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ABSTRACT

THREE ESSAYS ON SHARE CONTRACTS,

LABOR SUPPLY, AND THE ESTIMATION OF

MODELS FOR DYNAMIC PANEL DATA

BY

Seung Chan Ahn

This dissertation deals with three topics: share

contracts, labor supply, and the estimation of models for

dynamic panel data. Chapter 1 proposes a model which predicts

under generally acceptable assumptions, fixed wages across

different economic states and lay-offs for bad states, and

shows that a share contract exists that Pareto-dominates and

has no less employment than the fixed-wage contract. Chapter

2 considers joint estimation of the determinants of the

employment status of married women, their labor-force

participation decisions, and their market wages. The

empirical results imply that recognizing frictions in the

labor market is important to explain the determinants of

individuals' employment status in a concrete and correct way.

The estimation procedure including the wage equation generates

more significant and reasonably signed estimates. Chapter 3

considers a dynamic model using panel data which include a

large number of cross-section observations, but only over a

short period of time. 'This chapter proposes an estimator that

is efficient under general circumstances.
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INTRODUCTION

This dissertation deals with three topics: share

contracts, labor supply, and the estimation of models for

dynamic panel data. Since each topic is independent of the

others, each of following chapters focuses on one topic and

contains its own introduction and conclusion sections.

Chapter 1 attempts to provide a theoretical basis for

share contracts. There are many studies comparing share and

fixed-wage contracts from the point of view of welfare or/and

employment. However, their methods of comparison are

arbitrary, in the sense:that they simply assume the fixed-wage

contract to be optimal among wage contracts. A better

comparison could be done by investigating the conditions which

generate fixed wages across different economic states, and

examining whether a share contract could perform better than

a fixed-wage contract under those conditions. For this

reason, I propose a microeconomic model which predicts, under

generally acceptable assumptions, fixed wages across different

economic states and lay-offs for bad states. I then show'that

a share contract exists that Pareto-dominates and has no less

employment than the fixed—wage contract. This result implies

that share contracts could not only improve every economic
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agent's well-being, but also stabilize the employment level in

the economy.

Chapter 2 considers joint estimation of the determinants

of the employment status of married women, their labor-force

participation decisions, and their market wages.

Many of the previous studies of labor supply assume that the

employment status of an individual is determined solely by

his/her desire to work. Those studies treat the unemployed

and non-participants as behaviorally equivalent, ignoring

frictions in the labor market. In this chapter, the

unemployed are regarded as willing to work but not successful

in their job search, and therefore they are treated as

behaviorally different from.non-participantsm Therefore, the

model considered in this chapter consists of two equations

describing employment and labor-force decisions, and also a

wage equation. The empirical results given in this chapter

imply that recognizing frictions in the labor market is

important to explain the determinants of individuals'

employment status in a concrete and correct way, and that the

traditional labor-supply model generates biased estimates of

the determinants of willingness to work. Furthermore,

compared to other methods for joint estimation of labor-force

and employment decisions, the estimation procedure including

the wage equation generates more significant and reasonably

signed estimates. Significant sample selection biases

generated by employment and participation decisions are also

detected in the distribution of observed wage rates, and they
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are successfully corrected by the joint estimation procedure.

Chapter 3 considers a dynamic model using panel data

which include a large number of cross-section observations,

but only over a short period of time. This chapter proposes

an estimator that is efficient under general circumstance.

Several authors have proposed simple but consistent

instrumental-variable (IV) estimators, which are identical to

generalized-methods—of-moments (GMM) estimators based on some

available moment conditions. GMM estimators are efficient in

general circumstances if all known is a certain set of moment

restrictions. This chapter adopts standard assumptions for

the dynamic panel data model, and characterizes all of the

moment conditions that these assumptions imply. It turns out

that previous studies do not impose all of the available

moment conditions, which reveals the inefficiency of the

previous IV estimators. The estimator proposed in this

chapter is efficient because it is obtained exploiting all

useful information from the standard assumptions.



Chapter 1

A Share Economy as a Work Incentive Device

I. Introduction

Stagflation during the last two decades has put an end to

the Gblden era of the Keynesian doctrine. If the Phillips

curve is downward sloping, then a trade-off between

unemployment and inflation must exist, and the government can

choose a desirable combination of them. However, the lesson

we have learned during last 20 years is that the long-run

Phillips curve seems to be vertical. High unemployment and

inflation do not alternate; they rather frequently occur

simultaneously. Government is no longer able to buy

employment at the cost of inflation. In a Keynesian

framework, an expansionary policy successfully reduces the

unemployment rate, since inflation drives down real wages.

However, the public's expectation of inflation seems to catch

up to actual inflation so quickly that nominal wages increase

at approximately the same rate as the general price level.

Therefore, government's expansionary policies often create

high inflation without affecting employment even during

recessions. This means that real as well as nominal wages

seem to be rigid.

Through a series of publications, M. Weitzman argues that

stagflation is tied to ‘wage rigidity. He argues that

"stagflation is just an unfortunate consequence of the wage-

payment system."1 His basic view is identical to the
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Keynesians' in that he believes that all problems have their

origins in wage rigidity. However, his prescription differs

from the Keynesians' in that he emphasizes the necessity of

making wages flexible. His suggestion is to tie compensation

to "an appropriate index of the firm's performance, say a

share of its revenues or profits."2 For simplicity, imagine

a payment system in which the wage rate is determined by two

components -- some fixed compensation and a portion depending

on firm's total revenue. In this case, wages will move in the

same direction as the firm's performance. By a simple

algebraic equation, Weitzman shows that firms are always

characterized by an excess demand for labor. Therefore, in a

share economy, firms behave like a vacuum cleaner, constantly

searching for employees and eagerly sucking' up all the

unemployed. In a share economy, capitalism not only

guarantees Consumer Sovereignty; but Worker Sovereignty.3

With this belief, Weitzman suggests that the government should

offer tax incentives in order to get firms to adopt share

contracts.

There are two main criticisms of weitzman's analysis.

His ideas can be summarized in two propositions. First, in a

share economy compensation is no longer rigid, and it adjusts

in a manner that leads the economy to full employment even in

a short run. Second, the share economy improves the welfare

of economic agents. Nordhaus [1988] and John [1987] have

criticized Weitzman's first proposition. Nordhaus argues that

Weitzman's analysis of the short-run behavior of a share
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economy omits a detailed specification of labor supply, and

shows that the excess-demand proposition no longer holds when

labor supply constraints are introduced. John shows that a

share economy may actually lead to greater employment

fluctuation depending on the specification of labor supply

curves. Share contracts will have less employment fluctuation

only’ if the share jparameters are. determined. by' correct

information about the demand for and supply of labor.

Cooper, (see Nordhaus and John [1986]) amongst others,

has criticized the second proposition. Implicit contract and

efficiency wage theories provide some intuition on the rigid

wage phenomena. The former suggests that risk-averse workers

would prefer rigid wages. The latter argues that wages are

rigid downward in order to prevent workers from shirking. If

wage rigidity comes from the self-interests of economic

agents, then the payment system will not allow wages to

fluctuate. Weitzman does not deny that fixed wages would be

optimal at.a:microeconomic level. His basic assertion is that

the wage contracts are not optimal at a macroeconomic level.

In order to support this claim, Weitzman [1985] shows that

share contracts could increase employment while at the same

time offering approximately the same compensation as under

fixed-wage contracts. This result is based on a macroeconomic

model. In response, Cooper [1988] shows that an injection of

share contracts into one sector of a two-sector economy will

yield a Pareto-improving resource allocation only in a special

case. That is, a share economy, in which all firms adopt
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share contracts, may be superior to a wage economy, but share

contracts adopted by a subset of sectors may not help the

whole economy.

This paper is an attempt to provide support for the share

economy, which Wietzman's model fails to do. If there exists

a share contract that Pareto-dominates, and has no less

employment than a wage contract in a microeconomic model, then

the two main criticisms described above will be no longer

valid. The Pareto-dominating share contract will be able to

help the whole economy without suspending some group's self-

interest. Employment will also fluctuate less in a share

economy than in a wage economy. I demonstrate this in two

steps.

Some implicit contract models predict constant

compensation across states of nature under fairly strong

assumptions. My first focus is on whether constant

compensation could be observed under more general conditions,

in particular, when it is necessary to monitor labor's effort

on the job. I assume only risk-neutral firms and risk-averse

workers. Workers may have an incentive to shirk on the job,

once they are employed. Shapiro and Stiglitz's [1984]

efficiency wage model shows how the monitoring cost on workers

could bring about downward wage rigidity and unemployment. My

key point is the introduction of a no-shirking condition (NSC)

to the implicit contract framework as an incentive compatible

mechanism. My model predicts fixed compensation across states

with lay-offs in bad states. If there is no monitoring cost,
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firms maintain a higher employment level even in bad states to

insure risk-averse workers. If there is a monitoring cost,

firms have an incentive to decrease the employment level to

save on monitoring. They cannot easily cut compensation for

workers, because lower wages give the employed an incentive to

shirk. This intuition partly explains my results.

As a second step, I compare share contracts with the

optimal wage contract. Not surprisingly, there always exists

a share contract which Pareto-dominates the optimal wage

contract, The reason is quite simple. ‘Under a wage contract,

shirkers still can get the agreed compensation regardless of

whether or not they shirk. On the contrary, under a share

contract, shirkers, themselves, suffer from their shirking,

because the firm's total output and revenue decrease when

shirking occurs. Therefore, firms can reduce the monitoring

cost per worker due to workers' decreased incentive to shirk.

Furthermore, I show the existence of some forms of share

contracts which have no less employment than the wage

contract.

My model has a very different implication from

Weitzman's. The share contracts in Weitzman's model Pareto-

dominate the wage contracts at a macroeconomic level, not at

a microeconomic level. The share contracts have a positive

effect on the economy-wide employment level, which in turn

increases aggregate demand, improving all firms' market

conditionse The workers ‘who are already employed. will

initially suffer from lower wages. However, their firms'
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improved profitability under a share economy finally will

compensate their suffering with higher wages. This reasoning

is correct only when sufficiently many firms adopt share

contracts. Instead my model predicts Pareto-dominance of

share contracts over wage contract by a different mechanism.

Share contract creates some cost to shirkers. Monitoring

cost, a pure social welfare loss, will decrease. We can also

choose a share contract that has no less employment than the

wage contract has. Higher welfare and employment will result.

This is possible even at a micro level.

Section II shows that the optimal wage contract has fixed

wages across the states. Section III proves that a share

contract exists that Pareto-dominates the optimal wage

contract, and has no less employment. Section IV summarizes

some conclusions.

II. Wage Contract Model

First, consider a labor contract between a firm and N

homogeneous workers. For simplicity, assume that the firm

uses only labor to produce a single commodity; Output depends

on total employment (E) and.each worker's level of effort (e),

which are perfect substitutes in the production process.

Define the revenue function by sf (eE) , where s denotes an

predictable product-demand shock. Here, f(-) is strictly

increasing and strictly concave, i.e., f' > 0, f" < 0. For

simplicity, I assume that each employee's working hours are

fixed for technological reason. We can relax this assumption



10

without changing the results in this section. (For details,

see APPENDIX) Then, we have the profit function:

(1) "(8) ' 8f(e(8)E(8)) - we(S)E(S) - W“(S)(N-E(S))

where w‘ is the wage paid to each employed worker and wu is

the severance pay for the unemployed.

Each worker has the same concave utility function:

(2) U I U(Y,e)

where Y denotes consumption. Assume that U? > 0, Ue‘< 0. For

employed workers, consumption in state 8 is given by w°(s),

and for the unemployed, w“(s). Assume that the firm is risk-

neutral, and workers_are risk-averse. Then, 6w describes a

wage contract with

6.,={E(s).e(s).W°(s).W“(s)}

The optimal contract, 6w*, can be characterized by the

solution to the problem:

(C.1) maxa Earns)

subject to

Eg{(E(8)/N)U(W°(S).e(S))+(1-E(S)/N)U(W“(S).0)} 2 U0

0 s E/N _<. 1

e 2 0, for all s

where 00 is a utility level of a worker obtained in the

worker's next best alternative. The first constraint will be

binding, because otherwise the firm. could lower' w” and

increase profit. (See Cooper [1987].) This formulation is

very close to Cooper's [1987] basic implicit contract model.

The only difference is that I use e rather than the worker's

hours as in Cooper's model. This difference makes my model
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similar to the principal-agent model [1978]. Basically,

principal-agent models are designed to show how a firm could

improve its workers' productivity with some specific

compensation scheme. As efficiency wage models suggest,

worker productivity will be related to the wage rate. The

model specified above offers the mechanism generating

correlation between productivity and the wage in an implicit

contract framework.

The first interesting result that arises from (C.1) is

that for any 8, the firm employs all workers --- there is full

employment. We can summarize this as following.

PROPOSITION 1. In any optimal contract, E(s)=N for all s.

Proof. Suppose not, i.e., in 6w*, there exists a state, 31'

with E(sl) < N. Given sl, a worker's expected utility is

given by

(E(Sl)/N)U(W°(81)re(81)) + (1-E(81)/N)U(W°(Sl).0)

Consider another contract, 6_w, such that gw is identical to

6w*, for all states other than s1, and at s1, there is full

employment with

§(81)N = e(81)E(81)

We.) = (E(sl)lN)W°(s) + (1-E(sl)/N)W“(sl)

Xu(81) = 0

Then,

1(81) = slf(e(81)N) - iflsflN

= 81f(e(51)E(81)) ' (3(81))W°(51) ‘ (N'E(Sl))wu(81)
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= n*<s1>

Therefore, the firm is indifferent between fiw and 6w*. Now,

compare the worker's expected utility under the two contracts:

(E(Sl)lN)U(W°(81).e(81)) + (1-E(81)/N)U(W°(Sl),0)

< U((E(81)/N)W°(81)+(1-E(81)/N)W°(81).E(81)e(81)/N)

3 U(!e(51):§(31))

The inequality is due to the assumption that workers are risk-

averse. Thus, workers prefers aw to 6w*, so that 6w* is not

an optimal contract.

QED

(C.1) implicitly assumes that the contract can be

enforced voluntarily. However, this assumption is quite

unrealistic. Even when a worker shirks, he still gets the

agreed compensation. Since all workers are identical, no one

will work. Therefore, the firm has to monitor workers in

order to sort out those who shirk on the job. .Assume that the

firm bears some cost (C) when monitoring a worker. Let m be

the probability of catching a given shirker. Assume

(3) C = C(m); C'>0

Now, each employed worker decides whether or not to shirk. If

an.employed.worker does not shirk, he gets utility of U(w°,e).

Otherwise he gets expected utility of (1-m)U(w°,0) + mU(o,0),

because shirkers, once caught, are fired immediately. To

prevent workers from shirking, the following condition (no-

shirking condition;NSC) must be satisfied:



13

(4) U(w‘,e)z (1-m)U(w°,0) + mU(0,0)

for all s. In this case, each firm faces the following profit

function:

(5) "(8) ' 8f(e(S)E(S)) - w°(S)E(S) - wu(S)(N-E(S))

- C(m(8))E(S)

Denote a contract by

5w = {E(8),e(8).W°(S).W“(S).m(8)}

Then, the optimal contract, 6w*, solves

(C.2) maxa Ean(s)

subject to

(0-2-1) E,{(E(S)/N)U(W°(S)76(8))+(1-E(S)/N)U(W”(S).0)} 2 U0

(c.2-2) U(w°(s),e(s)) z (1-m(s))U(w°(s),0) + m(s)U(0,0)

(c.2-3) o s E(s)/N s 1

The second constraint will bind, since the firm could

otherwise decrease m, and save on monitoring costs.

If there is no monitoring cost, i.e., if C(m) = O for any

m, (C.2) will be identical to (C.1). The reason is quite

simple. The firm can perfectly monitor workers without

incurring any cost. That is, the optimal choice of m.must be

1. Since workers' expected utility does not depend on m,

nonshirking workers will not resist the firm's perfect

monitoring. If m = 1, (C.2-2) becomes

U(w°, e) z U(0,0)

Obviously, this condition must hold even for the solution of

(C.1), because otherwise no one will work. Also, the firm's

profit function in (C.2) is exactly identical to that in

(C.1). This means that when monitoring cost is arbitrarily
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small, there is no significant difference between (C.1) and

(C.2). Actually, (C.1) is a special case of (C.2), which can

be obtained under the assumption of zero monitoring cost.

Assuming that the solution always satisfies (C.2-3),

(C.2) predicts fixed wage compensation across states and lay-

offs in bad states.

PROPOSITION 2. The solution to (C.2) satisfies followings:

W“(s) = 1“

W°(s) = re

e(8) = e

m(s) = m for all s, and

dE/ds 2 0

Proof. To solve (C.2), we can construct Lagrangean:

L = sf(eE) - 93 - w“(N-E) -C(m)E

+ 8{(E/N)U(w°,e)+(1-E/N)U(w“,0)} + ¢G(w°,e,m)

where.G(w°,e,m) ==‘U(w°,e) - (1-m)U(w°,0) - mU(0,0). Note that

6 is independent of 5, while o is a function of s. From the

first order condition, we have

(6) U’“w - N/e = o

(7) U°w(6/N) + ¢Gm/E - 1 = o

(8) sf' + Ufie(0/N) + ¢GelE = o

(9) c' - ¢Gm/E = o

(10) sf'e - w° + wu - C + (Ue-U“)(6/N) = O

(11) G = o
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where each subscript denotes the derivative with respect to

the variable it represents, and U9 = U(w°,e), Uu = U(w“,0).

Since 9 is independent of s, w“ is also independent of s.

This means that w” is a constant (wu = £9). By substituting

(9) into (7), (8), (10), and (11), we can rewrite the last

five equations as follows:

(12) Ufiw(8/N) + c'sw/sm - 1 = o

(13) sf' + U°°(8/N) + C'Ge/Gm = o

(14) c' - ¢GmlE = o

(15) sf'e - w° + w“ - c + (Ue-Uu)(8/N) = o

(16) G(w°,e,m) = 0

Total differentiation and application of Cramer's rule of

these equations yields4

dw‘lds = de/ds = dm/ds = 0

dE/ds = -f'/f"g > o QED

It is very hard to provide clear-cut explanation for

these results, because all of the variables are interrelated

in a complex manner. However, some partial intuition follows.

The existence of monitoring costs gives the firm an incentive

to decrease its level of employment. As we saw in (C.1), if

there is no monitoring cost, the optimal contract is

characterized by full employment in all states (to provide

insurance to the risk-averse workers.) This is possible

because work effort is perfectly substitutable for employment

in production precess. Workers are willing to accept lower

wages in order to guarantee employment. However, monitoring
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costs can be regarded as a fixed cost of employment.

Therefore, in bad states, the firm would prefer lay-offs to

save on the fixed cost of employment. Furthermore, since the

employment level has no effect on NSC (see (C.2-2)), the firm

has more discretion in choosing the employment level. This

explains the employment fluctuation result. In this case, the

firm must compensate workers with higher wages even in the bad

states to make them bear the risk of being unemployed. This

causes the wage profile across states to be flatter.

Another interesting result is that the optimal contract

fixes the level of work effort. This is consistent with

observation that unions usually try to predetermine worker's

on-the-job duties in labor contracts.s There is an

conventional explanation about this phenomenon. If the firm

has discretion on using workers, labor productivity could be

increased, because firm. could deploy its employees

efficiently. Higher labor productivity will allow the firm to

produce the given quantity of output with a lower level of

employment. Therefore, the firm will have a smaller incentive

to increase employment, if there is some fixed cost of

employment. Therefore, unions resist increasing labor

productivity. This interpretation is supported by my model.

In bad states, the firm would prefer to increase the workers'

level of effort with higher wages, decreasing total employment

to save on monitoring cost. However, since risk-averse

workers put higher value on employment than on wages, they

will resist this strategy. Also, the firm's profitability of
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adopting this strategy is limited. Higher work effort

decreases nonshirking workers' utility. Higher wages increase

shirkers' expected utility as well as nonshirkers' utility.

Therefore, the firm has to increase monitoring intensity and

cost. Different from the common explanation, (C.2) suggests

that job descriptions are not only for workers' interest but

also for that of firms.

III. Share Contract Model

Section II provided a model which explains lay-offs and

fixed wage compensation during a contract period. In this

section, I will show the Pareto-dominance of share contracts

over wage contracts. The wage compensation per employee under

a share contract can be defined as following:

(17) w° = v + asf(eE)/E

where v is a fixed component of compensation, and a is a share

parameter that specifies the ‘variable component of

compensation. A share contract, 68 is defined by

6. = {E(S).e(8).V(S).a(8).m(S)}

Begin by assuming that the contract agreement is enforced

voluntarily, so that we may ignore the NSC. In this case, no

share contract can Pareto-dominate the optimal wage contract.

In fact, the optimal share contract is identical to that of

the wage contracts The reason is quite simple. ‘Under a share

contract, wage compensation is decomposed into two parameters

-- v and a. However, it is impossible to determine v and a

separately, because the first order conditions for'V'and.a are
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identical. Without the NSC, the optimal share contract, 63*,

solves

(C.3) max5 Ea {(1-a)sf(e(s)E(s))-v(s)E(s)-C(m(s))E(s)

'W“(8) (N-E(S) )}

subject to

(C.3-1) Ea {(E(s)/N)U(asf(e(s)E(s))/E(s)+v(s),e(s))

+(1-E(s)/N)U(w“(s),0)} 2 U0

(c.3-2) o s E/N s 1

The first order conditions for v and a are given:

-E + (e/N)EU°w=o

-sf(eE) + (6/N)sf(eE)U§d=0

Both equations are reduced to

U°w =N/6

Therefore, we cannot determine v and a separately. Instead we

can derive only an optimal combination of v and.a. This result

implies an interesting characteristic of the optimal share

contract, as summarized in following proposition.

PROPOSITION 3. When workers have no incentive to shirk, the

optimal share contract is identical to the optimal wage

contract.

Proof. Define

w‘ = csf(eE)/E + v

Substitute we into (C.3), and find the solution. ‘This must be

the solution to (C.1). From w°(s), we can obtain an optimal

combination of v and a. QED
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Note that the solution to (C.1) predicts full employment

in all statesu Basically, a contract between the firm.and its

workers provides insurance that cannot be obtained in.market,

due to the nontransferable characteristic of human capital.

If both parties have perfect information about each other, the

contract will be Pareto optimal. This result is nothing more

than the optimal resource allocation under Debreu-Arrow's

world of uncertainty. Therefore, no reform of the wage scheme

could make both the firm and workers better off concurrently.

However, insurance markets usually suffer from the Moral

Hazard problem, caused by insurance companies' imperfect

information on customers' behaviour: As we saw in section II,

the workers' incentive to shirk leads to unemployment under

the optimal wage contract. To prevent workers from shirking,

the firm wastes its resources in monitoring workers. In this

case, a wage compensation scheme which can suppress the

incentive to shirk may improve the performance of the economy.

This turns out to be true.

