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ABSTRACT
GENETIC AND ENVIRONMENTAL VARIATION IN AN INTENSIVELY

CULTURED BLACK LOCUST (Robinia pseudoacacia L.)
HALF-SIB PROGENY TEST

By

Abibou Gaye

Based on results from a germination test in the laboratory
involving 16 half-sib families of black locust, 5 fast-growing and 5
slow-growing families were used in a nursery progeny test intensively
cultured to evaluate early genetic differentiation in height, diameter,
number of branches, thorn length, insect susceptibility, stem form and
photosynthetic efficiency. Also, the relationships between nursery
characteristics and 4-year field height were investigated.

The variation patterns for all characteristics indicate large
within-family variation compared to family variation; but family
heritabilities were much higher than within-family heritabilities
suggesting that substantial genetic gains can be made from family and
within-family selections. On the other hand, although 4 good families
out of 5 figured among the 5 top ranking families in height and diameter
in the nursery, the poor correlations observed between nursery traits
and 4-year field height did not suggest reliable prediction of future
performance.

The effects of seed weight and the implications of the practice of
top-pruning black locust seedlings prior to field planting on seedling

development were analyzed and discussed.
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INTRODUCTION

Black locust is one of the most widely planted species around the
world (acclimated in most temperate and mediterranean zones of the
world) because of its remarkable attributes (Table 1), its ability to
utilize a wide range of sites and its multiple uses such as timber,
posts, firewood, apiculture, fodder and erosion control.

The species is frequently propagated by seed for economic reasons,
but can be easily propagated by root cuttings (Swingle, 1937) and by
tissue culture (Keresztesi, 1983; Davis and Keathley, 1987), and thus,
its potential for further improvement through cloning and hybridization
is great. However, in the U.S.A. where it is native, little attention
has been paid to the silviculture and breeding of the species for
commercial purposes until recently when fears of petroleum shortage
prompted biomass energy research. Thus, comprehensive germplasm
collections of half-sib families from the natural and naturalized range
in the USA and southeast Canada have been made by Michigan State
University (MSU) and the University of Georgia since 1983. Analyses of
growth and phenological characteristics from provenance tests in Georgia
(Kennedy, 1983) and progeny tests in Michigan (Mebrahtu and Hanover,
1989) have shown no geographic patterns of genetic variation but
revealed variation among and especially within families. Therefore, it
has been suggested that there is a need for progeny tests to select

among and within the populations for genetic improvement of the species






Table 1. Physiological attributes of black locust.

- Rapid growth rate, out-competes weeds

- Indeterminate growth habit

- Nodulated roots, fixes atmospheric N,

- High density wood

- Good pulping qualities

- Highly resistant to decay fungi

- Tolerates low fertility sites

- Resistant to drought stress

- Resistant to air pollutants

- Resistant to low temperatures

- Resistant to high temperatures

- Very high net photosynthetic rates

- High light saturation

- High leaf area accretion rate

- Long leaf retention time

- Low stomatal diffusive resistance

- High transpiration rate

- Rapid leaf position adjustment to changes in light
intensity

- Small leaflets minimize self-shading

- Vigorous sprouting of root cuttings

- Very plastic root system: strong tap and dense
fibrous upper roots

- Flowers at early age

- Produces abundant seed crops

- High seed viability and longevity

- Seeds easily cleaned, stored, sown

- Seeds germinate rapidly

- Easily micropropagated

- High leaf protein

- Much genetic variation

IN: Hanover, J.W. 1990. Physiological genetics of
black locust (Robinia pseudoacacia L.): a model
multipurpose tree species. Proc. Conf. on Fast
Growing and Nitrogen Fixing Trees, Univ. of Marburg,
W. Germany, 1989.
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for traits reflecting growth characteristics, stem form and damaging

agents.

Since tree breeding, usually achieved through progeny testing, is
a long-term process requiring labor, space and money, the basic
objective of tree breeders has always been to achieve selection as early
as possible, i.e., before the economic maturity of the trait of
interest, resulting in shortening the breeding cycle and hence,
reduction of direct costs (Magnussen, 1989a; Namkoong et al., 1988).
Thus, early selection, particularly in species such as black locust
exhibiting substantial growth at early stages of development, will
result, if proven efficient, in maximum genetic gain per unit of time
(Magnussen, 1989a; Namkoong and Conkle, 1976).

Keeping this general strategy in mind, the following study was
designed to investigate the response of black locust open-pollinated
families to early selection through laboratory and nursery trials and
comparisons with field performance by pursuing these specific
objectives:

1. To determine the kind and amount of genetic variation for seed
germination, growth, insect damage, stem form and physiological
(photosynthesis) characteristics in 10 open-pollinated, progeny
tested seed sources of black locust.

2. To examine the relationships between seedling growth
characteristics in the nursery and seed weight, seed germination,
field performance (first-year, second-year and fourth-year
height).

3. To discuss the extent to which nursery bed selection may be

reliable with regard to studied traits.
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The trait emphasized in the study was height growth because it is a
primary component of commercial growth and its pattern changes can be
readily analyzed (Namkoong and Conkle, 1976); but since it can be
associated with undesirable characteristics (thorniness, damaging
agents, poor form), attempts were also made to assess the relationships
between growth and other characteristics. Indeed, characteristics can
be closely or loosely, positively or negatively interrelated and thus,
progress from selection is dependent on the nature and extent of the
interrelationships found between characteristics (Matziris and Zobel,

1973).



SECTION I.
FAMILY VARIATION IN SEED CHARACTERISTICS OF BLACK LOCUST

(Robinia pseudoacacia L.).

ABSTRACT

Eight fast-growing and 8 slow-growing half-sib seedlots of black
locust were used in a germination test for the purpose of selecting 10
rapid germinating families (5 good and 5 poor) to be used in a nursery
progeny test.

Five days after sowing (following pretreatment of seeds in H,SO,
for 50 minutes), the germination percentages per family ranged from
47.70% to 98.17% with 88%Z versus 83.60% for good and poor families. The
ANOVA showed significant differences among families (P<0.01) but no
statistical differences were found between good and poor families. On
the other hand, the correlation results indicate that seed weight did

not, apparently, influence seed germination.

INTRODUCTION

For tree breeding to be successful, rapid and uniform germination
of seed in the nursery is required; that is, factors influencing
germination such as seed dormancy, seed characteristics (size, weight,
age) and genetic factors need to be identified. For hard seeds such as
those of black locust, it is well known that the primary factor
responsible for delayed germination is the dormancy induced by an
impervious seed coat rendering seed difficult to germinate under
favorable conditions of temperature and moisture unless pretreatments

(water, acid, or mechanical) are done to soften the seed coat prior to
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sowing. However, aside from the seed coat dormancy, seed
characteristics (seed size, seed weight, age) and inherent factors may
control the rate of seed germination and thus represent potential
factors in delaying.or accelerating: seed: germination.

The following germination test was conducted in the laboratory for
the purpose of sélecting among 16 seedlots, 10 rapid germinating seed
sources to be used for direct seeding in the nursery. We also wanted to
determine the relationships between seed germination percentage and seed

weight.

MATERIAL AND METHODS

Sixteen half-sib seedlots were used in the germination test and
comprised 8 known fast-growing families (good families) and 8 known
slow-growing families (poor families), distinguished on the basis of
height measurements made in 1989 from a progeny test including 393
families established in East Lansing in 1985. From the height
measurements (1989) the top third and the bottom third families were
considered, respectively, as good and poor performers in the field. The
respective height ranking from the progeny test of the 16 families used
in this study is given in Table 2. All seedlots used for the
germination test were collected in 1984 except for 2 seedlots which were
collected in 1989 (Table 2) but from the same trees in which seed were
collected in 1984. Seedlots were stored in paper bags at 1°C.

