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ABSTRACI‘

MEASUREMENTS OF FLOWS DURING

SCAVENGING IN A TWO-STROKE ENGINE

By

H. Sean Hilbert

LIPA (Laser Induced Photochemical Anemometry) was used to measure velocities and

velocity gradients over a chosen plane in a motored two-stroke engine during scavenging.

The LIPA technique consists of tracking a phosphorescing grid which was created by

laser lines directed into the flow. The grid energized a Seed chemical that was premixed

in the carrier gas. The seed chemical used consists of a mixture of phosphorescent gases

with nitrogen as the carrier. In each plane forty-four simultaneous points of data were

taken with an approximate grid mesh size of 3mm x 3mm. These measurements were

taken over thirty consecutive cycles. By measuring the distance and direction each grid

intersection traveled and by knowing the time delay between each photograph, the two

velocity‘components in the grid plane, the turbulence intensities, the Reynolds stress, and

the vorticity were calculated.

Images were taken of grids formed in planes parallel to the piston crown in a single

cylinder 125cc loop scavenged engine. Averages over the area of interest and over the

ensemble of two-dimensional maps were used to look at mixing, cyclic variability, and

general flow phenomena.
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i — Measurement location index. .

j — Index for cycle number.

n —- Total number of measurement locations (grid intersections) within each data frame.

m— Total number of data frames.

< >s — Spatial mean in frame j.

< >c — Cyclic average at measurement location i.

I‘— Circulation.

(Dz— Vorticity component perpendicular to grid plane.

W, J7—The RMS turbulence intensities calculated with cyclically averaged

velocities.

“'rms’ V'rms -— Abbreviated versions of the above quantities.
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BDC -— Bottom Dead Center (Piston is in its lowest position).

SR —- Scavenging Ratio (= mass of air supplied/swept volume of cylinder).

SE -— Scavenging Efficiency (= mass of air trapped/mass of air supplied).
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CHAPTER 1

INTRODUCTION

It is widely recognized that scavenging of the two-stroke engine is the single largeSI

unknown in its design. From a researcher’s or designer's perspective this engine is very

complex. In the two-stroke engine the intake and exhaust processes are not separated.

Instead of a rising piston doing the work of pushing burnt gases out of the exhaust port,

as in a four-stroke engine, the two-stroke engine uses the incoming fresh charge to

accomplish this task. This coupling of the scavenging (ridding the engine of burnt gases)

and the intake processes makes designing critical engine parameters of a two-stroke very

difficult.

The complexity of the gas flows in a loop scavenged two—stroke engine can best be

illustrated with a step-by-step description of a single engine cycle; As the piston ascends

in its stroke the trapped contents of the cylinder are compressed and ignited. As the

piston moves upward it creates a vacuum in the crankcase. Into this vacuum is drawn a

fresh charge (or air in the case of a fuel injected engine). As the piston descends after

combustion, the crankcase is pressurized and the charge is forced out of the crankcase

through ports which transfer it to the combustion chamber. When this fresh charge

reaches the cylinder it comes in contact with exhaust gases from the previous engine

cycle. In a turbulent clash the incoming charge attempts to push the remaining exhaust

out of the cylinder and ready itself for combustion. The piston ascends and the cycle

starts over again. For a graphical explanation see Figure 1.1.

As noted, scavenging is accomplished with the use of the incoming charge, and this is a

very complicated fluid dynamic process. In theory the incoming gases are aimed in such

a way that they "loop" around the cylinder and force the burnt charge out of the exhaust



port. A theoretical loop scavenging process is illustrated in Figure 1.2. The output and

efficiency of any two-stroke engine are dependent on its scavenging behavior. In the case

of the loop scavenged two-stroke cycle spark ignited engine (the subject of this work) the

importance of the geometrical arrangement and design of the scavenging ports has long

been realized by engine designers and researchers alike. Work by Jante [25], Blair [1,5],

and Phatak [26] has substantiated this.

Over the years researchers have used various experimental techniques to study

scavenging processes and develop scavenging port systems. The experimental methods

used fall into two categories; namely (a) those that use firing engines as their basis, and

(b) those which are based on model or rig tests. A third ‘class of technique, not to be

included with experimental studies, is prediction of engine performance with the aid of

computer models. Examples of class (a) include the determination of overall scavenging

performance using cylinder gas pressure and temperature data as reported by Hashimoto

et. a1. [4], and using exhaust gas analysis to study short circuiting as published by Nuti

and Martorand [5]. The general approach in class (D) is to study the scavenging syStem in

isolation from the often variable gas dynamic and thermodynamic effects presented in an

actual firing engine. A classic example of this is the Jante method [25], whereby the

engine is motored at a constant RPM without the head in place, and "scavenging maps"

taken with a rake of pitot tubes placed above the engine parallel with the cylinder axis are

evaluated. This is a widely used method and has been shown by Blair and Kenny [1] to

be capable of ranking in terms of.best performance a group of engine cylinders which

differ only in the design of their scavenging port systems. One disadvantage of the Jante

method is that the results produced cannot be compared with theoretical isothermal

scavenging models such as the pure displacement and perfect mixing models as presented

by Hopkinson [6]. Another disadvantage is that, since the head is off, the information

gained can only be used for comparative purposes with other similar porting



configurations. More recently Ishihara et. a1. [12] have tried to extend the Jante

measurements to three dimensions without much success. A more contemporary example

of class (b) is the single cycle model approach first suggested by Hopkinson [6]. Recent

variations of this method presented by Sanborn and Roeder [7] and Blair et. a1. [2], have

shown that the results can be compared directly against the isothermal pure displacement

and perfect mixing curves. Sweeny et. al. [3] concluded that this method provides an

accurate and reliable method of assessing the absolute isothermal scavenging efficiency

vs. scavenging ratio characteristics of either model or real loop scavenged two-stroke

cylinders.

Computer modeling of the scavenging process may be divided into three categories

according to Sher [9]: one phase, multi-zone, and hydrodynamics models. One phase

models are in effect the upper bounds on the scavenging process. This category includes

the perfect displacement and perfect mixing models as mentioned before. As the names

imply, the perfect displacement model assumes all incoming fresh charge pushes out the 5

burnt gases without any mixing, momentum transfer, or heat transfer. The perfect mixing

model assumes that the fresh charge mixes instantly with the cylinder contents to form a

homogeneous mixture, and the excess of these contents escapes through the exhaust port.

In multi;zone models, the cylinder is divided into two, three or more zones. Visualization

of scavenging also conducted by Sher [10] revealed that the scavenging process may be

approximated to proceed in three principal phases; displacement, mixing, and short

circuiting (fresh charge exiting the exhaust port). Multi-zone models take into account

these phases to produce a higher level of authenticity.

The above thermodynamic models offer a high level of simplicity, however, the best

description of the scavenging process would be obtained if the complete set of the

differential equations which govern the process could be solved to yield the time

variation of the spatial profiles of the temperature, mixture composition, and flow field.



These equations consist of the conservation laws of momentum, mass, energy, and

species, and the present state of computational ability requires that models for transport

coefficients and boundary conditions be used. Modelers such as Sher [10] produce their

own set of equations and models for turbulence and heat uansfer, whereas Blair [28]

applied the PHOENICSprogram to a three dimensional simulation of a loop scavenged

two-stroke cylinder flow using the k-e model to describe turbulent transport. A similar,

geometrically more correct simulation also using the k-e model for turbulence was

conducted by B. Ahmadi-Befrui et. al. [12].

In-cylinder measurements of velocity and turbulence have been made on a limited basis;

mainly to formulate better boundary conditions for the above models. J.G. Smyth et. al.

[13] made cycle resolved Laser Doppler Anemometry (LDA) measurements of scavenge

port exit flow. These results showed that the efflux angles of flow from the ports was

substantially different from the designed direction of the port exit. Replacing the slug

flow boundary conditions used in Blair's PHOENICS model with these new findings

produced scavenging characteristic results very comparable with those which were

experimentally obtained. Although in-cylinder velocity measurements taken during

scavenging are scarce in the literature, there is much more information available on

cylinder. flows in ported engines near TDC. Fraser and Bracco [14] measured turbulent

length scales in a motored two-stroke engine and reported scales on the order of 3mm at

320° A'IDC. This is consistent with other reports by Reddy et. al. [27], Obokata et. al.

[15] and Hall and Bracco [16]. All of these measurements were recorded within thirty

degrees of 'IDC. Reddy's results were taken in a motored two-stroke with a hot-wire

probe mounted in place of the spark plug. At a motoring speed of 5OORPM he found

mean velocities during scavenging to be approximately 3m/sec in the region of the spark

plug. Turbulence intensities were on the order of lm/sec.

While important suides have been made in measuring the flow in an engine environment



using hot-wires and LDA, a greater need exists for more comprehensive information;

both to improve computer modeling and to directly affect engine design. The

shortcomings of single point data as a tool for the study of turbulence, combined with the

problem of the inability to resolve and separate out cyclic variability have highlighted the

need for new methods of measurement. Velocity data obtained at many points

simultaneously are very important if the overall fluid flow picture inside an engine is to

be found. therefore, the search for an accurate and efficient technique is pertinent. In

addition, a time history of these flow patterns as a cycle progresses would be of great

value. Methods such as particle tracking [17] and Particle Image Velocimetry (PIV) [18]

have been developed to enable researchers to look at instantaneous spatial data. Both

have important roles to play in engine diagnostics. However, the use of particles has

inherent drawbacks. A technique is sought that can provide adequate spatial information

and resolution, high temporal resolution, and simple data reduction. The technique of

Laser Induced Photochemical Anemometry (LIPA) has these features. It is used in a gas ‘

in this preliminary study of the scavenging motions in a two-stroke engine (schematically I

illustrated in Figure 1.2). The primary purpose of this work is to call attention to the

potential of the LIPA technique as a tool in engine diagnostics and design. It is also used

to show the extent of cyclic variability of turbulence quantities and to illustrate a

repeatable flow variance relevant to scavenging in a modified production engine.



CHAPTER 2

EXPERIMENTAL SETUP

2.1 Engine

A 1989 Kawasaki model KX-125 single cylinder 100p scavenged production engine was

chosen for these experiments. In stock form the engine's intake system consisted of a

32mm round bore carburetor mated to a manifold containing a pair of two-petal reeds.

The manifold coupled directly to the crankcase where the charge was subsequently fed

into the cylinder through five transfer ports (two main ports, two auxiliary ports, and a

boost port). Combustion was initiated by a spark. In production form the exhaust port

had automatic height adjustment controlled by engine speed, and four small auxiliary

exhaust ports aided by a Helmholtz resonating chamber. Products of combustion were

carried out of the engine through a tuned exhaust. Complete engine specifications are

given in Table 1, and exhaust pipe specifications are shown in Figure 2.1.

Table 1. Engine Specifications

 

 

 

 

 

Bore 56.0mm

Stroke 50.6mm

Displacement 124cc

Compression Ratio 8:1
 

 

Port Timing: (ATDC)

 

Exhaust Port Opens 90.50

Transfer Ports Open 1170

 

 

 

Boost Port Opens 117D

Exhaust Port Fully 1550

Open
    Transfers Fully Open BDC
 



Several slight modifications were made to the engine. An optical head was fabricated

which allowed access for photography with only a slight change in the curvature of the

internal geometry of the head, but no change in the compression ratio. The head was a

three part design consisting of two aluminum pieces sandwiching a clear acrylic window.

See Appendix F for an engineering drawing of the head and Figure 2.2 for a photograph.

One reason that the Kawasaki engine was chosen is that in production form, the

combustion chamber was of the small pancake variety coupled with a dished piston. This

allowed the transition to a flat optical head without much perturbation to the original

design. The clear acrylic head could easily be replaced with quartz for combustion

research at a later date.

To allow the laser grid to penetrate into the cylinder the back of one main transfer port

and the back of the boost port were replaced with one sixteenth inch thick quartz

windows. This alleviated the need to modify the cylinder walls, but at the same time

limited the studies to looking at scavenging near bottom dead center (BDC). This,

however, is an area of primary interest during scavenging. Further port modifications

included epoxying shut the auxiliary exhaust ports and setting the exhaust port height

adjustment permanently in the lowest position. This had no adverse affect on the flow

patterns in this experiment since at low RPM these ports were in this configuration

anyway.

A large flywheel, effectively doubling the rotating inertia of the stock engine, was

installed to allow smooth motoring of the test rig. Opposite the flywheel, on the Other

end of the crankshaft, was bolted a crank angle degree wheel used for setting up each

experiment.

Driving the engine was a ten horsepower eddy current motor with a variable clutch drive.

Coupled with the flywheel, this allowed effective motoring speeds to range from 50 RPM



to 1500 RPM using one to one gearing. The engine was driven with a drive shaft bolted

directly to the crank. On this shaft was also a takeoff pulley for the crank angle encoder.

A schematic of the complete experimental setup is shown in Figure 2.3.

2.2 Lamndflntisa

The optical setup illustrated in Figure 2.4 was used to create the grid of laser lines inside

the engine. The beam dividers were developed specifically for the task of transforming

one large beam into several small beams. This technique has the advantage of using all of

the incident laser energy. The design of the beam divider is a "stairstep" arrangement of

mirrors resembling an oversized diffraction grating. Whatever light does not reflect off

of the first mirror is passed onto the second mirror and so on until either all of the energy

in the beam is depleted or the mirrors come to an end. The mirrors on the beam dividers

were coated with aluminum for reflectance and silicon dioxide for durability. The coating

was optimized to an angle of incidence of 75 degrees from the vertical and a laser I

wavelength of 308nm. The bases were made of steel. Each stairstep is 0.100" wide and

was machined at a six degree angle. The mirrors were attached to the base with a slow

drying silicone RTV adhesive. This type of adhesive allowed each mirror to be

individually aimed for optimum performance.

Diffraction effects were investigated using a Helium-Neon laser. Figure 2.5 shows

diffraction patterns for three beams. The fringes are fairly weak because the corners of

the mirrors are not sharp. Practice has shown that none of the fringes are strong enough

to contaminate the grid pattern. This is partly due to the fringes being even weaker under

308nm incident light conditions compared to the 633nm conditions of Figure 2.5. Figure

2.6 is a closeup of these optics.

The remaining optics used to deliver the laser grid consisted of a 50:50 308nm .



dialectrically coated beam splitter, two 308nm dialectrically coated mirrors, and when

applicable, double convex quartz lenses that ranged in focal length from 50mm to

150mm. Note that these are not shown in the illustrations. When needed they were placed

between the beam dividers and the engine.

The laser used was a Lambda Physik LPX 220 pulsed excimer laser. The XeCl gas

charge produced ultra violet light at 308nm. The initial beam size was 5mm by 20mm,

and each pulse carried up to 220m] of energy over a period of time of 20ns.
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CHAPTER 3

EXPERIMENTAL PROCEDURE

3.1 Winn:

LIPA was previously conducted successfully in media such as water and kerosene

[19,20] where phosphorescent chemicals may be dissolved easily. Using this technique in

gas, however, posed some different challenges. One problem focused on particles

following the flow. If phosphorescing solids were introduced into the flow the problems

of flow conformity, static charge, seeding, and high fluid density would be present.

These were especially important to avoid in an engine environment where turbulence

length scales are small, and moving parts can cause static charge build-up. Another

problem was faced when phosphorescent gaseous mixtures were investigated One

drawback common to nearly all of these chemicals is that the phosphorescence was

quenched in the presence of oxygen. This was fairly easily addressed in a non-firing

engine by using nitrogen as the carrier gas. Therefore, the gas mixture of nitrogen and

biacetyl (2,3 Butanedione) was chosen for this experiment. The mixture density

compared to air was 1.1 at STP. The nitrogen and biacetyl mixture was created by

bubbling nitrogen through liquid biacetyl. Since biacetyl has a low vapor pressure

(0.06868 atrn) it evaporated very easily. A schematic~ of this process is shown in Figure

3.1.