Consider the NSC in (C.2-2) . Under a wage contract,

shirkers do not suffer from their own shirking, since they

still receive the same compensation as nonshirkers do. Under

a share contract, however, shirkers do suffer from their own

shirking. If a worker shirks, the total output actually

produced ‘will be smaller than the amount agreed. to be

produced. Workers get lower compensation, because some

portion of wages is related to total revenue. The wage under

a share contract is given by:
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asf(e(E-S))/E + v

where S is the number of shirkers. When a worker decides to

shirk, his expected utility is given:

(18) (1-m)U(asf(e(E-1))/E+v,0) + mU(0,0)

Therefore, the NSC under a share contract can be expressed as

(C.3-3) U(asf(Ee)/E+v,e) 2 (1-m)U(asf(e(E-1))/E+v,0) +mU(0,0)

Comparing (C.3-3) with (C.2-3), we can. easily see that

shirkers have lower expected utility under a share contract.

Hence, the firm could reduce m, and C(m). This implies that

firm and workers could be better off under a share contract.

This is stated in following proposition.

PROPOSITION 4. When workers have incentive to shirk, there

exists a share contract which Pareto-dominates the optimal

wage contract.

PROOF. The optimal wage contract is characterized by

6.} = {P.g“.e.E*(8).m}

Consider the following share contract,

5. = {0(8).V(S).W“(S).e(5).E(S)rm(S)}

with

m8) = E*(s).

e(8) = s.

0(S)Sf(e(S)E(8))/E(S) + V(S) = E9.

w“(s) = 39, and

m(s) = m for all s.
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For all states, both contracts yield the same level of profit

for the firm and the same level of expected utility for the

workers. However,

0(08f(§E(8))/E(S)+V(S).0) > 0(asf(s(E(S)-1))/E(S)+V(S).0)

Therefore,

U(08f(EE(8))/E(8)+V(S)r e(8))

' U(!°.e(8))

= (1-m)U(LI°.0) + mU(0.0)

= (l-m)U(an(§.E(S))/E(S)+V(S).0) + mU(0,0)

> (1-m)U(an(§(E(S)-1))/E(S)+V(S).0) + mU(Oro)

The NSC is not binding under the share contract. Therefore,

the firm can reduce m, thereby decreasing C(m) , and increasing

profits. QED

For any share contract, the bigger is the portion of

compensation related to total revenue, the higher cost a

shirker bears“ Therefore, the best way to reduce the workers'

incentive to shirk is to increase the share parameter, a, as

much as possible. This gives us following result.

PROPOSITION 5. For any share contract, the optimal

combination of a and v requires v = 0.

PROOF. Suppose not. Consider a share contract specifying 63

= {a,v,e,E,m}. I will suppress s for notational convenience.

Suppose v¢o at some so. Choose g such that

gsf(Ee)/E = asf(eE)/E + v.
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Consider a contract, 6, which is identical to 6, except that

g replaces a. Then, firm's profits and workers' utility do

not change under both contracts. However,

asf(e(E-1))/E + v

= {asf(eE)/E+v}{f(e(E-1))/f(eE)} + v{1-f(e(E-1))/f(eE)}

{QfleE} /E}{f(e(E-1) ) /f(eE)} + v{1-f(e(E-1) ) /f(eE)}

gf(e(E-1))/E + v{1-f(e(E-1))/f(eE)}

> gf(e(E-1))/E

Therefore,

U(gsf(eE)/E,e) > (l-m)U(gsf(e(E-1))/E,e) + mU(0,0)

Firm can decrease m, thereby increasing profits at 50- This

is a contradiction. QED

A share contract may cause (on average) more unemployment

than a wage contract, even though all agents could be better

off under that share contract. Higher unemployment in an

economy will generate a contraction in aggregate demand, and

thereby worsen all firms' economic positions. This implies a

downward shift in the distribution of s, which firms confront.

If this is true, that kind of share contract may not be

desirable at a macroeconomic level. Therefore, my next

question is whether a share contract could guarantee higher

employment. The answer is affirmative as summarized in

following proposition.
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PROPOSITION 6. There exists a share contract with is Pareto-

superior to, and has no less employment than the optimal wage

contract specified in (C.2).

PROOF. The optimal wage contract is denoted by

a; = m“. 2“. s. 2*(8). 11}-

Consider a share contract, 53 = {e(s), w“(s), e(s), E(s),

m(8)}

satisfying

(19) e(S) = a.

(20) 0(8)Sf(sE(S))/E(S) = Re.

(21) W“ = a“.

(22) U(G(S)8f(e(S)E(S))/E(S),e(S))

= (1-m(8))U(a(S)Sf(e(S)(E(S)-1))/E(S).0) + m(8)U(0:0)

for all states. Note that asf(g(E-1))/E,O) < £8, for any E,

as long as (20) holds. Consider the case in which E(s)=E*(s).

Since U(y_r°,§) = (1-m)U(w°,0)+mU(0,0), m(s) < m for any 8.

Therefore, 68 must Pareto-dominate 6;, when E(s) = E*(s).

Then the optimal form, 63*, of 68's also must Pareto-dominates

6;. This means that both the firm and the workers are better

off under 6". By Bellman's principle, for any state, both

are better off under 68*. Let 53* = {a*(s), 39, g, FN*(s),

m*(s)}. Suppose that E**(s) < E*(s), for some so. Then,

(E**/N>U<a*sf<ss**)/E**.g) + (1-E**/N>U(.w.“.o>

= (E"/N)U(xz°.s) + (1-E**/N)U(g“.0)

< <E*/N>U(x°.g> + (1-E*/N)U(y".0)
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This shows that workers have lower expected utility under 63*

at so. This is a contradiction. QED

Now, in addition to Pareto dominating wage contracts, a

share contract generates less employment fluctuation than the

optimal wage contract. If workers are more likely to be

employed, there will be an increase in aggregate consumption,

which shifts up distributions of s, and improves firms'

profitability. An interesting implication of Proposition 6 is

that this is possible even when wages actually given to

workers are constant across states. Therefore, share

contracts will Pareto-dominate even at the macro level. One

shortcoming of Weitzman's analysis is that a firm has excess

demand for labor only if workers already employed are willing

to accept lower wages. (See Nordhaus [1988].) My model avoids

this problem.

IV. Conclusion

In contrast to Weitzman's work, my model, which is based

on a framework of implicit contract theory, allows us to make

a complete welfare comparison between two different wage

compensation schemes -- fixed-wage and share compensations.

Fixed wages across the states are predicted rather than

assumed in an ad hoc way. Therefore, the welfare comparison

given this paper is less open to criticism than comparisons

given by other studies.
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Wage contracts can be regarded as a special form of share

contracts. A share contract predetermines some fixed portion

of wage compensation, with the remaining portion tied to the

firm's performance in the product market. A fixed-wage

contract, which is the optimal wage contract in my model, is

a share contract with no variable portion of compensation.

This suggests that fixed-wage contracts would be a suboptimal

choice among share contracts. My model shows that this is the

case. If workers have no incentive to shirk on their job,

the wage and the optimal share contracts are identical. Wage

contracts are always characterized by full employment in order

to insure risk-averse workers. However, if workers have some

incentive to shirk, the optimal wage contract specifies fixed

wages across the states of nature, generating lay-offs in bad

states. In this case, there exists a share contract which.not

only Pareto—dominates the optimal wage contract, but also has

no less employment for any state. This is possible because

workers' incentive to shirk decreases under share contracts.

In Weitzman's model, firms could have excess demand for

labor only when their employed workers are willing to accept

lower wages. The employed workers will accept only if the

share contracts they accept generate sufficient.macroeconomic

externalities on the whole economy that their suspended self-

interests are ultimately compensated. For this to be true,

substantially large portion of sectors in the economy must

adopt the share contracts, and the share parameters should be

based on the exact information on the economy, all of which
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seem to be practically difficult. However, in my model, no

one suffers from a share contract even at a micro level. No

one has to wait until the macroeconomic externalities

compensate his suspended self-interest. Furthermore, the

share contracts will increase the economy-wide employment

level, even when the share sectors are small. Exact

information on the economy is not required to find this form

of share contracts, as suggested by PROPOSITION 6. Therefore,

the implementation of the share contracts will not be very

costly.

However, even though my model provides an argument in

favor of the share economy, it is early to draw some policy

conclusions. Unfortunately, my model fails to provide a

clear-cut answer to a different question: Why does an economy

resist converting from a wage to a share economy, if share

contracts are really superior to wage contracts? I can offer

only some partial intuition. under a share contract, each

worker's wage depends on other agents' work effort. If there

is a shirker, all workers suffer from lower'wagesw Therefore,

some burden of monitoring should fall on the workers

themselves -- each worker becomes more sensitive to the other

workers' behavior. This generates some kind of psychological

cost to workers. In this situation, workers may prefer wage

contracts. From standpoint of the firms, a share contract

will reduce a management's discretion on production. A share

contract can be successful, only if workers and a firm share

the. exact information. concerning' the firm's real. market
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situation and its true total revenue. In other words, a

credibility problem arises in a share economy. This means

labor's participation in management is a necessary condition

for a successful share contract. In this case, a management

cannot efficiently cope with an abrupt change in the firm's

market situation, because any decision of the management

should wait for its workers' approval. A longer decision

process will reduce the firm's profitability. Therefore,

firms might also prefer wage contracts. These are just some

possible reasons why an economy might be characterized by wage

contracts. Clearly, this question requires further study.
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ENDNOTES

1. Weitzman [1985], p. 3.

2. Ibid., p. 3.

3. Ibid., pp 118-122.

4. The total differentiation of (13), (14), (15), (16), and

(17) yields:

 

- o U:w(6/N)+C'wa/Gm-C'Gw smw/s: U:e(9/N)+C'Gwe /Gm

o U:w(6/N)+C'Gew/Gm-C'Gw Gmw/s; sf"E+U:e(8/N)+C'Gee/Gm

-Gm/E -¢Gmw/E o

0 U: (6/N)-1 sf"eE+sf'+U:(0/N)

_ 0 GW Ge

c"sw/sm+c'swm/Gm o - r d¢ . - o 1

C"Ge/Gm sf"e dwe -f'

c" ¢Gm/E2 de = 0 ds

-C' sf"e2 dE -f'e

Gm O . _ dm d _ 0 _     
5. See Balfour [1987], pp 300-328.
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APPENDIX

In Section II, I assumed that each worker's hours on the

job are fixed. This assumption is not required to obtain

fixed wage under the optimal wage contact. To show this,

redefine e as the hourly effort level of a worker, and we as

the hourly wage rate. I assume that working hours (h) are

perfect substitute for hourly working effort (e) in the

production process. First, suppose that workers have no

incentive to shirk on the job. Let

6w = {E,e,h,w°,w“}

For simplicity, I suppress s. The optimal contract, Sw‘",

solves

(11.1) max5 E311 = E8{sf(ehE)-wehE-w“(N-E)}

subject to

(A.1-1) Ea{(E/N)U(w°,h, eh)+(1-E/N)U(w“,0)} 2 U0

We can easily show that PROPOTISION 1 still holds for (A.1).

I omit the proof, since it is similar to that of PROPOSITION

1.

Now, consider the case in which workers have incentive to

shirk. Describe a wage contract by

6 = {E,e,h,w‘,w“,m}.w

The optimal contract 6w*, solves

(A.2) maxa E3{sf(ehE)- ehE-w“(N-E)-C(m)E}

subject to

(A.2-1) EB{(E/N)U(w°h,eh)+(1-E/N)U(w“,0)} 2 U0

(1.2-2) U(w°h,eh) z (1-m)U(w°h,0) + mU(0,0)
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Consider the first order conditions with respect to e, we,‘and

h:

(1) sf'hE + 0(E/N)Ueeh + ween = o

(2) -E + (E/N)U°W + ¢(er-(1-m)er) = 0

(3) sf'eE - weE + 6((E/N)erwe+(E/N)Ueee)

+ ¢(erwe+Ueee-(1-m)erwe) = 0

where Ue denotes the utility of shirkers, U(weh,0). Observe

that one of (1), (2), and (3) are a linear combination of the

others. This means that we cannot determine e, we, and h,

separately. To avoid this problem, let

ee s eh

w = weh.

Substitution of e° and w into (A.2) gives us (C.2).

Therefore, the optimal choice, across the states of nature,

must fix e° and w at ge and g, respectively. Total wage

compensation for each worker (w) and total working effort per

worker (e°) are independent of the states. Firm can

arbitrarily choose fixed working hours before a contract.

Then, as in PROPOSITION 2, we have fixed hourly wage and

effort level under the optimal contract.

(A.2) contains another interesting implication. One may

consider the case in which firm predetermines e at some level

regardless of the states. Suppose that e=1. Then, (A.2) is

still identical to (C.2) except that h replaces e, and that w

(=Meh) takes the role of we in (C.2). Substituting w and h

into and solving (C.2) will generate constant w and h. That

is, when e is predetermined, the optimal contract has the
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constant we during a contract period. This result is

surprising, because conventional implicit contract models

usually fail to predict fixed wage rates when working hours

are allowed to vary. If effort level is fixed, and if NSC

(A.2-2) is ignored, (A.2) becomes a standard contract model.

(See p. 8 in Cooper [1987].) Without NSC, (A.2) fails to

generate fixed wage rate, unless there are some fairly strong

assumptions on the form of workers' utility function and on

variations in hours. Therefore, NSC in (A.2) has a crucial

role in generating fixed wages across the states of nature

under the optimal contract. By this reasoning, it is safe to

say that we do not have to assume fixed working hours.
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Chapter 2

The Joint Estimation of a Model of Labor Force

and Employment Decisions and Market Wages

I. Introduction

Much of the empirical literature on the labor supply

decision simply assumes that individuals can obtain jobs once

they decide to enter the labor market. That is, the

employment status of an individual is determined by only one

selection criterion —- the individual's decision on whether to

work. In many models used to explain employment status,

individuals are categorized into two groups: employed and

nonemployed. The unemployed and non-participants are treated

as behaviorally identical in their decision process, and both

are regarded as one single group -- the nonemployed. These

models implicitly ignore frictions in the labor market. It is

a well-known fact that unemployment is not simply explained by

individuals' work incentives. According to the single

selectivity criterion based on employment and nonemployment,

both the unemployed and people not in the labor force (NLF)

choose not to work because their reservation wage rates are

greater than their market wage rates. Therefore, the

unemployment status of an individual is purely voluntary. In

this sense, I call these traditional models No-Friction

models. The aim of this paper is to provide estimates of the

determinants of the employment status of married women and

their market wages by using two different selection criteria

33



34

-- preferences for work and ability to become employed.

Some studies show the importance of the existence of the

unemployed in a given data set. Flinn and Heckman [1983],

applying a duration model to young men selected from the

National Longitudinal Survey, reject the hypothesis that the

classifications unemployed and NLF are behaviorally

equivalent. Ham [1982], using a sample of prime aged males

taken from the University of Michigan's Panel Study of Income

Dynamics (PSID), shows that the estimates of parameters in an

equation for work hours are biased if the unemployed or

underemployed workers are ignored. Also, Blundell, Ham, and

Meghir [1987] reject the Tobit model based on the traditional

No—Friction model, using a sample of married women drawn from

the UK Family Expenditure Survey of 1981.

We categorize individuals into three different groups:

employed, unemployed, and non-participants. A married woman

is assumed to enter the labor market if her reservation wage

is less than the prevailing market wage. However, not all

individuals who decide to enter the labor market get jobs

immediately. A woman is employed only when she matches with

an employer who is willing to hire her. An individual who is

better able to find potential employers will have a higher

probability of being employed. In this sense, I call the

model in this paper a Friction model. For this model, we may

construct a job-match equation which can distinguish between

the employed and the unemployed in a probit framework. Labor-

force and employment decisions can be jointly explained by a
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bivariate probit model with partial observability. (See Meng

and Schmidt [1985], and Farber [1983].)

This paper also estimates the parameters in the wage

equation by the maximum-likelihood estimation (MLE) method.

We observe only the currently employed workers' wages. That

is, the observed distribution of wages depends not only on

individuals' decisions about labor-force participation, but

also on their ability to find jobs. The data collected,

therefore, will have two types of selection biases. If we

estimate labor—force and employment decisions and the wage

equation jointly, the parameters in equations for labor-force

and employment decisions will be estimated more efficiently.

At the same time, the conventional loglikelihood ratio (LR)

test is applicable for the hypothesis of no selection bias.

The extension of Heckman's simple two-stage estimation

method is usually used in other studies for cases where two

selection rules generate the sample. (See Fishe, Trost, and

Lurie [1981], and Ham [1982].) The selectivity regressors

used in the least squares (OLS) estimation of the wage

equation are generated by a bivariate probit model. We can

easily apply this extended two-stage estimation method to the

case where employed, unemployed, and NLF people are observed

separately. Other studies usually use an F-statistic for the

test of the joint significance of the selectivity regressors.

In Heckman's simple selectivity model, the standard t-

statistic for the selectivity regressor has been used for the

test of no selection bias. Melino[1982] (also, Lin[1982])
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shows that this t-statistic is asymptotically equivalent to

the Lagrangean Multiplier (LM) test statistic. Likewise, this

paper shows that the F statistic for the hypothesis of no

selection bias for the model with two selection rules is

asymptotically equivalent to the LM test" This means that.the

F-statistic has good power properties, at least

asymptotically.

The empirical results in this paper reveal that the

Friction model explains a married woman's labor status better

than the No-Friction model. The joint estimation of labor-

force, employment status and the wage rate generates more

reliable estimates. There is significant evidence of

selection bias from ignoring labor-force and employment

status. The correction for sample selection bias in the

extended two-stage method turns out to be not quite as

satisfactory as that by the MLE method.

This paper is organized in the following way. Section II

describes the basic model for frictions in the labor market.

Section III summarizes the data, and describes the explanatory

variables used for the empirical study. Section IV

demonstrates the empirical results. Some concluding remarks

follow in Section V.

II. Model

This section explains the basic model based on the

assumption of frictions in the labor market. Notice that not

all married.women who enter the labor market get jobs. ‘We may
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assume that if an individual has higher market wage than her

reservation wage, she enters the labor market. However,

unless she matches an employer who is willing to hire her, she

remains unemployed. The Current Population Survey (CPS), the

National Longitudinal Survey (NLS), and the Panel Study of

Income Dynamics (PSID) provide the data on three different

groups of married women: the employed, the unemployed, and the

non-participants. In this case, we need another employment

criterion to consider the unemployed people separately from

the NLF people. We may imagine that each individual has her

own job-match skill. Those who have better job match ability

will have a higher probability of being employed. Let "1* be

the index for the i'th individual's job-match skill; wi, the

market wage; win, the reservation wage. If "1 2 wiR, the i'th

individual participates in the labor market. If M1' 2 0, she

matches an employer, and get a job which pays her wi. If “1

< win, she retains her NLF status. When "1 z w1* and “1*‘< 0,

she is in the labor market, and remains unemployed. “1 is

observed if and only if the i'th individual is employed.

Therefore, individuals' behavior in the labor market is

determined by the three variables -- market wage rates,

reservation wage rates, and the job-match index. These are

summarized by Model I.

Model I. The Structural Model

R _
(1.1) w, - 21161 + 611
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(1.2) ”1* = 22162 + 621

(1.3) “1 3 23163 + 631

611 _ ° 2:11 2312 2:13

621 N o 212 1 2:23

o i = 1,2,ooo,N.
‘31 r 213 323 333 v

(611,621,63i)' are independently and identically distributed.

The 351 are the observed lokj vectors of explanatory

variables.

yli = [1, if W1 ZWiR

0, otherwise.

y21 = 1, if 111* >= 0

[ 0, otherwise.

y21 is observed if and only if y11=1. wIR and ”1* are not

observed. wi is observed if and only if y11y21=1. Y11

denotes labor-force status (LF), and Y21 denotes ability to

find a job. Therefore an individual is employed if y11y2f=1.

For a simple estimation procedure for this model, let

(2-1) 911 = “31"11” (2311”333'2313)“2

(2.2) e21 - £21

(2.3) e31 = 631

Then,

(eli'e2ile3i)' ~ N(O, 0)

where

“=[ . 23
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1 (223'212)/(211+233’2213)§ (333'213)/(211+233'2213)§

' ° 1 223

e e 233

Let

(3 e 1) yli* (Vi-Win)[(211+233-2213)1/2

(2315341151) / (311+333"2Z13)1/2 +911

3 x1151 + 911

(3-2) Y21* = M1 = z2152 + 521 = X2152 + 921

(3-3) Y31 = "1 '3 z3153 "’ ‘11 = x3153 + 931

Now, we can rewrite Model I as follows.

Model II. Reduced-Form Model.

“-1) hi = x11191 + 911

(4-2) Y21 = x2152 4’ 921

“-3 Y31 = x3153 + 931

e11

821 ' N(0, Q) i = 1,2,000,N.

e31

where

1 p 013

n = o l 023

° ° “33

yli = I: 1, if ylif Z 0

0, otherwise.

0, otherwise.
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Y21 is observed if and only if ydi=1. Y11* and Y21* are not

observed; y31 is observed if and only if y11y25=1.

If our interest is just in the joint estimation of labor-

force and employment. decisions, the jparameters in those

processes can be estimated by a bivariate probit method with

partial observability. (Specifically, this is the "Censored

probit" model of Farber [1983] and Meng and Schmidt [1985].)

Here we may distinguish two cases, depending on what is

observed. First, there is the case of partial observability

in the sense of Poirier [1980], in which we do not observe Y1i

or Yzi for anyone, but we observe (Y11Y21)° This corresponds

tarobserving only employment status (employed or not), but.not

labor-force participation status for individuals who are not

employed. Interestingly, we can still estimate separately the

labor-force participation and employment equations, using

Poirier' model.

Case I. Partial Observability in the sense of Poirier

y1i = 1, if yn" z o

[ 0, otherwise

yz1 = 1, if yn‘” 2 o

[ 0, otherwise. i = 1,2,ooo,N.

Only Y11Y21 is observed. Y11 is one if the i'th person in the

labor-force, and 1’21 is one if the i'th person is able to find

a job. Thus Y11Y21 is one if the i'th person is employed.
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In this case, the maximum likelihood (ML) estimators of

81, 82, and p are derived by' maximizing the following

log-likelihood function with respect to £1, 32, and p :

(5) 1“ Lp(fl1132rp) =1§1{Y11Y211U[F(X11511X2152:P )]

+ (1'Y11Y21)1n[1'F(X1151:X2152:P)1}

where F(o) is the bivariate standard normal distribution

function. This method can allow for frictions in the labor

market. However, the problem with this model is that the

information about who is unemployed is wasted. This model

basically categorizes the individuals in a given data set into

just two groups; the employed and the nonemployed. The latter

group consists of those who are not willing to work (NLF

people) and those who want to work but can not find jobs

(unemployed). This model does not identify who are who among

the nonemployed. Therefore, even though the estimates from

this model would be consistent, these estimates are.generally

inefficient, if information about who is unemployed is

available. (See Meng and Schmidt [1985].)

The second case we consider is the case in which we

observe Yéi when Y11=1 (though not when y1f=0). Thus we can

observe an individual's success or failure in job search only

when she is in the labor market. The unemployed people are

identified as those who are willing to work (being in the

labor market) but are not successful in their job search.

