—___ r w w ‘1 LIBRARY Michigan State I University 5. .I‘ PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. DATE DUE DATE DUE DATE DUE JUL L: I———j Pr I mfiT—fi MSU Is An Affirmative Action/Equal Opportunity Inaitution cMchmS-pd THE EVALUATION OF A RECOMMENDED TEST PROCEDURE FOR QUANTIFYING THE TRIBOELECTRIC CHARGING PROPENSITY OF CONDUCTIVE, DISSIPATIVE AND INSULATIVE FILMS BY C. William Hall A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE School of Packaging 1991 ABSTRACT THE EVALUATION OF A RECOMMENDED TEST PROCEDURE FOR QUANTIFYING THE TRIBOELECTRIC CHARGING PROPENSITY OF CONDUCTIVE, DISSIPATIVE AND INSULATIVE FILMS BY C. William Hall This investigation attempted to examine a possible test procedure. for quantifying the triboelectric charging tendencies of conductive, dissipative and insulative packaging film materials against various cylinders made of quartz, brass and Teflon. It also looked at the effect of cylinder weight and the effect of angle of release. Its intent was to evaluate these materials by simulating the potential static charge build-up on the electronic products packaged in these materials while in transit or during handling. The research found that there was not a significant difference between the various film material classifications in the generation of a triboelectric charge. The effect of cylinder type did show a significant effect with Teflon generating the highest negative charge on all film materials. There was a significant effect of cylinder weight with the heavier brass cylinders producing a larger charge on some film materials. The angle of release does show a significant charging effect with the increase in the degree of incline. copyright by CHARLES WILLIAM HALL 1991 This work is dedicated to a group of people who have contributed and sacrificed in so many ways during my entire academic career. To my family, thank you. Their unselfishness and support has provided me the opportunity to obtain my aspirations. Also, to a person who means more to me than anything. She has shown tremendous amount of patience, and has helped me through the earlier periods of this venture. For without her help, I might not have developed into the person I am today. Thank you for your inspiration H.M.K. iv ACKNOWLEDGMENTS I would like to extend my indebtedness to Dr. Paul Singh for' his efforts in 'this. project. His cooperation and invaluable resources made it possible for me to pursue this undertaking. To Dr. Gary Burgess for his intuitive insight and congenial support. To Dr. Don Reinhard for his technical assistance and time. A special thanks to Steve Fowler at Cryovac for his pertinent information, time, and cooperation. I would like to thank the School of Packaging for the financial contributions given at periods when they were needed the most. I would also like to express my immeasurable gratitude to Inacomp Computer Centers and IBM of Lansing for their flexibility and.tolerance through my academic endeavors. TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS 1.0 INTRODUCTION 2.0 EXPERIMENTAL DESIGN 3.0 DATA AND RESULTS 4.0 CONCLUSIONS APPENDIX APPENDIX A: LIST OF REFERENCES vi page vii xi 10 21 39 41 65 Table Table Table Table Table Table Table Table Table Table Table Table Table Table A-1. A-2. A-3. A-4. A-S. A-6. A-7 0 LIST OF TABLES TYPICAL PRIME SOURCES AND ANNUAL STATIC LOSSES TEST CYLINDERS USED FILM MATERIAL AND CYLINDER SPECIFICATIONS AVERAGE CHARGE OF EACH CYLINDER TYPE IN nC. AVERAGE CHARGE OF EACH CYLINDER TYPE IN nC (continued). CHARGING OF ALL FILM ON COPPER PLATE IN nC. INCLINE PLANE 9 15 DEGREES RESIDUAL CHARGE OF INDIVIDUAL CYLINDERS CHARGING PROPENSITY OF MATERIAL 1 IN INCLINE PLANE 9 5 DEGREES CHARGING PROPENSITY OF MATERIAL 1 IN INCLINE PLANE @ 10 DEGREES CHARGING PROPENSITY OF MATERIAL 1 IN INCLINE PLANE 9 15 DEGREES CHARGING PROPENSITY OF MATERIAL 1 IN INCLINE PLANE 9 20 DEGREES CHARGING PROPENSITY OF MATERIAL 2 IN INCLINE PLANE C 5 DEGREES CHARGING PROPENSITY OF MATERIAL 2 IN INCLINE PLANE Q 10 DEGREES CHARGING PROPENSITY OF MATERIAL 2 IN INCLINE PLANE C 15 DEGREES vii nC. nC. nC. nC. DC. nC. nCe page 15 18 25 26 37 38 41 42 43 44 45 46 47 Table Table Table Table Table Table Table Table Table Table Table Table Table A-11. A-12. A-13. A-14. A-15. A-16 O A-17. A-18. A-19 O A-20. LIST OF TABLES (continued) CHARGING PROPENSITY OF MATERIAL INCLINE PLANE 9 20 DEGREES CHARGING PROPENSITY OF MATERIAL INCLINE PLANE 9 5 DEGREES CHARGING PROPENSITY OF MATERIAL INCLINE PLANE 9 10 DEGREES CHARGING PROPENSITY OF MATERIAL INCLINE PLANE Q 15 DEGREES CHARGING PROPENSITY OF MATERIAL INCLINE PLANE @ 20 DEGREES CHARGING PROPENSITY OF MATERIAL INCLINE PLANE G 5 DEGREES CHARGING PROPENSITY OF MATERIAL INCLINE PLANE G 10 DEGREES CHARGING PROPENSITY OF MATERIAL INCLINE PLANE 6 15 DEGREES CHARGING PROPENSITY OF MATERIAL INCLINE PLANE G 20 DEGREES CHARGING PROPENSITY OF MATERIAL INCLINE PLANE 9 5 DEGREES CHARGING PROPENSITY OF MATERIAL INCLINE PLANE 9 10 DEGREES CHARGING PROPENSITY OF MATERIAL INCLINE PLANE @ 15 DEGREES CHARGING PROPENSITY OF MATERIAL INCLINE PLANE G 20 DEGREES viii IN IN IN IN IN IN IN IN IN IN IN IN IN nC. nC. nC. nC. nC. nC. nC. nC. nC. nC. nC. nC. nC. page 48 49 50 51 52 53 54 55 56 57 58 59 60 Table A-21. Table A-22. Table A-23. Table A-24. LIST OF TABLES (continued) CHARGING PROPENSITY OF MATERIAL 6 IN INCLINE PLANE @ 5 DEGREES CHARGING PROPENSITY OF MATERIAL 6 IN INCLINE PLANE 9 10 DEGREES CHARGING PROPENSITY OF MATERIAL 6 IN INCLINE PLANE G 15 DEGREES CHARGING PROPENSITY OF MATERIAL 6 IN INCLINE PLANE G 20 DEGREES ix nC. nC. nC. nC. page 61 62 63 64 Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure 4. 5. 6. 11. 12. 13. 14. LIST OF FIGURES PARAMETERS IN THE TRIBOELECTRIFICATION PROCESS TRIBOELECTRIC SERIES CONDUCTIVE SUPPORT BOARD TEST CONFIGURATION CROSS-SECTION OF COEXTRUDED FILM AVERAGE CHARGE PER CYLINDER VS. MATERIAL @ 5 DEGREES AVERAGE CHARGE PER CYLINDER vs. MATERIAL G 10 DEGREES AVERAGE CHARGE PER CYLINDER Vs. MATERIAL G 15 DEGREES AVERAGE CHARGE PER CYLINDER vs. MATERIAL C 20 DEGREES AVERAGE CHARGE PER CYLINDER TYPE DEGREE OF RELEASE FOR MATERIAL 1 AVERAGE CHARGE PER CYLINDER TYPE DEGREE OF RELEASE FOR MATERIAL 2 AVERAGE CHARGE PER CYLINDER TYPE DEGREE OF RELEASE FOR MATERIAL 3 AVERAGE CHARGE PER CYLINDER TYPE DEGREE OF RELEASE FOR MATERIAL 4 AVERAGE CHARGE PER CYLINDER TYPE DEGREE OF RELEASE FOR MATERIAL 5 AVERAGE CHARGE PER CYLINDER TYPE DEGREE OF RELEASE FOR MATERIAL 6 V8. vs. vs. V5. V8. V5. Page 5 11 12 17 27 28 29 30 31 32 33 34 35 36 Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure 5. 6. 8. 11. 12. 15. LIST OF FIGURES PARAMETERS IN THE TRIBOELECTRIFICATION PROCESS TRIBOELECTRIC SERIES CONDUCTIVE SUPPORT BOARD TEST CONFIGURATION CROSS-SECTION OF COEXTRUDED FILM AVERAGE CHARGE PER CYLINDER VS. MATERIAL G 5 DEGREES AVERAGE CHARGE PER CYLINDER vs. MATERIAL 9 10 DEGREES AVERAGE CHARGE PER CYLINDER vs. MATERIAL G 15 DEGREES AVERAGE CHARGE PER CYLINDER vs. MATERIAL G 20 DEGREES AVERAGE CHARGE PER CYLINDER TYPE vs. DEGREE OF RELEASE FOR MATERIAL 1 AVERAGE CHARGE PER CYLINDER TYPE vs. DEGREE OF RELEASE FOR MATERIAL 2 AVERAGE CHARGE PER CYLINDER TYPE VS. DEGREE OF RELEASE FOR MATERIAL 3 AVERAGE CHARGE PER CYLINDER TYPE vs. DEGREE OF RELEASE FOR MATERIAL 4 AVERAGE CHARGE PER CYLINDER TYPE VS. DEGREE OF RELEASE FOR MATERIAL 5 AVERAGE CHARGE PER CYLINDER TYPE VS. DEGREE OF RELEASE FOR MATERIAL 6 Page 11 12 17 27 28 29 30 31 32 33 34 35 36 LIST OF SYMBOLS AND ABBREVIATIONS Symbol NQLQSiQn nC nanoCoulombs PTFE Polytetrafloroethylene (Teflon) RH Relative Humidity ASTM American Society for Testing and Materials EIA Electronic Industries Association ESD Electrostatic Discharge DIP Dual In-Line Package RF Radio Frequency xi 1 . 