During the 20ns that the laser was on, the biacetyl absorbed energy along the undistorted

grid lines. After the pulse was completed the phosphorescing grid of fluid deformed with

the fluid motions. Grid intersections are the key to this technique. Each intersection is a

fluid particle marker, and a temporal sequence of grid images is used to measure

velocities and velocity gradients over the plane of the girl. This data is also unbiased by
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out of plane motions as long as the grid stays in the depth of field of the camera lens, and

the lens size is similar to the measurement grid sin in order to eliminate any associated

parallax errors. At fl1.2 the depth of field of the lens used in this experiment was

approximately 1mm— more than enough to capture any out of plane grid motions. The

instantaneous velocity data was used to estimate vorticity, and averages over the area of

the measurement grid, as well as averages at any given point over many cycles, allowed

calculations of turbulence intensities and Reynolds stresses to be made. Low pass spatial

filtering of the velocity field could be used to find the swirl. The above grids were

recorded using a gated, intensified CID array video camera manufactured by ITT. Its

resolution was 512 X 760 pixels. The raw data, stored on 1/2 inch video tape, was then

downloaded into a Megavision 1024 XM image processor. The data consisted of two

types of grids: undistorted grids and distorted grids. The undistorted grids were captured

as the laser was firing, and the distorted grids were captured by the camera a specified

time delay after the laser fired. The data must not only be timed with the laser, but also

with the engine. This was accomplished with a crank angle encoder and accompanying

circuitry. A schematic of this circuitry is located in Appendix F. At the desired crank

angle a TI‘L pulse was sent to a Phillips PM 5712 pulse generator and simultaneously to

the laser firing switch. While the laser fired at the presence of this signal, the pulse

generator created another 'I'l‘L pulse that began a specified time delay later and lasted for

a specified duration. This second pulse was used to gate the camera. Its delay

corresponded with how much grid distortion was desired, and the duration of it

controlled how long the camera shutter stayed open. Typical delays and durations were

on the order of a fraction of a millisecond. Figure 3.2 is a time line illusu'ating this

process.

The purpose of the image processor was to aid in locating intersection points and

subsequently store them on disk. The algorithm used to find the velocities and other
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quantitative information centered around the "grid box." A four sided grid box is

illustrated in Figure 3.3. This figure also illustrates how two consecutive sets of data,

separated by a small time interval, were used to calculate the velocity at each corner.

Note that this is an average velocity over the distance that separates the two points. For

this reason the delay timing and the grid mesh size should be correlated so that the grid

does not deform more than ten percent of the length of any grid box (see Appendix C).

Higher order fluid mechanical quantities, like vorticity, may be calculated by

differencing along the length of a grid box. Using the results of this differencing,

vorticity may be calculated using the following equation.

(1)8 u

3
8
!
?

$
n
g

However, a preferable alternative [3] if one is only interested in vorticity, (that is well

suited to the type of data presented here) is calculating vorticity using the definition of

the circulation.

r=§i7od§ (2)

and Gauss' theorem to relate the surface integral to an area integral.
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r=jamr dA (3)

As illustrated in Figure 3.4, the quantity V-dS is estimated by taking the average of the

corner velocity components, multiplying that value by the direction cosine of the

included angle between the grid box side and the velocity vector and summing in a

counterclockwise direction.

Dividing I‘ by the area of the grid box results in the average vorticity at the centroid

of this grid box. Turbulence intensities and turbulence energy values, traditionally

included in hot wire and LDA Studies, were calculated using the average velocity at each

point across the cyclic ensemble (<Ui>c and <Vi>c). 'i‘ will be used to index the range

of points within the jth picture, i = 1, n, and 'j' to index the range of cycles covered, j = l,

m.

— 1 ‘3

u'm= u!2 =E§(uu-<Ui>c) (4)

V'm=\/V=t2 =i—itvs-wt >.) (5)

The average turbulence energy field was calculated from the previous quantities:

afiztlufiw? (6)
id
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Reynolds stresses (turbulent shear stresses) were calculated using two different

methods. The first method used the spatially averaged velocities in each frame, <Uj>s

and <Vj>s , and the second used the average velocities at each point across the cyclic

ensemble, <Ui>c and <Vi>c.

1 " .

< u'v‘>u.=;2(um— < U’. >.)(Va.,~" < V}. >.); 3: constant (7)

is]

< u'v'>¢i=—l—2(uM-<Ui >c)(vi’.-<Vi >6); i= constant (8)
. m M .

Comparing these values provides an excellent test of cyclic variability. Reynolds stress

was chosen as the quantity to conduct this test on because it contains the most valuable

information in the study of scavenging flows— momentum transport. If cyclic

variability was not present, the above values should be of the same order for this finite

sample, however, if cyclic variability was present then large differences could appear.

Note that the sample size of only thirty cycles is too small to be fully confident in the

results, however cyclic variability shown by other means later proves consistent with the

results presented using this technique. A grand ensemble average (across space and

cycles) was also computed for each flow variable (velocity, vorticity, Reynolds suess),

and these values were used to indicate the variation in the spatially averaged quantities.
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1 n to -.

Vassar. =n—m-2_:,§lvn| ' (9)

wzmmue =B—ifigg(mz)u (10)

u'V'.mmte=~n1;::(u'v‘)..j (11)

where Rd" is the velocity magnitude at a point in a cycle. The grand ensembles consisted

of (30 frames x 44 points/frame) = 1320 points. Finally, contour maps of the velocity

field for each individual frame were investigated, and the ensemble was split up into two '1

different groups: those corresponding to the ensemble average of the information, and a

subset containing significantly different flow patterns. This selection of deviant flow

pattems is an entirely subjective exercise, but its purpose was to uncover phenomena that

would be averaged out by conventional measurement techniques.

3-2 mm

For the data sets presented here an overall measurement area of approximately 19mm x

18mm was used. Contained in this area were thirty grid boxes of average size 3.3mm x

3.3mm. The largest grid box was approximately 3.8mm x 4.0mm and the smallest 2.6mm

x 3.0mm. The size differences in the grid box stem from the divergence of the incoming
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laser beams. In order to cover as much area inside the cylinder as possible while keeping

window size small, the grid lines were focused down and allowed to diverge inside the

engine. This grid scale proved to be a very good size to work with in this experiment.

While the smallest scales of turbulence are not measured (the grid mesh size is on the

order of one integral scale [14]) the scales of motion important to studying scavenging,

which range in size from the integral scale to scales proportional to the geometric

boundaries of the engine were measured easily. Smaller scales would be of more interest

only in studies nearer to TDC where combustion is important. A photograph of four raw

data frames showing the grid line intersections can be seen in Figure 3.5.

The thickness of the grid plane was of the same order as the width of each beam (on

average 0.55mm). The grid plane was located 4mm above the crown of the piston when

it was at bottom dead Center. This corresponded to 4mm above the lower edge of the

transfer ports (the average height of the ports is 11mm), or just below the center line of

the port Openings. All data were taken when the piston was at bottom dead center. The

camera was placed above the engine looking down parallel to the axis of the cylinder.

The delay between laser firing and shutter Opening was set at 0.14ms, and each image

was captured on a single video frame. The upper engine speed for capturing a frame

every cycle is 1800RPM (current video framing rate limitation). At higher speeds,

circuitry could be developed which would only allow every second or third cycle to be

recorded.

The estimated biacetyl concentration in nitrogen was 5%. This mixture was delivered to

the engine at the rate of 310cm3/sec at 150RPM. This translates into a theoretical

scavenging ratio of 0.8. The mixture was delivered to the engine passing through the

Stock carburetor, and the throttle was held 100% open.
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CHAPTER 4

RESULTS

4.1 ISQREM

Cyclically averaged fields of velocity, vorticity and Reynolds stress, averaged over 30

cycles, are shown in Figure 4.1. The schematic on the right hand side of the page shows

the orientation of the measurement grid with respect to engine geometry. The velocity

field shows flow from the transfer ports meeting at the center of the measurement region

and turning toward and away from the boost port. This sets up a stagnation region just

below the center line of the transfer ports. The flow toWard the back of the cylinder from

the stagnation region could be either returning to the boost port, or it could be flowing

back and up the rear wall of the cylinder. These cyclic averaged velocities ranged in

magnitude from 0.2 to 3.7 m/sec with an average value of 3.2m/sec, whereas

instantaneous velocities ranged from 0.05 to llm/sec. The vorticity map indicates that

most of the large vortical motions and large gradients of vorticity are located around the

periphery of the stagnation region. Vorticity magnitudes range from -1008 to +1085/sec,

and the majority of the vorticity is grouped into three large vorticies. Examination of the

Reynolds stress contours indicates four local regions of high Reynolds stress with values

ranging from -3.8 to +4 m2/sec2. These values, normalized with the grand ensemble

velocity, are an order of magnitude larger than expected from plane shear flows such as

turbulent jets [21].

The cyclically averaged turbulence intensity and turbulence energy fields are illustrated

in Figure 4.2. The average value of “'rms is 2.35m/sec and it ranges from 0.94m/sec to

4.10m/sec. Nate the large concentration of “'rms in the center of the cylinder where the
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main transfer port jets collide. The V'rms mean is 2.69m/sec and it ranges from 1.47m/sec

to 4.62m/sec. Turbulence kinetic energy, qus’ ranges from 2.61m/sec to 4.7lm/sec and

its average is 3.70m/sec. Cyclic variability is illustrated by the data of both Figure 4.3

and Figure 4.4. Figure 4.3 shows how the average magnitude of each quantity varies with

respect to its grand ensemble average. Deviations from the grand ensemble in the total

velocity (3.2m/sec) range from -.67 to +1.1 m/sec. Likewise, the vorticity deviated from

-400 to +480/sec about its grand ensemble average of 90.8/sec, and the Reynolds suesses

deviated from -4 to +3m2/sec2 about its grand ensemble average of 0.063m2/sec2.

Comparing these results to Figure 4.4 clearly illustrates that at BDC this engine's velocity

field exhibits large variations from cycle to cycle. Figure 4.4 shows three velocity maps

taken from consecutive cycles. The large changes, including complete reversals in

direction, graphically illustrate the reasons for the variation indicated in Figure 4.1. The

phenomena in Figure 4.4 is investigated further in Figure 4.5 where the data ensemble

has been separated into three groups. Figure 4.5a is the entire cyclically averaged

velocity field, Figure 4.5b is a subset which contains velocity fields that are similar to the.

cyclic mean, and 4.5c is an average of velocity fields which deviated in some obvious

manner. The ensemble of Figure 4.5c consists of approximately 20% of the data frames,

and it shows a distinct looping of the flow back toward one of the transfer ports. This

phenomena could possibly be evidence of a wake caused by the transfer port partition.
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CHAPTER 5

DISCUSSION

5.1 Enainelnxestiaatinn

The existence of a stagnation region and of the flow back toward the transfer ports are

phenomena that are deleterious to good scavenging. The obvious oscillation of the flow,

as evidenced by the switching position of the stagnation region in the ensemble subsets

provides the kind of insight that may prove useful in designs for improved scavenging.

Also, the use of Reynolds stress data to measure regions of high momentum transport has

proven useful. Figure 4.2 explains why looking at a Reynolds stress map is so important.

Regions of high intensity and regions of large gradients in 4.2a,b and c all show up as

high regions of Reynolds stress in Figure 4.1c. Because Reynolds stress is the best

indicator of momentum transport, the plots of “'rms» V'rms and ‘lrms are not as useful for

studying scavenging flows. What is not visible by looking at intensities or energy levels

alone is the non-connectivity of momentum transport in certain regions of the flow. The

fat thatthere are centralized areas of high transport separated by areas of low transport

over the region indicates that there is no correlation between the transport in these

regions.

The velocity fluctuation data used to calculate turbulence energy and Reynolds stress

data was derived from a classical Reynolds decomposition as presented in Chapter 3.

While the periodic nature of engine flows suggests that this may be done, there are still

components to the fluctuation that are never filtered out using this technique. In an

internal combustion engine it is generally accepted that the bulk velocity changes from

cycle to cycle, therefore, the fluctuations automatically have at least two conuibuting
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sources; fluctuations in the bulk velocity and the turbulence. This is precisely the reason

why an attempt was made to learn more about the nature and size of so called cyclic

variations through Reynolds stresses based on spatial as well as cyclic averages. Another

consideration should also be studied following this same logic. If enough cycles of data

were taken so that certain statistical patterns surfaced, then it might be concluded that

these overlaying events should be included in the decomposition of the flow — much

like would be done in the flow behind a propeller where an underlying sinusoidal profile

must be filtered out so that it is not included in the turbulence intensity measurements.

The size of the grid mesh also is very important to what kind of information is derived

from LIPA measurements. The integral scales of motion for an engine near TDC have

been universally measured to be on the order of 3mm [14]. Near BDC the integral scale

should be somewhat smaller because of the great energy of the issuing scavenging port

jets. If the microscales of the turbulence are then another order of magnitude smaller, that

would dictate that the grid mesh size be considerably less than 1mm square if all of the

details of the flow are desired. However, it is somewhat debatable if that much detail is

important for the bulk of scavenging measurements. Imperative in this type of

scavenging experiment is the acquisition of data which represents the motions

responsible for moving quantities to fluid toward the exhaust port. Scales of this nature

range from integral scales to scales on the order of the cylinder size. This is not to say

that measurement of smaller scales would not be important. Experiments which looked at

detailed mixing along the scavenging front would require an appropriately smaller grid

size than an experiment designed to look at bulk scavenging flows.
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5.2 lmltmxements and Elmmgm“ I' [II' E .

5.2.1W

The simplistic biacetyl delivery system shown in Figure 3.1 was effective for initial

experiments such as these, but it should be improved on. Its main drawbacks were

uneven delivery and unknown concentration. Figure 5.1 shows a system that could solve

both of these problems.

Biacetyl use could be measured very accurately with a typical automotive fuel delivery

system as shown in Figure 5.1. Concentration could also be monitored, and the use of a

heated evaporation plate could improve mixing and concentration gradients of the

nitrogen - biacetyl combination as it entered the engine.

522 Lasenflrirlfienmtinn

The current use of beam dividers to form the laser grid has one main advantage— all of

the incident light is used to create the grid Another method of creating laser lines is

throughthe use of a diffraction grating. This idea was dismissed in the past because a

portion of the incident laser beam is completely blocked, but it should be investigated

again because of recent improvements in lasers and diffraction grating manufacturing

techniques. Today, lasers are powerful enough to afford some losses, and diffraction

gratings are much more accurately cut.

Gratings have a large advantage over beam dividers because beam widths and spacing

can be adjusted easily, they are relatively cheap, and they take up considerably less

space. The possibility also exists for much smaller and more powerful grid lines.

Gratings use the properties of light to create a grid rather than forcing the light into a
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desired shape as with beam dividers. The process is cheaper, easier, and more space

efficient.

Another technique that could prove especially useful in engine environments for

introducing the laser grid is the use of fiber optics. A group of fibers can be bundled on

one end to allow coupling of the laser. After the bundle fibers split off and are routed

through the cylinder wall in such a fashion that a grid is created. Lenses on the end of

each fiber optic would create collimated beams of light.

The use of fiber optics to deliver the grid would eliminate even the small changes made

here in the geometry of the production engine. Actually an attempt to use fibers was

initially made, but further development time is needed to refine this approach. The use of

fiber Optics may in the long run prove to be one of the most valuable aspects of the

technique.
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CHAPTER 6

CONCLUSIONS

6.1 Engine

- About 20% of the time there appears an unsteady eddy that travels in and out of

the field of view. This looping of the flow back toward the transfer ports appears to be

created by the transfer port partition, and an unfavorable pressure gradient from the

crankcase.

