
”up. ~.IV'-..‘-Irv ... _...u«

r: were

CHIGAN ATE UNIVERSITY UB
RANES

Ill llllllllllllll l Hill |
3 1293 00908 7655

This is to certify that the

thesis entitled

An Object-Oriented Framework

for Modeling Dynamic Connections

presented by

Jonathan Robert Engelsma

has been accepted towards fulfillment

of the requirements for

Ph.D. Computer Science
degree in

m/flD

Major pr ssor

new

0.7639 MSU is an Affirmative Action/Equal Opportunity Institution

LIBRARY

Michigan State

University

PLACE iN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

II
J

 “if—ii
MSU Is An Affirmative Action/Equal Opportunity Institution

cMmZi—on

.

AN OBJECT-ORIENTED FRAMEWORK FOR

MODELING DYNAMIC CONNECTIVITY

By

Jonathan Robert Engelsma

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Computer Science Department

1993

ABSTRACT

AN OBJECT-ORIENTED FRAMEWORK FOR

MODELING DYNAMIC CONNECTIVITY

By

Jonathan Robert Engelsma

Science and engineering rely on resolving systems into constituent components

whenever possible to simplify the analysis and design process. This “divide and con-

quer” approach is useful in many of the problems commonly encountered. A system

can be divided into components if it can be assumed that: points, edges, surfaces, and

regions can be identified where connectivity relations can be reasonably established;

and the constitutive equations within each of these interconnected components can

be expressed in a localized manner involving only the variables of interconnections

and other local variables. The resolution of systems into components is not only a

common basis of the design processes that are used, but is at the heart of effective

computer-based modeling and simulation.

The advancement to the state of computer-based modeling and simulation of sys-

tems presented in this dissertation deals with systems comprised of components whose

characteristics, existence, and interconnections vary over time. A simulation frame-

work based on recent results in object-oriented design is proposed. The framework

defines a set of abstractions that serve as building blocks for describing connections,

components and aggregations of components. The framework incorporates a set of

concurrent objects which cooperatively respond to changes in the model topology and

component population during model execution.

The construction of hierarchical models consisting of both continuous and discrete

components is supported. The behavior of a component is represented by mathemat-

ical equations, and/or by blocks of code that are executed when a component sends

or receives messages. Equations representing the connections among components are

formulated by the framework when new connections occur and are revoked when the

connections are removed. The equations representing connections and the equations

representing component behavior are organized into systems of equations and solved

on a demand basis.

To my wife Mietje

and my parents James and Marie Engelsma

iv

ACKNOWLEDGMENTS

I wish to thank my thesis advisor, Professor Richard Reid for his guidance through-

out my graduate studies at Michigan State University. His encouragement, insight,

patience and ability to motivate students, proved to be most valuable.

I am grateful for the helpful suggestions provided by my guidance committee:

Professors Phillip Mckinley, Matt Mutka, and Chi Lo. I am also grateful for the

suggestions of Professor Thomas Manetsch.

I am indebted to the Science Advisory Board Associates of Motorola Inc. who

provided the funding and computer equipment necessary for this research. In partic-

ular I thank Dr. Ronald Borgstahl who was our representative at Motorola. Without

his efforts this research would not have been possible. I thank Dr. Patrick Reilly

who followed my progress closely and provided many useful comments and criticisms

along the way.

I thank my friends and fellow graduate students Barb Czerny, Christian Trefftz and

Reid Baldwin for the time they spent reading and commenting on this dissertation.

I am also grateful for the selfless efforts of J. Daniel Smith, who spent many hours

installing and maintaining our document processing software.

Finally, I wish to thank my ever-supportive wife Mietje, and our parents James

and Marie Engelsma and Willem and Lydia Henke. Their love and support played

an important role in this work.

TABLE OF CONTENTS

LIST OF FIGURES

1 Introduction and Motivation

1.1 Problem Statement _' . .

1.2 Organization of this Dissertation

2 Background

2.1 Object-Oriented Modeling/Simulation

2.1.1 Object-Oriented Concepts

2.1.2 Recent Research in Object-Orientation - Frameworks

2.2 Results from the Simulation Field

2.2.1 Object-Oriented Frameworks in Simulation

2.2.2 Results From Interactive/Visual Simulation

2.2.3 Sim

2.2.4 Other Results

2.3 Summary

3 Representations and Definitions of a Simulation Framework

3.1 Layer 0 - The Applications Layer

3.2 Layer 1 - The Interface Layer

3.2.1 Components

3.2.2 SubModels

3.2.3 Connections and Terminals

3.2.4 Connection Rules

3.2.5 Events

3.2.6 Examples

3.3 Layer 3 - The Simulation Layer

3.3.1 The EventHandler

3.3.2 The ConnectionManager

3.3.3 The EquationFormulator

vi

ix

5

7

8

9

10

11

11

13

15

16

18

19

20

21

21

21

23

24

25

26

31

34

34

35

3.3.4 The EquationAccumulator

3.4 Layer 4 - The Computational Layer

3.5 Putting It All Together

3.6 Summary

Concurrency, SubModels and Discrete Models

4.1 Object-Oriented Concurrency

4.1.1 The SubModel Interface

4.2 Modeling Discrete Phenomena

4.2.1 An Example Discrete Model

4.3 Summary

The Simulation and Computation Layers

5.1 Component and Connection Management

5.1.1 Component Registration

5.1.2 Component Removal

5.1.3 Connection Registration

5.1.4 Connection Removal

5.2 Connectivity Equation Formulation

5.3 Equation Accumulation

5.3.1 The Notion of Hierarchy

5.3.2 The EquationAccumulator Object

5.4 Equation Organization

5.4.1 Demand-Driven Equation Organization

5.4.2 Queries for Variable Values

5.4.3 Cooperative Organization Via Active Objects

5.5 Equation Solution

5.5.1 The MathSoIver Object

5.6 Summary

Applications

6.1 The FMDC Framework

6.2 A Cellular Phone Model

6.2.1 Background Information

6.2.2 The Cellular Model

6.2.3 Discussion

6.3 An Electrical Circuit

6.3.1 A Model of an Electrical Circuit

vii

35

35

36

37

39

40

41

44

45

47

48

48

51

52

53

54

56

58

59

61

70

70

71

72

85

85

89

91

96

101

103

104

6.3.2 Discussion 108

6.4 Population Dynamics of a Beehive 109

6.4.1 Background Material 109

6.4.2 Modeling the Population Dynamics 111

6.4.3 Discussion 117

6.5 Summary 118

7 Summary, Contributions and Recommendations 120

7.1 Summary 120

7.2 Contributions 121

7.3 Recommendations 122

A The Hamework Classes 124

A.l The Component Class 124

A2 The Terminal Class 125

A.3 The SubModeI Class 127

AA Event Classes 130

BIBLIOGRAPHY 132

viii

LIST OF FIGURES

2.1 The Ptolemy inheritance relationships.

2.2 A model of an 8-bit microprocessor developed with Sim

3.1 The framework with respect to the simulation application.

3.2 Three electrical components and their terminal variables........

3.3 Components become connected

3.4 A spring, block, and dashpot

3.5 The connected components

3.6 Algorithm executed by active objects...................

3.7 The relationships among the active objects in the simulation layer. . .

3.8 Putting it all together.

4.1 SubModel methods to local objects mapping...............

4.2 An example discrete model.

5.1 Equation ambiguity: connectivity or constitutive?

5.2 The ConnectionManager’s method for component registration.

5.3 The ConnectionManager’s method for component removal.

5.4 The ConnectionManager’s method for connection registration.

5.5 The ConnectionManager’s method for connection removal.

5.6 The EquationFormulator’s algorithm for processing messages......

5.7 Example of a “kind of” hierarchy.....................

5.8 Example of a “part of” hierarchy.

5.9 Example variable table entries.

5.10 Example equation table entries.

5.11 The EquationAccumulator’s method for variable registration......

5.12 The method for constitutive equation registration............

5.13 The method for connectivity equation registration.

5.14 The method for revoking constitutive equations.............

5.15 The method for revoking connectivity equations.............

ix

12

16

27

29

30

31

32

33

38

42

46

50

52

53

55

57

57

60

60

64

65

67

67

68

68

68

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

A.1

A.2

A.3

A.4

A.5

A.6

A.7

A.8

A.9

The method for handling results from an equation parse. 69

The method for handling results form a variable query. 69

The EquationAccumuIator’s query method................ 71

The closure algorithm. 73

Nested SubModels and their variables................... 75

The equation organization algorithm................... 77

Primitive component definitions...................... 78

An instance of component type A nested within a SubModel. 78

An instance of component type C nested within a SubModel. 79

A SubModeI containing two primitive components and a nested SubModel. 81

The highest SubModel in the hierarchy. 81

Example model hierarchy. 81

Messages passed during equation organization.............. 82

The FMDC implementation. 93

The common control channels....................... 96

The “kind of” hierarchy for the cellular model.............. 97

The “part of” hierarchy for the cellular model.............. 98

Part of the control channel model using a commercial tool. 102

Model of an electrical circuit with discrete and continuous parts. . . . 104

Computing V0“; for the digital-to-analog component. 106

The “kind of” hierarchy for the circuit model. 107

Circuit model output: the voltage across the capacitor. 108

Model of worker bee population...................... 112

Additional brood frames being inserted.................. 113

Output from the Beehive model...................... 117

Data members of the abstract class Component 124

The interface protocol of the abstract class Component 125

Data members of the abstract class Terminal 126

The interface protocol of the abstract class Terminal 126

Data members of the abstract class SubModel 127

The interface protocol of the abstract class SubModel 128

Data members of the abstract class Event 130

The interface protocol of the abstract class Event 130

Events defined by the framework 131

CHAPTER 1

Introduction and Motivation

Using the digital computer as a modeling and simulation tool has allowed researchers

to investigate ideas and find solutions to problems which before were unapproach-

able, or at least daunting enough temporarily to discourage more in-depth study.

Computer-based modeling enhances problem solving in several ways. First, com-

puter models are generally easier to construct, modify, and execute than traditional

pencil and paper analytical models. Second, to obtain information about a system, it

is usually less costly (and safer in certain cases) to simulate the system with a com-

puter rather than obtaining the information from the real system. Along a similar

vein, Jain [48], Cellier [19], and others have pointed out that often the system being

modeled is not available to the model developer. Finally, a simulation model can be

used repeatedly to study a particular system or family of systems. However, as noted

by Banks and Carson [6], computer-based modeling is not without its disadvantages.

First, researchers will sometimes develop a computer simulation model when in fact

it is quite possible to derive an analytical model. This is only a disadvantage when

the analytical model would give better results, without making assumptions that sig-

nificantly reduce the viability of the model’s representation of the real world. Second,

large and involved computer-based models may be very costly to implement, validate

and maintain. Third, computer-based models may require extensive amounts of com-

putation. The latter two disadvantages have been the focus of current research in the

area of computer simulation. Researchers have begun to investigate visual and inter-

active simulation, object-oriented simulation, and parallel simulation, in an attempt

to reduce the costs associated with the development and execution of computer—based

models.

Object-oriented design concepts and visual and interactive simulation techniques

have been adapted in an attempt to reduce the costs associated with implementation

and validation, and to increase model lucidity. Using object-oriented methodologies

allows models to be constructed that more closely represent the real system. For

example, in a model of a physical system, each discrete part in the system may be

mapped to a corresponding object in the model. Equally important is the fact that

the object-oriented approach greatly enhances reusability. Libraries of object classes

may be developed and maintained and reused whenever possible. Object-oriented

frameworksl allow entire designs (abstract classes and the relationships among them)

to be reused. Research in visual and interactive simulation builds upon the notion

that “a picture is worth a thousand words”. Sophisticated graphical renditions, both

static and animated, can be produced during simulation, giving the user the capability

to observe firsthand the behavior of the modeled system. In addition, some modeling

tools allow users to modify system parameters during model execution and watch the

effects of the parameter adjustments.

Distributed simulation methodologies have been studied in hopes of reducing the

long execution times. The basic idea is to distribute the work over a set of processors

operating in parallel. As pointed out by Fujimoto [40], it is interesting to note that

although simulation is a problem domain which contains substantial amounts of par-

allelism, it is very difficult to parallelize. If the times required to process the events

lItalics are used in this chapter to indicate words which have a precise meaning in the context

of this dissertation. These words will be elaborated on eventually, but for now meanings can be

assumed from common English usage.

in the simulation model were proportional to the times required for the events in the

real world this paradox would not occur since every process in the simulation would

be automatically synchronized in time. However, this is not the case. Hence, it is the

management of simulation time which is at the heart of research in parallel and dis-

tributed simulation. There are two main philosophies for managing time in a parallel

event simulation, the conservative approach [23] and the optimistic approach [49].

Almost all the methodologies for parallel event-driven simulation employ one of these

two philosophies or a combination of the two.

1 .1 Problem Statement

This dissertation is concerned with modeling a certain class of systems - systems

comprised of components whose characteristics, existence and connections vary over

time.

A component with varying characteristics, that is, a component which has different

regions of operation based on its variable values, is illustrated by an electronic diode.

Ideally, a diode has two regions of operation: zero resistance or infinite resistance.

The resistance characterizing the diode at any given time is decided by the polarity

of the input potential at that time.

In a mobile cellular phone system the power up/down of mobile phone units ex-

emplify components whose existence is dynamic. Similarly, on a multiprogrammed

computer system, software processes which can be spawned and terminated are also

examples of components with dynamic existence. Dynamic connectivity among com—

ponents in the mobile cellular phone system is evident when considering the rela-

tionships among mobile phone units and cell base stations. Another example of a.

system with dynamically connected components is a software system which has been

implemented as a set of communicating processes. The processes are running on a

set of workstations which are interconnected on a network. In such a system, the

components would be the processes and the connections would represent the software

connections supported by the network protocol. Interconnections can be more than

simply a logical or intangible type. A fault tolerant computer system in which live

insertion of circuit boards is permitted, or a mechanical system made up of movable

components illustrate cases in which the dynamic connections between components

are of a physical nature. In the examples cited so far, dynamic connections are con-

sidered to be natural phenomena in the ongoing operation of the system. Dynamic

connections of a more artificial nature are introduced by visual and interactive sim-

ulations and virtual reality. In these systems, components and connections may be

inserted into or deleted from a model at the whim of the user.

This dissertation argues that systems whose components and connections may

vary (or are allowed to vary) over time can be successfully modeled, based on the

following ideas:

0 the development of an abstract, object-oriented framework upon which simula-

tion tools for a wide variety of systems can be constructed. Unlike traditional

simulation methodologies, this framework provides for explicitly modeling the

dynamic existence of components and the connections among them. The idea of

object-oriented frameworks applied to simulation tools is synonymous with the

idea of graphical user interface kits applied to general computer applications.

The framework captures the essence of components, connections, and hierar-

chy, and allows the simulation tool designer to focus on the higher level issues

associated with the problem at hand.

0 the design of a simulation framework which is amenable to parallel implemen-

tation. The framework presented in this dissertation is based on a suite of

concurrent objects which concurrently manage the time varying connections

and component population.

0 the unified treatment of components and connections in the context of both

continuous and discrete simulation models.

These ideas are developed in the context of FMDC (Framework for Modeling Dy-

namic Connections), an object-oriented framework for modeling dynamic connectivity

that has been implemented during the course of this research project.

1.2 Organization of this Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 examines the

results appearing in the literature that are related to this work. The strengths and

weaknesses of several general simulation methodologies are examined. Recent devel-

opments in object-oriented frameworks are also discussed.

In Chapter 3 the representations and definitions of the simulation framework are

developed. The chapter presents each of the four layers that form the simulation

framework. The chapter concludes with an example model that ties the presented

concepts together.

Object-oriented concurrency in the context of the simulation framework is dis-

cussed in Chapter 4. A second topic developed in Chapter 4 is the framework’s

underlying support for discrete models.

Chapter 5 develops the simulation and computational layers of the framework in

detail. The chapter begins by examining the details of component and connection

management. This is followed by the development of the framework’s mechanisms

for equation formulation, accumulation, and solution.

In Chapter 6 the salient features of the framework are demonstrated with mod-

els from several different problem domains. A model of an electrical system which

incorporates discrete digital components as well as analog components demonstrates

its ability to represent both continuous and discrete components in one model. Other

examples demonstrate its capability to explicitly model systems where components

and connections vary over time.

Finally, Chapter 7 summarizes the contributions made and makes recommenda-

tions for future research.

An appendix has been included that gives the interfaces of the abstract classes

defined by the framework.

CHAPTER 2

Background

A common characteristic of many systems under study today is complexity. This

complexity is due in part to the size of the systems, but more significantly it is due

to the interactions among their constitutive subsystems. Modern digital computers

play an important role in helping researchers model and understand the complexi-

ties encountered. One aspect of modeling that has been given very little attention

until now is how to represent changing relationships among a model’s components

explicitly. This lack of attention can be attributed to several reasons. First, it wasn’t

necessary. In the past, most systems being studied could be represented with static

block diagrams. Topology changes were relatively uncommon and most existing mod-

eling tools could be manipulated to handle occasional topological changes. Second,

the limitations of the computer technology in terms of memory, processing power and

software inhibited the development of simulation tools which explicitly dealt with

changing relationships among components. Finally, simulation models were typically

executed in a batch mode. Recent developments in visual-interactive simulation and

virtual reality increase the utility for a methodology that allows dynamic relationships

among components.

This chapter presents the developments from the literature that have influenced

the contributions made in this dissertation. An important facet of this dissertation is

its use of recent developments in object-oriented systems research [99] in the area of

systems simulation. After the object-oriented material, the developments in systems

simulation which had the greatest impact on this dissertation are examined. Some of

the results reviewed here approach the problem of modeling dynamic connectivity in

a very narrow sense, while the others do not deal with it all and have been included

mainly for their influence on related issues.

2.1 Object-Oriented Modeling/Simulation

Although programming languages such as Smalltalk [44] and C++ [86] are typically

associated with object-oriented systems, it is interesting to note that object-oriented

concepts were first introduced in the simulation language Simula—67 [29]. Tradition-

ally, software developers concentrated on the various operations or procedures which

must be carried out. When using an object-oriented approach, developers concen-

trate on defining the entities (objects) and the interactions among them. In this way

the object-oriented approach more closely represents the real world. Since simulation

involves real world representations, object-oriented design is especially applicable.

There has been some confusion regarding the terms object-oriented modeling and

object-oriented simulation as pointed out by Cellier et al. [22]. The term modeling

refers to the process of creating a model, while the term simulation refers to computing

the trajectory of various model variables over time. Thus, object-oriented modeling

refers to the process of creating the model using the object-oriented approach, and

object-oriented simulation refers to the actual execution of the model employing the

object-oriented approach. It has been argued by Cellier et al. that the latter is to be

avoided, especially for continuous system models. The argument is based on the fact

that it is inefficient to have two separate software entities (objects) communicate at

least once for every integration step. In the literature and in the remainder of this

dissertation, both terms are used synonymously and imply the definition given above

for object-oriented modeling.

2.1.1 Object-Oriented Concepts

The key concepts in object-oriented design are: objects, classes, inheritance, poly-

morphism, and dynamic binding. There are many books and articles written on these

concepts. Korson and McGregor have provided a fairly complete overview of the

object-oriented paradigm [54], as has Booch [12].

An object is an actual entity in an object-oriented system. Typically, the object

only exists during execution. However, the concept of persistent objects has received

a great deal of interest lately, especially in the area of object-oriented databases. A

persistent object is one whose state can be stored on secondary storage and restored

into primary memory when necessary.

A class is a template or description of an object. It describes what data and

procedures are associated with a particular object. In object-oriented languages the

class is thought of as a user-defined type. An object is an instantiation of a class. An

abstract class is a class which cannot be instantiated. Such classes are usually used

to abstract the general properties of an entity and force a standard interface for the

classes which will inherit its interface. Any class that is not abstract is referred to as

either a concrete class or as a class.

The notion of inheritance refers to the “kind of” relationship among classes.

Classes can be arranged in hierarchies where the definition of one class is based on

the definition of other classes. A relationship in which the definition of a single class

is dependent on the definition of two or more other classes is referred to as multiple

inheritance.

Polymorphism and dynamic binding are closely related. Polymorphism refers to

the capability of a variable to denote objects of more than one class. Each of these

10

objects may respond to a common operation in a different manner. Dynamic binding

means that the code that will be executed for a particular method is determined by

the type of the object at the time of execution.

2.1.2 Recent Research in Object-Orientation - Frameworks

One of the goals of the object-oriented paradigm is to help develop reusable software

components. For general purpose programming there are a wide variety of class

libraries available which implement standard program components such as stacks,

queues, heaps, trees, numerical methods, etc. There are also simulation libraries

which provide libraries of simulation components such as resources, delays, priority

queues, etc. Typical examples of simulation class libraries include DISC++ [11],

SIM++ [59], and PRISM [93].

In addition to reusing software components, researchers have begun to look at

ways to reuse designs. One particular approach to reusing designs being promoted by

Johnson and colleagues, is the object-oriented framework [50, 99]. The term “frame-

work” has been used frequently in many different contexts. In object-oriented design,

researchers define a framework to be a set of abstract and concrete classes and the

interfaces among them. Instead of reusing single components as is done in the case of

class libraries, a framework allows the designer to capture the generalities of a large

class of related applications into one abstract framework. To develop a new appli-

cation, new (more specific) classes are derived from the classes in the framework. A

good framework allows new applications to be developed very rapidly.