Since this model can distinguish the unemployed from the NLF

people, we can get more efficient estimates than we would get

from Poirier's model. In this case, the parameters can be
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estimated by censored probit method.

Case II. Censored probit.

*

Y11=[1, ifyli 20

0, otherwise

*

y21=[1,ify21 20

0, otherwise.

yli is observed. Y21 is observed if and only if Yii = 1.

In this case, the ML estimators of £1, £2, and p are

derived by maximizing the following log-likelihood function

with respect to Bl, 82, and p :

N

(5) 1“ LC(31:52:P ) =121{Y11Y211n[F(xlifierZifiZIp)]

+ Y11(1-Y21)lnINXlifil)-F(X11filrxnfizm)]

+ (1’Y11)1n(1'e(X1131))}

where o(.) is the standard normal distribution.function- lThis

paper uses the censored probit model to estimate LF and

employment decisions.

The extension of Heckman's simple two-stage method is

usually used when two different types of selection biases

exist in the data set. The wage equation given in Model II

also could be estimated by the extended two-stage method. The

conditional mean of e3i‘will be given by

(7) 1“331' Y11*?°rY21*Z°) = E(eBil 9112’X1131r9212’32152)

¢(Xnfil)¢[ (X2132-9X11fi1)/(1-92)"]

F(X1131:X2132r P)

+ 0'13 
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¢(X2132)9[ (xlifil-px2132)/(1-p2)g]

 

 

F(X11511x215219)

where

1 l 2 2

f(t ,t ,p) = exp[- -——————— (t -2pt t +t )]
1 2 2"(1_pz)1/2 2(1-p )2 1 1 2 2

and,

h k

F(h.k.p) = I I f(t1.t2.p)dt2dt1.
-oo -oo

where ¢(o) is the standard normal distribution function. We

can find this formula in Fishe, Trost, and Lurie [1981], Ham

[1981], Maddala [1987], and Poirier [1980]. (Also, see

APPENDIX A.) Now, we can rewrite (4.3) as

(4-3') Y31 = X3133 + or13l‘11 + or23"21 + V31

where E(v3ily11*20,y21*20) = 0, and

¢<xnal>¢r (X21B2-0x11fi1)/(1-92)”]
 

 

“11 =

F(X1151:X2132r P)

¢<x2132m (xnfil-pxunz)/<1-p2)’*1

“21 =

F(X11311X21311 P)

The extended two-stage estimator can be obtained by the

following steps. First, estimate 81, 82, and p by the

censored probit model, and estimate “11 and “21 (fiqi,fi21) by

using the estimated 81, 82, and p. We then have the estimates

of 51: 82, p, “11: 1:21; 81, 82,3, fin, and [121. Second, regress

y31 on x31, 311! and £21 by OLS, using only the observed Y3i'

In order to find the asymptotic distribution of the extended

two-stage estimators, we just assume for now that
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51' 31

(8) «N(£ -r) = «N 32- 32 ~ N( o. r >

3 - p

where 81, 82, 3 are the ML estimates of 31,32, and p generated

by the censored probit model. Let Ni denote the number of the

observed y31. For simplicity, assume that plim Nl/N = k,

0<k<1. Then, we can show (See APPENDIX B.) that

A

5 ' 3

(9) vu[ ,3 3 ] 4 N ( o, DBD' )

C'C

where

#1 = (#11 [‘21)

C = (013 023)

A11 = a“11ml" [('X11fi1fl11'l‘112'N‘31)X11:(#31'I‘11I‘21)X211

'((X1131‘szifiz)/(1'92) )I‘31'I‘11I‘31]

A21 = aflzi/ar' = [Warhil‘zflxnr('xzifizl‘zrl‘ziz'm‘n)X21:

-( (X2132'9X1131)/(1‘Pz) )u31-u21u31]

A1 3 afli/ar' = [A11' A21']'

Q” = c'AitAj'c

"11 = 1'(°132/°33) (x1151u11+#112+9“31)

”(0232/033) (X2152“21+“212+P“31)

+2013023(#31'“11“21)/°33

n = Plim [ -§— [ 21:31LX31 2%:3%;fi ] ]
1 i 1 31 1 i 1

1 [ 21"11X31'X31 21”iix31'“1 ]

1
N 2."..u.'x E.n..

B = a oplim ,

33 1 11 1 3i 1 11ui ”i
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N1 1 [ 2izjeijxai'xaj zizjeijxai'“1 ]
I I

N "i 21230in ij ziszijui “1

+ plim

where 21 denotes the summation over i from 1 to N1. If

oi3=o:3=0, then, u11=1, and Qif=°- In this case,

080' =

1 2.x 2.x

e33 [

.'x . .'u.

oplim 1 31 31 1 31 1 ]

N 2i“i"‘31 21“i'“11

which is the standard covariance matrix for the OLS estimator.

The more efficient are the estimators of 81, 82, and p

that are used, the more efficient the estimators of B3 and c

will be. Suppose r1 and r2 are consistent estimators of r

with corresponding asymptotic covariance matrices, t1, and.¢2,

respectively. Consider the second matrix in B:

[ Zizjeijxai'xsj zizjeiszi'“i ]

ziszijui'x3j ziszijui'“i

= [ Eixai'r'Ai ] [ EiXBi'r'Ai ]'= Gws'

Eiui'r'Ai Eipi'r'Ai

If tl-tz is positive semidefinite, so is G¢IG'-G¢26'. This

means that we can get more efficient estimators of 33 and c

using r2 than r1. Meng and Schmidt [1985] provide the

asymptotic covariance matrices of the estimates of £1, £2, and

p for Case I and Case II. Their comparison of asymptotic

efficiencies shows that Case II generates more efficient

estimators of 81, 82, and p than Case I. This means that Case

II is more desirable for the extended two-stage estimation

than Case I.

This extended two-stage method does not give us estimates

of all the parameters. We still have to estimate 033. For
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this, denote the residuals for the first N1 observations

obtained from the second stage as $3,, i=1,2,---,N1. Then an

estimate of 033 is

10) 333 = (l/N1)31{:’312 + a132[(x11§1)l’;11 +3112+53311

+ 3232I(x2152)£21+3212+3£311 ' 2313323(&31'fi11321)}

where (131 = f(xnfil,x2jfiz,p)/F(xlifil,x2132,p). We can show that

plim 333 = 033 (See APPENDIX A.) This completes the

estimation of all parameters by the extended two-stage method

for Model II.

In Heckman's simple selectivity model, the test for

sample selectivity is usually done by the t-statistic for the

estimated coefficient of the selectivity regressor. Melino

[1982] and Lin [1982] show that this t-test is the same as the

LM test of the hypothesis of no selectivity bias, so it has

good asymptotic power properties. In the same way, we can

perform an F-test for sample selectivity in Model II. If 013

= 023 = 0, then

E(eail9112'X1131r9212'X2132) = 0°

Therefore, sample selection bias is not produced by applying

OLS to (4.3) directly. Furthermore, as we see later, the

conditional distribution of e3.1 given enz-xnfil, and eziz'xzifiz

is normal and homoscedastic for all i = 1,2,ooo,N1. Hence, we

can use the conventional F-statistic to test for sample

selectivity. For notational convenience, let

x =

3 [x31' x32"” X3N'1'
1

A=AIAI Art

n [#1 #2 ... “N11
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Z= [X3 H]

e =m3'c'1'

y3 = [Y31 y32 "' Y3N11'

SSEO = (y3-26)'(y3- ze)

_ r '1 'Mx — I - x3(x3 x3) x3.

Then, under the null hypothesis that c=0, the test statistic,

A'A' AA

c u quc/Z

 (11) F =

SSEo/(Nl-kg)

is treated as if it were distributed as F(2,N1-k3). It can be

shown that this F-test is asymptotically identical to the LM

test. (See APPENDIX C.)

Model II allows us to estimate equations for labor-force

and employment decisions and the wage rate jointly. The

log-likelihood function for Model II can be derived, after

some straightforward but messy algebra. The conditional

distribution of the e31 is given, for i =1,2,ooo,N1, as

(12) g“331'‘e1iz""1i‘31'eziz'xzi‘gz)

 

1 1 2

= ...[-__ . .]
(2n)e(a33)§ 2“33 31

.F[ x1151+(e13/e33)e31 x2132+(023/e33’e31 p"33"’13"23 ]

(("33"°§3)/"33)1/2 (("33"’23)/"33)1/2 (“33'013)3(°33'°23)%

/F(X11fi1rx2132: P)
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(See APPENDIX D.) Then, the conditional distribution of y3i

given its observability is:

(13) h(Y31|Y11*20 1Y21*20)

 

  

1 1 2

= (2n)e(a3 3)3 exp[2"33 (Y3ix3133) ]

.F x1ie1+(e13/°33)(Y31’x3153) xziez+(°23/°33)(Y3i'x3ie3)

((a -o2 )/a )1/2 ' (<0 -o2 )/a )1/2 '33 23 33 33 23 33

9°33'“13°23

1/2 2 1/2 ]/F(Xlifi1vxzifiz.p)

(033013) (033-023)

The log-likelihood function is:

(14) 1“ Ln(fi1.fi2.fi3.9,013,023,033)

-j§1 {Y11Y2118[h(y31IY11*Z°rY21*Z°)Pr(Y11*Z°rY21*Z°)1

+ YnU-‘Yzfl 1n[Pr(Y11*20:Y21*<0)]

+ (1-yli)ln[Pr(y¢i*<0)1}

fig]. {Y11Y2i["(1/2)1n2’(1/2) 11‘1033-(1/2033) (Yai‘x3133)2

+ ln(Hi)] + yn(1-y21) ln(Oli-Fi)

+ (1-yli)ln(1-§li)]

where,

 

H=F[ x1ifi1+(°13/°33)(Y3i'x3ifl3) x2ifiz+(°23/°33)(Y3i'x3ie3)

“"33"’§3)/"33)1/2 ' “"33"’§3)/"33)1/2 ,

9°33'“13°23

1/2 1/2 ]

(e 33“23)33013) (0

F1 = F(x1151rx2152rp)

“11 = e(x1151) -

If od3=azy=0, the log-likelihood function given in (14)
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becomes:

(15) 1“ L(51132a53191033) N

= -(N1/2)1n2 - (NI/2)lna33 - (1/2033)1E:1(y31-x3ifi3)2

+ 1n LC(31:32:D)

where lnLC is given in (6). (15) implies that (33',a33)' and

(81',52',p)' can be estimated separately. (83',o33)' can be

efficiently estimated by applying the OLS to (4.3), and

maximizing (6) provides the ML estimator of (81',82',p)'. As

we see in (12), if 013 = 023 = 0,

(16) 9(e3ileiiz'xiiel'eziz"x2132)

 

1 1 2

= exp[-———— e .]

(2103(033)3 2“'33 31

This shows that the conditional distribution of en is normal,

and that all 931'5 for i=1,2,ooo,N1 are homoscedastic. That

is why’ the OLS estimator of (33',o33)' is efficient if

al3=023=0.

One thing is noteworthy. In Model II (the Reduced-Form

model) there is no sample selection bias if “13:023=°° In

Model I (the Structural model) this means that E33-El3=223=0.

If 2§3=0, the wage equation given in (1.3) becomes

deterministic, which is difficult to believe. Also, it may

not be usual that.2b3=213. Therefore, Model I almost surely

has a selectivity problem.

All the structural parameters in Model I also can be

directly estimated by the ML estimation method. We can

easily derive the log-likelihood function for Model I:

ll—
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(17) ln L1(51,62,63,2)

= :zi1{yny21[-(1/2)ln2-(1/2)lno33

41/2033) <w.-z..6.>2+H.J + ylul-nnlnmu-Fn

+ (1-y11)ln(1-§11)}

where

P = (323“312)/(211"""33'2’313)1/2

013 = (333413”(211+333'231;a)1/2

F1 = ““1151: 23153: P)

  

 

_ “1131+(e13/z33’(“1'23163) 22162+(223/333)(”1’23153)

H-F 2 -a2 )/2 )1/2 ' (<2 -22 )/z )1/2 '‘( 33 13 33 33 23 33

p233"“13223 ]

_ 2 1/2 _ 2 1/2

(233 013) (233 223)

F1 = Fh‘nfiirxzifizrp)

’11 = e(xnfil)

x1181 = (23153“21151)/(311+“333‘2213)1/2

Maximizing (17) with respect to 61,62,63, and E generates the

ML estimates of the parameters. For identification at least

one variable in 231 must not be included in 211°

III. Data

The sample of married women is taken from the University

of Michigan's Panel Study of Income Dynamics (PSID) for 1981.

These women are between the ages of 18 and 60 years. The

sample excludes wives who are in the agricultural sector;

self-employed; retired; disabled; students; or not in the

continental U.S.. Wives whose total family money income in
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1980 is less than $5,000 are also excluded from the sample.

Black, White, and Hispanics are included in the sample, but

people of other races are eliminated. Some respondents'

answers to various question items are inconsistent. For

example, some wives are reported as working in 1981, but are

recorded as having zero hourly wage rates. Those observations

with. unreliable answers are also excluded” .After 'this

process, the sample contains 1962 observations. Of these, 923

people are recorded as working at the time the survey was

taken in 1981, and are therefore: categorized as the employed.

956 women are reported as housewives, and they belong to the

NLF group. This means that 48.7% of women in the data are out

of the labor force. 83 women, or 8.2% of those in the labor

force, are looking for jobs or temporarily laid-off. These

women are regarded as the unemployed.

The definitions, means, and standard deviations of the

variables used in the analysis are shown in Table 1. The mean

hourly wage rate shown in Table 1 is quite low. This is

misleading because more than half of the women in the sample

are not currently employed and their "wage" is recorded zero.

If we consider only the employed, the average hourly wage is

$5.87. Other earned and unearned income (OFINC) could affect

a wife's labor-force participation and ability to get

acceptable job offers. This variable is obtained by

extracting the wife's labor income from total family money

income. Since the logs of reservation wage and market wage

are used in the model, I choose the log of OFINC (LOFINC) as
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a regressor. Some families in the data have zero OFINC.

Therefore, one is added to OFINC to calculate LOFINC; i.e.,

LOFINC=1n(OFINC+1).

Regional effects are captured by city size and area of

residence. The dummy variables, URB and REGS represent

residency in an SMSA.and.in the South, respectivelyu Regional

effects could be investigated in more detail if more dummy

variables for regions were created. However, in this case, a

proportionate increase in computational cost would follow.

Demographic variables, such as years of education (ED), age

(AGE), the number of children below'the age of 6 years (KIDS),

and a dummy variable for race (MINOR), are also used. Blacks

and. Hispanics are grouped as a single 'minorityu Work

experience could affect.the market.wage an individual can.earn

once employed or her job-match skill. The actual number of

years worked since the age of 18 (EXP) is used to capture this

effect. Finally, this study includes the local unemployment

rate in order to capture differing demand conditions across

areas. The PSID reports the unemployment rate in the

respondent's county. This variable (UNEMPR) is used as the

local unemployment rate.

The explanatory variables in the equation for labor-force

decisions are the constant; ED; URB; MINOR; REGS; UNEMPR;

LOFINC; KIDS; AGE, and AGE squared divided by 1,000 (AGEZ);

EXP, and EXP squared divided by 1,000 (EXP2). The vector of

explanatory variables in the job-match equation includes the

same variables in the labor-force decision except AGE and
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AGE2. The explanatory variables in the wage equation are all

the same variables as in the labor-force decision except

LOFINC and KIDS.

1v. Empirical Results.

The first column of Table 2 reports the estimates of a

simple probit model for the No-Friction model. The last two

columns describe the results of the simple probit models for

the Friction model, assuming zero correlation between error

terms in the labor-force and employment decisions. Both the

first and second columns are about willingness to work.

However, the results in these two columns are derived by

different treatment of the unemployed. The model for no

friction does not regard those unemployed people as having a

desire to work, while the model for friction does. In spite

of these differences, the estimates in the second column are

generally similar to those in the first column and the sizes

of effects and their signs satisfy our expectation. This

similarity may come from the fact that only 4.2% of women in

the data are unemployed, so that their treatment will not

change the results dramatically.

Some differences exist, though, between the results in

the first and the second columns. First, the effect of race

is four times as large in the second column compared to that

in the first column. In fact, MINOR is insignificant when.the

unemployed are considered as preferring not to work. On the

contrary, as we see in the second column, when we interpret
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the unemployed as willing to work, MINOR becomes significant

at the 10% level. This means that the model for no friction

understates the effect of race on the preference to work.

Second, the coefficient.of'UNEMPR.is -3.77 (significant at the

1% level) under the assumption of no friction while it is

-2.38 (significant at the 10% level) under the assumption of

frictions in labor market. Therefore, the No-Friction model

seems to exaggerate the effect of the local unemployment rate

on the willingness to work.

The third column in Table 2 shows the estimates of

parameters for the employment status equation based on the

Friction model. MINOR has a significantly negative effect on

employment status. This confirms our expectation. Blacks and

other minorities are more willing to enter the labor force,

but either their job-search ability is less than that of

whites, or there is discrimination in employment. This may

also explain why the No-Friction model underestimates the

effect of race on the preference for work. ‘Under the Friction

model, MINOR has two opposite effects on employment status.

Minorities have higher probabilities of being employed because

they are more likely to be in the labor force. At the same

time, they are more likely to be unemployed because of their

poor job-search skills. These two opposite effects are

captured by one equation under the No-Friction model, and

therefore, these opposite effects cancel out. The Friction

model can capture those different effects of race separately

by two different equations.
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The other notable.result in the second column is that.the

local unemployment rate has a huge effect on employment

status. ‘This implies that.the demand side of the labor'market

is a major factor determining an individual's employment

status. The effects on employment status of the local

unemployment rate are twofold. First, as we see in the third

column, a higher unemployment rate decreases the probability

of an individual being in labor force. Second, once she

enters the labor market, a woman has a lower probability of

being employed. These two different negative effects of the

unemployment rate are captured by the single equation for

preference for work under the model for no friction. This may

explain why the Friction model generates the exaggerated

effect of UNEMPR on preference to work.

Even though the Friction Model explains an individual's

behavior more completely than the No—Friction Model, there is

no direct method for discriminating between the two models,

because one is not nested in the other. One roundabout.way is

to compare the goodness-of-fit of the different models. In

probabilistic-choice models, the proportion of successful

predictions of the choices made is widely used for the measure

of goodness-of-fit. (See Maddala [1987], pp 76 - 77.) Table

3 describes the frequencies of predicted outcomes for the No-

Friction Model, while Tables 4-A and -B show those for the

Friction Model. In Table 3, 69.7% of predicted outcomes are

correct. According to Tables 4-A and -B, the Friction Model

correctly predicts 76.1% of the total outcomes. The Friction
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Model shows better predictive power than the No-Friction

Model.

In short, as we see in Table 2, the Friction model

explains an individual's labor-force status in a more complete

way than the No-Friction model. Some variables have opposite

effects on employment status, leading the No-Friction model to

understate the effect of those variables on the‘willingness to

work. On the contrary, if some variables affect employment

directly and indirectly through the labor-force decision but

in the same direction, the No-Friction model overestimates

their effects on the willingness tO‘workh These results imply

that recognizing friction in the labor market can provide a

more reliable explanatory mechanism for the supply approach to

analyzing employment status.

Until now, we have assumed zero correlation coefficient

between labor-force and employment decisions. Table 5 reports

results for the censored probit model, allowing a non-zero

correlation coefficient. A test of zero correlation yields

the LR statistic of 4.89, larger than the critical x2(1) value

of 3.84 at the 5% level. Also, the conventional t-test shows

significance of p at the 1% level. In spite of this fact, the

results in Table 5 are generally close to those in the last

two columns of Table 2. This is not surprising, because the

estimates in Table 2 obtained under the assumption of zero

correlation are still consistent. Some small differences also

followu If we allow p to be different from zero, the signs of

some of the coefficients in the employment decision equation
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become more reasonable. For example, compared with those in

the third column of Table 2, the estimated coefficients of ED

and LOFINC become positive and negative, respectively,

following our expectation. MINOR has an insignificant

coefficient in Table 5, but the sign of the coefficient is

still negative. The number of years of work experience has no

significant.explanatory power for employment.status, when.zero

correlation is assumed. However, allowing non-zero

correlation reveals significant effects of work experience and

the expected inverted-U shape. Finally, we can test the

hypothesis that the coefficients entering in both labor-force

and employment decisions have the same sizes of effects on

those decisions. Under this null hypothesis, the restricted

log-likelihood function (results not presented) has the value

of -1421.76. Then the value of the LR statistic is 60.50,

which is considerably larger than the critical x2(10) value of

23.21 at the 1% level. This implies that the explanatory

variables affect labor-force and employment status separately

in significantly different ways.

Jointly estimating' labor-force and employment decisions

and the wage equation could generate more efficient estimates

of the parameters describing labor-force and employment

decisions. This could be done based on the Reduced-Form model

given by (4.1)-—(4.3) . Table 6 shows the ML estimation results

for this joint estimation. Compared.with the results in Table

5 derived by the censored probit model, many estimates of the

parameters describing employment status become significant, or
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more significant. For example, ED, URB, MINOR, and LOFINC

have no significant effects on employment status when they are

estimated by the censored probit model. (See Table 5) They

become significant at the 5% level when the joint model is

estimated, as we see in Table 6. 'This is due to the increased

efficiency of MLE for the joint model as compared to the

censored probit model. The estimates in the first and the

second columns of Table 6 are generally close to their

counterparts in Table 5. MINOR has an insignificant effect on

labor-force status in Table 6 while having a significant

effect in Table 5. However, the sizes of the effect of MINOR

described in the two tables are not substantially different.

Almost all the estimates in Table 6 have the signs we

would expect. More educated people and residents of bigger

cities have a higher probability of being in the labor force,

and are more likely to be employed. They also obtain higher

wage rates once employed. Minorities are more willing to

participate, but their probability of being unemployed is

higher. Even when they find jobs, their wage rates are lower

than those of whites. .Age has no significant effect on labor-

force status or the market wage rate. (This is because

experience is included in the equations.) The local

unemployment rate seems not to affect labor-force status

significantly. chever, the local unemployment rate has a

large significant effect on employment status. A higher

unemployment rate generates a greater likelihood of an

individual being unemployed, and substantially decreases the
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hourly wage rate. The income earned by other family members

decreases a married woman's willingness to work and her

probability of being employed. This negative effect of other

family members' income on a woman's employment status is not

surprising in light.of economic search models.and.commonsense.

A woman with higher income due to others' earning will be

more selective in choosing jobs.

The number of children has very significant negative

effects on both labor-force and employment decisions, as we

would expect. This effect also could be explained by a search

framework. A woman with more children will have more burdens

of housework, which will lessen her intensity of job search.

Years of work experience have quadratic effects on LF and

employment status and the market wage rate. According to the

estimates in Table 6, more experienced women have a greater

desire to work, a higher likelihood of being employed, and a

higher wage rate.

