely (010111), which looks like the capital letter "T". The display also shows the

steady state analog values of the "converged" gate—voltages of the 15 interconnect

MOSFETs. This set of gate-voltages enables the network to store (as stable equilibria)

the pattern (010111), its complement (101000), in addition to the two no-information

states (000000) and (111111). The right-hand side of the display depicts the roster of

the distinct steady states and the corresponding count of initial conditions converging

to each steady state. In the roster, 11 (distinct initial conditions) converged to the

desired pattern, 11 converged to its complement, 5 converged to the all-one state, and

37 converged to the all-zero state.

Figure 5.4.1.b shows the second desired pattern (111100), which looks like the

capital letter "L", and its corresponding (converged) gate-voltages of the 15
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interconnect MOSFETs after the network had learned the second desired pattern. I

There are 8 distinct (stable) equilibria stored in the network, the first desired pattern

(010111) and its complement (101000), the second desired pattern (111100) and its

complement (000011), the intersection pattern of the first desired pattern and the

second desired pattern (010100) as well as its complement (101011), and the two no-

information states. The roster shows the number of initial conditions that converged to

each steady state.

Figure 5.4.l.c shows the third desired pattern, (101111) which looks like the

upper half of the capital letter "O", and its corresponding gate—voltages of the 15 inter-

connect MOSFETs after the network had learned the third pattern. There are 15 dis-

tinct (stable) equilibria stored in the network. We observe that the intersection pattern

of (010111), (111100), and (101111), is not stored in the network, but its complement

is.
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Figure 5.4.1.b A graphic display after the network had learned the second desired pattern.
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CHAPTER 6

A 50-NEURON CHIP

WITH DIGITAL HARDWARE LEARNING SCHEME

A digital realization of the learning algorithms was developed for the new

analog feedback ANN. A VLSI layout of a 50meuron CMOS analog chip with on-

chip digital hardware learning scheme was designed and fabricated with a

6.8mm x 4.6mm chip size using a MOSIS Z-um scalable CMOS technology and a

64-pin standard pad frame [14]. Extensive testing of the SO-neuron chip has success-

fully substantiated the predicted operation of the neural circuit.

6.1. A Digital Learning Scheme

Subsequently, the new algorithm described in Chapter 4 is specialized to a

digital learning scheme which is realizable and valuable in the all-MOS VLSI imple-

mentations The digital learning scheme is also tested on the 6-neuron Tiny-chip for

successfully storing and retrieving arbitrary digitized images.

6.2. Hardware Overview of the 50-neuron Chip

The digital learning scheme can easily be implemented via simple logic circui-

try. The layout design of the SO-neuron chip had been fabricated by MOSIS via a
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standard CMOS 2-um n-well technology. Figure 6.2.1 shows the die photo of the 50-

neuron chip. From a conservative estimation, a 124-neuron chip can be designed and

fabricated via a MOSIS 1.2M CMOS technology on the MOSIS large chip of a

79001111: x 920011»: chip size.

6.2.1. A Neuron

Each neuron is represented two CMOS inverters in series with one feedback

nMOS transistor between the input node and the output node. The gate voltage of the

feedback nMOS transistors can be adjusted globally. Either the input node or the out-

put node of the neuron will be connected to an external pin via a CMOS analog

switch. Figure 6.2.1.1 depicts the schematic diagram of a single neuron circuit. Fig-

ure 6.2.1.2 depicts the magic layout design of a single neuron circuit with a

154W" x 65pm chip size. Figure 6.2.1.3 depicts the SPICE simulation results of a

single neuron while the gate voltage of the feedback nMOS transistor (Vfbi) is set at 0

volt and the I/O selector is set at 0 volt. The horizontal axis of Figure 6.2.1.3

represents the signals applied at the external pin. The vertical axis of the Figure

6.2.1.3.a represents the signals at the input node of a neuron. The vertical axis of the

Figure 6.2.1.3.b represents the signals at the output node of the neuron which is indeed

a sigmoid function. The vertical axis of the Figure 6.2.1.3.c represents the difference

of between the signals at the input node of the neuron and the external pin which is

less than 500nV. Figure 6.2.1.4 shows the die photo of a single neuron circuit.