0 INTRODUCTION In the handling of static sensitive electronic components, there is concern that the packaged component, not just the package material, could accumulate static charges. These static charges can develop during shipment and handling as the component rubs against packaging materials. The static charges can transpire below the human sensitivity level of approximately 4000 volts, which may result into two predominant failure mechanisms, either an immediate failure of the device or a latent failure due to the oxidation of dielectric layers on these valuable components (Fuqua, 1986). The increasing use of insulating materials such as synthetic polymers and a reduction of size of components make these systems continuously more sensitive to electrostatic discharges (Menguy, 1988). The annual losses of these sensitive electronic components and subassemblies due to electrostatic discharge has been estimated in the billions of dollars (Jones, 1985) . Some typical static charge build-ups through everyday operations and the percentage of annual losses on a functional level are reported in Table 1 (Jones, 1985). Electrostatic charges can be generated either by electromagnetic induction or by the triboelectric effect. In 2 Table 1. TYPICAL PRIME SOURCES AND ANNUAL STATIC LOSSES MEANS OF ELECTROSTATIC VOLTAGES (volts) STATIC GENERATION 10 to 20 PERCENT 65 to 90 PERCENT RELATIVE HUMIDITY RELATIVE HUMIDITY WALKING ACROSS CARPET 35.000 1.500 WALKING OVER VINYL FLOOR 12,000 250 WORKER AT BENCH 6,000 100 VINYL ENVELOPES FOR WORK 7.000 600 INSTRUCTIONS COMMON POLY BAG PICKED UP 20,000 1,200 FROM BENCH WORK CHAIR PADDED WITH 18,000 1,500 POLYURETHANE FOAM FUNCTIONAL LEVEL LOSS I96) COMPONENT MANUFACTURING 16 - 22 SUBCONTRACTORS 9 - 15 CONTRACTORS 8 - 14 END USER 27 - 33 3 some instances, these two phenomena combine to generate Radio Frequency (RF) interference which transmits a traveling electromagnetic field that can induce currents in stationary or moving conductors resulting in possible damage to the components (ADE, 1981). Electromagnetic induction is produced when an electric or magnetic body is exposed to the influence of the field of force of another body (Dupuis, 1990) . A dielectric breakdown occurs in the insulators of semiconductor products when an induced internal electric field exceeds the electric field between the nuclei of an atom and the electrons which bond the atom together. The electrons are so attracted to the electric field that they break loose from their atoms. These freed electrons create a current which can easily burn through an insulator and cause a short circuit in the device (Huntsman, 1982). The purpose of this study is to evaluate a suggested test method for measuring the triboelectric tendencies of insulative, dissipative, and conductive films. It is the intent of this thesis to evaluate these materials by simulating the potential static charge build-up on the electronic products packaged in these materials while in transit or during handling. The ultimate goal is to accurately measure the electrostatic discharge (ESD) 4 protective properties of packaging materials. Triboelectric charging occurs when two dissimilar materials are brought into contact with one another and are then separated. This action will change the polarity of the materials by generating a static charge which causes electrons to be stripped from one material making it positive and leaving the other with a surplus of electrons, making it negative. The amount of surface electrification, or charge transfer is expressed by, IO II 0 * v (1-1) where: Q charge generated C = capacitance between the two objects V = voltage present at any specific instant The electrical charge generated is measured in Coulombs, where 1 Coulomb = 6.24 X 10“ electrons. In this study, the charge is represented in nanoCoulombs, where 1 nC = 6.24 x 109 electrons. The magnitude of charge depends upon the types of surfaces involved, the speed of physical movement, and various other parameters displayed in Figure ( 1) . These variables play nearly equal role in the triboelectric process. No one parameter dominates the total process (Fowler, 1988). W Tacticity (coefficient of friction) Smoothness Topology Viscoelasticity (conformability) S S a Morphology (amorphous, crystalline) Work Function Energy Level Fermi Level Electronegativity (metals) Purity Polymer Backbone Polymer sidegroups Physical State (gas, liquid, solid) Molecular Mobility Temperature QQEEQQL Time of Contact Area of Contact Number of Contacts (repeated contacts) Type of Contacts rubbing rolling point directional (reversal) Qggtgmigation (sgzfiacg) Humidity/Water Material transfer Surface Reactions Oxidation Reduction Sulfonation Fluoridation Particulate Grease/Oils etc. Figure 1. PARAMETERS IN THE TRIBOELECTRIFICATION PROCESS 6 To determine the polarity of materials, a triboelectric series chart is used as shown in Figure (2) (Electronic Industries Association, 1988). The series indicates the likely charge polarities after triboelectric charging. Two of the cylinders used in this study, quartz and Teflon, are at opposite ends of this triboelectric series spectrum. Brass was used as a control since it lies near the middle of the triboelectric series chart. Current classification of the film materials that are being used in this study are: conductive, dissipative, and insulative (EIA, 1988). According to EIA standards, conductive materials have a surface resistivity of less than 1.0 X 10’ ohms/square. Dissipative materials have a surface resistivity lying between 1.0 X 105 ohms/square but less than 1.0 X 1012 ohms/square. Insulative materials have a surface resistivity equal to or greater than 1.0 X 1012 ohms/square. The surface resistivity is the ratio of Direct Current (DC) to the current that passes across the surface of the film material. It is the resistance , measured in ohms, between two opposite sides of a square and is independent of the size of the square or its dimensional units (EIA, 1988). The physical property of resistivity is the most important attribute in determining resistance to the flow of these MATERIALS INCREAS INGLY POSITIVE QUARTZ A GLASS MICA HUMAN HAIR NYLON WOOL FUR LEAD SILK ALUMINUM PAPER COTTON STEEL WOOD AMBER SEALING WAX HARD RUBBER NICKEL, COPPER BRASS , SILVER GOLD, PLATINUM SULFUR ACETATE RAYON POLYESTER CELLULOID ORLON 0, SARAN ° POLYURETHANE POLYETHYLENE POLYPROPYLENE PVC (VINYL) SILICON TEELON 9 V INCREASINGLY NEGATIVE Saran is a registered trademark of Dow Chemical Orlon and Teflon are a registered trademark of DuPont Figure 2. TRIBOELECTRIC SERIES 8 electric charges. Although resistivity determines the rate of charge dissipation and static charge shielding, it theoretically has no relation to tribocharging (Baumgartner, 1987). Plastic films are typically electric insulators and generate considerable charges in use and during shipment. The plastic films used in packaging of electronic devices need some degree of electrical conductivity in the protection against ESD. In order to achieve this, three common techniques are used in the fabrication of these films; topical coatings, impregnation and use of additives. A topical coating is a conductive formulation applied to the surface of a plastic film. After being sprayed on or brushed onto the film, the coating becomes the conductive path for dissipating any electrostatic charge away from the component being protected. The static charge will flow through the conductive layer on the outside of the film to ground, instead of flowing through the device surrounded by the film. These coatings can provide various degrees of conductivity, depending upon the requirements of the products (Ryan, 1984). A second technique for creating conductivity in plastic film is through impregnation of conductive components such as carbon during the manufacturing process. The carbon acts as 9 an electrical conductor, draining away static charge build-up to ground and preventing the electronic component from ESD damage. The last method is to incorporate additives into the plastic film during the extrusion process. After the film is formed, the additives migrate to the material’s surface where it attracts a micro-thin layer of moisture from the surrounding atmosphere and retains it. The moisture layer, not the specific additive, is conductive (Armstrong, 1984). 