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ABSTRACT

TWO-PROTON INTENSITY INTERFEROME'TRY IN

INTERMEDIATE ENERGY HEAVY-ION COLLISIONS

By

Wen Guang Gong

Two-proton intensity interferometry has been studied both experimentally

and theoretically in order to probe the space-time evolution of heavy-ion nuclear

collisions at intermediate energy.

An approximate relation is derived which allows the calculation of the two-

proton correlation function for any reaction model capable of predicting the single-

particle phase-space distribution or the Wigner function in the exit channel. The

sensitivity of two-proton correlation functions to source radii and lifetimes is

illustrated by calculations with simple parametrizations. More realistic

calculations are presented for two different regimes of emission time scales: slow

particle evaporation from equilibrated compound nuclei, as predicted from the

Weisskopf formula, and fast non-equilibrium particle emission in intermediate

energy nucleus-nucleus collisions, as predicted from the Boltzmann-Uehling-

Uhlenbeck transport equation.

Two-proton correlation functions have been measured at elab z 25 ° for the

"inverse kinematics" reaction 129Xe + 27A1 at E/A = 31 MeV, and for the nearly

symmetric reaction 129Xe + 122Sn at E/A = 31 MeV, for the "forward kinematics"

reactions 14’N + 27A] and 14N + 197Au at E/A = 75 MeV. For the reactions at 31 MeV

per nucleon, the two-proton correlation functions do not exhibit maxima at q = 20

ii



MeV/c, but only minima at q = 0) MeV/c. These correlations indicate emission on

a slow time scale. They can be reproduced by calculations based on the Weisskopf

formula for evaporative emission from fully equilibrated compound nuclei. For

the reactions at 75 MeV per nucleon, the correlation functions exhibit pronounced

maxima at relative momenta, q = 20 MeV/c, and minima at q = 0 MeV/c. These

correlations indicate emission from fast, non-equilibrium processes. They are

analyzed in terms of standard Gaussian source parametrizations and compared to

microscopic simulations performed with the Boltzmann-Uehling-Uhlenbeck

equation. For all reactions, the measured longitudinal and transverse correlation

functions are very similar, in agreement with theoretical predictions.

Two-proton correlation functions predicted by the BUU model for the

reaction 14N + 27A] at E/A = 75 MeV reveal large sensitivity to the magnitude of

the in-medium nucleon-nucleon cross sections and little sensitivity to the

compressibility of nuclear matter. Moreover, they exhibit strong dependence on

the total momenta of the emitted proton pairs when the collision impact

parameter is selected.
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CHAPTER 1. INTRODUCTION

1.1 Intensity Interferometry

Interferometric measurements are of great importance and wide application

in physics and astronomy [Mich 03, Hari 85, Swen 87, Boal 90]. In the early 19th

century, the interference study by Young’s double-slit experiment contributed to

the establishment of wave theory of light, which seemed to settle down the

Newtonian-Huyghensian controversy over the ultimate nature of light (vibratory

wave or corpuscular particle) [Swen 87]. Several decades later, Michelson

perfected the technique of interferometry to perform the famous ’aether drift’

experiment in 1881 [Mich 03, Mich 27]. The null results obtained by him led to the

rejection of the ’aether’ concept and laid the foundation for the special theory of

relativity. Two of the very important applications of Michelson’s interferometer

(an amplitude interferometer) were to measure the length of the Pt-Ir bar (which

was then the international standard of meter) in terms of the wavelength of light

in 1896 [Mich 03] and to measure the diameters of Betelgeuse and six other stars in

1920 [Hari 85].

A conceptually different interferometer (an intensity interferometer) was

proposed by Hanbury Brown and Twiss in 1954 [Hanb 54]. To measure the

angular size of stars (on the order of 10.4 are second), the use of an amplitude

interferometer had two difficulties. One was mechanical stability associated with a

long base-line, the other was atmospheric turbulence which introduced random

phase variation in the light-path. However, the intensity interferometer

1
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enabled Hanbury Brown to overc0me those difficulties and measure angular sizes

of 32 stars accurately [Hanb 74].

Figure 1.1 shows the schematics of two types of interferometers: the

amplitude interferometer and the intensity interferometer [Boal 90]. In an

amplitude interferometer, particles or waves from the source are split by double

slits (or beam splitter in Michelson’s interferometer) into two paths. They interfere

constructively or destructively at the detector or on the screen to give rise to fringe

patterns. The measurement of fringe visibility and slit seperation can provide

information on the angular size of source. In an intensity interferometer, two

particles emitted from the source are detected in coincidence by two detectors. A

correlation function C(p61,1362) or R(p61,p62) is generated as follows:

<n12 >

<n1> <n2>

 

C(fp’1,1362) = 1 + R6132) = (1.1)

Here n12 is the number of counts where particles are detected in coincidence by

both detectors and ni(i=1,2) are the numbers of counts where particles are detected

individually by each detector. Information on the source size can therefore be

extracted from such correlation functions in a two-particle coincidence

experiment.

While amplitude interferometry involves the one-particle probability,

intensity interferometry measures the two-particle joint probability. As photons

are indistinguishable bosons, the symmetrization of the two-photon wave function

results in the two-photon correlations [Paul 86]. After its original application in

astronomy [Hanb 74], two-photon intensity interferometry has recently been used

[Frib 85] to study the process of parametric down-conversion [Burn 70] in which

pump photons incident on a non-linear dielectric fission into two highly
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correlated lower frequency signal and idler photons. The time interval between

the signal and idler photons were accurately measured to be about 100fs [Hong

87]. Further experiments demonstrated the non-classical and non-local behaviors

of photons [On 89, Cu 90]. Based upon two-particle interferometry technique, new

experiments were proposed to test the fundamental question of completeness of

quantum mechanics [Fran 89, Horn 89].

The study of pion correlations in proton-anti-proton annihilation by

Golderhaber et. a1 [Gold 59, Gold 60] marked the first application of intensity

interferometry using pions in subatomic physics. Since the origin of pion

correlations was understood due to Bose-Einstein statistics, two-pion intensity

interferometry was mostly referred to as Bose-Einstein correlation. Following

extensive theoretical work [Shur 73, Cocc 74, Kopy 74, Yano 78, Gyul 79], two-pion

intensity interferometry has become a valuable tool to study various properties

such as chaoticity (the degree of incoherence), radius, lifetime and shape of the

pion emitting source in elementary particle collisions as well as nuclear collisions

[Boal 90]. Promisingly, it may be able to probe the formation of quark-gluon

plasma which is a new state of matter to be created in the ultra-relativistic heavy-

ion collisions [Bert 89].

Two-proton intensity interferometry was put forward by Koonin in order to

probe the space-time structure of the collision dynamics in medium-to-high

energy nuclear reactions [Koon 77]. Since protons are fermions, the anti-

symmetrization of two-proton wavefunctions results in an anti-correlation.

However, two-proton correlations are mainly dominated by correlations resulting

from final state interactions including strong and Coulomb interactions. It was

shown that the shape of two-proton correlation functions at small relative

momenta (less than 50MeV/c) is very sensitive to the source size. Two—proton

correlations have subsequently been measured to investigate the space-time
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characteristics of the emitting source in heavy-ion induced reactions at a wide

range of energies [Boal 90].

1.2 Intermediate Energy Heavy-Ion Collisions

Heavy-ion collisions at intermediate energy (E/A=20-200MeV) has become

an active area of research using heavy—ion accelerators [Gelb 87, Bord 90, Greg 86].

The goal of research is to understand the thermodynamical properties of nuclear

matter under extreme conditions and the nuclear dynamics leading to thermal

equilibration. It is a difficult and challenging task because of the unique

complexity involved with the finite nuclear system which interacts strongly and

evolves on a very short time scale.

The dynamics and thermodynamics of nucleus-nucleus collisions are largely

governed by the bombarding energy and the impact parameter. At low energy of

a few MeV per nucleon, heavy-ion collisions are dominated by the nuclear mean

field and one.body dissipation. Peripheral collisions are characterized by quasi-

elastic and deeply inelastic collision. Central collisions lead to complete fusion of

projectile and target, and the process can be well described by the formation of

compound nucleus and its decay by statistical evaporation of particles and y-rays

[Birk 83].

Relativistic heavy-ion collisions at high energy (E/A 2 0.5 GeV) are

dominated by individual nucleon-nucleon collisions as the nucleon mean-free

path becomes short and comparable to nucleonic size. The geometrical concept in

the participant-spectator model proves to be valid. Thermal equilibrium may be

rapidly obtained within the volume of participant nucleons to which statistical

models may be applicable [DasG 81, Cser 86, Stoc 86, Stiic 86].

Heavy-ion collisions at intermediate energy represent the transition region in

which both nuclear mean field and nucleon-nucleon collsions are important. The

incomplete fusion model combines mechanisms of both low energy and high

energy collisions. The partially fused system can be highly excited. As the
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emission of particles prior to the) attainment of full statistical equilibrium of the

composite system is observed to be important, it remains an open question to

know accurately how much excitation energy is deposited into the composite

system. The knowledge of the excitation energy is essential to determine the decay

of the system in a statistical approach. At low excitation energy, the excited system

undergoes binary sequential decays. As the excitation energy increases, multi-

fragment emissions become important. At even higher excitation energy, the

system may approach its limit of stability and explode into its constituents. A

nuclear liquid-gas phase transition of the excited system is expected to occur.

Therefore, systematic study of the final products of collisions can provide

information on the properties of hot nuclei of temperature T=0-10MeV and

density of approximately 0.1 to 1.5 times normal nuclear density.

Significant progress has been made recently in both experimental

measurements and theoretical studies to understand intermediate energy heavy-

ion collisions. More exclusive experiments were carried out to measure most of the

final reaction products including y rays, neutrons, light charged particles,

intermediate mass fragments and fission fragments using high efficiency detector

arrays and/or 41: detectors [Tsan 89, Kim 89, Pias 91, Bowm 91, DeSo 91, Sobo 91].

A complete characterization of the final states of the collsion may be possible

experimentally. Microscopic models have been based upon computer simulations

of the transport equation of nucleons under the influence of nuclear mean field,

nucleon-nucleon collision, and phase-space blocking due to Pauli principle [Bert

88]. They provided useful insights into the dynamics leading to statistical

thermalization. To extract any information on the thermodynamical property of

nuclear matter (e.g. the nuclear equation of state) from the measurement of

reaction products, we need a good understanding of both the dynamical and the

statistical aspects of the collision and develop and test microscopic models capable

of describing the space-time evolution of the reaction.
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We have exploited the two-proton correlation function as an observable to

test space-time geometries of intermediate energy heavy-ion collisions predicted

by dynamic models such as the Boltzmann-Uehling-Uhlenbeck model, as it was

originally proposed in Reference [Koon 77].

1.3 Two-proton Intensity Interferometry

Two protons, emitted at small relative momenta from an excited nuclear

system, carry information about the space-time characteristics of the emitting

source since the relative two-proton wave function reflects the interplay of the

mutual Coulomb and nuclear interactions and the exclusion due to Pauli principle

[Boal 90, Koon 77, Prat 87, Gong 91a]. The attractive S-wave nuclear interaction

leads to a pronounced maximum in the two-proton correlation function at relative

momentum, q==20 MeV/c, when the average distance upon emission is of the

order of 10 fm or less. The long-range Coulomb interaction and the Pauli exclusion

principle give rise to a minimum at q=0 MeV/c. The detailed shape of two-proton

correlation functions has to be calculated by incorporating correctly all the

physical ingredients.

The average distance between the two protons upon emission depends on

the spatial dimension and the lifetime of the emitting system. Consider two

protons with an average velocity, v, emitted from a static source of radius, r, and

lifetime, 1:. After emission, the separation between the two protons is r+v1. For

the decay of equilibrated compound nuclei with temperatures below 5 MeV,

estimated emission times are larger than several hundred fm/c [Frie 83]. As a

consequence, the average distance between emitted protons is much larger than

the size of the emitting nucleus and the effects of the Coulomb interaction and the

Pauli principle should dominate. On the other hand, non-equilibrium proton

emission in intermediate energy heavy-ion collisions is calculated to proceed on

much shorter time scales [Aich 85, Cass 88] and average proton separations may
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reflect the spatial dimension of the emitting system rather than the emission rate.

Here, the nuclear interaction should be prominent.

Figure 1.2 illustrates the apparent sources expected for emission from short-

lived and long-lived nuclear systems [Bert 89]. For correlations at small relative

momenta, the detected protons have nearly the same final momenta directed

towards the detection system. The dots in the figure illustrate the locations of

protons moving towards the detector with a given momentum, 3. Protons emitted

from a short-lived source (upper part) occupy a small region of space, but protons

emitted from a long-lived source (lower part) occupy a large and elongated region

of space [Prat 87, Awes 88, Bert 89]. The direction of elongation is along the

direction of 136. In general, reduced correlations are expected for emission from long-

lived sources due to the larger apparent source size. Moreover, for an elongated

source, the Pauli anti-correlation should be less in the longitudinal (elongated)

direction than in the transverse (non-elongated) direction due to the directional

dependence of anti-symmetrization effects [Koon 77, Prat 87, Awes 88] which are

important for Ian—'6 I zh, where If and 176 denote the relative momentumand position

vectors upon emission. The longitudinal correlation function (for which the

relative momentum,q6 #:1136132), is parallel to total momentum, P6 = 31 +32) of

a long-lived source may therefore be enhanced as compared to the transverse

correlation function (for which :16 is perpendicular to P6), unless the apparent source

region becomes so large that sensitivity to anti-symmetrization effects is lost.

1.4 Motivation

In most measurements of two-proton correlation functions, implicit

summations over the relative angle, ‘I’=cos-l(P6°q6/Pq), between relative and total

momenta of the proton pair were performed. While such measurements did not

explore the shape of the source function, they did corroborate the qualitative

expectations based upon the lifetime arguments outlined above. Two-proton
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Figure 1 .2: Illustration of source functions for emission from short-lived (upper

part) and long-lived (lower part) nuclear systems. The dots indicate the locations

of protons of a given momentum after the last proton has been emitted.
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correlation functions measured in kinematic regions dominated by evaporation

from equilibrated reaction residues [DeYo 89, Ardo 89, DeYo 90, Gong 90b] exhibit

a minimum at q=0 MeV/c, but no maximum at qz20 MeV/c. The shapes of these

correlation functions could only be described by assuming emission from long-

lived compound nuclei or, alternatively, from short-lived systems of unphysically

large dimensions. In contrast, two-proton correlation functions measured in

kinematic regions dominated by fast non-equilibrium emissions exhibit a clear

maximum at q~20 MeV/c [Zarb 81, Lync 83, Gust 84, Poch 86, Chen 87a, Chen

87b, Poch 87, Fox 88, Awes 88, Cebr 89, Queb 89, Gong 90b, Gong 90c] which

becomes more pronounced with increasing kinetic energy of the emitted protons

[Lync 83, Poch 86, Chen 87b, Poch 87, Awes 88, Gong 90b, Gong 90c]. The shapes

of these correlation functions could be described in terms of short-lived sources

with dimensions comparable to those of the respective compound nuclei; emission

from systems with even smaller dimensions was required for the description of

correlation functions measured for the most energetic protons [Lync 83, Poch 86,

Chen 87b, Gong 91b].

More recently, longitudinal and transverse correlation functions were

measured, both for non-equilibrium [Awes 88] as well as equilibrium emissions

[Ardo 89, Gong 90b]. None of these investigations found definitive evidence for

elongated source shapes. For the case of equilibrium emission, these findings were

shown to be consistent with theoretical correlation functions predicted by the

Weisskopf formula for evaporation from equilibrated compound nuclei [Ardo 89,

Gong 90b].

In order to elucidate similarities and differences of two-proton correlation

functions for equilibrium and non-equilibrium emission processes, we performed

measurements at elab == 25° for 6 6N induced reactions on 6 6 Al and 6 6 6Au at

E/A = 75 MeV and for 6 6 6 Xe induced reactions on 6 6 Al and 6 6 6Sn at E/A = 31

MeV. When light projectiles impinge on heavy target nuclei, emission at forward
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angles is dominated by non-equilibrium processes and emission at backward

angles is dominated by equilibrium processes [Poch 87, Queb 89, Ardo 89]. Taking

advantage of this angular dependence, we studied non-equilibrium emission in

"forward kinematics" for the reactions 6 6N + 6 6A1 and 6 6N + 6 6 6Au at E/A =

75 MeV and equilibrium emission in "inverse kinematics“ for the reaction 6 6 6 Xe

+ 6 6 Al and for the nearly-symmetric reaction 6 6 6 Xe + 6 6 6Sn at E/A = 31 MeV.

The measurements were performed with identical detector geometries, energy

calibrations and energy thresholds.

Two-proton correlation functions have been calculated by applying the

Wigner function formalism [Koon 77, Prat 87, Gong 91a] to one-body phase-space

distribution predicted by the Boltzmann-Uehling-Uhlenbeck transport equation as

well as the Weisskopf formula. Comparisons between the measured and

calculated two-proton correlation functions provide tests of the space-time

structure of specific reaction models. Non-equilibrium emission predicted with

good numerical accuracy 6 6N + 6 6A1 reaction at E/A = 75 MeV. Particle

emission rates predicted by the Weisskopf formula were tested for the 6 6 6 Xe

induced reactions at E/A = 31 MeV.

1.5 Organization

In Chapter 2, we describe various tests and performances of the CsI(Tl)

detetctor developed for this experiment. Details of the experimental setup are

outlined in Chapter 3. Subsequently, Chapter 4 explains the data analysis

procedures for particle identification, energy calibration, time-walk correction and

detector efficiency correction.

In Chapter 5, the inclusive single-proton cross sections are shown. They are

fitted in terms of moving-source parametrizations and compared to BUU model

predictions for pre—equilibrium emissions in reactions 6 6N + 6 6A1 and 6 6N +

‘ ° ’ Au at E/A =75 MeV.
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In Chapter 6, we present a brief derivation of the Wigner function formalism

which relates the two-particle correlation function to the single particle Wigner

function. The sensitivity of two-proton correlation functions to source radii and

emission time scales is illustrated by performing calculations for a number of

simple source parametrizations. Approximations underlying the Wigner function

formalism are examined in comparison with the classical trajectory calculations.

The measured two-proton correlation functions are presented in Chapter 7

and analyzed in terms of Gaussian sources of negligible lifetime to allow

comparisons with previous measurements.

Chapter 8 gives a brief review of the Weisskopf formula used for the

calculation of particle evaporation from equilibrated compound nuclei, together

with some numerical results. The measured two-proton correlation functions for

equilibrium emissions are compared to predictions of the Weisskopf evaporation

model.

In Chapter 9,- we begin with a brief review of the basic assumptions

underlying the derivation of the Boltzmann-Uehling—Uhlenbeck transport

equation, and then discuss the impact parameter averaging procedure and a few

numerical calculations. The measured two-proton correlation functions for non-

equilibrium emissions are compared to predictions of the BUU model. We further

explore the sensitivity of predicted two-proton correlation functions to the

equation of state of nuclear matter, in-medium nucleon-nucleon cross section and

the impact parameter of the collision.

A surrunary and conclusions are finally given in Chapter 10. Most results of

this thesis were published in referred journals [Gong 88, Gong 90a, Gong 90b,

Gong 90c, Gong 91a, Gong 91b, Gong 91c].



CHAPTER 2. THE CSI(TL) DETECTOR

2.1 General Considerations

The study of intermediate energy heavy-ion reactions often requires the

detection of light charged particles (p, d, t, on, ...) emitted with energies ranging

from the exit channel Coulomb barriers up to several hundred MeV. For moderate

resolution requirements, plastic scintillators are adequate. Better resolution can be

obtained with inorganic scintillators such as NaI(Tl), for which energy resolutions

of the order of one percent have been achieved for light charged particles of about

100 MeV energy [Poch 87].

Particle detectors using NaI(Tl) scintillators have a number of disadvantages.

The crystals are hygrosc0pic and must be hermetically sealed, typically with a thin

entrance window (z 811m Havar). Small pinholes in the entrance window can

lead to deteriorations of the detectors with time when they are stored in air. The

use of thicker entrance windows leads to higher detection thresholds and a loss of

resolution. The detectors usually employ photomultipliers for photon detection. In

general, photomultipliers exhibit rather poor long-term stability. Although it is

possible to monitor gain drifts with accuracies of the order 1%, the procedures

used are rather time consuming and cumbersome [Chit 86b, Poch 87].

The use of CsI(T1) scintillators promises to overcome some of these

difficulties [Knol 89, Gras 85a]. The crystals have superior thermal and mechanical

properties (see Table 2.1). Since they are only slightly hygroscopic, they do not

have to be hermetically sealed. Furthermore, their spectral response is well

matched to that of silicon photodiodes [Gras 85a] which exhibit excellent
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Table 2.1: Properties of NaI(T1) and CsI(T1) scintillators.

 

Scintillator I CsI(T1) | NaI(Tl) I Units

Maximum Emission I I I

 

 

 

 

 

 

 

 

 

 

Wavelength, l. I 540 I 415 I run
max

Refractive Index @k l 1.80 | 1.85 I
max

Pulse 10-90% Rise Time I 4.0 I 0.5 | us

Decay Constant, If/ 18 I0.4-0.7/7. I 0.23 I us

Total Light Yield I 52000 I 38000 I PhotoxLS/MeV

(dB/dx) . I 5.6 I 4.85 I MeV/cm
mm

Radiation Length, X n I 1.86 l 2.59 l cm

Hardronic Interaction I | I

Length, 7» I 36.4 I 41.3 I cm

Specific Gravity. p I 4.51 l 3.67 I gm/cm 6

Melting Point, Tm I 621 I 651 I 6 C

Hygroscgncity l slkLhtly I yes I
 

Thermal and Mechanical I I l

Resistance Iexcellent I poor |
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long-term stability (see Figure 2.21 below) when read out with good quality

charge sensitive preamplifiers [Bluc 86]. A number of investigations using small

volume crystals have pointed out these generally attractive features [Vies 86, Meij

87, Kreu 87, Gras 85a, Gras 85b]. In fact, energy resolutions of the order of 1% were

reported for tat-particles of 100 MeV energy [Vies 86]. However, the use of CsI(T1)

scintillator does have obvious disadvantages due to rather slow time response of

the scintillator. The detector usually has poor time resolution and count-rate

tolerance.

At the beginning of our detector development, we tested a small volume

CsI(T1) scintillator (1x2x4cm6) read out by a PIN diode of 1x1cm6 active area

using a commercial charge-sensitive preamplifier (Canberra 2003). Standard

electronics was set up with a amplifier (Tennelec TC241) and a Multi-Channel-

Analyzer (Canberra MCA-85). Figure 2.1 shows the measured energy spectrum of

'y-rays from a 6 0Co radioactive source. The FWHM resolutions are 6.0%, 5.6%,

and 4.4% for E7: 1.173 MeV, 1.332 MeV, and 2.505 MeV, respectively. The inset

magnifies the pile—up peak originated from two lower energy 'y-rays detected in

the crystal in coincidence. We built another detector by using a cubic CsI(T1)

crystal (2x2x2cm 6), a larger PIN diode of 2x2cm 6 active area, and a homemade

charge-sensitive preamplifier. The y-ray energy spectra measured with this

I 3

detector is shown in Figure 2.2 for a 6 Cs source (E Y= 0.662 MeV) (upper part)

and for a 6 6 Co source (EY: 1.173, 1.332 MeV) (lower part). Indicated in the figure

are the FWHM energy resolutions, which are very comparable to the energy

resolutions of the y-rays measured by a standard NaI(Tl) detector read out by a

photomultiplier tube [Gras 85a]. Assuming that the total resolution (0tot) consists

of the intrinsic resolution (0. ) and the electronic noise (0' . ), we obtained that

mtr noise

 

_ 2 _ 2 .

Ointr - 6/(Otot6 (onoise6 . In the upper part of Figure 2.2, for an example, Otot

= 59 keV , 0 . = 46 keV , and then 0. = 37 keV. The intrinsic detector

norse mtr

resolution is somewhat less than the electronic noise level of the pre
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Figure 2.1 : Measured energy spectrum of 'y-rays from a 6 6C0 source with a

small volume CsI(T1) scintillator (1x2x4 cm6) read out by a Hamamatsu PIN

diode (51790: 1X1 cm 6), where a commercial charge-sensitive preamplifier

(Canberra 2003) was used.
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Figure 2.2 : Measured energy spectra of y-rays from a 6 6 6C5 source (upper

part) and a 6 6C0 source (lower part) with a small cubic CsI(T1) crystal (2x2x2

cm 6) read out by a Hamamatsu PIN diode (2x2 cm 6), where a homemade charge-

sensitive preamplifier was used.
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-amplifier. Reduction ,of the electronic noise in the preamplifier should lead to

even better detector resolution.

Though small volume CsI(Tl) crystals have demonstrated excellent detection

resolution, our objective is to use rather large volume cylindrical crystals of typical

dimensions of 38 mm diameter and 100 mm length for a 56 element detector array.

We have performed detailed resolution tests for a number of large volume CsI(T1)

scintillators read out by a 2x2cm 2 PIN diode. Resolutions of 1% have been

achieved for protons of 50 MeV. However, in general, the resolution was found to

be limited by local nonuniformities causing variations of the scintillation efficiency

of several percent.

2.2 Description of the CsI(T1) Detector.

Our CsI(T1) crystals were manufactured by BICRON corporation. They are

cylinders of identical physical dimensions (diameter = 38 mm, length = 100 mm),

which can stop, for example, protons up to energies of about 190 MeV and alpha

particles up to energies of about 780 MeV.