Table 6 also shows that the error terms for labor-force

and employment decisions are significantly correlated with the

error term for the market wage rate. The covariances between

errors in the labor-force decision and the wage rate, and

between errors in employment status and the wage rate, are

positive and significant at the 1% level. 'The same unobserved

individual characteristics that make a woman more likely to

enter the labor force and to find a job also tend to lead to

an expectedly higher wage.
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This result also implies the existence of sample

selection bias in the estimation of an equation for observed

wage rates. Table 7 shows the results of the restricted MLE

under the null hypothesis of no selection bias. The

restricted MLE of the parameters in the wage equation are just

OLS applied to the observations on the employed women, while

the restricted MLE for labor-force and employment decisions

are identical to the estimates obtained by the censored probit

model. Therefore, the results of Table 5 are repeated in the

first and the second columns of Table 7. A test of no

selection bias yields an LR statistic of 24.40, considerably

larger than the critical value for 12(2) of 9.21 at the 1%

level. This suggests that the OLS estimates could be

seriously biased. Comparing the third column of Table 6 with

that of Table 7, we can see that OLS underestimates the effect

of the local unemployment rate on the wage rate. Under the

null hypothesis of no selection bias, the estimated

coefficient of UNEMPR is insignificant, while the unrestricted

MLE shows a significant and large negative effect of UNEMPR.on

the wage rate. The OLS estimates also understate the effect

of work experience. The absolute values of the coefficients

of EXP and EXP2 from the unrestricted MLE are almost twice as

big as those obtained by OLS.

Sample selection biases can be corrected by the two-stage

estimation method. Table 8 reports the results. The

estimated covariance between the labor-force decision and.the

wage rate is significant and has a positive sign, while the
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covariance between employment status and the wage rate is

insignificant and has a negative sign. The F-statistic, which

is asymptotically equivalent to the LM statistic, has a value

of 8.46, greater than the critical F value of 4.61. Again,

the null hypothesis of no selection bias is rejected. The

two-stage estimation method corrects the biases of the OLS

estimates for EXP and EXP2 quite well, and the estimated

effects of EXP are quite close to those obtained using the

unrestricted MLE. However, some estimates have an unexpected

sign. Even though AGE and AGE2 are not significant in either

the two-stage or the MLE estimates, in the two-stage estimates

older women are predicted to receive lower wage rates. This

is an unbelievable result. The estimated coefficient of

UNEMPR is also insignificant and has an unexpected positive

sign. Therefore, the two-stage estimates seem to fail in

successfully eliminating biases in the OLS estimates. Also,

the two-stage method produces an insignificant and negative

covariance between errors in employment status and the wage

rate.

Compared to the unrestricted MLE results on the effect of

race, the two-stage method underestimates the effect on the

wage rate. The estimated coefficient of MINOR is not

significantly different from zero. Considering many studies

showing wage discrimination, we expect a significant and

negative effect of minority on wage rates, while we get by MLE

but not by the two stage method. On this point, the MLE

result seems to be more reliable.



62

In short, the two-stage estimation method, as well as the

MLE method, confirm the presence of sample selection biases.

However, compared with the MLE, the two-stage method does not

successfully eliminate the biases of the:OLS estimates, and in

some cases generates perversely signed coefficients. These

results imply the superiority of MLE over the two-stage

method.

As a final step, Table 9 describes the result of the

joint estimation of the employment decision and the

reservation and market wage rates, which is obtained by

applying unrestricted MLE to the Structural model given in

(1.1)-(1.3). UNEMPR, EXP, and EXP2 are excluded from the

reservation wage equation. This is done for a computational

reason. For the identification of the equation for the

reservation wage, at least one explanatory variable in the

wage equation must be excluded from the set of explanatory

variables of the reservation-wage equation. The reservation

wage could be interpreted as a woman's value of leisure or the

nonmarket value of housework. In this sense, there is no

reason why‘UNEMPR, EXP, and EXP2 should affect the reservation

wage. .Also, the exclusion of these variables can be justified

by their insignificance in explanation of reservation wages.

If we include the variables, MLE on the Structural model

amounts to that on the Reduced-Form model. The log-likelihood

value given in Table 9 is not significantly different from

that in Table 6, rejecting the hypothesis of significant

effects of UNEMPR, EXP, and EXP2 on the reservation wage.



63

The estimated coefficients of the explanatory variables

in the employment decision and the market wage rate equation

are almost identical to their counterparts in Table 6. Error

terms in the reservation wage rate equation are significantly

and positively correlated with those in the market wage rate

equation (see 213 in Table 9), but are not significantly

correlated with those in the employment decision equation. A

woman with an unexpectedly high reservation wage rate tends to

get an unexpectedly high.wage rate when she is employed, while

the unexplained part of her reservation wage rate does not

affect the probability of her being employed.

The results for the reservation wage equation are shown

in the first column of Table 9. More educated people have a

higher reservation wage rate. This, however, does not mean

that more educated people are less willing to work, as an

extra year of education increases the market wage more than

the reservation wage. The high labor-force participation rate

of minorities can be also explained by the results in the

first column showing their lower reservation wage. The effect

of age on reservation wage is insignificant but positive. As

we expected, the more other income in a family, and the more

children the family has, the higher the wife's reservation

wage rate. The elasticity of the reservation wage rate with

respect to other income is 0.15. Table 9 also shows that

residents in.SMSAs or the South.have higher reservation wages.

There is no theory which explains the effects of region on

married women's reservation wages. However, the LR test of no
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regional effects yields a 12 statistic of 117.95, considerably

above the 12(2) critical value of 9.21 at the 1% level. This

is a quite interesting result, and further examination seems

to be required.

v. Conclusion

This paper presents a joint estimation method for labor-

force and employment decisions and.market.wageu This is based

on a Full Information Maximum Likelihood procedure as well as

on a two-step method. Frictions in the labor market are

assumed, and. therefore the ‘unemployed. are recognized. as

behaviorally different from non-participants. The information

about unemployed workers present in a given sample can be used

to estimate the parameters describing the probability of a

particular individual's being employed. This joint estimation

method provides an explanatory mechanism showing the different

and separate effects a variable could have on labor-force

participation and employment decisions, as well as improving

the estimates of parameters in the wage equation.

The traditional labor supply model, which assumes no

friction in the labor market, does not explain married women's

employment status in a satisfactory way. Some variables could

affect employment decisions directly and indirectly through

preference for work. The No-Friction model, assuming that a

person's employment status depends only on that person's

willingness to work, cannot discriminate between those two

different effects, so that it usually generates biased
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estimates of parameters describing preferences for work.

Compared to other methods for estimating labor-force and

employment decisions jointly (for example, bivariate probit

methods) , the estimation procedure including the wage equation

generates more significant and reasonably signed estimates.

A.given.data set usually contains a relatively small number of

unemployed people, and therefore the information on them may

not be enough to generate much more efficient estimates of

parameters in employment decisions. Jointly considering the

wage rate will be helpful for more efficient estimation of

parameters in labor-force and employment decisions. These two

decision rules can censor the observed distribution of wage

rates, if error terms in the two equations describing labor-

force and employment decisions are correlated with those in

the wage equation. Therefore, as this paper shows, the

information on wage rates can improve the efficiency of

estimates of parameters explaining labor-force and employment

decisions.
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Table 1. Means, Standard Deviations and Definitions of

Variables

Variables Definition Mean S.D.

EMP Employed=1 0.4704 0.4993

NLF NLF=1 0.4873 0.5000

WRATE Hourly wage rate($) 2.7615 3.3966

LRATE Log Of WRATE 0.8002 0.8758

ED Years of Education 12.205 2.2735

URB Resident in SMSA=1 0.6865 0.4640

MINOR Nonwhite=1 0.2717 0.4449

AGE Years of Age 37.485 11.298

AGE2 AGE2/1000 1.5327 0.8973

REGS South=l 0.3435 0.4750

UNEMPR Unemployment rate in the 0.0743 0.0242

resident's county in 1980

OFINC Other family member's 24850.7 20372.2

income in 1980($)

LOFINC Log Of (OFINC+1) 9.9052 0.6822

KIDS Number of children 3 0.5076 0.7745

5 years of age

EXP Number of years worked 8.3578 6.9111

Since age 18

EXP2 EXP2/1000 0.1176 0.1912
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Table 2. Simple Probit Models for Labor-Force Participation

and Employment

Model No Friction Friction

Dep. Var. EMP LF EMP

CONSTANT 1.9064*** 2.8483*** 0.7660

(0.6564) (0.6720) (0.8787)

ED 0.0688*** 0.0797*** -0.0099

(0.0151) (0.0156) (0.0299)

URB 0.1793*** 0.1403** 0.2031

(0.0693) (0.0699) (0.1369)

MINOR 0.0403 0.1615** -0.3846**

(0.0776) (0.0781) (0.1700)

AGE 0.0022 -0.0252 -

(0.0262) (0.0265)

AGE2 -0.4820 -0.2201 -

(0.3187) (0.3219)

REGS 0.1117 0.1008 0.1750

(0.0729) (0.0730) (0.1827)

UNEMPR -3.7654*** -2.3757* -7.7640***

(1.3442) (1.3645) (2.6920)

LOFINC -0.2713*** -0.3224*** 0.1147

(0.0575) (0.0603) (0.0885)

KIDS -0.4954*** -0.5131*** -0.2054**

(0.0383) (0.0386) (0.0941)

EXP 0.1371*** 0.1543*** 0.0332

(0.0176) (0.0177) (0.0334)

EXP2 -2.3910*** -2.8442*** -0.4396

(0.5982) (0.6012) (1.4115)

N 1962 1962 1006

Log L -1148.8 -1128.9 -265.01

 

* significant at the 10% level

** significant at the 5% level

*** significant at the 1% level

standard errors in parenthesis

4 :V' l"

7"“, .'"< U
)
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Table 3. Frequencies of Actual and Predicted Outcomes for

the Probit Model of No-Friction.

 

 

Actual\Predicted =0 EMP=1 Total

EMP = 0 761 278 1039

EMP = 1 316 607 923

 

Total 1077 885 1962
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Table 4-A. Frequencies of Actual and Predicted Outcomes for

the Probit Model of Labor-Force Status Based on

the assumption of Frictions in Labor Market

 

 

 

Actual\Predicted LF=0 LF=1 Total

LF = 0 636 320 936

LF = 1 276 730 1006

Total 912 1050 1962

  
 

Table 4-B. Frequencies of Actual and Predicted Outcomes for

the Probit Model of EMP Status Based on the

Assumption of Frictions in Labor Market

 

 

Actual\Predicted EMP=0 EMP=1 Total

EMP = 0 O 83 83

EMP = 1 0 923 923

 

Total 0 1006 1006
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Table 5. Censored Probit Estimates of the Friction Model

 

 

 

 

Dep. Var. LF EMP

CONSTANT 2.9638*** 1.0227***

(0.6659) (0.8859)

ED 0.0793*** 0.0363***

(0.0157) (0.0321)

URB 0.1437** 0.2240**

(0.0703) (0.1232)

MINOR 0.1645* -0.2469

(0.0788) (0.1600)

AGE -0.0356 -

(0.0259)

AGE2 -0.0941 -

(0.3134)

REGS 0.1014 0.1876

(0.0735) (0.1585)

UNEMPR -2.2564* -7.7352***

(1.3726) (2.3775)

LOFINC -0.3161*** -0.0465

(0.0602) (0.1180)

KIDS -0.5164*** -0.3668***

(0.0393) (0.0947)

EXP 0.1566*** 0.0640**

(0.0177) (0.0301)

EXP2 -2.9305*** -1.1999***

(0.6015) (1.2245)

p 0.6159***

(0.2100)

N 1962 1006

Log L ~1391.51

 

* significant at the 10% level

** significant at the 5% level

*** significant at the 1% level

standard errors in parenthesis
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Table 6. Joint Estimation of Labor-Force, Employment Decisions

and the Wage Equation (the Reduced-Form model)

 

 

 

 

Dep. Var. LF EMP LWAGE

CONSTANT 3.5160*** 2.2994*** 0.1640

(0.6600) (0.8264) (0.1949)

ED 0.0884*** 0.0698** 0.0764***

(0.0158) (0.0285) (0.0490)

URB 0.1547** 0.2559** 0.1910***

(0.0699) (0.1163) (0.0289)

MINOR 0.1057 -0.3364** -0.0959***

(0.0802) (0.1592) (0.0289)

AGE -0.0213 - 0.0079

(0.0258) (0.0104)

AGE2 -0.2192 - -0.1931

(0.3132) (0.1250)

REGS 0.0746 0.0967 -0.0629**

(0.0742) (0.1476) (0.0305)

UNEMPR -2.1860 -7.1815*** -1.1938**

(1.3617) (2.2748) (0.4973)

LOFINC -0.4172*** -0.2473** -

(0.0597) (0.1066)

KIDS -0.4565*** -0.2583*** -

(0.0391) (0.0877)

EXP 0.1530*** 0.0783*** 0.0493***

(0.0180) (0.0279) (0.0080)

EXP2 -2.8690*** -1.2782 -0.8524***

(0.6213) (1.1404) (0.2055)

p 0.6858***

**(*0.1833) *** ***

013,023,033 0.2215 0.2922 0.1442

(0.0515) (0.0353) (0.0127)

N 1962 1006 923

Log L -1664.86

 

** significant at the 5% level

*** significant at the 1% level

standard errors in parenthesis
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Table 7. Restricted MLE Estimates of the Three-Equation

System (ai3=o¢3=0)

 

 

 

 

Dep. Var. LF EMP LWAGE

CONSTANT 2.9638*** 1.0227*** 0.3834**

(0.6659) (0.8859) (0.1899)

ED 0.0793*** 0.0363*** 0.0694***

(0.0157) (0.0321) (0.0053)

URB 0.1437** 0.2240** 0.1696***

(0.0703) (0.1232) (0.0253)

MINOR 0.1645** -0.2469 -0.0928***

(0.0788) (0.1600) (0.0276)

AGE -0.0356 - 0.0134

(0.0259) (0.0097)

AGE2 -0.0941 - -0.2147*

(0.3134) (0.1203)

REGS 0.1014 0.1876 -0.0809***

(0.0735) (0.1585) (0.0260)

UNEMPR -2.2564* -7.7352*** -0.5296

(1.3726) (2.3775) (0.4771)

LOFINC -0.3161*** -0.0465 -

(0.0602) (0.1180)

KIDS -0.5164*** -0.3668*** -

(0.0393) (0.0947)

EXP 0.1566*** 0.0640** 0.0273***

(0.0177) (0.0301) (0.0062)

EXP2 -2.9305*** -1.1999*** -0.4301*

(0.6015) (1.2245) (0.1888)

p 0.6159***

(0.2100)

N 1962 923

Log L -1391.51 -285.55

 

* significant at the 10% level

** significant at the 5% level

*** significant at the 1% level

standard errors in parenthesis
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Table 8. Results for Two-Stage Estimation of the Wage Equation

 

 

 

 

 

Dependent variable LWAGE

Variables

CONSTANT 0.4133***

(0.2475)

ED 0.0769***

(0.0070)

URB 0.1504***

(0.0375)

MINOR -0.0178

(0.0516)

AGE -0.0020

(0.0119)

AGE2 -0.1283

(0.1382)

REGS -0.0894**

(0.0369)

UNEMPR 0.2323

(0.8870)

EXP 0.0505***

(0.0106)

EXP2 -0.8612***

(0.2792)

013 0.2553***

(0.0949)

(0.2556)

033 0.2042

R2 0.3321

N 923

 

* significant at the 10% level

** significant at the 5% level

*** Significant at the 1% level

correct standard errors in parenthesis.
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Table 9. Unrestricted Joint Estimation of Employment

Decisions and Reservation and.Market Wage Rates (the

Structural Model)

 

 

 

 

 

Dependent Unobserved . EMP LWAGE

Variable Log of Reservation

Wage Rate

Variable

CONSTANT -1.5060*** 2.2593*** 0.1743

(0.2770) (0.8332) (0.1930)

ED 0.0451*** 0.0679** 0.0764***

(0.0075) (0.0289) (0.0049)

URB 0.1376*** 0.2594** 0.1918***

(0.0326) (0.1164) (0.0289)

MINOR -0.1336*** —0.3410** -0.0965***

(0.0382) (0.1601) (0.0314)

AGE 0.0116 --- 0.0056

(0.0112) (0.0101)

AGE2 -0.0710 --- -0.1668

(0.1416) (0.1217)

REGS -0.0853** 0.1032 -0.0610**

(0.1485) (0.0303)

UNEMPR --- -7.0411*** -0.9428**

(2.2617) (0.3994)

LOFINC 0.1473*** -0.2409** ---

(0.0284) (0.1080)

KIDS 0.1599*** -0.2568*** ---

(0.0220) (0.0882)

EXP --- 0.0786*** 0.0518***

(0.0278) (0.0075)

EXP2 --- -1.3000 -0.9316***

(1.1410) (0.1838)

211,212,213 0.1093*** 0.0510 0.0652***

(0.0210) (0.0745) (0.0191)

223,233 0.2890*** 0.1446***

(0.0366) (0.0127)

N 1962

Log L -1665.33

 

* significant at the 10% level

** s gnificant at the 5% level

*** s gnificant at the 1% level

standard errors in parenthesis
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APPENDIX A

In Model II,

0"“ E(eale12'xifiiv e2242/32) = 013“1+°23“2

(A'z) E('323I'312""151r ezz'xzfiz) = 033‘0213H1'0223F‘2

“(90213‘2013023+P°223)“3

(For simplicity, the subscript i is suppressed.)

Proof. Let f(e1,e2,e3) be the trivariate normal distribution

function of (e1,e2,e3)' where (e1,e2,e3)' has zero mean and

covariance matrx 0 given below; and let f (e1,e2,p) be the

standard bivariate normal distribution function with

correlation coefficient, p. Let

n = . 1 023 ; n = n 233

O O 033

We can easily show that

1
 (A.3) E(e3le12-Xlfil, ezz-Xzfiz)

Q CD 00

I e3f(e1,e2,e3)de3de de1

“X13 'X23 ’w

2

Note that

1

(28>3/2lnl

1 11 2 22
1/2 exp{ 5 (n e +0 e 

2

f(ei'ez'e3) 1 1

22 2 33 2 12 13 23
+0 e2+n e3+ 20 e1e2+zn e1e3+20 e2e3)}

1 33 0136 +023e

1/2 eXP{' 92‘ (e3+ 33 ) }
 

3/2
(2n) Inl
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11 33 13 2 13 23 12 33
1 n n - n n n -n n

x eXP[’ 2 {( i3 ) )e1'2( 33 )eiez
n n

+( 022033-(023)2 )e2}]

33 2
n

1 33 013e1+023e2 2

= eXP{' -—- (e + ) }
(2”)1/2 (n33)2 2 3 033

X f(e1,e2,p)

where n31=(1-p2)/|n|. Then,

w a -po
13 23

(A.4)] e f(e ,e ,e )de = e f(e ,e ,p)
.4» 3 1 2 3 3 1_p2 1 1 2

a -po
23 13

+ -I:;§——— e2f(e1,e2,p)

Substituting (A.4) into (A.3) and using Rosenbaum's theorem

(See Johnson and Kotz [1972]) gives us (A.1).

To show (A.2) to hold, note that

1
 

2 _

00 CD 00

2

x I I I e3f(e1,e2,e3)de3de2de1

"x131 "x252 ’”

It can be easily shown that

no

2 _ Ifll

(A.6) {m e3f(e1, e2, e3)de3— 2 f(e1,e2,p)

1‘9

2

(pa -0 )
23 13 2

+ e f(e .e ,p)
1_p2 1 1 2

 

2(""23"’13)("013-023)

<1-p2)2

 + e1e2f(e1,e2,p)
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2

(pa -0 )
13 23 2

+ e f(e .e ,p)
2 2 2 1 2

(l-p)

Substituting (A.6) into (A.5), and using Rosenbaum's theorem

again gives us (A.2).

(A.2) provides a consistent estimator of 033 in the

extended two-stage estimation method. As we see in (4.3'),

V31=e31-013I-‘11‘023H21- Then using (A.2) , we can show that

(1)-7) E(v231|eliZ-xlifil'eZ-XZiBZ) = 033‘0132(x1151l‘11+l‘112+9“31)

”023(X2152“21+“21+W31)+2013°23(“31'“11“21)

This shows the consistency of 033 given in (10).
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Appendix B

The extended two-stage estimators of B3 and c are given

by:

A I I A -1 2 I

(B.1) a = 53 = ziXBiXBi 31*31“1 1x31yzi
A A| A|A AI

° ziuiXBi Siuiui 31"1Y31

2: ' E 'A '1 E ' -‘ +
= a + 1x31 "31 1X31“i ix3i{(“i “1) V31}

A I I A! A

31“1X31 ziuiui zi“i{“1‘"i’e+vai}

where 31 means summation over i from 1 to N1.

First of all, we need to know the asymptotic distribution

of 31. By Taylor's expansion at the true parameter,

r=(fi1'rfl2'rp).r

 

A. I all” A | A

“1 ~ “1+ 6 r (r'r)-“i+ Ai(r-r)

r

where A1 is defined in (9). Therefore,

Al I A

VN(ui- pi) z Ai(VN(r-r)).

Hence, we have

A. I I

(B02) VN(ui’pi) * N(Or AiWAi)

which shows the consistency Of [21. Note that the total number

(N) of observations increases as the number (N1) of the

Observed Y3i's does; N -. no as N1 —. 00. For simplicity, we

assume that

N1
(3.3) plim —fi_ = k, 0<k<1

(See Heckman [1979]) Using (8.2) and (B.3), we can easily
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show that

(B 4) lim $—-2 x ' A 1= lim l—Pz. x’. x 2 x' fi=D-1
° P N1H131 3131X31“1 P N1 1 31 31 1 31“1

A| AIA I I

21“1"31 21“1“1_ _21“1X31 z1“1“1   

}

p

. l

(8.5) plim fi121x31{(ui-ui)c+v33i II

C

  
A. A

L 21#1{(#1-u1)C+V31}1

(8.3) and (8.4) guarantee the consistency of a. In order to

show the asymptotic covariance of «N1 (a-a), note that

-1

121x31{(#1-u1)0+v31} ._1_ 21x31{(u1-u1)C+v31}

(B 6)

er 21u1{(u1-u1)0+v31} VN1 E1u1{(u1-u1)0+v31}

= 1 2'lzj nijx31X33 2izj nijxBiuj

N A'A

1 21j "11“1x31 2121 "11“1“1

where 7111 = [(u1-fi1)c+v31]2. Now, using (8.2) and (8.3) we

have

I 1

(8.7) pl1m filzlPjnijx3ix3j

_ 1 1 I -A I -A I

- plim fi— 2-21C (#1 #1) (#1 #1)cx31x31
1 1

+ lim 3— z. ( )cx
p N1 12 3' v31 “3 “3' 31X3j

1' 1 '

1
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N z 2. c A.lwAl.ox
= plim _1( i jg 3ix3j)

2
N N1

1.2.
+ plim N1 21V31x31x31

N 2.123Q.
1 ijx31X33 1

( ) + plim N Biniix31x31
N N1

 = plim

Here 1111 and Q11 are given in (9) . The last equality in (8.7)

is derived from (11.7). The limiting values of the other

components in (8.6) can. be derived. by similar' methods.