On May 15, seeds from each of the 16 seedlots were pretreated by
immersion in concentrated H,S0, for 50 minutes, then removed and rinsed
thoroughly with water, and set to germinate in trays containing moist

cotton covered by filter paper. The test was carried out with two
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8
replications at 25°C and continuous light. Germinants were counted
during 3 consecutive days beginning 2 days after sowing to furnish the
data for the calculation of germination rates. Count of germinants were
stopped the 3rd day because germination was nearly completed in most
seedlots. In addition, for each seedlot, 100 seeds were weighed to
estimate seed weight.

Percent germination data were subjected to an ANOVA using
replication means following arcsine transformation of the percentages.
Duncan’s multiple range test and the family mean heritability were
calculated as well as correlations associating rank and means of family
seed weight with, respectively, rank and means of family percent

germination.

RESULTS AND DISCUSSION

Variation in seed germination

Mean percent family germination is given in Table 4 and
illustrated in Figure 1. Five days after sowing, germination
percentages per family ranged from 47.70% to 98.17% around a general
mean of 85.88%, indicating a high germination rate which is highly
desirable for nursery production. Seed from the 8 good families had a
higher germination rate than those of the 8 poor families (88.00 vs.
83.60%), but in the 10 families selected for the nursery test (Table 4)
the 5 poor families had a slight advantage in germination over the 5
good families (90.50 vs. 88.50%) because 2 rapid germinating good
families were not retained for the nursery test due to lack of available

seed.
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The ANOVA (Table 3) showed significant differences among families
(P<0.01 for the 16 families and P<0.05 for the 10 families) but no
differences were found between good and poor families either at the
level of the 16 families or at the level of the 10 families. Family
differences accounted for about 75% (16 families) or 63% (10 families)
of total variation, explaining the high family heritability observed
(Table 3). The decrease in family heritability in the 10 families
versus the 16 families is due to the decrease of genetic variability in
the 10 families as a result of selecting for higher germination rates.
The error variance accounted for the remaining variation since variation
due to replication was negative and hence, estimated to be zero.

Effect of seed weight

Average seed weight by family varied from 1.68 g/100 seeds (16.8
mg/seed) to 2.88 g/100 seeds (28.80 mg/seed) with a general mean of 1.98
g/100 seeds (19.80 mg/seed). This is somewhat consistent with the
results reported by Pathak et al. (1978) who found a variability ranging
from 11.02 mg/seed to 26.73 mg/seed in 5 seedlots of black locust. The
good families outweighed the poor families in either the 16 families
tested or the 10 families selected for the nursery trial (Table 4).

The correlation coefficients calculated between average seed
weight or rank seed weight per family and mean percent germination or
rank germination per family (Table 4) were low and either positive (16
families) or negative (10 families) suggesting that seed weight did not,
apparently, influence seed germination. In contrast seed weight is
reported to influence strongly seed germination in sweet gum, white
spruce and slash pine (Franklin, et al. 1981), and in bald cypress

(Faulkner and Toliver, 1983).
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Table 4. Mean seed germination, mean seed weight and ranking of black
locust open-pollinated families.

All 16 Families 10 Families Used In Nursery Tests Il
Seedlots % germination Seed weight(g) % germination Seed weight(g)
mean rank | 100 seed rank | mean rank | 100 seed rank
411* 98.17 a 11173 12| 9817 a 1| 173 8
384 9700 ab 21224 3
375* 96.33 abc 31180 10 | 9633 ab 21180 7
II 391* 94.00 abcd 41 192 9 | 9400 abc 31192 6
348* 93.96 abcd 5] 288 1] 9396 abc 4| 2.88 1
398* 89.68abcde 6 | 1.68 15 | 89.68 bed 51 168 10
382+ 86.50 bede 71| 248 2| 8.50 bed 6| 248 2
344 84.56 cde 81| 194 8
380* 83.12 de 9| 2.06 71812 cd 71 2.06 5
385* 8250 de 10 | 2.10 4] 850 cd 81210 3
383* 80.00 de 11| 1.70 13 ]800 d 91170 9
347* 7925 e 12 | 2.08 517925 d 10 | 2.08 4
408 79.18 e 13 | 1.68 15
310 7700 e 14| 175 11
282 7462 e 15| 2.09 5
373 495 f 16 | 1.69 14
All 85.88 1.98 89.60 2.053
families
Good 88.00 221 88.51 2.308
families
Poor 83.60 1.76 90.50 1.798
families

*Families used in the nursery test.
Means with the same subscript are not different at the 0.05 level of probability using
Duncan’s multiple range test.
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CONCLUSION

It appears that, when properly pretreated and allowed to germinate
under favorable conditions, seed of black locust will germinate well and
rapidly but will also exhibit significant differences among genotypes.
Nevertheless, the data failed to show significant differences in
germination among the known fast-growing and slow-growing families. The
results also indicate that percent seed germination is quite independent
of seed weight.

Thus, seed weight will influence the early performance of black
locust seedling height growth but the effects are random with respect to
longer term performance of progenies. Therefore, seed weight cannot be
used to adjust for first-year growth rate when comparing genotypes for

early performance.



SECTION II.
FAMILY AND WITHIN-FAMILY VARIATION IN EARLY SEEDLING

GROWTH OF BLACK LOCUST (Robinia pseudoacacia L.)

ABSTRACT

Ten genotypes (5 good and 5 poor) of black locust were progeny
tested in the nursery to: (1) investigate early genetic differentiation
in height, diameter, number of branches and thorn length; and (2) assess
the relationships between nursery growth traits, seed weight and 4-year
field height.

Total height in the nursery averaged 99 cm to 128.8 cm per family
with 114.3 cm and 110.6 cm, respectively, for good and poor families.
However, the ANOVA detected weak family differences (P<0.l1) and none for
good versus poor families. On the other hand, family differences were
much stronger in diameter (P<0.05) and number of branches (P<0.01). The
variation patterns for all growth traits were characterized by
relatively little family variation and a large amount of within-family
variation; but, the family heritabilities were high compared to within-
family heritabilities.

Seed weight showed significant relationships with diameter, number
of branches and thorn length in the nursery and exerted an important
effect on 4-year field height, masking thus, variation in inherent
vigor. Therefore, selection should be delayed until after seed effects
have ceased.

Results also indicate poor correlations between nursery growth
traits of the 10 tested families and 4-year field height of the same 10

families although 4 good families out of 5 were included in the 5 top

14
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ranking families in the nursery. However, these poor correlations are
thought to result from the top-pruning of seedlings prior to field

planting.

INTRODUCTION

Sluder (1983), Robinson and Van Buijtenen (1979) have reported
various studies based on conifers (Zobel et al., 1977; Zaeger 1965; Hunt
1967; Grisby 1975) showing that substantial improvement in growth rate
can be made by selecting outstanding nursery seedlings. However, these
studies were based on mass selection, i.e., selection of best seedlings
regardless of seed sources, which is different from selection among
families in progeny tests (Sluder 1983) where genetic effects are to be
separated from environmental effects. Thus, as pointed out by Rehfeldt
(1983), reliable results in the nursery will require intense cultivation
(weeding, spraying, fencing) to control extraneous environmental
variation in order to test under conditions in which the phenotype is
more a function of the genotype than the environment. But, since genes
involved in trait expression in one age or environment may not be the
same in another age or environment (Namkoong et al. 1988) assessing the
degree of relationships existing between early and later plant
characteristics is required to determine whether or not early seedling
characteristics can reliably predict future growth.