0 On this level (very near the piston crown) flow. near the boost port is entrained

backward toward the port. Since the boost port jet is aimed upward it was assumed that

this cylinder flow was being entrained back and up the wall of the cylinder.

° The cyclic variability near BDC in a small two-stroke is very significant as can be

seen by Figures 4.3 and 4.4.

' The correlation between spatial averages of Reynolds stress and vorticity plotted

from cycle to cycle (Figure (4.3)) suggests the importance of vortical motions in

momentum transport and particularly in the mixing that is occurring.

° On average, the velocity vector field picture for the engine looks as one would

predict, but the individual frames are very different.

° The regions of high Reynolds stress along the meeting axis of the transfer port

jets indicates much momentum transfer (this infers mixing). LIPA could be used here as

a design tool to tune the amount of exhaust gas dilution and create better scavenging

fronts.
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. <u'v'>c was an order of magnitude greater than <u'v'>s on average. This also

indicates large cyclic variability.

- It is possible that the very large variations found in this experiment are associated

with differences to be expected between motored and fired engines. The lack of high

pressure in the cylinder as the exhaust port is exposed will of necessity create

significantly different residual flow fields.

6.2 um

- These experiments were conducted in an entirely gaseous environment with

pr0perties very near to those of air.

- The data were taken in an engine that was only slightly modified from its

production form.

° Analysis of the data is nearly automatic when using image processing command ._

files to locate grid intersections (i.e. large ensembles can be processed very quickly).

° Simple software on an ordinary PC can be used to calculate all fluid mechanical

quantities and statistics.

' LIPA can be used simultaneously with LIF (Laser Induced Fluorescence) to study

areas such as fuel injection droplet atomization. LIPA also has the capability to work

simultaneously with an Exciplex system.

° In the future LIPA may be used with an X-ray laser to determine flow fields

within unmodified metal parts. .

° LIPA may be expanded to three dimensions using two grids spaced one grid mesh

apart. Two cameras must be used to record the images, but the full three dimensional
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information contained in the region between the parallel grids is obtained with only a

factor of two increase in processing time and storage.
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APPENDIX B

DELIVERY RATE CALCULATIONS

Because the engine was fed from a compressed bottle of nitrogen and not from the

atmosphere, a delivery rate scheme had to be developed. The following equation was

used to calculate total swept volume at any engine speed

X Revolutions x lMinute x 124cc _ cc

Minute 60 Seconds Revolution 58°

 swept volume (Bl)

If the engine is assumed to have a uniform scavenging ratio (SR) of 0.8 (analogous to

volumetric efficiency in four-stroke engines) then the delivery rate vs. RPM curve shown

in Figure Bl results.

At 150RPM used in the experiment a delivery rate of 310cc/sec was used. This

corresponds with the above graph, but it was later realized‘that at this low speed the

scavenging ratio would be much lower than 0.8. Because of the lack of exhaust tuning

and cylinder blowdown effects at this low RPM, the scavenging ratio should have been

between 0.4 and 0.5 [24]. Figure BZ shows the calibration curve for the nitrogen

tank/regulator combination used
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APPENDIX C

LIPA DISCUSSION

Taking data at realistic engine speeds is very important if LIPA is to become a valuable

tool in engine research and design. However, there are a few hurdles to overcome before

this can become a reality. Just as with any new measurement technique, present

technology plays an important role in how well it can be implemented. This section will

discuss several areas of importance in improving LIPA for future uses in or out of engine

environments.

LIPA requires an image of a distorted grid as well as an undistorted grid to comprise a

data set. Photography of the undistorted grid is never a problem (it can be done with no

fluid motions in the cylinder), however, capturing the distorted grid on film or video tape 5

is much more difficult. Several factors either increase of decrease the chances Of

successfully photographing a distorted grid These include engine speed, flow speed,

camera delay, camera duration (= exposure time), phosphorescence vs. time

characteristic of the seed chemical, quantum efficiency of the seed chemical, grid size,

laser power, and how sensitive the recording device is. Note that several of the above are

closely correlated.

Cal Camemnelax

The delay between the start of the laser pulse and the camera shutter Opening is only a

function of flow speed: This small amount of time, which is used to calculate the

absolute velocity at each grid intersection, is adjusted so that grid distortion is kept to

near ten percent of the average grid mesh size. This rule of thumb helps to insure a level
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of linearity in the distorted grid

02 W

The duration, or exposure time, can be the must important factor governing the accuracy

and even feasibility of LIPA. The shorter the duration the better. Ideally, an

instantaneous snapshot Of a distorted grid would produce the most accurate results, but

time is required to Obtain a usable image. This amount of time, however, cannot be so

long that the image of the distorted grid is extremely blurred (a "time exposure" effecr).

The duration, like the delay, then is largely a function of flow speed. Below is a chart

showing some representative durations calculated using two rules developed through

experience. The first, mentioned before, is ten percent grid distortion. In this case a grid

size of 5mm X 5mm was used as an example. The second rule is to keep the length of the

duration to within twenty percent of the delay. This keeps the image of the grid sharp.

Note how small the durations become for even moderate speed flows.

Table Cl. Comparison Of flow speed with delay and exposure times

 

 

 

 

 

 

  

Flow speed Delay to ensure 0.5mm Exposure time

(max) movement of grid (1/5 of delay)

Sin/sec 0.1ms 0.02ms

IOm/sec 0.05ms 0.01ms

20m/sec 0.025ms 0.005ms

30m/sec 0.0167ms 0.003ms

40m/sec 0.0125ms 0.0025ms   



33

C.3 DmamieBanas

In a mainly unidirectional flow, such as pipe or jet flow, high velocities are not a

problem because the entire grid can shift with the bulk flow. However, in an engine there

is no preferred flow direction. This means that very high gradients can be present. In a

two-stroke engine, velocities may vary from 0m/sec (a stagnation region) to as high as

lOOrn/sec. High regions of shear are common in the compilation ofjet flows that make

up the total scavenging picture. The challenge lies in successfully capturing the full range

of velocities with a single measurement. Should the delay correspond to the higher speed

portions of the flow and leave the grid in the region of lower speed flow nearly

undistorted? Should the delay correspond to the lower speed portions Of the flow and

leave the grid in the regions of higher speed flow grossly distorted? What happens to the

accuracy of the measurements when the range of velocities is great? These are a few of

the questions that will be answered in the near future and are actually best answered in an

engine environment. These experiments have shown that LIPA in its present form can

support the dynamic range of a two-stroke engine motored at 150RPM. This is very

encouraging considering the present state of development of the phosphorescent seed

chemicals and the optics.

CA W

While the duration ideally is only a function of flow speed, it is also a function of several

other factors. The duration must be of sufficient length to allow enough photons to pass

into the recording device to make an image. Therefore, in practice, duration is adjusted to

the shortest time possible to allow a distorted grid image to be captured. If this happens

to be shorter than twenty percent Of the delay, that is acceptable, but (as with the data

presented here), that is most Often not the case with technology at its present level. The

grids in Figure 3.5 are slightly blurred because the delay and duration used were of the
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same order of magnitude.

Several performance oriented issues about the laser, the optics, and the phosphorescent

seed chemical are important concerning this issue. The laser should be powerful enough

to fully energize the grid lines in the seed chemical, and the optics should be high quality

to minimize losses. However the most important factor at this point is the seed chemical.

Each chemical has two key parameters regarding phosphorescence that are important to

LIPA. The first is quantum efficiency. This is simply the ratio of incident laser energy

absorbed to how much energy is released in the form of photons.

_ Laser Energy Absorbed

Photon Energy Released

 

(9 (C1)

Because this energy is released over time it is also important to be aware of the

phosphorescence vs. time characteristic as illustrated in Figure Cl.

Figure Cl illustrates why this characteristic is important. The shaded area represents the

slice of energy available for image recording. If this curve falls off quickly, and large

delays are required (i.e. low speed flows), then it is conceivable that not enough energy

would be left for image recording. High speed flows actually have an advantage in that

they must always be recorded in the "fatter" part Of the characteristic.

C-5W

In an engine environment data are often required at specific crank angles. It is then

important to know how much piston motion occurs while a distorted grid is being

recorded The amount that the piston moves is dependent on engine dimensions, RPM,
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crank angle, and camera duration. If a linear relationship between RPM and flow speed

(and thus camera duration) is assumed for any specific crank angle then the curve in

Figure C2 results.

The bore to stroke ratio of the engine has a direct effect on piston speed Engines with a

relatively long su'oke generate higher piston velocities. The piston reaches its maximum

velocity at mid-stroke and comes to a complete stop at TDC and BDC. To simplify

calculations an average piston speed was used. Since all Of the LIPA measurements were

taken at BDC, a slight over estimation in piston movement was calculated Engine

dimensions were taken from Table 1.

For example, at 400RPM the engine undergoes 6.67 revolutions per second. This

translates into an average piston speed of 607.2 min/sec. For a camera duration of 0.03ms

the piston then moves a total Of 0.018mm. This equals 0.0650 of crank rotation,

Therefore at 400RPM the crank angle resolution is within one tenth of a degree —

sufficient resolution for this type of study.

Because of the nearly linear relationship between RPM and scavenging velocities [27]

this scale of resolution should stay roughly constant throughout the RPM range.

However, while these values are an over estimation near BDC and TDC, they will be

gross under estimations near the middle of the stroke.

C-6W

06.1 Smallflrirtfiize

The smallest important length scales measured in a turbulent engine flow are the

Kolmogoroff scales. Previous measurements have measured them to be on the order of

0.05m [18]. It is possible, with the correct optics, to produce a grid with a mesh size

this small. Decreasing the size of the grid, however, increases the difficulty Of recording
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it on film or video tape because camera duration must be decreased for two reasons.

The primary reason duration must be decreased is because less grid motion is acceptable.

Distortion should still be kept to ten percent of a grid box length. Secondly, the lines

making up the grid must be thinner. Both of these reasons mean fewer photons will be

available to record an image, therefore, even more emphasis must be placed on

develOping better phosphorescent chemicals and more sensitive recording equipment.

062W

The laser energizes the seed chemical over a time interval of about 20ns. The question is:

how important is it that this process does not take place instantaneously? The answer is

suaight forward. The shortest realistic camera delay in an engine would be on the order

of 0.111s. This would be for capturing velocities of near 50m/sec with a grid mesh size of

1mm. 0.0001ms is two orders of magnitude larger than the laser pulse width, therefore,

the laser will not affect the accuracy of LIPA even under exueme conditions.
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APPENDIX D

COMPUTER PROGRAMS

D.l Documentation

The following are descriptions of the computer programs used in reducing the raw data

from that which is pictured in Figure 3.5 to hard-copies like Figures 4.1 through 4.5.

Before any of these programs are used, however, the raw grids must be reduced to data

files that contain only grid intersection points. These are referred to as *.pts files here.

Reducing the raw data to point files may be accomplished in one of two ways. Since

automation of LIPA is of primary importance when using large ensembles, a command

file which automatically locates grid intersections should be used. However, if the grids

do not have enough contrast with the background, or if there is a considerable amount of

grid distortion, then the grid intersections must be found manually. In these experiments "

intersections were located manually using the Megavision 1024 XM routine SAMPLE.

A short description showing what order the following programs should be used in order

to achieve different types of results is given. Also a diagram showing the structure of the

main program VORTICITY is shown in Figure D1. Note that * is used as a wildcard

filename in all of the program descriptions.

The following software falls into two categories — initial processing and post

processing. The initial processing software centers around the program VORTICITY. It

uses undistorted and distorted grid intersection data (*.pts files) to calculate velocities,

vorticity, and Reynolds stress based on spatially averaged velocities. The post processing

software is then used to calculate averages of the above, Reynolds stress based on

cyclically averaged velocities, velocity fluctuations and turbulence energy, and
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hardcopies of velocity vector fields.

Below is a step-by-step set of instructions for the usage of these programs beginning with

initial processing. It assumes that the user has already compiled VORTICITY and that

the raw data is in the *.pts format. It also assumes that a polygon layout has been defined

for each data frame so that polygon descriptor files may be written (see program

VORTICITY).

(1) Execute VORTICITY and answer all questions that the

program asks.

(2) When asked about what polygon descriptor file is to be

used, either enter the data as prompted or enter the name of

a previously defined polygon descriptor file.

(3) General output filenames must now be changed to

specific names for each grid. For example:

vel.q --> grid*.vel

vort.out---> grid*.vort

uvave.out ---> grid“.uvave

UV.out ---> grid*.UV

(4) Run the GNUPLOT" graphing utility and get an initial

plot of each velocity vector field The following commands

will produce a screen plot of the vector field

> load 'gnuplotaro'
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> plot 'gnuplot.pts l' with dots

Both of these files are output from VORTICITY. Other

commands within GNUPLOT allow customization of

output and hardcopy generation.

*GNUPLOT is a shareware graphing utility available for

nearly all Operating systems.

(5) Repeat each step until all of the data is reduced. Note

that with very large data sets that a batch file could be

created to automate this process.

The pOSt processing software is well enough explained in the program description section .

with the exception of the vector field generation programs. These programs are used to '

create publication quality velocity vector field hardcopies by allowing scaling of the

vectors. Two sets of programs are presented The first set is used for creating hardcopies

of instantaneous vector fields. These plots will be scaled versions of those created in step

four above. The second set is used for creating vector plots of average ensembles. Below

is a description of the use of these programs.

Instantaneous vector pIOts:

Megavision SAMPLE output

For!!!)

Program VECTOR



(snnplotm)

GNUPLOT

Instantaneous vector field hardcopy

Averaged vector plots:

Megavision SAMPLE output

("-1)“)

Program AVERAGE

(avg-stats)

Program VELPLOT

Pm}

Program VECTORZ

Wot-arc)

GNUPLOT

Averaged velocity vector field hardCOpy
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0.2 Wan:

D.2.lW

Description:

This program reads two data files produced by the "SAMPLE" function of the Megavision

1024 XM. The fust frame must always be an undistorted reference grid, and the second

frame is the same grid photographed some time delay later. The user must input the data

points in the same order from each data frame. Unreadable data points must be entered as

0,0 and the program will dismiss the data automatically.

This program performs a number of tasks:

1) reads the data

2) throws out bad data points

3) interpolates in space and time to construct a velocity field throughout the frame

4) uses the velocity information coupled with user supplied polygon descriptor

files (see *.pfl) to determine vorticity.

5) calculates instantaneous Reynolds stresses at each point.

Input files: (undistorted grid point file (*.pts), distorted mid point file (*.pts). Polygon

descriptor file (*.pfl))

The *.pts files must be in the Megavision "sample" format.

Output files: (W, gnuplot", see Program velocities)
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Polygon descriptor files:

Because this series of programs requires the user to put the point files in the same order

for each data frame automatic polygon generation is not present. Since there is an option

to throw out bad data points, there will necessarily be different polygon formations for

each frame which has a unique point format. The user must construct the best polygon

layout by hand (each having four vertices), and enter the four corner points which make

up each tetrahedral into the *.pfl file. Each polygon should be entered on a line. For

example, if points 1, 2, 8, 9 make up the first polygon and points 2, 3, 9, 10 make up the

second polygon, then the first two lines of the file should read as follows:

1,2,8,9

2,3,9,10

The following programs that use this information to calculate circulation and vorticity will

then process each polygon as they are listed in this file.

Authors: Hilbert and Gendrich
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D.2.2W

Description:

Read in a number of Megavision OBJECT files and calculate the average location for

each point.

"prior information" -- The first file must contain as many points as there are. If a point

shows up in any subsequent file which has been chosen as bad by the user (see Program

vorticity), it is discarded.