6.2.2. A Programmable Synapse

In a single 50-neuron chip, there are 1225 synaptic weights which are pro-

grammable and can be set up via on-chip digital hardware learning circuitry or
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Figure 6.2.1.1 A schematic diagram of a single neuron with self-feedback and I/O selector.
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via direct assignment. Each synaptic weight, i.e., each gate voltage of an interconnect

nMOS transistor, exhibits either logical high or logical low and it can be stored on an

on-chip digital flip-flop. The logical high and the logical low can globally be set at

any analog values. Each synaptic weight can be set at any logical value individually

via direct assignment logic circuitry. Figure 6.2.2.1 depicts the magic layout design of

a synaptic weight circuit in 15411»: x 112nm chip size. Table 6.2.2.1 depicts the

different operating functions and their corresponding control signals.

Table 6.2.2.1 Control signals for the operating functions.

 

 

 

 

 

assign LID ff-enable

Direct assignment 0 1 X

Learning 1 0 1

Initialization l l 1

Running 1 X 0      
Figure 6.2.2.2 depicts the SPICE simulation results of a single synaptic weight

circuit for the learning mechanism, while the as_sig£ is set at 5 volts, the data is set at

5 volts, the high is set at 4 volts, and low is set at 2 volts. When the time is at 3, 27,

or 51 us , the VGU is initialized to high because the data is set at 5 volts. When the

time is at (3+30*i+6*j) us, for i = 0,1,2 andj = 0,1,2, the V60 is modified accord-

ing to the the digital learning circuitry and the signals applied at the u,- and 14,-. Fig-

ure 6.2.2.3 depicts the SPICE simulation results of a single synaptic weight circuit for

the direct assignment mechanism, while the £8191 is set at 0 volt, the high is set at 4

volts, and low is set at 2 volts. When the time is at 3+6*i us, for i = 0, - - - , 6,
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   ff-enable

0.13"."+~‘-—--~——~—--——+ ——————————————— .1._-
-____.-.-_-___+ ---------------

T ime 
Figure 6.2.2.2 SPICE simulation results of a single synaptic weight circuit for

the learning.
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Figure 6.2.2.3 SPICE simulation results of a single synaptic weight circuit for

the direct assignment.
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V00 will be set at the high or the low according to the data, if both u,- and 14,- are

simultaneously at logical high. From Figure 6.2.2.2 and Figure 6.2.2.3, the functional-

ity of a single synaptic weight was verified, before we have the design fabricated. Fig-

ure 6.2.2.4 shows the die photo of a single neuron circuit.

6.3. Chip Experimental Results

The fabricated chips were received on October 19, 1990. Extensive testing of

the 50-neuron chips has successfully substantiated the predicted operation of both the

neural circuit and the on-chip digital learning circuit. A desired equilibrium point can

successfully be stored into the chip by setting the interconnect weights via digital

hardware learning circuitry within 50 as. All initial conditions converge to the steady

states in the order of 20 us .

From experimental measurement using a digital meter, the power consumption

of the neural chip in steady state is less than 1 mWatt with power supplies of 0/5

volts. The neural circuit safely retains the same dynamic properties when the power

supply high level is decreased down to 3 volts to dramatically reduce the power con-

sumptions.
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Figure 6.2.2.6 A die photo of a single synaptic weight circuit. A



CHAPTER 7

A REAL-TIME APPLICATION

USING THE 50-NEURON CHIP

AS A PATTERN/CHARACTER ASSOCIATOR

Forty nine neurons of the fifty neurons in the SO-neuron chip are employed to

form a 7X7 pixel array to process 2-D images. Thus, each neuron represents one

pixel. A pattern/character is represented as a 7>0 resolution image. If the output vol-

tage of a neuron is higher (lower) than some threshold value, the corresponding pixel

is considered to be one (respectively, zero).