The structure of the CsI(Tl) detector is depicted in Figure 2.3. We used a clear

lucite light guide of 12 mm length connected to the rear flat surface of the CsI(T1)

crystal which had been polished with a tissue moistened with alcohol. Good

optical coupling with sufficient mechanical rigidity was obtained using RTV 615

silicon rubber for the interfaces between the CsI(T1) crystal and the light guide,

and between the light guide and the photon detectors. Most measurements were

performed using a square shaped PIN diode of 2x2cm 2 active area for photon

detection. In several instances, the diode was replaced by a photomultiplier with a

circular photocathode of 38 mm diameter to verify that our results were not an

artefact of the square geometry of the active area of the PIN diode.

The detailed response of the detector assembly depends on the treatment of

the scintillator surface. Some of our test results will be discussed in the next
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CsI(T1) scintillator readout by PIN diode
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Figure 2.3 : Anatomic diagram of the CsI(T1) detector.
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section. Our standard treatment consists in sanding with fine paper (#3204400) all

the outer surfaces of the assembly (i.e. crystal and light guide). The sides are

sanded by movements parallel to the cylinder axis; the front surface is sanded by

circular motions. Teflon tape is wrapped around the sides of the detector

assembly; the front face of the crystal is covered by an aluminum foil of 15 um

thickness. A light intransparent aluminum foil is wrapped around the layers of

teflon tape. The detector is then inserted into an aluminum can which provides

mechanical protection and the housing of the preamplifier.

Our 2x2cm 2 PIN diode is a prototype supplied by Hamamatsu corporation.

It has a leakage current of about 5 nA at room temperature and at an operating

bias of 60 V. Because of slight heating, operation in vacuum resulted in an increase

of leakage current. In our detector array, cooling lines were installed to remove

excessive heat and maintain the detectors at constant temperature (about 15 ° C). It

was measured [Gras 85a] that the temperature dependence of the light yield of

CsI(Tl) scintillator read out by photodiode shows a flat maximum around 3040 °C

and has a temperature coefficient of 0.3%/ °C at 20°C. The diode has a

capacitance of 135 pF at full bias. Its area-to-capacitance ratio is better by about a

factor of two as compared to the standard lxlcm 2 PIN diodes such as the

Hamamatsu $1723 and 51790 diodes. For low level signals one can expect an

improved signal-to-noise ratio. However, the actual improvement does not track

the area-to-capacitance ratio because the use of a larger diode of area comparable

to that of the light guide results in a non-negligible reduction of the reflecting

surface of the light guide (which is wrapped with teflon tape). The signals

measured with the 2x2cm 2 PIN diode were about a factor of 2 larger than those

measured with lxlcm 2 PIN diodes.

The photodiode was furnished without a protecting window at the front

face. We, therefore, applied an optically clear epoxy (EPO—TEK 301-2, by Epoxy

Technology Inc.) to the surface of the PIN diode to protect the silicon wafer and



AAA

21

 

PHOTO DIODE ‘r   

 

 

 

  
  

  

 

 

 
 

 

 
 

 

  

 

   
 

. : ems

10 F LEM A 13374 : ”2"
n $130M 220 + u

v :Eiea 715d: .

1 2.5V . . * 150::
150?

2N3<m ”1“”)? ~ szasas ""5"“: ,

NJsaa ' 0005'“ {, lOGnF
n c \n -r . . - our

10'“: HASBBZL r
I I

lflflnF ) 1

"lpF lOOnF lODnF

. GND
4.7K ilSUF J:

D ) 1

51 ‘ ,Itsur , 150::

Jsasd: ”PF l

10' r—'

1 F ' 1603? r “2"
p ‘fi

= TEST IN 

Figure 2.4: Schematics of the preamplifier used for the readout of the PIN diode.

The preamplifier is mounted on a circuit board of 38 mm diameter.
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allow repeated optical couplings with different detectors. To provide the

necessary mechanical stability, the diode was mounted on a substrate made of

Boron Nitride. The diodes were operated for months without measurable

deterioration of its performance.

A low cost preamplifier of good resolution and low power dissipation was

designed by MR. Maier at the NSCL and its schematics is shown in Figure 2.4. Its

risetime of I: 0.2 us is smaller than the fast decay component of the fluorescent

light of CsI(T1) (about 0.4 us). The power dissipation of 0.5 watt is sufficiently low

to allow Operation of the preamplifier in vacuum without overheating the diode.

The preamplifier noise at full-width-half-maximum (FWHM) corresponds to a

charge of 2000 electrons using an input capacitance of 130 pF and a shaping time

constant of 1.4 us for the subsequent amplification with a spectroscopy amplifier.

For our CsI(T1) detector assembly, this noise figure corresponds to a resolution of

about 300 keV for a-particles of 5.5 MeV, the exact value depending on the light

output of individual crystals.

2.3 Resolution Test of Individual Detectors

In this section, we describe a series of tests for a number of crystals

concerning their resolution for energetic light particles and the position sensitivity

of the detector response. For these measurements a AE surface barrier detector of

400 um thickness and 450 mm 2 active area (ORTEC TB-27-450400) was placed in

front of the C51 detecor. In order to unambiguously identify intrinsic properties of

individual crystals each crystal was provided with a well defined frame of

reference, which was kept fixed with respect to the individual crystal throughout

our measurements. Our choice of reference frame is depicted in Figure 2.5.

For the purpose of book-keeping the crystals were labelled with numbers.

We present representative results obtained for detectors #1 and #3 during test runs

with energetic light particles and from bench tests with collimated radioactive

SOUICES.
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For the bench test, we used a l 3 7 Cs 'y-ray source which was collimated by a

3 mm diameter lead collimator of about 6 cm thickness. The collimated y-ray

source was mounted on a movable platform. The position of the collimator was

determined with an accuracy of better than 0.05 mm. During these measurements

the position of the CsI-detector was kept fixed. The measurements were

performed with semi-gaussian pulse shaping using a peaking time of 61.15 for the 0

main amplifier. Typically, the FWHM resolution for the 662 keV line of l 3 7 Cs

was of the order of 25%; it is affected by photon statistics and electronic noise.

Therefore, these measurements had to be performed with good statistical

accuracy. For an accurate determination of the peak position, it was necessary to

subtract the background due to noise and Compton scattering. Because of the

excellent stability of the PIN diode, peak shifts of less than 0.2 % could be detected

by measuring the 1 3 7 Cs peak with high statistical accuracy (typically larger than

2x10 ‘ counts in the photopeak).

Most measurements of detector responses were performed with a beam of 96

MeV a-particles delivered by the K500 cyclotron of the NSCL. For these

measurements, the CsI(T1) crystals were mounted as the stopping detectors of AF.-

E telescopes, the AB detector being a 400 pm thick silicon surface barrier detector

with an active area of 450 mm 2. Gold and polycarbon, (CH 2 )n’ targets of 2 and 1

mg/cm 2 thickness were used to obtain alpha particles and protons of known

energy. The scattered particles were collimated by a 12.5 mm thick block of copper

with a circular hole of 3 mm diameter. For these measurements, the position of the

collimator was kept fixed in the laboratory and the telescope was moved with

respect to the collimator exposing different points of the detector entrance

window to scattered particles of fixed energy. The distance between the collimator

and the target was 40 cm; the kinematic smearing for recoil protons was less than

1% in all cases. The absolute resolution of the AE-silicon detector (550 keV) is

considerably better than that of the CsI(T1) detector.
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Figure 2.5 : Crystal-fixed frame of reference for y-ray scanning tests.
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One can, therefore, largely eliminate the effects of energy loss variations in the AE-

detector due to straggling or detector inhomogeneities by adding the AE and E

signals. By this procedure one can determine the intrinsic resolution of the CsI(T1)

detector with good accuracy.

Tests were also performed at the Indiana University Cyclotron Facility. A

direct, low intensity beam of 200 MeV protons was degraded by passing it

through an aluminum absorber and then collirnating it with 50 mm thick Cu

collimators with circular holes of 3 or 25 mm diameter, respectively. For these

collimator sizes, outscattering of the particles is of minor importance. In these

measurements no silicon AIS-detector was used.

Results for Crystal #1

This crystal was of clear transparent appearance with a few tiny imper-

fections in the bulk material. For the results presented here, crystal #1 was

packaged following the procedure outlined in Section 2.2 with the single exception

that the detector surfaces were not sanded by us. The crystal had been ordered

from the factory with its front and rear faces polished and the cylinder mantle

unpolished.

Figure 2.6 shows a scan of the detector response obtained by moving the

collimated radiation source (scattered protons and a-particles as well as y-rays)

parallel to the X-axis of the crystal entrance window. Plotted is the percentage

shift of the peak location measured at position X as compared to the peak position

measured at the center, =0. The exact magnitude of the measured shift depends

on the nature of the detected radiation. This can be expected from the different

penetration depths of y-rays, protons and (at—particles. For all three measurements,

the detector exhibits a response which is distinctly left-right asymmetric with

respect to the cylinder axis, X=O. For the measurements with the collimated

‘ 3 7 Cs source, the signal to (electronic) noise ratio is considerably worse than for

measurements with energetic particles. As a consequence, the experimental
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Figure 2.6 : Left-right asymmetric response of crystal #1 for collimated y-rays of

662 keV, protons of 56.8 MeV, and (Jr-particles of 89.1 MeV. Shown is the relative

shift of the peak centroid as a function of the X-coordinate of the collimator,

keeping Y=0. The data are normalized to the peak position measured for X: =0.
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uncertainties for the y-ray measurements are larger. Due to Compton scattering

and variations of the penetration depths the effective volume in which scintillation

is produced is larger for y-rays than for particles. The larger sampling volume

might slightly reduce the sensitivity of tests with 'y-rays. However, it is important

that the approximate magnitude of the asymmetry can be well established with a

simple bench test using y-rays. This allows testing of individual crystals without

having to take recourse to expensive accelerator time.

With a collimator of 3 mm diameter, the detector exhibits an excellent energy

resolution of the order of 1% for a-particles of 94 MeV. Because of the strong

position dependence of the detector response, the energy resolution is

considerably worse if a larger collimator is used. With a collimator of 20 mm

diameter a double humped peak structure was observed with a FWHM resolution

of about 3%.

Different treatments of the front face of the crystal #1 were investigated. The

front surface was polished, sanded, covered with aluminum foil, aluminized

mylar, or teflon tape. Although the detailed detector response is affected by these

treatments, we were unable to eliminate the underlying left-right asymmetry. The

effects of surface treatments will be illustrated in some more detail for a different

crystal, #3, which exhibited a less asymmetric response at one end of the crystal.

It was verified that the asymmetric response of the detector was not due to

the square shape of the photon detector. As an example, Figure 2.7 shows

measurements with a collimated y-ray source for a different crystal, #2, performed

using a PIN diode and a photomultiplier tube as photon detectors. Both

measurements give very similar results: the response of this particular crystal is

relatively flat for a scan along the X-axis and shows a pronounced asymmetry for

a scan along the Y-axis.
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Figure 2.7 : Position sensitive response of crystal #2 for collimated y-rays. The

open points show measurements as a function of the Y-coordinate of the

collimator keeping X=0; the solid points show the dependence on the X-coordinate

keeping Y=0. Part a) and b) show measurements using a square PIN diode and a

photomultiplier with circular photocathode, respectively.
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Results for Crystal #3

This crystal was of slightly opaque appearance. As compared to crystal #1, it

had a reduced light output. Initial tests revealed that the response of the detector

was nearly symmetric with respect to the cylinder axis. This detector was then

chosen for rather detailed investigations concerning the treatment of surfaces as

well as its resolution for energetic light particles, including protons of 178 MeV

energy.

Figure 2.8 shows the response to collimated y-rays for the original

(untreated) crystal as it arrived from the factory and for the crystal with the front

surface and the cylinder mantle sanded. For the untreated detector (with a

polished front surface) the light collection efficiency decreases as the radiation

source is removed from the cylinder axis, see Figure 2.8b. A considerably more

uniform response is obtained when the crystal is sanded, see Figure 2.8a. The

major effect of sanding the surfaces of the detector is the removal of a reflection

symmetric position sensitivity along the X and Y directions, which could be

caused by variations of the effective solid angle for light collection due to total

internal reflection at the side surfaces.

We have investigated whether sanding of the front surface introduces

significant dead layers which could affect the energy resolution for low energy

charged particles. Within experimental uncertainties, the energy resolution for

collimated (IL-particles of 5.5 MeV energy was found to be the same for polished

and sanded entrance windows. In addition, the signal amplitudes were very

similar for the two different surface treatments. Therefore, we conclude that no

major damages are introduced by also sanding the front surface of the detector.

An optimally uniform response is obtained for diffusely reflecting detector

surfaces. It should be noted that different treatments of the cylinder mantle can

significantly alter the light collection efficiency as a function of the Z-coordinate.

Such a dependence is of minor concern for the detection of charged particles
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Figure 2.8 : Position sensitive response of crystal #3 for collimated y-rays. The

open points show measurements as a function of the Y-coordinate of the

collimator keeping X=0; the solid points show the dependence on the X-coordinate

keeping Y=0. Part (a): Standard sanding treatment of the reflecting surfaces; part

(b): original detector with polished front face.
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entering through the front window: it merely introduces nonlinearities in the

energy calibration of the detector without significantly affecting the energy

resolution. Quite generally, scintillation detectors have nonlinear energy

calibrations due to the dependence of the differential light output on ionization

density [Poch 87, Vies 86].

Figure 2.9 shows the response of the elements of the AE-E telescope to a-

particles of 92 MeV restricted by a 3 mm collimator moved along the X-axis of the

crystal. The upper part of the figure shows the response of the AE-detector which

shows clear evidence of a convex shape with an inhomogeneity of the order of 8%.

The center part of the figure shows the complementary response of the C51

detector. After summation of the AE and E signals, the total response of the

telescope is obtained to be flat within 0.5%.

Figure 2.10 shows energy spectra of protons and (at-particles emitted at

6=20° from a polycarbon target (CH 2 )n irradiated with 96 MeV a-particles. In

order to reduce kinematical broadening of the elastic scattering peaks a collimator

of 3 mm diameter was used. The energy resolution (FWHM) of the telescope is

1.0% for 55 MeV protons and 0.8% for 92 MeV a-particles. Due to the rather

uniform response of crystal #3, the detector resolution is of comparable quality for

larger collimators. For 95 MeV a-particles (obtained from the elastic scattering on

Au), a resolution of 0.9% was measured with a collimator of 20 mm diameter, see

Figure 2.11. Figure 2.12 shows the energy calibration of the detector. Good

linearity is observed over the range of energies measured. Consistent with

previous measurements [Vies 86], a-particles exhibit a significant pulse height

defect as compared to protons.

The tests described so far probe only a small fraction of the crystal. In order

to test the response to more penetrating radiation, we performed measurements

with protons of 178 MeV. Using a collimator of 3 mm in diameter a resolution

(FWHM) of 1.4% was obtained. When a 25 mm diameter collimator was used, the
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Figure 2.13: Position sensitive response of crystal #3 as detected by collimated

protons of 178 MeV (solid points) entering the front face (Z=0) of the crystal with

the PIN diode mounted at the rear end (Z=112 mm) and by collimated 'y-rays

(open points) entering the rear face (Z=100 mm) of the crystal with the PIN diode

mounted at the front end (Z=-12 mm). Part (a) shows measurements as a function

of the X—coordinate of the collimator keeping Y=0; part (b) shows measurements as

a function of the Y-coordinate of the collimator keeping X=0.
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energy resolution was 1.7%. Scans of the detector response along the X and Y

directions revealed non-trivial variations of the peak position as a function of

position, see solid points in Figure 2.13. Reduced position sensitivities were

measured for protons degraded to lower energy (=146 MeV). In order to verify

that the position sensitivity of the detector was associated with the properties of

the crystal itself and not an artefact of our detector assembly, we removed the light

guide and PIN diode from the crystal and attached it at to the former entrance

window (Z=0 mm coordinate). After applying our standard surface treatment and

packaging, we measured the response of the crystal by injecting collimated y-rays

through the rear window of the crystal (Z=100 mm coordinate). The

measurements are shown by the open points in Figure 2.13. We observe a

pronounced asymmetry in the detector response which tracks the qualitative

features observed for 178 MeV protons. Of course there are quantitative

differences since the two tests sample different (though partly overlapping)

regions of the crystal. However, they do confirm that the variations in the

scintillation efficiencies are due to inhomogeneities in the rear part of the crystal.

In summary, our results indicate that the resolution of large volume CsI(T1)

crystals is mainly limited by local inhomogeneities of the crystal response (most

probably due to non-uniform doping of T1 concentrations). Improved fabrication

techniques might overcome these limitations.

2.4 Pulse Shape Discrimination

In this section, we describe the timing characteristics of the detector and

compare light particle identification spectra obtained with the AE-E technique

using a 400 pm thick transmission surface barrier detector of 450 mm 2 active area

(ORTEC TB-27-450-400) with those obtained by pulse shape discrimination

technique. Special attention will be paid to the degradation of particle

identification by pulse shape discrimination technique at higher count rates.
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Particle identification spectra obtained with the AE-E technique are shown in

Figures 2.14 and 2.15. For these measurements the preamplified PIN diode signals

were shaped with a standard semi-Gaussian bipolar filter using a peaking time of

3 us for the unipolar output. (This corresponds to a time constant of 1.4 0.5.) The

particle identification spectra were linearized by using a standard particle

identification (PID) function:

PID °c (E+AE)1'8- E1°8 . (2.1)

The PID spectra were then integrated over an interval of 45-70 MeV for the

energies of the detected particles. Figure 2.14 shows the quality of particle

identification which can be obtained with planar AE detectors. In these

measurements inhomogeneities of the AE detector were reduced to a negligible

level by using a collimator of 3 mm diameter in front of the telescope. Between

protons and deuterons a peak-to-valley ratio of about 100 can be obtained; the

separation between 3 He and ‘ He is even better. When a larger collimator is used

the inhomogeneities of our AE-detector are not negligible and the particle

identification deteriorates somewhat, see Figure 2.15. In this figure, particle

identification spectra are shown for two different count rates, 10 3 and 1.4x10‘

counts per second (cps), using a collimator of 20 mm diameter. (In our

measurements sizeable contributions to the count rate of the CsI(T1) detector are

due to y-rays and neutrons.) At count rates of the order of 103-10‘ cps, the

particle identification is of good quality, it degrades slightly with increasing count

rate.

It has been known for many years that the temporal decay of the CsI(T1) light

output depends on the ionization density of the detected particles [Stor 58]. The

fluorescent light has two major decay time constants. In a good approximation the
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Figure 2.14: Particle identification spectrum obtained WI" tl-tg AE-E technique

and employing the linearization function PID = (E+AE) ' - E ' . The interval of

energy integration was 45-70 MeV. To eliminate inhomogeneities of the AE-silicon

detector, a collimator of 3 mm diameter was used.
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Figure 2.15: Particle identification spectrum obtained jiv'hth thg AE-E technique

and employing the linearization function PID = (E+AE) ' - E ' . The interval of

energy integration was 45-70 MeV. A collimator of 20 mm diameter was used.

Identification spectra are shown for the count rates of 10 ’ cps (shaded histogram)

and 1.4x10 ‘ cps (upper histogram).
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decay of the scintillation pulse can be expressed as [Stor 58, Alar 86]:

L(t)=LS exp(-t/‘ts) +Lfexp(-t/If) . (2.2)

While the slow time constant, Is: 7 us, is independent of the ionization

density generated by the detected particle, both the detailed value of the fast time

constant, I = 0.4-0.7 us, as well as the relative intensity, Lf/Ls’ are known to

exhibit suclfl a dependence. It is, therefore, possible to discriminate between

different charged particles via pulse shape discrimination techniques [Kreu 87,

Alar 86, Bigg 61].

Figure 2.16 shows particle identification spectra obtained via pulse shape

discrimination for two count rates, 103 and 1.4x10‘ cps. For these data, we

measured the time difference, AT, between the time derived with a constant

fraction discriminator from a fast signal of the PIN diode, shaped with 400 ns

differentiation and 100 ns integration constants, and the zero-cross-over time of a

slow doubly differentiated signal shaped with a semi-gaussian bipolar filter

(ORTEC 572) using a time constant of 3 us. (A theoretical analysis, using

measured time constants for different particle species and the noise characteristics

of the filter network, predicts an optimum pulse shape discrimination for time

constants between 2-3 us, assuming that pile-up effects are negligible.) At low

count rates, the pulse shape discrimination technique yields good separation

between hydrogen isotopes and somewhat marginal separation between 3 He and

‘ He. However, the quality of particle separation deteriorates rather rapidly with

increasing count rate. This effect can be understood as due to the sensitivity of the

zero-cross-over of the slow signal to pile-up. The AE-E technique is clearly

superior, especially at higher count rates. Nevertheless, pulse shape

discrimination can provide useful results in low count rate applications

encountered, for example, in detector arrays of high granularity in which each

module subtends only a small solid angle. In addition, it can be used to
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Figure 2.16: Particle identification spectra obtained with the pulse shape

discrimination technique. The interval of energy integration was 45-70 MeV. A

collimator of 20 mm diameter was used. Identification spectra are shown for the

count rates of 10 3 cps (shaded histogram) and 1.4x10 ‘ cps (upper histogram).
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discriminate between. different “hydrogen isotopes of very high energy in

applications where dynamic range considerations dictate the use of thin AE

detectors less suitable for the separation of protons, deuterons, and tritons.

Since the particle identification efficiency of the AE-E technique is close to 1,

one can determine the efficiency of the pulse shape discrimination (PSD)

technique by setting gates corresponding to various particles in the PID-E matrix

and then sorting the gated data into the AT-E matrix. The efficiency of the PSD

technique can then be defined in terms of the ratio

epsd= NPSD/NPID , (2.3)

where NPID denotes the total number of counts sorted for a given gate in the PID-E

matrix and NPSD is the number of events which fall into the appropriate region in

the AT-E matrix.

We have measured the dependence of .9de as a function of count rate in the

CsI(Tl) detector #3 using time constants of 2 and 3 us in a semi-gaussian filter

network. The results obtained for p, d, t, and a-particles are shown in Figure 2.17.

For both shaping times, the pulse-shape discrimination efficiency decrease

strongly as a function of count rate. At count rates of the order of 10 J cps, epsdz 95-

100%, the exact value depending on shaping constant and particle type. At count

rates of the order of 10 ‘ cps, e z 70-80%, i.e. between 20% to 30% of the particles

are misidentified. Such misidijtciifications can pose a serious handicap for high

resolution coincidence measurements since the number of correctly identified

particle pairs depends quadratically on spsd: For epsd= 75%, only 56% of the

coincident particle pairs will be identified correctly.

Some improvements of the count rate dependence of the pulse shape

discrimination efficiency might be obtained by using pulse shaping by double

delay-line differentiation because of its faster baseline recovery characteristics.
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However, one cannot expect to match the excellent count rate dependence

achieved for the AE-E technique, since the amount of time during which the

baseline is occupied will not change considerably. The AE-E technique is less

sensitive to count rate since the time constant in the main shaping amplifier for the

AE signal can be kept small; it could even be reduced with respect to the value of

1.4 1.15 adopted for our measurements since electronic noise is not the limiting

factor.

The rather poor count rate characteristic of the pulse shape discrimination

technique is intimately connected to the fact that even the faster of the two

components of the fluorescent light of CsI(Tl) is sufficiently slow to cause severe

pile-up problems. Another consequence of the slow CsI(Tl) light response is the

quality of the timing that one can obtain from such a detector. With mono-

energetic protons of 178 MeV, time resolutions of the order of 4 ns were obtained

with the constant fraction technique. This value is close to the optimum value

which can be expected from our detector: at lower energies, the signal to noise

ratio becomes worse and the time resolution will deteriorate. Further problems

arise from the existence of different decay constants for different particle species

which cause additional walk problems when one uses charge integrating

preamplifiers. To illustrate this problem, Figure 2.18 shows the time difference

derived from the signals of the CsI(T1) E and the silicon AE detectors using

constant fraction timing techniques. The particle dependent walk is clearly visible.

2.5 Quality Tests of CsI(Tl) Scintillators

The resolution of large volume CsI(Tl) detectors was found to be limited by

local crystal nonuniformities which caused significant variations of the light

output efficiency. The magnitude of the local variations of light output efficiency

can vary significantly between individual crystals. It can be assessed with an

inexpensive bench test in which the position dependent response to collimated 7-

rays is measured (see Section 2.3). In order to make detectors of satisfactory
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quality for a 56 element hodoscope, we have tested a large number of CsI(Tl)

scintillators manufactured by BICRON corporation. Based upon extensive

measurements with collimated y-ray scanning, we compared crystals grown by a

previous technique to crystals grown with a newly developed process showing

considerably better uniformity of scintillation efficiency.

All crystals tested were cylinders of 38 mm diameter and 102 mm length.

They are packed according to the structure depicted in Figure 2.3. The response of

IS?

all detectors was tested with 662 keV y-rays from a Cs source collimated by a

3 mm diameter lead collimator of about 6 cm thickness. The collimated y-rays

entered through the flat front face of the CsI(T1) crystals in a direction parallel to

the cylinder axis. As a quantitative measure for the non-uniformities of

scintillation response, we evaluated the maximum shift of the centroid of the

photopeak as the collimator moved along a circle of 1 cm radius centered at the

axis of the cylindrical CsI(Tl) crystals. The measured shifts of the photopeak were

normalized to the response for irradiation at the center of the circular entrance

window.