Input file: (avg.dat)

An input file is required in which operating parameters are specified. It should contain the

following:

# comment

# comment

Average velocity output filename -- for the average frame

stats output filename -- for stats

"prior information" frame name -- for undistorted points

data fiame 1 name - measurement 1

........ -- measurements 2,3,...

data frame 11 name - final measurement frame

Output files: (user chosen in the above file)

The average velocity output can be used later to calculate Reynolds stresses etc. The

statistics output file can be used to check data and make sure it isn't out of control.

Authors: Gendrich and Hilbert



D.2.3—Bream

Description:

Read in a number of vorticityF output files (grid*.vort) and calculate average centroid

locations and average vorticies.

Input file: (vortave.dat)

An input file is required in which operating parameters are specified. It should contain the

following:

# comment

# comment

output filename -- filename of your choice

data frame 1 name - measurement 1

-- measurement 2, 3, ...........

data frame It name -— final measurement frame

end -- end of file marker

Output file: (user chosen in above file)

The output file will contain averaged centroid locations and averaged vorticies for those

input files which contain full data sets (no bad points). Frames without all mid boxes

present must not be included in the input file.

Author: Hilbert
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D.2.4W

Description:

Read in a number of vorticity.F output files (grid*.vel) and calculate u'v' and u'v'bar for

each intersection.

Input file: (stress.dat)

An input file is required in which operating parameters are specified. It should contain the

following:

# comment

# comment

output filename -- filename of your choice

avgvel.dat - average values for all frames

data frame 1 name - measurement 1

...... -- measurement 2,3,......

data frame 11 name - final measurement frame

end -- end of file marker

Output file: (user chosen in above file)

This output file will contain u'v' for each frame as well as UV which is the average

Reynolds stress for each point taken over all of the frames in the data frame file.

Author: Hilbert
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D.2.5Wm

Description:

This program reads in a number of Vorticity output files and calculates u', v' and q=sqrt(

u'**2 + v'**2 ) for each mid intersection. The output file contains u', v' and q for each

point averaged over all of the frames in the data frame files.

Input file: (uvprime.dat)

An input file is required in which Operating parameters are specified. It should contain the

following:

# comment

# comment

output filename -- filename of your choice

avgvel.dat - average values for all frames

data frame 1 name -- measurement 1 (*.vel)

...... ~- measurement 2,3,...... (*.vel)

data frame It name -- final measurement frame (*.vel)

end ' -- end of file marker

Output file: (user chosen in above file)

Author: Hilbert
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D.2.6W

Description:

This program averages a list of data. The format statement must be modified for different

input file styles. It will also output an average in a different set of units.

Input file: (The program prompts the user for this)

Output file: (The output is directed to the screen)

Author: Hilbert

D.2.7 firearm

Description:

This program takes cyclically averaged vorticity data and calculates a normalized vorticity

using a spatially averaged RMS value.

Input file: (vortave.out)

Output file: (normvort.out)

Author: Hilbert
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umW

Description:

This program makes GnUplOt "load" files which will plot the average velocity vector field.

Input files: (datum.pts (undistorted point data), avg.stats (average distorted point data))

Output file: (gnuplot.aro)

Author: Hilbert

02-9W

Description:

This program makes data files that are useful for creating surface or contour plots of

spatially dependent data (i.e. vorticity, Reynolds stress etc.). It reads in location data in

the form of pixels, converts this data to the proper units, and combines it with any other

type of data in an output file. The output file is arranged in a x,y,z format where x and y

are location and z are fluid mechanical quantities.

Input files: (Example: Datum.pts and Avg.vort)

Output file: (Example: Avgvort.surf)

Author: Hilbert
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D.3 Wings

' ' ed toThe following listings contain all of the programs and supporting subroutines us

reduce raw LIPA data. All programs were written in FORTRAN.
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Progrsnthrohvo

program.hvohvo

e

c

c This program averages a 11st of data. The format statement must be

e modified to: different output styles.

e

c Author:

c a. Sean allbert

e

e

character'ao uvstile,junk

integer N,L,1

real AA,BB,tots,totb,avos,avob

e

e get input tilonumo

c

writo(*,10001

roud(*,1100)uvo£llo

opontunit-l,tile-avoftlo)

c

e get I of data points to average

c

vr1t0(*.1200)

rosd(*.1300)N

c get I of heads: lines

writo(*.1400)

:oad(*,1300)L

do 100 1-1.L

:osdt1,1100)junk

100 continue

tot - 0.0

do 200 1-1,N

:0sdt1,1500)AA

print*,AA

tot - tot + AA

200 continue

ave - tot/N

print*.tot,u

w:1td(‘,1450)uvo

cave - uvo'0.0342/0.00014

u:1tot*,147$)csvo

e

e

1000 formatt' lbs: to the name of the Input £110 : ')

1100 to:mnt(s80) '

1200 formaet' now many data points to average : l

1300 formatti3)

1400 formatt' now many header lines are there : '1

1450 tornatl' Average: ',£10.51

1475 formatt' Converted average: ',£12.5)

e

c change line 1500 to: different output format typos

c

1500 £o:not(23x,£10.$l

atop

end
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Program.AVIRAGl

program average

Description:

Read in a number of MegaVision OBJECT output files and

calculate an average location for each place.

“Prior Information'-- The first file read in must contain as
many points as there are. If a point shows up in any subsequent

file which is not in the neighborhood of our “prior information“

points, it is discarded.

Input file:

An input file is required in which operating parameters are

specified. This file must be named 'Avg.dat'. It should

contain the following:

# comment

0 comment

velocity output filename -- for the Average frame

stats output file name -- for stats on the averages

“prior information frame" name -- base info

data frame 1 name -- measurement 1

... -- measurements 2, 3, ...

data frame n name -- final measurement frame

Author:

Chuck Gendrich <cpg>

History:

<cpg> 22 may 89 -- v1.0 for crunching the 2nd batch of airfoil data

Based on: TestLook v.4aug87, getframe v.au987

<hsh> 9 oct 90 -- v2.0 rewrote matching section similar to

main.F verl.5 data entry style

include “vorticity.h' /* global variable defs */

include 'stats.h' /* stats information */

a
l
.
-
.
0
0
0
0
0
0
0
0
0
0
0
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

character'30 infil

parameter( infil-'Avg.dat') /* input data file */

c

character*80 line /* input line */

character*80 basfil /* data file containing frame information */

.character*80 datfil /* data file containing frame information */

character*80 outfill /* output file containing average locations */

character*80 outfilZ /* output file containing stats on locs */

integer datfmm /* number of data frames read */

integer saved /* number of points saved for each frame */

integer mach /* good/bad data flag*/

real q /* number of measurements used *I

c

data datfrm/ 0/

c

cccc-cccclcccc-ccchcccc-ccccacccc-cccc4cccc-cccc5cccc-ccccGcccc-cccc7cc

c

c

c Initialization stuff

do 10 i-l, Maths

frame1( i,X) - 0.0 /* frame 1 contains the base points */

frame1( 1,!) - 0.0 /* ...our 'prior information'. *l

10 continue *I

call init( counter) /* initialize our statistical counters

c

c Get operating parameters

open( 1, file-infil, status-'old', err-2000)
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Progrmm.AVlRAGl

20 continue /* Comments are permitted only at *I

read( 1, 1000. end-2010) line /* the beginning of the file. “I

if( line(1:1).eq.'0') goto 20 /* Skip them -- 'I comment...’ */

read( line, 1000) outfill

read( 1, 1000, end-2060) outfilz

read( 1, 1000, end-2040) basfil

note: unit 3 is used for data frames...

open( 2, file-outfill, status-'unknown', err-2020)

open( 4, file-outfilz, status-'unknown', err-2030)

0

Check the base data frame (”prior information” about where the

intersections should be located.

HAKEFRM return values:

ierr - 1 -> error opening the frame data file

ierr - 2 -> empty file

ierr - 3 -> wrong number of lines... three should appear at once --

OBJ NUMBER / X-COORDS I Y—COORDS ---> Frame probably incorrect

0
0
0
0
0
0
0
0
0

call makefrm( framel, basfil, ierr)

if( ierr.gt.0) goto 2050 I‘ quit if it's a bad file */

n - NumPts( framel, 2) /* how many points are there? */

c

c Save these points for the start of our stats summation

do 30 i-l, n

counter( i, VAL) - frame1( i, X)

counter( i+n, VAL) - frame1( i, T)

cell save( counter, i) /* X value */

call save( counter, i+n) /* Y value */

30 continue

c

c Now check out all the other frames mentioned in the input file

40 continue /* main processing loop begins here 'I

do 50 i-1, Haths

frame2( i,X) - 0.0 /* frame 2 contains points from our */

frame2( i,Y) - 0.0 I' data frames... */

50 continue

close(3)

read( 1, 1000. end-800) datfil

call makefrmx frame2, datfil, ierr)

if( ierr.gt.0) goto 40

datfrm.- datfrm + 1

saved - 0

do 100 i-l, n l* for each point in the first frame */

if(frame2(i,!).ge.1019.)then

Inch-0

else

mach-i

f

::?1mtch.ne.0) then /* we have a good hit 1'/

C
save the data....

saved - saved+1

counter( i, VAL) - frame2( mach, X)

counter( i+n, VAL) - frame2( mtch, 2)

call save( counter, i) l‘ X value *I

call save( counter. i+n) /* I value *1

endif

100 continue
'

print*.'8aved ', saved,’ points.

GoOn continue

goto 40 if( ;:)and we'll read until the input file is empty ‘I

c

c Done reading data... time to process it
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800

c

C

C

0
0
0
0

810

1000

1010

1020

1030

1040

C

+
+
+
+
+

continue /* calculate the average frame and output stats 1"/

Did we read any frames at all?

if( datfrm.le.0) goto 2070

Save the comment on this data frame

open! 3, file-basfil) .

read! 3, 1000) line /* note that line has to be saved for prntfrm

close!3)

write! 4, 1010) line, datfrm

do 810 i-l, n ' /* for all points in our base frame */

8E!!! we really should check UPSIDE_pOflN before doing this!!!

get X mean and stats

call stats! counter, i, Xmean, Xvar, Xdev, Xkew, Xkurt, q)

vel!i,Vx) - Xmean - frame1!i,X) /* output velocities */

write(2,1030)i,vel!i,VX)

framel! i, X) - Xmean /* store the mean *I

get I mean and stats

call stats! counter, i+n, Ymean, Yvar, Ydev, Ykew, qurt, q)

vel(i,Vy) - Ymean - frame1!i,Y) /* output velocities */

write!2,1040)i,vel!i,Vy)

framel! i, Y) - Ymean /* store the mean *I

write! 4, 1020) i, q, Xmean, Xdev, Xkew, Xhurt, Ymean,

Ydev, ykew, qurt

continue

format! a80)

format! 'Comment: ',a60//

12, ' data frames were compared to the base frame.')

format! 'Point ', i2,': ', f4.0,' measurements'l

' X: ',f6.1,' mean, ',f7.3,' sdev, ',f7.1,' skew, ',f9.1.

' kurt'l -

' I: ',f6.l,' mean, ',f7.3,' sdev, ',f7.1,' skew, ',f9.1,

' kurt')

format!’ At point ',12,' bear is ',f10.5)

format!’ At point ',i2,' Vybar is ',f10.5)

call prntfrm! framel, line, outfill, ierr)

close!2)

c1ose!4)

.stop 'tAvg-A-OK: Avgerage normal termination.’

cccc-cccclcccc-cccc2cccc-cccc3cccc-cc
cc4cccc-cccc5cocc-cccc6cccc-cccc7cc

C

c

c

2000

C

2010

c

2020

2030

c

2040

ERROR HANDLING IS DONE BER!

continue ,

stop 'tAvg-E-OPENPAIL: Error opening input data file.

continue

write! *, '!a00)') infil
'

stop 'sAvg-E-ONLYI: Input file contains only comments

continue

write! *, '(a00)') outfill . '

stop 'tAvg-r-OPENERR: Error opening NV output file

continue £112

write ' '(a00)') out

stop fsAvg-E-OPENERR: Error opening stats output file'

continue

stop 'sAvg-E-EOI: Error reading base data frame file'
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c

2050 continue '

write! *, '(a80)') basfil

stop "Avg-E-BADPRH: Base data frame is bad (makfrm)'

c

2060 continue

stop 'tAvg-E-EOF: Error reading stats output file name'

c

2070 continue

stop ’tAvg-E-NODATA: No data frames were read'

end
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0
0
0
0
0
0
0
0
0
0
0
0

100

200

C

1000

1100

1200

1300

1400

program RMS

This program takes cyclicly averaged vorticity data from the output

file 'vortave.out' and calculates a normalized vorticity using

a spatially averaged RMS value.

Author:

H. Sean Hilbert

History: _

Oct 14, 1990 -- ver1.0 used for crunching two-stroke engine data

integer N /* N - l of polygons */

parameter!N-31)

real AvVort(N) /* read in from vortave.out */

real Norm4N) /* normalized vorticity */

real tot,SQAV,RHS

character*80 junk

tot - 0.0 /* set up ‘/

open(unit-1,file-'vortave.out')

open!unit-2,file-'normvort.out')

read!1,1000)junk /* read header line and discard */

write!2,l300) /* write header of output file */

do 100 i-1,N

read!1,1100) AvVort!i)

print*,AvVort!i)

SQAV - AvVort(i)**2.0

tot - tot + SQAV

continue

print*,tot

nus - SQRT!tot/N) /* get nus value */

print*,RHS

do 200 i-1,N

Norm“) - AvVort(i) Inns

write!2,1200) i,Horm!i)

print*,i,Norm!i),AvVort!i)

continue

write(2,1400) RMS

format!a80)

format!GOx f12.5)

format!’ Normalised vorticity at ',12,' is ',f12.5) '

format!’ Average vorticity normalised.with spatial RMS )

format!’ Spatial RMS of vorticity: ',f10.5)

stop

end
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0
0
4
7
f
I
O
>
0
!
1
(
)
€
1
0
0
4
1
(
1
0

0
0

0
0
0
0
0

progrmm vector

Description:

This program creates scalable gnuplot vector command files to

be used with the gnuplot 'load' command. It also creates a key

for the input bottom of the plot indicating a relative speed.

The input files to this program are point files created by

the Megavision “sample" command.