A dedicated interface circuitry and a software environment had been built to

successfully demonstrate the use of the SO-neuron chips. A real-time application has

been performed using the SO-neuron chip with on-chip digital learning as a

pattern/character associator.

7.1. Interfacing and Software Environment

An interface circuitry and a software environment have been designed and

developed for testing and verifying the functionality and the performance of the fabri-

cated chips as well as demonstrating a real-time application using the 50-neuron chip

as a pattern/character associator.

The interface is used to control each neuron’s input and output, the weight of

each interconnect, and a few logical controls of the chip. An Intel 8255 is used as a
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Figure 7.1.1 A block diagram of the interface circuitry for the SO—neuron chip.
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Figure 7.1.1 A block diagram of the interface circuitry for the SO-neuron chip.
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digital I/O port to communicate between a PC AT and the interface. Three 8-bit D/A

converters (DAC0800) are used to globally set up the gate voltages of the feedback

nMOS transistors and the gate voltages of the interconnect nMOS transistors. Several

octal latches (74HC373) were employed to build 50 digital output channels and 50

digital input channels. Figure 7.1.1 depicts the block diagram of the interface circui-

try.

Using the new architecture as a pattern/character associator. a software pro-

gram is developed using the C language on a PC AT which provides a user-friendly

environment to easily control and operate the fabricated chip. A desired

pattern/character can directly be specified from keyboard interactively or from an

external file and then the program will generate the proper signals via interface circui-

try to have the 50-neuron chip learn and store this specifically desired pattern/character

in the chip. The current network configuration, the logical values of the gate voltages

of the interconnect MOSFETs, can graphically be displayed on a screen. Initial condi-

tions with various Hamming distances from the desired pattem/character can be tested

via this program. An initial input and a steady state output can be transferred to and

from the 50-neuron chip via this software environment. All experimental data and the

graphics are stored in files for later use.

7.2. Storing a Single Pattern/Character

Initially, as the power is turned on, the interface sets the gate voltages of the

feedback and the interconnect nMOS transistors to high (i.e., 5 V). In this

configuration, the chip has only two steady states stored in it, namely, the all-high state

(all outputs are near 5 V) and the all-low state (all the outputs are near 0 V); all initial

conditions of the chip now converge to either the all-high of the all-low states. The

network retains these two states for all the subsequent learning configurations. We

label these two states the no-information states.
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A pattern/character can successfully be stored into the chip by setting the

interconnect weights via hardware learning circuitry within 50 us. After a desired

character is stored, the complement of this desired character will also be stored in the

network All initial condition images with 18.4% binary distortions from the desired

character can retrieve the desired character in the order of 20 us.

In the particular experiments reported here, we supply the network with the

image of the capital-letter F. The network stores the image of the character success-

fully. We then test some initial conditions with Hamming distances less than 9 from

the character F. All such initial conditions will retrieve the stored character F. Figure

7.2.1 tabulates some of the experiments which were executed. Beginning from the top

of the tabulation in Figure 7.2.1, the first (top) row denotes initial images which were

supplied as initial conditions to the network. Each initial image converged to the

image immediately beneath it in Figure 7.2.1. Similarly, the third row of initial

images correspondingly converged to the images on the row beneath it, and so on. It

is clear that all images converge to the image of the desired character F. Figure 7.2.1,

therefore, depicts a set of noisy variations of the character F which the network

tolerates in retrieving the character F. The network, therefore, performs association in

addition to the character recognition.

In this particular experiment, initial-condition images with more Hamming dis-

tance than 9 do not all converge to the desired character F. Figure 7.2.2 tabulates some

of the results where the initial images have Hamming distances 10 from the character

F. In Figure 7.2.2, however, an initial image which loses more than 9 (on) pixels

compared with the image of the character F converges to the all-low state. It is

interesting to note that the initial images that converged to the all-low state may not be

distinguishable by a human observer.
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7.3. Storing multiple patterns/characters

The chips also have the capability of learning multiple patterns sequentially.