2.0 EXPERIMENTAL DESIGN The design of this experiment was proposed by the EIA and recommended to the D-10-13 Committee of the American Society for Testing and Materials. This test method uses the inclined plane to support the material to be tested and is shown in Figure (3) . The inclined material is fabricated from aluminum alloy. It consists of a platform to place the package film material to be tested and clevis mount and an angle set rod to permit various degrees of inclination of the platform. The choice of this particular method is based on work reported by J. R. Huntsman of 3M at the EOS/ESD Symposium, EDS-6, in 1984 on DIP (Dual In-Line Package) tube containers. DIP tubes are containers commonly used for protecting integrated circuits against static discharges, electrostatic fields, and triboelectric generated charges. Huntsman concluded that a possible charge can be produced on these circuits by sliding within the tube. This might cause damage to the devices when being withdrawn from the container and contacting a conductive surface. The test is performed by allowing a test cylinder to roll down the surface of the sample material and drop into a Faraday cup to measure the charge generated on the cylinder Figure (4). The charge generated on the cylinder is a 10 11 QMCOQ Emommbm N>HBUDDZOU .n whflmwm aT\ ESEQm mm mam Em 502,1 E 28: m3“: E 22:2: _H_ 12 s! @II . Q. 6.. Iii... sue Us 33‘ 3%: 5 552m: 825% 2...: Liza 5: Had QUE—dz— %u 2.2%.. SE: 254385.: mamzum LES". ozficad. $279 «2 «H.523: Bum ZOHBEUHhZOU Emma. .e CAST?» Adi H!’ QQQ ! l'u|.U II.” 3:35 gfimw 13 function of the packaging material to be tested, the material of the test cylinder, weight of the test cylinder, angle of inclination, contact area, and surface roughness (Shah, Martinez and Unger, 1988) . In addition, temperature and relative humidity play a critical role in the total surface charge developed during triboelectric charging. The parameters described in Figure (1) are also responsible for the charge generated. W To measure the charge generated on the cylinders, a ACL 1000 Nanocoulomb Meter and a Faraday cup were used. Materials were neutralized with Simco's Aerostatt XT air ionizer. The ions from the ionizer were monitored by Monroe Electronic's Model 258 Ion Balance Monitor. A conductive support board was fabricated from aluminum alloy. The humidity chamber was assembled by Motter & Son Industries, Inc., of Ohio, in accordance with MIL-B-817OSB. The humidity and temperature was controlled by a precision microprocessor based unit called a Hygrothermograph, Model 4205 by Hygrodynamics (Newport Scientific, Inc.) . A Cole-Parmer Ultrasonic Cleaner Model 8845-5 was used to aid in the cleaning of the cylinders. 14 wingers Twenty-four cylinders were made from two types of brass, two types of Teflon, and one type of quartz: Brass - B1 - less than a 50 micro-inch finish 1/2" diameter X 1” in length; weight = 27 grams. 82 — 1/2" diameter x 7/8" in length; .042" wall brass tube per ASTM-B-135; weight = 7 grams. Teflon - T1 - General purpose Teflon conforming to AMS-3651; 1/2" diameter X 1" in length; weight = 7 grams. T2 - Virgin Teflon MIL-P-19486A; 1/2" diameter X 1" in length; weight = 7 grams. Quartz - Q - GE type 214 with fire polish finish 12mm diameter X 1 " in length; weight = 7.5 grams. The weight of the cylinders was measured with the Mettler AB 160 by Mettler Instrument Corporation. The weight of the cylinders are shown in Table 2. 15 Table 2. TEST CYLINDERS USED TEST CYLINDER WEIGHTS in grams QUARTZ BRASS BRASS TEFLON TEFLON ASTM - 7/8' general ASTM 1 7.46 27.32 6.96 6.92 7.04 2 7.45 26.98 6.98 6.94 7.03 3 7.46 27.30 6.97 6.93 7.02 4 7.51 27.02 6.97 6.94 7.03 5 7.55 26.83 6.97 6.95 7.02 6 7.54 27.27 6.97 6.94 7.04 7 7.55 27.37 6.96 6.95 7.01 8 7.48 27.33 6.97 6.96 7.04 9 7.51 27.06 6.97 6.93 7.01 10 7.54 26.84 6.96 6.98 7.01 11 7.54 27.26 6.97 6.92 6.99 12 7.53 26.86 6.97 6.95 7.04 13 7.48 26.98 6.97 6.94 7.02 14 7.45 26.75 6.97 6.94 7.02 15 7.48 27.35 6.97 6.95 7.02 16 7.56 27.00 6.97 6.91 7.04 17 7.54 26.90 6.96 6.91 7.03 18 7.55 27.32 6.97 6.94 7.00 19 7.54 26.99 6.96 6.93 7.02 20 7.50 27.00 6.97 6.94 7.01 21 7.54 26.96 6.97 6.96 7.03 22 7.54 27.25 6.97 6.96 7.01 23 7.54 26.88 6.97 6.94 7.04 24 7.57 26.96 6.98 6.94 7.01 AVG. 7.52 27.07 6.97 6.94 7.02 STD DEV 0.04 0.20 0.01 0.02 0.01 16 W Thirty-six film samples were prepared; six samples of insulative film, twelve samples of conductive film, and eighteen samples of dissipative film. Each film sample was 3 inches wide by 13 1/2 inches long. Surface resistivity of the various film samples used were; 52291122 DQEQIiPSiQD - EBIIBQ§_B§§1§§i!iL¥ Dow Chemical Ziploc 9 Storage Bags > 10“ ohm/square 3M Velostat Series 2000 5 X 10‘ ohm/square Cryovac Sample 1’ 5 X 1010 ohm/square Sample 2' 1 X 10“ ohm/square Sample 3 1 X 10“ ohm/square Sample 4 5 X 10‘ ohm/square ' a cross-section view of the coextruded film materials are shown in Figure (5). The film material and cylinder specifications for this experiment are shown in Table 3. I§§§_EI9£§QHI§§ Metal tongs were used to handle the cylinders and film samples during the cylinder cleaning and sample cutting process to eliminate possible contamination. All samples and cylinders were conditioned at 72' i 5 degrees Fahrenheit, and at 12% t .7 1 Iszwzm EuHm ounomaxwoo mo onaommummomo .m «Roman 23 26.5 We 2:5:sz \\\ £21:me £25m; / Eva. and NE 2:15:26. gr: m SSA/b2: 2:... E zaEummumwgmu 18 Table 3. FILM MATERIAL AND CYLINDER SPECIFICATIONS Material Sample Description CREE 1 1 thru 6 5 x 1010 ohm-square D 2 1 thru 6 1 x 10“ ohm-square D 3 1 thru 6 1 x 10“ ohm-square D 4 1 thru 6 5 x 10‘ ohm-square C 5 1 thru 6 5 x 10‘ ohm/square C 6 1 thru 6 > x 10“ ohm-square I Cylinder Type Description Avg. Weight Quartz - Q GE type 214 w/ fire polish finish, 12mm diameter x 1" 7.52 9 Brass - B1 0.5" diameter x 1" < 50 micro-finish, general 27.07 q B2 0.5" diameter x 7/8 " .042" wall, ASTM-B-135 6.97 g Teflon - T1 General purpose - AMS-3651 0.5" diameter x 1" 6.94 9 T2 Virgin - MIL-P-19486A 0.5" diameter x 1" 7.02 g D - Dissipative C - Conductive I - Insulative l9 3% RH for at least 48 hours. Testing was performed at the same conditions. All film samples were suspended in the humidity controlled chamber so that both sides of the film samples were exposed to these dry conditions. Prior to use, each brass cylinder was cleaned in an ultrasonic bath filled with Bransonic oxide remover N-08801-35 for a period of 3 minutes. After removal from the cleaner, each brass cylinder was rinsed.with deionized water from a Milli-Q Reagent Water System by Millipore Corporation. The brass cylinders were then rinsed.with reagent grade methyl alcohol. All cylinders were than cleaned in the ultrasonic bath filled with Bransonic general purpose cleaner N-08801-15 for a period of 3 minutes. After removal from the bath, each cylinder was first rinsed. with. deionized. water and ‘then ‘with. methyl alcohol. All cylinders were placed in the humidity controlled chamber for conditioning. The test procedure recommends that the angle of inclination of the conductive support board to be set at 15 degrees. For this study, the support board was set at varying degrees ( 5' , 10', 15' and 20' ) to the horizontal. The Faraday cup was positioned in such a way to allow the cylinders to roll down the inclined plane and fall directly into the Faraday cup without hitting the sides of the cup. The Faraday cup and conductive support board were grounded to avoid any charges 20 that may have propagated prior to testing. Conductive cross- linked polyethylene foam, 3" diameter and 1/8" in thickness, was placed at the bottom of the Faraday cup to cushion the fall of the cylinders. The conductive polyethylene foam has a surface resistivity of 1.4 X 10‘ to 6.0 X 105 ohms/square. The air ionizer was turned on for ten minutes prior to testing to neutralize any local charges. The ion balance was adjusted to i 5 volts on the charge plate monitor. Charges on both sides of the testing material were neutralized prior to fixing them to the support board. The film samples were then affixed to the conductive plane using thin double sided tape at its four corners. The end of the film was folded under the support board to prevent any interference with the rolling cylinders. The film samples were again ionized after being placed on the conductive board to neutralize any charges that may have accumulated. The test cylinders were treated.with the air ionizer before each roll. The ionizer was turned off before placing cylinders on the inclined plane. 