To my knowledge, genetic studies of black locust based on nursery
progeny tests have not been done, and thus, this following study is
intended to provide a necessary basis for forecasting relationships

between juvenile and mature characteristics.
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MATERIAL AND METHODS
Nursery procedures.

Seed fromithe 10 seedlots selected for the nursery test were hand-
sown (June 15) after stratification (50 minutes in H,SO,) across nursery
beds in a single soil series characterized by good internal drainage at
the Tree Research Center at Michigan State University. The experimental
design was a RCBD with 4 replications of 80-spot rectangular plots (4
rows of 20 sowing spots each) and spacing was 45 x 33 cm within-plot and
110 cm between plots. The plots were fumigated and leveled prior to
sowing; the sowing depth was approximately 2 mm and about 2 seeds were
used per sowing spot, i.e., 160 seeds per plot or 6400 seeds total.

A germination count conducted 7 days after sowing (June 23) and
based on well established seedlings (at least 2 leaves well developed)
has shown good results and thus, consistent with the germination test
results from the laboratory. A week later seedlings were thinned to one
per emplacement and few transplants were made.

Throughout the growing season, the plots were hand-weeded, sprayed
with insecticides and watered when necessary, and protected by a fence.
However, blocks 3 and 4 were attacked and apparently randomly damaged by
rabbits a few days after thinning, prompting the reinforcement of the
protective fence around the nursery experiment. Though most of the
seedlings maimed by rabbits flushed again, only about 50 seedlings out
of 80 per plot (> 2000 total) were selected for observations and
measurements by excluding the disadvantaged seedlings (damaged seedlings

plus transplants).
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Characteristics measured

Height measurements were made to the nearest centimeter at 40 days
(July 26), 63 days (August 18), 82 days (September 6), 108 days (October
2) and 137 days (October 31) after sowing with the last measurement
occurring after the seedlings had shed their leaves. Also after the
growing season, diameter was measured to the nearest millimeter at
ground line, the number of branches per seedling counted, and thorn
length scored by a visual estimate according to the following procedure:
O=<3mm; 1 =3 ¢to 10 mm; 2 => 10 mm.
Statistical and genetical analyses

All growth traits measured on seedlings were subjected to an ANOVA
on an individual seedling basis, assuming the following random linear

model:

yijk u +RL + Fj + (RF)ij + Eijk where

yijk =  performance of individual k from population j in block i;

B = overall mean;

Ri = effects of the ith replication (i =1, 2, ... 4);

Fj = effects of the jth family (j = 1, 2, ... 10);

(RF)ij = effects of the interaction between the ith replication

and the jth family;

Eijk deviation of seedling k from the effect of population

j in replication (= within-plot error).

With the assumptions that families are half-sib and that epistasis
and dominance are ignored (Namkoong et al. 1988), then family effects

are considered to estimate 1/4 of additive genetic variance, and within-
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plot error effects 3/4 of additive genetic variance plus environmental
variance. The form and expected mean squares of the ANOVA as well as
the expected mean cross products of the Analysis of Covariance (ANCOVA)
are given in Table 5.

Variance estimates (replications, family, family by replication
interaction and within-plot) and narrow sense individual, family and
within-family heritabilities were calculated and means were separated by
using Duncan’s multiple range test whenever the ANOVA appeared
significant at 0.05 level of probability. 1In addition, total
(individual), between family, within-family and additive genetic
correlations relating growth characteristics were calculated as well as
family mean correlations associating growth characteristics with seed
germination, seed weight and field height (1-, 2- and 4-year).

Expected genetic gains were not estimated because the heritability
values were based on few genotypes growing on a single site rendering
their use in predicting genetic gains of limited value (Hicks et al.
1977).

All analyses were made using the Statistical Analysis System (SAS

Institute Inc., 1985) and figures were obtained from Plotit (Eisensmith

1985).
RESULTS
I. Height growth

1. Patterns of height growth
Figure 2 illustrates the estimates of daily growth rates as

presented in Table 6 and can be summarized as follows: From June 15
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(sowing date) to late July, height growth was relatively slow (2.6 mm to
3.45 mm per day per family); then it increased rapidly during August and
peaked at early September (18 mm to 24 mm per day per family) before
decreasing sharply and nearly ceasing in late September. The residual
growth observed in October averaged less than 1/2 mm per day per family.
The slow growth rates observed during July may have been due to
adjustment of the genotypes in the environment and/or development of an
efficient root system prior to aerial expansion.

Overall, the daily mean growth per family varied from 9.30 to
11.80 mm around a general mean of 10.42 mm. The known fast-growing
families (good families) average 10.58 mm per day versus 10.26 mm per
day for the known slow-growing families (poor families) while the
individual tree valueé vafied from 1.44 mm to 19.5 mm per day. The
residual growth accounted for little in total growth since, at the end
of September, the proportion of total height growth completed by
families ranged from 97.60 to 99.50% with 98.80% versus 98.50%,
respectively, for good and poor families. Similar patterns of height
growth in natural conditions were reported on black locust by Jester and
Kramer (1939) whose results from greenhouse and field experiments showed
that long days allow continuous growth while short days result in onset
of dormancy in black locust. Wareing (1954 in Kennedy 1983) speculated
that the photoperiodic receptor, growth inhibitor substance, is
manufactured in mature leaves under short day conditions. However,
Waisel and Fahn (1965 in Kennedy 1983) indicated that cambial activity

was influenced primarily by T°C. The cambium appeared to be
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active under short day conditions and 28°C/20°C day/night temperatures,
and became dormant under 18°C/12°C day/night temperatures. Therefore,
the effect of short day photoperiod in inducing dormancy in black locust
may be inhibited by T°C.

On the other hand, Figure 3 illustrates the family growth curves
and their rank changes over time. Growth curves are similar in shape
(sigmoid) and are characterized throughout the growing season by
fluctuations in rankings, indicating that the families did not perform
consistently relative to each other over time. However, the rank
correlations (Table 8) performed to quantify the degree of association
between family mean rankings of height at different measurement ages
proved significant in all situations. Further, the correlations
increased in significance over time indicating that rankings were more
steadily maintained specially after 82 days of age. In fact, as
indicated in Table 7, the patterns of rank changes showed a certain
stability in family ranking throughout the growing season: 2 families
(1 good and 1 poor family) were consistently at the top level whereas 3
families (1 good and 2 poor families) were consistently at the bottom
level.

2. Variance trends and heritability estimates

2.a. Variance trends. The results of the analysis of variances
performed on all height measurement ages are given in Table 9. There
were highly significant differences for replications and family by
replication interactions at all ages whereas significant but small
differences among families (P<0.l) were detected only after 82 days of

seedling age while the good and the poor families showed no significant
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differences at all ages (Figure 4). For the residual growth, only
family x replication interaction showed significant (P<0.05).

Variance components are given in Table 9 and their trends were
plotted over age to examine their pattern changes (Figure 5a).

2.a.1. Family variation. The main effect of family increased
steadily through time, accounting for 0 to 3.03% of total variation. It
reached its maximum absolute value at age 108 days coinciding with the
end of the active growing season, and then declined slightly during the
residual growth period to account finally for 2.76% of total height
variation.