Figure 7.3.1 tabulates some experimental results after the network stored two images

of the character F and the character T. In this particular experiment, all initial images

with Hamming distance 3 from the the character F (respectively, '1‘) converged to the

image of the character F (respectively, T). We note that the network stored not only

the desired characters but also the intersection images among the desired characters

and their complements. Under this specific digital hardware learning scheme, the max-

imum number of the intersection images increases exponentially as the number of the

desired characters increases.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

To make neural computing more powerful in terms of speed, the design and

implementation of compact and electrically programmable artificial neural networks in

hardware is becoming a necessity. With the massively parallel processing capabilities,

VLSI neural circuits play an important role in the success of future high-performance,

low cost computing machines.

8.1. Summary

In this research, theory and practical design examples for a new feedback

neural network architecture with digital hardware on-chip learning scheme have been

described.

This new neural network architecture is equally motivated from biological

neural nets where neurons have dendro-dendritic connections, i.e., connections among

neurons occurring via dendrites only. The new architecture is realizable via electronic

circuits using a single MOSFET transistor for each dendro-dendritic synapse. The

maximum number of connections is reduced to approximately one half of the max-

imum connections in the architecture of the Hopfield circuit. The dynamic behavior

and characteristics of the new neural network architecture is supported by mathemati-

cal analysis. The new architecture preserves its gradient dynamic properties, including

symmetry of the synaptic weights when they are implemented in the physical world of
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hardware.

Neural properties of a prototype of this new architecture circuits have been

verified via extensive SPICE simulations and discrete-component experiments. The

simulation and experimental results show that by only adjusting the gate voltages of

the interconnect nMOS transistors, the network can possess all possible number of

stable equilibrium states which in turn correspond to different number of memory or

code data.

A 6—neuron Tiny-chip of the new architecture was successfully designed and

fabricated using 2 pm CMOS n-well technology with a 2.2 x 2.2 m2 chip size as a

prototype chip of the new architecture for developing and assessing various potential

off-chip learning algorithms. A specialized dynamic learning algorithm was success—

fully developed onto software environment with graphics display on a personal com-

puter and tested on the 6—neuron Tiny-chip.

Eventually a SO-neuron CMOS analog chip with on—chip digital learning

scheme was successfully designed and fabricated with a 6.8mm x 4.6mm chip size

having 63,025 transistors via standard 2pm CMOS n-well technology. A desired

equilibrium point can successfully be stored into the chip by setting the interconnect

weights via hardware learning circuitry within 50 ns . In addition, all initial conditions

converge to the steady states in the order of 20 us. From experimental measurement

using a digital meter, the power consumption of the neural chip in steady state is less

than 1 mWatt with power supplies of 0/5 volts. The neural circuit safely retains the

same dynamic properties when the power supply high level is decreased down to 3

volts to dramatically reduce the power dissipation of the analog CMOS VLSI chip.

Dedicated interface circuitries and software environments had been built to

successfully demonstrate the use of the prototype chips of the new neural circuit. A

real-time application has been performed using the SO-neuron chip with on-chip digital

learning as a coprocessor of a personal computer to demonstrate the applicability of
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the new architecture as a pattern/character associator.

On-chip learning is very important to compensate nonideal characteristics of

VLSI neural chips and to reduce total system learning time. To the best of our

knowledge, this is the only successful and effective (analog) neural chip experiment

with guaranteed learning capability. These implementations and experimental results

have been shown to perform and substantiate the capabilities attributed to artificial

neural nets by pursuing an approach of analysis followed by direct implementations.

8.2. Conclusions

As a whole, this work lays a solid groundwork for the implementation of

ANNs in both the theoretical and practical aspects. Further studies to improve the per-

formance and to reduce the area of synapse cells and neuron cells are necessary to

integrate a larger neural network into a single VLSI chip. Future research should

emphasize advance development toward system integration for large and practical

application problems such as pattern recognition and image processing.
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