Techniques used for the growth of CsI(Tl) (and other alkali halides) on a

commercial scale are not documented in the open literature, but are based on

years of research and development in material purification and growth furnace

design. Techniques described in Reference [Birk 64] make it possible to grow good

quality crystals of small size and on a small scale. The growth of large volume

crystals (2100 I) on a monthly schedule requires a detailed understanding of the

interplay between purity of starting material, growth furnace design, and growth

rates.

The two different sets of crystals described here represent an old and a new

growth process. BICRON began growing CsI(Tl) in 1985 using the old process.

The resulting crystals were acceptable for Compton suppression shields and

phoswich [NaI(Tl)/CsI(Tl)] applications. Under close examination with a finely
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collimated y-ray beam these crystals were found to have pulse height variations of

as much as 6% over distances of the order of 1 cm. Our test results for a large

sample of such crystals are shown by the unshaded histogram in Figure 2.19.

These scintillators exhibit a broad distribution in scintillation uniformity.

Analysis of the crystals from the old growth process revealed severe internal

stress and strain. Fluorescent emission under strong photo excitation did not show

wide variations. An immediate correction was to further customize the

Stockbarger furnace and to reduce the diameter of the crystals from 19 inches to 6

inches to improve the control of thermal gradients in the crucible full of molten

material. Thermal gradients at the liquid/solid interface must be large and the

vertical plane within the furnace at which crystal growth occurs must be constant.

The performance of crystals grown with the new technique is encouraging.

They exhibit much better scintillation uniformities, see the shaded histogram in

Figure 2.19. Attempts to go to larger, more useful diameters have led to new

purification processes and additional furnace changes. Yields of high quality

crystal material are low. In Figure 2.19, 37 crystals measured with "Shift[%]" less

than or equal to 1% were accepted and used for our purpose.

There is a close relation between scintillation uniformity and energy

resolution when photon statistics or electronic noise cease to be limiting factors.

When used for the detection of energetic light charged particles, the majority of

crystals grown with the old technique will yield detectors with only modest

energy resolution. Crystals grown with the new technique exhibit exceptional

energy resolutions for energetic light particles, see Figure 2.20 for illustration. The

energy spectra shown in the figure were obtained by irradiating a polycarbonate

foil with (at-particles of 160 MeV incident energy. For these measurements, a AE-E

detector telescope was used which consisted of a 300 pm thick planar silicon AE-

detector and a CsI(Tl) E-detector grown with the new technique. The sharp peaks
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Figure 2.21: The stability of pulse-height of a CsI(T1) detector.
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resulting from the ‘ 2C((x,d), ‘ 2C(a,t) and 1 2(201,11) reactions indicate excellent

detector resolutions of 0.5-0.6% (FWHM). For this particular CsI(Tl) crystal, a

maximum peak shift of 0.6% was measured with our y-ray scanning test. The

measured electronic noise was about 300 keV.

Finally, to illustrate the degree of pulse-height stability, Figure 2.21 gives an

example for one typical CsI(Tl) detector. Except for the initial phase-in period of a

few hours during which the temperature of the detector and its assciated

electronics had to stabilize, the pulse height remained constant within 0.5% up to 8

days. The gain stability of our actual CsI(Tl) detectors was measured to be of

comparable quality during the whole experiment for up to one month.

In summary, our investigations have shown that improved fabrication

techniques have allowed the production of large volume CsI(Tl) detectors with

excellent energy resolution and excellent long-term stability when photodiode

readout is used.



CHAPTER 3. EXPERIMENTAL DETAILS

3.1 Mechanical Setup

The experiment was performed in the 92 inch scattering chamber of the

National Superconducting Cyclotron Laboratory of Michigan State University

using beams from the K1200 cyclotron. Light particles were detected with AE-E

telescopes consisting of silicon AE-detectors and CsI(Tl) or NaI(Tl) E-detectors.

The detectors were arranged in two seperate hodosc0pes. The geometrical

placement of these hodoscopes is indicated in the schematic drawing shown in

Figure 3.1.

One hodosc0pe with 37 Si-CsI(Tl) telescopes was centered at 6=25° and

¢=O° (where 0 and (1: denote the polar and azimuthal angles with respect to the

beam axis) and at a distance of 105 cm from the target. Its front face geometry is

shown in Figure 3.2. (Due to the low yield of CsI(Tl) crystals grown by the new

technique [Gong 90a] at BICRON Corp., we were not able to fully implement the

56 element hodosc0pe at the time of this experiment.) Each telescope of this

hodosc0pe subtended a solid angle of AQ=0.37 msr and consisted of a 300 pm

thick planar surface barrier detector of 450 mm2 active area and a cylindrical

CsI(Tl) scintillator (length: 10cm, diameter= 4cm) read out by a 400 mm 2 PIN

diode [Gong 88]. The nearest neighbor spacing between adjacent detectors was

A6=2.6°. The CsI(T1) detector array was kept at a constant temperature around

15°C degree with an ethanol refrigerator and had excellent gain stability (better

than 1% over a time period of one month).
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Figure 3 .1: Schematic view of the experimental setup with two hodoscopes being

used.
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Figure 3 .2: Schematic view of the front face of the 56 element hodoscope.
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Figure 3 .3: Schematic view of the front face of the 13 element hodoscope.
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The other hodosc0pe with 13 Si-NaI(T1) telescopes was centered at 6=25°

and ¢=90° and at a distance of 60 cm from the target. Its front face geometry is

shown in Figure 3.3. Each telescope of this array subtended a solid angle of

AQ=0.5 msr and consisted of a 400 pm thick Si surface barrier detector of 200

mm2 active area and a cylindrical NaI(Tl) scintillator (length: 10cm, diameter:

4cm) read out by a photomultiplier tube. The nearest neighbor spacing between

adjacent detectors was A9=4.4°. Gain drifts of the individual photomultiplier

tubes were measured by a light pulser system as well as by changes in the location

of the particle identification lines in the AE-E matrix [Poch 87]. These gain drifts

were determined in the off-line analysis and corrected with an overall accuracy of

better than 2%.

Figure 3.4 shows the polar angles covered by individual telescopes in the the

6-¢ plane.

3.2 Electronics

The principle for the electronic processing of all detector signals is sketched

in Figure 3.5. The analog signals from either Si solid-state detector or

CsI(Tl)/NaI(Tl) scintillation detector were first amplified by charge-sensitive pre-

amplifiers (PA). They were further shaped and amplified by amplifiers (A). The

slow outputs of the amplifiers were digitized by peak-sensing ADCs and read out

and recorded later on magnetic tape as the energy information. The fast outputs of

the amplifiers were converted to logic signals by either Constant-Fraction-

Discriminators (CFD) or Leading-Edge-Discriminators (LED). Figure 3.6 depicts

the sequences in processing NIM logic signals for a Si-NaI(Tl) telescope (upper

part) and a Si-CsI(T1) telescope (lower part), respectively. In order to detect high

energy protons which deposit little energy in the transmission Si detectors, two

thresholds of lower energy, E , and higher energy, EH’ were set for the fast E-
L

outputs from NaI(T1)/CsI(T1) detectors. The valid telescope event was then

defined as: (AESi.EL + EL.EI-I) for a Si-CsI(Tl) telescope and EL0(Al-}ZSi + EH) for a
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Figure 3.5: Block diagram of the electronic circuits and trigger logic.
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Si-NaI(Tl) telescope, where the primes indicated the delay-and-stretch operations

on the corresponding signals. Advantage was taken of faster timing responses of

Si detector.” in the Si-CsI(Tl) telescope and NaI(Tl) detector in the Si-NaI(Tl)

telescope. The timing information of a valid telescope event was therefore

i or EL(CsI) (when AEdetermined by AE i was not present) in the Si-CsI(Tl)

telescope or by ELfNaI) in the Si-NaI(Tl) teliscope. For protons, EL was about 5

MeV and EH about 30 MeV.

The logic signal of a valid telescope event was fanned out to (1) the

coincidence multiplicity unit to register as a coincidence event when at least two

telescopes fired within the coincidence timing window (around 400 ns); (2) the

multiple-OR module to register as a single event after a certain factor of down-

scaling; (3) Scalers and TDC Stop to register event rate and timing after

appropriate delays.

Electronic pulser signals were provided for all pre-amplifiers in addition to

the light pulser system for photomultiplier tubes. They were very useful for

testing electronic modules and trigger logic. Gains shifts were monitored by the

pulser events and corrected for in the off-line analysis wherever necessary.

Coincidence and down-scaled singles data were taken simultaneously,

together with pulser events taken at much lower rate. A VETO circuit was

incorporated to prevent ADC conversions during computer busy period. The

MASTER logic thus defined provided trigger signals for TDC Start, ADC Strobe,

and Computer Start. BIT registers were used to keep track of what type of event

occurred and which detector fired.

3.3 Reactions

Four nuclear reactions with heavy ion beams were measured in the

experiment. For reactions induced by ‘ 2 ° Xe at E/A=31 MeV, we used 2 7 Al and

l 2 2

Sn targets with areal densities of 5.6 and 5.3 mg/cmz, respectively. For

reactions induced by ' ‘N at E/A=75 MeV, we used 2 7Al and 1 9 7Au targets
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with areal densities of 15.0 and 15.9 mg/cm 2, respectively. Typical beam

intensities on target were approximately 5x10 ° ‘ ‘N(5+) ions per second and

1x10' ' :Q’Xe(23+) ions per second. The beam spots on target had elongated

shapes of typically 1-2 mm width and 2-3 mm height.

For the purpose of energy calibrations of individual detectors, a (CH 2 )n

target (25.4um thick) was used to scatter a-particles of 160, 116, and 90 MeV

incident energy after passing through Al degraders with thickness of 0, 880, and

1250 mg/cm 2 , respectively. Resulting from two-body reaction kinematics, mono-

energetic light particles such as protons, deuterons, tritons, 3 He, and ‘ I-Ie were

measured at various laboratory angles.

During the experiment, raw data were sampled periodically and diagnostic

spectra were monitored on line to insure that all detectors were functioning well

and good quality data were recorded on magnetic tape.



CHAPTER 4. DATA REDUCTION

In this chapter, we explain the offline data-reduction procedures used for

identifying particle, calibrating energy, correcting time-walk, and correcting

detector efficiency.

4.1 Particle Identification

Using the AE-E telescope, charged particles can be clearly identified [Goul

75] on the two-dimensional map of AE (the energy loss in the thin transmission

detector) v.s. E (the energy loss in the stopping detector). However, we did not set

the particle gates in the AE-E map because excessively large computer memory is

required for sufficient channel resolution. Instead, we used a linearization

function [Shim 79] to transform the AE-E map into a PID-E map where PID is the

value of the corresponding linearization function.

For illustration, Figure 4.1 shows typical PID-E plots for a Si-NaI(Tl)

telescope in the left panel and for a Si-CsI(Tl) telescope in the right panel. The PID

function for a Si-NaI(Tl) telescope was defined as:

PID = 100 '[log(b°AE) + (b-1)Olog(E+c0AE) - 0.7]. (4.1)

where c=0.5, b=1.5-0.18 OAE/t, and t=400um (the Si detector thickness). The PID

function for a Si-CsI(Tl) telescope was similarly defined as:

PID = 80 0[log(b°AE) + (b-1)°log(E+c0AE) - 2.5]. (4.2)

where c=0.5, b=1.825-0.18 OAE/t, and t=300um (the Si detector thickness). To set

particle gates unambiguously for the isotopes of Li and Be in the CsI(Tl) detector,

we magnified their existing regions by using another PID function which was

63



CIIcI

 

     
.
.

.
A
n

.
..
.
.
.
I
L
.
.
.

..
..

.
l

.
.
.
)
»
J
M
F
K

.
.
.

.
-

l
h
‘
t
s
s
v
fi
.

7
.
.
.
.
.
.

.
r

    

-
-

..
.

.
.
.
L
4
?

.
2
2
.
.
.
.

..
..

..
9
:
1
.

.

 

2
“
:

H
Q
.

9
H

H
a
.

 

 

 

 
 

 

m
@
3
5
3
:

E
m
E
d

5
.
7

a
i
m
i
n
g
.
»
—
a
n

c
m
1
5

<
h
.
m

8
.
.
m
$
2
3
2
.
5
8
.
8
8
3

A
5
:
B
a
n
—
v
N
E
a
n
a
m
m
fi
m
a
d
a
g
o
?

i
n
!
2
5
0
:

$
3
0
8
2
.
s
p
a
n
—
o
E

:
6
3

m
2
.



65

defined as:

PID = 220 °[log(b-AE) + (b-1)0log(E+c0AE) - 5.5]. (4.3)

where c=0.5, b=1.65-0.18 OAE/t, and t=300ltm (the Si detector thickness).

In Figure 4.1, it is clear that p, d, t, 2 He, ‘ He, 6 He, and 6 Li, and 2 Li, are

identified in the Si-NaI(Tl) telescope and p, d, t, 2 He, ‘ He, 6 He, 6 Li, 2 Li, 2 Li,

2 Li, 2 Be, 2 Be, ‘ 2 Be, and B are identified in the Si-CsI(Tl) telescope.

4.2 Energy Calibration

Because of their high linearity, the AE-Silicon detectors were simply

calibrated by a precision electronic pulsers and by means of 5.5 MeV 11 particles

from a 2 ‘ lAm source. Once calibrated by the 5.5 MeV 0: particles, the pulser

would inject known amounts of charge through a calibrated capacitor into a Si

preamplifier. By setting the pulser at several amplitudes ABi’ we obtained the

corresponding peaks Ni(AE) on the AE-ADC spectrum. A linear fit by the

equation:

AF.i = a °Ni(AE) + b, (4.4)

provided the desired energy calibration coefficients (a, b) for a Si-detector.

Energy calibrations for NaI(Tl) or CsI(Tl) scintillator detectors were more

involved. Previous energy calibrations for NaI(Tl) [Chen 88] were performed by

directing secondary charged particles of known rigidities into each telescope. This

method allowed the simultaneous calibrations for different particles of precisely-

known incident energies. Unfortunately, this technique could not be used in the

present setup as a magnetic beam analysis setup was not available. Alternative

energy-calibration methods had to be employed for our detectors.

4.2.1 Two-body Reaction Kinematics

A (CH 2 )n target of 25.4um thickness was bombarded by (it-particles of 160,

116, and 90 MeV incident energy after passing through the Al degraders with

thickness of O, 880, and 1250 mg/cm 2 during the calibration run. Calibration
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points could be obtained in most telescopes by detecting mono-energetic light-

charged particles (p,d,t, 2 He, 2 He) from scatterings or direct reactions such as:

p(‘He,p)‘He, (4.5)

p(‘He,d) ’ He, (4.6)

‘ 2 C( ‘ He,d) ‘ ‘ N, (4.7)

‘ 2 C( ‘ He,t) ‘ 2 N, (4.8)

p( ‘ He, 2 He)d, (4.9)

‘ 2 C( ‘ He, 2 He) ‘ 2c, (4.10)

‘ 2C(‘He,‘He)‘ 2C. (4.11)

Other beams or targets were also used to supply a few extra calibration points for

p and ‘ He in the following scatterings:

p( 2 °Ne,p) 2 °Ne, (4.12)

‘ 2 ’Au(‘He,‘He)‘ 2 ’Au. (4.13)

Typical energy spectra of light-charged particles were already shown in

Figures 2.10, 2.11, and 2.20. Recoil protons in Equation (4.5) or recoil deuterons in

Equation (4.6) had broader peak widths than the real detector resolution because

of kinematical smearing in detectors of finite angular acceptance. In all cases, the

peak centroids were extracted to establish energy calibrations. Meanwhile, the

corresponding energy values of all peaks were calculated by two-body kinematics.

Typical energy calibrations derived from this technique are shown in Figure 4.2

for a CsI(Tl) detector and in Figure 4.3 for a NaI(Tl) detector.

For the energy calibration of protons in the NaI(Tl) detector (N04), a

quadratic polynomial fit was performed [Chen 88], indicated by solid line in

Figure 4.3. Included in the fit was one special point on the X-axis, which was the

ADC channel offset (N ) determined from pulser calibrations. Since no data
offset

were available at higher energy, a linear extrapolation was used for E > 60MeV as

indicated by the dashed line (obtained by a linear fit to all available
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Figure 4.2 : Energy calibration of protons, deuterons, tritons, 2 He and ‘ He for a

CsI(Tl) detector (C10) obtained by two-body reaction kinematics. The curves are

explained in the text.
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two-body reaction kinematics. The curves are explained in the text.
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Table 4.1: Fit parameters for energy calibrations of various particles in a typical

NaI(T1)/CsI(Tl) detector (N04/C10) using the equation: E (MeV) = A + B-N(E) +

C0N(E)2 .

 

 

 

 

 

 

 

 

 

 

Isotope l A l B I C | Comment

p,d,t I -1.575 I 0.1721 IO.2158e-4 lEs60MeV,NaI(Tl)

p.d,t I -3.941 I 0.1868 I 0.0 I E>60Me\L NaI(TD

2He I 0.629 I 0.199 I 0.0 I NaI(Tl)

2He I -0.258 I 0.168 I 0.0 I CsICl'l)

‘He I 3.677 I 0.193 I 0.0 I NaI(Tl)

‘He I 1.548 I 0.166 I 0.0 I CsI(Tl)

‘He I 4.524 I 0.199 I 0.0 I NaI(Tl)

‘He I 2.643 I 0.167 I 0.0 I CsI(Tl)

‘LI,’L1 I 13.507 I 0.214 I 0.0 I NaI(Tl)

“URL: I 8.523 I 0.178 I 0.0 I CsI(Tl)

‘Lile I 11.891 I 0.177 I 0.0 I CsI(T1)

2Be I 20.505 I 0.181 I 0.0 I CsI(Tl)

°Be,‘ °Be I 19.705 I 0.195 I 0.0 I CsI(Tl)

B I 33.181 I 0.198 I 0.0 I CsI(Tl)
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data). The fitting coefficients are listed in Table 4.1 for this detector.

Energy calibrations of p,d,t, 2 He and ‘ He are shown in the upper left and

right panel 23nd in the lower left and right panel of Figure 4.2, respectively, for the

CsI(T1) detector (C10). The points and crosses were measured data points, and the

curves were calculated responses for p,d,t , 2 He and 2 He together with a line fit

for 2 He and ‘ He only.

The scintillation response to charged particles can be described [Birk 64] by a

relation between dL/dx, the differential light output, and dE/dx, the stopping

power of incident particles. Commonly referred to is the empirical Birk’s formula:

S°dE/dx

dL/dx"'1 + kB-dE/dx ’
(4.14)

where S is the scintillation efficiency, k is the relative quenching probability, and

BOdE/dx is the density of damaged molecules along the track of the penetrating

particle. The functional values of dL/dE v.s. dE/dx are listed [Birk 64, Pink 89] in

Table 4.2, which were used for calculating light outputs for p,d,t, 2 He and 2 He in

CsI(Tl) detectors.

For a particle of given energy E, the light output L(E) can then be calculated

by the following integral:

R(IE)

1.6)... $135.45- .. (4.16

0

where dE/dx was the stopping power in the layer between x and x+dx and R(E)

was the stopping range, both of which were calculated from Ziegler’s parametri-

zations [Zieg 77]. L(E) was then associated with the ADC channel N(E) by the

linear relationship:

N(E) = NOffset + n -L(E). (4.16)



Table 4.2: Differential light output, dL/dE, of CsI(Tl) scintillator v.s. differential

energy lossidE/dx (MeV/mg/cm 2 ).
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dE/dx | 0.001 | 0.002 |0.003 I 0.004 | 0.005 | 0.006 I 0.007 | 0.008

dL/dE I 0.980 I 0.980 I0.985 | 1.000 | 1.010 | 1.018 | 1.030 I 1.042

dE/dx | 0.009 I 0.010 l0.020 I 0.030 | 0.040 I 0.050 | 0.060 I 0.070

dL/dE I 1.057 I 1.071 H.198 | 1.255 | 1.241 I 1.201 I 1.175 I 1.141

dE/dx | 0.080 I 0.090 l0.100 | 0.200 | 0.300 | 0.400 | 0.500 I 0.600

dL/dE | 1.108 | 1.085 I1.057 I 0.849 I 0.717 | 0.613 I 0.540 I 0.500

dE/dx | 0.700 I 0.800 I0.900 I 1.000 I 2.000 |10.000 I20.000 l100.00

dL/dE I 0.465 I 0.435 l0.415 I 0.400 | 0.300 | 0.170 I 0.140 | 0.100
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Here, 11 is the normalization constant which is the same for p, d, and t and slightly

different for 2 He and 2 He.

Figure.L 4.2 compares the calculated responses to the measured data. The

calculations have satisfactorily reproduced the energy calibration data for p, d, t

and therefore provide the final energy calibrations for these particles. However,

the calculations, indicated by dotted and dashed curves, respectively for 2 He and

2 He, did not go through the data points at all energies and showed larger non-

linearity at low energies. The discrepancy might be related to the fact that fast

scintillation component of CsI(T1) is known to depend on dE/dx. In our analysis,

we had adopted the simple linear fit to the measured 2 He and 2He calibration

points. This is justified by the quality of the fits.

4.2.2 Energy-loss Calculations

One of the advantages of using a AE-E telescope to measure charged

particles is that some energy calibrations can be accomplished in the off-line

analysis when calibration beams of well known energy are not available. With this

technique, one uses the known AB calibration and AE detector thickness to deduce

the energy deposited in the CsI(Tl)/NaI(Tl) detector.

Figures 4.4 and 4.5 show the centroids of particle identification lines in the

AE-E maps for representative Si-CsI(Tl) and Si-NaI(Tl) telescopes, respectively. For

a specific particle, each point represents N(E), the centroid position of the E-ADC

channel numbers corresponding to N(AE), a narrow bin of AE-ADC channels. A

function can be defined by:

N(E) = f(N(AE)). (4.17)

For a charged particle (Z,A) of given incident energy (E), we calculated [Zieg

77, Zieg 85, Hube 90] the energy losses: AB in Si detector of known thickness and E

in NaI(Tl)/CsI(T1) detector. The energy calibration of N(E) v.5. E was. then

established through Equations (4.4) and (4.17). Using this procedure, we were able
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Figure 4.4 : Two-dimensional map of AE (the energy loss in Si. detector) v.s. E

(the energy loss in CsI(Tl) detector) which was used for the off-line energy

calibrations of all identified particles in a CsI(Tl) detector (C10).
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to calibrate almost all particles for the energy ranges of interest. Typical examples

are given in Figures 4.6-8 for the CsI(Tl) detector (C10) and in Figures 49-10 the

NaI(Tl) detéctor (N04).

In Figure 4.6, the solid points are the same data as shown in Figure 4.2,

which were obtained from two-body reaction measurements, while the open

points and crosses are derived from energy-loss calculations. After adjusting the

thickness of the Si-detector within 5%, we achieved remarkable agreement

between the two calibration procedures for protons, deuterons, and tritons. It

should be pointed out that the two-body reaction technique mainly provided data

points at high energies, and the energy-loss calculation technique supplied most

data points at low energies. Data points at very high energy given by the second

technique were less reliable since the numerical interpolation or extrapolation had

large uncertainty. As seen from Figure 4.4 and 4.5, the AE-E curves become flat at

large N(E), this technique therefore loses its sensitivity. For the Helium particles,

we adopted the simple linear fits which could represent all data rather well.

Energy calibrations of the Lithium, Beryllium, and Boron particles were

obtained by the energy-loss calculations only, as shown in Figure 4.7. For

simplicity, linear fits were used. The fitting coefficients are listed in Table 4.1. In

Figure 4.8, energy calibrations of p, ‘ He, 7 Li, 7 Be, and B are compared for the

CsI(T1) detector (C10). The non-linear behavior of proton response with respect to

other particles was not well understood and was observed for almost all detectors.

It might be related to light collection efficiency for particles stopping at different

ranges.

In the same way, we obtained the energy calibrations of p,d,t, 3 He, ‘ He,

° He, 6 Li, and 7 Li for the NaI detector (N04) as shown in Figures 49-10. We had

used the same proton energy calibration as discussed in Section 4.2.1 for deuterons

and tritons since they showed very similar responses. Energy calibrations for ’ He,
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in the text.



"

CsI(Tl) Energy Calibration (C10)
 

250 E

200 i

150 i

100 i

50

$
6
1
-
1
6
—
D
E
H

 

250 i

200 i

150 §

100 i

50 iE
(
M
e
V
)

 

250 _

200 i

150 Q

100 i

50 I
O I . . . L L - - L . 1 . . . L

0 500 1000 1500

Channel

   
 

Figure 4.7 : Energy calibration of 6Li, 7Li, 8Li, 7Be, 9Be, ‘ °Be, and B for a

CsI(Tl) detector (C10) obtained by energy-loss calculations. The curves are linear

fits to the data points. See text for explanations.



78

 

  
 

s.

CsI(T1) EnergyCalibration (C10)

/ * 1; . g

2507 ;/fl 71;". I]: 4,

-
7/ fiX.-:«' .T

..x , . s

.
. . o.

200 —
/7I.x' _

. I x .

:
’ X 1'

-
fi/ #5 ,

A

/ ,

> 150 _
f [y

-

Q) ’
/ /

2 -
,6 lo ’9’

V
'

/ / ‘5'

Ed ’ / ,’.." E’ o ___

' -////x " "I ° “‘- Be

_ // //.X I
x ........... 7141

50 r/i//.__.x'

.0 -------
4H6 -

/ , 3‘

.