'The Faraday cup was then zeroed and the cover of the Faraday cup was removed. Using grounded metal tongs, the cylinders were placed in the middle of the sample at the top of the test material. The cylinders were then released, rolling down the plane and falling into the Faraday cup. After the cylinder fell into the Faraday cup, the cover was replaced back on the Faraday cup and the charge measured. 3.0 DATA AND RESULTS Thirty-six film samples were used in this experiment; six of the insulative, twelve of the conductive, and eighteen of the dissipative classification. Eighteen cylinders were used for the actual experiment. The remaining six cylinders functioned as back-ups in case any of the previous cylinders were damaged during the testing. Each film sample used one of each cylinder type (brass, quartz, and Teflon) . Each cylinder type was rolled three times per test material at each degree of incline ( 5°, 10', 15‘ and 20° ) and using a new cylinder after each roll. Each cylinder and test material were neutralized with the air ionizer before each roll. All the test data of the electrical charges generated by the cylinders are listed in Tables A-l through A-24 (Appendix A). The average charges of each cylinder type; quartz, brass and Teflon measured in nanoCoulombs and corresponding standard deviations are exhibited in Tables 4 and 5 (pages 25 8 26). The average charges per cylinder type for the conductive, dissipative and insulative film materials are presented in Figures 6 through 9 (pages 27-30). The average charges per cylinder type as a function of degree of inclination ( 5', 10', 15' and 20' ) are listed in Figures 10 through 15 (pages 31-36). 21 22 The data shows that Teflon generates the most charge on all film materials. The two different grades of Teflon evaluated do not have a significant effect on charge generation since the mean values are very close to each other and the standard deviation is higher than the difference between mean values. The charge on quartz cylinders tends to be positive for materials 2 thru 6. The charge on quartz for material 1 however, is very high in the negative direction. This is a dissipative material having a'much lower surface resistivity. The brass cylinders tend to develop small negative or small positive charges depending on the film material. Their readings were very close for both cylinder types evaluated on all the film samples tested except for’materials 2 and.3. The heavier brass cylinder produced a much greater charge on these film materials than did the lighter brass cylinder. Both film samples are dissipative materials with higher surface resistivity. The effect of the angle of incline was also evaluated. Cylinders released at the 20' angle were much more difficult to control on the support board, and they tended to skip rather than roll down the incline plane. There was more control at the 15' angle. In general, the angle of incline had a significant effect on the charge generated by all the 23 cylinders investigated. The biggest difference in the charge generated for different release angles was observed using quartz cylinders on material 1. The mean charge increase from 5 degrees to 10 degrees was 39.0 percent; from 10 degrees to 15 degrees was 21.1 percent; and fromt15 degrees to 20 degrees was 24.6 percent. This showed a total charge increase of 63.6 percent from 5 degrees to 20 degrees. The angle of incline has a lesser effect for brass cylinders. The most significant charge from 5 degrees to 20 degrees was seen for material 3 (dissipative) which showed a 31.9 percent increase with the heavier brass cylinders. The angle of incline also had a significant effect on the charge generated by both the Teflon cylinders, especially on material 6. The mean percent from 5 degrees to 20 degrees for T1 was 32.7 percent and for T2, 19.6 percent. Further investigation found that by attaching an oxygen free high conductivity copper plate, 3 inches wide by 11.5 inches long and .031 inches thick, to the conductive board at a 15 degree incline, the charging tendencies of the film materials was significantly reduced. This was more evident with the Teflon cylinders. The copper plate was used to identify the possible effect of conductivity differences between copper and aluminum. Aluminum tends to oxidize, thus forming an oxidized 24 layer which induces resistance to any electrical flow. Three rolls of each cylinder type on one of each film material was measured. These values are listed in Table 6 (page 37). It was also found that a residual charge was generated on the cylinders when dropped directly into the Faraday cup after proper cleaning and ionization. This may have occurred due to the cylinders passing through the air. Although not recognized by the EIA, some triboelectric series charts list air at the uppermost position of the chart, the positive end. Some argue that air is neutral, since it comprises of 79% nitrogen, a neutral gas. Other particles such as dust, moisture, or even oxygen may have contributed to the residual charge as the cylinders passed through the air. Teflon developed the largest residual charge, brass a very small amount, and quartz averaged a zero charge. The quartz cylinders are closer to the positive end of the triboelectric series chart, therefore less of a charge is expected when falling through the air. Brass, being near the middle of the series, accumulated a small negative charge. Teflon is at the opposite spectrum of this series, and therefore shows a greater charge. A sample of eighteen drops was taken. These residual charges are listed in Table 7 (page 38). Table 4. AVERAGE CHARGE OF EACH CYLINDER TYPE IN nC FILM MATERIAL 1 Cylinder Angle Avg Charge (dog) 0 5 -0.25222 81 -0.101 1 1 82 -0.0761 1 T1 -0.47889 T2 -0.49556 0 10 -0.41056 81 -0.12778 82 -0.08500 T1 -0.49000 T2 -0.51722 0 1 5 -0.51944 81 0.13722 82 -0.09000 T1 -0.49778 T2 -0.49778 0 20 -0.69333 81 -0.15556 82 -0.091 1 1 T1 -0.53889 T2 -0.54278 FILM MATERIAL 3 Cylinder Angle Avg Charge (deg) C 5 0.20722 81 0.49167 82 0.081 1 1 T1 -0.42444 T2 -0.38389 0 10 0.23722 81 0.42778 82 0.081 1 1 T1 -0.41944 T2 -0.45833 0 1 5 0.21056 81 0.39722 82 0.08944 T1 -0.41778 T2 -0.43556 0 20 0.45667 81 0.71722 82 0.1 6056 T1 -0.35389 T2 -0.35500 0 - Quartz Cylinder Angle Avg Charge Cylinder Angle Avg Charge STDEV 0.05558 0 0.01 779 81 0.00979 82 0.05051 T1 0.08053 T2 0.09991 0 0.04081 81 0.01383 82 0.05573 T1 0.05245 T2 0.1 5958 0 0.04824 81 0.01 680 82 0.06330 T1 0.03639 T2 0.1 6205 0 0.01886 81 0.01 231 82 0.08560 T1 0.06470 T2 STDEV 0.08123 0 0.1021 7 81 0.08094 82 0.05793 T1 0.07163 T2 0.0921 5 0 0.09302 81 0.07177 82 0.05906 T1 0.06109 T2 0.10183 0 0.08407 81 0.07996 82 0.04989 T1 0.07740 T2 0.05099 0 0.23384 81 0.09686 82 0.04840 T1 0.05448 T2 81 & 82 - Brass FILM MATERIAL 2 (deal 5 10 15 20 -0.01389 -0.00333 -0.0661 1 -0.42167 -0.43167 -0.01556 0.02667 -0.05000 -0.43056 -0.48389 0.0161 1 0.0861 1 -0.02333 -0.43778 -0.46500 0.10500 0.09278 -0.001 1 1 -0.43500 -0.42000 FILM MATERIAL 4 (deal 5 10 15 20 0.13667 -0.03389 -0.03556 -0.40167 -0.39944 0.12222 -0.03889 -0.03222 -0.40278 -0.41 167 0.08444 -0.03556 -0.03222 -0.46333 -0.44889 0.03778 0.00944 0.00667 -0.38333 -0.38556 T1 & T2 - Teflon STDEV 0.08346 0.08630 0.04767 0.04369 0.04950 0.07594 0.06860 0.041 87 0.07042 0.06289 0.05337 0.05606 0.03804 0.08782 0.08002 0.01 689 0.03140 0.03579 0.1 0066 0.04229 STDEV 0.06136 0.00979 0.00984 0.06810 0.08755 0.06735 0.021 1 1 0.00647 0.07706 0.10755 0.06061 0.00784 0.00647 0.10928 0.1 1 156 0.02602 0.01 1 10 0.01283 0.04015 0.05554 25 Table 5. AVERAGE CHARGE OF EACH CYLINDER TYPE in nC I Continued) 0 B1 82 T1 T2 0 B1 82 T1 T2 O 81 82 T1 T2 0 BI 82 T1 T2 FILM MATERIAL 5 Cylinder Angle (deg) 5 10 15 20 Avg Charge 0.35000 -0.03722 -0.03222 -0.42556 -0.4761 1 0.30000 -0.03778 -0.03389 -O.44556 .o_47500 0.34889 -0.03167 -0.03167 -0.46000 -0.48056 0.30667 -0.00278 0.00278 -0.42667 -0.441 1 1 Q - Quartz STDEV Cylinder Angle Avg Charge 0.07844 0 0.00826 81 0.00732 82 0.04643 T1 0.05731 T2 0.08110 0 0.00647 81 0.00502 82 0.05554 T1 0.04176 T2 0.10017 0 0.00707 81 0.00514 82 0.04947 T1 0.04007 T2 0.02612 0 0.00826 81 0.01179 82 0.05053 T1 0.03359 T2 81 & 82 - Brass FILM MATERIAL 6 (deg) 5 10 15 20 0.13722 0.01000 0.05833 0.36556 0.44944 0.14722 0.06889 -0.0961 1 0.3961 1 0.43944 0.14056 0.08444 0.08389 0.42278 0.48722 0.07167 0.01722 -0.08056 0.551 1 1 0.56444 T1 & T2 - Teflon STDEV 0.10543 0.18234 0.07548 0.06989 0.10903 0.10162 0.18528 0.05500 0.10589 0.09771 0.08003 0.16425 0.06326 0.13839 0.13455 0.02550 0.09329 0.02014 0.07427 0.13496 26 fil «mm ED OI mummwmo m @ 44.19522 .m) mun—23>U mud mum—<10 m0< .o 230E F itbufl: N .5655. med T m .8822 e .5652 m 3.322 o 3.322 . mNd. ))n H ... . H u o 5.0- i. .w. )Iul . . . - me o. ..Nd $6.0 I))I|))I|)|||). 