Author: ~

H. Sean Hilbert

Variables:

real scale

real X1,x2,y1,y2

real x1k,x2k,x3k,yk

real len

real z,Znew,a,b

real conv

real delay

real key

integer i,N

character*80 frmnam,junk

set CORBCIRCS

pi - 3.14159

N - 44

delay - 0.00014

key - 2000

conv - 0.0342

get scale factor

print*, 'Input scale factor: '

read!‘,*) scale

print*,scale

open'files

It

It

It

/t

It

It

It

It

It

It

It

[i

Version: ver!1.0) -- used for two-stroke data

scaling factor */

points */

label positions */

length of key vector */

hypotenuse ‘/

mm/pixel ‘/

delay before photo */

speed to make key *I

4 of points/frame */

in seconds */

key velocity in mm/sec */

mlpixel * /

print', 'Nhat grid do you wish to scale? (type

+ out full path and filename): '

read!*,'!a80)') frmnam

open!l,file-'lusr2/hilbert/bin/datumnp
ts')

open!2,file-fmmnmm)

open!3,file-'gnuplot.aro')

open!4,file-'gnuplot.ptsl')

read in data and do calculations

read!1,1000) junk

read!2,1000) junk

do 100 1-1,N

read!1,1100) sl, y1

read!2,1100) 82, y2

turn upside down and convert to an
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C

C

c

100

c

yl - (1024 - yl) * conv

y2 - (1024 - y2) * conv

x1 - xl * conv

x2 - x2 * conv

write!4,1400) Xl,yl

get deltax and deltay

a - x2 - :1

b - y2.- yl

find length

2 - aqtt (.**2 + bitZ)

scale

Znew - z * scale

decompose

a - Znew * a/z /* a/z - cos(theta) */

b - Znew * b/z /* b/z - sin!theta) ‘/

get new :2 and y2

x2 - x1 + a

y2 - yl + b

make gnuplot file

write!3,1200) xl,yl,x2,y2

continue

c calculate length and placement for key

C

1000

1100

c1100

1200

1300

1400

len - key * delay * scale

xlk - 15 /* start of key arrow */

32k - xlk + len /* end of key arrow */

x3k - x2k + 0.2 l‘ for label */

'yk - 2 /* y position of key */

write!3,1200) xlk,yk,82k,yk /* key arrow */

write!3,l300) x3k,yk /* label placement */

format!a80)
.

format!8x,f4.0,7x,f4.0) /* for ..pts files /

format!le,f5.1,1x,f5.1,4x,f5.1,lx,f5.1) l* for old *.aro */

format!'set arrow from ',f5.1,',',f5.l,' to ',f5.1,',',f5.1)

format!'set label '2 m/sec' at ',f5.1,',',f5.l)

format!f7.2,f7.2)

stop

end
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program

Description:

Author:

Variables:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

real sca

real :1,

vector2

H. Sean Hilbert

1e

x2,y1,y2

real xlk,x2k,x3k,yk

real len

real 2,2new,a,b

real conv

real del3y

real key

integer

0 88C constants

pi - 3.1

N - 44

delay -

key - 20

conv - 0

i,N

4159

0.00014

00

.0342

c get scale factor

print', 'Input scale factor: '

read!*,*

c open files

open!1,file-'gnuplot.aro')

open!2,file-'gnuplot.ptsl')

open!3,file-'nc_vel.aro')

0
0

do 100 i

0
0
0
0
0
0
0
0

0
0
0

) scale

'1,N

It

It

It

It

/*

It

It

[a

It

It

’i'

It

read in data and do calculations

This program creates scalable gnuplot vector command files to

be used with the gnuplot 'load' command. It also creates a key

for the input bottom of the plot indicating a relative speed.

The input files to this program is a gnuplot.aro file created

after averaging or other operations have been done to the point

file data. It was designed to take output files from velplot.P.

Version: ver!l.0) -- used for two-stroke data

scaling factor */

points */

label positions */

length of key vector ‘/

hypotenuse */

mm/pixel */

delay before photo */

speed to make key */

l of points/frame */

in seconds */

key velocity in mm/sec */

mm/pixel */

read!1,1100) x1, yl, x2, y2

y1 - (1024 - yl) * conv-

y2 - (1024 - y2) * conv

:1 - xl * conv

:2 - x2 * conv

write!4,1400) Xl,yl

get delta: and deltay

a - x2 - :1

b - y2 - yl

turn upside down and convert to mm (some data may not need it)
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ProgramLVECTORZ

100

c

find length

2 - sqrt!a**2 + b**2)

check for no movement

if!z.eq.0.0) then

goto 999

endif-

scale

Znew - z * scale

decompose

a - Znew * a/z /* a/z - cos!theta) */

b - Znew * b/z /* b/z - sin!theta) */

get new :2 and y2

x2 - x1 + a

y2 - yl + b

make gnuplot file

continue

print*, xl,y1,x2,y2

write!3,1200) x1,y1,x2,y2

continue

c calculate length and placement for key

C

1000

1100

1200

1300

1400

len - key * delay * scale

x1k - 15 /* start of key arrow */

x2k - xlk + len /* end of key arrow */

x3k - x2k + 0.2 /* for label */

.yk - 2 /* y position of key */

write!3,1200) xlk,yk,x2k,yk /* key arrow */ .

write!3,1300) s3k,yk /* label placement I

format!a80)

.1 1: f5.1,4x,f5.l,1x,f5.1)

§::::::}::t£:rrow from ',f5.l,',',f5.l,' to ',f5.1,',',f5.1)

format('set label '2 mlsec' at ',fS.l,',',f5.1)

format!f7.2,f7.2)

stop

end



Subroutine CONVERT

subroutine convert! xpix, ypix, ddpix, uvpix, UnDim,i)

Description: print out the conversion to "real units"

of the above values. Only print out the ones which

aren't zero (generally either ddpix or uvpix)...

Output: all output will be written to stdout. If you want it in

a file, put a tee on the process when you run it.

e.g.: lori 38> vorticity I tee output_file

Procedure: First get conversion factors and the time between

each frame. Since this subroutine is “saved", these values

only have to be obtained once, then they're applied to every

subsequent value as appropriate...

Caveats: The first time through, no values are printed, and the

following values are returned in the appropriate argument.

HmPixel -> ddpix

dt -> uvpix

Xoff -> xpix

Xoff -> ypix

Author: CHuck Gendrich <cpg>

History: <cpg> August, 1987 v1.0

<ch> 31 may 89 v1.1 -- return conversions the first time through

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

ccccccccclccccccccc2ccccccccc3ccccccccc4ccccccccc5ccccccccc6ccccccccc7cc

c

I define DEBUG

c

logical UnDim

C true if values should be non-dimensionalized

c

real xpix, ypix, ddpix, uvpix

C spin and ypix are !X,Y) in pixel values

C ddpix is a spatial derivative of some velocity

c (e.g. du/dx)

C uvpix is the product of two velocities

c ‘ (e.g. Vx'Vy)

real man, yum, ddnsn, uvnsn

C x, y, dd, and uv converted to “real units“ or non-

C dimensionalized (local copies of the numbers so that

C we don't accidentally try to set some constant equal

c to something else....)

c

real HmPixel, dt, Mmdt, Mmdt2, soff, yoff

c

real Ow, nu, t, xyfact, ddfact, uvfact

0 0w -- wall velocity

C nu -- kinematic viscosity

c t -- total elapsed time

C xyfact -- non-dimensionalizing factor for x's and y's

c ddfact -- non-dimensionaliring factor for dd's

c uvfact -- non-dimensionaliring factor for uv's

c

real getreal

external getreal

c

character*00 line

c

open!unit-9,file-'vort.out')

open(unit-10,file-'uv.out')



61

Subroutine CONVIR!

C

C

1000

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

c

+0

+’

+l

+'

+'

save

data MmPixel, dt/ 2*0.0/

format!’ Please enter the multiplication factor to convert'/

pixels to mm. !pixel_value * factor) - (mm;value)')

format!’ Please enter the time between frames (dt).')

format!’ Please enter the I offset for frame 1.'/ ,

! Y!frame1) - Yoffset) - Y (abs dist to the wall)')

format!’ Would you like the values to be non-dimensionalized?',

[nl')

format!a80)

format!’ Please enter the wall velocity, Uw.')

format!’ Please enter the kinematic viscosity, nu.')

format!’ Please enter the total elapsed time, t.')

format!/' convert: MmPixel: ’,f10.9,’, dt: ',f10.9,’ Toff: ’,

f10.7)

format!’ convert: non-dimensionalizing. xyfact: ',e9.4,

ddfact: ',e9.4,' uvfact: ’,e9.4/)

format!’ convert: printing values with real units.’/)

format!/’ convert: Pixel values -- (',f8.2,’,',f8.2,')'/

spat. deriv: ',f12.3,' and uv value: ',f12.3/)

format(4!2x,fll.3))

cccc-cccclcccc-cccc2cccc-cccc3cccc-cccc4cccc-cccc5cocc-cccc6cccc-cccc7cc

get the conversion to mm's and the time between frames if necessary

if(MmPixel.ne.0.and.dt.ne.0) goto 100

neither of these values is permitted to be zero...

continue

write! *, 1000)

line - '0.034200000 mm/pixel'

MmPixel - getreal! line)

write! *, 1020)

line - '0.00014000 sec'

‘dt - getreal! line)

Mmdt - MmPixel/dt

Hmdtz - Mmdt * det

write! *, 1030)

line - '442.0 Pixels’

Toff - getreal! line)

Xoff - 0.0

continue

get non-dimensionaliring constants (or set them to 1.0)

write! *, 1040)

read! *, 1050) line

if! line!1:1).eq.'Y'.or.line!1:l).eq.'y’)
then

UnDim - .TRUE.
‘

else if( line!l:1).eq.'N'.or.1ine!1:l).eq.'n'.or.

line!l:1).eq.' ') then

UnDim.- .FALSE.

else

goto 20
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100

endif

if! UnDim) then

write! *, 1060)

line - '5.0 in./sec'

UV - getreal! line)

write! *, 1070)

line - '0.00310460 in“2/sec.'

nu I-~getreal! line)

write! *, 1080)

line - '5.25 sec.’

t - getreal! line)

xyfact - 1.0/! 2.0 * 25.4 * sqrt! nu * t))

ddfact - 4.0 * sqrt! nu * t) I 0w

uvfact - 1.0

don’t know how to non-dimensionalize this one

else

xyfact - 1.0

ddfact - 1.0

uvfact - 1.0

endif

ifdef DEBUG

write! *, 1090) MmPixel, dt, Yoff

if( UnDim) then

write! *, 1100) xyfact, ddfact, uvfact

else

write! *, 1110)

endif

endif

if!MmPixel.eq.0.or.dt.eq.0) goto 10

return these values the first time through

xpix - Xoff

ypix - Xoff

ddpix - MmPixel

,uvpix - dt

return

don't print anything out the first time through

continue

ifdef DEBUG

write! *, 1120) xpix, ypix. ddpix. uvpix

endif

xmm. - (xpix - Xoff) * HmPixel * xyfact

m - (ypix - Xoff) * mixel * xyfact

dt * ddfactddmm - ddpix

detz * uvfact:nnunl- uvpix

’
\

115! ddnln.ne.0.and.uvm.ne.
0) then

write! ', 1130) m, yum, ddnsn, uvm

else if! ddm.ne.0.and.uvnm.e
q.0) then

write! *, 1130) m, yum, ddnln

write!9,1350)i,m,yn
ln,dduln

else if! ddxmn.eq.0.and.uvm.n
e.0) then

write! *, 1130) run, yarn, uvmm
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Subroutine CONVERT

write(10,1400)i,xmm,ymm,uvmm

else

write! *, 1130) xmm, ymm

endif

c

1350 format!'vorticity ',i2,' at centroid !',f10.5,','

+ ,f10.5,') is ',f12.5)

1400 format(2x,i2,' Reynolds stress at (',f10.5,’,’,f10.5,

+ ') is ',f15.4)

return -

end



Program.Vorticity
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

program.VORTICITY

character*41 Version

parameter! Version-'VORTICITY Version v1.6')

Description:

This program reads two data files produced by the

"sample“ function of the HegaVision 1024XM. The user must

input the data points in the same order from.each data frame.

Unreadable data points must be entered as 0,0 and the program

will dismiss that data set automatically.

This program performs a number of tasks:

1) reads the data

2) throws out bad data points

3) interpolates in space and time to construct a velocity field

throughout the frame

4) uses the velocity information to determine stress and

strain values, vorticity, etc.

Author: Chuck Gendrich (Give me unix or ...)

Co-author: H. Sean Hilbert (Give me back my PC)

History:

August, 1987 -- 1st version -- written on freyja, an IRIS 3120

'running 1 System V.

December, 87 -- 1.1 <cpg> Added graphics display of the

calculations (velocities, vorticity, etc.)

Added TURB3D-formatted output.

May, 1989 -- 1.2 <cpg> Modified the match subroutine so that

“close“ is based on the shortest distance between 2

points in the first (reference) frame.

9 jul 89 -- 1.3 <cpg> Finished “triangle" polygon logic.

Added "Version" variable to main!).

12 jul 89 - v1.4 <cpg> More “triangle" logic in make_poly.

Added 'irreg!)' considerations to fluids. (oops!)

Took graphics stuff from 'graphics.h” and 'frame.f"

and put them here as step 2.

25 sep 90 - v1.5 <hsh> Removed iris graphics routines and

reconfigured input and output files. also removed

all point finding logic. user must now enter points

from both frames in the proper order.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCC

C

c 4 define DEBUG

4

c

0
0
0
0
0

include 'vorticity.h'

real Lft, Rt, Bottom, Top

Lft - Xmin

Rt - Xmax

Bottom - Ymin

Top - Ymax

This is the calling order for orthoZ!)...

logical Again, UnDim

real HmPix, dt

integer NumPts, NPol

external Again, NumPts, NumPoly

Again is the error handler -- prints diagnostics and asks

if the user wants to quit or re-run the preceding section.

character*80 choice,po1ymap

character*1 answera,answerb

these are variables for the polygon routines
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c

c NOTE: UnDim comes back TRUE when output will be non-dim'd

c

ccccccccclccccccccc2ccccccccc3ccccccccc4cccccccccSccccccccc6ccccccccc7cc

c

c step 1 -- get the data

c

write! *, '(a)') Version

10 continue

call getfrm! framel, frame2, MmPix, dt, UnDim, ierr)

if! ierr.ne.0) then

c error handle

if( Again! ierr)) then

goto 10

endif

endif

c

cccc-cccclcccc-ccchcccc-cccc3cccc-cccc4cccc—ccccScccc-cccc6cccc-cccc7cc

c

c step 2 -- after data is read in it must be checked to make sure all

C points are good. if a point is unreadable on the

C Megavision screen then the user must move the cursor to

C 0,0 and record that as data. this routine will pick that

C up and eliminate that data set from framel and frameZ.

c

open!unit-15,file-'test.out')

n-NumPts(frame1,1)

print*,n

do 20 i-1,n

if!frame2(i,Y).ge.1019.)then

match!i)-0

else

match!i)-i

endif

write(15,999)match!i),frame2!i,X)-frame1(i,X)

+ ,frame2(i,Y)-frame1!i,Y)

999 format!i2,2x,2!f5.0))

20 continue

cccc-cccc1cccc-cccc2cccc-cccc3cccc-cccc4cccc-ccccScccc-cccc6cccc-cccc7cc

c

c . write gnuplot 2.0 files to plot out vector fields

c

open(unit-12,file-'gnuplot.aro')

open(unit-13,file-'gnuplot.ptsl’)

open!unit-14,file-'gnuplot.ptsZ')

c

do 100 i-1,n

if!match(i) .ne.0) then

write!12,1000)frame1(i,X),framel(i,Y),

+ frame2!i,X),frame2(i,Y)

write(13,1100)frame1(i,X),frame1(i,Y)

write!14,1100)frame2(i,X),frame2(i,Y)

else

goto 100

endif

100 continue

c

1000 format!'set arrow from ’,f5.1,’,',f5.1,' to ',f5.1,',’,f5.1)

1100 format(2(f5.1,3x))

cccc-cccclcccc-cccc2cccc
-cccc3cccc-cccc4ccc

c

c step 5 -- interpolate the velocity vectors

c

C'CCCCSCCCC’CCCC
6CCCC'CCCC7CC

call Velocities! framel, frame2, match, vel)



ProgramnVorticity

n - NumPts! vel, 4)

write! *, 1020) (i,vel(i,X),vel!i,Y),vel(i,Vx),vel!i,Vy),i-1,n)

1020 format!/' Here are the velocity components and their',

+’ locations:'/' X Y vx Vy'l

+ (1x,12,': ',4!1x,f7.2)))

cccc-cccclcccc-cccc2cccc-cccc3cccc-cccc4cccc-cccc5cocc-cccc6cccc-cccc7cc

c .

c step 6 -- define the polygons

c

30 continue

write(*110$0)

read!*,1060)choice

data answeral’d'l

data answerbl'c'l

if!!choice.eq.answera).or.(choice.eq.answerb))then

‘0 continue

else

goto 30

endif

if(choice.eq.answera)then

write(*,1070)

read!',1060)polymap

open(unit-35,file-polymap)

read!35,1080)Npol

read!35,1060)junk

c reset array

do 45 i-1,HaxPoly

”19(1r 1)'°

P013! (1' 2) '0

P01! (1' 3,-0

poly!i.4)-0

45 continue

do 50 i-1,Npol

read!35,1040)poly(i,1).poly(i,2),

*
Poly!i.3).poly!i.4)

50 continue

else if!choice.eq.answerb)then

. call Polygons(poly,Npol)

endif

60 continue

print*,Npol

write!*,1030)

write!*,1040)(Poly(i,1),poly!io2):901y(1.3):P°1YU-a”

+ ,i-1,Npol)

close!35)

c

c format statements

c

1030 format(/’ Here are the polygons which have been defined:'//

+' 0L8 033 LEE LLH')

write! *, 1040) (Poly(i,1),poly(1c2)aPOIYCio3)nP°1Y(1o4)r

+ i'loNPOl) ,

1040 format(4(2x 12 1x))

1050 format!’ Would'you like to use a previously defined.polygon'l

+ ' map, or would you like to create one?’/

+ ' Define - d Create - c ')

1060 format(a80)

1070 format!’ What is the filenme of the polygon map that you'/

' wish to load?')

