


]

This is to certify that the

dissertation entitled

Some Operators and Carleson Measures on
Weighted Norm Spaces

presented by

Dang-sheng Gu

has been accepted towards fulfillment
of the requirements for

Ph.D. degree in Mathematics

Major professor ﬂ

Date__May 10, 1991

MSU is an Affirmative Action/Equal Opportunity Institution 0-121



LISRARY
Michigan Sizic
, Unlversity

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.

" DATE DUE DATE DUE DATE DUE

—[—

JUJL] [
ﬂ |

MSU Is An Afﬁrmanvo ActiorVEqual Opporturmy Institution
cMMn.l






SOME OPERATORS AND CARLESON MEASURES
ON
WEIGHTED NORM SPACES

By

Dangsheng Gu

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1991



ABSTRACT

SOME OPERATORS AND CARLESON MEASURES
ON
WEIGHTED NORM SPACES

By

Dangsheng Gu

Suppose (X, v,d) is a homogeneous space. Hormander has constructed a max-
imal operator to study problems involving Carleson measures in this situation. In
particular examples of homogeneous spaces, for example, in R" and in the unit ball
of CN, a maximal averaging operator has proved to be useful. The first goal of
this paper is to study the weighted norm inequalities for the Hormander maximal
operator and the generalization of the maximal averaging operator. Using the con-
cept of the “balayée” of a measure, we characterize those positive measures u on
Xt = X x R* such that the inequality || H, f||ze(s) < C||f]lLr(2), Where ¢ < p, holds
for the Hormander maximal operator H,, and those positive measures ¢ on X such
that the similar inequality || M, . f||Le(uy < C||fllzr), where ¢ < p, holds for the

maximal averaging operator M, , defined by

M, . f(z) = sup

1
t>r v(B(z,t)) JB(z.) |f(u)|dv(u),

where B(z,t) is the ball centered at z with radius ¢.

The second goal of this paper is to study the analytic functions on the unit ball



of CN. Let U be the unit ball in CV and Q be a positive measure on U satisfying
Békollé’s B? condition for some a > —1. The first result of this part is a Carleson
measure theorem for weighted Bergman spaces. We characterize those positive mea-
sures u on U such that || f||ze(u) < C||fllar@@) (1 < p < ¢) for any function f in the
weighted Bergman space AP(f2). The second result concerns the Bergman operator on
weighted mixed norm spaces. Using an interpolation theorem between the L? spaces
on U and the L? spaces on the boundary of U with different weights, we prove that
for some weights satisfying Békollé’s B? condition, the Bergman operator induces a
bounded projection on the weighted mixed norm space on U. Thus we are able to

identify the dual of those weighted mixed norm spaces of analytic functions.
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INTRODUCTION

The purpose of this work is to study several operators acting on the spaces of
functions in a homogeneous space (X, v, d).
A homogeneous space (X, v,d) can be defined as a quasi-metric space (X, d) with
a positive measure v on X satisfying the following condition:

There is a constant C,,, C, > 1, such that
0 < v(B(z,2r)) < C,v(B(z,r)) < 00

for all r > 0 and any = € X, where B(z,r) = {y|d(z,y) <r}.

We shall study the following operators.

1. Hormander maximal operator H,. An operator defined on the space
of locally integrable functions on X which maps a function f on X to a

function H, f on X x R+:

(H,f)(z,t) = sup ) |f (u)ldv(u),

1
v(B(y,s)) /By,

where the supremum is taken over all balls B(y,s) D B(z,t).

2. maximal averaging operator M, ,. An operator defined on the space
of locally integrable functions on X which maps a function f on X to a

function M, . f on X.

M, f(z) = sup Tlfi(lac_,?ﬁ [yl

t2r
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3. The analytic embedding operator I. The restriction of the identity

operator to the Bergman spaces in the unit ball U of CV:

If=f.

4. The Bergman operator 73. An operator defined on the space of inte-

grable functions on the unit ball of CV:

N
Tpf(z) = ( ;ﬂ ) /U Kp(z, w) f(w)dmg(w), ze U,

where
Ks(z,w) = (1— < z,w >)"N-1-F g5 1.

The first half of this paper is devoted to the study of the maximal operators H,
and M, ,. The problem that we are concerned with is to characterize those measures
p defined on X+t in the H, case and on X in the M, , case, respectively, such that
the corresponding operator is bounded from L?(2) to L?(), where € is a “weighted
measure” on X defined by d? = wdrv with a positive weight function w. We shall
refer to these two problems as problem I and problem II, respectively.

We first consider the Hormander operator.

For w = 1, the unweighted case, when 1 < p = q¢ < 00, the solutions of problem I
are known as the “Carleson measures”. In [7], Carleson characterized those finite

positive measures y on the unit ball U in C! such that

(J, 0@ Pdws < Clf s

for every function f in the Hardy space H? (0 < p < 00), where U(z) is the Poisson
integral of f. He showed that the above inequality holds if and only if u(S) < Ch for

every set of the form



S={re?:1-h<r<1,0p<0<0,+h}.

Such a measure u is now often called a Carleson measure. In order to generalize
Carleson’s result, Hormander [11] introduced the operator H,. Using the Marcinkiewicz
interpolation theorem and a simple covering argument, he proved that the Carleson
measures are the solutions to the problem I when 1 < p = ¢ < oo.

In [9], Duren extended Carleson’s theorem to the indexes 0 < p < ¢ < co. He

proved that, for 0 < p < ¢ < o0

(f, UG 1d) < Cllfllms

for every f in HP, if and only if u(S) < Ch®, where 1 < a = q/p. Such a measure is
called an a -Carleson measure.
In general, an a -Carleson measure on Xt with respect to a positive Borel measure

A on X is a measure ¢ on Xt such that

||(T(B(z,1))) < C[A(B(z,1))]°%
where
T(B(z,t)) = {(y,s) € X*|B(y,s) C B(z,1)}

is the “tent” over the ball B(z,t). We shall see that, using Hormander’s idea, it is
not hard to show that if 1 < p < ¢ < co and a = ¢/p, then the a -Carleson measures
are the solutions to the problem I.

For the weighted case, when p = ¢, X = R" and v = m, where m is the Lebesgue

measure, the problem I has been solved by Francisco J. Ruiz and José L. Torrea [21].



In the case w satisfies Muckenhoupt’s A, condition, it will be shown that, similar
to the unweighted case, the solutions to the range 1 < p < ¢ < oo are the
a -Carleson measures with respect to 2.

The difficult part is the case when 0 < ¢ < p < oo. It is natural to guess that the
solution must be an extension of a -Carleson measure with respect to 2. Using the
concept of the “balayée” of a measure x4 as employed by E. Amar and A. Bonami [1],
we are able to prove the following theorem which is contained in Theorem 2.9:

Theorem 1 Let0 < a <1, andlet¢> 0, p>1, g/p=a. Let u be a positive
measure on X*t. Suppose w € A, and set dQ = wdv. Then there is a constant C such

that

|Hoy fllLae) < CllfllLe(a)

for every f € LP(Q) if and only if

o MTB@T) o
r>g Q(B(z,r)) €L (Q) (1)

Note that if ¢ = p, then a@ = 1 and the condition (1) shows that u is an a-Carleson
measure with respect to 0. Therefore we have an unified approach to the solutions
of problem I.

The above result enables us to extend Carleson’s theorem to the weighted Hardy
spaces HP(Q?) with p, ¢ in the range 1 < p < ¢ < oo and in the range p > 1,
0 < ¢ < p. It turns out that the solutions to the Carleson measure problem on the
weighted Hardy spaces HP() are the same as the solutions of problem I. The results
for unweighted Hardy spaces when 0 < ¢ < p < 0o were obtained by Videnskii [26]

in the one dimension case and by Luecking [15] in higher dimension case.



Now we consider the maximal averaging operator.

In order to study problem II in a general homogeneous space, we first introduce
the following concept:

We shall call a measure 4 on X an a-Carleson measure with respect to a positive
measure A on X if there exits a fixed r > 0 and a constant C, such that for any ball

B(z,r) centered at z with radius r,
lul(B(z,r)) < C:[MB(=z,r))]*

The reason to call such a measure an a-Carleson measure is that V. L. Oleinik
and B. S. Pavlov [18] have proved the following theorem which is an analogue of the
Carleson’s theorem mentioned in the discussion of the Hormander maximal operator:

Suppose U is the unit ball of C'. Then for1 < p< q < oo,

(f 1F1eduy’e < C( [ 1 flpdmytre

if and only if

#(E(2)) < Clm(E(2)))

for every z € U and any function f in the Bergman space AP , where E(2) is a
“suitable” subset of U and a = q/p > 1.

Similar characterizations were studied by Hastings [10] for the polydics DN and
by Cima and Wogen [8] for the unit ball U of CN.

We shall refer to the problem of characterizing those measures ¢ on X such that

the inequality

"f”LV(u) < C"f"AP(O)

holds for all functions in weighted Bergman spaces A,(f2) as the “Carleson measure

problem on X”.



The reason to study the operator M, , is that many functions, for example sub-
harmonic functions, are controlled by the operator M, , and that Carleson measures
can be applied in the study of the operator M, ,.

Applying similar ideas used in the study of problem I, one can show that, in a
homogeneous space, if w satisfies the condition A,, then the solutions to problem II

when 1 < p < g < 0o are those measures s on X satisfying
|lu|(B(z,r)) < C,[UB(z,r))]”

for any = with fixed r.

When p > 1 and ¢ < p, we prove the following characterization theorem which is
contained in Theorem 3.11:

Theorem 2 Suppose u is a positive measure on X and suppose w € A,. Let

¢>0,p>1,q/p=a<]1. Then

(f 1Moo flradw)ie < o ([ IfPra0) > f € L7(9),
if and only if

#(B(z,r))
Q(B(z,r))

€ L™=(Q) < oco. (2)

When p = ¢, then a = 1 and the condition (2) implies that u is an a-Carleson
measure on X. Therefore we have reached an unified approach to the solution of
problem II.

Using the method of the proof of Theorem 2, we are able to characterize those
measures on a general homogeneous space such that the Hardy-Littlewood maximal
operator is bounded from L?(Q) to LY(u) (1 < p< 00,0 < ¢ < ©0). When1 < p <

q < o0 and X = RN such a characterization have been obtained by E. Sawyer [24].
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In the second half of this paper, we shall restrict ourselves to a special homogeneous
space, the unit ball U of CN. We shall always consider the measure defined by
dmpg = (1 — r?)Pdm, B > —1, as the “unweighted” measure in U, and shall refer to
the “weighted” measure as the form d? = wdmg.

As in the previous discussion, we have seen that Carleson measures play an im-
portant role in the study of maximal operators. Qur third problem, which will be
referred to as problem III, is to determine the sufficient and necessary conditions un-
der which the embedding operator is bounded from AP(?) to L(u). This is, in fact,
equivalent to solving the Carleson measure problem on U, or, to set up a Carleson
measure theorem in the weighted Bergman spaces.

As we have mentioned before, for the unweighted case, when 1 < p < ¢ < oo, the
problem IIT was solved by Oleinik and Pavlov [18] in the one dimension case. The
higher dimension case was solved by Cima and Wogen [8] for ¢ = p = 2, and was
generalized by Luecking [14] to 0 < p < ¢ < 0c0. When 1 < ¢ < p < 00, it was solved
by Luecking [15]).

In the weighted case, a general technique to find a sufficient condition such that

| £1l ar () < ClIf || ar(a)

was obtained by Luecking [14].

In this paper, we solve the problem for those weights w satisfying Békollé’s Bj(w)
conditions studied by Békollé in [3]. We prove the following theorem which will be
restated as Theorem 4.7 in chapter 4:

Theorem 3 Leta > 1 and let 1 < p < ¢ < oo such that q/p = a. Suppose w

satisfies the Bf(w) condition. Then

| fll as(y < C|Ifll arce)

7



for any f in the weighted Bergman spaces AP(?) if and only if thereisar,1 > r >0,

such that
#(E(a,r)) < C,[QE(a,r))]*

for any a € U, where E(a,r) is the psudohyperbolic ball centered at x with radiusr.

The last problem in this paper concerns the boundedness of the Bergman operator
on the weighted mixed norm spaces in the unit ball of CN. We shall refer this problem
to problem IV.

In (3], Békollé found a necessary and sufficient condition for weight functions such
that the Bergman operator is bounded on the corresponding weighted L? spaces in
the unit ball of CV. In [13], M. Jevtié proved that there are bounded projections from
general mixed norm spaces onto the weighted mixed norm spaces of analytic functions
with the normal-function weights. The projections he studied are very similar to
the Bergman operator. Here, we show that the Bergman operator is bounded on
weighted LP spaces on the boundary of the unit ball of CV with normal-function
weights. Then we determine the weighted mixed norm spaces on the unit ball of CVY
as the interpolation spaces between weighted L? spaces on the unit ball of CV and the
weighted L? spaces on the boundary of the unit ball CN with different weights. These
facts enable us to prove that the Bergman operator is bounded on weighted mixed
norm spaces with radial weights satisfying Békollé’s conditions. The main result of
this part is the following theorem which is contained in Theorem 5.16:

Theorem 4 Suppose p < ¢ < 00, 1 < p < 00, and that ¢ is a normal function.If

a radial function w(r) on [0,1) satisfies condition B2(pP(r)w(r)):
1
S @)1 = rerN-ldr
1 ! ’
x ([ @ F e ()1 - )N ) < Chletvp

8



for all0 < h < 1, where %+;}r=1.