On the other hand, the within-family variation contributed without
exception for most of the variation associated with height at all ages.
It accounted for 42.6% to 71.35X% of the total variation and its trends
appeared similar to those of the main effect of family variance.
Within-family variation includes both environmental factors (microsites)
and additive genetic effects that cannot be separated, but in
segregating families a sizeable genetic component can be expected (Ying
and Morgenstern, 1979). That is, if family selection is to be made in
the nursery stage it should be followed by within-family selection in
order to achieve more genetic gain.

These results on family variation are consistent with previous
findings on black locust showing relatively little family variation and
a large amount of variation within-family (Kennedy 1983; Mebrahtu and

Hanover 1989).
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2.a.2. Family x replication interaction variation. The family by
replication interaction was highly significant for all height
measurements including residual growth and accounted for 22.37 to 37.57%
of the total variation. From ages 40 days to 108 days old, though the
interaction variance increased in absolute terms, its relative magnitude
showed a steady decline from 37.57% at 63 days to 22.10% at 108 days
(end of active growing season).

The significance of the interaction effects reflects the failure
of the genotypes to perform consistently from one replication to another
due to random environmental differences among replications (damaging
agents, i.e. insects, rabbits; variation in soil moisture and
fertilization, etc.). As a result, interaction effects decreased the
capability to detect inherent genotype differences. It seems that from
age 40 to 82 days (non-significant family differences) and to some
extent the following ages (significant family differences at P<0.1l) the
interaction effects were large enough to affect inferences among
families (Menzies et al. 1987).

2.a.3. Replication variation. The replication variance increased
in absolute magnitude throughout the entire growing season but its
relative magnitude decreased constantly from age 40 days to age 108
days, and then increased slightly during late season growth. The high
significance of the replication effects is an indication that blocking
was efficient in increasing the precision of the experiment.

2.b. Patterns of genetic and environmental variances. Figure 5b
illustrates the patterns of the estimates of additive genetic variance

(family variance = 1/4 additive genetic variance), environmental
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variance (within-family + interaction variances) and phenotypic family
variance (additive + environmental variances).

The additive genetic variance remained at low levels until after
82 days of seedling age when it increased rapidly to reach its maximum
at 108 days of age and declined slightly during the late season growth.
On the other hand, phenotypic and environmental variances followed a
similar p.at:tern, increasing rapidly during the active growth period and
decreased a little during the residual growth period. Phenotypic family
variance and environmental variance were about the same magnitude until
after 82 days of age when they began slowly but steadily to
differentiate.

From these results, it could be suggested that the additive
genetic effects become well present after 82 days in the nursery
experiment to make a clear difference between the phenotypic and
environmental variances.

2.c. Heritability estimates. Heritability is defined as the
ratio of additive genetic variation (i.e., genetic portion transmitted
to the next generation) to phenotypic variation (Gill 1987). But
heritability estimates should be used with caution because, first, they
apply strictly to the population and test conditions for which they are
made (Wright 1962), and second, they are affected by methods of
calculation.

Narrow sense heritability estimates were calculated on an
individual tree, family and within-family basis (Table 10) and their
trends are illustrated in Figure 5c. These heritabilities, deemed
appropriate, respectively, for mass selection, family and within-family

selection (Squillace and Gansel 1974) followed a similar pattern,
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increasing with age until the end of the active growing season, and then
decreasing during the late season growth period.

Family heritability estimates were much larger than the estimates
for individual tree and within-family which were about the same
magnitude. The maximum values of heritability were obtained at 108 days
of seedling age with 0.340, 0.133 and 0.138, respectively, for family,
individual and within-family heritabilities. These results suggest
that, with selection based on height growth, genetic gain is possible
but progress would be more rapid for family selection.

The individual-tree and family heritabilities calculated here for
total height (0.122 and 0.317, respectively, in East Lansing) in the
nursery were much lower than those reported by Mebrahtu and Hanover
(1989) (0.74 and 0.48, respectively, in East Lansing) for first-year
field height of black locust genotypes. However, their field
heritabilities were, (1) based on plot means and, thus, were inflated by
excluding within-family variance from the denominator (see formulae,
Table 10), and (2) calculated over 400 families including the 10
families used in the nursery test. Thus, again, heritabilities should
be interpreted with caution.

II. Other growth characteristics: diameter, number of branches, thorn
length

Measured at the end of the growing season, diameter, number of
branches and thorn length averaged per family, respectively, 9.96 to
11.84 mm, 3.28 to 10.26 and 1.26 to 1.57 (score) (Table 7).

Diameter and number of branches exhibited significant differences
among families (respectively, P<0.05 and P<0.01) and for the interaction

effects (P<0.01l) but not for replications while for thorn length, no
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significant family differences were detected but the interaction and
replication effects were highly significant (Table 9). For diameter,
number of branches and thorn length, the variance associated with
within-family accounted for most of the total variation with,
respectively, 77.40%, 72% and 93.30% of total variation whereas variance
components associated with families were rather high for number of
branches (20.15%), somewhat important for diameter (over 7%) and small
for thorn length (1.04%) (Table 9).

The heritability estimates along with the genetic effects for
diameter and number of branches were much higher than those obtained for
height, suggesting that selection based on diameter may lead to more
genetic gain than selection based on height.

The rank correlations associating total height with diameter and
number of branches (Table 8) were high and significant (respectively
0.72 and 0.84), as was also that associating diameter with number of
branches (0.79), indicating close family ranks between the three
characteristics. In fact, the 5 top families (4 good and 1 poor) for
final height were the same for diameter and number of branches. In
contrast, the rank correlations relating thorn length to total height,
diameter and number of branches were all negative but non-significant

except for diameter.

III. Correlations

1. Relationships between nursery growth characteristics

The correlation coefficients between height growth measurements at
different ages were high, positive, of similar magnitude at the levels

of total, between-family and within-family (Table 11). These
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correlations decreased with more distant age pairs and the high within-
plot correlations are largely because the variation in size at younger
ages are maintained as populations become older (Lambeth et al. 1983).
In addition, the genetic correlations, whose estimates are based on
genetic effects, were positive, usually greater than the phenotypic
correlations and in some cases they exceeded one. Correlations of more
than one are explained as due to sampling error and some invalid
assumptions upon which their calculations are based (Rink 1984).

On the other hand, the correlations associating total height,
diameter and number of branches were also high and positive at the level
of total (individual), between-family and within family. The genetic
correlations and the total phenotypic correlations were about the same
magnitude for height and diameter while the genetic correlations
appeared much higher than total phenotypic correlations for total height
and number of branches, and for diameter and number of branches. The
number of branches per family was more related to diameter than to
height.

These results indicate that simultaneous selection for rapid
height growth, large diameter and branchier seedlings is attainable,
especially at the family level. However, depending on the objective of
selection, number of branches may be considered as an undesirable
characteristic. In that case, simultaneous selection for height,
diameter and less branchiness will be ineffective, but this expectation
should not be emphasized until refinement of the method of assessment of
branching patterns is carried out because all branches had not the same

importance, depending on their size and position on the tree.
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Table 11. Phenotypic (between-family, within-family and total),
genotypic and replicate correlations among growth characteristics in a
black locust nursery progeny test.

Between-Family Correlations (df=9)

1 2 3 4 ) 6 2 8
Height Height Height Height Height, Diameter  Number Thorn
day 40 day 63 day 82 day 108 day 137 branches length

0.919 0.901 0.832 0.830 0.622 0.428 0.118
0.970 0.817 0.818 0.718 0.472 0.183
0.882 3 0. s
. 0 .
0 g
8
Within-Family Correlations (df=1921)

1 2 3 4 53 6 8
Height Height Helght Height Height Diameter  Number Thorn
day 40 day 63 day 82 day 108 day 137 branches length

0.867 0.757 0.665 0.668 0.618 0.435 0.139
0.911 0.884 0.827 0.725 0.499 0.214
0.947 0.949 A 0.483 0.298
3 0.99 5 0.468 0.364
A 0.475 0.367
5 0.649 0.379

6 0.