( .irI

00
P

0 .- , . . . . . _ . , _ . . .

0 500 1000 1500

Channel

Figure 4.8 : Comparison of energy calibrations for particles such as proton, ‘ He,

7Li, 7Be, and B measured in a CsI(T1) detector (C10). The curves are the

corresponding fits. See text for explanations.



E
(
M
e
V
)

150 _

100 j

150

100

200E

150 g

100;

79

 

50:

 

50 I

. NaI(Tl) Energy Calibration (N04)
r‘vv r T

.0

.
.

.
A

I

O
B
I
-
I
B
-
D
S
N

"
C
P
U

1

X
4
-

 

  
 

; i L L A L A A l l A LL 4 L l L

 

400 600

Channel

200

Figure 4.9. : Energy calibration of protons, deuterons, tritons, ’ He, ‘He, 6He,

6 Li, and 7 Li for a NaI(Tl) detector (N04) obtained by energy-loss calculations. The

curves are corresponding fits to the data points. See text for explanations.



80

'
0

fiNTaI‘(Tl)v Energy Calibration (NO4)V
 

    

K

m

c.

4.

200 T

' §

150

’>‘
G)

2 .

V100

[:3 .

5O

0'..L.1...1-.-1..-1..L

O 200 400 600 800 1000

Channel

Figure 4.10: Comparison of energy calibrations for particles such as proton, ‘ He,

and 7Li measured in a NaI(Tl) detector (N04). The curves are the corresponding

fits. See text for explanations.



81

‘ He, 6He, 6Li, and 7 Li particles were once again fitted by straight lines. The

fitting parameters are again listed in Table 4.1.

The azcwracy of this calibration technique is mainly limited to (1) the

accuracy of the energy-loss calculation; (2) the accuracy of thickness measurement

for any foil or detection media; (3) the accuracy of energy calibration for the Si

detector; (4) the accuracy of numerical interpolation or extrapolation in using

Equation (4.17).

4.3 Time-walk Corrections

In two-particle coincidence measurements, it is essential to seperate real

coincidence events coming from one single projectile-target interaction from

random coincidence events due to two or more projectile-target interactions.

Random event contaminations are corrected by constructing the relative time

spectrum between any two telescopes and by setting appropriate time gates.

It is well known that the time response of NaI(Tl) scintillators is fast

(td=0.23p.s, Tr=0.5tts) and that of CsI(Tl) scintillators is very slow (1: d=1.Ot.ts,

1:41.15) (see Table 2.1). While constant-fraction-discriminators (CFD) were used in

the timing circuits for the NaI(Tl) detectors, it was not economical and practical to

use CFDs for the CsI(Tl) detectors in this experiment. Instead, we employed

simple leading-edge-discriminators (LED) (see Figure 3.5). Consequently, a large

time-walk became inevitable for the CsI(Tl) detectors in contrast to the negligible

time-walk for the NaI(Tl) detectors as shown respectively in the right and left

panel of Figure 4.1]. Here the time difference between a detector and the down-

scaled RF signal (T-TRF) is plotted against the stopping energy signal (E). Each band

represents one beam burst. To simplify the analysis for the CsI(Tl) detector, we

straightened the curved response of CsI(Tl) detector.

After making this kind of walk correction for the CsI(Tl) detectors and

aligning the zero-time with each other among all detectors, the relative time

spectra were constructed. They are displayed in Figures 4.12 for 75MeV/nucl.
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Figure 4.11: Two-dimensional plots of ( T - TRF) v.5. E for a Si-NaltTl) telescope

(left panel) and for a Si-CsI(Tl) telescope (right panel) where necessary time-walk

corrections were made.
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31MeV/nucl. ' 2 °Xe induced reactions on 2 7Al (left part) and on ‘ 2 2Sn (right

part). Timing gates for real and random coincident events are indicated by vertical

lines.
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191

‘ ‘N induced reaction on 2 7 Al (left parts) and on Au (right parts) and in

Figure 4.13 for 31MeV/nucl. ‘ 2 ° Xe induced reaction on 2 7 Al (left parts) and on

1 1 2 Sn (right parts), respectively. Three categories of the relative time spectrum

were defined as (1) between two CsI(Tl) detectors (upper panel); (2) between

NaI(Tl) and CsI(T1) detector (middle panel); (3) between two NaI(Tl) detectors

(lower panel). For each reaction, the relative time spectra of different category had

very similar peak structures except that the NaI(Tl) detector showed better time

resolutions than the CsI(Tl) detectors. The highest peak in the center contains real

coincidence events and also a random contamination, while the side peaks of

about equal height arise from random coincidence events.

)To be on the safe side, we have defined the "real" coincidence events (Nreal

by the events locating between two dotted lines and the random coincident events

(Nrandom ) by the events lying between the dotted and the dashed lines on both left

and right hand sides. Assuming that the number of random peaks contained in

Nreal is mreal and Nrandom included mrandom random peaks, the

corrected real coincidence events are:

Nreal = Nreal - Nrandom.mreal lmrandom' (4'18)

One can estimate from Figure 4.12 and 4.13 that the ratio of N over

random

Nreal was about 5% for ‘ ‘N induced reactions and about 0.3% for ’ 2 °Xe

induced reactions. After random correction, the numbers of real two-proton

coincidence events, Nre =2.25x10°, 1.94x10‘, 1.13x10‘, and 0.46XIO‘ for the
al

a 7 27 29 2

reactions”N+‘° Au, HN+27Al, 129Xe+ Al,andl Xe+” Sn,

respectively.
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4.4 Corrections due. to Nuclear Reaction Loss

Energetic light-charged particle can undergo nuclear reactions with target

nuclei in a detector. When such a nuclear reaction occurs, the particle’s energy is

generally not measured correctly due to non-vanishing Q-value and the emission

of neutrons and y-rays. This poses a small inefficiency problem for the detector. In

this section, we discuss corrections for detection losses due to nuclear reactions of

light charged-particles entering CsI(Tl)/NaI(T1) scintillators.

The total reaction cross section for heavy-ion collisions in the intermediate

energy range can be parametrized as [Kox 87]:

B

2 c

OR = “Rim ' (1' E
cm

), (4.19)

where EC m is the cm. energy and BC is the Coulomb barrier of the projectile-target

system. They are given by:

1 /3 1 /3
4.0A /(A +A) and B =z Zez/[r (A A )1, (4.20)

t p t c p t c pE .=E tcm lab

with rc=1.3fm, Zp(zt) and Ap(At) are the atomic and mass number of projectile

(target) nuclei. The interaction radius, Rint’ can be divided into volume and surface

terms as:

= R + R (4.21)

int vol surf °

The volume radius is given by

R = r0(A1/3 + A1/3), (4.22)
vol p t

and the surface radius is parametrized as
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A1/3.A1/3

D t

R =ro(a -

‘surf; - 1 /3+A1/3 ' C) + D’ (423)
Ap t

where r o = 1.1 fm, a = 1.85, D = SZP(At-22t)/(APAI) due to neutron skin excess,

and c is empirically parametrized by the formula [Town 88]:

c = 1.91-16.0 0exp(-0.7274°E0°3493)'COS(O.0849'EO'5904), ' (4.24)

with E = Elab/Ap being the laboratory kinetic energy of projectile in units of

MeV/nucleon.

We first obtain the stopping range (S in units of mgr/cmz) for a particle

incident on CsI(Tl)/ NaI(Tl) detectors by using Ziegler’s parametrization [Zieg 77].

The detector depth is then devided into many thin slices within the particle’s

stopping range. In the i-th slice of detector (Ax=S/N), we use the thin-target

approximation to calculate the nuclear reaction rates by:

Ri(Cs) = n0(Cs)° Ax(Cs) . (rigs), (4.25)

R.(I) = n (no Ax(I) . o‘ (I), (4.26)
1 0 R

where n0(Cs) = 6.022x10-7/A(Cs), n00) = 6.022x10-7/A(I), both in units of

[cmz/mgr/mb], and Ax(Cs) = Ax 0 A(Cs)/[A(Cs) + A(I)], Ax(I) = Ax 0

A(I)/ [A(Cs) + A(I)].

Finally, the total probability of nuclear reaction loss is obtained by

N

Rtot = l - i131 [l-Ri(Cs)]°[1-Ri(l)]. (4.27)
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Figure 4.14: The probabilities of nuclear reaction loss for light-charged particles

detected by a 10cm long NaI(Tl) or CsI(T1) scintillator.
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Figure 4.14 shows the calculated probability of nuclear reaction loss for light-

charged particles (p, d, t, 3 He, ‘ He, 6 He) entering a 10cm long NaI(Tl) detector

(upper part; and a 10cm long CsI(T1) detector (lower part). Typically, a proton of

150MeV energy has about 20% probability of nuclear reaction inside the detector.

At the energies of interest, the probability of nuclear reaction is smaller for the

Helium particles and negligible for heavier fragments. By comparison, the

probability of nuclear reaction is slightly larger in NaI(Tl) detector than in CsI(Tl)

detector since NaI(Tl) has less stopping power and the particles have a longer

range than in CsI(Tl).



5.

CHAPTER 5. SINGLE-PROTON ENERGY SPECTRA

5.1 Inclusive Energy Spectra

Examples of inclusive energy spectra for protons detected at the extreme

angles covered by our detector array, 9 = 18 ° and 33 ° , are shown in Figure 5.1.

lab

Spectra measured for reactions induced by ' 2 ° Xe and ‘ ‘ N projectiles are shown

in the left and right panels, respectively. In order to gain qualitative insight and

allow comparisons with other data, we have fit these cross sections with the

moving source parametrisations. We have to caution, however, that the extracted

parameters are not uniquely determined by our data and must not be over-

interpreted since our measurements covered only a small range of angles.

For the ' ‘N-induced reactions, we have chosen a simple three-source

parametrization, representing isotropic Maxwellian contributions from a target-

like source, a projectile-like source, and an intermediate velocity nonequilibrium

source:

 

3 _—

= Z N.~/E—U Oexp{-[E-U +E.-2~/E.(E-U )Ocose]/T.}. (5.1)
. 1 c c 1 1 c 1(19 dB

1=1

Here, Ni and Ti are relative normalization and kinetic temperature parameters,

respectively. The energy E. is the kinetic energy of a particle co-moving with the i-

th source, Ei= % mczfiiz. The Coulomb energy, Uc’ corrects for the Coulomb

repulsion from heavy reaction residues assumed at rest in the laboratory rest

frame.

The solid curves displayed in the right hand panels of Figure 5.1 show fits

9O
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Figure 5 .1: Inclusive proton cross sections measured, at 61 =18 ° and 33 ° , for the

reactions ‘ 2 °Xe+ 2 7Al and ‘ 2 °Xe+‘ 2 2Sn at E/A=31 eV (left hand panels)

and the reactions ‘ ‘N+2 7Al and ‘ ‘N+‘ ° 7Au at E/A=75 MeV (right hand

panels).
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Table 5.1: Fit parameters used for the description of the inclusive single- proton

cross sections shown in Figure 5.1. The spectra for the

reactions were fitted by Equations (5.1) and (5.2), respectively.

The normalization constants, Ni’ are given in units of [mb/(erMeV

I ‘N and 1 2 °Xe-induced

3”'11.U.A.
C C

and Ti are all in units of [MeV]. Also given are the velocities, Bpro and Bcn’ of the

projectile and the compound nucleus, respectively.

 

 

 

 

 

Reaction prrol Bcn l Uc I Ac '1 I Ni l Bi I Ti

“N+”A1 10.40 10.14 11.72 1- 11 I 4.67 10.371 I 6.04

I 1 1 1 - 12 1 1.62 1 0.200 1 19.59

1 1 1 1- 13 1 3.98 10.073 1 4.62

1 1 1 1 1 1 1 1

“N+‘ ° ’Au 10.40 I0.026|8.57 1- 11 1 8.52 10.376 1 5.88

1 1 | 1 - 12 1 4.55 1 0.200 I 18.10

1 1 1 1- 13 122.81 10.025 1 3.84

1 1 1 1 1 1 1 1

12°x(-2+“AI 10.26 10.21 15.18 12.0 11 152.40 10.234 | 4.07

1 1 1 1 12 1 3.91 10.213 1 8.94

1 1 1 1 1 1 1 1

‘2 °Xe+2 7A1 l0.26 10.21 17.25 12.0 11 136.57 10.213 1 6.0

1 1 1 1 1 1 1 1

‘2 "Xe+12 251110.26 10.13 14.23 12.0 11 166.05 10.241 1 4.25

1 1 1 1 12 1 7.13 I 0.130 1 13.92

1 1 I 1 1 1 1 1

‘2 °Xe+‘ ’ 251110.26 10.13 19.88 12.0 11 158.0 10.130 1 9.13
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Figure 5 .2: Decomposed three moving source fits to inclusive proton energy

spectra measured, at 9 a =18° and 33 °, for 75 MeV/nucl. ' ‘ N induced reactions

on 2 7 Al (left two panelsyand on ' ° 7 Au (right two panels).



(
1
2
6
/
d
e
1
:

(
,
u
b
/
s
r
-
M
e
V
)

s N

94

MSU-90-l95

 

.FWI ..rfiI....I... ‘

27Al(129X8,p) 1228n(129xe,p)_;

E/A=31MeV E/A=31Mev

 
 

 ‘ \\ . 33° "

5 .
o.\ .

°. \ 1

  

 
Figure 5.3: Decomposed two moving source fits to inclusive proton energy

spectra measured, at 9 =18° and 33°, for 31 MeV/nucl. ‘ 2 °Xe induced
. a

reactions on 1 7 Al (left two panels) and on
122

Sn (right two panels).
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obtained with this parametrization; the parameters are listed in Table 5.1. To

illustrate the relative importance of contributions from various moving sources,

the fits were decomposed into contributions from target- and projectile-like source

and intermediate velocity source, indicated by dot-dashed, dotted, and dashed

lines, respectively, in Figures 5.2 and 5.3. The spectra can be rather well described

by assuming emission from target- and projectile-like sources with temperature

parameters of about 4 to 6 MeV and by including a non-equilibrium component

described, as before [Chen 87b, Poch 87, Gelb 87] in terms of an intermediate

velocity source characterized by a high kinetic temperature parameter, T=18-20

MeV. Particularly for the ‘ ‘N + ‘ ° 7Au reaction, the fits indicate significant

evaporative contributions from a target-like source to the low-energy portion of

the spectrum.

For the Xe—induced reactions, fusion-like and projectile-like residues have

large velocities in the laboratory rest frame, and emission from these two sources

is strongly forward focussed. In comparison, contributions from target-like

residues are of minor importance at our detection angles. Furthermore, non-

equilibrium emission may be expected to be small. Therefore, we adopted a two-

source parametrization representing emission from projectile- and fusion-like

sources. For these sources, the simple Coulomb correction adopted in Equation

(5.1) is inappropriate since the heavy reaction residues have large velocities with

respect to the laboratory rest frame. Furthermore, the measurements include

energies which lie below the projectile and compound nucleus Coulomb barriers.

Hence, the sharp truncation of the energy spectra for sub-barrier energies is

inappropriate. For these reasons, we adopted a parametrization similar to that

used in Reference [Fie186]:

 

 

 

2 2 U exp[-(U-UC)2/2A2]

d O N. ldU C JE(1-U/E .)e
1 cm

-(Ecm i-U)/'I'i

d9 dE A /2 1t ,1 ’

1= 1 U c

. (5.2)
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Here, Ecm,i = E + Ei- Zfiecose and Bi = %m c2 B? ; the integration limits were

chosen as Ul =max(0,Uc-5Ac) and U2=min(Ecm,i’Uc+5Ac)' In Equation (5.2), the

Coulomb field is assumed to be stationary in the rest frame of the emitting source,

and an average is performed over an ensemble of Coulomb barriers using

Gaussian weighting factors.

The fitted spectra are shown as solid lines in the left hand panels of Figure

5.1. The spectra can be rather well described by assuming evaporative emission

from a fusion-like source and a projectile-like source. The decomposition of source

contributions is presented in Figure 5.3, where dashed lines indicate fusion-like

sources and dotted lines indicate projectile-like sources. (For the l 2 ° Xe + 2 7 Al

reaction, fusion-like sources have velocities very similar to the projectile velocity,

[3 z 0.26. For the ‘ 2 ° Xe + ‘ 2 2 Sn reaction, fusion-like sources have

approximately half the beam velocity.) The fits shown by the solid curves indicate

strong contributions from decays of excited projectile residues. The inclusion of a

projectile-like source largely improves the fits at lower energies. At these energies,

the calculations are sensitive to details of the parametrization of the ensemble of

Coulomb barriers. Again, it must be stressed that the extracted source parameters

are not uniquely determined because of the small angular range covered by our

detector array. In order to illustrate some of the existing uncertainties, we have

also described the tail of the energy spectra (E240 MeV) by assuming emission

from a single source moving with the velocity of the compound nucleus. These

calculations are shown by the dashed curves in the left hand panels of Figure 5.1;

the parameters are listed in Table 5.1.

It should be kept in mind that the moving source parametrization does not

offer a unique interpretation of the single-particle inclusive cross sections. The

adopted parametrizations should, therefore, be viewed with a "grain of salt".

Nevertheless, the calculations indicate possible contributions from a number of

different sources which cannot be disentangled without ambiguity.
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5.2 Comparison with BUU Calculations

With respect to our future discussion, it is instructive and useful to compare

the single-proton cross sections measured for the ’ ‘N-induced reactions with

those predicted by BUU calculations [Baue 87]. Comparisons of the BUU theory to

the experimental two-proton correlation functions will be presented later in

Chapter 9.

In Figure 5.4, the solid points represent the measured single-proton cross

sections for the reactions 1 ‘N + 2 7Al (upper panel) and ‘ ‘N + ‘ ° 7Au

(lower panel); cross sections predicted by BUU calculations are shown by open

points. For the emission of energetic protons, the cross sections predicted by the

BUU calculations are in rather good agreement with the data. However, at lower

energies, E s 70 MeV, the predicted cross sections are larger than the measured

ones. At least part of this discrepancy may be attributed to the fact that the present

calculations do not incorporate cluster formation and emission. The formation and

emission of clusters is expected to be particularly important when the phase space

density is high, i.e. at low kinetic energies. In these regions of phase space, the flux

of emitted nucleons will appear, in part, in the form of bound clusters. On the

basis of these qualitative arguments, one can expect that proton cross sections

predicted by BUU calculations should be larger than the experimental cross

sections for free protons; the effect should be most pronounced for protons of low

energies.
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CHAPTER 6. TWO-PROTON CORRELATION FUNCTION

In this chapter, we give a brief derivation of the general formalism which

allows the calculation of two-proton correlation functions from the knowledge of

the single-particle phase-space density. The sensitivity of two-proton correlation

functions to source radii and lifetimes is illustrated by means of simple analytical

source parametrizations.

6.1 Theoretical Formalism

A number of formalisms have been published [Boal 90] which derive two-

particle correlation functions from the knowledge of the emission function, g(p),x),

i.e. the probability of emitting a particle with momentum I; from space-time point

x=(?,t). The derived expressions differ only in minor details and the predicted

results are similar. Here, we derive an expression for the correlation function in

most general terms assuming complete knowledge of all two-particle quantum

mechanical matrix elements. We then introduce and justify approximations which

allow practical calculations. For simplicity, we will restrict ourselves to the

important case of correlations between two identical particles.

In the following, we will use four-vector notation to keep our formulae

compact and manageable. However, our formalism is not relativistically covariant.

Our final expression for the two-particle correlation function is identical to

the expressions given in References [Koon 77, Prat 87]:

-} ->

—) -) —) -» n( P ‘1’ P2)

R(P,q)+1 = C(P,q) = _) a =

II( p 1 )l'I( p 2)
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100

Id4x d4x g( 1372,): )g(1'>’/2,x Huff, E’ 4? -(t -t )13’/2m)l2
_ 1 2 1 2 1 2 1 2 (61)
_ 4 _’ 4 ..., o c

Id xlg(P/2,x1)ld x2g< P/2,x2)

Here, 1161,32) and 116%) denote the two-particle and single-particle emission

probabilities, l5) and 3 are the total and relative momenta, I; =31 + 32 and {13:61-

32M; respectively, and o is the relative wave function.

This expression was given in Reference [Koon 77] without derivation. It was

derived in Reference [Prat 87] by using the sudden approximation for which the

particles are assumed to be on shell in their final state and the mutual interaction

is switched on suddenly. Equation (6.1) was then derived assuming the thermal

wavelength is much smaller than the size of the system. These approximations are

not very well justified. Here, we start from the full quantum-mechanical

expression for two-particle emission and show how, under most circumstances,

we can justify a few approximations which lead to Equation (6.1). Results obtained

in many other formalisms are similar. For instance, in the literature on two-pion

interferometry the function g(R/2,x) is often replaced by something similar, for

-> —+ 1 /2 . —§ .

example, [ g(p1,x)-g(p2,x) ] . As long as the relative momentum l q I IS

much smaller than a characteristic momentum, I; I, of g(3,x) (such as If; I z JET,

where T is the temperature of the emitting system), there is little difference

between the formalisms.

The complete matrix element for the creation of the n-body final state

includes all information necessary for the calculation of correlation functions. Here

we will derive an approximation in which the correlation function will only

depend on properties of the one-body emission probability which can be extracted

from the one-body matrix elements.

We start out by first considering the probability for creating two particles

with final momenta 3] and 32 from sources 1 and 2 at space-time points x1 and x2:
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-+ -9 4. 4 -) —> 2

l'I(p1,p2) = I i d xld x2M1(xl)M2(x2)U(x1,x2.p1,p2)| . (6.2)

Here, U(x1,x2:31,32) is the evolution operator for particles created atx1 andx2 which

—) -)

end up in the asymptotic momentum states p1 and p2. The matrix element Mi(xi)

creates the particle at xi and the remaining collision products into a state which

henceforth does not interact with the particle. In Equation (6.2), we have assumed

that the particles are emitted independently. This allows the factorization of the '

matrix element for two-body emission into the product of single-body elements.

By squaring the matrix elements and transforming to the new coordinates xi

(mean) and 5xi (relative), we obtain

-’ -’ 4 4 4 4

”(P1,P2)= id xld 5x1d xzd 5x251(x1,5x1)82(x2,8x2)o .

“1131432041,,5x1,x2,5x2). (6.3)

where 4

f -> —)

W31’32(x1,,5x1,,x2,5x2)= U (x1+5x12/2,x+5x2/2:p1,p2)0

U(x1-5x1 /2,x2-5x2/2:p1,p2) , (6.4)

and

_ ‘l'
51(x1,5x1) - M1 (x1+5x1/2)M1(x1-5x1/2) . (6.5)

The expression becomes physically more transparent when the dependences on

5xi are replaced by dependences on the momenta, ki’ through four-dimensional

Wigner transforms. As a result, we obtain:

—) -)

H(p1,p2)-- id4xld4x24dkd4k2§1(x1,k1)§2(x2,,1<2)wI-;132(x1,,k1,,x2,,k2) (6.6)

with the Wigner transforms g and W defined by:
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S1i(x,1<i)= ld45xSi(x.I'l‘,5x)e46xi1, (6.7)

and

W3132(x1,,k1,x2,k2)-=

id45x1d45x W-) -> (x ,5x ,x2,5x2)e-48x1.k1-46x2.k2. (6.8)
2 p1,p2 1’1

For non-interacting distinguishable particles, the time evolution operators,

U, in Equation (6.2) become simple exponentials, and we obtain from Equation

(6.4) the relation W-+ -+ =exp(i5x1-p +i5xp ). In this case, we can see from
p1,p2 1 2 2

4

Equation(6.8) that W313(2x1,k1,x’2k2)— 54(p1-k1)5 (pz-kz), asexpected. Non-

interacting distinguishable particles retain their four-momentum after the

emission.

The functions §(x,k) are the quantum mechanical analogues of the emission

probability for particles with four-momentum k from space-time point x. This can

be seen from the following argument. Performing the same steps as above, but

now for the single particle distributions, and making use of the relation

W3(x,k)=54(p-k), we obtain the result:

N(E) = i d4xd4k §(x,k)54(p-k) . (6.9)

From here on, we will imply the on-shell condition p ° = 13(3) when referring to the

0th component of the asymptotic momentum. Equation (6.9) shows that the

emission probability is given by:

g(3,x) =§(x,p>. (6.10)
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k ), weassume that theIn order to obtain an expression for W-> -* (x1,k1,x2, 2,

pl’pz

first emitted particle propagates freely for a time ( t2 - t1 ) before it interacts with

the second particle which is created at t With this assumption, the evolution2.

operator,

,-2->.-)—+
_,_, -53 3 44-1k-x-1k0x

U(k1,1,k2,t2:p1,p2)-(21t) id xld x2U(x1,x2.p1,p2)e 1 1 2 2, (6.11)

for momentum states, Ei’ evolving into the true scattering states, 31’ can be written

as

~ -) —> -) —> -) a —> -) . .

U(k 1,t1,k 2,t2.p 1,p 2) = <D(k 1,k 2.13 1,p 2) 0exp[1E12t2+1E1(t1-t2)] . (6.12)

Here E1245 the total kinetic energy of the proton pair, and <l> is the projection of the

total wave function on the plane wave states :1 and R42.

If the emissions of the two particles are not far apart in time, the assumption

of time-ordered emission entering Equation (6.12) becomes questionable due to

the uncertainty principle.