Frameworks are not easy to develop. Developing a good framework is equivalent to

developing a theory - lack of generality will severely limit its applications. Typically,

designing a framework is an iterative task that requires several applications to be

developed before the significant generalities can be abstracted.

There have been a number of successful frameworks developed. An objected-

11

oriented operating system called Choices has been developed at University of Illi-

nois [18]. Choices is actually a conglomerate of several frameworks. Interviews, a

framework for building graphical user interfaces, has been developed by Linton et

al. at Stanford University [58]. In an attempt to bring the functionality of the user

interface building blocks bundled with the Macintosh computer to UNIX based work-

stations, Weinand et al. of the University of Zurich have developed a framework

called E++ [98]. VAMP, developed by the Aldus Corporation, is another example of

a framework for developing user interfaces [38]. Researchers at Berkeley have devel-

oped an object-oriented framework for mixed-paradigm simulation [16, 17, 72]. These

results will be discussed in detail in the next section.

2.2 Results from the Simulation Field

This section examines more directly the results in the simulation field that influenced

the work presented in this dissertation.

2.2.1 Object-Oriented Frameworks in Simulation

Notable results in applying object-oriented frameworks to the development of simula-

tion tools have been obtained by Buck et al. at Berkeley [16, 17, 72]. Their research

has led to the development of a mixed-paradigm simulation/prototyping framework in

C++ called Ptolemy. By defining a set of internal object-oriented interfaces, Ptolemy

provides a large set of building blocks that greatly reduce the effort of building new

simulation and prototyping environments. The key objective of their work is to allow

many different computational models to coexist in the same simulation. The basic

module in Ptolemy is the Block. A Block is a module of code which can be invoked

at run-time. When invoked a Block consumes the data present at its input PortHoles

and generates data on its output PortHoles. The data objects being communicated

12

are derived from the abstract class Particle. A Galaxy is a class that contains a col-

lection of interconnected blocks, and a Universe is a special Block that contains a

Galaxy and a Scheduler. The Scheduler is the entity that decides the order of execu-

tion among the Blocks. An atomic Block is called a Star. A special class, Wormhole,

is introduced that allows the mixture of multiple domains (a domain is defined to

be the combination of a scheduler and a set of blocks that conform to the behavior

expected by this scheduler.) Figure 2.1 illustrates the inheritance diagram among

Ptolemy’s classes. The XXX in the figure represent the classes derived for a fictitious

domain XXX.

Block Runnable

Galaxy Star Wormhole

Universe XXXStar

XXXUniversc XXXWorrnhole

Figure 2.1. The Ptolemy inheritance relationships.

Ptolemy has been used to construct simulation tools in domains such as network-

ing and transport, call-processing and signaling software, embedded microcontrollers,

signal processing and others. The Ptolemy framework is quite general. The FMDC

13

framework differs in that it provides explicit support for generating and maintaining

mathematical representations of the relationships among components. Such support

is useful in a wide variety of domains and particularly useful when dealing with dy-

namic connectivity, as will be demonstrated in the chapters that follow.

The flattening of the hierarchies imposed by Galaxy classes within certain domains

by the associated Scheduler may or may not hinder an efficient implementation of the

framework on a parallel machine. The approach in the FMDC framework was to

preserve the natural hierarchy present in a model during execution.

2.2.2 Results From Interactive/Visual Simulation

PRISM [67, 68, 95, 93, 94], an object-oriented environment for discrete-event driven

simulation developed by researchers at Microelectronics and Computer Technology

Corporation, integrates several innovative ideas. PRISM consists of a set of standard

queuing level primitives such as service nodes, delay nodes, resource pools, etc. Each

of these nodes is a class which can be inherited to develop more specialized primi-

tives. There is a container type class that allows hierarchical models to be developed.

Since PRISM started out as a research exercise in defining what an interactive ex-

tensible modeling environment is, its primary contributions are in the area of visual

interactive simulation. A graphical interface was developed which supports graphical

construction of models and automatic animation of the simulation during execution.

Graphical plotters and summation/integration primitives are used for presentation

of variable trajectories during execution. A simulation can be paused, modified and

resumed during execution. The following modifications are supported when the sim-

ulation is paused:

1. model parameters can be changed.

2. new components can be added to the running model.

14

3. existing components can be removed from the running model.

4. new behaviors can be loaded for custom primitives.

5. connections among components can be added or removed.

The modification of model parameters is aided by what is referred to as a sym-

bolic spreadsheet. In essence this concept is identical to that of the programs run

on personal computers to balance Checkbooks. The only difference is that the cells,

which are actually model parameters or attributes of primitives in the models, are

addressed in a hierarchical symbolic format rather than the typical row/column for-

mat. Complex expressions and even programs can be associated with a parameter

causing it to automatically execute when dependent data is changed interactively

during simulation. There has been some reservations in the simulation community

regarding parameter modification during simulation [63]. Concerns have been raised

regarding the danger of misinterpreting summary statistics when steady state has not

been achieved after interactions.

PRISM also incorporates dynamic linking. This allows new components to be

added to a running model, or existing components to be removed or modified. Dy-

namic linking refers to the capability of linking new object code into a running pro-

gram. This concept has been used by debuggers and other object-oriented systems

before, but PRISM demonstrates its usefulness in simulation programs. Its useful-

ness stems from the facts that modeling is typically an iterative activity, and that

simulation models can be quite large. Dynamic linking makes it possible to make a

modification to a model and only recompile and relink a small part of the model.

Of most interest in the context of this dissertation, is PRISM’s support of dynamic

connectivity. A connection in PRISM is quite straightforward. When components

(which are objects in the object-oriented sense) need to interact in some manner,

they simply call each other’s member functions. Hence, making a connection in

15

this context can be accomplished by recording information within the component

which tell it the components with which it will communicate. Type checking is done

to insure that the ports of the components being connected are compatible. This

approach is suitable when a connection indicates that data (called a Transaction

in PRISM terminology) may be transferred among the components involved. Since

PRISM supports a queuing level paradigm and has been used primarily for high-level

modeling and prototyping of computer hardware and software this approach has been

sufficient. This dissertation however, makes more general assumptions about what

a connection is. That is, in addition to representing the potential for data to be

passed from one component to another, connections may also establish mathematical

relationships among components. Automatic formulation and resolution of these

mathematical relationships coupled with the transaction passing approach PRISM

takes, results in a more flexible framework that has a greater problem solving scope.

PRISM’s notion of a connection limits its ability to model the relationships among

components considered in this dissertation.

2.2.3 Sim

The work done by Reid [75] in the area of computer systems modeling has served as a

springboard for the contributions this dissertation makes. His simulator, conveniently

referred to as Sim has been used extensively for pedagogical purposes in computer

architecture courses. Users assemble a textual description of components and their

interconnections. An animated rendition of the model is generated automatically

during simulation. Primitive input components such as switches and pulsers are

supported, which allow some degree of interaction during simulation execution. The

simulator allows users to combine groups of components into submodels which appear

in the graphical display as a box. If desired, a user can zoom into a submodel and view

its constitutive components. Sim provides a large library of parts commonly used in

16

the design of electronic systems. Models such as the 8 bit microprocessor depicted

in Figure 2.2 can be developed and studied without much difficulty. Sim does not

support dynamic connections. Its main influence in the context of this dissertation

is its notions of components and submodels, and its ability to incorporate hierarchy

into designs.

U11..ae1,1s

1

11
11

11
11

11
11

11
11

l
l
l
l
l
l
l
l

I
I
I
I
I
I
I
I

l

I 1

6
:
5

t
a
g
]
;

1 t
a
c
i
t
:

U
.

'
0
’

E
U

1
1
1
1
1
1
1
%

d
i
r
t

fl
it

ti
ll

1
" :

1

F
E
:

a

l

:—

"
[
3
1

C
l

I

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

ill] __
131:1 are ww—

unifies 2573

Figure 2.2. A model of an 8-bit microprocessor developed with Sim

:
3

r
a
r
-

c
2
:

:
2
2
:

1
:
2
1

:
2
:

1
1
1
1
1

L
L
L
L
L
L

h
a
s

s
a
s
s

L
—
J

L
_
.
_
J

l

 1
1
1
1
1
7

1

L
E
E

r
7
1

2.2.4 Other Results

Others have recognized the importance of automatic equation formulation in continu-

ous simulations. Cellier and Elmqvist [20] have observed that simulation methodolo-

gies used today contain artifacts of the technology in place when they were developed.

For example, a continuous simulation language may accept equations in a form that

17

is convenient for the numerical integration algorithms used. They have developed a

language called Dymola which allows the user to enter the equations in familiar forms.

Dymola is a pre-processor in the sense that it manipulates the symbolic equations

into a form acceptable for an existing simulation language. Dymola and other ap-

proaches to symbolic manipulation of representative equations could be applied in a

more extensive implementation of the underlying mathematical servers utilized by the

simulation framework presented here. This dissertation focuses on the management

of components and the relationships among them during simulation.

Cremer has noted that in the mechanical engineering field, computer aided design

systems have typically focused on the formulation and solution of an unchanging set

of equations [28, 52]. He proposes a simulation architecture that provides a natural

and uniform treatment of events such as impacts, contact formation or breakage,

and control-algorithm state changes. Cremer’s simulator, Newton, consists of three

main components: the definitions and representation module, the analysis module,

and the report system. The definition and representation module is responsible for

parsing a high-level language object representation of the mechanical system being

modeled. The analysis module deals with automatic motion equation formulation,

constraints, and an event handling mechanism for handling the impacts, contacts, and

other changing relationships among the components being modeled. While Cremer’s

work focuses specifically on mechanical systems, this dissertation develops a more

general object-oriented concurrent framework which has wider application.

Gilmore’s results also deal with dynamic connections in the area of mechanical sys-

tems [42]. However, the emphasis of Gilmore’s dissertation is the automatic detection

of topological modifications within a mechanical system.

Other publications in distributed and parallel simulation, object-oriented simula-

tion, and visual—interactive simulation which were useful in preparing this dissertation

are included in the bibliography.

18

2.3 Summary

This chapter has provided the basic background material from the literature that

relates to this dissertation. The approach to modeling dynamic connections among

constitutive components is based on recent results in object-oriented research, in par-

ticular object-oriented frameworks. Results from object-oriented simulation, visual-

interactive simulation and physical systems simulation have been examined and con-

trasted with the methodology proposed in this dissertation.

CHAPTER 3

Representations and Definitions of

a Simulation Framework

Object-oriented frameworks can be thought of as skeleton applications that serve as

a base from which more specific applications can be built. The general properties

(algorithms and data structures) encapsulated by the framework are reused every

time a new application is developed. The framework presented here is summarized

in Figure 3.1. The framework is divided into four layers: the applications layer, the

interface layer, the simulation layer, and the computational layer. This chapter gives

an overview of the framework and develops the terminology and concepts pertaining

to each of these layers. The applications layer is examined with respect to the facil-

ities the framework offers to applications being derived from it. The interface layer

consists of the key abstractions such as component, terminal, submodel, and others,

that are used to develop simulation applications. The simulation layer consists of the

underlying simulation mechanisms such as event handling, connectivity management,

equation formulation and equation accumulation. The discussion on the computa-

tion layer will provide insight on the underlying numeric and symbolic computation

requirements of the framework. The chapter concludes by assembling an example

model that combines the concepts developed in this chapter.

19

20

Level 0 L Simulation Applications

Applications Layer

Abstract/concrete classes capturing the

Level 1 8mm“ 0‘COW s“13'“0‘1‘315- Interface Layer

terminals. and connectivity rules

A group of active objects

cooperatively handling dynamics Simulation Layer
Level 2

L
_
_
_
J
L
_
_
_
|
|
.
_
_
_
l

3

Level 3 Mm‘fiw8mm Computational Layer

Figure 3.1. The framework with respect to simulation applications and underlying

mathematical servers.

3.1 Layer 0 - The Applications Layer

The applications layer is the layer in which the framework is actually instantiated.

By inheriting the abstract classes provided by the interface layer (see Section 3.2), a

new simulation application can be developed. The application developer need not be

concerned with the details of the underlying mechanisms which represent dynamic

connections or components, since the underlying framework handles them. The appli-

cation need only notify the underlying framework when components and connections

appear or disappear. To work in this layer, a developer need only be familiar with

the abstract classes provided by the interface layer1 Thus, the framework is a gen-

1An obvious exception to this statement is that the developer must be aware of the limitation of

the particular implementation of the framework being used. For example, the implementation re-

ferred to in this dissertation is limited to systems of linear algebraic and linear differential equations.

21

eral conceptual model that can be applied to a whole family of related applications.

Chapter 6 contains several example applications of the framework.

3.2 Layer 1 - The Interface Layer

The interface layer serves as an interface between the applications built on the frame-

work, and the underlying simulation mechanism. It contains the abstract classes from

which the more specialized classes used in applications are derived.

3.2.1 Components

Definition 3.1 A component is a primitive constituent part of a system. It is

primitive in the sense that it defines only terminals? variables, equations and methods

to describe its behavior, and contains no other components.

In the interface layer, the framework defines the abstract class, Component? from

which all primitive components are derived. A detailed discussion of this class defi-

nition can be found in Appendix A, Section A.1. The procedures referred to in the

definition are blocks of code which are executed when a component receives or sends

messages from one of its terminals.

3.2.2 SubModels

Definition 3.2 A submodel is a component that contains other components.

The interface layer represents submodels with the abstract class SubModel. The Sub-

Model class inherits the abstract class Component. Hence, every SubModel instance

”Terminals will be defined in Section 3.2.3.

3For the remainder of the dissertation, the names of classes and their members are italicized.

22

is also a Component. The SubModel abstraction is important in that it allows hier-

archical models to be constructed. Note that by the definition given, SubModels may

contain SubModels. The hierarchical relationships among the Components and Sub-

Models in any given model form a tree where the leaf nodes are primitive Components

and the interior nodes are SubModels. The root node of this tree is called the world

SubModel. Every model must have at least one SubModel which serves as the world

SubModel in the hierarchy.

Instead of defining the SubModel abstraction, an alternative was to give the Com-

ponent abstraction a recursive definition; that is, a Component instance could be

allowed to contain Component instances. Introducing the SubModel abstraction was

stimulated primarily by practical observations. First, there is overhead associated

with each SubModel instance. As will be seen shortly, each SubModel object instanti-

ates three concurrent objects. Collectively these three objects manage the components

and connections spawned within the SubModel object. In terms of implementation

it is useful to be able to specify when these concurrent objects are needed and when

they are not. Defining the two abstractions Component and SubModel, was one way to

accomplish this. When it is certain that the behavior of a component can be modeled

sufficiently as a primitive component (i.e. it will never contain other components),

the Component abstraction, which does not instantiate the three concurrent objects,

can be used. The decision to define the SubModel abstraction was also influenced

by our experience with existing simulation tools, all of which explicitly provided an

abstraction or mechanism for representing components that are composed of other

components.

In addition to its support for hierarchical model construction, the SubModel class

provides the interface layer with entry points into the simulation layer through its

member functions. A more detailed discussion of the SubModel’s class definition is

given in Appendix A, Section A.3.

23

3.2.3 Connections and Terminals

The notion of a connection may vary depending on what type of system is being

modeled. If a circuit is being modeled at the digital logic level, then a connection

may be thought of as a printed-circuit board trace that connects the output terminal

of one component to the input terminal of another component. If a variable is used

to represent the digital signal value for each of the input/output terminals of the

digital components, the connection can be represented by an equation which equates

the variables associated with the connected terminals. However, if the same circuit

is being modeled at a lower level in the design hierarchy where quantities such as

voltage and current are to be considered, the notion of being connected can no longer

be represented with a simple equality equation. For an electrical component it is

sufficient to associate a voltage and current variable with each point of connection.

The connection can now be represented with two equations. One equation equates the

associated voltage variables, and the other states that the sum of the current variables

is zero. A component’s potential to connect to other components is established by its

terminals. In terms of their constituent parts, terminals and connections are defined

as follows:

Definition 3.3 A terminal is characterized as a set of variables organized into par-

titions. Each partition is assigned a single connection rule which specifies how each

variable in the given partition is to be used in formulating the representative connec-

tivity equation(s).

Definition 3.4 A connection is a set of terminals.

A component may have zero or more terminals, but a terminal can be in no more than

one connection at any instant in time. In addition to the connectivity equations which

represent the connections, components themselves may define constitutive equations

24

which relate the terminal variables and perhaps other variables internal to the com-

ponent. For example, a model of a resistor component would have associated with

it the equation resulting from Ohm’s law: V = IR. Thus, there are two general

classes of representative equations used in the framework: connectivity equations and

constitutive equations.

Definition 3.5 A connectivity equation is an algebraic equation which represents

in part (or completely) a connection between one or more components.

Definition 3.6 A constitutive equation is an equation which represents a rela-

tionship among a component’s variables independent of the component’s connections

to other components.

In essence, the problem of modeling dynamic connections has been mapped to the

problem of formulating, maintaining, and solving a dynamic set of equations.

3.2.4 Connection Rules

It is desirable to anticipate what types of equations can result from connections and

to build the respective equation formulation rules into the modeling methodology.

Ultimately, one would like to discover some finite set of rules which could be used

to formulate equations describing any conceivable connection. Connection rules are

defined as follows:

Definition 3.7 A connection rule is a procedure that receives a set of component

variables as input, and produces a set of connectivity equations as output.

An exhaustive set of formulation rules has not yet been identified, but there are

two general rules which are useful in a variety of domains. As described in the previous

section, the set of variables associated with a terminal are organized into partitions,

and an equation formulation rule is designated for each partition. Consider a terminal

25

that consists of two partitions. Denote the set of variables associated with the two

partitions by:

P1={X,]ISZSS}

P2={Y£l13i3t}

where s and t denote the number of variables in the two partitions. Multiple variables

are assigned to partitions to allow vector quantities such as position, velocity, accel-

eration, force, etc., to be associated with a terminal. Assuming that n compatible4

terminals have been connected, we will use the notation X? to denote the variable X,-

which is associated with the jth terminal. The general formulation rule associated

with the first partition yields the set of identity equations:

x} =X3 = =X,-",

where 1 S i S 8. Using an analogous notation for the second partition, the second

general formulation rule yields the set of conservation equations:

Yt’=0,

1

n

J:

where 1 gig t.

3.2.5 Events

The state of a component at any point in time consists of the values and/or configu-

rations of its attributes (variables, terminals, equations, etc.) at that time. The state

of a model at any point in time consists of the state of all components populating

4A set of terminals is said to be compatible if they define the same number of partitions, the

same number and types of variables in each partition, and have the same connection rules associated

with each partition.

26

the model at that time, and the connections among those components. An event is

defined as follows:

Definition 3.8 An event is a possible change in the state of a model.

The framework defines an abstract class, Event. At a minimum, an event must consist

of two members: a time stamp and an evaluation method. The time stamp indicates

when the event is scheduled to occur. The evaluation method, which is executed

at the scheduled time, initiates the change in model state. The framework defines

a set of events for creating components, removing components, making connections,

removing connections, querying for variable values, etc. A more detailed discussion

of the abstract class Event and the classes derived from it is given in Appendix A,

Section A.4

3.2.6 Examples

The following two examples, one of a simple electrical system and the other of a

simple mechanical system, will clarify the concepts presented so far.

Electrical Example

Three electrical components are illustrated in Figure 3.2. In terms of the framework,

each of these components would be derived from the abstract class Component and

each would have two terminals. In addition, they would be contained by a single

world submodel that is derived from the abstract class SubModel. The electromotive

force component will be referred to as C1, the resistor as C2, and the capacitor as

C3. When referencing the variable of a component, it will be prefixed with the

component identifier. For example, C2.V; would refer to variable V, of the resistor.

Assume that initially the components are unconnected. The constitutive equations

27

v. IA v. IJ v. 1.4

+1. 1T1

Vb 111' Vb Ib' Vb 113'
Figure 3.2. Three electrical components and their terminal variables.

for the electromotive force source component:

Cpl/[1 — Cpl/5 Z I)

01.1 — 01.10 = 0.0

01.10 + 01.15 = 0.0

indicate that the voltage drop across the component’s terminal is 1) volts and the

current flowing through the unconnected device is zero. The constitutive equations

for the resistor component would be:

C2.I — C21,, 2 0.0

02.10 + 02.15 = 0.0

02.14. — 02.14, — 1102.1 = 0.0

28

where p is a constant which indicates the resistance. These equations represent the

fact that the current through the unconnected component is zero and that the voltage

and current are related as stated in Ohm’s Law. The constitutive equations for the

capacitor can be expressed as:

dC3.V _ C31

dt c

= 0.0

C3.V = C3.I/a — C3.%

03.] — 03.1,, = 0.0

03.1,, + C311, = 0.0

where c is a constant denoting capacitance. There are two variable partitions associ-

ated with each electrical terminal. The first partition contains the voltage variable,

while the second contains the current variable. The two general rules given earlier in

Section 3.2.4 are applied to the two partitions whenever a connection occurs. Assume

at some later time terminal a of C1 is connected to terminal a of 02, terminal b of C2

is connected to terminal a of C3, and terminal b of 03 is connected to terminal b of C1

in that order (see Figure 3.3). These topological modifications would be scheduled by

creating and scheduling the appropriate Events. When the first connection occurs,

the equations

01.10 + 02.10 = 0.0

011/“ — 02.Va = 0.0

are formulated based on the two rules. In a similar fashion the second and third

connections result in the equations:

02.11, + 03.10 = 0.0

29

C2.V1, — C3,.Va = 0.0

and

01.15 + 03.15 = 0.0

CPI/t, — 033/1; 2 0.0

respectively. At this point in time, there are 16 simultaneous equations, one of which

is a first-order differential equation, and 16 unknowns. This system can be solved for

all nine of the current variables as well as the voltage drop, Va — Vb, for each of the

components.