8

Total Correlations (df=1930)

1 2 3 4 5 6 . 8
Height Height Height Height Height Diameter  Number Thorn
day 40 day 63 day 82 day 108 day 137 branches length

0.871 0.769 0.679 0.681 0.428 0.117
0.917 0.823 0.826 0.472 83

0

0.

0.942 . 0.
0

0
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Table 11 (cont’d)

Replicate Effects Correlations (df=3)

18 2; 3 4 5l 6 7 8
Height Height Height Height Height Diameter Number orn
day 40 day 63 day 82 day 108 day 137 branches length

0.943 0.964 0.960 0.961 0.911 .386 -0.044
0.988 . . .121 -0.109

-0.

0
0
0.
0.
0
0

Genetic Correlations

1 2 3 4 ) 6
Height Height Height Height Height Diameter Number orn
day 40 day 63 day 82 day 108 day 137 branches length
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In contrast, the correlation coefficients associating thorn length
with total height, diameter and number of branches followed different
paths depending on the level of correlation. At the family and genetic
effect levels, the correlations were negative whereas at total and
within-family levels the coefficients between thorn length and height,
diameter or number of branches were positive and significant (Table 11).
Since thorn length is an undesirable characteristic, it appears that
selection of families for tall height and large diameter based on short
thorns as criterion is feasible but selection within these families will
be ineffective.

In summary, the relationships between growth characteristics as
observed in the nursery were strong and positive except for thorn
length. In addition to the moderate heritabilities obtained at family
level, simultaneous selection at family level for height, diameter and
thorn length appear to be reliably feasible. However, whether these
favorable relationships will hold over time and in field tests has to be
proven before reaching any conclusion.

2. Relationships between nursery growth characteristics, seed

weight, percentage seed germination and field height performance

(Table 12)

2.a. Effects of seed weight. Results from several studies have
identified seed weight as a source of variation in seedling size in the
nursery and field tests involving several species such as loblolly pine
(Sluder, 1979; Bailan et al., 1989), pecan (Adams and Thielges, 1979),
Douglas-fir (Silen and Osterhaus, 1979), jack pine (Radscliff, 1981) and

red oak (Kriebel, 1967). Since variations in growth rate resulting from



Ll |
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Table 12. Family mean correlations of seedling growth characteristics
in the nursery with 1-, 2- and 4-year-old field height, with percent
germination and with seed weight of 10 families and in parenthesis of
the 8 families of black locust after deletion of 2 unstable families

from the 10.

Field Height Performance Laboratory Determination n
Nursery
Measurements 1-year-old 2-year-old 4-year-old Percent Seed
germination weight
“ Height day 40 0.227 0.211 0.063 0.188 0.434
(cm)
Height day 63 0.134 0.110 0.090 0.219 0.319
Height day 82 0.171 0.122 0.075 0.126 0.304
Height day 108 0.357 0.241 0.215 -0.172 0.370
Height day 137 0.346 0.230 0.215 -0.175 0.365
(0.668%*) (0.715%*) (0.781%w*) (-0.043) (0.509)
Total height
increment 0.360 0.226 0.240 -0.245 0.336
Diameter (mm) 0.546* 0.454 0.486 -0.133 0.722%*
(0.693*%*) (0.768%**) (0.768%*%) (-0.167) (0.799*%**)
Number of
branches 0.498 0.495 0.462 -0.507 0.548*
(count) (0.567%) (0.607*) (0.669*%*) (-0.451) (0.566%)
Thorn length -0.211 -0.289 -0.238 -0.238 -0.599*
(score) (-0.239) (=0.434) (-0.249) (-0.124) (-0.639*%w)
Field height
performance:
1-year-old 1.000 -0.184 0.563*
(-0.225) (0.571%)
2-year-old 0.905%** 1.000 -0.229 0.545*
0.949%%%) (-0.158) (0.594%)
4-year-old 0.906%*w 0.884*** 1.000 -0.148 0.464
(0.939%**) (0.955%**) (-0.350) (0.516)

*significant at 0.1 level
**gjgnificant at 0.05 level
***gignificant at 0.01 level
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differences in seed weight appears as environmental effects (Sluder,
1983) and add to inherent variation, its effects will result in
decreasing the precision of juvenile selection.

From this study (Table 12), family mean correlations between seed
weight and nursery height at different measurement ages did not appear
significant and decreased over time (0.434 to 0.365). Regression
analyses between seed weight as independent variable and initial height
or total height as dependent variables, indicated that 18.85% and 13.35%
of the variation, respectively, in initial height and total height were
related to the weight of the seed. In contrast, family mean seed
weights were positively and significantly correlated with diameter
(P<0.05) and number of branches (P<0.l) whereas the correlation of seed
weight and thorn length was negative and significant at 0.1 level of
probability.

These results suggest that selection based on seed weight in the
nursery will result in larger diameter, branchier, less thorny and to
some degree taller families. Results suggest also that, since seed
weight functions as environmental effects to mask variation in inherent
vigor (Sluder 1983), previous results about heritabilities and
correlations were inflated and thus less efficient in predicting later
growth.

On the other hand, correlation coefficients between seed weight
and field heights were significant for first-year (P<0.l), second-year
(P<0.1), but not significant for 4-year old seedlings (r=0.464).
Regression analyses between seed weight and field heights showed that
31.80%, 29.79% and 21.57% of total variation, respectively, in l-year,

2-year and 4-year heights were explained by seed weight. These results




h.
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suggest that seed weight still exercised an important effect on seedling
size 4 years after field planting and as a result, selection should be
delayed until after seed effects have ceased.

2.b. Effects of percent seed germination. Seed germination was
not correlated with any growth characteristic in the nursery and
seedling size in the field. The only correlation coefficient worth
notice was between seed germination and number of branches (-0.507).
These low correlations between seed germination and growth
characteristics (nursery and field) are indicators that seed germination
is independent of growth in black locust.

2.c. Relationships between nursery seedling characteristics and
field seedling size of the same families. The family mean correlations
found between nursery characteristics and seedling size in the field
(Table 12) were not significant and decreased among more distant age
pairs. These poor correlations suggest that nursery bed selections
could not be considered as reliable prediction methods. Family rank
correlations between nursery and field characteristics showed similar
trends as family mean correlations, indicating that family rankings were
not consistent from the nursery environment to the field environment.
Indeed, extreme rank order changes were observed from the nursery to the
field and consisted of family 347 (poor family) moving from top level in
the nursery environment to about bottom level in the field environment
while family 385 (good family) had taken an inverse course. As a
result, selection of the 5 top families based on nursery results would

have resulted in the two types of error described by Lowe and
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Van Buijtenten (1989) as occurring frequently in early selection, namely
(1) a family with good field performance could be rejected on the basis
of early test data (for example family 385), and (2) a family with good
early test performance fails to perform well in later field tests (for
example family 347). However, only error 1 appears to be important
because genotypes are rejected before subsequent field testing whereas
error 2 can be identified in the field and corrected.

When both unstable families (347 and 385) were deleted from the
data, the family mean correlations between nursery characteristics
(except thorn length) and field seedling size (1-, 2-, 4-year) appeared
significant (Figure 6) indicating that reliable selection in the nursery
may be expected from those 8 families. But seed weight effects appeared
also more pronounced with the 8 families precluding selection based on
inherent vigor.