Then, for % + q—lr =1,

(1) T, is bounded on LP9(pw(1 — 12)*);

(2) Ty is bounded on L (go""w"o"(l —r2)).

As an application, we show that Jevtié’s result is a special case of our result.
Using the Bergman operator, we have obtained several duality theorems of weighted
mixed norm spaces.

Our exposition is organized in the following way.

We start by introducing the homogeneous spaces and analytic function spaces
on the unit ball of CV and some of their basic properties, the A, and B? weights,
definitions and notations of operators and the concept of a “balayée” of a measure.
This is done in chapter 1, immediately after this introduction.

In chapter 2, we first collect some results concerning the a-Carleson measures on
X+ with « > 1. Then we present the main result concerning the boundedness of
the Hormander operator from L?(Q?) to L%(u) when ¢ < p. The extension of the
Carleson measure theorem in weighted Hardy spaces is presented in the last section
of chapter 2.

Chapter 3 is devoted to study the maximal averaging operator.

A Carleson measure theorem in the weighted Bergman space is presented in
chapter 4. As its application, we discuss the multipliers between different weighted
Bergman spaces.

The last chapter is devoted to the study of the Bergman operator in weighted

mixed norm spaces.



Chapter 1

PRELIMINARY

We introduce the homogeneous space and some of its basic properties in the
first section. Some notations and basic facts concerning the analytic functions in the

unit ball of CV are presented in the second section.
§1.1 Homogeneous Space

Let X be a topological space with a positive measure v. Let d be a real-valued
function in X x X. We shall call the triple (X, v, d) a homogeneous space if it satisfies

the following conditions:

1. d(z,z) = 0;
2. d(z,y) =d(y,z) >0 ifz#y;

3. there is a constant Cq such that d(z,z) < Cyld(z,y) + d(y,z)] for all z, y

and z;

4. given a neighborhood N of a point z, there is a r, r > 0, such that the

sphere B(z,r) = {y|d(z,y) < r} with center at z is contained in N;

10



5. the spheres B(z,r) = {y|d(z,y) < r} are measurable and there is a con-

stant C,, C, > 1, such that
0 < v(B(z,2r)) < C,v(B(z,r)) < 00
for all r and z.

A measure satisfying condition 5 is called a doubling measure. The doubling
measure v has the following property:

For any K > 0, there is a constant Cx > 0 such that
v(B(z,Kr)) < Ckv(B(z,r))

for all z and r.
The family of balls in a homogeneous space satisfies the following geometric prop-

erties:

Lemma 1.1 Let a > 0. Then there is a constant C > 0 such that if r < ar’ and

B(z,r)N B(y,r') # ¢, then B(z,r) C B(y,Cr’).

Lemma 1.2 Let F be a family of {B(z,r)} of balls with bounded radii. Then there is
a countable subfamily { B(zi,r;)} consisting of pairwise disjoint balls such that each
ball in F is contained in one of the balls B(z;,br;), where b = 3C3 and Cy is the

constant in condition 3 .
For the proof of Lemma 1.1 and 1.2 , see A. P. Calderén [6].

Lemma 1.3 Let u be a positive measure in X. Let a > 1. If there is a 1o > 0 such

that u(B(z,ro)) < Clv(B(z,70))]* for any x € X, then for any r > rq

#(B(z,r)) < CCP[v(B(z,1)))%,

11



where Cy depends only on the constant b in Lemma 1.2 and the constant Cy in con-

dition 8 of the definition of homogeneous space.
Proof: Let r > rg and let
To
E= {B(y1 T) ‘Y € B(:L',T)},
where b is as in Lemma 1.2. Then
B(:L‘,T) - UEB(y’ %9)

By Lemma 1.2 , there exists {y;} C B(z,r) such that B(z,r) C UB(yi,r0) and

{B(yi, )}, is a disjoint family. Note that
UB(y:, -2) € B(,Calr + 22)) C B(z,2Car)
since we may assume b > 1. By the doubling property of v, there is a C; such that
v(B(yi o)) < Cuv(B(y:, 7).
Thus

u(B(z,r))

5 W(B(yir )

=1

cg";lu(B(ye,roma

INA

IA

CCI3 VBl )P

=1

CCrlv(B(z,2Car)))"

INIA

IA

CCP[v(B(z,r)))"

The proof is complete.

12



Suppose w(z) > 0 is a positive locally integrable function on X. We say that a
measure §1, defined by d? = wdv, satisfies Muckenhoupt’s A, condition relative to v

if for any ball B,

-1 r-1 P .
/B wdv| /B WRETV P S CU (B 1< p<oo;

/deu < C, v(B)essin frepw(z) p=1.

Note that if w satisfies the condition A, for some p > 1, then  is a doubling measure.

In fact, by Holder’s inequality and the fact that v is a doubling measure, we have
Q(B(z,2r))

= / wdv

B(z,2r)

[v(B(z,2r))]P
“Us(oany w FTdv]r?
6., B )P

[fB(z:,r) w"FTdy]P—l

IA

IA

C.C. IB(z,r) wdv [fB(f'? w”~Tdy]P!
Up(z,) w™ FTdv]r-1
= C,C, /; =) wdv

= C,C.QB(z,r))

IA

for any z € X and r > 0.
By Holder’s inequality, the condition A, implies the condition A, if ¢ > p. In [6],

A. P. Calderén proved the following theorem:

Theorem 1.4 Suppose that all continuous functions with bounded support is dense

in L(v), then the A, condition implies the A, condition for some v < p.

In this paper, we shall always assume that the class of compactly supported con-

tinuous functions is dense in the space of integrable functions L!(v).

13



Definition 1.5 Let Q be any positive measure on X. The Hardy-Littlewood mazimal

operator is defined by

Mg f(z) = sup | fld©2

1
>0 U B(z,t)) JB(z.)

Let X+ = X x R* with the product topology. Denote
T(B(z,t)) = {(y,s) € X*|B(y,s) C B(x,t)}.

Let Q be a positive measure on X. Following the notation of E. Amar and A.
Bonami [1], for 0 € a < oo, we shall call a Borel measure ¢ on X* an a-Carleson

measure relative to Q if
lu|(T(B(z,1))) < C[QB(z,t)))
Definition 1.6 Let Q be a positive measure on X. For f > 0, define

Sa(z,y,t) = mXB(z,t)(y)-

(Saf)(@,t) = [ Sa(z,y,0)f(1)dUy).
Definition 1.7 The Hormander mazimal operator is defined by
(Haf)(z,) = sup grprmess [ 1£(wldw),
where the supremum is taken over all balls B(y,s) D B(z,t).
Definition 1.8 The nontangential mazimal operator on X+ is defined by
N(u)(z) = sup{|u(y, t)| : d(z,y) < t} = sup{|u(y,?)| : (v,¢) € ()},
where u is a function in Xt and

[(z) = {(y,t) : d(y,2) < t}.

14



Definition 1.9 The weighted Hardy space is defined by
H?(Q) = {u: u is harmonic in RN*1, N(u)(z) € L*(Q)}
with [[ul| ge(a) = || N (u)]|s(e)-

Definition 1.10 Let 0 < a < oo and let u be a Borel measure on X*. Define

San®) = [, Sa(,y, du(z, ).
Vi = {: IWIT(B(z,1) < CIAB(=, ).

W3 = {u: Slul € L= ()}.

We shall call Sg|u| the balayée of p with respect to Q. For 0 < a < 1, W is the

complex interpolation space (V, V§)a ( see [1)).

§1.2 Analytic Function Spaces
on the Unit Ball of CV

Let U denote the unit ball in CV¥, N > 1. Denote by m Lebesgue measure on
CVN = R?N normalized so that m(U) = 1. For a > —1, let dm, = c,(1 — |z]|?)*dm
with ¢, chosen so that when a > —1,m,(U) = 1. Denote by v, the surface measure
on the boundary S of U normalized so that v(S) = 1.

A positive continuous function ¢(r) on [0,1) is normal if there exist a, b,0 < a < b,

such that

(1) =45 is non —increasing, lim, ;- (;’J_:;—a =0.

(1.1)

(32) H“é%; is non — decreasing, lim,_,,- 7255 = oo.

15



We shall denote b = inf{b: b satisfies (i) of (1.1)}.
The functions {¢ , ¢ } will be called a normal pair if ¢ is normal and if for some

b satisfying (1.1), there exists A > b, such that

e(r)y(r) = (1 =r?)* 0<r<l. (1.2)

If ¢ is normal, then there exists ¢ such that { ¢ , ¥ } is a normal pair and then
¥ is normal [23].
For z = (z1,22,...,2n) and w = (wy,wy,...,wy) in CV, let
N
<z,w>= Z 2Z{W;
i=1
so that |z|? =< 2,z >. Following [19], for a € U, a # 0, let ®, denote the automor-
phism of U taking 0 to a defined by

a—Pz—(1-a]?)2Q,z

b.(2) =
(2) l1-< z,a>

,

where P, is the projection of CV onto the one-dimensional subspace spanned by a
and Q, = I - P,.
For a € U, let

K(a) = {®4(2) : Re < z,a >< 0},

then [20]
ma(K(a)) ~ (1 — |af?)>+N*.
Define the pseudohyperbolic metric p on U by

p(2,€) = |D¢(2)]-

16



For0<r<1,let
E(a,r)={z2€ U:p(z,a)<r}.
Then we have
ma(E(a,r)) ~ ma(K(a)) ~ (1 = [a)M+!*e.

For basic properties of K(a) and E(a,r), see [16] and [20].
Let 1 < p < 0o. For a positive function w € L!(U,dm,), the B?(w) condition is
the following:

There is a constant C such that for every K = K(a), a € U,
/ wdma(/ w'%dma)fr < CmE(K),
K K

1,1 _
where sty = 1.
In the case w is a radial function, that is, w(r) is a measurable function on [0, 1),

using the fact that K(a) is “nearly”
S,h)={z€eU:|1-<2,{(>|<h}

for ( = &1, h =1 —|a] (see (16, p.321]), the condition B?(w) can be written in the

form

1
_ .2\a,2N-1
/l_hw(r)(l r)r dr

1 ’
x [/ ,,w(r)'%(l — P2y 2N-1gp] 7 < Chle+DP,
1-

Let 1 < p < oo. For a positive function w € L}(U, dm,), the C, condition is the
following;:

There is a constant C such that for any £ = E(a,r), a € U,

17



-2, B
P r < P(E).
/Ewdm(/Ew dm)r» < CmP(FE)

The condition C, is a consequence of B? for any a > —1 [16].
Let A(z) be a non-negative measurable function on U and B(r), C(r) be non-

negative measurable functions on [0,1) such that
{r €[0,1): C(r) =0} =0,

where |E| denotes the Lebesgue measure of E in R!. For a measurable function f on

U and z € S, let

15, = [ 1fra)PAG2)m(z),  0<r<1, 1<p< oo

Since |f(rz)|PA(rz) is a measurable function on U, || f,||% , is a measurable function

on [0,1) ( see [20, p.150] ).

Definition 1.11 Let

1
1 lfpaasy = [ I515,BEr e 1<q<o,

Ifllzocoacy = sup [IfllapC(r).
r€fo,1)

The mized norm spaces are defined by

L»(A,B) = {f:|fllaBype < oo}.

LP*(A,C) = {f:|Ifllacpo < o0}

We shall denote H(U) the space of analytic functions on U and

18



HP%(A, B) = L*%(A, B)( H(U);

LP*®(A,C) = L**(A,C)(H(U).

In the case A = A(r) is a radial function, and B(r) = w(r)(1 — r?)*, C(r) =1,

denote

LP(AYPu(1 — 1?)%) = LP3(A, B),

LP*(A) = LP*(A,C),
and

HP(APu(1 — £?)*) = HP(A, B),

HP*(A) = HP*(A,C).
In the case A(z) = w(z), B=(1-1r?),C(r) =1, and p = ¢, we have
Definition 1.12 The weighted Bergman spaces are defined by
AP(wdm,) = HPP(w(z), (1 — r?)*).
Let
Ko(z,w) = (1- < z,w >)~N-1-e

with a > —1, z, w € U. The Bergman operator T, is defined by [19]
N+a
T, f(z) = ( ) / Ka(z, w) f(w)dma(w) 2eU.
N U

19



Define
T:f(z) = ( N ;" ) S 1Koz, )] f(w)dma(w) zeU.

Note that T is a linear operator.

In 3], B. Békollé proved the following:

Theorem 1.13 T is bounded on LP(wdm,) if and only if w satisfies B2(w) condi-

tion.

20



Chapter 2

HORMANDER MAXIMAL
OPERATOR
AND CARLESON MEASURES ON X+

In this chapter, we restrict ourselves to the space X* = X x R+ where X is a
homogeneous space. We study the characterization of measures g on X+ such that
the inequality ||H, f||ze(u) < C||fllzs(n) holds for the maximal operator H, studied
by Hormander. The solution when ¢ < p utilizes the concept of the “balayée” of the
measure g. Using this characterization we extend Duren’s Carleson measure theorem
to the weighted Hardy spaces.

In the first section we collect the results for a-Carleson measures with a > 1. We
shall prove the main result of this chapter in section 2 and section 3. In the last

section we shall prove a Carleson measure theorem on weighted Hardy space.
§2.1 a-Carleson Measures on X+ with a > 1

In this section, we always assume u is a positive measure.
The method of the proof of following theorem is essentially due to Hormander
[11], which gives a relation between an a-Carleson measure and the L?-norm of the

operator Hgq.
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Theorem 2.1 Leta > 1, p > 1. Suppose that  is a positive doubling measure on

X. Then p € Vg if and only if

| Ha fllLagw) < CllfllLe(e), feLrQ)

where q/p = a.