Connection 1 Connection 2

l

I_,_T

Connection 3

Figure 3.3. Components become connected

Mechanical Example

In the mechanical domain the notion of a connection can be related to the position of

the components; that is, if two or more terminals are connected, then the positions

30

of those terminals are considered to be equal. Assume there are three mechanical

components: a spring, a block, and a dashpot, each having one terminal with the

associated force and position variables, as shown in Figure 3.4. We will use the same

apt

-P.F

-’ .

P. F7 Pd

Figure 3.4. A spring, block, and dashpot

variable notation as used in the previous example, with Cl, C2, and 03 representing

the spring, block, and dashpot, respectively. For the sake of simplicity, assume the

position is in one dimension. The spring and the dashpot have associated with them

an anchor position designated by P, and Pd, respectively. Constitutive equations for

these three components are given as:

C1.F ‘2 —'K(Cl.P — C1.P3)

d202.P

Cz.F = m dt2

03}, ___ Warned—t- 03.1).)

where n is the spring constant, m is the mass of the block, and '7 is the constant

associated with the dashpot. There are additional details such as the initial values

for the position variables and their derivatives, which are not shown here.

31

Figure 3.5. The connected components

Assume that at a later time, the components connect as illustrated in Figure 3.5.

The equations generated by the two general rules are given as:

01.1") = 02.P = C3.P

which indicates that the positions of the three component terminals are equal and

that the forces associated with each component sum to zero.

3.3 Layer 3 - The Simulation Layer

Every SubModel instance contains three active objects: the ConnectionManager, the

EquationFormulator, and the EquationAccumulator; and references to two other ac-

tive objects: the EventHandler and MathSolver. These objects are active in the sense

that each one of them is actively executing their own thread of control. It is impor-

tant to understand that every SubModel instantiates these three objects. Hence, a

32

model consisting of n SubModels consists of 3n + 2 active objects (the two extra are

for the EventHandler and the MathSolver). The algorithm executed by each of these

objects is a simple consumer algorithm which is illustrated in Figure 3.6. Step 2 in the

1) repeat the following two steps indefinitely

2) Get the next message from the work queue

3) Process the message

Figure 3.6. Algorithm executed by active objects.

algorithm is assumed to be a blocking operation. That is, if no messages are in the

queue, the object will wait until there are. Each of these objects, with the exception

of the EventHandler, maintains a first-in-first-out queue into which messages can be

deposited. The EventHandler maintains a priority queue instead of a first-in-first—out

queue. The messages which are enqueued cause the active object to invoke its own

local member functions (step 3 in Figure 3.6) which may result in sending messages

to the other active objects. The relationships among the EventHandler, Connec-

tionManager, EquationFormulator and EquationAccumulator objects are shown in

Figure 3.7. The blocks represent the active objects and an arrow from one block to

another indicates that the block may send messages to the other block. If a particu-

lar implementation of the framework maps the active objects onto multiple physical

processors, the objects can be synchronized using either an optimistic or conservative

approach [49, 23]. The following sections describe each of these objects briefly.

33

Interface Layer

r .. - .1. :1: - - :

I Event

: Handler

I

Equation

Accumulator

I

Computational Layer

Figure 3.7. The relationships among the active objects in the simulation layer.

34

3.3.1 The EventHandler

The EventHandler executes an algorithm very much like that illustrated in Figure 3.6.

However, instead of a first-in-first-out queue, the EventHandler’s incoming messages

(events) are stored in a priority queue. During each iteration the EventHandler

selects the event with the oldest time stamp and evaluates it. If the priority queue

is empty, the EventHandler blocks until a new event is scheduled. Events themselves

are objects. Every event defines a member function called eval. Using polymorphism,

multiple types of events can be derived from the abstract class Event and executed

with a single generic algorithm.

The granularity of a single event in this framework may be very coarse. For

example, a single variable query event may result in the organization and solution of

a large system of simultaneous algebraic and differential equations. Hence, parallelism

can be exploited at the event level.

3.3.2 The ConnectionManager

The ConnectionManager object maintains lists of the registered components and con-

nections. The ConnectionManager is not responsible for deciding when two or more

components are considered connected, but rather, it is informed when components

become connected or disconnected, so that it can update its lists and initiate con—

nectivity equation formulation. The ConnectionManager is responsible for providing

error detection. Error situations may arise in a number of ways. For example, an

application may attempt to connect a set of non-compatible terminals or attempt to

remove a connection that does not exist.

35

3.3.3 The EquationFormulator

The EquationFormulator takes a set of terminals (a connection), and applies the

connection rules which are associated with those terminals. The set of connectivity

equations which are generated are registered with the EquationAccumulator.

3.3.4 The EquationAccumulator

The EquationAccumulator maintains the set of constitutive and connectivity equa-

tions. It is responsible for organizing systems of equations whenever the values of

variables are demanded by the application. An EquationAccumulator instance has

access to only the connectivity and constitutive equations defined in the context of

the SubModel that has instantiated it. Since an EquationAccumulator contains only

the equations representing the local components and connections, all the EquationAc-

cumulators must cooperatively organize complete systems of equations.

3.4 Layer 4 - The Computational Layer

The computational layer is where the systems of equations are solved. Since it is

impossible to anticipate which types of equations may be encountered, special at-

tention was given to developing a meaningful protocol between this layer and the

simulation layer. The advantage of this is that new computational servers can be de-

veloped and plugged into the simulation layer without difficulty. The computational

servers will communicate asynchronously with the simulation layers. In addition to

solving equations, the protocol also allows for equation parsing to be carried out by

the computation layer. This is important since it allows new capabilities, in terms

of the types of equations that can be solved, to be added to the framework, without

modification of the simulation layer. The simulation layer accesses the computational

layer via the MathSolver object.

36

3.5 Putting It All Together

The simple demonstrative model shown in Figure 3.8 is used to clarify the concepts

developed in this chapter. The outermost SubModel, labeled Cl, contains a primitive

component labeled 02 and a nested SubModel labeled C3. The SubModel Cl con-

tains ConnectionManager, EquationFormuIator and EquationAccumulator instances,

as well as references to the EventHandler and MathSolver objects. The primitive

component C2 defines n variables, labeled V1, V2, ...Vn, and m. constitutive equations

which are denoted by El, E2, ...Em. The only internal details shown for the SubModel

03 are its three active objects, and its references to the EventHandler and MathSolver

objects. Details regarding the components and connections contained within Cg are

not shown.

Within the context of SubModel Cl, the components 02 and C3 each define a single

terminal. These two terminals form a connection which is labeled Ca in the figure.

The ConnectionManager instantiated by SubModel Cl maintains two lists: a list of

the components registered within its context (C; and Ca) and a list of the connections

registered within its context (Co). The EquationFormulator applies the appropriate

connection rules when connections are registered. The EquationAccumulator is shown

with its accumulation of registered variables, constitutive equations, and connectivity

equations (denoted by Equations(C'a) in the figure).

Both of the SubModels in the figure are shown with a dashed line separating the

interface layer from the simulation layer. The items found above the dashed lines are

defined by the application in the interface layer. Those items below the dashed lines

are defined by the framework in the simulation layer. Therefore, when a SubModel

object is instantiated, the framework automatically instantiates ConnectionManager,

EquationFormuIator, and EquationAccumulator objects within the SubModel’s con-

text, but it is the application’s responsibility to populate the SubModel with compo-

37

nents and connections.

The EventHandler and MathSolver objects are automatically instantiated without

intervention from the application layer. Each SubModel instance maintains references

to these objects.

3.6 Summary

This chapter has developed the definitions and terminology of an object-oriented

framework for modeling dynamic connections. The framework has been divided into

four layers: the applications layer, the interface layer, the simulation layer, and the

computational layer. The terms: component, submodel, terminal, connection, con—

nection rule, constitutive equation, connectivity equation and event were defined and

discussed. Examples were provided to help clarify the definitions.

I
n
t
e
r
f
a
c
e

L
a
y
e
r

S
i
m
u
l
a
t
i
o
n

L
a
y
e
r

S
u
b
M
o
d
e
l

-
C
1

C
o
m
p
o
n
e
n
t

-
C
2

V
a
r
i
a
b
l
e
s
:
V
1
.
V
2
.

..
.
V
n

E
q
u
a
t
i
o
n
s
:
E
l
.
E
2
.

E
m

C
o
n
n
e
c
t
i
o
n
M
a
n
a
g
e
r
 a
m

a
m

L
i
s
t
o
f
r
e
g
i
s
t
e
r
e
d
c
o
n
n
e
c
t
i
o
n
s

C
o
n
n
e
c
t
i
o
n

S
u
b
M
o
d
e
l

-
C
3

(
I
n
t
e
r
n
a
l
d
e
t
a
i
l
s
o
f
t
h
i
s
S
u
b
m
o
d
e
l
n
o
t
s
h
o
w
n
)

b
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
.

E
q
u
a
fi
o
n
F
o
n
n
u
l
a
t
o
r

E
q
u
a
t
i
o
n
A
c
c
u
m
u
l
a
t
o
r

E
l
.
E
2
.
.
.
.
E
m

C
o
m
e
c
t
i
o
n
r
u
l
e
s

I
\

(
1
V
1
.
C
2
.
V
2
.
.
.
.
C
2
.
V
n

L
i
s
t
o
f
r
e
g
i
s
t
e
r
e
d
c
o
m
p
o
n
e
n
t
s

R
e
g
i
s
t
e
r
e
d
v
m
i
i
l
e
s

R
e
g
i
s
t
e
r
e
d
c
a
m
e
c
t
i
v
i
t
y
a
n
d
c
m
s
t
i
t
u
t
i
v
e
e
q
u
a
t
i
o
n
s

E
v
e
n
t
H
a
n
d
l
e
r

M
a
t
h
S
o
l
v
e
r

\
R
e
f
e
r
e
n
c
e
t
o
E
v
e
n
t
H
a
n
d
l
e
r

\
R
e
f
e
r
e
n
c
e
t
o
M
u
h
S
o
l
v
e
r

F
i
g
u
r
e
3
.
8
.

P
u
t
t
i
n
g

i
t
a
l
l
t
o
g
e
t
h
e
r
.

38

CHAPTER 4

Concurrency, SubModels and

Discrete Models

Concurrent object-oriented programming is an emerging software technology that has

much to offer in the way of providing a solid software foundation for multiprocessor

computers. The first section of this chapter develops the rationale for basing the

simulation framework on a set of concurrent objects, the implications of this approach

and the SubModeI’s encapsulation of the concurrent objects.

The second section of this chapter describes how support is provided for devel-

oping discrete components which define methods instead of constitutive equations

to describe their behavior. All the examples presented so far were continuous mod-

els in which components were described using algebraic and differential constitutive

equations. In some situations it is more intuitive to allow the internal behavior of

components to be described with methods rather than constitutive equations. This

mechanism used in concert with constitutive equations results in a powerful, yet flex-

ible, simulation framework.

39

40

4.1 Object-Oriented Concurrency

There has been a great deal of interest in concurrent object-oriented program—

ming [4, 27, 30, 55, 57, 91, 103]. A concurrent object-oriented program is a program

based on the object-oriented paradigm that contains more than one thread of exe-

cution. Although conceptually the program expresses concurrency, in actuality the

program can be executed sequentially or in parallel. In addition to the merits of

the object-oriented paradigm, concurrent object-oriented programming methodolo-

gies are desirable in that they allow the programmer to focus on the objects and their

interactions without having to be concerned with the anomalies of the underlying

computing platform. In other words, the programmer is given the ability to express

potential parallel execution in the program without having to get involved in the

details on how this is actually implemented on the computing platform being used.

The concurrent object-oriented approach was adopted here for this reason.

There are three common patterns for parallel computation [4]. Pipeline concur-

rency can be achieved when a problem is divided into a sequence of stages. After

a computation finishes the first stage it moves sequentially to the second stage. At

the same time, a new computation can enter the first stage. When both of these

computations are completed the first computation moves on to the third stage, the

second computation moves on to the second stage, and a new computation can enter

the first stage. This process is repeated until eventually every stage of the pipeline

will be processing. Thus, in an n stage pipeline, n different computations are carried

out in parallel. An occasional lack of input may will cause a “bubble” of idleness to

pass through the pipeline. A second pattern for parallelism is the divide and conquer

pattern. Here the problem is divided into sub-problems, each of which is processed

in parallel. The results are joined to form the complete solution. A third pattern

involves cooperative problem-solving. In this pattern a complex network of processes

41

work together in parallel on a given computation. The processes share intermediate

results with each other through message passing.

Both the pipeline and the cooperative problem-solving patterns can be identified in

the simulation framework. The pipeline pattern arises when a connection is registered

within a given SubModel. The ConnectionManager receives the connection registra-

tion message first. After error checking, it updates the appropriate symbol tables

and sends a message to the EquationFormulator for the formulation of connectivity

equations. Once the new equations are formulated, the EquationFormuIator sends

them in a message to the EquationAccumulator. The EquationAccumulator adds the

new equations to its list of active equations. This sequence of computations forms

a three stage pipeline. The cooperative problem-solving pattern of parallelism arises

when a set of EquationAccumulatms cooperatively organize a system of equations for

solution.

From the framework application’s perspective, the concurrent object-oriented ap-

proach may complicate matters. That is, if the underlying framework consists of a

large number of concurrent objects, how does the application know to which object

to send its requests? This problem has been dealt with by having the SubModel ab-

straction provide an interface to the ConnectionManager, EquationFormulator and

EquationAccumulator objects that it encapsulates.

4.1.1 The SubModel Interface

The SubModel abstraction plays two important roles in the framework:

0 it supports hierarchical modeling.

0 it hides the details of the simulation layer from the applications layer.

Each SubModel instance contains several active objects which cooperatively formulate

and maintain the mathematical representation of components local to the SubModel

42

Active object

receiving Message

EventH er

ConnaftionManager

SubModel method

sending Message

r

b

EquationAccumulator

MathSolver

t

r.

L

schedule

registerComponent

registerConnection

removeComponent

removeConnection

postConstants

registerVariabie

registerEquation

queryVariable

rememberVariable

revokeConstitutiveEquation

printStatc

propogateOutput

def'meConstants

undefineConstants

Figure 4.1. SubModel methods to local objects mapping.

43

and the connections among them. The visibility of the concurrent objects in the ap-

plications layer would complicate matters. If an application needs to register a new

connection a message must somehow be sent to the appropriate ConnectionManager

object. If an application wishes to query for the value of a variable at a certain in-

stant in time, a message must be sent to the appropriate EquationAccumulator object.

Sending the message concerns not only the type of the receiving object (Connection-

Manager vs. EquationAccumulator), but also which instance of that type. There are

two alternative approaches to the problem of sending messages from the application

to the concurrent objects. One approach is to allow the application to pass messages

directly to the active objects. In this approach the application is responsible for de-

ciding which object to send a particular request to. A second approach is to have the

SubModel class provide a set of methods which receive messages and forward them to

the appropriate active object. Instead of sending messages directly to the active ob-

jects, the application invokes the appropriate SubModel method. The first approach is

not desirable, since requiring the applications layer to determine which active object

is responsible for a particular operation is cumbersome and will limit the framework’s

usability. The second approach has been adopted here. This approach is more desir-

able because it completely hides the active objects from the application layer. Thus,

the application only has to deal with the interface of a single class instead of a group

of concurrent objects. The SubModel method will automatically forward messages to

the appropriate active object when invoked by an application. If two components

are to be connected the application will call the registerConnection method of the

SubModel instance containing the two components. This method places a message

in the input queue of the SubModel’s local ConnectionManager object. If a variable

is to be queried, the application will call the query Variable method of the SubModel

containing the variable. This method places a message in the input queue of the

SubModel’s local EquationAccumulator object. The complete mapping of SubModel

44

methods to the internal objects is illustrated in Figure 4.1. The set of cooperating

objects and their interactions which form the simulation layer is invisible to applica-

tions using the framework. Simulation tools derived from a parallel implementation

of the framework (those which assign the active objects to multiple processors, and/or

those that perform the symbolic or numeric computations in parallel) are distributed

applications without the applications’ developer providing for it explicitly.

4.2 Modeling Discrete Phenomena

The electrical and mechanical examples given in Section 3.2.6 are both continuous

models; the same concepts apply to discrete models. The constitutive equations need

not be limited to differential and algebraic equations. Difference equations can be used

as long as the underlying servers in the computational layer are capable of parsing

and solving them along with the equations generated by the associated connectivity

rules.

In some cases it is more intuitive to replace the constitutive equations with a

method that describes the behavior of the component. For example, consider multi—

level digital logic simulation. A signal change on a gate’s input terminal may result

in zero or more signal changes on an output terminal. This can be represented

by associating a behavior describing method with each gate. Whenever the inputs

change, the method is called. The method will schedule events to represent the output

signal changes.

The framework provides support in the simulation layer that allows connected

Component instances to receive messages on their input terminals and send messages

from their output terminals. Whenever an input event occurs, the EventHandler

executes the input method of the Component named by the event. Whenever an out-

put event occurs, the EventHandler executes the output method of the Component

45

named by the event. The connectivity rule described in Section 3.2.4 which generates

the identity equations must be associated with each terminal in order for messages

to propagate correctly. Message propagation can be initiated by invoking the prop-

agateOutput method of the SubModel class. This method is normally called by a

Component’s output method . All message propagation is based on the relationships

established by the underlying connectivity equations. Since these equations appear

when new connections are made, and disappear when connections are removed, cor-

rect message propagation is guaranteed. Since the definitions of connection and ter-

minal given earlier also apply to discrete models, it is possible for one Component to

model its behavior with both constitutive equations, and behavioral functions. Such

a component can be used as a coupling component between continuous and discrete

models. The model of the digital-to-analog converter in Chapter 6 is an example of

this type of component.

4.2.1 An Example Discrete Model

Consider the simple manufacturing model in Figure 4.2. In this system a certain

product is arriving at a testing station with 20 units per pallet. The testing station

tests each product individually, and sends them to one of two warehouses, depending

on whether or not they passed the test. In addition, if more than one unit per pallet

is faulty, a report is sent to purchasing to order replacements. A copy of the report is

also sent to quality control. Each of the entities in the model can be represented as a

Component. The test station has four terminals, while the other components have one

terminal each. Assuming that the letters a —i represent the variables associated with

the terminals, and connections are represented by the dots, the following connectivity

equations are generated when the connections are registered:

a=b

46

Warehouse

3 A

c

Product a b Test

Source Station d

f

8 Warehouse

B

h 1

Figure 4.2. An example discrete model.

c=e

d=f

g=h

h=z

There are no constitutive equations defined by these components. Instead, each of

the components will provide code in their input and output methods that describe

their behavior. Note that in discrete models the connectivity equations are utilized

differently than the connectivity equations of the continuous models. In a continuous

model the connectivity equation establishes a mathematical relationship among the

internal variables of the connected components. In a discrete model the connectivity

equations establish the propagation of messages sent from a particular terminal.

Assume the product source block outputs a pallet containing 20 units, two of

47

which are faulty. The output method of the product source block will invoke the

propagateOutput method of the world SubModel containing the source block. From

the connectivity equation a = b the method determines that an input event must be

scheduled for the test station. When the test station’s input method is executed it

begins testing each unit individually, scheduling output events to send good units to

warehouse A and faulty units to warehouse B, from the equations c = e and d = f,

respectively. When the second faulty unit is discovered, output events are scheduled

for warehouse B, quality control, and purchasing. The connectivity equations g = h

and h = 2' cause the propagateOutput method to schedule input events for both quality

control and purchasing.

The model could be extended by dynamically instantiating and connecting new

warehouses, product sources, etc. In addition, components with constitutive equa-

tions could be added to the model. In this example, it may be desirable to model the

transport from the testing station to the warehouses. The transport mechanism could

be a conveyor belt whose dynamics could be described with a differential equation.

Models mixing continuous and discrete phenomena will be developed in Chapter 6.

4.3 Summary

This chapter has provided the rationale for using the concurrent object-oriented ap-

proach. The implication of using this approach in terms of the framework’s usability

at the applications layer was pointed out. This problem has been dealt with by hav-

ing the SubModel abstraction provide a simple concise interface to the active objects,

completely hiding them from the applications layer. In addition, the framework’s

mechanism for modeling components that cannot be described with constitutive equa-

tions was presented. This mechanism allows behavioral methods to be associated with

component descriptions.

CHAPTER 5

The Simulation and Computation

Layers

This chapter focuses on the four main tasks carried out by the simulation and com-

putation layers.

0 component and connection management.

0 connectivity equation formulation.

0 equation organization and accumulation.

0 equation solution.

Within each SubModel instance, there is a group of cooperating active objects carrying

out these tasks.

5.1 Component and Connection Management

The simulation framework must provide support for maintaining which components

are active in the simulation and the changing relationships among these components.