Therefore, we have

2.an X n -
(8.8) plim %_ 2:i ij 3iX3j zj ij x31“3

1 AIA

2.12jn1ju1x3j212jnijuiuj

2.1”. 2. '“i
_ . 1_ iix3ix3j iniix31"31
— a33p11m N1

Xi”11fl1X3j zifliiuiui

N fiszinBix3j 2iszijx3i“j

+ plim (—$)-l§

N N121EjQijpiXBj ziszijniuj 1  

Substituting (8.4) and (8.8) gives us

(3.9) VN(&-a) 3 N( o, 080' )
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Appendix c

Here, we will derive the LM test statistic for no

selection bias in Model II. To construct the LM test

statistic, we need the restricted. MLE estimators. ILet

a1=°13/°33i a2=°23/°33-

Note that.ai3=aQ3 = 0 if and only if a1=a2=0. Therefore,

the null hypothesis of no sample selection bias is that

a1=a2=0. ‘We can rewrite the log-likelihood function for Model

II as

(C.1) 1n LII(fi1rfizlplfi3lalla2Io33)

M
2

1 1

[y -y -{- —1na - ———— (y --x .fi )
i=1 11 21 2 33 2033 31 31 3

 
 

x1151+a1(y31'x3153) X2132+32(Y31’x3133)

+ 1“ F 2 1/2 ' 2 1/2 '
(l-alo (1-a a

33) 2 33)

 

p"‘3'338‘151‘2

2 1 2 2 1 2
(1-a1033) / (1-a2033) / ] ]

1nF<anuxuappn + 1nL°<31.32.p)

where 1nLF(fil,fiz,p) is given in (6). Let the restricted MLE

estimates of £1, £2, p, 83 and 033 be 51, 52, 5, EB, and 333.

Under the null hypothesis, (C.1) is reduced to

(C.2) 11a31(31, 32, 33, p, o, o, 033)

N

_ 1 _ l - l _ _l__ - 2

‘ 1:1[Y11Y21{ 2 lnz" 2 1“°33 2033 (Y31 x31fl3) }]

+ 1n LC(Bl.fl2.p)

This shows that 53, 533 can be derived from the usual OLS
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procedure for the observed y3i's, and that El, 52, 5 are just

MLE estimators derived by maximizing 1n L°(Bl,82,p).

Therefore, 51, 52, and 5 are exactly identical to the

estimates, 51, 52, and 3 used for the 2-stage estimation.

Let 6 = (31' 82' p, [33' a1, a2, 033)'. Then the

restricted MLE estimator of e is given by:

a = (51'.§2'.3.53'.0.0.333)' = (51'.§2'.8.E3'.0.0.333)'

where 333 = 2i(y3i-x3i§3)2/Nl. Then, we can show

(C.3)

II N N

alnL -_ 1 ‘ _ - 1 ‘ _ - '

-—3§_— 9‘(Ororoaori:1 “11(Y3i X3ifl3)’i:1 ”21(Y3i X3153),0)

Some tedious operations generate the information matrix

evaluated at 5:

(c.4) 1(9) = E( -§-Jé%’e—l— )

r- 2 C 2 C 2 C
E(- a lnL' 5) E(— 6 lnL' 5) E(- a lnL '5

631681 631632 6816p

2 C 2 C 2 C
E(- a lnL' 5) E(- a lnL' §) E(- a lnL l5

apzaa1 632632 6326p

2 C 2 C 2 C
= E(- a lnL.|§) E(- a lnL'la) E(- a In? '5)

apafil apaa 2 6p

0 O 0

O 0 0

0 0 0 
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o o o o q

o o o o

o o o o

N A , N A A , N A A , 0

(1/033) 2 F"‘31x31 .E F1“11X31 .E F1“21x31
1-1 1-1

N A A _ N A A2 _ N A A A

i:1F1”11x31 0331:1F1“11 0331:1F1“11“21 °

N A A _ N A A A _ N A A2

i:1F1“21"31 “33i21F1“11“21 “331:1 F1“21 °

_ N A

o o o (033/2)i=1Fi _

Now, using (C.3) and (C.4), we have the LM statistic:

(c.5) LM = (312211 9) 1(9) lcfilggii 5)

N1 3 N1 .

= [0' E “11(Y31 X3133) 1:1 “21(Y31 x3133)]

' _ N A , N A A , N A A , I

(1’033121F1x31X31 iElFi’fiixsi iEIFi"21x31

NAA _ NA. _ NA...

' i:1F1“11x31 U33i§1F1“11 0331:1F1“11“21

N A A _ N A A A _ N A A2

i:1F1“21x31 0331:1F1“11“21 "331:1 F1"21 3

. o .

N1 A _

1:1 “11(Y31'X313)

. N . -

1 1:1 “21(Y31‘X3ifi) .  
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By theorem 4.2.3 in Amemiya [1985] (p. 118),

1 N

(C.6) plim fi.z (y1 yi-in) Hi= 0

1=1

where H1 is a nonstochastic variable. Since 81, £32, and a are

consistent,

(C-7) Plim F(X11311x21fizlp) = F(X1131:X2132:P)

Using (C.6) and (C.7), we can show that

  

 

(C.8) - _ N A , N A A, , N A A , -

(1/o ) 2 F.x .x . 2 F. u .x . z F.u .x
33 i=1 1 31 31 i=1 1 11 31 i=1 1 21 31

1 NAA _ NAAZ _ NAA A

plim— EFu x . a Z F.u . 0 2F.” .11
N i=1 1 11 31 33i=1 1 11 33i=1 1 11 21

NA]; _ NAA A _ NAA

2 F u .x . a 2 F.u .u a 2 F.“ .

_i=1 i 21 31 33i=1 1 11 21 33i=1 1 21 .

' ._ N . N . .

(1’033).§ Y11Y21X31X31 .E y11y21“11x31
1-1 1—1

1 N A - N A2

= 911” N ._ y11Y21“11X31 O33.§ y11Y21"11
1—1 1-1

N A _ N A A

.E y11Y21“21X31 ”33 E Y11Y21“11“21
_ 1-1 1-1

N A , '

2 y .y .u .x .
1=1 11 21 21 31

- N A

O33.§ y11Y21"11 “21
1—1

_ N A2

a 2 y .y .p .

33i=1 11 21 21 J 
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(1/01)12 x 2 u .x . 2 u x

N N N
1 l ‘ - 1 ‘2 - l ‘ “

=p1im — 2 u a 2 p . a 2 p .u .
N i=1 11x31 331=1 11 33i=1 11 21

N N N
1 ‘ - 1 ‘ ‘ - 1 ‘2

.2 u .x a z u .p . a E u

Using (C.8) and matrix notation defined in Section II, we

have:

(C-9) LM z (Y3'X353) 'M(533#'#'333#'X3(X3'X3)-1X3I-‘)-1N'(Y3'x353)

A|A| AA

c p M uc
x 2

= _ a X (2)

“33

 

using the facts;

_ - I -1 U

fl3 ‘ (x3x3) X3Y3

Mx(y3:x3§3) = Y3'x353

__ '1"

0
)

Now we can see that the LM statistic is identical to the

F statistic given in Section II except for the difference

 

between SSEo/(Nl-k3) and 333. Note that

AIA' AA

c p quc/z 2( )/

F = - -9 x 2 2

SSEo/(N1 RB)

and SSEo/(Nl-k3) and 333 have no substantial asymptotic

difference. Therefore, the F-test is identical to the LM

test, and has good asymptotic power properties.
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Appendix D

Let (e1, e2, e3)' have the trivariate normal«distribution

with zero mean and covariance matrix

  

1 p 013

n = p 1 023

_ 013 “23 033 .

Then, the conditional distribution of e3 given e1>-x and

 

  

e2>-y is:

1 1 2
(D.1) f(e |e z-x,e 2y) = exp (- ———— e )

3 1 2 (2")1/2(033)1/2 2033 3

.F[ X"(013/03993 Y +(a23/a33) e3

(1"’:1z3/"33)1/2 (1’023/033)1/2

p"”13023/“33

(bog/"33)1/2(1"’§3/"33)1/2 ]

+ F(X:Y:P)

Proof. It can be easily shown that

1
1

(D-2) F(e .e le ) = exp[- {(0 -o )
1 2 3 2fl(|fll/033)1/2 ETfiT 33 23

 

1 a
2 13 2

{(0 ‘0 )(e - -—- e )
Zlfll 33 23 1 033 3
 x exp{-

0

13 2

33 023013)‘e1 033 93)
-2(pa

U

2 23 2

+("33 “13)(82 033 83) }]

The conditional distribution of e3 given e1>-x and e2>-y
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is described by

(0.3) F(e3|e1>-X. e2>-y) = I I
-X ’Y F(XIYIP)

dezde1
 

f(e3) w w

= I I f(e1,e2|e3) dezde

F(XIYIp) “X 'Y

 

1

 

 
 

where

1 eg

f(e ) = eXP (- —-——-)
3 (2”)1/2(033)1/2 2033

_ e1"(013/033)e3 , 92' (023/033)e3

(0'4) t1 ‘ 1/2 ' 2 = 1/2

(1'013/033) (1’023/033)

Then, the Jacobian of the transformation is

/2

(0.5)   

_ 2 1/2 _ 2 1

8(are? _ (“33 013) (033 “23)

8(t1,t2)' a

 33

Using (0.4) and (8.5), we have

co 00

(8.6) I I f(e1,e2|e3)de2de1

-x -y

0000

= I I g(t t ) dt dt
h k 1' 2 2 1

where

h /2-(X+(013/O33)e3)/(1-0i3/U33)1

/2

w

H -(Y+(023/033)e3)/(1-0223 M33 )1

e = (9033-013023)/{(033'013)1/2(°33'9:3)1/2}
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_ 2 1/2 _ 2 1/2

t t _ (”33 013) (033 023)
g( 1! 2) - 1/2

2n<|fl|033)

 

2 2

(033 “13)(033 023)
 

 

’eXP[ ‘

2|£|a33

.{ t2+t2- 2(""33""13"23) t t }]

1 2 2 1/2 2 1/2 1 2

(“33‘013) (“33'023)

Note that

IBIO1_£2= 33
 

2 2

(“33 “13)(033 “23)

This shows that g(t1,t2) is the standard bivariate normal

distribution function with the correlation coefficient, 2.

Therefore, we have

on Q

(D.7) {x {y f(e1,e2|e3) dezde1 = F(h,k,£)

Substituting (D.7) into (0.3) gives us (D.1).
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Chapter 3

Efficient Estimation of Models for Dynamic Panel Data

1. Introduction

This paper considers a dynamic model with panel data

which include a large number of cross-section observations,

but only over a short period of time. A typical problem in

using panel data is that the error terms in the model contain

unobservable and.time-invariant individual effects. To allow

for these effects, "random effects" models are widely used in

the literature on dynamic panel data. In these models, the

individual effects are treated as being generated from an

independently identically distributed (iid) stochastic

process. This paper develops a generalized- method-of-moments

(GMM) estimator for the dynamic model with random effects

which is efficient under general circumstances.

In the case of the static model, the simple fixed effects

(within) treatment generates a consistent estimator. There

are also a number of studies which develop efficient

estimation methods for the static model with random effects.

When no explanatory variables are correlated with the

individual effects, the generalized least square (GLS)

estimator is consistent and efficient in finite sample; see

Hsiao [1986]. When some explanatory variables are correlated

with the individual effects, we can efficiently estimate the

model using some available instrument variables; see Hausman

91
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and Taylor [1981], Amemiya and MaCurdy [1986], and Breusch,

Mizon, and Schmidt [1989].

Several problems arise in the dynamic model that do not

arise in the static model. First, the conventional within

estimator is inconsistent unless there are a large number of

time-series observations; see Hsiao [1986] . Second, even

though the maximum-likelihood (ML) method is available, the

form of the ML estimator depends crucially on assumptions

about the initial observations and the distribution of the

individual effect; see Anderson and Hsiao [1981], or Hsiao

[1982]. To avoid these problems, Anderson and Hsiao [1981],

Holtz-Eakin [1988], and Arellano and Bond [1988] investigate

instrumental variables estimation techniques. (From now on I

call their methods the conventional instrumental-variable (IV)

methods.) To get a consistent estimator, they

first-difference the original equation to eliminate the

individual effects; and then they use lagged dependent

variables as instruments. These instruments are legitimate in

the usual sense that they are uncorrelated with the

differenced error terms.

In the framework of Hansen's [1982] GM, the conventional

IV estimators can be regarded as GM estimators which use some

available linear orthogonality conditions. The GM estimators

are efficient in general circumstances, if all known is that

the data-generating process satisfies certain moment

restrictions; see Chamberlain [1987]. The GMM method may be

preferred to the ML methods in the dynamic model using panel
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data, because the GMM estimators do not rely on assumptions

about the initial observations and the distribution of the

individual effects. However, the conventional IV estimators

are not efficient in the sense that they fail to use all the

available moment conditions. This is due to their lack of a

systematic treatment in counting the number of available

restrictions. Furthermore, those IV estimators could be

inconsistent if we relax some behavioral assumptions about the

error terms. For example, lagged dependent variables are

generally not legitimate instruments if the error terms are

autocorelated.

The main goal of this paper is to offer a systematic

analysis *which. counts jproperly' all ‘the available :moment

conditions under given assumptions. Under alternative sets of

assumptions, I demonstrate how many moment conditions there

may be, and I show how to write them in a convenient form.

Under the usual assumptions, we can find some linear and

nonlinear orthogonality conditions, which the conventional IV

approaches do not exploit. I then derive the GMM estimator,

and a linearized GMM estimator that is equally asymptotically

efficient. The GM estimator based on all the available

moment conditions must be more efficient than other GMM

estimators based on only a subset of moment conditions. In

this sense, the GMM estimator presented in this paper could be

said to be efficient when the distributions of the initial

observations and of the individual effects are not known.

The plan of this paper is as follows. Sections II, III,
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and IV consider a simple dynamic model which includes only a

one-period lagged dependent variable as the explanatory

variable. Section II briefly summarizes the conventional IV

approaches and demonstrates why they miss some available

moment restrictions. Section III shows the proper way to

derive all the legitimate 'moment. conditions under' given

assumptions. Section IV investigates the estimation procedure

and the asymptotic performance of our GMM estimator under the

usual assumptions. Section V extends our approach to the

dynamic model which includes exogenous variables. Section VI

gives some conclusion.

II. Conventional Iv Methods

To explain the conventional IV methods as simply as

possible, I consider the following simple dynamic model:

(II-1'1) Yit = 5Y1,t-1 + a1 + 6it

(for i = 1,2,"'°,N;t = 1,2,----,T)

= 6Yi,t-l + uit

where uit = “1+51t- The subscript i denotes the ith

cross-section unit, and t designates time periods. Here y is

the dependent variable, a is the individual effect, and e is

the error term. Let y1 = (y11,y12,.°-,y1T)'; y1’_1 :=

(Yiovynv ° ' ' IYi,T-l) ' r ui=(uil'ui2" ° ‘ rum) ' - Then: we can

rewrite (II.1-1) as

(II.1-2) Y1 = 6y1'_1 + “1

i = 1,2,- - . ,N

Let y=(y1'.Y2'."':YN')'i y;1=(y1,-1'.y2,-1'.°".yn,-1)';
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u=(u1',u2','°-,uN')'. Then (II.1-2) becomes

(II.1-3) y =- 6y_1 + u.

I assume that the (2'3 and e's have zero means. More

assumptions about them will be made shortly.

For mathematical convenience and future use, I also

define some notation:

p, = A(A'A)'1A'

MA 3 Im ‘ PA

P = (1/T)eTeT'

Q = 1:.r - P

P =INGP
v

Qv=IN®Q=INT-Pv

where eT is a T-dimensional vector of ones, and A is any mxk

matrix.

In the conventional literature on the dynamic panel data

model, there are four common assumptions about yo, a, and e's

(for simplicity, the subscript "i" is suppressed):

(SA.1) e's are independent of yo; i.e., E(yoet)=0 for any t.

(SA.2) e's are independent of a; i.e., E(aet)=0 for any t.

(SA.3) 6'8 are homoskedastic; i.e., E(et2)=a£2 for any t.

(SA.4) 6'8 are mutually independent; i.e., E(eaet)=o for any

tis.

The conventional IV approaches first-difference (II.1):

(II-2) Ylt'Y1,t-1 = 5(Y1,t-1'Y1,t-2) + (“it-“Lt—l)

Since uit—ui'td (=51t’51,t-1) does not include a1, some lagged

yit's can be used as instruments for the estimation of 6. For

example, Y1,t-2'Y1,t-3 is a legitimate instrumental variable in
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the sense that it is uncorrelated with nit-uifird' but

correlated with Yifird-Yinrfi; see Anderson and Hsiao [1981].

Arellano and Bond [1988] and Holtz-Eakin [1988] find and

use all of the moment conditions based on lagged y's being

uncorrelated with uit'“1,t-1° Consider the (T-1) first-

differenced equations separately:

(II-3) Y12'Y11 = 5(Y11'Y10) + (“12'“11)

Y13‘Y12 = 5(Y12'Y11) + (“13'“12)

Yir'Y1,'r-1 = 5(Yi,T-1‘Yi,'r-2) + (“yr-“1.151)

The system (II.3) could be regarded as a simultaneous system

of equations with the cross-equation restriction that the

coefficients are the same everywhere. Arellano and Bond's

method is akin to three stage least squares (BSLS) with

different instruments for the different equations;

YiorY11I"°rY1,j-1 for the jth equation of (II.3). This

approach is based on the following (§)T(T-1) orthogonality

conditions:

(II-4) E(Yit(ui,s+1'uis)) = 0:

t =\1,2,"',T-2; t < s s T-l

which hold under the assumptions given in (SA).

Even though Anderson and Hsiao [1981], Holtz-Eakin

[1988], and Arellano and Bond [1988] adopt somewhat different

instrumental variable treatments, fundamentally all of their

methods are based on the conditions given in (11.4). To

clarify this point, let us try a slightly different approach.

Define
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A1 —

r -yio O : 0 O : : O -

yio 'Yio "Y11 ° ‘ ‘ °

° yio ‘ yi1 'Yii ‘ ‘ °

0 0 ' : O yil : : 0

° 0 "Via: ° ° ”Vii: "Yi,T-2

- ° ° Yio‘ ° ° Yii‘ ‘ Yi,T-1~

where A1 is a Tx(§)T(T-1) matrix. Also, define

A = ( Al',A2','-',AN')'

Then, (II.4) can be compactly expressed by

(11.5) E(Ai'ui) = 0 or

E(A'u) = 0

One merit of (II.5) is that we do not have to first-difference

the equation given in (II.1). That is, we can directly apply

the instrumental-variable treatment to the equation in levels.

All the conventional IV’approaches can be interpreted.as using

some if not all orthogonality conditions which.are just linear

combinations of those in (11.5). Note that the instruments in

A are legitimate because plim(1/N)A'u=o and plim(1/N)A'y_1¢0.

It can be easily shown that Anderson and Hsiao use as

instrumental variable a linear combination of only some

columns of A, while Arellano and Bond use A itself. The IV

estimator which uses A for (II.1-3) takes the following form:

(11.6) 3A = (y-1'PAy-1)‘1y-1PAy

It can also be shown that this estimator is asymptotically

identical to the GMM estimator based on (11.5) with
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assumptions in (SA). (See .APPENDIXI A.) The asymptotic

distribution of 3A is given by:

(11.7) «N (SA-a) -> N( o, aezplim[(1/N)y-1'PAy_1]'1 )

If all the available orthogonality conditions are those in

(11.5), 3A must be efficient among the class of estimators

which can be derived using this set of information.

However, the assumptions in (SA) imply' more :moment

restrictions that those in (11.5). For an example, consider

the following second-differenced equation:

(II-3) Y13'Y11 = 5(Y12’Y103 ’+ (“13'“11)

Clearly, under the assumptions in (SA),

(11.9-1) E[u12(ui3-u11)]=0, and

(11.9-2) E[u12(y12-y11)]¢0.

Therefore, “12 can be regarded as a nonlinear instrument for

equation (11.8) in the sense of Amemiya [1974], and this

restriction (11.9-1) is not implied by (11.5). This example

implies that (11.5) does not incorporate all the available

moment conditions enforceable under the assumptions in (SA),

and therefore that 3A is not efficient. In the next section

I will categorize all the restrictions implied by (SA), and

also show how we can relax some assumptions.

III. Derivation of Moment Conditions

In this section, 1 demonstrate an appropriate way to

derive all the available moment restrictions which can be

exploited from the usual set of assumptions given in (SA), and

I also apply this method to several cases in which some
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assumptions are relaxed. To do so, first define the

covariance matrix of yo, a, and the e'sl:

r ~ 02 a o a °°°°° o -
yo 7 0 0a 01 02 OT

2

a 0a Gal “a2 aaT

(111.1) 2 = Cov ‘1 = “11 “12 °°°° “1T
62 022 eeeee azT

i ' i
I- 6T .1 .. OTT d    

where i is suppressed. Basically, any assumption which may be

imposed on the dynamic model can be expressed as a

restriction on.2L Under the usual assumptions in (SA), 2

takes the following form:

- 00 00a 0 o o -

2
06 o 0

(111.2) a: o -.- o

2
b 06 -  

The vector of which 2 is the covariance matrix is not

observable. The vector of observables, meaning things that

can be written in terms of data and parameters, is (yo, ul,

u2, -, uT)', which has the following covariance matrix:

- 0 fl 0 fl -
' yo ‘ oo 01 02 OT

u1 ‘111 912 '°°' “11

(111.3) 0 = Cov u2 = n22 .... “21

- “T . nTT .    
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2 ....

' “o “0a+°o1 00a+002 00a+OOT

2 2 O O O O 2

aa+011+20a1 0a +aa1+aa2+012 aa+oa1+aaT+a1T

_ 2 ' .... 2
— aa+022+20a2 aa+aa1+aaT+02T

2 :

L aa+°TT+20aT- 
By comparing n and 2, we can easily see that the form of

0 depends on that of 2, because each element of n is a linear

combination of the elements of )3. Under the usual assumptions

  

  

(SA).

' 000 ‘201 ‘102 nor 1

Q11 012 °°°' n1T

(111.4) 0 = 922 --~- “21

L QTT -

- 0'2 O O O

0 0a 0a 0a ]

2 2 2
0 +06 0a 0a

_ 2 2
- 0 +06 0a

2 2
_ 00+ 06 .

An investigation of the elements in (111.4) provides us with

three types of moment restrictions;

(111.5-1) Type I restrictions:

n01 =n02 =noa - - “or

(111.5-2) Type II restrictions:

n11 =n12 =91; = " “if;

(111.5-3) Type III restrictions:



n12 =n13 =0“ ‘-n1'r

“923 =924 "' ““21-

(111.5-1) implies (T-1) restrictions; (111.5-2), (T-l);

(111.5-3), (§)T(T-1)-1. Therefore, there are in total

(§)T(T-1)+(2T-3) available moment conditions, which are more

than those used in the conventional IV approaches.