One can now calculate W in terms of the wave function projection (D.

W3132(x1,”k1,,x2,k2)=

UT_+

idfit638k12d8t636k2U (kk+5k1,1/21+51 /2,1<2+151<2,2/2t+5:21/2p1,p2)

-U(k 1-5k 1/2,t1-5t1/2,k 2-8k 2/2,t2-5t2/2:p 1,132)

3 3 3 3 o o
_ I d 5k1d Skzd Rld R25(k1-E1)5[k2-(E12E12m(12’1,k2,R,Rzzp1,p2)

. -> -) —) --) . —) -) -)

e-15k10 (x1+k1(t2—t1)/m-R1)-15k2 (x 2-R2). (6.13)
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Here, the symbol ki° is the O-th component of the four vector ki' To arrive at the

second part of Equation (6.13), we performed Fourier transforms and made the

linear approximation for the energy, 13(12’+512) z E0?) + 81?01-2/m. The function f2

introduced into Equation (6.13) is the Wigner decomposition of the total two-

particle density matrix:

—) -1 -) -) -) —) 3 3 . —> —> . -+ -)

f2(k1,k2,R1,R2.p1,p2) - I d 5121a 5122621301512 1R1-16k2R2)

*—> -> -) —1 —§ —> —> -> -) -> -9 —)

(D (k1+5k1/2,l<2+5k2/2:p1,p2)¢(k1-5k1/2,k2-5k2/2:p1,p2)

3 3 . —> —) . -—> -)

= 1d 5x1d 8x2exp(-15x1k1-15x2k2)

*4 -—> —-> —> -—> —) —> —, -—) —> -) —)

(I) (R1+5x 1/2,R2+5x 2/2:p1,p2)<l>(R1-5x 1/2,Rz-5x 2/2:p 1,132) . (6.14)

We insert Equation. (6.13) into the expression for the two-particle probability,

Equation (6.6), perform the integration over kio and obtain

3 3 3-+ -* 3 3 3 4 4 ~ -’ ~ -)
U(p1,p2)— ld Skld 5k2d Rld de kld kzd xld x2$(x1,E1,k1)S(x2,E12-E1,k2)

'512’ "12’<u)/ 12’ '5E’("12’)-)-)-)—)-) - 0 - - - O -

. e1 1("1+121 m 1)1 2 "2 2 (6.15)

If we had used a different "reasonable" formula for Equation (6.12) or kept more

terms in the expansion of E(l_<)+61_<’), we would have obtained the same formula as

Equation (6.15) except that the partition of energy into the source at x1 and the

source at x2 would have been different. These details are not important since they

will be absorbed into the approximation of the next paragraph.

In order to make the formalism tractable, that is depend only on 30?, E,

(21+?2)/2), we now make the assumption that the product of the matrix elements
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31032 depends weakly on the partition of the four-momentum. In order for the

particles to interact, x1 and x2 must be very close together. The function 5 should

then have the same momentum dependence at both points. If the momentum

dependence is thermal, then the product of the Boltzmann distributions has no

dependence on k1~k2. Even for arbitrarymomentumdependence, the product31 032

has, to first order, no dependence on relative momentum. If we do not make the

approximation of weak dependence on the partition of four-momentum, the

formalism is intractable, unless we know quantum details of the emission matrix

§(k,x) for k ° ¢E(l_<)). This assumption allows us to integrate over d35ki and d3Ri and

express the two-particle probability as:

3—> -> 3 4 4 ~ -> —> ~ -) —>

U(p1,p2)= I a 1216 12221 x161 x25(x1,E12/2,(k1+k2)/2)S(x ,1312/2,(121+122)/2)

f(l2’12"E’( )/ —’-_’_’) (616)
2 1’ 2"‘1+ 1 t2"‘1 m"‘2‘191’1’2 ' '

Since the total momentum of the pair is conserved during the evolution towards

—) —> —) -> —)

theirasymptoticmomentumstates,wecansubstitutek +k 2 =p 1 +p 2: =P.Weobtain:

1

-> -+ 3 3 4 4 ~ ~
U(p1,p2) - Id kld 122d xld x25(x1,P/2)S(x2,P/2)

—>—)-—>

f(k,k,x 12’(11)/ "-"") (617)
2 1 2 1+ 1 2'1 m"‘2'pl’p2' ‘

The emission function g is evaluated at the four-momentum P=(E(F),13)). In

general, the O-th component of this four-vector is not equal to E . However, as

12

long as 3132 is small, this difference can be neglected. This approximation allows us

now to replace the function 3(x,P/2) with the single particle emission probability

g(I_”/2,x), see Equation (6.10). We can now calculate the two-particle probability in

terms of single particle probabilities. It is prudent to make the same
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approximations in the expression for the single- particle emission probabilities.

Then the correlation function for non-interacting particles will remain at unity

even when 3132 is not small.

Dividing the two-particle emission probability from Equation (6.17) by the

single particle emission probabilities thus yields for the two-particle correlation

function:

C(fila) =

4 4 3 3 .. -+ ->
Id x 21 22 d 12 d k2g(P/2,x )g(P/2, 22)fg(121,12’2,2’+12’l(12 111/61,22.151412)

3 -+ 4 3

ld4x1d klg( P/2, x1)f1(k11:p1)ld xzd kzg(P/2, x2)f1(k2, 2’ 2: p2)

(6.18)

Using the definition of the Wigner decompositions, Equation (6.14), and the

fact that the two-particle wave function can be factored into the center-of-mass

wave function multiplied by the relative wave function,

-) —) —9 —) . -) -) -> -) —) -) -) —)

<I>(x 1,x 2:p1,p2) = exp [-1(p1+p2)(x 1+x 2)/2] q) [(pl-p2)/2,x l-x 2l , (6.19)

one finds for the integrals over the Wigner functions f1 and f2:

3 -)—>->

Id kif1(ki,xi.p) _ 1, (6.20)

Id312213121(12’,12’,"p" 3-31)ld(k+2312)d(k1-—2—k-22)1(12’,12’,:"2’2’")
22 1’ 2”“1”‘2p 1’p 2 ‘ 1’ 2’x1’xzpl’pz

k -k

= I 53021242)53( 1——22)53(f>’-12’-1212’2)

I535rexp1152’-(i2’1-12’2)/2]¢*(§’,x+5r/2)¢(fi’,2’-22’-52’/2)
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->—>->

= l¢(q,x2-x 1)Iz. (6.21)

Inserting these relations into Equation (6.18) now yields our final result which was

already given in Equation (6.1).

The central assumption underlying our derivation is the approximation

§(x,E,l_<’) == §(x,E,(l-<+1 +1.:2)/2). This approximation becomes exact when the emission

function §(x,k) is broad, i.e. when its characteristic momentum is much larger than

the relative momentum or the momentum spread of the resonance. In

intermediate energy heavy-ion collisions this is an appropriate assumption since

the characteristic momenta are of the order of magnitude of a few hundred MeV/c

and the relative momenta of interest are smaller than 50 MeV/c. (The important

momentum components for the 2 He "resonance" lie below 100 MeV/c.) If we keep

the momentum dependence in Equation (6.15), expanding k: about 13/2, we can

show that this dependence cancels out in first order. Thus we expect the

formalism to give very close to the correct answer, unless the characteristic

momentum of the emission becomes quite small. Our derivation does not rely on

the assmnption that the system be semi-classical and that the thermal wavelength

be much shorter than the size of bound states or even the size of the emitting

system.Ourresult is valid as long as the product of31 032 depends only on 12,1 +122 and

not 1311:2. For systems which sample many states, such as a thermal system, this is a

good assumption. Since usually there is no knowledge of the matrix elements as a

function of k ° , these approximations are the best we can do. Luckily, since we are

interested in correlations for small relative momenta and since the characteristic

momenta of the protons are sufficiently high, these are excellent approximations.

The correlation function C(33) depends only on the final relative positions of

all the particles with momentum 1372. To make this more clear, we write Equation

(6.1) as:
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C(iJ’,21’)= I431 1:132?Huff?)12, (6.22)

-+ —> -) -)

wherer =r 1- 2istherelativecoordinateoftheemittedparticles.Thefunctioangk )is

defined by:

_, Id3R1(f>’/2,R’+F’/2, 1))1(R’/2,12’-F’/2,1>)

FI-;(r ) = 2 (6.23)

IId31'1(13’/2,F",1>)1

where I? = i5 +?2) is the center-of-mass coordinate of the two particles. The Wigner
1

function ((331)) is the phase-space distribution of particles of momentum 3 at

_,

position r at some time, t), after both particles have been emitted:

t

>

1(3,F’,1>)= I211 g(3,F’-3(1>-1)/m,1) . (6.24)

-00

For a given momentum 13’, the correlation has three degrees of freedom, 21’, which are

a function of F1316"). The most we can hope to extract from the correlation function is

EEG"), the normalized probability of two protons with the same momentum 13V2

being separated by R We have shown in the derivation above that the calculation

of Fifi?) requires only the knowledge of the single-particle phase-space

distributions or the emission probability g;,1?,t).

6.2 Illustrative Calculations and Discussions

In this section, we will discuss the physical information contained in two-

proton correlation functions, such as the source size and lifetime, and point out

characteristic signatures of slowly-cooling and explosive sources, respectively. The

function 1736'->), Equation (6.23), contains significant information about the dynamics

of the collision. For instance, a long lived source will lead to an extended

separation when 17’ is parallel to the velocity 13/2m. Thus in addition to the spatial

extent of F136?) one gains insight into the lifetime of the source [Prat 87].
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The E dependence yields insight into the dynamics of the collision. Both the

size and the lifetime can depend on the total momentum. Cooling [Prat 87, Erie 83,

Boal 86] is signified by increasingly large lifetimes for particles with smaller

energies. We discuss this later in the section on the compound nucleus. Collective

explosive flow is signaled by short lifetimes and shrinking apparent source

dimensions for increasing energy [Prat 87]. There should be a transition in reaction

mechanisms, from evaporative to exploding, at excitation energies near the

nuclear binding energy. This is the dynamical equivalent of the liquid-gas phase

transition. At low excitation, nuclei slowly evaporate particles, cooling like a hot

liquid drop. At sufficiently high excitation, nuclei explode and expand like a gas

[Prat 87].

The relative wave function, ¢(q’,17’), is influenced by three different effects:

identical particle interference, short range hadronic interaction, and the Coulomb

repulsion of the protons. Additionally, it is affected by the weighting factors for

the partition of various spin states. We briefly discuss how these effects contribute

to the correlation function and how the resulting correlations can be used to

determine F307,).

To calculate the relative wave function numerically, we solved the

Schrodinger equation for the 1. =0 and 1 =1 partial waves with Coulomb and the

Reid soft-core potential [Reid 68]. We used the full Coulomb wave function [Mess

76], tied-121?), and added the modification 5w;,1?) which is the contribution to the

relative wave function from the first two partial waves minus the contribution

which would have occurred if the strong interaction were absent. The two-proton

relative wave function, (116;), is then obtained by

1116,1312 =wS-1‘¢(21’,E’)I‘ +wt0| 3216,2311, (6.25)
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where ’ 0G,?) and ’ $6,?) are the singlet and triplet ’ He spatial wave functions,

respectively and. ws and wt are the spin weighting factors for the singlet and triplet

2 He, respectively. In most cases, two-proton spins are assumed to be statistically

distributed so that ws=1/4 and wt=3/4. This assumption is followed in our

analysis.

For identical non-interacting particles, the squared wave function has the

form: 16(3, 1?) Izoc (1icos(230?)) .In thatcase, the inverse Fourier transform ofthe

correlation function would yield the complete three-dimensional function F13€). For

spin-half particles, the correlation function is reduced to one half at 131:0 [Kopy

72] and returns to unity with a width of qx=1/Rx. Experiments that gate on the

direction of the relative momentum can then determine all three spatial

dimensions of F369).

Coulomb interactions yield a dip in the correlation function which goes to

zero as 21’ approaches zero. As long as the characteristic dimensions of Fifi?) are

much smaller than the two-proton Bohr radius of 58 fm, the shape of the dip does

not depend on the shape or size of the source but only on the Gamov factor. For

larger sources, the Coulomb interaction, too, provides information about both the

source size and, to a weak degree, on the shape. The Coulomb dip in the

correlation function at I (Y I =0 will diminish for large sources. The most unfortunate

aspect of the Coulomb interaction is that the Coulomb dip lessens the number of

available pairs at small relative momentum, making it more difficult to see the

effects of identical particle interference.

Strong interactions provide excellent gauges of the size of smaller sources,

R310 fm. The 2He "resonance" appears as a bump in the two-proton correlation

function at q= 20 MeV/c. (Strictly speaking, the 2 He "resonance" is not a

resonance, since the phase shift does not increase by 90 °, but only by about 60 ° .)

The size of the bump is proportional to the percentage of pairs whose relative
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position is within the size of the nearly bound state. Thus the height goes roughly

as R's. This provides a very sensitive test of the size, but not of the shape.

As was recently pointed out [Zhu 91], two-proton spin distribution could be

distributed non-statistically in fast break—up reactions of light projectile nuclei. In

such cases, the spin weighting factors can be different from ws=1 /4, wt=3/4 and

the shape of correlation function will be modified accordingly.

For typical source sizes of about 5 fm, all the above effects are important.

Choosing a distribution F1341?) that fits the correlation function requires more than

just the appropriate size as measured by a single parameter. One must have F30?)

correct for large 17 in order to fit the correlation function at low 1? in the Coulomb

dip and one must have F134?) correct at small 1") in order to fit the height of the

correlation function. If the source is not so large that the Coulomb dip erases the

effect of identical particle interference, the shape must be chosen correctly as well

to fit the correlation function for different directions of 3.111115 all the physical

characteristics of F36") can be tested with correlation measurements provided that

all effects due to quantum statistics and final state interactions are properly taken

into account. In the following subsections we illustrate some these qualitative

expectations by calculations performed for simple analytical emission sources.

6.2.1 Spherical Sources of Negligible Lifetime

The relative importance of anti-symmetrization and the nuclear and

Coulomb interactions depends on the size of the emitting system. In order to

provide a quantitative comparison of these effects, we have calculated two-proton

correlation functions for Gaussian sources of negligible lifetime,

—) -> 2 2

g(p,r It) = p(r)8(t‘t o) = p o epo‘ /1' o )8(t‘t o ) I (626)

in which the nuclear interaction and the Pauli principle were turned off

successively. These calculations are compared in Figure 6.1 for a number of
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representative radius parameters (to = 2.5, S, 10, 20 fm) . The solid curves show

the results of the full calculations which include the nuclear and Coulomb

interactions and the Pauli exclusion principle. The dotted lines show calculations

for which the nuclear interaction has been turned off; these calculations still

include quantum effects of the two-proton Coulomb interaction and the anti-

symmetrization of the relative wave function. The dashed curves represent

calculations for which both the nuclear interaction and the anti-symmetrization of

the relative wave function have been turned off. (These latter calculations differ

from classical Coulomb trajectory calculations [DeYo 89, DeYo 90, Elma 91] since

the Coulomb repulsion between the two protons is treated quantum mechanically.

For large source dimensions or emission from long-lived sources, this difference

should be of minor importance.) For radius parameters, r o g 10 frn, both the anti-

symmetrization of the relative wave function and the nuclear interaction have

important effects on the detailed shape of the calculated correlation functions. For

much larger source dimensions, r o z20 fm, the Coulomb interaction dominates and

the neglect of the Pauli principle and the nuclear interaction can be justified [DeYo

89, DeYo 90, Elma 91].

Furthermore, we have calculated two-proton correlation functions for

Gaussian source of negligible lifetime with three different assumptions about the

spin weighting factors (ws,wt) in Equation (6.25) in order to assess the relative
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Figure 6 .1: Two-proton correlation functions calculated for Gaussian sources of

negligible lifetime with representative radius parameters, r 0 =2.5, 5, 10, 20 frn. The

solid curves show the result of the full calculations; the dotted curves show

calculations for which the nuclear interaction is neglected; the dashed curves

shown calculations for which the nuclear interaction and the Pauli principle are

neglected.



   

 

  

114

MSU-Ql-IBO

 

I

singlet 2He -

‘ °°°°° weighted total ’

" " '- ‘ triplet 2He

 

 

 

 
 

    
100

Figure 6 .2: Two-proton correlation functions calculated for Gaussian sources of

negligible lifetime with representative radius parameters, r 0 =2.5, 5, 10, 20 fm.

Assuming the two-proton relative wavefunction to be. I11)! 2 ws-I ’¢| '

wt. | ’ (j) I 2 ,the solid, dotdashed and dashed curves show calculations for (1) ws=

1 and wt: 0, (2)ws= 1/4 and wt= 3/4, (3)ws= Oand Wt: 1, respectively.
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importance of singlet and triplet spin states. In Figure 6.2, solid and dashed curves

represent the calculated two-proton correlation functions for the singlet (S = 0:

ws= 1, wt= 0) and triplet (S = 1: ws= 0, wt= 1) 2 He spin states, respectively. The

dot-dashed curves are the averaged calculations using ws= 1/4 and wt = 3/4. Four

representative radius parameters (r0 = 2.5, 5, 10, 20 fm) are used to see the

dependence of the spin-state effect on the emission-source sizes. For radius

parameters, ro s5 fm, the singlet two-protons have very strong correlations

around q = 20 MeV/c and the triplet two-protons show large anti-correlations.

These are consistent with the respective proton-proton potentials [Reid 68]. At

larger radii, the singlet two-proton correlations become weak and the peak shifted

to q less than 20 MeV/c, and the anti-correlations for triplet two-protons are

smaller, too. Overall, the correlation peak at q=20MeV/c is most dominated by the

singlet spin state.

Most analyses of fast-particle-emission processes [Zarb 81, Lync 83, Gust 84,

Chen 87a, Chen 87b, Poch 86, Poch 87, Fox 88, Awes 88, Cebr 89] have used

sources of negligible lifetime with spherically symmetric Gaussian density

distributions, Equation (6.26). For spherically symmetric sources, the shape of the

two-proton correlation function is rather insensitive to details of the density

profile. To illustrate this point, we compare the shapes of two-proton correlation

functions calculated for sources of negligible lifetime with Gaussian, Equation

(6.26), and uniform sharp-sphere density distributions,

g(3,2’,t)=p 69(r)9(RS-r)5(t-t6 ). (6.27)

In Equation (6.27), Rs is the sharp sphere radius and E-Xx) is the unit step function

which vanishes for negative arguments. The solid and dotted curves in Figure 6.3

represent calculations performed with Eqs. (6.26) and (6.27), respectively. In these

calculations, the radius parameters have been adjusted to match the magnitudes
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Figure 6 .3: Two-proton correlation functions calculated for sources of negligible

lifetime assuming Gaussian (solid lines) and sharp sphere (dotted lines) density

distributions. The radius parameters, r o and Rs’ are indicated.
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Figure 6.4: Relation between radius parameters, r o and R , of Gaussian and sharp

sphere density distributions for which equivalent two-profon correlation functions

are obtained in the limit of negligible lifetime. Crosses indicate results of

numerical calculations, the solid line represents a linear fit, and the dotted curve

 

shows the relation Rs=~/(5/2) r a used in the literature [Boal 90].
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of the maxima at q=20 MeV. The correlation functions calculated for these rather

different density profiles are virtually identical in shape.

Previously, Gaussian source parameters, r0, have been translated [Boal 90]

into equivalent sharp-sphere radii, Rs’ by employing the approximate relation, Rs=

 

/(5/2) to. This relation can be justified by equating the rms radii of the two

density distributions. Equivalent radii, r o and Rs’ of the two density profiles can

also be defined by the requirement that the calculated correlation functions have

maxima of identical height. Such equivalent radii are indicated by X-shaped

symbols in Figure 6.4. These equivalent radii can be rather well described by the

relation Rs: 1.493ro +0.0475 fm; this relation is represented by the solid curve in

 

Figure 6.4. For comparison, the analytically derived relation, Rs= /(5/2) r0, is

indicated by the dotted curve; it is a surprisingly good approximation.

6.2.2 Spherical Sources of Finite Lifetime

In order to illustrate the sensitivity of the shapes of two-proton correlation

functions to the lifetime of the emitting system, we have performed calculations

under the simplifying assumption that particles are emitted from a spherical

volume of radius Rs according to a simple exponential law,

2

-p /2mT-t/ T , (6.28)
gar-1t)“ P 0 9(r)O(RS-r)E-)(t)pe

where T and 1' denote the (constant) source temperature and lifetime, respectively.

Calculations for two-proton correlation functions, integrated over all relative

orientations between I; and 21’, are shown in Figure 6.5. The parameters used in these

calculations are given in the figure. The upper panel of the figure illustrates the

sensitivity to the lifetime of the emitting system for proton pairs of total
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Figure 6 .:5 quproton correlation functions predicted for emission from

spherical sources of radius RS=5 fm, decaying isotropically with fixed life—time,

Equation (6.28). The top and bottom panels depict the dependence on life-time,1:

and total momentum, Pc.m’ respectively.
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momentum, Pc.m.= 300 MeV/c, measured in the rest frame of the emitting source.

The calculated two-proton correlation functions exhibit considerable sensitivity to

lifetimes of the order of 30-3000 fm/c. For much shorter lifetimes, the shape of the

correlation function becomes dominated by the spatial dimension of the emitting

system; for much longer lifetimes the correlations disappear. The lower panel of

Figure 6.5 illustrates how the correlation function depends on the total momentum

of the emitted proton pairs for the case of a fixed lifetime, I=100 fm/c. The

calculated correlations become more pronounced for smaller total momenta, i.e.

for particles emitted with lower kinetic energies. This dependence can be

understood in terms of the spatial extent of the Wigner distribution. The

longitudinal dimension of the apparent source is of the order of (Pc.m./2mp)‘t,

where m denotes the proton mass. For fixed lifetime, I, this quantity increases for

larger vallues of Pam. and the correlation function becomes attenuated. Such a

momentum dependence stands in contrast to experimental observations [Lync 83,

Chen 87a, Chen 87b,. Poch 86, Poch 87, Awes 88, Gong 91b] and is opposite to that

calculated for emission from compound nuclei for which the effects of cooling

produce a strong momentum dependence of the effective decay times (see also the

discussion in Chapter 8).

Figure 6.6 illustrates the dependence of the two-proton correlation function

on the angle, ‘1’ = cos.1 ( 1333/1321 ) , between the relative and total momentum vectors

of the two-proton pair. As was done in the experimental analysis [Gong 91b], we

define longitudinal and transverse correlation functions by the cuts lcos‘f'l 20.77

(‘l’=0 ° -40 ° or 140 ° -180 ° ) and l cos‘I’ I s 0.5 (‘I’=60 ° -120 ° ), respectively. Different

panels of Figure 6.6 show longitudinal and transverse correlation functions

calculated for different lifetimes 1:0, 10, 30, 100, 300, 1000 fm/c. In these

calculations, the total momentum of the proton pair was kept constant at Pc.m.=300

MeV/c. For very short lifetimes, 1310 fm/c, the apparent source is essentially
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Figure 6 .6: Longitudinal and transverse correlation functions calculated for

emission from sources decaying with constant lifetimes, Equation (6.28). The

parameters used in these calculations are indicated in the figure.
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spherical in shape and life-time effects are negligible for the calculation of the two-

proton correlation function. For an intermediate time-window, I=30-300 fm/c,

longitudinal and transverse correlation functions are sensitive to the lifetime of the

emitting system. For larger lifetimes, 121000 fm/c, this sensitivity is essentially lost

as the average separation between emitted particles becomes so large that anti-

symmetrization effects become negligible. In fact, for extremely large lifetimes the

effect is reversed because Coulomb induced correlations contain a weak amount of

directional information. The Coulomb force is parallel to the relative displacement

of the protons; therefore, the Coulomb hole in the correlation function will be

strongest when the relative momentum is parallel to the longest dimension of the

pair’s separation. For long-lived sources this is the longitudinal direction.

Comparisons of longitudinal and transverse correlation functions yield the

strongest sensitivity to the lifetime of the emitting system on the order of 30-300

fm/c. By more judicious choices of the gates on Pc.m.’ one may stretch the

sensitivity of such measurements beyond these rough boundaries.

6.3 Comparison with Classical Trajectory Calculation

Two-proton correlation functions have been used to study emission time

scales of evaporative emission processes [DeYo 89, Ardo 89, DeYo 90, Gong 90b,

Elma 91, Gong 91b]. Two different techniques have been used to calculate two-

proton correlation functions. One technique is based upon the Wigner function

formalism outlined in Section 6.1, and the other employs classical trajectory

calculations [DeYo 89, DeYo 90, Elma 91]. As it is not clear whether and under

which conditions the two approaches yield similar (or identical) results, we have

performed numerical calculations for a simplified source function in order to

make quantitative comparisons between the two approaches and explore the

validity of the approximations underlying different theoretical treatments.

Similar to Equation (6.28), we used a simple source function corresponding

to thermal emission from the surface of a sharp sphere of radius R:
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A A A A - - ..

361:2) °~= (r 0p)9(r 0p)5(r—RS)O(t)9(E-VS)(E-Vs)e (E VS”T t/ I . (6.29)

A " . -) -+ 2 2 .
Here, r and p are un1t vectors parallel to r and p; E=p /2m; VS = ZSe /RS 15 the

Coulomb barrier. Calculations were performed with the parameters: ZS = 78, R5 =

8 fm, T = 4 MeV, and 1: = 200, 500, 1000 fm/c. We have chosen a relatively low

temperature parameter to emphasize the emission of low-energy protons

pertinent to evaporative emission from hot compound nuclei.