Beyond all these considerations, there is a high level of
probability that these observed relationships between nursery test and
field performance may not hold since seedling sizes were altered through
systematic top-pruning (at about 50 cm above ground) prior to field
planting. As a result of the top-pruning, 4 families did not reach,
during the entire first year in the field their size obtained from the
nursery test: family 375 (-25 cm), 347 (-11.4 cm), 411 (-6.30 cm) and
383 (-0.9 cm) and naturally they become the poor families as revealed by
the 4-year height measurement. Negative effects of top-pruning black
locust seedlings have been demonstrated in earlier research by Meginnis
(1934) who studied different regimes of top-pruning and their effects on

seedling development, and concluded that seedlings should not be top-
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pruned unless pruning must be done to salvage top-damaged or poorly
formed seedlings.

Furthermore, top-breakage of seedlings has been shown to decrease
age-age correlations. Lambeth et al. (1983) (loblolly pine) and
Magnussen (1989b) (red pine), partioned age-age correlations between
size and intrinsic growth rate and found that size was the major
contributor component in these correlations. Sluder (1983) reported for
slash pine, poor correlations between heights at age 15-year and the
other ages as being due to top breakage resulting from an ice storm
occurring after the 8-year measurement. Rehfeldt (1983) indicated that,
to obtain reliable data for age-age correlations, progeny comparisons or
family evaluations, trees with broken tops at any age should be purged

from data.

DISCUSSION AND CONCLUSION

The variation patterns in height, diameter, number of branches and
thorn length, as observed in the nursery, indicate large within-family
variation compared to family variation; but, family heritabilities were
much higher than within-family heritabilities, suggesting that
substantial genetic gains can be made from both family and within-family
selections. Thus, family selection followed by within-family selection
is, logically, the first step for improving black locust. Similar
variation patterns in growth and phenological characteristics were also
demonstrated in black locust field plantings (Kennedy, 1983; Mebrahtu
and Hano@er, 1989) and are described by Boyle and Yeh (1987) as typical
of long-lived trees, wind-pollinated, predominantly outcrossing and

widely distributed.
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As also indicated by the nursery results, the additive genetic
variation and the estimation of heritabilities were much higher for
diameter than for height, suggesting that selection based on diameter in
the nursery would be more effective than selection based on height.
However, the family diameter differences (P<0.05) were attributed to
seed weight effects since significant relationships were observed
between diameter and seed weight (P<0.05) and not between height and
seed weight. That is, selection based on diameter in nursery would

merely be equivalent to selection for seed weight which masks variation

in inherent vigor.

On the other hand, all growth characteristics in the nursery
showed significant family x block interaction indicating inconsistent
response of families among blocks, though attempts were made to
effectively control random environmental affects through weeding,
insecticide spraying, fertilization and fencing. Apparently, the
interaction effects were large enough to affect family inferences in
height (P<0.1l) while they were not in diameter (P<0.05) and number of
branches (P<0.0l1). These interaction effects have presumably arisen
from rabbit damage that occurred in 2 out of 4 blocks about 2 weeks
after sowing, and affected in general seedlings that expanded quickly
after germination, and hence, offered more nutrients. However, the
rabbit attacks were apparently random with regard to families and their
incidence in the experiment was minimized by purging the maimed
seedlings from the data, even though many of the attacked seedlings
recovered quickly and figured among the best performers in the nursery.

Although family means of final height in the nursery ranged from

99 cm to 128.87 cm with 114.3 cm and 110.68 cm, respectively, for good
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and poor families, the ANOVA detected weak differences in height (P<0.1)
and none for good versus poor families.

On the other hand there were poor correlations between nursery
growth characteristics of the 10 tested families and 4-year field height
of the same 10 families, although the 5 top-ranking families included 4
out of 5 good families. The poor correlations appeared to be caused
mainly by extreme rank order changes involving 2 families (1 good and 1
poor family) from the nursery environment to the field environment,
since good relationships (P<0.05) between nursery growth characteristics
and 4-year field height followed when the 2 unstable families were
removed from the data (Figure 6). However, nursery bed selection on the
basis of the 8 remaining families would result on the rejection of a
confirmed good family in the field (family 385 which is the 3rd best
family considering the 4-year field height). Furthermore, the good
correlations obtained with the 8 families were apparently a reflection
of seed weight effects since the relationships between seed weight and
4-year field height appeared also significant (P<0.05) and consequently
selection based on the 8 families should not be appraised upon removal
of the seed weight effect.

The poor correlations between nursery growth characteristics and
field height could be attributed to: (1) genetic differences arising
from the two different environments (LaFarge 1975); (2) sampling
variation since nursery and field measurements were not made on the same
progenies (Sluder 1983); and most important (3) the top-pruning of
seedlings prior to field planting. Top-pruning of seedlings at about 50
cm above ground is a current practice in black locust to facilitate

seedling handling by machine planters, thus reducing planting costs and
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also to increase survival. However, there is considerable evidence that
top-breakage of seedlings would alter the relationships of nursery
growth with later growth ages. Therefore, whole seedlings would be
preferred to top-pruned seedlings for establishing plantations. To take
advantage of all the nursery growth and still use machine planters, it
would make sense to investigate the best date of seed sowing in the
nursery that would yield seedlings of about 50-70 cm at the end of the

growing season.






SECTION III.
VARIATION IN SEEDLING QUALITY FACTORS AND INSECT DAMAGE

IN A HALF-SIB NURSERY TEST OF BLACK LOCUST (Robinia pseudoacacia L.)

ABSTRACT

Insect incidence (aphids and twig borers) and seedling form were
assessed on seedlings evaluated for growth characteristics in the
nursery progeny test. Results showed no statistical differences among
families and for good versus poor families, both for insect attacks and
stem form. However, significant differences were detected, separately,
for crooked stems (P<0.l) and for sinuous stems (P<0.05), the two
components of stem form.

Results also indicate that controlling insect damage in the
nursery would indirectly result in significant decrease of crooked stems
whereas it would have little influence on stem sinuosity which appears
to be under more direct genetical control.

On the other hand, weak correlations were found between nursery
growth characteristics or field height and, respectively, insect

injuries and stem form.

INTRODUCTION

Insect attacks, pathogenic agents, winter hardiness, drought
resistance, tree form, etc., are very important traits to consider in a
tree breeding program because they may reduce the capability to detect
family differences in growth characteristics (Friedman 1983) and

seriously affect wood quality.

49
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In this study, insect damage and stem form were assessed on
seedlings evaluated for growth characteristics in the nursery test to

determine their impact on seedling development.

MATERTAL AND METHODS

Damage by insects as observed in the nursery was mainly due to
aphids (various species) and twig borers (Edytolopha insiticiana).
Aphids were noticed in early stages of seedling development and stayed
in the nursery throughout the active growing season, feeding on young
shoots and leaves whereas twig borers appeared around mid-August
attacking branches and stems. These insects seldom killed the seedlings
they attacked but their effects resulted in leader and branch breakages
(twig borers) or dieback of shoots and buds (aphids), and hence, stunted
and often deformed seedlings. Confronted with an unusual season of
aphid proliferations in the nursery insecticide sprays were applied five
times during the growing season to avoid heavy damage on seedlings; July
6 (orthene + pentac), July 16 (Maverick), August 15 (Maverick + Triton
Bygs¢) , August 31 (Diazinon), and September 6 (Diazinon).

Stem form and insect attacks were assessed through scoring

procedures. For stem form, l=straight, 2=sinuous, and 3=crooked; and

for insect damages, 1 ptible, 0O ptible. Aphid and twig
borer effects were not separated since a given seedling may have been
susceptible to both insect species.