Specifically, we have (2T-3) extra moment conditions.

Furthermore, the conditions described in (111.5) can be

obtained even under somewhat relaxed assumptions. First of

all, consider Type 1 conditions. By observing (111.3), we can

see that Type I restrictions hold as long as Y0 and 6t have

the same covariance for any t. The stochastic independence

between Y0 and the 5's is not required. Now, consider Type

11 conditions. These require that ass+aaz+20as = cxtt._+aa2-+2cxmt

for any 3 and t. For this, all we need is the

homoskedasticity of the 6's and the equicovariance of a with

the e's. Finally, consider Type III restrictions. These

require: Ogt+0at+0aa 'to be the same for any t and 8.

Obviously, the equicovariance of the 6's and. the

equicovariance of a with the e's can justify those

restrictions. In short, all the moment conditions in (111.5)

are present under the following modified assumptions (MA):

(MA-1) The covariance of yo and at is the same for any t.

(MA-2) The covariance of a and at is the same for any t.

(MA-3) e's are homoskedastic.
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(MA-4) The covariance of 59 and 6t is the same for any 5 and

t.

A comparison of (SA) with (MA) shows that the assumptions in

(SA) except the homoskedasticity of the e's are stronger than

necessary.

To derive explicit forms of the moment conditions which

are convenient for GM estimation, let us rearrange the

conditions in (111.5) as follows:

(III-5’1) 001 = n02 = n03 = ° " ' = no.'1---1 = “or

‘112 = n13 = ' ‘ ' ' = n1,'r-1 = “11

n23 = = n2,'1'--1 = n21'

n'1'-2,'r-1 = “152,1

(III-5‘2) 011-012 = {222—023 = = n'r-1,-r-1""r—1,'r

(III-5‘3) n11 = ‘222 = ‘133 = = n'r-1,'r-1 = “11

All these conditions in (111.6) can be expressed by:

(111.7-1) E[yit(ui's+1-uia)] = 0

0 S t s T-2, s > t

(111°7'2) E[Y1t(“1,t+1‘“1t)'Y1,t+1(u1,t+2‘ui,t+1)1 = 0

1 S t .<_ T-2

(111.7-3) E[fii(ui't+1-u1t)] = o

1 S t S T-l

where fii=(1/T)e.r'ui. For the derivation of (111.7), see

APPENDIX B. (111.7-1) implies (§)T(T-1) restrictions which

are exactly identical to those used in the conventional 1V

approaches. (111.7-2) shows (T-2) missing linear moment

conditions which are not used in the former studies.
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(111.7-3) shows (T-l) restrictions that are nonlinear in the

sense that 6 appears in both iii (=(1/T)e.r'(y1-6yi'-1)) and

“1,t+1"“1t (=(Y1,t+1"Y1t)'5(Y1t"Y1,t-1))° Again, there are in

total (1/2)T(T-1)+(2T-3) restrictions. Table 10 summarizes

the total number of moment conditions implied by (SA).

Table 10

 

Types of Conditions (111.7-1) (111.7-2) (111.7-3) Total

 

 

T

2 1 o 1 2

3 3 1 2 6

4 6 2 3 11

5 1o 3 4 17

T (3)1(1-1) T-z 1-1 (§)T(T—1)

-(2T-3)

 

Referring to Table 10, we see that the total number of all the

available moment conditions is almost twice as big as that of

the usual conditions, when T is small. This means that the

GMM estimator based on (111.7) could have a substantial

efficiency gain over the conventional 1V estimators if T is

relatively small.

Until now, we have investigated the moment restrictions

under the usual assumptions“ IHere, we consider three cases in

which some assumptions are relaxed.

CASE 1. Keep all the assumptions except (SA.3)

In this case, the heteroskedasticity of the 6's is
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allowed. One might think that the moment restrictions given

in (111.7-1) would be all we can have because (111.7-2) and

(111.7-3) are based on the homoskedasticity of the e's.

However, this is not the case, because we still have some

nonlinear restrictions. To see why, observe the form of n in

  

  

CASE 1:

' 0oo 001 D02 °°'° “01 “

n11 n12 "°° 011'

(111.8) 0 = 022 ~--- OZT

. nTT .

'- 02 O' O O

0 0a 0a 0a 7

2 2
0 +011 Ga Ga

_ 2
- 0 +022 0a

2

This shows that, Type I and 111 restrictions are still

available. The total number of conditions must be

(§)T(T-1)+(T-2). That is, we have an extra (T-2) conditions

in comparison with those adopted in the conventional IV

approaches. To show the explicit form of the restrictions,

let us rearrange them in a slightly different manner:

(HI-9'1) ‘201 3 ‘102 = 003 = '° ‘ ‘ = n0,-1-1 = “or

= n12 = "‘13)= ' ‘ °‘ = n1.1-1 = “11'

=323= =nz,-r-1 =92'r

= n'r-2,'r-1 = n'1'-2,'1'
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(111.9-2) on = (223 = :234 = = nT_1 T

(111.9-1) is just identical to (111.7-1), and therefore, it

generates the conventional moment restrictions given in

(11.5). (111.9-2) can be expressed by:

(111.10) E[u12(ui3-u11)] = E[ui3(ui4-u12)]

= = E[“1,r-1(“1'r’u1,1-2)1=°

which are (T-2) nonlinear restrictions. If the 6's are

heteroskedastic, we do not have any extra linear restrictions.

However, the existence of the nonlinear conditions given in

(111.10) again prevents the conventional IV estimators from

being efficient.

CASE 11. Keep (SA.2) and (SA.3)

Here, we allow the e's to be correlated with each other.

For example, the 6'8 could follow an AR or/and.MA.process. In

this situation, it would be unreasonable to assume that 1’10 is

independent of the 6's. The conventional IV estimators can

not be consistent, because they use invalid instrument

variables, in the sense that E[Ylt(u1,s+1‘“1a) ]+0 for s>t.

However, we can find some available nonlinear moment

conditions. To see this, observe the form of a under CASE II:

- n n 0 °--- 0 -
oo 01 02 OT

Q11 012 '°°' “11

(111.10) 0 = 0 °.-- 0
22 2T

  



2

' “o “0a+°o1 00a+002 00a+°OT

2 2 2 2
0a +06 0a +012 0a +011,

_ 2 2 2
- Ca +0 0a +021,

L a: +0: _  
As we see in (111.10), Type II restrictions are still

available. These (T-l) conditions can be written as follows:

E[(u1,'r-1+u1'r) (“1,1-1'u1'rH = 0

These restrictions are all we can have under the intertemporal

correlations among the e's. However, if we assume the

stationarity of the e's, that is, if E(eisei,a+j)=E(eitei't+j)

for any t,s,and j, we can have more restrictions. Under the

stationarity of the e's, 08’8” = out”. Applying this fact

to 0 gives us the following extra (%)(T-1)(T-2) conditions:

(III-12) n12 = fl23 = {234 = ' ° ° ’ = “ram—1 = nan-1,1

n13 = n24 = = “ram-1 = n'r-2,'r

n1,1-1 = 921'

Therefore, under the stationarity condition about the 6's, we

can have in total (§)T(T-1) restrictions available for GMM

estimation.

CASE III. Keep (SA.3) and (SA.4)

Since Ylo could be correlated with e's, any lagged value

of y“; can not be used as a legitimate instrument for the

differenced equations, because E[yit(ui'8+1-uia) ]¢O for s>t if
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neither Yio nor a1 have equicovariances with sit for any t.

However, we can have many nonlinear restrictions.

111, 0 takes the following form:

(111.13) a = Cov u

 

Pyo-

   

00 Q01

011

0a 02

+ +

a “a1 “a2

+ +

0a 06 2“(12

:
3

02

12

9
:
)

22

2 2'
oa+o€+20a

 

For CASE

0OT 1

“11

“21

“11 _

“0a+°or '

2
aa+oa1+aaT

02+O' +0

a al aT

 
T

Note that SIM-i-(lu..-20at = 2062. Explicitly, this means that

E[(uia-uit)2] is the same for any t and s.

are (§)T(T—1)-1 restrictions.

Therefore, there

Effectively, these represent

the fact that V’ar(u.1t-fii)=[(T-1)/T]oe2 for any t, and

COV(u1t-fii , uia’fii) = -Ta£2 for s¢t.

consider the transformed error term:

P

u

(111.14) u.

 

11

q

E.
1

 

Qui has the covariance matrix

(111.15) Cov(Qui)

To clarify this point,
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= ~ [(T-1)/T]o: -a:/T -a:/T '°° -o:/T T

[(T-1)/T]a: -a:/T °-- -a:/T

[(T-1)/T10§ -a§/T

  [(T-1)/TJa§ .
in

Note that the rank of Cov(Qui) is (T-1). Therefore, for the

derivation of linearly independent moment conditions only, the

last row and column must be ignored” ‘The restrictions implied

in (111.15) can be expressed by

(111.16) Var(u11-fii) = Var(uiz-Gi) = ° - ° - = Var(u1'T_1-ui)

= —(T-1)Cov(uil-fii,u12-Gi) = = -(T-1)Cov(u1’T_1-fii,uiT-ui)

= ~(T-1)Cov(ui'T_2-ui,ui'T_1-ui)

The number of restrictions in (111.16) is again (§)T(T-1)-1.

1v. Estimation

In Section III, I have introduced a systematic method to

derive all the imposable moment conditions from a given set of

assumptions. In this section, I examine the GMM estimation

procedure based on those restrictions. Even though using all

the moment conditions will no doubt improve the efficiency of

the GM estimator, the existence of the nonlinear restrictions

makes a simple IV treatment impossible. One of the greatest

advantages of the conventional 1V methods is that the

estimators could be obtained using standard 1V (ZSLS)

software. Therefore, one may be reluctant to use nonlinear
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GMM methods. However, we can avoid this problem by the

linearized GMM procedure; see Newey [1985].

Define the following expressions:

  

  

' 'Yii ° ‘

Y11+Y12 ‘Yiz

’Yiz y12+Yi3

B11 = 0 ‘Yia

° ° ”Yi,T-2

° ° Yi,T-2+yi,T-1

- ° ° “Yi,T-1 -

r- -fii 0 -‘

ui -ui

321 = 0 “i

0 0 "fii

__ 0 0 -ui _‘

(“12"“i1)/T (“13'“iz)/T '°° (“11’“1,T-1)/T

”21 = (“12'“122/T (“13‘“12)/T "' (“11‘“1,T-1’/T

(“12’“isilT (“is'uiz)/T °°° (“iT'ui,T-1)/T

B
11 B21 D21

B. = B12 ’ 34‘ B22 ’ UL: D22 3

BlN 2N Dzu

N

H = (A B1 Bz); D = (O 0 D2); H'u =jE1Hi'ui.

where 311 is a Tx(T-2) matrix; 321 and D21 are Tx(T-1)

matrices” Then, the moment conditions given in (111.7) can.be

expressed by
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(1V.1) E(Hi'ui) = O, or

E(H'u) = O

A consistent estimator of C=Cov(H'u) is required.t01derive the

GMM estimator. For this, we can use 33 to evaluate H1 and “1°

(Let 1711 and {51 be H1 and “1 evaluated at 311') Then, C=

iglfii'fiifii'fii is consistent for C. One may think of H'fi as a

consistent estimator of C in the same sense that A'A is

consistent for Cov(A'u). However, H'H is inconsistent unless

T=2, because Cov(A'u) includes the fourth-moments of cit.

When the eit's are normally distributed, APPENDIX C shows

(1v.2) plim(l/N)Cov(H'u) = aezplim(1/N)H'H + 0621'

where J' is a matrix with the form of

* ooo

J=[0J0]

000

and J is a (T-2)x(T-2) matrix of the form

2 -1 o

’ -1 2 -1

J=m2 o -1 2
’6

2 -1

-1 2

Therefore, H'H+N3*, not fi'fi, could be used for C.2 In spite

of this fact, I believe that C is a better estimate for C,

because H'H+NJ* is inconsistent under our modified assumptions

in (MA).

The GMM estimator, 36M", minimizes

(Iv.2) (u'H)<‘:‘1(H'u) = [(y-6Y-1)'H(6)]&'1[H(6)'(y-6y-1)]

where H(6) means that H is a function of 6. It has the

following asymptotic distribution:
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(1V.3) VN(6Gm-6)~N( 0, plim[ (1/N) (6(u'H)/66)C'1(6(H'u) [66) ]'1)

It can be easily shown that

(1v.4) 6(H'u)/66 - -(H+D)'y_1

Therefore, the asymptotic distribution of 2mm is given by:

(1v.5) m(EGm-s) » N( o, plim[(l/N)y_1'(H+D)C'1(H+D)'y_1]'1)

and the asymptotic covariance matrix of 6cm is evaluated as

(IV.6) [y_1' (fi+5)8’1(fi+5) 'y_1]'1

where H and D are evaluated at 66““.

To examine the characteristics of 66m, consider the

first order condition for minimization of (1V.2):

(1v.7) y_1'(H+D)C'1H'(y-6y_1) = 0

Then, through some algebraic operations, we can show

(1v.3) 36m,

= [y_1' (H+D)C_1H'y_1]'1y_1' (H+D)C'1H'y

= [y_1' (fi+13)6’1(fi+13) 'y_1]'1y_1' (H+D)C'1(H+D) ' (y-Pvu)

where {i is evaluated at 661m. (IV.8) has an interesting

implication. It suggests that an iterative procedure with any

initial consistent estimator of 6 may generate the GM

estimator. This turns out to be true. Furthermore, only one

iteration is needed to get an estimator which has the same

asymptotic distribution as 66““. To see this, consider a new

estimator, 6, which replaces H, D, and Q in (IV.8) by H, D, 6

(evaluated, say, at 6A). Then,

(1v.9) 3 = [y_1'(fi+fi)é‘1(fi+fi)'y_1]‘1y_1'(fi+6)8'1(fi+fi)'(y-pvfi)

= 6 + [y_1'(fi+fi)8'1(fi+fi) 'y_1]'1y-1'(fi+fi)C'1(fi+fi) 'u

A “-1A A

- [y-1'(fi+f>)6'1(fi+fi> 'y-11‘1y-1'(fi+n)c D'u
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= 6 + [v-1'(fi+fi)?:'1(fi+f5) 'y_1]'1y_1'(fi+fi)e'1H'u

+ [y_1' (fi+fi)€:‘1(fi+fi) 'y-1]'1y_1'(fi+6)e'1(H-H) 'u

- [y_1' (fi+fi)8’1(fi+fi) 'y_1]"1y_1' (fi+fi)8‘1fi' (fi-u)

because Pvfi=0 and Pvfi=fi. Observe that

  

    

Therefore,

(IV.10) - -(1/T)eT'yi _1 O 1

0 O -(1/T)eT'yi’_1

I
_ 0 0

(l/T)eT Yj_'._.ld

Note that

(IVell) P ‘(1/T)€T'Yi'_1 0 " ' " uil‘

I _. I

(llT) eT Yi'_1 (I/T) eT Yi'-1 “12

° (1/T)eT'Y1,-1 “13

O 0 -(1/T)e,r'yi’_1 :

_ O O (1/T)e,I,'yi'_1 . L uiT—

(“12’“11)/T (“13’“12)/T "' (“11'“1,T-1)/T ' Yio

(“12’“11)/T (“13'“12)/T '°° (“11'“1,T-1)/T Yil

(“12’“11”T (“13'“iz)/T "' (“11'“1,T-1’/T Y1,T-1

= D21'Y1,-1

Using (IV.10) and (IV.11), we have

(IV.12) (321-321).“ = -(6A-6)02i'y_1 and

(fi-H)'u = -(6A-6)D'y_1

Substituting (IV.12) into (IV.9) gives

(1v.13)

6 - 6 = [y_1'(fi+D)C'1(H+D) 'y_1]'1y_1'(H+D)C'1fi'u
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+ (EA-6)[y_1'(fi+D)C‘1(H+D)'y;1]'1y_1'(fi+fi)é'1(D-D)'y;1

because fi'(fi-u)=-(6A-6)D'y_1. The second term in the right

side of (IV.13) is asymptotically negligible;

plim(1/VN)(fi-D)'y;1(EA-6)=plimVN(6A-6)plim(l/N)(fi-D)'y;1=0

Note that

[y_1'(H+D)C’1(H+D) 'y_1]'1y_1' (fi+fi)c‘1n'u/«/N

-» N( 0. puma/may(H+D)C'1(H+D)'y-11'1 )

This means that 6 is asymptotically identical to Ecum-

This result is actually not surprising. Newey [1985]

develops a simple linearized GMM estimator which has the same

asymptotic distribution as the nonlinear GMM estimator. His

method is applicable with any initial consistent estimator.

Applying Newey's formula [1985, p. 238] to)our:mode1.generates

(1v.14) 3:; + [y_1'(H+D)C'1(H+D)'y_1]'1y_1'(H+D)C'1fi'fi

which can be shown algebraically identical to 6. Therefore,

it turns out that 6 is nothing but Newey's linearized GMM.

Even though the efficiency of 65““ is not questionable,

one may argue that unless Scum has a significant efficiency

gain, 63 would be preferred because of its simplicity.

Therefore, it would be worth demonstrating explicitly the

efficiency comparison between 6cm“ and 6A, and seeing in what

cases the efficiency gain of 65“” over 6A is greatest. For

simplicity, consider the case in which T=2. There are only

two moment conditions available:

Yio(“12'ui1) ]

= o(IV.15) E[

“i (“12’“11)

where fii=(§)(u12+u11). Define
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(3)<uiz-uil)
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AN B1N DZN

If the 6's are normally distributed ‘with. variance 0‘2,

Cov(H'u) = a£2E(H'H). This is true because J' is irrelevant

in (IV.2) when T=2. Then,

(IV.16) VN(6GMM-6) a N(0, ogzwl'l)

where ¢1=plim[(1/N)y_1'(H+D)(H'H)'1(H+D)'y;1]. .APPENDIX D

shows

*1 = plim(1/N)y_1'PHy_1 + a

where a = (1/3)°e4/[°a2(1’90a2)+°e2/2]'(1/2)022 < O. Pm:

denotes the correlation coefficient. of’ yo (and a, i.e.,

p0a=00a/ (000a) . On the other hand, the conventional IV

estimator, 6A, has the

following asymptotic distribution:

(1v.17) VN(6A-6) 4' N(0, agzwz‘l)

where

*2 = Plim(1/N)YL1'PAY-1

= plim(l/N)y;1'PHy_1+plim(1/N)ygl'MABZ(BZ'MhB2)'1BZ'M§y_1.

APPENDIX D also shows

plim(1/N)y-1'MAB2(B2'MAB2)"1BZ'MAy_1= -(1/2) [aa2(1-p0a2)+062/2]

Then,

(Iv.18) tl-vz = (1/2)oa4(1-p0a2)2/[aa2(1-p0a2)+o.2/21 > o
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By observing (11.18), we can see that the size of efficiency

2, 00,2, and Pow The greatergain of 3cm over 6A depends on ae

am2 is and the smaller 900:2 and 0:2 are, the greater efficiency

gain 66““ has.

Another possible problem in our estimation method is that

gems loses its consistency under the heteroskedasticity of 6's

while 6A does not. Therefore, an appropriate test procedure

may be required. Since 66“,, is efficient under the null

hypothesis (homoskedasticity of 6'5) , and 6A is consistent

under both null and alternative hypotheses, Hausman's [1978]

misspecification test is available. Under the null

hypothesis, the test statistic,

(11.19) (gem-3A) ' (Mz-erldcm-EA)

converges in distribution to x2(T-1), where M1 and M2 are the

asymptotic variances of 66mm and 6A, respectively. Note that

63 is not efficient even when the null hypothesis is

rejected. This is because A'A is no longer consistent for

Cov(A'u) and because, as CASE I demonstrates in Section III,

we still have extra (T-2) moment conditions; see (111.9). To

obtain an efficient estimator, we would need to construct the

GMM estimator based on the moment conditions in (111.9).

Again, Newey's method could be used to generate the linearized

GMM estimator.

V. Estimation with Exogenous Variables

Until now, we have investigated the GMM estimation method

for the simple dynamic model with a one-period lagged
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dependent variable as the only explanatory variable. In this

section, we extend the results obtained in the previous

sections to the general model which includes exogenous

variables. The most surprising finding is that there exist an

enormously large number of moment conditions available for the

dynamic model. Many former studies for the static model

assumeWconditions, in the sense that all the

exogenous variables are uncorrelated with the e 's at all leads

and lags. These conditions, however, do not generate extra

instruments for the static model. On the contrary, all these

strong exogeneity conditions must be considered in the dynamic

model. I will explain this first, and later include the

moment conditions obtained in the previous sections.

The model can be written as

(V.1-1) yit = 6y,_'t_1 + xitB + ziy + (ai+eit)

= 5Y1,t-1 + xitB + ziy + nit

i=1,2,° ° ‘ ,N;t=1,2,° ‘ ' ,T

where x11: is a 1xk row vector of time-varying exogenous

variables, and 21 is a 1xg row vector of time-invariant

exogenous variables. That is, x11: and 21 are stochastically

independent of €it° For the ith cross-section, (V.1-1) can

be rewritten as

(V.1-2) Y1 = 6yi_’_1 + x13 + 217 + “1

For all the observations, the model can be expressed in matrix

form as:

(V.1-3) y 6y_1+XB+Zy+u

(Y-lr X, z)(6p 3', Y')' + u
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= we + n

For the static model (no y_1 present), Hausman and Taylor

[1981], Amemiya and MaCurdy [1986], and Breusch, Mizon, and

Schmidt [1989] develop simple 1V estimation methods, each of

which provides a consistent and efficient estimator under a

given set of exogeneity conditions between x, z and a. 'To see

those exogeneity restrictions, it would be useful to partition

X and Z as follows:

(v.2-1) x = (x1, x2)

(v.2-2) z = (Z1, 22)

where X1 and Z1 are uncorrelated with a while X2 and 22 are

correlated with a. For notational convenience, define a

NTXNTm matrix, S', as follows:

- S - S

    

11 “ 11 S12 S11

S12 S11 S12 S11

S11 S11 S12 S11
_-- * _-- __- _--

(v.3) S = : ; S = : . :

SN1 SN1 SN2 SNT

SN2 SN1 SN2 SNT

- SNT - - SN1 SN2 SNT .

where m is the number of columns of 8. Note that 8* is time—

invariant matrix, in the sense that each of its columns is

time-invariant. If we follow the interpretation provided by

Breusch, Mizon, and Schmidt, the exogeneity conditions imposed

by these authors can be compactly described by

(v.4) plim(1/N)G'u = O



118

where G=(QvX, PVR). R is defined as follows:

(v.5) R = (X1, 21) for Hausman and Taylor

(X1, 21, X1*) for Amemiya and MaCurdy

*

(X1, Z1, X1 , (QvX2)*) for Breusch, Mizon, and

Schmidt

Since the comparison of these three approaches is not the

task of this paper, we will use R without preference to any

particular approach. A simple two stage least square (ZSLS)

treatment using G as instrument variables will provide a

consistent estimator of 9. Note that E(uu')=o?2F=ot2(Qv+¢2Pv)

where ¢2=(a¢2+Taa2)/oez. The simple ZSLS estimator, 86 is the

IV estimator applied to the following transformed equation:

(v.5) r”y = r’iwe + r’fu

Then, we have

56 = (w'r"¢c' (G'Grls'r’im'1w'r"=G(G'G)'1G'r”iy

Through some algebraic operation, it can also be shown

that3

(v.7) 86 = (W'G(G'I‘G)'1G'W)"1W'G(G'I‘G)'1G'y

The asymptotic distribution of 86 is given:

(v.8) vméG-e) .. N(0, aezplim[(1/N)W'G(G'I‘G)'lG'W]'1 ).