This support is needed when the application is adding or removing components and

48

49

connections. If an application indicates that component X should be removed from

the model, then a mechanism is needed to decide whether X exists, and how its

removal affects the set of equations stored by the EquationAccumulator. If an appli-

cation indicates that a new connection is to be established, a mechanism is needed to

determine if the components and terminals involved actually exist, if the connection

already exists and if the types of terminals being connected are compatible. This

support is provided in each SubModel by an instance of a ConnectionManager.

Information regarding the existence of a particular component cannot always be

determined from the equation set. The existence of a component can be determined

from the equation set in situations similar to the following. Assume that an appli-

cation informs the framework that it would like to remove component C2, a resistor,

which does exist. The simulation layer would search through the set of registered

equations and locate the following equations:

02.] — 02.10 = 0

02.16 + 02.15 = 0

02.”, — Cpl/(1 - [102.] = 0.

Since a set of constitutive equations tagged with the C2 identifier were located, the

simulation layer can safely assume that C2 exists and can proceed with its removal.

The framework could correctly determine that the component existed based on the

existence of its constitutive equations in the equation set. To see a situation where

the existence of a component cannot be determined from the equation set, assume the

application program informs the framework that it would like to remove component

C3, a logic gate. The designer of the logic gate associated behavior describing methods

(as described in Chapter 4) with the logic gate rather than constitutive equations.

50

When the framework searches through its equation set, it will find no constitutive

equations for C3 and will incorrectly inform the application that C3 does not exist.

Making assertions about the existence of connections based on only the equation

set, is also a problem. Consider the following equation:

C5.Xa — C5.Xb = 0

Without further information, this could be interpreted in two ways as illustrated in

Figure 5.1. It could mean that a two-terminal component C5 has its two terminals

Tenniml A Terminal A

cs

Terminal B

MyEquation ? Constitutive Equation

Figure 5.1. Equation ambiguity: connectivity or constitutive?

connected, and the equation is a connectivity equation where X0 and X5 are the

variables assigned to terminals A and B (shown on the left in Figure 5.1.) It could

also be the case that C5 is a single component with a single unconnected terminal,

and the equation is simply one of its constitutive equations (shown on the right in

Figure 5.1.) In addition to this ambiguity problem, different connections may ap-

ply different connection rules, making it even more difficult to deduce connectivity

51

information from the equations alone. The ConnectionManager maintains its own

information regarding the registered components and connections, making it unnec-

essary for it to consult the equation set for information regarding the existence of a

particular component or connection.

The ConnectionManager executes the algorithm outlined in Figure 3.6 of Chap-

ter 3. It accepts messages requesting one of four tasks: component registration,

component removal, connection registration or connection removal. Internally, it

maintains two symbol tables: one for components and one for connections. Entries

are made in these tables when components and connections are registered, and are

modified when components and connections are removed. The ConnectionManager

associates an identifier with each equation. For a constitutive equation, the identifier

identifies the component that defined it. For a connectivity equation, the identifier

identifies which connection the equation was formulated from.

5.1.1 Component Registration

Components may be spawned within a model at any time during the model’s exe-

cution. In order for this instantiation to take effect, the application must call the

registerComponent method of the SubModel which contains the component. This

method sends a message to the ConnectionManager that is encapsulated by the Sub-

Model. When the ConnectionManager receives the message, it will first consult its

component symbol table, to see if another component with the same identifier already

exists. If the component’s identifier is already present in the symbol table, an error

condition has been encountered.1 If the component’s identification number is not

present in the component symbol table, an entry is added. The ConnectionManager

1The manner in which errors are handled or reported to the application layer is an implementation

detail and will not be dealt with in this dissertation. The recommended approach is to use an

exception handling mechanism like the one proposed for the C++ language [86].

52

then invokes the registration method of the Component being registered. This method

is defined by the applications layer, and is responsible for the following tasks:

a the definition of the component’s variables.

a the definition of the component’s constitutive equations.

a the definition of any initial conditions, and/or constants.

c the instantiation of the component’s terminals.

The ConnectionManager’s component registration method is summarized in Fig-

ure 5.2.

input: component

1) if component is not in the component symbol table

2) insert component into the component symbol table

3) invoke component’s registration method

4) else if component is already in the component symbol table

5) error condition has occurred

Figure 5.2. The ConnectionManager’s method for component registration.

5.1.2 Component Removal

When a component is to be removed from the simulation, the application must call the

SubModeI’s removeComponent method. This method will send a message to the Con-

nectionManager. When the ConnectionManager receives the message it first checks

the component symbol table to see if the component to be removed exists. If the

53

component exists and it is not connected to any other components, a message is sent

to the EquationAccumulator. The EquationAccumulator will then remove any consti-

tutive equations belonging to the component. Finally, the component’s entry in the

component symbol table is removed. The ConnectionManager’s method for removing

components is summarized in Figure 5.3.

input: component

1) if component is not in the component symbol table

2) error condition has occurred

3) else if component is in the component symbol table

4) if component is connected to other components

5) error condition has occurred

6) else if component is not connected to other components

7) send message to EquationAccumulator to revoke all

component’s constitutive equations.

8) remove component from the component symbol table
Figure 5.3. The ConnectionManager’s method for component removal.

5.1.3 Connection Registration

An application can form a new connection by calling the SubModel’s registerConnec-

tion method. When invoking this method the application must specify the component

and terminal identifiers of the two components to be connected. The method forms

a message containing these four identifiers and sends it to the ConnectionManager.

Upon receiving the message, the ConnectionManager first determines if the compo-

nent and terminal identifiers are valid and if the two terminals are compatible. Next,

it checks to see if either terminal is already connected. If both terminals are involved

54

in different connections, those connections are merged to form one connection. If one

of the terminals is connected and the other is not, then the unconnected terminal is

merged into the connected terminal’s connection. If neither terminal is connected,

then the two terminals together form a new connection and a new entry is placed

in the connection symbol table. Before formulating new connectivity equations, the

ConnectionManager invokes the beforeConnecting method of every component con-

nected, directly or transitively, to either of the two components being connected.

The application uses this method for computing changes in initial conditions during

topology changes. When the derivative(s) of a component’s variables appear in its

constitutive equations, the application must define the initial condition(s) for that

variable. These conditions are valid the first time they are used in solving a system

of equations. If a topological change occurs at a later point in time, a new system of

equations is formulated and solved. The initial conditions given by the application

when the component was created are no longer valid at the time of the topologi-

cal change. These conditions must be computed by the application at the time of

the topological change. The values of variables are computed on a demand basis

(see Section 5.4). This requires the application to demand and store the values of

the appropriate variables whenever a topology change occurs. The beforeConnecting

method is used for this purpose. After the pre—connection processing is completed,

the ConnectionManager encapsulates the set of terminals forming the connection,

into a message. This message is sent to the EquationFormulator which will apply the

appropriate connection rules to generate the connectivity equations. The Connec-

tionManager’s method for registering connections is given in Figure 5.4.

5.1.4 Connection Removal

An application can remove a component from a connection by calling the SubModel’s

removeConnection method. This method will send a message to the ConnectionMan-

55

input: Component identifiers c1 and c2

Terminal identifiers t1 and t2

1) if c1 and c2 are in the component symbol table and the terminals

t1 and t2 are valid:

2) if both terminals t1 and t2 are already connected

3) merge both into one connection

4) update connection symbol table appropriately

5) else if only 1 terminal is connected

6) merge unconnected terminal into connection

of connected terminal

7) update connection symbol table appropriately

8) else if neither terminal is connected

9) create a new connection containing t1 and t2

10) add new connection to connection symbol table

11) invoke pre-connection processing methods of all directly

or transitively connected components

12) send connection message to the EquationFormulator

13) else if one of c1, c2, t1, or t2, is invalid

14) error condition has occurred.

Figure 5.4. The ConnectionManager’s method for connection registration.

56

ager containing a component and terminal identifier. When the message is received

the validity of the component and terminal is verified. If the component exists and

the terminal is connected, the terminal is not removed from the connection until

after the ConnectionManager invokes the before UnConnectz'ng method for every com-

ponent connected directly or transitively to the component being removed from the

connection. Next, a message is sent to the EquationAccumulator which instructs it

to remove all connectivity equations for the given connection. If there are only two

terminals involved in the connection, the connection is removed from the connection

symbol table. If there are more than two terminals involved in the connection, the

entry in the connection symbol table is updated and the modified connection is sent

in a message to the EquationFormulator for the formulation of a new set of con-

nectivity equations. The ConnectionManager’s method for removing connections is

summarized in Figure 5.5.

5.2 Connectivity Equation Formulation

Connectivity equations are formulated by the EquationFormulator object. The Equa-

tionFormulator executes the algorithm outlined in Figure 3.6 of Chapter 3. It receives

and processes only one type of message. This message consists of a set of connected

terminals. For each variable partition defined by the terminals, the EquationFormu—

Iator applies the associated connection rule. The generated connectivity equations

are sent in a message to the EquationAccumulator for registration. Line 3 in the

algorithm presented in Figure 3.6 is expanded in Figure 5.6.

The framework can be augmented with new connection rules whenever necessary.

The abstract class ConnectRule specifies the formal interface which all new connec-

tion rules must adhere to. The details regarding the implementation of connection

rules will vary depending on how a particular framework implementation represents

57

input: component

terminal to be removed

1) if component is in the component symbol table and terminal

is connected

2) invoke post-connection processing methods for all

directly or transitively connected components

3) send message to EquationAccumulator revoking this

connection’s connectivity equations

4) if terminal is connected to more than 1 other terminal

5) remove terminal from the connection

6) update connection symbol table appropriately

7) send message to EquationFormulator for reformulation

of connectivity rules

8) else if terminal is connected to only 1 other terminal

9) remove connection from connection symbol table

10) else if component does not exist or terminal is not connected

11) error condition has occurred.

Figure 5.5. The ConnectionManager’s method for connection removal.

Input: set of homogeneous terminals

1) For each partition defined by the terminals

2) generate new connectivity equations by applying the

associated connection rule

3) send a message containing all generated connectivity equations

to the EquationAccumulator

Figure 5.6. The EquationFormulator’s algorithm for processing messages.

58

equations and variables internally, and the format of the equations to be generated.

The methods provided by the framework will only reference connection rules via the

interface specified by the ConnectRule class. New connectivity rules can be added

without modifying the framework.

5.3 Equation Accumulation

The goal in developing the mechanisms for equation accumulation and organization

is to isolate these mechanisms as much as possible from the details of the simulation

application. Two of the reasons for doing this are: first, to minimize the interactions

among the objects that have some understanding of the simulation application and the

objects that are responsible for solving the constitutive and connectivity equations,

and second, to increase the modularity of the framework. In a parallel implementation

interactions among active objects require synchronization which reduces the degree of

parallelism. Modularity is important because it allows the internal details of equation

accumulation and organization to be modified independent of the internal details of

connection management as long as the proper interface is maintained.

New constitutive and connectivity equations are accumulated as new components

and connections are added to the model. Representative equations are removed as

components and connections are removed from the model. A topological change in

the model of a single connected set of components represented by a single system

of equations, may result in the system being split into two connected sets of com-

ponents represented by independent systems of equations. Since explicit support for

dynamic connectivity is considered a salient feature of the framework, it must not

be assumed that topological changes are sporadic events. Topological changes may

occur frequently and the mechanisms used to model them must be efficient. That is,

when a new connection is added or an existing connection is removed, the framework

59

must efficiently reorganize the mathematical representation into systems that can be

solved by the underlying computational layer. In the remainder of this section, the

equation organization problem is addressed by distributing the computations among

a hierarchy of cooperating active objects.

5.3.1 The Notion of Hierarchy

In object-oriented design the word hierarchy is used in two different ways. The inher-

itance relationships among classes form one type of hierarchy. This type of hierarchy

is illustrated in Figure 5.7. The Telephone class is the most general abstraction and is

inherited by the RegularPhone and MobilePhone classes. The MobilePhone is used as

a base class for the more specialized classes: Portable Unit and HandsFree Unit. This

type of hierarchy is referred to as a “kind of” hierarchy.

A second type of hierarchy in object-oriented design arises when objects are ag-

gregated by other objects. This is illustrated in Figure 5.8. A cellular phone system is

represented by the object CellularSystem. The CellularSystem contains an arbitrary

number of objects of type Cell. Each Cell object contains an arbitrary number of

MobilePhone objects, and a single object of type BaseStation. The ellipsis indicate

an arbitrary number of Cells and MobilePhones. This type of hierarchy is referred

to as a “part of” hierarchy. An example of this type of hierarchy in the simulation

framework is when a SubModel contains primitive Components and other SubModels.

The “part of” and “kind of” terminology follows from the way in which the classes

are referred to in the two hierarchies. The MobilePhone class is referred to in both

hierarchies. The “kind of” hierarchy shows that the class MobilePhone is a kind of

Telephone. The “part of” hierarchy shows that objects of type MobilePhone are a

part of an object of type Cell. It is useful to consider both types of hierarchies with

respect to the simulation framework. The notion of a “kind of” hierarchy is useful in

capturing generalities into reusable classes at the applications layer. In Chapter 6 a

60

Tele hone

RegularPhonc MobilePhone

PortableUnit HandsFreeUnit

Figure 5.7. Example of a “kind of” hierarchy.

CellularSystem

Cell 0 Q 0 Cell

BaseStation MobilePhone O O O MobilePhone

Figure 5.8. Example of a “part of” hierarchy.

61

group of logic gates are developed all of which inherit the base class Gate. The class

Gate captures the generalities of logic gates once and for all, eliminating the need to

reimplement those details every time a new logic gate is to be modeled. The “part

of” hierarchy formed by the simulation model is used by the equation accumulation

and organization mechanisms in order to efficiently respond to topological changes.

The “part of” hierarchy can be used by the simulation layer to partition the represen-

tative equations into subsets of equations. The subset of equations defined within a

particular SubModel is not changed by topological modifications outside the context

of that SubModel.

5.3.2 The EquationAccumulator Object

The EquationAccumulator is the active object responsible for accumulating and orga-

nizing equations. Like the ConnectionManager and EquationFormulator, the Equa-

tionAccumulator executes the algorithm summarized in Figure 3.6 of Chapter 3. Ev-

ery SubModel instance creates its own EquationAccumulator upon instantiation. The

EquationAccumulator maintains an internal table of the variables registered by com-

ponents that are contained in the SubModel, as well as variables the SubModel has

registered. A second table contains all the equations, both constitutive and con-

nective, which characterize the components and connections contained within the

SubModel. Each variable is tagged with its component’s identifier. Each equation

is tagged with either a connection identifier or a component identifier, depending on

whether it is a connectivity equation or a constitutive equation. These tags are the

only details the EquationAccumulator has regarding specific connections and compo-

nents, and are used only for reference purposes when components and connections

are removed from the simulation. The EquationAccumulator does not need to record

Which components are connected. It only needs to have recorded the constitutive and

connectivity equations which arise from components and their connections.

62

For every variable table entry the EquationAccumulator stores the following fields:

10.

11.

. variable name - a string of characters which identifies the variable.

. component identifier - the identifier of the component that defined the variable.

equation list - a list of the identifiers of the equations that the variable appears

in.

. solution flag - a flag which is set if a computation has been scheduled that will

solve for this variable.

. stored value - a value of the variable that was stored immediately before a topo-

logical change. These values are used as initial conditions in newly formulated

systems of differential equations.

. time stamp of stored value - the time the value was stored.

. default value - used by applications to indicate initial conditions.

SubModel context - indicates which SubModel instance the variable is contained

in.

. parent SubModel context - indicates the parent SubModel instance of the Sub-

Model containing the variable. This field is used by variables which are associ-

ated with terminals of nested SubModels.

internal formulation cache identifier - a reference to the internal formulation

cache entry which contains this variable. Formulation caches are defined in

Section 5.4

external formulation cache identifier - a reference to the external formulation

cache entry which contains this variable.

63

For each equation table entry the EquationAccumulator stores the following fields:

1. equation identifier - an integer generated by the framework which uniquely

identifies the equation.

2. component identifier - if the equation is a constitutive equation this field holds

the identifier of the component that defined it.

3. connection identifier - if the equation is a connectivity equation this field holds

the identifier of the connection it represents.

4. list of variables - this field contains a list of all the variables appearing in the

equation. The list also associates an integer with each variable appearing in

the equation, that is set to the order of the highest derivative of that variable.

The integer is set to zero if no derivative of the variable appears in the equa-

tion. These order indicators are used to decide which type of equation solution

mechanism is needed.

5. equation string - the string representation of the equation.

To facilitate the equation organization process, each variable entry in the variable

table contains a list of equation identifiers that identify the equations in which the

variable appears. Similarly, each equation entry in the equation table contains a list

of the variables appearing in that equation. Figures 5.9 and 5.10 illustrate the two

tables maintained by the SubModel instance which encapsulates the electrical example

given in Section 3.2.6 of Chapter 3. A ‘-’ in a table entry indicates the field is not

applicable to that entry. Not all fields are shown.

Messages received by the EquationAccumulator

Within a given SubModel instance, the EquationAccumulator accepts five types of

messages from the ConnectionManager and the EquationFormulator. Each of these

64

Variable Component Default Equation

Name Identifier Value Identifiers

C1.Va 1 - 1, 12

Cpl/b 1 - 2, 16

C1.Ia 1 — 2, 3, 11

01.15 1 - 3, 15

C1.I 1 — 2

Cg.V., 2 - 6, l2

C2.Vb 2 - 6, 14

02.1., 2 — 4, 5, 11

C215 2 - 5, 13

C2.I 2 — 6

C3.Va 3 — 8, 14

C334, 3 - 8, 16

C3.V 3 0 7, 8

C31“ 3 - 9, 10, 13

C311, 3 - 10, 15

C3.I 3 - 7

Figure 5.9. Example variable table entries.

65

Equation Component Connection List of

H Identifier Identifier Identifier Equation Variables

1 1 - 01.14—01.14, =1) Cpl/(”01.14,

2 1 - 01.1 — 01.10 = 0 01.1, 01.15

3 1 - 01.15 + 01.15 = 0 01.15, 01.15

4 2 - 02.] — C21. = 0 C21, 02.].

5 2 - 02.10 + 02.15 = 0 02.10 + 02.15

6 2 - 02.1/5 — 6.2.1/a — [102.] = O 02.1/5, Cpl/a, 02.1

7 3 - 43,1 - Cc-I == 0 03y, 03.1

8 3 - 03.V = 03.14. — C3.V5 033/, 03.14.

9 3 - 03.1 — 03.15 = 0 03.1, 03.15

10 3 — 03.1.. + 03.1,, = 0 03.10, 03.15

11 - 1 01.10 + 02.15 = 0 01.10, 02.10

12 1 Cpl/a — 02.14 = 0 Cpl/5,0214,

13 - 2 02.15 + 03.1“ = 0 02.15, 03.15

14 - 2 02.1/5 - 03.14, = 0.0 02.1/5, 03.14,

15 ' 3 01.15 + 03.15 = 0 01.15, 03.15

16 - 3 Cpl/5 — 03.1/5 = 0.0 Cpl/5,0314,

Figure 5.10. Example equation table entries.

66

messages will cause the EquationAccumulator to update its variable and equation

tables.

1. variable registration message - This message is sent by the ConnectionMan-

ager when it encounters a variable definition in the registration method of a

Component.

2. constitutive equation registration message - This message is sent by the Connec-

tionManager when it encounters the definition of an equation in the registration

method of a Component.

3. connectivity equation registration message - This message contains a set of

connectivity equations which represent a particular connection. It is sent to the

EquationAccumulator by the EquationFor-mulator after it has formulated them

from a set of terminals.

4. revoke constitutive equation message - This message is sent by the Connection-

Manager after it has received a message to delete a particular Component.

5. revoke connectivity equation message - This message is sent by the Connec-

tionManager after it has received a message to add or remove a connection.

When a terminal is added to an existing connection, the set of connectivity

equations representing the old connection must be revoked and replaced with

the equations representing the new connection.

In addition to these five messages, the EquationAccumulator also accepts two types

of messages from the computational layer:

1. parse results message - contains the results of a request to parse a constitutive

equation.

67

2. query result message - contains the results of a request to query a particular

variable at a particular time.

Figures 5.11 - 5.17 outline the methods executed by the EquationAccumulator

upon receiving these seven messages.

Input: variable table entry

1) Concatenate uniqueness information onto variable string

2) If variable is already in variable table

3) error condition has occurred

4) else if variable is not in variable table

5) insert variable into variable table

Figure 5.11. The EquationAccumulator’s method for variable registration.

Input: equation table entry

1) Insert equation into equation table

2) Send equation to MathSolver for parsing

Figure 5.12. The method for constitutive equation registration.

68

Input: a set of equation table entries

1) for each equation entry in the set

2) insert equation entry in the equation table

3) for each variable in the equation

4) add equation to variable’s list of equations

5) invalidate the solutions of all related variables

Figure 5.13. The method for connectivity equation registration.

Input: component identifier

1) remove all equations from the equation table which have a

component identifier equal to the input component identifier

2) remove all variables from the variable table which have

component identifier equal to the input component identifier

Figure 5.14. The method for revoking constitutive equations.

Input: connection identifier

1) invalidate the solutions of all related variables

2) For each entry in the equation table which has connection

identifier equal to the input connection identifier

3) for each variable referenced by the equation

4) remove equation’s identifier from the variable’s

entry in the variable table

5) remove entry from equation table

Figure 5.15. The method for revoking connectivity equations.