7., x, .1. ,H.....././.,,/ .1... /z,,~..7., ...,/;/,..///. C / ./. ../ /,,//////f// 0.1, . 2.. , 2.. .1. l1., ,. , 9,5,7. , , .. . O ,.////,,,/,,,.V//..7,7,V/// //..///. flV/Vx/f/x/V,/////VA//¢/,/éwézé7/ V/fléwfiyx/fl ,, ,. .. . . o 0 #«d Ilmo ..O. Q . . . . . , 2 . . . 1 mad I #06. . . . med. e To med. 27 SI SI Nam ED cl _ .5655. N .5652 m .3352 .5 3.322 m 3.3.: 6 3.822 mummwwo 0' © ._<_mw._.<_2 .m> mat mmoZZ>U mun. w0m< .h 050E e .0 90.0— 00.0 3.0. I m .0. W 8.? . 2%?2222/fi/5/é/ meMmd. No.01 06.0. ,. 7 / //.// a . w 944:7 x, 4%,}. / 4,, 73 ,. . y/V/fl/fl/MHflW/Mx/VM/xflwzwzfifl/Wby/flawfi/fl/w/x/w/flw/flm/flmm/flfPEEK/W 0.? 01¢ .01 .v 00.0 I 00.0 H)“ ////////////7///////// ~19 0 0V 0. N F .0 I 3.0. O é 00 o. , / A 9 421.622,... 7,” / ,x 8,..8...,,...,,,.,,¢,,. «2 / x . .,,, 2.x, . WW///////fl%fl/fl//%flmz%w¥/7,”Mm/wafx/AV/flwH%%?////fl/m///n/ffi/,,, CV Onnvn =4. , no 0. / , J , 4” 2.74.2.2... / / {402,45 xxx . : / . m/WV/Z/wxéwfla/7272“fly/Wflmfl/HW/z/WZV/ozy/Eyw/W/flw m? 01 ”HO- m «.0 I 50.0. 28 N». £- «mm ED cl mwmmwwo mp © ...<.m.w...<2 .m) mat mmoz.._>0 mun. w0m< .0 050.... . 3.822 N 5.552 0¢.0 F m 5.552 V fir‘ufls 00.0 m 5.552 0 5.552 «0.0. No.0 . 00 0 I H 90' he 0. Rd 00.0 m $.01 00.0 I V0.01 , no.0. . . , . W no.0. 2//////////////2/////22/2///2//72/2/2%2222/22/fl/////// mead. 5.0. 5 F0 I no.0. )Jl) 5,9,2, , , , , ,, , %////%//////////////2///2//////22///////22222/22/22 Ned. 020. 29 . 5.822 N 5.552 n .5552 V 5.552 m itcufl: 0 5.552 mummOwo 0N @ ..<.mw._.<2 .m> mat ¢w023>0 mum m0¢<10 m0<¢w>< .0 050.“. N50. 020 90.0 09.0 00.0. 2.....2/ /// 22/222,222.....2...,,2,,.«2.....2.2,,2.22..,.,,,..22./2..H,222../2,...2.../,.. 27. . 2.. 2.7% . . , 22,222. em 0. . . , / .../ ./. .x/ . .7... .22 ./ . x 2 2 .. 2////A// //// //fl//.///.//Un////M///////// 1.2/2 2/ :// I 2122/ 2/ r/ 2//./////, I/ // // 2 .vm .01 00.0 7.2. 2.1.2222. a.......2,..”..2/,22.,.2,,Um.fl.. . 27,...,.,/,,,,..2.U/2.N,...,/272/w/ 2n... 2 . c 222/. 222.222.22.2222222222/2/22.22.... S. 0. Ned. ”2...... 2...2.,.w.2.2..2. .2. ,2 «22.22.. . 2.2.1.2222. . 222/%.2..22/2W2/%2/2VW/.2/2222.2.222.22, mm 0. 00.0. mm 0. 00.0 00.0 50.0 0.0. . 8.9 2 . ,2, 22.. . //..,,22./.,..2...,7272, ...,,,v (.2 27.212702},.2...“,.../,...., ,2. .. 2/4. a 30 F ..<_mw..<2 con. mm mat xm02_._>o awn. woz< .09 050E 8o on I 8a m. I 89: D omens: .w>_._.U twa— w0m< . : 050.“. 1r- ? — 5 p p p . u u A q u :: 5.9 l Nod. 85 :6 wood .86.. mod 2222/////%2 _______________________ 3.9 '3? .N0.0. 00.0 _________________________________________________________________________________________________._____________________________._______________________~qu | . ___________________________________________________________________________________________________________________________________________.___________E 2.? a. 9 | . .m>_._. mm: mm02_4>o 1mm w0¢< .NP 2.5.“. — 5 — P — P — _ . . . a... ____________________________________ . . _ a gel 23 ad %/////////////////2 a... o ______.____5______________________________________________________________/____________ own 8 I who own 3 ..V mm. 22% Boo. D 3 Ed moo///22 owe m a. _______________________________________________________=__________________ Q... o. __________________________________________________________________= 8.? 000. .w>_._.U awn. m0m< .MP 2.6.“. _ q ‘ cod «0.0 5.0 :6_____________.________________________________:_. 25' . .. ....,,_......,..2,/.yé.....2,. mo 0 .22/222 . .. . . a. .2/7.2H/.2.2.2...,2,. - p — L 4 u - q d» ____________ 8.? I 3.? 22 3.0. ____________ 3.? I39 _______________._______.__________________________________________________________________________________________________.__________=__=_____. 93. |o§v /////////%///////%////////////%//////////%VV//fl/////////%mm? 3.? __=___________________________________________________________________________________________________________________________________________ 04”.? | . /¢/////////////%////////////////////////////////////fl//émm? m1? 3)....030200. e. .._<_mw._.<2 34 8o 8 I 8o 8 I Boo. D wng 0 pm Nm «P N... m ._<_mm._.<2 m0”. mm0 awn. m0m< J; 0.50.“. .8. o ____=_____________________________________._______________________________________________________ on. o | 8. o :w W/////////%///////////////////2 52:: 3.? I 3.? 8.? 8.0 ________ 8.? I 8.? 2 mod. 8. o _=___________________________________________________________________________________________________________________ 8. o. I m¢. ? 22//////////////////////////////2//////////////////////m¢ oc.¢. o. _________________=_________________________________________________________________________________________________________________ 8. o. l 8. o. //////////////////////////////////////////// //////// // /222 o.m2¢. ? 32.500200. 0 4< .m. 2:2“. 3 .o 5::___________________________________ w... o I 3. 0 22 22////2///// ___=_____________ 00.0. I 000. 2%22////////////2/2 00.0. m0. 0. __________________________________________________________________________________________=______________________ B. o. | 8. o. 22////////////////////////////////////////// /////////// // //// 8. o. 8.? ___________________________________________________________________________________________________________________________________________five. |/ 22///////////////////////// ///2 / //////////// ////////////222 8.? 8.? 62.53302: 0 ._<_mw._.<2 36 Table 6. CHARGING OF ALL FILM ON COPPER PLATE IN nC. INCLINE PLANE @ 15 DEGREES Material 1 Material 2 Material 3 Material 4 Material 5 Material 6 Film Material Sample 1 O 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 0 - Quartz Cylinders roll 1 roll 2 -0.26 -0.29 -0.20 -0.17 -0.09 -0.08 -0.43 -0.43 -0.45 -0.42 roll 1 roll 2 0.04 0.02 0.18 0.13 0.02 0.06 -0.35 -0.35 -0.33 -0.32 roll 1 roll 2 0.31 0.30 0.50 0.56 0.30 0.32 -0.22 -0.26 -0.28 -0.38 roll 1 roll 2 0.18 0.09 -0.03 -0.02 -0.02 -0.02 -0.35 -0.38 -0.38 -0.30 roll 1 roll 2 0.29 0.28 -0.03 -0.02 -0.03 -0.03 0.37 0.31 -0.43 -0.34 roll 1 roll 2 0.04 0.04 0.04 -0.07 -0.09 -0.03 -0.40 -0.25 -0.37 -0.39 81 & 82 - Brass roll 3 -0.18 -0.15 -0.08 -0.37 -0.41 roll 3 0.1 1 0.15 0.08 0.40 03!: roll 3 0.26 0.66 0.25 -0.21 -0.25 roll 3 0.14 -0.02 -0.03 -0.32 -0.37 roll 3 0.34 -0.02 -0.03 -0.35 -0.36 roll 3 0.09 -0.16 -0.1 1 -0.33 -0.37 AVG 0.24333 0.1 7333 0.08333 0.41000 0.42667 AVG 0.05667 0.1 5333 0.05333 0.36667 0.33333 AVG 0.29000 0.57333 0.29000 0.23000 0.30333 AVG 0.13667 0.02333 0.02333 0.35000 0.35000 AVG 0.30333 0.02333 0.03000 0.34333 0.37667 AVG 0.05667 0.06333 0.07667 0.32667 0.37667 T1 & T2 - Teflon STDEV 0.05686 0.0251 7 0.00577 0.03464 0.02082 STDEV 0.04726 0.02517 0.03055 0.02887 0.01528 STDEV 0.02646 0.08083 0.03606 0.02646 0.06807 STDEV 0.04509 0.00577 0.00577 0.03000 0.04359 STDEV ' 0.03215 0.00577 0.00000 0.03055 0.04726 STDEV 0.02887 0.10017 0.04163 0.07506 0.01 155 37 Table 7. RESIDUAL CHARGE OF INDIVIDUAL CYLINDERS Cylinders drop 1 drop 2 drop 3 0 -0.03 -0.01 -0.02 B1 0.04 -0.04 -0.04 82 -0.03 -0.02 -0.03 T1 -0.32 0.30 -0.39 T2 -0.29 -0.29 -0.25 drop 4 drop 5 drop 6 0 0.03 -0.01 -0.01 81 -0.05 -0.04 -0.04 82 -0.04 -0.04 003 T1 -0.32 -0.33 -0.32 T2 -0.25 -0.22 -0.15 drop 7 drop 8 drop 9 0 0.02 -0.01 0.01 81 -0.04 -0.03 -0.04 82 -0.03 -0.03 -0.03 T1 -0.25 -0.39 -0.35 T2 -0.21 -0.25 -0.21 drop 10 drop 11 drop 12 0 0.04 0.03 0.03 81 -0.04 -0.04 -0.03 82 -0.03 -0.03 -0.03 T1 029 -0.30 -0.33 T2 -0.29 -0.28 -0.25 drop 13 drop 14 drop15 0 0.02 -0.01 -0.01 81 -0.04 -0.04 -0.05 82 -0.03 -0.04 -0.03 T1 -0.36 0.32 -0.32 T2 -0.25 -0.29 -0.26 drop 16 drop 17 drop 18 0 0.00 -0.01 -0.01 81 -0.04 -0.04 -0.04 82 -0.03 0.03 -0.04 T1 -0.38 -0.27 -0.32 T2 -0.21 -0.25 -0.23 AVG STDEV 0 Quartz 0.00278 0.02052 81 Brass -0.04000 0.00485 82 Brass -0.03167 0.00514 T1 Teflon -0.32556 0.03807 T2 Teflon -0.2461 1 0.03696 38 4.0 CONCLUSION This investigation attempted to examine the reliability of a possible test procedure for quantifying the triboelectric charging tendencies of conductive, dissipative and insulative film materials against various cylinders made of quartz, brass and Teflon. It also looked at the effect of cylinder weight and the effect of angle release. The research found that there is not a significant difference between the various film material classifications in the generation of a triboelectric charge. It appears that the variation of surface resistivity between film materials has little to do with the material’s tendency to acquire a charge when contacted by or rubbed against another material. The effect of cylinder types does show a significant effect with Teflon generating the highest negative charge on all film materials. However, there is no significant difference between the. general purpose and. virgin ‘types of Teflon cylinders evaluated. There is a significant effect of cylinder weight between the two brass cylinders. The heavier brass cylinders produced a larger charge than the lighter cylinders, especially for the dissipative materials. Therefore, the test procedure should 39 40 identify acceptable weight tolerances for cylinders used in the test protocol. The angle of release does show significant charging effects with the increase in degree of incline. This is most significant with quartz cylinders on dissipative and insulative films. This effect is less significant when evaluating conductive films. Teflon also developed an increase in charge on the insulative film as the angle of release increased. The charge generated on the insulative film material 6 should yield a higher charge due to the high surface resistivity of the film, and the higher angle of release which relates to the separating speed of the electrons from the two objects in contact, thus not allowing the recombination of the electrons. Areas for future research may be to construct a conductive board out of copper since copper does not form a oxidized layer distinctive with aluminum. This oxidation effect increases the resistance of the support board thus preventing any charges that are developed on the film to bleed off onto the support board. Another area for research would be to measure the residual charging influence of the various cylinders when dropped at controlled heights to see if air does play a role in the triboelectric effect. APPENDIX Table A-1. CHARGING PROPENSITY OF MATERIAL 1 IN nC. INCLINE PLANE @ 5 DEGREES Material Sample 1 1 2 3 4 5 6 0 - Quartz 81 8. 82 - Brass T1 & T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 -0.27 -0.13 -0.09 -0.55 -0.46 roll 1 -0.23 -0.10 -0.07 -0.43 -0.45 roll 1 -0.35 -0.10 -0.08 -0.46 -0.48 roll 1 -0.33 -0.10 -0.07 -0.49 -0.53 roll 1 -0.23 -0.08 -0.07 -0.44 -0.48 roll 1 0.20 -0.09 -0.08 -0.44 -0.45 Cylinders roll 2 -0.20 -0.14 ~0.10 oO.49 -0.45 roll 2 -0.25 -0.10 -0.07 -0.51 -0.51 roll 2 -0.24 -0.10 -0.08 -0.46 -0.45 roll 2 -0.31 -0.09 -0.07 —0.56 -0.54 roll 2 0.23 -0.08 -0.07 -0.45 -0.47 roll 2 -0.25 -0.10 -0.08 -0.42 -0.38 roll 3 -0.12 -0.14 -0.09 -0.46 -0.52 roll 3 -0.30 -0.10 -0.07 -0.46 -0.45 roll 3 -0.31 -0.10 -0.08 -0.60 -0.68 roll 3 -0.27 -0.09 -0.07 -0.52 -0.70 roll 3 -0.20 -0.09 -0.06 -0.44 -0.43 roll 3 -0.25 -0.09 -0.07 -0.44 -0.49 41 Table A-2. CHARGING PROPENSITY OF MATERIAL 1 IN nC. INCLINE PLANE @ 10 DEGREES Material Sample 1 1 2 3 4 5 6 Q - Quartz 81 8. 82 - Brass T1 & T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 -0.38 -0.25 -0.1 1 -0.48 -0.55 roll 1 -0.45 -0.15 -0.08 -0.48 -0.45 roll 1 -0.60 -0.12 -0.08 -0.60 -0.48 roll 1 -0.46 -0.13 -0.08 -0.42 -0.51 roll 1 -0.37 -0.08 -0.07 -0.57 -0.47 roll 1 -0.50 -0.10 -0.08 -0.43 -0.43 Cylinders roll 2 -0.35 -0.18 -0.1 1 -0.57 -0.51 roll 2 -0.49 oO.13 -0.09 -0.50 -0.50 roll 2 -0.43 -0.13 -0.10 -O.43 -0.55 roll 2 -0.49 -0.10 -0.08 -0.44 -0.51 roll 2 -0.37 -0.10 -0.08 -0.44 -0.53 roll 2 -0.36 -0.1 1 -0.08 -0.48 -0.49 roll 3 -0.14 -0.17 -0.1 1 -0.58 -0.54 roll 3 -0.39 -0.14 -0.08 0.50 -0.51 roll 3 -0.52 -0.12 -0.08 -0.47 -0.64 roll 3 0.42 -0.1 1 -0.08 -0.48 -0.47 roll 3 -0.36 -0.09 -0.06 -0.50 -0.57 roll 3 -0.31 -0.09 -0.08 -0.45 0.60 42 Table A-3. CHARGING PROPENSITY OF MATERIAL 1 IN nC. INCLINE PLANE @ 15 DEGREES Material Sample Q - Quartz 81 8. 82 - Brass T1 8. T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 -0.45 -0.26 -0.12 -0.48 -0.52 roll 1 -0.56 -0.14 -0.09 -0.54 -0.48 roll 1 -0.82 -0.14 -0.09 '0.53 -0.54 roll 1 -0.55 -0.13 -0.08 -0.43 -0.48 roll 1 -0.49 -0.09 -0.08 -0.44 -0.44 roll 1 -0.61 -0.10 -0.08 -0.62 -0.48 Cylinders roll 2 -0.33 -0.21 -0.13 -0.52 -0.53 roll 2 -0.52 -0.12 -0.08 -0.50 -0.58 roll 2 -0.54 -0.14 -0.09 -0.46 -0.55 roll 2 -0.70 -0.12 -0.08 -0.57 046 roll 2 -0.39 -0.09 -0.08 -0.45 -0.50 roll 2 -0.61 -0.09 -0.08 -0.43 -0.47 roll 3 ~0.14 -0.22 -0.12 -0.58 -0.48 roll 3 -0.43 -0.14 -0.09 -0.49 -0.50 roll 3 -0.68 -0.16 -0.10 -0.54 -0.47 roll 3 -0.60 -0.12 -0.08 -0.42 -0.53 roll 3 -0.32 -0.10 -0.07 -0.40 -0.48 roll 3 -0.61 -0.10 -0.08 -0.56 -0.47 43 Table A-4. CHARGING PROPENSITY OF MATERIAL 1 IN nC. INCLINE PLANE @ 20 DEGREES Material Sample 0 - Quartz 81 8. 82 - Brass T1 8. T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 -0.68 -0.19 -0.08 -0.42 -0.53 roll 1 -0.96 -0.18 -0.08 -0.51 -0.55 roll 1 -0.84 -0.14 -0.09 -0.51 -0.54 roll 1 -0.50 -0.17 -0.09 -0.53 -0.58 roll 1 -0.46 -0.14 -0.13 -0.59 -0.53 roll 1 -0.59 -0.18 -0.08 -0.51 -0.59 Cylinders roll 2 -0.75 -0.17 01 1 -0.50 -0.49 roll 2 -0.84 -0.18 -0.09 -0.66 -0.44 roll 2 -0.92 -0.16 -0.09 -0.43 -0.46 roll 2 -0.54 -0.14 -0.08 -0.49 -0.54 roll 2 -0.59 -0.14 -0.09 -0.55 -0.58 roll 2 0.79 -0.15 -0.09 -0.44 —0.49 roll 3 -0.72 -0.15 -0.09 051 -0.46 roll 3 -0.58 -0.14 -0.09 -0.61 -0.56 roll 3 -0.79 -0.13 -0.10 -0.78 0.49 roll 3 -0.45 -0.15 -0.08 -0.56 -0.63 roll 3 -0.89 -0.16 -0.09 .0.54 -0.66 roll 3 -0.59 -0.13 -0.09 -0.56 -0.65 44 Table A-5. CHARGING PROPENSITY OF MATERIAL 2 IN nC. INCLINE PLANE @ 5 DEGREES Material Sample Q - Quartz B1 & 82 - Brass T1 8. T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.04 0.06 -0.04 -0.42 -0.40 roll 1 -0.03 0.06 -0.05 -0.43 -0.39 roll 1 -0.14 0.01 -0.07 -0.43 -0.38 roll 1 -0.06 0.04 -0.10 -0.41 -0.36 roll 1 -0.04 0.06 -0.04 -0.40 -0.42 roll 1 0.08 -0.12 -0.15 -0.42 -0.44 Cylinders roll 2 -0.03 0.10 -0.06 -0.43 -0.42 roll 2 0.01 0.03 -0.06 -0.45 -0.38 roll 2 -0.18 ~0.04 -0.06 -0.32 -0.43 roll 2 0.02 -0.06 -0.08 -0.41 -0.51 roll 2 -0.05 0.03 -0.07 -0.36 -0.54 roll 2 0.09 -0.13 -0.11 -0.46 -0.45 roll 3 0.04 0.17 0.04 -0.44 -0.40 roll 3 -0.04 0.03 -0.01 -0.39 -0.39 roll 3 -0.15 -0.06 -0.06 -0.40 -0.50 roll 3 0.10 -0.10 -0.07 -0.46 -0.44 roll 3 0.00 0.01 -0.03 -0.43 -0.48 roll 3 0.09 -0.15 -0.17 -0.53 -0.44 45 Table A-6. CHARGING PROPENSITY OF MATERIAL 2 IN nC. INCLINE PLANE @ 10 DEGREES Material Sample Q - Quartz B1 & 82 - Brass T1 & T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.06 0.1 1 0.03 -0.35 -0.46 roll 1 -0.07 0.04 -0.06 -0.44 -0.44 roll 1 -0.14 0.03 -0.04 -0.42 -0.44 roll 1 0.02 -0.07 -0.08 -0.44 -0.51 roll 1 -0.06 0.06 -0.04 -0.45 -0.41 roll 1 0.07 -0.04 -0.1 1 -0.52 -0.48 Cylinders roll 2 0.05 0.13 -0.04 -0.34 -0.61 roll 2 -0.02 0.04 -0.04 -0.58 -0.39 roll 2 -0.17 0.00 -0.04 -0.30 -0.46 roll 2 0.00 0.04 -0.06 -0.37 -0.59 roll 2 -0.09 0.08 -0.05 -0.43 -0.52 roll 2 0.07 -0.07 -0.07 -0.50 -0.48 roll 3 0.02 0.17 0.03 -0.48 -0.51 roll 3 -0.04 0.04 0.00 -0.41 -0.46 roll 3 -0.1 1 -0.03 -0.05 -0.35 -0.42 roll 3 0.05 0.00 -0.10 -0.44 -0.44 roll 3 0.02 0.02 -0.05 -0.44 -0.50 roll 3 0.06 -0.07 -0.13 -0.49 -0.59 46 I:' Table