Proof: That ||Hafl|Leu) < C||fllze@q) implies 4 € V§ follows from the standard
argument by taking f = xB(z,y).

For each n > 0, we define

n — .____._.1 u
(Haf)(z,t) = agn,3(32§)33(=,:) Q(B(y,s)) /Bv.») |/ (w)ld2(w)

and we shall show that the inequality above holds with Hq replaced by Hg with C
independent of n. Once this is established, the theorem will follow by letting n tend
to infinity.
It is clear that H§ is of type (00, 00). If we can show that HJ is also of weak type
(1, @), then the conclusion will follow from Marcinkiewicz interpolation theorem.
Let A > 0 and let E = {(z,t) € X* : H3f(z,t) > A}. For each (z,t) € E, there

is a ball B(y,r) containing z such that n > r > t and

1

Q(B(y,r)) /B | (w)ldf2(u) > 2.

Let B be the collection of all such balls and let {B(y;,r;)} be the countable subfamily
of pairwise disjoint balls of B as in Lemma 1.2 . Then Up B(y,r) C U B(y;, br;) and

that each B € B is contained in one of B(y;, br;).
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It is clear that E C UT(B(y;, br;)). Therefore

IA

WUT(Bs bri)
3 (T (B(ys brs))
C T (UByi bri))"
C S (U(Blyiyri))”
S, .\
S irany

(”l'v'l')

c A
=111

pH(E)

AN IN NN A

IA

That is Hg is of weak type (1,a). The conclusion follows.
Next we give a similar estimate to the operator H,.
Let ¥ > 1 and d? = wdv. If w € A,, by Holder’s inequality, it is easy to show

that
(H.f)(z,t) < C[Ha(If )],
where C only depends on the A, condition. Thus we have:

Theorem 2.2 Leta > 1. Ifw € A, and let dQ = wdv, then p € V§ if and only if

|H, fllzow < Cfllzey,  f € LP(D)
for any p> 1, ¢ > 0, such that ¢/p = a.

Proof: That |H, f|Leu) < C||fllLe(n) implies p € Vi§ follows from the standard
argument by taking f = xB(s,y)-

Now suppose u € V.

Since p > 1, by Theorem 1.4, thereis a 1 < 4 < p, such that w € A, . Note that

w € A, implies that § is a doubling measure. Therefore
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q
S, 1HL10dn
"
C [, \Half ¥ du

< ([, |frdar.

IA

The last inequality follows from Theorem 2.1, since % = ¢/p = a and E> 1L The
i
proof is complete.

The next lemma is due to E. Amar and A. Bonami [1].
Lemma 2.8 Let u be a positive measure on X*. Let
9) = [, Sale,y,)du(z, ).
If we define

AE) = [ Sa(1/9)(z, )du(z, ),

then

AeVy.
Proof: We neec to show that for any ball B

/T( g S0(1/9)(z,)dp(z,t) < CA(B).
By definition
I = L(B)Sﬂ(l/g)(ﬂt,t)dﬂ(z,t)
/x+ x1(B)(, t)[A Sﬂ(f‘,y,t);(ly—)dﬂ(y)]dp(z, t)

_ 1 X1(B)(T,t)XB(z,1(¥)
= /xm[/m BG e 0law).
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Since (z,t) € T(B) and y € B(z,t) imply that B(z,t) C B and y € B, then

x1(B)(Z, )X B(zt)(¥) < XB(¥)XB(=z,(¥)-

Thus
1 XB(=z.)(¥)
1< [tk a0, oyt 040w)
= [ dow)
= Q(B).

The proof is complete.

The last theorem of this section is due to Calderén in [6].
Theorem 2.4 If1 < p < 00, dQ = wdv with w € A,, then
L[ 1M, spag)e < ol f |fpaa)»

for f € LP(R2).

§2.2 Hormander Maximal Operator

and Space W{§

The following theorem shows the relation between the Hormander maximal oper-

ator and the space of “balayées”.

Theorem 2.5 Let0 < a <1, andlet ¢ >0, p > 1, g/p = a. Let u be a positive
measure on Xt. Suppose w € A, and set dQ = wdv. If p € W§ then there is a
constant C such that

IH. flloqwy < Cllfll ey
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for every f € LP(S2).
Conversely, let 0 < ¢ < p < oo and let a = q/p. Suppose that Q is a doubling

measure on X. If

1S fll ey < CllIfllLe i)

for every f € L?(Q), then p € W§.
Proof: Suppose 4 € Wg and ¢/p=a, p > 1. Let

9w) = [, Salz,y,0du(z,0).

Then p € Wg implies g € Lli_a(ﬂ). Note that by Holder’s inequality

[Sa(1/9)(=,1)]" < (Sag)(z, 1).

If f e L?(Q), then

S, V£
= [, VA1 Sa(1/9)(=, O] Sa(1/g)(=, )d(=, ¥
< [, H£(Sag)(z, 9Sa(1/g)(=, du(z, )
(L, VH.fPSa(1/9)(z, }du(z, )]
x[ [, 1(Sa9)(=, )| Sa(1/9) @, )du(z, O /7
L, 1He S Sa(1/9)(@, )du(z, )"
x( [, 1(Hag)(z, )= Sa(1/g)(z, )du(z, ) -7

= AXxB.

IA

IA

By Lemma 2.3, Sa(1/g)(z,t)p € Vi}. It follows from Theorem 2.2 that

A< O |fPdap'e
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and from Theorem 2.1 that

B< (| /x |g| 2= dq]t-/?,

Therefore
q
S, VEL f1odp
< r4Qe/? S O -9/P
< o[ \fraap/e [ |gl~=dn)
< Cll Loy

For the converse, suppose that 2 is a doubling measure on X, and that

1Sy fllaqwy < CllfllLeo)

for every f € L?(R). From the definition of W, we need to show g € L= ().
Let f be in LP/9(Q) which is the dual of LT:'E(Q) For any y € B(z,t), by Lemma

1.1 and the fact that Q is a doubling measure, we have

(Saf)(z,t) < CMaf(y).

Hence
(Saf)(z, )]s
BT Joey Mol o)
= CS(IMafl)(z,2).
Therefore

| sl
< [, [Saf)z, ldu(a, 1
= [, 1(Saf)(=z,01*/9duz, 0
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C [, [S.(1Mafl )] du(z, )
< 0] /x (Maf)PlsdQ)"/>  (by the hypothesis)

< C[./x |f|p/ch]q/p < o0.

Since p/q > 1, the last inequality follows from a similar argument used in the proof
of Theorem 2.1, we leave the details to the reader. Therefore g € Ll'lT(Q) The proof

is complete.

Corollary 2.8 Let 0 < ¢ < p, 1 < p < oo such that a = q/p. Let f € LP(RN)
and let U(z,t) denote the Poisson integral of f. Let u be a positive measure and let m

denote the Lebesgue measure on RN, Then u € W2 if and only if there is a constant

C such that
([ 10G )y < ([ Ifiram)e.

Proof: It suffices to prove the theorem for positive functions f > 0.

Let m denote the Lebesgue measure on RN and let

P(e,t) = — Mt

(=2 + )7
be the Poisson kernel in RY*!. Let U(z,t) be the Poisson integral of f. Then there

exist Cy, C3 such that
CiSmf(z,t) L U(z,t) < C2Hnm f(z,t)

for all (z,t).
Therefore the conclusion follows immediately from Theorem 2.5 .

Remark:

1. Corollary 2.6 is still true when R¥+! is replaced by the unit ball of C!.

We leave the details to the reader.
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2. In Corollary 2.6, the space (RY*?,m) can be replaced by the homogeneous

space (R¥*+1,wdm, d) under the assumptions of Theorem 2.5 .

§2.3 Another Characterization of W§

Let 2 be a positive measure on X defined by df? = wdv. Let

1T B(z, 1))
=08 e

Theorem 2.7 Let 0 < a < 1. Suppose S} is a doubling measure on X. Then
W C {u: K, € L™=()}.

On the other hand, suppose 0 < a < 1 and w € A, for some v 2> 1. then
WD {u: Ku€ L= (D).

Proof: Suppose 4 € Wg3. Then Silu| € L™=a(2). We may assume that p is

positive. Then for any y € X and r > 0,

1

QB(y,r)) /B(v.n
: 1 XB(y,r)(s)XB(z,t)(s)
R T e vy e e L OLZCD)
1 XB(y,r)nB(:c,t)(s)
= B e kO] (a0
_ 1 Q(B(y,r)N B(z,1)) -
= ABE) X aBEy) M=
1 UB(y,r)N B(z,t))
0B, ) Jrown — B 1)

Salul(s)df(s)

du(z,t).
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Since if (z,t) € TB(y,r), then B(z,t) C B(y,r). Thus

1
Q(B(y,r)) /B

> 1

=~ QUB(y,r)) JTBW")
#(TB(y,r))
QB(y,r))

Therefore Ma(Salul)(y) > Ku(y). By Theorem 2.4, if Sglu| € LT%E(Q), then

Salul(s)d(s)

du(z, 1)

Mq(Sa|ul) € L5 (). Hence K, € LT==(Q).

Conversely, suppose K, € LTl'E(Q) and w € A,. We first prove the following:
Lemma 2.8 {Sa(g;)(z,t)}u € V.

Proof: Given any B(y,r), we need to prove that

/TB(y,r) Sn(—;—”)(z, t)du(z,t) < CQ(B(y,r))

with C independent of y and r.
Note that if s € B(z,t) and (z,t) € TB(y,r), then s € B(y,r). By Lemma 1.1,

there are C), C; > 0 independent of s, y and r, such that
B(yv 7') C B(S, Clr) - B(y, CZT)'

Since Q is a doubling measure, we have

1 _ QAB(,Gir)
Ku(s) — u(TB(s,Chr))
Q(B(y,Cor))

=~ u(TB(y,r))
Q(B(y,r))
H(TB(y,r))

Therefore
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‘/TB(,,',.) SQ(KL”)(:E: t)d/.l(z’ t)

1 dQ(s)
Jootery BB oo ey 400

B(y,r)
= -/ra(w) ¢ #(T B(y, r))d”(x’ ‘)

= CYB(y,r))-

The proof of the lemma is complete.

Now, similar to the proof of the first part of Theorem 2.5 (with g replaced by K,),
for any f € L7(Q), take ¢ < 7 such that £ = a, we have ||H, L) < C||f[Lr(a)-
Then since we may assume 4 > 1, the second part of Theorem 2.5 implies that
p € W§. The proof of Theorem 2.7 is complete.

Combining Theorem 2.5 and Theorem 2.7, we have proven the following:

Theorem 2.9 Let0 < a <1, and let ¢ > 0, p > 1, q/p = a. Let p be a positive
measure on X*. Suppose w € A, and set dQ) = wdv. If K, € Lii_a(ﬂ), then there is

a constant C such that
|5y fllLaqu) < Cllfllze(a)

for every f € LP().
Conversely, let 0 < ¢ < p < 0o and let o = q/p. Suppose that  is a doubling

measure on X. If
IS, fllzagw) < ClIfllza)

for every f € L?P(R2), then K, € Lli_a(ﬂ)
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§2.4 Carleson Measure Theorem
on Weighted Hardy Spaces

On RV, let N be a doubling measure such that dQ = wdm, where m denotes the

Lebesgue measure. Recall that the weighted Hardy space is defined by
H?(Q) = {u: u is harmonic in RN*1, N(u)(z) € L”(Q)}
with [|ullge@) = |V (u)]|Lr(@)-

Lemma 2.10 Let
I(z) = {(y,t) : d(z,y) < t}.

(1) If (y,t) € T'(z), for any function f defined on X, we have
(Haf)(y,t) < CMaf(z).

(2) For any x, we have
N(Hqaf)(z) £ CMuf(x).

Proof: Without lost of generality, we may assume f > 0. we have

1
(HoD)wst)= | s  Grprmss [iry T9000).

Since for any (y,t) € I'(z) and B(z,s) D B(y,t), we have z € B(y,t) C B(z,s).
Therefore, by Lemma 1.1 there are constants C; > C; > 0 independent of z, y, 2, s

and t such that
B(z,s) C B(z,C3s) C B(z,C}s).

Since  is a doubling measure, there is constant A such that

Q(B(z,8)) > AQYB(z,C13)) > AQ(B(z,C38)).
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Therefore

1
Q(B(Z, 3)) B(z,9)
1

= CQ(B(z,Cls)) B(z,c,.)f(u)dn(u)

< CMqyf(z).

f(u)dQ(u)

The conclusion (1) follows from the above inequality.

The conclusion (2) follows from (1) and the definition of operator N.

Theorem 2.11 Let a > 1. Let Q be a doubling measure on X. Then u € Vi§ if and
only if
l[w(2, )| oy < ClIN ()| o(@)

for any measurable function u satisfying N(u)(z) € LP(Q) with q¢/p = a.

In particular, if X = RN and dQ = wdm, then

(1) Suppose w € A,. Ifp > 1 and ||u(z,t)||Lequ) < C||N(u)||Lr(q) for any harmonic
function u(z,t) satisfying N(u) € LP(Q), then p € V§;

(2) Suppose w € A, for somer > 1. If p <1 and ||u(z,t)|| Lo < C||N(u)| Lr(q)

for any subharmonic function satisfying N(u) € LP(Q), then p € Vi§.
Proof: Suppose p> 1 and p € Vi§. If y € B(z,t), then
lu(z, t)] < N(u)(y).
Thus
Ha(N(u))(z,1)

1
B(z,1)) JB(=.

2 |u(z,1)].