69

Input: list of variables and order indicators

equation identifier

1) copy list of variables and order indicators to the

equation’s table entry

2) for each variable V in the input list of variables

3) retrieve V’s entry from the variable table

3) add the equation identifier to table entry’s list

of equation identifiers.

Figure 5.16. The method for handling results from an equation parse.

Input: the result of the query

1) forward result to the application layer.

Figure 5.17. The method for handling results form a variable query.

70

5.4 Equation Organization

Two alternative approaches regarding the question of when equations should be or-

ganized into systems and solved were considered. The first approach is to organize

equations into systems and attempt to solve them whenever new equations are ac-

cumulated or existing equations are removed. The second approach is to organize

and solve equations only when the application’s demands for variable values necessi-

tate it. The advantage of the first approach is that at any given time the equations

are organized into systems and solutions for variables can be computed immediately.

The disadvantage is that everytime the model’s topology or component population

changes, the equation set must be reorganized. The overhead associated with re-

organizing and solving can be great, especially when symbolic solutions are being

computed in the computation layer. The demand-driven approach was adopted. In

this approach, equation organization is delayed until a variable query demands it.

Changes in the equation set since the last equation organization that affect the vari-

able being queried are taken into account before the variable value is computed.

5.4.1 Demand-Driven Equation Organization

The framework organizes equations into systems and solves them independent of

the concepts of component and connection. Equation organization and solution is

done only on demand [85]. When a topology change occurs, the EquationAccumu—

lator’s equation table is updated with the appropriate connectivity equations, but

the equations are not organized into systems and solved until the value of one of the

variables is demanded. Demands for variable values can originate from two sources.

First, an application can explicitly schedule query events such as the SQueryEvent

and SRthueryEvent events described in Figure A.9 of Appendix A. Second, certain

topological changes may automatically trigger query events. If differential equations

71

are involved, initial conditions are established via queries immediately before new

connectivity equations are registered.

5.4.2 Queries for Variable Values

A query event results in a message being sent to the EquationAccumulator with which

the variable being queried is registered. The message contains a reference to the

variable to be queried and the time of the query. Upon receiving the message, the

EquationAccumulator locates the variable’s entry in the variable table. If the solution

flag is set, the query is forwarded on to the computational layer. If the solution

flag is not set, the system of equations containing this variable has not yet been

organized and solved. Before sending the query on to the computation layer, the

system of equations containing the variable must first be organized and passed on to

the computation layer for solving. The EquationAccumulator’s method for processing

query messages is summarized in Figure 5.18.

Input: variable reference, and time of query

1) retrieve variable’s entry from the variable table

2) if variable’s solution flag is not set

3) initiate equation organization and solution mechanisms

4) send query message to MathSolver

Figure 5.18. The EquationAccumulator’s query method.

72

5.4.3 Cooperative Organization Via Active Objects

To organize the equations and variables related to a given variable within its SubModel

context, the EquationAccumulator applies the closure algorithm which is given in

Figure 5.19. The algorithm begins with a single variable and iteratively collects all

the equations and variables from the tables that are either directly or transitively

related to the variable. In some cases an EquationAccumulator’s local variable and

equation tables will yield a system of equations which can be solved independent of

external components and connections. This is the case for the example tables given

in Figure 5.9 and Figure 5.10. However, in models where SubModels are nested within

SubModels, some variables may appear in equations which are external to the local

EquationAccumulator. In this case, the local EquationAccumulator sends messages to

the external EquationAccumulators instructing them to apply the closure algorithm to

their equation sets. The external EquationAccumulators apply the closure algorithm

to their local equation and variable tables concurrently, propagating messages to

other EquationAccumulators as necessary. When an EquationAccumulator finishes

computing closure for the requested variables, it will wait for messages from the

EquationAccumulators it has sent messages to. If there is an EquationAccumulator

involved that is higher in the “part of” hierarchy formed by the nested SubModels, the

EquationAccumulator will send a message containing the equations it has gathered

to that EquationAccumulator. Eventually, the EquationAccumulator highest in the

hierarchy of participating EquationAccumulators will send the complete system of

equations on to the computational layer.

Detecting External Equations

Variables that are associated with the terminals of nested SubModels must be regis-

tered within the SubModel that defines them as well as with the SubModel containing

that SubModel. Consider the simple model illustrated in Figure 5.20. The compo-

73

Input:

Variable vin

Output:

a set of equations and variables related to vin

Local Variables:

1)

2)

3)

4)

5)

6)

7)

s)

9)

10)

11)

uanars - set of unexpanded variables

Xvars - set of expanded variables

equs - set of equations

insert vin into uanars

while uanars is not empty

select a variable V from uanars

for each equation E whose identifier appears in V’s list

of equation identifiers

if E is not already in equs

for each variable V’ in E’s list of variables

if V’ is not in uanars or Xvars then

insert V’ in uanars

insert E into equs

remove V from uanars

insert V into Xvars

Figure 5.19. The closure algorithm.

74

nent identifiers appear in the lower right corner of each block. The black dots indicate

connections. The world submodel C1 contains components C2 and C3. C3 is a prim-

itive component, and C2 is a submodel containing a single primitive component C4.

Components 02, C3, and C4 each have a single terminal. Each terminal has a single

variable v associated with it. Assuming that the connection rule will generate only

identity equations, the following equations will be formulated to represent the two

connections:

03.?) = 02.2) (5.1)

C24) = C41). (5.2)

Since C1 and C2 are instances of the SubModel class, both of them will contain their

own ConnectionManager, EquationFormulator and EquationAccumulator instances.

The connection between C3 and C2 is in the context of submodel C1, and is registered

with 01’s EquationAccumulator. Thus, Cl’s EquationFormulator and EquationAccu-

mulator formulate and accumulate equation 5.1, and C2’s EquationFormulator and

EquationAccumulator formulate and accumulate equation 5.2. Since the variable C2.v

is referenced by equations in both 01 and C2, it must be registered within both con-

texts. When the application assigns the variable 02.!) to Cg’s terminal, the framework

registers it in the context of submodel C1, as well as in the context of submodel C2. In

addition, the parent SubModel context field in the variable table entry of both Equa-

tionAccumulator’s is set to C1. When executing the closure algorithm, EquationAc-

cumulators will anticipate external equations whenever a variable is encountered that

is using both of its SubModel context fields.

Equation Formulation Caches

In hierarchical models a single topological change may make it necessary to reorganize

the systems of equations. Only the equations within the SubModel context containing

75

SubModel

Primitive SubModel

Primitive

C3.v C2.v C4.v

C t

C4

03 C2

Cl

Figure 5.20. Nested SubModels and their variables.

the topological change are affected. If SubModel contexts external to or encapsulated

within the SubModel context containing the topological change have previously ap-

plied the closure algorithm to their variable and equation tables, it is not necessary

for them to apply the algorithm again. Every time the closure algorithm is executed,

the equations and variables collected are placed in a formulation cache. A cache entry

is valid until a topological change modifies the set of equations it contains. When

an EquationAccumulator receives a message requesting it to compute closure for a

certain set of variables it will first check for entries in the formulation cache that con-

tain these variables. If entries exist, their contents can be sent back to the requesting

EquationAccumulator without executing the closure algorithm. Each variable that is

listed in a formulation cache entry has its internal formulation cache field updated to

refer to that cache entry. Variables that are registered in an external context — those

associated with the terminals of a nested SubModel — may also have their external

formulation cache field refer to an external formulation cache entry. Each formulation

cache entry contains the following fields:

1. identifier - an unique identifier which is generated by the framework.

76

2. set of variables - the set of variables which will appear in the same system of

equations.

3. set of equations - the set of equations which reference only those variables found

in the entry’s set of variables.

4. set of remote formulation entries - indicate the possibility of remote equations

and variables.

A remote formulation entry consists of the following fields:

1. remote SubModel context - the remote SubModel context which may contain

related variables and equations.

2. set of variables - the set of variables which are also registered in the remote

SubModel context.

3. parent flag - set if the remote SubModel contains the current SubModel, and

reset otherwise.

While applying the closure algorithm, an EquationAccumulator groups variables with

external references according to their SubModel context. Each of these groups form a

remote formulation entry which is stored in the formulation cache entry created from

the output of the closure algorithm.

The algorithm executed by the EquationAccumulators that are cooperatively orga-

nizing the system of equations is outlined in Figure 5.21. This algorithm is executed

whenever an EquationAccumulator receives an organization message. It is initiated in

step 3 of the query method listed in Figure 5.18, with the input remote formulation

entry containing the single variable to be queried.

The algorithm is best understood with an example. Three primitive component

definitions, A, B, and C, are shown in Figure 5.22. The figure shows the terminals,

77

Input:

remote formulation entry - RFE

invoking context - Icontext

list of formulation cache entries - Flist

Local Variables:

1)

2)

3)

4)

s)

6)

7)

8)

9)

1o)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

flag - parent (reset by default)

remote formulation entry - ParentEntry

list of formulation cache entries - Flistnew

local SubModel context - this

for each variable V in RFE

if V has a formulation cache entry associated with it,

and this entry is not yet in Flist

record the formulation cache entry in Flist

else if there is no formulation cache entry

associated with V

invoke the closure algorithm for V

form a new formulation cache entry with output from

the previous step and insert it in Flistnew.

for each remote formulation entry R contained within

the entries of Flistnew

if R leads to the parent SubModel then

set flag parent

save R in ParentEntry

else if R leads to an unexplored child SubModel then

send organize message to the EquationAccumulator

in R’s context with parameters (R, this, NULL)

wait for all EquationAccumulators initiated in children

SubModels to return their results. Accumulate all results

in Flistnew.

append Flistnew to Flist

if parent flag is set

if Icontext is not equal to the parent context

send organize message to the EquationAccumulator

in the parent SubModel context with parameters

(ParentEntry, this,Flist)

else if Icontext is equal to the parent context

send message containing all the results in Flist

to the parent SubModel.

else if parent flag is reset

format solve command and submit to computational layer.

Figure 5.21. The equation organization algorithm.

78

Primitive B

@ Primitive C

ii I:

Variables: F Variables: I], 12, F Variables: F, I

Equation: F = Sin(t) Equation: F = [1 + [2 Equation: % = 1%(1 — F)

Figure 5.22. Primitive component definitions.

variables and constitutive equations defined by each of the components. The terminals

are labeled with the single variable that is assigned to them. The component of type

A has one terminal defined to which the variable F is assigned. The component of

type B has three terminals defined to which the variables II, [2, and F are assigned.

The component of type C has one terminal defined to which the variable I is assigned.

Figure 5.23. An instance of component type A nested within a SubModel.

A simple hierarchical model is assembled from these primitive components as

follows. An instance of component type A, C3, is nested within SubModel C4, as

shown in Figure 5.23. SubModel C4 contains a single connection (labeled d in the

79

figure) that connects component Cg’s terminal with component C4’s terminal. The

single constitutive equation:

arises from Cg’s definition and is registered within the context of SubModel C4. As-

suming the equality equation connection rule, the connectivity equation:

Cg.F = 04.17 (5.4)

is generated from connection at. This equation is also registered within the context of

SubModel C4. An instance of component type C, C7, is nested within SubModel C3,

as shown in Figure 5.24. The constitutive equation arising from component C7 is:

dC7.F

dt

1

:: —(C7.I — C7.F) (5.5)

10

and the connectivity equation formulated from connection 9 is:

Both Equation 5.5 and Equation 5.6 are registered within the context of SubModel

C3. SubModel C2 shown in Figure 5.25 contains C5, an instance of component type

Figure 5.24. An instance of component type C nested within a SubModel.

80

A, C3, an instance of component type B and the SubModel C4 which is shown in

Figure 5.23. The constitutive equations registered in the context of SubModel C2:

Qr=wm) an

QF=QL+Qh ma

arise from components C5 and C6, respectively. SubModel C2 contains three connec-

tions which are labeled a, b, and c in the figure. The connection equations formulated

from these connections and registered in the context of C2 are:

mr=mn mm

Note that SubMode102 has no information regarding the components and connections

within SubModel C4. The highest SubModel inthis model’s hierarchy, C1, is shown in

Figure 5.26. This SubModel contains SubModel C2 and SubModel C3, and a connection

(labeled f in the figure) that connects their terminals. The connectivity equation

formulated from this connection and registered in the context of SubModel C1 is:

There are no constitutive equations registered in the context of SubModel C1.

Figure 5.27 shows the complete model hierarchy (minus connections) of the example

model.

81

Figure 5.25. A SubModel containing two primitive components and a nested SubModel.

 C1

Figure 5.26. The highest SubModel in the hierarchy.

SubModel

SubModel

ransar"'-----1

: mama“ ': : rpm-JR..... ,

i | : j I : SubModel

: : C8: : :
....... 1 . . . 1

: C4 : : | I anmveC.

.. -------------- l : | :

.............. , : : : .

: . ' :I

I : I I c3

i : : C6:
I , """"""

L-----------E§J

c2

C1

Figure 5.27. Example model hierarchy.

82

/Message #6

(To computational layer)

/Message #1

Message #0

‘— (Query from application)

Figure 5.28. Messages passed during equation organization.

Figure 5.28 illustrates how messages are sent among the EquationAccumulators

when organizing a system of equations to be solved in response to a query. Initially,

it is assumed that no queries have been made. No formulation cache entries exist and

the equations have not yet been organized into systems or solved. Some time later

it is assumed that a query occurs for variable C7.F. The query is made by calling

the queryVar method of SubModel C3 which sends a message to C3’s EquationAccu-

mulator. This message is labeled #0 in Figure 5.28. Upon receiving the message the

EquationAccumulator will execute the method outlined in Figure 5.18. Since no solu-

tion exists yet for C7.F, step 3 in the algorithm will cause the organization algorithm

in Figure 5.21 to be executed. Steps 1-6 will result in the creation of a formulation

cache entry containing the variables: C7.I, C7.F, C3.I, and the equations: 5.5, 5.6.

The formulation cache entry will contain one remote formulation entry with remote

SubModel context set to C1, the set of variables set to C3.I, and its parent flag set.

Since there are no child SubModels in this context, no organize messages are sent out

83

or waited for in steps 7-14. In step 14, the single formulation cache entry generated in

step 6 is added to Flist. In step 19 an organize message, message #1 in Figure 5.28,

is sent to C1 ’8 EquationAccumulator. The message will contain the equations and

variables from the formulation cache entry , the remote formulation entry, and C3 as

the invoking context.

When C; ’s EquationAccumulator receives the message, it will apply the organiza-

tion algorithm to its local equation and variable tables. In steps 1—6, Cl’s EquationAc-

cumulator will generate a single formulation cache entry that consists of Equation 5.12

and two remote formulation entries leading to SubModels C2 and C3. In steps 7-12,

the only remote formulation entry leading to an unexplored nested SubModel is the

one leading to C2. C1 ’8 EquationAccumulator will send an organize message, message

#2 in Figure 5.28, to Cg’s EquationAccumulator. In step 13, Cl’s EquationAccumula-

tor will wait for a message from Cg’s EquationAccumulator in response to the message

it sent in step 12.

Upon receiving its organize message, Cg’s EquationAccumulator applies the or-

ganization algorithm. In steps 1-6 a new formulation cache entry is created

from the output of the closure algorithm. The cache entry consists of Equa-

tions 5.7, 5.8, 5.9, 5.10, 5.11 and two remote formulation entries which lead to Sub-

Models C1, and C4. In steps 7-12, the only remote formulation entry leading to

unexplored nested SubModels is the one leading to C4. An organize message is sent to

the EquationAccumulator of C4. This message is labeled #3 in Figure 5.28. In step 13,

Cg’s EquationAccumulator will wait for a message from the EquationAccumulator of

C...

After receiving the organize message from 02,8 EquationAccumulator, the Equa-

tionAccumulator of C4 invokes the organization algorithm. In steps 1-6 C4’s Equa-

tionAccumulator creates a formulation cache entry which contains Equations 5.3

and 5.4, and a remote formulation entry that leads to SubModel C2. Since C, does not

84

contain unexplored nested SubModels, no messages are sent or waited for in steps 7-

13. In step 19 C4’s EquationAccumulator sends a message containing the equations

it gathered to its parent SubModel Cg’s EquationAccumulator. This message is la-

beled #4 in Figure 5.28. Cg’s EquationAccumulator unblocks in step 13 and sends a

message to the EquationAccumulator of C1 containing the equations it has gathered,

plus those it received from C4 and C5. This message is labeled #5 in Figure 5.28.

Upon receiving the message from C2’s EquationAccumulator C1 ’3 EquationAccumu-

lator unblocks in step 13. Since C1 has no parent SubModel, the condition in step 15

fails, and step 21 is executed. In step 21, all 10 equations gathered are sent to the

computational layer for solution. This message is labeled #6 in Figure 5.28.

Invalidating Solutions

Whenever a topological change occurs, all variables related either directly or indirectly

to the variables referenced in the connectivity equations must have their solution flags

reset. When there are related variables external to the SubModel containing the topo-

logical change, messages must be sent to the external EquationAccumulator instruct-

ing it to reset those variables’ solution flags. The external EquationAccumulator may

in turn send messages to other EquationAccumulators. This process continues until

all pertinent variable solution flags are reset. Note that all formulation caches exter-

nal to the SubModel containing the topological change remain intact. Resetting the

solution flags will force a new system of equations reflecting the topological change

to be submitted to the computational layer the next time a variable affected by the

change is queried.

85

5.5 Equation Solution

The requirements placed on the computation layer are dictated by the application.

The constitutive and connectivity equations defined and generated by some appli-

cations may consist of only algebraic equations, while other applications may define

differential equations as well. It is unreasonable to expect the framework to antici-

pate every type of equation that applications could possibly define. The framework

defines an abstraction that serves as an interface between the simulation and com-

putational layers. Communication between the simulation and computational layers

must conform to this interface. If an application defines equations that a particular

framework implementation cannot solve, the computational layer implementation can

be replaced by a new implementation without affecting the simulation, interface, or

application layers.

5.5.1 The MathSoluer Object

From the perspective of the simulation layer, the computational layer is represented

by a single object of class MathSolver. The MathSolver object is global in the sense

that all EquationAccumulators may send it messages. Since they will vary by ap-

plication, the internal details of the MathSolver are left unspecified. The framework

only defines the messages it receives and their semantics. Thus, the MathSolver could

process the messages it receives by distributing the computations across a network of

mathematical servers completely transparent to the simulation layer. The MathSolver

object accepts six types of messages:

1. EquationAccumulator registration,

2. parse equation,

3. solve system,

86

4. query for value,

5. define constant, and

6. remove constant.

When a SubModel is instantiated, it must register its EquationAccumulator with

the MathSolver by sending the MathSolver an EquationAccumulator registration mes-

sage. The registration message establishes the identity of the sending EquationAccu-

mulator with the MathSolver. The MathSolver needs to know the identity of every

EquationAccumulator in order to send messages to them when computations they

request are completed.

The decision regarding which framework layer would be responsible for parsing

constitutive equations was based on modularity. The responsibility of parsing con-

stitutive equations was delegated to the computation layer. Coupling the parsing

mechanism with the solution mechanism allows a MathSolver to be replaced with an-

other MathSolver that can recognize and solve equations which the former could not.

MathSolvers can be replaced without modifying the interface and simulation layers of

the framework. The parse equation message sent by an EquationAccumulator (step 2

in Figure 5.12) contains a sequence of characters which represents the equation, and

an identifier indicating which EquationAccumulator is requesting the equation to be

parsed. The MathSolver will parse the equation and send a message back to the Equa-

tionAccumulator containing the results. This message contains a list of all variables

that appear in the equation. This information is used by the EquationAccumulator

to organize systems of equations from its internal variable and equation tables. Each

variable returned in the message from the MathSolver also has an integer associated

with it. This integer indicates whether or not derivatives of the variable appeared

in the equation. A message containing the variable v1 and a corresponding integer

value set to two indicates that the second derivative of v1 appeared in the equation.

87

Implementation dependent results may also be returned from the parse.

The solve system message is sent to the MathSolver by an EquationAccumulator

whenever the solution flag of a queried variable is not set (steps 2 and 3 in Figure 5.18).

The message contains a command string that indicates which type of computation is

to be performed, and which variables are to be solved for. The framework generates

two different command strings. The first command is the Solve command, and is used

for solving systems of algebraic equations. The syntax for this command is:

identifierBSolveE

{equations},

{variables}

The second command is used for solving systems of equations that contain both

algebraic and differential equations. The syntax for this command is:

identifier-DSolveMix[

{equations},

{variables},

{initial conditions},

time

The format for the {equations} parameter is implementation dependent. The

{initial conditions} parameter gives the initial conditions for the differential

equations at the time indicated by the parameter time. The identifier is used

to identify the solution of the equations. The MathSolver maintains a table that

relates variables to the solution identifiers. Whether the solutions are symbolic or

numeric is also implementation dependent. In the former case, a solution would be

a set of rules that maps variables to symbolic expressions based on simulation time

88

and system constants. In the latter case, the solution may consist of a set of state

equations which are iteratively evaluated whenever variables are queried.

The query for value message is sent to the MathSolver by an EquationAccumula-

tor whenever a variable registered with that EquationAccumulator is queried by an

application (step 4 of Figure 5.18). The message contains the name of the variable

and the simulation time at which it is to be evaluated. If the MathSolver has solved

a system of equations containing the variable, it will use that solution to compute

the numerical value of the variable. This value is encapsulated into a message and

sent back to the requesting EquationAccumulator. If the MathSolver cannot solve

for the variable, it simply sends a message back to the EquationAccumulator indi-

cating solution was available. This situation may arise when the set of constitutive

and connectivity equations does not provide enough information to solve for every

variable.