8G is also a GMM estimator. To see why, note that Cov(G'u)=

okzs'FG. Then, the GMM estimator based on the exogeneity

conditions in (v.4) minimizes

(y-we) 'G(G'I‘G)'1G' (y-we)

and it is exactly identical to 86.

Even though (V.4) could incorporate all the exogeneity

conditions on x and z in relation with a, it does not exploit
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theWconditions about 6. To clarify this

point, consider the following strong exogeneity restrictions:

(V.9-1) E(Xit'519) = 0

(v.9-2) E(zi'eis) = o

where t,s=1,2,'~ ,T. In terms of uis, (v.9) implies:

(v.1o-1) E(xitwuLBfl-uian = o

(V.10-2) E(zi'(ui’8+1-uis)) = 0

  

where s=1,2,°°-,T-1. Define

. - I I-
Xil O | I XiT 0 1

- I I _

x11 x11 ' ' x11 “11
l I

0 x11 ' ' 0 ‘11

u 0 O : : 0 0

xi = o o : : o o

: : : : : :

o 0 -x11 : : o 0 "x11

l I

_ o o xil : : o o xiT _

.- .21 0 -I

0 z

z** o o
i O O

0 0 -z.

L zi -  
where Xi" is a Tx(kT(T—1)) matrix and 21" is a Tx(g(T-1))

matrix. Let

X** Z**

** 1 ** 1 ** ** **

X= : ;z= : ;W =(X,Z)

x** Z**

N N

Then, we may use WM as instruments, because plim(1/N)W"'u=0.

**

Define F=(W** G)=(X** Z QvX PVR). Then, all the available

exogeneity conditions can be compactly described by
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(v.11) plim(1/N)F'u = E(F'u) = 0

Note that not all the moment restrictions in (v.11) are

linearly independent. To see ‘why, we can rewrite the

restrictions in (v.11) separately as follows:

(v.12-1) E(x**'u) 0

(v.12-2) E(z**'u) o

(v.12-3) E(X'Qvu) = o

(v.12-4) E(R'Pvu) = o

(V.9-1) implies E[X1t' (cit—2i) ]=E[xit' (uit-fii) ]=0, which in turn

shows (V.12-3). Since (V.12-1) is derived from (V.9-1),

(V.12-1) also implies (V.12-3). That is, k restrictions among

those in (V.12-1) are already incorporated. by (V.12-3).

Therefore, (V.12-1) contains extra [(T2-T-1)k], not

[T(T-1)k], conditions which are not captured by (V.12-3).

Since (V.12-2) implies [(T-1)g] restrictions, (v.11) includes

in total extra [(TZ-T-1)k+(T-1)g] conditions compared with

(v.4).

Following the same reasoning, we.can easily show'that the

rank of (XM QVX) is T(T-1)k, while the number of columns of

(X?' QvX) is (T2-T+1)k. That is, F does not have full-column

rank. Therefore, we have to exclude QvX, or, as I assume

here, the last k columns of X** from F, when we procceed the

2SLS estimation based on (v.11). Then, the 2SLS estimator,

8,, has the same form as 86 except that F replaces G:

(v.13) 8,. = (w'r‘5F(F'F)“lF'r'5W)‘1w'r“1F(FIF)'1F'r'ky

= (W'F(F'I‘F)'lF'W)'1W'F(F'PF)'1F'y

The asymptotic distribution of 8F is given:
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(V-14) ”(SF-e) -+ N(0, aezplim[(l/N)W'F(F'I‘F)’1F'W]'1 )

a, is also the GMM estimator based on all the available

exogeneity conditions give in (v.11).

** is irrelevant for the static model. To seeHowever, W

why, note that Hausman and Taylor, and Amemiya and MaCurdy,

use (Qv R) as instruments, not G=(QvX PQR). It actually does

not matter whether we choose (QVX PVR) or (QVIR), because both

generate the same estimator; see Breusch, Mizon and Schmidt

[1989]. By the same reasoning, the 1V treatment with

F=(W",QvX,PvR) on the static model amounts to that with

(W**,QV,R). Now, since the columns of W" are linear

combinations of columns of er in the sense that W**=QVW**,

the projection of a variable onto (W** Qv R) must be equal to

that onto (Qv R). This means that (WM Qv R) provides the same

estimator as (QVZR), and therefore (QVX PVR). In other words,

the inclusion of W** into the set of instrument variables is

irrelevant for the estimation of the static model.

However, the situation is different for the dynamic

model, because Qv is no longer a legitimate instrument. (This

is why the within estimator is inconsistent.) The existence

of the lagged dependent variable as an explanatory variable

makes (Qv R) substantially different from G=(QVX PQR). These

instrument sets no longer generate the same estimator. This

is because QVX, not Qv alone, is a legitimate instrument.

This fact has a powerful implication. Since W** and QvX are

linearly independent, the inclusion of W** into the set of

instrument variables will improve the efficiency of the ZSLS
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estimator for the dynamic model; i.e., 8, is more efficient

than 86 when y_1 is present. Furthermore, when the dimension

of W** ((Tz-T-1)k+(T-1)g) is considered, the efficiency gain

from using W” :may be enormously huge. This is an

extraordinary case for the general regression model, because

the number of instrumental variables based on the exogeneity

conditions usually does not change whether the given model is

dynamic or static. Therefore, this suggests that the moment

conditions under a model using panel data should be carefully

counted.

Now, let us include the moment conditions used in the

conventional IV approaches for the dynamic model. For this,

define

s = (A, F)

Then, the orthorgonality conditions can be expressed by

(v.15) p1im(1/N)S'u = 0

Since Cov(S'u)=a¢2E(S'I‘S), S'I‘S can be used as a consistent

estimator of Cov(S'u). The GMM estimator based on (v.15) is

given by:

(v.16) 88 = (W'S(S'PS)'IS'W)'LW'S(S'FS)'IS'y

where

(v.17) VN(§s-9) » N(0, ogzplim[(l/N)W'S(S'FG)'IS'W]'1 )

This is also algebraically identical to the IV estimator using

S as the instruments on the transformed equation given in

(v.6). APPENDIX B shows

(v.13) WIS(s'rG)‘1s'w = W'F(F'FF)'1F'W + K1

where K1 is a positive semidefinite matrix. This means that
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88 is more efficient than 8F.

As a final step, let us include the whole set of moment

conditions available. Define

146) = (3(9): F)

The notation, H(6), indicates the fact that, unlike S, H is a

function of 9. Then,

(v.19) plim(1/N)H(8)'u = 0

Note that C=Cov(L'u)= iglml‘i'uiui'l‘i) where L1=(H1,F1).

Evaluate L1 and “1 using any consistent estimator, 8, and

denote them by 1.1 and {11. Then, C= Elfiivfiifigfii is a

consistent estimator of C. The GMM estimator, 8L, minimizes

(y-we) 'L(eI¢‘1L(e> ' (y-we)

and its asymptotic distribution is given:

(v.20) VN(8L-6) —» N(0, plim[(1/N)W'(L+LD)C"1(L+LD)'W]'l )

where ID=(D,O,O).

For an efficiency comparison, assume that the e's are

normally distributed. Then, using LEMMA 1 in APPENDIX A, we

easily show

H

E 6
1
: m o'H

(v.21) plim(1/N)Cov(L'u) = aiplim(1/N)[ 'H

2|o o ¢RPVR

]

ogzplim(1/N)L'FL + a£2J*

*

2 J O

+ a6 [ O O

0 0 0
0
0

where E=(W’*,QVX). This implies that L'PL+NJ* can be used as

a consistent estimator of C. If we replace 6 by L'FL+NJ*, as

shown in APPENDIX F, the inverse of the asymptotic covariance
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matrix of an is given by:

(v.22) w'3(s'r3)'1s'w + K2

where K2 is a positive semidefinite matrix. Therefore, 8L is

more efficient than 85. Actually, 8L can be said to be

efficient, because it exploits all the available moment

conditions. The following linearized GMM estimator can also

be used:

(v.21) 5:. = (w'(£+£D)€:-1(£+£D)IW)’1WI(£+£D)€;‘1(£+£D)I(y-pv{i)

where “ means "evaluated at a consistent estimator of 6."

Again, 5L has the same asymptotic distribution as 8L.

VI. Conclusion

In this paper, I have adopted standard assumptions for

the dynamic panel data model, and I have characterized all of

the moment conditions that these assumptions imply. I showed

that previous IV estimators do not impose all of the available

linear ‘moment conditions, and also that there are some

nonlinear moment conditions that they do not incorporate.

This reveals the inefficiency of the conventional 1V

estimators. I propose an efficient GMM estimator. Since the

GMM estimator is nonlinear, I also considered an efficient

linearized version of the GMM estimator.

I also extended this approach to the dynamic model that

includes exogenous variables. I showed that the existing

treatments of the static model incorporate some but not all of

the restrictions that are implied by strong exogeneity of the
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exogenous variables. The extra restrictions implied by the

strong exogeneity are irrelevant in the static model, but they

are relevant in the dynamic model. This fact generates a

large number of additional instruments, all of which can be

exploited either by a linear IV estimator or by a nonlinear

GMM estimator. These extra moment conditions may result in a

large gain in efficiency in the dynamic model.
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ENDNOTES

This assumption implies that Yio's are stochastic. Since

the a's are random effects, and since Yio may include ai,

this seems reasonable. Also, the assumption, E(y10)=0,

is adopted for simplicity. Actually, it is enough to

assume that 2 is the second-moment matrix:

2 = E[(YoraI‘1I€2I' ' ' I51) ' (yo.a.€1.62,' ° ' '51)]

J contains 062. Therefore, J' must be estimated by any

consistent estimator of 062.

We assume here that ¢2 is known. For the estimation of

¢2, see Hausman and Taylor [1981].
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APPENDIX A

To derive the GMM estimator based on the restrictions in

(11.5), we need to know the covariance matrix of Ai'ui under

(SA) given in Section III. For this, the following lemmas are

useful.

LEMMA 1

Suppose that £1, £2, and 53 are random variables. Assume that

51 is independent of E3, and E(£1)=0. Also assume that

52 = 301 + bnz.

where n1 is independent of £3; and n2 is independent of £1, and

a and b are some constants. Then,

E(£1£2£3) =E(51€2)E(€3)-

Proof.

E(Elizig) = aE(€1n1€3) + bE(5102€3)

= aE(€1nl)E(€3) + bE(El)E(02€3)

= aE(£1n1)E(£3)

= E((an1+ bn2)81]E(53)

= 3(5152)E(E3) QED

LEMMA 2

E[Y1tY1h(‘1,e+1'€a)(€1,k+1'€1k)]

= E(Yityih)E[(€i,s+l'6is)(ei,k+1-€ik)]l

for tsh, t<s,k.

Proof.

Since t<s, t<k, Ylt is independent of (€1JH1’513)(51nu4‘51k)°



128

Obviously, E(Ylt)=°° Furthermore, we can decompose Yin into

a part that depends on yit and a1, which is independent of

(Ei,s+l-€is)(ei,k+l-£ik)' and a part that depends on

51,t+1I"°I‘1hI which is independent of Yit' Then LEMMA 1

applies and implies the result. QED

THEOREM 1

Cov(Ai'ui) = a‘2E(Ai'PiAi) = oEZE(A1'Ai)

where F1=Q+¢2P and ¢2=(a€2+Toa2)/062.

Proof.

A typical element of Ai'ui is Yit(eifiHd-£is) where t = O, 1,

2, -'°, T-2, and s>t. Then the typical element of Cov(Ai'ui)

= IE(A1'uiui'Ai') must be E(YitY1h(51,s+1'eie)(‘1,k+1'51k))'Where

ch, s>t, and k>h. By LEMMA 2,

E(Yityih(€i,s+l'€is) (€1,k+1’€1k) )

= E(Yityih) EE (€1,e+1"€1s) (€1,k+1‘€1k)]

Using this fact, we can show

E(Ai'uiui'Ai) = E[Ai'E(uiui')Ai] = ae2E[Ai'FiAi]

where? 66213 = E(uiui'). It is a well-known fact that

F1=a¢2(/Q+6>2P) where ¢2=(052+Toa2)/062; see Hausman and Taylor

[1981]. Therefore, we have

E(Ai'uiui'Ai) = aezE[Ai'Ai]. QED

To derive the GMM estimator, we note that

plim(1/N)Cov(A'u) plim(1/N)jg1Cov(Ai'ui)

N

plim(1/N)i§1E(Ai'uiui'Ai)
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, N
= 062-p11m(1/N)j;1E[A1'A1]

= o£2°plim(1/N)E(A'A)

a£2°plim(1/N)A'A

This shows that (A'A) could be used as a consistent estimator

of Cov(A'u). (Actually it must be 362(A'A) where 3:2 is a

consistent estimator of 062. However, 3‘2 would cancel and

therefore is irrelevant for the derivation of the GMM

estimator.) By minimizing

(u'AI (A'AI‘1(A'u> = {(y-6y-1) 'A} (A'AI'1{A' (r6121) 1.

we obtain the GMM estimator of 6, which is exactly identical

to the IV estimator given in (11.6).
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APPENDIX 3

From (111.6-1), we have (with i suppressed):

(A-B'l) E(You1)=E(You2)=E(You3)=' ’ ° ' =E(You-r-1)=E(You1-)

E(UZU3)=' ° ' ' =E(UZUT_1)=E(U2UT)

E (“T-2‘11-1) =3 (“Ir-2‘11)

This set of equations can be rewritten as follows:

(A.B-Z) E[Yo (112-111) ]=E[Yo(u3'u2) ]=' ’ ° ' 3 E(Yo(ur'uT-1)] =0

E[u1(u3-u2)]=°°°°= E[u1(uT-uT_1)] =0

E[“1-2(u1‘uT-1)]=°

Multiplying the equations in the first row of (A.B-2) by'6 and

adding the equations in the second row gives:

(LB-3) E(Y1(u3-u2) )=° ' '=E(Y1(uT-UT-1) )=0

The same procedure for the other equations generates all the

moment conditions given in (III.7-1).

Now, we can rewrite (111.6-2) as follows:

(A.B-4) E[u1(u2-u1)] = E[u2(u3-u2)] = - - - ' = E[uT_1(uT-u.r_1)]

These restrictions can be equally expressed by

(A.B-S) E[u1(u2-u1)-u2(u3-u2)] = E[u2(u3-u2)-u3(u4-u3)] =°'--

= EDIT-2(“T-1'u'r-2)‘u'r-1(“'r’u1-1)1 = 0

Since E[yo(u2-u1)]=E[y1(u3-u2)]=0 by (A.B-2) and (A.B-3),

E[u1(u2-u1)-u2(u3-u2)] + 6E[y0(u2-u1)] ‘ 6E[y1(u3-u2)]

g E[Y1(u2'u1)'Y2 (“3'U2H = 0

Similarly, we can show that E[yt(ut+1-ut)-yt+1(ut+2-ut+1)] = 0
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for any IStST-z.

Finally, (111.6-3) implies:

(A.B-6) E[(u2+u1)(u2-u1)] = E[(u3+u2)(u3-u2)] = ~°°°

= E[(uT+uT_1)(uT—ur_1)] = 0

Since 023=024=~-=02T and nl3=n14=---=nu by (111.6-1) and

(111.6-2),

Therefore,

E[ (1124-111) (‘12-‘11) +113 (112-111) +1.14 (Uz‘ul) + ° ‘ ' ° +uT(u2-u1)] = 0

E(fi(u2-u1)) = o

_ T

where u=(1/T)tE1ut. In essentially the same way, we can show

that all the restrictions in (III.7-3) are justified.
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APPENDIX C

The following lemmas and theorems will help to derive the

covariance matrix of Hi'ui under (SA).

LEMMA 3

All the assumptions in (SA) are satisfied. Then, (with i

suppressed)

E(YtYh(‘e+1"€e) (eh+1'6h) )=E(YtYh) 1“ (€e+1"€e) (5h+1"€h) )

where t=0,1,°'-,T-2, h=1,2,-°°,T-1, and t<s.

Proof.

If t<h, LEMMA 2 directly shows the result. Consider the case

where hst. Since s>t2h, 68+I-68 is independent of Y£Yh, and

E(es+1-ea)=0. If h+1=s, eh+1 is independent of ytyh and 5h is

independent of 63+I-68. If h+1<s, 5h+1'5h is independent of

58+1-es. Therefore, 5h+1"e can be decomposed in the same way

that LEMMA.1 describes. LEMMA 1 again applies and implies the

result. QED

LEMMA 3 directly implies the following theorem.

THEOREM 2

E(Ai‘uiui'Bli) = 062E(Ai'I‘iBli) = 05213011111).

The following lemma is helpful to investigate the form of

the covariance matrix of A1'“1“1'321-
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DNA 4

Under SA,

E[Ytg(es+l-es) (€k+1‘5k)] = E(ytE)E[(es+l-es) (‘k+1‘€k)1

_ '1'

where s>t, s,k=1,2,-°-,T-1, and 6:13:16“.

Proof.

Let ea+1=élet-(ea+1+ea); then E=(68+1+68)/T+e3+1/T. Therefore,

we have

(A.c-1)

E(ytz(€s+l-es) (‘k+1‘€k)] = E[Yt(es+l+€s) (63+1-es) (5k+1"€k) l/T

+ E[Ytee+1(‘a+1"e) (‘k+1"k) ”T

= a + b

Note that yt is independent of 55+1 and £8. Obviously,

E(yt)=0. If k>t, 5114-1“): is independent of yt. If k=t, ck”

is independent of yt, and ER is independent of

(63+1+6s)(es+1-€s)° If k<t, 5k+1'5k is independent of

(63+1+es)(es+1-es). That is, 5k+1“k can be decomposed in the

same way that LEMMA 1 assumes. Therefore, we have

(A.C-2) a E[Yt(€k+1'€k) ]E[ (63+1’53) (53+1+53) ]/T

= o

= E[Yt(€e+1+€e) /T]E[ (53+1'Ea) (€k+1€k)]

Furthermore, we can easily see that 53+1'ea is independent

of yt and es”, and that E[(ea+1-ea)]=0. If k>s+1 or k<s-1,

€k+l'6k is independent of €s+l-es' If k=s+1, 5k+1 is

independent of (53+1'ea) , and 6k is independent of yt and e3”.

1f k=s, 5k+1“k is independent of yteafl. Finally, if k=s-1,

€k+1 is independent of ytesfl, and GR is independent of
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(53+1"a)(€s+1"a)- Then LEMMA 1 applies and we have

(A.C-3) b = E(ytea+1/T)E[ (68+1-ea) (ek+1-ek)]

Substituting' (A.C-2) and (A.C-3) into (A.C-l) gives the

result. QED

LEMMA 5

E[Yta(‘e+1“a)(5k+1‘€k)] = E(yta)E[(es+l'es)(€k+l-€k)]'

for any s,t,k.

Proof.

a is independent of (63+1-63)(6k+I-€k) and E(a)=0. Note that

(A.C-4) yt = [6tyo+a(l+6+---+69'1)] + (et+6et_1+---+6°'1el).

The first term, [6tyo+a(1+6+--°+63'1)] is independent of

(59+1‘53)(5k+1‘5k)- The second term, (et+6et_1+~-+6°'lel) is

independent of a. Therefore, LEMMA 1 applies and implies the

result. QED

The following theorem shows the form of the covariance

matrix of Ai'ui and B2i'ui.

THEOREM 3

E(Ai'uiui'BZi) = 062E(Ai'ri321) = 0622(Ai'321).

Proof.

Ai'uiui'Bn has the typical element of ytfi(ua+1-u3)(uk+1-uk),

where t<s, which is identical to yt(a+E)(68+1-es)(ek+1-ek).

Then, LEMMA 4 and 5 imply

(A-C’S) E[ytfi(€s+l-Es)(€k+I-€k)] = ElYta(€s+1‘€s)(€k+1"k)3

+ E[Ytz(6s+l-€s)(ek+l-ek)]
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= E(yta)E[ (53+1'53) (€k+1"5k)]

+ E(YtEWE (es-+1-65) (‘k+1‘€k) 1

= E(Ytfi) E[ Warns) (uk-I-l'uk) 1 -

Using (A.C-5), we can easily show the result. QED

The following lemmas help us prove Theorem 4 which

describe the form of E(Bli'uiu1'311)-

LEMMAG

measures] E(ytzm(et.1-et)21+[E(e‘)-a.21

Proof .

E[Yt2(5t+1‘€t)2] = E(Ytzet-flz) 4" E(ytzetz)

E(yt2)E(€t+12) + E[(6Yt-1+a+6t)2€t2]

E(yé) E(5t+12)

+ E[{ (6yt_1+a) 2+6t2+2 (6yt_1+a) (age-J]

E(ytzmumz) + E[(6Yt-1+a)2€t2] + E(et‘)

E(Yt2)E(€t+12) + Euayt-1+a+et)21met2)

- E(et2)E(et2) + E(et4)

E(Yt2)E(€t+12) + E(Yt2)E(6t2) + [E(6t4)-0¢4]

E(yt2)E[(€t.1-6t)2] + [E(Et‘)-0¢‘]- QED

LEMMA7

E[Yth+h(5t+1‘5t) (et+h+1’5t+h)]

= E(Yth+h)E[(‘t+1'€t)(6t+h+1’€t+h)] + 064' 1‘21-

Proof.

(A'C'G) E[Ytyt+h(et+1"5t) (‘t+h+1'5t+h)]

= E[Yth+h(‘t+1"t)6t+h+1] ' E[Yth+h(€t+1'5t)et+h]
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'E[Yth+h ( €t+1'5t) €t+h]

= E(Ytyt+h€t€t+h) ' E(Ytyt+h€t+1et+h)

Note that

(A-C‘7) E(Ytyuh‘t‘uh)

= E (Ytet) E (Yt+h€t+h]

4

e
= a

(A.C-8) E(Yth+h€t+1€t+h)

= E(Yt{6hYt+a(1+6+- ° -+6h'l)+(€t+h+° ' ° +6h-16t+1)}€t+1€t+h]

= E[yt{6hyt+a(1+6+° ' ' +5h-1)}et+1et+h]

+ E[Yt(5t+h+° ° ' +611-1931) et-.+1€t:+h]

= E[Yt{5hYt+a(1+5+' ' ' +5h-1}]E(5t+16t+h)

= E[Yt{5hYt+a(1+5+' ' ' 6h-1)+(€t+h+° ° ‘ +6h_let+1) 1’]

'E(5t+1€t+h)

= E(Yth+h)E(€t+1€t+h)

= -E(ytyt+h) E[ (€t+1"€t) (€t+h+1'€t+h)]

Substituting (A.C-7) and (A.C’B) into (A°C'6) gives the

result. QED

We can combine LEMMA 6 and 7 into the following lemma.