N(u)(y)dU(y)
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Therefore
lu(2, )l o) < CllHa(N(u))llLoq) < ClIN ()| Loc)-
The last inequality follows from Theorem 2.1 .
For p <1, take r > 0 such that p/r > 1. Let G(z,t) = |u(z,t)|", then

NG(z) = |N(u)(z)|" € L*"().

The conclusion follows from the case p > 1.
The “only if” part follows by letting u(y, s) = x1(B(z,4)(¥> 3)-
We now prove the particular case.
(1) Let xB(y,s) be the characteristic function of B(y, s). Let U(z,t) be the Poisson

integral of x p(y,,)- Then there are Cy, C; > 0 such that
CiHp(z,t) 2 U(z,t) 2 C2Sm(XB(y,)(2, 1)
for all (z,t). Thus if (z,t) € TB(y, s), then
U(z,t) > CaSm(xB(y.0))(z,t) > Ca.

Hence
(u(TB(y,$)))/* < C||U|| Lagu)-
By Lemma 2.10,

N(HmXB(y,a))(z) S CMm(XB(y,:))-

Therefore

(s(TB(y,s)))"/*

CllU | Loqu)

IA

< C|lINU)|le(ay
< C|IN(HmxBw9)llr@)
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< C”Mm(XB(y..))"Lp(n) (Lemma 2.10)

< Clixsw.sllea)

C(UB(y, s))'".

The last inequality follows from Theorem 2.4 .

(2) Suppose p< 1, w € A, for some r > 1 and suppose
lu(z, )l Loqwy < ClIN ()| Le(e)

for all subharmonic functions with N(u) € L?(Q?). Let | > r. For any harmonic

function u € L!(R), take k > 1 such that I/k = p. Then
G(z,t) = |u(z,t)|*
is subharmonic and N(G) = |N(u)|* € L?(R?). Thus

l[eell oy

k
= NG n

k
= IGI%
k
< ClIGIIa)

= C”"”L’(Q)-

The conclusion follows from the case p > 1.

We now turn to the main result of this section:
Theorem 2.12 Let0 < a <1 and let ¢/p=a. Then
l[4(Zs )| oy < CIN ()]l L@
for all u(z,t) satisfying N(u) € L?(Q) if and only if p € W§.
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In particular, if X = RN and dQ = wdm, where m denotes the Lebesgue measure,
then

(1) u € Wg implies [[u(z, )20 < CIN(W)lzrqeys

(2) Suppose w € A,. If p> 1 and ||u(z,t)||Le(u) < C||N(u)||Lron) for all harmonic
functions u(z,t) satisfying N(u) € LP(R), then p € W§;

(3) Suppose w € A, for some r > 1. Ifp < 1 and Ju(@, )lluxg < CIN ()l

for all subharmonic functions satisfying N(u) € LP(), then p € W§.

Proof: We only prove the special case. The proof for the general case is similar.
(1) Suppose p € W§. Let g be the balayée of u w.r.t.  as in Lemma 2.3. Note

that by Holder’s inequality

[Sa(1/g)(=,1)]™* < (Sag)(z, ).

Then

JIRTEDIR”
= [, 16,0 Sa(1/g)(@, O] Sa(1/9)(=, tdu(z, 1
S, 1@ D17(Sag) (=, )Sa(1/9)(=, du(a, )
[, lu(=, 0 Sa(1/g)(z, O du(z, ]
X[ [, (Sag)(a, )17 Sa(1/g)(=, tydu(z, ) ~*/7
(Ji., 16(@,0Sa(1/g)(z, )du)e/»
x([, 1Ha(g)(@, )™= Sa(1/g)(z, )du)' 7

< o[ INwPa)s.

IA

IA

IA

The last inequality follows from Theorem 2.11 and Theorem 2.2 since by Lemma 2.3,

Sa(1/g)(z,t)s € Wg.
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(2) Suppose for all harmonic functions u(z,t) with N(u) € L?(Q), we have
llu(z, D)l Law) < ClIN(u)]|Le(@)-

Suppose p > 1 and that g is as above. Note that similar to the proof of Theorem
2.5, for any y € B(z,t), by Lemma 1.1 and the fact that Q is a doubling measure, we

have

(Saf)(z,t) < CMaf(y).

Hence

(Saf)(z )M
C 1/a
< ABGT) Joy MAF W)

= CSa(|Maf|'/%)(z, ).
Let f € L?/9(Q). Then

| [ s@) @)l
< [, 1SalfI(z, )ldu
< ., [(Salfly/eran
< [ [Sa(Malf))/e)du
< C [ [0(Malf1)/o)lrdp,
where U((Ma|f|)!/?) denotes the Poisson integral of (Ma|f|)!/%. Then by the hypoth-

esis,

| [ 5(0)f(w)dUw)
< C([, INU((Mal s/l ra)ele

< C([ INUHn((Mal f)M/0))dc2)elo
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c( /x |Ma[(Malf))4][PdQ)"»  (by Lemma 2.10)
< ([ (Malfl)/eas)”

< O, I1f1P/ra) e < co.

The last two inequalities follow from Theorem 2.4 since p > 1, p/¢ > 1 and w € A,.
Therefore g € Lll_o(ﬂ), that is, u € W§.

(3) Similar to the proof of particular case (2) of Theorem 2.11 .
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Chapter 3

MAXIMAL AVERAGING OPERATOR
AND CARLESON MEASURES ON X

In this chapter, we characterize those measures u such that the maximal averaging
operator defined on a homogeneous space (X, »,d) is bounded from L?(2) to L(u)
with 0 < ¢ < p, where () is a measure on X satisfying Muckenhoupt’s A, condition. In
the proof, we use the “balayée” of measure p with respect to  which is an analogue
of the balayée defined on X*.

We shall collect some results for a-Carleson measures on X with a > 1 in the
first section. In the second section we shall discuss some properties of the space of
“balayées” on X. The ideas there follow directly from the paper of E. Amar and A.

Bonami [1]. The main result of this chapter will be presented in the last section.

§3.1 a-Carleson Measures on X with a > 1

In this and the next chapter, we shall state our results in the following generality.
The role of the family { E(z) : ¢ € X} below will vary in different situations that we
will subsequently study.

Let (X, v) be a measurable space satisfying the following condition:
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For any z € X, there is a v-measurable subset E(z) containing z and a v- mea-
surable subset E%(z) D E(z) with the following properties:
(1) v(E(2)) > G;

(2) “Doubling property™:
v(E*(z)) < Cov(E(x));

(3) “Covering property”:
If BC X and if A C U,egE(z), then there exists {z;}2, C B such that {E;}
(where E; = E(z;) ) is a disjoint family and A C U2, E*(z;).

We now give the definition of a-Carleson measure on X:

Definition 3.1 Let (X,v) be as above. Let p be a measure on X and let (1 be a

positive measure on X. If
le|(E*(z)) < C[Q(E*(2))]”
for any z € X, where oo > a > 0, then we call p an a-Carleson measure w. r. t. 2.

Let

Vi = {u: |ul(E*(2)) < C[Q(E*(2))]"}
with
Ikllve = inf{C : [ul(E*(2)) < C[Q(E*(x))]"}.
It is not hard to see that V{§ becomes a linear normed space.

For f € L},.(v), define

1
mi(e)= s S Ew) Jew 1
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Lemma 3.2 Let @ > 1 and u be a positive measure on X. Suppose that (X,v)
satisfies the assumptions made in the beginning of this section. If p is an a-Carleson

measure w. r. t. v, then
([1mfrduyle < Clulz [ Ispavys f e ()
for any 1 < p < q < oo such that q/p = a.

Proof: Suppose p is an a-Carleson measure w. r. t. v.

For f € L*®(v), it is clear that

lmfll ooy < N1fllLoo)-

If we can show that m is of weak type (1, a), the conclusion will follow from
Marcinkiewicz interpolation theorem.
Let A > 0, A = {z € X|mf(z) > A}. Then for any z € A, there exists y such

that z € E(y) and
1
A< —— dv
EW) Jew !
The covering property implies that there is {y;}2, C X, such that {E(y;)} is a
disjoint family, A C U, E*(y;) and A < Wfl(ﬂf Jeqa 1 fldv.

Let E; = E(y;), E? = E?*(y;). Then

1(A)

#(UE,(EY))

3 u(E?)

=1

IA

IN

00

lillve 2[v(ED)]™

=1

INA

Colullve do[v(E:))” (doubling property)

=1

INA
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< Colulvs v B (a21)

=1

1
< Celulive[X 5 |, 1f1avt®

=1

1
< Celullvsl [ 1f1dv

Hence m is of weak type (1,a). By the Marcinkiewicz interpolation theorem, if

1/p=6,1/g=2,0<0 <1, then

Imfll ey < CUBIVENF Loy,

where C only depends on doubling constant C,. The proof is complete.
Remark: The doubling property and covering property can be replaced by the
assumption: if A C UzepE(z), then there is {z;} C B such that A C U, E(z;) and

the sequence E(z;) can be distributed in N families of disjoint subfamilies.

Definition 8.3 Let0 < a < oo and let ) be any positive measure on X. Fizr > 0,

define

Pa,(z,y) = mxatz.r)(y);
Po.f(@) = [ Pos(e,9)f(5)d0

1
Mq.f(z)=  su —_—
( ) B(y,t))g(z,r) Q(B(y’ t)) B(y,t)

Fion(y) = [ Par(,v)du(e);

Vae = {2 |8l(B(z,2Car)) < C[Q(B(z,2Car))]°};

| F1d€;

W, = {u: Py lul € L™= (Q)};

VO ={p:|pl(X) < oo}

Amar and Bonami have used the term “balayée” in a different but similar context

to describe the function Pg .u ( see Definition 1.10 in Chapter 1 ). We shall adopt
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their usage and call Pg,|u| the balayée of 4 w. r. t. (R2,r). Under the norm

leliws, = 1Parpll oz )

Wg, becomes a linear normed space.

Let (X, »,d) be a homogeneous space. Let w(z) > 0, w € L}, .(v) be such that the
measure §), defined by d} = w(z)dv, is a doubling measure. Note that (X,(,d) is
also a homogeneous space.

Fix r > 0. Let E(z) = B(z,r) and E*(z) = B(z,2Cyr), then
U.rGE(u)E(y) - B(z’2Cdr)'

It follows from Lemma 1.1 and Lemma 1.2 that the assumptions of Lemma 3.2 are
satisfied by the space (X, €2, d). We shall call a measure 4 on X an a-Carleson measure

with respect to (2,r) if there is a constant C, > 0 such that
p(E*(z)) < CQUE(2)))"
for every z € X.

Theorem 3.4 Let 1 < a < 00, and let 1 < p < q such that g/p = a. Let u be a

positive measure and § be a positive doubling measure. Then

(f 1Mo, fleduys < o[ |pd)e
if and only if u(B(z,2Car)) < C,[QB(z,2Car))]* for every z € X.

Proof: Note that (X, ,d) is a homogeneous space.

We only prove the “if” part. Fix R > r and define

1

ME f(z)= s —
nf@)= S OBED) I

| £1dS2
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The conclusion will follow by taking R — oo, if we can prove that u is an a-Carleson

measure w. r. t. (Q,r) implies

(f 1ME, flrdule < C( [ |fpan)tre

with C independent of R.
But this is a consequence of the proof of Lemma 3.2 with the applications of
Lemma 1.2 and Lemma 1.3. We leave the details to the reader. The proof is complete.
From the above proof, it is clear that if uB(z,2Cy4r) < C1[QB(z,2Cyr)]* with C,
independent of r, then ||Mq,, f||Les) < C||fllLr(q) With C independent of r. Letting

r — 0, we have the following:

Corollary 3.5 Let 1 < a < oo, and let 1 < p < q such that q/p = a. Let p be a

positive measure and §? be a positive doubling measure. Then

([ 1Maflduyts < c(f |1y ?

if and only if for any r > 0, u(B(z,2Cyr)) < C1[QUB(z,2Cq4r))]* for any z € X with

C, independent of r.

Now we turn to two-weight norm problem.

Let u be a positive measure in (X, v, d).

Theorem 3.6 Leta > 1 and p > 1. Ifw € A, and dQ = wdv, then for any ¢ > p

such that q/p = a,

(f IM..fldw)s < ([ 1fPd)?  f e 12(9)
if and only if u(B(z,2Cqr)) < C,[QUB(z,2Cqr))]* for any z € X.

Proof: The “only if” part follows from taking f = xB(z,2c,r)-
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Conversely, suppose u € V{f',.. Since w € A,, by Theorem 1.4, thereisa v, v <p

such that w € A,. By Holder’s inequality, we have

M, .f(z) < C[Ma,(If")(2)]7,

where C only depends on A, constant.
Note that by Holder’s inequality, w € A, implies that Q is a doubling measure.