In the Wigner function formalism, the two-particle correlation function

depends only on the final relative positions of all the particles with momentum

P/2. It is derived under the assumptions that the final-state interaction between the

two protons dominates and that final-state interactions with the remaining system

are negligible, that the single-particle phase-space distribution varies only slowly

over particle momenta P/Ziq, and that the correlation functions are determined

by the two-body density of states as corrected by the interactions between the two

particles.

For a long-lived source, we assume that the Coulomb force is the only

interaction between two protons. After integrating over all relative orientations

between I” and If, we obtained the classical approximation to Equation (6.22) as:

[Kim 91a, Kim 91b]

1+R(P,q) = I d3r F1316") [ l-mez/qzr] ”2 . (6.30)

Classical trajectory calculations similar to References [Kim 91a, Kim 91b]

were performed for proton emissions. The final-state Coulomb interaction with

the emitting system was incorporated (ZS = 78), or neglected (ZS = 0). Recoil effects

were taken into account (the mass of the emitting system was taken as M = 197 u).
S

The emission function in the rest frame of the emitting system, Equation 6.29, was

sampled by Monte-Carlo techniques. For trajectory calculations in which the
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Coulomb interaction with the emitting system was taken into account (ZS = 78),

the Coulomb parameter in Equation (6.29) was set to V5 = O. For calculations in

which the Coulomb interaction with the emitting nucleus was turned off, the

S = 78e2/RS was used in Equation (6.29) to ensure close

similarity of the asymptotic kinetic energy spectra for all calculations. Upon

Coulomb parameter V

emission, the particle trajectories were calculated by integrating Newton’s

equations, and the asymptotic particle momenta were stored as coincidence events

and as single-particle spectra. These simulated events were treated in the same

manner as the measured data to generate two-proton correlation functions

according to Equation (7.1).

Correlation functions calculated with various approximations are compared

in Figure 6.7 for emission times of T=200fm/c (upper part), SOOfm/c (middle

part), and IOOOfm/c (lower part). The solid curves represent the correlation

functions calculated with the Wigner function formalism by including nuclear and

Coulomb interactions and anti-symmetrization of wave-function. The dotted

curves represent the same calculations except that the nuclear interaction was

turned off. Comparison between these two calculations indicates that the nuclear

interaction is important for life-times TS500 fm/c.

The dashed curves in Figure 6.7 represent calculations with the Wigner

function formalism in which the two protons are assumed to be spinless and

distinguishable particles experiencing only Coulomb interaction. The relative

wave function is given by the (non-antisymmetrized) Coulomb scattering wave-

function. The dot-dashed curves show the results obtained with Equation (6.30).

For the lifetimes considered, the classical approximation provides an excellent

approximation for the calculations of angle integrated correlation functions
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Figure 6 .7: Two-proton correlation functions for a schematic source, Equation

(6.29), representing thermal surface emission with fixed life-times, I=200fm/c

(upper part), T=500fm/c (middle part), and T=1000fm/c (lower part). The

parameters are indicated in the figure. Different symbols and curves are explained

in the text.
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arising from Coulomb final-state interactions between distinguishable particles,

even if they are as light as protons. (Note, however, that anti-symmetrization

effects can only be safely neglected for 121000 fm).

The open points in Figure 6.7 show the results of classical trajectory

calculations incorporating the Coulomb interaction with the emitting system

(ZS=78). For comparison, the solid points show results obtained by turning off the

Coulomb interaction with the emitting source (25:0). (These latter calculations are

not necessarily identical with results obtained from Equation (6.30) as they do not

rely on the approximation, implicit in the Wigner function formalism, of using

only the one-body phase-space density at the center-of-mass velocity of the two-

proton pair.) The differences between the two trajectory calculations are small. For

short emission time scales (1:200 fm/c), however, they are not negligible. (This

conclusion depends on the shape of the energy spectrum: Coulomb distortions in

the field of the heavy reaction residue decrease for the emission of more energetic

protons.) For large emission time scales, I=1000 frn/c, all calculations agree to a

good degree of accuracy.

In summary, our investigation suggests that the neglect of the two-proton

nuclear interaction and the anti-symmetrization of the two-proton wave-function

leads to comparable or larger inaccuracies than the neglect of the Coulomb

interaction with the emitting heavy residue. For large emission times 121000 fm/c,

pertinent for the decay of low-temperature compound nuclei, the classical

formula, Equation (6.30), provides an excellent approximation for the calculation

of angle integrated two-proton correlation functions and gives virtually identical

results to the classical trajectory calculations.



CHAPTER 7. TWO-PROTON CORRELATION FOR THE

GAUSSIAN SOURCE

The experimental two-particle correlation functions, R(q), are presented as a

function of relative momentum, q, using the definition:

—> -+ —) —§

2Y12(p 1,p 2) = C12(1+R(q)) 02Y1(p 1)Y2(p2) . (7.1)

Here, 31 and 32 are the laboratory momenta ofparticles 1 and 2; q =% | 31 - 32 l is the

relative momentum of the particle pair; Y1261,32) is the coincidence yield; and

qu-i1) and Yip-)2) are the single particle yields. For each experimental gating

condition, the sums on both sides of Equation (7.1) are extended over all energy

and detector combinations corresponding to the given bins of q. The

normalization constant, C12, is determined by the requirement that R(q)=0 for large

relative momenta.

Theoretical correlation functions are calculated with Equations (622-24). In

most previous analyses, g(p),i-'),t) was parametrized in terms of a simple Gaussian

source of negligible lifetime,

30372.?» = p . 5(t)exp {-r 2 /r0 ’(Pn . (7.2)

where the radius parameter was allowed to be momentum dependent. To allow

comparisons with the previous analyses and to systematize our data, we will

adopt this parametrization for the calculations presented in this Chapter.
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7.1 Angle- and Energy-integrated Correlation Functions

Two-proton correlation functions corresponding to sums over all detectors

and all proton energies above the applied software energy threshold of 10 MeV

are compared in Figure 7.1. The correlation functions measured for the reactions

1 ‘N + 2 7A1 and ‘ ‘N + ‘ ° 7Au exhibit pronounced maxima at relative

momenta q z 20 MeV/c, see top panels of Figure 7.1. Small but significant

differences exist at small relative momenta where the minimum at q a 0 MeV/c is

‘ 9 7Au target. The correlationmore pronounced for the 2 7 Al than for the

functions measured for the ‘ 2 ° Xe-induced reactions do not exhibit a pronounced

maximum at q z 20 MeV/c, but only a minimum at q z 0 MeV/c, see bottom

panels of Figure 7.1. The correlation functions measured for the reactions ' 2 ° Xe

+ 2 7Al and ‘ 2 °Xe + ‘ 2 2Sn have very similar shapes. On the other hand, the

1 2 ° Xe induced reactions arecorrelation functions measured for HN and

strikingly different, corroborating previously observed differences between

correlation functions measured for equilibrium and nonequilibrium emission

processes in slightly different reactions [DeYo 89, Queb 89, Ardo 89, DeYo 90]. For

orientation, the solid lines show theoretical correlation functions predicted for

Gaussian sources of negligible lifetime. For the reactions induced by ‘ ‘N and

l 2 °Xe, radius parameters of r0 = 4.4 and 70 fm were used, respectively. These

source parameters should be compared to the equivalent radius parameters for Al

and Au nuclei, r0 (A1) = 2.5 fm and r0 (Au) 2 4.4 fm , which are obtained from

tabulated [Brow 84] r.m.s. charge radii using the approximate relation r o = v/(7/3)

rrms' For the ‘ ‘N-induced reactions a source radius ofro =4.4 fm is not

necessarily unreasonable. However, it is astonishing that this radius parameter

exhibits no obvious dependence on the size of the target nucleus. A purely

geometrical interpretation of the correlation function is, therefore, in doubt. For

the large source parameter, r o z 70 fm, used to describe the correlation functions
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Figure 7.1: Comparison of energy integrated two-proton correlation functions

measured for the reactions ' ‘N+ 2 7 Al and ‘ ‘N+‘ ° 7 Au at E/A=75 MeV (top

panels) and the reactions ‘ 2 °Xe+2 7Al and ‘ 2 °Xe+‘ 2 2Sn at E/A=31 MeV

(bottom panels). The solid curves represent correlation functions predicted for

Gaussian sources of negligible lifetime with the indicated radius parameters, r o.
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measured for the Xe induced reactions, a purely geometrical interpretation is

clearly unphysical and the lifetime of the emitting system must play a major role.

7.2 Dependence on Total Momentum

Two-proton correlation functions are known to exhibit strong dependences

on the energy of the emitted particles [Lync 83, Chen 87a, Chen 87b, Poch 86, Poch

87, Awes 88,Gong 90b, Gong 90c], or, equivalently, on the total momentum}: = 31 +

1322, of the coincident proton pair. Figure 7.2 shows two-proton correlation functions

for two representative momentum gates, measured for the reactions 2 2 9Xe +

2 2A1 (upper panel) and 2 2 °Xe + 2 2 2Sn (lower panel). The momentum gates

represented by the solid and open points correspond to protons emitted with

kinetic energies below and above the compound nucleus Coulomb barriers,

respectively. For the 2 2 °Xe + 2 2A1 reaction, the two momentum gates, P=480-

570 and 660-750 MeV/c, select protons with kinetic energies of Ec.m.z 5-10 and 15-

23 MeV, respectively, in the center-of-mass frame of reference (i.e. the rest frame of

the compound nucleus). For the 2 2 °Xe + 2 2 2Sn reaction, the two momentum

gates, P2270640 and 540-660 MeV/c, select protons with kinetic energies of Ecm.”

1-15 and 15-27 MeV, respectively. As can be expected from qualitative time scale

arguments, sub-barrier emission results in a reduction of the minimum at qu

MeV/c. Furthermore, correlation functions at sub-barrier energies can suffer

enhanced attenuations and/or distortions from sequential decays of primary

fragments emitted in particle unbound states [Frie 83] and from deflections in the

Coulomb field of the heavy reaction residue. Because of these additional

complications, we will refrain from a more detailed analysis of two-proton

correlation functions for protons emitted with sub-barrier energies. Calculations of

two.proton correlation functions for evaporative processes will be presented in

Chapter 8.

l

The correlation functions measured for the ‘ N-induced reactions exhibit a

more pronounced dependence on the total momentum of the detected proton
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pairs. Figures 7.3 and 7.4 show correlation functions for representative ranges of

the total momentum, P, for the reactions 2 4N + 2 7Al and 2 ‘N + 2 2 2Au,

respectively. COnsistent with previous measurements, the maximum at q z 20

MeV/c becomes more pronounced for larger total momenta, i.e. for the emission

of more energetic particles. For the lowest momentum gate, P=270-390 MeV/c, the

correlation functions are distinctly different for the two targets. For the 2 2 Al

2 ° 2 Au target, ontarget, a clear maximum at q = 20 MeV/c is measured. For the

the other hand, this maximum is barely visible and the shape of the correlation

function resembles that measured for evaporative processes.

The solid curves in Figures 7.3 and 7.4 show correlation functions calculated

for Gaussian sources of negligible lifetime, Equation (7.2), using momentum

dependent source parameters shown in Figure 7.5. In these calculations,

appropriate averages over total momentum were performed, and the resolution of

the hodosc0pe was taken into account. The overall trends of the data are well

described. However, the shapes of the measured correlation functions are not

reproduced in all details. The peaks of the calculated correlation functions are

slightly narrower than the peaks of the measured correlation functions. The

disagreement is particularly evident in the region around q = 30-40 MeV/c. In

addition, for the 2 2N + 2 2 7Au reaction, the adopted parametrization fails to

reproduce the exact shape of the minimum at q z 0 MeV/c for the low momentum

gate, P = 270-390 MeV/c.

In order to provide a simple description of the momentum dependence of

the two-proton correlation functions measured for the 2 2 N-induced reactions, we

have constructed experimental correlation functions for a number of narrow gates

placed on the total momentum, P. Each such correlation function was

characterized in terms of a Gaussian source, Equation (7.2), by requiring that
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Figure 7.2: Two-proton correlation functions measured for the reactions

22 °Xe+2 2A1 and 22 °Xe+2 2 2Sn at E/A=31 MeV. The gates on the total
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the correlation function calculated for this source could reproduce the height of

the maximum of the measured correlation function. The dependence of the

extracted radius parameters on the total momentum of the detected particle pair,

r o (P), is shown in Figure 7.5. The error bars indicate estimated systematic errors.

For the 2 4N + 2 2 2Au reaction, the adopted parametrization fails to reproduce

the shape of the minimum at q z 0 MeV/c for the low momentum gates, P<350

MeV/c. Here, the assumed monotonic dependence of the radius parameter on

total momentum appears to be inadequate, and one may have to mix in additional

contributions from much larger sources or, alternatively, from long-lived

evaporative processes to fit the shape of the minimum at q == 0 MeV/c. Because of

the inherent ambiguities of such an approach, we did not pursue this possibility.

Instead, we have indicated these possible contributions by open-ended error bars.

We wish to comment that the radius parameter, r o (P), cannot be interpreted

at face value since the lifetime effect must be present for emissions of low energy

protons. Even though correlation functions are calculated without lifetime, this

approach is used only to summarize and display the full momentum dependence

and some subtle target dependence of two-proton correlation functions.

While the average correlation functions measured for the 2 2N + 2 2 Al and

2 2N + 2 2 2 Au reaction are very similar (see Figure 7.1), significant differences

surface when one explores the dependence on the total momentum of the proton

pairs. Such more subtle differences, already apparent in the raw data shown in

Figures 7.3 and 7.4, are clearly revealed in Figure 7.5. For the 2 2N + 2 2 2Au

reaction, the extracted source dimensions exhibit a nearly monotonic increase with

decreasing total momentum of the detected proton pair. For the 2 2N + 2 2Al

reaction, on the other hand, the extracted source dimensions are rather constant

over the range of P=400-750 MeV/c. The extracted source dimensions are
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Figure 7 .5: Radius parameters, r o , for Gaussian sources of negligible lifetime

extracted from two-proton correlation functions gated by different total momenta,

P, of the coincident particle pairs for 2 2 N induced reactions on 2 2 Al and 2 2 2 Au

at E/A=75 MeV. The error bars indicate estimated systematic errors.
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comparable for the two targets at high total momenta, P2800 MeV/c, indicating

that very energetic particles are emitted by comparable processes. At low total

momenta, P5500 MeV/c, the extracted source dimensions are considerably larger

1

for the reactions on 2 2 Au than for the reactions on 2 2 Al, most likely indicating

larger contributions from slow evaporation processes for the 2 2 2 Au target.

As more two-proton correlation measurements become available, interesting

systematic trends emerge. Figure 7.6 shows the radius parameters for Gaussian

source of negligible lifetime extracted from 2 He + Ag(natural) at E/A = 67 MeV

[Zhu91], 2 2Ar+ 22 2Au at E/A = 60 MeV [Poch 87], and 2 2N +22 2Au at E/A

= 75 MeV (this work, see Figure 7.5), as a function of v/vbeam’ the ratio of v, the

mean velocity of the two-proton pairs, to v , the beam velocity. The solid

curve is an interpolation to the data obtainedbfoarmthe 2 2 N + 2 2 2 Au reaction. The

dashed and dotdashed lines are obtained by scaling the solid line with

multiplicative factors of (3/14)2/3 and (40/ 14)“3 for the reactions 2He + Ag

and 2 2Ar + 2 2 2_Au, respectively. The good agreement between extrapolated

and measured source radii at v/vbeam 2 0.7 for both 2He and 2 0Arinduced

reactions suggests that the spatial extent of the emitting region for energetic

protons scales with the radius of the light projectile impinging on a heavy target.

For lower energy protons emitted from an evaporative source on a long time scale,

the extracted radius parameters may not represent the source size but rather

reflect the lifetime of the emitting system (see Section 6.2.2 and Chapter 8). This

qualitative argument is in accordance with the observation that the scaling of the

measured source radii with the radius of the projectile does not apply at v/vbeam <

0.7.

It is interesting to note that similar source-size scaling with the projectile

radius has been observed from two-pion intensity interferometry in relativistic

nucleus-nucleus collisions [Bart 86].
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7.3 Effect of Instrumental Resolution

In order to evaluate instrumental distortions of the measured correlation

functions, we have simulated the response of our experimental apparatus by

taking its known energy and angular resolution into account. The solid curves in

Figure 7.7 show the undistorted correlation functions, calculated for Gaussian

sources with the indicated radius parameters. The points are results of Monte

Carlo calculations in which the angular and energy resolutions of the experimental

apparatus are taken into account. In these calculations, the coincidence yield was

taken as

Y12(p1,p 2) = (1+R(q) ) Y1(p1)Y2(p2) , (7.3)

where the singles yields, Y1(p21) and Y1 (1322), were takenfrom the single particle yields

measured for the 2 2N+2 2Al reaction and R(q) was calculated by assuming a

Gaussian source of negligible lifetime, Equation (7.2), with the radius parameters

given in the figure. Both singles and coincidence distributions were smeared by

the energy and angular resolution of the experimental apparatus and sorted in the

same way as the experimental data, using three representative momentum gates.

The simulated correlation functions are in close agreement with the original,

undistorted correlation function. Except at very small relative momenta, line

shape distortions caused by the resolution of the experimental apparatus are

negligible. Note, in particular, the absence of visible distortions in the region of q

z 30-40 MeV/c where the Gaussian-source fits deviate from the experimental

correlation functions (see also Figures 7.3 and 7.4).
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CHAPTER 8. TWO-PROTON CORRELATION FOR

EVAPORATIVE EMISSION

Two-proton correlation functions for particle evaporation from long-lived

compound nuclei can be calculated by using the Wigner-function formalism [Prat

87, Gong 91a], Equations (6.22-24). We have used the statistical model of Reference

[Frie 83] to construct Wigner functions for evaporative emission from equilibrated

compound nuclei.

8.1 Statistical Evaporation Model

In this model, the average particle emission is calculated from a generalized

Weisskopf formula and cooling of the compound nucleus is calculated from the

average mass and energy emission rates [Frie 83]. Sub-barrier emission is not

incorporated because of the use of the sharp cut-off approximation for the inverse

cross sections. For simplicity, the level density is approximated by that of an ideal

Fermi gas at the density of normal nuclear matter.

The generalized Weisskopf formula gives the probability per unit time and

energy intervals of emitting a particle, b, with energy, E, at time, t, from a

compound nucleus, c:

2 2

—dNb = (25 +1)——222222R22(E-v )C-XE-V )expl2E+ZbF2T2p222+NbF2TIPV22Bb
dEdt b nzfls b b 'r

 

]. (8.1)

Here, Sb, mb, Zb’ Nb’ and E denote the spin, mass, charge, neutron number,
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and energy of the emitted particle; T is the temperature of the compound nucleus;

F(T,pn) and F(T,pv) are the Helmholtz free energies per particle for protons and

neutrons, respectively, and EXx) is the unit step function. The free energies were

calculated by assuming that the nucleons behaved like an ideal Fermi gas with a

density of p = 0.145 fm23. The height of the Coulomb barrier, V was taken as the
bl

Coulomb energy between the daughter nucleus and the emitted fragment when

they are separated by the absorption radius, Rb. For simplicity, the absorption

radius was calculated as:

1/3]

%=0r [(AC-l/Ab)+Ab] ;r0= 1 .2 fm. (8.2)

Here, AC and Ab denote the mass numbers of the parent nucleus, c, and the

emitted particle, b, respectively. The binding energy, Bb,IS the differencein masses

of the parent nucleus and that of the daughter nucleus and the emitted particle.

The masses of parent and daughter nuclei were calculated from a liquid-drop

formula:

M(A,Z)=Zmpc2+(A-Z)mnc2- [ 14.1A-13A2/3-0595221;2/3-19(A-ZZ)2/A] (8.3)

The spatial distribution of emission points was chosen to be uniform in the

two coordinates transverse to the velocity of the emitted particles; the third

coordinate was chosen such that the emission point corresponds to the surface of

the sphere of radius Rb. For particles with energies very near the Coulomb barrier,

this is not a particularly satisfying choice. These particles undergo a significant

change in their trajectory due to the Coulomb field of the compound nucleus.

Distortions of two-proton correlation functions by deflections of the emitted

protons in the Coulomb field of the daughter nucleus are manifestations of long

range three-body effects. Such effects are not incorporated in the formalism

presented in Chapter 6. We also neglected effects due to angular momentum
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coupling which, for rapidly rotating compound nuclei, could modify the extracted

radii by up to 20% [Koon 89].

If the spatial separation between emitted protons is much larger than the two-

proton Bohr radius of 58 frn, one can neglect the identical-particle interference of

the emitted protons and their strong mutual interaction, and also the quantum

nature of their mutual Coulomb repulsion. Under these conditions, one can

calculate correlation functions from the classical Coulomb trajectories, where the

electric field of both protons and that of the compound nucleus are taken into

account [DeYo 89]. For compound nuclei with excitation energies below about 2.0

MeV/nucleon, emission time scales are sufficiently large that the above conditions

are satisfied; classical trajectory calculations should provide a good approximation

(see the discussions in Section 6.3).

For increasingly high excitation energies, the time scales for emission become

shorter. As the protons are emitted closer to one another, the quantum nature of

the Coulomb interaction, identical particle statistics, and the strong interaction

become important in that order. Fortunately, Coulomb deflections in the field of

the compound nucleus become less important for particles emitted with kinetic

energies significantly above the Coulomb barrier. For collisions with sufficient

energy to dissolve the nuclei, E/AzSO MeV, the neglect of three-body effects for the

two-proton relative wave function should provide a good approximation. At these

energies, the effects of the strong interaction and identical particle interactions

dominate. These effects can only be calculated by a full quantum treatment of the

relative wave function.
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8.2 Model Calculations

It is instructive to explore the sensitivity of the calculated correlation

functions to various parameters and momentum cuts. The following illustrative

calculations are performed for narrow ranges of the total momenta, Pc.m.’ of the

emitted particle pairs. (The momenta, Pc.m.’ are defined with respect to the

compound nucleus rest frame.)

The shape of the two-proton correlation function depends on the time-scale

governing the emission of the detected particles. For particle emission from

equilibrated compound nuclei, this time scale depends on the level density and,

therefore, on the initial temperature. Because of cooling via particle emission, the

time scale also depends on the energy of the emitted particles. In Figures 8.1 and

8.2, such dependences are illustrated for the decay of highly excited 2 2 2H0

nuclei. Figure 8.1 shows the calculated time dependence of the respective emission

processes, i.e. the relative probability per unit time for the emission of the

specified protons. The predicted two-proton correlation functions are shown in

Figure 8.2. The top panels in the two figures present calculations for initial

temperatures T = 5, 10, and 20 MeV, keeping the total momentum of the two-

proton pair fixed at 22cm. = 400:10 MeV/c. (This momentum bin selects protons of

kinetic energy Ec.m./A z 21 MeV in the compound nucleus rest frame.) At low

temperatures, T 5 5 MeV, the decay times are large and the predicted correlation

functions exhibit only a minimum at q z 0 MeV/c. With increasing temperature,

the decay times decrease and the minimum at q = O MeV/c becomes more

pronounced. For very hot nuclear systems, T Z 20 MeV, the calculated emission

time scales become so short that the two-proton nuclear interaction becomes

significant and the maximum in the correlation function at q z 20 MeV/c emerges.

The bottom panels of Figures 8.1 and 8.2 show calculations for different total

momenta, Pc.m.’ and fixed initial temperature, T = 10 MeV. Because of cooling of the

compound nucleus, particles of higher energy are emitted on faster



145

 

 

MSU-SO-HS

100 22 I 2 l ' I r I '

.j\ A=156. Z=67. Pm=400MeV/c
. \

10_1 ... \ \ \

x \ 'r(ueV) _

., \~c\ (r/a

10'2 2 ‘ ~ ~ .. c ‘ _750

-3 ............ 10
1° .............070

A
......

d 10‘4

3 222

:3 100

\

2: 11: 10—

10"2 2%.. ‘--—

10"3

10‘4

 
 

() 1000 2000 2 3000 2 4000 2 5000

t (fm/c)
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momenta, PC m (bottom panel), of the emitted two-proton pairs.
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time-scales than particles of lower energy. As a consequence, the two-proton

correlation functions reflect smaller apparent source dimensions for the emission

of particles of increasing energy. At lower temperatures, qualitatively similar

dependences exist, but their effects on the two-proton correlation functions are

less visible due to the larger emission times.

For fixed excitation energy, E‘, the decay rate of a compound nucleus

depends on the relation between excitation energy and temperature since higher

temperatures lead to higher emission rates and, therefore, to smaller apparent

source dimensions. Figure 8.3 illustrates the sensitivity of the calculated two-

proton correlation functions to the assumed relation between excitation energy

and temperature for the decay of l 5 6 Ho compound nuclei of fixed initial

excitation energy, E /A=6.0 MeV. In these calculations, the level density was taken

as that of an ideal Fermi-gas of the indicated density p. For an ideal Fermi gas, the

relation between excitation energy and temperature is given to first order by:

 

'I'2 = E /a . (8.4)

The level density parameter, a, depends on the Fermi energy, 81::

1:2 A 2/3 -1
a = z 0.065A( p o / p ) MeV . (8.5)

4 8F

/3
In Equation (8.5), we have used the relation 2 z 38(p / p o )2 MeV, where p o =

F

0.17 fm-3 denotes the density of normal nuclear matter. For reference, the level

density parameters are also indicated in Figure 8.3. The calculations indicate only

a moderate sensitivity to the level density parameter. As expected, higher

temperatures produce shorter emission times and, hence, more pronounced

correlations.