In many simulation applications, it is common for certain numerical quantities to

remain fixed during simulation. If an electrical system is being modeled, the resistance

across a particular resistor component is usually considered to be a constant value.

When defining constitutive equations it may be desirable to refer to these constants

with a symbol. This can be accomplished by registering an additional variable and

constitutive equation for each of these constant values. For the resistor component,

a variable It could be registered along with the constitutive equation:

R = 100. (5.13)

The constitutive equation relating current and voltage could then be registered as:

v=i*R (5.14)

89

instead of,

v = i * 100. (5.15)

The model of the resistor could represent variable resistance by replacing Equa-

tion 5.13 with the desired initialization of the variable R. This modification of the

equation set however, will cause the current solution (if any) to be invalidated, and

requires a new system of equations to be organized and solved. In systems where sym-

bolic solutions are possible, the need for reorganizing and resolving can be eliminated

if the constant value can be changed without changing the current set of equations.

The framework supports such a mechanism by allowing the application to explicitly

define constants. An application can send a define constant message to the MathSolver

which establishes the value for a symbolic constant. For the resistor component, the

application sends a define constant message to the MathSolver instead of registering

Equation 5.13 as a constitutive equation. The MathSolver then establishes R as a

symbolic constant with the value 100. The constant can be redefined by sending the

MathSolver a remove constant message followed by a define constant message con-

taining the new value. In models where the computational layer computes symbolic

solutions for variables, the systems of equations remain the same and do not need

to be reorganized and re-solved when a symbolic value is redefined. The support

for symbolic constants by the computational layer is especially useful for interactive

simulation applications, in which users can make arbitrary changes to constant values

during simulation execution.

5.6 Summary

This chapter has defined the objects which are responsible for managing connections

and components, and formulating connectivity equations. These objects, the Con-

nectionManager and the EquationFormulator have been defined in terms of the types

90

of messages they send and receive, and the methods they execute when messages are

received. This chapter has also presented the mechanisms by which the framework

accumulates, organizes, and solves the connectivity and constitutive equations. Ter-

minology was developed regarding object-oriented hierarchies and how they relate to

the framework. The EquationAccumulator object, which is responsible for the ac-

cumulation and organization of equations was defined in terms of the messages it

receives and sends. From the perspective of the simulation layer, the interface to

the computational layer is via a single MathSolver object. The MathSolver encapsu-

lates methods for parsing constitutive equations and solving the systems of equations

organized by the EquationAccumulators.

CHAPTER 6

Applications

This chapter presents an implementation of the framework and models that demon-

strate the applicability of the framework in several different areas. A model of the

control channels in a cellular phone network demonstrates the framework’s capability

for modeling discrete systems where components and connections appear and dis-

appear over time. A model of an electrical circuit containing both continuous and

discrete components demonstrates the framework’s capability for continuous/discrete

simulation and reusability via object-oriented inheritance. A third model of the pop-

ulation dynamics of a beehive, demonstrates the framework’s utility in modeling

biological and ecological systems.

6.1 The FMDC Framework

FMDC (Framework for Modeling Dynamic Connections) is an implementation of

the simulation framework presented in this dissertation. It was implemented in the

C++ programming language [86]. The concurrent objects were implemented using the

AT&T C++ task library [87]. The AT&T task library is an efficient tasking system

with non-preemptive scheduling and real-time control facilities for responding to ex-

ternal events [84]. The computational layer was implemented using Mathematica, a

91

92

software system for numeric and symbolic mathematical computation [100]. A system

based on Mathematica consists of two parts: the kernel and the frontend. The kernel

is the software that carries out the mathematical computations. The frontend is the

software that handles interaction with the user. Mathematica’s MathLink standard is

the communication standard between the frontend and the kernel [101]. The FMDC

implementation conforms to the MathLink standard, allowing it to interface directly

to the Mathematica kernel. A substantial amount of programming was necessary in

the Mathematica programming language in order to manipulate the equations into a

form suitable to Mathematica’s built-in equation solving commands. Communication

between the simulator and the computational layer is implemented using the UNIX

socket mechanism [5]. This mechanism hides the details of the lower level network

protocols, and allows a process to communicate with another process running on a

remote machine. An additional layer of software was developed on top of the socket

mechanism. This layer hides the socket data structures and system calls with a set

of C++ classes.

The design of FMDC is given in Figure 6.1. The figure shows an example model

and its relationship to the MathSolver, EventHandler and Mathematica kernels. The

circle includes the components and submodels derived by the user from the base

classes provided by the framework. Each shaded rectangle is a primitive compo-

nent. Each unshaded rectangle is a submodel containing its own ConnectionManager,

EquationAccumulator, and EquationFormulator objects, as shown for the “world sub-

model” . The portion of the figure enclosed in the dotted-line rectangle is implemented

by a single Unix process. In this particular model, the process consists of 20 con-

current tasks - three for each of the six submodels, one for the MathSolver, and one

for the EventHandler. The MathSolver has a connection to another process which is

labeled “Solver Interface”. The solver interface process is responsible for initiating

and communicating with the Mathematica kernels on remote hosts. If multiple Math—

93

Unix Signal usru 'mter'rupt Mven 10)

$2

S3

\~ ’’ EvaItHandler Priority Queue

~ ~ - ’ ’

Colleetionofcomponentsmdsubrnodelsmodeltopoloynotshown)

fl
m
r
'
fl
a

. . . SubModels Pool of math servers- anmve Components D and equation

Figure 6.1. The FMDC implementation.

94

ematica kernels are running, the solver interface must also maintain information on

which server a computation has been assigned to. Communication between the solver

interface process and the MathSolver is asynchronous. The MathSolver is interrupted

by the solver interface whenever the result of a computation is ready. The task library

provides mechanisms for handling interrupts. Synchronization among the concurrent

tasks enclosed in the dotted-line rectangle is achieved by a global time clock provided

by the task library. Synchronization with the solver interface is achieved by forcing

all query events to be blocked until all pending equation parsing and solution requests

are completed.

Simulation applications are developed by deriving new classes from the abstract

classes, Component, SubModel and others that are defined by the framework. New

terminal types can be developed by deriving new classes from the base class Terminal.

The framework user need only be familiar with the the applications layer. All other

layers are hidden from the user. It is possible to build additional layers on top of the

applications layer. A graphical user interface could be built on top of the applications

layer for example. Users could then build models using a graphical editor without

being required to know or understand the abstract classes defined by the framework or

the syntax of the language the framework is implemented in. The examples included

in this chapter are written in the applications layer.

6.2 A Cellular Phone Model

A cellular phone system is a two-way radio system which allows mobile users to

connect to the public phone system. These systems are called “cellular” because of

the way in which the service areas are divided into smaller areas called cells. Each

cell contains a base station that the mobiles in the cell communicate with to access

the public phone network. In the remainder of this section, we will examine how

95

the FMDC framework can be used to study a particular aspect of a cellular system,

the common control channel. The model which will be described here is a simplified

version of a model developed by Engelsma and Reilly [37]. The model was originally

designed to develop a better understanding of the common control channels in the

new Pan-European digital cellular network.

6.2.1 Background Information

The common control channel is a radio channel shared by the mobiles and base station

within a particular cell. Among other things, the common control channel is used by

the base station and mobiles as follows:

a paging - The base station uses the common control channel in the downlink

direction (base station to mobile) whenever it wishes to inform a mobile that

somebody wants to connect to it.

0 channel allocation - The base station uses the common control channel in the

downlink direction whenever it wishes to inform a mobile it has been allocated

a dedicated channel.

a channel request - the mobile uses the common control channel in the uplink

direction (mobile to base station) whenever it wishes to request a dedicated

channel to make a connection on.

The common control channel is split up into three logical channels as illustrated

in Figure 6.2. The paging subchannel (PCH) is used by the base station in the

downlink direction to notify a mobile that a connection is desired. The random

access subchannel (RACH) is used by mobiles in the uplink direction whenever a

mobile requests a channel. A mobile will make a channel request whenever it needs

to perform a location update (telling the network where it is), when it is paged, or

96

CCCH - Common Control Channel

I

l l

AGCH PC}! RACH

Access Grant Pagmg Random Access

Channel Channel Channel

Figure 6.2. The common control channels.

when it is going to originate a call. The access grant subchannel (AGCH) is used by

the base station in the downlink direction for notifying a mobile whether or not its

channel request (issued via the RACH) can be satisfied. A common control channel

may be assigned to a dedicated physical radio channel, or it can share a physical

channel with other types of control channels. There are also system parameters for

specifying how much of the channel should be divided between the AGCH and PCH

subchannels, configuration of the PCH, number of retries on the RACH, etc., all of

which effect the overall system performance. The common control channels are used

only for control purposes. Mobiles use dedicated data channels when they are engaged

in a call.

6.2.2 The Cellular Model

Dynamic connections are commonplace in cellular systems. Upon entering a cell, a

mobile uses the common control channel to communicate with the base station in that

particular cell. When the mobile exits the cell, it no longer communicates with that

base station. In a busy metropolitan area, the cellular network may consist of hun-

dreds of cells and thousands of mobiles. In addition, new mobiles will power-on and

97

become part of the system, while existing mobiles may power-off and disappear from

the system. The abstractions for components, terminals, and connections, provided

by the FMDC framework are useful in modeling this type of system.

Cells, BaseStations, Mobiles, and Events

A single cell of the system is modeled here. The system is decomposed into three

different object types: Cell, BaseS'tation, and Mobile. Since cells contain base stations

and mobiles, the Cell class is derived from the SubModel class, while the BaseStation

and Mobile classes inherit the Component class directly. The “kind of” and “part of”

hierarchies for the model are shown in Figures 6.3 and 6.4.

Component

BaseStation Mobile SubModel

Cell

Figure 6.3. The “kind of” hierarchy for the cellular model.

The Mobile class defines two terminals. The terminals consist of a single vari-

able partition and use the identity equation connectivity rule. The variable down-

linkChanneI is associated with the first terminal, and the variable uplinkChannel is

associated with the second terminal. Similarly, the BaseStation also has two termi-

nals of this same type and associates downlinkChannel and uplinkChannel variables

98

Cell

BaseStation Mobile O O O Mobile

Figure 6.4. The “part of” hierarchy for the cellular model.

with them. The terminals and variables of the mobiles and base station represent the

bi-directional common control channel described in the previous section.

A mobile may be in one of three states: busy, idle, or requestPending. The mobile

is idle if it is not engaged in a call. A mobile is busy if it is engaged in a call. A

mobile is in the requestPending state if it has requested a dedicated channel from the

base station but has not yet been granted one.

The input and output methods (see Section 4.2 of Chapter 4) of the Mobile class

specify that a Mobile will only receive messages on the terminal it has associated the

variable downlinkChannel with, and will only send messages from the terminal with

which it has associated the variable uplinkChannel. The input and output methods

of the BaseStation class will only receive messages on the terminal it has associated

the variable uplinkChannel with, and will only send messages from the terminal with

which it has associated the variable downlinkChannel. In addition to the input and

output methods, the Mobile class defines methods for originating calls, terminating

calls, requesting a channel and receiving a channel grant. The BaseStation class

defines methods for processing requests to page mobiles and processing requests for

dedicated channels. The Cell class defines two methods: one which is called when a

mobile enters the cell and one which is called when the mobile exits the cell.

The model defines the following six events:

99

1. EnterCellEvent - causes a new mobile object to be instantiated. The mobile is

placed in the cell by executing the Cell’s enterCell method. This event schedules

the next EnterCellEvent to occur at some random time interval.

2. EzitCellE'vent - randomly selects a mobile in the cell and removes it by calling

the Cell’s exitCell method. This event schedules the next ExitCellEvent to occur

at some random time interval.

3. CallOriginate - randomly selects an idle mobile and causes it to send a channel

request to the BaseStation. This event schedules the next CallOriginateEvent

to occur at some random time interval.

4. MobilePageEvent - randomly selects a mobile to be paged, and causes the

BaseStation to send a page message to it. This event schedules the next Mo-

bilePageEvent to occur at some random time interval.

5. CallTerminateEvent - causes a mobile to release its dedicated channel, and

return to an idle state.

6. Mobile TimeOutEvent - causes a mobile to retry a channel request if the previous

request was not granted.

All random time intervals between events are exponentially distributed. The distri-

bution means are defined as model parameters. The model also allows the user to

configure the downlink channel in terms of how much bandwidth is reserved for the

access grant subchannel, and how much is reserved for paging subchannel. The model

outputs the average page delay (the elapsed time between the time the BaseStation

received the page, and the time the mobile was granted a dedicated channel to re-

spond to the page), and the average channel request delay (the elapsed time between

the time a mobile requested a dedicated channel and the time it was granted a channel

by the BaseStation).

100

Model Execution

Execution of the model proceeds as follows. Instantiation of a Cell object causes its

constructor to schedule the following events: EnterCellEvent, EritCellEvent, CallO-

riginateEvent and a MobilePageEvent. A new mobile object is instantiated when an

EnterCellEvent occurs. The mobile is placed in the cell by calling the cell’s enter-

Cell method with the new Mobile object as a parameter. This method connects the

mobile’s downlink terminal to the base station’s downlink terminal and the mobile’s

uplink terminal to the base station’s uplink terminal. These connections are made

explicitly by calling the Cell object’s registerConnection method. (Recall that the

Cell class inherits the SubModel class which provides the registerConnection method.)

When an ExitCellEvent occurs a mobile is selected at random to be removed from the

cell. The mobile is removed from the cell by calling the cell’s eritCell method, with

the selected mobile as a parameter. This method explicitly disconnects the mobile’s

terminals from the base station’s terminals by calling the Cell object’s removeCon-

nection method.

When a CallOriginateEvent occurs, an idle mobile is selected at random. This

mobile requests a dedicated channel by sending a channel request message to the

base station from its uplink terminal. The framework uses the connectivity equations

generated from the connections to route the message from the mobile’s uplink terminal

to the base station’s uplink terminal. The base station schedules a channel grant

message to be sent to the mobile during the downlink channel’s next available access

grant frame. The time of this frame is determined by the configuration of the downlink

channel and the number of access grant messages waiting to be sent. The framework

uses the connectivity equations generated from the connections, in sending the channel

grant message to the mobile. Whenever a channel request is granted, the mobile

changes its state to busy and schedules a CallTerminateEvent at some random future

101

time. When the CallTerminateEvent occurs, it sets the mobile state to idle.

When a MobilePageEvent occurs, a mobile is selected at random. The base station

schedules a page message to be sent to the mobile during the next available page frame.

The time of this frame is determined by the configuration of the downlink channel

and the number of page messages waiting to be sent. If the mobile is not busy upon

receipt of this message, it will send a channel request message to the base station on

its uplink terminal.

6.2.3 Discussion

Even though this model is discrete and does not utilize the framework’s facilities

for continuous modeling, the framework’s support for explicitly modeling dynamic

connections and components resulted in a model implementation which was easier

to develop and understand than a similar model using a more traditional modeling

tool. Originally, the model was implemented using a commercial simulation tool

which employs the process-interactionl approach to discrete event simulation. Our

intention was to develop a model which could easily be extended to include new

control channel algorithms as they became available. Although this objective was

achieved to some degree from our point of view, to the casual user the model is a

confusing clutter of nodes and edges. Figure 6.5 shows a single module of the model.

The reason for the difficulty was that the modeling tool gave no support for explicitly

modeling connections and components which appear and disappear over time. Since

mobiles are transient entities, they were modeled as transactions. The base station

was modeled as a graph where the nodes in the graph were primitive building blocks

provided by the tool. The notion of connection is implicit. A mobile was considered

lThe process—interaction approach represents a system with a static graph, upon which transac-

tions can move from node to node. Each node has a block of executable code associated with it,

that is executed each time a transaction enters the node.

102

era <1“ng 1.0

Index that. Now

to has

“4.29 1: ‘5

GILM [WJ‘NI
retuu_req

31%4 a reaper". <1 t—Il_aaaaqn "23

1a. «Jar:] him nse i——_'—:l

F to uplink__:sttl_2 [}

aet_f.1-er\l I mobile] E [2 [

us_res:y_enuua r. L

W. melons m.

9* 9 .—[lea-oran-
$1122 [

go_tnle

D

D

i- 0-..--.---0-..--.--'

23120 upsszo
h '

“'3‘“ ”‘3'“ Ira-Jenna IOO-Jddch

 “Juneau:

 r111

L3 G r3120_eapue Thu Ml med-1a the actuation

nut. occur an the all. but“.

helm

to mum “11
pages and handover: answ- at an.

"
apeetned tau.

Figure 6.5. Part of the control channel model using a commercial tool.

103

“connected” to the base station whenever it passed over a certain edge and entered

into the portion of the graph that represented the base station.

In contrast, the FMDC implementation of the model represents all the physical

entities of the system with three simple class definitions: Cell, BaseStation, and

Mobile. All three of these classes inherit the Component base class, which is provided

by the framework. Basing these classes on the same abstraction is more reflective of

the real world, where cells, base stations, and mobiles, are all physical entities. A

modeling approach which forces the user to represent one physical entity with one

mechanism (such as a graph), and another physical entity with another mechanism

(such as a transaction) results in a model which is difficult to understand. In this

example the appearance of new components and connections, and the disappearance

of existing components and connections, are a common occurrence. By dealing with

them directly, the FMDC framework represented Cells, BaseStations, and Mobiles in

a uniform manner, resulting in a model which is more reflective of the actual system.

Such a model is easier to understand, develop and extend.

6.3 An Electrical Circuit

The framework’s support for explicitly modeling connections among components

makes it possible to model both discrete and continuous components within a sin-

gle model. A component may have terminals by which it will receive messages from

other components connected to that terminal. A component may also have terminals

that are used to establish mathematical relationships among the component’s inter-

nal variables and the internal variables of other connected components. A component

which has both types of terminals may serve as a coupling between the discrete and

continuous portions of the model. A model of an electrical circuit which contains both

discrete parts modeled with three level digital logic, and continuous parts modeled

104

C1

C2

or I l

H ’ '' l
l I

I
C5 : l :l. Digitalto c

I g I No!

. . : : Convatu C8|

I

I

" R" I
I

.—-—fi

I

9(5

RuhmMMmfl

NMQfiMfimm

r

-
_
_
_
_
J
_
_
_
_
_

L
-
-
-
-

-
-
-
-
-
-

'1m%&¥mm

.
-
-
-
-
-
-
-
-
-
-
-

-

-
-
-
-
fl

Figure 6.6. Model of an electrical circuit with discrete and continuous parts.

with algebraic and differential equations is presented in the remainder of this section.

6.3.1 A Model of an Electrical Circuit

An hierarchical model of an electrical circuit is shown in Figure 6.6. The model

consists of a digital subsystem labeled C2, and an analog subsystem labeled C3. The

digital subsystem is a state machine built with logic gates, a register, and a clock.

There are a total of four states: 00, 01, 10, and 11. Component C5 is a register that

stores the machine’s state on the positive edge of the clock. The combinational logic

encapsulated in component Ce, computes the next machine state. The next state is

calculated by incrementing the current state modulo four.

105

The electrical subsystem component, C3, contains components C7, C3, and C9.

Component C3 is a capacitor which is modeled by the constitutive equations:

 “fifty — 0:1 = 0.0 (6.1)

08v = 081/. — 08y. (6.2)

08.1 — 08.1. = 0.0 (6.3)

08.1. + 03.1., = 0.0. (6.4)

Component C9 consists of three resistors, each of which defines the constitutive equa-

tions (component identifiers are not shown for the variables):

I — I. = 0.0 (6.5)

L, + 15 = 0.0 (6.6)

V. — v. —- pl = 0.0. (6.7)

The digital-to-analog converter, component C7, serves as a coupling component be-

tween the discrete components, and the continuous components. In addition to the

constitutive equations:

07-141 _ C7l/b : C7'Vout (6'8)

07.1 — 07.1. = o (6.9)

07.1. + 07.1,, = o, (6.10)

C7 also contains two terminals from which it receives digital logic signal values. Thus,

the digital-to-analog component has four terminals: two digital terminals, and two

electrical terminals. The component has an input method defined, which is used

106

to process incoming digital signal values. This method sets the value of C7.Vout,

the voltage drop across the two electrical terminals, according to the table given in

Figure 6.7. I; and Io are the most recent signal values received on the two digital

terminals.

[IIIIIolVoutll

0 0 0

0 1 4

1 0 8

l 1 12

Figure 6.7. Computing V05, for the digital-to—analog component.

The “kind of” hierarchy for the circuit model is given in Figure 6.8. The Gate

class is an example of how reuse can be facilitated by object-oriented inheritance

when developing primitive components. The input and output methods are the same

for all logic gates. The input method evaluates the gate’s response to the input signal

and schedules any changes of the output signal that may arise. The output method

propagates the signal change to any gates connected to the output terminal. Logic

gates derived from the Gate class inherit the input and output methods, and a general

registration method which defines its terminals and variables. A class derived from

Gate need only define a method which implements the relevant truth table.