Thus

J
C [ (Mo, 1£1%du
ctf1frar’s

IA

IA

with C depends on A, constant and the constant in the conclusion of Theorem 3.4.
The last inequality follows from Theorem 3.4 , since Z > 1, and -i- =a > 1. The
vy

proof is complete.
Similar to Corollary 3.5, if uB(z,2Car) < C1[2B(z,2Cqr)]* with C; independent

of r, then we have

Corollary 3.7 Let p > 1 and o > 1. Ifw € A,, then for any ¢ > p such that
q/p=a,
(f IM.flrdu) e < C(f IfPa)>  f e L2(9)

if and only if for any r > 0, u(B(z,2Car)) < C1[UB(z,2Cq4r))]* for any z € X with

C, independent of r.
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§3.2 Characterization of W§, for 0 < a <1

In [1], E. Amar and A. Bonami worked on X* and showed that the space of
“balayées” is the interpolation space between the space of bounded measures and the
space of Carleson measures on X*. We shall prove that in our situation, the parallel
result still holds. We shall show that the space W, with 0 < a < 1, is the complex

interpolation space between V° and V{ ,. The idea of the proof follows from E. Amar

and A. Bonami.

In this section we always assume that € is a doubling measure on (X, v,d). Note

that (X, 9, d) is also a homogeneous space.

Lemma 3.8 If u is a positive measure, for any r > 0, let

9-(y) = PB3.p(y)-

Then there is a constant C > 0 independent of r such that if we define

M(E) = [ Pos(dn,

then
Ar(B(z,2Cqr)) < CQB(z,2Cqyr)).

Proof: Fix r, let E(z) = B(z,r) and E?(z) = B(z,2Cyr). It suffices to show that
for any z € X,

1 2
[E,(,) Par(-)(w)du(y) < CUEY(2))

with C independent of r. Note that

XE2(z)(Y)XE(w)(t) < XB(z3c3r) ()X EwE)(1)-
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We have

/E o Pa.( i)(y)d#(y)
1
- /E o / Por(4:t) ;-5 4UDIR(y)
= [xw) [ gl dadu)

_ 1 [ XB3(=)(¥)XEw)(!)
= [ow /Gy e

XB(z, 3C’r)(t)XE(v)( )

</ g,(t)/ (E())
= Q(B(z”?’cdr))

dp(y)dA(t)

< CO(EY(2)).

The last inequality follows from the doubling property of {2 and hence C depends

only on doubling constant . The proof is complete.

Lemma 3.9 If u € Wg,, then there ezists positive po € V], and h € LP(po) such
that
B = hpo,

where 1/p=1-—a.

Proof: We may assume that u is positive.

Take po = Py ,(gr D, h = [Pg,.( )]"l with g, defined in the previous lemma. By
the assumption, g, € L?(0).

By Schwarz inequality, A < Py, g,. It suffices to show Py ,g, € LP(po).

From the previous lemma, po € V.. Since g, € LP(), Pa,g9. < Mq,g., and

p > 1, Lemma 3.2 implies that

/|P0,r!]r|Pdllo < C/ lg-|PdQ < oo.

The proof is complete.
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We now prove the main result of this section.

Theorem 3.10
Wg,r = (Vo, V(i,-)a-

Proof: Wg§, — (V% V3,)a follows from Lemma 3.9 .
In fact, suppose 4 € W§,. By Lemma 3.9, there exist yo € Vi, and h € LP(u,),
1/p =1 — a, such that
B = hpo.
Since h € (L'(po), L°(p0))a and L!(po), L>=(po) can be identified as a subspace of
V0 and V§,, respectively, the conclusion follows.
Next show (VO, Vg )a — Wg,.

Define a multilinear map by

T(f,9,h,0) = [ (Po.rf)(Pasglhdn.

Then on L*(Q) x L*(Q) x L*(u) x Vg, by Schwarz inequality and Lemma 3.2,

we have

IT(f,g,h,p)|

IA

12| oo () | Paae Nl 2y || Paa,r 9l L2(0)

< Cllsllvgllrll ooy | fll L2y | gll 222 -
Similarly, on L*(2) x L*(Q) x L*(u) x VO, we have
IT(f, 9, k, )| < Cllplivell Bl Loo g | f 1| oo gy | gl Loo -
By multilinear interpolation theorem [5, p.96], on
L¥(Q) x L*(Q) x L=(n) x (V°, Vg, )ers
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where 1/q = a, we have

IT(f, 9,k )| < Cllullvo,vg,ya 1Bl ooyl fl| L2s() 91l 2200

Fix h such that |h| =1 and hdu = d|u|. Let f = g € L?(Q). Then

Sy VPar fEdlul < Cllullivo.ig, ol ey

Since 2 is a doubling measure, for any y € B(z,r), |Pa,.f(z)| < CMq,, f(y), it follows
that

1 C 1
|Parf(2)]'? < B B(z,r)[MQ"f(y)] 2dQ(y)

C Pa..[(Ma,. f)?](z).

Thus, if f € L(R) = [LT5(2)]*, then

S [Pa ()1l w)ld2w)
< [ Porlfi(@)dlul(a)
< € [ (Parl(Mar f)/7)(2))dlul(2)

Clielivova yall(Ma,r £)?|Zaaqay

IA

< Cllellvevg,yallfllza@-

Therefore (V°, V{,)a < W§,. The proof is complete.
§3.3 Two-Weight Norm Inequalities

Let (X, v,d) be a homogeneous space. Let u be a positive measure on X and let

(1 be a positive measure on X defined by d? = wdv. Let r > 0 be fixed. Define

» _ p(B(.’L',‘r))
K= = aBEn)
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Theorem 3.11 Fizr > 0. Suppose p> 1 andw € A,. Letq>0 andg/p=a < 1.

If
K, € LT=(Q) < oo,

then there is a C, > 0 such that
(f 1Mo g15dm)s < Co( [ 1PAVY? € LP(Q).

Conversely, let 0 < ¢ < p and a = q/p. If Q is a doubling measure on X, and if

(f VP fldute < ([ 1£Pd0)> £ € L(®),
then

K, € L™= (Q) < oo.

Proof: Note that w € A, implies that € is a doubling measure.
Suppose HK,”L,_E?(Q) < 00, and p, ¢, a as in the assumption. Let g, be the
balayée of p w. r. t. (,r) as in Lemma 3.8 . By Lemma 1.1, it is clear that there

are constants A and B independent of r such that
AK, < g, < BK,.
Then g, € L™=(Q). By Schwarz inequality, [Pa,-(1)]"!(z) < Pa,rg-(z). We have
/ |M,.r f17dp
= [ 1M S TPa, ()@ Ponl ) @)
< [ My S (P (@)1Poo ) @)
< 1 M fP1Po () )
X 1Parg (2)I = Po ) )]~
< {f IMy.rfI”[Po.f(%)(x)]dflt(z)]"”’
X1 1Marg0(2)| 2 Po, () (=) (=)0
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By Lemma 3.8 , there is a constant C independent of r such that

/B(z,zc,,r) Pn"(;_,)(y)dp(y) < CQ(B(z,2Car)).

It follows from Theorem 3.4 and Theorem 3.6 that

[ 1M, flrdp
cLf 1f1rdaye/s| [ \g.| = dap-o/s

IN

IA

Clgel iz o 1 Wi

< CIIKTIIL,g;(m”f”L(Q)

with C independent of r.
Conversely, suppose |M,, f|lze(u) < Crl|fllzr@) With p, ¢ and a as in the as-

sumption. By the discussion at the beginning of above proof, we need to show that

For r > 0 fixed and z € X, since 2 is a doubling measure, there is a constant C

only depending on the doubling constant of 2 such that for any y € B(z,r),

Po.|fl(z) < CMq,f(y) < CMqf(y).

Thus

1/q c 1/qg
Pl i@ < opress [, (Maf @) /1du(y)

= CPv.f[(Mﬂf)l/q](x)-
Now if f belongs to L?/9(Q2), the dual space of Lli_a(Q), we have
| [ .15
< [ Polfl()du(a)
= [1PaIfI(@)/du(z)
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INA

C [(Purl(Maf)*)(z))du(z)
< CC,[/(Mgf)"/"dQ]"/’ (by assumption)

< coyl / IfP4dQ)s!? < co.

The last inequality follows from Corollary 3.5 with g = Q. Thus the constant C in the
last inequality is independent of r. Therefore g, € L™= () and || g'"z.l'l?(o) < CC,.
The proof is complete.

Next we turn to discuss Hardy-Littlewood maximal operator.

Note that under the assumption that continuous compact supported functions are

dense in L(v), Calderén showed [6] that if w € A,, then

lim Pa.,f(z) = f(z)

almost everywhere on X. In particular, M, f(z) > |f(z)| almost everywhere. Then
1My fllLaquy < C|l fllLo@) implies || fl|Lo(u) < C||fl|Lo()- Therefore du = gd<2 for some
g- Now it not hard to prove that || M, f||Le(u) < C||f||Ls(q) if and only if g € L= ().

In a general homogeneous space, applying the method used in the proof of Theo-
rem 3.11, we can obtain the following two-weight norm inequality for Hardy-Littlewood

maximal operator M,,.

Theorem 3.12 Let X be a general homogeneous space. Suppose p > v > 1 and

w€A, Letg>0andg/p=a<1. If

sup 1Kl raz gy S € < 0,

then

(f 1M.fldw)e < ([ 1fPPda)se 1 e L7(9).
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Conversely, let 0 < q < p and a = q/p. If Q is a doubling measure on X, and if

for anyr >0

(f \Pr Sl S C([ 1f1Pd)7 £ € L7(Q),

Proof: Suppose sup, ”K'"Lrlz(g) < C < 0o. From the proof of Theorem 3.11,

we have
[ 1M flod < Coup Kl 1 o 1l

with C independent of r.

Now let r — 0, since M, , f increases, it follows from Fatou’s lemma that

1M, fllLeqy < CllfllLeca)-

The converse part is a direct consequence of the proof of Theorem 3.11. The proof

is complete.
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Chapter 4

CARLESON MEASURE THEOREM
IN WEIGHTED BERGMAN SPACES

Let U be the unit ballin CV and § be a positive measure on U satisfying Békollé’s
Bf, condition. We characterize those positive measures 4 on U such that the inequality
| fllzew) < Cllfllar@) (1 < p < ¢) holds for any function f in the weighted Bergman

space AP(Q). As an application, we characterize the multipliers from A?({2) to A?(f)

(¢ 2 p).

§4.1 Carleson Measure Theorem in Weighted

Bergman Spaces

In [8], Cima and Wogen proved the following Carleson measure theorem for

A?%(dmg) in the unit ball U of CV:
Theorem 4.1 Let 3 > —1. Then
2 < 2
J\rau < c [ 1fPdmg
for any f € L*(dmg) if and only if for some fizedr, 0 <r < 1,
p(E(a,r)) < Cmg(E(a,r)) aeU.
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In [14], Luecking developed a general technique to find a sufficient condition for

I fllzeqwy < CIlFllo(er)-

The following lemma is a generalization of Luecking’s work in a homogeneous

space.

Lemma 4.2 Let 6 > 0 and let (X,v), E(z), a > 1 as in Lemma 3.2 . Let p be a

positive measure such that
p(E*(z)) < Colv(E*(2))]".

Let Cy > 0. Then for p > 6, q/p = a, and any f satisfying

@ < sty o /00 2€X

there is a C > 0 such that
| fllLagwy < Cllfll L) f € LP(v).

Proof: We may assume f € LP(v). Since ¢ > p > 6 and ; = a, Lemma 3.2

implies that

Lf 1f1edult e
= ([ tause
< Clfm(1f1) au]se
< Ol (115
= clfIfpae.
The proof is complete.

In this section, we shall work with the homogeneous space (U, wdmg, p).

We shall refer all definitions and notations in this chapter to §1.2.
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Recall that p(z,£) = |®¢(2)] is a metricon U and E(z,r) = {w € U : p(z,w) < r}.

As the second application of the generality stated in the beginning of section 3.1,
chapter 3, we shall take E(z) = E(z,r/3) for some fixed r, 0 < r < 1, E%(2) =
E(z,r). Then the A, (7 > 1) condition in the space (U,wdmg, p) is equivalent to
the C, condition defined in §1.2. By Holder’s inequality and the fact that mg is a
doubling measure, dQ? = wdmg is a doubling measure. Therefore (U, 2, p) becomes a
homogeneous space. From Lemma 1.2 , the assumptions of Lemma 3.2 are satisfied
by (U, £, p).

In [16, Lemma 3.1], D. Luecking proved the following:

Lemma 4.3 If w satisfies the C., condition for some v > 1 and dQ = wdmg, then

for any f analytic in U, any ¢ > 0, and any z € U,

JE (2 | f17dQ

If(2)* £ CW

with C depends only on 3, v, r, and C., constant.

From Lemma 4.3 and Lemma 4.2 , we have the following generalization of Theo-

rem 4.1:

Theorem 4.4 Let a > 1. Let p,q > 0 such that q/p = a. If w satisfies the C,
condition for some v > 1 and p is a positive a-Carleson measure w. r. t. (Q,r), then
for any f € A?P(Q)

[ 15dup e < clf 1pan)e

We next prove that being an a-Carleson measure is also a necessary condition for
| fllasquy < C|lflla»() if w satisfies B(w) condition.
We shall use the following well known facts in the proof of next two lemmas.

(1) For every a € B, ®,(0) = a and ®,(a) = 0.
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(2) The identity

(I- <a,a>)(1- < z,w>)
(1- < z,a >)(1- < a,w >)

1— < ®,(2), Bu(w) >=

holds for all z € B, w € B.

(3) The identity

1—Ja?)(1 - |2%)
_ q,o 2 — (
1= 12.(2)] 1- < z,a > |?

holds for every z € B.

(4) The real Jacobian of ®, at 2 € B is

(I®)(2) = ( 2zl )

For the proof of these facts, see [19, p.26).