1080 format!i2)
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cccc-cccclcccc-cccc2cccc-cccc3cccc-cccc4cccc-ccccScccc-cccchccc-cccc7cc

: step 7 -- calculate fluid kinematic quantities

c call fluids! vel, poly, irreg, MmPix, dt, UnDim, ierr)

:ccc-cccclcccc-ccchcccc-cccc3cccc-cccc4cccc-ccccScccc-cccc6cccc-cccc7cc

: step 8 -- calculate reynolds stresses

c call spatave(vel)

c end
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c

C

program vortave

Description:

Read in a number of vorticity.F output files (grid*.vort)

and calculate average centroid locations and average

vorticities.

Input file:

An input file is required in which operating parameters are

specified. This file must be named ’vortave.dat'. It should

contain the following:

4 comment

4 comment

output filename -- filename of your choice

data frame 1 name -- measurement 1

... -- measurements 2, 3, ...

data frame n name -- final measurement frame

end -- end of file marker

Output file:

output file will contain averaged centroid locations and

averaged vorticities for those output files which contain

30 grid baxes. frames w/o 30 grid boxes must not be included

in the input file.

Author:

H. Sean Hilbert

History: .

<hsh> ver1.0 -- used for crunching two-stroke engine data

character*30 infil

parameter! infil-'vortave.dat') /* input data file */

character*80 line /* input line */ - *

character*80 datfil /* data file containing frame information /

character*80 outfil /* output file containing average locations */

character*80 junk /* to read in junk lines in data */

integer N,i

N - 4 of polygons

parameter!N - 31) /* 4 of polygons in data file */

real x(N),y(N) /* centroids read in from data files */

real Vort(N) /* vorticities read in */

real Tvort(N) /* total vorticity for each centroid */

real xtot(N),ytot(N) /* total centroid values */

cccc-cccclcccc-cccc2cccc-cccc3ccc
c-cccc4cccc-cccc5cccc-cccc6cccc-c

ccc7cc

C

C

C

c Get operating parameters

20

C

C

ile-infil status-'old' err-2000)

35:21:68 i ' I: Cements are permitted only at *I

read( 1, 1000, end92010) line 1* the beginning of the file.' :I

if! line(1:1).eq.'4') goto 20 1' Skip them -- ’4 comment... I

read( line, 1000) outfil

open! 2, file-outfil, status-'unknown', err-2020)

c set variables

do 30 i-1,N
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Program(VORTAVE

xtot!i) . 0.0

ytot!i) - 0.0

Tvort!i) - 0.0

30 continue

C

c now read in data from data frames and do arithematic

C

40 continue /* come here after each frame is done */

read!1,1000) datfil

if!datfil.eq.'end’) then

goto 800

endif

open!4,file-datfil)

c

read!4,1000)junk

c

do 60 i-1,N /* read a frame */

read!4,l300,end-60) x(i),y(i),Vort(i)

xtot(i) - xtot(i) + x!i)

ytot(i) - ytot!i) + y!i)

Tvort(i) - Tvort!1) + Vortm

60 continue

close(4)

goto 40 /* go back for next frame *I

800 continue /* all data has been read */

c

write(2,1600)

c calculate averages

do 70 i-1,N

x!i) - xtot!i)/N

y!i) - ytot!i)lN

Vort(i) - Tvort!i)lN

write(2,1700) i,x!i),y(i),Vort(i)

70 continue

C

1000 format! a80)

1300 format(26x,f10.5,1x,f10.5,4x,f12.5)

1600 format!//,' Averaged vorticity in <l/sec>') ' '

1700 format!’ Average vorticity ’,i2,' at centroid ('prO-S' . o

+ £10.5,') is ',f12.5)

stop '8vortave-A-OX: normal termination'

c .

cccc-cccclcccc-cccc2cccc-cccc3cccc-cccc4
cccc-ccccScccc-cccc6cccc-cccc7cc

c

c ERROR HANDLING IS DONE HERE

c

2000 continue
'

stop '4Avg-P-OPENEAIL: Error opening input data file.

c

2010 continue

' write! *, ’(a80)’) infil '

stop '8Avg-E-ONLY4: Input file contains only comments

c

2020 continue £111

write! * ’(a80)') out .

stop '4Avg-P-OPENERR: Error opening NV output file'

c

2030 continue £112

write! * '(a80)') out

stop ’iAvg-P-OPENERR: Error opening stats output file'

2040 continue

stop '4Avg-P-EOF: Error reading velocity frame file'
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Program vonravs

2050 continue

write! *, '(a80)') basfil

stop ’4Avg-E-BADERM: Base data frame is bad (makfrm)'

2070 continue

stop '4Avg-P-NODATA: No data frames were read'

end
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Program smss

program stress

Description:

Read in a number of vorticity.F output files and

calculate u'v' and u’v'bar for each intersection

Input file:

An input file is required in which operating parameters are

specified. This file must be named 'stress.dat'. It should

contain the following:

4 comment

I comment

output filename -- filename of your choice

avgvel.dat ° -- avg vals for all frames

data frame 1 name -- measurement 1

... -- measurements 2, 3, ...

data frame n name -- final measurement frame

end -- end of file marker

Output file:

output file will contain u'v' for each frame as well as

UV which is the average Reynolds stress for each point averaged

over all of the frames in the data frame file.

Author:

H. Sean Hilbert

0
‘
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

History:

<hsh> ver1.0 -- used for crunching two-stroke engine data

include ”vorticity.h' /* global variable defs */

character'30 infil V

parameter! infil-'stress.dat') /* input data file */

c

character*80 line /* input line */

character'80 basfil /* data file containing frame information ’/

character*80 datfil /* data file containing frame information */

character*80 outfil /* output file containing average locations */

integer N,mtch,Prm,i

c _ N - 4 of points, Prm - frame counter

parameter!N - 44) /* 4 of points in Vbar file */

integer save(N) /* divisor for calculating u’v’bar */

real vxr,vyr If velocities read in from data files */

real Ubar(N),Vbar!N) /* average velocities read in */

real Uprm,Vprm /* instantaneous fluctuations */

real uvi /* instantaneous reynolds stress */

real UV(N) /* u'v'bar */

real conv /* conversion to m**2/sec**2 */

c

c Notice!!! this is a pain, but you must change all of the (44)

c array statements if you have a grid with more than 44 points

C

cccc-cccclcccc-cccc2cccc-cccc3c
ccc-cccc4cccc-ccccScccc-cccc6cc

cc-cccc7cc

c

e

conv - (0.0342 * 0.0342)/(0.00014 * 0.00014)

c

c

C Get operating parameters

-i fil status-'old' err-2000)

2° 2::2in33 £11. n ' I: Comments are permitted only at *l

f the file. *I

read( 1 1000 ende2010) line 1* the beginning 0

if! line!1:1):eq.'4') goto 20 1* Skip them -- ’4 coment...’ */
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Program STRESS

100

500

C

read! line, 1000) outfil

open! 2, file-outfil, status-'unknown’, err-2020)

read! 1, 1000, end-800)basfil

open! 3, file-basfil)

continue /* keep coming back until file is mt */

read! 3, 1100, err-2040, end-500) i,Ubar!i)

read! 3, 1100, err-2040, end-500) i,Vbar(i)

goto 100

continue /* end of file -- OK! *I

c now read in data from other frames and do arithematic

C

40

50

60

800

c

C

70

C

1000

1100

1200

1300

1400

1500

1600

1700

C

cccc-cccclcccc-ccchcccc-c
ccc3cccc-cccc4cccc-ccccSc

ccc-cccc

c

c

c

2000

PIN ' 0 /* set frame counter */

continue I' come here after each frame is done */

Frm - Prm + 1

write(2,1200) Frm

read!1,1000) datfil

if!datfil.eq.’end') then

goto 800

endif

open!4,file-datfil)

continue /* come here after each point is done */

read(4,1300,end-60) mtch,vxr,vyr

if!mtch.ne.0)then

Uprm - vxr - Ubar(mtch)

Vprm - vyr - Vbar!mtch)

uvi - (Uprm * Vprm)*conv /* instantaneous u’v’ ‘/

UV!mtch) - UV!mtch) + uvi /* create an ensemble ’/

save!mtch) - save(mtch) + 1 /* index UV divisor */

write(2,1400) mtch,uvi

else

write(2,1500) /* no match */

endif

goto 50 /* go back for next point */

continue

close(4)

goto 40 /* go back for next frame */

continue /* all data has been read */

write(2,1600)

calculate average reynolds stresses

do 70 i-1,N

UV!i) - UV(i)/save!i)

write(2,1700) i,UV!1)

continue

format! a80)
' *

format(9x,i2,10x,f10.5)
/* format of ’avgvel.dat /

format!’ Instantaneous Reynolds stress for frame ’,i2)

format!i2,2x,2!f5.0))

format!’ u”v” at ’,i2,’ is ’,e12.4)

format!’ ***' no match for this point ***")

format!//,' Averaged Reynolds stresses’)

format!’ u”v”bar at ’,i2,’ is ’,e12.4)

stop ’tstress-A-OK: normal termination’

6cccc-cccc7cc

ERROR HANDLING IS DONE HERE

continue
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2010

2020

2030

2040

c

2050

2070

stop ’tAvg-P-OPENFAIL: Error opening input data file.’

continue

write! *, ’(a80)’) infil

stop ’tAvg-F-ONLYO: Input file contains only comments'

continue

write! *, '(a80)') outfill

stop ’4Avg-E-OPENERR: Error opening NV output file'

continue

write! *, '(a80)') outfi12

stop ’SAvg-P-OPENERR: Error opening stats output file’

continue

stop ’4Avg-F-EOF: Error reading velocity frame file'

continue

write! *, ’(a80)') basfil

stop ’tAvg-P-BADFRM: Base data frame is bad (makfrm)'

continue

stop ’SAvg-F-NODATA: No data frames were read’

end
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0
1
0
0
0
0
0
0
0
0
0
0
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

C

C

program.uvprime

Description:

Read in a number of vorticity.F output files and

calculate u’,v’ and q - sqrt!u’**2 + v’**2) for each intersection

Input file:

An input file is required in which Operating parameters are

specified. This file must be named ’uvprime.dat'. It should

contain the following:

4 comment

4 comment

output filename -- filename of your choice

avgvel.dat -- avg vals for all frames

data frame 1 name -- measurement 1

... -- measurements 2, 3, ...

data frame n name -- final measurement frame

end -- end of file marker

Output file:

output file will contain u’,v’ and q for each point averaged

over all of the frames in the data frame file.

Author:

H. Sean Hilbert

History:

<hsh> ver1.0 -- used for crunching two-stroke engine data

include 'vorticity.h' /‘ global variable defs */

character*30 infil

parameter! infil-’uvprime.dat’) /* input data file */

character*80 line /* input line */

character*80 basfil /* data file containing frame information */

character*80 datfil /* data file containing frame information */

character*80 outfil /* output file containing average locations */

integer N,mtch,Frm,i

N - 4 of points, Prm - frame counter

parameter!N - 44) If 4 of points in Vbar file */

integer save(N) /* divisor for calculating averages */

real vxr,vyr /* velocities read in from.data files */

real Ubar!N),Vbar!N) /* average velocities read in */

real Uprm,mem /* instantaneous fluctuations */

real q(N) /* turbulence energy term per frame */

real Upp!N),Vp!N) /* RMS addatives */

real conv /* conversion to mm/sec */

cccc-cccclcccc-cccc2cccc-cccc3ccc
c-cccc4cccc-ccccScccc-cccc6cccc-c

ccc7cc

C

C

C

C

20

conv - (0.0342)/!0.00014)

Get operating parameters

0 1 file-infil status-’old' err-2000)

cgzinue ' I; Coments are permitted only at */

read! 1, 1000, end-2010) line /* the beginning of the file.' :$

if! line!1:1).eq.'4’) goto 20 /* Skip them -- ’4 comment...

read! line, 1000) . outfil

open! 2, file-outfil, status-’unknown’, err-2020)
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c

read! 1, 1000, end-800)basfil

c

open! 3, file-basfil)

100 continue I* keep coming back until file is mt */

read( 3, 1100, err-2040, end-500) i,Ubar!i)

read! 3, 1100, err-2040, end-500) i,Vbar(i)

goto 100

500 continue I‘ end of file -- OK! *I

C .

c now read in data from other frames and do arithematic

C

Erm - 0 I* set frame counter */

40 continue I* come here after each frame is done */

Erm - Erm + 1 >

read!1,1000) datfil

if!datfil.eq.’end’) then

goto 800

endif

open!4,file-datfil)

50 continue /* come here after each point is done */

read(4,1300,end-60) mtch,vxr,vyr

if!mtch.ne.0)then

Uprm - vxr - Ubar!mtch)

Vprm - vyr - Vbar!mtch)

q!mtch) - q!mtch) + Uprm**2 + Vprm**2 /* create ensemble */

Upp(mtch) - Upp!mtch) + Uprm**2 - I* total u’*'2 */

Vp(mtch) - Vp(mtch) + Vprm**2 /* total v’**2 */

save!mtch) - save!mtch) + 1 . /* index divisor ’/

endif

goto 50 I* go back for next point */

60 continue

close(4)

goto 40 I* go back for next frame *I

800 continue /* all data has been read *I

c

write(2,1600)

c calculate averages

do 70 i-1,N

q(i) - sqrt(q(i)/save(i))*conv

099(1) - sqrt!Upp(i)/save(i))*conv

Vp!i) - sqrt!Vp!i)/save(i))*conv

write(2,1700) i,Upp(i),Vp!1).q!i)

70 continue

C

1000 format! a80) ' *

1100 format(9x,12,10x,f10.5) I* format of ’avgvel.dat I

1300 format!i2,2x,2(f5.0))

1400 format!’ u”v” at ’,i2,’ is ',e12.4)

1600 format(/I,’ u”,v” and turbulent energy’)

1700 format!'at ’,iz,’ u”- ’.010.4.' v"- '.010.4.

+’ and q - ’,e10.4)

stop ’4uvprime-A-OX: normal termination’

c

cccc-cccclcccc-cccc2cccc-cccc3cccc-cccc4cccc-ccccScccc-cccc6cccc-cccc7cc

c
.

.

c ERROR HANDLING IS DONE HERE

c

2000 continue

stop ’tAvg-P-OPENPAIL: Error opening input data file.’