Data analysis for these two characteristics was done by using two
units of ANOVA: (1) ANOVA on an individual-tree basis for scoring data,
allowing an estimate of the within-plot variation; and (2) ANOVA on a

plot mean basis using percentage data (conversion of scoring data in
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percentages) transformed to arcsine square root percent which result in
no within-plot estimation. Table 13 presents the expected mean squares
for both units of ANOVA (derived from Foster 1986). Variance components
and narrow sense heritabilities were calculated as well as correlations
with nursery growth characteristics and field height. The means were
separated by Duncan’s multiple range test if the analysis of variance
revealed significant differences (P=0.05) among them. Narrow sense
family heritability was calculated only if there were significant

differences among families (P<0.1).

RESULTS AND DISCUSSION
Variation in susceptibility to insect attacks and stem form

The ANOVA based on scoring data (Table 14) showed no significant
differences among families either for insect attacks or stem form while
for both traits family by replication interactions appeared highly
significant. The absence of significant family effects in insect damage
was probably caused by insecticide sprays which also can explain the
non-significance of family variation in stem form since insect injury to
the growing points of seedlings often led to deformed seedlings.

From the estimates of variance components, it appeared that the
within-family variation accounted for the bulk of total variation, with
92.50% and 95%, respectively, for insect incidence and stem form while
family variation accounted for little of total variation in insect
incidence (0.79%) and stem form (0.36%).

On the other hand, the ANOVA of percentage data (plot means)
allowed a more extensive analysis of stem form which was partioned in

crooked stems, sinuous stems and cumulative effects of crooked and
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Table 13. Expected mean squares for the ANOVA based on individual-tree
and plot mean basis (adapted from Foster, 1986).

Expected Mean Squares
Source
af Individual-tree Plot model
model (percentage)
(score)
Replications r-1 q:,-rto:u,ﬂfq; ofv 2 2
(x) _;_+um,+fak
Families (f) £-1 oi,-rtoipﬂru: o:, 2 2
— +ORptrOE
5 2 2 2
Rep x family [ (z-1)(£-1) 0, *0r Ow, 2
— +Ogp
t
rf(t-1) 02
Within-plot v

02R = variance among replications

0% = variance among families

0%y = variance for replication x family interaction
0%, = variance of seedlings within-family

t = harmonic number of seedlings per plot
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sinuous form (total poor form). The ANOVA of percent data was
consistent with that of scoring data showing no significant differences
among genotypes for insect injury and total poor form. However,
significant family differences were observed for stem sinuosity (P<0.05)
and to lesser extent for crookedness of stems (P<0.1l). Family variation
accounted for about 22X and 14X, respectively, for sinuous and crooked
stems whereas their respective coefficients of family mean heritability
were about the same magnitude (0.570 and 0.514). Family means from the
percentage data are presented in Table 15 and illustrated in Figure 7.

The level of susceptibility to insect injury per family ranged
from 10.66% to 26.83% around the overall mean of 18.84%. Of the 10
families, 5 performed below the overall mean (3 good families and 2 poor
families) and among them 4 families were the best performers in height
and diameter in the nursery but the other less susceptible family to
insect damage (383) was the worst performer in growth during the entire
nursery experiment. That is, the best performers in growth in the
nursery were not necessarily the least susceptible to insect damage, as
evidenced also by the absence of significant rank correlation between
total height and insect incidence.

For stem form, the range of family means was as follows: 10.21 to
31.10%, 7.05 to 20.62% and 25.86 to 43.89%, respectively for crooked
stems, sinuous stems and total poor form. As observed for insect
injury, there was also no consistency between performance in growth and
stem form.

On the other hand, there were no significant differences in either

ANOVA unit between the good and poor families.
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Relationships between insect injury and stem form

The correlation matrix between insect damage and the components of
stem form is shown in Table 16.

As anticipated, positive and strong correlations were observed
between insect damage and crooked seedlings since the injuries caused by
insects to the growing points of seedlings appeared to be a major
causative agent of stem crookedness. However, correlations between
insect damage and total poor form were positive but not significant at
family level while correlations between insect damage and stem sinuosity
were negative but not significant (Figure 8). Regression analyses
between insect damage (independent variable) and stem form components
(dependent variables) showed that 64X, 32% and 18% of total wvariation,
respectively, in crookedness, total poor form and sinuosity of stems
were explained by insect injury.

These results suggest that controlling insect damage would
indirectly result in a significant decrease of crooked stems whereas it
would have little influence on sinuosity of stems. Thus, stem sinuosity
appears to be under direct genetical control and is apparently caused by
physiological mechanisms related to cambial activity (Franklin and
Callaham, 1970).

On the other hand, while crooked and sinuous stems were not
correlated at family level, total poor form (crookedness plus sinuosity)
revealed significantly related to stem crookedness but not to stem
sinuosity. Regression analyses indicated that about 56X of family

variation in total poor form was explained by crookedness versus only
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7.50% explained by sinuosity of stems. Therefore, crookedness could be

considered as the dominant factor contributing in total poor form.

Relationships of insect damage and stem form with nursery growth
characteristics and field height (Table 16).

Negative and non-significant correlations were found between total
height, diameter, number of branches with, respectively, insect injury
and stem form components in the nursery test. In contrast, Genys and
Harman (1990) reported first-year height and diameter of 25 populations
of black locust in the nursery to be positively and significantly
correlated to injury by twig borer.

On the other hand, no significant associations were detected for
the same families between first-year and fourth-year field height and
insect injury (-0.300 and -0.22, respectively), total poor form (-0.339
and -0.083, respectively), crookedness (-0.402 and -0.191,
respectively) and sinuosity (0.060 and 0.126, respectively) as evaluated
in the nursery. Mebrahtu and Hanover (1989) found from over 400
families of black locust, including the 10 families studied in the
nursery, a much lower gnd positive correlation between first-year field

height and injury by twig borer (r=0.073).

CONCLUSION

Insect damage and stem form did not appear as a potential tool for
nursery selections as evidenced by their non-significant variation among
families (probably due to insecticide sprays) and their weak
correlations with growth characteristics in the nursery and in the
field. However, injury by insects appeared to be a major causative

factor of stem crookedness whereas it showed little influence on stem



E
. oS v wil adgled

i metn bas

SRAE AT L ) sismysH
SR O Ko 20i dzsld de

g (9 PR B NN P L G

O O S TP R L E BN T, |

aau) astlins?

e PEEERTA

T2 ol el 6




62
sinuosity which apparently was caused by lack of apical doﬁinance, and
thus, was under more direct genetical control than crookedness. Since
the stem borer (Megacyllene robiniae), the major threat of black locust
field plantings seldom occurs in the nursery, identifying genotypes
resistant to insect damage in the nursery does not necessarily mean that
these genotypes will be resistant to the stem borer in the field.
Therefore, breeding for insect resistance in black locust should be done
on field plantings while nursery insects should be strictly controlled

to improve the form of seedlings.






SECTION IV.
EFFECTS OF GENOTYPES AND GROWTH POTENTIAL ON GAS EXCHANGE

CHARACTERISTICS OF BLACK LOCUST (Robinia pseudoacacia L.)

ABSTRACT

In this study, variation in late season photosynthetic efficiency
and its relationships with seedling growth characteristics were
investigated from the nursery progeny test. Mean net Pn per family
ranged from 10.96 umol m™2s™! to 13.42 umol m™2?s”! but no statistical
differences among families or between good versus poor families were
found. Family differences accounted for little of total variation
(2.88%) while most of the variation was contributed by the within-family
variation (66.40%).