N+1

Lemma 4.5 Leta€ U and 0 <r < 1. Then
sup{|l- < a,z2>|:2 € E(a,r)} = (1 = |a|*)(1 = r|a])™?
Proof:

sup{|l- < a,z>|:z € E(a,r)}

= sup{|l- < ®,(0),®,()) > |: X € rU}
1—|af?

l1-<a,A>

= (1=laf)(Q =rla])7".

= sup{| |: A e rU}

The proof is complete.

Recall that Tp is the Bergman operator and

N
T3f(z) = ( ;ﬂ ) [ 1Kalz, w)lf(w)dma(w)  zeU.
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Lemma 4.6 Let p > 1 and q/p = a. Suppose w satisfies the Bj(w) condition and
dQ = wdmg. Then || f|lass) < C||fllar(q) implies that for fired r > 0

#(E(a,r)) < Cr[QUE(a,r))]
for any a € U.

Proof: Suppose for any f € AP(Q), || fllas(u) < C||fllar@). For any a € U, take

XE(@ar)(w)(1- < a,w >)?
/=) = / (1= < z,w >)Fr o)

Then f(z) is analytic and
_ XE@n(w)(1- < a,w >) .
= Jol o B e —dm{w) ()

XE(a,r)(lU)ll— <a,w> |ﬂ )
/ I/ Il-— <z,w> |N+l+p(l _ le2)ﬁdm3(w)| dﬂ(z)

£ a0y

. 1-<a,w>
= ||Tp(XE(a,r)(w)|WP)(Z)HZ»@-

Since w satisfies Bj(w) condition, Theorem 1.13 implies that T} is bounded on

LP(f2). Hence
l-<a,w>
I sy < C”XE(a,r)(w)lWlﬁ“iP(ﬂ)

- <a,w>
= C/U XE(a’r)(w)lml—z—lﬁde(w)

SupE(a,r) Il— <a,w> |ﬁP

<

S C [ xmten(w) e = dn(w)
(1 —la*)PP(1 — rla])~*7

<

S C/U XE(a.r)(w) |1 — |w|2|f’P

—_ 2\8p
<[ (ckP
= E@ar) |1 — |w|?|P?

Q) (w)

dQ)(w).
Since on E(a,r), (1 — |w|?) ~ (1 — |a|?), we have
1oy < C [ duw) = CAE(@,1).
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On the other hand

Ysem@)(1= <)
/Ul U (1= < z,w >)N+1+8 dm(w)|?du(z)

(1- < a,w >)P
2 drm(w)|"du(z).
- '/E(ﬂv') I -/E(a,r) (1-— < z,w >)N+l+ﬂ m(w)l l‘(z)

1 ke

Let w = ®,()) in the second integral, then z = ®,(n) for some n and A, € rU. Thus

11

(1- < 8.(0),.(2) >)? 1-|af? . .
2 /E(ﬂ.r)ljr‘U (1- < ®4(n), Pa(A) >)N+l+ﬁ(|1_ <Aa> lg)N+ dm(A)|%du(z)

_ / ( 1- |a|2 )ﬁ((l— <na >)(1_ < a”\ >))N+l+ﬁ
E(a,r) JrU'1

-<a,A> (1= |aP)1= <A >)
(s ) " dm(3) ()
N /E(a.r) (1= <n,a>)"H -/rU (1- < A9 >)Nf:zf(32— < a,A >)N+ |*dp(2)
2N

Azrt /E(a'r) (1- < n,a >)N+l+[’/U (1— <rt,n >);+1f;rz(1t_)_ < a,ri )N |2du(z)
= C o) [(1- <1n,a >)N+1+ﬂr2N[To((l_ < rt,fy >)N“M)(ra)]l"d;t(z)

= C/E(a'r) [(1- <n,a >)N+1+Br2N(1_ ” r2a,117 SyNei |9dp(z)

2 C Joun! RN ) du(z)

> Cu(Ela,r)).

Since | f]las(sy < C|fllancay, it follows that
w(E(a,r)) < C/IUE(a, )"

with C, only depends on r. The proof is complete.
Since the Bj(w) condition implies the C, condition, combining Theorem 4.4 and

Lemma 4.6 , we have proved the following:

Theorem 4.7 Let a > 1 and ¢ > p > 1 such that q/p = a. Suppose w satisfies

Bf(w) condition. Then

Il fllaey < Cllfllary — f € AP(Q),
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if and only if u(E(a,r)) < C.[U E(a,r))]* for any a € U.

From Theorem 1.13, w € Bj(w) implies that || Tsf||ar(a) < C||f|lLr(n). Note that

Tsf is analytic, we have

Corollary 4.8 Under the assumption of Theorem 4.7, for any f € LP(Q),
175l a0y < ClIfll Loy
if and only if p € V..
We close this section by considering the case ¢ < p.

Theorem 4.9 Leta=q/p<1and1>r >0. Then

1. If0 < q, p > maz{l,q} and w € Bj(w), then & B e Lrl—a(ﬂ) for some
r implies

ITsfllasy < CllfllLey £ € LP().

In particular, f‘;}g%};%{- € LT'-I?(Q) for some r implies
I fllasy < Cllfllary € AP(Q).
2. If0 < q < p and N is a doubling measure, then
175 ey < Cliflleey  f € LP(Q),
implies {-‘;%g{%% € Ll'l'E(Q) for anyr > 0.
Proof: 1. Since Tjf is analytic, w € Bj(w) implies (by Lemma 4.3 )

1Tsf(2)| < CMaq,[Tsf(z)).
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Since Bj(w) implies C;, which is equivalent to the A, condition in (U, wdmg, p). By

Theorem 3.11 and Theorem 1.13 , if 4 € W, and w € Bf(w) then

I Tsfllaey < CliMar[Taf]llLegu)
< Cl|[Tsfllar ()

< ClifllLee)-
2. For any 1 > r > 0, by the fact that
mp(E(a,r)) ~ (1 — |a|*)¥*+1+7
and Lemma 4.5, there is a constant C, > 0 such that Pn, . f < C,Tj|f|. Therefore

| PrgrfllLaqu) < Cell T3 flll Loy < Crll fllLre)-

By Theorem 3.11, p € W§ ..

§4.2 Multipliers on Weighted Bergman Spaces

Let M(p, B,~) denote the collection of all functions f which multiply AP(wdmg)
into AP(wdm.,), that is, fg € AP(wdm.) for any g € AP(wdmp).

Let N(p,q, ) denote the collection of all functions f which multiply AP(wdmg)
into A(wdmy).

In [25], G. D. Taylor proved that

(1) if B>, M(2,8,7) = {0};

(2) i B < v, M(2,8,7) = {f :  is analytic, |f(2)| = O(1 - |=])F"}.

In [2], K. R. M. Attele proved that

(1) if p < g, N(p,q,8) = {0};
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(2) ifp=gq, N(p,p,B) = H>;
(3)ifp>q, N(p,g,8) = {f € A(dmy) : > =1/q9—1/p}.
The (3) of Attele’s result has been generalized by Luecking ( see [17] ).

Applying Theorem 4.7 , we have the following results for the weighted Bergman

spaces.

Theorem 4.10 Let 1 < p < oo. Suppose w satisfies the Bf(w) condition. Then
(1) if B>, M(p,B,7) = {0};
(2) if B<~v, M(p,B,v) = {f : f is analytic, |f(2)| =01 - |z]) 7 }.

Proof: Since f € M(p,3,%) if and only if for any g € AP(wdmg)

[lofPPwim, < C [ |glPwdms,

from Theorem 4.7, we have that f € M(p, 8,~) if and only if for any 0 < r < 1, there

is a C' > 0 depending only on r, such that for any z € U,

flPwdm., < C / wdmg.
-/E(z,r)l | 7 E(z,7) s

Let dQ = wdm.. Since my(E(z,1)) ~ (1 — |2|?)* for any a > 1, the above inequality

is equivalent to
1

PdO < — |2]2)8—,
Q(E(z,1)) JE(27) /1P < C(1 — |2[)

Then Lemma 4.3 implies that
|f(2)IP < C(1 = =),

Conversely, it is clear that |f(z)|? < C(1 — |2|)?~7" for any z € U implies that
f € M(p, B,~). Therefore , if B > 4, letting |z] — 1, it follows that f = 0; if 8 < 7,
then |f(z)| = O(1 — Izl)p_;1 The proof is complete.

Let H® = {f : f is a bounded analytic function in U}.
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Theorem 4.11 Let p > 1 and ¢ > 0. If w satisfies the condition Bf(w), then

N(p,p, ) = H* and N(p,q,B) = {0} ifp< gq.

Proof: Let p < ¢q. By Holder’s inequality Bj(w) implies Bj(w). Let dQ = wdmg.

Similar to the proof of Theorem 4.10 , f € N(p, g, ) if and only if

q 1 wdm 2. r))]9/P-1
IO < 57 Sogeny s < CIUE(, )

with C depending only on r.

If p=gq, it is clear that f € H®; if p < g letting |z| — 1, it follows that f(z) =0
on U. The proof is complete.

We close this section by giving an example of Theorem 4.10 and Theorem 4.11.

Let {¢(r),¥(r)} be the normal pair defined in (1.1), Chapter 1. Let A > 0 be the
real number in (1.2), Chapter 1.

For a normal function ¢(r), if p > 1, there exists a nonnegative number ¢ > 0
such that (é(r)(1 — r)"‘)'é is integrable in L'(dmg,;). We may assume that ¢ is big
enough.

We now prove that W = ¢(r)(1 — r)~* satisfies Bf, (W).

In fact, fix zo € U, denote K = K(z). Since (lﬂ_%,— is non-increasing and if

z € K(Zo) y |Zl > |Zo|.

[ Wamsa(2)
<cf -(-f(&.)—admﬁuﬂ(z)
< o [ dmprara(e)
< C( ¢(|T°D|)a(1 |z0[2)PHt+et N1
= Ch(lzol)(1 ~ [z )P+,

The third inequality follows from mgyi4q(K) ~ (1 — |20|?)PttHetN+1,
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Similarly, note that
[#(r)(1 = )77 % = C(e(r) > (1 — )5
Hence

/K W% dmpypi(2)
= C /K (¢(r))%'dmﬂ+t+(t_’\)é(z)

B _ '
< C(¥(lz))) 7 (1 = |20|2)ﬂ+t+(t NE+N+1

Now it is clear that B}, ,(W) is satisfied.
Since AP(¢(r)dmg) = AP(Wdmpy,) and A%(¢(r)dm,) = AY(Wdm.4.), Theorem

4.10 and Theorem 4.11 imply the following:

Theorem 4.12 Consider the spaces AP(¢(r)dmg) and A%(¢(r)dm.,), where $(r) is a
normal function.Then

(1) If B > v, M(p, B,~) = {0};

(2) If B< v, M(p,B,7) = {f :  is analytic, |f(2)| = O(1 — |2]) 7"}

(3) N(p,p,B) = H® and N(p,q,B) = {0} if p< q.
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Chapter 5

BERGMAN OPERATOR
IN WEIGHTED MIXED-NORMED
SPACES

In this chapter, we use an interpolation theorem between weighted norm spaces
to determine the weighted mixed norm spaces on U, the unit ball of CV, as the
interpolation spaces between the L? spaces on U and the L” spaces on the boundary
S of U with different weights. Using these facts, we prove that for some appropriate
weights, the Bergman operator induces a bounded projection on the weighted mixed
norm space. Thus we are able to identify the dual of those weighted mixed norm
spaces of analytic functions.

In section 1 we give some preliminaries. In section 2 we prove an interpolation
theorem of mixed norm spaces. We shall present the main result of this chapter in

section 3. Several duality theorems will be presented in the last section.
§5.1 Preliminaries

We shall refer all definitions and notations in this chapter to §1.2.
Let {¢,®¥} be the normal pair as in (1.2), Chapter 1. Suppose that A = ¢*(r),

B = w(r)(1 = r?)*, C = 1. We shall need the following lemmas.
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Lemma 5.1
1
[ =)= ) p(r)dr < C¥(p) 0<p<l.
()
For the proof, see [23, p.291].

Lemma 5.2 Ift >0, w € U, then

/S dvo(2) 1

T—<zws e - AT

For the proof, see [19, p.17].
Lemma 5.3 Fory > —1, andm > 1+ 4,
/01(1 —pr) ™1 =r)dr < C(1 —p)t*trm 0<p<l.
For the proof, see [23, p.291].
Lemma 5.4 Forany f € H®, T,(f) = f.

For the proof, see [19, p.121].
Let L?? and H?? as in Definition 1.11, §1.2.

Lemma 5.5 For1 <p<o0,1<¢<00,lfr — fllHra(peu(i-r2)a) = 0 as r — 1~.

This follows immediately from the dominated convergence theorem. (For details,

see [22, Proposition 3.3 ]).

We shall use the following pairing between functions in LP9(p%w(1 — r?)*) and

functions in L’I""(so"’,w_"'_(l —r?)):

< fi9>= [ f(2)3(z)dma(2).

In [4, p.304 ], A. Benedek and R. Panzone showed that the dual space of the mixed

norm space LP(p%(1 — r?)®) can be identified with L”""’(np"w(l — r2)*) under the

pairing

< fig>= /U £(2)3(z) ¢ wdmal(z).
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Lemma 5.6 For 1 < p < o0, 1 < ¢ < oo, under the pairing (5.8), the dual of

LP9(p%w(1 — r2)*) can be identified with L 9 (=9 w™ ¥ (1 — r2)).