There are two types of terminals used in this model: the ElectricalTerminal, and

the DigitalTerminal. The two partitions of the ElectricalTerminal use the identity and

conservation equation connection rules. Each electrical component assigns a voltage

variable to the first partition and a current variable to the second partition. For

example, the connections within the electrical subsystem connecting the capacitor to

107

Communal.

W
Clock Gate 11% M Capacitor mbModel Resists:

/l\
W OrGate NotGate ham ResistorNetwork ElectricalSubSystan DigitalSubSystan

Figure 6.8. The “kind of” hierarchy for the circuit model.

the digital-to-analog converter and the resistor network (c and d in Figure 6.6), consist

of ElectricalTerminals and result in the formulation of the following connectivity

equations:

c: C71,, + C81,, 2 0 (6.11)

c : C7.Va = C8.Va (6.12)

d : C91,, + C31), 2 0 (6.13)

d : C9.Vb 2 C334, (6.14)

The DigitalTerminal consists of a single partition to which the identity equation

connection rule is assigned. The connections within the digital subsystem connecting

the register’s inputs to the outputs of the incrementer (a and b in Figure 6.6), result

in the formulation of the following connectivity equations:

a : C6.out1 = C5.in1 (6.15)

b: C6.outo = C5.ino (6.16)

The output resulting from queries for the voltage drop across the capacitor’s ter-

108

I I T I

Voltage -—- ‘

q

e
on
a

.t’.
O 'l

>

o J L

0 2000 4000 6000 8000 10000

Time

Figure 6.9. Circuit model output: the voltage across the capacitor.

minals is shown in Figure 6.9. The variations in the voltage over time correspond to

the states the state machine in the digital subsystem cycles through on the positive

going edge of the signal originating from the clock component.

6.3.2 Discussion

With respect to the FMDC implementation, this model consists of 17 active objects

(three for each of the five SubModels, one for the EventHandler and one for the Math-

Solver). Although dynamic connections have not been discussed in this example,

they can be modeled by simply calling the appropriate SubModels’ registerConnec-

tion or removeConnection methods. The framework will automatically formulate the

new connectivity equations and remove outdated equations. The new equations are

organized into systems whenever a solution is demanded by a variable query. In ad-

dition to changes to the equation set, topological changes will also cause the initial

109

condition for the differential equation defined by the capacitor to be recomputed.

The closure algorithm presented in Chapter 5 is only applied within the scope of

the SubModel containing the topological change. For example, if another component

was spawned and added within component C9 (the resistor network), only the Equa—

tionAccumulator encapsulated within that SubModel will apply the closure algorithm.

The equations cached by EquationAccumulators external to that SubModel are still

valid.

6.4 Population Dynamics of a Beehive

Systems where components and connections dynamically appear and disappear over

time can also be found in disciplines such as biology, ecology, economics and others.

In this section, a model of the population dynamics of a domestic honey bee colony

is developed using the FMDC framework.

6.4.1 Background Material

Apiculture2 was revolutionized by the invention of the removable frame beehive by

Langstroth in the middle of the 19th century [76]. Langstroth discovered that if

wooden frames were hung in a beehive with a 5/16 inch space (called “bee space”)

between the frames, and between its borders and the walls, ceiling, and floor of the

hive, the bees would build combs in the frames that could be removed and replaced

leaving the hive intact. If the space is less than 5/16 of an inch, the bees will fill the

space with wax and propolis? If the space exceeds 5/16 of an inch, the bees will fill

the space with combs. The removable frame was revolutionary for two reasons. Not

only did they allow surplus honey to be removed from the hive without destroying

2The domestic keeping of bees on a large scale.

3A resin like substance bees gather from a variety of plants.

110

the colony, but they also allowed the apiarist to closely monitor the hive for diseases,

starvation, and other harmful problems.

The combs constructed within the frames are used by the bees for the rearing

of brood: and the storage of honey and pollen. Three types of bees are in the

honeybee colony: the queen, the worker, and the drone. The queen is a female bee

with reproductive capacities. Each colony under normal circumstances has only one

queen. The worker is a female with no reproductive capacities. The worker bee is

responsible for tending the brood, building combs, and gathering nectar and pollen

from plants. The gestation period for a worker bee is approximately 21 days. During

nectar flow, the worker bee’s life span is around six weeks. The worker spends the

first three weeks of its life working in the hive, and the last three weeks gathering

nectar and pollen outside the hive. The drone is the male bee and does little more

than consume honey.

The worker population of a colony may range from several thousand bees, to

60,000-70,000 bees, depending on the time of the year, the prolificacy of the queen, and

a number of other factors. It is important that the colony have the right population

at the right time of the year. For example, during the height of the bloom, when the

nectar is most plentiful, the colony needs a maximum population. At other times of

the year, such as early spring, and fall, a large population of idle worker bees can

be detrimental. A large worker population in the early spring will inevitably lead

to swarming, a natural process in which the queen will leave the hive with a sizable

proportion of the worker population, in an attempt to start another colony elsewhere.

The workers and the new queen left behind rarely recover in time to harvest surplus

honey from the main nectar flow.

Since the invention of the removable frame beehive, apiarists have been able to

manipulate colonies in an attempt to control the population of the colony. A typical

4Bees still in gestation.

111

procedure in the spring time is to equalize the strength of the colonies in a particular

apiary. The apiarist removes frames of brood from strong colonies and places them

in the hives of weak colonies. This procedure strengthens the weaker colony, and at

the same time may help alleviate the stronger colony’s swarming tendency.

Since the wild bee population is no longer sufficient for crop pollination the agri-

cultural industry relies heavily on domestic beekeeping for pollination. Entomologists

are constantly researching new techniques for managing honeybee colonies, preventing

diseases etc. Computer-based models of honeybee colonies are desirable because they

allow the researcher to perform an experiment in minutes on a computer, that would

take months or even years to carry out in the apiary. The computer model is also

a more cost-effective way to carry out research, since some experiments may result

in the destruction of the colony and other expensive equipment. Rutges and Vens

have recently published results describing their use a computer—based model to study

diseases in honeybee colonies [79]. The following section demonstrates how FMDC

can be used to model the worker population of a honeybee colony. The apiarist’s

manipulations of the hive, such as the colony equalization procedure described previ-

ously, can be handled in a straightforward manner using the framework’s mechanisms

for modeling dynamic connections.

6.4.2 Modeling the Population Dynamics

The model will simulate the dynamics of the worker population for 130 days, starting

in early spring (mid April) and ending in early fall (late September). Because there are

many bees within one colony, individual bees are not modeled. Instead, an aggregate

model which approximates the behavior of the colony will be developed. On the

30th day (mid May), we will assume the apiarist places four frames of brood in the

colony. It is assumed that the brood contained in these frames are in the latter

stage of gestation and will emerge as adult worker bees with a negligible delay. The

112

components and connections of the model in its initial configuration are shown in

Figure 6.10.

C4 2 c5

[DeathRate2 I

I DeathRatel

C1 C2 7 C6 C8

, , Period of life Period of life
{QM lay-rate H Gestautm Pernod '1‘“ in hive spent out of hive

Total Worker Population

Figure 6.10. Model of worker bee population.

Component C1 models the rate at which the queen lays eggs. It is assumed that the

queen will lay at a peak rate of 2,000 eggs per day during the early spring, anticipating

the main nectar flow. The lay rate will decrease as the summer progresses. The lay

rate will be approximated with the single constitutive equation:

C1.out(t) = IayRate(t) (6.17)

where layRate(t) is modeled by the step function:

layRate(t) = 2000u(t)-—300u(t—25)-200u(t—50)—400u(t-—75)—300u(t—100)—400u(t——125)

113

Period of life

spent out of hive

Total Worker Population

Figure 6.11. Model of worker bee population with additional brood frames being

inserted.

where the unit step u(t — to) is defined as

1 if t Z to

U(t — to) =

0 if t < to

In reality, the lay rate is a function of the age of the queen, the availability of nectar

and pollen, the temperature, and many other variables.

Component C2 models the gestation period of the worker bees. This delay is mod-

eled by a second order differential equation which is represented by two” constitutive

equations:

C2.y;(t) = 2%(C2.in(t) — C2.y1(t)) (6.18)

where del is the gestation delay in days. This type of component is referred to as a

114

distributed delay and is commonly used to model delays in aggregate models. Since

the variance in gestation delay is quite small, a higher order equation would be more

realistic, but the second order delay suffices for demonstration purposes.

Components C6 and C8 model the life times of the adult worker bees. Component

C6 models the period of time the worker bee spends carrying out its responsibilities

within the hive, while component C3 models the period of time the worker bee spends

foraging for nectar and pollen. The constitutive equations are:

1

Cs.out'(t) = d (C6.in(t) — C6.out(t)) (6.20)

1

out

 08.0mm) = (08mg) — Cg.out(t)) (6.21)

9
.
.

where d... is the time in days the worker bee typically spends in the hive, and do.“

is the time in days the worker bee spends foraging outside the hive. Since we are

interested in the total adult worker population in the colony, the total number of

bees in each of these two phases must be computed. The population in each stage

can be computed with the equations:

C6.pop(t) _—. dgnCe.out(t) (6.22)

C8.pop(t) = doutC8.out(t). (6.23)

Components C4 and C5 introduce the death rates of worker bees. The constitutive

equations for these components are:

C5.out(t) = dr2(t) (6.25)

115

where dr1(t) and dr2(t) are step functions.

Components C3 and C7 are two input multipliers and have the constitutive equa-

tions:

C3.out(t) = 03.3774“) * 03.2712“) (6.26)

07.01““) = 07.2.7210) * C7.zn2(t). (6.27)

The total worker population is computed by adding the number of adult bees

in each of the two stages. This is accomplished by Component C9 whose single

constitutive equation is:

C9.out(t) = C9.in1(t) + C9.in2(t). (6.28)

The connectivity equations generated by the simulation framework from the nine

connections labeled a — i in Figure 6.10 are:

a: C1.out(t) = 02mm (6.29)

b: 02.0mm = Cg.in1(t) (6.30)

c: C3.out(t) = 06mg) (6.31)

d: C4.out(t) = 01mm) (6.32)

e : C5.out(t) = 07-22220) (6.33)

f: C6.out(t) = 07mm) (6.34)

g : C7.out(t) = Cg.in1(t) (6.35)

h : C6.p0p(t) = C9.in1(t) (6.36)

116

i : C7.pop(t) = C9.in2(t). (6.37)

The insertion of brood frames into the hive can be modeled as a dynamic connec-

tion. At timet = 30 two additional components are spawned into the model, C10 and

C11, with constitutive equations:

C10.0‘Ut(t) = 010.3121“) '1' 010.7712“) (6.38)

C11.out(t) = numBees (6.39)

where numBees is a constant denoting the number of adult bees which will emerge

from the brood frames being inserted into the hive. The connection b in Figure 6.10 is

removed, and replaced with three new connections b, j, and k, as shown in Figure 6.11.

The connectivity equations generated are:

b: C10.out(t) = C3.in1(t) (6.40)

j I C2.out(t) = Clo.tn1(t) (6.41)

k 2 C11.out(t) = C10.2n2(t). (6.42)

At time t = 31 the connections b, j, and k, and components C10 and C11 can be

removed and component C2 can be reconnected to component C3, restoring the model

to its original topology as shown in Figure 6.10.

The framework accumulates the constitutive equations and the connectivity equa-

tions formulated from the connections, and solves them when variable queries are

made. Figure 6.12 shows the values computed for the variable C9.out(t), the total

worker population, for two different executions of the model: one where the hive was

left undisturbed over the entire 130 day period, and another where brood frames were

inserted into the hive on the 30th day. The solution of the equations was driven by

117

I j I T T r

No brood frames added -——

70000 + Brood frames added at t-30 ----- .

60000

I

M
'
\

/

1

I

50000

-
.
.
-
-
-
.
.
.

-
-

I40000

W
o
r
k
e
r

B
e
e

P
o
p
u
l
a
t
i
o
n

30000 P

20000 __ 1 1 l l I l

0 20 40 60 80 100 120

Time in days

Figure 6.12. Output from the Beehive model.

the queries for the variable C9.out(t).

6.4.3 Discussion

Although many simplifying assumptions were made in this model, the results shown

in Figure 6.12 are reasonable and correspond with the discussions of the honeybee

population dynamics found elsewhere [76]. However, the objective in developing this

model was not to produce new results pertaining to the population dynamics of

honeybee colonies. The objective was to demonstrate the framework’s applicability

in a problem area that is not normally studied within the engineering disciplines.

Other phenomena in the beehive colony could be modeled with the framework. For

example, if the queen were replaced with a more prolific queen (a common procedure),

this could be modeled by removing component C1 and replacing it with a component

that accurately represented the new queen’s laying rate. More complex phenomena

118

such as the effects of pesticides, marauding predators, etc., can be represented by

dynamically spawning new components and interconnecting them with the existing

components. Existing simulation tools can be used to model these topological changes

by building a separate model for each possible topological configuration. For example,

in the beehive model, two models would be constructed: one describing the topology

before the addition of brood frames, and one describing the topology after the brood

frames are inserted. The first model is executed until day 30. The output of this

model is used as initial conditions in the second model. The second model is then

executed from day 30 to day 130. While this approach may be reasonable for this

particular example, in general, it is not practical for a number of reasons. First, if the

topology is expected to change frequently, many different models would have to be

constructed. Second, this approach is not applicable to interactive simulation where

new components and connections can be introduced spontaneously, at the whim of

the user. Finally, this approach assumes that the model developer somehow knows a

priori all the possible topological configurations of the model. The FMDC framework

can model dynamic components and connections within a single model, and makes

no assumptions about the different topological configurations the model might evolve

into.

6.5 Summary

This chapter has presented an implementation of the simulation framework called

FMDC. Models from several problem domains were presented. A model of the com-

mon control channels in a cellular phone system demonstrated the framework’s dis-

crete modeling capabilities. A model of an electrical circuit demonstrated the frame-

work’s capability to mix both continuous and discrete components in one model. An

aggregate model of the population dynamics of a beehive demonstrated the frame-

119

work’s applicability to systems outside the realm of engineering.

CHAPTER 7

Summary, Contributions and

Recommendations

7.1 Summary

Traditional computer-based simulation and modeling methodologies do not provide

support for explicit modeling of components whose existence and connections vary

over time. Many systems exist that contain components and connections which vary

over time. Visual and interactive modeling tools also give rise to models whose com-

ponents and connections vary over time by allowing users to interactively manipulate

the model. This dissertation has presented an object-oriented framework for modeling

systems whose components and connections vary with time.

The framework consists of four layers. The applications layer is the layer in which

the framework is instantiated. This is accomplished by deriving classes from the ab-

stract classes defined by the framework. The interface layer serves as an interface

between the applications layer and the simulation layer, and consists of the abstract

classes defined by the framework. The simulation layer consists of a set of concurrent

objects which respond to changes in a model’s component population and to the con-

nections among components. The computational layer is responsible for the solution

120

121

of the systems of equations formulated by components and their connections.

Precise definitions were developed for components, terminals, connections, sub-

models, and other key abstractions. The SubModel abstraction is used to construct

hierarchical models. The SubModel abstraction also solves the problem of mapping

messages from the application to the appropriate concurrent object residing in the

simulation layer. The concurrent objects in the simulation layer are transparent to

the application layer.

The framework provides efficient mechanisms for handling the dynamic set of

representative equations. Equation solution is demand driven; equations are not

solved until a variable query from the application necessitates solution. Equations

are organized and cached within the context of the SubModel with which they were

registered. When a topological change occurs within the context of a particular Sub-

Model, changes to the equation set are isolated to the subset of equations maintained

by that SubModel.

7.2 Contributions

The primary contributions of this dissertation are

e a modeling methodology that provides explicit support for modeling

systems whose component population and interconnections may vary

with time. Unlike existing modeling methodologies that either assume a static

population of components and interconnections or provide a very limited notion

of a connection, the approach proposed by this dissertation allows a model’s

component population and interconnections to vary with time.

o the application of object-oriented frameworks and object-oriented

concurrency in the context of modeling systems with dynamic con-

nections. The framework defines a set of abstractions that can be used to

122

develop a family of simulation applications. The concurrent object-oriented

approach allowed us to develop a framework that is amenable to a parallel or

distributed implementation. Because the concurrent objects are transparent to

the simulation application, applications derived from a parallel implementation

of the framework are executed in parallel without the application’s developer

providing for it explicitly.

a the unified treatment of components and connections in the context

of continuous and discrete event simulation. The same framework ab-

stractions are used to develop both continuous and discrete components.

0 a C++ implementation of the framework. The implementation has demon-

strated the practicality of the ideas presented in this dissertation and can be

used as a base for further research.

7.3 Recommendations

There are several areas in which this research could be carried further. First, an

underlying assumption during the course of this research was that the application

knows when new connections and components occur. If the application is an interac-

tive simulator with which a user is interactively adding or removing components and

connections from the running model, this assumption poses no problem. The user

manipulations can be mapped directly onto the framework’s component and connec-

tion registration methods. However, in an application where connections occur when

certain conditions placed on component variables are satisfied, rather than when

explicitly stated, a monitoring mechanism is needed. The mechanism must allow

conditions such as “if p} = p; then connect components X and Y” to be registered,

where p; and p3 might be position vectors defined and registered by components X

123

and Y. More general conditions, such as “if the position vectors of any components

currently residing in region R are equal then connect those components” might also

be registered. Efficient and accurate monitoring of such conditions in the context

of large hierarchical models consisting of thousands of components is not a trivial

problem.

Another area that needs further investigation is the application of results from

parallel and distributed simulation to the simulation framework presented in this dis-

sertation. In a parallel implementation, the concurrent objects need to be synchro-

nized. Both the optimistic and conservative approaches are applicable here. Ques-

tions regarding which approach is best for this particular framework, and under what

conditions remain to be answered.

Finally, from our experiences in implementing the computational layer of FMDC,

we learned that more attention needs to be given to automatically manipulating

mathematical equations into a form that can be readily solved with a computer. In

the past simulation tools have forced the model developer to express equations in a

form that lent itself to the underlying solution method. Robust implementations of

the framework proposed here should allow equations to be registered in a form that

the user finds acceptable.

APPENDICES

APPENDIX A

The Hamework Classes

This appendix gives a detailed description of the data members and interface protocol

for the abstract classes defined by the framework. An asterisk following a type name

indicates that the data member is a pointer of that type.

A.1 The Component Class

The Component class is used to construct primitive components. The member data

and member functions of this class are summarized in Figure A.1 and Figure A.2.

[[Name] Type]]

componentId integer

terminals Array of Terminal*

numberOfTerminals integer

context SubModel*

Figure A.1. Data members of the abstract class Component

Instantiating a component causes a unique number to be assigned to componentId.

It is used by the framework for identification purposes. The member, terminals, is

124

125

I] Return value] Method name] Parameters]]

none Component SubModel*, integer

integer registration none

none beforeConnecting none

none beforeUnConnecting none

none input integer, Message

none output integer, Message

Figure A.2. The interface protocol of the abstract class Component

a dynamic array of pointers to the terminals of a component. The member, num-

berOfTerminals, indicates how many terminals are currently associated with the com-

ponent. The context pointer is used to indicate where the component exists in the

model hierarchy.

An instance of class Component is constructed via the component method Com-

ponent. Its two parameters specify the context of the component, and how many

terminals it will have. The methods beforeConnecting and before UnConnecting con-

tain code to be executed before topological changes occur. The input and output

methods are used for propagating messages among components. None of these meth-

ods, with the exception of the Component method, contain code in the Component

class. They are defined in the Component class in order to establish the interface

protocol among classes that will be derived from it

A.2 The Terminal Class

Instances of the Terminal class are used by a component to indicate the potential to

connect to other components which have terminals of the same type. The member

data and member functions of this class are summarized in Figure A.3 and Figure AA.

The member connectionld is a unique identifier generated by the ConnectionManager

126

I Name] Type]]

connectionld integer

internalConnectionId integer

partitionTable 2-dimensional array of integer

connectRule Array of ConnectionRule*

parentContext SubModel*

currentContext SubModel*

Figure A.3. Data members of the abstract class Terminal

I] Return value [Method name FParameters []

none Terminal SubModel*, SubModel*

none assignVariable integer, integer

none assignPartition ConnectionRule*, integer

Figure A.4. The interface protocol of the abstract class Terminal

when the terminal is connected to other terminals. All the terminals in one connection

will have the same connectionld. A terminal of a SubModel nested within another

SubModel may have a reference to an internal connection. The unique identifier for

this connection is stored in the member internalConnectionId. References to the

applicable connection rules are stored in the array connectRule. The size of the

array is equal to the number of variable partitions defined by the terminal. The

partition Table maintains a set of variable identifiers for each partition. Every variable

is given a unique identifier by the EquationAccumulator when it is registered. The

two SubModel pointers are used by terminals of nested SubModels. The parentContext

member points to the parent SubModel, and the currentContext member points to the

SubModel that instantiated the terminal.

An instance of class Terminal is constructed via the Terminal method. The two

127

SubModel pointers received as input parameters are stored in the parentContext and

currentContext members. The assign Variable method is used to assign variables to

the terminal’s variable partitions. The first integer input parameter is the parti-

tion identifier, and the second integer input parameter is a variable identifier. The

assignPartition method assigns a connection rule to a variable partition. The first

input parameter is a pointer to the connection rule, and the second parameter is the

partition identifier.

The constructors of classes derived from the Terminal class will use the assign-

Variable and assignPartition methods of the base class to set up the variable partition

table as desired.