2010 continue i fil

write! * ’(a80)’) n

stop ’4Avg-P-ONLY4: Input file contains only connents’
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C

2020

c

2030

c

2040

C

2050

2070

continue

write! *, ’(a80)’) outfill

stop ’4Avg-P-OPENERR: Error opening NV output file’

continue

write( *, '(a80)') outfi12

stop ’4Avg-P-OPENERR: Error opening stats output file’

continue

stop ’4Avg-E-EOF: Error reading velocity frame file’

continue

write( *, ’(a80)’) basfil

stOp ’SAvg-F-BADFRH: Base data frame is bad (makfrm)'

continue

stop ’iAvg-P-NODATA: No data frames were read'

end



77

ProgramLVELPLOT

program velplot

c

c this program makes gnuplot files which will plot

c velocity vector fields. It uses averaged locations for plotting

c ensembled velocity fields.

c

c Author:

c H. Sean Hilbert

c

real Dx,Dy - I* datum x and y locations */

real Vx,Vy /* averaged velocity locations */

real conv /* to convert pixels to mm */

character*80 junk

c

conv - 0.0342 /* mm/pixel */

c

c read in the points and make the output file

c

Open(1, file-’datum.pts’) /* base point data *I

open!2, file-’stats_nc.junk’) I* stats output from Average.F */

open!3, file-’gnuplot.aro’) /* output file *I

c

c read in junk lines before data

c

read!2,1200) junk

read!2,1200) junk

read!2,1200) junk

read!1,1200) junk

c start reading loop

do 100 i-1,44 /* 44 is 4 of points */

read!1,1000) Dx,Dy

read!2,1200) junk

read!2,1100) Vx

read!2,1100) Vy

Dy - (-Dy + 1024) * conv /* upside down 8 convert */

Dx - Dx * conv /* convert only */

Vx - Vx * conv

Vy - Vy * conv

write!3,1300) Dx,Dy,Vx,Vy

100 continue

1000 'format!8x,f4.0,7x,f4.0)

1100 format!6x,f5.2)

1200 format(a80)

1300 format(’set arrow from ’,f5.1,’,'.f5-1a' t0 ',f5.1,’,’,f5.1)

stop

end
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0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

100

program plotit

Description: This program will read in location data, convert it

to the proper units, and combine it with any other data in an

output file. This output file can be used as a data file for

pv-wave for example.

Author:

H. Sean Hilbert

History:

<hsh> verl.0 -- Used for crunching two-stroke data

Variables:

real conv

real data,Dx,Dy

character*80 junk

conv - 0.0342 /* mm/pixel */

Get data from files

open(1,file-’datum~pts’)

open(2,file-’prime.out')

open!3,file-’tenergy.out’)

read!1,1000) junk I* read in junk lines */

print*, junk

read!2,1000) junk

Start reading loop

do 100 i-1,43 /* 43 is 4 of points ‘/

read!1,1100) Dx,Dy

read!2,1200) data

Dy - (-Dy + 1024) ’ conv /* upside down and convert */

Dx - Dx * conv

print*, Dx,Dy,data,i

write!3,1300) Dx,Dy,data

continue

1000 format(a80)

1100 format!8x,f4.0,7x,f4.0)

1200 format!49x,e10.4)

1300 format!flO.5,f10.5,f10.2)

stop

end
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subroutine spatave(vel)

c

c

c This subroutine averages the x and y velocities over any given

c frame and prints out the statistics for them.

c

c

c Author:

c H. Sean Hilbert

c

c History:

c <hsh> 9 oct 1990 -- v1.0 only u’ and v’ calculated

c

4 include 'vorticity.h'

c

real toth,totVy,anv,Vyav,conv /* totals, averages, etc *I

‘991 VPrNIHoXPtBIZ) I‘I array for u’,v’ */

integer NumPts

external NumPts

n-NumPts(vel,4)

print*,n

toth - 0.0

totVy - 0.0

c

c open output file

c

open(unit-11,file-’uvave.out’)

c

c set conversion factor from pix/frame to mm/sec

c

conv - 0.0342/0.00014

c

c add ’em up

c

do 100 i-1,n

toth - toth + vel!i,Vx)

totVy - totVy + vel!i,Vy)

100 continue

c

c calculate averages

c

'anv - toth/n

Vyav - totVy/n

c

print*,anv,Vyav

c calculate u’ and v’

c

write(11,1000)

do 150 i-1,n

Vprm(i,X) - (vel!i,Vx) - anv) * conv

Vprm!i,¥) - (vel!i,Vy) - vyav) * conv

write(ll,1100)i,Vprm!i,X)*Vprm(i,Y)

print*,i,Vprm(i,X)*Vprm!i,!)

150 continue

c

1000 format!’ Reynolds stress using u” and v” from

+spatially averaged frames (in mm**2/sec**2)')

1100 format(’ Reynolds stress at ’,i2,’ is ’,e14.4)

c

return

end
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Subroutine GETTRN

subroutine getfrm! framel, frame2, HmPix, dt, UnDim, ierr)

c

4 define UPSIDE_DONN

c4 define HFRC

<H>ichael <P>i1m <R>eader <C>oords

define YYMIN 70.0

actually -YYMIN .. r - x + XYMIN

define XXHIN 30.0

define YSPLIT 5.217881548

define XSPLIT 5.217881548

The conversion is:

Y - (merc + YYHIN) * ISPLIT and similarly for X.

Description:

Read in the data files, storing the points in PRAMEI and PRAMEZ.

Return Values:

X,! points in framel and frame2

ierr - 0 if no error occurred

History:

<cpg> aug 87 --- v1.0

<cpg> 31 may 89 v1.1 -- added MmPix and dt to the parameter list

<hsh> 25 sep 90 -- changed file handling routines

€
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cccc-cccclcccc-cccc2cccc-cccc3cccc-cccc4cccc-cccc5cccc-cccc6cccc-cccc7cc

c

4 include 'vorticity.h'

c

character'80 filnaml, filnam2

real Xoffset, Yoffset, MmPix, dt

integer NumPts

external NumPts

logical UnDim

c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCC

C

c INITIALIZE both framel and frame2

c

_do 1 i-l, Haths

framel! i,X) - 0.0

framel! i,X) - 0.0

frame2! i,X) - 0.0

frame2! i,X) - 0.0

1 continue

c

C PRAMEI
'

1000 format(’ Please enter the name of the file which contains I

+ ’ the data for frame 1.') '

1010 format(’ Error opening the data file ’,a80/’ Please try again. /)

10 continue

c return here on error 41

filnaml - ’lusr2/hilbert/bin/datum.pts’

write( *, 1000)

call getline! filnamd)

call makefrm! framel, filnaml, ierr)

n - NumPts! framel, 2)

if( ierr.eq.1) then

c
try again if error opening the frame data file

write( *, 1010) filnaml

goto 10
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else if! ierr.ne.0) then

c
calling routine will have to deal with the error
return

endif

c

c PRAMEZ

1020 format(' Please enter the name of the file which contains’/
+ ’ the data for frame 2.’)

20 continue

filnam2 - ’Iusr2Ihilbert/bin/grid1.pts’
write( *, 1020)

call getline! filnam2)

call makefrm! frame2, filnam2, ierr)

if! ierr.eq.1) then ‘

write! *, 1010) filnam2

goto 20

else if! ierr.eq.0) then

C get the X- and Y-offsets for this frame

write( *, 1030)

read( *, *) Xoffset, Yoffset

n - NumPts! frame2, 2)

do 30 i-1, n

frame2! i,X) - frame2(i,X) - Xoffset

frame2! i,X) - frame2!i,Y) - Yoffset

30 continue

C d’s here are dummy variables, not used...

call convert! d1, d2, HmPix, dt ,UnDim,0)

return '

endif

1030 format(' Please enter the X- and Y-offsets for frame 2.’/

+’ They should be chosen such that (0,0) in frame 1 is the'/

+’ point (Xoffset, Yoffset) in frame 2.’)

end
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Subroutine mum
0
0
0
0
0
0
0
0
0
0

CCCCCCCCCCCCCCCCCCCCCCCCCC

C

subroutine makefrm! frame, filnam, ierr)

open the frame data file

throw away the first (descriptor) line
while not EOP

find out how many points are in the next set
read X values

read I values

convert X and Y to a std coord system
and while

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

4 include 'vorticity.h' .

C

C

integer set, start

character‘80 filnam

character*80 linel. line2, line3, junk
integer HowHany

external HowHany

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

1000

1010

1020

2000

2010

2015

2020

open! 3, err - 2000, file-filnam, status - ’old’)
print’, ’ Reading data from ’,filnam

format! a80)

format(8x,f4.0,7x,f4.0)

format(’ Zero objects found in coordinate set ’,iZ,’.’)
read( 3, 1000, end-2010) junk

start-1

start stores the current number of points that have

been read in.

set - 0

continue

this command reads in data that is produced by
the SAMPLE command in XH. it does not read in data
from command files written for Megavision.

read(3,1010,end-2020,err-2050)frame!start,X),frame!start,¥)

print*,start,frame!start,X),frame!start,¥),X,Y

startmstart+1

goto 100

continue

error opening the frame data file

ierr - 1

return

continue

empty file

ierr - 2

close! 3)

return

continue

Too many points

print*,’Can”t store all the points from this frame.’

continue

end of file --- OX
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close! 3)

ierr - 0

ifdef NFRC

do 2025 i-1,start

frame!i,!) - (frame!i,Y) + YYMIN) * YSPLIT

framO(i,X) - (frame(i,X) + XXMIN) ‘ XSPLIT

continue

endif

ifdef UPSIDE_DOWN

do 2030 i-1,start

frame(i,Y) - -frame!i,Y) + 1024.

continue

endif

return

continue

wrong number of lines. three should appear at once --

OBJ NUMBER / X-COORDS / Y-COORDS ---> Frame probably incorrect

ierr - 3

close! 3)

return

end
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0
0
0
0
0
0
0
0

4 ifdef

1020

4 endif

c

subroutine getline! line)

Prompting needs to be done before calling getline.

Input:

line initially contains the default value

Return value:

line contains the output

character'80 line, inline, blank

character*1 comment

data blank/ ’ ’/

data comment/’4’]

format(’ Default: ’,a80)

format! a80)

write! *, 1000) line

continue

return here if the line is a comment

read! *, 1010, end-200) inline

DEBUG

write( *, 1020) inline

format(’ getline: ’,a80)

if! inline!1:1).eq.comment) goto 100

if! inline.ne.blank) then

line-inline

else

don’t change the line....!default was accepted)

endif

return

continue

EOE was detected

‘line - blank

return

end

real function getreal! prompt)

character*80 prompt

real value

call getline! prompt)

read( prompt, ’(f10.8)') value

getreal - value

return

end
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1000

+4

+0

1005

+I

subroutine Velocities! framel, frame2, match, vel)

Description: vel_maker computes the position and both

components of the velocity vector between matching points

in framel and frame2.

The position is assumed to be at the midpoint between the two

matching points. If there is no matching point in.FRAMEZ for

some point in FRAMEl !match(i) - 0), the position and velocity

components are left 0.

The initial “velocity“ is in dPixels. A conversion for pixels

to real units of measure, and knowledge of dTime between frames

is required so that we can calculate the real velocity. This

will be done in a subsequent routine.

Author: Chuck Gendrich

History:

August, 1987 v1.0

May, 1989 v1.1 -- permit a base velocity in the Y-direction, too.

Sept, 1990 v1.2 -- <hsh> remove turb3d stuff and redefine

match(i)

CCCCCCCC1CCCCCCCCCZCCCCCCCCC3CCCCCCCCC4CCCCCCCCCSCCCCCCCCC6CCCCCCCCC7CC

include 'vorticity.h"

character’BO line

real baser, baseVy

integer NumPts

real avg, getreal

external avg, NumPts, getreal

initialize the velocity descriptor array

do 10 i-l, Maths

vel(i,X) - 0.0

vel(i,X) - 0.0

vel!i,Vx) - 0.0

vel!i,Vy) - 0.0

continue

write( *, 1000)
'

format(’ Please enter how far a point moving at the freestream /

velocity will move between frames.’/ -

(Vx) - (deltaX) + baser’)

line - ’ 0.0000 pixels/frame’

baser - getreal! line)

write( *, 1005)
'

format(’ Please enter the I base velocity such that: I

(V?) - (delta!) + baseVy’)

line - ’ 0.0000 pixels/frame’

baseV - etreal! line)

scaley- 4?0 * exp! -abs!baser) I 28.0) I* crazy, isn’t it? :-) *I

n - NumPts! framel, 2)

i - 0

do 100 -1 n

makeja corresponding entry in vel for each point in framel

if( match!j).ne.0) then
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c we have something to work with

c

i - i+1

vel(i,X) - avg(frame1! j,X), frame2! match(j).X))

vel(i,X) - avg!frame1( j,Y), frame2! match!j),Y))

vel!i,VX) - frame2(match!j),X) - framel(j,X) + baser

vel!i,Vy) - frame2(match(j),Y) - framel(j,Y) + baseVy

c

endif

100 continue

c

c Now construct the output file.

c

open! unit-4, file-’vel.q’)

c unit4 -- flow field information

c

c write out the X and Y locations, and the velocities

write(4,1030)

write( 4, 1020) (vel! j,X),vel(j,Y),vel!j.VX)

+ lvel(jOVY)ijIj-lli)

c

1020 format! 4(f10.5,3x),i4)

1030 format(4x,’X’,13x,’¥’,12x,’Vx’,11x,’Vy’,9x,’I')

return

end
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subroutine fluids! vel, poly, irreg, MmPix, dt, UnDim, ierr)

Description: calculates the fluid mechanical properties of the

flow. The object is to produce calculations of

(1) uv

(2) Hz (vorticity)

Output: all output will be written to stdout. If you want it in

a file, put a tee on the process when you run it.

e.g.: freyja> vorticity I tee output_file

Procedure: First the conversion factor for pixel <--> mm is

obtained, along with the time between each frame and the

absolute Y offset for both frames.

Author: Chuck Gendrich

History:

19 sep 90 <hsh> -- removed iris commands,removed spatial

derrivative stuff

18 aug 89 <cpg> -- resurrected v1.4 with the args for v1.6

7 apr 88 <cpg> v1.4 -- defines a colormap based on Nzlmin-max]

22 jan 88 <cpg> v1.3 -- graphics to draw the polygons

16 aug 87 <cpg> v1.2 -- added the non-dim title stuff

15 aug 87 <cpg> v1.1 -- removed triangle logic. see older

versions to recover it.

August, 1987 v1.0 -- lots of linear interpolation. ugh.

ccccccccclccccccccc2ccccccccc3ccccccccc4cccccccccSccccccccc6ccccccccc7cc

C

c4 define DEBUG

4 include "vorticity.h'

C

C

0
0

0
0
0
0

0
0

0
0
0
0

0
0
0
0

real uv

integer NumPts, NumPoly

external NumPts, NumPoly

integer a, b

a and b point to the vertices of the side along which

the velocity is to be integrated next

real suba, subi

real area, intgrl, GAMMA

area of the polygon which is integrated

integral of V * ds around the polygon

GAMMA is the total circulation throughout the frame

logical UnDim

from convert... TRUE if results are being UnDim’d

character*2 num

character's XYunits, result

character*7 Runits

for titling the output (depending on whether

the results are being non-dimensionalized or not...

real st! MaxPoly), NZmax, NZmin

Stores the values of Hz, their max, and.min.

p - NumPoly! poly)
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Subroutine PLUIDS
0
0
0
0

n - NumPts! vel, 4)

if! UnDim) then

XYunits - ’(noD)’

else

XYunits - ’(mm)’

endif

-- vorticity

if! GoOn()) than

title - ’vorticity’

endif

result - ’ Nz ’

write(9,1300)title

call CutHere! title)

if! UnDim) then

Runits - ’(noD)'

else

Runits - '(1/sec)’

endif

write( *, 1000) XYunits, XYunits, result, Runits

GAMMA - 0.0

N2min-+999999.