Proof: For any linear functional L of LP9(p%w(1 —r?)*), there is a unique function

he L”I'V'(w"w(l — r2)?) such that for any f € LP9(p%w(1 — r?)*),
L(f) = [ F@hE)e (Pwlr)dma(2)

and ”L" = Ilhlle',q’(¢qw(1_,2)o) [4]

Let
g = ho(r)uw(r).

Then

lgll” ¢

Lo (o-d W % (1-,-2)«)
= [ (L1l o dvoy 7 «r”-‘(l )edr
- /o (/s B[P 0% WP o dVo)' w""‘r’”"(l —r?)%dr

1 ’ ! oo g
J L IR ) = =S84 2y
0

”h"Lp',q’ (PIw(1=r2)a)’

’

Thus g € LP ¢ (=7 w™ ¥ (1 — r2)*) and
L(f) = [ £(2)3(=)dma(2).
Conversely for any g € L”""'((,o""w_g;(l — r?)), by Holder’s inequality
J, F@a(x)dma(z) = L,(f)

is a bounded linear functional on LP9(¢%(1 — r2)*). The proof is complete.

Let UP? denote the unit ball of LP?(B(r)).
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Lemma 5.7

| fllzee(B)y = sup /Ufg‘JB(r)dm.
g€Ur' ¢

For the proof see [4, p.303].

Lemma 5.8 Let 0 < p < 00, 0 < ¢ < 00. Suppose wy(r),w,(r) € L!(dr) are two
positive functions on [0,1). If there ezists a ro > 0 such that forro <r < 1, w; ~ wy,
then

HP¥(w(r)) ~ HP(wy(r)).

Proof: There are C1,C; > 0 such that if ro < r < 1, Ciws(r) < wi(r) < Cowsy(r).

Let 2 € S and f € HP¥(w(r)). Let

I= /o "( /S |f IPdvo) $unr?N=1dr.

Since if f is analytic, then [g|f(roz)|Pdvo is an increasing function of r. Thus

1< /o "y (r)r*N1dr( /s If (ro2)[Pdwo(2)) .

Let
Cro) = (] wnlp)™-1dp) .

Then

I = C(ro) /1 Tun(p)p™'dp
¢ /r: (/s |f(ro2)[Pdvo(2)) $wa(p)p*V " dp
S C-/r:(,/s |£(p2)[Pdvo(2)) Fun(p)p™ dp

Cll W erp.a(r)

IA

IA

where C depends only on rg.
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Therefore

1 W
= [ (LIt bn(r)rtar
o 1 ¢ aN_1
= (["+ [, rdva(a) bt rar
C(ro)ll flliimaqun) + Co2 /:( /S |f[Pdvo(z)) bw?N-1dr

< (C(ro) + C)ll fllraur):

IA

Similarly
"f”‘;h.q(w,) < C"f“;h.q(wly

The proof is complete.

§5.2 Interpolation Spaces

Throughout this section, we will follow the notations of [5].

We first list some basic definitions of real interpolation method.

Definition 5.9 Let Xy, X; be two topological vector spaces. Xo, X, are said to be
compatible if there is a Hausdorff topological vector space U such that Xo, X, are

sub-spaces of U.

Let X = (Xo,X;) denote a compatible couple of two quasi-normed spaces X,

and X;.
Definition 5.10 Leta € ), X;. Define

K(t,a) = K(t,a;Xo,X1)

inf{llaollx, + tllaillx, : @ = a0 + a1, 80 € Xo,a; € X;}.
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lals,x = [ 1K1 0<0<1,0<q<c.

1
(Xo, X1)o,0.2 = {a€ ZX:‘ : ||a||o,q,x < oo}

=0
Theorem 5.11 LetX = (Xo,X1),Y = (Yo,Y1). Suppose T is a linear map from

! o Xi — YL, Y, such that for any a; € X;,1=0,1,
| Tailly; < Killail|x..

Then
T: (XO, Xl )O.q.x — (YO’ K)o,q,?

with

ITallser < Ko~ K7 llallsq x-

'

For the proof, see [5].

Throughout this section, we will assume that C(r) is a non-negative function on
[0,1) such that |{r € [0,1) : C(r) = 0}| = 0, where |E| is the Lebesgue measure of
E on [0,1). Suppose B(r) is a non-negative function on [0,1) and suppose that the
measure p, defined by du = B(r)C(r)~"r?N-1dr, where 0 < v < oo, is a o-finite

measure on [0,1). Let
m(p,f) = p{r €[0,1):[|flla,C(r) > p}.

frt) = inf{p:m(p, f) < t}.
I£11%,q

o0 d

/ [t%f"(t)]"Tt 0<7<00,0<q< 00
0

The vector valued Lorentz space L(p, 7, q) is defined by

L(p,7,q) = {f : [|fllrq < o0}

For the properties of m(p, f), f* and L(p,7,q), see [12] and [5].

70



Lemma 5.12
L(p,q,9) = LP(A,BC*™").
Proof:

Il = [ 1@
=[5 0asC N
= [N, BEICCYr

= ”f”},P,q(A,BCq--v)'

The proof is complete.
Assuming L = (LP9(A, B), L»*(A,C)) is a compatible couple, we have the fol-

lowing vector valued version of Theorem 5.2.1 of [5].

Theorem 5.13 Suppose f € LP"(A, B)+ LP*>°(A,C),1 < p< 00,0 <5y < o0o0. Then
(1)  K(t, f; L»(A, B), LP>(A,C)) ~ (J£ |f*(s)|"ds)5;
1-6

1 _
(2) Fory<g<oo, ;=%

(LP"Y(A’ B)’ LP’OO(A’ C))@.q,L = L(p, T, q)-

Proof: (1) The proof will follow from the argument in the proof of Theorem 5.2.1
in [5) once we make a decomposition of f.
(i) “ < ” part. For z € S, let

folrz) = { f(r) = ey IS lasC(r) > £(2)

0 otherwise

and let fl = f— fo.
Let

E = {re0,1):|(fo)-llapC(r) # 0}.
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Then since f* is non-increasing, we have
HE) =m(f*(), f) = {s: f*(s) > f(t")} <t
and f*(s) is constant on [u(E),t"]. Thus

K(¢, f; L*"(A, B), L"*(A,C))

IA

| foll Lov(a,B) + tll fill Loeoa,c)

_ rz) — f‘(t‘y)f(TZ) ¥ r 7‘2N_l T}_Y (4

= [ 1502 ~ e s B tdrlh + 47727

= L NfNasCr) = £ @I, BEICE) N 2dr ]S + t~(2)
u(E) 1 ty 1

= 1[0 - reragt+ [T as

= ([ U@ - eyt + [ ey

([ (st

IA

(ii) “> " part. Assume f = fo + fi, fo € L?(A,B), and f; € LP»>(A,C). Since

I(fo + f1)-ll45C(r) < N1(fo)ellapC(r) + [|(f1)-llasC(r),

we have
m(pl + p2)f) S m(Pl,fo) + m(PZ, fl)
Hence
{pr+ o2 m(p1+ p2, £) < 3} D {1+ p2 : m(pn, fo) < (1 — €)s; m(pz, f1) < es}
for 0 < € < 1. Since
inf{p1 + p2 : m(p1, fo) < (1 - €)s;m(p, f1) < es}
= inf{p1 : m(p1, fo) < (1= €)s} + {p2 : m(p2, fr) < es}.

It follows that
f7(8) < fo(1 —€) + fi(es).
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Thus

(st}

U a1 - prdsls + [ (2 ()yds)’

< [ (el - 99))ds]¥ +1£7(0)

L (N lasCENTBEICH) N 13 (1 = 75 + tl fill s

IA

IA

.y
(1 =€) 7|| foll Ler(a,B) + tl| fill Lo (a,0)-

Let ¢ — 0, we have proved < 1 >.
(2) See the proof of Theorem 5.2.1 of [5].

Let y=p,6 =1-E,C(r) =1, we have
Corollary 5.14

Lp'q(A’ B) = (Lp'p(Aa B), LP'OO(A’ l))l—qz.q

for ¢ > p.

In particular
LP9(gru(l — 1)) = (LP2(pPu(l = 1)), LP(0"));-pq-

Proof: It follows from Lemma 5.12 and (2) of Theorem 5.13.

§5.3 Bergman Operator

In this section, we first prove that the Bergman operator is bounded on the
weighted Hardy type spaces LP®°(¢?), 1 < p < oo. Then our main result of this

chapter will follow from this fact and Corollary 5.14.

Theorem 5.15 Let ¢ be a normal function. Let b > 0 be as defined after (1.1),

Chapter 1. Ifa — b > —1, then Tz is bounded on LP>(P).
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Proof: Let a >0 asin (1.1). {(,{ €Sand 2 =p{,w=r{,0<p<1,0<r <1
Let k+ 1= N + a + 1, where k and ! will be determined later.

Forl < p<oo

LTz 5 @ (o)dva()

< iy e e rdma ) )0

_ /s[/U = | f(w)l(r) dma(w)]Pe”(p)dvo(C)

< [uif Oy

U |1- < z,w > |krp(r)

Uy T ol

< z,w> |Pp(r)
The second factor of the integrand is

dm,(w) ]f,
U|l- < z,w> |Pp(r)
~ 1 el o ey,

<zzw>|?" o(r)

I = |

Since a — b > —1, there is a b > 0 such that a — b > —1. If Ip' = N > 0, it follows

from Lemma 5.2 that

1 (1-r?)dr 5
LS U o
(1=r)*(1 =r)>cdr

1(1=r)%(1 —r)>—tdr =
) e T Y A e

7.

Ifl —N >a—a+1, by lemma 5.3, since il;f(-:-{: is non-decreasing, %T({{-i is non-

increasing, we have

[ dm,(w) ]f,
U |l1- < z,w > |Pp(r)

[(1 (l;) (1 _p)-lp’+N+a-a+1 +( (’S)b(l )-lp’+N+a—b+1]fr
(- )N+l+a—lp']§_.

= ¢l ©(p)
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Then

J TP (p)duo(0)

< o=y py MY g o)
< o= p;':;)m-'v']f L= ) Ikp)lf(w)l’:("r(;)so”(r) (1)
< C[(l—p‘)P’Z;)“““” % /U ll—plrl"P"N If(w)l”:(”r(;)(p”(r) dm (w)

< =2 i) [ T dr

< Ol p U,

v(p) #(p)

= CllfllLre(er)-
The third inequality holds if kp — N > 0, and the fifth inequality holds if
kp—N>a-a+1.

Therefore if we choose k, I such that

[ kp—N>0
J Ilp —N>0
kp—N>a—-a+1

| P —N>a-a+1

or
{1+%>&#£
p p
a Niltao
k+ 5> 5

then || f||zro(or) < C||fllLrpeo(pr). Since k+1=N +1+ o, we can let | = &";lrﬂ,
k= -Aﬁ:—"ﬁ. The proof for 1 < p < oo is complete.

For p=1 and p = oo, the arguments are similar. The proof is complete.
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Remark:

1. T? is not bounded on “unweighted Hardy type” spaces LP>(1). In fact,

1 € L»>(1) but T2(1) is not in LP*°(1).

2. The condition a— b > —1 can not be omitted. In fact, take (r) = (1 —r)°
for some ¢ > 0, then b = c. Suppose a —c = —1. Let f = (1 —r)~¢. Then

f € LP*>(pP), but T2(f) is undefined.
We now prove the main result of this chapter.

Theorem 5.16 Suppose p < ¢ < 00, 1 < p < 00, ¢ is a normal function, and
a—b> —1, where b is as defined after (1.1), Chapter 1. If a radial function w(r) on

[0,1) satisfies condition BE(pP(r)w(r)):

/11—1. w(r)eP(r)(1 = r?)*rN-1dr

1 ! ’
X (/1 hw—%(r)cp"’ (@ - rz)aer'ldr)f < Chlet)p (5.4)

forall0<h<1, where%+;1,=1,
1,1 _
Then, for o =1
(1) T2 is bounded on LP(p%w(1 — r2)*);

(2) T3 is bounded on L”""'(cp“"w"c'(l —r?)e),
Proof: (1) From Corollary 5.14,
LP(pw(1 = r?)%) = (LPP(pPw(l — r*)*), LP°(¢"))1-2 -

By Theorem 1.13 , (5.4) implies that T is bounded on LPP(pPw(l — r?)*)). Then
it follows from Theorem 5.15 and Corollary 5.14 that T is bounded on the space

L”"’((pqw(l - 7.2)0).
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’

(2) For f € L? 9 (=9 w™ ¥ (1 — r?)), g € LP(p%w(1 — 7)),

| [, 9(2) T )dma (=)
< [ lo@ITf(@ldma(2)
< [, Talo(lIf(w)ldma(w)

< ClITle@lzrsr-ml Al ¢

o (o= ™ T (1-r2)2)

IA

C”g”LPG(wqw(l 72)°)||f|| ] ..L

9 (o= T T (1= f’)")
The last inequality holds because of part < 1 >. Lemma 5.6 and Lemma 5.7 then
implies that T is bounded on L"""I(cp“’lw"i(l — r2)®). The proof is complete.

By Lemma 5.5 we have the following corollary:

Corollary 5.17 Under the same assumption of Theorem 5.16 , T, is a bounded
projection of LP"’(cp"w(l —r?)®) onto H”"’(cp"w(l —r2)?) and a bounded projection of

)i ((p—qw q(l—rz)") ontoH”"(np"'w c(l—r’)"') forp<qg<o00,1 <p<oco.