A.3 The SubModel Class

The SubModel class is used to construct hierarchical models. The member data and

member functions of this class are summarized in Figure A.5 and Figure A.6. Each

[[Name [Type []

accumulator EquationAccumulator

conman ConnectionManager

formulator EquationFormulator

actions EventHandler (shared by all instances)

solver MathSolver (shared by all instances)

Figure A.5. Data members of the abstract class SubModel

SubModel instance will instantiate three active objects: the accumulator, the conman,

and the formulator. The members, actions and solver, are references to the global

EventHandler and MathSolver objects.

128

I] Return value I Method name] Parameters]]

none SubModel SubModel*, integer

none schedule Event*

integer registerEquation Equation*

integer registerVariable Variable*

integer queryVariable integer, integer

integer rememberVariable integer integer

integer revokeConstitutiveEquation integer

integer registerComponent Component*

integer registerConnection integer,integer,integer,integer

integer removeComponent integer

integer removeConnection integer, integer

none propagateOutput Variable*, Message

none defineConstant String, integer, real

none undefineConstant String, integer
Figure A.6. The interface protocol of the abstract class SubModel

The SubModel class supports a number of member functions which are used to

manipulate the connections and components within the SubModel. These methods

are as follows:

1. SubModel - used to create new SubModel instances. The SubModel* parameter

is a reference to the SubModel that the new SubModel instance will be registered

with.

2. schedule - used to place an event in the priority queue maintained by the Even-

tHandler object.

3. registerE'quation - used by a component to define a constitutive equation. The

method returns the unique identifier assigned to the equation.

4. register Variable - used by a component to define a variable. The method returns

the unique variable identifier assigned to the variable.

10.

11.

12.

13.

14.

129

query Variable — used to query for the value of a variable that has been registered

previously. The input parameters are the variable identifier and the evaluation

time.

rememberVariable - similar to the query Variable method, except the result of

the query is stored internally. This method is called to compute and store initial

conditions for differential equations during topological changes.

revokeConstitutiveEquation - sends a message to the EquationAccumulator in-

structing it to revoke a constitutive equation. The equation is identified by the

integer parameter.

registerComponent - send the ConnectionManager a message instructing it to

register a new component.

registerConnection - send the ConnectionManager a message instructing it to

register a connection. The four integer parameters identify the two components

and their terminals to be connected.

removeComponent - sends the ConnectionManager a message instructing it to

remove a component. The component is identified by the integer parameter.

removeConnection - sends the ConnectionManager a message instructing it to

remove a component from a connection. The two integer parameters identify

the component and terminal to be disconnected.

propagateOutput - used by discrete components to propagate an output mes-

sage. The variable parameter indicates which terminal the message is to be

propagated from.

defineConstant - initializes a symbolic constant with the MathSolver.

undefineConstant - removes a previously initialized symbolic constant.

130

AA Event Classes

Events are state changes which occur at discrete points in time. The framework

defines an abstract class, Event, whose protocol and data members are given in Fig-

ures A.7 and A8. The data member submodel indicates the context in which the

event should be executed, and the member time indicates the time the event is to

be executed. The member function, eval, is executed at the scheduled time, time. It

returns an array of pointers to events which were generated during the execution of

eval. The framework defines a set of standard events which are listed in Figure A.9.

Each of these Events is inherited from the abstract class Event. New events can be

derived from these events, or from Event.

[] Name LType]]

submodel SubModel*

time real

Figure A.7. Data members of the abstract class Event

[[Return value] Method name I Parametersj]

[LArray of Event*] eval] none]]

Figure A8 The interface protocol of the abstract class Event

131

[] Event] Description

CreateComponent add a new component to the model

DeleteComponent remove a component from the model

ConnectEvent establish a connection between two or more components

UnConnectEvent remove a connection between two components

SQueryEvent synchronized query of a variable value

SRthueryEvent synchronized repetitive query of a variable value

PrintStateEvent prints SubModel state for debug purposes

InputEvent cause a component to read from an input terminal

OutputEvent cause a component to output to an output terminal

TerminateEvent cause simulation to terminate

Figure A.9. Events defined by the framework

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] J. Abell. New Developments in perturbation analysis of discrete event systems

with structural modifications. PhD thesis, Oakland University, 1992.

[2] J. Abell and R. Judd. Object-oriented perturbation analysis of discrete event

systems. In Proceedings of the 1992 Summer Computer Simulation Conference,

pages 164—168, July 1993.

[3] A. Aggarwal, K. Gordon, et al. Animating simulations in RESQME. In Pro-

ceedings of the 1989 Winter Simulation Conference, pages 612—619, 1989.

[4] G. Agha. Concurrent object-oriented programming. Communications of the

ACM, 33(9):125—141, Sept. 1990.

[5] M. Bach. The Design of the UNIX Operating System, pages 383—388. Software

Series. Prentice Hall, 1986.

[6] J. Banks and J. Carson. Discrete-Event System Simulation. Prentice-Hall Inc.,

1984.

[7] C. Basnet, P. Farrington, et al. Experiences in developing an object-oriented

modeling environment for manufacturing systems. In Proceedings of the 1990

Winter Simulation Conference, pages 477—481, 1990.

[8] E. Bensley, V. Giddings, J. Leivent, and R. Watro. A performance-based com-

parison of object-oriented simulation tools. In Proceedings of Object-Oriented

Simulation Conference, 1992 Western Simulation Multiconference, pages 47—51,

January 1992.

[9] J. Bezivin. Some experiments in object-oriented simulation. In Proceedings

1987 OOPSLA, pages 394—405, 1987.

[10] J. Bishop and O. Balci. General purpose visual simulation system: a functional

description. In Proceedings of the 1990 Winter Simulation Conference, pages

504—512, 1990.

132

133

[11] E. Blair. DISC++: a C++ based library for object—oriented simulation. In

Proceedings of the 1989 Winter Simulation Conference, pages 301—307, 1989.

[12] G. Booch. Object-Oriented Design with Applications. Benjamin/Cummings,

1991.

[13] D. Breen and V. Kiihn. Message-based object-oriented interaction modeling.

In Eurographics ’89, pages 489—503. North-Holland, 1989.

[14] D. Brunner and J. Henriksen. A general purpose animator. In Proceedings of

the 1989 Winter Simulation Conference, pages 155—163, 1989.

[15] 0. Bryan. MODSIM II - an object-oriented simulation language for sequential

and parallel processors. In Proceedings of the 1989 Winter Simulation Confer-

ence, pages 172—177, 1989.

[16] J. Buck, S. Ha, E. Lee, and D. Messerschmitt. Ptolemy: A mixed-paradigm

simulation/prototyping platform in C++ . In 1991 CH at Work Conference,

1991.

[17] J. Buck, S. Ha, E. Lee, and D. Messerschmitt. Ptolemy: A framework for

simulating and prototyping heterogeneous systems. to appear in International

Journal of Computer Simulation, special issue on Simulation Software Devel-

opment, 1993.

[18] R. Campbell, N. Islam, R. Johnson, P. Kougiouris, and M. P. Choices, Frame-

works and Refinement, pages 9—15. IEEE Computer Society Press, Oct. 1991.

[19] F. Cellier. Continuous System Modeling. Springer-Verlag, 1991.

[20] F. Cellier and H. Elmqvist. The need for automated formula manipulation

in object-oriented continuous—system modeling. In Proceedings of CA CSD92 -

IEEE Computer-aided Control System Design Conference, Mar. 1992.

[21] F. E. Cellier. Bond graphs — the right choice for educating students in modeling

continuous-time physical systems. In Proceedings of SCS Western Simulation

MultiConference, pages 123—127, Jan. 1992.

[22] F. E. Cellier, B. P. Zeigler, and A. H. Cutler. Object-oriented modeling: Tools

and techniques for capturing properties of physical systems in computer code.

In Proceedings of CADCSQI — IFAC Symposium on Computer-aided Design in

Control Systems, pages 1—10, Jan. 1991.

134

[23] K. Chandy and J. Misra. Distributed simulation: a case study in design and ver-

ification of distributed programs. IEEE Transactions on Software Engineering,

5(9):440—452, Sept. 1979.

[24] K. Chandy and J. Misra. Asynchronous distributed simulation via a sequence

of parallel computations. Communications of the ACM, 24(4):198—205, 1981.

[25] C. Cooper and D. Zhao. OGST: an object-oriented graphical simulation envi-

ronment. In Proceedings of the Object-Oriented Simulation Conference, 1992

Western Simulation Multiconference, pages 20—24, 1992.

[26] P. Corey and J. Clymer. Discrete event simulation of object movement and

interactions. Simulation, 56(3):167—175, Mar. 1991.

[27] A. Corradi and L. Leonardi. PO: An object model to express parallelism.

In Proceedings of the ACM SICPLAN Workshop on Object-Based Concurrent

Programming, pages 152—155, Apr. 1989.

[28] J. Cremer. An Architecture for General Purpose Physical Simulation -— Integrat-

ing Geometry, Dynamics, and Control. PhD thesis, Cornell University, 1989.

[29] O. Dahl, B. Myhrhaug, and K. Nygaard. SIMULA-67: Common Base Lan-

guage. Norwegian Computing Center, Oslo, Norway, 1982.

[30] W. Dally and A. Chien. Object-Oriented concurrent programming in CST.

In Proceedings of the ACM SIGPLAN Workshop on Object—Based Concurrent

Programming, pages 28—31, Apr. 1989.

[31] J. Derrick, O. Balci, and R. Nance. A comparison of selected conceptual frame-

works for simulation modeling. In Proceedings of the 1989 Winter Simulation

Conference, pages 711—718, 1989.

[32] J. Engelsma. A preliminary evaluation of the PRISM tool. Technical Report

BC569-91-09, Cellular Infrastructure, Motorola Inc., Arlington thts, IL, 1992.

[33] J. Engelsma, M. Chung, and Y. Chung. Distributed token-driven logic simu-

lation on a shared-memory multiprocessor. In Proceedings of 6th Workshop in

Parallel and Distributed Simulation, pages 197-198, Jan. 1992.

[34] J. Engelsma and R. Reid. Modeling Dynamic Connections. In Proceedings of

the Summer Computer Simulation Conference, pages 264—268, July 1992.

135

[35] J. Engelsma and R. Reid. A concurrent object-oriented framework for modeling

dynamic connectivity. In Proceedings of the 1993 Object-Oriented Simulation

Conference, part of the Western Simulation Multiconference, pages 143—148,

Jan. 1993.

[36] J. Engelsma and R. Reid. Modeling dynamic connectivity with a hierarchy of

co—operating concurrent objects. In To appear in the 1993 European Simulation

Multiconference, 1993.

[37] J. Engelsma and P. Reilly. An extensible model of the GSM radio control chan-

nels. In Proceedings of the Summer Computer Simulation Conference, pages

493500, July 1992.

[38] P. Ferrel and R. Meyer. VAMP: The Aldus Application Framework. In Pro-

ceedings 1989 OOPSLA, pages 185—189, 1989.

[39] R. Fujimoto. Parallel discrete event simulation. In Proceedings of the 1989

Winter Simulation Conference, pages 19-28, 1989.

[40] R. Fujimoto. Optimistic approaches to parallel discrete—event simulation. Trans-

actions of the Society for Computer Simulation, 7(2):153-191, June 1990.

[41] R. Fujimoto. Parallel discrete event simulation. Communications of the ACM,

33(10):30—53, Oct. 1990.

[42] B. Gilmore. The Simulation of Mechanical Systems with a Changing Topology.

PhD thesis, Purdue University, 1986.

[43] R. Gimarc. Distributed simulation using hierarchical rollback. In Proceedings

of the 1989 Winter Simulation Conference, pages 621—629, 1989.

[44] A. Goldberg and D. Robson. Smalltalk—80: The Language and its Implementa-

tion. Addison-Wesley, 1983.

[45] R. Gordon, E. MacNair, et al. Hierarchical modeling in a graphical simulation

system. In Proceedings of the 1990 Winter Simulation Conference, pages 498-

503, 1990.

[46] A. Guasch and R. Huntsinger. Object-oriented continuous system simulation. In

Proceedings of the 1989 Summer Simulation Conference, pages 562—565, 1989.

[47] P. Jain and P. Newton. Putting structure into modeling. In Proceedings of the

1989 Summer Simulation Conference, pages 49—53, 1989.

136

[48] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley and

Sons, Inc., 1991.

[49] D. Jefferson. Virtual time. ACM Transactions on Programming Languages and

Systems, 7(3):404—425, July 1985.

[50] R. Johnson and V. Russo. Reusing Object-Oriented Designs. Technical Report

UIUCDCS 91-1696, University of Illinois, Urbana, IL 61802, 1991.

[51] D. Jordan. Implementation benefits of C++ language mechanisms. Communi-

cations of the ACM, 33(9):61—64, Sept. 1990.

[52] J. Kearney, S. Hansen, and J. Cremer. Programming mechanical simulations.

In 2nd Eurographics Workshop on Animation and Simulation, pages 223-242,

1991.

[53] B. Kluth and C. Giirg. Efficient simulation of network models in C++ . In

Proceedings of the 13th International Teletrafl‘ic Congress, pages 601—608, 1991.

[54] T. Korson and J. McGregor. Understanding objected-oriented: a unifying

paradigm. Communications of the ACM, 33(9):40—60, Sept. 1990.

[55] B. Kramer. Specifying concurrent objects. In Proceedings of the ACM SIC-

PLAN Workshop on Object-Based Concurrent Programming, pages 162-164,

Apr. 1989.

[56] V. Kiihn and W. Miiller. Advanced object-oriented methods and concepts for

simulations of multi-body systems. In 2nd Eurographics Workshop on Anima-

tion and Simulation, pages 129—161, 1991.

[57] J. Lim and R. Johnson. The heart of object—oriented concurrent programming.

In Proceedings of the ACM SIGPLAN Workshop on Object-Based Concurrent

Programming, pages 165—167, Apr. 1989.

[58] M. Linton, J. Vlissides, and C. P.R. Composing User Interfaces with InterViews.

IEEE Computer, 22(2):8—22, Feb. 1989.

[59] G. Lomow and D. Baezner. A tutorial introduction to object-oriented simulation

and Sim++. In Proceedings of the 1989 Winter Simulation Conference, pages

140-146, 1989.

137

[60] B. Lubachevsky, A. Weiss, and A. Shwartz. An analysis of rollback-based sim-

ulation. ACM Transactions on Modeling and Computer Simulation, 1(2):l54—

193, Apr. 1991.

[61] O. Madsen and B. Moller-Pedersen. What object-oriented programming may

be and what it does not have to be. In Proceedings of the 1988 European

Conference on Object-Oriented Programming, pages 1—20, 1988.

[62] S. Mathewson. Simulation modelling support via network based concepts. In

Proceedings of the 1990 Winter Simulation Conference, pages 459—467, 1990.

[63] K. Matwiczak. Interactive simulation: let the user beware! In Proceedings of

the 1990 Winter Simulation Conference, pages 453—456, 1990.

[64] J. McAffer. Actor-based simulation. In Proceedings of the 1989 Summer Sim-

ulation Conference, pages 910—915, 1989.

[65] N. Meyrowitz. Intermedia: The architecture and construction of an object-

oriented hypermedia system and applications framework. In Proceedings 1986

OOPSLA, pages 196—201, 1986.

[66] D. Monarchi and G. Puhr. A research typology for object-oriented analysis and

design. Communications of the ACM, 35(9):35—47, June 1992.

[67] D. Newton and P. Vaughan. MCC PRISM version 1.4 research prototype release

user’s guide. Technical Report CAD-034-90, Microelectronics and Computer

Technology Corporation, 1992.

[68] D. Newton, P. Vaughan, and R. Johns. PRISM: an object-oriented system

modeling environment with an embedded symbolic spreadsheet. In Proceedings

of the 1991 Summer Computer Simulation Conference, pages 81—86, 1991.

[69] J. O’Reilly and K. Nordlund. Introduction to SLAM II and SLAMSYSTEM.

In Proceedings of the 1989 Winter Simulation Conference, pages 178—183, 1989.

[70] M. Ozden. Graphical programming of simulation models in an object-oriented

environment. Simulation, 56(2):104-116, Feb. 1991.

[71] T. Page, S. Berson, W. Cheng, and R. Muntz. An object-oriented modeling

environment. In Proceedings 1989 OOPSLA, pages 287—296, 1989.

[72] J. Pino, S. Ha, E. Lee, and J. Buck. Software synthesis for DSP using Ptolemy.

Invited paper to appear in the Journal on VLSI Signal Processing, 1992.

138

[73] J. Poorte and D. Davis. Computer animation with cinema. In Proceedings of

the 1989 Winter Simulation Conference, pages 147—154, 1989.

[74] A. A. B. Pritsker. Keynote address: why simulation works. In Proceedings of

the 1989 Winter Simulation Conference, pages 1—6, 1989.

[75] R. Reid. Computer-aided engineering for computer architecture laboratories.

IEEE Transactions on Education, 34(1):56-—61, 1991.

[76] A. Root. The ABC and XYZ of Bee Culture. A.1. Root Company, 1983.

[77] P. Roth. Discrete, continuous and combined simulation. In Proceedings of the

1987 Winter Simulation Conference, pages 25—29, 1987.

[78] J. Rothenberg. Object-oriented simulation: Where do we go from here? In

Proceedings of the 1986 Winter Simulation Conference, pages 464—469, 1986.

[79] A. Rutges and R. Vens. Object~oriented simulation of ecological systems using

the beehive simulator. In Proceedings of the 1993 Object-Oriented Simulation

Conference, part of the Western Simulation Multiconferencer, pages 157—162,

Jan. 1993.

[80] M. Sakkinen. On the darker side of C++ . In Proceedings of the 1988 European

Conference on Object-Oriented Programming, pages 162—176, 1988.

[81] L. Schruben and E. Yucesan. Simulation graph duality: a world view transfor-

mation for simple queuing models. In Proceedings of the 1989 Winter Simulation

Conference, pages 738-745, 1989.

[82] Scientific and Engineering Software Inc., Austin, Texas. SES/Workbench Ref-

erence Manual, 1991.

[83] Scientific and Engineering Software Inc., Austin, Texas. SES/Workbench Users

Guide, 1991.

[84] J. Shopiro. Extending the C++ task system for real-time control. In C++ Work-

shop. USENIX Association, 1987.

[85] S. Smith, M. Mercer, and B. Brock. Demand driven simulation: BACKSIM.

In Proceedings of the 24th ACM/IEEE Design Automation Conference, pages

181-187, 1987.

[86] B. Stroustrup. The C++ Programming Language. Addison-Wesley, second edi-

tion, 1991.

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

139

B. Stroustrup and S. J. A set of C++ classes for co-routine style programming.

In C++ Workshop. USENIX Association, 1987.

T. Thomasma and J. Madsen. Object-oriented programming languages for

developing simulation-related software. In Proceedings of the 1990 Winter Sim-

ulation Conference, pages 482—489, 1990.

K. Tonegawa. Simulating with feedforward information. In Proceedings of the

1989 Summer Simulation Conference, pages 1—4, 1989.

B. Unger, J. Cleary, A. Dewar, and Z. Xiao. A multi-lingual optimistic dis-

tributed simulator. Transactions of the Society for Computer Simulation,

7(2):12l-151, June 1990.

J. van den Bos. PROCOL a protocol-constrained concurrent object-oriented

language. In Proceedings of the ACM SIGPLAN Workshop on Object-Based

Concurrent Programming, pages 149—151, Apr. 1989.

P. van der Meulen. INSIST: Interactive simulation in Smalltalk. In Proceedings

of 00PSLA-87, pages 366—376, Oct. 1987.

P. Vaughan and D. Newton. Interactive Graphic MODeling environment (Ig-

mod). In Proceedings of the Object-Oriented Simulation Conference, 1992 West-

ern Simulation Multiconference, pages 25—30, 1992.

P. Vaughan and D. Newton. PRISM: an object-oriented system modeling

toolkit. International Journal of Computer Simulation, 1992.

P. Vaughan, D. Newton, and R. Johns. PRISM: an object-oriented system

modeling environment in C++ . Technical Report CAD-353-90, Microelectron—

ics and Computer Technology Corporation, 1990.

L. Velho and J. Gomes. A dynamics simulation environment for implicit ob-

jects using discrete models. In 2nd Eurographics Workshop on Animation and

Simulation, pages 183-189, 1991.

R. Vujosevic. Object-oriented visual interactive simulation. In Proceedings of

the 1990 Winter Simulation Conference, pages 490-497, 1990.

A. Weinand, E. Gamma, and R. Marty. E++ — An Object-Oriented Application

Framework in C++ . In Proceedings 1988 OOPSLA, pages 46-57, 1988.

140

[99] R. Wirfs-Brock and R. Johnson. Surveying Current Research in Object-oriented

Design. Communications of the ACM, 33(9):104—124, Sept. 1990.

[100] S. Wolfram. Mathematica, a system for doing mathematics by computer.

Addison-Wesley, second edition, 1991.

[101] Wolfram Research Inc. MathLink External Communication in Mathematica,

Apr. 1992.

[102] D. Wyatt. A framework for reusability using graph-based models. In Proceedings

of the 1990 Winter Simulation Conference, pages 472-476, 1990. h

[103] A. Yonezawa and T. M. Object-oriented Concurrent Programming. Computer

Systems Series. MIT Press, 1987.