WZmax--999999.

do 100 i-l, p

area - 0.0

intgrl - 0.0

do 50 j-1,3

a - poly(i,j)

b - poly(i,j+1)

a and b are the endpoints of the side along which

V * ds is to be integrated.

call integrt! a, b, vel, suba, subi)

area - area + suba

intgrl - intgrl + subi

continue

now for the last side (4 --> 1)

a ' poly!i.4)

b - poly(i.1)

call integrt! a, b, vel, subs, subi)

area - area + suba

intgrl - intgrl + subi

Nz - -intgrl I area

mdnus because V*dS is taken in the wrong direction

st(i) - Nz

if! Nz.lt.N2min) NZmin-Nz

if! Nz.gt.N2max) "Emaxdflz

call centroid! poly, vel, i, x0, y0, ierr)

if( ierr.ne.0) goto 100

intgrl - intgrl * 0.0342 *0.0342 I 0.00014

converts intgrl to m’m/sec

circ - (pix**2 I frame) * (frame/sec) * (mm/pix)**2

GAMMA - GAMMA - intgrl

minus because V*dS is taken in the wrong direction
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Subroutine ELUIDS

100

600

1000

1200

1300

call convert! x0, y0, Hz, 0.0, UnDim,i)

continue

write(9,1200)GAMMA

close(9)

if! GoOn!)) then

continue

endif

Reynold’s stress

title - ’instantaneous Reynolds stress’

write(10,1300)title

if( UnDim) then

result - ’ uv ’

else

result - ’uv (m’

Runits - ’mIs)“2 ’

endif

call CutHere! title)

write( *, 1000) XYunits, XYunits, result, Runits

do 600 i-l,n

uv - vel!i,Vx)*vel!i,Vy)

call convert! vel(i,X), vel(i,X), 0, uv,UnDim,i)

continue

format(’ X’,a5,’ Y’,a5,3x,a5,a7)

format(’Total circulation is ’,f12.5,’ (mm‘2/sec)’)

format!a80)

return

end
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Subroutine INTEGRI
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

subroutine integrt! p1, p2, vel, area, intgrl)

Description: Integrating from point p1 to point p2 (whose X- and

Y-coordinates are described in vel), return the area under the

curve and the value of V * ds. Simple trigonometric and

calculus identities are used: e.g., the area between a line and

the x-axis is 1/2 (y1 + y2) (x2 - x1) and

53d; - |V|*|s|*cos! the angle between the two vectors)

Temporary variables are used to store intermediate results so

that the steps are clear.

Author: Chuck Gendrich

History:

August, 1987 v1.0

ccccccccclccccccccc2ccccccccc3ccccccccc4cccccccccSccccccccc6ccccccccc7cc

C

c4 define DEBUG

4 include "vorticity.h'

C

0
0
0
0
0
0
0

0
0

0

integer p1, p2

real area, intgrl

real avg, dist, tanl

external avg, dist, tanl

real Ubar, Vbar, V, s, thetaV, thetas

Ubar is the average Vx for a side

Vbar is the average Vy for a side

V is the magnitude of the velocity vector

s is the length of a side

thetaV is the angle V makes with the +x axis

thetas is the angle 5 makes with the +x axis

real pi180

parameter! pi180 - 0.017453293) '

piI180 for converting degrees to radians

'if! p1.eq.0.or.p2.eq.0) then

we’re integrating to or from a non-existent point

area - 0.0

intgrl - 0.0

return

endif

x1 - vel! p1, X)

Y]. - v.1( P1, Y)

x2 - vel! p2, X)

y2 - vel! p2, Y)

dx - x2 - x1

dy - y2 - yl

Ubar - vel! p1, Vx)

Vbar - vel! p1, Vy)

Ubar - avg! vel!p1,Vx), vel!p2,Vx))

Vbar - avg! vel!p1,VY). vel!p2,Vy))

V - sqrt! Ubar*Ubar + Vbar'Vbar)

s - sqrt! dx*dx + dy*dy)
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Subroutine INTEGRT

C

c

4 ifdef

1000

+

+

1010

4 endif

thetaV - tanl! Vbar, Ubar)

thetaS - tanl! dy, dx)

intgrl - V * s * cos! (thetaV - thetaS) * pi180)

area - 0.5 ‘ (yl + y2) ' dx

DEBUG

write( *, 1000) p1, p2, dx, dy, Ubar, Vbar, V, s, thetaV, thetas

format(I' intgrt: from ',i2,’ to ',i2,’. dx: ’,f8.3,' dy: ',

f8.3/’ Ubar: ’,f8.3,’ Vbar: ’,f8.3,’ --> V: ’,f8.3/

’s: ’,f8.3,’ thetaV: ’,f9.3,’ and thetas: ’,f9.3)

write!*, 1010) intgrl, area

format(’ line intgrl: ’,f12.3,’ area: ’,e14.3/)

return

end
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Integer function NumPts

C

integer function NumPts! points, dim)

4 include 'vorticity.h'

C

C

integer dim

real points! Maths, dim)

n - 0

continue

if! points(n+1, X).eq.0.0.and.points(n+1, Y).eq.0.0) goto 20

n - n+1

if! n.eq.Maths) goto 20

goto 10

continue

“n" now contains the number of points

NumPts - n

return

end

integer function NumPoly! poly)

4 include "vorticity.h'

C

100

n - 0

continue

if( poly!n+l,1).eq.0) goto 200

n-n+1

if! n.eq.MaxPoly) goto 200

goto 100

continue

'n“ now contains the number of polygons

NumPoly - n

return

end
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Subroutine CENTROID

subroutine centroid! poly, vel, 1, x0, y0, ierr)

Description: The centroid of a four-sided figure is

calculated. This is located at the intersection of the two

lines which join the midpoints of opposing sides.

Author: Chuck Gendrich

History:

August, 1987 _v1.0

0
0
0
0
0
0
0
0
0
0

ccccccccclccccccccc2ccccccccc3ccccccccc4cccccccccSccccccccc6ccccccccc7cc

c

c4 define DEBUG

4 include ”vorticity.h"

c

real small

parameter! small - 0.00001)

c

real avg

external avg

c

real x0, y0

C the coordinates for the centroid A B

c --------- .

c we’ll define the polygon as one consisting of \ I

c four corners, A, B, C, and D. The coordinates \ l

c of the corners are Ax, Ay, Bx, By, etc.... a,b,c, \ I

c and d point to the appropriate entries into vel. D.__’ :C

c

.—

integer a,b,c,d

real Ax, Ay, Bx, By, Cx, Cy, Dx, Dy

c

real m0, m2, b1, b2

C we’ll calculate the slope and intercept of both lines

c which join the midpoint of opposing sides. To find the

C intersections, we let yl - y2 and solve for x. Delng

C this we find x0 - -(b2 - bl)I(m2 - nu). Plugging back

C in, we find yO - m1 * x + b1 (- m2 * x0 + b2....)

c

real deltaY, deltaX, yl, x1, y2, x2

c .

ccccccccclccccccccc2ccccccccc3ccccccc
cc4cccccccccSccccccccc6ccccccccc7cc

c

a - poly! i,1)

b - poly! i,2)

c - poly! i,3)

d - poly! i,4)

Ax - vel! a,X)

Ay - vel! a,X)

Bx - vel! b,X)

By - vel! b,X)

Cx - vel! c,X)

Cy - vel! c,X)

Dx - vel! d,X)

Dy - vel! d,X)

c

4 ifdef DEBUG

write( *, 990) a,Ax,Ay,b,Bx,By,c,Cx,Cy,d,Dx,Dy
--'/

990 format(I’ centroid: findigg'the)centroid with these corners

': ' {8.3 ',',f8.
'

1000 + (;:};:£(v Nierd centroid (no dx or dy) at (’,f8.3,’,’,f8.3,’)')

1010 format(’ centroid: neither line vertical. ma: ,f8.3,
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Subroutine CENTROID

+I

m2: ',f8.3/' b1: ',f8.2,' b2: ',f8.2,' --> (',f8.3,',',

+ £8-3o')'/)

1020

0
0
0
*

0
0

0

+

format(’ centroid: ’,a6,’ vertical. m: ’,f8.3,' b: ',

f8e3/' ---) (',f8.3,"',f8.3,')'/)

endif

initialize x0 and ierr (x0 must be known later)

x0 - -99999.0

ierr - 0 '

line 1 first

yl - ‘Vg( AY: BY)

x1 - avg! Ax, Bx)

delta! - avg! Dy, Cy) - yl

deltaX - avg! Dx, Cx) - x1

if( abs! deltaX).1t.small) then

let’s see if we’ll be dividing by zero

if! abs! deltaY).lt.small) then

midpt(AB) - midpt!CD) (7) and the centroid is there

yO-yl

x0 - x1

ifdef DEBUG

write! *, 1000) x0, y0

endif

return ,

else if! abs! deltaX/delta!).1t.small) then

midpt(AB) ---> midpt(CD) is a vertical line

nu - x0

x0 - x1

endif

else

m1 - delta! / deltaX

b1 - yl - ml*x1

endif

line 2 next

y2 - avg! Ay, Dy)

x2 - avg! Ax, DX)

delta? - avg! By, Cy) - y2

deltaX - avg! Bx, Cx) - x2

if! abs! deltaX).lt.small) then

if! abs! deltaY).1t.small) then

midpt!BC) - midpt!DA) (2) and the centroid is there

yO-y2

x0 - x2

ifdef DEBUG

write( *, 1000) x0, y0

endif .

return

else if! abs! deltaX/delta!).lt.small) then

midpt!BC) ---> midpt!DA) is a vertical line

if( x0.ne.-99999.0) then

the other line was also vertical

Punt!

ierr - 4

return

else
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Subroutine CENTROID
0
0
0
0

0

else

endif

m2 - x0

x0 - x2

endif

endif

m2 - delta! I deltaX

b2 - y2 - m2*x2

now for the intersection (i.e., the centroid)

calculate x0 if we still need to

if( x0.eq.-99999.0) then

endif

neither line was vertical

x0 - -!b2 - b1) I (m2 - nu)

y0 - m2 * x0 + b2

ifdef DEBUG

write( *, 1010) m1, m2, b1, b2, x0, y0

endif

return

calculate y0 using the appropriate slope and intercept.

if! ml.eq.-99999.0) then

else

endif

return

end

line 1 is vertical so use m2 and b2

ifdef DEBUG

write! *, 1020) ’line 1’, m2, b2, x0, y0

endif

y0 - m2 * x0 + b2

use m1 and b1

yO - m1 * x0 + b1

ifdef DEBUG

write( *, 1020) ’line 2’, ad, bl, x0, y0

endif
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Subroutine GITRIAL

real function getreal! prompt)

c

character'80 prompt

real value

c

call getline! prompt)

read( prompt, ’(f10.8)’) value

c

getreal - value

return

end



example polygon descriptor filg7

31

ULH URI-1 LLB LRH

1 2 10 9

2 3 11 10

3 4 12 11

4 5 13 12

5 6 14 13

6 7 15 14

7 8 16 15

9 10 18 17

1o 11 19 18

11 12 20 19

12 13 21 20

13 14 22 21

14 15 23 22

15 16 24 23

17 19 26 25

19 20 27 26

20 21 28 27

21 22 29 28

22 23 3o 29

23 24 31 30

25 26 33 32

26 27 34 33

27 28 35 34

28 29 36 35

29 3o 37 36

3o 31 38 37

32 34 4o 39

34 35 41 4o

35 36 42 41

36 37 43 42

37 38 44 43
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Figure 1.1a. Ignition has just occurred, and the combustion

chamber is full of expanding exhaust gasses which are

pushing the piston down. As the piston moves downward it

begins to pressurize the lower crankcase, pushing fresh

charge up through the transfer ports.
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Figure 1.1b. As the piston reaches bottom dead center

pressure in the lower crankcase has pushed fresh charge up

through the transfer ports into the cylinder. There the loop

scavenging process takes place and forces the burnt exhaust

gasses out of the open port.
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Figure 1.1c. The piston moves back up the cylinder closing

off the exhaust ports as the last remaining exhaust gasses

are pushed out. The fresh charge in the combustion

chamber begins to undergo compression. The piston's

upward travel in the cylinder creates a vacuum in the lower

crankcase that pulls fresh charge from the intake track

down into the crankcase.
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Figure 1.1d. As the piston reaches top dead center the

ignition system discharges a spark, and combustion will

once again take place. Meanwhile fresh charge continues to

be drawn into the crankcase. The V-shape reed valve will

not allow the charge to flow back out into the induction

track once the crankcase has become pressurized again.
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Figure 1.2 Schematic of scavenging flows at BDC in a five transfer port

engine arrangement.
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Figure 2.1. Tuned exhaust pipe dimensions showing diameters and lengths in millimeters.
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Figure 2.2. Photograph of the optical head assembly.



 

. - 101F——

  
   

 o», T

@36 o

 

TABLE LAYOUT
S 4 .g-m-1.e'..-:-;~4:~.r..:'

3 :;~v~
.
. 1', , .
I. ;‘ {lav ”Na-.Ffi

: ‘ 4'"

7

 34*: *

ii‘ 43,:

@344 ,
in”:

@4

 

: 4

. '5. . I

,

. ‘ . T’

: . ._ x

r? -. ,r;

Lem/$4

“.3272? flay, «(‘- >3,

‘ 4” 7:-

13?u »w- wee-NM .»;- -_l,\w‘wl 
  

 

 

Figure 2.3 Table layout. (1) Engine controller, (2) and (3) Nitrogen tanks, (4) Laser

controller, (5) Excimer laser, (6) Monitor/VCR, (7) Engine/laser/camera electronic

timing box, (8) 10HP eddy current motor, (9) Engine shown with exhaust pipe, (10)

Biacetyl evaporation chamber, (11) and (16) beam dividers, (12) crank angle encoder,

(13) and (15) 308nm dialectrically coated mirrors, (14) 308nm 50:50 beam splitter.

 



 

 

 
 
 g,

 

  

Figure 2.4. Schematic of the optical setup used to produce the grid of laser

lines in the engine.



103

 

Figure 2.5. Beam divider diffraction patterns with a Helium-Neon laser.
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Figure 2.6. Side view of the beam divider showing the steel base, mirrors, and reflection.
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Biacetyl

from Nitrogen tank

Figure 3.1. The biacetyl delivery system.
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use use Engine

Laser
 

f—L

  
Hw—

Camera

.L=.Las.er Pulse Width D.=D.e|ay d=Duration

Figure 3.2. A time line illustrating the tinting of the engine, the laser, and the

camera during data acquisition.
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Figure 3.4. Decomposition of the velocities used to

calculate the circulation around a grid box.

 Figure 3.5. Four different raw data grids as

photographed in the engine.
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Figure 4.2. Contour plots of turbulence intensities in each coordinate direction and of

turbulence kinetic energy.
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Figure 5.1. Pr0posed biacetyl delivery system.
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Delivery Rate For SR=O.8
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Figure Bl. Delivery rate vs. RPM for a 124cc engine with SR=0.8.
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Nitrogen Delivery Coliburotion -

  '1 1'11 . I "I

175 250 325 400 475

Delivery (cc/sec)

Figure 82. Calibration for nitrogen delivery.
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Phosphatesclng

Energy

   
D=delay d=duration

Figure C1. Example phosphorescence decay rate curve.
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Camera Duration vs. Engine Speed

  
RPM

(Arbitrary Linear Scale)

Figure C2. Camera duration vs. engine speed.
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