LEMMA 8

EIYtYh(‘t-.+1"t) “nu-511)] = E(Ytyh)E[(€t+1‘€t) (‘h+1"h)1 + ath

where ath=E(e4)-ae4, if h=t; ath=ae4, elsewhere.

Now we can evaluate E(Bli'uiui'Bli).
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THEOREM 4

E(Bli'uiui'Bli) = a¢2E(Bli'FiB11)+(d+o¢4)J1

o¢2E(Bli'Bli)+(d+o¢2)J1

  

where

- 2 -1 0 a

-1 2 -1

J1 = 0 -1 2

0 0 -1

: : . 2 -1

- 0 0 0 -1 2 ~(T-2)x(T-2),

d = E(e4)-3oe4.

Proof.

A typical element of E(Bli'uiui'Bli) is given by

(A.C-9)

E[{Y£(ut+1‘ut)'Yt+1(ut+2‘“t+1)}{Yh(uh+1‘uh)‘Yh+1(“h+2'uh+1)}]

_-. E[{Yt(et+1'et)'Yt+1(6t+2-€t+1)}{yh(£h*1-6h)-yh+1(eh+2-eh+1) }]

E[YtYh(‘t+1'5t)(‘h+1’€h)]

" E[YtYh+1(5t+1‘€t)(‘h+2‘5h+1)]

" E[Yt+1yh(et+2'et+1) (€h+1'5h)]

'* E[Yt+1yh+1(€t+2'et+1)(5h+2’€h+1)3

= E(Ytyh) El: (€t+1-£t) (6h+1-6h)]

E(YtYh+1)E[ (eta-6t) (€h+2“h+1) 1

E(yt+1yh)E[(€t+2-€t+1)(€h+l'5h)]

'+ E(yt+lyh+l)E[(€t+2-£t+l)(€h+2-€h+l)]

+ dth

= E(yiyh)E[(ut+1-ut)(uh+1-uh)]

’ E(YtYh+1)E[(“%+1’ut)(“n+2'“h+1)1

' E(Y£+1Yh)E[(“t+2'ut+1)(“n+1’“h)]

I E(Yt+lyh+l)E[(ut+2-ut+l)(uh+2-uh+l)]
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+ dth

where dth = ath-at’h+1-at+l'h+at+l'n+1. The last equality comes

from LEMMA 8. Then, we can easily show

(A.C-lO) dth = 2[E(e4)-2a£4], if h=t

-[E(e4)-2064], if h=t+1 or h=t-1

0, if h>t+1 or h<t-1.

(A.C-9) and (A.C-10) imply the result. QED

In order to derive the covariance matrix of B11 and B21,

we need the following lemmas.

LEMMA9

E[€hz(6h+l-€h)(€k+l-€k)] = E(ehE)E[(6h+l-eh)(6k+1-€k)] +ghk'

where ghk = [E(e4)-3062]/T, if k=h

-[E(e4)-3062]/T, if k=h-1

0, otherwise.

Proof.

If k>h+1 or k<h-1,

(A.C-ll)

E[ehz(eh+l'€h)(ek+l'ek)]

r

E[€h{€h+1+‘n+€k+1+€k+g§1‘€h+1‘€h'€k+1'ek)}(€h+1‘€h)(€k+1'€k)]/T

E[€h(€h+1+€h+€k+l+€k)(éh+1'€h)(6k+1-€k)]/T

+ E[6h(é§1-£h+l'€h-ek+l-€k)(€h+1'€h)(€k+l-ek)]/T

= E[5h(‘h+1+5h+‘k+1+€k)(‘h+1'€h)(€k+1‘€k)]/T

= E[5h(‘h+1+‘h)(‘n+1'5h)(‘k+1'€k)]/T

+ E[‘h(€k+1+‘k)(5h+1‘€h)(5k+1'5k)]/T

=0
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= E(ehE)E[(eh+1-eh)(ek+I-ek)].

If k=h+1,

(A.C-12)

E[€hz(€h+l'£h)(€k+l'€k)]

= E[€hz(€h+1"€h) (6h+2'€h+1)]

==Ef€h{5h+2+5h+1+eu+ggl’5h+2‘5h+1“5h)}(‘h+1‘5h)(‘h+2'€h+1)J/T

3 E[‘h(5h+2+€h+1+5h)(‘h+1"h)(‘h+2"h+1)]/T

'+ E[€h(é§1-6h+2-eh+l-eh)(€h+l-€h)(eh+2-6h+l)]/T

‘= E[5h(6h+2+eh+l+6h)(6h+1-6h)(€h+2-6h+1)]/T

= E[€h€h+2(€h+1'5h)(€h+2'€h+1)]/T

+ E[eheh+l(€h+l-€h)(6h+2-6h+1)]/T

+ Ef‘h2(5h+1'€h)(€h+2’€h+1)1/T

-E(€h2€h+22)/T + E(6h2€h+12)/T " E(6h26h+12)/T

_ _ 4
— a: /T

E(ehz)E[(6h+l-Eh)(€h+2'€h+l)]

= E(ehE)E[(eh+1-eh)(ek+1-ek)].

If k=h,

(A.C-13) E[ehz(eh+1-eh) (ek+1-ek) 1

= E[€hz(€h+1'eh)2]

= E[eh{5h+1+€h+( til-611+1’6h) } (6h+1-6h)2] /'r

= E[5h(‘h+1+€h)(‘h+1’€h)21/T

'+ E[€h(é§1-eh+l'eh)(eh+1-eh)2]/T

= E[5h(5h+1+5h)(€h+1’€h)2]/T

= E[5h€h+1(5h+1'5h)2]/T

+ E[eh2(eh+1-eh)2]/T

= -2E(eh26h+12)/T + E(ehzehflzn'r + E(eh4)/T

= E(e4)/T - 0‘4/T
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= E(ehE)E[(6h+1-eh)2] + [E(e4) - 3a£4J/T

= E(ehEIEIIeh.1-eh>(ek.1-ek)1 + tEIe‘) - 30.41/T.

If k=h-1,

(A.c-14)

EtehEIeh.1-eh)<ek.1-ek)1

‘= E[€h{€h+l+6h+£h-I+(£§1'€h+1-5h-eh-l)}(€h+l-€h)(eh-eh-l)]/T

= E[€n(‘h+1+‘h+‘h—1)(€h+1‘€h)(5h'€h-1)]/T

r

'+ E[€h(éal'eh+1'eh'eh-l)(€h+l-€h)(£h'£h-l)]/T

E[€h(5h+1+€h+5h-1)(€h+1'5h)(€h'5h-1)1/T

E[eh6h+l(eh+l-6h)(eh-eh-l)]/T

+ E[eh2(eh+1-eh)(eh-eh,1)]/T

+ E[€h€h-1(€h+1'5h)(Eh’eh-1)]/T

E(ehzehflzn'r - E(eh4) + E(eh2£h_12)/T

= -[E(64)-Zo£4]/T

= E(ehEIELIeh.1-eh)(eh-eh-1)1 - [E(e‘I-sa.‘J/T

This completes the proof. QED

LEMMA 10

EIYtE(‘t+1’5t)(€k+1’€k)] = E(YtE)E[(et+l-6t)(€k+l-6k)] + ghkl

where ghk = [E(e4)-3062]/T, if k=h

-[E(e4)-3o£2]/T, if k=h-1

0, otherwise.

Proof.

(A.C-15) E[y£Z(et+1-et)(ek+l-ek)]

= 6E(Yt-lz(et+l-€t)(€k+l-€k)]

+ E[(a?)(6t+1-€t)(6k+1-6k)]

+ El: (51:2) (€t+1-€t) (5k+1-6k)]
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Therefore, applying LEMMA 4,5, and 9 gives the result.

The following theorem describes the form of

E(Bii'uiui'321)-

THEOREM 5

032(311'321) +(1/T)d- J2

where

r 2 -1 0 ~

-1 2 -1

J2 = 0 -1 2

0 0 -1

: : : 2 -1 0

b 0 0 0 -1 2 -1 4
  
(T-1)><(‘T-2) .

d = E(e4)-3oe4.

Proof.

A typical element of E(Bn'uiui'Bu) is given by:

0’“ (3'15) E[{Yt(“t+1'ut) ‘Yt+1(ut+2’ut+1) }a(uk+1'uk) 1

E[{Yt(‘t+1'€t) ”Yt+1(€t+2’et+1) } (0+2) (6k+1-6k)]

EtytIa+E> (em-ct) (em-em

' E[Yt+1(a+z)(€t+2'5t+1)(€k+1‘5k)]

By LEMMA 5 and 10, we have

(A.c-17) E(yt(a+2) (eta-ct) (€k+1-€k)]

= EEYt(a+3)]E[(€t+1-6t)(ska-61.)] + g...

(A.C-18) E[yt+1(a+2) (et+2-et+1) (ek+1-ek) 1

= ElYt+1(a+z)]E[(5t+2'5t+1) (€k+1'5k)] + gt+l,k

Substituting (A.C-17) and (A.C-18) gives

(A- (3'19) El: {Yt(ut+1'ut) 'Yt+1(ut+2'ut+1) }E(uk+1-uk) ]
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= Etyt(a+3) ]E[(6t.1-6t) (5k+1'€k) 1

' E(Yf+1(a+z)]E[(5t+2'6t+1)(5k+1'5k)]

+ btk

= E(ytfi)E[(ut+l-ut)(uk+l_uk)]

' E(Yt+1G)E[ (ut+2'ut+1) (uk+1-uk) ]

+ btk

where btk=gtk-gt+1'k. We can easily show that

(A.C-20) btk== (2/T)d, if k=t

-(1/T)d, if k=t+1 or k=t-1

0, otherwise.

(A.C-19) and (A.C-20) imply the result. QED

the following lemmas help us derive the covariance matrix

Of Bzi‘Uie

LEmflflk 11

E[22(et+1—et)2] E(32)E[(et+1—et)2] + 2[E(e4)-3a¢4]/T2.

Proof.

'2 2 2
E[e (6t+1 +2€t+16t+6t )]E[Ez(5t+1'€t)2]

E(Ezet+12) - 23(Ezet+let) + E(Eetz)

[E(e4)+(T-1)064-4064+E(e4)+(T-1)et4]/T2

2052/1 + 2[E(e4)-3o£4]/T2

E(32)E[(et+1-et)2] + 2[E(e4)-3ae4]/T2 QED

LEMMA.12

E[22(Et+l-€t)(€t+2-et+l)] ==:E(EZ)E[(€t+l-et)(€t+2-€t+l)]

- [E(e4)-3oe4]/T2.
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Proof.

E[22(et+1'et)(‘t+2'5t+1)]

E-z +E-2 -E-z 2_E-2
a (5 6t:+16t~I-2) (e 6feta) (e 6t+1 ) (6 stat-+2)

= [2064 +2oe4-E(e4)-(T-1)ae4-2064]/T2

_ 4 _ 4 _ 4 2
- -at /T [E(e ) 306 ]/T

= E(PIEuem-et)(em-emu - [E(e‘I-Ba.‘J/T2 QED

LEMMA 13

BIZEZ (€t+l-€t) (et+j+1-6t+j)] = E(Ez) El: (5t+1'5t) (et+j+1'€t+j) J r 3°22 -

Proof.

E[Ez(‘t+1"t)(5t+j+1'€t+j)]

= E(Zzet+let+j+1) + E(Ezetet+j) - E(Ezet+1et+j) - E(Ezetet+j+1)

= [2064 +Zae4-Zae4-20541/T2

= 0

E(22)E[(£t+l-et)(€t+j+1-€t+j)] QEII

Now we can derive the covariance matrix of BZi'ui.

THEOREM 6

./

  

where

- 2 -1 0 1

-1 2 -1

J3 = 0 -1 2

0 0 -1

: : : 2 -1

- 0 0 0 -1 2 J(T-1)x(T-1),
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Proof.

A typical element of E(BZi'uiui'Bu) takes the form of

(A.c-21) E[32(ut+1-ut)(uk+1-uk)] = E[(a+3)2(et+1-et)(ek+1-ek)]

= m2 (eel-ct) (eke-ck) I

+ 2E[a€(et+1-6t) (ska-61.)]

'+ E[22(€t+1-6t)(ek+l-6k)]

= EIaZIEI (eel-st) (em-ck) I

+ E[Ez(et+1-et) (€k+1"k) I

By LEMMA 11,12, and 13, we have

(A.c—22)

E[22(5t+1'5t) (6k+1'€k)] = E(22)E[(5t+1'5t) (6k+1_€k)] 1' at);

where

dtk = 2d, if k=t

-d, if k=t+1 or k=t-1

0, otherwise.

Substituting (A.C-22) in (A.C-21) gives

(A.c-23)

E[Gz(ut+l'ut)(uk+l'uk)] = E[(a+z)2]E[(€t+l'€t)(ek+l-ek)]+dtk

= E(62)E[(ut+1'ut) (um-uh) 1w...-

(A.C-23) implies the result. QED

Since H=[A B1 B2] , and H1=[A1 B11 B21], Theorem 1-6 can be

used to derive the covariance matrix of H'u.

(A.C-24) (1/N)Cov(H'u) (1/N)E(H'uu'H)

N

N 2 *
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2 N ' 2 *

ae (1/N) iE‘1E(Hi Hi) + 05 J

062(l/N)E(H'H) + ag2J*

where

o o l o

J* = o (d/a:+d§)J1 (1/T)(d/o:)J2

0 (1m (ca/aim, (1/T2) (d/afin3

If e is normally distributed, d=0. Therefore, under normality

of e,

.*=[

where J=a¢52J1 .

C
O
O

O
Q
O

C
O
O

I
_
_
J



146

APPENDIX D

Here, I show the explicit forms of $1 and #2 given in

(IV.16) and (IV.17), respectively. The e's are assumed to be

normally distributed. Then observe

N

(A.D-l) plim(1/N)H'H p1im(1/N)1§1H1'Hi

N

= plim(1/N) 21E(H1'Hi)

1.:

2

2 -2

2yio 2Yioui

i=1

N

= plim(1/N) E E[ _ _

2

[ 00 00a ]

= 2 2 2
o aa+a€/2
0a

(A.D-2) plim(1/N)H'y_f plim(1/N) g E
Yio(Y11‘Yio’

i=1

“i‘Yii'Yio’

2
= [ (6-1)oo+00a ]

2 2

(6 1)00a+0a+ae/2

(A.D-3) plim(1/N)D'y_1= plim(1/N) g E[ 0 ]

1:1 (Yio+yi1)(‘iz"i1)

_ o

[ -o§/2 ]

Using (A.D-1), (A.D-2), and (A.D-3), we have

(A.D-4) plim(1/N)y_1'D(H'H)’1H'y_1 = -aez/4

(A.D-S) plim(1/N)y_1'D(H'H)'1D'y_1

= mews/{of(1-po.’-I+o.2/2I

where p0a=00a/(aoaa). Substituting (A.D-4) and (A.D—S) into

(IV.16) gives
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(A.D-6)

t1 = plimII/NIy;1'Pay-I+(1/8)0.4/{oa2(1-p0a2)+o.2/2}-(1/2)a.2

Also, using (A.D—1), (A.D-2), and (A.D-3), we can show

(A.D-7) plim(1/N)y;1'MAB2 = plim(1/N)y;1'B2

- plim(1/N)y_1A(A'A)'1A'82

(002002-00a2)/002 + 062/2

= aa2(1-p0a2) + 052/2

(A.D-8) p1im(1/N)BZ'MABZ plim(l/N)BZ'BZ

- p11m(1/N)132'A(A'A)‘1A'B2

= 2{ (oa2002-00a2) #50244162 /2}

= 2[oa2(1-p0a2)+a£2/2]

Therefore,

(A.D-9) plim(1/N)y_1'MABz(BZ'MAB2)'1BZ'MAy_1

= (1/2) { (oazaoz-aof) /aoz+ae2/2}

= (1/2)[0a2(1-90a2)+0.2/2]

Since plim(1/N)y;1'ny_1== plim(1/N)y_1'PHy_1

-plim(1/N)y_1‘MAB2 (B2 'MABZ) ‘132 'MAy_1 ,

(A.D-10) t2 = plim(1/N)y;1'PAy_1 = plim(1/N)y_1'PHy_1

-(1/2)[0a2(1-90a2)+0.2/2]
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APPENDIX E

Here, we show the efficiency gain of as defined in (v.16)

over 8, in (v.13). Consider the inverse of the asymptotic

covariance matrix of 81,; W'F(F'I‘F)'1F'W. For simplicity , let

E=[w** QVX].

E' 2 E'E 0

(A.E-l) F'FF = [ R'Pv ](Qv+¢ Pv)(E PVR) = [ o ¢2R,PVR ]

[ E'y_1 E'X E'Z ]
EI

(A.E-Z) F'W = [ ](y_1 x Z) = . ' '

R va_1 R va R pvzI
R PV

Using (A.E-l) and (A.E-2), some straightforward algebra shows

I I

_1 y-1 PEy-l y-1 PEX °

(A.E-3) W'F(F'FF) F'W = X'PEy X'PEX o

o o o

_ I I I .

y-1 PPvRy-l Y—i PPVRX Y—i ppvRz

2 I I I+ e x PPvRy x PPva x vaRz

Z'P y Z'P x 2'? z
PvR PVR PvR .  

Now, consider the inverse of the asymptotic covariance

matrix of as; W'S(S'FS)'18'W

AI A'A A'E o

(A.E-4) SIrs= E' (Qv+¢2Pv)(A E F)= E'A E'E o

RIPv o o ¢2R'PVR

A' AIy_1 A'X o

(A.E-S) S'W = E' (y_1 x 2) = E'y E'X o

I I I IR pv R va_1 R pvx R pvz

Then, after some matrix operations, we have
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(A.E-S) WIS(SIrS)’1SIw

  

y_1'A y_1'E AIA A'E ’ AIy_1 A'x : o
I

= [ [ x'A x'E ][E'A E'E] [E'y_1 E'x] : 0 ]

""""""""'6"""""""""T"6

- I I I .

y-1 PP RY-i y-1 PP RX Y—i PP Rz

2 v IP vx X'P vZ+ ¢ X P y_ X

PvR 1 PVR PVR

ZIP y_ ZIP x ZIP Z
PvR 1 PVR PvR .

Note that

-1
A'A A'E 1 _1 _1

(A.E-7) [ ] = [ ](A'MEA) (1, -A'E(E'E) )

E'A E'E -(EIE)’1EIA

o o

+ [ o (1:I1:)'1 ]

A'y_1 A'x]

'1

(A'E-8) (I! “A'E(E'E) )[ I I
E y_1 E X

—_- I I
(A MEy_1, A MEX)

= (A'MEY—ll 0)

Therefore,

y_1'A y_1'E A'A A'E '1 AIy_1 A'x

(A'E'9) [ X'A X'E ][ E'A E'E ] [ E'y_1 E'X ]

y_1'A y_1'E 0 0 A'y_1 A'x

-1
[ X'A A'E ][ 0 E(E'E) ][ E'y_1 E'X ]

Y 'M

+[ E“o ]A'MEA(A'MEy_1, 0)

= [ y-1'PEY-1 Y—i'P X ] + [ K11 ° ]
I Ix PEy_1 x PEX o o

where Kn=y_1IMEA(AIMEA)‘1AIMEy-1. Substituting (A.E-9) into
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(A.E-6) gives

(A.E-lO) WIS(SIPS)’1SIw = W'F(F'I‘F)'1F'W + I<1

where



151

APPENDIX E

If the e's are normally distributed, the inverse of the

asymptotic covariance matrix of 8L is given by:

(A.F-1)‘WI(L+LD)¢‘1(L+LD)IW

* -1
I I I I I

Y_1 (H+D) y_1 E y_1 PVR H H+J H E o

= X'(H+D) X'E X'PVR E'H E'E o

2
I g

'

z D 0 Z PVR o o e R PvR

(H+D)y_1 (H+D)'X (H+D)'X

E'y_1 E'X 0

I I I
R P y__1 R PvX R Pvz

X'(H+D) X'E E'H E'E

----------------------------:-------------------I-
( Z,D o )[H'H+J* H'E] 1[(H+D)y_1 (H+D)'x]

E'H E'E E'y_1 E'x

”[y_1'(H+D) Y-1.E] [H'H+J* H'E] -1[(H+D)y_1 (H+D) 'X]

  

  

I

I

I

-§-_§li§in----Zl§.....Elfi------l-_------9---

' H'H+J H'E D'z

I< Z'D 0 )[ E'H E'E J E o

I .

y-1 PP RY-1 Y—l PPVRX y--1 PPVBZ

2
+ ¢ x P y_ X'P x X'P z

PvB 1 Pv PvB

ZIP y ZIP x ZIP Z
PvB 1 PVB PvB _

Note that

HIH+J* H'E "1 1 * _1

(A.F-2)[ ] = [ _1 ](H'P H+J )(1 -HE(E'E) )

E'H E'E -E(E'E) H

I '1 ]

+

o (E'E)
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(H+D)y_1 (H+D)'X

(A.F-3) ( 1 -HIE(EIE)'1 )[

_1 D'z

(A.F-4) ( I -H'E(E'E) )[ ] = D'z

0

Substituting (A.F-2), (A.F-3), and (A.F-4) into (A.F-S) gives

(A.F-S) WI(L+LD)¢'1(L+LD)IW

= W'F(F'F)'1F'W

'M H 'D
y-l E y--1 *

+ X'D (H'MEH+J )(H'MEy +DIy_1 D'X D'Z)

Z'D

= W'F(F'F)'1F'W

* I: It

I I I I

y_l MEA y_1 ME(B +D ) A MBA A MEB

+ 0 X'D*

* * * * 2

0 Z'D B 'M A B 'M B +0

J**

E E e

A'M y_1 0

° * e

[(3 +0 )‘MEy_1 D*Ix D*IZ ]

where B*=(B1 B2); D*=(0 D2);

J 0
J** = 02 [ ]

0 0

Note that

I:

I I

A MEA A MEB ]

(A F.6)I:B*'M 3*IM B*+ 2J**
EA “e

-1

E

[(A'MEAY-1 A'MEB*] *

(B

-I

' * ** * -1

— M B +J -B 'MEA(A'MEA) A'M 3*
E E )



153

' . _ _ (A'MEA)-1 o

°(B* MEA(A MBA) 1 1) + [ 0 o ]

= K3 . [ “a“ Z ]

Substitute (A.F-6) into (A.F-S); then, we have

(A.F-7) W'(L+LD)C'1(L+LD) Iw = W'F(F'I"F)'1F'W + R1 + K2

WIS(SIrS)’1SIw + K2

where

I): *

y_1'MEA y_1'ME(B +D ) A'M y 0 0

*

K = 0 X'D K

2 at 3 * * * *

0 Z'D (B +D )'MEy_1 D 'x D 'z

which is a positive semidefinite matrix. This shows that 8L

is more efficient than 83.
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