Particle emission rates depend largely upon the temperature of the
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compound nucleus. Yet, the initial temperature does not specify the decay

characteristics unambiguously, because different level density parameters

represent different heat capacities of the decaying nuclear system. Figure 8.4

shows the sensitivity of the calculated two-proton correlation functions to the level

density parameter for l 5 6 Ho compound nuclei of fixed initial temperature, T =

10 MeV. The predicted correlations are slightly more attenuated for larger level

density parameters, i.e. for increasing values of the heat capacity of the compound

nucleus. However, the sensitivity is not very pronounced; it is even less significant

at lower temperatures.

Since the predicted emission times depend strongly on the momenta of the

emitted particles, the differences between longitudinal and transverse correlation

functions can be expected to be momentum-dependent. Low energy particles may

be emitted on such long time-scales that sensitivity to anti-symmetrization effects

is lost. As emission time scales decrease for more energetic emissions, differences

between longitudinal and transverse correlation functions may become more

significant for particle pairs of higher total momenta. These qualitative

expectations are corroborated by the calculations shown in Figure 8.5. The solid

and dashed curves show longitudinal and transverse correlation functions

predicted for narrow gates on the total momentum, Pc.m.= 300, 400, 500 MeV/c, of

the particle pair with respect to the center-of-mass frame of reference (i.e. the rest

frame of the compound nucleus). Significant differences between longitudinal and

transverse correlation functions are predicted for large momenta, P=500 MeV/c

(top panel). These differences are reduced for smaller momenta, Pc.m.=400 MeV/c

(center panel). For even smaller momenta, Pc.m.=300 MeV/c, longitudinal and

transverse correlation functions differ only in the detailed shape of the minimum

at q=0 MeV/c (bottom panel) which is more pronounced for the longitudinal than

for the transverse correlation function.
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8.3 Angle-integrated Correlation Functions

12°Xe+Figure 8.6 shows two-proton correlations measured for the reaction

2 7A1 at E/A = 81 MeV (part a) and for the reaction ‘ 2 °Xe + ‘2 2Sn at E/A = 31

MeV (part b,c). The gates placed on the total momenta are indicated in the figure.

In Section 8.2, model calculations assuming evaporation from compound nuclei

have exhibited sensitivity to total momenta of the two-proton pair, the initial

temperature of the compund nucleus, and the level density parameters. The

shapes of two-proton correlation functions at q s 30 MeV/c are largely

determined by the average emission time scales. However, those calculations were

performed in the rest frame of the emitting source.

In order to compare the calculations to our data, we have transformed the

single-proton phase-space distributions from the source rest frame to the

laboratory frame. The calculations were folded with the resolution of the

experimental apparatus and averaged over the appropriate momentum bins using

the experimental proton yields as relative weights.

Since the inclusive cross sections are consistent with substantial

contributions from evaporative emission from excited projectile residues, we

calculate correlation functions for two extreme cases, (1) emission from a source at

rest in the compound nucleus rest frame and (ii) emission from a source at rest in

the projectile rest frame.

Firstly, we used the compound nucleus values for the mass, A, and charge,

Z, but treated the temperature as a free parameter to illustrate the sensitivity of the

calculated emission rates to the initial temperature of the emitting system. The

level density parameter is chosen to be a=A/16, corresponding to a Fermi gas of

density of 0.145 fm-3. In Figure 8.6, the curves represent calculations for three

initial temperatures. Good agreement between calculations and data is obtained

for initial temperatures of about 7—10 MeV. For complete fusion of ‘ 1 ° Xe + 2 7 Al

and ‘ 2 °Xe + ‘ 2 2Sn, initial temperatures of 8.2 and 10.3 MeV, respectively,
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are calculated if one assumes the level density of an ideal Fermi gas of normal

nuclear matter density; the more common relation, T2=(8 MeV)0E‘/A, gives values

of 5.8 and 7.3 MeV. However, the equilibrated emitting systems should have

temperatures which are somewhat lower than those calculated for compound

nuclei formed in complete fusion reactions [Poch 87, Wada 89, Jian 89, Xu 89] since

some energy is carried away by pre-equilibrium emission.

In the second case, we choose the equilibrated projectile to be the proton

emitting source moving at the initial beam velocity. We used the projectile values

for the mass, A, and charge, 2, and treated the temperature as a free parameter.

In Figure 8.7, we compare our data with calculations at T=5,10,15 MeV. For

projectile decays, the lower momentum bin, P=540~660 MeV/c, largely

corresponds to subbarrier emission. Therefore, we only present calculations for

the higher momentum bin, P=660-750 MeV/c. Reasonable agreement with the

data is obtained for temperatures of about 10-15 MeV.

Fits to the correlation functions require higher temperatures when one

assumes emission from projectile-like sources rather than emission from fusion-

like sources. This is related to the fact that average emission times become shorter

for increasing temperature and for increasing emission energy with respect to the

rest frame of the decaying nucleus [Frie 83]. In our detection geometry and for our

laboratory-momentum gates, the emitted particles have lower kinetic energies in

the projectile rest frame than in the compound nucleus rest frame. For fixed

temperature, the correlations are therefore attenuated if one assumes emission

from the rest frame of the projectile as compared to emission from the rest frame

of the compound nucleus. To reproduce the experimental correlation function, one

must choose a higher temperature for the projectile-like source than for the fusion-

like source.

Temperatures which provide the best description of the experimental
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correlation functions (see Figures 8.6 and 8.7) may be unrealistically high.

However, it may also be unrealistic to assume pure equilibrium emission. Some

contributions from pre-equilibrium emission would decrease the average lifetime

of the emitting system and produce stronger correlations. Within the present

equilibrium model, stronger correlations can be produced by raising the

temperature of the source (see Figure 8.2). Clearly, some quantitative uncertainties

about the exact nature of the emitting system remain. In order to have a better

understanding of those uncertainties, it is desirable to employ a more

sophisticated statistical model of compound nucleus. However, the qualitative

interpretation of the measured two-proton correlation functions as predominantly

caused by slow evaporative emission is not affected by our incomplete knowledge

of the mass, temperature, and velocity of the decaying nucleus or by small

contributions from pre-equilibrium emission processes.

8.4 Longitudinal v.s. Transverse Correlation Functions

We have explored the dependence of the two-particle correlation function on

the angle)? = cos.1 ( I; Oq/Pq ) , between the relative and total momentum vectors of

the proton pairs to search for clues on the source lifetime and shape [Koon 77, Prat

87, Awes 88, Ardo 89]. As was illustrated in Figure 1.2 and discussed in References

[Prat 87, Awes 88, Bert 89, Gong 91a], emission from a long-lived system produces

phase-space distributions elongated in the longitudinal direction. Because of the

reduced Pauli anti-correlation in this direction, the longitudinal correlation

function (‘on ° or 180 °) of a long-lived source may be enhanced compared to the

transverse correlation function (‘I’z90°), unless the average particle separations

become so large that sensitivity to anti-symmetrization effects is lost.

Figure 8.8 shows longitudinal and transverse two-proton correlation

129

functions measured for the reactions ‘ 2 ° Xe + 2 7 A1 (top panel) and the Xe +

122

Sn (bottom panel). The longitudinal correlation functions, shown by solid

points, were evaluated for the gate lcos‘I’ I20.77 (corresponding to the
l
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angular cuts of ‘I‘ =0°-40° or 140°-180° ). The transverse correlation functions,
I.

shown by open points, were evaluated for the gate lcos‘I’tl 50.5 (corresponding to

the angular cut-20f ‘I’t=60°-120°). For improved statistical accuracy, the gates on

the total momenta of the proton pairs were made wider than in Figure 8.6; the

values are indicated in the figure. No statistically significant difference between

longitudinal and transverse correlation functions is visible. However, this result

does not contradict theoretical expectations for evaporation from long-lived

compound nuclei. The solid and dotted curves in Figure 8.8 show longitudinal

and transverse correlation functions calculated for evaporative emission using the

parameters indicated in the figure. The calculations were averaged over the

appropriate momentum bins and folded with the resolution of the experimental

apparatus. The predicted differences between transverse and longitudinal

correlation functions are of the order of a few percent and, therefore, below the

statistical sensitivity of the present experiment.

It was shown in Figure 8.5 that differences in the shapes of longitudinal and

transverse correlation functions exhibit a strong dependence on the total momenta

of the proton pairs. For emission from equilibrated ‘ ° 2 Ho compound nuclei,

significant differences between longitudinal and transverse correlation functions

are mainly predicted for large momenta, but not for small momenta

corresponding to emission close to the barrier. Since evaporative cross sections

decrease exponentially as a function of increasing kinetic energy of the emitted

particles, integrals over wide momentum gates have predominant contributions

from lower momenta for which the differences between longitudinal and

transverse correlation functions are predicted to be small and difficult to detect.

Unfortunately, the statistical accuracy of our experiment was insufficient for a

more detailed exploration of longitudinal and transverse correlation functions at

higher total momenta of the emitted proton pairs.



CHAPTER 9. TWO-PROTON CORRELATION FOR

NON-EQUILIBRIUM EMISSION

For intermediate energy nucleus-nucleus collisions, particle emission already

sets in at the early, non-equilibrated stages of the reaction for which purely

statistical treatments are clearly inappropriate. These early stages of the reaction

can be treated in terms of semi-classical models based upon the Boltzmann-

Uehling-Uhlenbeck equation [Bert 84, Bert 88] which describes the space-time

evolution of the one-body phase-space distribution function. The theory

incorporates mean-field effects, nucleon-nucleon collisions, and the Pauli-

exclusion principle in the semiclassical approximation; Coulomb effects are

included. Within the Wigner-function formalism, knowledge of the one-body

phase-space distribution function is sufficient for the characterization of the size

and lifetime of the reaction zone formed in the nuclear collision and for the

calculation of the two-proton correlation function at small relative momenta.

9.1 BUU Transport Equation for Collision Dynamics

In this section, we briefly review the derivation of the BUU transport

equation which provides the basis for microscopic calculations for nonequilibrium

particle emission in intermediate energy nucleus-nucleus collisions. We start with

the Schriidinger equation of the N-particle system,

i 8 t‘I’ = HP. (9.1)

Here, H is the N-particle Hamiltonian and ‘I’ is the N-particle wave-function.
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From ‘I’, one constructs the N-particle density,

=W , (9.2)

which leads to the von—Neumann equation of motion:

(N) (N)
iatp =[H,p 1. (9.3)

We introduce the reduced density matrices via

p(n)(r1r1;) I? F), )=

n n

3 3 3 (N) -) -> .—)’ -—)'

(N—n)!_ld3rn+1...d rNd (“find r’Np (r 1,...,r N,r 1,...,r N). (9,4)

Inserting Equation (9.4) into Equation (9.3), leads to the Bogoliubov-Born-Green-

Kirkwood-Yvon (BBGKY) hierarchy of the reduced density matrices. This

hierarchy links the time derivative of p (n) to p (n+1). The lowest two member’s of the

BBGKY hierarchy are:

13 p(l)(r1,r_21)= @5072 -Vf,>p(2)(? :7 1

1 1

+ld r (v(r r2)-v(r1r2))p ( 1, 2; ’1, 2) (9.5)

and

. (2)-”>554, _ L2 V2 2(21-»->,->,—>,

222:” (21”2’21”22"2m {2 ( 1'.-V1') ('1’22’21'22)
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(2)—1-1—1—9

If 1'

-§ -I (—)I 4’) ( . ’ I)

+ (v(r1,r2)-vr1,r2 )p 1, 2,r 1, 2

2 Id3 (44%(4’4) (3)(—) —) —) —1’—),->) (96)

+1-1 r3(vri,r3 vri,r3 )p r1,r2,r3,r1,r2,r3 . .

A closed solution of the equations of this hierarchy is only possible, if one

truncates at a level n and with it neglects (n+1)-body correlations. Truncating at

(2)
n=1, neglecting two-body correlations, and approximating p as an

antisymmetrized product of one-body densities, one obtains the TDHF equations:

iatpU) = 111.9(2)] , (9.7)

where h is the single particle Hamiltonian,

-')—I V? + 5361;”)! d3r2p(2’(?;?2)v(?,?2)

- pm(?,?')v(?,?') . (9.8)

Performing a Wigner-transformation gives the Vlasov equation:

.9

-)-> 2 . —)-) - -> . —>-) =

atf(p,r,t)+m Vrf(p,r,t) 6:06) ‘V’Pf(p,r,t) 0. (9.9)

In Equation (9.9), U(:) is the mean field or Hartree potential,
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—) 3 -> -) -+ —)

U(r ) = I d r2v(r ,r 2>90 .r 2), (9.10)

and {(3521) is the Wigner-transform of the single-particle density matrix,

(12(12- ip 0s

N
l
m
l

_)

I'

N
l
m
l

((3511) = I d36 p + )e (9.11)
I

In the derivation of Equation (9.9), the semiclassical approximation has been used.

This approximation is valid since typical wavelengths (232.5 fm for p=500

MeV/c) are shorter than the size of the regions with the mean field (typically of

the order of 8 fm diameter). The TDHF and Vlasov approximations to the many-

body problem are pure one-body theories in mean field approximation in which

all multi-particle correlations are neglected.

A truncation of the BBGKY hierarchy which includes two-body correlations,

but neglects three- and higher-particle correlations leads to the Boltzmann-

Uehling-Uhlenbeck (BUU) equation:

—) -) E . -) —) - —-) . —) —-> _

atap; ,t) +m V’rflp; ,t) Vruu) Vpap; ,t) _

 

1 3,33,_122,2 -)-+,,—>_(1(_5

3 2 2d qld qzd (1222(2115p +q2‘11 "122)) 53(92212ql'q2)do
21: m

A—p —) A—) —) "-—)—) A—9 —)

x{f (q’1,r ,t)f (q’2,r ,t) (1-f (p,r ,t)) (1-f (q2,r ,t))

A_, A_,

-f(p,r,qt)f(q2,r,t)(1-f(q’1,r,t))(1-f(q’2,rt,))} (9.12)
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A

In Equation (9.12), f (3,31) is the phase-space density averaged over one phase-space

cell. The left-hand side of the equation is the Vlasov term describing the temporal

change of the one-body Wigner-function, ((1323:), due to the interaction of the

nucleons with the mean field. The right-hand side is the collision integral which

represents the effects of the correlations due to two-body collisions on the one-

body Wigner-function. Equation (9.12) was first obtained by Nordheirn [Nord 28]

as a quantum mechanical extension of the Boltzmann equation which incorporates

Ferrnion statistics.

Equation (9.12) is solved by using the pseudo-particle method [Wong 82]. In

this method one compares the left-hand side of the equation to the complete

-) ->

differential of f(p,r ,t):

a

-) —)

d— -) —) _ -) -> dr . -> —-) d . -) —)

map; ,t) -—afif(p,r ,1) +—dt v’rap; ,t) + _de v’pf(p,r ,t). (9.13)

From Equations (9.12) and (9.13), one obtains a set of six coupled first-order

equations for every occupied phase-space point:

d'i P i
a? = "11"“, (9.14)

dpi -) a ->

(it =Ii(p)- atom. (9.15)

l

_,

Here, Ii(p) is the change in momentum pi due to nucleon-nucleon collisions

(i=1,2,3). The differential equations can be interpreted as the classical Hamiltonian
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equations of motion for a pseudo-particle. Since the total occupied phase space is

proportional to the number of nucleons, it is convenient to specify the total

number of phase space points per nucleon as a measure for the numerical

precision with which Equation (9.12) is solved. In the present calculations, we

have used up to 700 pseudo-particles per nucleon, resulting in a total of up to

172,200 coupled first-order differential equations which were solved

simultaneously. The average phase-space occupancies used to determine the

effects of the Pauli principle in the collision integral were determined from the

coordinates and momenta of the pseudo-particles. The cell size for averaging was

1 3
chosen to be 4(h/21t) .

We solve the BUU equation by numerical methods which are similar to the

ones introduced by Reference [Bert 84], see also Reference [Bert 88]. The major

new numerical technique used in our present calculations is the treatment of the

Pauli exclusion principle. By explicitly storing ?(352,1) on a six-dimensional lattice in

every time-step, we were able to greatly speed up the computer program without

relaxing the accuracy of the treatment of the Pauli-exclusion principle [Baue 90].

It seems at first sight surprising that it could be used to calculate two-particle

correlation functions since BUU is basically a theory describing the time evolution

of the one-body phase-space distribution function. However, within the Wigner-

function formalism outlined in Chapter 6, the knowledge of the one-body phase-

space distribution function is sufficient for the calculation of the two-proton

correlation function at small relative momenta and the characterization of the size

and lifetime of the reaction zone formed in the nuclear collision.

Correlations between coincident particles do not only arise from quantum

statistics and/or final state interactions, but also from a number of dynamical and

kinematical effects. Previously, it was shown [Knol 80, Lync 82, Lync 83, Tsan 84a,

Tsan 84b, Chit 86a, Baue 87, Baue 88, Tsan 90, Ardo 90] that the main features of
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two-proton coincidences at large angles are explained by the effects due to total

momentum conservation, finite particle number, and/or collective motion in the

reaction plane 2without requiring the detailed information about two-particle

correlations. For example, the detection of a single particle will shift the total

momentum of all remaining particles; for small systems this effect can lead to

significant correlations at large relative momenta. If the single-particle distribution

is azimuthally anisotropic, the detection of one particle can filter out a non-

isotropic distribution of reaction-plane orientations [Tsan 84a, Tsan 84b, Chit 86a,

Tsan 90, Wils 90, Ardo 90] causing non-isotropic azimuthal correlation functions.

In the next Section, we will explain in detail the procedure for averaging over

impact parameters and point out the approximations used for calculating two-

proton correlation functions at small relative momenta.

9.2 Impact Parameter Averaging

For semi-classical reaction models, the impact-parameter averaged

correlation function, consistent with Equation (7.1), can be written in the form:

{

_,_, _, jbdbd¢{fl( b. 0. £34412) m b, (1)/:12)- Ef)cf( b, 6,3,an

C(P,q)=N(P) r 1-+ _9 [ qu . (9.16)

debd¢{l'l(b, (p EP+q) }debd¢{11(b,¢, EP-q)}

 

Here, b denotes the impact parameter; 0 denotes the azimuthal orientation of the

reaction plane; 1109,03) is the probability of emitting a particle with momentum f;

for events characterized by b and 0; Cf(b,¢,P2,q2) is the correlation function due to

final state interactions and/or quantum statistics for given b and It); N(P) is a

suitably chosen normalization constant which makes the normalization at large

relative momenta consistent with the experimental data. We can write this

expression in the form:
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erdbd¢{II( b”02P+q)l'I(b,0‘P-q)Cf (b ,0P,,q)}

C(P,q)=N(P)Cf(P,q)°Cd(P,q){ {

debd¢{rl(b,¢, EP)II(b,¢i:'P)Cf( b.¢.P.q>}

 

 

 

Jfbdbd¢{l'l(b,¢,2lI-’2)l'l(b,‘lh 1132)}

debd¢{l'l( b,0,:P+q)l'l(b, (I), ‘P-q)}

with

f 19 1.» f -+ -+
{_H debd¢{l1(b, ¢.2P)Il(b,¢, 2P) C (b. 9.29)}

C (P,q) = r fi , (9.18)

debd¢{I'I(b. 0, if“ b. 0, 2:13)}

 

 

cd(1‘3’,c'f)= { 1—9 A f 1_)_) (9.19)

debd¢{l'l( b, 0,2P+q) }debd¢{l‘l(b, q), EP-q)}

Here, C263) is the correlation function due to final state interactions and/or

quantum statistics, renormalized to unity for large relative momenta for which

Cf(b,¢,P-2,q2) = 1, and Cd(P£12) is the "dynamical correlation function" which describes

correlations caused by averaging over b and 0.

In Equation (9.17), the terms in curly brackets can be neglected to a good

approximation. (If the correlation function Cf(b,¢,P2,q2) is independent of b and 0,

the terms in the curly brackets cancel exactly.) For two-proton correlation

functions, the correlation function Cf(b,¢,P2,q2) is non-trivial only for small relative

momenta, q530 MeV/c, for which one may approximate l'Iz(b,¢,P2/2) z

I'I(b, 0,1;/2+3) 0 l'I(b, ¢,P/2-3). This approximationreduces the two factors in the curly

brackets to unity. At larger relative momenta, Cf(b,¢,P2,q2) z 1 and the denominators

and enumerators of the two terms in the curly brackets cancel cross-wise. It

should, therefore, be reasonable to use the approximation:
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c0323) =N(f>’)-cf(13’,fi’)-cd(13’,3). (9.20)

With Equation (9.20), one can incorporate dynamical correlations in a fairly

straightforward fashion. (Note, however, that other physical processes, not

considered in our calculations, may also affect the correlations at small total

momenta, e.g. distortions in the Coulomb field of the heavy reaction residue or

feeding from the decay of particle unbound states.)

In our measurements, distortions due to dynamical correlations may be

present in some of the correlation functions extracted for low total momenta. For

example, there is evidence for shape distortions in the correlation function for the

2 ‘N + 2 ° 2 Au reaction at small total momenta, see Figure 7.4. More significant

are the difficulties encountered in the normalization of transverse and

longitudinal correlation functions for the 2 ‘N-induced reactions at low total

momenta discussed below (see Figures 9.8 and 9.9). However, the present BUU

calculations do not provide an accurate description of the cross sections for such

low-energy emissions, see Figure 5.4. Furthermore, dynamical correlations test

different aspects of the model than correlations due to final state interactions.

Therefore, we have decided to neglect them in our calculations and used Equation

(9.18) for the calculation of the impact parameter averaged correlation functions.

For comparisons with experimental data, the calculated correlation functions were

renormalized at larger relative momenta, q z 60 - 100 MeV/c, to make them

consistent with the normalization conventions adopted in our data analysis.

9.3 Predicted Two-proton Correlation Functions

In our standard BUU calculations, we used a stiff equation of state and

energy-dependent free nucleon-nucleon cross sections. (For the present reactions,

the calculations exhibit little sensitivity to the stiffness of the equation of state.)

For the reactions l‘N + 2 2Al and HN + 2° 2Au, the correlation

functions were calculated from the phase-space points obtained from a total
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of 5250 and 4500 computational events, respectively, with impact parameters

distributed according to their geometrical weights.

The Wigner functions of emitted particles were constructed from nucleons

emitted during a time interval of Ate=140 fm/c following initial contact of the

colliding nuclei; the time t> was taken at the end of the time interval Ate. Nucleons

were considered as emitted when, during this time interval, the surrounding

density fell below pe = p o /8 and when subsequent interaction with the mean field

did not cause recapture into regions of higher density. This test for recapture was

continued over a time interval of At = 180 fm/c after contact. The finite size of our

lattice did not allow us to explore much larger emission times. However, the

consideration of much larger emission times would not necessarily lead to more

reliable results since, in our present approximation, the nuclei are not stable over

long time scales and the BUU calculations become inaccurate due to spurious

decays.

In our calculations of the correlation functions, appropriate averages over

impact parameter, orientation of the reaction plane, and the indicated gates on the

total momentum and the angle, ‘1’, between the relative and total momentum of

the two protons were taken into account.

While our particular choice of the parameters Ate and pe is reasonable, it

involves a certain degree of arbitrariness. The sensitivity of the calculations to

different choices of the emission time interval, Ate’ and the freeze-out density, pe,

is illustrated in Figure 9.1. Larger emission time intervals reduce the height of the

maximum of the correlation function at q ... 20 MeV/c due to an increase of the

average emission time. On the other hand, smaller freeze-out densities lead to a

slight increase in the height of the maximum of the correlation function. This can

be understood as follows: lower emission densities select subsets of particles
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Figure 9.1 : Dependence of correlation functions predicted by BUU calculations

on the emission time intervals, At , and the emission densities, p . The values of

individual parameter choices andeselected total momenta of the proton pairs are

given in the figure. In these calculations, the in-medium cross section was

approximated by the experimental free nucleon-nucleon cross section, and the stiff
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considered as emitted for higher freeze-out densities by eliminating late emissions

(i.e. particles which have not yet reached the lower densities) and thus selecting

particles which had left the higher density regime at earlier times. The

corresponding reduction of the average temporal separation between emitted

particles leads to enhanced correlations. Typically, different reasonable choices of

Ate and pe introduce uncertainties of the order of 5-10% into the magnitude of the

predicted correlation functions. However, in some instances these uncertainties

can be larger.

9.4 Dependence on Total Momentum

Two-proton correlation functions measured for the 2 2N + 2 2 Al and 2 ‘N +

2 2 2Au reactions at E/A = 75 MeV are compared in Figures 9.2 and 9.4 to

calculations using density distributions predicted by the BUU equation. We made

cuts on the total laboratory momenta, P, and no selection on the angle, ‘1’, between

the total and relative momentum vectors for the emitted proton pairs. By means of

extracting Gaussian radius parameters, ro (P), we present a more detailed

comparison between measured and calculated two-proton correlation functions

for 2 2 N + 2 2 A1 at E/A = 75 MeV in Figure 9.3. The errors represent estimates of

accuracy in extracting the radius parameters from correlation functions.