Remark:

1. The example in remark 2 after the proof of Theorem 5.15 shows that, in
general ( We assume [y w(1—r)°dr < oo ), in order to make T* well defined
in LP9(p%w(1 — 7)), we must have a — b > —1.

2. In order to make T a bounded operator, it is not necessary that w and
¢ satisfy the condition (5.4). In fact, for N = 1, fix ¢ and p with ¢ > p,
choose ¢ > 0 and a@ > —1 such that a —¢> —1 and a—c¢(q—p) < —1.

Let o(r) = (1 —r)° and w(r) = (1 — r)~°%. Then
1
/ wpP(1 — r¥)%dr = oo
1-h

so that ¢ and w do not satisfy the condition B?(pPw).
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However, since LP9(¢p%w(1 — r?)®) = LP9((1 — r?)), choose v > 0 very
small and let $(r) = (1 —r)?, &(r) = (1 — )=, then it is not hard to see
that the condition B?(prd) is satisfied. Theorem 5.16 then implies that
T: is bounded on LP9(3&(1 — r?)®) = LP9((1 — r?)*).

3. Suppose T, is bounded on LP?(p?w(1—r?)*). Following the method Békollé
used in [3, p.311], if we put f(z) = w"’v:(r)cp“q'(r)xk(a)(z), it can be shown

that ¢ and w satisfy the condition BI(yp%w).

We next give an application of Theorem 5.16.

In [13] M. Jevtié showed the following:
Theorem 5.18 Forl < p< o0, 1 < ¢q < 00, the transformation P defined by
Pf(w) = [ £} Krms(z w)p(r)(1 = 1) ¥ dm(2),
where w € U, is bounded from LP9(r'=2N) onto HPI(pIr!=2N(1 —r)-1).

We now show that for 1 < p < 0o, 1 < ¢ < 00, this Theorem is a special case of
Theorem 5.16 .

Let w(r) = (1 — r?)~*r'=2N_ For any f € LP9(r!=2N), define
F(2) = f2)(r)(1 = )i~
Then F € LP9(p%w(1 — r2)*~1) and
”F”LPv‘l(zpvw(l—r?)"“) = ||f”Lp.v(r1—2N)
Thus P f(w) = Th-1F(w). Since
HP (1 N(1 = 1)) = HPo(pw(l = 1)),

Theorem 5.18 is now equivalent to the statement :
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T- is a bounded operator mapping from the space LP9(p%w(1 —r?)*~1) onto the
space HP(pw(1 — r2)?-1).

It suffices to prove the boundedness of the operator T)_;, since then it will follow
from Lemma 5.4 and Lemma 5.5 that T)_; is an onto map.

By Theorem 5.16 , for ¢ > p, it suffices to verify (5.4). We have

w—p'w—% — —p (1 _ra),\L (2N- 1)L
= P (1 — r2)NF =D 2N-1G'-1)

= ,/,P',-(W-l)(p'—l)(l — ),

Thus (5.4) is equivalent to

1
S oo -ty
1-h
1 ’ ’
x (f, ey reN-0r (g —r)"14r)7 < Ch. (5.5)

Condition (5.5) will be verified by the following

Lemma 5.19 For any normal pair {,¢} and t a non-negative real number,

oo =ntar( [ gy @ - d < caoor (5)

for all 0 < h < 1, as long as each factor makes sense.

Proof: Let 0 < h < 1. Since is non-increasing, where a > 0 is as in (1.1),

lr'l

/li;, ©"(r)(1 — r)t='dr

o, (1(P—p(:))fnp‘(1 —r)Trdr

4 (1 - h) t 14ap
< e /_h(l dr

S CSO (1 h)hap+t
her

= Cp*(1 - h)h'.
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Similarly
(f l_h W7 (1 = r)=1dr)7 < Cy(1 — h)ROF.
Since @P(1 — h)y?(1 — h) = h*?, (5.6) follows. The proof of the lemma is complete.
Since (5.6) implies (5.5), for p < ¢, Theorem 5.18 follows from Lemma 5.19 and
Theorem 5.16 . For ¢ < p, we have ¢ > p'. Since in (5.6), the position of p, p,
¢, ¥ are symmetric, (2) of Theorem 5.16 implies that T;_, is bounded on the space

Lp'q('/)_qw_ir(l —r2)*-1), Since

p(r)w(r) = (1 —r?),

and
wfr) = (1= ),
we have
1/J_qw_'-;‘r(1 —r2)A 1 = cp"wr(QN_l)qj'“(l — P21,
Therefore

LPA(p90™ ¢ (1 = )1 = [P9(huor DE (1 - 2P,
On the other hand, since
LPo(ptufl = r)) € Dt ™ I (L - r2po)
and T_, f is analytic for f € LP9(pw(1 — r2)*-1), we have

|1 Tx=1.f || Loa(aw(a—r2)r-1)

= ”TA—lfllHP.q(wqw(1_,2)x—1)

IA

Cl|Ta-1f|l (2N-1)% 41 ( by Lemma 5.8 )
Hpa(ptwr q

(1-r2pr-1)

INA

C”f” @N-1)d 41
Lr

9 (plwr T (1-r2)2A-1)

IA

CIlflILP»¢(¢qw(1_rz)x—x).
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Thus T)-; is bounded on LP?(p%w(1 — r?)*-1). Therefore Theorem 5.18 is also true

for ¢ < p. The proof is complete.
§5.4 Duality Theorems

The following theorem is the main result of this section.

Theorem 5.20 Suppose p < ¢ < 00,1 < p < oo, and { ¢, ¥ } is a normal pair,
a+ A—b> —1, where b is as defined after (1.1) and X is as in (1.2). Suppose
w(r) > 0 satisfies
1
/ hw(r)tpp(r)(l —r)erN-14p
1—
1 e -9 2va,.2N-14 \ 5 A+1
x @ 7 (r)p7P (r)(1 = r?)or?N-1dr)s" < Chlo+A+)r (5.7)
1—-
for all 0 < h < 1, where 1;-}- ;1,- = 1. Then the dual of HP(p%w(1 — r?)*) can be
identified with H"I-"'(tp"'w'zc'(l —r2)*) under the pairing
< f,9>= [ f(2)3(2)dmarr(2). (5.8)
More precisely, if g € H”""'(d)"'w_gv‘(l —r?)) and if we define
Ly(f) =< f,9>

for all functions f € HP(pw(1 — r?)?), then L, € [HP(p%w(1 — r?)*)]* and

ILsll < Cllgll ,, , _¢ '
Hr @ (y4 w™ T (1-r2)a)

Conversely, given a linear functional L € [HP(p%(1 — r2)*)]*, there is a unique
g€ HP W (y7 w ¥ (1 - r?)°)
such that L, = L and

hall ,, , ¢ < CJIL]|.
Hp 9 (Y9 w™ 7 (1-r2)a)
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Proof: Take &(r) = w(r)(1 —r?)=*. Then

’ 1 ’ !

e = W F(1—r?)F = pru
LP(pw(l — r?)?) = LP(p'0(1 — r?)e+) (equal norm);
L"""(d)"'w"v'(l —-r?)?) = LP’vq'(<P—q'J;"E(1 —r2)**+)) (equal norm).

Thus w satisfies (5.7) implies that & satisfies (5.4). Theorem 5.16 then implies that

’

Tz, is a bounded map on both LP(%&(1—r2)*+*) and L”""'(cp'q’df%(l —r2)atd),

o

Now, it suffices to prove that the dual of LP?(¢%&(1 — r?)*+*) can be identified

’

with LP""'(go“"cb"v‘(l — r2)>+3) under the pairing (5.8) for p < q.

Let g € L”""'(cp""'&"gi(l — r2)e+}), Tt follows from Holder’s inequality that
l < fag > I < C”f”LP"I(W&(l—r?)""”\)“g” ' s , 4 .
LP 9 (=9 &~ T (1-r2)atd)

So g defines a bounded linear functional L on HP9(x&(1 — r2)*+?) and

L SC g ’
iisclal ,, o

(o'~ T (1-r2)at2)

Conversely, let L be a bounded linear functional on HP?(p%@(1 — r2)*+*). Then

L can be extended to be a linear functional on LP9(¢%(1 — r?)*+*). By Lemma 5.6,

’

there exists a h € L’I"”(tp"‘"&";(l — r2)2+}) guch that

L(f) =< f,h >
and
NI~ (&Il ,, , ¢ :
Lr . (=29 &~ T (1—-r2)atd)
Let

g= Ta+,\h.
Theorem 5.16 implies that g € H"'V'(Lp‘q'&";(l —r?)e+}). Now for f € H*(U), by
Lemma 5.4 and Fubini’s theorem, we have
L(f) =< fih >=<Tass f,h >=< f, Tosa(h) >=< f, g > .
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By Lemma 5.5 , H® is dense in HP9(p%W(1 — r?)***). Then the continuity of L

implies L(f) =< f,g > for all f € HPI(p%0(1 — r2)*+}). We also have

sl ¢ < C|lrll

L¥ @' (o—4' &~ T(1=r2)a+2) Lr' ' (p-d'w

, < C|L|.
g SCIE

’

Ifge L’l""(‘p“"&_’f(l —r2)>+}) defines a zero functional, then since the function

Koya(z,-) € H*(U), for any fixed z € U, we have, for some C > 0,

0=< Ka+l(za')ag >= Cg(z)'

Hence ¢ = 0. So there is a one-to-one, continuous, linear transformation from

’
~-1

LP 9 (79 & ¥ (1 — r?)°+*) onto the dual space of LP9(x9&(1 — r2)*+). The proof is
complete.

We next give some applications of Theorem 5.20.

In [16] D. Luecking used Theorem 1.13 to identify the dual of weighted Bergman

spaces. He proved the following:

Theorem 5.21 Suppose w(z) satisfies

—e £ »
[ w@dmo(a)( [ % (2)dmy(2))7 < Cmi(K) (5.9)

forl < p< oo, wheren > -1, y> —-1,a= ¥+gr and K is the region in the condition
A?(w). Then the dual of HPP(w(z)dm,) can be identified with HP'-"'(w(z)'Edeq)

under the pairing (5.3).
In [13] M. Jevtié showed the following:

Theorem 5.22 Let 1 < p < 00, 1 < ¢ < 0o. Then the dual space of the space
HPa( o9r1=2N(1 — r2)=1) can be identified with H”""'(z/)"'rl'2N(l —r%)71) under the
pairing

< f,g>= /U F(2)3(z)dma1.
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In Theorem 5.20, taking ¢ = (1 — r?)’, ¥ = (1 — r?)/, @ = —1 in Theorem 5.20,

where ¢, j > 0, we have i + j = A. Then (5.7) becomes

1 )
/ R w(r)(1 - rz)""lr2N‘ldr
1-

1 ! .1
X (/ w™F(r)(1 = r?)® 'erN”ldr)fr < Ch'r, (5.10)
1-h

It is not hard to see that
P9 (g1 = 1)) = HP(w(1 - 2)71)

and
’

HP 9 (37w ¥ (1= r?)7Y) = BP0 (W™ ¥ (1= r2)5 1),
By Theorem 5.20, for ¢ > p, if w sa.tjsﬁ&s the condition (5.10), then the dual space of
HP9(w(1 — r2)-1) can be identified with H """(w' (1 - r’)j""l) under the pairing
(5.8). Leti =1, 5= 3?*1. Thenn=iqg—1,y=jg—land A=i+j=1t+1. These

observations give the following:

Theorem 5.23 Forl <p<qg<oo,n>-1,9y> -1, and t > —1 satisfy

if w(r) satisfies
1
/ w(r)(l _ r2)(n+l)§—lr2N—ldr
1-h

1 ! -
X (/ hw_%(r)(l _rg)('v+1)fr ler"ldr)fr < Cht+VP, (5.11)
1—

then under the pairing
< f,9>= [ fodm, (5.12)

the dual of HP9(w(1 — r?)") can be identified with H”""I(w_f'(l - r?)).
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Proof: (5.11) is now equivalent to (5.10). From the above discussion, the proof is
complete.

It is not hart to see that, for a radial weight function w(r), Theorem 5.20 gives
a generalization of Theorem 5.21 in mixed-norm spaces. In fact, in Theorem 5.23,
taking ¢ = p, we immediately get Theorem 5.21.

Next we show that Theorem 5.22 is a special case of Theorem 5.20 if 1 < p < oo,
1<g<oo.

In fact, by Lemma 5.8 , it suffices to show that the dual of HP9(¢%(1 —r2?)~1) can

be identified with H”""'(z/ﬂ'(l — r2)~1) under the pairing
< f,9>= [ f()3(z)dmcs.
Taking w = 1, a = —1 in Theorem 5.20, (5.7) becomes
1 N 1 ' £
J_ e =) [ g (- e T < on.
1- 1-

By Lemma 5.19 and the discussion after Lemma 5.19, any normal pair satisfies this
inequality. Therefore for ¢ > p, Theorem 5.22 follows from Theorem 5.20 immediately.

For ¢ < p, then ¢' > p'. Using the duality argument, it cam be shown that the dual
space of HP @ (7 (1 —r?)~1) is HP9(¢?(1—r?)"1). This implies that HP?(9(1—r?)"1)
is a closed subspace of LP9(p%(1—r2?)"1). Since LP(p?(1—r?)"1) is reflexive [4, p.306],
it follows that the dual of HP(p?(1 — r2)71) is H"""'(tb"'(l — r2)~1). We also get

Theorem 5.22.
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