A-7. CHARGING PROPENSITY OF MATERIAL 2 IN nC. INCLINE PLANE @ 15 DEGREES Material Sample Q - Quartz B1 & 82 - Brass T1 8. T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.08 0.17 0.05 -0.49 -0.43 roll 1 0.03 0.13 -0.04 -0.37 -0.40 roll 1 -0.03 0.03 -0.05 -0.40 -0.47 roll 1 0.03 0.04 -0.03 -0.39 -0.40 roll 1 0.01 0.15 -0.02 -0.35 -0.42 roll 1 0.04 0.05 -0.05 -0.47 -0.54 Cylinders roll 2 0.06 0.15 0.03 -0.37 -0.47 roll 2 0.04 0.07 -0.06 -0.52 -0.52 roll 2 -0.09 0.04 0.05 -0.31 0.39 roll 2 0.05 0.01 -0.03 0.43 -0.59 roll 2 0.03 0.1 1 -0.03 -0.43 -0.58 roll 2 0.07 0.1 1 -0.02 -0.63 -0.48 roll 3 0.03 0.17 0.06 -0.41 -0.44 roll 3 0.07 0.06 -0.03 -0.46 -0.40 roll 3 -0.04 0.00 -0.02 -0.38 -0.34 roll 3 0.09 0.10 -0.07 -0.56 -0.64 roll 3 -0.04 0.13 0.01 -0.34 -0.44 roll 3 0.06 0.03 -0.07 -0.57 -0.42 47 Table A-8. CHARGING PROPENSITY OF MATERIAL 2 IN nC. INCLINE PLANE @ 20 DEGREES Material Sample Q - Quartz 81 8. B2 - Brass T1 & T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.08 0.06 0.04 -0.29 -0.37 roll 1 0.12 0.15 0.04 -0.37 0.42 roll 1 0.10 0.08 -0.05 -0.77 -0.44 roll 1 0.1 1 0.12 -0.01 -0.48 -0.41 roll 1 0.09 0.08 -0.03 -0.47 -0.42 roll 1 0.08 0.05 0.05 -0.46 -0.39 Cylinders roll 2 0.1 1 0.10 0.05 -0.49 -0.42 roll 2 0.10 0.07 0.00 -0.40 -0.37 roll 2 0.08 0.15 -0.03 -0.49 -0.49 roll 2 0.13 0.06 0.00 -0.44 -0.44 roll 2 0.12 0.08 -0.03 -0.42 -0.41 roll 2 0.1 1 0.07 -0.06 -0.39 -0.43 roll 3 0.12 0.09 -0.02 -0.35 -0.48 roll 3 0.1 1 0.06 0.02 -0.37 -0.37 roll 3 0.1 1 0.1 1 0.05 -0.43 -0.40 roll 3 0.13 0.09 -0.03 -0.38 -0.52 roll 3 0.08 0.14 0.01 -0.36 -0.40 roll 3 0.1 1 0.1 1 0.02 -0.47 -0.38 48 Table A-9. CHARGING PROPENSITY OF MATERIAL 3 IN nC. INCLINE PLANE @ 5 DEGREES Material Sample Q - Quartz B1 8. 82 - Brass T1 8. T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.04 0.48 0.17 0.39 0.39 roll 1 0.20 0.36 0.14 0.38 0.39 roll 1 0.27 0.55 0.1 1 0.38 0.30 roll 1 0.40 0.59 0.23 0.46 0.43 roll 1 0.20 0.66 0.06 0.39 0.46 roll 1 0.17 0.45 0.05 0.35 0.43 Cylinders roll 2 0.13 0.45 0.12 0.54 0.42 roll 2 0.14 0.57 0.10 0.42 0.37 roll 2 0.25 0.48 0.16 0.36 0.24 roll 2 0.23 0.68 0.11 0.49 0.28 roll 2 0.22 0.49 0.01 0.43 0.37 roll 2 0.22 0.39 0.05 0.39 0.42 roll 3 0.17 0.43 0.06 0.48 0.40 roll 3 0.17 0.50 0.12 0.55 0.45 roll 3 0.12 0.45 0.09 0.39 0.32 roll 3 0.20 0.58 0.07 0.41 0.34 roll 3 0.32 0.47 0.09 0.43 0.54 roll 3 0.28 0.27 0.08 0.40 0.36 49 Table A-10. CHARGING PROPENSITY OF MATERIAL 3 IN nC. INCLINE PLANE @ 10 DEGREES Material Sample Q - Quartz 81 8. B2 - Brass T1 8. T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.04 0.45 0.13 0.37 0.54 roll 1 0.28 0.41 0.08 0.36 0.41 roll 1 0.29 0.51 0.12 0.59 0.34 roll 1 0.45 0.48 0.19 0.47 0.58 roll 1 0.20 0.61 0.03 0.40 0.45 roll 1 0.21 0.44 0.10 0.39 0.45 Cylinders roll 2 0.20 0.45 0.09 0.41 0.47 roll 2 0.18 0.44 0.1 1 0.41 0.45 roll 2 0.31 0.34 0.20 0.43 0.41 roll 2 0.26 0.53 0.09 0.44 0.43 roll 2 0.24 0.38 0.03 0.39 0.45 roll 2 0.20 0.36 0.1 1 0.41 0.52 roll 3 0.21 0.33 0.08 0.47 0.44 roll 3 0.16 0.47 0.09 0.38 0.48 roll 3 0.12 0.35 0.1 1 0.33 0.47 roll 3 0.24 0.52 0.07 0.47 0.35 roll 3 0.34 0.43 0.09 0.46 0.48 roll 3 0.34 0.20 0.02 0.37 0.53 50 Table A-11. CHARGING PROPENSITY OF MATERIAL 3 IN nC. INCLINE PLANE @ 15 DEGREES Material Sample Q - Quartz 81 8. 82 - Brass T1 & T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.03 0.38 0.08 0.42 0.43 roll 1 0.16 0.39 0.10 0.39 0.41 roll 1 0.23 0.51 0.16 0.46 0.35 roll 1 0.39 0.43 0.20 0.45 0.42 roll 1 0.19 0.47 0.08 0.44 0.42 roll 1 0.35 0.58 0.20 0.32 0.62 Cylinders roll 2 0.15 0.33 0.09 0.38 0.44 roll 2 0.1 1 0.38 0.14 0.45 0.43 roll 2 0.29 0.26 0.14 0.44 0.31 roll 2 0.17 0.51 0.07 0.41 0.43 roll 2 0.26 0.42 0.05 0.48 0.45 roll 2 0.26 0.36 0.16 0.42 0.58 roll 3 0.18 0.26 0.09 0.37 0.43 roll 3 0.16 0.37 0.13 -0.41 0.34 roll 3 0.06 0.44 0.05 0.38 0.39 roll 3 0.15 0.36 0.08 0.33 0.39 roll 3 0.27 0.32 0.01 0.51 0.48 roll 3 0.38 0.38 0.10 0.46 0.52 51 Table A-12. CHARGING PROPENSITY OF MATERIAL 3 IN nC. INCLINE PLANE @ 20 DEGREES Material Sample Q - Quartz 81 8. 82 - Brass T1 & T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.41 0.15 0.25 0.36 0.41 roll 1 0.49 0.44 0.17 0.37 0.40 roll 1 0.46 0.88 0.1 1 0.46 0.32 roll 1 ' 0.50 0.70 0.26 0.36 0.36 roll 1 0.40 0.85 0.18 0.29 0.26 roll 1 0.45 0.90 0.22 0.34 0.45 Cylinders roll 2 0.48 0.35 0.15 0.29 0.38 roll 2 0.37 0.67 0.15 0.31 0.38 roll 2 0.58 0.78 0.13 0.37 0.28 roll 2 0.40 0.73 0.24 0.36 0.27 roll 2 0.44 0.80 0.16 0.38 0.36 roll 2 0.41 0.82 0.25 0.35 0.30 roll 3 0.43 0.47 0.16 0.35 0.34 roll 3 0.48 0.68 0.1 1 0.28 0.38 roll 3 0.47 0.77 0.05 0.31 0.32 roll 3 0.52 0.89 0.25 0.44 0.39 roll 3 0.44 0.91 0.18 0.40 0.36 roll 3 0.49 1.12 0.17 0.35 0.43 52 Table A-13. CHARGING PROPENSITY OF MATERIAL 4 IN nC. INCLINE PLANE @ 5 DEGREES Material Sample Q - Quartz B1 8. 82 - Brass T1 8. T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.06 0.04 0.03 0.34 0.40 roll 1 0.20 0.03 0.07 0.31 0.29 roll 1 0.10 0.04 0.03 0.41 0.44 roll 1 0.17 0.02 0.04 0.45 0.31 roll 1 0.21 0.03 0.03 0.40 0.36 roll 1 0.19 0.04 0.03 0.35 0.33 Cylinders roll 2 0.08 0.04 0.03 0.30 0.39 roll 2 0.06 0.03 0.04 0.45 0.33 roll 2 0.06 0.04 0.03 0.45 0.64 roll 2 0.15 0.03 0.04 0.41 0.39 roll 2 0.1 1 0.04 0.04 0.58 0.46 roll 2 0.12 0.04 0.03 0.35 0.41 roll 3 0.1 1 0.01 0.03 0.34 0.29 roll 3 0.29 0.02 0.04 0.42 0.42 roll 3 0.15 0.03 0.03 0.38 0.53 roll 3 0.09 0.05 0.03 0.48 0.35 roll 3 0.15 0.04 0.04 0.38 0.46 roll 3 0.16 0.04 0.03 0.43 0.39 53 Table A-14. CHARGING PROPENSITY OF MATERIAL 4 IN nC. INCLINE PLANE @ 10 DEGREES Material Sample Q - Quartz B1 8. 82 - Brass T1 8. T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.16 0.12 0.03 0.45 0.21 roll 1 0.25 0.05 0.04 0.34 0.31 roll 1 0.07 0.03 0.03 0.35 0.30 roll 1 0.07 0.03 0.03 0.34 0.43 roll 1 0.07 0.03 -0.03 0.57 0.31 roll 1 0.20 0.04 0.03 0.35 0.38 Cylinders roll 2 0.14 0.04 0.02 0.41 0.47 roll 2 0.13 0.04 0.04 0.46 0.42 roll 2 0.09 0.04 0.03 0.27 0.48 roll 2 0.04 0.03 0.03 0.43 0.47 roll 2 0.03 0.04 0.04 0.48 0.65 roll 2 0.13 0.03 0.04 0.34 0.39 roll 3 0.24 0.03 0.02 0.30 0.25 roll 3 0.07 0.03 0.04 0.34 0.40 roll 3 0.1 1 0.03 0.04 0.47 0.51 roll 3 0.13 0.03 0.03 0.45 0.48 roll 3 0.06 0.03 0.03 0.45 0.52 roll 3 0.21 0.03 0.03 0.45 0.43 54 Table A-15. Mat Table A-15. CHARGING PROPENSITY OF MATERIAL 4 IN nC. INCLINE PLANE @ 15 DEGREES Material Sample 0 - Quartz B1 & 82 - Brass T1 & T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.05 -0.03 -0.04 -O.56 -0.32 roll 1 0.20 -0.04 -0.03 -0.36 -O.32 roll 1 0.04 -0.03 -0.03 -O.57 -O.43 roll 1 0.10 -0.04 -0.03 -O.46 -O.69 roll 1 0.01 -0.05 -0.03 -0.43 -O.28 roll 1 0.22 -0.03 -0.03 -O.38 -0.37 Cylinders roll 2 0.13 -0.02 -0.03 -O.48 -O.46 roll 2 0.13 -0.03 -0.04 -O.30 -O.38 roll 2 0.06 -0.03 -0.03 -O.48 -O.44 roll 2 0.02 -0.04 -0.04 -O.49 -0.49 roll 2 0.05 -0.04 -0.04 -O.61 -O.65 roll 2 0.09 -0.03 -0.02 -O.34 .O.53 roll 3 0.02 -0.03 -0.02 -0.66 -O.36 roll 3 0.03 -0.05 -0.03 -O.46 -0.37 roll 3 0.12 -0.04 -0.03 -0.31 -O.52 roll 3 0.12 -0.04 -0.04 ~O.37 -O.55 roll 3 0.04 -0.04 -0.04 -O.63 -O.43 roll 3 0.09 -0.03 ~0.03 -0.45 -0.49 55 Table A-16. CHARGING PROPENSITY 0F MATERIAL 4 IN nC. INCLINE PLANE @ 20 DEGREES Material Sample 0 - Quartz 81 & 82 - Brass T1 & T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.07 0.00 -0.03 -O.39 -O.35 roll 1 0.06 0.00 -0.02 -O.34 -O.4O roll 1 0.04 0.02 0.01 -O.34 -O.42 roll 1 0.03 0.00 0.01 -O.37 -O.35 roll 1 0.04 0.01 0.02 -O.35 -O.27 roll 1 0.03 0.02 0.00 -O.47 -O.41 Cylinders roll 2 0.03 0.02 0.01 -O.33 -O.3O roll 2 0.06 -0.02 0.00 ~O.35 -O.38 roll 2 0.04 0.00 0.02 -O.36 -O.43 roll 2 0.05 0.01 0.01 -0.39 -O.39 roll 2 0.03 0.01 0.01 -O.38 -O.47 roll 2 0.03 0.02 0.01 -O.41 -O.46 roll 3 0.03 0.01 0.01 -0.40 ~O.33 roll 3 0.04 0.00 0.02 -O.47 -O.36 roll 3 0.07 0.02 0.01 ~O.39 -O.38 roll 3 0.05 0.01 0.01 -0.37 -O.35 roll 3 0.03 0.02 0.01 -O.37 -O.43 roll 3 -0.05 0.02 0.01 -O.42 -O.46 56 Table A-17. CHARGING PROPENSITY OF MATERIAL 5 IN nC. INCLINE PLANE @ 5 DEGREES Material Sample Q - Quartz 81 & 82 - Brass T1 & T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.38 -0.03 -0.02 -O.38 -O.49 roll 1 0.30 -0.03 -0.03 -0.46 00.530 roll 1 0.33 -0.05 -0.03 -O.50 -O.55 roll 1 0.21 ~0.04 -0.04 -O.32 -O.39 roll 1 0.36 -0.04 -0.03 -0.49 -O.37 roll 1 0.40 -0.04 -0.04 -0.37 -0.47 Cylinders roll 2 0.28 -0.03 -0.02 -O.41 -O.53 roll 2 0.48 -0.03 -0.03 -O.45 -O.48 roll 2 0.30 -0.03 -0.04 -O.47 -O.44 roll 2 0.40 -0.04 -0.03 -O.36 -O.44 roll 2 0.38 -0.04 ~0.03 -O.46 -0.45 roll 2 0.39 -0.05 -0.03 -O.42 -O.48 roll 3 0.35 -0.02 -0.03 -0.42 -O.52 roll 3 0.30 -0.03 -0.03 -O.41 -O.44 roll 3 0.30 -0.04 -0.03 -O.43 -O.62 roll 3 0.26 -0.05 -0.05 -0.42 -O.45 roll 3 0.54 -0.04 -0.03 -0.44 -O.48 roll 3 0.34 -0.04 -0.04 -O.45 -O.47 57 Table A-18. CHARGING PROPENSITY OF MATERIAL 5 IN nC. INCLINE PLANE @ 10 DEGREES Material Sample Q - Quartz 81 & 82 - Brass T1 & T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.45 -0.04 -0.03 -0.53 -0.52 roll 1 0.31 -0.03 0.03 -0.43 ~O.47 roll 1 0.31 -0.03 -0.04 -O.42 -O.51 roll 1 0.15 -0.04 -0.04 -0.41 -O.53 roll 1 0.36 -0.03 -0.03 -O.54 -O.38 roll 1 0.31 -0.04 -0.03 -O.50 .O.43 Cylinders roll 2 0.33 0.03 -0.03 -0.51 “-0.50 roll 2 0.26 -0.05 -0.04 -0.37 -0.49 roll 2 0.24 -0.03 -0.04 -0.50 -0.44 roll 2 0.27 -0.04 -0.03 -0.39 -0.46 roll 2 0.40 -0.04 -0.04 -O.44 -O.4O roll 2 0.25 .004 -0.03 0.49 -0.53 roll 3 0.42 -0.04 -0.03 -0.43 -O.50 roll 3 0.30 -0.04 -0.04 -O.4O -O.47 roll 3 0.24 -0.03 -0.03 -O.48 -O.48 roll 3 0.16 -0.04 -0.03 -O.41 -O.49 roll 3 0.37 -0.05 -0.03 -0.36 -O.49 roll 3 0.27 -0.04 -0.04 -O.41 -O.46 58 Table A-19. CHARGING PROPENSITY 0F MATERIAL 5 IN nC. INCLINE PLANE @ 15 DEGREES Material Sample Q - Quartz 81 & 82 - Brass T1 & T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.36 -0.04 -0.04 ~0.57 -O.44 roll 1 0.39 -0.03 -0.02 -O.45 -O.43 roll 1 0.39 -0.04 -0.03 -O.49 -O.47 roll 1 0.14 -0.03 -0.03 -O.43 -O.54 roll 1 0.51 -0.04 -0.04 -O.56 -0.54 roll 1 0.53 -0.03 -0.03 -O.39 -0.45 Cylinders roll 2 0.34 -0.03 -0.03 -O.44 ~O.51 roll 2 0.27 -0.04 -0.03 -0.41 -O.46 roll 2 0.32 -0.03 -0.03 -0.47 -O.47 roll 2 0.29 -0.03 -0.03 -O.41 -O.48 roll 2 0.43 -0.04 -0.03 -O.41 -O.39 roll 2 0.35 -0.03 -0.03 -0.51 -O.46 roll 3 0.40 -0.03 -0.04 -O.42 -0.51 roll 3 0.34 -0.03 -0.03 -O.46 -O.46 roll 3 0.35 -0.03 -0.04 -O.46 -O.51 roll 3 0.17 -0.03 -0.03 -0.47 -O.50 roll 3 0.43 -0.03 -0.03 -O.45 -O.51 roll 3 0.27 -0.01 -0.03 -O.48 -O.52 59 Table A-20. CHARGING PROPENSITY OF MATERIAL 5 IN nC. INCLINE PLANE @ 20 DEGREES Material Sample Cylinders roll 1 roll 2 roll 3 5 1 Q 0.34 0.30 0.34 81 0.00 -0.01 -0.01 82 -0.02 0.00 0.00 T1 -O.33 -O.37 -O.52 T2 -O.43 -O.46 -0.44 roll 1 roll 2 roll 3 2 Q 0.34 0.34 0.31 81 0.00 -0.01 0.01 82 ~0.01 -0.03 0.00 T1 -O.45 -O.48 -O.46 T2 -O.38 -O.48 -O.46 roll 1 roll 2 roll 3 3 Q 0.31 0.31 0.31 81 -0.01 -0.01 -0.02 82 0.00 -0.02 0.00 T1 -0.50 -O.45 -O.4O T2 .O.44 -O.41 -O.38 roll 1 roll 2 roll 3 4 Q 0.30 0.29 0.34 81 -0.01 0.00 0.01 82 0.00 0.01 0.01 T1 -0.37 -O.37 -O.48 T2 —O.45 -0.41 -O.49 roll 1 roll 2 roll 3 5 Q 0.30 0.27 0.31 81 0.00 0.00 0.01 82 0.01 -0.01 -0.01 T1 -0.41 -O.44 -O.41 T2 -O.47 -O.48 -O.47 roll 1 roll 2 roll 3 6 Q 0.28 0.26 0.27 81 0.00 0.00 0.00 82 0.00 0.01 0.01 T1 -O.43 -O.41 -0.4O T2 -O.45 -O.4O -O.44 Q - Quartz 81 & 82 - Brass T1 & T2 - Teflon 60 Table A-21. CHARGING PROPENSITY OF MATERIAL 6 IN nC. INCLINE PLANE @ 5 DEGREES Material Sample Q - Quartz 81 & 82 - Brass T1 & T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.12 0.13 0.05 -O.28 -O.33 roll 1 0.28 0.17 -0.06 -O.26 -O.34 roll 1 -0.06 0.14 -0.04 -O.45 -0.62 roll 1 0.06 -O.15 -0.05 -O.29 ~O.58 roll 1 0.06 0.16 -0.02 -O.37 -O.48 roll 1 0.1 1 -0.05 -O.13 -O.31 -O.29 Cylinders roll 2 0.1 1 -0.08 -0.04 -0.35 —0.39 roll 2 0.31 -O.13 0.05 -O.29 -O.35 roll 2 0.07 0.05 -O.10 -0.43 -O.56 roll 2 0.03 -O.13 -O.1 1 -0.45 -0.55 roll 2 0.15 0.18 0.07 -O.38 -O.60 roll 2 0.1 1 -0.06 -O.19 -O.34 -O.39 roll 3 0.17 -O.23 -O.15 -O.35 -O.44 roll 3 0.39 -O.52 -0.06 -0.43 -0.29 roll 3 0.09 0.17 -0.04 -0.44 -O.57 roll 3 0.14 0.02 -0.08 -O.50 -O.43 roll 3 0.15 0.14 0.02 -O.33 o0.46 roll 3 0.18 0.01 -0.17 -O.33 -0.42 61 Table A-22. CHARGING PROPENSITY OF MATERIAL 6 IN nC. INCLINE PLANE @ 10 DEGREES Material Sample Q - Quartz B1 & 82 - Brass T1 & T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.10 0.12 -O.16 -O.29 -O.31 roll 1 0.26 -O.1O -0.06 -O.34 -O.41 roll 1 0.04 0.13 -0.10 -O.66 -O.55 roll 1 0.08 -0.17 -0.05 -O.32 -O.46 roll 1 0.10 0.09 -0.06 -O.28 ~O.35 roll 1 0.13 -0.09 -O.19 -O.38 -O.46 Cylinders roll 2 0.1 1 -O.19 -0.05 -O.31 -O.30 roll 2 0.33 ~O.19 -0.07 -O.25 0.32 roll 2 0.06 -0.01 -0.09 .O.49 -0.57 roll 2 -0.04 -O.17 -O.15 -0.48 -O.59 roll 2 0.19 0.13 ~0.03 -O.49 -O.35 roll 2 0.13 -0.07 -0.18 -O.36 -0.55 roll 3 0.19 -O.33 -O.13 ~O.37 -0.38 roll 3 0.37 -O.56 -O.14 -O.38 -O.35 roll 3 0.09 0.09 -0.09 -O.49 -O.54 roll 3 0.12 -0.05 -0.02 -O.53 -0.44 roll 3 0.23 0.16 -0.02 -0.38 -0.45 roll 3 0.16 -0.03 -O.14 -0.33 -O.53 62 Table A-23. CHARGING PROPENSITY OF MATERIAL 6 IN nC. INCLINE PLANE @ 15 DEGREES Material Sample Q - Quartz B1 & B2 - Brass T1 & T2 - Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.12 0.02 -O.22 -O.27 -O.32 roll 1 0.22 -0.07 -0.08 -O.36 -O.35 roll 1 0.05 0.04 -0.09 -O.44 ~O.53 roll 1 0.08 -O.13 -0.09 -O.33 -O.52 roll 1 0.08 0.15 -0.04 -O.28 -O.75 roll 1 0.13 -0.06 «0.09 -O.9O -O.76 Cylinders roll 2 0.15 -O.13 -O.17 -O.4O -O.27 roll 2 0.21 -O.23 0.04 -O.3O -O.39 roll 2 0.14 -0.04 -O.12 -O.44 -O.54 roll 2 ~0.05 -O.13 -0.05 -O.44 -0.50 roll 2 0.27 0.17 -0.05 -O.35 -O.45 roll 2 0.13 0.10 -0.03 -O.4O —O.57 roll 3 0.20 -O.43 -O.12 -O.38 -O.41 roll 3 0.26 -O.42 -0.06 -0.40 -0.32 roll 3 0.10 -0.04 -O.17 -O.51 -O.47 roll 3 0.07 -0.19 -0.09 -O.44 -0.50 roll 3 0.19 0.10 0.01 -0.46 -O.53 roll 3 0.18 -0.03 ~0.09 -O.51 -0.59 63 Table A-24. CHARGING PROPENSITY OF MATERIAL 6 IN nC. INCLINE PLANE @ 20 DEGREES Material Sample Q - Quartz 81 & 82 - Brass T1 & T2 — Teflon 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 81 82 T1 T2 roll 1 0.09 -0.16 -O.1 1 -O.67 -O.61 roll 1 0.04 -0.1 1 -O.1O -O.43 -O.53 roll 1 0.05 0.03 -0.07 -O.52 -O.55 roll 1 0.07 0.02 -0.06 -O.46 -O.49 roll 1 0.07 0.06 '0.06 -O.62 -0.53 roll 1 0.09 0.10 -O.1O -O.62 -O.49 Cylinders roll 2 0.06 -0.17 ~0.08 0.46 0.41 roll 2 0.06 -0.07 -0.07 -0.71 -O.51 roll 2 0.05 0.03 -O.12 -O.51 -O.52 roll 2 0.07 -0.06 -0.07 -O.51 -O.49 roll 2 0.09 0.00 -0.09 -0.52 -O.52 roll 2 0.13 0.14 -O.11 -O.51 -1.05 roll 3 0.05 -O.19 -0.06 -O.51 -O.56 roll 3 0.04 0.00 -0.08 -O.6O -O.58 roll 3 0.04 0.03 -0.05 -O.56 -O.51 roll 3 0.09 0.00 -0.07 -0.54 ~O.55 roll 3 0.10 -0.03 ~0.0B -O.59 -0.7O roll 3 0.10 0.07 -0.07 -O.58 -O.56 64 LI ST OF REFERENCES [1] [2] [3] [4] [5] [5] [7] [8] [9] [1°] [11] LIST OF REFERENCES ADE, Inc. , "Electrostatic Damage Control Efforts: An Expense or An Investment?," 1981. Armstrong, William IR., "Electrostatic Discharge: Materials Head Off Damage, " Packaging, February 1984, p. 44-47. Baumgartner, 6., “A Method to Improve Measurements of ESD Dissipative Materials," Lockheed Missile and Space Company. W 1987- Dupuis, Timm. 1L., "Understanding' and. Controlling Electrostatic Discharge." 1222.1929nieal_igurnal. Fall 1990, p. 4-9. EIA, "Packaging Material Standards for ESD Sensitive Items," EIA_§tandard. June 1988- Fowler, S.L., "Triboelectricity and Surface Resistivity Do Not Correlate," Cryovac, EOSLESQ Symposium Proceedings, September 1988. Fugua, Norman 8. , "ESD Control in the Manufacturing Environment," Reliability Analysis Center, Summer 1986. Huntsman, James R., "Quality through Static Damage Prevention," 3M Technical Bulletin, 1982. Huntsman, James R., "Triboelectric Charge: Its ESD Ability and.a‘Measurement.Method for its Propensity on Packaging Materials," 3M Company, EQSLESQ §xm29512m_22__eedings 1934. Jones, William E., "ESD Awareness Program: The Shocking Truth," U.S. Army Material Command Packaging, Storage, and Containerization Center, June 1985. Menguy, C., "The Main Origins of Static Electricity in Electronic Industries-Prevention Means," s 'n Proceedingg, London, UK, 13-14 Dec. 1988. 65 [12] Ryan, J., "Controlling Static: New Solutions to an Old Problem, " Quality_gz_grg§§, April 1984, p. 27- 32. [13] Shah, 8.M., Martinez, P.L., Unger, B.A., "Test Methods to Characterize Triboelectric Properties of Materials, " Bellcore. Wings. 1988. 66