Overall, two-proton correlation functions predicted by the BUU theory (solid

curves in Figures 9.2 and 9.4, open points in Figure 9.3) are in rather good

agreement with the measured correlation functions (points in Figures 9.2 and 9.4,

solid points in Figure 9.3). It is particularly gratifying that the calculations can

qualitatively reproduce the observed strong dependence of the correlation

functions on the total momentum of the emitted proton pairs. For the low-

momentum gate of the 2 4N + 2 ° 2 Au reaction, the maximum of the calculated

correlation function is larger than that of the experimental correlation function,
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Figure 9.2 : Two-proton correlation functions, measured for the reaction

2 ‘N-I- 2 7A1 at E/A=75 MeV, are compared with correlation functions predicted

with the BUU theory. The gates placed on the total momenta, P, of the coincident

proton pair are indicated.
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Figure 9.3 : Radius parameters r o (P) for Gaussian sources of negligible lifetime

extracted from two-proton correlation functions gated by different total momenta

P. Solid and open circles represent experimental and theoretical correlation

functions, respectively.
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2 2 N+ 2 2 2 Au at E/A=75 MeV, are compared with correlation functions predicted

with the BUU theory. The gates placed on the total momenta, P, of the coincident

proton pair are indicated.
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see Figure 9.4. This discrepancy is not surprising since the emission of low-energy

protons is expected to have significant contributions from slow evaporative

processes which are not incorporated into our calculations. In fact, the existence of

a strong evaporative component in the low-energy portion of the proton spectrum

for the 2 2 N + 2 2 2 Au reaction was already inferred from the shape of the

minimum of the correlation function at qg15 MeV/c (see Figure 7.4) as well as from

the shape of the single proton spectra (see Section 5.2). The inclusion of

evaporative processes would lead to more extended Wigner functions and, hence,

to more attenuated correlation functions.

A close comparison of Figures 7.3 and 7.4 with Figures 9.2 and 9.4 reveals

that correlations functions calculated from the BUU theory provide an improved

description of the shape of the experimental correlation functions in the region of

q=30-40 MeV/c as compared to those calculated for spherical Gaussian sources.

Figure 9.5 compares the detailed shapes of two-proton correlation functions

predicted for different space-time geometries. The solid points show correlation

functions predicted from the BUU equation, averaged over the indicated range of

total momenta, P, of the proton pairs. These calculations are in excellent

agreement with data (see figure 9.2). The solid curve shows results obtained for

instantaneous emission from a Gaussian source, Equation (7.1), with radius

parameter r 0 =45 fm. The two-proton correlation function calculated for the

Gaussian source, exhibits a narrower maximum than that calculated for the more

realistic density distribution obtained by means of the BUU equation. This

difference in shape can be attributed to the fact that sources predicted by the BUU

equation are non-spherical. To illustrate the sensitivity of the shape of two-proton

correlation functions to the source geometry, we show the correlation function

predicted for emission from a source consisting of two sharp spheres of negligible

lifetime. Both spheres were assumed to have radii of RS = 5 fin, and the centers
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Figure 9.5 : Comparison of two-proton correlation functions predicted for

different source geometries: the solid points represent the results of BUU

calculations averaged over the momentum range P=450-780 MeV/c. The curves
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obtained, respectively, for a spherical Gaussian source of radius parameter, r 0 =4.5
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. s
by the d15tance, d=20 fm.
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Figure 9.6 : Nucleon density distributions in the reaction plane calculated from

the BUU equation for 2 2N+ 2 2 Al collisions at E/A=75 MeV and for an impact

parameter of b=2 fm. Different panels depict the distributions at different times, t.
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Figure 9.7 : Spatial distributions of emitted nucleons in the reaction plane

calculated from the BUU equation for 2 2 N+ 2 2 Al collisions at E/A=75 MeV and

for an impact parameter of b=2 fm. Different panels depict the distributions at

different times, t.
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of the two spheres were assumed to be separated by a distance of d=20 fm and

aligned along the beam direction. The correlation function for this two-source

distribution is depicted by the dashed curve in Figure 9.5; it has a wider maximum

than the single Gaussian source distribution and is rather similar in shape to that

predicted from the BUU calculations. (Remember: two—proton correlation

functions obtained for single spherical sources of sharp sphere and Gaussian

density profiles are virtually indistinguishable in shape; see also the discussion of

Figures 6.3 and 6.4.)

Figures 9.6 and 9.7 depict the space-time evolution of the collision process as

predicted by the BUU equation. Figure 9.6 shows the time evolution of the

nucleon density in the reaction plane for a 2 2 N + 2 2 Al collision at E/A=75 MeV

and an impact parameter of 2 fm. Different panels of the figure represent

snapshots taken at the indicated times after contact of the colliding nuclei. The

calculations predict that the two colliding nuclei essentially survive the collision

and separate into two hot nuclear objects which may then decay on longer time

scales for which BUU calculations cannot make accurate predictions. More

relevant for the calculations of two-proton correlation functions is the density

distribution of the emitted nucleons in the reaction plane, shown in Figure 9.7 for

selected times after the initial contact of the colliding partners. The distribution of

emitted nucleons clearly undergoes an evolution from a near-spherical source at

early times to a two-source distribution at larger times. This two-source

distribution at larger times may explain the similarity of the correlation functions

obtained for a two-sphere distribution with that predicted by the BUU

calculations.

9.5 Longitudinal vs. Transverse Correlation Functions

To explore the shape of the emission sources in 2 2 N induced reactions, we

have compared longitudinal and transverse correlation functions following similar

discussions in Section 8.4. Figures 9.8 and 9.9 show longitudinal and transverse
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correlation functions measured for the 2 2N + 2 2Al and 2 2N + 2 2 2Au

reactions at E/A = 75 MeV, respectively. As before, ‘I’ = cos-1(P2-q2/Pq),

longitudinal (solid points) and transverse (open points) correlation functions were

evaluated for the gates Icos‘I’ l 20.77 and lcos‘I’tl s 0.5, respectively. The upper

and lower panels of the figure: show data for different gates on the total momenta

of the emitted particle pairs, P=270~420 MeV/c and P: 420-780 MeV/c for the

‘ 2N + 2 ’ Al reaction, and F: 270450 MeV/c and P= 450-760 MeV/c for the

2 2 N + 2 2 2 Au reaction. For each gate, left and right hand panels show results

obtained with different normalization conventions. The right hand panels depict

longitudinal and transverse correlation functions normalized with a single

normalization constant, C1 which was determined, for each gate on P, by
2!

normalizing the angle integrated correlation function, RO(q), by the condition,

erq R0(q) = 0 , (9.21)

Aq

where Aq = 60-100 MeV/c. With this normalization, longitudinal and transverse

correlation functions gated by low total momenta (P=270-420 and 270-450 MeV/c,

top right-hand panels of Figures 9.8 and 9.9) attain distinctly different values for

larger relative momenta, qz40 MeV/c. For higher total momenta (P=420-780 and

450-780 MeV/c, bottom right-hand panels of Figures 9.8 and 9.9) differences at

large relative momenta are less significant.

At small relative momenta, residual dynamical correlations are expected to

be small and the use of a single normalization constant should be justified. With

this presumption, we do not find statistically significant differences between

longitudinal and transverse correlation functions at small relative momenta, qg30

MeV/c. This experimental result is in agreement with that of Reference [Awes 88]
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Figure 9.8 : Longitudinal (‘I’=0°-40° or ‘I’=140°-180°) and transverse (‘I’=60°-

120°) two-proton correlation functions measured for the 2 2N+ 2 2 Al reaction at

E/A=75 MeV. In the left hand panels, longitudinal and transverse correlation

functions were normalized independently; in the right hand panels, the

normalizations were determined from the ‘P—integrated data.
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Figure 9.9 : Longitudinal (‘I’=0°-40° or ‘I’=140°-180°) and transverse (‘I‘=60°-

120 °) two-proton correlation functions measured for the 2 2 N+ 2 2 2 Au reaction at

E/A=75 MeV. In the left hand panels, longitudinal and transverse correlation

functions were normalized independently; in the right hand panels, the

normalizations were determined from the lP-integrated data.
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for which the same (angle independent) normalization convention had been

adopted.

We have checked by Monte-Carlo calculations that the different asymptotic

values assumed by longitudinal and transverse correlation functions are not due

to trivial effects of detector acceptance or resolution. These differences cannot be

understood in terms of the present model for intensity interferometry. They might,

however, be related to dynamical correlations caused by impact parameter

averaging effects when the single-particle distributions exhibit significant

azimuthal asymmetries. It is possible that some dynamical correlations are caused

by impact-parameter averaging (see Section 9.2). However, we feel that the

present BUU calculations may not model such effects to a sufficient degree of

accuracy since the theory does not reproduce the low-energy portion of the energy

spectrum (see Figure 5.4). One should, therefore, not expect to reproduce

dynamical correlations at the required level of accuracy of a few percent.

The left hand panels in Figures 9.8 and 9.9 show longitudinal and transverse

correlation functions normalized independently over the relative-momentum

interval, Aq = 60-100 MeV/c, by separately enforcing the conditions,

(
J dq RL T(q) = 0 , (9.22)

Aq '

for the longitudinal and transverse correlation functions RL(q) and Rr(q). With this

renormalization, the longitudinal correlation functions gated by the low total

momentum cuts (P = 270-420 and 270-450 MeV/c, top left-hand panels of Figures

9.8 and 9.9) exhibit larger maxima than the transverse correlation functions,

qualitatively consistent with an elongated source or a source of finite lifetime. For

the 2 2 N + 2 2 Al reaction, this difference disappears for higher total momenta (P =

420-780 MeV/c, bottom left-hand panel of Figure 9.8). For the 2 2N + 2 2 2Au

reaction, the transverse correlation functiOn for the higher momentum gate (P =
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450-780 MeV/c, bottom left-hand panel of Figure 9.9) exhibits a larger maximum

than the longitudinal correlation function, consistent with an oblate source.

We should caution, that independent normalizations of longitudinal and

transverse correlation functions cannot be justified a priori. Therefore, the

correlation functions shown in the left hand panels of Figures 9.8 and 9.9 should

not be misconstrued as experimental evidence for deformed source shapes. The

different normalizations adopted for the construction of the correlation functions

shown in the right and left hand panels of the two figures are only used to

illustrate the uncertainties within which differences and similarities between

longitudinal and transverse correlations are established experimentally.

Figure 9.10 shows theoretical predictions for longitudinal and transverse

correlation functions for the 2 2N + 2 2Al and 2 2N + 2 2 2Au reactions. These

calculations employed the same cuts on P and ‘I’ which were used in the data

analysis. Differences predicted for longitudinal and transverse correlation

functions are small. They are of the order of the statistical uncertainty of our

measurements, but considerably smaller than the systematic normalization

uncertainties illustrated in Figures 9.8 and 9.9.

In order to present the detailed sensitivities to various cuts on .P and ‘I’,

Figure 9.11 shows longitudinal and transverse correlation functions predicted by

BUU calculations . We have adopted the angular cuts, ‘1’ = 0 ° -40 ° and ‘I’t = 60 °-
1

90°, for the calculation of longitudinal and transverse correlation functions,

respectively. For the transverse correlation functions, we define the in-plane and

out-of-plane directions by constraints on the azimuthal angle, 0, of the relative

momentum vector, £12, in a coordinate system with z-axis parallel to the total

momentum vector, P, of the proton pair. Defining ¢=0° as the plane spanned
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120°) two-proton correlation functions predicted by BUU calculations. The left
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by the beam direction and lg, the in-plane transverse correlation function

corresponds to the cut |¢-n1c| 530° (n=0,1,2); the out-of-plane transverse

correlation function corresponds to the cut I ¢-(2n+1)1r/2| 530° (n=0,1). Different

panels of the figure show the results for the indicated cuts on the total momenta of

the proton pairs. In general, the out-of-plane transverse correlation functions are

smaller than the in-plane transverse correlation functions since they are less

affected by finite lifetime effects and collective velocity components. At low

momenta, the longitudinal correlation function is more pronounced than the

transverse correlation functions, possibly due to slow emission times; at higher

momenta, longitudinal and in-plane transverse correlation functions are

comparable in magnitude.

Overall, correlation functions are insensitive to various cuts on angles.

Without an accurate understanding of the distortions caused by dynamical

correlations it appears futile to extract information on the shape of the phase -

space distributions of emitted protons from differences between longitudinal and

transverse correlation functions.

9.6 Dependence on the Nuclear Equation of State and in-Medium

Nucleon-Nucleon Cross Section

The two major ingredients entering into Equation (9.12) are the mean field

potential, U(?), and the nucleon-nucleon cross section, dO/dfl. In principle, one

should be able to derive both from a fundamental nucleon-nucleon interaction, as

has been done in some G-matrix calculations. In this paper, however, we proceed

differently and use the conventional density-dependent Skyrme-type

parametrization,

U(p) =A(p/p .) +B(p/p L)“, (9.23)
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where the parameters A and B are determined by the nuclear matter binding

energy and the saturation density of nuclear matter at p=p o (0.17fm.3). A choice of

0:2 results in A=-124 MeV and B=70.5 MeV and a nuclear compressibility of K =

380 MeV. This set of parameters is referred to as the "stiff" equation of state. The

"soft" equation of state, with K=200 MeV, corresponds to the parameter set,

o=7/6, A=-356 MeV, and B=303 MeV. The simple parametrization, Equation

(9.23), is only chosen to investigate the possible sensitivity of our calculations to

the value of the nuclear compressibility.

We approximate the in—medium nucleon-nucleon cross section, d0/d9, by

the energy-dependent free nucleon-nucleon cross section, doNN/dfl, parametrized

from experimental data. Since the exact value of the in-medium nucleon- nucleon

cross section has attracted some recent attention, we also vary this input by

multiplying the experimental d N/d£2 by different factors ranging from 0 to 1.o

For our numerical examplefjve calculate two-proton correlation functions for

protons emitted at the laboratory angles Blah-:25 ° 19° for ‘ ‘ N + 2 7 Al collisions

at E/A = 75 MeV. Unless stated differently, we will use the stiff equation of state

and in-medium cross sections equal to the experimental free nucleon-nucleon

cross sections.

Figure 9.12 shows correlation functions calculated from the Wigner functions

predicted by the BUU equation using various assumptions on the in-medium

nucleon-nucleon cross section and the stiffness of the equation of state. Individual

panels of the figure show correlation functions calculated for different values of

the total laboratory momenta, P, of the proton pairs.

The solid and dotted curves show correlation functions predicted for the stiff

and soft equations of state, using do/dfl = dO'NN/dfl. These two calculations are

very similar, indicating little sensitivity of the two-proton correlation functions to

the stiffness of the equation of state. The lack of sensitivity of the present

calculations to the stiffness of the equation of state may be due to the small size of
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projectile and target and the relatively moderate bombarding energy. One can try

to explore it at higher energy for heavier system.

The solid, dashed, dot-dashed, and dot-dot-dashed curves represent

calculations with the stiff equation of state performed with the assumption that

the in—medium nucleon-nucleon cross-section is equal to 1.0, 0.8, 0.5, and 0.0 times

the free nucleon-nucleon cross section. For Pg700 MeV/c, the predicted correlation

functions become more pronounced for decreasing values of do/dfl indicating

that increased nucleon-nucleon sacttering leads to slower emission time scales and

the space-time characteristics of the emitting system is more sensitive to the

magnitude of the in-medium nucleon-nucleon cross section than to the stiffness of

the equation of state.

To see how strongly the sensitivity to in-medium nucleon-nucleon cross

section is constrainted by our measurement, we have compared data to

calculations assuming one-half of the free nucleon-nucleon cross sections (see

dotted curves in Figure 9.13) as the in-medium nucleon-nucleon cross sections. For

the low and intermediate momentum gates, the calculated correlation functions

exhibit enhanced maxima when the in-medium nucleon-nucleon cross sections are

reduced. For the high momentum gate, the sensitivity is lost. The agreement with

the data is significantly worse for the calculations using the reduced in-medium

nucleon-nucleon cross sections.

For the l ‘ N + ’ ° 7 Au reaction, dependences on the stiffness of the equation

of state and the magnitude of the in-medium nucleon-nucleon cross sections were

not explored because calculations for this heavier system would have required

large additional amounts of computer time.

Future work should also study the effects of a momentum-dependent mean

field [Gale 87, Aich 87, Welk 88, Grei 90]. Such effects are expected to be important

at higher beam energies (E/A=1 GeV). At these energies, it has been shown [Grei

90] that the effects of the momentum-dependence of the mean field on the
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collective nuclear matter flow can be approximated by a momentum-independent

mean field with a suitably changed compressibility. The same effect has been

found at intermediate beam energies (E/A = 50-150 MeV) where it was found that

the disappearance of nuclear collective flow could be reproduced by using a

momentum-dependent mean field with a compressibility of 210 MeV [Krof 89] or,

alternatively, a momentum-independent mean field with a slighly higher

compressibility of 240 MeV [Ogil 90]. The investigations of Reference [Ogil 90]

corroborate our present finding that fast particle emission in intermediate energy

nucleus-nucleus collisions (E/A a 50-150 MeV) depends sensitively on the

magnitude of the in-medium nucleon-nucleon cross sections, but only very little

on the nuclear compressibility.

9.7 Dependence on Impact Parameter

Details of the Wigner function must depend on the impact parameter of the

collision. The predicted dependence is illustrated in Figure 9.14; the various cuts

on the total momentum of the proton pairs are indicated for the individual panels

of the figure. In order to summarize the predicted trends, Figure 9.15 shows the

heights of the maxima of the calculated correlation functions as a function of P for

different ranges of impact parameters. For orientation, the equivalent Gaussian

source radii are labeled on the right side of the figure.

For small impact parameters, b=0.5-2.S fm, the predicted correlation

functions increase in magnitude as a function of increasing total momentum of the

emitted protons, consistent with shorter time scales for the emission of more

energetic protons.

For peripheral collisions, b=5-7 fm, the calculated correlation functions are

weakest for proton pairs with very high, P=800 MeV/c, or very low momenta,

P5300 MeV/c; they are largest at intermediate momenta, PzSOO MeV. This

correlation pattern may be understood in terms of emission from fairly well

defined projectile and target-like sources. Proton pairs of low and high momenta



192

usu-st-oss

 

BUU: 27AM14N,pp),E/A=75MeV,®av=25°

C -—-b=0 5—2.5 fm I L i

2.0 _'""""b=3 0-4-5 fm ':' I \\ P=5OOMeV/c -

.-—-b=5 o-7.o fm \ I

‘

I

j
-
L

0
‘
!

.
.
.
l
.
.

I

u

l

I O

1 .-

l:'

'5

'5

1:

l5

1
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correspond to low-energy emissions in the rest frames of target and projectile-like

sources, respectively. More energetic emissions from these sources are selected by

intermediate momenta. For these emissions the correlation functions are expected

to be enhanced because of the reduced size of the participant zone and/or because

of shorter emission time scales. However, nucleon-nucleon collisions appear to

play only a minor role since the the maximum of the correlation function at P=500

MeV/c remains when the in-medium nucleon-nucleon cross section is set to zero.

For intermediate impact parameters, bz3-4.5 fm, the predicted momentum

dependence is weak, most likely because of overlapping contributions from

participant and spectator regions.

For total momenta, Pg700 MeV/c, more pronounced correlations are

observed for peripheral than for central collisions - in accordance with a simple

geometric interpretation of the size of the reaction zone. However, for protons

emitted with velocities higher than the beam velocity, P> Zpbeam z 760 MeV/c, the

maxima of the predicted correlation functions are larger for central than for

peripheral collisions. Apparently, high energy protons from central collisions are

emitted on a very fast time scale. It may be speculated that such fast emission

processes are related to Fermi-jets [Bond 80], i.e. nucleons accelerated by the action

of the mean field and emitted without significant nucleon-nucleon collisions.

However, because of the semi-classical nucleonic momentum distribution used in

our calculations, the predicted correlations may not be reliable for the highest

momenta, P>1000 MeV/c, and should be viewed with caution. In any case, the

calculations clearly indicate that one should be able to extract a wealth of

information about the space-time evolution of the reaction zone by detailed

investigations of the momentum and impact parameter dependence of two-proton

correlation functions. Previous measurements of two-particle correlation functions

did not determine the simultaneous dependence on impact parameter and

momentum of the emitted particle pair and thus averaged over valuable
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information. New measurements capable of determining such dependences are

clearly desirable. The experimental effort to explore these effects is currently

getting under way.

In summary, the measurement of two-proton correlation functions have

provided a new sensitive observable to test the space-time geometries of nuclear

collisions. With the technique of two-proton intensity interferometry, one can

hope to gain more insight into nuclear reaction dynamics.

 



CHAPTER 10. SUNIMARY AND CONCLUSIONS

Heavy-ion collisions at intermediate energy provide an unique opportunity

to study the nuclear collision dynamics and thermodynamical properties of highly

excited nuclei. In this thesis, we have used the technique of two-proton intensity

interferometry to probe the space-time evolution of nuclear collisions.

Considerable efforts were made to develop CsI(Tl) detectors read out by PIN

diodes. The detector resolution is limited by local non-uniformities of the CsI(T1)

scintillator. After selecting CsI(Tl) scintillators of good uniformity based upon a y-

ray scanning technique, we built a 56 element multi-detector array using Si AE-

detectors and CsI(Tl) E-detectors. The detectors show high gain stability and good

energy resolution for the detection of light charged particles.

We have measured two-proton correlation functions for emission processes

governed by different emission time scales. Slow evaporative processes were

studied at E/A = 31 MeV for the near-symmetric reaction 1 2 ° Xe + l 1 2 Sn and

for the "inverse kinematics" reaction ‘ 2 °Xe + 2 7Al. Fast non-equilibrium

l

processes were investigated, in "forward kinematics", for ‘ N induced reactions

on 2 7Al and
19‘]

Au at E/A = 75 MeV. Two-proton correlation functions

measured for these qualitatively different reaction mechanisms exhibit significant

differences in shape. These differences are well understood in terms of the

different emission time scales governing equilibrium and non-equilibrium

processes.

196

   



197

We have used the Wigner-function formalism which allows the calculation

of two-proton correlation functions for any reaction model capable of predicting

the one-body phase-space distribution of the emitted particles. We demonstrated

the sensitivity of two-proton correlation functions to the space-time geometry of

the emitting system via calculations for schematic emission sources. Results

obtained with the Wigner-function formalism were compared with classical

trajectory calculations for long-lived evaporative sources.

Two-proton correlation functions measured for evaporative processes in

1 1 °Xe induced reactions at E/A = 31 MeV do not exhibit maxima at q =3 20

MeV/c, but only minima at q z 0 MeV/c. Particle emission from equilibrated

compound nuclei typically proceeds on such long time scales that anti-

symmetrization and nuclear interaction between the two emitted particles play a

relatively minor role. The correlation functions are dominated by final state

Coulomb interactions. The measured correlation functions can be rather well

understood by applying the Wigner-function formalism to one-body phase-space

distributions predicted by statistical model calculations based on the Weisskopf

formula. For these reactions, rather small emission rates lead to large spatial

separations between emitted particles and a loss of memory of the size of the

emitting nucleus. The predicted correlation functions exhibit only moderate

sensitivity to detailed properties of the decaying nucleus.

Two-proton correlation functions measured for non-equilibrium emission in

1 1 N induced reactions at E/A = 75 MeV exhibit pronounced maxima at relative

momenta q -- 20 MeV/c and minima at q z 0 MeV/c. The maximum at q z 20

MeV/c is caused by the attractive singlet S-wave interaction between the two

emitted protons. The minimum at qu MeV/c reflects the combined effects of the

Coulomb repulsion and the exclusion due to Pauli principle. For these reactions,

the emission time scales are sufficiently short that the final phase-space

distributions of the emitted particles are of nuclear or smaller dimensions. Once

 



198

emission times are of the order of a few hundred fm/c or less, anti-

symmetrization effects, nuclear and Coulomb interactions must all be

incorporated into the calculations. The measured correlation functions can be

rather well understood by applying the Wigner function formalism to one-body

phase-space distributions predicted by the Boltzmann-Uehling—Uhlenbeck

transport equation. It is particularly gratifying that the theory can reproduce the

observed strong dependence of the experimental correlation functions on the total

momentum of the coincident proton pairs.

For all cases investigated, longitudinal and transverse correlation functions

were found to be very similar. Our data could not provide definitive evidence for

elongated source shapes expected from simple lifetime arguments. The

experimental observations are, however, consistent with more detailed

calculations for which the predicted differences between longitudinal and

transverse correlation functions were too small to be detected by the present

experiment. _

The calculated two-proton correlation functions predicted by the BUU model

for the reaction 1 ‘ N + 1 1 A1 at E/A = 75MeV exhibit significant sensitivity to

details of the space-time evolution of the reaction zone. They indicate large

sensitivity to the magnitude of the in-medium nucleon-nucleon cross sections

used in the BUU calculations. Considerable sensitivity is predicted for

measurements which explore the dependence of the two-proton correlation

function on the collision impact parameter and on the total momenta of the

emitted proton pairs. However, there is very little sensitivity to the compressibility

of nuclear matter.

Exclusive measurements of two-proton correlation functions with selection

on impact parameters can be pursued by combining the 56-element hodosc0pe

with the 4K detector array. Better characterization of the collision geometry will

enable us to make more stringent tests on the dynamical models for heavy-ion
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collisions. It is desirable to extend future studies of two-proton intensity

interferometry to higher beam energies (E/A z 1 GeV) and to heavier projectile-

target combinations. Such studies may provide additional insight into the collision

dynamics and compressibility of nuclear matter, which could not be gained in an

unambiguous fashion from observables tested so far.
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