On the other hand, poor and inconsistent correlations were found
associating late season net Pn with growth characteristics suggesting
that late season net Pn is not a potential tool for nursery bed

selection.

INTRODUCTION

Physiological and nutritional characteristics (photosynthetic
rates, uptake and use of nutrients,) are related to genetic potential of
tree growth (Bailan et al., 1989) and thus, theoretically, can be used
as a tool to improve progeny testing.

Genetic variability in photosynthesis (Pn) has been demonstrated
in several studies involving Scotch pine (Gatherum, 1964), Douglas-fir
(Luukanen and Kozlowski, 1972; Campbell and Rediske, 1965), larch

species (Ledig and Botkin, 1974), aspen (Gatherum, et al 1967; Foote and
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Schaedle, 1978), black walnut (Carpenter, 1972, 1974), sycamore (Ledig
and Botkin, 1974), black locust (Mebrahtu, 1989), etc. These studies
were either dealing with Pn efficiency (CO, uptake per unit leaf surface
area per unit time) or Pn capacity of an entire plant (CO, absorbed per
plant per unit time), both being a determination of net Pn, i.e., gross
Pn minus rate of respiration. These studies have shown the weakness of
using photosynthetic measurements (either in natural conditions or in
controlled environment) as a tool for predicting present and future
growth since results were not coherently correlated with growth
characteristics and productivity. Indeed, correlations were either weak
or strong, positive or negative, inconsistent over environments and
time. These incoherent relationships are interpreted as primarily
caused by failure to account for seasonal pattern changes of
assimilation (Ledig and Perry, 1969; Boltz et al., 1989). Considering
this assertion, the objectives of this study were to investigate the
potential of Pn efficiency as a tool for nursery bed selections through
Pn measurements taken in natural conditions and at different times on
the 10 families evaluated for growth characteristics in the nursery.
However, this present study is of limited value because, out of three
scheduled measurements, only one has been performed (due to technical
reasons) and coincided to the late season growth; but it is of interest
to investigate the variation in late season net Pn and determine its

relationships with seedling growth characteristics.

MATERIAL AND METHODS
To conduct the experiment, 5 healthy seedlings from those measured

for growth characteristics in the nursery were randomly selected in each
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plot, giving 20 seedlings per family (200 seedlings total). For the
selected seedlings, about 7 leaflets from attached leaves of the same
degree of development and well exposed to natural light were sampled and
their leaf surface area determined by using a LI-3000 area meter (LI-
COR, Inc.) prior to Pn measurements. Then net Pn measurements were made
during natural light period with a LI-6200 (LI-COR, Inc.) portable
porometer comprising a sample chamber.

Due to unfavorable weather conditions (clouds, rain) measurements
had been taken during four non-consecutive days (September 20, 24, 25
and 27) with a block (replication) per day, i.e., 50 seedlings per day.
Each day of measurement began when direct sun had covered the nursery
site and dew had evaporated from the seedlings (9:30 - 10:00 a.m.) and
finished when the sun began to leave the site (4:30 - 5:00 p.m.). There
were some differences in measurement conditions among blocks (light
intensity, ambient CO,, ambient temperature, relative humidity and rate
of air flow), but these conditions were rather uniform within each
block.

In addition to the measurement of Pn efficiency, stomatal
conductance (Gs) and transpiration rates were obtained from the data.
Analysis of variance on the basis of individual-tree data were performed
on Pn efficiency, stomatal conductance and transpiration, and their
subsequent relationships with nursery growth characteristics were

calculated and analyzed.
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RESULTS AND DISCUSSION
Variation

There were no significant differences among families or between
good versus poor families at 0.05 level of probability for net
photosynthesis (net Pn), stomatal conductance (Gs) and transpiration,
all measured during late season growth (Table 17). However, family
differences were detected at P<0.1 for stomatal conductance. As
expected, because of the variability in measurement conditions among
blocks, significant differences observed for the family by block
interaction overshadowed inherent family differences. The significance
of the interaction was stronger for Gs and transpiration (P<0.01l) than
for net Pn (P<0.05).

Family differences accounted for little of total variation in net
Pn (2.88%) and stomatal conductance (6.20%) and none in transpiration
rates while most of the variation was contributed by the within-family
variation with 66.401, 72.88% and 66.93% of total variation,
respectively, for net Pn, Gs and transpiration (Table 16).

Mean net Pn per family ranged from 10.96 mol m™2s™! to 13.42 mol
m2s™! or 89.84% to 109.95% of the study mean with only 5 families
performing above the overall mean (Table 18). The 5 best performers
averaged about 6% better than the study mean, and among them only one
family (382) figured in the 5 top families for final height and diameter
in the nursery, indicating a reversal tendency of the order of family
ranks between late season Pn and total height and diameter in the
nursery. Further, only 3 families out of the 5 best for net Pn and
residual growth were common to both and the worst performer in net Pn

(family 375) accounted for the 3rd best in the late season growth.
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Therefore, an inconsistent relationship seemed to exist between late
season net Pn and growth characteristics as observed in the nursery.

For stomatal conductance, only 3 families performed above the
overall mean whereas for transpiration 6 families were found above the
study mean.

Correlations

Relationships between physiological characteristics (Table 19).

The correlation coefficients at family level between late season
net Pn and stomatal conductance (r=0.623) and/or transpiration (r=0.464)
were not significant but moderate while Gs and transpiration appeared
strongly related (r=0.813). These results indicate that high stomatal
conductance in late season growth would lead to increased rates of
transpiration (i.e., loss of water) but not necessarily in high
photosynthetic rates.

On the other hand, total (individual-tree) and within-family
correlations among the three characteristics were all highly significant
(P<0.01) suggesting that mass selection (i.e., selection of individuals
regardless of families) and within-family selection based on late season
Pn efficiency would result in discriminating seedlings with higher Gs
and transpiration rates.

Relationships between Pn efficiency and nursery growth

characteristics and field height.

Negative family correlations were found associating late season Pn
efficiency with initial height, total height, diameter and number of
branches (Table 19) while positive and weak correlations were observed

between Pn efficiency and late season growth, thorn length, stem form
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and insect damage in the nursery. Similar trends of correlations were
also observed between nursery growth characteristics with stomatal
conductance and transpiration (Table 19). Finally, little association
was found between late season Pn efficiency in the nursery and seed
weight, percent seed germination, and 1-, 2- and 4-year field height.
These poor and inconsistent correlations relating late season Pn
efficiency and growth characteristics compare in many respects with
other studies on photosynthesis (see Introduction) and are mainly caused
by the failure to take into account the seasonal changes in
photosynthesis. For example, Logan (1971) found in studying a 7-year
old jack pine provenance test (Pinus banksiana Lamb.) a favorable
relationship between photosynthetic rate and tree height in October and
not the other months. Therefore, photosynthetic rates cannot be
characterized by measurements at only one period in the growing season

(Ledig and Perry, 1969).

CONCLUSION

This study based on late season Pn efficiency has shown: (1) no
statistical differences in late season net Pn among genotypes of black
locust grown in the nursery; and (2) inconsistent relationships with
growth characteristics.

It appeared that photosynthesis is a complex characteristic
greatly affected by plant architecture and seasonal changes, and thus
cannot be characterized by irregular measurements. However, genetic
improvement may result from comprehensive studies of Pn, if in addition

other factors such as relation of Pn to respiration and distribution of
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photosynthate within trees are taken into consideration (Luukkanen and

Kozlowski, 1972).
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